WorldWideScience

Sample records for cdse quantum rods

  1. Anisotropy in CdSe quantum rods

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liang-shi [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    The size-dependent optical and electronic properties of semiconductor nanocrystals have drawn much attention in the past decade, and have been very well understood for spherical ones. The advent of the synthetic methods to make rod-like CdSe nanocrystals with wurtzite structure has offered us a new opportunity to study their properties as functions of their shape. This dissertation includes three main parts: synthesis of CdSe nanorods with tightly controlled widths and lengths, their optical and dielectric properties, and their large-scale assembly, all of which are either directly or indirectly caused by the uniaxial crystallographic structure of wurtzite CdSe. The hexagonal wurtzite structure is believed to be the primary reason for the growth of CdSe nanorods. It represents itself in the kinetic stabilization of the rod-like particles over the spherical ones in the presence of phosphonic acids. By varying the composition of the surfactant mixture used for synthesis we have achieved tight control of the widths and lengths of the nanorods. The synthesis of monodisperse CdSe nanorods enables us to systematically study their size-dependent properties. For example, room temperature single particle fluorescence spectroscopy has shown that nanorods emit linearly polarized photoluminescence. Theoretical calculations have shown that it is due to the crossing between the two highest occupied electronic levels with increasing aspect ratio. We also measured the permanent electric dipole moment of the nanorods with transient electric birefringence technique. Experimental results on nanorods with different sizes show that the dipole moment is linear to the particle volume, indicating that it originates from the non-centrosymmetric hexagonal lattice. The elongation of the nanocrystals also results in the anisotropic inter-particle interaction. One of the consequences is the formation of liquid crystalline phases when the nanorods are dispersed in solvent to a high enough

  2. Amphoteric CdSe nanocrystalline quantum dots.

    Science.gov (United States)

    Islam, Mohammad A

    2008-06-25

    The nanocrystal quantum dot (NQD) charge states strongly influence their electrical transport properties in photovoltaic and electroluminescent devices, optical gains in NQD lasers, and the stability of the dots in thin films. We report a unique electrostatic nature of CdSe NQDs, studied by electrophoretic methods. When we submerged a pair of metal electrodes, in a parallel plate capacitor configuration, into a dilute solution of CdSe NQDs in hexane, and applied a DC voltage across the pair, thin films of CdSe NQDs were deposited on both the positive and the negative electrodes. Extensive characterizations including scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared (FTIR) and Raman studies revealed that the films on both the positive and the negative electrodes were identical in every respect, clearly indicating that: (1) a fraction (<1%) of the CdSe NQDs in free form in hexane solution are charged and, more importantly, (2) there are equal numbers of positive and negative CdSe NQDs in the hexane solution. Experiments also show that the number of deposited dots is at least an order of magnitude higher than the number of initially charged dots, indicating regeneration. We used simple thermodynamics to explain such amphoteric nature and the charging/regeneration of the CdSe NQDs.

  3. Synthesis of CdSe Quantum Dots Using Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Takaaki Yamaguchi

    2016-10-01

    Full Text Available CdSe quantum dots are often used in industry as fluorescent materials. In this study, CdSe quantum dots were synthesized using Fusarium oxysporum. The cadmium and selenium concentration, pH, and temperature for the culture of F. oxysporum (Fusarium oxysporum were optimized for the synthesis, and the CdSe quantum dots obtained from the mycelial cells of F. oxysporum were observed by transmission electron microscopy. Ultra-thin sections of F. oxysporum showed that the CdSe quantum dots were precipitated in the intracellular space, indicating that cadmium and selenium ions were incorporated into the cell and that the quantum dots were synthesized with intracellular metabolites. To reveal differences in F. oxysporum metabolism, cell extracts of F. oxysporum, before and after CdSe synthesis, were compared using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE. The results suggested that the amount of superoxide dismutase (SOD decreased after CdSe synthesis. Fluorescence microscopy revealed that cytoplasmic superoxide increased significantly after CdSe synthesis. The accumulation of superoxide may increase the expression of various metabolites that play a role in reducing Se4+ to Se2− and inhibit the aggregation of CdSe to make nanoparticles.

  4. Optics of colloidal quantum-confined CdSe nanoscrolls

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, R B; Sokolikova, M S [M. V. Lomonosov Moscow State University, Moscow (Russian Federation); Vitukhnovskii, A G; Ambrozevich, S A; Selyukov, A S; Lebedev, V S [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-09-30

    Nanostructures in the form of 1.2-nm-thick colloidal CdSe nanoplatelets rolled into scrolls are investigated. The morphology of these scrolls is analysed and their basic geometric parameters are determined (diameter 29 nm, longitudinal size 100 – 150 nm) by TEM microscopy. Absorption and photoluminescence spectra of these objects are recorded, and the luminescence decay kinetics is studied. It is shown that the optical properties of CdSe nanoscrolls differ significantly from the properties of CdSe quantum dots and that these nanoscrolls are attractive for nanophotonic devices due to large oscillator strengths of the transition, small widths of excitonic peaks and short luminescence decay times. Nanoscrolls can be used to design hybrid organic–inorganic pure-color LEDs with a high luminescence quantum yield and low operating voltages. (optics and technology of nanostructures)

  5. Composition-controlled optical properties of colloidal CdSe quantum dots

    International Nuclear Information System (INIS)

    Ayele, Delele Worku; Su, Wei-Nien; Chou, Hung-Lung; Pan, Chun-Jern; Hwang, Bing-Joe

    2014-01-01

    Graphical abstract: - Highlights: • The surface of CdSe QDs are modified with cadmium followed by selenium. • The optical properties of CdSe QDs can be controlled by manipulating the composition. • Surface compositional change affects the surface defects or traps and recombination. • The surface trapping state can be controlled by tuning the surface composition. • A change in composition shows a change in the carrier life time. - Abstract: A strategy with respect to band gap engineering by controlling the composition of CdSe quantum dots (QDs) is reported. After the CdSe QDs are prepared, their compositions can be effectively manipulated from 1:1 (Cd:Se) CdSe QDs to Cd-rich and then to Se-rich QDs. To obtain Cd-rich CdSe QDs, Cd was deposited on equimolar CdSe QDs. Further deposition of Se on Cd-rich CdSe QDs produced Se-rich CdSe QDs. The compositions (Cd:Se) of the as-prepared CdSe quantum dots were acquired by Energy-dispersive X-ray spectroscopy (EDX). By changing the composition, the overall optical properties of the CdSe QDs can be manipulated. It was found that as the composition of the QDs changes from 1:1 (Cd:Se) CdSe to Cd-rich and then Se-rich CdSe, the band gap decreases along with a red shift of UV–vis absorption edges and photoluminescence (PL) peaks. The quantum yield also decreases with surface composition from 1:1 (Cd:Se) CdSe QDs to Cd-rich and then to Se-rich, largely due to the changes in the surface state. Because of the involvement of the surface defect or trapping state, the carrier life time increased from the 1:1 (Cd:Se) CdSe QDs to the Cd-rich to the Se-rich CdSe QDs. We have shown that the optical properties of CdSe QDs can be controlled by manipulating the composition of the surface atoms. This strategy can potentially be extended to other semiconductor nanocrystals to modify their properties

  6. Composition-controlled optical properties of colloidal CdSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Ayele, Delele Worku [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Department of Chemistry, Bahir Dar University, Bahir Dar (Ethiopia); Su, Wei-Nien, E-mail: wsu@mail.ntust.edu.tw [Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Chou, Hung-Lung [Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Pan, Chun-Jern [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Hwang, Bing-Joe, E-mail: bjh@mail.ntust.edu.tw [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan (China)

    2014-12-15

    Graphical abstract: - Highlights: • The surface of CdSe QDs are modified with cadmium followed by selenium. • The optical properties of CdSe QDs can be controlled by manipulating the composition. • Surface compositional change affects the surface defects or traps and recombination. • The surface trapping state can be controlled by tuning the surface composition. • A change in composition shows a change in the carrier life time. - Abstract: A strategy with respect to band gap engineering by controlling the composition of CdSe quantum dots (QDs) is reported. After the CdSe QDs are prepared, their compositions can be effectively manipulated from 1:1 (Cd:Se) CdSe QDs to Cd-rich and then to Se-rich QDs. To obtain Cd-rich CdSe QDs, Cd was deposited on equimolar CdSe QDs. Further deposition of Se on Cd-rich CdSe QDs produced Se-rich CdSe QDs. The compositions (Cd:Se) of the as-prepared CdSe quantum dots were acquired by Energy-dispersive X-ray spectroscopy (EDX). By changing the composition, the overall optical properties of the CdSe QDs can be manipulated. It was found that as the composition of the QDs changes from 1:1 (Cd:Se) CdSe to Cd-rich and then Se-rich CdSe, the band gap decreases along with a red shift of UV–vis absorption edges and photoluminescence (PL) peaks. The quantum yield also decreases with surface composition from 1:1 (Cd:Se) CdSe QDs to Cd-rich and then to Se-rich, largely due to the changes in the surface state. Because of the involvement of the surface defect or trapping state, the carrier life time increased from the 1:1 (Cd:Se) CdSe QDs to the Cd-rich to the Se-rich CdSe QDs. We have shown that the optical properties of CdSe QDs can be controlled by manipulating the composition of the surface atoms. This strategy can potentially be extended to other semiconductor nanocrystals to modify their properties.

  7. L-Cysteine Capped CdSe Quantum Dots Synthesized by Photochemical Route.

    Science.gov (United States)

    Singh, Avinash; Kunwar, Amit; Rath, M C

    2018-05-01

    L-cysteine capped CdSe quantum dots were synthesized via photochemical route in aqueous solution under UV photo-irradiation. The as grown CdSe quantum dots exhibit broad fluorescence at room temperature. The CdSe quantum dots were found to be formed only through the reactions of the precursors, i.e., Cd(NH3)2+4 and SeSO2-3 with the photochemically generated 1-hydroxy-2-propyl radicals, (CH3)2COH radicals, which are formed through the process of H atom abstraction by the photoexcited acetone from 2-propanol. L-Cysteine was found to act as a suitable capping agent for the CdSe quantum dots and increases their biocompatability. Cytotoxicty effects of these quantum dots were evaluated in Chinese Hamster Ovary (CHO) epithelial cells, indicated a significant lower level for the L-cysteine capped CdSe quantum dots as compare to the bare ones.

  8. Fabrication of CdSe quantum dots/permutite luminescent materials

    Indian Academy of Sciences (India)

    Permutite incorporating CdSe in mesopores has been prepared with a simple route. Firstly, mercaptosuccinic acid-capped CdSe quantum dots (QDs) were prepared in aqueous solution by using SeO2 as selenium source and NaBH4 as reductant. Secondly, the commercial permutite was treated with acetic acid to induce a ...

  9. Ligand Induced Circular Dichroism and Circularly Polarized Luminescence in CdSe Quantum Dots

    Science.gov (United States)

    Tohgha, Urice; Deol, Kirandeep K.; Porter, Ashlin G.; Bartko, Samuel G.; Choi, Jung Kyu; Leonard, Brian M.; Varga, Krisztina; Kubelka, Jan; Muller, Gilles; Balaz, Milan

    2014-01-01

    Chiral thiol capping ligands L- and D-cysteines induced modular chiroptical properties in achiral cadmium selenide quantum dots (CdSe QDs). Cys-CdSe prepared from achiral oleic acid capped CdSe by post-synthetic ligand exchange displayed size-dependent electronic circular dichroism (CD) and circularly polarized luminescence (CPL). Opposite CPL signals were measured for the CdSe QDs capped with D- and L-cysteine. The CD profile and CD anisotropy varied with size of CdSe nanocrystals with largest anisotropy observed for CdSe nanoparticles of 4.4 nm. Magic angle spinning solid state NMR (MAS ssNMR) experiments suggested bidentate interaction between cysteine and the surface of CdSe. Density functional theory (DFT) calculations verified that attachment of L- and D-cysteine to the surface of model (CdSe)13 nanoclusters induces measurable opposite CD signals for the exitonic band of the nanocluster. The chirality was induced by the hybridization of highest occupied CdSe molecular orbitals with those of the chiral ligand. PMID:24200288

  10. Thiolated graphene - a new platform for anchoring CdSe quantum dots for hybrid heterostructures

    Science.gov (United States)

    Debgupta, Joyashish; Pillai, Vijayamohanan K.

    2013-04-01

    Effective organization of small CdSe quantum dots on graphene sheets has been achieved by a simple solution exchange with thiol terminated graphene prepared by diazonium salt chemistry. This generic methodology of CdSe QD attachment to any graphene surface has remarkable implications in designing hybrid heterostructures.Effective organization of small CdSe quantum dots on graphene sheets has been achieved by a simple solution exchange with thiol terminated graphene prepared by diazonium salt chemistry. This generic methodology of CdSe QD attachment to any graphene surface has remarkable implications in designing hybrid heterostructures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00363a

  11. Aqueous synthesis and characterization of TGA-capped CdSe quantum dots at freezing temperature.

    Science.gov (United States)

    Sun, Qizhuang; Fu, Shasha; Dong, Tingmei; Liu, Shuxian; Huang, Chaobiao

    2012-07-11

    CdSe quantum dots (QDs) have traditionally been synthesized in organic phase and then transferred to aqueous solution by functionalizing their surface with silica, polymers, short-chain thiol ligands, or phospholipid micelles. However, a drastic increase in the hydrodynamic size and biotoxicity of QDs may hinder their biomedical applications. In this paper, the TGA-capped CdSe QDs are directly synthesized in aqueous phase at freezing temperature, and they prove to possess high QY (up to 14%).

  12. Photoluminescence of patterned CdSe quantum dot for anti-counterfeiting label on paper

    International Nuclear Information System (INIS)

    Isnaeni,; Yulianto, Nursidik; Suliyanti, Maria Margaretha

    2016-01-01

    We successfully developed a method utilizing colloidal CdSe nanocrystalline quantum dot for anti-counterfeiting label on a piece of glossy paper. We deposited numbers and lines patterns of toluene soluble CdSe quantum dot using rubber stamper on a glossy paper. The width of line pattern was about 1-2 mm with 1-2 mm separation between lines. It required less than one minute for deposited CdSe quantum dot on glossy paper to dry and become invisible by naked eyes. However, patterned quantum dot become visible using long-pass filter glasses upon excitation of UV lamp or blue laser. We characterized photoluminescence of line patterns of quantum dot, and we found that emission boundaries of line patterns were clearly observed. The error of line size and shape were mainly due to defect of the original stamper. The emission peak wavelength of CdSe quantum dot was 629 nm. The emission spectrum of deposited quantum dot has full width at half maximum (FWHM) of 30-40 nm. The spectra similarity between deposited quantum dot and the original quantum dot in solution proved that our stamping method can be simply applied on glossy paper without changing basic optical property of the quantum dot. Further development of this technique is potential for anti-counterfeiting label on very important documents or objects.

  13. Femtosecond Cooling of Hot Electrons in CdSe Quantum-Well Platelets

    NARCIS (Netherlands)

    Sippel, Philipp; Albrecht, Wiebke; van der Bok, Johanna C.; Moes, Relinde; Hannappel, Thomas; Eichberger, Rainer; Vanmaekelbergh, Daniel

    Semiconductor quantum wells are ubiquitous in high-performance optoelectronic devices such as solar cells and lasers. Understanding and controlling of the (hot) carrier dynamics is essential to optimize their performance. Here, we study hot electron cooling in colloidal CdSe quantum-well

  14. Sulforaphane Protects the Liver against CdSe Quantum Dot-Induced Cytotoxicity.

    Directory of Open Access Journals (Sweden)

    Wei Wang

    Full Text Available The potential cytotoxicity of cadmium selenide (CdSe quantum dots (QDs presents a barrier to their use in biomedical imaging or as diagnostic and therapeutic agents. Sulforaphane (SFN is a chemoprotective compound derived from cruciferous vegetables which can up-regulate antioxidant enzymes and induce apoptosis and autophagy. This study reports the effects of SFN on CdSe QD-induced cytotoxicity in immortalised human hepatocytes and in the livers of mice. CdSe QDs induced dose-dependent cell death in hepatocytes with an IC50 = 20.4 μM. Pre-treatment with SFN (5 μM increased cell viability in response to CdSe QDs (20 μM from 49.5 to 89.3%. SFN induced a pro-oxidant effect characterized by depletion of intracellular reduced glutathione during short term exposure (3-6 h, followed by up-regulation of antioxidant enzymes and glutathione levels at 24 h. SFN also caused Nrf2 translocation into the nucleus, up-regulation of antioxidant enzymes and autophagy. siRNA knockdown of Nrf2 suggests that the Nrf2 pathway plays a role in the protection against CdSe QD-induced cell death. Wortmannin inhibition of SFN-induced autophagy significantly suppressed the protective effect of SFN on CdSe QD-induced cell death. Moreover, the role of autophagy in SFN protection against CdSe QD-induced cell death was confirmed using mouse embryonic fibroblasts lacking ATG5. CdSe QDs caused significant liver damage in mice, and this was decreased by SFN treatment. In conclusion, SFN attenuated the cytotoxicity of CdSe QDs in both human hepatocytes and in the mouse liver, and this protection was associated with the induction of Nrf2 pathway and autophagy.

  15. Tipping Time of a Quantum Rod

    Science.gov (United States)

    Parrikar, Onkar

    2010-01-01

    The behaviour of a quantum rod, pivoted at its lower end on an impenetrable floor and restricted to moving in the vertical plane under the gravitational potential, is studied analytically under the approximation that the rod is initially localized to a "small-enough" neighbourhood around the point of classical unstable equilibrium. It is shown…

  16. Cytotoxicity testing of bare CdSe quantum dots and their encapsulated structure

    Science.gov (United States)

    Kumari, Asha; Singh, Ragini Raj

    2017-07-01

    In this work we have synthesized CdSe quantum dots (QDs) and their polymer encapsulated structures by wet chemical method for cytotoxicity testing. These QDs were synthesized by using aqueous solvent to make them hydrophilic because we want to use these for bioimaging purpose. The cytotoxicity is major concern to use these quantum dots in bio application because these are made up of heavy metal ions so to make these QDs nontoxic and to improve their optical properties we encapsulated these QDs by polymers. Thereafter we have studied the cytotoxicity of CdSe QDs and their polymer encapsulated structure.MTT method (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide method) was used to study toxicity of QDs toward MDCK epithelial cell line. Effect of encapsulation on optical properties was analyzed by Photoluminescence spectroscopy. QDs encapsulated with polymer possess improved optical properties with greater fluorescence intensity and lesser cytotoxicity as compare to bare CdSe.

  17. Quantum Dots Sensitized Solar Cell: Effect of CdSe Nanoparticles Purification Procedure of QD Sensitized Photoanodes

    International Nuclear Information System (INIS)

    Yaacob, K A; Ishak, M N; Alias, N N

    2013-01-01

    In this research the effect of purification of CdSe nanoparticles for application in quantum dots sensitized solar cells (QDSSC) photoanodes are studied. The CdSe nanoparticles are attached to the titanium dioxide surface using a linker based approached (CdSe nanoparticles disperse in toluene) and direct mode attachment (CdSe re-disperse in dichloromethane (DCM)). Colloidal CdSe nanoparticles with estimated size of 3.0 nm were synthesized by hot injection method in trioctylphosphine oxide (TOPO) as stabilizing solvent. Prior to the sensitization, the CdSe nanoparticles were purified using a common purification step involving the alternate cycles of precipitation / redispersion in non-polar solvent and polar solvent. With increasing the number of purification, the concentrations of CdSe nanoparticles attached to the titanium dioxide were also increased; from 2.47 × 10 15 dots/cc for 3 × wash CdSe nanoparticles to 3.70 × 10 15 dots/cc for 4 × wash CdSe nanoparticles. Polysulfide electrolyte and Cu 2 S counterelectrodes were used to assemble a complete QDSSC. The highest efficiency of 0.05% was obtained from 4 × wash CdSe nanoparticles; V oc = 0.2V, J sc = 0.34 mA/cm 2 and FF = 0.07).

  18. Green wet chemical route to synthesize capped CdSe quantum dots

    Indian Academy of Sciences (India)

    cadmium selenide quantum dots (CdSe QDs) employing chemical bath deposition (CBD) method. The mechanism of capping using ... more, the process can be operated under open atmosphere. (Chang and Lee 2007). Here, we report ... kept in bath at 65. ◦. C for. 1 h. In order to control the pH further, appropriate amount of.

  19. Green wet chemical route to synthesize capped CdSe quantum dots

    Indian Academy of Sciences (India)

    In the present work, we report green synthesis of tartaric acid (TA) and triethanolamine (TEA) capped cadmium selenide quantum dots (CdSe QDs) employing chemical bath deposition (CBD) method. The mechanism of capping using non-toxic binary capping agents is also discussed. Stable QDs of various sizes were ...

  20. Application of CdSe quantum dots for the direct detection of TNT.

    Science.gov (United States)

    Yi, Kui-Yu

    2016-02-01

    CdSe quantum dots were synthesized through a simple, green organic-phase method. Paraffin was used as the reaction solvent and a reducing agent, oleic acid was the reaction ligand, and oleyl amine was the stabilizer. Based on the phenomenon of TNT quenched oil-soluble CdSe quantum dot fluorescence, a simple, fast, and direct method of TNT detection was established. Under optimum conditions, the degree of fluorescence quenching of oil-soluble CdSe quantum dots had a good linear correlation with TNT concentration in the 1.0×10(-7)-5.0×10(-5) mol/L range, and the correlation coefficient was 0.9990. TNT detection limit was 2.1×10(-8)mol/L. The method was successfully used to determine TNT-explosion dust samples, results were satisfactory. The fluorescence quenching mechanism of oil-soluble CdSe quantum dots by TNT was also discussed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Quantum kinetic exciton-LO-phonon interaction in CdSe

    DEFF Research Database (Denmark)

    Woggon, Ulrike; Gindele, Frank; Langbein, Wolfgang

    2000-01-01

    Oscillations with a period of similar to 150 fs are observed in the four-wave mixing (FWM) signal of bulk CdSe and interpreted in terms of non-Markovian exciton-LO-phonon scattering. The experiments show evidence of phonon quantum kinetics in semiconductors of strong polar coupling strength...

  2. Green wet chemical route to synthesize capped CdSe quantum dots

    Indian Academy of Sciences (India)

    Green wet chemical route to synthesize capped CdSe quantum dots. A OUDHIA and P BICHPURIA. ∗. Department of Physics, Government VYT PG Autonomous College, Durg 491 001, India. MS received 25 November 2012; revised 13 February 2013. Abstract. In the present work, we report green synthesis of tartaric acid ...

  3. Fabrication of CdSe quantum dots/permutite luminescent materials

    Indian Academy of Sciences (India)

    Administrator

    tosuccinic acid-capped CdSe quantum dots (QDs) were prepared in aqueous solution by using SeO2 as selenium source and NaBH4 as reductant. Secondly, the commercial permutite was treated with acetic acid to induce a partial dealumnization, which can introduce a large number of intracrystal mesopores, and the.

  4. Charge separation in contact systems with CdSe quantum dot layers

    International Nuclear Information System (INIS)

    Zillner, Elisabeth Franziska

    2013-01-01

    Quantum dot (QD) solar cells are a fast developing area in the field of solution processed photovoltaics. Central aspects for the application of QDs in solar cells are separation and transport of charge carriers in the QD layers and the formation of charge selective contacts. Even though efficiencies of up to 7% were reached in QD solar cells, these processes are not yet fully understood. In this thesis the mechanisms of charge separation, transport and recombination in CdSe QD layers and layer systems were studied. Charge separation was measured via surface photovoltage (SPV) at CdSe QD layers with thicknesses in the range of monolayers. To determine the influence of interparticle distance of QDs and trap states on the surface of QDs on charge separation, QDs with four different surfactant layers were studied. Layers of CdSe QDs were prepared on ITO, Si, SiO 2 and CdS by dip coating under inert atmosphere. The layers were characterized by Rutherford backscattering spectrometry, UV-vis spectroscopy, step profilometry and scanning electron microscopy to determine the areal density, the absorption and thickness of CdSe QD monolayers. SPV measurements show that initial charge separation from the CdSe QDs on ITO only happened from the fi rst monolayer of QDs. Electrons, photo-excited in the fi rst monolayer of CdSe QDs, were trapped on the ITO surface. The remaining free holes were trapped in surface states and/or diffused into the neighboring QD layers. The thick surfactant layer (∼ 1.6 nm) of pristine QDs had to be reduced by washing and/or ligand exchange for separation of photo-excited charge carriers. Both, interparticle distance and trap density, influenced the processes of charge separation and recombination. SPV transients of CdSe monolayers could be described by a single QD approximation model, based on Miller-Abrahams hopping of holes between the delocalized excitonic state, traps on the surface of the QD and the filled trap on the ITO surface

  5. Charge separation in contact systems with CdSe quantum dot layers

    Energy Technology Data Exchange (ETDEWEB)

    Zillner, Elisabeth Franziska

    2013-03-06

    Quantum dot (QD) solar cells are a fast developing area in the field of solution processed photovoltaics. Central aspects for the application of QDs in solar cells are separation and transport of charge carriers in the QD layers and the formation of charge selective contacts. Even though efficiencies of up to 7% were reached in QD solar cells, these processes are not yet fully understood. In this thesis the mechanisms of charge separation, transport and recombination in CdSe QD layers and layer systems were studied. Charge separation was measured via surface photovoltage (SPV) at CdSe QD layers with thicknesses in the range of monolayers. To determine the influence of interparticle distance of QDs and trap states on the surface of QDs on charge separation, QDs with four different surfactant layers were studied. Layers of CdSe QDs were prepared on ITO, Si, SiO{sub 2} and CdS by dip coating under inert atmosphere. The layers were characterized by Rutherford backscattering spectrometry, UV-vis spectroscopy, step profilometry and scanning electron microscopy to determine the areal density, the absorption and thickness of CdSe QD monolayers. SPV measurements show that initial charge separation from the CdSe QDs on ITO only happened from the fi rst monolayer of QDs. Electrons, photo-excited in the fi rst monolayer of CdSe QDs, were trapped on the ITO surface. The remaining free holes were trapped in surface states and/or diffused into the neighboring QD layers. The thick surfactant layer ({approx} 1.6 nm) of pristine QDs had to be reduced by washing and/or ligand exchange for separation of photo-excited charge carriers. Both, interparticle distance and trap density, influenced the processes of charge separation and recombination. SPV transients of CdSe monolayers could be described by a single QD approximation model, based on Miller-Abrahams hopping of holes between the delocalized excitonic state, traps on the surface of the QD and the filled trap on the ITO surface

  6. Energy relaxation in CdSe nanocrystals: the effects of morphology and film preparation.

    Science.gov (United States)

    Spann, Bryan T; Chen, Liangliang; Ruan, Xiulin; Xu, Xianfan

    2013-01-14

    Ultrafast time-resolved absorption spectroscopy is used to investigate exciton dynamics in CdSe nanocrystal films. The effects of morphology, quantum-dot versus quantum-rod, and preparation of nanocrystals in a thin film form are investigated. The measurements revealed longer intraband exciton relaxation in quantum-rods than in quantum-dots. The slowed relaxation in quantum-rods is due to mitigation of the Auger-relaxation mechanism from elongating the nanocrystal. In addition, the nanocrystal thin film showed long-lived confined acoustic phonons corresponding to the ellipsoidal breathing mode, contrary to others work on colloidal systems of CdSe nanocrystals.

  7. Switching CdSe quantum dot luminescence with a-Si:H.

    Science.gov (United States)

    Di Vece, M; van Duren, S N F; van den Heuvel, D J; Mitoraj, D; Kuang, Y; Gerritsen, H C; Schropp, R E I

    2013-08-09

    Dynamical control of the luminescence of quantum dots is highly important for technology in the field of telecommunication, displays, and photovoltaics. In this work we use an a-Si:H solar cell structure in which CdSe quantum dots are sandwiched. By applying a positive potential over the device, charge carriers generated in the quantum dots are transported to the a-Si:H layer and transformed into electrical energy, changing the luminescence intensity with a switching time lower than 60 ms. This is a promising new step towards using quantum dots in optical switching devices.

  8. Enhanced photoluminescence of corrugated Al2O3 film assisted by colloidal CdSe quantum dots.

    Science.gov (United States)

    Bai, Zhongchen; Hao, Licai; Zhang, Zhengping; Huang, Zhaoling; Qin, Shuijie

    2017-05-19

    We present the enhanced photoluminescence (PL) of a corrugated Al 2 O 3 film enabled by colloidal CdSe quantum dots. The colloidal CdSe quantum dots are fabricated directly on a corrugated Al 2 O 3 substrate using an electrochemical deposition (ECD) method in a microfluidic system. The photoluminescence is excited by using a 150 nm diameter ultraviolet laser spot of a scanning near-field optical microscope. Owing to the electron transfer from the conduction band of the CdSe quantum dots to that of Al 2 O 3 , the enhanced photoluminescence effect is observed, which results from the increase in the recombination rate of electrons and holes on the Al 2 O 3 surface and the reduction in the fluorescence of the CdSe quantum dots. A periodically-fluctuating fluorescent spectrum was exhibited because of the periodical wire-like corrugated Al 2 O 3 surface serving as an optical grating. The spectral topographic map around the fluorescence peak from the Al 2 O 3 areas covered with CdSe quantum dots was unique and attributed to the uniform deposition of CdSe QDs on the corrugated Al 2 O 3 surface. We believe that the microfluidic ECD system and the surface enhanced fluorescence method described in this paper have potential applications in forming uniform optoelectronic films of colloidal quantum dots with controllable QD spacing and in boosting the fluorescent efficiency of weak PL devices.

  9. Optical performance evolutions of reductive glutathione coated CdSe quantum dots in different environments

    International Nuclear Information System (INIS)

    Wang Lili; Jiang Jisen

    2011-01-01

    Optical performances of reductive glutathione coated CdSe quantum dots were studied under different ageing conditions. The enhancements of luminescence were obviously occurred for the samples ageing under illumination. The quantum yield of CdSe was enhanced continuously over 44 days at room temperature, and reached as high as 36.6%. O 2 was proved to make a certain contribute to the enhancement. The evolutions of the systems during the ageing time were deduced according to the variations of pH values with ageing time and the XRD results of the samples ageing in air with illumination. We conferred that the reduction of surface defects resulted from the photo-induced decomposition of CdSe quantum dots was the main reason for the enhancement of fluorescence. The production of CdO as a result of the surface reaction with O 2 made contributions to the enhancement for a certain extent. The curves of quantum yield versus ageing time were fitted with a stretched exponential function. It was found that the course of fluorescence enhancement accorded with the dynamics of system with strongly coupled hierarchical degrees of freedom.

  10. Multicolored silica coated CdSe core/shell quantum dots

    Science.gov (United States)

    Goftman, Valentina V.; Markin, Alexey V.; De Saeger, Sarah; Goryacheva, Irina Y.

    2016-04-01

    Silanization is a convenient route to provide water-solubility to the quantum dots (QDs) with different structure. Green, orange and red emitting CdSe-based QDs were synthesized by varying of number and material of wider-band gap shells and fluorescent properties of QDs were characterized before and after silanization. It was shown that structure of the QD influences on the quantum yield of the silanized QDs: the better CdSe core is protected with wider-band gap semiconductor shells, the more fluorescence properties remain after silica coated QD possess. Hence silica coated QDs have a great perspectives for the multiplex analysis.

  11. Interactions between water-soluble CdSe quantum dots and gold nanoparticles studied by UV-visible absorption spectroscopy.

    Science.gov (United States)

    Han, Heyou; Cai, Yawen; Liang, Jiangong; Sheng, Zonghai

    2007-06-01

    The interaction of water-soluble CdSe quantum dots (QDs) with gold (Au) nanoparticles was investigated by ultraviolet visible absorption spectroscopy. The results showed that the aggregation of Au nanoparticles was induced by CdSe QDs. The influences of factors such as the size of Au nanoparticles, acidity, buffer concentration and the concentration ratio of the CdSe QDs to Au nanoparticles were each investigated. The comparison of two different particle sizes (16 and 25 nm) of Au nanoparticles that interact with CdSe QDs in the solution showed that the aggregation of small Au nanoparticles (16 nm) is easier than that of big Au nanoparticles (25 nm). At pH 7.0 phosphate buffer solution (0.02 M), the optimal molar ratio of CdSe:Au is about 3100:1 according to calculations.

  12. Interaction of the CdSe quantum dots with plant cell walls.

    Science.gov (United States)

    Djikanović, Daniela; Kalauzi, Aleksandar; Jeremić, Milorad; Xu, Jianmin; Mićić, Miodrag; Whyte, Jeffrey D; Leblanc, Roger M; Radotić, Ksenija

    2012-03-01

    There is an increasing application of quantum dots (QDs) in plant science, as markers for the cells or their cell walls (CWs). In a plant cell the CW is a first target place for external agents. We studied interaction of CdSe QDs with CWs isolated from a conifer -Picea omorika (Panč) Purkynĕ branch. Binding of CdSe QDs was followed by using fluorescence microscopy, fluorescence and FT-IR spectroscopy. The aim of the study was to see whether the QDs induce structural changes in the CW, as well as to find out which kind of interactions between QDs and CWs occur and to which particular constituent polymers QDs preferably bind. The isolated CW is an appropriate object for study of the interactions with nanoparticles. The results show that in the CW, CdSe predominantly binds to cellulose, via OH groups and to lignin, via the conjugated CC/C-C chains. The differences in interaction of wet and dry CWs with QDs/chloroform were also studied. In the reaction of the dry CW sample with QDs/chloroform, hydrophobic interactions are dominant. When water was added after QDs/chloroform, hydrophilic interactions enable a partial reconstruction of the CC chains. The results have an implication on the use of the QDs in plant bio-imaging. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Origins of low energy-transfer efficiency between patterned GaN quantum well and CdSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xingsheng, E-mail: xsxu@semi.ac.cn [State Key Laboratory of Integration Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2015-03-02

    For hybrid light emitting devices (LEDs) consisting of GaN quantum wells and colloidal quantum dots, it is necessary to explore the physical mechanisms causing decreases in the quantum efficiencies and the energy transfer efficiency between a GaN quantum well and CdSe quantum dots. This study investigated the electro-luminescence for a hybrid LED consisting of colloidal quantum dots and a GaN quantum well patterned with photonic crystals. It was found that both the quantum efficiency of colloidal quantum dots on a GaN quantum well and the energy transfer efficiency between the patterned GaN quantum well and the colloidal quantum dots decreased with increases in the driving voltage or the driving time. Under high driving voltages, the decreases in the quantum efficiency of the colloidal quantum dots and the energy transfer efficiency can be attributed to Auger recombination, while those decreases under long driving time are due to photo-bleaching and Auger recombination.

  14. Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states

    DEFF Research Database (Denmark)

    Leistikow, M.D.; Johansen, Jeppe; Kettelarij, A.J.

    2009-01-01

    , allowing us to determine the size-dependent quantum efficiency and oscillator strength. We find that the quantum efficiency decreases with increasing emission energy mostly due to an increase in nonradiative decay. We manage to obtain the oscillator strength of the important class of CdSe quantum dots...

  15. A Suitable Polysulfide Electrolyte for CdSe Quantum Dot-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    H. K. Jun

    2013-01-01

    Full Text Available A polysulfide liquid electrolyte is developed for the application in CdSe quantum dot-sensitized solar cells (QDSSCs. A solvent consisting of ethanol and water in the ratio of 8 : 2 by volume has been found as the optimum solvent for preparing the liquid electrolytes. This solvent ratio appears to give higher cell efficiency compared to pure ethanol or water as a solvent. Na2S and S give rise to a good redox couple in the electrolyte for QDSSC operation, and the optimum concentrations required are 0.5 M and 0.1 M, respectively. Addition of guanidine thiocyanate (GuSCN to the electrolyte further enhances the performance. The QDSSC with CdSe sensitized electrode prepared using 7 cycles of successive ionic layer adsorption and reaction (SILAR produces an efficiency of 1.41% with a fill factor of 44% on using a polysulfide electrolyte of 0.5 M Na2S, 0.1 M S, and 0.05 M GuSCN in ethanol/water (8 : 2 by volume under the illumination of 100 mW/cm2 white light. Inclusion of small amount of TiO2 nanoparticles into the electrolyte helps to stabilize the polysulfide electrolyte and thereby improve the stability of the CdSe QDSSC. The CdSe QDs are also found to be stable in the optimized polysulfide liquid electrolyte.

  16. Intense Visible Luminescence in CdSe Quantum Dots by Efficiency Surface Passivation with H2O Molecules

    Directory of Open Access Journals (Sweden)

    Hyeoung Woo Park

    2012-01-01

    Full Text Available We have investigated the effect of water (H2O cooling and heat treatment on the luminescence efficiency of core CdSe quantum dots (QDs. The photoluminescence (PL quantum yield of the CdSe QDs was enhanced up to ~85%, and some periodic bright points were observed in wide color ranges during the heat treatment of QDs mixed with H2O. The PL enhancement of QDs could be attributed to the recovery of QDs surface traps by unreacted ligands confined within the hydrophilic H2O molecule containers.

  17. Green route synthesis of high quality CdSe quantum dots for applications in light emitting devices

    Science.gov (United States)

    Bera, Susnata; Singh, Shashi B.; Ray, S. K.

    2012-05-01

    Investigation was made on light emitting diodes fabricated using CdSe quantum dots. CdSe quantum dots were synthesized chemically using olive oil as the capping agent, instead of toxic phosphine. Room temperature photoluminescence investigation showed sharp 1st excitonic emission peak at 568 nm. Bi-layer organic/inorganic (P3HT/CdSe) hybrid light emitting devices were fabricated by solution process. The electroluminescence study showed low turn on voltage (˜2.2 V) .The EL peak intensity was found to increase by increasing the operating current.

  18. Directed Energy Transfer in Films of CdSe Quantum Dots: Beyond the Point Dipole Approximation

    DEFF Research Database (Denmark)

    Zheng, Kaibo; Zídek, Karel; Abdellah, Mohamed

    2014-01-01

    Understanding of Förster resonance energy transfer (FRET) in thin films composed of quantum dots (QDs) is of fundamental and technological significance in optimal design of QD based optoelectronic devices. The separation between QDs in the densely packed films is usually smaller than the size...... of QDs, so that the simple point-dipole approximation, widely used in the conventional approach, can no longer offer quantitative description of the FRET dynamics in such systems. Here, we report the investigations of the FRET dynamics in densely packed films composed of multisized CdSe QDs using...

  19. Excitons in semiconducting quantum filaments of CdS and CdSe with dielectric barriers

    CERN Document Server

    Dneprovskij, V S; Shalygina, O A; Lyaskovskij, V L; Mulyarov, E A; Gavrilov, S A; Masumoto, I

    2002-01-01

    The peculiarities of the luminescence spectra obtained by different polarization and intensity of the pumping excitation and luminescence kinetics of the CdS and CdSe nanocrystals are explained by the exciton transitions in the semiconducting quantum threads with dielectric barriers. The exciton transition energies correspond to the calculated ones with an account of both their dimensional quantization and the effect of the excitons dielectric intensification. It is shown that the excitons transition energies do not change by the change in the quantum threads diameter within the wide range, while the increase in the one-dimensional forbidden zone width of quantum thread by the decrease in its diameter is compensated through the decrease in the excitons binding energy

  20. Auger-Limited Carrier Recombination and Relaxation in CdSe Colloidal Quantum Wells

    Energy Technology Data Exchange (ETDEWEB)

    Baghani, Erfan; O’Leary, Stephen K.; Fedin, Igor; Talapin, Dmitri V.; Pelton, Matthew

    2015-03-19

    Using time-resolved photoluminescence spectroscopy, we show that two-exciton Auger recombination dominates carrier recombination and cooling dynamics in CdSe nanoplatelets, or colloidal quantum wells. The electron-hole recombination rate depends only on the number of electron-hole pairs present in each nanoplatelet, and is consistent with a twoexciton recombination process over a wide range of exciton densities. The carrier relaxation rate within the conduction and valence bands also depends only on the number of electron-hole pairs present, apart from an initial rapid decay, and is consistent with the cooling rate being limited by reheating due to Auger recombination processes. These Auger-limited recombination and relaxation dynamics are qualitatively different from the carrier dynamics in either colloidal quantum dots or epitaxial quantum wells. TOC FIGURE:

  1. Comparison of three empirical force fields for phonon calculations in CdSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, Anne Myers [Chemistry and Chemical Biology, University of California, Merced, 5200 North Lake Road, Merced, California 95343 (United States)

    2016-06-07

    Three empirical interatomic force fields are parametrized using structural, elastic, and phonon dispersion data for bulk CdSe and their predictions are then compared for the structures and phonons of CdSe quantum dots having average diameters of ~2.8 and ~5.2 nm (~410 and ~2630 atoms, respectively). The three force fields include one that contains only two-body interactions (Lennard-Jones plus Coulomb), a Tersoff-type force field that contains both two-body and three-body interactions but no Coulombic terms, and a Stillinger-Weber type force field that contains Coulombic interactions plus two-body and three-body terms. While all three force fields predict nearly identical peak frequencies for the strongly Raman-active “longitudinal optical” phonon in the quantum dots, the predictions for the width of the Raman peak, the peak frequency and width of the infrared absorption peak, and the degree of disorder in the structure are very different. The three force fields also give very different predictions for the variation in phonon frequency with radial position (core versus surface). The Stillinger-Weber plus Coulomb type force field gives the best overall agreement with available experimental data.

  2. Hyperbranched polyether hybrid nanospheres with CdSe quantum dots incorporated for selective detection of nitric oxide

    DEFF Research Database (Denmark)

    Liu, Shuiping; Jin, Lanming; Chronakis, Ioannis S.

    2014-01-01

    In this work, hybrid nanosphere vehicles consisting of cadmium selenide quantum dots (CdSe QDs) were synthesized for nitric oxide (NO) donating and real-time detecting. The nanospheres with QDs being encapsulation have spherical outline with dimension of ~127 nm. The fluorescence properties...

  3. Optical properties and the use of CdSe quantum dot for biolabeling applications

    International Nuclear Information System (INIS)

    Tran Hong Nhung; Nguyen Thi Van; Vu Xuan Hoa; Pham Minh Tan; Tong Kim Thuan; Tran Thi Thu Thuy; Jean Claude Brochon; Patrick Tauc

    2008-01-01

    The quantum dots CdSe type Qtracker 565 and 605 of Quantum Dot Company have been investigated by size, chemical structure and optical properties. The Qtracker 605 QDs were introduced into Lipomyces Starkeyi yeast cells. It was found that for the young cells (36 h of culture), the labeling QDs are mainly located in vacuoles, and the emission remains narrow with the maximum is clearly around 605 nm. For age cells (96 h of culture), the labeling QDs are concentrated in the cell cytoplasm, the emission is broaden with the maximum shifted to 580 nm. The live cell image was still observed after two months of introduction. The Qtracker 605 QDs were also successfully introduced into mouse blood cancerous cells. (author)

  4. Transmission electron microscopy investigations of the CdSe based quantum structures

    Energy Technology Data Exchange (ETDEWEB)

    Roventa, E.

    2006-09-22

    In this work, the structural morphology of the active region of the ZnSe laser diode: quaternary CdZnSSe quantum well or CdSe quantum dots embedded in CdSe/ZnSSe superlattices is investigated using Transmission Electron Microscopy. The conventional as well as high resolution imaging studies indicated that the degradation of the ZnSe laser diodes is connected with the formation of extended defects in the optical active region leading to a local strain relaxation of the quantum well. Furthermore the outdiffusion of Cd from the quantum well occurs predominantly where the defects are located. The chemical composition and ordering phenomena in CdSe/ZnSSe supperlattices were also investigated, employing a series of five-fold structures with different spacer layer thickness and a ten-fold structure. The composition in the CdSe/ZnSSe superlattice was determined to a certain extent using different techniques. Generally, the encountered difficulties regarding the accuracy of the obtained values are correlated with the complexity of the investigated system and with the available experimental methods used. Regarding the alignment of the dots, experimental results support a strain driven ordering process, in which the strain fields from buried dots lead to heterogeneous nucleation conditions for the dots in the subsequently deposited layers. An increased ordering with subsequent stacking of the dot layers is was also found. An anisotropy of the lateral alignment of the CdSe dots was also observed in two different left angle 110 right angle zone axes. The similar plan-view images shows that the preferential alignment of the dots does not follow low-index crystallographic directions. However, it is assumed that this is attributed to the anisotropic elastic strain distribution combined with surface diffusion. (orig.)

  5. Probing Bioluminescence Resonance Energy Transfer in Quantum Rod-Luciferase Nanoconjugates.

    Science.gov (United States)

    Alam, Rabeka; Karam, Liliana M; Doane, Tennyson L; Coopersmith, Kaitlin; Fontaine, Danielle M; Branchini, Bruce R; Maye, Mathew M

    2016-02-23

    We describe the necessary design criteria to create highly efficient energy transfer conjugates containing luciferase enzymes derived from Photinus pyralis (Ppy) and semiconductor quantum rods (QRs) with rod-in-rod (r/r) microstructure. By fine-tuning the synthetic conditions, CdSe/CdS r/r-QRs were prepared with two different emission colors and three different aspect ratios (l/w) each. These were hybridized with blue, green, and red emitting Ppy, leading to a number of new BRET nanoconjugates. Measurements of the emission BRET ratio (BR) indicate that the resulting energy transfer is highly dependent on QR energy accepting properties, which include absorption, quantum yield, and optical anisotropy, as well as its morphological and topological properties, such as aspect ratio and defect concentration. The highest BR was found using r/r-QRs with lower l/w that were conjugated with red Ppy, which may be activating one of the anisotropic CdSe core energy levels. The role QR surface defects play on Ppy binding, and energy transfer was studied by growth of gold nanoparticles at the defects, which indicated that each QR set has different sites. The Ppy binding at those sites is suggested by the observed BRET red-shift as a function of Ppy-to-QR loading (L), where the lowest L results in highest efficiency and furthest shift.

  6. Direct assembly of in situ templated CdSe quantum dots via crystalline lamellae structure of polyamide 66

    Science.gov (United States)

    Cheval, Nicolas; Brooks, Richard; Fahmi, Amir

    2012-03-01

    A simple concept is proposed for templating in situ synthesised CdSe quantum dots (QDs) into an organised nano-pattern using the crystalline lamellae structure of polyamide 66 (PA66). The morphology obtained for PA66 and the hybrid material on Si/SiO x solid substrate was characterised by means of atomic force microscope. Controlling the PA66 concentration in solution and the organic-inorganic interactions are found to be the keys factors to direct the assembly of CdSe QDs along the PA66 linear crystalline structure. This simple approach could be opened a new avenue for a large spectrum of innovative high-tech applications.

  7. Synthesis and characterization of optic properties of CdSe and CdSe/ZnS quantum dots

    Directory of Open Access Journals (Sweden)

    Brayan Stiven Gómez Piñeros

    2018-01-01

    Full Text Available CdSe and CdSe/ZnS (core/shell quantum dots with oleic acid as stabilizing agent in organic medium were prepared and their optical properties were examined. For CdSe synthesis, the influence of O2 in the growth kinetics of quantum dots was determined. In the first 90 s, the nanocrystals growth was 1.6 higher in presence of O2 than when reaction was carried out in N2 atmosphere. However, the growth rate with O2 is not favorable because the nanocrystal optical properties were affected: wider absorption band and lower fluorescence that those obtained in inert atmosphere. Properties of CdSe nanocrystals synthesized in inert atmosphere were intensified with 10% of monolayer. For a core with 2.5 nm diameter, the fluorescence quantum yield (ΦFl in the green region increased from 5.5% to 42.3%. In this work, a low Zn2+ (diethylzinc precursor concentration was used to produce a. The synthesis process of CdSe / ZnS nanocrystals developed with low concentration of Zn2+ and an excess of S2- can be used to obtain materials with excellent photoluminescent properties for applications such as biomarkers, sensors, catalysis, and solar cells.

  8. Molecular beam epitaxy of CdSe epilayers and quantum wells on ZnTe substrate

    International Nuclear Information System (INIS)

    Park, Y.M.; Andre, R.; Kasprzak, J.; Dang, Le Si; Bellet-Amalric, E.

    2007-01-01

    We have grown zinc-blende cadmium selenide (CdSe) epilayers on ZnTe-(0 0 1) substrate by molecular beam epitaxy (MBE). By controlling the substrate temperature and beam-equivalent pressure (BEP) ratio, of Se to Cd, we determined the most suitable growth condition based on reflection high-energy electron diffraction (RHEED) pattern. At a substrate temperature of 280 deg. C and a BEP ratio of 3.6, the RHEED pattern showed a V-like feature, indicating a rough surface with facets. As the substrate temperature was increased to 360 deg. C at the same BEP ratio, a V-like RHEED pattern moved to a clear streaky pattern. Moreover when the BEP ratio was increased to 4.8 at 360 deg. C of substrate temperature, a clear (2 x 1) reconstruction of the CdSe layer was observed. A CdSe/CdMgSe single quantum well structure was also grown on ZnTe-(0 0 1) substrate by MBE. The RHEED pattern showed a clear (2 x 1) surface reconstruction during the growth. By photoluminescence measurement, a good optical property of the structure was obtained

  9. Binding mechanism of CdSe quantum dots to carbon nanotubes/graphene

    Science.gov (United States)

    Jiang, Jie; Ismail-Beigi, Sohrab

    2013-03-01

    Decorating carbon nanotube or graphene with CdSe quantum dots (QDs) is one approach to creating next generation high efficiency photovoltaics. We have used first principles methods to calculate the binding mechanisms of oleic acid (OA) to CdSe QDs as well as how -COOH functional groups can link the QD to graphene. In both cases, the strongest binding involves the terminating double-bonded oxygen atom in the -COOH group covalently bonding to a surface Cd atom while the hydrogen (from the OH part of the -COOH) aligns to make a weak hydrogen-like bond to a neighboring surface Se. We find a strong defect enhanced binding of the QD to graphene via -COOH: when the -COOH links the QD to a defect site on the graphene, the binding energy of the complex is 0.5 eV larger than when a -COOH links the QD to a pristine graphene region. These results are consistent with available edge X-ray absorption fine structure (EXAFS) data and also rationalize the growth procedure by which ultrasonication of the OA functionalized QDs leads to the replacement of some QD-OA bonds by QD-COOH-graphene bonds, which strongly link the QDs to the graphene surface.

  10. Passivation of CdSe Quantum Dots by Graphene and MoS2 Monolayer Encapsulation

    Science.gov (United States)

    Zhang, Datong; Wang, Dennis Zi-Ren; Creswell, Richard C.; Lu, Chenguang; Herman, Irving P.

    The encapsulation of a monolayer of CdSe quantum dots (QDs) by one-to-three layer graphene and MoS2 sheets protects the QDs from oxidation. Photoluminescence (PL) from the QD cores shows a much slower decrease in core diameter over time due to slower oxidation in regions where the QDs are covered by van der Waals (vdW) layers than in those where they are not, for chips stored both in the dark and in the presence of light. PL mapping shows that the CdSe QDs under the central part of the vdW sheet age slower than those near its edges, because oxidation of the covered QDs is limited by transport of oxygen from the edges of the vdW sheets and not transport across the vdW layers. This encapsulation effect is also tested with other environments. Preliminary results show that vdW materials could be promising candidates for nano-coating materials for devices operating in extreme environments.

  11. Multiexciton Absorption and Multiple Exciton Generation in CdSe Quantum Dots

    Science.gov (United States)

    Franceschetti, Alberto; Zhang, Yong

    2008-04-01

    Efficient multiple-exciton generation (MEG) in semiconductor quantum dots has been recently reported. The MEG efficiency has so far been evaluated assuming that the change (bleaching) of the absorption spectrum due to MEG is linearly proportional to the number of excitons NX. Here, we critically examine this assumption using atomistic pseudopotential calculations for colloidal CdSe nanocrystals. We find that the bleaching of the first absorption peak depends nonlinearly on NX, due to carrier-carrier interactions. This nonlinearity mandates an upper bound of 1.5 to the value of the normalized bleaching that can be attributed to MEG, significantly smaller than the limit of 2.0 predicted by the linear scaling assumption. Thus, measured values of the normalized bleaching in excess of 1.5 cannot be due entirely to MEG, but must originate in part from other mechanisms.

  12. Spatially-resolved luminescence spectroscopy of CdSe quantum dots synthesized in ionic liquid crystal matrices

    International Nuclear Information System (INIS)

    Magaryan, K.A.; Mikhailov, M.A.; Karimullin, K.R.; Knyazev, M.V.; Eremchev, I.Y.; Naumov, A.V.; Vasilieva, I.A.; Klimusheva, G.V.

    2016-01-01

    The paper is devoted to investigation of luminescence properties of new quantum dot (QD)-doped materials. We studied CdSe QDs (1.8 nm and 2.3 nm) grown inside of a liquid crystalline cadmium alcanoate matrix. Temperature dependence of parameters of fluorescence spectra obtained in a wide temperature range using epi-luminescence microscopy technique was analyzed. Spatially-resolved luminescence images were measured for the areas of the samples of 150×150 µm 2 . Strong correlation between fluorescence spectra and sample structure was observed. - Highlights: • Glassy matrix with CdSe quantum dots inside fabricated in liquid crystalline mesophase. • Study of luminescence properties in a wide range of low temperatures. • Strong dependence of the luminescence spectra on spatial inhomogeneities. • Spatially-resolved luminescence imaging of quantum dots in liquid crystalline matrix.

  13. Bio-templated CdSe quantum dots green synthesis in the functional protein, lysozyme, and biological activity investigation

    International Nuclear Information System (INIS)

    Wang, Qisui; Li, Song; Liu, Peng; Min, Xinmin

    2012-01-01

    Bifunctional fluorescence (CdSe Quantum Dots) – protein (Lysozyme) nanocomposites were synthesized at room temperature by a protein-directed, solution-phase, green-synthetic method. Fluorescence (FL) and absorption spectra showed that CdSe QDs were prepared successfully with Lyz. The average particle size and crystalline structure of QDs were investigated by high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD), respectively. With attenuated total reflection-fourier transform infrared (ATR-FTIR) spectra and thermogravimetric (TG) analysis, it was confirmed that there is interaction between QDs and amide I, amide II groups in Lyz. FL polarization was measured and FL imaging was done to monitor whether QDs could be responsible for possible changes in the conformation and activity of Lyz. Interestingly, the results showed Lyz still retain the biological activity after formation of QDs, but the secondary structure of the Lyz was changed. And the advantage of this synthesis method is producing excellent fluorescent QDs with specifically biological function. -- Highlights: ► Lysozyme-directed green synthesis of CdSe quantum dots. ► Lysozyme still retain the biological activity after formation of CdSe. ► The method is the production of fluorescent QDs with highly specific and functions.

  14. Surface defect assisted broad spectra emission from CdSe quantum dots for white LED application

    Science.gov (United States)

    Samuel, Boni; Mathew, S.; Anand, V. R.; Correya, Adrine Antony; Nampoori, V. P. N.; Mujeeb, A.

    2018-02-01

    This paper reports, broadband photoluminescence from CdSe quantum dots (QDs) under the excitation of 403 nm using fluorimeter and 403 nm CW laser excitation. The broad spectrum obtained from the colloidal quantum dots was ranges from 450 nm to 800 nm. The broadness of the spectra was attributed to the merging of band edge and defect driven emissions from the QDs. Six different sizes of particles were prepared via kinetic growth method by using CdO and elemental Se as sources of Cd and Se respectively. The particle sizes were measured from TEM images. The size dependent effect on broad emission was also studied and the defect state emission was found to be predominant in very small QDs. The defect driven emission was also observed to be redshifted, similar to the band edge emission, due to quantum confinement effect. The emission corresponding to different laser power was also studied and a linear relation was obtained. In order to study the colour characteristics of the emission, CIE chromaticity coordinate, CRI and CCT of the prepared samples were measured. It is observed that, these values were tunable by the addition of suitable intensity of blue light from the excitation source to yield white light of various colour temperatures. The broad photoluminescence spectrum of the QDs, were compared with that of a commercially available white LED. It was found that the prepared QDs are good alternatives for the phosphor in phosphor converted white LEDs, to provide good spectral tunability.

  15. Synthesis and characterization of CdSe quantum dots dispersed in PVA matrix by chemical route

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Zubair M. S. H.; Ganaie, Mohsin; Husain, M.; Zulfequar, M., E-mail: mzulfe@rediffmail.com [Department of Physics, Jamia Millia Islamia, New Delhi-110025 (India); Khan, Shamshad A. [Department of Physics St. Andrews College, Gorakhpur-273001,U.P,-India (India)

    2016-05-23

    CdSe quantum dots using polyvinyl alcohol as a capping agent have been synthesized via a simple heat induced thermolysis technique. The structural analysis of CdSe/PVA thin film was studied by X-ray diffraction, which confirms crystalline nature of the prepared film. The surface morphology and particle size of the prepared sample was studied by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The SEM studies of CdSe/PVA thin film shows the average size of particles in the form of clusters of several quantum dots in the range of 10-20 nm. The morphology of CdSe/PVA thin film was further examined by TEM. The TEM image shows the fringes of tiny dots with average sizes of 4-7 nm. The optical properties of CdSe/PVA thin film were studied by UV-VIS absorption spectroscopy. The CdSe/PVA quantum dots follow the role of direct transition and the optical band gap is found to be 4.03 eV. From dc conductivity measurement, the observed value of activation energy was found to be 0.71 eV.

  16. Synthesis, optical characterization, and size distribution determination by curve resolution methods of water-soluble CdSe quantum dots

    International Nuclear Information System (INIS)

    Santos, Calink Indiara do Livramento; Carvalho, Melissa Souza; Raphael, Ellen; Ferrari, Jefferson Luis; Schiavon, Marco Antonio; Dantas, Clecio

    2016-01-01

    In this work a colloidal approach to synthesize water-soluble CdSe quantum dots (QDs) bearing a surface ligand, such as thioglycolic acid (TGA), 3-mercaptopropionic acid (MPA), glutathione (GSH), or thioglycerol (TGH) was applied. The synthesized material was characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), UV-visible spectroscopy (UV-Vis), and fluorescence spectroscopy (PL). Additionally, a comparative study of the optical properties of different CdSe QDs was performed, demonstrating how the surface ligand affected crystal growth. The particles sizes were calculated from a polynomial function that correlates the particle size with the maximum fluorescence position. Curve resolution methods (EFA and MCR-ALS) were employed to decompose a series of fluorescence spectra to investigate the CdSe QDs size distribution and determine the number of fraction with different particle size. The results for the MPA-capped CdSe sample showed only two main fraction with different particle sizes with maximum emission at 642 and 686 nm. The calculated diameters from these maximum emission were, respectively, 2.74 and 3.05 nm. (author)

  17. Synthesis, optical characterization, and size distribution determination by curve resolution methods of water-soluble CdSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Calink Indiara do Livramento; Carvalho, Melissa Souza; Raphael, Ellen; Ferrari, Jefferson Luis; Schiavon, Marco Antonio, E-mail: schiavon@ufsj.edu.br [Universidade Federal de Sao Joao del-Rei (UFSJ), MG (Brazil). Grupo de Pesquisa em Quimica de Materiais; Dantas, Clecio [Universidade Estadual do Maranhao (LQCINMETRIA/UEMA), Caxias, MA (Brazil). Lab. de Quimica Computacional Inorganica e Quimiometria

    2016-11-15

    In this work a colloidal approach to synthesize water-soluble CdSe quantum dots (QDs) bearing a surface ligand, such as thioglycolic acid (TGA), 3-mercaptopropionic acid (MPA), glutathione (GSH), or thioglycerol (TGH) was applied. The synthesized material was characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), UV-visible spectroscopy (UV-Vis), and fluorescence spectroscopy (PL). Additionally, a comparative study of the optical properties of different CdSe QDs was performed, demonstrating how the surface ligand affected crystal growth. The particles sizes were calculated from a polynomial function that correlates the particle size with the maximum fluorescence position. Curve resolution methods (EFA and MCR-ALS) were employed to decompose a series of fluorescence spectra to investigate the CdSe QDs size distribution and determine the number of fraction with different particle size. The results for the MPA-capped CdSe sample showed only two main fraction with different particle sizes with maximum emission at 642 and 686 nm. The calculated diameters from these maximum emission were, respectively, 2.74 and 3.05 nm. (author)

  18. Nanocrystal Size-Dependent Efficiency of Quantum Dot Sensitized Solar Cells in the Strongly Coupled CdSe Nanocrystals/TiO2 System.

    Science.gov (United States)

    Yun, Hyeong Jin; Paik, Taejong; Diroll, Benjamin; Edley, Michael E; Baxter, Jason B; Murray, Christopher B

    2016-06-15

    Light absorption and electron injection are important criteria determining solar energy conversion efficiency. In this research, monodisperse CdSe quantum dots (QDs) are synthesized with five different diameters, and the size-dependent solar energy conversion efficiency of CdSe quantum dot sensitized solar cell (QDSSCs) is investigated by employing the atomic inorganic ligand, S(2-). Absorbance measurements and transmission electron microscopy show that the diameters of the uniform CdSe QDs are 2.5, 3.2, 4.2, 6.4, and 7.8 nm. Larger CdSe QDs generate a larger amount of charge under the irradiation of long wavelength photons, as verified by the absorbance results and the measurements of the external quantum efficiencies. However, the smaller QDs exhibit faster electron injection kinetics from CdSe QDs to TiO2 because of the high energy level of CBCdSe, as verified by time-resolved photoluminescence and internal quantum efficiency results. Importantly, the S(2-) ligand significantly enhances the electronic coupling between the CdSe QDs and TiO2, yielding an enhancement of the charge transfer rate at the interfacial region. As a result, the S(2-) ligand helps improve the new size-dependent solar energy conversion efficiency, showing best performance with 4.2-nm CdSe QDs, whereas conventional ligand, mercaptopropionic acid, does not show any differences in efficiency according to the size of the CdSe QDs. The findings reported herein suggest that the atomic inorganic ligand reinforces the influence of quantum confinement on the solar energy conversion efficiency of QDSSCs.

  19. Electrochemiluminescent detection of Pb{sup 2+} by graphene/gold nanoparticles and CdSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Liping, E-mail: lipinglu@bjut.edu.cn; Guo, Linqing; Li, Jiao; Kang, Tianfang; Cheng, Shuiyuan

    2016-12-01

    Highlights: • An ECL sensor was fabricated based on the distance dependent between CdSe QDs and gold nanoparticles. • The ssDNA strands rich in G bases adopt the G4 conformation when Pb{sup 2+} is present in detection system. • AuNPs/RGO composite improved the performance of electron transfer of sensor. • The ECL sensor was used to detect Pb{sup 2+} concentration in an actual water sample with high sensitivity and selectivity. - Abstract: A highly sensitive electrochemiluminescent detection method for lead ions (Pb(II)) was fabricated based on the distance-dependent quenching of the electrochemiluminescence from CdSe quantum dots by nanocomposites of graphene and gold nanoparticles. Graphene/gold nanoparticles were electrochemically deposited onto a glassy carbon electrode through the constant potential method. Thiol-labeled DNA was then assembled on the surface of the electrode via gold−sulfur bonding, following which the amino-labeled terminal of the DNA was linked to carboxylated CdSe quantum dots by the formation of amide bonds. The 27-base aptamer was designed with two different domains: the immobilization and detection sequences. The immobilization sequence was paired with 12 complementary bases and immobilized on the gold electrode; the single-stranded detection sequence, rich in G bases, formed a G-quadruplex (G4) structure in the presence of Pb{sup 2+}. The formation of G4 shortens the distance between the CdSe quantum dots and the Au electrode, which decreases the electrochemiluminescent intensity in a linear fashion, proportional to the concentration of Pb(II). The linear range of the sensor was 10{sup −10} to 10{sup −8} mol/L (R = 0.9819) with a detection limit of 10{sup −10} mol/L. This sensor detected Pb(II) in real water samples with satisfactory results.

  20. Formation of a Colloidal CdSe and ZnSe Quantum Dots via a Gamma Radiolytic Technique

    Directory of Open Access Journals (Sweden)

    Aeshah Salem

    2016-09-01

    Full Text Available Colloidal cadmium selenide (CdSe and zinc selenide (ZnSe quantum dots with a hexagonal structure were synthesized by irradiating an aqueous solution containing metal precursors, poly (vinyl pyrrolidone, isopropyl alcohol, and organic solvents with 1.25-MeV gamma rays at a dose of 120 kGy. The radiolytic processes occurring in water result in the nucleation of particles, which leads to the growth of the quantum dots. The physical properties of the CdSe and ZnSe nanoparticles were measured by various characterization techniques. X-ray diffraction (XRD was used to confirm the nanocrystalline structure, energy-dispersive X-ray spectroscopy (EDX was used to estimate the material composition of the samples, transmission electron microscopy (TEM was used to determine the morphologies and average particle size distribution, and UV-visible spectroscopy was used to measure the optical absorption spectra, from which the band gap of the CdSe and ZnSe nanoparticles could be deduced.

  1. Incorporation of Mn2+ into CdSe quantum dots by chemical bath co-deposition method for photovoltaic enhancement of quantum dot-sensitized solar cells.

    Science.gov (United States)

    Zhang, Chenguang; Liu, Shaowen; Liu, Xingwei; Deng, Fei; Xiong, Yan; Tsai, Fang-Chang

    2018-03-01

    A photoelectric conversion efficiency (PCE) of 4.9% was obtained under 100 mW cm -2 illumination by quantum-dot-sensitized solar cells (QDSSCs) using a CdS/Mn : CdSe sensitizer. CdS quantum dots (QDs) were deposited on a TiO 2 mesoporous oxide film by successive ionic layer absorption and reaction. Mn 2+ doping into CdSe QDs is an innovative and simple method-chemical bath co-deposition, that is, mixing the Mn ion source with CdSe precursor solution for Mn : CdSe QD deposition. Compared with the CdS/CdSe sensitizer without Mn 2+ incorporation, the PCE was increased from 3.4% to 4.9%. The effects of Mn 2+ doping on the chemical, physical and photovoltaic properties of the QDSSCs were investigated by energy dispersive spectrometry, absorption spectroscopy, photocurrent density-voltage characteristics and electrochemical impedance spectroscopy. Mn-doped CdSe QDs in QDSSCs can obtain superior light absorption, faster electron transport and slower charge recombination than CdSe QDs.

  2. Direct assembly of in situ templated CdSe quantum dots via crystalline lamellae structure of polyamide 66

    Energy Technology Data Exchange (ETDEWEB)

    Cheval, Nicolas; Brooks, Richard [University of Nottingham, Division of Materials, Mechanics and Structures, Faculty of Engineering (United Kingdom); Fahmi, Amir, E-mail: Amir.Fahmi@hochschule-Rhein-waal.de [Rhein-Waal University of Applied Sciences, Faculty of Technology and Bionics (Germany)

    2012-03-15

    A simple concept is proposed for templating in situ synthesised CdSe quantum dots (QDs) into an organised nano-pattern using the crystalline lamellae structure of polyamide 66 (PA66). The morphology obtained for PA66 and the hybrid material on Si/SiO{sub x} solid substrate was characterised by means of atomic force microscope. Controlling the PA66 concentration in solution and the organic-inorganic interactions are found to be the keys factors to direct the assembly of CdSe QDs along the PA66 linear crystalline structure. This simple approach could be opened a new avenue for a large spectrum of innovative high-tech applications.

  3. Assembly of CdSe nanoparticles on graphene for low-temperature fabrication of quantum dot sensitized solar cell

    Science.gov (United States)

    Sun, Shengrui; Gao, Lian; Liu, Yangqiao; Sun, Jing

    2011-02-01

    Quantum dot sensitized solar cell (QDSSC) was fabricated in a low-temperature process based on graphene-CdSe composite, which was prepared by the procedures of immobilizing CdSe on graphene oxide (GO) and reduction in GO. It was found that the charge separation between excited CdSe and graphene could be tapped to generate photocurrent from photocurrent measurements, which established the ability of graphene to collect and transport electrons. By optimizing the CdSe-to-GO ratio at 4.5:1, the obtained graphene-CdSe-based cells exhibited significantly higher short-circuit photocurrent and energy conversion efficiency (5.8 mA/cm2 and 0.72%, respectively) than the reported values of the C60 or carbon nanotube related QDSSC, demonstrating that the graphene-CdSe composite is an attractive candidate in energy conversion devices.

  4. Exciton diamagnetic shift and optical properties in CdSe nanocrystal quantum dots in magnetic fields

    Science.gov (United States)

    Wu, Shudong; Cheng, Liwen

    2018-04-01

    The magnetic field dependence of the optical properties of CdSe nanocrystal quantum dots (NQDs) is investigated theoretically using a perturbation method within the effective-mass approximation. The results show that the magnetic field lifts the degeneracy of the electron (hole) states. A blue-shift in the absorption spectra of m ≥ 0 exciton states is observed while the absorption peak of m magnetic field strength B. This is attributed to the interplay of the orbital Zeeman effect and the additive confinement induced by the magnetic field. The excitonic absorption coefficient is almost independent of B in the strong confinement regime. The applied magnetic field causes the splitting of degenerated exciton states, resulting in the new absorption peaks. Based on the first-order perturbation theory, we propose the analytical expressions for the exciton binding energy, exciton transition energy and exciton diamagnetic shift of 1s, 1p-1, 1p0, 1p1, 1d-2, 1d-1, 1d0, 1d1, 1d2 and 2s exciton states on the applied magnetic field in the strong confinement regime.

  5. Concentration-dependent binding of CdSe quantum dots on the SH3 domain.

    Science.gov (United States)

    Bell, David R; Kang, Seung-Gu; Huynh, Tien; Zhou, Ruhong

    2017-12-21

    Quantum dots (QDs) are being used increasingly in applications for solar panels, consumer electronics, and biomedical imaging. For biomedical applications, QDs are typically coated with a biocompatible molecule for the system of interest. Experiments have indicated a QD dose-dependent and surface coating-dependent toxicity, with a portion of the toxicity being ascribed to interference with biomolecules. In this work, the interaction of trioctylphosphine oxide (TOPO) coated (CdSe) 13 QDs with the SRC homology 3 domain (SH3) protein domain are explored using molecular dynamics simulations. The results of this research agree well with experiments that show that at the lowest concentration, the QDs have little affinity for the native proline-rich motif (PRM) binding site of SH3. At higher concentrations, the QDs aggregate and increasingly prefer the PRM binding site, indicating that the normal SH3 function is impeded. This binding dependence is attributed to changes in the local density of the surface coated TOPO molecules upon aggregation. These results present possible interesting QD toxicity patterns and reveal the interdependence between dose and surface coating effects in QD toxicity.

  6. Synthesis of CdSe colloidal quantum dots and quantum transitions under action of low power optical excitation

    International Nuclear Information System (INIS)

    Geru, I.I.; Mirzac, A.V.; Tarabukin, A.B.

    2013-01-01

    CdSe colloidal quantum dots were synthesized at low temperature (80-85 0C) on the basis of chemical reactions in colloidal solutions using trioctylphosphine (TOP), pure Se, oleic acid and cadmium acetate Cd(CH 3 COO) 2 . The average size of the synthesized nanocrystals is 2.04 nm, that is less then exciton Bohr radius in the bulk material, which is equal to 5.6 nm. Therefore in such QDs the electron with spin ? and the hole with total angular momentum 3/2 are in localized or slightly delocalized states. In absorption spectra in the UV-VIS range the lines corresponding to quantum transitions between hole state 1S 3/2 (h), 2S 3/2 (h), 1P 3/2 (h) and electron state 1S 1/2 (e), 1P 1/2 (1S 3/2 (h)→1S 1/2 (e), 2S 3/2 (h)→1S 1/2 (e) and 1P 3/2 (h) →1P 1/2 (e)) are detected. The location of photoluminescence maxima of QDs in hexane and in powder state coincide in the limits of experimental errors (570 and 568 nm, respectively). In photoluminescence spectra of powder QDs a broad long-wavelength band of low intensity with maximum at 570 nm was detected. (authors)

  7. Comparative experiments of graphene covalently and physically binding CdSe quantum dots to enhance the electron transport in flexible photovoltaic devices

    Science.gov (United States)

    Jung, Mi-Hee; Chu, Moo-Jung

    2014-07-01

    In this research, we prepared composite films via covalent coupling of CdSe quantum dots (QDs) to graphene through the direct binding of aryl radicals to the graphene surface. To compare the carrier transport with the CdSe aryl binding graphene film, we prepared CdSe pyridine capping graphene films through the pi-pi interactions of noncovalent bonds between the graphene and pyridine molecules. The photovoltaic devices were fabricated from the two hybrid films using the electrophoretic deposition method on flexible substrates. Even though the two hybrid films have the same amount of QDs and graphene, time-resolved fluorescence emission decay results show that the emission lifetime of the CdSe aryl group binding graphene film is significantly shorter than that of the pyridine capping CdSe-graphene. The quantum efficiency and photocurrent density of the device fabricated from CdSe aryl binding graphene were also higher than those of the device fabricated from pyridine capping CdSe-graphene. These results indicated that the carrier transport of the QD-graphene system is not related to the additive effect from the CdSe and graphene components but rather is a result of the unique interactions between the graphene and QDs. We could expect that these results can be useful in designing QD-graphene composite materials, which are applied in photovoltaic devices.

  8. Comparative experiments of graphene covalently and physically binding CdSe quantum dots to enhance the electron transport in flexible photovoltaic devices.

    Science.gov (United States)

    Jung, Mi-Hee; Chu, Moo-Jung

    2014-08-07

    In this research, we prepared composite films via covalent coupling of CdSe quantum dots (QDs) to graphene through the direct binding of aryl radicals to the graphene surface. To compare the carrier transport with the CdSe aryl binding graphene film, we prepared CdSe pyridine capping graphene films through the pi-pi interactions of noncovalent bonds between the graphene and pyridine molecules. The photovoltaic devices were fabricated from the two hybrid films using the electrophoretic deposition method on flexible substrates. Even though the two hybrid films have the same amount of QDs and graphene, time-resolved fluorescence emission decay results show that the emission lifetime of the CdSe aryl group binding graphene film is significantly shorter than that of the pyridine capping CdSe-graphene. The quantum efficiency and photocurrent density of the device fabricated from CdSe aryl binding graphene were also higher than those of the device fabricated from pyridine capping CdSe-graphene. These results indicated that the carrier transport of the QD-graphene system is not related to the additive effect from the CdSe and graphene components but rather is a result of the unique interactions between the graphene and QDs. We could expect that these results can be useful in designing QD-graphene composite materials, which are applied in photovoltaic devices.

  9. Poly(3-hexylthiophene) - CdSe quantum dot bulk heterojunction solar cells: Influence of the functional end-group of the polymer

    KAUST Repository

    Palaniappan, Kumaranand

    2009-06-23

    The synthesis of H/thiol terminated P3HT from Br/allyl-terminated P3HT precursor was analyzed. The photovoltaic response of blends were prepared of H/thiol terminated P3HT with spherical CdSe quantum dots(QD) and compares the results with regioregular H/Br and Br/aryl-terminated P3HT. Phase segregation was carried by mixing relatively polar pyridine treated CdSe QD with nonpolar P3HT. The experiment revealed that a high loading of CdSe is necessary for an efficient charge transport and different loading ratios of CdSe has been investigated to correlate the photovoltaic response as a function of ration between donor H/thiol-P3ht polymer and acceptor Cdse QD. The results show that H/Br-P3HT, H/thiol- and Br/allyl-terminated P3HT exhibits better performance and Cdse quantum dots were used to obtain results.

  10. Single Enzyme Direct Biomineralization of CdSe and CdSe-CdS Core-Shell Quantum Dots.

    Science.gov (United States)

    Yang, Zhou; Lu, Li; Kiely, Christopher J; Berger, Bryan W; McIntosh, Steven

    2017-04-19

    Biomineralization is the process by which biological systems synthesize inorganic materials. Herein, we demonstrate an engineered cystathionine γ-lyase enzyme, smCSE that is active for the direct aqueous phase biomineralization of CdSe and CdSe-CdS core-shell nanocrystals. The nanocrystals are formed in an otherwise unreactive buffered solution of Cd acetate and selenocystine through enzymatic turnover of the selenocystine to form a reactive precursor, likely H 2 Se. The particle size of the CdSe core nanocrystals can be tuned by varying the incubation time to generated particle sizes between 2.74 ± 0.63 nm and 4.78 ± 1.16 nm formed after 20 min and 24 h of incubation, respectively. Subsequent purification and introduction of l-cysteine as a sulfur source facilitates the biomineralization of a CdS shell onto the CdSe cores. The quantum yield of the resulting CdSe-CdS core-shell particles is up to 12% in the aqueous phase; comparable to that reported for more traditional chemical synthesis routes for core-shell particles of similar size with similar shell coverage. This single-enzyme route to functional nanocrystals synthesis reveals the powerful potential of biomineralization processes.

  11. Quenching of coumarin emission by CdSe and CdSe/ZnS quantum dots: Implications for fluorescence reporting

    International Nuclear Information System (INIS)

    Baride, Aravind; Engebretson, Daniel; Berry, Mary T.; Stanley May, P.

    2013-01-01

    The photoinduced release of highly fluorescent 7-diethylamino coumarin (7DEAC) from CdSe quantum dots (QD) modified with a thiocinnamate ligand (11-mercapto undecyl-E-3-(4-(N,N-diethylamino)-2-hydroxy phenyl) propenoate, [4DEATC]) has been previously described. Coumarin fluorescence was used to ‘report’ the photochemical reaction. The current study quantifies the quenching effect of the QDs on the coumarin emission in this system. A systematic study is presented on the quenching of 7DEAC by CdSe and CdSe/ZnS quantum dots capped with 2-[2-(2-methoxyethoxy)ethoxy] ethanethiol (PEG-thiol). A new method for the functionalization of CdSe and CdSe/ZnS QDs with PEG-thiol was developed, which does not require isolation of the as-synthesized QDs. Stern–Volmer analysis was applied to quantify the effect of the PEG-CdSe and PEG-CdSe/ZnS on 7DEAC emission. The Stern–Volmer constant, K SV , was shown to be inversely proportional to temperature for quenching by PEG-CdSe, and the fluorescence lifetime of 7DEAC was shown to be independent of PEG-CdSe concentration. Room-temperature K SV values were similar for the PEG-CdSe and PEG-CdSe/ZnS quenchers. The large magnitude of K SV , the temperature dependence of K SV , the lifetime data, and the similarity of K SV values for the core and core–shell QD quenchers are all consistent with a static quenching mechanism. Assuming a static quenching mechanism, the temperature dependence of the coumarin-QD binding constant, K b , was used to estimate the ΔH and ΔS for the binding process. -- Highlights: • Quenching of a coumarin derivative by CdSe and CdSe/ZnS quantum dots is demonstrated • Stern–Volmer analysis is performed as a function of temperature • Fluorescence lifetime analysis was used to support Stern–Volmer analysis • Data overwhelmingly support quenching via a Static Mechanism • Quenching of coumarin by quantum dots is significant and must be considered in any release and report scheme

  12. Morphologically controlled electrodeposition of CdSe on mesoporous TiO2 film for quantum dot-sensitized solar cells

    International Nuclear Information System (INIS)

    Song, Xiaohui; Wang, Minqiang; Zhang, Hao; Deng, Jianping; Yang, Zhi; Ran, Chenxin; Yao, Xi

    2013-01-01

    Highlights: • CdSe QDs were deposited onto mesoporous TiO 2 film via a one-step electrodeposition method. • The morphology and microstructure of TiO 2 /CdSe photoanodes can be controlled by electrodeposition current density. • A ZnS coating layer and thermal annealing could further enhance the performance of the TiO 2 /CdSe photoanodes. • A maximum power conversion efficiency of 2.72% was achieved with the optimum TiO 2 /CdSe/ZnS photoanodes. -- Abstract: CdSe quantum dots (QDs)-sensitized mesoporous TiO 2 (TiO 2 /CdSe) films were fabricated using a facile one-step electrodeposition method in an aqueous electrolyte. This technique has the advantage of being simple, low cost, and easily scalable to the sensitization of large-area panels. By adjusting the electrodeposition current density, the morphology and microstructure of the prepared TiO 2 /CdSe films can be precisely controlled, which influences the photovoltaic performances of quantum dot-sensitized solar cells based on the TiO 2 /CdSe films. At a moderate current density of 0.2 mA cm −2 , CdSe QDs can penetrate deep into the inner pores of the mesoporous TiO 2 film, thus leading to a dense and uniform distribution of QDs throughout the whole TiO 2 matrix, while higher current densities result in growth of larger, isolated CdSe nanoclusters. Furthermore, a ZnS passivation layer coated on TiO 2 /CdSe photoanodes and thermal annealing could significantly improve the photovoltaic performance. As a result, a quantum dot-sensitized solar cell based on a TiO 2 /CdSe/ZnS photoanode (350 °C, 30 min calcination), polysulfide electrolyte and Pt counter electrode achieves a power conversion efficiency of 2.72% under AM 1.5 G one sun illumination

  13. CdTe and CdSe quantum dots: synthesis, characterizations and applications in agriculture

    International Nuclear Information System (INIS)

    Ung, Thi Dieu Thuy; Tran, Thi Kim Chi; Pham, Thu Nga; Nguyen, Quang Liem; Nguyen, Duc Nghia; Dinh, Duy Khang

    2012-01-01

    This paper highlights the results of the whole work including the synthesis of highly luminescent quantum dots (QDs), characterizations and testing applications of them in different kinds of sensors. Concretely, it presents: (i) the successful synthesis of colloidal CdTe and CdSe QDs, their core/shell structures with single- and/or double-shell made by CdS, ZnS or ZnSe/ZnS; (ii) morphology, structural and optical characterizations of the synthesized QDs; and (iii) testing examples of QDs as the fluorescence labels for agricultural-bio-medical objects (for tracing residual pesticide in agricultural products, residual clenbuterol in meat/milk and for detection of H5N1 avian influenza virus in breeding farms). Overall, the results show that the synthesized QDs have very good crystallinity, spherical shape and strongly emit at the desired wavelengths between ∼500 and 700 nm with the luminescence quantum yield (LQY) of 30–85%. These synthesized QDs were used in fabrication of the three testing fluorescence QD-based sensors for the detection of residual pesticides, clenbuterol and H5N1 avian influenza virus. The specific detection of parathion methyl (PM) pesticide at a content as low as 0.05 ppm has been realized with the biosensors made from CdTe/CdS and CdSe/ZnSe/ZnS QDs and the acetylcholinesterase (AChE) enzymes. Fluorescence resonance energy transfer (FRET)-based nanosensors using CdTe/CdS QDs conjugated with 2-amino-8-naphthol-6-sulfonic acid were fabricated that enable detection of diazotized clenbuterol at a content as low as 10 pg ml −1 . For detection of H5N1 avian influenza virus, fluorescence biosensors using CdTe/CdS QDs bound on the surface of chromatophores extracted and purified from bacteria Rhodospirillum rubrum were prepared and characterized. The specific detection of H5N1 avian influenza virus in the range of 3–50 ng μl −1 with a detection limit of 3 ng μL −1 has been performed based on the antibody-antigen recognition. (review)

  14. CdTe and CdSe quantum dots: synthesis, characterizations and applications in agriculture

    Science.gov (United States)

    Dieu Thuy Ung, Thi; Tran, Thi Kim Chi; Nga Pham, Thu; Nghia Nguyen, Duc; Khang Dinh, Duy; Liem Nguyen, Quang

    2012-12-01

    This paper highlights the results of the whole work including the synthesis of highly luminescent quantum dots (QDs), characterizations and testing applications of them in different kinds of sensors. Concretely, it presents: (i) the successful synthesis of colloidal CdTe and CdSe QDs, their core/shell structures with single- and/or double-shell made by CdS, ZnS or ZnSe/ZnS; (ii) morphology, structural and optical characterizations of the synthesized QDs; and (iii) testing examples of QDs as the fluorescence labels for agricultural-bio-medical objects (for tracing residual pesticide in agricultural products, residual clenbuterol in meat/milk and for detection of H5N1 avian influenza virus in breeding farms). Overall, the results show that the synthesized QDs have very good crystallinity, spherical shape and strongly emit at the desired wavelengths between ˜500 and 700 nm with the luminescence quantum yield (LQY) of 30-85%. These synthesized QDs were used in fabrication of the three testing fluorescence QD-based sensors for the detection of residual pesticides, clenbuterol and H5N1 avian influenza virus. The specific detection of parathion methyl (PM) pesticide at a content as low as 0.05 ppm has been realized with the biosensors made from CdTe/CdS and CdSe/ZnSe/ZnS QDs and the acetylcholinesterase (AChE) enzymes. Fluorescence resonance energy transfer (FRET)-based nanosensors using CdTe/CdS QDs conjugated with 2-amino-8-naphthol-6-sulfonic acid were fabricated that enable detection of diazotized clenbuterol at a content as low as 10 pg ml-1. For detection of H5N1 avian influenza virus, fluorescence biosensors using CdTe/CdS QDs bound on the surface of chromatophores extracted and purified from bacteria Rhodospirillum rubrum were prepared and characterized. The specific detection of H5N1 avian influenza virus in the range of 3-50 ng μl-1 with a detection limit of 3 ng μL-1 has been performed based on the antibody-antigen recognition.

  15. Low temperature synthesis of ZnS and CdZnS shells on CdSe quantum dots

    Science.gov (United States)

    Zhu, Huiguang; Prakash, Arjun; Benoit, Denise N.; Jones, Christopher J.; Colvin, Vicki L.

    2010-06-01

    Methods for synthesizing quantum dots generally rely on very high temperatures to both nucleate and grow core and core-shell semiconductor nanocrystals. In this work, we generate highly monodisperse ZnS and CdZnS shells on CdSe semiconductor nanocrystals at temperatures as low as 65 °C by enhancing the precursor solubility. Relatively small amounts of trioctylphosphine and trioctylphosphine oxide have marked effects on the solubility of the metal salts used to form shells; their inclusion in the precursor solutions, which use thiourea as a sulfur source, can lead to homogeneous and fully dissolved solutions. Upon addition to suspensions of quantum dot cores, these precursors deposit as uniform shells; the lowest temperature for shell growth (65 °C) yields the thinnest shells (d forms thicker shells (d ~ 1-2 nm). The growth of the shell structures, average particle size, size distribution, and shape were examined using optical spectroscopy, transmission electron microscopy, x-ray diffraction, and transmittance small angle x-ray scattering. The photoluminescence quantum yield (QY) of the as-prepared CdSe/ZnS quantum dots ranged from 26% to 46% as compared to 10% for the CdSe cores. This method was further generalized to CdZnS shells by mixing cadmium and zinc acetate precursors. The CdSe/CdZnS nanocrystals have a thicker shell and higher QY (40% versus 36%) as compared to the CdSe/ZnS prepared under similar conditions. These low temperature methods for shell growth are readily amenable to scale-up and can provide a route for economical and less energy intensive production of quantum dots.

  16. Optical and Structural Investigation of CdSe Quantum Dots Dispersed in PVA Matrix and Photovoltaic Applications

    Directory of Open Access Journals (Sweden)

    Pallabi Phukan

    2013-01-01

    Full Text Available CdSe quantum dots (QDs dispersed in polyvinyl alcohol (PVA matrix with their sizes within the quantum dot regime have been synthesized via a simple heat induced thermolysis technique. The effect of the concentrations of the cadmium source on the optical properties of CdSe/PVA thin films was investigated through UV-Vis absorption spectroscopy. The structural analysis and particle size determination as well as morphological studies of the CdSe/PVA nanocomposite thin films were done with the help of X-ray diffraction (XRD and transmission electron microscopy (TEM. The XRD analysis reveals that CdSe/PVA nanocomposite thin film has a hexagonal (wurtzite structure. A prototype thin film solar cell of CdSe/CdTe has been synthesized and its photovoltaic parameters were measured.

  17. The influence of sequential ligand exchange and elimination on the performance of P3HT: CdSe quantum dot hybrid solar cells.

    Science.gov (United States)

    Lee, Donggu; Lim, Jaehoon; Park, Myeongjin; Kim, Jun Young; Song, Jiyun; Kwak, Jeonghun; Lee, Seonghoon; Char, Kookheon; Lee, Changhee

    2015-11-20

    We report on a sequential ligand exchange and elimination process for the fast and easy surface modification of CdSe quantum dots (QDs) in order to improve the electronic interaction between poly(3-hexylthiophene) (P3HT) and CdSe QDs in P3HT:CdSe hybrid solar cells. We systematically investigated the influence of surface treatment on the insulating ligand shell of CdSe QDs using (1)H-NMR analysis, and correlated their influence on the photovoltaic properties of P3HT:CdSe hybrid solar cells. A decrease in the average thickness of the ligand shells directly improved carrier transport properties. Moreover, the presence of remnant 1-hexylamine ligands provided efficient surface trap passivation. As a result, overall solar cell performance (especially fill factor and power conversion efficiency) was enhanced and the recombination mechanism was dominated by monomolecular recombination due to enhanced carrier collection length (l(C0)).

  18. Linear and nonlinear optical properties of functionalized CdSe quantum dots prepared by plasma sputtering and wet chemistry.

    Science.gov (United States)

    Humbert, Christophe; Dahi, Abdellatif; Dalstein, Laetitia; Busson, Bertrand; Lismont, Marjorie; Colson, Pierre; Dreesen, Laurent

    2015-05-01

    We develop an innovative manufacturing process, based on radio-frequency magnetron sputtering (RFMS), to prepare neat CdSe quantum dots (QDs) on glass and silicon substrates and further chemically functionalize them. In order to validate the fabrication protocol, their optical properties are compared with those of QDs obtained from commercial solutions and deposited by wet chemistry on the substrates. Firstly, AFM measurements attest that nano-objects with a mean diameter around 13 nm are located on the substrate after RFMS treatment. Secondly, the UV-Vis absorption study of this deposited layer shows a specific optical absorption band, located at 550 nm, which is related to a discrete energy level of QDs. Thirdly, by using two-color sum-frequency generation (2C-SFG) nonlinear optical spectroscopy, we show experimentally the functionalization efficiency of the RFMS CdSe QDs layer with thiol derived molecules, which is not possible on the QDs layer prepared by wet chemistry due to the surfactant molecules from the native solution. Finally, 2C-SFG spectroscopy, performed at different visible wavelengths, highlights modifications of the vibration mode shape whatever the QDs deposition method, which is correlated to the discrete energy level of the QDs. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Au-assisted growth of anisotropic and epitaxial cdse colloidal nanocrystals via in situ dismantling of quantum dots

    KAUST Repository

    Fernàndez-Altable, Víctor

    2015-03-10

    Metallic nanocrystals have been revealed in the past years as valuable materials for the catalytic growth of semiconductor nanowires. Yet, only low melting point metals like Bi have been reported to successfully assist the growth of elongated CdX (X = S, Se, Te) systems in solution, and the possibility to use plasmonic noble metals has become a challenging task. In this work we show that the growth of anisotropic CdSe nanostructures in solution can also be efficiently catalyzed by colloidal Au nanoparticles, following a preferential crystallographic alignment between the metallic and semiconductor domains. Noteworthy, we report the heterodox use of semiconductor quantum dots as a homogeneous and tunable source of reactive monomer species to the solution. The mechanistic studies reveal that the in situ delivery of these cadmium and chalcogen monomer species and the formation of AuxCdy alloy seeds are both key factors for the epitaxial growth of elongated CdSe domains. The implementation of this method suggests an alternative synthetic approach for the assembly of different semiconductor domains into more complex heterostructures.

  20. CdSe quantum dot in vertical ZnSe nanowire and photonic wire for efficient single-photon emission

    DEFF Research Database (Denmark)

    Cremel, Thibault; Bellet-Amalric, Edith; Cagnon, Laurent

    We’ve recently demonstrated that a CdSe quantum dot (QD) in a ZnSe nanowire (NW) can emit triggered single photons up to room temperature [1]. In this contribution, we present the possibilities of enhancing the photon emission and collection in such NW-QDs structures for a realistic application...... as a single photon source. We have grown vertically oriented ZnSe NWs (with typical diameter of 10 nm) by molecular beam epitaxy on a ZnSe(111)B buffer layer. The growth of a ZnMgSe passivating shell increases the (otherwise weak) ZnSe near-band-edge luminescence by two orders of magnitude. This has allowed...

  1. Non-volatile resistive memory device fabricated from CdSe quantum dot embedded in thermally grown In2O3 nanostructure by oblique angle deposition

    Science.gov (United States)

    Kannan, V.; Kim, Hyun-Seok; Park, Hyun-Chang

    2016-11-01

    In this paper we report In2O3/CdSe quantum dot based non-volatile resistive memory device with ON/OFF ratio ∼1000. Indium nanostructures were grown by oblique angle deposition technique in a thermal evaporator. Indium oxide nanostructures had size ranging from 20 nm to 100 nm as observed from TEM and AFM methods. The facile device fabricated with a layer of CdSe quantum dot on indium oxide film exhibited excellent endurance characteristics over 100,000 switching cycles. Retention tests showed good stability for over 4000 s. Memory operating mechanism is proposed based on charge trapping/de-trapping in quantum dots with indium oxide acting as barrier leading to Coulomb blockade. The mechanism is supported by negative differential resistance (NDR) observed exclusively in the ON state.

  2. Citrate-capped quantum dots of CdSe for the selective photometric detection of silver ions in aqueous solutions

    International Nuclear Information System (INIS)

    Ingole, Pravin P.; Abhyankar, Rajiv M.; Prasad, B.L.V.; Haram, Santosh K.

    2010-01-01

    A simple strategy for the synthesis of water soluble, luminescent, citrate-capped CdSe quantum dots (Q-CdSe) and their applications to selective detection of silver ions are described. The steady state photoluminescence (PL) spectra show single, narrow emission band at ca. 554 nm without any contribution from the trap states. The effect of various ions including physiologically important metal ions (viz. K + , Ca 2+ , Fe 3+ , Zn 2+ , Mg 2+ , Mn 2+ , Cu 2+ , Ag + , Pb 2+ and Cd 2+ ), on the PL intensity of citrate-capped Q-CdSe has been studied. Among these, selective luminescence quenching with Ag + ion was found to be predominant. Under the optimum conditions, the response was linear between 1.7 and 18 μM. The quenching constant K SV was found to be ca. 3.4 x 10 5 M -1 . The mechanism of photoluminescence quenching of Q-CdSe by metal ions (Ag + ) is also discussed. Based on these studies, the potential use of Q-CdSe as a luminescent probe for the selective detection of silver ion has been proposed. -- Graphical abstract: A simple strategy for the synthesis of water soluble, luminescent, citrate-capped quantum dots of CdSe (Q-CdSe) has been developed. The effect of various ions including physiologically important metal ions (viz. K + , Ca 2+ , Fe 3+ , Zn 2+ , Mg 2+ , Mn 2+ , Cu 2+ , Ag + , Pb 2+ and Cd 2+ ), on the luminescence intensity of citrate-capped Q-CdSe has been studied. Among these, a significant luminescence quenching only by Ag + ions was observed which suggests the potential use of Q-CdSe as a luminescent sensor for the selective optical detection of silver ions in a physiological condition.

  3. Formulating CdSe quantum dots for white light-emitting diodes with high color rendering index

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fei [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100190 (China); Li, Wan-Nan [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Fu, Shao-Yun, E-mail: syfu@mail.ipc.ac.cn [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Xiao, Hong-Mei [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-10-25

    Generation of white light using CdSe quantum dots (QDs) alone presents exciting possibilities for solid state lighting technology. In this work, Cd(Ac){sub 2}·2H{sub 2}O and Na{sub 2}SeSO{sub 3} are used as precursors to synthesize CdSe-QDs with an average diameter ranging from 2.77 to 4.65 nm at the low temperature from 60 to 180 °C. Smaller CdSe-QDs with an average diameter of 2.29 nm are got by an oxidation etching process using H{sub 2}O{sub 2} as oxidant. The structural and optical properties of these QDs are investigated and proper formulation of CdSe QDs with various sizes is carefully designed to achieve white light with a high color rendering index (CRI). It is observed for the first time that the as-prepared white light-emitting diodes from single CdSe-QDs show the Commission Inernationale del’Eclairage coordinate (CIE) of (0.30,0.34) very close to that (0.33,0.33) of pure white light and a high CRI of 84. Owing to these advantages, the as-prepared white light-emitting diodes from a single compound are promising for lighting applications. - Highlights: • CdSe-quantum dots (QDs) with a continuously changing size from 2.31 to 4.74 nm are prepared. • The obtained CdSe-QDs emit lights with tunable colors in the whole visible range. • The obtained mixture sample generates white light with a high color rendering index of 84. • The sample yields white light with the CIE coordinate (0.30, 0.34) very close to that of pure white light.

  4. Formulating CdSe quantum dots for white light-emitting diodes with high color rendering index

    International Nuclear Information System (INIS)

    Li, Fei; Li, Wan-Nan; Fu, Shao-Yun; Xiao, Hong-Mei

    2015-01-01

    Generation of white light using CdSe quantum dots (QDs) alone presents exciting possibilities for solid state lighting technology. In this work, Cd(Ac) 2 ·2H 2 O and Na 2 SeSO 3 are used as precursors to synthesize CdSe-QDs with an average diameter ranging from 2.77 to 4.65 nm at the low temperature from 60 to 180 °C. Smaller CdSe-QDs with an average diameter of 2.29 nm are got by an oxidation etching process using H 2 O 2 as oxidant. The structural and optical properties of these QDs are investigated and proper formulation of CdSe QDs with various sizes is carefully designed to achieve white light with a high color rendering index (CRI). It is observed for the first time that the as-prepared white light-emitting diodes from single CdSe-QDs show the Commission Inernationale del’Eclairage coordinate (CIE) of (0.30,0.34) very close to that (0.33,0.33) of pure white light and a high CRI of 84. Owing to these advantages, the as-prepared white light-emitting diodes from a single compound are promising for lighting applications. - Highlights: • CdSe-quantum dots (QDs) with a continuously changing size from 2.31 to 4.74 nm are prepared. • The obtained CdSe-QDs emit lights with tunable colors in the whole visible range. • The obtained mixture sample generates white light with a high color rendering index of 84. • The sample yields white light with the CIE coordinate (0.30, 0.34) very close to that of pure white light

  5. Chemical substitution of Cd ions by Hg in CdSe nanorods and nanodots: Spectroscopic and structural examination

    International Nuclear Information System (INIS)

    Prudnikau, Anatol; Artemyev, Mikhail; Molinari, Michael; Troyon, Michel; Sukhanova, Alyona; Nabiev, Igor; Baranov, Alexandr V.; Cherevkov, Sergey A.; Fedorov, Anatoly V.

    2012-01-01

    Highlights: ► We studied cadmium-by-mercury chemical substitution in CdSe nanocrystals. ► Zinc blende CdSe quantum dots can be easily converted to isostructural Cd x Hg 1−x Se. ► Wurtzite CdSe QDs require longer time to convert to a zinc blende Cd x Hg 1−x Se. ► Wurtzite CdSe nanorods transform to nanoheterogeneous luminescent Cd x Hg 1−x Se rods. - Abstract: The chemical substitution of cadmium by mercury in colloidal CdSe quantum dots (QDs) and nanorods has been examined by absorption, photoluminescence and Raman spectroscopy. The crystalline structure of original CdSe QDs used for Cd/Hg substitution (zinc blende versus wurtzite) shows a strong impact on the optical and structural properties of resultant Cd x Hg 1−x Se nanocrystals. Substitution of Cd by Hg in isostructural zinc blende CdSe QDs converts them to ternary Cd x Hg 1−x Se zinc blende nanocrystals with significant NIR emission. Whereas, the wurtzite CdSe QDs transformed first to ternary nanocrystals with almost no emission followed by slow structural reorganization to a NIR-emitting zinc blende Cd x Hg 1−x Se QDs. CdSe nanorods with intrinsic wurtzite structure show unexpectedly intense NIR emission even at early Cd/Hg substitution stage with PL active zinc blende Cd x Hg 1−x Se regions.

  6. Facile and green synthesis of CdSe quantum dots in protein matrix: tuning of morphology and optical properties.

    Science.gov (United States)

    Ahmed, M; Guleria, A; Rath, M C; Singh, A K; Adhikari, S; Sarkar, S K

    2014-08-01

    Herein, we have demonstrated a facile and green approach for the synthesis of Cadmium selenide (CdSe) quantum dots (QDs). The process was mediated by bovine serum albumin (BSA) and it was found that BSA plays the dual role of reducing agent as well as a stabilizing agent. The QDs exhibited sharp excitonic absorption features at ~500 nm and subsequently showed reasonably good photoluminescence (PL) at room temperature. The PL is seen to be strongly dependent on the concentration of the precursors and hence, the luminescence of these QDs could be conveniently tuned across the visible spectrum simply by varying molar ratio of the precursors. It can be envisaged from the fact that a red-shift of about 100 nm in the PL peak position was observed when the molar ratio of the precursors ([Cd2+]:[Se2-], in mM) was varied from 10:5 to 10:40. Subsequently, the charge carrier relaxation dynamics associated with the different molar ratio of precursors has been investigated and very interesting information regarding the energy level structures of these QDs were revealed. Most importantly, in conjunction with the optical tuning, the nanomorphology of these nanoparticles was found to vary with the change in molar ratios of Se and Cd precursors. This aspect can provide a new direction of controlling the shape of CdSe nanoparticles. The possible mechanism of the formation as well as for the shape variation of these nanoparticles with the molar ratios of precursors has been proposed, taking into account the role of amino acid residues (present in BSA). Moreover, the QDs were water soluble and possessed fairly good colloidal stability therefore, can have potential applications in catalysis and bio-labeling. On the whole, the present methodology of protein assisted synthesis is relatively new especially for semiconducting nanomaterials and may provide some unique and interesting aspects to control and fine tune the morphology vis-à-vis, their optical properties.

  7. Towards ion beam synthesis of single CdSe nanocrystal quantum dots in a SiO{sub 2} matrix

    Energy Technology Data Exchange (ETDEWEB)

    Mangold, Hans Moritz; Kinzel, Joerg B.; Krenner, Hubert J. [Emmy Noether Group at Lehrstuhl Experimentalphysik 1, Universitaet Augsburg (Germany); Karl, Helmut [Lehrstuhl Experimentalphysik IV, Universitaet Augsburg (Germany); Wixforth, Achim [Lehrstuhl Experimentalphysik I, Universitaet Augsburg (Germany)

    2013-07-01

    II-VI compound semiconductor quantum dots (QDs) are a promising class of materials for applications in optical devices in the visible spectral domain. Here we show that in addition to traditional fabrication techniques such as molecular beam epitaxy or chemical synthesis, high fluence ion-beam implantation followed by a rapid thermal annealing step, can be readily applied to synthesize CdSe nanocrystals with superior optical properties within the thermal oxide on a Si wafer. In order to confine the implantation volume we employ chromium masks with arrays of nanoscale aperture openings with diameters smaller than 250 nm. We analyzed the such implanted and annealed samples by scanning electron microscopy and micro-photoluminescence spectroscopy. We observe a pronounced broadening and blue shift of the nanocrystal emission when decreasing the aperture diameter to <1000 nm. We attribute this behavior to a reduction of the mean nanocrystal size but increase of its size distribution. For the smallest aperture sizes used we observe a pronounced shell-filling behavior characteristic for single quantum dot nanoemitters.

  8. Piezoelectric effect in InAs/InP quantum rod nanowires grown on silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Anufriev, Roman; Chauvin, Nicolas, E-mail: nicolas.chauvin@insa-lyon.fr; Bru-Chevallier, Catherine [Université de Lyon, Institut des Nanotechnologies de Lyon (INL)-UMR5270-CNRS, INSA-Lyon, 7 avenue Jean Capelle, 69621 Villeurbanne (France); Khmissi, Hammadi [Université de Monastir, Laboratoire de Micro-Optoélectronique et Nanostructures (LMON), Faculté des Sciences, Avenue de l' environnement, 5019 Monastir (Tunisia); Naji, Khalid; Gendry, Michel [Université de Lyon, Institut des Nanotechnologies de Lyon (INL)-UMR5270-CNRS, Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France); Patriarche, Gilles [Laboratoire de Photonique et de Nanostructures (LPN), UPR20-CNRS, route de Nozay, 91460 Marcoussis (France)

    2014-05-05

    We report on the evidence of a strain-induced piezoelectric field in wurtzite InAs/InP quantum rod nanowires. This electric field, caused by the lattice mismatch between InAs and InP, results in the quantum confined Stark effect and, as a consequence, affects the optical properties of the nanowire heterostructure. It is shown that the piezoelectric field can be screened by photogenerated carriers or removed by increasing temperature. Moreover, a dependence of the piezoelectric field on the quantum rod diameter is observed in agreement with simulations of wurtzite InAs/InP quantum rod nanowire heterostructures.

  9. White-light-emitting CdSe quantum dots with ''magic size'' via one-pot synthesis approach

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xinmei [School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009 (China); Department of Biological and Chemical Engineering, Guangxi University of Technology, Liuzhou, Guangxi 545006 (China); Jiang, Yang; Wang, Chun; Li, Shanying; Lan, Xinzheng; Chen, Yan [School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009 (China)

    2010-11-15

    Two stable magic-sized CdSe families were simply and reproducibly synthesized at different growth temperature via a one-pot approach, in which N-oleoylmorpholine was used as reaction medium, and cadmium acetate dehydrate and Se powder as precursors. The pure 392 family obtained by surface passivation with either lauric acid or stearic acid at 150 C exhibits strong white-light emission with a maximum quantum yield (QY) up to 27%. The broadband emission (370-680 nm), which is responsible for the white-light, is attributed to photoluminescence from both excitons and surface states. High-quality white-light emission can be stable for a long growth period (about 120 min) and at least a 2-month storage period. The high-resolution transmission electron microscopy (HRTEM) images verify the presence of the small size distribution and good crystallinity of the quantum dots (QDs) with a size range of 1.7-2.0 nm. X-ray diffraction (XRD) and selected area electron diffraction (SAED) confirm that the magic-sized CdSe QDs have a zincblende crystal structure. The energy-dispersed spectrometry (EDS) measurement indicates the as-prepared CdSe QDs have a cadmium-rich surface. The as-prepared CdSe QDs exhibit sharp and fixed absorption features and the white-light emitting from QDs can be retained for quite long reaction and storage periods. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Pico-ampere current sensitivity and CdSe quantum dots assembly assisted charge transport in ferroelectric liquid crystal

    Science.gov (United States)

    Pratap Singh, Dharmendra; Boussoualem, Yahia; Duponchel, Benoit; Sahraoui, Abdelhak Hadj; Kumar, Sandeep; Manohar, Rajiv; Daoudi, Abdelylah

    2017-08-01

    Octadecylamine capped CdSe quantum dots (QDs) dispersed 4-(1-methyl-heptyloxy)-benzoic acid 4‧-octyloxy-biphenyl-4-yl ester ferroelectric liquid crystal (FLC) were deposited over gold coated quartz substrate using dip-coating. The topographical investigation discloses that the homogeneously dispersed QDs adopt face-on to edge-on assembly in FLC matrix owing to their concentration. Current-voltage (I-V) measurement was performed using conductive atomic force microscopy (CAFM) which yields ohmic to critical diode like I-V curves depending upon the concentration of QDs in FLC. The recorded pico-ampere (pA) current sensitivity in FLC-QDs composites is attributed to micro-second drift time of electron due to weak electronic coupling between the π-electrons on the FLC and s-electrons on the metal surface. The observed pico-ampere sensitivity is the least current sensitivity recorded so far. For FLC-QDs composites, almost 24% faster electro-optic response was observed in comparison to pure FLC. The pico-ampere current sensitivity can be utilized in touch screen displays whereas the change in polarization for low applied electric field ameliorates the increased electrical susceptibility counteracting the internal electric field and its use in electronic data storage and faster electro-optical devices.

  11. Current matching using CdSe quantum dots to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells.

    Science.gov (United States)

    Lee, Ya-Ju; Yao, Yung-Chi; Tsai, Meng-Tsan; Liu, An-Fan; Yang, Min-De; Lai, Jiun-Tsuen

    2013-11-04

    A III-V multi-junction tandem solar cell is the most efficient photovoltaic structure that offers an extremely high power conversion efficiency. Current mismatching between each subcell of the device, however, is a significant challenge that causes the experimental value of the power conversion efficiency to deviate from the theoretical value. In this work, we explore a promising strategy using CdSe quantum dots (QDs) to enhance the photocurrent of the limited subcell to match with those of the other subcells and to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells. The underlying mechanism of the enhancement can be attributed to the QD's unique capacity for photon conversion that tailors the incident spectrum of solar light; the enhanced efficiency of the device is therefore strongly dependent on the QD's dimensions. As a result, by appropriately selecting and spreading 7 mg/mL of CdSe QDs with diameters of 4.2 nm upon the InGaP/GaAs/Ge solar cell, the power conversion efficiency shows an enhancement of 10.39% compared to the cell's counterpart without integrating CdSe QDs.

  12. High-performance solar cells with induced crystallization of perovskite by an evenly distributed CdSe quantum dots seed-mediated underlayer

    Science.gov (United States)

    Qi, Jiabin; Xiong, Hao; Wang, Gang; Xie, Huaqing; Jia, Wei; Zhang, Qinghong; Li, Yaogang; Wang, Hongzhi

    2018-02-01

    Crystallization and interface engineering of perovskite are the most important factors in achieving high-performance perovskite solar cells (PSCs). Herein, we construct an ultrathin CdSe quantum dots (QDs) underlayer via a solution-processable method, which acts as a seed-mediated layer for perfect perovskite film, with both uniform morphology and better absorption capacity. In addition, CdSe QDs and perovskites form a fully crystalline heterojunction, which is beneficial to minimizing the defect and trap densities. Then, an Ostwald ripening process is adopted to fabricate large-grain, pinhole-free perovskite thin film, by a simple methylammonium bromide treatment. Besides, the first principle is applied in calculating organic/inorganic hybrid perovskite, confirming that electrons can move even quicker and more effectively, as a result of our work. Due to these treatments, representing a very simple method to simultaneously control perovskite crystallization and optimize the interfaces in PSCs, a maximum power conversion efficiency of 15.68% is achieved, 35% higher than the PSC both without CdSe and MABr treatment (11.57%), indicating better performance.

  13. Assessing potential harmful effects of CdSe quantum dots by using Drosophila melanogaster as in vivo model

    International Nuclear Information System (INIS)

    Alaraby, Mohamed; Demir, Esref; Hernández, Alba; Marcos, Ricard

    2015-01-01

    Since CdSe QDs are increasingly used in medical and pharmaceutical sciences careful and systematic studies to determine their biosafety are needed. Since in vivo studies produce relevant information complementing in vitro data, we promote the use of Drosophila melanogaster as a suitable in vivo model to detect toxic and genotoxic effects associated with CdSe QD exposure. Taking into account the potential release of cadmium ions, QD effects were compared with those obtained with CdCl 2 . Results showed that CdSe QDs penetrate the intestinal barrier of the larvae reaching the hemolymph, interacting with hemocytes, and inducing dose/time dependent significant genotoxic effects, as determined by the comet assay. Elevated ROS production, QD biodegradation, and significant disturbance in the conserved Hsps, antioxidant and p53 genes were also observed. Overall, QD effects were milder than those induced by CdCl 2 suggesting the role of Cd released ions in the observed harmful effects of Cd based QDs. To reduce the observed side-effects of Cd based QDs biocompatible coats would be required to avoid cadmium's undesirable effects. - Highlights: • CdSe QDs were able to cross the intestinal barrier of Drosophila. • Elevated ROS induction was detected in larval hemocytes. • Changes in the expression of Hsps and p53 genes were observed. • Primary DNA damage was induced by CdSe QDs in hemocytes. • Overall, CdSe QD effects were milder than those induced by CdCl 2

  14. Controlling reabsorption effect of bi-color CdSe quantum dots-based white light-emitting diodes

    Science.gov (United States)

    Siao, Cyuan-Bin; Chung, Shu-Ru; Wang, Kuan-Wen

    2017-08-01

    The colloidal semiconductor quantum dots (QDs) have the potentials to be used in white light-emitting diode (WLED) as a down-converting component to replace incandescent lamps, because the traditional WLED composed of Y3Al5O12:Ce3+ (YAG:Ce) phosphor lack of red color emissions and shows low color quality. Among various QDs, CdSe has been extensively studied because it possesses attractive characteristics such as high quantum yields (QYs), narrow emission spectral bandwidth, as well as size-tunable optical characteristics. However, in order to enhance the color rendering index (CRI) of WLED, blending materials with different emission wavelengths has been used frequently. Unfortunately, these procedures are complex and time-consuming, and the emission energy of smaller QDs can be reabsorbed by larger QDs, resulting in decreasing the excitation intensity in yellowish-green region. Therefore, in this study, in order to decrease the reabsorption effect and to simplify the procedures, we have demonstrated a facile thermal pyrolyzed route to prepare bicolor CdSe QDs with dual-wavelengths. The emission wavelengths, particle sizes, and QYs of QDs can be tuned from 537/595 to 537/602 nm, 2.59/3.92 to 2.59/4.01 nm, and 27 to 40 %, for GR1 to 3 samples, respectively when the amount of Se precursor is decreased from 1.5 to 0.75 mmol. Meanwhile, the area ratio of green to red (Ag/Ar) in fluorescence spectra is gradually increased, due to the increase in growth rate, and decrease in nuclei formation in red emission. The GR1, GR2, and GR3 QDs are then encapsulated by convert types to form the LED, in which the QDs are deposited on the blue-emitting InGaN LED chip (λem = 450 nm). After encapsulation, the devices properties of Commission International d'Eclairage (CIE) chromaticity and Ag/Ar area ratio are (0.40, 0.24), 0.28/1, (0.40, 0.31), 0.52/1, and (0.40, 0.38), 1.02/1, respectively for GR1, GR2, and GR3. The results show that the green emission intensity are strongly

  15. Large improvement of electron extraction from CdSe quantum dots into a TiO2 thin layer by N3 dye coabsorption

    International Nuclear Information System (INIS)

    Mora-Sero, Ivan; Dittrich, Thomas; Susha, Andrei S.; Rogach, Andrey L.; Bisquert, Juan

    2008-01-01

    Extraction of electrons and holes photogenerated in CdSe quantum dots (QD) of 2.3 nm diameter, is monitored by Surface Photovoltage Spectroscopy. The extraction of electrons into a thin TiO 2 layer increases five-fold by absorption of N3 dye molecules on top of the QD layer. This process is facilitated by efficient hole extraction from the valence band of the QDs to the ground state of the N3 dye. Our results represent a direct measurement of charge separation in the N3/QD/TiO 2 system

  16. Synthesis of a CdSe-graphene hybrid composed of CdSe quantum dot arrays directly grown on CVD-graphene and its ultrafast carrier dynamics.

    Science.gov (United States)

    Kim, Yong-Tae; Shin, Hee-Won; Ko, Young-Seon; Ahn, Tae Kyu; Kwon, Young-Uk

    2013-02-21

    We report the original fabrication and performance of a photocurrent device that uses directly grown CdSe quantum dots (QDs) on a graphene basal plane. The direct junction between the QDs and graphene and the high quality of the graphene grown by chemical vapor deposition enables highly efficient electron transfer from the QDs to the graphene. Therefore, the hybrids show large photocurrent effects with a fast response time and shortened photoluminescence (PL) lifetime. The PL lifetime quenching can be explained as being due to the efficient electron transfer as evidenced by femtosecond transient absorption spectroscopy. These hybrids are expected to find applications in flexible electronics and optoelectronic devices.

  17. Investigation of biocompatible and protein sensitive highly luminescent quantum dots/nanocrystals of CdSe, CdSe/ZnS and CdSe/CdS

    Science.gov (United States)

    Ratnesh, R. K.; Mehata, Mohan Singh

    2017-05-01

    The size and shape dependent semiconductor quantum dots (0D nanoparticles) with color tunability demonstrating significant influence in a biological system and considered as ideal probes. Here, a non-coordinated colloidal approach was used for the synthesis of CdSe, CdSe/ZnS and CdSe/CdS core-shell quantum dots (QDs) of 3-4 nm. The synthesized nanocrystals show a high crystallinity, examined by X-ray diffraction (XRD) and high-resolution electron microscopy (HRTEM). The core-shell semiconductor QDs exhibit stronger photoluminescence (PL) as compared to the core QDs. The strong PL with small full-width half maximum (FWHM) indicates that the prepared QDs have a nearly uniform size distribution and well dispersibility. The quantum yield (QY) of core-shell QDs increases due to the surface passivation. Further, the PL of BSA is quenched strongly by the presence of core-shell QDs and follows the well-known Stern-Volmer (S-V) relation, whereas the PL lifetime does not follow the S-V relation, demonstrating that the observed quenching is predominantly static in nature. Among CdSe core, CdSe/ZnS and CdSe/CdS core-shell QDs, the CdSe/ZnS QDs shows the least cytotoxicity and most biocompatibility. Thus, the prepared core-shell QDs are biocompatible and exhibit strong sensing ability.

  18. Assessing potential harmful effects of CdSe quantum dots by using Drosophila melanogaster as in vivo model

    Energy Technology Data Exchange (ETDEWEB)

    Alaraby, Mohamed [Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès (Spain); Sohag University, Faculty of Sciences, Zoology Department, 82524-Campus, Sohag (Egypt); Demir, Esref [Akdeniz University, Faculty of Sciences, Department of Biology, 07058-Campus, Antalya (Turkey); Hernández, Alba [Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès (Spain); CIBER Epidemiología y Salud Pública, ISCIII, Madrid (Spain); Marcos, Ricard, E-mail: ricard.marcos@uab.es [Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès (Spain); CIBER Epidemiología y Salud Pública, ISCIII, Madrid (Spain)

    2015-10-15

    Since CdSe QDs are increasingly used in medical and pharmaceutical sciences careful and systematic studies to determine their biosafety are needed. Since in vivo studies produce relevant information complementing in vitro data, we promote the use of Drosophila melanogaster as a suitable in vivo model to detect toxic and genotoxic effects associated with CdSe QD exposure. Taking into account the potential release of cadmium ions, QD effects were compared with those obtained with CdCl{sub 2}. Results showed that CdSe QDs penetrate the intestinal barrier of the larvae reaching the hemolymph, interacting with hemocytes, and inducing dose/time dependent significant genotoxic effects, as determined by the comet assay. Elevated ROS production, QD biodegradation, and significant disturbance in the conserved Hsps, antioxidant and p53 genes were also observed. Overall, QD effects were milder than those induced by CdCl{sub 2} suggesting the role of Cd released ions in the observed harmful effects of Cd based QDs. To reduce the observed side-effects of Cd based QDs biocompatible coats would be required to avoid cadmium's undesirable effects. - Highlights: • CdSe QDs were able to cross the intestinal barrier of Drosophila. • Elevated ROS induction was detected in larval hemocytes. • Changes in the expression of Hsps and p53 genes were observed. • Primary DNA damage was induced by CdSe QDs in hemocytes. • Overall, CdSe QD effects were milder than those induced by CdCl{sub 2}.

  19. Hole transport in organic field-effect transistors with active poly(3-hexylthiophene) layer containing CdSe quantum dots

    Czech Academy of Sciences Publication Activity Database

    Bielecka, Urszula; Lutsyk, P.; Nyk, M.; Janus, K.; Samoć, M.; Bartkowiak, W.; Nešpůrek, Stanislav

    2013-01-01

    Roč. 31, č. 2 (2013), s. 288-297 ISSN 2083-1331 EU Projects: European Commission(XE) 35859 - BIMORE Institutional research plan: CEZ:AV0Z40500505 Keywords : organic transistor * poly(3-hexylthiophene) * CdSe Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.327, year: 2013

  20. Mercaptoethanol capped CdSe quantum dots and CdSe/ZnS core/shell: synthesis, characterization and cytotoxicity evaluation.

    Science.gov (United States)

    Painuly, Diksha; Bhatt, Anugya; Krishnan, V Kalliyana

    2013-02-01

    CdSe Quantum dots (Q-dots) and CdSe/ZnS core/shell have been synthesized by wet chemical route using mercaptoethanol (ME) as cappant. The synthesized Q-dots and core/shell were characterized using X-ray diffraction (XRD), Transmission electron microscopy (TEM), Energy dispersive X-ray analysis (EDS), Dynamic Light Scattering (DLS), Optical absorption and luminescence spectroscopy. The core/shell formation was confirmed by both XRD and TEM analysis. The luminescence was shown to be considerably enhanced in the core/shell sample. Effect of dialysis process on the optical properties of the Q-dots and core/shell has also been discussed. Cytotoxicity studies have been carried out for Q-dots and core/shell. CdSe/ZnS core/shell was found to be non-cytotoxic as compared to CdSe Q-dots up to a certain concentration range. Polyethylene glycol (PEG) coating enhances the non-cytotoxic nature of CdSe/ZnS core/shell when compared with bare core/shell.

  1. Uniform growth of high-quality oxide thin films on graphene using a CdSe quantum dot array seeding layer.

    Science.gov (United States)

    Kim, Yong-Tae; Lee, Seoung-Ki; Kim, Kwang-Seop; Kim, Yong Ho; Ahn, Jong-Hyun; Kwon, Young-Uk

    2014-08-13

    Graphene displays outstanding properties as an electrode and a semiconducting channel material for transistors; however, the weak interfacial bond between graphene and an inorganic oxide material-based insulator presents a major constraint on these applications. Here, we report a new approach to improving the interface between the two materials using a CdSe quantum dot (QD)-based seeding layer in an inorganic material-graphene junction. CdSe QDs were electrochemically grown on graphene without degrading the properties of the graphene layer. The graphene structure was then used as the electrode in an oxide semiconductor by depositing a zinc oxide thin film onto the graphene coated with a QD seed layer (QD/G). The zinc oxide film adhered strongly to the graphene layer and provided a low contact resistance. A high-k dielectric layer in the form of an HfO2 film, which is an essential element in the fabrication of high-performance graphene-based field effect transistors, was also uniformly formed on the QD/G sheet using atomic layer deposition. The resulting transistors provided a relatively good performance, yielding hole and electron mobilities of 2600 and 2000 cm(2)/V·s.

  2. Poly(glycidyl methacrylate) grafted CdSe quantum dots by surface-initiated atom transfer radical polymerization: Novel synthesis, characterization, properties, and cytotoxicity studies

    International Nuclear Information System (INIS)

    Bach, Long Giang; Islam, Md. Rafiqul; Lee, Doh Chang; Lim, Kwon Taek

    2013-01-01

    A novel approach for the synthesis of poly(glycidyl methacrylate) grafted CdSe quantum dot (QDs) (PGMA-g-CdSe) was developed. The PGMA-g-CdSe nanohybrids were synthesized by the surface-initiated atom transfer radical polymerization of glycidyl methacrylate from the surface of the strategic initiator, CdSe-BrIB QDs prepared by the interaction of 2-bromoisobutyryl bromide (BrIB) and CdSe-OH QDs. The structure, morphology, and optical property of the PGMA-g-CdSe nanohybrids were analyzed by FT-IR, XPS, TGA, XRD, TEM, and PL. The as-synthesized PGMA-g-CdSe nanohybrids having multi-epoxide groups were employed for the direct coupling of biotin via ring-opening reaction of the epoxide groups to afford the Biotin-f-PGMA-g-CdSe nanobioconjugate. The covalent immobilization of biotin onto PGMA-g-CdSe was confirmed by FT-IR, XPS, and EDX. Biocompatibility and imaging properties of the Biotin-f-PGMA-g-CdSe were investigated by MTT bioassay and PL analysis, respectively. The cell viability study suggested that the biocompatibility was significantly enhanced by the functionalization of CdSe QDs by biotin and PGMA.

  3. Formation and properties of epitaxial CdSe, ZnSe quantum dots. Conventional molecular beam epitaxy and related techniques

    International Nuclear Information System (INIS)

    Mahapatra, Suddhasatta

    2008-01-01

    This thesis systematically investigates three such alternative approaches, along with conventional MBE, with emphasis on the formation-mechanism of QDs, and optimization of their morphological and optical attributes. it is shown here that no distinct 3D islands are formed in MBE growth of CdSe on ZnSe. While CdSe heteroepitaxy occurs in the multilayer-mode at T G =300 C, a reentrant recovery of the layer-by-layer mode is reported in this thesis, for growth at T G D =230 C). The process steps of the third variant technique, developed in course of this work, are very similar to those of the previous one-the only alteration being the substitution of selenium with tellurium as the cap-forming-material. (orig.)

  4. Formation and properties of epitaxial CdSe, ZnSe quantum dots. Conventional molecular beam epitaxy and related techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Suddhasatta

    2008-01-16

    This thesis systematically investigates three such alternative approaches, along with conventional MBE, with emphasis on the formation-mechanism of QDs, and optimization of their morphological and optical attributes. it is shown here that no distinct 3D islands are formed in MBE growth of CdSe on ZnSe. While CdSe heteroepitaxy occurs in the multilayer-mode at T{sub G}=300 C, a reentrant recovery of the layer-by-layer mode is reported in this thesis, for growth at T{sub G}<{proportional_to}240 C. In the second variant technique, formation of large and distinct islands is demonstrated by deposition of amorphous selenium (a-Se) onto a 2D CdSe epilayer at room temperature and its subsequent desorption at a higher temperature (T{sub D}=230 C). The process steps of the third variant technique, developed in course of this work, are very similar to those of the previous one-the only alteration being the substitution of selenium with tellurium as the cap-forming-material. (orig.)

  5. CdSe and ZnSe quantum dots capped with PEA for screening C-reactive protein in human serum.

    Science.gov (United States)

    Gomes, D; Algarra, M; Diez de los Rios, M J; Arrebola, M M; Herrera-Gutiérrez, M E; Seller-Pérez, G; Esteves da Silva, J C G

    2012-05-15

    A fluorescence chemical sensor for C-reactive protein (CRP) was developed based on the selective interaction with CdSe and ZnSe quantum dots (QDs) coated with O-phosphorylethanolamine (PEA). Synthesis procedure and analytical parameters such as pH and ionic strength were studied. The decrease in the fluorescence emission intensity was explained due to the specific interaction of the QDs-PEA with CRP, and a correlation was observed between the quenching of the fluorescence and the concentration of CRP. The accuracy of the proposed method was 0.37% as RSD. The proposed method was applied to screen serum samples, and showed to be sensible at the C-reactive protein concentrations of risks levels. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Synthesis of a CdSe-graphene hybrid composed of CdSe quantum dot arrays directly grown on CVD-graphene and its ultrafast carrier dynamics

    Science.gov (United States)

    Kim, Yong-Tae; Shin, Hee-Won; Ko, Young-Seon; Ahn, Tae Kyu; Kwon, Young-Uk

    2013-01-01

    We report the original fabrication and performance of a photocurrent device that uses directly grown CdSe quantum dots (QDs) on a graphene basal plane. The direct junction between the QDs and graphene and the high quality of the graphene grown by chemical vapor deposition enables highly efficient electron transfer from the QDs to the graphene. Therefore, the hybrids show large photocurrent effects with a fast response time and shortened photoluminescence (PL) lifetime. The PL lifetime quenching can be explained as being due to the efficient electron transfer as evidenced by femtosecond transient absorption spectroscopy. These hybrids are expected to find applications in flexible electronics and optoelectronic devices.We report the original fabrication and performance of a photocurrent device that uses directly grown CdSe quantum dots (QDs) on a graphene basal plane. The direct junction between the QDs and graphene and the high quality of the graphene grown by chemical vapor deposition enables highly efficient electron transfer from the QDs to the graphene. Therefore, the hybrids show large photocurrent effects with a fast response time and shortened photoluminescence (PL) lifetime. The PL lifetime quenching can be explained as being due to the efficient electron transfer as evidenced by femtosecond transient absorption spectroscopy. These hybrids are expected to find applications in flexible electronics and optoelectronic devices. Electronic supplementary information (ESI) available: TEM data of MSTF, AFM data of T-QD-G samples, PL decay fitting results to the multiexponential decay equation, photoconductivity data of T-QD-2LG with two different illumination wavelengths, photocurrent efficiencies of QD-G hybrids prepared in various ways, photoconductivity and photoresponse data of T-QD-2LG and T-QD-3LG, and the bending stress on a PET film. See DOI: 10.1039/c2nr33294a

  7. SU-E-T-526: On the Linearity, Stability and Beam Energy Dependence of CdSe Quantum Dots as Scintillating Probes

    International Nuclear Information System (INIS)

    Delage, M-E; Lecavalier, M-E; Lariviere, D; Allen, C; Beaulieu, L

    2014-01-01

    Purpose: Structure and energy transfer mechanisms confer colloidal quantum dots (cQDs) interesting properties, among them their potential as scintillators. CdSe multi-shell cQDs in powder were investigated under photons irradiation. The purpose of this work is to characterize signal to dose linearity, stability with time and to quantify the dependence of their light output with beam energy. Methods: The cQDs are placed at the extremity of a non-scintillating plastic collecting fiber, with the other extremity connected to an Apogee U2000C CCD camera. The CCD camera collects the fluorescence light from irradiated cQDs from which the delivered dose is extracted. This signal is corrected for Cerenkov contamination at MV energies using the chromatic technique. The detector was irradiated with two devices: Xstrahl 200 orthovoltage unit for 120, 180 and 220 kVp and a Varian Clinac iX for 6 and 23 MV. Results: Linear output response with varying dose is observed for all beam energies with R2 factors > 0,999. Reproducibility measurements were performed at 120 kVp: the same set-up was irradiated at different time intervals (one week and three months). The results showed only a small relative decrease of light output of 3,2 % after a combine deposited dose of approximately 95 Gy. CdSe nanocrystals response has been studied as a function of beam energy. The output increases with decreasing energy from 120 kVp to 6 MV and increase again for 23 MV. This behavior could be explained in part by the cQDs high-Z composition. Conclusion: The fluorescence light output of CdSe cQDs was found to be linear as a function of dose. The results suggest stability of the scintillation output of cQDs over time. The specific composition of cQDs is the main cause of the observed energy dependence. We will further look into particle beam dependence of the cQDs. Bourse d'excellence aux etudes graduees du CRC (Centre de Recherche sur le Cancer, Universite Laval) Bourse d'excellence aux

  8. Surface-modified CdSe quantum dots for the sensitive and selective determination of Cu(II) in aqueous solutions by luminescent measurements

    International Nuclear Information System (INIS)

    Fernandez-Argueelles, Maria Teresa; Jin, Wei Jun; Costa-Fernandez, Jose M.; Pereiro, Rosario; Sanz-Medel, Alfredo

    2005-01-01

    The use of water-soluble luminescent CdSe quantum dots (QDs), whose surface was modified either with 2-mercaptoethane sulphonic acid or with 2-mercaptoacetic acid, was investigated for the sensitive and selective determination of copper(II) ions in aqueous solutions. A pH 5.5 was selected for measurement. Also, the effect of the presence of different surfactant agents in the sample solution, in order to stabilize the fluorescent signals of the QDs in water, has been investigated. A 10 -3 M of dodecyltrimethylammonium chloride final concentration was selected. Fluorescence signals were found to be stable for at least several days in such conditions. Higher sensitivity was obtained for the sulphonic-modified CdSe QDs. Detection limits for Cu(II) of 0.2 μg l -1 , a dynamic range up to 30 μg l -1 , and a R.S.D. of ±2.8% for 10 replicates of a 2.5 μg l -1 Cu(II) solution were obtained as analytical performance characteristics. Besides, the influence on the fluorescence signal of foreign cations, including Na + , K + , Ca 2+ , Mg 2+ , Zn 2+ , Mn 2+ , Co 3+ , Ag + , Hg 2+ and Fe 3+ was studied (to avoid inner filter effect, the colourless complex FeF 6 3- was investigated instead of Fe 3+ ). Results showed a high selectivity of the sulphonic-modified QDs towards Cu(II) ions. The proposed method demonstrated improved sensitivity and selectivity characteristics for Cu(II) determinations as compared to other already described luminescence QDs-based analytical methods for metal ions determinations. Analytical applicability of the QDs has been demonstrated by tap and fountain water analysis. Results of Cu(II) determinations were in good agreement to those obtained by using an alternative analytical method

  9. A Phosphine-Free Route to Size-Adjustable CdSe and CdSe/CdS Core-Shell Quantum Dots for White-Light-Emitting Diodes.

    Science.gov (United States)

    Zhang, Yugang; Li, Guopeng; Zhang, Ting; Song, Zihang; Wang, Hui; Zhang, Zhongping; Jiang, Yang

    2018-03-01

    The selenium dioxide was used as the precursor to synthesize wide-size-ranged CdSe quantum dots (2.4-5.7 nm) via hot-injection route. The CdSe quantum dots are featured with high crystalline, monodisperse, zinc blende structure and wide emission region (530-635 nm). In order to improve the stability and quantum yield, a phosphine-free single-molecular precursor approach is used to obtain CdSe/CdS core/shell quantum dots. The CdSe/CdS quantum dots are highly fluorescent with quantum yield up to 65%, and persist the good monodispersity and high crystallinity. Moreover, the quantum dots white light-emitting-diodes are fabricated by using the resultant red emission core/shell quantum dots and Y3Al5O12:Ce3+ yellow phosphors as color-conversion layers on a blue InGaN chip. The prepared light-emitting-diodes show good performance with CIE-1931 coordinated of (0.3583, 0.3349), an Ra of 92.9, and a Tc of 4410 K at 20 mA, which indicate that the combination of red-emission QDs and yellow phophors as a promising approach to obtain warm WLEDs with good color rendering.

  10. Study of optically trapped living Trypanosoma cruzi/Trypanosoma rangeli - Rhodnius prolixus interactions by real time confocal images using CdSe quantum dots

    Science.gov (United States)

    de Thomaz, A. A.; Almeida, D. B.; Faustino, W. M.; Jacob, G. J.; Fontes, A.; Barbosa, L. C.; Cesar, C. L.; Stahl, C. V.; Santos-Mallet, J. R.; Gomes, S. A. O.; Feder, D.

    2008-08-01

    One of the fundamental goals in biology is to understand the interplay between biomolecules of different cells. This happen, for example, in the first moments of the infection of a vector by a parasite that results in the adherence to the cell walls. To observe this kind of event we used an integrated Optical Tweezers and Confocal Microscopy tool. This tool allow us to use the Optical Tweezers to trigger the adhesion of the Trypanosoma cruzi and Trypanosoma rangeli parasite to the intestine wall cells and salivary gland of the Rhodnius prolixus vector and to, subsequently observe the sequence of events by confocal fluorescence microscopy under optical forces stresses. We kept the microorganism and vector cells alive using CdSe quantum dot staining. Besides the fact that Quantum Dots are bright vital fluorescent markers, the absence of photobleaching allow us to follow the events in time for an extended period. By zooming to the region of interested we have been able to acquire confocal images at the 2 to 3 frames per second rate.

  11. Chemical stability of CdSe quantum dots in seawater and their effects on a marine microalga.

    Science.gov (United States)

    Morelli, Elisabetta; Cioni, Patrizia; Posarelli, Mauro; Gabellieri, Edi

    2012-10-15

    With the increasing use of nanotechnologies, it is expected that nanomaterials end up in natural aquatic systems, from freshwater to the sea. In this work we studied the chemical behaviour of water-soluble CdSe QDs in seawater and their effects on the marine diatom Phaeodactylum tricornutum, as a model of a biological receptor in the marine environment. We evaluated QD toxicity in terms of growth rate inhibition, oxidative stress and ROS accumulation. In addition, we used the synthesis of phytochelatins (PCs) as a biomarker of the presence of free Cd(2+) ions released from QDs. The optical and chemical characterization demonstrated the propensity of QDs to aggregate after dispersion in raw seawater. In addition, bare CdSe QDs, lacking the ZnS shell, underwent a salinity-dependent degradation process. Short-term exposure experiments showed that the ease of degradation of QDs in seawater correlated with the synthesis of PCs in P. tricornutum cells. Long-term exposure experiments, carried out with the most stable CdSe/ZnS QDs, showed that algae accumulated Cd, but synthesized negligible amounts of PCs. Since the production of PCs is a specific signal of the presence of bioavailable metal ions, our findings suggest that QDs, associated to P. tricornutum cells, did not release PC-inducing metal species. Our data also showed a gradual decrease in algal growth rate at concentrations of QDs higher than 0.5nM. Measurements of the activity of the antioxidant enzymes showed that superoxide dismutase (SOD) and catalase (CAT) activities were increased by exposure to [QDs]≥0.5 nM, whereas ascorbate peroxidase (APX) and glutathione reductase (GR) activities were not significantly affected. The increase in SOD and CAT activity can be considered a symptom of oxidative stress induced by an enhanced production of ROS. This hypothesis was confirmed by the concomitant increase in the intracellular ROS concentration. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Chemical stability of CdSe quantum dots in seawater and their effects on a marine microalga

    International Nuclear Information System (INIS)

    Morelli, Elisabetta; Cioni, Patrizia; Posarelli, Mauro; Gabellieri, Edi

    2012-01-01

    With the increasing use of nanotechnologies, it is expected that nanomaterials end up in natural aquatic systems, from freshwater to the sea. In this work we studied the chemical behaviour of water-soluble CdSe QDs in seawater and their effects on the marine diatom Phaeodactylum tricornutum, as a model of a biological receptor in the marine environment. We evaluated QD toxicity in terms of growth rate inhibition, oxidative stress and ROS accumulation. In addition, we used the synthesis of phytochelatins (PCs) as a biomarker of the presence of free Cd 2+ ions released from QDs. The optical and chemical characterization demonstrated the propensity of QDs to aggregate after dispersion in raw seawater. In addition, bare CdSe QDs, lacking the ZnS shell, underwent a salinity-dependent degradation process. Short-term exposure experiments showed that the ease of degradation of QDs in seawater correlated with the synthesis of PCs in P. tricornutum cells. Long-term exposure experiments, carried out with the most stable CdSe/ZnS QDs, showed that algae accumulated Cd, but synthesized negligible amounts of PCs. Since the production of PCs is a specific signal of the presence of bioavailable metal ions, our findings suggest that QDs, associated to P. tricornutum cells, did not release PC-inducing metal species. Our data also showed a gradual decrease in algal growth rate at concentrations of QDs higher than 0.5 nM. Measurements of the activity of the antioxidant enzymes showed that superoxide dismutase (SOD) and catalase (CAT) activities were increased by exposure to [QDs] ≥ 0.5 nM, whereas ascorbate peroxidase (APX) and glutathione reductase (GR) activities were not significantly affected. The increase in SOD and CAT activity can be considered a symptom of oxidative stress induced by an enhanced production of ROS. This hypothesis was confirmed by the concomitant increase in the intracellular ROS concentration.

  13. Chemical stability of CdSe quantum dots in seawater and their effects on a marine microalga

    Energy Technology Data Exchange (ETDEWEB)

    Morelli, Elisabetta, E-mail: elisabetta.morelli@pi.ibf.cnr.it [National Research Council - Institute of Biophysics, Section of Pisa, Via Moruzzi, 1, 56124 Pisa (Italy); Cioni, Patrizia [National Research Council - Institute of Biophysics, Section of Pisa, Via Moruzzi, 1, 56124 Pisa (Italy); Posarelli, Mauro [Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Section of Pisa, Via Moruzzi, 1, 56124 Pisa (Italy); Gabellieri, Edi [National Research Council - Institute of Biophysics, Section of Pisa, Via Moruzzi, 1, 56124 Pisa (Italy)

    2012-10-15

    With the increasing use of nanotechnologies, it is expected that nanomaterials end up in natural aquatic systems, from freshwater to the sea. In this work we studied the chemical behaviour of water-soluble CdSe QDs in seawater and their effects on the marine diatom Phaeodactylum tricornutum, as a model of a biological receptor in the marine environment. We evaluated QD toxicity in terms of growth rate inhibition, oxidative stress and ROS accumulation. In addition, we used the synthesis of phytochelatins (PCs) as a biomarker of the presence of free Cd{sup 2+} ions released from QDs. The optical and chemical characterization demonstrated the propensity of QDs to aggregate after dispersion in raw seawater. In addition, bare CdSe QDs, lacking the ZnS shell, underwent a salinity-dependent degradation process. Short-term exposure experiments showed that the ease of degradation of QDs in seawater correlated with the synthesis of PCs in P. tricornutum cells. Long-term exposure experiments, carried out with the most stable CdSe/ZnS QDs, showed that algae accumulated Cd, but synthesized negligible amounts of PCs. Since the production of PCs is a specific signal of the presence of bioavailable metal ions, our findings suggest that QDs, associated to P. tricornutum cells, did not release PC-inducing metal species. Our data also showed a gradual decrease in algal growth rate at concentrations of QDs higher than 0.5 nM. Measurements of the activity of the antioxidant enzymes showed that superoxide dismutase (SOD) and catalase (CAT) activities were increased by exposure to [QDs] {>=} 0.5 nM, whereas ascorbate peroxidase (APX) and glutathione reductase (GR) activities were not significantly affected. The increase in SOD and CAT activity can be considered a symptom of oxidative stress induced by an enhanced production of ROS. This hypothesis was confirmed by the concomitant increase in the intracellular ROS concentration.

  14. Ultrafast Spectroscopy of Fano-Like Resonance between Optical Phonon and Excitons in CdSe Quantum Dots: Dependence of Coherent Vibrational Wave-Packet Dynamics on Pump Fluence.

    Science.gov (United States)

    Nadtochenko, Victor; Denisov, Nikolay; Aybush, Arseniy; Gostev, Fedor; Shelaev, Ivan; Titov, Andrey; Umanskiy, Stanislav; Cherepanov, And Dmitry

    2017-11-04

    The main goal of the present work is to study the coherent phonon in strongly confined CdSe quantum dots (QDs) under varied pump fluences. The main characteristics of coherent phonons (amplitude, frequency, phase, spectrogram) of CdSe QDs under the red-edge pump of the excitonic band [1S(e)-1S 3/2 (h)] are reported. We demonstrate for the first time that the amplitude of the coherent optical longitudinal-optical (LO) phonon at 6.16 THz excited in CdSe nanoparticles by a femtosecond unchirped pulse shows a non-monotone dependence on the pump fluence. This dependence exhibits the maximum at pump fluence ~0.8 mJ/cm². At the same time, the amplitudes of the longitudinal acoustic (LA) phonon mode at 0.55 THz and of the coherent wave packet of toluene at 15.6, 23.6 THz show a monotonic rise with the increase of pump fluence. The time frequency representation of an oscillating signal corresponding to LO phonons revealed by continuous wavelet transform (CWT) shows a profound destructive quantum interference close to the origin of distinct (optical phonon) and continuum-like (exciton) quasiparticles. The CWT spectrogram demonstrates a nonlinear chirp at short time delays, where the chirp sign depends on the pump pulse fluence. The CWT spectrogram reveals an anharmonic coupling between optical and acoustic phonons.

  15. Simultaneous quantification of arginine, alanine, methionine and cysteine amino acids in supplements using a novel bioelectro-nanosensor based on CdSe quantum dot/modified carbon nanotube hollow fiber pencil graphite electrode via Taguchi method.

    Science.gov (United States)

    Hooshmand, Sara; Es'haghi, Zarrin

    2017-11-30

    A number of four amino acids have been simultaneously determined at CdSe quantum dot-modified/multi-walled carbon nanotube hollow fiber pencil graphite electrode in different bodybuilding supplements. CdSe quantum dots were synthesized and applied to construct a modified carbon nanotube hollow fiber pencil graphite electrode. FT-IR, TEM, XRD and EDAX methods were applied for characterization of the synthesized CdSe QDs. The electro-oxidation of arginine (Arg), alanine (Ala), methionine (Met) and cysteine (Cys) at the surface of the modified electrode was studied. Then the Taguchi's method was applied using MINITAB 17 software to find out the optimum conditions for the amino acids determination. Under the optimized conditions, the differential pulse (DP) voltammetric peak currents of Arg, Ala, Met and Cys increased linearly with their concentrations in the ranges of 0.287-33670μM and detection limits of 0.081, 0.158, 0.094 and 0.116μM were obtained for them, respectively. Satisfactory results were achieved for calibration and validation sets. The prepared modified electrode represents a very good resolution between the voltammetric peaks of the four amino acids which makes it suitable for the detection of each in presence of others in real samples. Copyright © 2017. Published by Elsevier B.V.

  16. Characterization of primary amine capped CdSe, ZnSe, and ZnS quantum dots by FT-IR: determination of surface bonding interaction and identification of selective desorption.

    Science.gov (United States)

    Cooper, Jason K; Franco, Alexandra M; Gul, Sheraz; Corrado, Carley; Zhang, Jin Z

    2011-07-05

    Surface ligands of semiconductor quantum dots (QDs) critically influence their properties and functionalities. It is of strong interest to understand the structural characteristics of surface ligands and how they interact with the QDs. Three quantum dot (QD) systems (CdSe, ZnSe, and ZnS) with primary aliphatic amine capping ligands were characterized primarily by FT-IR spectroscopy as well as NMR, UV-vis, and fluorescence spectroscopy, and by transmission electron microscopy (TEM). Representative primary amines ranging from 8 to 16 carbons were examined in the vapor phase, KBr pellet, and neat and were compared to the QD samples. The strongest hydrogen-bonding effects of the adsorbed ligands were observed in CdSe QDs with the weakest observed in ZnS QDs. There was an observed splitting of the N-H scissoring mode from 1610 cm(-1) in the neat sample to 1544 and 1635 cm(-1) when bound to CdSe QDs, which had the largest splitting of this type. The splitting is attributed to amine ligands bound to either Cd or Se surface sites, respectively. The effect of exposure of the QDs dispersed in nonpolar medium to methanol as a crashing agent was also examined. In the CdSe system, the Cd-bound scissoring mode disappeared, possibly due to methanol replacing surface cadmium sites. The opposite was observed for ZnSe QDs, in which the Se-bound scissoring mode disappeared. It was concluded that surface coverage and ligand bonding partners could be characterized by FT-IR and that selective removal of surface ligands could be achieved through introduction of competitive binding interactions at the surface. © 2011 American Chemical Society

  17. Structural and optical characterization of electrodeposited CdSe in mesoporous anatase TiO2 for regenerative quantum-dot-sensitized solar cells

    Science.gov (United States)

    Sauvage, Frédéric; Davoisne, Carine; Philippe, Laetitia; Elias, Jamil

    2012-10-01

    We investigated CdSe-sensitized TiO2 solar cells by means of electrodeposition under galvanostatic control. The electrodeposition of CdSe within the mesoporous film of TiO2 gives rise to a uniform, thickness controlled, conformal layer of nanostructured CdSe particles intimately wrapping the anatase TiO2 nanoparticles. This technique has the advantage of providing not only a fast method for sensitization ( panels. XRD together with SAED analysis highlight that the deposit of CdSe is exclusively constituted of the hexagonal polymorph. In addition, hierarchical growth has also been shown, starting from the formation of a TiO2-CdSe core-shell structure followed by the growth of an assembly of CdSe nanoparticles resembling cauliflowers. This assembly exhibits at its core a mosaic texture with crystallites of about 3 nm in size, in contrast to a shell composed of well-crystallized single crystals between 5 and 10 nm in size. Preliminary results on the photovoltaic performance of such a nanostructured composite of TiO2 and CdSe show 0.8% power conversion efficiency under A.M.1.5 G conditions—100 mW cm-2 in association with a new regenerative redox couple based on cobalt(+III/+II) polypyridil complex (Voc = 485 mV, Jsc = 4.26 mA cm -2, ff=0.37).

  18. Calibrating and Controlling the Quantum Efficiency Distribution of Inhomogeneously Broadened Quantum Rods by Using a Mirror Ball

    DEFF Research Database (Denmark)

    Hansen, Per Lunnemann; Rabouw, Freddy T.; van Dijk-Moes, Relinde J. A.

    2013-01-01

    We demonstrate that a simple silver coated ball lens can be used to accurately measure the entire distribution of radiative transition rates of quantum dot nanocrystals. This simple and cost-effective implementation of Drexhage’s method that uses nanometer-controlled optical mode density variations......-in-rod emitters. The emitters are of large current interest due to their improved stability and reduced blinking. We retrieve a room-temperature ensemble average quantum efficiency of 0.87 ± 0.08 at a mean lifetime around 20 ns. We confirm a log-normal distribution of decay rates as often assumed in literature...... near a mirror, not only allows an extraction of calibrated ensemble-averaged rates, but for the first time also to quantify the full inhomogeneous dispersion of radiative and non radiative decay rates across thousands of nanocrystals. We apply the technique to novel ultrastable CdSe/CdS dot...

  19. ATP synthesis in the energy metabolism pathway: a new perspective for manipulating CdSe quantum dots biosynthesized in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Zhang R

    2017-05-01

    Full Text Available Rong Zhang,1–3 Ming Shao,1–3 Xu Han,1–3 Chuan Wang,3–4 Yong Li,3–4 Bin Hu,3–4 Daiwen Pang,3–4 Zhixiong Xie1–31Hubei Key Laboratory of Cell Homeostasis, 2College of Life Sciences, Wuhan University, 3Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education, 4College of Chemistry and Molecular Science, Wuhan University, Wuhan, People’s Republic of ChinaAbstract: Due to a growing trend in their biomedical application, biosynthesized nanomaterials are of great interest to researchers nowadays with their biocompatible, low-energy consumption, economic, and tunable characteristics. It is important to understand the mechanism of biosynthesis in order to achieve more efficient applications. Since there are only rare studies on the influences of cellular energy levels on biosynthesis, the influence of energy is often overlooked. Through determination of the intracellular ATP concentrations during the biosynthesis process, significant changes were observed. In addition, ATP synthesis deficiency caused great decreases in quantum dots (QDs biosynthesis in the Δatp1, Δatp2, Δatp14, and Δatp17 strains. With inductively coupled plasma-atomic emission spectrometry and atomic absorption spectroscopy analyses, it was found that ATP affected the accumulation of the seleno-precursor and helped with the uptake of Cd and the formation of QDs. We successfully enhanced the fluorescence intensity 1.5 or 2 times through genetic modification to increase ATP or SeAM (the seleno analog of S-adenosylmethionine, the product that would accumulate when ATP is accrued. This work explains the mechanism for the correlation of the cellular energy level and QDs biosynthesis in living cells, demonstrates control of the biosynthesis using this mechanism, and thus provides a new manipulation strategy for the biosynthesis of other nanomaterials to widen their applications. Keywords: ATP, biosynthesis, Saccharomyces cerevisiae, QDs, CdSe

  20. Hot electron and hole dynamics in thiol-capped CdSe quantum dots revealed by 2D electronic spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Lenngren, N.; Abdellah, M.A.; Zheng, K.; Al-Marri, M.J.; Zigmantas, D.; Žídek, Karel; Pullerits, T.

    2016-01-01

    Roč. 18, č. 37 (2016), s. 26199-26204 ISSN 1463-9076 Institutional support: RVO:61389021 Keywords : quantum dots (QDs) * two-dimesional coherent spectroscopy * carrier relaxation * carrier trapping Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.123, year: 2016

  1. Biaxially Oriented CdSe Nanorod

    DEFF Research Database (Denmark)

    Breiby, Dag W.; Chin, Patrick T.K.; Andreasen, Jens Wenzel

    2009-01-01

    The shape, structure, and orientation of rubbing-aligned cadmium selenide (CdSe) nanorods on polymer coated glass substrates have been studied using transmission electron microscopy (TEM) and grazing incidence X-ray scattering combined with computer simulations. The nanorods are found to be of wu......The shape, structure, and orientation of rubbing-aligned cadmium selenide (CdSe) nanorods on polymer coated glass substrates have been studied using transmission electron microscopy (TEM) and grazing incidence X-ray scattering combined with computer simulations. The nanorods are found...... of the sample. Some tendency of smectic-A ordering is observed. A quantitative model incorporating atomic structure, rod shape, and preferred orientation was developed for numerically simulating the diffraction peak positions, widths, and intensities, giving good correlation with the experimental observations....

  2. Use of Cdse/ZnS quantum dots for sensitive detection and quantification of paraquat in water samples

    Energy Technology Data Exchange (ETDEWEB)

    Durán, Gema M. [Department of Analytical Chemistry and Food Technology, University of Castilla – La Mancha, Avenida Camilo José Cela, 10, 13004 Ciudad Real (Spain); IRICA (Regional Institute of Applied Scientific Research), Avenida Camilo José Cela, s/n., 13071 Ciudad Real (Spain); Contento, Ana M. [Department of Analytical Chemistry and Food Technology, University of Castilla – La Mancha, Avenida Camilo José Cela, 10, 13004 Ciudad Real (Spain); Ríos, Ángel, E-mail: Angel.Rios@uclm.es [Department of Analytical Chemistry and Food Technology, University of Castilla – La Mancha, Avenida Camilo José Cela, 10, 13004 Ciudad Real (Spain)

    2013-11-01

    Graphical abstract: -- Highlights: •Analytical use of CdSe/ZnS quantum dots. •Methodology for water solubilization of CdSe/ZnS QDs. •Sensitive and selective reaction with paraquat herbicide. •Application to water samples. -- Abstract: Based on the highly sensitive fluorescence change of water-soluble CdSe/ZnS core-shell quantum dots (QD) by paraquat herbicide, a simple, rapid and reproducible methodology was developed to selectively determine paraquat (PQ) in water samples. The methodology enabled the use of simple pretreatment procedure based on the simple water solubilization of CdSe/ZnS QDs with hydrophilic heterobifunctional thiol ligands, such as 3-mercaptopropionic acid (3-MPA), using microwave irradiation. The resulting water-soluble QDs exhibit a strong fluorescence emission at 596 nm with a high and reproducible photostability. The proposed analytical method thus satisfies the need for a simple, sensible and rapid methodology to determine residues of paraquat in water samples, as required by the increasingly strict regulations for health protection introduced in recent years. The sensitivity of the method, expressed as detection limits, was as low as 3.0 ng L{sup −1}. The lineal range was between 10–5 × 10{sup 3} ng L{sup −1}. RSD values in the range of 71–102% were obtained. The analytical applicability of proposed method was demonstrated by analyzing water samples from different procedence.

  3. Use of Cdse/ZnS quantum dots for sensitive detection and quantification of paraquat in water samples

    International Nuclear Information System (INIS)

    Durán, Gema M.; Contento, Ana M.; Ríos, Ángel

    2013-01-01

    Graphical abstract: -- Highlights: •Analytical use of CdSe/ZnS quantum dots. •Methodology for water solubilization of CdSe/ZnS QDs. •Sensitive and selective reaction with paraquat herbicide. •Application to water samples. -- Abstract: Based on the highly sensitive fluorescence change of water-soluble CdSe/ZnS core-shell quantum dots (QD) by paraquat herbicide, a simple, rapid and reproducible methodology was developed to selectively determine paraquat (PQ) in water samples. The methodology enabled the use of simple pretreatment procedure based on the simple water solubilization of CdSe/ZnS QDs with hydrophilic heterobifunctional thiol ligands, such as 3-mercaptopropionic acid (3-MPA), using microwave irradiation. The resulting water-soluble QDs exhibit a strong fluorescence emission at 596 nm with a high and reproducible photostability. The proposed analytical method thus satisfies the need for a simple, sensible and rapid methodology to determine residues of paraquat in water samples, as required by the increasingly strict regulations for health protection introduced in recent years. The sensitivity of the method, expressed as detection limits, was as low as 3.0 ng L −1 . The lineal range was between 10–5 × 10 3 ng L −1 . RSD values in the range of 71–102% were obtained. The analytical applicability of proposed method was demonstrated by analyzing water samples from different procedence

  4. Atomic-Scale Lightning Rod Effect in Plasmonic Picocavities: A Classical View to a Quantum Effect.

    Science.gov (United States)

    Urbieta, Mattin; Barbry, Marc; Zhang, Yao; Koval, Peter; Sánchez-Portal, Daniel; Zabala, Nerea; Aizpurua, Javier

    2018-01-23

    Plasmonic gaps are known to produce nanoscale localization and enhancement of optical fields, providing small effective mode volumes of about a few hundred nm 3 . Atomistic quantum calculations based on time-dependent density functional theory reveal the effect of subnanometric localization of electromagnetic fields due to the presence of atomic-scale features at the interfaces of plasmonic gaps. Using a classical model, we explain this as a nonresonant lightning rod effect at the atomic scale that produces an extra enhancement over that of the plasmonic background. The near-field distribution of atomic-scale hot spots around atomic features is robust against dynamical screening and spill-out effects and follows the potential landscape determined by the electron density around the atomic sites. A detailed comparison of the field distribution around atomic hot spots from full quantum atomistic calculations and from the local classical approach considering the geometrical profile of the atoms' electronic density validates the use of a classical framework to determine the effective mode volume in these extreme subnanometric optical cavities. This finding is of practical importance for the community of surface-enhanced molecular spectroscopy and quantum nanophotonics, as it provides an adequate description of the local electromagnetic fields around atomic-scale features with use of simplified classical methods.

  5. Structural and optical characterization of electrodeposited CdSe in mesoporous anatase TiO2 for regenerative quantum-dot-sensitized solar cells

    International Nuclear Information System (INIS)

    Sauvage, Frédéric; Davoisne, Carine; Philippe, Laetitia; Elias, Jamil

    2012-01-01

    We investigated CdSe-sensitized TiO 2 solar cells by means of electrodeposition under galvanostatic control. The electrodeposition of CdSe within the mesoporous film of TiO 2 gives rise to a uniform, thickness controlled, conformal layer of nanostructured CdSe particles intimately wrapping the anatase TiO 2 nanoparticles. This technique has the advantage of providing not only a fast method for sensitization ( 2 –CdSe core–shell structure followed by the growth of an assembly of CdSe nanoparticles resembling cauliflowers. This assembly exhibits at its core a mosaic texture with crystallites of about 3 nm in size, in contrast to a shell composed of well-crystallized single crystals between 5 and 10 nm in size. Preliminary results on the photovoltaic performance of such a nanostructured composite of TiO 2 and CdSe show 0.8% power conversion efficiency under A.M.1.5 G conditions—100 mW cm −2 in association with a new regenerative redox couple based on cobalt(+III/+II) polypyridil complex (V oc = 485 mV, J sc = 4.26 mA cm −2 , ff=0.37). (paper)

  6. Cytotoxicity assessment of functionalized CdSe, CdTe and InP quantum dots in two human cancer cell models

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing [Institute of Gerontology and Geriatrics & Beijing Key Lab of Aging and Geriatrics, Chinese PLA General Hospital, Beijing 100853 (China); Hu, Rui [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Liu, Jianwei [Institute of Gerontology and Geriatrics & Beijing Key Lab of Aging and Geriatrics, Chinese PLA General Hospital, Beijing 100853 (China); Zhang, Butian; Wang, Yucheng [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Liu, Xin [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Law, Wing-Cheung [Department of Industrial and System Engineering, The Hang Kong Polytechnic University, Hung Hom (Hong Kong); Liu, Liwei [School of Science, Changchun University of Science and Technology, Changchun 130022 (China); Ye, Ling, E-mail: lye_301@163.com [Institute of Gerontology and Geriatrics & Beijing Key Lab of Aging and Geriatrics, Chinese PLA General Hospital, Beijing 100853 (China); Yong, Ken-Tye, E-mail: ktyong@ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2015-12-01

    The toxicity of quantum dots (QDs) has been extensively studied over the past decade. Some common factors that originate the QD toxicity include releasing of heavy metal ions from degraded QDs and the generation of reactive oxygen species on the QD surface. In addition to these factors, we should also carefully examine other potential QD toxicity causes that will play crucial roles in impacting the overall biological system. In this contribution, we have performed cytotoxicity assessment of four types of QD formulations in two different human cancer cell models. The four types of QD formulations, namely, mercaptopropionic acid modified CdSe/CdS/ZnS QDs (CdSe-MPA), PEGylated phospholipid encapsulated CdSe/CdS/ZnS QDs (CdSe-Phos), PEGylated phospholipid encapsulated InP/ZnS QDs (InP-Phos) and Pluronic F127 encapsulated CdTe/ZnS QDs (CdTe-F127), are representatives for the commonly used QD formulations in biomedical applications. Both the core materials and the surface modifications have been taken into consideration as the key factors for the cytotoxicity assessment. Through side-by-side comparison and careful evaluations, we have found that the toxicity of QDs does not solely depend on a single factor in initiating the toxicity in biological system but rather it depends on a combination of elements from the particle formulations. More importantly, our toxicity assessment shows different cytotoxicity trend for all the prepared formulations tested on gastric adenocarcinoma (BGC-823) and neuroblastoma (SH-SY5Y) cell lines. We have further proposed that the cellular uptake of these nanocrystals plays an important role in determining the final faith of the toxicity impact of the formulation. The result here suggests that the toxicity of QDs is rather complex and it cannot be generalized under a few assumptions reported previously. We suggest that one have to evaluate the QD toxicity on a case to case basis and this indicates that standard procedures and comprehensive

  7. Cytotoxicity assessment of functionalized CdSe, CdTe and InP quantum dots in two human cancer cell models

    International Nuclear Information System (INIS)

    Liu, Jing; Hu, Rui; Liu, Jianwei; Zhang, Butian; Wang, Yucheng; Liu, Xin; Law, Wing-Cheung; Liu, Liwei; Ye, Ling; Yong, Ken-Tye

    2015-01-01

    The toxicity of quantum dots (QDs) has been extensively studied over the past decade. Some common factors that originate the QD toxicity include releasing of heavy metal ions from degraded QDs and the generation of reactive oxygen species on the QD surface. In addition to these factors, we should also carefully examine other potential QD toxicity causes that will play crucial roles in impacting the overall biological system. In this contribution, we have performed cytotoxicity assessment of four types of QD formulations in two different human cancer cell models. The four types of QD formulations, namely, mercaptopropionic acid modified CdSe/CdS/ZnS QDs (CdSe-MPA), PEGylated phospholipid encapsulated CdSe/CdS/ZnS QDs (CdSe-Phos), PEGylated phospholipid encapsulated InP/ZnS QDs (InP-Phos) and Pluronic F127 encapsulated CdTe/ZnS QDs (CdTe-F127), are representatives for the commonly used QD formulations in biomedical applications. Both the core materials and the surface modifications have been taken into consideration as the key factors for the cytotoxicity assessment. Through side-by-side comparison and careful evaluations, we have found that the toxicity of QDs does not solely depend on a single factor in initiating the toxicity in biological system but rather it depends on a combination of elements from the particle formulations. More importantly, our toxicity assessment shows different cytotoxicity trend for all the prepared formulations tested on gastric adenocarcinoma (BGC-823) and neuroblastoma (SH-SY5Y) cell lines. We have further proposed that the cellular uptake of these nanocrystals plays an important role in determining the final faith of the toxicity impact of the formulation. The result here suggests that the toxicity of QDs is rather complex and it cannot be generalized under a few assumptions reported previously. We suggest that one have to evaluate the QD toxicity on a case to case basis and this indicates that standard procedures and comprehensive

  8. Ameliorating effects of extracellular polymeric substances excreted by Thalassiosira pseudonana on algal toxicity of CdSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Saijin, E-mail: zhangs@tamug.edu [Department of Marine Science, Texas A and M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553 (United States); Jiang Yuelu, E-mail: jyuelu@gmail.com [Department of Marine Biology, Texas A and M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553 (United States); Chen, Chi-Shuo, E-mail: chen.chishuo@gmail.com [School of Engineering, University of California - Merced, Merced, CA 95344 (United States); Creeley, Danielle [Department of Marine Science, Texas A and M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553 (United States); Schwehr, Kathleen A., E-mail: schwerhk@tamug.edu [Department of Marine Science, Texas A and M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553 (United States); Quigg, Antonietta, E-mail: quigga@tamug.edu [Department of Marine Biology, Texas A and M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553 (United States); Department of Oceanography, Texas A and M University, College Station, TX 77843 (United States); Chin, Wei-Chun, E-mail: wchin2@ucmerced.edu [School of Engineering, University of California - Merced, Merced, CA 95344 (United States); Santschi, Peter H., E-mail: santschi@tamug.edu [Department of Marine Science, Texas A and M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553 (United States); Department of Oceanography, Texas A and M University, College Station, TX 77843 (United States)

    2013-01-15

    Quantum dots (QDs) are engineered nanoparticles (ENs) that have found increasing applications and shown great potential in drug delivery, biological imaging and industrial products. Knowledge of their stability, fate and transport in the aquatic environment is still lacking, including details of how these nanomaterials interact with marine phytoplankton. Here, we examined the toxicity of functionalized CdSe/ZnS QDs (amine- and carboxyl-) by exposing them for five days to Thalassiosira pseudonana (marine diatom) grown under different nutrient-conditions (enriched versus nitrogen-limited media). The released polysaccharides and proteins, the major components of extracellular polymeric substances (EPS), were measured to assess their potential effects on the interactions between QDs and T. pseudonana. The partitioning of QDs was analyzed by monitoring the concentration of Cd in different size fractions of the cultures (i.e., filtrate, <0.22 {mu}m and permeate, <3 kDa). We found that the Cd release of QDs in the T. pseudonana culture was dependent on the nutrient conditions and nature of QDs' surface coating. Both amine- and carboxyl-functionalized QDs exhibited higher rates of Cd release in N-limited cultures than in nutrient enriched cultures. The results also showed that amine-functionalized QDs aggregate with minimal Cd release, independent of nutrient conditions. Laser scanning confocal microscopy images confirmed that aggregates are composed of QDs and the culture matrix (EPS). In addition, both types of QDs showed limited toxicity to T. pseudonana. The increasing production of proteins induced by QDs suggests that extracellular proteins might be involved in the detoxification of QDs to T. pseudonana via the Cd release of QDs. Our results here demonstrated that EPS can play an ameliorating role in QD toxicity, fate and transport in the aquatic environment.

  9. Seeded growth of InP and InAs quantum rods using indium acetate and myristic acid

    Energy Technology Data Exchange (ETDEWEB)

    Shweky, Itzhak [Institute of Chemistry, Farkas Center for Light Induced Processes, Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Aharoni, Assaf [Institute of Chemistry, Farkas Center for Light Induced Processes, Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Mokari, Taleb [Institute of Chemistry, Farkas Center for Light Induced Processes, Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Rothenberg, Eli [Institute of Chemistry, Farkas Center for Light Induced Processes, Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Nadler, Moshe [Institute of Chemistry, Farkas Center for Light Induced Processes, Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Popov, Inna [Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Banin, Uri [Institute of Chemistry, Farkas Center for Light Induced Processes, Hebrew University of Jerusalem, Jerusalem 91904 (Israel) and Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem 91904 (Israel)]. E-mail: banin@chem.ch.huji.ac.il

    2006-07-15

    A synthesis of soluble III-V semiconductor quantum rods using gold nanoparticles to direct and catalyze one-dimensional growth is developed. The growth takes place via the solution-liquid-solid (SLS) mechanism where proper precursors are injected into a coordinating solvent. We report the synthesis of InP nanorods using indium acetate and myristic acid with gold nanoparticles as the catalysts in the SLS growth mode. A similar route was successfully developed for the growth of InAs nanorods. We find that the amount of Au catalyst in the reaction is an important parameter to achieve shape control. Transmission electron microscope (TEM) images of InP and InAs nanocrystals revealed that the crystals are mostly rod-shaped, and provide strong evidence for Au presence in one edge. The rods were characterized structurally using X-ray diffraction and high-resolution TEM and optically by absorption and photoluminescence.

  10. Plasmonic modes of polygonal rods calculated using a quantum hydrodynamics method

    Science.gov (United States)

    Ding, Kun; Chan, C. T.

    2017-09-01

    Plasmonic resonances of nanoparticles have drawn lots of attention due to their interesting and useful properties such as strong field enhancements. The self-consistent hydrodynamics model has the advantage that it can incorporate the quantum effect of the electron gas into classical electrodynamics in a consistent way. We use the method to study the plasmonic response of polygonal rods under the influence of an external electromagnetic wave, and we pay particular attention to the size and shape of the particle and the effect of charging. We find that the particles support edge modes, face modes, and hybrid modes. The charges induced by the external field in the edge (face) modes mainly localize at the edges (faces), while the induced charges in the hybrid modes are distributed nearly evenly in both the edges and faces. The edge modes are less sensitive to particle size than the face modes but are sensitive to the corner angles of the edges. When the number of sides of regular polygons increases, the edge and face modes gradually change into the classical dipole plasmonic mode of a cylinder. The hybrid modes are found to be the precursor of the Bennett mode, which cannot be found in classical electrodynamics.

  11. Synthesis of Monodisperse CdSe QDs using Controlled Growth Temperatures

    International Nuclear Information System (INIS)

    Noor Razinah Rahmat; Akrajas Ali Umar; Muhammad Yahya; Muhamad Mat Salleh; Mohammad Hafizuddin Jumali

    2011-01-01

    The effect of growth temperatures on size of CdSe quantum dots (QDs) has been investigated. CdSe QDs were synthesized using thermolysis of organometallics precursor route using wet chemical method. The growth temperature was varied from 260-310 degree Celsius with growth period fixed at 60 s. As the growth temperature increased, the monodispersed CdSe QDs with diameter in the range 3-7 nm were obtained. Both absorption and PL spectra of the QDs revealed a strong red-shift supporting the increment size of QDs with the rise of growth temperature. (author)

  12. Enhancing Photocatalytic Degradation of Methyl Blue Using PVP-Capped and Uncapped CdSe Nanoparticles

    Directory of Open Access Journals (Sweden)

    Kgobudi Frans Chepape

    2017-01-01

    Full Text Available Quantum confinement of semiconductor nanoparticles is a potential feature which can be interesting for photocatalysis, and cadmium selenide is one simple type of quantum dot to use in the following photocatalytic degradation of organic dyes. CdSe nanoparticles capped with polyvinylpyrrolidone (PVP in various concentration ratios were synthesized by the chemical reduction method and characterized. The transmission electron microscopy (TEM analysis of the samples showed that 50% PVP-capped CdSe nanoparticles were uniformly distributed in size with an average of 2.7 nm and shape which was spherical-like. The photocatalytic degradation of methyl blue (MB in water showed efficiencies of 31% and 48% when using uncapped and 50% PVP-capped CdSe nanoparticles as photocatalysts, respectively. The efficiency of PVP-capped CdSe nanoparticles indicated that a complete green process can be utilized for photocatalytic treatment of water and waste water.

  13. Lab-in-a-drop: controlled self-assembly of CdSe/ZnS quantum dots and quantum rods into polycrystalline nanostructures with desired optical properties

    International Nuclear Information System (INIS)

    Sukhanova, Alyona; Volkov, Yuri; Rogach, Andrey L; Baranov, Alexander V; Susha, Andrei S; Klinov, Dmitriy; Oleinikov, Vladimir; Cohen, Jacques H M; Nabiev, Igor

    2007-01-01

    Among the different nanometre-scale building blocks, colloidal nanocrystals are of special interest in construction of ordered assemblies to be used in optoelectronics, photonics and biosensing. It is important that the nanocrystal properties essential to allow the arrangement process, including their size, shape, surface protection, stabilization and charge, can be controlled along with the electronic structure of each nanocrystal. Here, we describe an operation of the 'lab-in-a-drop', droplets of the aqueous solutions of the water-solubilized CdSe/ZnS core/shell nanocrystal quantum dots and quantum rods, in which a variety of nanostructures with desired properties may be produced. We show that, upon incubation and controlled evaporation of the solvent from the aqueous droplets of nanocrystals, one may produce either nanowires or polycrystalline dendrites of different morphologies and dimensions, depending on the nanocrystal shape and on the very narrow concentration and temperature specific ranges. Hence, the operation of this 'lab-in-a-drop' is controlled by external parameters providing the fluorescent nanostructures of desired size and morphology. Although a majority of the results presented here were obtained with CdSe/ZnS quantum dots and rods, similar polycrystalline patterns may be produced in the aqueous suspensions of other nanocrystals

  14. Purification non-aqueous solution of quantum dots CdSe- CdS-ZnS from excess organic substance-stabilizer by use PE- HD membrane

    International Nuclear Information System (INIS)

    Kosolapova, K; Al-Alwani, A; Gorbachev, I; Glukhovskoy, E

    2015-01-01

    Recently, a new simple method for the purification of CdSe-CdS-ZnS quantum dots by using membrane filtration, the filtration process, successfully separated the oleic acid from quantum dots through membranes purification after synthesis; purification of quantum dots is a very significant part of post synthetical treatment that determines the properties of the material. We explore the possibilities of the Langmuir-Blodgett technique to make such layers, using quantum dots as a model system. The Langmuir monolayer of quantum dots were then investigated the surface pressure-area isotherm. From isotherm, we found the surface pressure monolayer changed with time. (paper)

  15. Uniform thin films of CdSe and CdSe(ZnS) core(shell) quantum dots by sol-gel assembly: enabling photoelectrochemical characterization and electronic applications.

    Science.gov (United States)

    Korala, Lasantha; Wang, Zhijie; Liu, Yi; Maldonado, Stephen; Brock, Stephanie L

    2013-02-26

    Optoelectronic properties of quantum dot (QD) films are limited by (1) poor interfacial chemistry and (2) nonradiative recombination due to surface traps. To address these performance issues, sol-gel methods are applied to fabricate thin films of CdSe and core(shell) CdSe(ZnS) QDs. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) imaging with chemical analysis confirms that the surface of the QDs in the sol-gel thin films are chalcogen-rich, consistent with an oxidative-induced gelation mechanism in which connectivity is achieved by formation of dichalcogenide covalent linkages between particles. The ligand removal and assembly process is probed by thermogravimetric, spectroscopic, and microscopic studies. Further enhancement of interparticle coupling via mild thermal annealing, which removes residual ligands and reinforces QD connectivity, results in QD sol-gel thin films with superior charge transport properties, as shown by a dramatic enhancement of electrochemical photocurrent under white light illumination relative to thin films composed of ligand-capped QDs. A more than 2-fold enhancement in photocurrent, and a further increase in photovoltage can be achieved by passivation of surface defects via overcoating with a thin ZnS shell. The ability to tune interfacial and surface characteristics for the optimization of photophysical properties suggests that the sol-gel approach may enable formation of QD thin films suitable for a range of optoelectronic applications.

  16. Uniform Thin Films of CdSe and CdSe(ZnS) Core(shell) Quantum Dots by Sol-Gel Assembly: Enabling Photoelectrochemical Characterization and Electronic Applications

    Science.gov (United States)

    Korala, Lasantha; Wang, Zhijie; Liu, Yi; Maldonado, Stephen; Brock, Stephanie L.

    2013-01-01

    Optoelectronic properties of quantum dot (QD) films are limited by (1) poor interfacial chemistry and (2) non-radiative recombination due to surface traps. To address these performance issues, sol-gel methods are applied to fabricate thin films of CdSe and core(shell) CdSe(ZnS) QDs. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) imaging with chemical analysis confirms that the surface of the QDs in the sol-gel thin films are chalcogen-rich, consistent with an oxidative-induced gelation mechanism in which connectivity is achieved by formation of dichalcogenide covalent linkages between particles. The ligand removal and assembly process is probed by thermogravimetric, spectroscopic and microscopic studies. Further enhancement of inter-particle coupling via mild thermal annealing, which removes residual ligands and reinforces QD connectivity, results in QD sol-gel thin films with superior charge transport properties, as shown by a dramatic enhancement of electrochemical photocurrent under white light illumination relative to thin films composed of ligand-capped QDs. A more than 2-fold enhancement in photocurrent, and a further increase in photovoltage can be achieved by passivation of surface defects via overcoating with a thin ZnS shell. The ability to tune interfacial and surface characteristics for the optimization of photophysical properties suggests that the sol-gel approach may enable formation of QD thin films suitable for a range of optoelectronic applications. PMID:23350924

  17. Intracellular Biosynthesis of Fluorescent CdSe Quantum Dots in Bacillus subtilis: A Strategy to Construct Signaling Bacterial Probes for Visually Detecting Interaction Between Bacillus subtilis and Staphylococcus aureus.

    Science.gov (United States)

    Yan, Zheng-Yu; Ai, Xiao-Xia; Su, Yi-Long; Liu, Xin-Ying; Shan, Xiao-Hui; Wu, Sheng-Mei

    2016-02-01

    In this work, fluorescent Bacillus subtilis (B. subtilis) cells were developed as probes for imaging applications and to explore behaviorial interaction between B. subtilis and Staphylococcus aureus (S. aureus). A novel biological strategy of coupling intracellular biochemical reactions for controllable biosynthesis of CdSe quantum dots by living B. subtilis cells was demonstrated, through which highly luminant and photostable fluorescent B. subtilis cells were achieved with good uniformity. With the help of the obtained fluorescent B. subtilis cells probes, S. aureus cells responded to co-cultured B. subtilis and to aggregate. The degree of aggregation was calculated and nonlinearly fitted to a polynomial model. Systematic investigations of their interactions implied that B. subtilis cells inhibit the growth of neighboring S. aureus cells, and this inhibition was affected by both the growth stage and the amount of surrounding B. subtilis cells. Compared to traditional methods of studying bacterial interaction between two species, such as solid culture medium colony observation and imaging mass spectrometry detection, the procedures were more simple, vivid, and photostable due to the efficient fluorescence intralabeling with less influence on the cells' surface, which might provide a new paradigm for future visualization of microbial behavior.

  18. Microfabricated disposable nanosensor based on CdSe quantum dot/ionic liquid-mediated hollow fiber-pencil graphite electrode for simultaneous electrochemical quantification of uric acid and creatinine in human samples

    Energy Technology Data Exchange (ETDEWEB)

    Hooshmand, Sara; Es' haghi, Zarrin, E-mail: eshaghi@pnu.ac.ir

    2017-06-15

    In this research, a novel sensitive electrochemical nanosensor based on the cadmium selenide quantum dots (QDs)/ionic liquid mediated hollow fiber-pencil graphite electrode (HF-PGE) was prepared and applied for simultaneous determination of uric acid (UA) and creatinine (Crn) in urine and serum samples. The electrocatalytic oxidation of the analytes was investigated via differential pulse (DPV) and cyclic voltammetry (CV). The experiments were designed, in two different steps, according to Taguchi's method; OA9 L9 (3{sup 3}) and OA9 L9 (3{sup 4}) orthogonal array to optimize experimental runs. The results revealed that the electrode response was initially influenced by the types of sensor and types of ionic liquids and their ratios. The amount of QD, buffer pH, equilibration time and scan rate also influenced electrode response efficiency. According to the results of Taguchi analysis, the amount of tetra phenyl phosphonium chloride (TPPC) and QD were the most influencing parameters on the yield response of the modified electrodes. Linear ranges were obtained between 0.297–2.970 × 10{sup 3} and 0.442–8.840 × 10{sup 3} μM, with the detection limits of 0.083 and 0.229 μM and relative standard deviations (RSD) of 2.4% and 1.8%, for UA and Crn, respectively. Finally, the proposed method was successfully examined for simultaneous determination of UA and Crn in human urine and serum samples. - Highlights: • Sensor based on modified CdSe quantum dot/ionic liquid mediated hollow fiber graphite electrode. • One-step simultaneous purification, pre-concentration, extraction, back-extraction and determination of electroactive analytes. • Target analyte uric acid (UA) and creatinine (Crn) in urine and serum samples. • Disposable nature of sensor reduced risk of carry-over.

  19. Heterostructure of Au nanocluster tipping on a ZnS quantum rod: controlled synthesis and novel luminescence.

    Science.gov (United States)

    Tian, Yang; Wang, Ligang; Yu, Shanshan; Zhou, Weiwei

    2015-08-14

    Heterostructures of metal nanoparticles and semiconductors are widely studied for their unique properties. However, few reports are available on the heterostructure of metal nanoclusters and semiconductors. In the present study, a heterostructure, in which gold nanoclusters selectively locate at ZnS quantum rod (QR) tips, was fabricated using a two-step solvothermal route. The composition, intrinsic crystallography, and junction of the prepared heterostructure were thoroughly investigated, and it was observed to exhibit novel luminescent behaviours. By comparison with the individual components of ZnS QRs and gold clusters, the resultant heterostructure shows an enhanced exciton emission and complete depression of defect emission for the ZnS component, and a pronounced red emission for the gold nanocluster component. The mechanism of these properties and the charge transfer between gold nanoclusters and ZnS QRs were also explored. The size and location of gold in the heterostructure were also controlled during synthesis to study their effects on the luminescence.

  20. Emissivity and electrooptical properties of semiconducting quantum dots/rods and liquid crystal composites: a review

    Science.gov (United States)

    Singh, Gautam; Fisch, Michael; Kumar, Satyendra

    2016-05-01

    Investigations of the mixtures of semiconducting quantum scale particles in anisotropic liquid crystal (LC) medium have become a vibrant area of research primarily due to their very interesting phenomenology. The results of these investigations fall into four groups: (i) Photoluminescent emissive properties of the quantum particles ordinarily depend on the size, shape, and chemical nature of the particles. These undergo important changes in their spectrum, polarization, and isotropy of emission when dissolved in an anisotropic LC phase. Moreover, their response to external stimuli such as mechanical, optical, or electric fields is altered in important ways; (ii) physical properties of LCs such as viscosity, dielectric relaxation, etc are modified by the addition of quantum particles. Their presence in ferroelectric smectic LC is known to give rise to an antiferro- to ferri-electric phase transition and suppresses the paraelectric phase; (iii) switching characteristics of LC devices are altered in important ways by the addition of quantum particles. Their threshold voltage is usually lowered, contrast ratio, and switching speed of nematic, ferroelectric, and cholesteric devices may increase or decrease depending on the concentration, applied field, and particle anisotropy; and (iv) controlled aggregation of quantum particles at the interface between isotropic and LC domains, near added polystyrene beads, and in the vicinity of point defects gives rise to interesting photonic structures, enables studies of photon antibunching and single photon sources. Clearly, there is a need to understand the basic and applied aspects of these systems and find routes to their technological applications including sensors, electrooptical devices, and solar energy harvesting. This review provides an overview of recent work involving liquid crystals and a variety of quantum particles.

  1. High Quality Manganese-Doped Zinc Sulfide Quantum Rods with Tunable Dual-Color and Multi-Photon Emissions

    Science.gov (United States)

    Deng, Zhengtao; Tong, Ling; Flores, Marco; Lin, Su; Cheng, Ji-Xin; Yan, Hao; Liu, Yan

    2011-01-01

    We report a simple, fast and green phosphine-free colloidal chemistry to synthesize high quality wurtzite-type Mn-doped ZnS quantum rods (QRs) with tunable diameters (1.6 nm to 5.6 nm), high aspect ratios (up to 50), variable Mn doping levels (0.18% to 1.60%), and high quantum yields (up to 45%). The electron paramagnetic resonance (EPR) spectra with modeling reveal the successful doping of paramagnetic Mn2+ ions in the host ZnS QRs. The Mn-doped ZnS QRs demonstrate tunable dual color (orange and blue) emissions by tuning the doping levels and UV excitation wavelengths. The orange emission with long decay lifetime (3.3 millisecond) originates from the doped Mn2+ states, while the blue emission with fast decay lifetime (0.31 nanosecond) is attributed to the QR surface states. The bright two- and three-photon excitation upconversion luminescence (2PL and 3PL) from the Mn-doped ZnS QRs have been observed using tunable near-infrared (NIR) femtosecond (fs) laser. Our strategy provides a versatile route to programmably control the optical properties of anisotropic semiconductor nanomaterials, which may create new opportunities for photonic devices and bioimaging applications. PMID:21405017

  2. Nonlinear optical response of planar and spherical CdSe nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Selyukov, A. S., E-mail: bachelor89@inbox.ru; Isaev, A. A.; Vitukhnovsky, A. G. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Litvak, V. L. [Moscow Institute of Physics and Technology (State University) (Russian Federation); Katsaba, A. V. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Korshunov, V. M. [Bauman Moscow State Technical University (Russian Federation); Vasiliev, R. B. [Moscow State University (Russian Federation)

    2016-07-15

    The nonlinear optical response of a colloidal solution of planar CdSe semiconductor nanocrystals (nanoplatelets) is studied for the first time. The nonlinear optical response of these nanoparticles is compared to that of spherical CdSe nanocrystals (quantum dots). The photoinduced nonlinearity is attributed to the optical generation of long-lived charge carriers in the nanoobjects under study. It is shown that, upon the exposure of a cell with the solution of nanoparticles to focused continuous-wave (cw) laser radiation with a wavelength of 473 nm, the nonlinear optical responses of CdSe nanoplatelets and quantum dots are somewhat different at identical optical densities at the above-indicated wavelength. The differences are supposedly associated with a higher diffusion rate of spherical nanoparticles in the solution because of their smaller size compared to that of nanoplatelets.

  3. Biodistribution and stability of CdSe core quantum dots in mouse digestive tract following per os administration: Advantages of double polymer/silica coated nanocrystals

    International Nuclear Information System (INIS)

    Loginova, Y.F.; Dezhurov, S.V.; Zherdeva, V.V.; Kazachkina, N.I.; Wakstein, M.S.; Savitsky, A.P.

    2012-01-01

    Highlights: ► New QDs coated with combination of polythiol ligands and silica shell were synthesized. ► We examine the QDs stability in digestive tract of mice after per os administration. ► The polymer/silica shell prevents QDs degradation and fluorescence quenching in vivo. -- Abstract: CdSe-core, ZnS-capped semiconductor quantum dots (QDs) are of great potential for biomedical applications. However, applications in the gastrointestinal tract for in vivo imaging and therapeutic purposes are hampered by their sensitivity to acidic environments and potential toxicity. Here we report the use of coatings with a combination of polythiol ligands and silica shell (QDs PolyT–APS) to stabilize QDs fluorescence under acidic conditions. We demonstrated the stability of water-soluble QDs PolyT–APS both in vitro, in strong acidic solutions, and in vivo. The biodistribution, stability and photoluminescence properties of QDs in the gastrointestinal tract of mice after per os administration were assessed. We demonstrated that QDs coated with current traditional materials – mercapto compounds (QDs MPA) and pendant thiol group (QDs PolyT) – are not capable of protecting QDs from chemically induced degradation and surface modification. Polythiol ligands and silica shell quantum dots (QDs PolyT–APS) are suitable for biological and biomedical applications in the gastrointestinal tract.

  4. Biodistribution and stability of CdSe core quantum dots in mouse digestive tract following per os administration: Advantages of double polymer/silica coated nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Loginova, Y.F. [Laboratory of Physical Biochemistry, A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow 119071 (Russian Federation); Dezhurov, S.V. [Trial Center For Science and Technology ' Nanotech-Dubna' , Dubna, Moscow Region 141983 (Russian Federation); Zherdeva, V.V.; Kazachkina, N.I. [Laboratory of Physical Biochemistry, A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow 119071 (Russian Federation); Wakstein, M.S. [Trial Center For Science and Technology ' Nanotech-Dubna' , Dubna, Moscow Region 141983 (Russian Federation); Savitsky, A.P., E-mail: apsavitsky@inbi.ras.ru [Laboratory of Physical Biochemistry, A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow 119071 (Russian Federation)

    2012-03-02

    Highlights: Black-Right-Pointing-Pointer New QDs coated with combination of polythiol ligands and silica shell were synthesized. Black-Right-Pointing-Pointer We examine the QDs stability in digestive tract of mice after per os administration. Black-Right-Pointing-Pointer The polymer/silica shell prevents QDs degradation and fluorescence quenching in vivo. -- Abstract: CdSe-core, ZnS-capped semiconductor quantum dots (QDs) are of great potential for biomedical applications. However, applications in the gastrointestinal tract for in vivo imaging and therapeutic purposes are hampered by their sensitivity to acidic environments and potential toxicity. Here we report the use of coatings with a combination of polythiol ligands and silica shell (QDs PolyT-APS) to stabilize QDs fluorescence under acidic conditions. We demonstrated the stability of water-soluble QDs PolyT-APS both in vitro, in strong acidic solutions, and in vivo. The biodistribution, stability and photoluminescence properties of QDs in the gastrointestinal tract of mice after per os administration were assessed. We demonstrated that QDs coated with current traditional materials - mercapto compounds (QDs MPA) and pendant thiol group (QDs PolyT) - are not capable of protecting QDs from chemically induced degradation and surface modification. Polythiol ligands and silica shell quantum dots (QDs PolyT-APS) are suitable for biological and biomedical applications in the gastrointestinal tract.

  5. II-VI colloidal quantum-dot/quantum-rod heterostructures under electric field effect and their energy transfer rate to graphene

    Science.gov (United States)

    Zahra, H.; Elmaghroui, D.; Fezai, I.; Jaziri, S.

    2016-11-01

    We theoretically investigate the energy transfer between a CdSe/CdS Quantum-dot/Quantum-rod (QD/QR) core/shell structure and a weakly doped graphene layer, separated by a dielectric spacer. A numerical method assuming the realistic shape of the type I and quasi-type II CdSe/CdS QD/QR is developed in order to calculate their energy structure. An electric field is applied for both types to manipulate the carriers localization and the exciton energy. Our evaluation for the isolated QD/QR shows that a quantum confined Stark effect can be obtained with large negative electric filed while a small effect is observed with positive ones. Owing to the evolution of the carriers delocalization and their excitonic energy versus the electric field, both type I and quasi-type II QD/QR donors are suitable as sources of charge and energy. With a view to improve its absorption, the graphene sheet (acceptor) is placed at different distances from the QD/QR (donor). Using the random phase approximation and the massless Dirac Fermi approximation, the quenching rate integral is exactly evaluated. That reveals a high transfer rate that can be obtained with type I QD/QR with no dependence on the electric field. On the contrary, a high dependence is obtained for the quasi-type II donor and a high fluorescence rate from F = 80 kV/cm. Rather than the exciton energy, the transition dipole is found to be responsible for the evolution of the fluorescence rate. We find also that the fluorescence rate decreases with increasing the spacer thickness and shows a power low dependence. The QD/QR fluorescence quenching can be observed up to large distance which is estimated to be dependent only on the donor exciton energy.

  6. ATP synthesis in the energy metabolism pathway: a new perspective for manipulating CdSe quantum dots biosynthesized inSaccharomyces cerevisiae.

    Science.gov (United States)

    Zhang, Rong; Shao, Ming; Han, Xu; Wang, Chuan; Li, Yong; Hu, Bin; Pang, Daiwen; Xie, Zhixiong

    2017-01-01

    Due to a growing trend in their biomedical application, biosynthesized nanomaterials are of great interest to researchers nowadays with their biocompatible, low-energy consumption, economic, and tunable characteristics. It is important to understand the mechanism of biosynthesis in order to achieve more efficient applications. Since there are only rare studies on the influences of cellular energy levels on biosynthesis, the influence of energy is often overlooked. Through determination of the intracellular ATP concentrations during the biosynthesis process, significant changes were observed. In addition, ATP synthesis deficiency caused great decreases in quantum dots (QDs) biosynthesis in the Δ atp1 , Δ atp2 , Δ atp14 , and Δ atp17 strains. With inductively coupled plasma-atomic emission spectrometry and atomic absorption spectroscopy analyses, it was found that ATP affected the accumulation of the seleno-precursor and helped with the uptake of Cd and the formation of QDs. We successfully enhanced the fluorescence intensity 1.5 or 2 times through genetic modification to increase ATP or SeAM (the seleno analog of S -adenosylmethionine, the product that would accumulate when ATP is accrued). This work explains the mechanism for the correlation of the cellular energy level and QDs biosynthesis in living cells, demonstrates control of the biosynthesis using this mechanism, and thus provides a new manipulation strategy for the biosynthesis of other nanomaterials to widen their applications.

  7. Size and ligand effects on the electrochemical and spectroelectrochemical responses of CdSe nanocrystals

    NARCIS (Netherlands)

    Querner, Claudia; Reiss, Peter; Sadki, Said; Zagorska, Malgorzata; Pron, Adam

    2005-01-01

    The electrochemical properties of CdSe quantum dots with electrochemically inactive surface ligands (TOPO) have been investigated in comparison with the analogous nanocrystals containing electrochemically active oligoaniline ligands. The TOPO-capped nanocrystals have been studied in a wide size

  8. Rapid synthesis of CdSe nanocrystals in aqueous solution at room ...

    Indian Academy of Sciences (India)

    Their mean diameter was estimated to be 1.9 nm depending on the initial pH values in the preparation, the photoluminescence quantum yield could reach as high as 1.9%, almost comparable to the CdSe NCs prepared by an organometallic route. Finally, the products were characterized by Fourier transform infrared ...

  9. Enhancing Photocatalytic Degradation of Methyl Blue Using PVP-Capped and Uncapped CdSe Nanoparticles

    OpenAIRE

    Chepape, Kgobudi Frans; Mofokeng, Thapelo Prince; Nyamukamba, Pardon; Mubiayi, Kalenga Pierre; Moloto, Makwena Justice

    2017-01-01

    Quantum confinement of semiconductor nanoparticles is a potential feature which can be interesting for photocatalysis, and cadmium selenide is one simple type of quantum dot to use in the following photocatalytic degradation of organic dyes. CdSe nanoparticles capped with polyvinylpyrrolidone (PVP) in various concentration ratios were synthesized by the chemical reduction method and characterized. The transmission electron microscopy (TEM) analysis of the samples showed that 50% PVP-capped Cd...

  10. A surfactant-free recipe for shape-controlled synthesis of CdSe nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Liu Hongmei; Tao Hong; Yang Tingbin; Qin Donghuan; Chen Junwu [Institute of Polymer Optoelectronic Materials and Devices, Key Laboratory of Special Functional Materials, South China University of Technology, Guangzhou 510640 (China); Kong Lingbin, E-mail: qindh@scut.edu.cn, E-mail: psjwchen@scut.edu.cn [State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050 (China)

    2011-01-28

    We described surfactant-free recipes for the synthesis of CdSe nanocrystals (NCs) with well-controlled morphologies at a relatively low temperature. Dot-, rod-, tetrapod-and sphere-shaped CdSe NCs were prepared with trioctylphosphine oxide (TOPO) as a non-equilibrium solvent and trioctylphosphine selenide (TOPSe) and cadmium carboxylates as Se and Cd precursors, respectively. It was found that the morphology and stacking pattern of the CdSe NCs were related to the preparation conditions such as the concentration of the injected TOPSe(monomer concentration), reaction temperature and chain length of the cadmium carboxylate precursors. At a reaction temperature of 240 deg. C, CdSe NCs with a tetrapod selectivity of up to 85% were obtained in the presence of cadmium myristate under high concentrated TOPSe injection, and the in situ-formed myristic acid supplied the best acidic ligand with optimal amount to stabilize the anisotropic growth of the tetrapods. The intentional addition of more myristic acid in the reaction system would block the growth pathway of the tetrapods. Using cadmium laurate, cadmium palmitate and cadmium stearate as the cadmium precursors would reduce the formation of the tetrapods, showing the very low selectivity of the tetrapods.

  11. Mn-doped CdS quantum dots sensitized hierarchical TiO2 flower-rod for solar cell application

    Science.gov (United States)

    Yu, Libo; Li, Zhen; Liu, Yingbo; Cheng, Fa; Sun, Shuqing

    2014-06-01

    A double-layered TiO2 film which three dimensional (3D) flowers grown on highly ordered self-assembled one dimensional (1D) TiO2 nanorods was synthesized directly on transparent fluorine-doped tin oxide (FTO) conducting glass substrate by a facile hydrothermal method and was applied as photoanode in Mn-doped CdS quantum dots sensitized solar cells (QDSSCs). The 3D TiO2 flowers with the increased surface areas can adsorb more QDs, which increased the absorption of light; meanwhile 1D TiO2 nanorods beneath the flowers offered a direct electrical pathway for photogenerated electrons, accelerating the electron transfer rate. A typical type II band alignment which can effectively separate photogenerated excitons and reduce recombination of electrons and holes was constructed by Mn-doped CdS QDs and TiO2 flower-rod. The incident photon-to-current conversion efficiency (IPCE) of the Mn-doped CdS/TiO2 flower-rod solar cell reached to 40% with the polysulfide electrolyte filled in the solar cell. The power conversion efficiency (PCE) of 1.09% was obtained with the Mn-doped CdS/TiO2 flower-rod solar cell under one sun illumination (AM 1.5G, 100 mW/cm2), which is 105.7% higher than that of the CdS/TiO2 nanorod solar cell (0.53%).

  12. Control rods

    International Nuclear Information System (INIS)

    Maruyama, Hiromi.

    1984-01-01

    Purpose: To realize effective utilization, cost reduction and weight reduction in neutron absorbing materials. Constitution: Residual amount of neutron absorbing material is averaged between the top end region and other regions of a control rod upon reaching to the control rod working life, by using a single kind of neutron absorbing material and increasing the amount of the neutron absorber material at the top end region of the control rod as compared with that in the other regions. Further, in a case of a control rod having control rod blades such as in a cross-like control rod, the amount of the neutron absorbing material is decreased in the middle portion than in the both end portions of the control rod blade along the transversal direction of the rod, so that the residual amount of the neutron absorbing material is balanced between the central region and both end regions upon reaching the working life of the control rod. (Yoshihara, H.)

  13. Molten-droplet synthesis of composite CdSe hollow nanoparticles

    KAUST Repository

    Gullapalli, Sravani

    2012-11-16

    Many colloidal synthesis routes are not scalable to high production rates, especially for nanoparticles of complex shape or composition, due to precursor expense and hazards, low yields, and the large number of processing steps. The present work describes a strategy to synthesize hollow nanoparticles (HNPs) out of metal chalcogenides, based on the slow heating of a low-melting-point metal salt, an elemental chalcogen, and an alkylammonium surfactant in octadecene solvent. The synthesis and characterization of CdSe HNPs with an outer diameter of 15.6 ± 3.5 nm and a shell thickness of 5.4 ± 0.9 nm are specifically detailed here. The HNP synthesis is proposed to proceed with the formation of alkylammonium-stabilized nano-sized droplets of molten cadmium salt, which then come into contact with dissolved selenium species to form a CdSe shell at the droplet surface. In a reaction-diffusion mechanism similar to the nanoscale Kirkendall effect it is speculated that the cadmium migrates outwardly through this shell to react with more selenium, causing the CdSe shell to thicken. The proposed CdSe HNP structure comprises a polycrystalline CdSe shell coated with a thin layer of amorphous selenium. Photovoltaic device characterization indicates that HNPs have improved electron transport characteristics compared to standard CdSe quantum dots, possibly due to this selenium layer. The HNPs are colloidally stable in organic solvents even though carboxylate, phosphine, and amine ligands are absent; stability is attributed to octadecene-selenide species bound to the particle surface. This scalable synthesis method presents opportunities to generate hollow nanoparticles with increased structural and compositional variety. © 2012 IOP Publishing Ltd.

  14. Rodding Surgery

    Science.gov (United States)

    ... usually undertaken as a scheduled elective procedure. An optimal age for a first rodding surgery has not ... which may prevent or postpone the need for replacement. The smallest diameter expanding rods are still too ...

  15. Control rod

    International Nuclear Information System (INIS)

    Igarashi, Takao; Sugawara, Satoshi; Yoshimoto, Yuichiro; Saito, Shozo; Fukumoto, Takashi.

    1987-01-01

    Purpose: To reduce the weight and thereby obtain satisfactory operationability of control rods by combining absorbing nuclear chain type neutron absorbers and conventional type neutron absorbers in the axial direction of blades. Constitution: Neutron absorber rods and long life type neutron absorber rods are disposed in a tie rod and a sheath. The neutron absorber rod comprises a poison tube made of stainless steels and packed with B 4 C powder. The long life type neutron absorber rod is prepared by packing B-10 enriched boron carbide powder into a hafnium metal rod, hafnium pipe, europium and stainless made poison tube. Since the long life type absorber rod uses HF as the absorbing nuclear chain type neutron absorber, it absorbs neutrons to form new neutron absorbers to increase the nuclear life. (Yoshino, Y.)

  16. Effect of deposition temperature on the structural and optical properties of CdSe QDs thin films deposited by CBD method

    International Nuclear Information System (INIS)

    Laatar, F.; Harizi, A.; Smida, A.; Hassen, M.; Ezzaouia, H.

    2016-01-01

    Highlights: • Synthesis of CdSe QDs with L-Cysteine capping agent for applications in nanodevices. • The films of CdSe QDs present uniform and good dispersive particles at the surface. • Effect of bath temperature on the structural and optical properties of CdSe QDs thin films. • Investigation of the optical constants and dispersion parameters of CdSe QDs thin films. - Abstract: Cadmium selenide quantum dots (CdSe QDs) thin films were deposited onto glass substrates by a chemical bath deposition (CBD) method at different temperatures from an aqueous solution containing L-Cysteine (L-Cys) as capping agent. The evolution of the surface morphology and elemental composition of the CdSe films were studied by AFM, SEM, and EDX analyses. Structural and optical properties of CdSe thin films were investigated by XRD, UV–vis and PL spectroscopy. The dispersion behavior of the refractive index is described using the single oscillator Wemple-DiDomenico (W-D) model, and the physical dispersion parameters are calculated as a function of deposition temperature. The dispersive optical parameters such as average oscillator energy (E o ), dispersion energy (E d ), and static refractive index (n o ) were found to vary with the deposition temperature. Besides, the electrical free carrier susceptibility (χ e ) and the carrier concentration of the effective mass ratio (N/m*) were evaluated according to the Spitzer-Fan model.

  17. Effect of deposition temperature on the structural and optical properties of CdSe QDs thin films deposited by CBD method

    Energy Technology Data Exchange (ETDEWEB)

    Laatar, F., E-mail: fakher8laatar@gmail.com [Photovoltaic Laboratory, Centre for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia); Harizi, A. [Photovoltaic and Semiconductor Materials Laboratory, Engineering Industrial Department, ENIT, Tunis El Manar University, BP 37, Le Belvédère, 1002 Tunis (Tunisia); Smida, A. [Photovoltaic Laboratory, Centre for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia); Hassen, M. [Photovoltaic Laboratory, Centre for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia); Higher Institute of Applied Science and Technology of Sousse, City Taffala (Ibn Khaldun), 4003 Sousse (Tunisia); Ezzaouia, H. [Photovoltaic Laboratory, Centre for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia)

    2016-06-15

    Highlights: • Synthesis of CdSe QDs with L-Cysteine capping agent for applications in nanodevices. • The films of CdSe QDs present uniform and good dispersive particles at the surface. • Effect of bath temperature on the structural and optical properties of CdSe QDs thin films. • Investigation of the optical constants and dispersion parameters of CdSe QDs thin films. - Abstract: Cadmium selenide quantum dots (CdSe QDs) thin films were deposited onto glass substrates by a chemical bath deposition (CBD) method at different temperatures from an aqueous solution containing L-Cysteine (L-Cys) as capping agent. The evolution of the surface morphology and elemental composition of the CdSe films were studied by AFM, SEM, and EDX analyses. Structural and optical properties of CdSe thin films were investigated by XRD, UV–vis and PL spectroscopy. The dispersion behavior of the refractive index is described using the single oscillator Wemple-DiDomenico (W-D) model, and the physical dispersion parameters are calculated as a function of deposition temperature. The dispersive optical parameters such as average oscillator energy (E{sub o}), dispersion energy (E{sub d}), and static refractive index (n{sub o}) were found to vary with the deposition temperature. Besides, the electrical free carrier susceptibility (χ{sub e}) and the carrier concentration of the effective mass ratio (N/m*) were evaluated according to the Spitzer-Fan model.

  18. Hybrid nanocomposites of CdSe nanocrystals distributed in complexing thiophene-based copolymers.

    Science.gov (United States)

    Aldakov, Dmitry; Jiu, Tonggang; Zagorska, Malgorzata; de Bettignies, Rémi; Jouneau, Pierre-Henri; Pron, Adam; Chandezon, Frédéric

    2010-07-21

    Two types of conjugated polymers were prepared with the goal to blend them with rod-like CdSe nanocrystals. The polymers of the first type were synthesized through copolymerization of 3-octylthiophene and 3-methylene-ethylcarboxylate-thiophene to give polythiophene with solubilizing alkyl groups and methylene ester functional groups (PE series). Post-polymerization hydrolysis of the ester type polymers yielded acid-type ones (PA series). Photoluminescence (PL) quenching in these polymers induced by their titration with nanocrystals solution was chosen as a measure of the polymer-nanocrystal interactions. PL of polyacids turned out to be more efficiently quenched as compared to the case of polymers with ester groups which was interpreted as an indication of better electronic communication between the hybrid components. Infrared (IR) spectroscopy confirmed efficient coordination of the carboxylic groups to CdSe. Voltammetric studies combined with UV-vis spectroelectrochemistry enabled the determination of energy levels alignment of the molecular composite components which turned out to be of staggered type-appropriate for photovoltaic applications. The obtained blends of polyacids with CdSe nanocrystals, when studied by transmission electron microscopy (TEM), revealed the presence of an interpenetrating network in which nanorods were homogeneously distributed within the polymer matrix without any indication of agglomerates formation both on the film surface and in the cross-section. Blends with polymers containing ester groups were less homogeneous which could be explained by weaker polymer-nanocrystals interactions. Photovoltaic cells based on these hybrid materials are also discussed.

  19. Control rod

    International Nuclear Information System (INIS)

    Takahashi, Akio.

    1982-01-01

    Purpose: To prevent distortion in control rod elements such as cladding tubes by decreasing the temperature difference between them. Constitution: In the case of housing a plurality of control rod elements in a protection pipe, flow rate control members are disposed in the protection pipe to equalize the flow resistance in each of coolant flow passages formed between the control rod elements and between the control rod elements and the inner surface of the protection pipe, to thereby unify the flow rate of the coolants flowing through these coolant flowing passages. Accordingly, each of the control rod elements can be cooled uniformly to thereby unify the temperature distribution and avoid the distortion in the cladding tubes, which may be resulted from bending due to the difference in thermal expansion and ununiform swelling due to the temperature difference. (Aizawa, K.)

  20. Fingerprint detection and using intercalated CdSe nanoparticles on non-porous surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Algarra, Manuel, E-mail: malgarra67@gmail.com [Centro de Geología da Universidade do Porto, Departamento de Geociências, Ambiente e Ordenamemto do Territorio do Porto, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Radotić, Ksenija; Kalauzi, Aleksandar; Mutavdžić, Dragosav; Savić, Aleksandar [Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11000 Beograd (Serbia); Jiménez-Jiménez, José; Rodríguez-Castellón, Enrique [Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, 29071Málaga (Spain); Silva, Joaquim C.G. Esteves da [Centro de Investigação em Química (CIQ-UP). Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Guerrero-González, Juan José [Policía Científica, Cuerpo Nacional de Policía, Málaga (Spain)

    2014-02-17

    Graphical abstract: -- Highlights: •Fluorescent nanocomposite based on the inclusion of CdSe quantum dots in porous phosphate heterostructures. •Characterized by FTIR, XRD and fluorescence spectroscopies. •Deconvolution of the emission spectra was confirmed by using multivariate curve resolution (MCR) method. •Application for fingerprint detection and analysis on different non-porous surfaces. -- Abstract: A fluorescent nanocomposite based on the inclusion of CdSe quantum dots in porous phosphate heterostructures, functionalized with amino groups (PPH-NH{sub 2}@CdSe), was synthesized, characterized and used for fingerprint detection. The main scopes of this work were first to develop a friendly chemical powder for detecting latent fingerprints, especially in non-porous surfaces; their further intercalation in PPH structure enables not to spread the fluorescent nanoparticles, for that reason very good fluorescent images can be obtained. The fingerprints, obtained on different non-porous surfaces such as iron tweezers, mobile telephone screen and magnetic band of a credit card, treated with this powder emit a pale orange luminescence under ultraviolet excitation. A further image processing consists of contrast enhancement that allows obtaining positive matches according to the information supplied from a police database, and showed to be more effective than that obtained with the non-processed images. Experimental results illustrate the effectiveness of proposed methods.

  1. Fingerprint detection and using intercalated CdSe nanoparticles on non-porous surfaces

    International Nuclear Information System (INIS)

    Algarra, Manuel; Radotić, Ksenija; Kalauzi, Aleksandar; Mutavdžić, Dragosav; Savić, Aleksandar; Jiménez-Jiménez, José; Rodríguez-Castellón, Enrique; Silva, Joaquim C.G. Esteves da; Guerrero-González, Juan José

    2014-01-01

    Graphical abstract: -- Highlights: •Fluorescent nanocomposite based on the inclusion of CdSe quantum dots in porous phosphate heterostructures. •Characterized by FTIR, XRD and fluorescence spectroscopies. •Deconvolution of the emission spectra was confirmed by using multivariate curve resolution (MCR) method. •Application for fingerprint detection and analysis on different non-porous surfaces. -- Abstract: A fluorescent nanocomposite based on the inclusion of CdSe quantum dots in porous phosphate heterostructures, functionalized with amino groups (PPH-NH 2 @CdSe), was synthesized, characterized and used for fingerprint detection. The main scopes of this work were first to develop a friendly chemical powder for detecting latent fingerprints, especially in non-porous surfaces; their further intercalation in PPH structure enables not to spread the fluorescent nanoparticles, for that reason very good fluorescent images can be obtained. The fingerprints, obtained on different non-porous surfaces such as iron tweezers, mobile telephone screen and magnetic band of a credit card, treated with this powder emit a pale orange luminescence under ultraviolet excitation. A further image processing consists of contrast enhancement that allows obtaining positive matches according to the information supplied from a police database, and showed to be more effective than that obtained with the non-processed images. Experimental results illustrate the effectiveness of proposed methods

  2. Photoelectrochemical (PEC) studies on CdSe thin films ...

    Indian Academy of Sciences (India)

    TECS

    Abstract. Thin films of CdSe were deposited by potentiostatic mode on different substrates such as stainless steel, titanium and fluorine tin–oxide (FTO) coated glass using non-aqueous bath. The preparative parameters were optimized to get good quality CdSe thin films. These films were characterized by X-ray diffraction.

  3. Fuel rods

    International Nuclear Information System (INIS)

    Hattori, Shinji; Kajiwara, Koichi.

    1980-01-01

    Purpose: To ensure the safety for the fuel rod failures by adapting plenum springs to function when small forces such as during transportation of fuel rods is exerted and not to function the resilient force when a relatively great force is exerted. Constitution: Between an upper end plug and a plenum spring in a fuel rod, is disposed an insertion member to the lower portion of which is mounted a pin. This pin is kept upright and causes the plenum spring to function resiliently to the pellets against the loads due to accelerations and mechanical vibrations exerted during transportation of the fuel rods. While on the other hand, if a compression force of a relatively high level is exerted to the plenum spring during reactor operation, the pin of the insertion member is buckled and the insertion member is inserted to the inside of the plenum spring, whereby the pellets are allowed to expand freely and the failures in the fuel elements can be prevented. (Moriyama, K.)

  4. Understanding GaN/InGaN core–shell growth towards high quality factor whispering gallery modes from non-polar InGaN quantum wells on GaN rods

    Science.gov (United States)

    Tessarek, C.; Rechberger, S.; Dieker, C.; Heilmann, M.; Spiecker, E.; Christiansen, S.

    2017-12-01

    GaN microrods are used as a basis for subsequent InGaN quantum well (QW) and quantum dot deposition by metal-organic vapor phase epitaxy. The coverage of the shell along the sidewall of rods is dependent on the rod growth time and a complete coverage is obtained for shorter rod growth times. Transmission electron microscopy measurements are performed to reveal the structural properties of the InGaN layer on the sidewall facet and on the top facet. The presence of layers in the microrod and on the microrod surface will be discussed with respect to GaN and InGaN growth. A detailed model will be presented explaining the formation of multiple SiN layers and the partial and full coverage of the shell around the core. Cathodoluminescence measurements are performed to analyze the InGaN emission properties along the microrod and to study the microresonator properties of such hexagonal core–shell structures. High quality factor whispering gallery modes with Q∼ 1200 are reported for the first time in a GaN microrod/InGaN non-polar QW core–shell geometry. The GaN/InGaN core–shell microrods are expected to be promising building blocks for low-threshold laser diodes and ultra-sensitive optical sensors.

  5. Understanding GaN/InGaN core-shell growth towards high quality factor whispering gallery modes from non-polar InGaN quantum wells on GaN rods.

    Science.gov (United States)

    Tessarek, C; Rechberger, S; Dieker, C; Heilmann, M; Spiecker, E; Christiansen, S

    2017-12-01

    GaN microrods are used as a basis for subsequent InGaN quantum well (QW) and quantum dot deposition by metal-organic vapor phase epitaxy. The coverage of the shell along the sidewall of rods is dependent on the rod growth time and a complete coverage is obtained for shorter rod growth times. Transmission electron microscopy measurements are performed to reveal the structural properties of the InGaN layer on the sidewall facet and on the top facet. The presence of layers in the microrod and on the microrod surface will be discussed with respect to GaN and InGaN growth. A detailed model will be presented explaining the formation of multiple SiN layers and the partial and full coverage of the shell around the core. Cathodoluminescence measurements are performed to analyze the InGaN emission properties along the microrod and to study the microresonator properties of such hexagonal core-shell structures. High quality factor whispering gallery modes with [Formula: see text] are reported for the first time in a GaN microrod/InGaN non-polar QW core-shell geometry. The GaN/InGaN core-shell microrods are expected to be promising building blocks for low-threshold laser diodes and ultra-sensitive optical sensors.

  6. Control rod

    International Nuclear Information System (INIS)

    Fukumoto, Takashi; Hirakawa, Hiromasa; Kawashima, Norio; Goto, Yasuyuki.

    1994-01-01

    Neutron absorbers are contained in a tubular member comprising, integrally a tubular portion and four corners disposed at the outer circumference of the tubular portion at every 90deg, to provide a neutron absorbing tube. A plurality of neutron absorbing tubes are arranged in parallel in the lateral direction, and adjacent corners are joined, into a blade to constitute a control rod. Such a control rod has a great structural strength, simple in the structure and relatively light in weight and can contain a great amount of neutron absorbers. Upon formation of the control rod by arranging the blades in a cross-like shape, at least a portion thereof is constituted with short neutron absorbing tubes shorter than the entire length of the blade, and gaps are formed at positions in adjacent in the axial direction. With such a constitution, there is no worry that a wing end of the blade collides against or be abraded with a fuel channel box or a fuel support. Even if fuel channels are vibrated upon scram of the reactor, such as occurrence of earthquakes, it can be inserted to the reactor easily. (N.H.)

  7. Multiexciton absorption in CdSe nanocrystals

    Science.gov (United States)

    Franceschetti, Alberto; Zhang, Yong

    2009-03-01

    Efficient multiple-exciton generation (MEG) has been recently reported in semiconductor nanocrystals. In this process, a single absorbed photon generates two or more electron-hole pairs. The MEG efficiency has so far been evaluated assuming that the change (bleaching) of the absorption spectrum due to MEG is linearly proportional to the number of excitons (NX) that are present in the nanocrystal. We have examined this assumption using atomistic pseudopotential calculations for colloidal CdSe nanocrystals ranging in size from 3 to 4.6 nm. We found that the bleaching of the first absorption peak, δα1S, depends non-linearly on NX, due to carrier-carrier interactions. When a single exciton is present in the nanocrystal, the 1S exciton peak is already 65-75% bleached. This non-linearity mandates an upper bound of 1.5 to the value of the normalized bleaching that can be attributed to MEG, significantly smaller than the limit of 2.0 predicted by the linear scaling assumption. Thus, measured values of the normalized bleaching in excess of 1.5 in CdSe nanocrystals cannot be due entirely to MEG, but must originate in part from other mechanisms.

  8. Highly luminescent CdSe/ZnSe core-shell quantum dots of one-pot preparation in octadecene

    NARCIS (Netherlands)

    Zeng, Q.; Kong, X.; Zhang, Y.; Zhang, H.

    2008-01-01

    CdSe/ZnSe core-shell quantum dots were synthesized using a new one-pot procedure where the core was prepared in octadecene. A ZnSe shell around a CdSe nanoparticle was formed by the reaction of selenium-richness on the surfaces of CdSe nanoparticles with Zn2+ from the injected zinc stearate

  9. Fuel rods

    International Nuclear Information System (INIS)

    Fukushima, Kimichika.

    1984-01-01

    Purpose: To reduce the size of the reactor core upper mechanisms and the reactor container, as well as decrease the nuclear power plant construction costs in reactors using liquid metals as the coolants. Constitution: Isotope capturing devices comprising a plurality of pipes are disposed to the gas plenum portion of a nuclear fuel rod main body at the most downstream end in the flowing direction of the coolants. Each of the capturing devices is made of nickel, nickel alloys, stainless steel applied with nickel plating on the surface, nickel alloys applied with nickel plating on the surface or the like. Thus, radioactive nuclides incorporated in the coolants are surely captured by the capturing devices disposed at the most downstream end of the nuclear fuel main body as the coolants flow along the nuclear fuel main body. Accordingly, since discharging of radioactive nuclides to the intermediate fuel exchange system can be prevented, the maintenance or reparing work for the system can be facilitated. (Moriyama, K.)

  10. A study of the conjugation of CdSe nanoparticles with functional polyoxometalates involving aminoacids

    International Nuclear Information System (INIS)

    Gutul, T.

    2013-01-01

    CdSe nanoparticles (CdSe NPs) are regarded as nano markers and an important component for biomedical applications. In this study, CdSe NPs and polyoxometalates were synthesized; surface modification with 1-thioglycerol and (β-Ala) was carried out. Polyoxometalates, which cause an inhibitory effect on cancer cells, were conjugated to the nanoparticles. UV- VIS, IR, XRD, and TEM studies were performed to characterize the resulting CdSe NPs, polyoxometalates, and conjugates. (author)

  11. Symmetry-Breaking for Formation of Rectangular CdSe Two-Dimensional Nanocrystals in Zinc-Blende Structure.

    Science.gov (United States)

    Chen, Yiya; Chen, Dongdong; Li, Zheng; Peng, Xiaogang

    2017-07-26

    Formation of CdSe nanocrystals with two-dimensional quantum confinement (CdSe 2D nanocrystals) was studied with preformed CdSe nanocrystals in the size range between 1.7 and 2.2 nm as seeds. Specifically, the 2D CdSe nanocrystals were encased with six {100} facets of the zinc-blende (face-center-cubic) structure, that is, 1.5 nm in thickness with quite large atomically flat {100} basal planes (∼8 nm width and X ≈ 45 nm length). Symmetry breaking between the thickness and lateral directions occurred in the early stage by rapid formation of single-dot intermediates with flat yet polar {100} basal planes and the desired thickness from the seeds through intraparticle ripening. Two single-dot intermediates fused together through their reactive side facets-mostly the nonpolar {110} ones-to form 2D embryos with the same thickness. Such oriented attachment continued selectively onto the reactive side facets of the 2D embryos. Simultaneously, intraparticle ripening occurred slowly on the side facets of the 2D nanocrystals, which converted unstable side facets gradually to four stable {100} ones. When ∼3 stable {100} side facets were developed, oriented attachment would continue on the remaining active one, which would result in the second symmetry breaking between two lateral directions. Cadmium acetate assisted both formation of single-dot intermediates and oriented attachment. Cadmium alkanoates with a long hydrocarbon chain selectively stabilized polar {100} facets on the nanocrystals including single-dot intermediates and shuttled insoluble acetate to the reactive surface of the nanocrystals.

  12. Structural and optical properties of electron beam evaporated CdSe ...

    Indian Academy of Sciences (India)

    WINTEC

    ever, very few have prepared CdSe thin films by electron beam evaporation technique. Kainthla et al (1980) re- ported the optical and structural properties of chemically deposited CdSe thin films onto various substrates (glass, mica, Si and Ge). Kale and Lokhande (2004) reported that as-deposited CdSe films were red in ...

  13. Center for Development of Security Excellence (CDSE) 2013 Year End Report

    Science.gov (United States)

    2013-01-01

    16 and 19, 2012, CDSE Training Division provided training support to approximately 95 personnel at the Office of Military Commissions ( OMC ) in...information processes for various classified venues. This was part of an ongoing collaboration between CDSE and OMC . “CDSE continues to make great

  14. Rapid synthesis of CdSe nanocrystals in aqueous solution at room ...

    Indian Academy of Sciences (India)

    Administrator

    Water-soluble thioglycolic acid-capped CdSe nanocrystals (NCs) were prepared in aqueous solu- ... quality CdSe NCs is nonaqueous technique, which origi- ... room temperature. In this paper, a rapid and simple method was reported for synthesizing water-soluble thioglycolic acid-capped. CdSe NCs at room temperature.

  15. Charge separation and transfer in hybrid type II tunneling structures of CdTe and CdSe nanocrystals

    International Nuclear Information System (INIS)

    Gross, Dieter Konrad Michael

    2013-01-01

    Closely packed nanocrystal systems have been investigated in this thesis with respect to charge separation by charge carrier tunneling. Clustered and layered samples have been analyzed using PL-measurements and SPV-methods. The most important findings are reviewed in the following. A short outlook is also provided for potential further aspects and application of the presented results. The main purpose of this thesis was to find and quantify electronic tunneling transfer in closely packed self-assembled nanocrystal structures presenting quantum mechanical barriers of about 1 nm width. We successfully used hybrid assemblies of CdTe and CdSe nanocrystals where the expected type II alignment between CdTe and CdSe typically leads to a concentration of electrons in CdSe and holes in CdTe nanocrystals. We were able to prove the charge selectivity of the CdTe-CdSe nanocrystal interface which induces charge separation. We mainly investigated the effects related to the electron transfer from CdTe to CdSe nanocrystals. Closely packing was achieved by two independent methods: the disordered colloidal clustering in solution and the layered assembly on dry glass substrates. Both methods lead to an inter-particle distance of about 1 nm of mainly organic material which acts as a tunneling barrier. PL-spectroscopy was applied. The PL-quenching of the CdTe nanocrystals in hybrid assemblies indicates charge separation by electron transfer from CdTe to CdSe nanocrystals. A maximum quenching rate of up to 1/100 ps was measured leading to a significant global PL-quenching of up to about 70 % for the CdTe nanocrystals. It was shown that charge separation dynamics compete with energy transfer dynamics and that charge separation typically dominates. The quantum confinement effect was used to tune the energetic offset between the CdTe and CdSe nanocrystals. We thus observe a correlation of PL-quenching and offset of the energy states for the electron transfer. The investigated PL

  16. Charge separation and transfer in hybrid type II tunneling structures of CdTe and CdSe nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Dieter Konrad Michael

    2013-11-08

    Closely packed nanocrystal systems have been investigated in this thesis with respect to charge separation by charge carrier tunneling. Clustered and layered samples have been analyzed using PL-measurements and SPV-methods. The most important findings are reviewed in the following. A short outlook is also provided for potential further aspects and application of the presented results. The main purpose of this thesis was to find and quantify electronic tunneling transfer in closely packed self-assembled nanocrystal structures presenting quantum mechanical barriers of about 1 nm width. We successfully used hybrid assemblies of CdTe and CdSe nanocrystals where the expected type II alignment between CdTe and CdSe typically leads to a concentration of electrons in CdSe and holes in CdTe nanocrystals. We were able to prove the charge selectivity of the CdTe-CdSe nanocrystal interface which induces charge separation. We mainly investigated the effects related to the electron transfer from CdTe to CdSe nanocrystals. Closely packing was achieved by two independent methods: the disordered colloidal clustering in solution and the layered assembly on dry glass substrates. Both methods lead to an inter-particle distance of about 1 nm of mainly organic material which acts as a tunneling barrier. PL-spectroscopy was applied. The PL-quenching of the CdTe nanocrystals in hybrid assemblies indicates charge separation by electron transfer from CdTe to CdSe nanocrystals. A maximum quenching rate of up to 1/100 ps was measured leading to a significant global PL-quenching of up to about 70 % for the CdTe nanocrystals. It was shown that charge separation dynamics compete with energy transfer dynamics and that charge separation typically dominates. The quantum confinement effect was used to tune the energetic offset between the CdTe and CdSe nanocrystals. We thus observe a correlation of PL-quenching and offset of the energy states for the electron transfer. The investigated PL

  17. Rod examination gauge

    Energy Technology Data Exchange (ETDEWEB)

    Bacvinskas, W.S.; Bayer, J.E.; Davis, W.W.; Fodor, G.; Kikta, T.J.; Matchett, R.L.; Nilsen, R.J.; Wilczynski, R.

    1991-12-31

    The present invention is directed to a semi-automatic rod examination gauge for performing a large number of exacting measurements on radioactive fuel rods. The rod examination gauge performs various measurements underwater with remote controlled machinery of high reliability. The rod examination gauge includes instruments and a closed circuit television camera for measuring fuel rod length, free hanging bow measurement, diameter measurement, oxide thickness measurement, cladding defect examination, rod ovality measurement, wear mark depth and volume measurement, as well as visual examination. A control system is provided including a programmable logic controller and a computer for providing a programmed sequence of operations for the rod examination and collection of data.

  18. Control rod drives

    International Nuclear Information System (INIS)

    Nakamura, Akira.

    1984-01-01

    Purpose: To enable to monitor the coupling state between a control rod and a control rod drive. Constitution: After the completion of a control rod withdrawal, a coolant pressure is applied to a control rod drive being adjusted so as to raise only the control rod drive and, in a case where the coupling between the control rod drive and the control rod is detached, the former is elevated till it contacts the control rod and then stopped. The actual stopping position is detected by an actual position detection circuit and compared with a predetermined position stored in a predetermined position detection circuit. If both of the positions are not aligned with each other, it is judged by a judging circuit that the control rod and the control rod drives are not combined. (Sekiya, K.)

  19. FUEL ROD ASSEMBLY

    Science.gov (United States)

    Hutter, E.

    1959-09-01

    A cluster of nuclear fuel rods aod a tubular casing through which a coolant flows in heat-change contact with the ruel rods are described. The casting is of trefoil section and carries the fuel rods, each of which has two fin engaging the serrated fins of the other two fuel rods, whereby the fuel rods are held in the casing and are interlocked against relative longitudinal movement.

  20. Electronic Structure of Cdse Nanowires Terminated With Gold ...

    African Journals Online (AJOL)

    Bheema

    The CdSe nanowires are generated by relaxation of fragments, Cd6Se6, Cd10Se10 and Cd14Se14, of the wurtzite structure of CdSe crystal. The valence electron configurations used are (5d. 10. 6s. 1. ) for Au, 4d. 10. 5s. 2 for Cd and 4s. 2. 4p. 4 for Se atoms. A plane wave cut-off of 179.7 eV is used for bare gold cluster and ...

  1. Terahertz optical properties of nonlinear optical CdSe crystals

    Science.gov (United States)

    Yan, Dexian; Xu, Degang; Li, Jining; Wang, Yuye; Liang, Fei; Wang, Jian; Yan, Chao; Liu, Hongxiang; Shi, Jia; Tang, Longhuang; He, Yixin; Zhong, Kai; Lin, Zheshuai; Zhang, Yingwu; Cheng, Hongjuan; Shi, Wei; Yao, Jianquan; Wu, Yicheng

    2018-04-01

    We investigate the optical properties of cadmium selenide (CdSe) crystals in a wide terahertz (THz) range from 0.2 to 6 THz by THz time-domain spectroscopy (THz-TDS) and Fourier transform infrared spectroscopy (FTIR). The refractive index, absorption coefficient and transmittance are measured and analyzed. The properties are characterized by several absorption peaks which represent the relevant phonon vibrations modes. The experimental results are in agreement with the theoretical results. The dispersion and absorption properties of CdSe crystal are analyzed in THz range. These properties indicate a good potential for THz sources and THz modulated devices.

  2. Control rod displacement

    International Nuclear Information System (INIS)

    Nakazato, S.

    1987-01-01

    This patent describes a nuclear reactor including a core, cylindrical control rods, a single support means supporting the control rods from their upper ends in spaced apart positions and movable for displacing the control rods in their longitudinal direction between a first end position in which the control rods are fully inserted into the core and a second end position in which the control rods are retracted from the core, and guide means contacting discrete regions of the outer surface of each control rod at least when the control rods are in the vicinity of the second end position. The control rods are supported by the support means for longitudinal movement without rotation into and out of the core relative to the guide means to thereby cause the outer surface of the control rods to experience wear as a result of sliding contact with the guide means. The support means are so arranged with respect to the core and the guide means that it is incapable of rotation relative to the guide means. The improvement comprises displacement means being operatively coupled to a respective one of the control rods for periodically rotating the control rod in a single angular direction through an angle selected to change the locations on the outer surfaces of the control rods at which the control rods are contacted by the guide means during subsequent longitudinal movement of the control rods

  3. Effect of lateral size and thickness on the electronic structure and optical properties of quasi two-dimensional CdSe and CdS nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Bose, Sumanta; Fan, W. J., E-mail: ewjfan@ntu.edu.sg; Zhang, D. H. [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); OPTIMUS, Centre for OptoElectronics and Biophotonics, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Song, Zhigang [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China)

    2016-04-14

    The effect of lateral size and vertical thickness of CdSe and CdS nanoplatelets (NPLs) on their electronic structure and optical properties are investigated using an effective-mass envelope function theory based on the 8-band k ⋅ p model with valence force field considerations. Volumetrically larger NPLs have lower photon emission energy due to limited quantum confinement, but a greater transition matrix element (TME) due to larger electron-hole wavefunction overlap. The optical gain characteristics depend on several factors such as TME, Fermi factor, carrier density, NPL dimensions, material composition, and dephasing rate. There is a red shift in the peak position, more so with an increase in thickness than lateral size. For an increasing carrier density, the gain spectrum undergoes a slight blue shift due to band filling effect. For a fixed carrier density, the Fermi factor is higher for volumetrically larger NPLs and so is the difference between the quasi-Fermi level separation and the effective bandgap. The transparency injection carrier density (and thus input current density threshold) is dimension dependent and falls for volumetrically larger NPLs, as they can attain the requisite exciton count for transparency with a relatively lower density. Between CdSe and CdS, CdSe has lower emission energy due to smaller bandgap, but a higher TME due to lower effective mass. CdS, however, has a higher so hole contribution due to a lower spin-orbit splitting energy. Both CdSe and CdS NPLs are suitable candidates for short-wavelength LEDs and lasers in the visible spectrum, but CdSe is expected to exhibit better optical performance.

  4. Control rod blocking monitor

    International Nuclear Information System (INIS)

    Suzuki, Shigeru.

    1993-01-01

    The number of times for setting up a control rod blocking monitor of a BWR type power plant is remarkably reduced to mitigate operator's burden. In the control rod blocking monitor, trip levels, as a judging standard upon outputting control rod blocking inhibition signals, are set up stepwise depending on the power level around control rods put to blocking control. The present invention comprises an allowance judging means capable of setting up trip levels for each of power levels corresponding to a plurality of control rods at once if the power levels are within the set up allowable range. With such a constitution, the set up allowable range is determined previously in the allowance judging means. Accordingly, when a gang blocking is conducted to control rods, if power levels around the control rods are increased at once into the set up allowable range, the trip levels for each of the control rods are set up at once. (I.S.)

  5. High pressure phase transitions for CdSe

    Indian Academy of Sciences (India)

    Administrator

    respectively and the intermediate states between the Cmcm structure and the CsCl structure should exist. Keywords. Semiconductor; high pressure; phase transition. 1. Introduction. CdSe has become quite interesting and important because of its major applications in solar cells and other optoelec- tronic devices due to its ...

  6. Space charge limited conduction in CdSe thin films

    Indian Academy of Sciences (India)

    Unknown

    of trap limited space charge limited conduction (SCLC) at higher voltage. The transition voltage (Vt ) from ohmic to SCLC is found to be quite independent of ambient temperature as well as intensity of illumination. SCLC is explained on the basis of the exponential trap distribution in CdSe films. Trap depths estimated from.

  7. Mobility activation in thermally deposited CdSe thin films

    Indian Academy of Sciences (India)

    Effect of illumination on mobility has been studied from the photocurrent decay characteristics of thermally evaporated CdSe thin films deposited on suitably cleaned glass substrate held at elevated substrate temperatures. The study indicates that the mobilities of the carriers of different trap levels are activated due to the ...

  8. Quantum

    CERN Document Server

    Al-Khalili, Jim

    2003-01-01

    In this lively look at quantum science, a physicist takes you on an entertaining and enlightening journey through the basics of subatomic physics. Along the way, he examines the paradox of quantum mechanics--beautifully mathematical in theory but confoundingly unpredictable in the real world. Marvel at the Dual Slit experiment as a tiny atom passes through two separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. Baffle yourself with the bizzareness of quantum tunneling, the equivalent of traveling partway up a hill, only to disappear then reappear traveling down the opposite side. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.

  9. Tie rod insertion test

    CERN Multimedia

    B. LEVESY

    2002-01-01

    The superconducting coil is inserted in the outer vaccum tank and supported by a set of tie rods. These tie rods are made of titanium alloy. This test reproduce the final insertion of the tie rods inside the outer vacuum tank.

  10. Fuel rod leak detector

    International Nuclear Information System (INIS)

    Womack, R.E.

    1978-01-01

    A typical embodiment of the invention detects leaking fuel rods by means of a radiation detector that measures the concentration of xenon-133 ( 133 Xe) within each individual rod. A collimated detector that provides signals related to the energy of incident radiation is aligned with one of the ends of a fuel rod. A statistically significant sample of the gamma radiation (γ-rays) that characterize 133 Xe is accumulated through the detector. The data so accumulated indicates the presence of a concentration of 133 Xe appropriate to a sound fuel rod, or a significantly different concentration that reflects a leaking fuel rod

  11. Compacting spent fuel rods

    International Nuclear Information System (INIS)

    Wachter, W.J.

    1988-01-01

    A method and apparatus for compacting spent fuel rods comprises transferring the rods from a nuclear fuel rod assembly into a different nuclear fuel rod container having a smaller cross section than the assembly. The individual rods are moved from a fuel assembly and through a transition funnel by movable grippers at opposite ends of the funnel. One movable gripper reciprocates between gripping and release positions in a gap between the fuel assembly and the transition funnel. All of the fuel rods are withdrawn concurrently and are merged towards one another into a tighter array within the transition funnel and emerge as a bundle. A movable and a stationary bundle gripper are provided between the funnel and the storage container to advance the bundle of fuel rods into the container. (author)

  12. Control rod drives

    International Nuclear Information System (INIS)

    Shimano, Kunio; Nakamura, Akira; Mizuguchi, Koji; Sakai, Kazuhito; Mitsui, Hisayasu.

    1994-01-01

    The present invention concerns upper-built-in type control rod drives of a BWR type reactor. Namely, high temperature linear motor driving type control rod drives are disposed in an upper space of the reactor pressure vessel, which generates electromagnetic power. In usual driving of control rods, driving shafts connected with control rods by a high temperature linear motor driving system comprising a driving shaft having an iron core inserted therein and electromagnetic coils is vertically moved to insert/withdraw the control rods to and from the reactor core. Upon occurrence of reactor scram, electric power source is interrupted, and the control rods are rapidly inserted to the reactor core. According to the present invention, since the control rod drives are disposed in the space above the reactor pressure vessel, pipelines or equipments passing through the bottom of the reactor pressure vessel can be saved. As a result, operation for maintenance and inspection is facilitated. (I.S.)

  13. Timely resolved measurements on CdSe nanoparticles; Zeitaufgeloeste Messungen an CdSe Nanopartikeln

    Energy Technology Data Exchange (ETDEWEB)

    Holt, B.E. von

    2006-06-06

    By means of infrared spectroscopy the influence of the organic cover on structure and dynamics of CdSe nanoparticles was studied. First a procedure was developed, which allows to get from the static infrared spectrum informations on the quality of the organic cover and the binding behaviour of the ligands. On qualitatively high-grade and well characterized samples thereafter the dynamics of the lowest-energy electron level 1S{sub e} was time-resolvedly meausred in thew visible range. As reference served CdSe TOPO, which was supplemented by samples with the ligands octanthiole, octanic acid, octylamine, naphthoquinone, benzoquinone, and pyridine. The studied nanoparticles had a diameter of 4.86 nm. By means of the excitation-scanning or pump=probe procedure first measurements in the picosecond range were performed. The excitation wavelengths were thereby spectrally confined and so chosen that selectively the transitions 1S{sub 3/2}-1S-e and 1P{sub 3/2}-1P{sub e} but not the intermediately lyingt transition 2S{sub 3/2}-1S{sub e} were excited. The excitation energies were kept so low that the excitation of several excitons in one crystal could be avoided. The scanning wavelength in the infrared corresponded to the energy difference between the electron levels 1S{sub e} and 1P{sub e}. The transients in the picosecond range are marked by a steep increasement of the signal, on which a multi-exponential decay follows. The increasement, which reproduces the popiulation of the excited state, isa inependent on the choice of the ligands. The influence of the organic cover is first visible in the different decay times of the excited electron levels. the decay of the measurement signal of CdSe TOPO can be approximatively described by three time constants: a decay constant in the early picosecond region, a time constant around hundert picoseconds, and a time constant of some nanoseconds. At increasing scanning wavelength the decay constants become longer. By directed excitation

  14. Characterization of CdSe polycrystalline films by photoluminescence spectroscopy

    International Nuclear Information System (INIS)

    Brasil, M.J.S.P.

    1985-01-01

    The characterization of CdSe polycristalline films were done by photoluminescence spectroscopy, X-ray diffraction analysis, diagrams IxV, and efficiency of solar energy conversion for cells done by these films. The experimental data shown strong temperature dependence of annealing, and the optimum temperature around 650 0 C was determined. The films did not present photoluminescence before heat treatment, but the annealed sample spectrum showed fine structures in the excitonic region, crystal phase transformation, enhancement of grain size, and better efficiency of the cell. Measurements of photoluminescence between 2 and 300 K, showed two bands of infrared emission, width and intense enough. The shape, at half-width, and the integrated intensity of one these bands were described by a configuration coordinate model for deep centers. Based on obtained results, some hypothesis about the origin of these bands and its correlation with efficiency of cells done with CdSe polycrystalline films, are proposed. (M.C.K.) [pt

  15. CONTROL ROD DRIVE

    Science.gov (United States)

    Chapellier, R.A.

    1960-05-24

    BS>A drive mechanism was invented for the control rod of a nuclear reactor. Power is provided by an electric motor and an outside source of fluid pressure is utilized in conjunction with the fluid pressure within the reactor to balance the loadings on the motor. The force exerted on the drive mechanism in the direction of scramming the rod is derived from the reactor fluid pressure so that failure of the outside pressure source will cause prompt scramming of the rod.

  16. Mobility activation in thermally deposited CdSe thin films

    Indian Academy of Sciences (India)

    Administrator

    3. Mobility activation in CdSe thin films. The trap depths were calculated by using the following simple decay law. It = Ioexp(–pt),. (1) where p is the probability of escape of an electron from the trap per second and is given by (Randall and Wilkins 1945) p = S exp (–E/kT),. (2) where E is the trap depth for electrons below the ...

  17. Dynamic Rod Worth Measurement

    International Nuclear Information System (INIS)

    Chao, Y.A.; Chapman, D.M.; Hill, D.J.; Grobmyer, L.R.

    2000-01-01

    The dynamic rod worth measurement (DRWM) technique is a method of quickly validating the predicted bank worth of control rods and shutdown rods. The DRWM analytic method is based on three-dimensional, space-time kinetic simulations of the rapid rod movements. Its measurement data is processed with an advanced digital reactivity computer. DRWM has been used as the method of bank worth validation at numerous plant startups with excellent results. The process and methodology of DRWM are described, and the measurement results of using DRWM are presented

  18. Self-powered flexible and transparent photovoltaic detectors based on CdSe nanobelt/graphene Schottky junctions.

    Science.gov (United States)

    Gao, Zhiwei; Jin, Weifeng; Zhou, Yu; Dai, Yu; Yu, Bin; Liu, Chu; Xu, Wanjin; Li, Yanping; Peng, Hailin; Liu, Zhongfan; Dai, Lun

    2013-06-21

    Flexible and transparent electronic and optoelectronic devices have attracted more and more research interest due to their potential applications in developing portable, wearable, low-cost, and implantable devices. We have fabricated and studied high-performance flexible and transparent CdSe nanobelt (NB)/graphene Schottky junction self-powered photovoltaic detectors for the first time. Under 633 nm light illumination, typical photosensitivity and responsivity of the devices are about 1.2 × 10(5) and 8.7 A W(-1), respectively. Under 3500 Hz switching frequency, the response and recovery times of them are about 70 and 137 μs, respectively, which, to the best of our knowledge, are the best reported values for nanomaterial based Schottky junction photodetectors up to date. The detailed properties of the photodetectors, such as the influences of incident light wavelength and light intensity on the external quantum efficiency and speed, are also investigated. Detailed discussions are made in order to understand the observed phenomena. Our work demonstrates that the self-powered flexible and transparent CdSe NB/graphene Schottky junction photovoltaic detectors have a bright application prospect.

  19. Electroluminescence of colloidal quasi-two-dimensional semiconducting CdSe nanostructures in a hybrid light-emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Selyukov, A. S., E-mail: vslebedev.mobile@gmail.com; Vitukhnovskii, A. G.; Lebedev, V. S.; Vashchenko, A. A. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Vasiliev, R. B.; Sokolikova, M. S. [Moscow State University (Russian Federation)

    2015-04-15

    We report on the results of studying quasi-two-dimensional nanostructures synthesized here in the form of semiconducting CdSe nanoplatelets with a characteristic longitudinal size of 20–70 nm and a thick-ness of a few atomic layers. Their morphology is studied using TEM and AFM and X-ray diffraction analysis; the crystal structure and sizes are determined. At room and cryogenic temperatures, the spectra and kinetics of the photoluminescence of such structures (quantum wells) are investigated. A hybrid light-emitting diode operating on the basis of CdSe nanoplatelets as a plane active element (emitter) is developed using the organic materials TAZ and TPD to form electron and hole transport layers, respectively. The spectral and current-voltage characteristics of the constructed device with a radiation wavelength λ = 515 nm are obtained. The device triggering voltage is 5.5 V (visible glow). The use of quasi-two-dimensional structures of this type is promising for hybrid light-emitting diodes with pure color and low operating voltages.

  20. CdSe and CdSe/CdS core-shell QDs: New approach for synthesis, investigating optical properties and application in pollutant degradation.

    Science.gov (United States)

    Abbasi, S; Molaei, M; Karimipour, M

    2017-11-01

    In this work, CdSe quantum dots (QDs) were synthesized by a simple and rapid microwave activated approach using CdSO 4 , Na 2 SeO 3 as precursors and thioglycolic acid (TGA) as capping agent molecule. A novel photochemical approach was introduced for the growth of CdS QDs and this approach was used to grow a CdS shell around CdSe cores for the formation of a CdSe/CdS core-shell structure. The core-shells were structurally verified using X-ray diffraction, transmission electron microscopy and FTIR (Fourier-transform infrared (FTIR)) spectroscopy. The optical properties of the samples were examined by means of UV-Vis and photoluminescence (PL) spectroscopy. It was found that CdS QDs emit a broad band white luminescence between 400 to 700 nm with a peak located at about 510 nm. CdSe QDs emission contained a broad band resulting from trap states between 450 to 800 nm with a peak located at 600 nm. After CdS shell growth, trap states emission was considerably quenched and a near band edge emission was appeared about 480 nm. Optical studies revealed that the core-shell QDs possess strong ultraviolet (UV) - visible light photocatalytic activity. CdSe/CdS core-shell QDs, showed an enhancement in photodegradation of Methyl orange (MO) compared with CdSe QDs. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Why Rods and Cocci

    Indian Academy of Sciences (India)

    experience greater frictional resistance. This hypothesis is supported by the fact that among the flagellated motile bacteria almost all are rod shaped. Only exceptionally few cocci are motile. This hypothesis, however, is not adequate since a large number of species of bacteria are non-motile. A rod shape can confer another ...

  2. Why Rods and Cocci

    Indian Academy of Sciences (India)

    Bacteria exhibit a wide variety of shapes but the commonly studied species of bacteria are generally either spherical in shape which are called cocci (singular coccus) or have a cylindrical shape and are called rods or bacilli (singular bacillus). In reality rods and cocci are the ends of a continuum. Sonle of the cocci are.

  3. Control rod drives

    International Nuclear Information System (INIS)

    Oonuki, Koji.

    1981-01-01

    Purpose: To increase the driving speed of control rods at rapid insertion with an elongate control rod and an extension pipe while ensuring sufficient buffering performance in a short buffering distance, by providing a plurality of buffers to an extension pipe between a control rod drive source and a control rod in LMFBR type reactor. Constitution: First, second and third buffers are respectively provided to an acceleration piston, an extension pipe and a control rod respectively and the insertion positions for each of the buffers are displaced orderly from above to below. Upon disconnection of energizing current for an electromagnet, the acceleration piston, the extension pipe and the control rod are rapidly inserted in one body. The first, second and third buffers are respectively actuated at each of their falling strokes upon rapid insertion respectively, and the acceleration piston, the extension pipe and the control rod receive the deceleration effect in the order correspondingly. Although the compression force is applied to the control rod only near the stroke end, it does not cause deformation. (Kawakami, Y.)

  4. Control rod shutdown system

    International Nuclear Information System (INIS)

    Miyamoto, Yoshiyuki; Higashigawa, Yuichi.

    1996-01-01

    The present invention provides a control rod terminating system in a BWR type nuclear power plant, which stops an induction electric motor as rapidly as possible to terminate the control rods. Namely, the control rod stopping system controls reactor power by inserting/withdrawing control rods into a reactor by driving them by the induction electric motor. The system is provided with a control device for controlling the control rods and a control device for controlling the braking device. The control device outputs a braking operation signal for actuating the braking device during operation of the control rods to stop the operation of the control rods. Further, the braking device has at least two kinds of breaks, namely, a first and a second brakes. The two kinds of brakes are actuated by receiving the brake operation signals at different timings. The brake device is used also for keeping the control rods after the stopping. Even if a stopping torque of each of the breaks is small, different two kinds of brakes are operated at different timings thereby capable of obtaining a large stopping torque as a total. (I.S.)

  5. Site controlled Red-Yellow-Green light emitting InGaN Quantum Discs on nano-tipped GaN rods

    KAUST Repository

    Conroy, Michele Ann

    2016-03-10

    We report a method of growing site controlled InGaN multiple quantum discs (QDs) at uniform wafer scale on coalescence free ultra-high density (>80%) nanorod templates by metal organic chemical vapour deposition (MOCVD). The dislocation and coalescence free nature of the GaN space filling nanorod arrays eliminates the well-known emission problems seen in InGaN based visible light sources that these types of crystallographic defects cause. Correlative scanning transmission electron microscopy (STEM), energy-dispersive x-ray (EDX) mapping and cathodoluminescence (CL) hyperspectral imaging illustrates the controlled site selection of the red, yellow and green (RYG) emission at these nano tips. This article reveals that the nanorod tips’ broad emission in the RYG visible range is in fact achieved by manipulating the InGaN QD’s confinement dimensions, rather than significantly increasing the In%. This article details the easily controlled method of manipulating the QDs dimensions producing high crystal quality InGaN without complicated growth conditions needed for strain relaxation and alloy compositional changes seen for bulk planar GaN templates.

  6. Structural and morphological characterization of CdSe: Mn thin films

    Indian Academy of Sciences (India)

    2017-06-24

    Jun 24, 2017 ... ... grown CdSe films are polycrystalline in nature and have cubic structure. The average particle size decreases on doping CdSe with Mn ions. The FE-SEM images show spherical particles having uniform distribution. Optical characterization was done using PL studies and UV–Visible spectrophotometer.

  7. Influences of CdSe NCs on the photovoltaic parameters of BHJ organic solar cells

    Science.gov (United States)

    Ongul, Fatih; Yuksel, Sureyya Aydin; Allahverdi, Cagdas; Bozar, Sinem; Kazici, Mehmet; Gunes, Serap

    2018-04-01

    In this study, the high quality CdSe nanocrystals (NCs) capped with stearic acid were synthesized in a solvent and then purified four times by using the precipitation and redissolution process. The average size of the synthesized CdSe NCs was determined 3.0 nm via transmission electron microscopy (TEM) measurement and their corresponding optical band edge energy was also calculated as 2.1 eV using ultraviolet-visible (UV-Vis) absorption spectroscopy. The bulk heterojunction (BHJ) hybrid solar cells based on a ternary system including P3HT, PCBM and CdSe NCs at different weight concentrations (0 wt%, 0.1 wt%, 0.5 wt%, 1 wt% and 2 wt%) were fabricated by spin-casting process. The effect of the concentration of CdSe NCs on the photovoltaic parameters of these BHJ organic solar cells was investigated. The surface morphology of the photoactive layer modified by the incorporation of CdSe NCs into P3HT:PCBM matrix was observed with scanning electron microscopy (SEM). It was shown that when the concentration of CdSe NCs increases above 0.1 wt% in this ternary system, the photovoltaic performance of the devices significantly decreases. The power conversion efficiency of the organic photovoltaic (OPV) device was enhanced 20% by incorporating CdSe NCs with 0.1 wt% with respect to those without CdSe NCs.

  8. Acetate Ligands Determine the Crystal Structure of CdSe Nanoplatelets - a Density Functional Theory study

    NARCIS (Netherlands)

    Koster, R.S.; Fang, C.M.; van Blaaderen, A.; Dijkstra, M.; van Huis, M.A.

    2016-01-01

    Cadmium selenide (CdSe) nanoplatelets of a few atomic layers thick exhibit extremely sharp photoluminescence peaks and are synthesized in the zinc blende crystal structure, whereas the most stable bulk polymorph of CdSe is the wurtzite structure. These platelets can be synthesized very

  9. Influences of CdSe NCs on the photovoltaic parameters of BHJ organic solar cells.

    Science.gov (United States)

    Ongul, Fatih; Yuksel, Sureyya Aydin; Allahverdi, Cagdas; Bozar, Sinem; Kazici, Mehmet; Gunes, Serap

    2018-04-05

    In this study, the high quality CdSe nanocrystals (NCs) capped with stearic acid were synthesized in a solvent and then purified four times by using the precipitation and redissolution process. The average size of the synthesized CdSe NCs was determined ~3.0nm via transmission electron microscopy (TEM) measurement and their corresponding optical band edge energy was also calculated as ~2.1eV using ultraviolet-visible (UV-Vis) absorption spectroscopy. The bulk heterojunction (BHJ) hybrid solar cells based on a ternary system including P3HT, PCBM and CdSe NCs at different weight concentrations (0wt%, 0.1wt%, 0.5wt%, 1wt% and 2wt%) were fabricated by spin-casting process. The effect of the concentration of CdSe NCs on the photovoltaic parameters of these BHJ organic solar cells was investigated. The surface morphology of the photoactive layer modified by the incorporation of CdSe NCs into P3HT:PCBM matrix was observed with scanning electron microscopy (SEM). It was shown that when the concentration of CdSe NCs increases above 0.1wt% in this ternary system, the photovoltaic performance of the devices significantly decreases. The power conversion efficiency of the organic photovoltaic (OPV) device was enhanced ~20% by incorporating CdSe NCs with 0.1wt% with respect to those without CdSe NCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Control rod driveline and grapple

    International Nuclear Information System (INIS)

    Germer, J.H.

    1987-01-01

    A control rod driveline and grapple for engaging and releasing a control rod from a control rod drive is described comprising an enlarged control rod handle including an upwardly flaring frustum and a rod extending from the control rod handle; a relatively moving outer member; a tension rod connected to the relatively moving outer member at the upper end and provided with a lower annular flange at the lower end, the tension rod including a female cavity for receiving the upwardly extending rod from the enlarged control rod handle; a discrete and independent grapple segments for surrounding and grappling the control rod handle, each grapple segment including a first indentation for engaging and gripping the flange of the tension rod at an upper and interior annulus

  11. Rod Photoreceptors Detect Rapid Flicker

    Science.gov (United States)

    Conner, J. D.; MacLeod, Donald I. A.

    1977-01-01

    Rod-isolation techniques show that light-adapted human rods detect flicker frequencies as high as 28 hertz, and that the function relating rod critical flicker frequency to stimulus intensity contains two distinct branches. (MLH)

  12. Enhanced Photon Extraction from a Nanowire Quantum Dot Using a Bottom-Up Photonic Shell

    DEFF Research Database (Denmark)

    Jeannin, Mathieu; Cremel, Thibault; Häyrynen, Teppo

    2017-01-01

    Semiconductor nanowires offer the possibility to grow high-quality quantum-dot heterostructures, and, in particular, CdSe quantum dots inserted in ZnSe nanowires have demonstrated the ability to emit single photons up to room temperature. In this paper, we demonstrate a bottom-up approach...

  13. Control rod drives

    International Nuclear Information System (INIS)

    Hayakawa, Hiroyasu.

    1979-01-01

    Purpose: To enable rapid control in a simple circuit by providing a motor control device having an electric capacity capable of simultaneously driving all of the control rods rapidly only in the inserting direction as well as a motor controlling device capable of fine control for the insertion and extraction at usual operation. Constitution: The control rod drives comprise a first motor control device capable of finely controlling the control rods both in inserting and extracting directions, a second motor control device capable of rapidly driving the control rods only in the inserting direction, and a first motor switching circuit and a second motor switching circuit switched by switches. Upon issue of a rapid insertion instruction for the control rods, the second motor switching circuit is closed by the switch and the second motor control circuit and driving motors are connected. Thus, each of the control rod driving motors is driven at a high speed in the inserting direction to rapidly insert all of the control rods. (Yoshino, Y.)

  14. Size and ligand effects on the electrochemical and spectroelectrochemical responses of CdSe nanocrystals.

    Science.gov (United States)

    Querner, Claudia; Reiss, Peter; Sadki, Said; Zagorska, Malgorzata; Pron, Adam

    2005-09-07

    The electrochemical properties of CdSe quantum dots with electrochemically inactive surface ligands (TOPO) have been investigated in comparison with the analogous nanocrystals containing electrochemically active oligoaniline ligands. The TOPO-capped nanocrystals have been studied in a wide size range (from 3 to 6.5 nm) with the goal to amplify the influence of the quantum confinement effect on the electrochemical response. The determined HOMO and LUMO levels have been found in good agreement with the ones obtained from photoluminescence studies and those predicted theoretically. Ligand exchange with aniline tetramer significantly influences the voltammetric peaks associated with the HOMO oxidation and the LUMO reduction of the quantum dots, which are shifted to higher and lower potentials, respectively. These shifts are interpreted in terms of the positive ligand charging which precedes the oxidation of the nanocrystals and the insulating nature of the ligand in the case of the nanocrystal reduction. The ligand-nanocrystal interactions have also been studied by UV-Vis-NIR and Raman spectroelectrochemistry in comparison with a specially prepared model compound which, apart from the anchoring function is identical to the grafted oligoaniline ligand. Both spectroelectrochemical techniques clearly indicate the same nature of the oxidation/reduction pathway for both the model compound and the grafted ligand. The influence of the grafting is manifested by a shift in the onset of the ligand oxidation as compared to the case of the "free" model compound. Since both components (ligands and nanocrystals) mutually influence their electrochemical and spectroelectrochemical properties, the newly developed system can be considered as a true molecular hybrid. Such hybrids are of interest because the potential zone of the ligand electroactivity is well separated from that of the nanocrystals and, as a result, the organic part can be electrochemically switched between the

  15. Control rod testing apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Gaunt, R.R.; Ashman, C.M.

    1987-06-02

    A control rod testing apparatus is described comprising: a first guide means having a vertical cylindrical opening for grossly guiding a control rod; a second guide means having a vertical cylindrical opening for grossly guiding a control rod. The first and second guide means are supported at axially spaced locations with the openings coaxial; and a substantially cylindrical subassembly having a vertical cylindrical opening therethrough. The subassembly is trapped coaxial with and between the first and second guide means, and the subassembly radially floats with respect to the first and second guide means.

  16. Control rod testing apparatus

    International Nuclear Information System (INIS)

    Gaunt, R.R.; Ashman, C.M.

    1987-01-01

    A control rod testing apparatus is described comprising: a first guide means having a vertical cylindrical opening for grossly guiding a control rod; a second guide means having a vertical cylindrical opening for grossly guiding a control rod. The first and second guide means are supported at axially spaced locations with the openings coaxial; and a substantially cylindrical subassembly having a vertical cylindrical opening therethrough. The subassembly is trapped coaxial with and between the first and second guide means, and the subassembly radially floats with respect to the first and second guide means

  17. Single-molecule detection of chaperonin dynamics through polarization rotation modulation of CdSe QD luminescence imaging

    International Nuclear Information System (INIS)

    Tani, Toshiro; Oda, Masaru; Araki, Daisuke; Miyashita, Tatsuki; Nakajima, Koudai; Arita, Mayuno; Yohda, Masafumi

    2014-01-01

    We report our recent trials examining the single-molecule three-dimensional (3D) detection of protein conformational dynamics at room temperature. Using molecular chaperones as model proteins and cadmium selenide (CdSe) semiconductor quantum dots (QDs) as nanometer-scale probes, we monitored the temporal evolution of ATP-induced conformation changes with a total internal reflection fluorescence (TIRF) microscopy imaging technique in buffer solutions. The two-dimensional (2D) degenerate nature of the emission dipoles of the QDs, due to the uniaxial wurtzite crystal structure, made it possible to capture the 3D orientation using a polarization modulation technique in real time. The temporal resolution was half the period of analyzer rotation. Although still insufficient, the obtained signals suggest possible 3D detection of specific motions, which supports the two-step conformational changes triggered by ATP attachment. - Highlights: • We report our recent trials examining the single-molecule three-dimensional (3D) detection of protein conformational dynamics at room temperature. • Using molecular chaperones as model proteins and cadmium selenide (CdSe) semiconductor quantum dots (QDs) as nanometer-scale probes, we monitored the temporal evolution of ATP-induced conformation changes with a total internal reflection fluorescence (TIRF) microscopy imaging technique in buffer solutions. • The two-dimensional (2D) degenerate nature of the emission dipoles of the QDs, due to the uniaxial wurtzite crystal structure, made it possible to capture the 3D orientation using a polarization modulation technique in real time. • The temporal resolution was half the period of analyzer rotation. • Although still insufficient, the obtained signals suggest possible 3D detection of specific motions, which supports the two-step conformational changes triggered by ATP attachment

  18. Electronic Structure of Ligated CdSe Clusters: Dependence on DFT Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Albert, VV; Ivanov, SA; Tretiak, S; Kilina, SV

    2011-07-07

    Simulations of ligated semiconductor quantum dots (QDs) and their physical properties, such as morphologies, QD-ligand interactions, electronic structures, and optical transitions, are expected to be very sensitive to computational methodology. We utilize Density Functional Theory (DFT) and systematically study how the choice of density functional, atom-localized basis set, and a solvent affects the physical properties of the Cd{sub 33}Se{sub 33} cluster ligated with a trimethyl phosphine oxide ligand. We have found that qualitative performance of all exchange-correlation (XC) functionals is relatively similar in predicting strong QD-ligand binding energy ({approx}1 eV). Additionally, all functionals predict shorter Cd-Se bond lengths on the QD surface than in its core, revealing the nature and degree of QD surface reconstruction. For proper modeling of geometries and QD-ligand interactions, however, augmentation of even a moderately sized basis set with polarization functions (e.g., LANL2DZ* and 6-31G*) is very important. A polar solvent has very significant implications for the ligand binding energy, decreasing it to 0.2-0.5 eV. However, the solvent model has a minor effect on the optoelectronic properties, resulting in persistent blue shifts up to {approx}0.3 eV of the low-energy optical transitions. For obtaining reasonable energy gaps and optical transition energies, hybrid XC functionals augmented by a long-range Hartree-Fock orbital exchange have to be applied.

  19. Control rod velocity limiter

    International Nuclear Information System (INIS)

    Cearley, J.E.; Carruth, J.C.; Dixon, R.C.; Spencer, S.S.; Zuloaga, J.A. Jr.

    1986-01-01

    This patent describes a velocity control arrangement for a reciprocable, vertically oriented control rod for use in a nuclear reactor in a fluid medium, the control rod including a drive hub secured to and extending from one end therefrom. The control device comprises: a toroidally shaped control member spaced from and coaxially positioned around the hub and secured thereto by a plurality of spaced radial webs thereby providing an annular passage for fluid intermediate the hub and the toroidal member spaced therefrom in coaxial position. The side of the control member toward the control rod has a smooth generally conical surface. The side of the control member away from the control rod is formed with a concave surface constituting a single annular groove. The device also comprises inner and outer annular vanes radially spaced from one another and spaced from the side of the control member away from the control rod and positioned coaxially around and spaced from the hub and secured thereto by spaced radial webs thereby providing an annular passage for fluid intermediate the hub and the vanes. The vanes are angled toward the control member, the outer edge of the inner vane being closer to the control member and the inner edge of the outer vane being closer to the control member. When the control rod moves in the fluid in the direction toward the drive hub the vanes direct a flow of fluid turbulence which provides greater resistance to movement of the control rod in the direction toward the drive hub than in the other direction

  20. Control rod assemblies

    International Nuclear Information System (INIS)

    Yamanaka, Toshikatsu.

    1986-01-01

    Purpose: To obtain simple and practical control rod assemblies by bringing the exit temperature of the guide tube of a control rod main body closer to that of an adjacent fuel assembly and thereby suppressing the wasteful flow of coolants. Constitution: A flow control member comprises an annular flow control plate disposed above the control rod main body and bellows having a plurality of small paertures capable of passing coolants therethrough formed at the circumferencial surface. The bellows are to cause the flow control plate to resiliently abut on the upper surface of the control rod main body. Coolants flowing from below to above in the guide tube remove heat from the neutron absorbers and are discharged externally at an elevated temperature, while coolants at a lower temperature are entered and mixed through the apertures formed in the bellows. By the way, upon insertion of the control rod main body, flow of the coolants to the inside of the bellows is substantially interrupted by the extension contraction of the bellows, by which the flow rate is adjusted depending on the withdrawing stroke to suppress the occurrence of thermal problems. (Kamimura, M.)

  1. Control rod housing alignment

    International Nuclear Information System (INIS)

    Dixon, R.C.; Deaver, G.A.; Punches, J.R.; Singleton, G.E.; Erbes, J.G.; Offer, H.P.

    1990-01-01

    This patent describes a process for measuring the vertical alignment between a hole in a core plate and the top of a corresponding control rod drive housing within a boiling water reactor. It comprises: providing an alignment apparatus. The alignment apparatus including a lower end for fitting to the top of the control rod drive housing; an upper end for fitting to the aperture in the core plate, and a leveling means attached to the alignment apparatus to read out the difference in angularity with respect to gravity, and alignment pin registering means for registering to the alignment pin on the core plate; lowering the alignment device on a depending support through a lattice position in the top guide through the hole in the core plate down into registered contact with the top of the control rod drive housing; registering the upper end to the sides of the hole in the core plate; registering the alignment pin registering means to an alignment pin on the core plate to impart to the alignment device the required angularity; and reading out the angle of the control rod drive housing with respect to the hole in the core plate through the leveling devices whereby the angularity of the top of the control rod drive housing with respect to the hole in the core plate can be determined

  2. Hydraulically centered control rod

    International Nuclear Information System (INIS)

    Horlacher, W.R.; Sampson, W.T.; Schukei, G.E.

    1981-01-01

    A control rod suspended to reciprocate in a guide tube of a nuclear fuel assembly has a hydraulic bearing formed at its lower tip. The bearing includes a plurality of discrete pockets on its outer surface into which a flow of liquid is continuously provided. In one embodiment the flow is induced by the pressure head in a downward facing chamber at the end of the bearing. In another embodiment the flow originates outside the guide tube. In both embodiments the flow into the pockets produces pressure differences across the bearing which counteract forces tending to drive the rod against the guide tube wall. Thus contact of the rod against the guide tube is avoided

  3. Control rod control device

    International Nuclear Information System (INIS)

    Seiji, Takehiko; Obara, Kohei; Yanagihashi, Kazumi

    1998-01-01

    The present invention provides a device suitable for switching of electric motors for driving each of control rods in a nuclear reactor. Namely, in a control rod controlling device, a plurality of previously allotted electric motors connected in parallel as groups, and electric motors of any selected group are driven. In this case, a voltage of not driving predetermined selected electric motors is at first applied. In this state an electric current supplied to the circuit of predetermined electric motors is detected. Whether integration or failure of a power source and the circuit of the predetermined electric motors are normal or not is judged by the detected electric current supplied. After they are judged normal, the electric motors are driven by a regular voltage. With such procedures, whether the selected circuit is normal or not can be accurately confirmed previously. Since the electric motors are not driven just at the selected time, the control rods are not operated erroneously. (I.S.)

  4. Towards bulk based preconditioning for quantum dotcomputations

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, Jack; Langou, Julien; Tomov, Stanimire; Channing,Andrew; Marques, Osni; Vomel, Christof; Wang, Lin-Wang

    2006-05-25

    This article describes how to accelerate the convergence of Preconditioned Conjugate Gradient (PCG) type eigensolvers for the computation of several states around the band gap of colloidal quantum dots. Our new approach uses the Hamiltonian from the bulk materials constituent for the quantum dot to design an efficient preconditioner for the folded spectrum PCG method. The technique described shows promising results when applied to CdSe quantum dot model problems. We show a decrease in the number of iteration steps by at least a factor of 4 compared to the previously used diagonal preconditioner.

  5. Flow in rod bundles

    International Nuclear Information System (INIS)

    Hazi, G.; Mayer, G.

    2005-01-01

    For power upgrading VVER-440 reactors we need to know exactly how the temperature measured by the thermocouples is related to the average outlet temperature of the fuel assemblies. Accordingly, detailed knowledge on mixing process in the rod bundles and in the fuel assembly head have great importance. Here we study the hydrodynamics of rod bundles based on the results of direct numerical and large eddy simulation of flows in subchannels. It is shown that secondary flow and flow pulsation phenomena can be observed using both methodologies. Some consequences of these observations are briefly discussed. (author)

  6. Large-Scale Production of CdSe Nanocrystal by a Continuous Flow Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kawa, Manabu, E-mail: 508532@cc.m-kagaku.co.jp; Morii, Hidekazu; Ioku, Atau; Saita, Soichiro [MCC-Group Science and Technology Research Center, Mitsubishi Chemical Corporation (Japan); Okuyama, Kikuo [Hiroshima University, Department of Chemical Engineering, Graduate School of Engineering (Japan)

    2003-04-15

    Organically capped CdSe nanocrystals were successfully produced by a continuous flow reactor in 13 g/h rate as isolated CdSe nanocrystal, using trioctylphosphine oxide (TOPO) both as the capping organic reagent and the high-temperature reaction solvent. Relatively high reaction temperature (e.g. 350 deg. C) was necessary for matured crystal growth. The quality of TOPO (i.e. impurity composition such like phosphonic acids) was also influential on the quality of the resulting CdSe nanocrystal. The continuous flow reactor was able to produce highly-luminescence, monodispersed CdSe nanocrystals, confirmed by transmission electron microscope observation. The production rate was stable at least 1 h to allow over 10 g production.

  7. Device for coupling a control rod and control rod drive

    International Nuclear Information System (INIS)

    Nishioka, Kazuya.

    1975-01-01

    Object: To obtain simple and reliable coupling between a control rod and control rod drive by equipping the lower end of the control rod with an extension provided with lateral protuberances and forming the upper end of an index tube with a recess provided with lateral holes. Structure: The tapering central extension of the control rod is inserted into the recess by lowering the control rod, and then it is further inserted by causing frictional movement of the inclined surfaces of lateral protuberances in frictional contact with guide surfaces. When the lateral protuberances are brought into contact with a stepped portion, the control rod is rotated to fit the lateral protuberances into the lateral holes. In this way, the control rod is coupled to the index tube of the control rod drive. (Yoshino, Y.)

  8. Ultrasonic attenuation of CdSe at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, B.J., E-mail: braulio@ula.v [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes Apartado de Correos No.1, La Hechicera, Merida 5251 (Venezuela, Bolivarian Republic of); Calderon, E.; Bracho, D.B. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes Apartado de Correos No.1, La Hechicera, Merida 5251 (Venezuela, Bolivarian Republic of); Perez, J.F. [Laboratorio de Instrumentacion Cientifica, Facultad de Ciencias, Universidad de Los Andes Apartado de Correos No.1, La Hechicera, Merida 5251 (Venezuela, Bolivarian Republic of)

    2010-08-01

    The ultrasonic attenuation of a single crystal of CdSe has been investigated over the temperature range from 1.2 to 300 K at frequencies of 10, 30 and 90 MHz. We report here the temperature dependence of the attenuation in the range 1.2-30 K for piezoactive and non-piezoactive acoustic waves. A temperature-induced relaxation for two piezoactive waves, which scale with frequency towards higher temperatures, was found. A modified Hutson and White model with a new parameter {gamma} is proposed to explain the relaxation maxima of our data and others in the literature. In this model the parameter {gamma}, which seems to be closely related to the compensation, takes into account the impurities-sound wave piezoelectric coupling. By inverting the proposed expression for the sound attenuation to obtain the electrical conductivity from the relaxation, it is found that impurity conductivity of the hopping type is the dominant conduction process at low temperatures.

  9. Ultrasonic attenuation of CdSe at low temperatures

    International Nuclear Information System (INIS)

    Fernandez, B.J.; Calderon, E.; Bracho, D.B.; Perez, J.F.

    2010-01-01

    The ultrasonic attenuation of a single crystal of CdSe has been investigated over the temperature range from 1.2 to 300 K at frequencies of 10, 30 and 90 MHz. We report here the temperature dependence of the attenuation in the range 1.2-30 K for piezoactive and non-piezoactive acoustic waves. A temperature-induced relaxation for two piezoactive waves, which scale with frequency towards higher temperatures, was found. A modified Hutson and White model with a new parameter γ is proposed to explain the relaxation maxima of our data and others in the literature. In this model the parameter γ, which seems to be closely related to the compensation, takes into account the impurities-sound wave piezoelectric coupling. By inverting the proposed expression for the sound attenuation to obtain the electrical conductivity from the relaxation, it is found that impurity conductivity of the hopping type is the dominant conduction process at low temperatures.

  10. Chemical bath deposition of Hg doped CdSe thin films and their characterization

    International Nuclear Information System (INIS)

    Bhuse, V.M.

    2005-01-01

    The deliberate addition of Hg in CdSe thin film have been carried out using a simple, modified, chemical bath deposition technique with the objective to study the effect of Hg doping on properties of CdSe thin films. Synthesis was initiated at 278 K temperature using complexed cadmium sulphate, mercuric nitrate and sodium selenosulphate in an aqueous ammonical medium at pH 10. Films were characterized by XRD, SEM, optical absorption, electrical and thermoelectric techniques. The 'as deposited' films were uniform, well adherent, nearly stoichiometric and polycrystalline in a single cubic phase (zinc blende). Crystallite size determined from XRD and SEM was found to increase slightly with addition of Hg. The optical band gap of CdSe remains constant upto 0.05 mol% Hg doping, while it decreases monotonically with further increase in mercury content. Dark dc electrical resistivity and conduction activation energy of CdSe were found to decrease initially upto 0.05 mol% of Hg, thereafter increased for higher values of Hg but remains less than those of CdSe. All the films showed n-type of conductivity. A CdSe film containing 0.05 mol% of Hg showed higher absorption coefficient, and conductivity

  11. Thermal conductivity of zinc blende and wurtzite CdSe nanostructures.

    Science.gov (United States)

    Yang, Juekuan; Tang, Hao; Zhao, Yang; Zhang, Yin; Li, Jiapeng; Ni, Zhonghua; Chen, Yunfei; Xu, Dongyan

    2015-10-14

    Many binary octet compounds including CdSe can be grown in either the wurtzite (WZ) or zinc blende (ZB) phase, which has aroused great interest among the research community in understanding the phase dependence of the thermal transport properties of these compounds. So far, it has been debatable whether the ZB phase possesses higher thermal conductivity than the WZ phase. In this work, we report on thermal conductivity measurements of CdSe nanowires/nanoribbons with both WZ and ZB phases via a suspended device method. At room temperature, the thermal conductivity of all the ZB CdSe nanostructures measured in this work is higher than the bulk thermal conductivity of the WZ CdSe reported in the literature, suggesting that the bulk thermal conductivity of the ZB CdSe is higher than that of the WZ phase. Our result is different from previous experimental results in the literature for InAs nanowires which suggest similar thermal conductivity values for the bulk ZB and WZ InAs crystals. The higher thermal conductivity of the ZB CdSe can be explained by its lower anharmonicity and a smaller number of atoms per unit cell compared to the WZ phase.

  12. Control rod driving mechanisms

    International Nuclear Information System (INIS)

    Maejima, Yoshinori.

    1986-01-01

    Purpose: To conduct reactor scram by an external signal and, also by a signal for the abnormal temperature from a temperature detector in the nuclear reactor. Constitution: Control rod driving mechanisms magnetically coupling the extension pipe with the elevating mechanism above the reactor core and the holding magnet, and retains a control rod to the lower portion of the extension pipe by way of a latch mechanism. The temperature detector is immersed in reactor coolants. If the temperature of the coolants rises abnormally, bimetal contacts of the temperature detector are opened to interrupt the current supply to the holding electromagnet. Then, the extension pipe released from the magnetic coupling is lowered and the control rod free from latch is rapidly dropped and inserted into the reactor core. Since this procedure is carried out for all of the control rods, the reactor scram can be attained. The feature of this invention resides in that the reactor scram can be attained also by the signal of the reactor core itself even if the signal system for the external signals should be failed. (Horiuchi, T.)

  13. Enhanced photogenerated carrier collection in hybrid films of bio-templated gold nanowires and nanocrystalline CdSe.

    Science.gov (United States)

    Haberer, Elaine D; Joo, John H; Hodelin, Juan F; Hu, Evelyn L

    2009-10-14

    Hybrid films of bio-templated gold nanowires and chemical bath deposited nanocrystalline CdSe were fabricated. The conductivity of the gold nanowires within the hybrid material was controlled by gold electroless deposition. Photocurrent measurements were taken on gold nanowire films, CdSe chemical bath deposited films, and hybrid films. The incorporation of gold nanowires within the hybrid material clearly increased the extraction of photogenerated carriers within the CdSe. Photocurrent showed a direct correlation with gold nanowire conductivity.

  14. Gate-induced carrier delocalization in quantum dot field effect transistors.

    Science.gov (United States)

    Turk, Michael E; Choi, Ji-Hyuk; Oh, Soong Ju; Fafarman, Aaron T; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R; Kikkawa, James M

    2014-10-08

    We study gate-controlled, low-temperature resistance and magnetotransport in indium-doped CdSe quantum dot field effect transistors. We show that using the gate to accumulate electrons in the quantum dot channel increases the "localization product" (localization length times dielectric constant) describing transport at the Fermi level, as expected for Fermi level changes near a mobility edge. Our measurements suggest that the localization length increases to significantly greater than the quantum dot diameter.

  15. Morphoelastic rods. Part I: A single growing elastic rod

    KAUST Repository

    Moulton, D.E.

    2013-02-01

    A theory for the dynamics and statics of growing elastic rods is presented. First, a single growing rod is considered and the formalism of three-dimensional multiplicative decomposition of morphoelasticity is used to describe the bulk growth of Kirchhoff elastic rods. Possible constitutive laws for growth are discussed and analysed. Second, a rod constrained or glued to a rigid substrate is considered, with the mismatch between the attachment site and the growing rod inducing stress. This stress can eventually lead to instability, bifurcation, and buckling. © 2012 Elsevier Ltd. All rights reserved.

  16. REACTOR CONTROL ROD OPERATING SYSTEM

    Science.gov (United States)

    Miller, G.

    1961-12-12

    A nuclear reactor control rod mechanism is designed which mechanically moves the control rods into and out of the core under normal conditions but rapidly forces the control rods into the core by catapultic action in the event of an emergency. (AEC)

  17. Fuel rod attachment system

    International Nuclear Information System (INIS)

    Christiansen, D.W.

    1982-01-01

    A reusable system for removably attaching a nuclear reactor fuel rod to a support member. A locking cap is secured to the fuel rod and a locking strip is fastened to the support member or vice versa. The locking cap has two opposing fingers and shaped to form a socket having a body portion. The locking strip has an extension shaped to rigidly attach to the socket's body portion. The locking cap's fingers are resiliently deflectable. For attachment, the locking cap is longitudinally pushed onto the locking strip causing the extension to temporarily deflect open the fingers to engage the socket's body portion. For removal, the process is reversed. In an alternative embodiment, the cap is rigid and the strip is transversely resiliently compressible. (author)

  18. Fuel rod fixing system

    International Nuclear Information System (INIS)

    Christiansen, D.W.

    1982-01-01

    This is a reusable system for fixing a nuclear reactor fuel rod to a support. An interlock cap is fixed to the fuel rod and an interlock strip is fixed to the support. The interlock cap has two opposed fingers, which are shaped so that a base is formed with a body part. The interlock strip has an extension, which is shaped so that this is rigidly fixed to the body part of the base. The fingers of the interlock cap are elastic in bending. To fix it, the interlock cap is pushed longitudinally on to the interlock strip, which causes the extension to bend the fingers open in order to engage with the body part of the base. To remove it, the procedure is reversed. (orig.) [de

  19. Control rod withdrawal monitoring device

    International Nuclear Information System (INIS)

    Ebisuya, Mitsuo.

    1984-01-01

    Purpose: To prevent the power ramp even if a plurality of control rods are subjected to withdrawal operation at a time, by reducing the reactivity applied to the reactor. Constitution: The control rod withdrawal monitoring device is adapted to monitor and control the withdrawal of the control rods depending on the reactor power and the monitoring region thereof is divided into a control rod group monitoring region a transition region and a control group monitoring not interfere region. In a case if the distance between a plurality of control rods for which the withdrawal positions are selected is less than a limiting value, the coordinate for the control rods, distance between the control rods and that the control rod distance is shorter are displayed on a display panel, and the withdrawal for the control rods are blocked. Accordingly, even if a plurality of control rods are subjected successively to the withdrawal operation contrary to the control rod withdrawal sequence upon high power operation of the reactor, the power ramp can be prevented. (Kawakami, Y.)

  20. Control rod drives

    International Nuclear Information System (INIS)

    Kimura, Koichi.

    1994-01-01

    In control rod drives, differential pressure sensors are disposed at the inlet and the exit of a driving water pressure control valve disposed in a driving water supply device and, when deviation of fluctuation of the differential pressure from a set value is detected, a pressure control valve for driving water is controlled so as to make the differential pressure constant. The differential pressure sensors detect the differential pressure between the pressure of the control rod drives at the inlet and the exit of the driving water pressure control valve and a pressure in a reactor dome. A judging circuit judges whether the differential pressure between both sides of the driving water pressure control valve is deviated from a set value or not and, if it deviates from the set value, outputs of judging signal to the control device. In the control device, the opening degree of the driving water pressure control valve is controlled, so that the differential pressure between both sides of the driving water pressure control value is constant and does not deviate from the set value. There are provided advantageous effects of preventing abnormal control rod withdrawing phenomenon to improve safety and reliability for the control of the reactor operation. (N.H.)

  1. Rod drive and latching mechanism

    International Nuclear Information System (INIS)

    Veronesi, L.; Sherwood, D.G.

    1982-01-01

    Hydraulic drive and latching mechanisms for driving reactivity control mechanisms in nuclear reactors are described. Preferably, the pressurized reactor coolant is utilized to raise the drive rod into contact with and to pivot the latching mechanism so as to allow the drive rod to pass the latching mechanism. The pressure in the housing may then be equalized which allows the drive rod to move downwardly into contact with the latching mechanism but to hold the shaft in a raised position with respect to the reactor core. Once again, the reactor coolant pressure may be utilized to raise the drive rod and thus pivot the latching mechanism so that the drive rod passes above the latching mechanism. Again, the mechanism pressure can be equalized which allows the drive rod to fall and pass by the latching mechanism so that the drive rod approaches the reactor core. (author)

  2. Aggregation, sedimentation, dissolution and bioavailability of quantum dots in estuarine systems.

    Science.gov (United States)

    To understand their fate and transport in estuarine systems, the aggregation, sedimentation, and dissolution of CdSe quantum dots (QDs) in seawater were investigated. Hydrodynamic size increased from 40 to 60 nm to >1 mm within 1 h in seawater, and the aggregates were highly p...

  3. CdSe Nanoparticles with Clean Surfaces: Gas Phase Synthesis and Optical Properties

    Directory of Open Access Journals (Sweden)

    Zhang Hongwei

    2015-01-01

    Full Text Available CdSe nanoparticles (NPs were generated in gas phase with a magnetron plasma gas aggregation cluster beam source. Coagulation-free CdSe nanocrystals with very clean particle surface and interface, as well as a fairly uniform spatial distribution were obtained. The deposited NPs have a good dispersity with a mean diameter of about 4.8nm. A strong photoluminescence band corresponding to the near- band-edge transition of the CdSe NPs was observed. The CdSe NP films show a significant photoconductance induced by laser irradiation. With an applied bias voltage of 10V, the photo- induced current can be as high as 0.4mA under 0.01mW/mm2 405nm laser illumination. Our approach offers an alternative method for CdSe NP synthesis, which has the advantages such as high purity, good process and product control, as well as mass production, as compared to the existing methods.

  4. CdSe nanocrystals ingrained dielectric nanocomposites: synthesis and photoluminescence properties

    Science.gov (United States)

    Dey, Chirantan; Goswami, Madhumita; Karmakar, Basudeb

    2015-01-01

    Cadmium selenide (CdSe) nanocrystals ingrained dielectric nanocomposites in a B2O3-SiO2-Al2O3-Na2O-K2O borosilicate glass system were synthesized by a single step in situ melt quenching technique. The sizes of the nanocrystals as well as the band gap of the nanocomposites were controlled by both concentration of CdSe and post thermal treatment duration. The nanocomposites were characterized by different instrumental techniques including detailed photoluminescence studies. The sizes of the CdSe nanocrystals were found to alter in the range 4-16 nm as estimated from the effective mass approximation model and optical absorption spectroscopy. However, the TEM analysis revealed the generation of two different size ranges, 3-4 and 23-45 nm, of the particles within the dielectric matrix. Selected area diffraction (SAED) and x-ray diffraction (XRD) patterns authenticate the formation of hexagonal nanostructures of CdSe. These nanocomposites were found to be capable of exhibiting strong visible red luminescence around 715 nm on excitation at 446 nm. This has originated from the electron-hole recombination of CdSe nanocrystal and defects or traps related transitions. The properties of these nanocomposites advocate their significant applications as semiconductor based luminescent materials.

  5. A DFT/TDDFT study on the optoelectronic properties of the amine-capped magic (CdSe)13 nanocluster.

    NARCIS (Netherlands)

    Azpiroz, Jon M.; Matxain, Jon M; Infante, Ivan; Lopez, Xabier; Ugalde, Jesus M.

    2013-01-01

    Motivated by the recent experiments by Wang et al. (Angew. Chem., Int. Ed. 2012, 51, 6154-6157), in which the alkylamine-capped magic-size (CdSe)13 has been isolated for the first time, we report on the computational modeling of the putative low-lying isomers of (CdSe)13, both bare and

  6. Size-dependent structure of CdSe nanoclusters formed after ion implantation in MgO

    NARCIS (Netherlands)

    van Huis, MA; van Veen, A; Schut, H; Eijt, SWH; Kooi, BJ; De Hosson, JTM

    The band gap as well as the optical and structural properties of semiconductor CdSe nanoclusters change as a function of the nanocluster size. Embedded CdSe nanoclusters in MgO were created by means of sequential Cd and Se ion implantation followed by thermal annealing. Changes during annealing were

  7. Exciton fine structure in CdSe nanoclusters

    International Nuclear Information System (INIS)

    Leung, K.; Pokrant, S.; Whaley, K.B.

    1998-01-01

    The fine structure in the CdSe nanocrystal absorption spectrum is computed by incorporating two-particle electron-hole interactions and spin-orbit coupling into a tight-binding model, with an expansion in electron-hole single-particle states. The exchange interaction and spin-orbit coupling give rise to dark, low-lying states that are predominantly triplet in character, as well as to a manifold of exciton states that are sensitive to the nanocrystal shape. Near the band gap, the exciton degeneracies are in qualitative agreement with the effective mass approximation (EMA). However, instead of the infinite lifetimes for dark states characteristic of the EMA, we obtain finite radiative lifetimes for the dark states. In particular, for the lowest, predominantly triplet, states we obtain radiative lifetimes of microseconds, in qualitative agreement with the experimental measured lifetimes. The resonant Stokes shifts obtained from the splitting between the lowest dark and bright states are also in good agreement with experimental values for larger crystallites. Higher-lying states exhibit significantly more complex behavior than predicted by EMA, due to extensive mixing of electron-hole pair states. copyright 1998 The American Physical Society

  8. First principles study of O defects in CdSe

    International Nuclear Information System (INIS)

    T-Thienprasert, J.; Limpijumnong, S.; Du, M.-H.; Singh, D.J.

    2012-01-01

    Recently, the vibrational signatures related to oxygen defects in oxygen-doped CdSe were measured using ultrahigh resolution Fourier transform infrared (FTIR) spectroscopy by Chen et al.(2008) . They observed two absorption bands centered at ∼1991.77 and 2001.3 cm -1 , which they attributed to the LVMs of O Cd , in the samples grown with the addition of CdO and excess Se. For the samples claimed to be grown with even more excess Se, three high-frequency modes (1094.11, 1107.45, and 1126.33) were observed and assigned to the LVMs of O Se -V Cd complex. In this work, we explicitly calculated the vibrational signatures of O Cd and O Se -V Cd complex defects based on first principles approach. The calculated vibrational frequencies of O Cd and O Se -V Cd complex are inconsistent with the frequencies observed by Chen et al., indicating that their observed frequencies are from other defects. Potential defects that could explain the experimentally observed modes are suggested.

  9. Cone rod dystrophies

    Directory of Open Access Journals (Sweden)

    Hamel Christian P

    2007-02-01

    Full Text Available Abstract Cone rod dystrophies (CRDs (prevalence 1/40,000 are inherited retinal dystrophies that belong to the group of pigmentary retinopathies. CRDs are characterized by retinal pigment deposits visible on fundus examination, predominantly localized to the macular region. In contrast to typical retinitis pigmentosa (RP, also called the rod cone dystrophies (RCDs resulting from the primary loss in rod photoreceptors and later followed by the secondary loss in cone photoreceptors, CRDs reflect the opposite sequence of events. CRD is characterized by primary cone involvement, or, sometimes, by concomitant loss of both cones and rods that explains the predominant symptoms of CRDs: decreased visual acuity, color vision defects, photoaversion and decreased sensitivity in the central visual field, later followed by progressive loss in peripheral vision and night blindness. The clinical course of CRDs is generally more severe and rapid than that of RCDs, leading to earlier legal blindness and disability. At end stage, however, CRDs do not differ from RCDs. CRDs are most frequently non syndromic, but they may also be part of several syndromes, such as Bardet Biedl syndrome and Spinocerebellar Ataxia Type 7 (SCA7. Non syndromic CRDs are genetically heterogeneous (ten cloned genes and three loci have been identified so far. The four major causative genes involved in the pathogenesis of CRDs are ABCA4 (which causes Stargardt disease and also 30 to 60% of autosomal recessive CRDs, CRX and GUCY2D (which are responsible for many reported cases of autosomal dominant CRDs, and RPGR (which causes about 2/3 of X-linked RP and also an undetermined percentage of X-linked CRDs. It is likely that highly deleterious mutations in genes that otherwise cause RP or macular dystrophy may also lead to CRDs. The diagnosis of CRDs is based on clinical history, fundus examination and electroretinogram. Molecular diagnosis can be made for some genes, genetic counseling is

  10. Ribbons and groups: a thin rod theory for catheters and filaments

    Science.gov (United States)

    Lawton, Wayne; Raghavan, Raghu; Ranjan, S. R.; Viswanathan, Raju

    1999-03-01

    We use the rotation group and its algebra to provide a novel description of deformations of special Cosserat rods or thin rods that have negligible shear. Our treatment was motivated by the problem of the simulation of catheter navigation in a network of blood vessels, where this description is directly useful. In this context, we derive the Euler differential equations that characterize equilibrium configurations of stretch-free thin rods. We apply perturbation methods, used in time-dependent quantum theory, to the thin rod equations to describe incremental deformations of partially constrained rods. Further, our formalism leads naturally to a new and efficient finite element method valid for arbitrary deformations of thin rods with negligible stretch. Associated computational algorithms are developed and applied to the simulation of catheter motion inside an artery network.

  11. Fuel rod pellet loading head

    International Nuclear Information System (INIS)

    Howell, T.E.

    1975-01-01

    An assembly for loading nuclear fuel pellets into a fuel rod comprising a loading head for feeding pellets into the open end of the rod is described. The pellets rest in a perforated substantially V-shaped seat through which air may be drawn for removal of chips and dust. The rod is held in place in an adjustable notched locator which permits alignment with the pellets

  12. Study on Growth Kinetics of CdSe Nanocrystals with a New Model

    Directory of Open Access Journals (Sweden)

    Dixon JohnDavid

    2010-01-01

    Full Text Available Abstract A model which involves both bulk diffusion process and surface reaction process has been developed for describing the growth behaviour of nanoparticles. When the model is employed, hypothesising that either of the processes alone dominates the overall growth process is unnecessary. Conversely, the relative magnitude of contributions from both processes could be obtained from the model. Using this model in our system, the growth process of CdSe QDs demonstrated two different growth stages. During the first stage, the growth of CdSe QDs was dominated by bulk diffusion, whereas, neither the bulk diffusion process nor the surface reaction process could be neglected during the later stage. At last, we successfully modelled the Ostwald ripening of CdSe QDs with LSW theories.

  13. Integrated control rod monitoring device

    International Nuclear Information System (INIS)

    Saito, Katsuhiro

    1997-01-01

    The present invention provides a device in which an entire control rod driving time measuring device and a control rod position support device in a reactor building and a central control chamber are integrated systematically to save hardwares such as a signal input/output device and signal cables between boards. Namely, (1) functions of the entire control rod driving time measuring device for monitoring control rods which control the reactor power and a control rod position indication device are integrated into one identical system. Then, the entire devices can be made compact by the integration of the functions. (2) The functions of the entire control rod driving time measuring device and the control rod position indication device are integrated in a central operation board and a board in the site. Then, the place for the installation of them can be used in common in any of the cases. (3) The functions of the entire control rod driving time measuring device and the control rod position indication device are integrated to one identical system to save hardware to be used. Then, signal input/output devices and drift branching panel boards in the site and the central operation board can be saved, and cables for connecting both of the boards is no more necessary. (I.S.)

  14. Nuclear reactor with control rods

    International Nuclear Information System (INIS)

    Obermeyer, F.D.; Berringer, R.T.

    1979-01-01

    A liquid-cooled nuclear reactor including fuel assemblies mounted within a reactor vessel having linearly movable control rods passing through control rod guide tubes into respective aligned fuel assemblies is described. Reactor coolant circulates through the assemblies. Guide tubes and other vessel internals structures located above the assemblies and is discharged through an outlet nozzle positioned above the elevation of primary flow openings in the guide tube walls. The guide tube includes internal horizontal supports and a length limited continuous control rod guide which, in conjunction with the flow openings, alleviate detrimental coolant cross flows and frictional restraints imposed upon the control rods

  15. Nuclear fuel rods

    International Nuclear Information System (INIS)

    Wada, Toyoji.

    1979-01-01

    Purpose: To remove failures caused from combination of fuel-cladding interactions, hydrogen absorptions, stress corrosions or the likes by setting the quantity ratio of uranium or uranium and plutonium relative to oxygen to a specific range in fuel pellets and forming a specific size of a through hole at the center of the pellets. Constitution: In a fuel rods of a structure wherein fuel pellets prepared by compacting and sintering uranium dioxide, or oxide mixture consisting of oxides of plutonium and uranium are sealed with a zirconium metal can, the ratio of uranium or uranium and plutonium to oxygen is specified as 1 : 2.01 - 1 : 2.05 in the can and a passing hole of a size in the range of 15 - 30% of the outer diameter of the fuel pellet is formed at the center of the pellet. This increases the oxygen partial pressure in the fuel rod, oxidizes and forms a protection layer on the inner surface of the can to control the hydrogen absorption and stress corrosion. Locallized stress due to fuel cladding interaction (PCMI) can also be moderated. (Horiuchi, T.)

  16. Scanning tunneling spectroscopy of CdSe nanocrystals covalently bound to GaAs

    DEFF Research Database (Denmark)

    Walzer, K.; Marx, E.; Greenham, N.C.

    2003-01-01

    We present scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) measurements of CdSe nanocrystals covalently attached to doped GaAs substrates using monolayers of 1,6-hexanedithiol. STM measurements showed the formation of stable, densely packed, homogeneous monolayers...... and the bands in the substrate which are bent under the influence of the strong electric field between the closely separated semiconductor substrate and STM tip. The polarity of the forward bias direction is determined by the alignment of the CdSe electronic states with the semiconductor bands. (C) 2003...

  17. Highly luminescent two dimensional excitons in atomically thin CdSe nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Halder, O.; Pradhani, A.; Rath, S., E-mail: srath@iitbbs.ac.in [School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Toshali Bhawan, Satyanagar, Bhubaneswar 751 007 (India); Sahoo, P. K. [Department of Physics, National Institute of Science Education and Research, Sachivalaya marg, Bhubaneswar 751 005 (India); Satpati, B. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India)

    2014-05-05

    Atomically thin Cadmium Selenide (CdSe) nanosheets have been synthesized using a surfactant mediated growth technique. The transmission electron microscopy studies confirm the presence of single layered nanosheets with thickness 1.31 nm and their stacking structures which are complemented by the small angle x-ray scattering measurements. The strongly bound and polarized character of two dimensional excitonic states with enhanced oscillator strength yielding distinct narrow blue luminescence has been observed from the CdSe nanosheets using room temperature based optical studies.

  18. Synthesis of CdSe/ZnS and CdTe/ZnS Quantum Dots: Refined Digestive Ripening

    Directory of Open Access Journals (Sweden)

    Sreeram Cingarapu

    2012-01-01

    Full Text Available We report synthesis of CdSe and CdTe quantum dots (QDs from the bulk CdSe and CdTe material by evaporation/co-condensation using the solvated metal atom dispersion (SMAD technique and refined digestive ripening. The outcomes of this new process are (1 the reduction of digestive ripening time by employing ligands (trioctylphosphine oxide (TOPO and oleylamine (OA as capping agent as well as digestive ripening solvent, (2 ability to tune the photoluminescence (PL from 410 nm to 670 nm, (3 demonstrate the ability of SMAD synthesis technique for other semiconductors (CdTe, (4 direct comparison of CdSe QDs growth with CdTe QDs growth based on digestive ripening times, and (5 enhanced PL quantum yield (QY of CdSe QDs and CdTe QDs upon covering with a ZnS shell. Further, the merit of this synthesis is the use of bulk CdSe and CdTe as the starting materials, which avoids usage of toxic organometallic compounds, eliminates the hot injection procedure, and size selective precipitation processes. It also allows the possibility of scale up. These QDs were characterized by UV-vis, photoluminescence (PL, transmission electron microscopy (TEM, high-resolution transmission electron microscopy (HRTEM, X-ray photoelectron spectroscopy (XPS, and powder XRD.

  19. Rod Microglia: A Morphological Definition

    Science.gov (United States)

    Taylor, Samuel E.; Morganti-Kossmann, Cristina

    2014-01-01

    Brain microglial morphology relates to function, with ramified microglia surveying the micro-environment and amoeboid microglia engulfing debris. One subgroup of microglia, rod microglia, have been observed in a number of pathological conditions, however neither a function nor specific morphology has been defined. Historically, rod microglia have been described intermittently as cells with a sausage-shaped soma and long, thin processes, which align adjacent to neurons. More recently, our group has described rod microglia aligning end-to-end with one another to form trains adjacent to neuronal processes. Confusion in the literature regarding rod microglia arises from some reports referring to the sausage-shaped cell body, while ignoring the spatial distribution of processes. Here, we systematically define the morphological characteristics of rod microglia that form after diffuse brain injury in the rat, which differ morphologically from the spurious rod microglia found in uninjured sham. Rod microglia in the diffuse-injured rat brain show a ratio of 1.79±0.03 cell length∶cell width at day 1 post-injury, which increases to 3.35±0.05 at day 7, compared to sham (1.17±0.02). The soma length∶width differs only at day 7 post-injury (2.92±0.07 length∶width), compared to sham (2.49±0.05). Further analysis indicated that rod microglia may not elongate in cell length but rather narrow in cell width, and retract planar (side) processes. These morphological characteristics serve as a tool for distinguishing rod microglia from other morphologies. The function of rod microglia remains enigmatic; based on morphology we propose origins and functions for rod microglia after acute neurological insult, which may provide biomarkers or therapeutic targets. PMID:24830807

  20. Digital control rod blocking monitor

    International Nuclear Information System (INIS)

    Funayama, Yoshio.

    1996-01-01

    The present invention system is used for monitoring of a power region of a reactor, and used for monitoring of simultaneous withdrawal of a plurality of control rods without increasing the size or complicating the system. Namely, the system processes signals from a neutron flux detectors at the periphery of control rods controlled for withdrawal. As a result of the processing, the digital monitoring system generates an alarm when the reactor power at the periphery of the control rods fluctuates exceeding an allowable range. In the system, a control rod information forming means prepares frame data comprising front data, positions of the control rods to be withdrawn, frame numbers and completion data. A serial data transmitting means transmits the frame data successively as repeating frame data rows. A control rod information receiving means takes up the frame data of each of control rods to be withdrawn from the transmitted frame data rows. Since the system of the present invention can monitor the withdrawal of a plurality of control rods simultaneously without increasing the size or complicating the system, cost can be saved and the maintenance can be improved. (I.S.)

  1. Control rod experiments in Racine

    International Nuclear Information System (INIS)

    Stanculescu, A.; Humbert, G.

    1981-09-01

    A survey of the control-rod experiments planned within the joint CEA/CNEN-DeBeNe critical experiment RACINE is given. The applicability to both heterogeneous and homogeneous large power LMFBR-cores is discussed. Finally, the most significant results of the provisional design calculations performed on behalf of the RACINE control-rod programme are presented

  2. Control rod drives

    International Nuclear Information System (INIS)

    Kono, Nobuaki.

    1987-01-01

    Purpose: To remove movable portion and improve the reliability by the direct control to coil. Constitution: Coils are disposed vertically at a predetermined interval to the outside of a control rod drive guide tube and each of the coils is adapted to be directly controlled. The coils are arranged at such an interval that a plunger laps over the vertically adjacent coils. In the case of moving the plunger upwardly, a coil just above the coil that attract the plunger is energized while the coil attracting the plunger so far is denergized. Then, the plunger is pulled up to an aimed position by repeating the procedures. In the case of moving the plunger downwardly, the procedures are conducted in the manner opposite to the above. (Kawakami, Y.)

  3. Fuel rod for a reactor

    International Nuclear Information System (INIS)

    Tsuboi, Yoshiaki.

    1976-01-01

    Object: To accurately and simply measure gas pressure within a cladding tube of a fuel rod. Structure: The fuel rod is closed by an end plug with pellets made of uranium dioxide and a pressure detector element sealed into the cladding tube. When the fuel rod is manufactured, helium gases are introduced under pressure into the cladding tube, and the pressure detector element is contracted proportionally by the aforesaid pressure and therefore the amount of contract may be measured to thereby measure the inside pressure of the cladding tube. The amount of contract of the pressure detector element may be measured exteriorly of the fuel rod by arranging a fluorescent screen or film for X-rays or other radiations on one side of the fuel rod. (Yoshino, Y.)

  4. In situ synthesis of P3HT-capped CdSe superstructures and their application in solar cells.

    Science.gov (United States)

    Peng, Yanling; Song, Guosheng; Hu, Xianghua; He, Guanjie; Chen, Zhigang; Xu, Xiaofeng; Hu, Junqing

    2013-02-26

    Organic/inorganic hybrid solar cells have great potentials to revolutionize solar cells, but their use has been limited by inefficient electron/hole transfer due to the presence of long aliphatic ligands and unsatisfying continuous interpenetrating networks. To solve this problem, herein, we have developed a one-pot route for in situ synthesis of poly(3-hexylthiophene) (P3HT)-capped CdSe superstructures, in which P3HT acts directly as the ligands. These CdSe superstructures are in fact constructed from numerous CdSe nanoparticles. The presence of P3HT ligands has no obvious adverse effects on the morphologies and phases of CdSe superstructures. Importantly, higher content of P3HT ligands results in stronger photoabsorption and fluorescent intensity of CdSe superstructure samples. Subsequently, P3HT-capped CdSe superstructures prepared with 50 mg P3HT were used as a model material to fabricate the solar cell with a structure of PEDOT:PSS/P3HT-capped CdSe superstructures: P3HT/Al. This cell gives a power conversion efficiency of 1.32%.

  5. Cell-permeable Ln(III) chelate-functionalized InP quantum dots as multimodal imaging agents

    NARCIS (Netherlands)

    Stasiuk, Graeme J.; Tamang, Sudarsan; Imbert, Daniel; Poillot, Cathy; Giardiello, Marco; Tisseyre, Céline; Barbier, Emmanuel L.; Fries, Pascal Henry; de Waard, Michel; Reiss, Peter; Mazzanti, Marinella

    2011-01-01

    Quantum dots (QDs) are ideal scaffolds for the development of multimodal imaging agents, but their application in clinical diagnostics is limited by the toxicity of classical CdSe QDs. A new bimodal MRI/optical nanosized contrast agent with high gadolinium payload has been prepared through direct

  6. Air annealing induced transformation of cubic CdSe microspheres into hexagonal nanorods and micro-pyramids

    Energy Technology Data Exchange (ETDEWEB)

    Kale, Rohidas B., E-mail: rb_kale@yahoo.co.in [Department of Physics, Institute of Science, Mumbai 400032, M.S. (India); Lu, Shih-Yuan, E-mail: sylu@mx.nthu.edu.tw [Department of Chemical Engineering, National Tsing-Hua University, Hsin-Chu 30013, Taiwan (China)

    2015-08-15

    Highlights: • Nanocrystalline CdSe thin films were deposited using inexpensive CBD method. • Air annealing induced structural and interesting morphological transformation. • The as-deposited CdSe thin films showed a blue shift in its optical spectra. • The films showed a red shift in their optical spectra after annealing. - Abstract: CdSe thin films have been deposited onto glass substrates using a chemical bath deposition method at relatively low temperatures (40 °C). The precursors used for the deposition of the thin films are cadmium nitrate hexahydrate, freshly prepared sodium selenosulfate solution and aqueous ammonia solution as a complex as well as pH adjusting reagent. In order to study the influence of air annealing on their physicochemical properties, the as-deposited CdSe thin films were further annealed at 200 °C and 400 °C for 3 h in air atmosphere. Significant changes in the morphology and photonic properties were clearly observed after the thermal annealing of the CdSe thin films. The as-deposited CdSe films grow with the cubic phase that transforms into mixed cubic and hexagonal wurtzite phase with improved crystalline quality of the films after the air annealing. Morphological observation reveals that the as-deposited thin films grow with multilayer that consists of network or mesh like structure, uniformly deposited on the glass substrate over which microspheres are uniformly distributed. After air annealing, CdSe nanorods emerged from the microspheres along with conversion of few microspheres into micro-pyramids. The UV–visible study illustrates that the as-deposited thin film shows blue shifts in its optical spectrum and the spectrum was red-shifted after annealing the CdSe thin films. The band gap of the CdSe thin films were found to be decreased after the thermal treatment.

  7. Synthesis and analysis of ZnO and CdSe nanoparticles

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 65; Issue 4. Synthesis and analysis of ZnO and CdSe nanoparticles. Shriwas S Ashtaputre Aparna Deshpande Sonali Marathe M E Wankhede Jayashree Chimanpure Renu Pasricha J Urban S K Haram S W Gosavi S K Kulkarne. Volume 65 Issue 4 October 2005 pp ...

  8. Structural, optical and magnetic properties of cobalt-doped CdSe ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Pure and Co-doped CdSe nanoparticles have been synthesized by hydrothermal technique. The synthesized nanoparticles have been characterized using X-ray diffraction (XRD), ultraviolet-visible spectro- scopy (UV–Visible), photoluminescence spectroscopy (PL), energy dispersive spectroscopy (EDS), transmi-.

  9. Synthesis and characterization of CdSe nanoparticles via thermal treatment technique

    Directory of Open Access Journals (Sweden)

    Aeshah Salem

    Full Text Available The synthesis of CdSe nanoparticles was undertaken via the thermal treatment method at varying calcination temperatures from 450 to 700 °C in alternate oxygen and nitrogen environment. Selenium powder was dissolved in ethylenediamine at 200 °C for 2 h before mixing with the metal precursor, cadmium nitrate and the capping agent polyvinylpyrrolidone to materialize the CdSe nanoparticles upon calcination. A series of measurements were employed to analyze the structural, elemental and optical properties of the attained nanoparticles at room temperatures using FTIR, XRD, EDX, SEM and TEM spectroscopies. XRD patterns and FTIR spectra revealed of the fact that, prior to calcination, an amorphous phase of the unheated material has taken shape, which after calcination achieved the crystalline structure of CdSe nanoparticles. The CdSe nanoparticle samples confirmed to be pure cadmium and selenium through EDX and FTIR analyses. The TEM images showed that as the calcination temperature raised from 450 to 700 °C the average particle size increased from 11 to 32 nm and the optical band gap energy decreased from 2.36 to 1.80 eV. Keywords: Cadmium selenide nanoparticles, Thermal treatment method, Structural and optical properties

  10. High dose gamma ray exposure effect on the properties of CdSe nanowires

    Science.gov (United States)

    Narula, Chetna; Chauhan, R. P.

    2018-03-01

    We report high dose gamma-ray (γ-ray) induced modifications incurred by polycrystalline cadmium selenide (CdSe) nanowires of 80 nm diameter. The nanowires have been synthesized using polycarbonate template assisted electro-deposition technique. The samples were irradiated with 60Co γ-radiation at a dose rate of 4.533 kGy/h for different time intervals with doses varying from 0 to 400 kGy. The effects of γ rays on the structural, morphological, optical and electrical properties of nanowires are discussed. XRD patterns of as-synthesized and gamma irradiated CdSe nanowires did not show any phase transformations but the variation in relative intensity was observed. The crystallite size evaluated using Scherrer's formula was found to vary. The optical parameters were obtained using UV-vis spectrometer measurements of absorption. Band gap was found to decrease with γ irradiation up to a dose of 300 kGy after which it was seen to increase. Refractive index and optical dielectric constants were also evaluated. Subjection of γ-radiation also brings about key changes in the electrical properties of CdSe nanowires. The attained data shows that the electrical conductivity varies with absorbed dose. The variations in the properties of CdSe nanowires can be considered as a consequence of ionization process, defect production and its annihilation.

  11. Conformal and atomic characterization of ultrathin CdSe platelets with a helical shape

    NARCIS (Netherlands)

    Hutter, Eline M.; Bladt, Eva; Goris, Bart; Pietra, Francesca; Van Der Bok, Johanna C.; Boneschanscher, Mark P.; De Mello Donegá, Celso; Bals, Sara; Vanmaekelbergh, Daniël

    2014-01-01

    Currently, ultrathin colloidal CdSe semiconductor nanoplatelets (NPLs) with a uniform thickness that is controllable up to the atomic scale can be prepared. The optical properties of these 2D semiconductor systems are the subject of extensive research. Here, we reveal their natural morphology and

  12. A Biphasic Ligand Exchange Reaction on Cdse Nanoparticles: Introducing Undergraduates to Functionalizing Nanoparticles for Solar Cells

    Science.gov (United States)

    Zemke, Jennifer M.; Franz, Justin

    2016-01-01

    Semiconductor nanoparticles, including cadmium selenide (CdSe) particles, are attractive as light harvesting materials for solar cells. In the undergraduate laboratory, the size-tunable optical and electronic properties can be easily investigated; however, these nanoparticles (NPs) offer another platform for application-based tunability--the NP…

  13. Rapid synthesis of CdSe nanocrystals in aqueous solution at room ...

    Indian Academy of Sciences (India)

    Administrator

    Water-soluble thioglycolic acid-capped CdSe nanocrystals (NCs) were prepared in aqueous solu- tion at room temperature. We investigated the ... NCs dispersed in buffer solution (pH = 4⋅0). FTIR spectra were recorded on a ... the theory of acid-base equilibrium, the initial pH value of original solution determines the ...

  14. Structural and optical properties of electron beam evaporated CdSe ...

    Indian Academy of Sciences (India)

    WINTEC

    Abstract. Thin films of cadmium selenide (CdSe) as a semiconductor is well suited for opto-electronic appli- cations such as photo detection or solar energy conversion, due to its optical and electrical properties, as well as its good chemical and mechanical stability. In order to explore the possibility of using this in ...

  15. Temporary Charge Carrier Separation Dominates the Photoluminescence Decay Dynamics of Colloidal CdSe Nanoplatelets

    NARCIS (Netherlands)

    Rabouw, F.T.; van der Bok, J.C.; Spinicelli, Piernicola; Mahler, B.; Nasilowski, M.; Pedetti, S.; Dubertret, B.; Vanmaekelbergh, Daniel

    2016-01-01

    Luminescent colloidal CdSe nanoplatelets with atomically defined thicknesses have recently been developed, and their potential for various applications has been shown. To understand their special properties, experiments have until now focused on the relatively short time scales of at most a few

  16. Stability studies of CdSe nanocrystals in an aqueous environment

    DEFF Research Database (Denmark)

    Xi, Lifei; Lek, Jun Yan; Liang, Yen Nan

    2011-01-01

    -generated holes oxidize CdSe to Cd2 + and elemental Se. The dissolution was accelerated in an acidic medium while moderate alkalinity (pH = 10.3) can slow down the dissolution possibly due to precipitation of nanocrystals. This study has strong implications for the use of these crystals in aqueous environments...

  17. Control rod position detection device

    International Nuclear Information System (INIS)

    Akita, Haruo; Ogiwara, Sakae.

    1996-01-01

    The device of the present invention is used in a back-up shut down system of an LMFBR type reactor which is easy for maintenance, has high reliability and can recognize the position of control rods accurately. Namely, a permanent magnet is disposed to a control rod extension tube connected to the lower portion of the control rod. The detector guide tube is disposed in the vicinity of the control rod extension tube. A detector having a detection coil is inserted into a detector tube. With such constitution, the control rod can be detected at one position using the following method. (1) the movement of the magnetic field of the permanent magnet is detected by the detection coil. (2) a plurality of grooves are formed on the control rod extension tube, and the movement of the grooves is detected. In addition, the detection coil is inserted into the detector guide tube, and the signals from the detection coil are inputted to a signal processing circuit disposed at the outside of the reactor vessel using an MI cable to enable the maintenance of the detector. Further, if the detector comprises a detection coil and an excitation coil, the position of a dropped control rod can be recognized at a plurality of points. (I.S.)

  18. Spacers for fuel rod clusters

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1978-01-01

    The proposition deals with the fixing of nuclear fuel element rods in a grid which consists of a number of crossed Zy-plates which form cells. The rectangular cells have projections which serve as spacers for the fuel rods. According to the invention there are additional butt straps which can be moved in such a way that insertion and extraction of the fuel rods can be done without obstruction and they can be spring-loaded hold in their final position. (UWI) [de

  19. Virtual photonic couplings of quantum nanostructures

    DEFF Research Database (Denmark)

    Matsueda, H.; Hvam, Jørn Märcher; Ducommun, Yann

    as early as 1996, and subsequently on quantum gate application with quantum dots (QDs), coherent modes in an ensemble of QDs, a parity conserving dynamic Förster type mechanism between identical tuned QDs involving a real photon (RPH) or virtual photon (VPH), and the RDDDI mechanism between nonidentical...... detuned realistic GaAs QDs assisted by VPHs showing fine structures in photoluminescence (PL) spectra [2]. Our data are taken on each QD individually, see Fig.1, whereas other published data were so far measured on ensembles of QDs, e.g. solution-grown statistical number of CdSe QDs collected in a layered......, we illustrate more general resonance dynamic multipole-multipole interactions (RDMMIs) by plotting the interaction energy and range as a function of inter-polar distance, see Fig. 2 [4]. This RDMMI should inevitably appear in the course of realizing quantum information devices such as quantum...

  20. Control rod drives

    International Nuclear Information System (INIS)

    Sato, Takao; Arita, Setsuo; Mizuno, Katsuhiro.

    1986-01-01

    Purpose: To enable fine positioning by using an induction motor of a simple structure as a driving source and thereby improve the reliability of control rod drives. Constitution: A step actuator is directly coupled with an induction motor, in which the induction motor is connected by way of a pulse driving control circuit to an AC power source, while the step actuator is connected to a DC power source. When a thyristor is turned ON, the motor outputs a positive torque and rotates and starts to rotate in the forward direction. When the other thyristor is turned ON, the motor is applied with braking by a reverse excitation in a manner equivalent to the change for the exciting phase sequence. When the speed is lowered to a predetermined value, braking is actuated by the torque of the step actuator and the motor stops at a zero position or balanced position. In this way, braking is actuated from the decelerating step to the stopping with no abrasion and a highly accurate positioning is possible due to the characteristics of the step actuator. (Horiuchi, T.)

  1. Control rod drive

    International Nuclear Information System (INIS)

    Watando, Kosaku; Tanaka, Yuzo; Mizumura, Yasuhiro; Hosono, Kazuya.

    1975-01-01

    Object: To provide a simple and compact construction of an apparatus for driving a drive shaft inside with a magnetic force from the outside of the primary system water side. Structure: The weight of a plunger provided with an attraction plate is supported by a plunger lift spring means so as to provide a buffer action at the time of momentary movement while also permitting the load on lift coil to be constituted solely by the load on the drive shaft. In addition, by arranging the attraction plate and lift coil so that they face each other with a small gap there-between, it is made possible to reduce the size and permit efficient utilization of the attracting force. Because of the small size, cooling can be simply carried out. Further, since there is no mechanical penetration portion, there is no possibility of leakage of the primary system water. Furthermore, concentration of load on a latch pin is prevented by arranging so that with a structure the load of the control rod to be directly beared through the scrum latch. (Kamimura, M.)

  2. Nuclear reactor control rod

    International Nuclear Information System (INIS)

    Cearley, J.E.; Izzo, K.R.

    1987-01-01

    This patent describes a vertically oriented bottom entry control rod from a nuclear reactor: a frame including an elongated central spine of cruciform cross section connected between an upper support member and a lower support member both of cruciform shape having four laterally extending arms. The arms are in alignment with the arms of the lower support member and each aligned upper and lower support members has a sheath extending between; absorber plates of neutron absorber material, different from the material of the frame, one of the absorber plates is positioned within a sheath beneath each of the arms; attachment means suspends the absorber plates from the arms of the upper support member within a sheath; elongated absorber members positioned within a sheath between each of the suspended absorber plates and an arm of the lower support member; and joint means between the upper ends of the absorber members and the lower ends of the suspended absorber plates for minimizing gaps; the sheath means encloses the suspended absorber plates and the absorber members extending between aligned arms of the upper and lower support members and secured

  3. Quantitative size-dependent structure and strain determination of CdSe nanoparticles using atomic pair distribution function analysis

    International Nuclear Information System (INIS)

    Masadeh, A. S.; Bozin, E. S.; Farrow, C. L.; Paglia, G.; Juhas, P.; Billinge, S. J. L.; Karkamkar, A.; Kanatzidis, M. G.

    2007-01-01

    The size-dependent structure of CdSe nanoparticles, with diameters ranging from 2 to 4 nm, has been studied using the atomic pair distribution function (PDF) method. The core structure of the measured CdSe nanoparticles can be described in terms of the wurtzite atomic structure with extensive stacking faults. The density of faults in the nanoparticles is ∼50%. The diameter of the core region was extracted directly from the PDF data and is in good agreement with the diameter obtained from standard characterization methods, suggesting that there is little surface amorphous region. A compressive strain was measured in the Cd-Se bond length that increases with decreasing particle size being 0.5% with respect to bulk CdSe for the 2 nm diameter particles. This study demonstrates the size-dependent quantitative structural information that can be obtained even from very small nanoparticles using the PDF approach

  4. Quantitative size-dependent structure and strain determination of CdSe nanoparticles using atomic pair distribution function analysis

    Science.gov (United States)

    Masadeh, A. S.; Božin, E. S.; Farrow, C. L.; Paglia, G.; Juhas, P.; Billinge, S. J. L.; Karkamkar, A.; Kanatzidis, M. G.

    2007-09-01

    The size-dependent structure of CdSe nanoparticles, with diameters ranging from 2to4nm , has been studied using the atomic pair distribution function (PDF) method. The core structure of the measured CdSe nanoparticles can be described in terms of the wurtzite atomic structure with extensive stacking faults. The density of faults in the nanoparticles is ˜50% . The diameter of the core region was extracted directly from the PDF data and is in good agreement with the diameter obtained from standard characterization methods, suggesting that there is little surface amorphous region. A compressive strain was measured in the Cd-Se bond length that increases with decreasing particle size being 0.5% with respect to bulk CdSe for the 2nm diameter particles. This study demonstrates the size-dependent quantitative structural information that can be obtained even from very small nanoparticles using the PDF approach.

  5. The Promotion of the Efficiency of Organic Photovoltaic Devices by Addition of Anisotropic CdSe Nanocrystals

    Directory of Open Access Journals (Sweden)

    Shu-Ru Chung

    2014-01-01

    Full Text Available CdSe nanocrystals (NCs with different morphologies have been synthesized and applied as the acceptor in the active layer of the organic photovoltaic (OPV devices. CdSe tetrapod (TP/nanorod (NR with zinc-blended seeds and wurtzite arms is prepared by seed growth method and mixed with poly(3-hexylthiophene (P3HT: [6,6]-phenyl-C61-butyric acid methyl ester (PCBM. When the concentrations of CdSe in P3HT: PCBM system are 50 wt% optimally, the efficiency can be promoted about 4.3%, suggesting that an enhancement of 13.2% can be obtained and the addition of anisotropic CdSe NCs content in the active layer can be beneficial for the transport of electrons and light absorption in the OPV devices.

  6. Atomic Structure of Wurtzite CdSe (Core)/CdS (Giant Shell) Nanobullets Related to Epitaxy and Growth.

    Science.gov (United States)

    Bladt, Eva; van Dijk-Moes, Relinde J A; Peters, Joep; Montanarella, Federico; de Mello Donega, Celso; Vanmaekelbergh, Daniël; Bals, Sara

    2016-11-02

    Heteronanocrystals consisting of a CdSe core and a giant CdS shell have shown remarkable optical properties which are promising for applications in opto-electrical devices. Since these properties sensitively depend on the size and shape, a morphological characterization is of high interest. Here, we present a high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) study of CdSe (core)/CdS (giant shell) heteronanocrystals. Electron tomography reveals that the nanocrystals have a bullet shape, either ending in a tip or a small dip, and that the CdSe core is positioned closer to the tip (or dip) than to the hexagonal base. Based on a high resolution HAADF-STEM study, we were able to determine all the surface facets. We present a heuristic model for the different growth stages of the CdS crystal around the CdSe core.

  7. Means for driving control rod

    International Nuclear Information System (INIS)

    Sato, Haruo; Sasaki, Masayoshi.

    1974-01-01

    Object: To enable wire rope to be readily removed from guide pulleys for the inspection or replacement of control rods. Structure: A pair of guide pulleys disposed to oppose each other are provided on their periphery with respective notches which are arranged in a staggered fashion. In this way, the rope is made to be removed from the notches for inspection of the control rod or for other purposes. (Kamimura, M.)

  8. Interaction of whispering-gallery electromagnetic waves with acoustic waves in tapered quartz rods

    International Nuclear Information System (INIS)

    Sychugov, V A; Magdich, L N; Torchigin, V P

    2001-01-01

    The propagation of whispering-gallery waves in a dynamic cavity formed by a tapered quartz rod and the plane interface between two regions of the rod with different refractive indices moving along the axis of the rod is analysed. It is shown that the limiting frequency shift of light in such a cavity is determined by its Q factor and the attainable refractive index discontinuity. The possibility of using acoustic waves for obtaining a dynamic cavity is considered. (laser applications and other topics in quantum electronics)

  9. Ex Situ Formation of Metal Selenide Quantum Dots Using Bacterially Derived Selenide Precursors

    Energy Technology Data Exchange (ETDEWEB)

    Fellowes, Jonathan W.; Pattrick, Richard; Lloyd, Jon; Charnock, John M.; Coker, Victoria S.; Mosselmans, JFW; Weng, Tsu-Chien; Pearce, Carolyn I.

    2013-04-12

    Luminescent quantum dots were synthesized using bacterially derived selenide (SeII-) as the precursor. Biogenic SeII- was produced by the reduction of Se-IV by Veillonella atypica and compared directly against borohydride-reduced Se-IV for the production of glutathione-stabilized CdSe and beta-mercaptoethanol-stabilized ZnSe nanoparticles by aqueous synthesis. Biological SeII- formed smaller, narrower size distributed QDs under the same conditions. The growth kinetics of biologically sourced CdSe phases were slower. The proteins isolated from filter sterilized biogenic SeII- included a methylmalonyl-CoA decarboxylase previously characterized in the closely related Veillonella parvula. XAS analysis of the glutathione-capped CdSe at the S K-edge suggested that sulfur from the glutathione was structurally incorporated within the CdSe. A novel synchrotron based XAS technique was also developed to follow the nucleation of biological and inorganic selenide phases, and showed that biogenic SeII- is more stable and more resistant to beam-induced oxidative damage than its inorganic counterpart. The bacterial production of quantum dot precursors offers an alternative, 'green' synthesis technique that negates the requirement of expensive, toxic chemicals and suggests a possible link to the exploitation of selenium contaminated waste streams.

  10. Ex situ formation of metal selenide quantum dots using bacterially derived selenide precursors

    International Nuclear Information System (INIS)

    Fellowes, J W; Pattrick, R A D; Lloyd, J R; Charnock, J M; Coker, V S; Mosselmans, J F W; Weng, T-C; Pearce, C I

    2013-01-01

    Luminescent quantum dots were synthesized using bacterially derived selenide (Se II− ) as the precursor. Biogenic Se II− was produced by the reduction of Se IV by Veillonella atypica and compared directly against borohydride-reduced Se IV for the production of glutathione-stabilized CdSe and β-mercaptoethanol-stabilized ZnSe nanoparticles by aqueous synthesis. Biological Se II− formed smaller, narrower size distributed QDs under the same conditions. The growth kinetics of biologically sourced CdSe phases were slower. The proteins isolated from filter sterilized biogenic Se II− included a methylmalonyl-CoA decarboxylase previously characterized in the closely related Veillonella parvula. XAS analysis of the glutathione-capped CdSe at the S K-edge suggested that sulfur from the glutathione was structurally incorporated within the CdSe. A novel synchrotron based XAS technique was also developed to follow the nucleation of biological and inorganic selenide phases, and showed that biogenic Se II− is more stable and more resistant to beam-induced oxidative damage than its inorganic counterpart. The bacterial production of quantum dot precursors offers an alternative, ‘green’ synthesis technique that negates the requirement of expensive, toxic chemicals and suggests a possible link to the exploitation of selenium contaminated waste streams. (paper)

  11. Study of the photodissociation of a CdSe nanocrystal beam by means of photoluminescence and Raman scattering

    CERN Document Server

    Orii, T; Onari, S; Kaito, S I; Arai, T

    1997-01-01

    We developed an apparatus that enables us to perform optical measurements of nanocrystals suspended in vacuum. CdSe nanocrystals were produced by a gas evaporation method, and nanocrystal beams were then formed using an inert-gas flow with differential pumping. We measured photoluminescence spectra of the nanocrystal beams with excitations of various photon energies and powers. For a low excitation power, edge emission of the CdSe nanocrystal beam was observed. With increase of the laser power, Raman lines of Se dimers emitted due to the photodissociation of CdSe nanocrystals were observed. It was found that the thresholds of the excitation laser fluence for the photodissociation of CdSe nanocrystals were much smaller than the thresholds of laser fluence for the laser-induced emission of Se atoms from bulk CdSe. The electronic process is dominant in the photodissociation of CdSe nanocrystals whose surfaces are completely free. We suggest that the effective supply of carriers confined in nanocrystals to the su...

  12. Simulation of leaking fuel rods

    International Nuclear Information System (INIS)

    Hozer, Z.

    2006-01-01

    The behaviour of failed fuel rods includes several complex phenomena. The cladding failure initiates the release of fission product from the fuel and in case of large defect even urania grains can be released into the coolant. In steady state conditions an equilibrium - diffusion type - release is expected. During transients the release is driven by a convective type leaching mechanism. There are very few experimental data on leaking WWER fuel rods. For this reason the activity measurements at the nuclear power plants provide very important information. The evaluation of measured data can help in the estimation of failed fuel rod characteristics and the prediction of transient release dynamics in power plant transients. The paper deals with the simulation of leaking fuel rods under steady state and transient conditions and describes the following new results: 1) A new algorithm has been developed for the simulation of leaking fuel rods under steady state conditions and the specific parameters of the model for the Paks NPP has been determined; 2) The steady state model has been applied to calculation of leaking fuel characteristics using iodine and noble gas activity measurement data; 3) A new computational method has been developed for the simulation of leaking fuel rods under transient conditions and the specific parameters for the Paks NPP has been determined; 4) The transient model has been applied to the simulation of shutdown process at the Paks NPP and for the prediction of the time and magnitude of 123 I activity peak; 5) Using Paks NPP data a conservative value has been determined for the upper limit of the 123 I release from failed fuel rods during transients

  13. The Third ATLAS ROD Workshop

    CERN Multimedia

    Poggioli, L.

    A new-style Workshop After two successful ATLAS ROD Workshops dedicated to the ROD hardware and held at the Geneva University in 1998 and in 2000, a new style Workshop took place at LAPP in Annecy on November 14-15, 2002. This time the Workshop was fully dedicated to the ROD-TDAQ integration and software in view of the near future integration activities of the final RODs for the detector assembly and commissioning. More precisely, the aim of this workshop was to get from the sub-detectors the parameters needed for T-DAQ, as well as status and plans from ROD builders. On the other hand, what was decided and assumed had to be stated (like EB decisions and URDs), and also support plans. The Workshop gathered about 70 participants from all ATLAS sub-detectors and the T-DAQ community. The quite dense agenda allowed nevertheless for many lively discussions, and for a dinner in the old town of Annecy. The Sessions The Workshop was organized in five main sessions: Assumptions and recommendations Sub-de...

  14. Electrodeposition and characterization of CdSe x-Te 1- x semiconducting thin films

    Science.gov (United States)

    Benamar, E.; Rami, M.; Fahoume, M.; Chraibi, F.; Ennaoui, A.

    1999-07-01

    Thin polycrystalline films of cadmium chalcogenides CdSe xTe 1-x ( 0 ≤ x ≤ 1) have been prepared by electrochemical plating on ITO (indium tin oxide) coated glass substrates from an acid sulfate solution at 90 °C. Structural, morphological and compositional studies of the deposited films are reported as a function of the x coefficient. XRD analysis shows that all deposits have a cubic structure with a preferred orientation along the (111) direction. The composition in the films is found to vary linearly with the composition in the solution. The increase in the selenium content x in the CdSe xTe 1-x films decreases the lattice constant and increases the band gap. Nevertheless this latter presents a minimum for x = 0.27.

  15. Electric Field Effects on Photoluminescence of CdSe Nanoparticles in a PMMA Film

    Directory of Open Access Journals (Sweden)

    Takakazu Nakabayashi

    2014-06-01

    Full Text Available External electric field effects on spectra and decay of photoluminescence (PL as well as on absorption spectra were measured for CdSe nanoparticles in a poly(methyl methacrylate (PMMA film. Electrophotoluminescence (E-PL spectra as well as electroabsorption spectra show a remarkable Stark shift which depends on the particle size, indicating a large electric dipole moment in the first exciton state. The E-PL spectra also show that PL of CdSe is quenched by application of electric fields, and the magnitude of the field-induced quenching becomes larger with increasing size. The PL decay profiles observed in the absence and presence of electric field show that the field-induced quenching of PL mainly originates from the field-induced decrease in population of the emitting state prepared through the relaxation from the photoexcited state.

  16. Realization and field emission of CdSe nano-tetrapods with different arm lengths

    International Nuclear Information System (INIS)

    Zhao Lijuan; Pang Qi; Yang Shihe; Ge Weikun; Wang Jiannong

    2009-01-01

    The arms of CdSe nano-tetrapods can be greatly elongated with the core diameters and arm width unchanged by multiple injections. Room-temperature absorption and photoluminescence (PL) spectra of tetrapods with different arm lengths show that these tetrapods have almost the same core size, which is consistent with the high resolution TEM results. Field emission characteristics show that the onset field required drawing a current density of ∼0.1 μAcm -2 from CdSe nano-tetrapods with different arm lengths are 22 Vμm -1 , 9 Vμm -1 , and 4 Vμm -1 , respectively, and the field enhancement factors are determined to be about 218, 554, and 946, respectively. Results show that the longer is the arm of the tetrapods, the lower the turn-on field and the higher the field enhancement factor.

  17. Study of sub band gap absorption of Sn doped CdSe thin films

    International Nuclear Information System (INIS)

    Kaur, Jagdish; Rani, Mamta; Tripathi, S. K.

    2014-01-01

    The nanocrystalline thin films of Sn doped CdSe at different dopants concentration are prepared by thermal evaporation technique on glass substrate at room temperature. The effect of Sn doping on the optical properties of CdSe has been studied. A decrease in band gap value is observed with increase in Sn concentration. Constant photocurrent method (CPM) is used to study the absorption coefficient in the sub band gap region. Urbach energy has been obtained from CPM spectra which are found to increase with amount of Sn dopants. The refractive index data calculated from transmittance is used for the identification of oscillator strength and oscillator energy using single oscillator model which is found to be 7.7 and 2.12 eV, 6.7 and 2.5 eV for CdSe:Sn 1% and CdSe:Sn 5% respectively

  18. Study of sub band gap absorption of Sn doped CdSe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Jagdish; Rani, Mamta [Department of Physics, Panjab University, Chandigarh- 160014 (India); Tripathi, S. K., E-mail: surya@pu.ac.in [Centre of Advanced Study in Physics, Panjab University, Chandigarh- 160014 (India)

    2014-04-24

    The nanocrystalline thin films of Sn doped CdSe at different dopants concentration are prepared by thermal evaporation technique on glass substrate at room temperature. The effect of Sn doping on the optical properties of CdSe has been studied. A decrease in band gap value is observed with increase in Sn concentration. Constant photocurrent method (CPM) is used to study the absorption coefficient in the sub band gap region. Urbach energy has been obtained from CPM spectra which are found to increase with amount of Sn dopants. The refractive index data calculated from transmittance is used for the identification of oscillator strength and oscillator energy using single oscillator model which is found to be 7.7 and 2.12 eV, 6.7 and 2.5 eV for CdSe:Sn 1% and CdSe:Sn 5% respectively.

  19. Synthesis and characterization of CdS and CdSe nanoparticles ...

    Indian Academy of Sciences (India)

    Administrator

    2000FX machine operating at 160 kV. 2.2 Synthesis of CdS and CdSe nanoparticles. Tri-n-octylphosphine oxide (TOPO) was dried and degassed by heating to ... vacuum to get cadmium sulphide nanoparticles. Cadmium selenide nanoparticles were similarly prepared from Cd[Se(Ox)]2 (2) (0⋅61 g, 1 mmol). 3. Results and ...

  20. Structural, optical and magnetic properties of cobalt-doped CdSe ...

    Indian Academy of Sciences (India)

    Administrator

    with coercivity (Hc) and remanence magnetization (Mr) values, 221, 301, 99, 65 Oe and 2⋅83 × 10–4, 6⋅15 × 10–5,. 2⋅93 × 10–4, 5⋅23 × 10–4 emu/g, respectively, have been observed for pure, 5, 10 and 15% of doping concentra- tion. For pure CdSe nanoparticles, diamagnetic curve. (figure 8(a)) has been obtained, ...

  1. Fabrication of CdSe quantum dots/permutite luminescent materials

    Indian Academy of Sciences (India)

    Administrator

    cence spectra, X-ray diffraction and scanning electron microscopy were used for the characterization of samples. The spectra analyses results showed that the illuminant colour of QDs/permutite powder was similar to the corresponding QDs colloid. X-ray diffraction measurements indicated that the (1 0 1) diffraction peak.

  2. Photophysical properties of CdSe quantum dot self-assemblies with zinc phthalocyanines and azaphthalocyanines

    Czech Academy of Sciences Publication Activity Database

    Suchánek, Jan; Lang, Kamil; Nováková, V.; Zimčík, P.; Zelinger, Zdeněk; Kubát, Pavel

    2013-01-01

    Roč. 12, č. 5 (2013), s. 743-750 ISSN 1474-905X R&D Projects: GA ČR GAP208/10/1678 Institutional support: RVO:61388955 ; RVO:61388980 Keywords : photodynamic therapy * fluorescence spectra * singlet oxygen Subject RIV: CF - Physical ; Theoretical Chemistry; CA - Inorganic Chemistry (UACH-T) Impact factor: 2.939, year: 2013

  3. Reactor control rod supporting structure

    International Nuclear Information System (INIS)

    Akimoto, Tokuzo; Miyata, Hiroshi.

    1984-01-01

    Purpose: To enable stable reactor core control even in extremely great vertical earthquakes, as well as under normal operation conditions in FBR type reactors. Constitution: Since a mechanism for converting the rotational movement of a control rod into vertical movement is placed at the upper portion of the reactor core at high temperature, the mechanism should cause fusion or like other danger after the elapse of a long period of time. In view of the above, the conversion mechanism is disposed to the lower portion of the reactor core at a lower temperature region. Further, the connection between the control rod and the control rod drive can be separated upon great vertical earthquakes. (Seki, T.)

  4. Advanced gray rod control assembly

    Energy Technology Data Exchange (ETDEWEB)

    Drudy, Keith J; Carlson, William R; Conner, Michael E; Goldenfield, Mark; Hone, Michael J; Long, Jr., Carroll J; Parkinson, Jerod; Pomirleanu, Radu O

    2013-09-17

    An advanced gray rod control assembly (GRCA) for a nuclear reactor. The GRCA provides controlled insertion of gray rod assemblies into the reactor, thereby controlling the rate of power produced by the reactor and providing reactivity control at full power. Each gray rod assembly includes an elongated tubular member, a primary neutron-absorber disposed within the tubular member said neutron-absorber comprising an absorber material, preferably tungsten, having a 2200 m/s neutron absorption microscopic capture cross-section of from 10 to 30 barns. An internal support tube can be positioned between the primary absorber and the tubular member as a secondary absorber to enhance neutron absorption, absorber depletion, assembly weight, and assembly heat transfer characteristics.

  5. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 2 discusses the following topics: Fuel Rod Extraction System Test Results and Analysis Reports and Clamping Table Test Results and Analysis Reports

  6. Lateral Penetration of a Rod

    Science.gov (United States)

    Alston, James; Bless, Stephan; Subramanian, Ravi

    2002-03-01

    Penetration of yawed rods remains one of the outstanding problems in terminal ballistics. An essential feature of yawed rod penetration is the interaction of the shank of the projectile with the side of the penetration cavity. A two-dimensional finite difference code was used to solve this problem for the case of a projectile with a circular cross section penetrating armor steel. This case is particularly relevant for the problem of a high velocity high density rod penetrating a finite plate. The force exerted by the target on the projectile was determined as a function of embedment depth and lateral velocity. The solution was verified by checking the centerline pressure against the closed form solution for cylindrical cavity expansion

  7. Maximum/minimum asymmetric rod detection

    International Nuclear Information System (INIS)

    Huston, J.T.

    1990-01-01

    This patent describes a system for determining the relative position of each control rod within a control rod group in a nuclear reactor. The control rod group having at least three control rods therein. It comprises: means for producing a signal representative of a position of each control rod within the control rod group in the nuclear reactor; means for establishing a signal representative of the highest position of a control rod in the control rod group in the nuclear reactor; means for establishing a signal representative of the lowest position of a control rod in the control rod group in the nuclear reactor; means for determining a difference between the signal representative of the position of the highest control rod and the signal representative of the position of the lowest control rod; means for establishing a predetermined limit for the difference between the signal representative of the position of the highest control rod and the signal representative of the position of the lowest control rod; and means for comparing the difference between the signals with the predetermined limit. The comparing means producing an output signal when the difference between the signals exceeds the predetermined limit

  8. Accurate structure and size determination of CdSe nanoparticles using PDF analysis

    Science.gov (United States)

    Masadeh, A. S.; Bozin, E. S.; Juhas, P.; Paglia, G.; Karkamkar, A.; Kanatzidis, M. G.; Billinge, S. J. L.

    2007-03-01

    The atomic pair distribution function (PDF) is total scattering based technique, which includes both Bragg and diffuse scattering, can provide quantitative information about the local structure of the materials at different length scales. The PDF method is used to quantify intermediate-range order and address the size and structure in series of CdSe nanoparticles (NPs), with diameter sizes ranging from 2 to 4 nm, prepared by the methods of Peng et al.^1. The PDF data were collected at the APS, using high energy x-rays. I will discuss how the PDF yields precise structural information about the NPs such as local bonding, atomic structure size of the core, and so on, as a function of NP diameter. For example, the core structure of the measured CdSe NPs was found to possess a well-defined wurtzite structure. The diameter of CdSe NPs extracted from the PDF data is in good agreement with the one obtained form standard methods. (1) Peng et al. J. Am. Chem. Soc. 1998, 120, 5343-5344.

  9. Optical properties of P3HT:tributylphosphine oxide-capped CdSe nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Benchaabane, A. [Faculte des Sciences d' Amiens, Laboratoire de Physique de la Matiere Condensee, Amiens (France); Universite Tunis El-Manar, Laboratoire de Materiaux avances et phenomenes quantiques, Faculte des Sciences de Tunis El Manar, Tunis (Tunisia); Universite Arabe des Sciences, Ecole Superieure d' Ingenieurs et des Etudes Technologiques, Tunis (Tunisia); Ben Hamed, Z.; Kouki, F.; Bouchriha, H. [Universite Tunis El-Manar, Laboratoire de Materiaux avances et phenomenes quantiques, Faculte des Sciences de Tunis El Manar, Tunis (Tunisia); Lahmar, A.; Zellama, K.; Zeinert, A. [Faculte des Sciences d' Amiens, Laboratoire de Physique de la Matiere Condensee, Amiens (France); Sanhoury, M.A. [Laboratoire de Chimie Organique Structurale, Synthese et Etudes Physicochimiques, Tunis (Tunisia)

    2016-08-15

    The optical properties of nanocomposite layers prepared by incorporation of tributylphosphine oxide (TBPO)-capped CdSe nanocrystals (NCs) in a P3HT polymer matrix are studied using different nanocrystal concentrations. Reflection spectra analyzed through Kim oscillator model lead to the determination of optical constants such as refractive index n, extinction coefficient k, dielectric permittivity ε and absorption coefficient α. Using the common Cauchy, Drude-Lorentz, Tauc and single-effective-oscillator theoretical models, we have determined the values of static refractive index n{sub s} and permittivity ε{sub s}, plasma frequency ω{sub p}, carrier density N, optical band gap E{sub g} and oscillator and dispersion energies E{sub 0} and E{sub d}, respectively. It is found that TBPO-capped CdSe NCs concentration affects the optoelectronic parameters of the nanocomposite thin films. Moreover, the disorder of this hybrid system is also studied by the determination of Urbach energy, which increases with TBPO-capped CdSe concentration. (orig.)

  10. Resonance Raman spectra of wurtzite and zincblende CdSe nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, Anne Myers, E-mail: amkelley@ucmerced.edu [Chemistry and Chemical Biology, School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA 95343 (United States); Dai, Quanqin; Jiang, Zhong-jie; Baker, Joshua A.; Kelley, David F. [Chemistry and Chemical Biology, School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA 95343 (United States)

    2013-08-30

    Highlights: ► Very similar resonance Raman spectra of wurtzite and zincblende CdSe nanocrystals. ► First absolute resonance Raman cross-sections reported for CdSe nanocrystals. ► LO overtones suggest slightly stronger electron–phonon coupling in wurtzite form. - Abstract: Resonance Raman spectra and absolute differential Raman cross-sections have been measured for CdSe nanocrystals in both the wurtzite and zincblende crystal forms at four excitation wavelengths from 457.9 to 514.5 nm. The frequency and bandshape of the longitudinal optical (LO) phonon fundamental is essentially identical for both crystal forms at each excitation wavelength. The LO phonon overtone to fundamental intensity ratio appears to be slightly higher for the wurtzite form, which may suggest slightly stronger exciton–phonon coupling from the Fröhlich mechanism in the wurtzite form. The LO fundamental Raman cross-sections are very similar for both crystal forms at each excitation wavelength.

  11. Labeling efficiency and toxicity evaluation of CdSe/ZnS quantum dots on Escherichia coli

    Science.gov (United States)

    Zhao, Jin-Yun; Jia, Li-Min; Song, Wu-Qi; Zhang, Wen-Li; Fu, Ying-Mei; Zhang, Ying; Cao, Wen-Wu; Sun, Ye; Zheng, Jin-Hua; Zhang, Feng-Min

    2014-06-01

    In comparison with conventional organic dyes, quantum dots (QDs) have unique optical and electronic properties, which provide QDs with a wide scope of prospective application in biology and biomedicine. However, the toxicity of QDs and the fluorescence intensity of labeled bacteria must precede their application in bacterial imaging and tracing in vivo. Here, we show that treatment with CaCl2 significantly improved bacterial labeling efficiency of CdSe/ZnS QDs with the CdSe core size of 3.1 nm (relative fluorescence unit (RFU) value and ratio of fluorescent E. coli) with rising CdSe/ZnS QDs concentration in a concentration-dependent manner. At 12.5 nmol/L CdSe/ZnS QDs concentration, labeled Escherichia coli ( E. coli) DH5 α appeared as short rod-shaped and luminescent with normal size, and the survival rate and ultrastructure did not change in comparison to the control. But the ratio of fluorescent bacteria and RFU were very low. However, the survival rate of transformed E. coli was significantly inhibited by high CdSe/ZnS QDs concentrations (≥25 nmol/L). Moreover, internalization of CdSe/ZnS QDs resulted in ultrastructure damage of transformed E. coli in a concentration-dependent manner (≥25 nmol/L). Therefore, CdSe/ZnS QDs may not suitable for tracing of bacteria in vivo. Moreover, our study also revealed that colony-forming capability assay and transmission electron microscopy could be used to comprehensively evaluate the toxicity of QDs on labeled bacteria. Our findings do provide a new direction toward the improvement and modification of QDs for use in imaging and tracing studies in vivo.

  12. Control rod housing alignment apparatus

    International Nuclear Information System (INIS)

    Dixon, R.C.; Deaver, G.A.; Punches, J.R.; Singleton, G.E.; Erbes, J.G.; Offer, H.P.

    1991-01-01

    This paper discusses an alignment device for precisely locating the position of the top of a control rod drive housing from an overlying and corresponding hole and alignment pin in a core plate within a boiling water nuclear reactor. It includes a shaft, the shaft having a length sufficient to extend from the vicinity of the top of the control rod drive housing up to and through the hole in the core plate; means for registering the top of the shaft to the hole in the core plate, the registering means including means for registering with an alignment pin in the core plate adjacent the hole

  13. Flow resistance in rod assemblies

    International Nuclear Information System (INIS)

    Korsun, A.S.; Sokolova, M.S.

    2000-01-01

    The general form of relation between the resistance force and the velocity vector, resistance tensor structure and possible types of anisotropy in the flow thorough such structures as rod or tube assemblies are under discussion. Some questions of experimental determination of volumetric resistance force tensor are also under consideration. (author)

  14. Control rod removal blocking device

    International Nuclear Information System (INIS)

    Yoshioka, Ritsuo.

    1981-01-01

    Purpose: To prevent excess power increase resulted from erroneous control rod removal during high power operation in BWR type reactor by decreasing the continuous removal enabling distance for the control rods along with increase in the reactor power where the reactor power is greater than a predetermined level. Constitution: When control rod selection signals are supplied from a control unit to a control rod removal blocking device, the blocking device judges whether the reactor core power is greater than a predetermined value A or not, using reactor core power signals outputted from an average power monitor. Where the reactor core power exceeds the predetermined value A and if the reactor core power is relatively low, a large continuous removal enabling distance N 1 is calculated in the blocking device to allow the continuous removal as far as the notch N 1 . The continuous removal enabling distance is shortened as the reactor core power increases and the removal is blocked, for example, at notch N 2 . While on the other hand, if the reactor core power is below the predetermined value A, both of the notchwise removal and the continuous removal are enabled. (Seki, T.)

  15. Control rod behaviour in earthquakes

    International Nuclear Information System (INIS)

    Kawakami, S.; Akiyama, H.; Shibata, H.; Watabe, M.; Ichikawa, T.; Fujita, K.

    1990-01-01

    For some years the Japanese have been working on a major research programme to determine the likely effects of an earthquake on nuclear plant internals. One aspect of this was a study of the behaviour of Pressurized Water Reactor control rods as they are being inserted in the core, which is reported here. (author)

  16. Nuclear fuel rod loading apparatus

    International Nuclear Information System (INIS)

    King, H.B.

    1981-01-01

    A nuclear fuel loading apparatus, incorporating a microprocessor control unit, is described which automatically loads nuclear fuel pellets into dual fuel rods with a minimum of manual involvement and in a manner and sequence to ensure quality control and accuracy. (U.K.)

  17. Ability of the marine bacterium Pseudomonas fluorescens BA3SM1 to counteract the toxicity of CdSe nanoparticles.

    Science.gov (United States)

    Poirier, Isabelle; Kuhn, Lauriane; Demortière, Arnaud; Mirvaux, Boris; Hammann, Philippe; Chicher, Johana; Caplat, Christelle; Pallud, Marie; Bertrand, Martine

    2016-10-04

    In the marine environment, bacteria from estuarine and coastal sediments are among the first targets of nanoparticle pollution; it is therefore relevant to improve the knowledge of interactions between bacteria and nanoparticles. In this work, the response of the marine bacterium Pseudomonas fluorescens BA3SM1 to CdSe nanocrystals (CdSe NPs) of 3nm (NP3) and 8nm (NP8) in diameter was evaluated through microscopic, physiological, biochemical and proteomic approaches. Transmission electron microscopy images showed that NP3 were able to penetrate the bacteria, while NP8 were highly concentrated around the cells, embedded in large exopolysaccharides. In our experimental conditions, both CdSe NP sizes induced a decrease in respiration during the stationary growth phase, while only NP8 caused growth retardation and a decrease in pyoverdine production. Proteomic analyses highlighted that the strain responded to CdSe NP toxicity by inducing various defence mechanisms such as cell aggregation, extracellular CdSe NP sequestration, effective protection against oxidative stress, modifications of envelope organization and properties, and cadmium export. In addition, BA3SM1 presented a biosorption capacity of 1.6×10(16)NP3/g dry weight and 1.7×10(15)NP8/g dry weight. This strain therefore appears as a promising agent for NP bioremediation processes. Proteomic data are available via ProteomeXchange with identifier PXD004012. To the best of our knowledge, this is the first report focussing on the effects of CdSe colloidal nanocrystals (CdSe NPs) on a marine strain of Pseudomonas fluorescens. CdSe NPs are extensively used in the industry of renewable energies and it is regrettably expected that these pollutants will sometime soon appear in the marine environment through surface runoff, urban effluents and rivers. Bacteria living in estuarine and coastal sediments will be among the first targets of these new pollutants. The pseudomonads are frequently found in these ecosystems

  18. The use of bulk states to accelerate the band edge statecalculation of a semiconductor quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Vomel, Christof; Tomov, Stanimire Z.; Wang, Lin-Wang; Marques,Osni A.; Dongarra, Jack J.

    2006-05-10

    We present a new technique to accelerate the convergence of the folded spectrum method in empirical pseudopotential band edge state calculations for colloidal quantum dots. We use bulk band states of the materials constituent of the quantum dot to construct initial vectors and a preconditioner. We apply these to accelerate the convergence of the folded spectrum method for the interior states at the top of the valence and the bottom of the conduction band. For large CdSe quantum dots, the number of iteration steps until convergence decreases by about a factor of 4 compared to previous calculations.

  19. Structure Optimization of Low-Dimensional Quantum Dots via Anisotropic Surface Energy

    Science.gov (United States)

    Yang, Lan-Hee; Hyun, Sangil; Koo, Eunhae; Ahn, Dong June

    2018-03-01

    Semiconductor quantum dots (QDs) exhibit remarkable photostability, large absorption spectra, tunable emission peaks, and high quantum yields. These features originate from their lowdimensionality. It is necessary to control the shape of QDs because their specific characteristics are normally determined by their particular shape and size. We employed first-principle calculations to identify the optimal structures of CdSe quantum dots and investigated the shape-determining mechanism governing the formation of low-dimensional nanomaterials. The anisotropy of surface energy is a key factor determining the shape of nanomaterials and we suggest how to control their geometry and characteristics by adjusting the surface energy.

  20. Inspection system for Zircaloy clad fuel rods

    International Nuclear Information System (INIS)

    Yancey, M.E.; Porter, E.H.; Hansen, H.R.

    1975-10-01

    A description is presented of the design, development, and performance of a remote scanning system for nondestructive examination of fuel rods. Characteristics that are examined include microcracking of fuel rod cladding, fuel-cladding interaction, cladding thickness, fuel rod diameter variation, and fuel rod bowing. Microcracking of both the inner and outer fuel rod surfaces and variations in wall thickness are detected by using a pulsed eddy current technique developed by Argonne National Laboratory (ANL). Fuel rod diameter variation and fuel rod bowing are detected by using two linear variable differential transformers (LVDTs) and a signal conditioning system. The system's mechanical features include variable scanning speeds, a precision indexing system, and a servomechanism to maintain proper probe alignment. Initial results indicate that the system is a very useful mechanism for characterizing irradiated fuel rods

  1. Duke Power Company's control rod wear program

    International Nuclear Information System (INIS)

    Culp, D.C.; Kitlan, M.S. Jr.

    1990-01-01

    Recent examinations performed at several foreign and domestic pressurized water reactors have identified significant control rod cladding wear, leading to the conclusion that previously believed control rod lifetimes are not attainable. To monitor control rod performance and reduce safety concerns associated with wear, Duke Power Company has developed a comprehensive control rod wear program for Ag-In-Cd and boron carbide (B 4 C) rods at the McGuire and Catawba nuclear stations. Duke Power currently uses the Westinghouse 17 x 17 Ag-In-Cd control rod design at McGuire Unit 1 and the Westinghouse 17 x 17 hybrid B 4 C control rod design with a Ag-In-Cd tip at McGuire Unit 2 and Catawba Units 1 and 2. The designs are similar, with the exception of the absorber material and clad thickness. There are 53 control rods per unit

  2. Performance Study of CdS/Co-Doped-CdSe Quantum Dot Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Xiaoping Zou

    2014-01-01

    Full Text Available In order to optimize the charge transfer path in quantum dot sensitized solar cells (QDSCs, we employed successive ionic layer adsorption and reaction method to dope CdSe with Co for fabricating CdS/Co-doped-CdSe QDSCs constructed with CdS/Co-doped-CdSe deposited on mesoscopic TiO2 film as photoanode, Pt counter electrode, and sulfide/polysulfide electrolyte. After Co doping, the bandgap of CdSe quantum dot decreases, and the conduction band and valence band all improve, forming a cascade energy level which is more conducive to charge transport inside the solar cell and reducing the recombination of electron-hole thus improving the photocurrent and ultimately improving the power conversion efficiency. This work has not been found in the literature.

  3. Solid-state-laser-rod holder

    Science.gov (United States)

    Gettemy, D.J.; Barnes, N.P.; Griggs, J.E.

    1981-08-11

    The disclosure relates to a solid state laser rod holder comprising Invar, copper tubing, and epoxy joints. Materials and coefficients of expansion of the components of the holder combine with the rod to produce a joint which will give before the rod itself will. The rod may be lased at about 70 to 80/sup 0/K and returned from such a temperature to room temperature repeatedly without its or the holder's destruction.

  4. Modal instability of rod fiber amplifiers: a semi-analytic approach

    DEFF Research Database (Denmark)

    Jørgensen, Mette Marie; Hansen, Kristian Rymann; Laurila, Marko

    2013-01-01

    The modal instability (MI) threshold is estimated for four rod fiber designs by combining a semi-analytic model with the finite element method. The thermal load due to the quantum defect is calculated and used to numerically determine the mode distributions on which the expression for the onset o...

  5. Process and apparatus for controlling control rods

    International Nuclear Information System (INIS)

    Gebelin, B.; Couture, R.

    1987-01-01

    This process and apparatus is characterized by 2 methods, for examination of cluster of nuclear control rods. Foucault current analyzer which examines fraction by fraction all the control rods. This examination is made by rotation of the cluster. Doubtful rods are then analysed by ultrasonic probe [fr

  6. ELECTRIC FIELD MEASUREMENT IN ROD-DISCONTINUED ...

    African Journals Online (AJOL)

    2014-06-30

    Jun 30, 2014 ... the electrogeometrical model using a laboratory experimental rod-plane air gap arrangement with a lightning conductor (Franklin rod or horizontal conductor). The stepped leader could be represented by the rod electrode under a negative lightning impulse voltage having a level leading to breakdown with ...

  7. Spider and burnable poison rod combinations

    International Nuclear Information System (INIS)

    Edwards, G.T.; Schluderberg, D.C.

    1980-01-01

    An improved design of burnable poison rods and associated spiders used in fuel assemblies of pressurized water power reactor cores, is described. The rods are joined to the spider arms in a manner which is proof against the reactor core environment and yet allows the removal of the rods from the spider simply, swiftly and delicately. (U.K.)

  8. Testing device for control rod drives

    International Nuclear Information System (INIS)

    Hayakawa, Toshifumi.

    1992-01-01

    A testing device for control rod drives comprises a logic measuring means for measuring an output signal from a control rod drive logic generation circuit, a control means for judging the operation state of a control rod and a man machine interface means for outputting the result of the judgement. A driving instruction outputted from the control rod operation device is always monitored by the control means, and if the operation instruction is stopped, a testing signal is outputted to the control rod control device to simulate a control rod operation. In this case, the output signal of the control rod drive logic generation circuit is held in a control rod drive memory means and intaken into a logic analysis means for measurement and an abnormality is judged by the control means. The stopping of the control rod drive instruction is monitored and the operation abnormality of the control rod is judged, to mitigate the burden of an operator. Further, the operation of the control rod drive logic generation circuit can be confirmed even during a nuclear plant operation by holding the control rod drive instruction thereby enabling to improve maintenance efficiency. (N.H.)

  9. Solitary waves on nonlinear elastic rods. II

    DEFF Research Database (Denmark)

    Sørensen, Mads Peter; Christiansen, Peter Leth; Lomdahl, P. S.

    1987-01-01

    In continuation of an earlier study of propagation of solitary waves on nonlinear elastic rods, numerical investigations of blowup, reflection, and fission at continuous and discontinuous variation of the cross section for the rod and reflection at the end of the rod are presented. The results...

  10. Rod and lamellar growth of eutectic

    Directory of Open Access Journals (Sweden)

    M. Trepczyńska-Łent

    2010-04-01

    Full Text Available The paper presents adaptation problem of lamellar growth of eutectic. The formation of rod eutectic microstructure was investigated systematically. A new rod eutectic configuration was observed in which the rods form with elliptical cylindrical shape. A new interpretation of the eutectic growth theory was proposed.

  11. Stark effect in finite-barrier quantum wells, wires, and dots

    International Nuclear Information System (INIS)

    Pedersen, Thomas Garm

    2017-01-01

    The properties of confined carriers in low-dimensional nanostructures can be controlled by external electric fields and an important manifestation is the Stark shift of quantized energy levels. Here, a unifying analytic theory for the Stark effect in arbitrary dimensional nanostructures is presented. The crucial role of finite potential barriers is stressed, in particular, for three-dimensional confinement. Applying the theory to CdSe quantum dots, finite barriers are shown to improve significantly the agreement with experiments. (paper)

  12. Lanthanide modification of CdSe/ZnS core/shell quantum dots

    DEFF Research Database (Denmark)

    Dethlefsen, Johannes Rytter; Mikhailovsky, Alexander A.; Burks, Peter T.

    2012-01-01

    Lanthanide-modified CdSe quantum dots (CdSe(Ln) QDs) have been prepared by heating a solution of Cd(oleate)(2), SeO2, and Ln(bipy)(S2CNEt2)(3) (bipy = 2,2'-bipyridine) to 180-190 degrees C for 10-15 min. The elemental compositions of the resulting CdSe(Ln) cores and CdSe(Ln)/ZnS core/shell QDs show...

  13. Using quantum dot photoluminescence for load detection

    Directory of Open Access Journals (Sweden)

    M. Moebius

    2016-08-01

    Full Text Available We propose a novel concept for an integrable and flexible sensor capable to visualize mechanical impacts on lightweight structures by quenching the photoluminescence (PL of CdSe quantum dots. Considering the requirements such as visibility, storage time and high optical contrast of PL quenching with low power consumption, we have investigated a symmetrical and an asymmetrical layer stack consisting of semiconductor organic N,N,N′,N′-Tetrakis(3-methylphenyl-3,3′-dimethylbenzidine (HMTPD and CdSe quantum dots with elongated CdS shell. Time-resolved series of PL spectra from layer stacks with applied voltages of different polarity and simultaneous observation of power consumption have shown that a variety of mechanisms such as photo-induced charge separation and charge injection, cause PL quenching. However, mechanisms such as screening of external field as well as Auger-assisted charge ejection is working contrary to that. Investigations regarding the influence of illumination revealed that the positive biased asymmetrical layer stack is the preferred sensor configuration, due to a charge carrier injection at voltages of 10 V without the need of coincident illumination.

  14. Trap-state-assisted white light emission from a CdSe nanocrystal integrated hybrid light-emitting diode.

    Science.gov (United States)

    Chandramohan, S; Ryu, Beo Deul; Kim, Hyun Kyu; Hong, Chang-Hee; Suh, Eun-Kyung

    2011-03-15

    This Letter reports on the fabrication of hybrid white-light-emitting diodes made of semiconductor nanocrystals (NCs) integrated on InGaN/GaN LEDs. Using core type and core/shell type CdSe NCs, the white light properties are systematically engineered for white light generation with high color rendering index (CRI). Unlike CdSe/ZnS core/shell NCs, which exhibited a unique narrowband edge emission, core type CdSe NCs offered extended broad emission toward orange/red wavelengths associated with deep trap states. Consequently, the light-emitting properties of the devices showed strong dependence on the type of NCs used, and devices with CdSe NCs offered admirable characteristics, such as Commission Internationale d'Eclairage coordinates of (0.356, 0.330) and a CRI as high as 87.4.

  15. ELECTROMAGNETIC APPARATUS FOR MOVING A ROD

    Science.gov (United States)

    Young, J.N.

    1958-04-22

    An electromagnetic apparatus for moving a rod-like member in small steps in either direction is described. The invention has particular application in the reactor field where the reactor control rods must be moved only a small distance and where the use of mechanical couplings is impractical due to the high- pressure seals required. A neutron-absorbing rod is mounted in a housing with gripping uaits that engage the rod, and coils for magnetizing the gripping units to make them grip, shift, and release the rod are located outside the housing.

  16. Snubber assembly for a control rod drive

    International Nuclear Information System (INIS)

    Matthews, J.C.

    1978-01-01

    A snubber cartridge assembly is mounted to the nozzle of a control rod drive mechanism to insure that the snubber assembly will be located within the liquid filled section of a nuclear reactor vessel whenever the control rod drive is assembled thereto. The snubber assembly includes a piston mounted proximate to the control rod connecting end of the control rod drive leadscrew to allow the piston to travel within the liquid filled snubber cartridge and controllably exhaust liquid therefrom during a ''scram'' condition. The snubber cartridge provides three separate areas of increasing resistance to piston travel to insure a speedy but safe ''scram'' of the control rod into the reactor

  17. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 1 discusses the following topics: the background of the project; test program description; summary of tests and test results; problem evaluation; functional requirements confirmation; recommendations; and completed test documentation for tests performed in Phase 3

  18. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 9 discusses the following topics: Integrated System Normal Operations Test Results and Analysis Report; Integrated System Off-Normal Operations Test Results and Analysis Report; and Integrated System Maintenance Operations Test Results and Analysis Report

  19. Reassignment of oxygen-related defects in CdTe and CdSe

    Energy Technology Data Exchange (ETDEWEB)

    Bastin, Dirk

    2015-05-22

    This thesis reassigns the O{sub Te}-V{sub Cd} complex in CdTe and the O{sub Se}-V{sub Cd} complex in CdSe to a sulfur-dioxygen complex SO{sub 2}*, and the O{sub Cd} defect in CdSe to a V{sub Cd}H{sub 2} complex using Fourier transformed infrared absorption spectroscopy. The publications of the previous complexes were investigated by theoreticians who performed first-principle calculations of theses complexes. The theoreticians ruled out the assignments and proposed alternative defects, instead. The discrepancy between the experimentally obtained and theoretically proposed defects was the motivation of this work. Two local vibrational modes located at 1096.8 (ν{sub 1}) and 1108.3 cm{sup -1} (ν{sub 2}) previously assigned to an O{sub Te}-V{sub Cd} complex are detected in CdTe single crystals doped with CdSO{sub 4} powder. Five weaker additional absorption lines accompanying ν{sub 1} and ν{sub 2} could be detected. The relative intensities of the absorption lines match a sulfur-dioxygen complex SO{sub 2}* having two configurations labeled ν{sub 1} and ν{sub 2}. A binding energy difference of 0.5±0.1 meV between the two configurations and an energy barrier of 53±4 meV separating the two configurations are determined. Uniaxial stress applied to the crystal leads to a splitting of the absorption lines which corresponds to an orthorhombic and monoclinic symmetry for ν{sub 1} and ν{sub 2}, respectively. In virgin and oxygen-doped CdSe single crystals, three local vibrational modes located at 1094.1 (γ{sub 1}), 1107.5 (γ{sub 2}), and 1126.3 cm{sup -1} (γ{sub 3}) previously attributed to an O{sub Se}-V{sub Cd} complex could be observed. The signals are accompanied by five weaker additional absorption features in their vicinity. The additional absorption lines are identified as isotope satellites of a sulfur-dioxygen complex SO{sub 2}* having three configurations γ{sub 1}, γ{sub 2}, and γ{sub 3}. IR absorption measurements with uniaxial stress applied to the

  20. Fuel rod assembly to manifold attachment

    Science.gov (United States)

    Donck, Harry A.; Veca, Anthony R.; Snyder, Jr., Harold J.

    1980-01-01

    A fuel element is formed with a plurality of fuel rod assemblies detachably connected to an overhead support with each of the fuel rod assemblies having a gas tight seal with the support to allow internal fission gaseous products to flow without leakage from the fuel rod assemblies into a vent manifold passageway system on the support. The upper ends of the fuel rod assemblies are located at vertically extending openings in the support and upper threaded members are threaded to the fuel rod assemblies to connect the latter to the support. The preferred threaded members are cap nuts having a dome wall encircling an upper threaded end on the fuel rod assembly and having an upper sealing surface for sealing contact with the support. Another and lower seal is achieved by abutting a sealing surface on each fuel rod assembly with the support. A deformable portion on the cap nut locks the latter against inadvertent turning off the fuel rod assembly. Orienting means on the fuel rod and support primarily locates the fuel rods azimuthally for reception of a deforming tool for the cap nut. A cross port in the fuel rod end plug discharges into a sealed annulus within the support, which serves as a circumferential chamber, connecting the manifold gas passageways in the support.

  1. Control-rod scram device

    International Nuclear Information System (INIS)

    Matsui, Yoshiro; Saito, Koji.

    1986-01-01

    Purpose: To eliminate the requirement for the nitrogen gas system in a scram device and enable safety and reliable shutdown of a water-cooled reactor power plant. Constitution: A piston and a spring are contained within a hydraulic vessel, and the piston is driven by the energy stored in the spring so as to supply hydraulic water to control mechanisms. During usual reactor operation, a scram valve is closed and a high water pressure of about 130 kg/cm 2 is applied to the water filled in the vessel through a check valve. Upon occurrence of abnormal conditions and generation of scram signals, the scram valve is opened to supply the water filled in the vessel through the scram valve to the control rod drive mechanisms. When the water pressure in the vessel is decreased, since the piston is urged upwardly by the energy stored in the spring, the water filled in the vessel is intermitently supplied to the control rod drive mechanisms. Thus, control rods can be inserted into the nuclear reactor to shutdown the same. (Horiuchi, T.)

  2. Fuel rod and fuel assembly

    International Nuclear Information System (INIS)

    Takekawa, Tetsuya.

    1993-01-01

    Burnable poisons are contained in a portion of a pellet constituting a fuel rod. A distribution density of the burnable poison-containing pellets and a concentration of the burnable poisons in the pellet are varied depending on the axial position of the fuel rod. That is, the distribution density of the burnable poison containing-pellets is increased at the central portion of the fuel rod and it is decreased at both ends thereof, and a concentration of the burnable poisons of the burnable poison containing-pellet disposed at the end portions thereof is decreased to less than a concentration of the burnable poison-containing pellet at the central portion. With such a constitution, a central peaking at an early stage of the combustion cycle is decreased. Accordingly, power at the central portion is increased than that in the end portions at the latter half of the cycle, to flatten the power distribution. Further, a burnable poison concentration of the pellets at the end portions is decreased to promote burning of burnable poisons at the end portions which are less burnable relatively, thereby enabling to prevent worsening of neutron economy. (T.M.)

  3. Quantum optics

    National Research Council Canada - National Science Library

    Agarwal, G. S

    2013-01-01

    .... Focusing on applications of quantum optics, the textbook covers recent developments such as engineering of quantum states, quantum optics on a chip, nano-mechanical mirrors, quantum entanglement...

  4. In situ synthesis of P3HT-capped CdSe superstructures and their application in solar cells

    OpenAIRE

    Peng, Yanling; Song, Guosheng; Hu, Xianghua; He, Guanjie; Chen, Zhigang; Xu, Xiaofeng; Hu, Junqing

    2013-01-01

    Organic/inorganic hybrid solar cells have great potentials to revolutionize solar cells, but their use has been limited by inefficient electron/hole transfer due to the presence of long aliphatic ligands and unsatisfying continuous interpenetrating networks. To solve this problem, herein, we have developed a one-pot route for in situ synthesis of poly(3-hexylthiophene) (P3HT)-capped CdSe superstructures, in which P3HT acts directly as the ligands. These CdSe superstructures are in fact constr...

  5. Radiative Properties of Carriers in Cdse-Cds Core-Shell Heterostructured Nanocrystals of Various Geometries

    Science.gov (United States)

    Zhou, S.; Dong, L.; Popov, S.; Friberg, A. T.

    2013-07-01

    We report a model on core-shell heterostructured nanocrystals with CdSe as the core and CdS as the shell. The model is based on one-band Schrödinger equation. Three different geometries, nanodot, nanorod, and nanobone, are implemented. The carrier localization regimes with these structures are simulated, compared, and analyzed. Based on the electron and hole wave functions, the carrier overlap integral that has a great impact on stimulated emission is further investigated numerically by a novel approach. Furthermore, the relation between the nanocrystal size and electron-hole recombination energy is also examined.

  6. Vibrational characteristics and wear of fuel rods

    International Nuclear Information System (INIS)

    Schmugar, K.L.

    1977-01-01

    Fuel rod wear, due to vibration, is a continuing concern in the design of liquid-cooled reactors. In my report, the methodology and models that are used to predict fuel rod vibrational response and vibratory wear, in a light water reactor environment, are discussed. This methodology is being followed at present in the design of Westinghouse Nuclear Fuel. Fuel rod vibrations are expressed as the normal bending modes, and sources of rod vibration are examined with special emphasis on flow-induced mechanisms in the stable flow region. In a typical Westinghouse PWR fuel assembly design, each fuel rod is supported at multiple locations along the rod axis by a square-shaped 'grid cell'. For a fuel rod /grid support system, the development of small oscillatory motions, due to fluid flow at the rod/grid interface, results in material wear. A theoretical wear mode is developed using the Archard Theory of Adhesive Wear as the basis. Without question certainty, fretting wear becomes a serious problem if it progresses to the stage where the fuel cladding is penetrated and fuel is exposed to the coolant. Westinghouse fuel is designed to minimize fretting wear by limiting the relative motion between the fuel rod and its supports. The wear producing motion between the fuel rod and its supports occurs when the vibration amplitude exceeds the slippage threshold amplitude

  7. Quantum dot cosensitized solar cell based on PMOT@CdSe@ZnO core shell nanostructures with dual emission

    Energy Technology Data Exchange (ETDEWEB)

    Sehgal, Preeti; Narula, Anudeep Kumar, E-mail: researchchemlab58@gmail.com

    2016-01-15

    Quantum dot sensitized solar cell based on poly(3-methoxythiophene) (PMOT)@CdSe@ZnO core shell nanostructure were synthesized where PMOT serves as hole transport material, CdSe acts as a photosensitizer which enhances visible range absorption and also helps in injection of electrons from PMOT to ZnO where ZnO provides channel for efficient electron transport. The properties of the device were assessed with and without CdSe quantum dots and effect of annealing was also observed on the device. After the addition of CdSe QDs, the visible light absorption of PMOT@ZnO was enhanced due to increase in surface area. PMOT@CdSe@ZnO exhibited dual emission, where CdSe and ZnO exhibited visible and UV emission respectively. The interface formed between PMOT and CdSe improves the charge separation. The better photovoltaic measurement of PMOT@CdSe@ZnO over CdSe@ZnO indicates that PMOT efficiently dissociate excitons at interface and suppress the interfacial charge recombination. A power conversion efficiency of 0.989% was attained for the device PMOT@CdSe@ZnO with V{sub oc}=0.56 V and J{sub sc}=2.5 mA/cm{sup 2}. Upon annealing, the efficiency of the device was enhanced to 1.1609% with V{sub oc}=0.58, J{sub sc}=3.2 mA/cm{sup 2}. - Highlights: • Synthesized PMOT@CdSe@ZnO is biluminescent in nature. • A power conversion efficiency of 0.989% was achieved with PMOT@CdSe@ZnO device which is superior to CdSe@ZnO and PMOT@ZnO. • Upon annealing, an efficiency of 1.1609% was achieved for device PMOT@CdSe@ZnO.

  8. Construction of vesicle CdSe nano-semiconductors photocatalysts with improved photocatalytic activity: Enhanced photo induced carriers separation efficiency and mechanism insight.

    Science.gov (United States)

    Wen, Jiangsu; Ma, Changchang; Huo, Pengwei; Liu, Xinlin; Wei, Maobin; Liu, Yang; Yao, Xin; Ma, Zhongfei; Yan, Yongsheng

    2017-10-01

    Visible-light-driven photocatalysis as a green technology has attracted a lot of attention due to its potential applications in environmental remediation. Vesicle CdSe nano-semiconductor photocatalyst are successfully prepared by a gas template method and characterized by a variety of methods. The vesicle CdSe nano-semiconductors display enhanced photocatalytic performance for the degradation of tetracycline hydrochloride, the photodegradation rate of 78.824% was achieved by vesicle CdSe, which exhibited an increase of 31.779% compared to granular CdSe. Such an exceptional photocatalytic capability can be attributed to the unique structure of the vesicle CdSe nano-semiconductor with enhanced light absorption ability and excellent carrier transport capability. Meanwhile, the large surface area of the vesicle CdSe nano-semiconductor can increase the contact probability between catalyst and target and provide more surface-active centers. The photocatalytic mechanisms are analyzed by active species quenching. It indicates that h + and O 2 - are the main active species which play a major role in catalyzing environmental toxic pollutants. Simultaneously, the vesicle CdSe nano-semiconductor had high efficiency and stability. Copyright © 2017. Published by Elsevier B.V.

  9. Acute toxicity of quantum dots on late pregnancy mice: Effects of nanoscale size and surface coating

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wanyi [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China); The Second Affiliated Hospital of Nanchang University, Nanchang 330000 (China); Yang, Lin; Kuang, Huijuan; Yang, Pengfei [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China); Aguilar, Zoraida P.; Wang, Andrew [Ocean NanoTech, LLC, Springdale, AR72764 (United States); Fu, Fen, E-mail: fu_fen@163.com [The Second Affiliated Hospital of Nanchang University, Nanchang 330000 (China); Xu, Hengyi, E-mail: kidyxu@163.com [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China)

    2016-11-15

    Graphical abstract: In spite of the immense benefits from quantum dots (QDs), there is scanty information regarding their toxicity mechanisms against late pregnancy. - Highlights: • QDs and CdCl{sub 2} were effectively blocked by the placental barrier. • CdSe QDs more effectively altered the expression levels of susceptive genes. • Nanoscale size of QDs is more important than free Cd in inducing toxicity. • Outer surface shell coating of QDs played a protective role. - Abstract: In this study, the effects of cadmium containing QDs (such as CdSe/ZnS and CdSe QDs) and bulk CdCl{sub 2} in pregnant mice, their fetuses, and the pregnancy outcomes were investigated. It was shown that although the QDs and bulk CdCl{sub 2} were effectively blocked by the placental barrier, the damage on the placenta caused by CdSe QDs still led to fetus malformation, while the mice in CdSe/ZnS QDs treatment group exhibited slightly hampered growth but showed no significant abnormalities. Moreover, the Cd contents in the placenta and the uterus of CdSe QDs and CdSe/ZnS QDs treatment groups showed significantly higher than the CdCl{sub 2} treated group which indicated that the nanoscale size of the QDs allowed relative ease of entry into the gestation tissues. In addition, the CdSe QDs more effectively altered the expression levels of susceptive genes related to cell apoptosis, dysplasia, metal transport, cryptorrhea, and oxidative stress, etc. These findings suggested that the nanoscale size of the QDs were probably more important than the free Cd in inducing toxicity. Furthermore, the results indicated that the outer surface shell coating played a protective role in the adverse effects of QDs on late pregnancy mice.

  10. The use of bulk states to accelerate the band edge state calculation of a semiconductor quantum dot

    International Nuclear Information System (INIS)

    Voemel, Christof; Tomov, Stanimire Z.; Wang, Lin-Wang; Marques, Osni A.; Dongarra, Jack J.

    2007-01-01

    We present a new technique to accelerate the convergence of the folded spectrum method in empirical pseudopotential band edge state calculations for colloidal quantum dots. We use bulk band states of the materials constituent of the quantum dot to construct initial vectors and a preconditioner. We apply these to accelerate the convergence of the folded spectrum method for the interior states at the top of the valence and the bottom of the conduction band. For large CdSe quantum dots, the number of iteration steps until convergence decreases by about a factor of 4 compared to previous calculations

  11. High temperature control rod assembly

    Science.gov (United States)

    Vollman, Russell E.

    1991-01-01

    A high temperature nuclear control rod assembly comprises a plurality of substantially cylindrical segments flexibly joined together in succession by ball joints. The segments are made of a high temperature graphite or carbon-carbon composite. The segment includes a hollow cylindrical sleeve which has an opening for receiving neutron-absorbing material in the form of pellets or compacted rings. The sleeve has a threaded sleeve bore and outer threaded surface. A cylindrical support post has a threaded shaft at one end which is threadably engaged with the sleeve bore to rigidly couple the support post to the sleeve. The other end of the post is formed with a ball portion. A hollow cylindrical collar has an inner threaded surface engageable with the outer threaded surface of the sleeve to rigidly couple the collar to the sleeve. the collar also has a socket portion which cooperates with the ball portion to flexibly connect segments together to form a ball and socket-type joint. In another embodiment, the segment comprises a support member which has a threaded shaft portion and a ball surface portion. The threaded shaft portion is engageable with an inner threaded surface of a ring for rigidly coupling the support member to the ring. The ring in turn has an outer surface at one end which is threadably engageably with a hollow cylindrical sleeve. The other end of the sleeve is formed with a socket portion for engagement with a ball portion of the support member. In yet another embodiment, a secondary rod is slidably inserted in a hollow channel through the center of the segment to provide additional strength. A method for controlling a nuclear reactor utilizing the control rod assembly is also included.

  12. Structure investigation of ultra-small CdSe nanoparticles using the atomic PDF

    Science.gov (United States)

    Masadeh, Ahmad S.; Billinge, Simon J. L.; Bozin, Emil S.; McBride, James R.; Rosenthal, Sandra J.

    2011-03-01

    The size-dependent structure of CdSe nanoparticles, with diameter ranging from 1.5 to 3.6 nm, has been studied using the atomic pair distribution function (PDF) method. The samples are prepared by the methods of Peng et al, with modifications. The structure of the smallest stable size, (~ 1.5 nm), have been found to posses locally distorted wurtzite structure, with no clear evidence of a heavily disordered surface region. The PDF data of the smallest particle show an extra structural peak appears around r = 3.5 A indicates there is structure modification happened in this sample. This peak start appearing the nanoparticles PDF data gradually as nanoparticle size decreases. The structural parameters are reported quantitatively. We measure a size-dependent strain on the Cd-Se bond which reaches 1.0% at the smallest particle size. The size of the well-ordered core extracted directly from the data agrees with the size determined from other methods.

  13. Atomic PDF study of size and structure of CdSe nanoparticles

    Science.gov (United States)

    Masadeh, A. S.; Paglia, G.; Bozin, E. S.; Billinge, S. J. L.; Karkamkar, A.; Kanatzidis, M. G.

    2006-03-01

    The atomic pair distribution function (PDF) is used to address the size and structure of series of CdSe nanoparticles prepared by the method of distribution focusing [1]. Due to their limiting structure coherence conventional crystallographic methods, such as Rietveld can't be used to assess quantitative size or structural information. Total scattering techniques, such PDF have been successfully applied recently on some similar systems [2, 3]. The PDF includes both Bragg and diffuse scattering and provides quantitative information about the local structure of the materials at different length scales. We report on results of the PDF analysis of synchrotron x-ray diffraction on series of CdSe nanoparticles, data were collected using the rapid acquisition PDF (RA-PDF) technique [4]. [1] X. G. Peng, J. Wickham, A. P. Alivisatos, J. Am. Chem. Soc. 1998, 120, 5343-5344 [2] B. Gilbert, F. Huang,^ H. Zhang,^ G. A. Waychunas,^ J. F. Banfield. Science, 305, 651-654 (2004). [3] R. B. Neder, V. I. Korsunskiy, J. Phys: Condens. Matter 17, 125-134 (2005) [4] P. J. Chupas, X. Qiu, J. C. Hanson, P. L. Lee, C. P. Grey and S. J. L. Billinge. J. Appl. Crystallogr. 36, 1342-1347 (2003).

  14. Opto-electrical energy conversion by thin electrolytic CdSe films on Ni substrates

    Science.gov (United States)

    Glenis, G. X.; Athanassopoulou, M. D.; Argyropoulos, Th G.; Dervos, C. T.

    2015-02-01

    Thin-films (300 nm) of zinc-blende (cubic structure) CdSe (111) electrolytically deposited on nickel substrates had their surface characteristics investigated by XRD, SEM, and profilometry scans. A metal-CdSe-metal structure was formed by positioning a Au electrode on top of CdSe and the I-V characteristics of the resulting device were investigated in the dark and under low intensities (≤0.2 mW cm-2) of diffused solar radiation. The experimental results show that the illuminated structure is an active device that produces electric power in the 2nd quadrant of the I-V curve. This response may be related to the Ni-to-CdSe interface, where carriers are effectively generated as a result of deep energy level formations, spatially confined in the interfacial region of the depletion layer width of the Ni-CdSe junction. A potential energy diagram is proposed to present the spatially and energetically confined deep-level parameters, the operation principles (carrier generation and transport processes) across the structure and link them to the obtained I-V response. A mathematical modeling based on the Schokley-Read-Hall recombination theory confirms the experimentally obtained current profiles of illuminated junctions. Such opto-electrical tranducers might be implemented in multilayer photovoltaic hetero-structures to enhance their conversion efficiencies and reduce their operating temperatures.

  15. Magnetic and dielectric study of Fe-doped CdSe nanoparticles

    Science.gov (United States)

    Das, Sayantani; Banerjee, Sourish; Bandyopadhyay, Sudipta; Sinha, Tripurari Prasad

    2018-01-01

    Nanoparticles of cadmium selenide (CdSe) and Fe (5% and 10%) doped CdSe have been synthesized by soft chemical route and found to have cubic structure. The magnetic field dependent magnetization measurement of the doped samples indicates the presence of anti-ferromagnetic order. The temperature dependent magnetization (M-T) measurement under zero field cooled and field cooled conditions has also ruled out the presence of ferromagnetic component in the samples at room temperature as well as low temperature. In order to estimate the anti-ferromagnetic coupling among the doped Fe atoms, an M-T measurement at 500 Oe has been carried out, and the Curie-Weiss temperature θ of the samples has been estimated from the inverse of susceptibility versus temperature plots. The dielectric relaxation peaks are observed in the spectra of imaginary part of dielectric constant. The temperature dependent relaxation time is found to obey the Arrhenius law having activation energy 0.4 eV for Fe doped samples. The frequency dependent conductivity spectra are found to obey the power law. [Figure not available: see fulltext.

  16. Molecular hybrids of CdSe semiconductor nanocrystals with terthiophene carboxylic acid or its polymeric analogue

    Energy Technology Data Exchange (ETDEWEB)

    Pokrop, Rafal; Pamula, Katarzyna; Deja-Drogomirecka, Sylwia; Zagorska, Malgorzata [Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00 664 Warsaw (Poland); Reiss, Peter [SPrAM (UMR 5819 CEA-CNRS-Univ. J. Fourier-Grenoble I)/LEMOH, CEA Grenoble/INAC, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Louarn, Guy [Institut des Materiaux Jean Rouxel (IMN), Universite de Nantes-CNRS, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Chandezon, Frederic, E-mail: frederic.chandezon@cea.fr [SPrAM (UMR 5819 CEA-CNRS-Univ. J. Fourier-Grenoble I)/LEMOH, CEA Grenoble/INAC, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Pron, Adam [SPrAM (UMR 5819 CEA-CNRS-Univ. J. Fourier-Grenoble I)/LEMOH, CEA Grenoble/INAC, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2010-10-01

    Hybrid materials consisting of CdSe nanocrystals (CdSe NCs) and 7-(4,4''-dioctyl-2,2':5',2''-terthiophene-3'-yl)heptanoic acid (TTHA) or its high molecular analogue-poly(7-(4,4''-dioctyl-2,2':5',2''-terthiophene-3'-yl)heptanoic acid) (PTTHA) have been prepared from TOPO capped NCs via ligand exchange. Detailed spectroscopic and spectroelectrochemical (UV-vis-NIR, Raman) studies of these hybrids enabled us to determine the alignment of the HOMO and LUMO levels of their components. Since, for NCs of 3.7 nm, the alignment of the energy levels in both hybrids is staggered, the elaborated new materials are of potential use in photovoltaic devices. In the CdSe-PTTHA hybrid material a uniform distribution of the NCs within the polymer matrix is evidenced by TEM images. This is caused by strong interactions between nanocrystals surface and coordinating carboxylic function of the polymer.

  17. Probing Homogeneous Line Broadening in CdSe Nanocrystals Using Multidimensional Electronic Spectroscopy.

    Science.gov (United States)

    Gellen, Tobias A; Lem, Jet; Turner, Daniel B

    2017-05-10

    The finite spectral line width of an ensemble of CdSe nanocrystals arises from size and shape inhomogeneity and the single-nanocrystal spectrum itself. This line width directly limits the performance of nanocrystal-based devices, yet most optical measurements cannot resolve the underlying contributions. We use two-dimensional electronic spectroscopy (2D ES) to measure the line width of the band-edge exciton of CdSe nanocrystals as a function of radii and surface chemistry. We find that the homogeneous width decreases for increasing nanocrystal radius and that surface chemistry plays a critical role in controlling this line width. To explore the hypothesis that unpassivated trap states serve to broaden the homogeneous line width and to explain its size-dependence, we use 3D ES to identify the spectral signatures of exciton-phonon coupling to optical and acoustic phonons. We find enhanced coupling to optical phonon modes for nanocrystals that lack electron-passivating ligands, suggesting that localized surface charges enhance exciton-phonon coupling via the Fröhlich interaction. Lastly, the data reveal that spectral diffusion contributes negligibly to the homogeneous line width on subnanosecond time scales.

  18. Directed emission of CdSe nanoplatelets originating from strongly anisotropic 2D electronic structure

    Science.gov (United States)

    Scott, Riccardo; Heckmann, Jan; Prudnikau, Anatol V.; Antanovich, Artsiom; Mikhailov, Aleksandr; Owschimikow, Nina; Artemyev, Mikhail; Climente, Juan I.; Woggon, Ulrike; Grosse, Nicolai B.; Achtstein, Alexander W.

    2017-12-01

    Intrinsically directional light emitters are potentially important for applications in photonics including lasing and energy-efficient display technology. Here, we propose a new route to overcome intrinsic efficiency limitations in light-emitting devices by studying a CdSe nanoplatelets monolayer that exhibits strongly anisotropic, directed photoluminescence. Analysis of the two-dimensional k-space distribution reveals the underlying internal transition dipole distribution. The observed directed emission is related to the anisotropy of the electronic Bloch states governing the exciton transition dipole moment and forming a bright plane. The strongly directed emission perpendicular to the platelet is further enhanced by the optical local density of states and local fields. In contrast to the emission directionality, the off-resonant absorption into the energetically higher 2D-continuum of states is isotropic. These contrasting optical properties make the oriented CdSe nanoplatelets, or superstructures of parallel-oriented platelets, an interesting and potentially useful class of semiconductor-based emitters.

  19. Control rod for a reactor

    International Nuclear Information System (INIS)

    Natori, Hisahide.

    1975-01-01

    Object: To change arrangement and density of each layer of neutron absorber in the control rod and to render rotation by each layer possible, whereby the neutron absorber may be rotated to readily flatten power distribution. Structure: Neutron absorbers such as boron and carbide are filled into stainless steel pipes, which are peripherally arranged in a multi-layer fashion. Arrangement and density of the neutron absorber by each layer are changed and rotation by each layer is made possible, whereby surface area of the absorber or the like is changed to flatten power distribution. (Furukawa, Y.)

  20. Laboratory experiments with impacting fuel rods

    International Nuclear Information System (INIS)

    Kiss, S.; Lipcsei, S.

    1994-10-01

    Vibration surveillance and diagnostics of fuel rods and fuel assemblies are important tasks in NPPs. Thus accurate knowledge of vibration phenomena and measurability is very important. Experimental results on models without limiter give good coincidence with theoretical calculations. Spectra measured on impacting rod become smoother with increasing impacting level. Spectra of fuel rods have a wider range in impacting rate and higher level of smoothing than spectra of model rod have. The impacting rate strongly depends on mechanical properties of the rod. By the experiments, one can state that as for Fourier spectra the only thing caused by the impacts is the smoothening. However, there is a chance to give faulty diagnosis by Fourier spectra only. Consequently, investigation of fuel rod vibration requires increased caution. (author) 4 refs.; 12 figs.; 1 tab

  1. A novel ultrasound-assisted approach to the synthesis of CdSe and CdS nanoparticles

    International Nuclear Information System (INIS)

    Li Hongliang; Zhu Yingchun; Chen Siguang; Palchik, Oleg; Xiong Jinping; Koltypin, Yuri; Gofer, Yosef; Gedanken, Aharon

    2003-01-01

    Hexagonal CdSe and hexagonal CdS nanoparticles have been prepared using Cd(Ac) 2 and less hazardous elemental Se or S as precursors, respectively, with the aid of ultrasound irradiation under an atmosphere of H 2 /Ar (5/95, V/V). The products consist of 7-10 nm nanocrystallites which aggregated in the form of polydispersive nanoclusters with sizes in the range 30-40 nm in the case of CdSe, and near monodispersive nanoclusters with a mean size of about 40 nm in the case of CdS. X-ray diffraction, high-resolution TEM and SAED patterns (selected area electron diffraction patterns) show that the as-prepared particles are well crystallized. X-ray photoelectron spectroscopy (XPS) measurements further confirm the formation of CdSe and CdS. Diffuse reflection spectra indicate that both the CdSe and the CdS nanocryslallites are direct band-gap semiconductors with band-gap values of about 1.83 and 2.62 eV, respectively. Control experiments demonstrate that the hydrogen is the reducing agent, and the extreme high temperature induced by the collapse of the bubble accelerates the reduction of elemental Se or S by hydrogen. An ultrasound assisted in situ reduction/combination mechanism is proposed

  2. Force Field Parametrization of Colloidal CdSe Nanocrystals Using an Adaptive Rate Monte Carlo Optimization Algorithm

    NARCIS (Netherlands)

    Cosseddu, Salvatore; Infante, Ivan

    2017-01-01

    In a typical colloidal CdSe nanocrystal more than 50% of the atoms are located at the surface. These atoms can give rise to electronic traps that can deteriorate the performance of optoelectronic devices made of these nanomaterials. A key challenge in this field is thus to understand with atomistic

  3. Atomic Structure of Wurtzite CdSe (Core)/CdS (Giant Shell) Nanobullets Related to Epitaxy and Growth

    NARCIS (Netherlands)

    Bladt, Eva; Moes, Relinde; Peters, Joep; Montanarella, Federico; De Mello Donega, Celso; Vanmaekelbergh, Daniël; Bals, Sara

    2016-01-01

    Heteronanocrystals consisting of a CdSe core and a giant CdS shell have shown remarkable optical properties which are promising for applications in opto-electrical devices. Since these properties sensitively depend on the size and shape, a morphological characterization is of high interest. Here, we

  4. Automatic safety rod for reactors. [LMFBR

    Science.gov (United States)

    Germer, J.H.

    1982-03-23

    An automatic safety rod for a nuclear reactor containing neutron absorbing material and designed to be inserted into a reactor core after a loss-of-flow. Actuation is based upon either a sudden decrease in core pressure drop or the pressure drop decreases below a predetermined minimum value. The automatic control rod includes a pressure regulating device whereby a controlled decrease in operating pressure due to reduced coolant flow does not cause the rod to drop into the core.

  5. Temperature actuated automatic safety rod release

    Science.gov (United States)

    Hutter, E.; Pardini, J.A.; Walker, D.E.

    1984-03-13

    A temperature-actuated apparatus is disclosed for releasably supporting a safety rod in a nuclear reactor, comprising a safety rod upper adapter having a retention means, a drive shaft which houses the upper adapter, and a bimetallic means supported within the drive shaft and having at least one ledge which engages a retention means of the safety rod upper adapter. A pre-determined increase in temperature causes the bimetallic means to deform so that the ledge disengages from the retention means, whereby the bimetallic means releases the safety rod into the core of the reactor.

  6. Control rod selecting and driving device

    International Nuclear Information System (INIS)

    Isobe, Hideo.

    1981-01-01

    Purpose: To simultaneously drive a predetermined number of control rods in a predetermined mode by the control of addresses for predetermined number of control rods and read or write of driving codified data to and from the memory by way of a memory controller. Constitution: The system comprises a control rod information selection device for selecting predetermined control rods from a plurality of control rods disposed in a reactor and outputting information for driving them in a predetermined mode, a control rod information output device for codifying the information outputted from the above device and outputting the addresses to the predetermined control rods and driving mode coded data, and a driving device for driving said predetermined control rods in a predetermined mode in accordance with the codified data outputted from the above device, said control rod infromation output device comprising a memory device capable of storing a predetermined number of the codified data and a memory control device for storing the predetermined number of data into the above memory device at a predetermined timing while successively outputting the thus stored predetermined number of data at a predetermined timing. (Seki, T.)

  7. Nuclear fuel rod end plug weld inspection

    International Nuclear Information System (INIS)

    Parker, M. A.; Patrick, S. S.; Rice, G. F.

    1985-01-01

    Apparatus and method for testing TIG (tungsten inert gas) welds of end plugs on a sealed nuclear reactor fuel rod. An X-ray fluorescent spectrograph testing unit detects tungsten inclusion weld defects in the top end plug's seal weld. Separate ultrasonic weld inspection system testing units test the top end plug's seal and girth welds and test the bottom end plug's girth weld for penetration, porosity and wall thinning defects. The nuclear fuel rod is automatically moved into and out from each testing unit and is automatically transported between the testing units by rod handling devices. A controller supervises the operation of the testing units and the rod handling devices

  8. Growth and Morphology of Rod Eutectics

    Energy Technology Data Exchange (ETDEWEB)

    Jing Teng; Shan Liu; R. Trivedi

    2008-03-17

    The formation of rod eutectic microstructure is investigated systematically in a succinonitrile-camphor alloy of eutectic composition by using the directional solidification technique. A new rod eutectic configuration is observed in which the rods form with elliptical cylindrical shape. Two different orientations of the ellipse are observed that differ by a 90{sup o} rotation such that the major and the minor axes are interchanged. Critical experiments in thin samples, where a single layer of rods forms, show that the spacing and orientation of the elliptic rods are governed by the growth rate and the sample thickness. In thicker samples, multi layers of rods form with circular cross-section and the scaling law between the spacing and velocity predicted by the Jackson and Hunt model is validated. A theoretical model is developed for a two-dimensional array of elliptical rods that are arranged in a hexagonal or a square array, and the results are shown to be consistent with the experimental observations. The model of elliptic rods is also shown to reduce to that for the circular rod eutectic when the lengths of the two axes are equal, and to the lamellar eutectic model when one of the axes is much larger than the other one.

  9. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 5 discusses the following topics: Lower Cutting System Test Results and Analysis Report; NFBC Loading System Test Results and Analysis Report; Robotic Bridge Transporter Test Results and Analysis Report; RM-10A Remotec Manipulator Test Results and Analysis Report; and Manipulator Transporter Test Results and Analysis Report

  10. Attracting electromagnet for control rod

    International Nuclear Information System (INIS)

    Kato, Kazuo; Sasaki, Kotaro.

    1989-01-01

    Non-magnetic material plates with inherent resistivity of greater than 20 μΩ-cm and thickness of less than 3 mm are used for the end plates of attracting electromagnets for closed type control rods. By using such control rod attracting electromagnets, the scram releasing time can be shortened than usual. Since the armature attracting side of the electromagnet has to be sealed by a non-magnetic plate, a bronze plate of about 5 mm thickness has been used so far. Accordingly, non-magnetic plate is inserted to the electromagnet attracting face to increase air source length for improving to shorten the scram releasing time. This method, however, worsens the attracting property on one hand to require a great magnetomotive force. For overcoming these drawbacks, in the present invention, the material for tightly closing end plates in an electromagnet is changed from bronze plate to non-magnetic stainless steel SUS 303 or non-magnetic Monel metal and, in addition, the plate thickness is reduced to less than 5 mm thereby maintaining the attracting property and shortening the scram releasing time. (K.M.)

  11. Dry rod consolidation technology development

    International Nuclear Information System (INIS)

    Rasmussen, T.L.; Schoonen, D.H.; Fisher, M.W.

    1986-01-01

    The Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is funding a Program to consolidate commercial spent fuel for testing in dry storage casks and to develop technology that will be fed into other OCRWM Programs, e.g., Prototypical Consolidation Demonstration Program. The Program is being conducted at the Idaho National Engineering Laboratory (INEL) by the Operating Contractor, EGandG Idaho, Inc. Hardware and software have been designed and fabricated for installation in a hot cell adjacent to the Test Area North (TAN) Hot Shop Facility. This equipment will be used to perform dry consolidation of commercial spent fuel from the Virginia Power (VP) Cooperative Agreement Spent Fuel Storage Cask (SPSC) Demonstration Program and assemblies that had previously been stored at the Engine Maintenance and Disassembly (EMAD) facility in Nevada. Consolidation will be accomplished by individual, horizontal rod pulling. A computerized semi-automatic control system with operator involvement will be utilized to conduct consolidation operations. Special features have been incorporated in the design to allow crud collection and measurement of rod pulling forces. During consolidation operations, data will be taken to characterize this technology. Still photo, video tape, and other documentation will be generated to make developed information available to interested parties. Cold checkout of the hardware and software will complete in September of 1986. Following installation in the hot cell, consolidation operations will begin in January 1987. Resulting consolidated fuel will be utilized in the VP Cooperative Agreement SFSC Program

  12. Microscale memory characteristics of virus-quantum dot hybrids

    Science.gov (United States)

    Portney, Nathaniel G.; Tseng, Ricky J.; Destito, Giuseppe; Strable, Erica; Yang, Yang; Manchester, Marianne; Finn, M. G.; Ozkan, Mihrimah

    2007-05-01

    An electrical multi stability effect was observed for a single layer device fabricated, comprising a hybrid virus-semiconducting quantum dot (CdSe /ZnS core/shell Qds) assembled onto icosahedral-mutant-virus template (CPMV-T184C). A substrate based bottom-up pathway was used to conjugate two different color emitting Qds for fluorescence visualization and to insert a charging/decharging factor. Pulsed wave measurements depicted distinct conductive states with repeatable and nonvolatile behavior as a functioning memory element.

  13. Photoluminescence intermittency of semiconductor quantum dots in dielectric environments

    Energy Technology Data Exchange (ETDEWEB)

    Isaac, A.

    2006-08-11

    The experimental studies presented in this thesis deal with the photoluminescence intermittency of semiconductor quantum dots in different dielectric environments. Detailed analysis of intermittency statistics from single capped CdSe/ZnS, uncapped CdSe and water dispersed CdSe/ZnS QDs in different matrices provide experimental evidence for the model of photoionization with a charge ejected into the surrounding matrix as the source of PL intermittency phenomenon. We propose a self-trapping model to explain the increase of dark state lifetimes with the dielectric constant of the matrix. (orig.)

  14. Exploiting the optical and luminescence characteristic of quantum dots for optical device fabrication

    Science.gov (United States)

    Suriyaprakash, Jagadeesh; Qiao, Ting Ting

    2018-02-01

    One can design a robust optical device by engineering the optical band gap of the quantum dots (QDs) owing to their size-tunable quantum confinement effect. To do this, understanding the optical effects of QDs and composite materials is crucial. In this context, various sizes (2.8-4.2 nm) of CdSe QDs-PMMA nanocomposite are fabricated in a two-step process and their absorbance, luminescence and optical constants studied systematically. The ellipsometry spectroscopic analysis exhibits the heterogeneous medium feature of Ψ value and also the measured refractive index (1.51-1.59) values are increased with decreased band gap (2.24-2.10 eV). The observed red shift in the UV-Vis and photoluminescence spectra is indicative of early stage CdSe QD followed by a nucleation process of bigger size QD. In addition, the growth kinetics of the reaction and the band gap of the QDs are evaluated with respect to the time to testify the colloidal QDs formation. The thickness and QD composition of the nanocomposite thin films calculated by effective medium approximation are 100 nm and 8-12%, respectively. Morphology and structural feature transmission electron microscopy study of the fabricated nanocomposite demonstrated that spherical CdSe QDs are well dispersed in PMMA.

  15. Wall pressure fluctuations in rod bundles

    International Nuclear Information System (INIS)

    Moeller, S.V.

    1990-01-01

    Microphones and hot wires were applied for the measurement of wall pressure fluctuations and velocity fluctuations in rod bundles with several aspect ratios. By means of auto and cross spectral density functions their interdependence was investigated. Results show that the pressure fluctuations in rod bundles are mainly associated with the phenomenon of quasi-periodic flow pulsations between subchannels. (author)

  16. Study of the rod style SFRFQ structure

    CERN Document Server

    Yan Xue Qing; Chen J

    2002-01-01

    There is a problem about upper limit of energy in the RFQ structure, although it is a wonderful low-energy-suited high current accelerating structure. After proposing an improved rod style SFRFQ structure without reversed field, the author studies its energy gain and transverse motion. The rod style SFRFQ structure is roughly compared with diaphragm SFRFQ structure

  17. Method of inspecting control rod drive mechanism

    International Nuclear Information System (INIS)

    Sato, Tomomi; Tatemichi, Shin-ichiro; Hasegawa, Hidenobu.

    1988-01-01

    Purpose: To conduct inspection for control rod drives and fuel handling operations in parallel without taking out the entire fuel, while maintaining the reactor in a subcritical state. Method: Control rod drives are inspected through the release of connection between control rods and control rod drives, detachment and dismantling of control rod drives, etc. In this case, structural materials having neutron absorbing power equal to or greater than the control rods are inserted into the gap after taking out fuels. Since the structural materials have neutron absorbing portion, subcriticality is maintained by the neutron absorbing effect. Accordingly, there is no requirement for taking out all of the fuels, thereby enabling to check the control rod drives and conduct handling for the fuels in parallel. As a result, the number of days required for the inspection can be shortened and it is possible to improve the working efficiency for the decomposition, inspection, etc. of the control rod drives and, thus, improve the operation efficiency of the nuclear power plant thereby attaining the predetermined purpose. (Kawakami, Y.)

  18. Resonant surface-enhanced Raman scattering by optical phonons in a monolayer of CdSe nanocrystals on Au nanocluster arrays

    Energy Technology Data Exchange (ETDEWEB)

    Milekhin, Alexander G., E-mail: milekhin@isp.nsc.ru [A.V. Rzhanov Institute of Semiconductor Physics, pr. Lavrentjeva, 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogov str. 2, 630090 Novosibirsk (Russian Federation); Sveshnikova, Larisa L.; Duda, Tatyana A. [A.V. Rzhanov Institute of Semiconductor Physics, pr. Lavrentjeva, 13, 630090 Novosibirsk (Russian Federation); Rodyakina, Ekaterina E. [A.V. Rzhanov Institute of Semiconductor Physics, pr. Lavrentjeva, 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogov str. 2, 630090 Novosibirsk (Russian Federation); Dzhagan, Volodymyr M. [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Sheremet, Evgeniya [Solid Surfaces Analysis, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Gordan, Ovidiu D. [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Himcinschi, Cameliu [Institut für Theoretische Physik, TU Bergakademie Freiberg, 09596 Freiberg (Germany); Latyshev, Alexander V. [A.V. Rzhanov Institute of Semiconductor Physics, pr. Lavrentjeva, 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogov str. 2, 630090 Novosibirsk (Russian Federation); Zahn, Dietrich R.T. [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany)

    2016-05-01

    Highlights: • Regular Au nanocluster and dimer arrays as well as single Au dimers are fabricated. • Resonant SERS by monolayers of CdSe nanocrystals deposited on the Au nanostructures is observed. • LO energy change for CdSe NCs on different single Au dimers indicates SERS by single or a few NCs. - Abstract: Here we present the results on an investigation of resonant Stokes and anti- Stokes surface-enhanced Raman scattering (SERS) by optical phonons in colloidal CdSe nanocrystals (NCs) homogeneously deposited on arrays of Au nanoclusters using the Langmuir–Blodgett technology. The thickness of deposited NCs, determined by transmission and scanning electron microscopy, amounts to approximately 1 monolayer. Special attention is paid to the determination of the localized surface plasmon resonance (LSPR) energy in the arrays of Au nanoclusters as a function of the nanocluster size by means of micro-ellipsometry. SERS by optical phonons in CdSe NCs shows a significant enhancement factor with a maximal value of 2 × 10{sup 3} which depends resonantly on the Au nanocluster size and thus on the LSPR energy. The deposition of CdSe NCs on the arrays of Au nanocluster dimers enabled us to study the polarization dependence of SERS. It was found that a maximal SERS signal is observed for the light polarization along the dimer axis. Finally, SERS by optical phonons was observed for CdSe NCs deposited on the structures with a single Au dimer. A difference of the LO phonon energy is observed for CdSe NCs on different single dimers. This effect is explained as the confinement-induced shift which depends on the CdSe nanocrystal size and indicates quasi-single NC Raman spectra being obtained.

  19. Control rod controlling device of nuclear reactor

    International Nuclear Information System (INIS)

    Arita, Setsuo; Okido, Fumiyasu.

    1997-01-01

    The present invention concerns a control rod drive mechanism for use in a BWR, which does not apply undesired effects on monitoring of neutron instrumentation systems. Control rods are operated using an induction electric motor equipped with an electromagnetic brake as a driving source. The induction electric motor and the electromagnetic brake are driven by ON/OFF control. Since a switching element for driving the induction electric motor and the electromagnetic brake can be kept ON or OFF during control rod operation, electromagnetic noises are not generated during the operation of the control rods. Accordingly, the neutron instrumentation systems do not undergoing effects of electromagnetic noises during operation of control rods, and the neutron instrumentation system can accurately be monitored. (N.H.)

  20. Nuclear reactor with scrammable part length rod

    International Nuclear Information System (INIS)

    Bevilacqua, F.

    1979-01-01

    A new part length rod is provided. It may be used to control xenon induced power oscillations but to contribute to shutdown reactivity when a rapid shutdown of the reactor is required. The part length rod consists of a control rod with three regions. The lower control region is a longer weaker active portion separated from an upper stronger shorter poison section by an intermediate section which is a relative non-absorber of neutrons. The combination of the longer weaker control section with the upper high worth poison section permits the part length rod of this to be scrammed into the core when a reactor shutdown is required but also permits the control rod to be used as a tool to control power distribution in both the axial and radial directions during normal operation

  1. Broad spectral photocurrent enhancement in Au-decorated CdSe nanowires

    KAUST Repository

    Chakraborty, Ritun

    2013-01-01

    Metal-semiconductor hybrid nanostructures promise improved photoconductive performance due to plasmonic properties of the metal portions and intrinsic electric fields at the metal-semiconductor interface that possibly enhance charge separation. Here we report gold decorated CdSe nanowires as a novel functional material and investigate the influence of gold decoration on the lateral facets on the photoconductive properties. Gold decorated nanowires show typically an at least ten-fold higher photocurrent as compared to their bare counterparts. Interestingly, the photocurrent enhancement is wavelength independent, although the plasmon resonance related to the gold particles appears in the absorption spectra. Our experiments show that light scattering and Schottky fields associated with the metal-semiconductor interface are at the origin of the photocurrent enhancement. © 2013 The Royal Society of Chemistry.

  2. Phase discrimination in CdSe structures by means of Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Cusco, R.; Artus, L. [Institut Jaume Almera (ICTJA-CSIC), Consejo Superior de Investigaciones Cientificas, Lluis Sole i Sabaris s.n., 08028 Barcelona (Spain); Consonni, V. [Universite Grenoble Alpes and CNRS, LMGP, 38016 Grenoble (France); Bellet-Amalric, E. [Universite Grenoble Alpes and CEA, INAC-PHEILQS, Nanophysique et Semiconducteurs Group, 38000 Grenoble (France); Andre, R. [Universite Grenoble Alpes and CNRS, Institut Neel, Nanophysique et Semiconducteurs Group, 38000 Grenoble (France)

    2017-05-15

    Raman spectra of epitaxial layers of CdSe grown by molecular beam epitaxy have been measured for the cubic (zincblende) and hexagonal (wurtzite) phases. The Raman spectra are examined in the light of density functional calculations for these two highly similar structures. Characteristic Raman frequencies and spectral features associated with the different symmetry are discussed and reliable criteria for phase discrimination based on Raman spectroscopy are proposed. Although LO frequencies are virtually identical in both structures and may be affected by size effects, the observation of a low energy E{sub 2} mode at 33 cm{sup -1} unambiguously identifies the wurtzite structure and can be used as a specific fingerprint to distinguish between these two phases in CdSe-based nanostructures. The slightly lower LO frequency measured in the zincblende epitaxial layer is ascribed to residual tensile strain. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Subsurface electric field effect on excitonic reflection spectra of CdSe monocrystals

    International Nuclear Information System (INIS)

    Batyrev, A.S.; Novikov, B.V.; Cherednichenko, A.E.

    1981-01-01

    Changes in exciton reflection spectra of CdSe monocrystals under bombardment with 2-3.5 keV electrons at T=4.2 K have been experimentally investigated. Under the same conditions measured was a relative value of surface photo e.m.f. depending on a dose of electron bombardment. A structure, resulted from the Stark well for excitons near surface and bound state in it - mechanical surface exciton, has been detected in nonirradiated crystals. Correlation between changes in the value of photo e.m.f. and the exciton reflection spectrum contour in the process of irradiation has been traced. It is shown that a number of peculiarities in experimental exciton reflection spectra is not explained with the model of the Thomas and Hopfield ''dead layer''. The Kiselev model is used to explain the results [ru

  4. Model-independent determination of the carrier multiplication time constant in CdSe nanocrystals.

    Science.gov (United States)

    Califano, Marco

    2009-11-21

    The experimental determination of the carrier multiplication (CM) time constant is complicated by the fact that this process occurs within the initial few hundreds of femtoseconds after excitation and, in transient-absorption experiments, cannot be separated from the buildup time of the 1p-state population. This work provides an accurate theoretical determination of the electron relaxation lifetime during the last stage of the p-state buildup, in CdSe nanocrystals, in the presence of a single photogenerated hole (no CM) and of a hole plus an additional electron-hole pair (following CM). From the invariance of the 1p buildup time observed experimentally for excitations above and below the CM threshold producing hot carriers with the same average per-exciton excess energy, and the calculated corresponding variations in the electron decay time in the two cases, an estimate is obtained for the carrier multiplication time constant. Unlike previous estimates reported in the literature so far, this result is model-independent, i.e., is obtained without making any assumption on the nature of the mechanism governing carrier multiplication. It is then compared with the time constant calculated, as a function of the excitation energy, assuming an impact-ionization-like process for carrier multiplication (DCM). The two results are in good agreement and show that carrier multiplication can occur on timescales of the order of tens of femtoseconds at energies close to the observed onset. These findings, which are compatible with the fastest lifetime estimated experimentally, confirm the suitability of the impact-ionization model to explain carrier multiplication in CdSe nanocrystals.

  5. Synthesis and characterization of water-dispersed CdSe/CdS core-shell quantum dots prepared via Layer-by-layer Method capped with carboxylic-functionalized poly(vinyl alcohol)

    Energy Technology Data Exchange (ETDEWEB)

    Ramanery, Fabio Pereira; Mansur, Alexandra Ancelmo Piscitelli; Mansur, Herman Sander, E-mail: hmansur@demet.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Metalurgia e Engenharia dos Materiais. Centro de Nanociencia, Nanotecnologia e Inovacao

    2014-08-15

    The main goal of this work was to synthesize CdSe/CdS (core-shell) nanoparticles stabilized by polymer ligand using entirely aqueous colloidal chemistry at room temperature. First, the CdSe core was prepared using precursors and acid-functionalized poly(vinyl alcohol) as the capping ligand. Next, a CdS shell was grown onto the CdSe core via the layer-by-layer technique. The CdS shell was formed by two consecutive monolayers, as estimated by empirical mathematical functions. The nucleation and growth of CdSe quantum dots followed by CdS shell deposition were characterized by UV-vis spectroscopy, photoluminescence (PL) spectroscopy and transmission electron microscopy (TEM). The results indicated a systematic red-shift of the absorption and emission spectra after the deposition of CdS, indicating the shell growth onto the CdSe core. TEM coupled with electron diffraction analysis revealed the presence of CdSe/CdS with an epitaxial shell growth. Therefore, it may be concluded that CdSe/CdS quantum dots with core-shell nanostructure were effectively synthesized.(author)

  6. Control Rod Malfunction at the NRAD Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Thomas L. Maddock

    2010-05-01

    The neutron Radiography Reactor (NRAD) is a training, research, and isotope (TRIGA) reactor located at the INL. The reactor is normally shut down by the insertion of three control rods that drop into the core when power is removed from electromagnets. During a routine shutdown, indicator lights on the console showed that one of the control rods was not inserted. It was initially thought that the indicator lights were in error because of a limit switch that was out of adjustment. Through further testing, it was determined that the control rod did not drop when the scram switch was initially pressed. The control rod anomaly led to a six month shutdown of the reactor and an in depth investigation of the reactor protective system. The investigation looked into: scram switch operation, console modifications, and control rod drive mechanisms. A number of latent issues were discovered and corrected during the investigation. The cause of the control rod malfunction was found to be a buildup of corrosion in the control rod drive mechanism. The investigation resulted in modifications to equipment, changes to both operation and maintenance procedures, and additional training. No reoccurrences of the problem have been observed since corrective actions were implemented.

  7. Nondestructive assay of HTGR fuel rods

    International Nuclear Information System (INIS)

    Menlove, H.O.

    1974-01-01

    Performance characteristics of three different radioactive source NDA systems are compared for the assay of HTGR fuel rods and stacks of rods. These systems include the fast neutron Sb-Be assay system, the 252 Cf ''Shuffler,'' and the thermal neutron PAPAS assay system. Studies have been made to determinethe perturbation on the measurements from particle size, kernel Th/U ratio, thorium content, and hydrogen content. In addition to the total 235 U determination, the pellet-to-pellet or rod-to-rod uniformity of HTGR fuel rod stacks has been measured by counting the delayed gamma rays with a NaI through-hole in the PAPAS system. These measurements showed that rod substitutions can be detected easily in a fuel stack, and that detailed information is available on the loading variations in a uniform stack. Using a 1.0 mg 252 Cf source, assay rates of 2 to 4 rods/s are possible, thus facilitating measurement of 100 percent of a plant's throughput. (U.S.)

  8. Estimation of irradiated control rod worth

    International Nuclear Information System (INIS)

    Varvayanni, M.; Catsaros, N.; Antonopoulos-Domis, M.

    2009-01-01

    When depleted control rods are planned to be used in new core configurations, their worth has to be accurately predicted in order to deduce key design and safety parameters such as the available shutdown margin. In this work a methodology is suggested for the derivation of the distributed absorbing capacity of a depleted rod, useful in the case that the level of detail that is known about the irradiation history of the control rod does not allow an accurate calculation of the absorber's burnup. The suggested methodology is based on measurements of the rod's worth carried out in the former core configuration and on corresponding calculations based on the original (before first irradiation) absorber concentration. The methodology is formulated for the general case of the multi-group theory; it is successfully tested for the one-group approximation, for a depleted control rod of the Greek Research Reactor, containing five neutron absorbers. The computations reproduce satisfactorily the irradiated rod worth measurements, practically eliminating the discrepancy of the total rod worth, compared to the computations based on the nominal absorber densities.

  9. Control rod housing alignment and repair apparatus

    International Nuclear Information System (INIS)

    Dixon, R.C.; Deaver, G.A.; Punches, J.R.; Singleton, G.E.; Erbes, J.G.; Offer, H.P.

    1991-01-01

    This patent describes a welding a repair device for precisely locating and welding the position of the top of a control rod drive housing attached from a stub tube from a corresponding aperture and alignment pin in a core plate within a boiling water nuclear reactor, the welding and repair device. It comprises: a shaft, the shaft extending from the vicinity of the top of the control rod drive housing up to and through the aperture in the core plate; means for registering to the aperture and the alignment pin on the core plate; a fixture attached to the bottom end of the shaft for mating to the top of the control rod drive housing in precise mating relationship; the fixture attached to the bottom end of the shaft whereby the fixture, when mated to the control rod drove housing and the registering means when registered to the alignment pin and aperture on the core plate imparts to the shaft, and angularity between the top of the control rod drive housing and the hole in the core plate; a hollow cylinder, the cylinder mounted for depending and sealed support with respect to the shaft above, about and below the control rod drive housing top; the cylinder depending down below the control rod drive housing to an elevation below the top of the sub tube; a rotating welding apparatus with a welding head for dispensing weldment mounted for rotation with respect to the shaft; the welding head disposed at the juncture between the side of the control rod drive housing and the stub tube; and means for flooding the cylinder with gas whereby the cylinder may be lowered. flooded in a gas environment and effect a weld between the top of the stub tube and the control rod drive housing

  10. Apparatus for handling control rod drives

    International Nuclear Information System (INIS)

    Akimoto, A.; Watanabe, M.; Yoshida, T.; Sugaya, Z.; Saito, T.; Ishii, Y.

    1979-01-01

    An apparatus for handling control rod drives (CRD's) attached by detachable fixing means to housings mounted in a reactor pressure vessel and each coupled to one of control rods inserted in the reactor pressure vessel is described. The apparatus for handling the CRD's comprise cylindrical housing means, uncoupling means mounted in the housing means for uncoupling each of the control rods from the respective CRD, means mounted on the housing means for effecting attaching and detaching of the fixing means, means for supporting the housing means, and means for moving the support means longitudinally of the CRD

  11. Control rod drive hydraulic device

    International Nuclear Information System (INIS)

    Takekawa, Toru.

    1994-01-01

    The device of the present invention can reliably prevent a possible erroneous withdrawal of control rod driving mechanism when the pressure of a coolant line is increased by isolation operation of hydraulic control units upon periodical inspection for a BWR type reactor. That is, a coolant line is connected to the downstream of a hydraulic supply device. The coolant line is connected to a hydraulic control unit. A coolant hydraulic detection device and a pressure setting device are disposed to the coolant line. A closing signal line and a returning signal line are disposed, which connect the hydraulic supply device and a flow rate control valve for the hydraulic setting device. In the device of the present invention, even if pressure of supplied coolants is elevated due to isolation of hydraulic control units, the elevation of the hydraulic pressure can be prevented. Accordingly, reliability upon periodical reactor inspection can be improved. Further, the facility is simplified and the installation to an existent facility is easy. (I.S.)

  12. Taylor impact of glass rods

    International Nuclear Information System (INIS)

    Willmott, G.R.; Radford, D.D.

    2005-01-01

    The deformation and fracture behavior of soda-lime and borosilicate glass rods was examined during classic and symmetric Taylor impact experiments for impact pressures to 4 and 10 GPa, respectively. High-speed photography and piezoresistive gauges were used to measure the failure front velocities in both glasses, and for impact pressures below ∼2 GPa the failure front velocity increases rapidly with increasing pressure. As the pressure was increased above ∼3 GPa, the failure front velocities asymptotically approached maximum values between the longitudinal and shear wave velocities of each material; at ∼4 GPa, the average failure front velocities were 4.7±0.5 and 4.6±0.5 mm μs -1 for the soda-lime and borosilicate specimens, respectively. The observed mechanism of failure in these experiments involved continuous pressure-dependent nucleation and growth of microcracks behind the incident wave. As the impact pressure was increased, there was a decrease in the time to failure. The density of cracks within the failed region was material dependent, with the more open-structured borosilicate glass showing a larger fracture density

  13. Dry rod consolidation technology development

    International Nuclear Information System (INIS)

    Rasmussen, T.L.; Schoonen, D.H.; Feldman, E.M.; Fisher, M.W.

    1987-01-01

    The Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is funding a program to consolidate commercial spent fuel for testing in dry storage casks and to develop technology that will be fed into other OCRWM programs, e.g., Prototypical Consolidation Demonstration Program (PCDP). The program is being conducted at the Idaho National Engineering Laboratory (INEL) by the INEL Operating Contractor EG and G Idaho, Inc. Hardware and software have been designed and fabricated for installation in a hot cell adjacent to the Test Area North (TAN) Hot Shop Facility. This equipment is used to perform dry consolidation of commercial spent fuel from the Virginia Power (VP) Cooperative Agreement Spent Fuel Storage Cask (SFSC) Demonstration Program and assemblies that had previously been stored at the Engine Maintenance and Disassembly (EMAD) facility in Nevada. Consolidation is accomplished by individual, horizontal rod pulling. A computerized semiautomatic control system with operator involvement is utilized to conduct consolidation operations. During consolidation operations, data is taken to characterize this technology. Still photo, video tape, and other documentation will be generated to make developed information available to interested parties. Cold checkout of the hardware and software was completed in September of 1986. Following installation in the hot cell, consolidation operations begins in May 1987. Resulting consolidated fuel will be utilized in the VP Cooperative Agreement SFSC Program

  14. Quantum dot cadmium selenide as a saturable absorber for Q-switched and mode-locked double-clad ytterbium-doped fiber lasers

    Science.gov (United States)

    Mahyuddin, M. B. H.; Latiff, A. A.; Rusdi, M. F. M.; Irawati, N.; Harun, S. W.

    2017-08-01

    This paper demonstrates the integration of quantum dot (QD) cadmium selenide (CdSe) nanoparticles, which is embedded into polymethyl methacrylate (PMMA) film into an ytterbium-doped fiber laser (YDFL) cavity to produce Q-switched and mode-locked fiber lasers. The QD CdSe based film functions as a saturable absorber (SA). For Q-switching operation, stable pulse is generated within 970-1200 mW pump power, with tunable repetition rate and pulse width of 24.5-40.5 kHz and 6.8-3.7 μs, respectively. Maximum pulse energy and peak power are obtained about 1.1 μJ and 0.28 W, respectively. As we tune the polarization state of the laser cavity and use a single QD CdSe film, the mode-locking operation could also be generated within 310-468 mW pump power with repetition rate of 14.5 MHz and pulse width of 3.5 ps. Maximum pulse energy and peak power are obtained about 2 nJ and 0.11 W, respectively. These results may contribute to continuous research work on laser pulse generation, providing new opportunities of CdSe material in photonics applications.

  15. Chemical synthesis and characterization of CdSe thin films deposited by SILAR technique for optoelectronic applications

    Directory of Open Access Journals (Sweden)

    K.B. Chaudhari

    2016-12-01

    Full Text Available CdSe thin films were deposited on the glass substrate by successive ionic layer adsorption and reaction (SILAR method. Different sets of the film are prepared by changing the number of immersion cycles as 30, 40, 50 and 60. Further the effect of a number of immersion cycles on the characteristic structural, morphological, optical and electrical properties of the films are studied. The XRD studies revealed that the deposited films showed hexagonal structure with most prominent reflection along (1 0 1 plane. Moreover, the peak intensity of (1 0 1 plane is found to be increased as the number of immersion cycles is increased. All the thin films look relatively smooth and homogeneous covering the entire surface area in FESEM image. Optical properties of the CdSe thin films for a different number of immersion cycles were studied, which indicates that the absorbance increases with the increase in the immersion cycles. Furthermore, the optical band-gap in conjunction with the electrical resistivity was found to get decreased with increase in the immersion cycles. A good correlation between the number of immersion cycles and the physical properties indicates a simple method to manipulate the CdSe material properties for optoelectronic applications.

  16. Preparation and characterization of CdSe0.6Te0.4 thin films by electrodeposition method

    International Nuclear Information System (INIS)

    Shinde, S.K.; Thombare, J.V.; Lohar, G.M.; Chougale, U.M.; Fulari, V.J.

    2012-01-01

    The electrodeposition method has been used to deposit CdSe 0.6 Te 0.4 thin film onto stainless steel and ITO coated glass substrates. CdSe 0.6 Te 0.4 thin films have been electrodeposited from an acidic bath using CdSO 4 as a cadmium source, SeO 2 as a selenium source and Na 2 TeO 3 as a telluride source at pH ∼ 3 onto stainless steel and ITO coated glass substrates. The preparative conditions such as concentration, pH, deposition time, deposition potential, etc. are optimized to get CdSe 0.6 Te 0.4 thin films. These films were characterized by X-ray diffraction (XRD) study for structural analysis; Fourier transform infrared (FTIR) spectroscopy was used to study the different bonding. Optical absorption measurements were showed that the electrodeposited thin films are in semiconductor nature. The surface wettability study was made by contact angle measurements. (author)

  17. Surface-enhanced Raman scattering by colloidal CdSe nanocrystal submonolayers fabricated by the Langmuir–Blodgett technique

    Directory of Open Access Journals (Sweden)

    Alexander G. Milekhin

    2015-12-01

    Full Text Available We present the results of an investigation of surface-enhanced Raman scattering (SERS by optical phonons in colloidal CdSe nanocrystals (NCs homogeneously deposited on both arrays of Au nanoclusters and Au dimers using the Langmuir–Blodgett technique. The coverage of the deposited NCs was less than one monolayer, as determined by transmission and scanning electron microscopy. SERS by optical phonons in CdSe nanocrystals showed a significant enhancement that depends resonantly on the Au nanocluster and dimer size, and thus on the localized surface plasmon resonance (LSPR energy. The deposition of CdSe nanocrystals on the Au dimer nanocluster arrays enabled us to study the polarization dependence of SERS. The maximal SERS signal was observed for light polarization parallel to the dimer axis. The polarization ratio of the SERS signal parallel and perpendicular to the dimer axis was 20. The SERS signal intensity was also investigated as a function of the distance between nanoclusters in a dimer. Here the maximal SERS enhancement was observed for the minimal distance studied (about 10 nm, confirming the formation of SERS “hot spots”.

  18. Characterization of graphene quantum dot hybrid structures

    Science.gov (United States)

    Chung, Ting-Fung; Hu, Jiuning; Jauregui, Luis A.; Chen, Liangliang; Zhao, Qing; Ruan, Xiulin; Chen, Yong P.

    2012-02-01

    We report electrical transport, photo-electric response and Raman spectroscopy measurements in macroscopic samples of graphene decorated with inorganic quantum dots (CdSe QDs). QDs are deposited on chemical vapor deposition (CVD) graphene by spin-coating. Raman measurements of graphene decorated with QDs on Si wafer show very similar spectra with clear G and 2D peaks that reveal no degradation of graphene during the QDs deposition process. Furthermore, two types of device architectures (QDs-graphene and graphene-QDs-graphene) are fabricated with graphene as a transparent electrode and QD as a light absorbent for electrical photoresponse characterization. Upon application of either a broadband light source or a 532-nm monochromatic laser source, graphene-QDs-graphene devices demonstrate photoconducting response, but not in the case of QDs-graphene devices.

  19. Control rod for a nuclear reactor

    International Nuclear Information System (INIS)

    Roman, W.G.; Sutton, H.G. Jr.

    1979-01-01

    A control rod assembly for a nuclear reactor is disclosed having a remotely disengageable coupling between the control rod and the control rod drive shaft. The coupling is actuated by first lowering then raising the drive shaft. The described motion causes axial repositioning of a pin in a grooved rotatable cylinder, each being attached to different parts of the drive shaft which are axially movable relative to each other. In one embodiment, the relative axial motion of the parts of the drive shaft is used either to couple or to uncouple the connection by forcing resilient members attached to the drive shaft into or out of shouldered engagement, respectively, with an indentation formed in the control rod

  20. Control rod for a nuclear reactor

    International Nuclear Information System (INIS)

    Roman, W.G.; Sutton, H.G. Jr.

    1976-01-01

    A control rod assembly for a nuclear reactor is disclosed having a remotely disengageable coupling between the control rod and the control rod drive shaft. The coupling is actuated by first lowering then raising the drive shaft. The described motion causes axial repositioning of a pin in a grooved rotatable cylinder, each being attached to different parts of the drive shaft which are axially movable relative to each other. In one embodiment, the relative axial motion of the parts of the drive shaft is used either to couple or to uncouple the connection by forcing resilent members attached to the drive shaft into or out of shouldered engagement, respectively, with an indentation formed in the control rod

  1. Rod bundle burnout data and correlation comparisons

    International Nuclear Information System (INIS)

    Yoder, G.L.; Morris, D.G.; Mullins, C.B.

    1985-01-01

    Rod bundle burnout data from 30 steady-state and 3 transient tests were obtained from experiments performed in the Thermal Hydraulic Test Facility at the Oak Ridge National Laboratory. The tests covered a parameter range relevant to intact core reactor accidents ranging from large break to small break loss-ofcoolant conditions. Instrumentation within the 64-rod test section indicated that burnout occurred over an axial range within the bundle. The distance from the point where the first dry rod was detected to the point where all rods were dry was up to 60 cm in some of the tests. The burnout data should prove useful in developing new correlations for use in reactor thermalhydraulic codes. Evaluation of several existing critical heat flux correlations using the data show that three correlations, the Barnett, Bowring, and Katto correlations, perform similarly and correlate the data better than the Biasi correlation

  2. Genetics Home Reference: cone-rod dystrophy

    Science.gov (United States)

    ... common cause of autosomal recessive cone-rod dystrophy , accounting for 30 to 60 percent of cases. At ... Patient Support and Advocacy Resources (4 links) American Foundation for the Blind Foundation Fighting Blindness Retina International ...

  3. Control rod drive of nuclear reactor

    International Nuclear Information System (INIS)

    Zhuchkov, I.I.; Gorjunov, V.S.; Zaitsev, B.I.

    1980-01-01

    This invention relates to nuclear reactors and, more particularly, to a drive of a control rod of a nuclear reactor and allows power control, excess reactivity compensation, and emergency shut-down of a reactor. (author)

  4. Application of Quantum-Dot Conjugates for Detection and Subspecies Differentiation of Vibrio cholerae by Optical Methods

    Science.gov (United States)

    Erohin, P. S.; Utkin, D. V.; Kouklev, V. E.; Ossina, N. A.; Miheeva, E. A.; Alenkina, T. V.

    2016-03-01

    The application of bioconjugates of specific antibodies and CdSe quantum dots to identify two serovariants of Vibrio cholerae using fluorescence microscopy and optical spectroscopy is considered. It is found that a mixture of different bioconjugates with different emission maxima can be used without affecting the specificity of the method. Different V. cholerae serovariants are colored differently in fl uorescence microscopy (bright green and bright yellow), thereby allowing subspecies differentiation. The absorption spectrum of the bacterial suspension changed with homologous antigens in the sample and did not change with heterologous antigens. It is shown that the quantum-dot bioconjugates can serve as an alternative to the traditional fluorescence and agglutination diagnostics.

  5. Control rod excess withdrawal prevention device

    International Nuclear Information System (INIS)

    Takayama, Yoshihito.

    1992-01-01

    Excess withdrawal of a control rod of a BWR type reactor is prevented. That is, the device comprises (1) a speed detector for detecting the driving speed of a control rod, (2) a judging circuit for outputting an abnormal signal if the driving speed is greater than a predetermined level and (3) a direction control valve compulsory closing circuit for controlling the driving direction of inserting and withdrawing a control rod based on an abnormal signal. With such a constitution, when the with drawing speed of a control rod is greater than a predetermined level, it is detected by the speed detector and the judging circuit. Then, all of the direction control valve are closed by way of the direction control valve compulsory closing circuit. As a result, the operation of the control rod is stopped compulsorily and the withdrawing speed of the control rod can be lowered to a speed corresponding to that upon gravitational withdrawal. Accordingly, excess withdrawal can be prevented. (I.S)

  6. Control rod for FBR type reactor

    International Nuclear Information System (INIS)

    Nakai, Koichi.

    1993-01-01

    In a control rod for an LMFBR type reactor, a thermal resistor is disposed between a temperature sensitive cylinder and a cam unit support rod. A thermal expansion difference due to the temperature difference is caused between the temperature sensitive cylinder and the cam unit support rod only upon abrupt temperature change of coolants. A control rod shaft extending mechanism of downwardly depressing an absorbent portion by amplifying the thermal expansion difference by an extension link mechanism and the cam unit is provided. The thermal resistor comprises inconel 625 or like other steel of small heat conductivity. If a certain abnormality should cause to the reactor system to elevate the coolant temperature in the reactor elevates abruptly and the reactor shutdown system does not actuate, since the control rod extension shaft extends to urge the absorbent and lower the reactor core reactivity, so that leading to serious accident can be prevented surely. Further, the control rod extension shaft does not extend upon moderate temperature elevation in the usual startup and causes no unnecessary reactivity change. (N.H.)

  7. Crippling Strength of Axially Loaded Rods

    Science.gov (United States)

    Natalis, FR

    1921-01-01

    A new empirical formula was developed that holds good for any length and any material of a rod, and agrees well with the results of extensive strength tests. To facilitate calculations, three tables are included, giving the crippling load for solid and hollow sectioned wooden rods of different thickness and length, as well as for steel tubes manufactured according to the standards of Army Air Services Inspection. Further, a graphical method of calculation of the breaking load is derived in which a single curve is employed for determination of the allowable fiber stress. Finally, the theory is discussed of the elastic curve for a rod subject to compression, according to which no deflection occurs, and the apparent contradiction of this conclusion by test results is attributed to the fact that the rods under test are not perfectly straight, or that the wall thickness and the material are not uniform. Under the assumption of an eccentric rod having a slight initial bend according to a sine curve, a simple formula for the deflection is derived, which shows a surprising agreement with test results. From this a further formula is derived for the determination of the allowable load on an eccentric rod. The resulting relations are made clearer by means of a graphical representation of the relation of the moments of the outer and inner forces to the deflection.

  8. Epigenomic landscapes of retinal rods and cones

    Science.gov (United States)

    Mo, Alisa; Luo, Chongyuan; Davis, Fred P; Mukamel, Eran A; Henry, Gilbert L; Nery, Joseph R; Urich, Mark A; Picard, Serge; Lister, Ryan; Eddy, Sean R; Beer, Michael A; Ecker, Joseph R; Nathans, Jeremy

    2016-01-01

    Rod and cone photoreceptors are highly similar in many respects but they have important functional and molecular differences. Here, we investigate genome-wide patterns of DNA methylation and chromatin accessibility in mouse rods and cones and correlate differences in these features with gene expression, histone marks, transcription factor binding, and DNA sequence motifs. Loss of NR2E3 in rods shifts their epigenomes to a more cone-like state. The data further reveal wide differences in DNA methylation between retinal photoreceptors and brain neurons. Surprisingly, we also find a substantial fraction of DNA hypo-methylated regions in adult rods that are not in active chromatin. Many of these regions exhibit hallmarks of regulatory regions that were active earlier in neuronal development, suggesting that these regions could remain undermethylated due to the highly compact chromatin in mature rods. This work defines the epigenomic landscapes of rods and cones, revealing features relevant to photoreceptor development and function. DOI: http://dx.doi.org/10.7554/eLife.11613.001 PMID:26949250

  9. On the quantum limits of errors of measurements in distributed systems

    International Nuclear Information System (INIS)

    Vorontsov, Yu.I.

    1985-01-01

    In connection with the development of a gravitational waves detector quantum limits of errors of measurements of rod length, its face coordinates, potential at the end of a long line at different measurement methods have been found. It is proved that the method of stroboscopic measurement of the rod length does not result in increase of sensitivity in a gravitation - wave experiment. The strobing method can be effective only when controlling one of the normal rod coordinates

  10. International symposium on fuel rod simulators: development and application

    Energy Technology Data Exchange (ETDEWEB)

    McCulloch, R.W. (comp.)

    1981-05-01

    Separate abstracts are included for each of the papers presented concerning fuel rod simulator operation and performance; simulator design and evaluation; clad heated fuel rod simulators and fuel rod simulators for cladding investigations; fuel rod simulator components and inspection; and simulator analytical modeling. Ten papers have previously been input to the Energy Data Base.

  11. Method for compacting spent nuclear reactor fuel rods

    International Nuclear Information System (INIS)

    Wachter, W.J.

    1988-01-01

    In a nuclear reactor system which requires periodic physical manipulation of spent fuel rods, the method of compacting fuel rods from a fuel rod assembly is described. The method consists of: (1) removing the top end from the fuel rod assembly; (2) passing each of multiple fuel rod pulling elements in sequence through a fuel rod container and thence through respective consolidating passages in a fuel rod directing chamber; (3) engaging one of the pulling elements to the top end of each of the fuel rods; (4) drawing each of the pulling elements axially to draw the respective engaged fuel rods in one axial direction through the respective the passages in the chamber to thereby consolidate the fuel rods into a compacted configuration of a cross-sectional area smaller than the cross-sectional area occupied thereby within the fuel rod assembly; and (5) drawing all of the engaged fuel rods concurrently and substantially parallel to one another in the one axial direction into the fuel rod container while maintaining the compacted configuration whereby the fuel rods are aligned within the container in a fuel rod density of the the fuel rod assembly

  12. Optimization of conditions for cadmium selenide quantum dot biosynthesis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Brooks, Jordan; Lefebvre, Daniel D

    2017-04-01

    The biosynthesis of quantum dots has been explored as an alternative to traditional physicochemical methods; however, relatively few studies have determined optimal synthesis parameters. Saccharomyces cerevisiae sequentially treated with sodium selenite and cadmium chloride synthesized CdSe quantum dots in the cytoplasm. These nanoparticles displayed a prominent yellow fluorescence, with an emission maximum of approximately 540 nm. The requirement for glutathione in the biosynthetic mechanism was explored by depleting its intracellular content through cellular treatments with 1-chloro-2,4-dinitrobenzene and buthionine sulfoximine. Synthesis was significantly inhibited by both of these reagents when they were applied after selenite treatment prior to the addition of cadmium, thereby indicating that glutathione contributes to the biosynthetic process. Determining the optimum conditions for biosynthesis revealed that quantum dots were produced most efficiently at entry into stationary phase followed by direct addition of 1 mM selenite for only 6 h and then immediately incubating these cells in fresh growth medium containing 3 mM Cd (II). Synthesis of quantum dots reached a maximum at 84 h of reaction time. Biosynthesis of 800-μg g -1 fresh weight cells was achieved. For the first time, significant efforts have been undertaken to optimize each aspect of the CdSe biosynthetic procedure in S. cerevisiae, resulting in a 70% increased production.

  13. Nuclear reactor remote disconnect control rod coupling indicator

    International Nuclear Information System (INIS)

    Vuckovich, M.

    1977-01-01

    A coupling indicator for use with nuclear reactor control rod assemblies which have remotely disengageable couplings between the control rod and the control rod drive shaft is described. The coupling indicator indicates whether the control rod and the control rod drive shaft are engaged or disengaged. A resistive network, utilizing magnetic reed switches, senses the position of the control rod drive mechanism lead screw and the control rod position indicating tube, and the relative position of these two elements with respect to each other is compared to determine whether the coupling is engaged or disengaged

  14. Precise control of quantum dot location within the P3HT-b-P2VP/QD nanowires formed by crystallization-driven 1D growth of hybrid dimeric seeds.

    Science.gov (United States)

    Kim, Yong-Jae; Cho, Chul-Hee; Paek, Kwanyeol; Jo, Mijung; Park, Mi-kyoung; Lee, Na-Eun; Kim, Youn-joong; Kim, Bumjoon J; Lee, Eunji

    2014-02-19

    Herein, we report a simple fabrication of hybrid nanowires (NWs) composed of a p-type conjugated polymer (CP) and n-type inorganic quantum dots (QDs) by exploiting the crystallization-driven solution assembly of poly(3-hexylthiophene)-b-poly(2-vinylpyridine) (P3HT-b-P2VP) rod-coil amphiphiles. The visualization of the crystallization-driven growth evolution of hybrid NWs through systematic transmission electron microscopy experiments showed that discrete dimeric CdSe QDs bridged by P3HT-b-P2VP polymers were generated during the initial state of crystallization. These, in turn, assemble into elongated fibrils, forming the coaxial P3HT-b-P2VP/QDs hybrid NWs. In particular, the location of the QD arrays within the single strand of P3HT-b-P2VP can be controlled precisely by manipulating the regioregularity (RR) values of P3HT block and the relative lengths of P2VP block. The degree of coaxiality of the QD arrays was shown to depend on the coplanarity of the thiophene rings of P3HT block, which can be controlled by the RR value of P3HT block. In addition, the location of QDs could be regulated at the specific-local site of P3HT-b-P2VP NW according to the surface characteristics of QDs. As an example, the comparison of two different QDs coated with hydrophobic alkyl-terminated and hydroxyl-terminated molecules, respectively, is used to elucidate the effect of the surface properties of QDs on their nanolocation in the NW.

  15. Layered insulator hexagonal boron nitride for surface passivation in quantum dot solar cell

    International Nuclear Information System (INIS)

    Shanmugam, Mariyappan; Jain, Nikhil; Jacobs-Gedrim, Robin; Yu, Bin; Xu, Yang

    2013-01-01

    Single crystalline, two dimensional (2D) layered insulator hexagonal boron nitride (h-BN), is demonstrated as an emerging material candidate for surface passivation on mesoporous TiO 2 . Cadmium selenide (CdSe) quantum dot based bulk heterojunction (BHJ) solar cell employed h-BN passivated TiO 2 as an electron acceptor exhibits photoconversion efficiency ∼46% more than BHJ employed unpassivated TiO 2 . Dominant interfacial recombination pathways such as electron capture by TiO 2 surface states and recombination with hole at valence band of CdSe are efficiently controlled by h-BN enabled surface passivation, leading to improved photovoltaic performance. Highly crystalline, confirmed by transmission electron microscopy, dangling bond-free 2D layered h-BN with self-terminated atomic planes, achieved by chemical exfoliation, enables efficient passivation on TiO 2 , allowing electronic transport at TiO 2 /h-BN/CdSe interface with much lower recombination rate compared to an unpassivated TiO 2 /CdSe interface

  16. Growth and characterizations of GaN micro-rods on graphene films for flexible light emitting diodes

    Directory of Open Access Journals (Sweden)

    Kunook Chung

    2014-09-01

    Full Text Available We report the growth of GaN micro-rods and coaxial quantum-well heterostructures on graphene films, together with structural and optical characterization, for applications in flexible optical devices. Graphene films were grown on Cu foil by means of chemical vapor deposition, and used as the substrates for the growth of the GaN micro-rods, which were subsequently transferred onto SiO2/Si substrates. Highly Si-doped, n-type GaN micro-rods were grown on the graphene films using metal–organic chemical vapor deposition. The growth and vertical alignment of the GaN micro-rods, which is a critical factor for the fabrication of high-performance light-emitting diodes (LEDs, were characterized using electron microscopy and X-ray diffraction. The GaN micro-rods exhibited promising photoluminescence characteristics for optoelectronic device applications, including room-temperature stimulated emission. To fabricate flexible LEDs, InxGa1–xN/GaN multiple quantum wells and a p-type GaN layer were deposited coaxially on the GaN micro-rods, and transferred onto Ag-coated polymer substrates using lift-off. Ti/Au and Ni/Au metal layers were formed to provide electrical contacts to the n-type and p-type GaN regions, respectively. The micro-rod LEDs exhibited intense emission of visible light, even after transfer onto the flexible polymer substrate, and reliable operation was achieved following numerous cycles of mechanical deformation.

  17. Investigation on the influence of pH on structure and photoelectrochemical properties of CdSe electrolytically deposited into TiO2 nanotube arrays

    International Nuclear Information System (INIS)

    Xue, Jinbo; Shen, Qianqian; Yang, Fei; Liang, Wei; Liu, Xuguang

    2014-01-01

    Highlights: • There-dimensional CdSe-TiO 2 multijunction was fabricated by electrochemical method. • CdSe nanoparticles had a good bonding with the walls of TiO 2 nanotube. • pH value played an important role in the quality of CdSe-TiO 2 interfaces. - Abstract: In this work, we fabricated CdSe/TiO 2 nanotube arrays (NTAs) by electrochemical method. In electrodeposition, the pH value of the electrolyte played an important role in formation of CdSe nanoparticles. As the pH value decreased, more CdSe deposited on TiO 2 NTAs. Scanning electron microscopy and transmission electron microscopy characterization shows that the CdSe nanoparticles were uniformly deposited on and into TiO 2 nanotubes when the pH value was 3, and this structure fully utilized the three-dimensional (3D) space of TiO 2 nanotubes to form 3D multijunction heterostructures. According to the photoelectrochemical test, the CdSe/TiO 2 NTAs sample prepared at pH = 3 exhibited maximum photocurrent and open circuit potential. This is because that the deposited CdSe nanoparticles had better bond with the walls of TiO 2 nanotube than the samples deposited at other pH values, which facilitated the propagation and kinetic separation of photogenerated charges

  18. Mapping the 3D distribution of CdSe nanocrystals in highly oriented and nanostructured hybrid P3HT-CdSe films grown by directional epitaxial crystallization.

    Science.gov (United States)

    Roiban, L; Hartmann, L; Fiore, A; Djurado, D; Chandezon, F; Reiss, P; Legrand, J-F; Doyle, S; Brinkmann, M; Ersen, O

    2012-11-21

    Highly oriented and nanostructured hybrid thin films made of regioregular poly(3-hexylthiophene) and colloidal CdSe nanocrystals are prepared by a zone melting method using epitaxial growth on 1,3,5-trichlorobenzene oriented crystals. The structure of the films has been analyzed by X-ray diffraction using synchrotron radiation, electron diffraction and 3D electron tomography to afford a multi-scale structural and morphological description of the highly structured hybrid films. A quantitative analysis of the reconstructed volumes based on electron tomography is used to establish a 3D map of the distribution of the CdSe nanocrystals in the bulk of the films. In particular, the influence of the P3HT-CdSe ratio on the 3D structure of the hybrid layers has been analyzed. In all cases, a bi-layer structure was observed. It is made of a first layer of pure oriented semi-crystalline P3HT grown epitaxially on the TCB substrate and a second P3HT layer containing CdSe nanocrystals uniformly distributed in the amorphous interlamellar zones of the polymer. The thickness of the P3HT layer containing CdSe nanoparticles increases gradually with increasing content of NCs in the films. A growth model is proposed to explain this original transversal organization of CdSe NCs in the oriented matrix of P3HT.

  19. Room temperature excitation spectroscopy of single quantum dots

    Directory of Open Access Journals (Sweden)

    Christian Blum

    2011-08-01

    Full Text Available We report a single molecule detection scheme to investigate excitation spectra of single emitters at room temperature. We demonstrate the potential of single emitter photoluminescence excitation spectroscopy by recording excitation spectra of single CdSe nanocrystals over a wide spectral range of 100 nm. The spectra exhibit emission intermittency, characteristic of single emitters. We observe large variations in the spectra close to the band edge, which represent the individual heterogeneity of the observed quantum dots. We also find specific excitation wavelengths for which the single quantum dots analyzed show an increased propensity for a transition to a long-lived dark state. We expect that the additional capability of recording excitation spectra at room temperature from single emitters will enable insights into the photophysics of emitters that so far have remained inaccessible.

  20. Evaluation of the ability of electrical rods to simulate nuclear rod behavior during a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Tolman, E.L.; Gottula, R.C.

    1979-01-01

    The purpose of this report is twofold: (1) to assess the adequacy of electrical rods to simulate nuclear rod behavior during loss-of-coolant-accident (LOCA) conditions, and (2) to identify ongoing tests specifically designed to directly compare electric and nuclear rod response during a LOCA. The capability and limitations of electric rods to simulate LOCA fuel rod response are reviewed. Two tests, the Halden IFA-511 test and the German PNS 4237 test, are being conducted to directly compare electric rod and nuclear rod response under LOCA conditions. The objectives and usefulness of these tests are reviewed

  1. Quantum walks, quantum gates, and quantum computers

    International Nuclear Information System (INIS)

    Hines, Andrew P.; Stamp, P. C. E.

    2007-01-01

    The physics of quantum walks on graphs is formulated in Hamiltonian language, both for simple quantum walks and for composite walks, where extra discrete degrees of freedom live at each node of the graph. It is shown how to map between quantum walk Hamiltonians and Hamiltonians for qubit systems and quantum circuits; this is done for both single-excitation and multiexcitation encodings. Specific examples of spin chains, as well as static and dynamic systems of qubits, are mapped to quantum walks, and walks on hyperlattices and hypercubes are mapped to various gate systems. We also show how to map a quantum circuit performing the quantum Fourier transform, the key element of Shor's algorithm, to a quantum walk system doing the same. The results herein are an essential preliminary to a Hamiltonian formulation of quantum walks in which coupling to a dynamic quantum environment is included

  2. Determination of safety rod reactivity - time function from digitally measured safety rod trajectory

    International Nuclear Information System (INIS)

    Pesic, M.; Milovanovic, S.; Milovanovic, T.

    1996-01-01

    Using rod position - time function z(t), obtained using new method and reactivity - position function rho(z), the complex dependence of the reactivity - time function rho(t) for HERBE safety rods is determined. Some improvements, comparing to the previously proposed method, are obtained and analyzed. (author)

  3. RODDRP - A FORTRAN program for use in control rod calibration by the rod drop method

    International Nuclear Information System (INIS)

    Wilson, W.E.

    1972-01-01

    The different methods to measure reactivity which are applicable to control rod calibration are discussed. They include: 1) the positive period method, 2) the rod drop method, 3) the source-jerk method, 4) the rod oscillation method, and 5) the pulsed neutron method. The instrument setup used at WSU for rod drop measurements is presented. To speed up the analysis of power fall-off trace, a FORTRAN IV program called RODDRP was written to simultaneously solve the in-hour equation and relative neutron flux. The procedure for calculating the worth of the rod that produced the power trace is given. The reactivity for each time relative flux point is obtained. Conclusions about the status of the equipment are made

  4. Quantum memory Quantum memory

    Science.gov (United States)

    Le Gouët, Jean-Louis; Moiseev, Sergey

    2012-06-01

    Interaction of quantum radiation with multi-particle ensembles has sparked off intense research efforts during the past decade. Emblematic of this field is the quantum memory scheme, where a quantum state of light is mapped onto an ensemble of atoms and then recovered in its original shape. While opening new access to the basics of light-atom interaction, quantum memory also appears as a key element for information processing applications, such as linear optics quantum computation and long-distance quantum communication via quantum repeaters. Not surprisingly, it is far from trivial to practically recover a stored quantum state of light and, although impressive progress has already been accomplished, researchers are still struggling to reach this ambitious objective. This special issue provides an account of the state-of-the-art in a fast-moving research area that makes physicists, engineers and chemists work together at the forefront of their discipline, involving quantum fields and atoms in different media, magnetic resonance techniques and material science. Various strategies have been considered to store and retrieve quantum light. The explored designs belong to three main—while still overlapping—classes. In architectures derived from photon echo, information is mapped over the spectral components of inhomogeneously broadened absorption bands, such as those encountered in rare earth ion doped crystals and atomic gases in external gradient magnetic field. Protocols based on electromagnetic induced transparency also rely on resonant excitation and are ideally suited to the homogeneous absorption lines offered by laser cooled atomic clouds or ion Coulomb crystals. Finally off-resonance approaches are illustrated by Faraday and Raman processes. Coupling with an optical cavity may enhance the storage process, even for negligibly small atom number. Multiple scattering is also proposed as a way to enlarge the quantum interaction distance of light with matter. The

  5. Photoluminescence study of CdSe nanorods embedded in a PVA matrix

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mamta [Centre of Advanced Study in Physics, Department of Physics, Panjab University, Chandigarh 160014 (India); Tripathi, S.K., E-mail: surya@pu.ac.in [Centre of Advanced Study in Physics, Department of Physics, Panjab University, Chandigarh 160014 (India)

    2013-03-15

    Nanometer-sized semiconductor CdSe nanorods have been successfully grown within polyvinyl alcohol (PVA) matrix by in situ technique. PVA:n-CdSe nanorods are characterized by X-ray diffraction, transmission electron microscopy, UV-vis spectrophotometer and photoluminescence spectroscopy. The photoluminescence spectra of PVA:n-CdSe nanorods are studied at different excitation wavelengths. PVA:n-CdSe nanorods have demonstrated to exhibit strong and well-defined green photoluminescence emission. The long-term stability of the PL properties of PVA:n-CdSe nanorods is also investigated in view of possible applications of polymer nanocomposites. The linear optical constants such as the extinction coefficient (k), real ({epsilon}{sub 1}) and imaginary ({epsilon}{sub 2}) dielectric constant, optical conductivity ({sigma}{sub opt}) are calculated for PVA:n-CdSe nanorods. The optical properties i.e. good photostability and larger stokes shift suggesting to apply PVA:n-CdSe nanorods in bioimaging applications. - Highlights: Black-Right-Pointing-Pointer In situ synthesis of PVA:n-CdSe via chemical bath method at room temperature. {open_square} From TEM image, the three arm nanorods morphology of PVA:n-CdSe is obtained. Black-Right-Pointing-Pointer The optical constants i.e. n, k, {epsilon}{sub 1}, {epsilon}{sub 2} and {sigma}{sub opt} are calculated. Black-Right-Pointing-Pointer Exhibiting green band photoemission peak at 540 nm.

  6. Structural optical and photoconducting properties of sprayed CdSe films

    Energy Technology Data Exchange (ETDEWEB)

    Raturi, A.K.; Thangaraj, R.; Sharma, A.K.; Tripathi, B.B.; Agnihotri, O.P.

    1982-05-07

    CdSe films were grown by the pyrolytic decomposition of a mixture of aqueous solutions of selenourea (NH/sub 2/CSeNH/sub 2/) and CdCl/sub 2/ x 5H/sub 2/O. The effect of changes in the selenium-to-cadmium ion ratio on the photoconductivity was examined. The asgrown films has low ressistance and showed poor photoconductivity gain. When the films were annealed in air the resistance as well as the gain increased appreciably. These changes have been attributed to chemisorption of oxygen. The samples with one part CdCl/sub 2/ x 5H/sub 2/O and one part NH/sub 2/CSeNH/sub 2/ were found to be the most photosensitive, the ratio of dark resistance to light resistance being of the order of 10/sup 5/. The spectral response of the resistance of these films shows a dip in the region of 690 nm, which is in close agreement with the band gap determined from optical absorption measurements.

  7. Bent Telescopic Rods in Patients With Osteogenesis Imperfecta.

    Science.gov (United States)

    Lee, R Jay; Paloski, Michael D; Sponseller, Paul D; Leet, Arabella I

    2016-09-01

    Telescopic rods require alignment of 2 rods to enable lengthening. A telescopic rod converts functionally into a solid rod if either rod bends, preventing proper engagement. Our goal was to characterize implant bending as a mode of failure of telescopic rods used in the treatment of osteogenesis imperfecta in children. We conducted a retrospective review of our osteogenesis imperfecta database for patients treated with intramedullary telescopic rods at our institution from 1992 through 2010 and identified 12 patients with bent rods. The 6 boys and 6 girls had an average age at the time of initial surgery of 3.1 years (range, 1.8 to 8.3 y) and a total of 51 telescoping rods. Clinic notes, operative reports, and radiographs were reviewed. The rods were analyzed for amount of lengthening, characteristics of bending, presence of cut out, or disengagement from an anchor point. Bends in the rods were characterized by their location on the implant component. The bent and straight rods were compared. Data were analyzed with the Mann-Whitney test (statistical significance set at P≤0.05). Of the 51 telescoping rods, 17 constructs (33%) bent. The average interval between surgery and rod bending was 4.0 years (range, 0.9 to 8.2 y). Before bending, 11 of 17 telescoping rods had routine follow-up radiographs for review. In 10 of the rods, bending was present when early signs of rod failure were first detected. Rod bending did not seem to be related to rod size. There was no area on the rod itself that seemed more susceptible to bending. Rod bending can be an early sign of impending rod failure. When rod bending is first noted, it may predispose the rod to other subsequent failures such as loss of proximal and distal fixation and cut out. Rod bending should be viewed as an indicator for closer monitoring of the patient and discussions regarding future need for rod exchange. Level III-retrospective review.

  8. Color dissociation artifacts in double Maddox rod cyclodeviation testing.

    Science.gov (United States)

    Simons, K; Arnoldi, K; Brown, M H

    1994-12-01

    The double Maddox rod test, based on a red Maddox rod in front of one eye and a clear Maddox rod in front of the other, is used to measure cyclodeviation, typically in patients with superior oblique muscle pareses. Discrepant results between the double Maddox rod test and other torsion measures, and reports of "paradoxic" cyclodeviation in the normal eye of some patients with superior oblique paresis, suggest the two-color format of the double Maddox rod test may produce artifactual torsion measures. Forty patients with superior oblique paresis were tested twice using the double Maddox rod test, reversing the red and white Maddox rods between eyes for the second test, and 18 were tested further with same-color red or clear Maddox rods in front of both eyes. With the standard double Maddox rod test, 33 (83%) of 40 patients localized their cyclodeviation to the eye viewing through the red Maddox rod, irrespective of laterality of the paresis or fixation preference. In all 33 patients, laterality of the perceived torsion changed between eyes when testing was repeated with red and white Maddox rods interchanged between eyes. With same-color Maddox rods before both eyes, 17 (94%) of 18 patients localized extorsion to the paretic eye. There was 7.6:1 ratio of luminance transmission and a 1.6:1 ratio of grating spatial frequency bandpass in the plano meridian between the clear and red Maddox rods, which appear to be responsible for the double Maddox rod test artifact. The traditional double Maddox rod test may produce artifactual cyclodeviation measurements. An alternative version of the test, based on same-color Maddox rods in front of both eyes, is proposed. The relatively high spatial frequency bandpass characteristics of the plano meridian of the Maddox rod (as high as 20/25 Snellen equivalent resolution through the clear Maddox rod) also suggests double Maddox rod testing should be conducted in a dark room to avoid biases from visual environment cues.

  9. Control rod driving hydraulic pressure device

    International Nuclear Information System (INIS)

    Ishida, Kazuo.

    1990-01-01

    Discharged water after actuating control rod drives in a BWR type reactor is once discharged to a discharging header, then returned to a master control unit and, subsequently, discharged to a reactor by way of a cooling water header. The radioactive level in the discharging header and the master control unit is increased by the reactor water to increase the operator's exposure. In view of the above, a riser is disposed for connecting a hydraulic pressure control unit incorporating a directional control valve and the cooling water head. When a certain control rod is inserted, the pressurized driving water is supplied through a hydraulic pressure control unit to the control rod drives. The discharged water from the control rod drives is entered by way of the hydraulic pressure control unit into the cooling water header and then returned to the reactor by way of other hydraulic pressure control unit and the control rod drives. Thus, the reactor water is no more recycled to the master control unit to reduce the radioactive exposure. (N.H.)

  10. Broadband Vibration Attenuation Using Hybrid Periodic Rods

    Directory of Open Access Journals (Sweden)

    S. Asiri

    2008-12-01

    Full Text Available This paper presents both theoretically and experimentally a new kind of a broadband vibration isolator. It is a table-like system formed by four parallel hybrid periodic rods connected between two plates. The rods consist of an assembly of periodic cells, each cell being composed of a short rod and piezoelectric inserts. By actively controlling the piezoelectric elements, it is shown that the periodic rods can efficiently attenuate the propagation of vibration from the upper plate to the lower one within critical frequency bands and consequently minimize the effects of transmission of undesirable vibration and sound radiation. In such a system, longitudinal waves can propagate from the vibration source in the upper plate to the lower one along the rods only within specific frequency bands called the "Pass Bands" and wave propagation is efficiently attenuated within other frequency bands called the "Stop Bands". The spectral width of these bands can be tuned according to the nature of the external excitation. The theory governing the operation of this class of vibration isolator is presented and their tunable filtering characteristics are demonstrated experimentally as functions of their design parameters. This concept can be employed in many applications to control the wave propagation and the force transmission of longitudinal vibrations both in the spectral and spatial domains in an attempt to stop/attenuate the propagation of undesirable disturbances.

  11. Optically enhanced SnO{sub 2}/CdSe core/shell nanostructures grown by sol-gel spin coating method

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vijay, E-mail: vijaynadda83@gmail.com; Goswami, Y. C. [School of Physical Sciences, ITM University, Turari, Gwalior, MP 474001 (India); Rajaram, P. [School of Studies in Physics, Jiwaji University, Gwalior MP 474011 (India)

    2015-08-28

    Synthesis of SnO{sub 2}/CdSe metal oxide/ chalcogenide nanostructures on glass micro slides using ultrasonic sol-gel process followed by spin coating has been reported. Stannous chloride, cadmium chloride and selenium dioxide compounds were used for Sn, Cd and Se precursors respectively. Ethylene glycol was used as complexing agent. The samples were characterized by XRD, SEM, AFM and UV-spectrophotometer. All the peaks shown in diffractograms are identified for SnO{sub 2}. Peak broadening observed in core shell due to stress behavior of CdSe lattice. Scanning electron microscope and AFM exhibits the conversion of cluster in to nanorods structures forms. Atomic force microscope shows the structures in nanorods form and a roughness reduced 1.5194 nm by the deposition of CdSe. Uv Visible spectra shows a new absorption edge in the visible region make them useful for optoelectronic applications.

  12. Rod consolidation at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Bailey, W.J.

    1986-12-01

    A rod consolidation demonstration with irradiated pressurized water reactor fuel was recently conducted by personnel from Nuclear Assurance Corporation and West Valley Nuclear Services Company at the West Valley Demonstration Project in West Valley, New York. The rod consolidation demonstration involved pulling all of the fuel rods from six fuel Assemblies. In general, the rod pulling proceeded smoothly. The highest compaction ratio attained was 1:8:1. Among the total of 1074 fuel rods were some known degraded rods (they had collapsed cladding, a result of in-reactor fuel densification), but no rods were broken or dropped during the demonstration. One aim was to gather information on the effect of rod consolidation operations on the integrity of the fuel rods during subsequent handling and storage. Another goal was to collect information on the condition and handling of intact, damaged, and failed fuel that has been in storage for an extended period. 9 refs., 8 figs., 1 tab

  13. Quantum Multiverses

    OpenAIRE

    Hartle, James B.

    2018-01-01

    A quantum theory of the universe consists of a theory of its quantum dynamics and a theory of its quantum state The theory predicts quantum multiverses in the form of decoherent sets of alternative histories describing the evolution of the universe's spacetime geometry and matter content. These consequences follow: (a) The universe generally exhibits different quantum multiverses at different levels and kinds of coarse graining. (b) Quantum multiverses are not a choice or an assumption but ar...

  14. Quantum Imaging

    CERN Document Server

    Kolobov, Mikhail I

    2007-01-01

    Quantum Imaging is a newly born branch of quantum optics that investigates the ultimate performance limits of optical imaging allowed by the laws of quantum mechanics. Using the methods and techniques from quantum optics, quantum imaging addresses the questions of image formation, processing and detection with sensitivity and resolution exceeding the limits of classical imaging. This book contains the most important theoretical and experimental results achieved by the researchers of the Quantum Imaging network, a research programme of the European Community.

  15. Quantum Malware

    OpenAIRE

    Wu, Lian-Ao; Lidar, Daniel A.

    2005-01-01

    When quantum communication networks proliferate they will likely be subject to a new type of attack: by hackers, virus makers, and other malicious intruders. Here we introduce the concept of "quantum malware" to describe such human-made intrusions. We offer a simple solution for storage of quantum information in a manner which protects quantum networks from quantum malware. This solution involves swapping the quantum information at random times between the network and isolated, distributed an...

  16. Magnetic switch for reactor control rod. [LMFBR

    Science.gov (United States)

    Germer, J.H.

    1982-09-30

    A magnetic reed switch assembly is described for activating an electromagnetic grapple utilized to hold a control rod in position above a reactor core. In normal operation the magnetic field of a permanent magnet is short-circuited by a magnetic shunt, diverting the magnetic field away from the reed switch. The magnetic shunt is made of a material having a Curie-point at the desired release temperature. Above that temperature the material loses its ferromagnetic properties, and the magnetic path is diverted to the reed switch which closes and short-circuits the control circuit for the control rod electro-magnetic grapple which allows the control rod to drop into the reactor core for controlling the reactivity of the core.

  17. Method of diagnosing the control rod operation

    International Nuclear Information System (INIS)

    Nakaniwa, Tomoko; Kudo, Mitsuru.

    1983-01-01

    Purpose: To confirm the soundness of a control rod operation at high accuracy. Method: By utilizing the fact that a control rod position indicating system outputs digitalized decimal signals, position signals are outputted as below: a stop position signal when a magnet is opposed to an odd number limit switch; a drift position signal when it is opposed to an even number limit switch; and a blank position signal when it is not opposed to a limit switch. Since the standard signal pattern is present for the order of signal change due to the displacement of the magnet i.e., stop position→blank position→drift position, absolute position change and the time for passing the limit switch, the standard pattern is stored in an operation diagnosis unit and compared with the data upon actual driving to diagnose the control rod operation collectively. (Sekiya, K.)

  18. Performance analysis of LMFBR control rods

    International Nuclear Information System (INIS)

    Pitner, A.L.; Birney, K.R.

    1975-01-01

    Control rods in the FFTF and LMFBR's will consist of pin bundles of stainless steel-clad boron carbide pellets. In the FFTF reference design, sixty-one pins of 0.474-inch diameter each containing a 36-inch stack of 0.362-inch diameter boron carbide pellets comprise a control rod. Reactivity control is provided by the 10 B (n,α) 7 Li reaction in the boron carbide. This reaction is accompanied by an energy release of 2.8 MeV, and heating from this reaction typically approaches 100 watts/cm 3 for natural boron carbide pellets in an LMFBR flux. Performance analysis of LMFBR control rods must include an assessment of the thermal performance of control pins. In addition, irradiation performance with regard to helium release, pellet swelling, and reactivity worth depletion as a function of service time must be evaluated

  19. Elliptical cross section fuel rod study II

    International Nuclear Information System (INIS)

    Taboada, H.; Marajofsky, A.

    1996-01-01

    In this paper it is continued the behavior analysis and comparison between cylindrical fuel rods of circular and elliptical cross sections. Taking into account the accepted models in the literature, the fission gas swelling and release were studied. An analytical comparison between both kinds of rod reveals a sensible gas release reduction in the elliptical case, a 50% swelling reduction due to intragranular bubble coalescence mechanism and an important swelling increase due to migration bubble mechanism. From the safety operation point of view, for the same linear power, an elliptical cross section rod is favored by lower central temperatures, lower gas release rates, greater gas store in ceramic matrix and lower stored energy rates. (author). 6 refs., 8 figs., 1 tab

  20. Storing device for control rod drive

    International Nuclear Information System (INIS)

    Tomatsu, Tsutomu; Miura, Teruo.

    1989-01-01

    A water supply device for supplying clean water, a recycling pump and a filter disposed between the water supply device and a water vessel by way of recycling pipelines are disposed to a water vessel containing storing water for immerging and storing control rod drives for BWR type reactors upon periodical inspection, etc. Clean water is supplied from the water supply device into the control rod drives immerged in the storing water to remove radioactive cruds, etc. deposited at the surface thereof and water is supplied through the recycling pipelines to the filter to remove solid impurities contained therein and the clean water is returned to the water supply device. Since the clean water is always recycled to the inside of the control rod drives, chemical corrosion and electrical corrosion of nitride parts are prevented and radioactive cruds are processed in separated waste processing systems, the atmospheric radiation doses in the operation chamber is reduced. (S.K.)

  1. Method and apparatus for compacting spent nuclear reactor fuel rods

    International Nuclear Information System (INIS)

    Wachter, W.J.

    1988-01-01

    In a nuclear reactor system requiring periodic physical manipulation of spent fuel rods, the method of compacting fuel rods from a fuel rod assembly is described comprising the steps of: (1) removing the top end from pulling members having electrodes of weld elements in leading ends thereof in sequence through a fuel rod container and thence through respective consolidating passages in a fuel-rod directing chamber; (3) welding the weld elements of the pulling members to the top end of respective fuel rods corresponding to the respective pulling members; (4) drawing each of the pulling members axially to draw the respective engaged fuel rods in one axial direction through the respective passages in the chamber to thereby consolidate the fuel rods into a compacted configuration of a cross-sectional area smaller than the cross-sectional area occupied thereby within the fuel rod assembly; and (5) drawing all of the engaged fuel rods concurrently and substantially parallel to one another to the one axial direction into the fuel rod container while maintaining the compacting configuration in a fuel rod density which is greater than that of the fuel rod density of the fuel rod assembly

  2. Beyond quantum

    CERN Document Server

    Khrennikov, Andrei

    2014-01-01

    The present wave of interest in quantum foundations is caused by the tremendous development of quantum information science and its applications to quantum computing and quantum communication. It has become clear that some of the difficulties encountered in realizations of quantum information processing have roots at the very fundamental level. To solve such problems, quantum theory has to be reconsidered. This book is devoted to the analysis of the probabilistic structure of quantum theory, probing the limits of classical probabilistic representation of quantum phenomena.

  3. Quantum Biometrics with Retinal Photon Counting

    Science.gov (United States)

    Loulakis, M.; Blatsios, G.; Vrettou, C. S.; Kominis, I. K.

    2017-10-01

    It is known that the eye's scotopic photodetectors, rhodopsin molecules, and their associated phototransduction mechanism leading to light perception, are efficient single-photon counters. We here use the photon-counting principles of human rod vision to propose a secure quantum biometric identification based on the quantum-statistical properties of retinal photon detection. The photon path along the human eye until its detection by rod cells is modeled as a filter having a specific transmission coefficient. Precisely determining its value from the photodetection statistics registered by the conscious observer is a quantum parameter estimation problem that leads to a quantum secure identification method. The probabilities for false-positive and false-negative identification of this biometric technique can readily approach 10-10 and 10-4, respectively. The security of the biometric method can be further quantified by the physics of quantum measurements. An impostor must be able to perform quantum thermometry and quantum magnetometry with energy resolution better than 10-9ℏ , in order to foil the device by noninvasively monitoring the biometric activity of a user.

  4. Nonlinear Dynamics In Quantum Physics -- Quantum Chaos and Quantum Instantons

    OpenAIRE

    Kröger, H.

    2003-01-01

    We discuss the recently proposed quantum action - its interpretation, its motivation, its mathematical properties and its use in physics: quantum mechanical tunneling, quantum instantons and quantum chaos.

  5. HIGH STRENGTH CONTROL RODS FOR NEUTRONIC REACTORS

    Science.gov (United States)

    Lustman, B.; Losco, E.F.; Cohen, I.

    1961-07-11

    Nuclear reactor control rods comprised of highly compressed and sintered finely divided metal alloy panticles and fine metal oxide panticles substantially uniformly distributed theretbrough are described. The metal alloy consists essentially of silver, indium, cadmium, tin, and aluminum, the amount of each being present in centain percentages by weight. The oxide particles are metal oxides of the metal alloy composition, the amount of oxygen being present in certain percentages by weight and all the oxygen present being substantially in the form of metal oxide. This control rod is characterized by its high strength and resistance to creep at elevated temperatures.

  6. Oligo(naphthylene–ethynylene) Molecular Rods

    DEFF Research Database (Denmark)

    Cramer, Jacob Roland; Ning, Yanxiao; Shen, Cai

    2013-01-01

    of palladium-catalyzed Sonogashira reactions between naphthyl halides and acetylenes. The triazene functionality was used as a protected iodine precursor to allow linear extension of the molecular rods during the synthe-ses. The carboxylic acid groups in the target molecules were protected as esters during......Molecular rods designed for surface chirality studies have been synthesized in high yields. The molecules are composed of oligo(naphthylene–ethynylene) skeletons and functionalized at their two termini with carboxylic acids and hydrophobic groups. The molecular skeletons were constructed by means...

  7. Method for producing titanium aluminide weld rod

    Science.gov (United States)

    Hansen, Jeffrey S.; Turner, Paul C.; Argetsinger, Edward R.

    1995-01-01

    A process for producing titanium aluminide weld rod comprising: attaching one end of a metal tube to a vacuum line; placing a means between said vacuum line and a junction of the metal tube to prevent powder from entering the vacuum line; inducing a vacuum within the tube; placing a mixture of titanium and aluminum powder in the tube and employing means to impact the powder in the tube to a filled tube; heating the tube in the vacuum at a temperature sufficient to initiate a high-temperature synthesis (SHS) reaction between the titanium and aluminum; and lowering the temperature to ambient temperature to obtain a intermetallic titanium aluminide alloy weld rod.

  8. Digital, electromagnetic rod position indicator with compensation

    International Nuclear Information System (INIS)

    Feilchenfeld, M.M.; Geis, C.G.

    1985-01-01

    A digital rod position indicator having discrete coils L 0 , L 1 , L 2 ..... spaced along the travel path of an elongate magnetically permeable member stores in digital form compensation signals for automatically adjusting the location relative to the coils at which a digital output signal representative of the position of the end of the elongate member transitions from one code to the next. The appropriate compensation signal is addressed using the digital output signal and a correction factor which takes into account the direction of movement including reversals. Reference is made to the positioning of the control rods in a pressurized water reactor. (author)

  9. Quivers For Special Fuel Rods-Disposal Of Special Fuel Rods In CASTOR V Casks

    International Nuclear Information System (INIS)

    Bannani, Amin; Cebula, Wojciech; Buchmuller, Olga; Huggenberg, Roland; Helmut Kuhl

    2015-01-01

    While GNS casks of the CASTOR family are a suitable means to transfer fuel assemblies (FA) from the NPP to an interim dry storage site, Germanys phase-out of nuclear energy has triggered the demand for an additional solution to dispose of special fuel rods (SFR), normally remaining in the fuel pond until the final shutdown of the NPP. SFR are fuel rods that had to be removed from fuel assemblies mainly due to their special condition, e. g. damages in the cladding of the fuel rods which may have occurred during reactor operations. SFR are usually stored in the spent fuel pond after they are removed from the FA. The quiver for special fuel rods features a robust yet simple design, with a high mechanical stability, a reliable leak-tightness and large safety margins for future requirements on safety analysis. The quiver for special fuel rods can be easily adapted to a large variety of different damaged fuel rods and tailored to the specific need of the customer. The quiver for special fuel rods is adaptable e.g. in length and diameter for use in other types of transport and storage casks and is applicable in other countries as well. The overall concept presented here is a first of its kind solution for the disposal of SFRs via Castor V-casks. This provides an important precondition in achieving the status 'free from nuclear fuel' of the shut down German NPPs

  10. Space charges in nanostructured solar cells : CuInS2 thin films and CdSe quantum dots

    NARCIS (Netherlands)

    Loef, R.

    2009-01-01

    Space charges in two heterojunctions (i.e., TiO2/CuInS2 and TiO2/QD-CdSe) are studied by means of impedance spectroscopy and capacitance studies. Several lattice defects are found. When applied in solar cells, the defects may have a negative effect on the efficiency. Therefore, it is important to

  11. Rod pomnožných proprií, rod v plurálu, rod obecně

    Czech Academy of Sciences Publication Activity Database

    Šimandl, Josef

    2012-01-01

    Roč. 49, 3/4 (2012), s. 124-128 ISSN 1212-5326. [Rod v jazyce a v jazykovědě. Praha, 08.12.2011] Institutional research plan: CEZ:AV0Z90610518 Keywords : gender of nouns * evidence of gender in plural Subject RIV: AI - Linguistics

  12. Real-time in situ probing of high-temperature quantum dots solution synthesis.

    Science.gov (United States)

    Abécassis, Benjamin; Bouet, Cécile; Garnero, Cyril; Constantin, Doru; Lequeux, Nicolas; Ithurria, Sandrine; Dubertret, Benoit; Pauw, Brian Richard; Pontoni, Diego

    2015-04-08

    Understanding the formation mechanism of colloidal nanocrystals is of paramount importance in order to design new nanostructures and synthesize them in a predictive fashion. However, reliable data on the pathways leading from molecular precursors to nanocrystals are not available yet. We used synchrotron-based time-resolved in situ small and wide-angle X-ray scattering to experimentally monitor the formation of CdSe quantum dots synthesized in solution through the heating up of precursors in octadecene at 240 °C. Our experiment yields a complete movie of the structure of the solution from the self-assembly of the precursors to the formation of the quantum dots. We show that the initial cadmium precursor lamellar structure melts into small micelles at 100 °C and that the first CdSe nuclei appear at 218.7 °C. The size distributions and concentration in nanocrystals are measured in a quantitative fashion as a function of time. We show that a short nucleation burst lasting 30 s is followed by a slow decrease of nanoparticle concentration. The rate-limiting process of the quantum dot formation is found to be the thermal activation of selenium.

  13. Adsorption behavior and current-voltage characteristics of CdSe nanocrystals on hydrogen-passivated silicon

    DEFF Research Database (Denmark)

    Walzer, Karsten; Quaade, Ulrich; Ginger, D.S.

    2002-01-01

    Using scanning tunneling microscopy and spectroscopy we have studied both the geometric distribution and the conduction properties of organic shell capped CdSe nanocrystals adsorbed on hydrogen-passivated Si(100). At submonolayer concentrations, the nanocrystal distribution on the surface was found...... found that the current through the MIS junction is limited by the nanocrystals only in one bias direction, while in the other bias direction the current is limited by the semiconducting substrate. This property may be of relevance for the construction of hybrid electronic devices combining semiconductor...... electrodes with nanoscale elements such as nanocrystals or organic molecules....

  14. Synthesis of CdSe nanoparticles and their effect on the antioxidant activity of Spirulina platensis and Porphyridium cruentum cells

    International Nuclear Information System (INIS)

    Rudic, V.; Cepoi, L.; Rudi, L.; Chiriac, T.; Nicorici, A.; Todosiciuc, A.; Gutsul, T.

    2011-01-01

    Single-crystalline cadmium selenide nanoparticles were obtained using high-temperature solution phase synthesis (HTSPS) synthesis. X-Ray powder diffraction and transmission electron microscopy were used to confirm the crystallinity and morphology of the resulting nanoparticles. To study the action of CdSe on antioxidant activity, we selected two biotechnological important strains of microalgae: cyanobacteria Spirulina platensis and red microalgae Porphyridium cruentum. In the case of Porphyridium cruentum, the obtained results demonstrated an increase in the productivity. For Spirulina platensis, the presence of the compound in the cultivating medium decreased the productivity of cyanobacteria.

  15. Enhanced growth of highly lattice-mismatched CdSe on GaAs substrates by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Wang, Jyh-Shyang; Tsai, Yu-Hsuan; Wang, Hsiao-Hua; Ke, Han-Xiang; Tong, Shih-Chang; Yang, Chu-Shou; Wu, Chih-Hung; Shen, Ji-Lin

    2013-01-01

    This work demonstrates the improvement of the molecular beam epitaxial growth of zinc-blende CdSe on (0 0 1) GaAs substrate with a large lattice mismatch by introducing a small amount of Te atoms. Exposing the growing surface to Te atoms changes the reflection high-energy electron diffraction pattern from spotty to streaky together with (2 × 1) surface reconstruction, and greatly reduces the full width at half maximum of the X-ray rocking curve and increases the integral intensity of room-temperature photoluminescence by a factor of about nine.

  16. Mechanical properties of bioresorbable self-reinforced posterior cervical rods.

    Science.gov (United States)

    Savage, Katherine; Sardar, Zeeshan M; Pohjonen, Timo; Sidhu, Gursukhman S; Eachus, Benjamin D; Vaccaro, Alexander

    2014-04-01

    A biomechanical study. To test the mechanical and physical properties of self-reinforced copolymer bioresorbable posterior cervical rods and compare their mechanical properties to commonly used Irene titanium alloy rods. Bioresorbable instrumentation is becoming increasingly common in surgical spine procedures. Compared with metallic implants, bioresorbable implants are gradually reabsorbed as the bone heals, transferring the load from the instrumentation to bone, eliminating the need for hardware removal. In addition, bioresorbable implants produce less stress shielding due to a more physiological modulus of elasticity. Three types of rods were used: (1) 5.5 mm copolymer rods and (2) 3.5 mm and (3) 5.5 mm titanium alloy rods. Four tests were used on each rod: (1) 3-point bending test, (2) 4-point bending test, (3) shear test, and (4) differential scanning calorimeter test. The outcomes were recorded: Young modulus (E), stiffness, maximum load, deflection at maximum load, load at 1.0% strain of the rod's outer surface, and maximum bending stress. The Young modulus (E) for the copolymer rods (mean range, 6.4-6.8 GPa) was significantly lower than the 3.5 mm titanium rods (106 GPa) and the 5.5 mm titanium rods (95 GPa). The stiffness of the copolymer rods (mean range, 16.6-21.4 N/mm) was also significantly lower than the 3.5 mm titanium alloy rods (43.6 N/mm) and the 5.5 mm titanium alloy rods (239.6 N/mm). The mean maximum shear load of the copolymer rods was 2735 N and they had significantly lower mean maximum loads than the titanium rods. Copolymer rods have adequate shear resistance, but less load resistance and stiffness compared with titanium rods. Their stiffness is closer to that of bone, causing less stress shielding and better gradual dynamic loading. Their use in semirigid posterior stabilization of the cervical spine may be considered.

  17. RodPilotR - The Innovative and Cost-Effective Digital Control Rod Drive Control System for PWRs

    International Nuclear Information System (INIS)

    Baron, Clemens

    2008-01-01

    With RodPilot, AREVA NP offers an innovative and cost-effective system for controlling control rods in Pressurized Water Reactors. RodPilot controls the three operating coils of the control rod drive mechanism (lift, moveable gripper and stationary gripper coil). The rods are inserted into or withdrawn from the core as required by the Reactor Control System. The system combines modern components, state-of-the-art logic and a proven electronic control rod drive control principle to provide enhanced reliability and lower maintenance costs. (author)

  18. Residual stresses in cold drawn ferritic rods

    International Nuclear Information System (INIS)

    Atienza, J.M.; Martinez-Perez, M.L.; Ruiz-Hervias, J.; Mompean, F.; Garcia-Hernandez, M.; Elices, M.

    2005-01-01

    The residual stress state generated by cold-drawing in a ferritic steel rod has been determined. Stress profiles in the three principal directions were measured by neutron and X-ray diffraction and calculated by 3D finite element simulation. The agreement between the simulations and the experimental data is excellent

  19. Piston rod seal for a Stirling engine

    Science.gov (United States)

    Shapiro, Wilbur

    1984-01-01

    In a piston rod seal for a Stirling engine, a hydrostatic bearing and differential pressure regulating valve are utilized to provide for a low pressure differential across a rubbing seal between the hydrogen and oil so as to reduce wear on the seal.

  20. Automatic operation device for control rods

    International Nuclear Information System (INIS)

    Sekimizu, Koichi

    1984-01-01

    Purpose: To enable automatic operation of control rods based on the reactor operation planning, and particularly, to decrease the operator's load upon start up and shutdown of the reactor. Constitution: Operation plannings, demand for the automatic operation, break point setting value, power and reactor core flow rate change, demand for operation interrupt, demand for restart, demand for forecasting and the like are inputted to an input device, and an overall judging device performs a long-term forecast as far as the break point by a long-term forecasting device based on the operation plannings. The automatic reactor operation or the like is carried out based on the long-term forecasting and the short time forecasting is performed by the change in the reactor core status due to the control rod operation sequence based on the control rod pattern and the operation planning. Then, it is judged if the operation for the intended control rod is possible or not based on the result of the short time forecasting. (Aizawa, K.)

  1. Solitary waves on nonlinear elastic rods. I

    DEFF Research Database (Denmark)

    Sørensen, Mads Peter; Christiansen, Peter Leth; Lomdahl, P. S.

    1984-01-01

    Acoustic waves on elastic rods with circular cross section are governed by improved Boussinesq equations when transverse motion and nonlinearity in the elastic medium are taken into account. Solitary wave solutions to these equations have been found. The present paper treats the interaction between...

  2. On contact numbers in random rod packings

    NARCIS (Netherlands)

    Wouterse, A.; Luding, Stefan; Philipse, A.P.

    2009-01-01

    Random packings of non-spherical granular particles are simulated by combining mechanical contraction and molecular dynamics, to determine contact numbers as a function of density. Particle shapes are varied from spheres to thin rods. The observed contact numbers (and packing densities) agree well

  3. Quantum mechanics

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The book is on quantum mechanics. The emphasis is on the basic concepts and the methodology. The chapters include: Breakdown of classical concepts; Quantum mechanical concepts; Basic postulates of quantum mechanics; solution of problems in quantum mechanics; Simple harmonic oscillator; and Angular Momentum

  4. Quantum fluctuations

    International Nuclear Information System (INIS)

    Reynaud, S.; Giacobino, S.; Zinn-Justin, J.

    1997-01-01

    This course is dedicated to present in a pedagogical manner the recent developments in peculiar fields concerned by quantum fluctuations: quantum noise in optics, light propagation through dielectric media, sub-Poissonian light generated by lasers and masers, quantum non-demolition measurements, quantum electrodynamics applied to cavities and electrical circuits involving superconducting tunnel junctions. (A.C.)

  5. Tuning topological phase transitions in hexagonal photonic lattices made of triangular rods

    Science.gov (United States)

    Chan, Hsun-Chi; Guo, Guang-Yu

    2018-01-01

    In this paper we study topological phases in a two-dimensional photonic crystal with broken time (T ) and parity (P ) symmetries by performing calculations of band structures, Berry curvatures, Chern numbers, edge states, and also numerical simulations of light propagation in the edge modes. Specifically, we consider a hexagonal lattice consisting of triangular gyromagnetic rods. Here the gyromagnetic material breaks T symmetry while the triangular rods break P symmetry. Interestingly, we find that the crystal could host quantum anomalous Hall (QAH) phases with different gap Chern numbers (Cg) including | Cg|>1 as well as quantum valley Hall (QVH) phases with contrasting valley Chern numbers (Cv), depending on the orientation of the triangular rods. Furthermore, phase transitions among these topological phases, such as from QAH to QVH and vice versa, can be engineered by a simple rotation of the rods. Our band theoretical analyses reveal that the Dirac nodes at the K and K' valleys in the momentum space are produced and protected by the mirror symmetry (my) instead of the P symmetry, and they become gapped when either T or my symmetry is broken, resulting in a QAH or QVH phase, respectively. Moreover, a high Chern number (Cg=-2 ) QAH phase is generated by gapping triply degenerate nodal points rather than pairs of Dirac points by breaking T symmetry. Our proposed photonic crystal thus provides a platform for investigating intriguing topological phenomena which may be challenging to realize in electronic systems, and also has promising potentials for device applications in photonics such as reflection-free one-way waveguides and topological photonic circuits.

  6. Quantum radar

    CERN Document Server

    Lanzagorta, Marco

    2011-01-01

    This book offers a concise review of quantum radar theory. Our approach is pedagogical, making emphasis on the physics behind the operation of a hypothetical quantum radar. We concentrate our discussion on the two major models proposed to date: interferometric quantum radar and quantum illumination. In addition, this book offers some new results, including an analytical study of quantum interferometry in the X-band radar region with a variety of atmospheric conditions, a derivation of a quantum radar equation, and a discussion of quantum radar jamming.This book assumes the reader is familiar w

  7. Tunable Quantum Dot Solids: Impact of Interparticle Interactions on Bulk Properties

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, Michael B. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Fan, Hongyou [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Brener, Igal [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Liu, Sheng [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Luk, Ting S. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Li, Binsong [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    QD-solids comprising self-assembled semiconductor nanocrystals such as CdSe are currently under investigation for use in a wide array of applications including light emitting diodes, solar cells, field effect transistors, photodetectors, and biosensors. The goal of this LDRD project was develop a fundamental understanding of the relationship between nanoparticle interactions and the different regimes of charge and energy transport in semiconductor quantum dot (QD) solids. Interparticle spacing was tuned through the application of hydrostatic pressure in a diamond anvil cell, and the impact on interparticle interactions was probed using x-ray scattering and a variety of static and transient optical spectroscopies. During the course of this LDRD, we discovered a new, previously unknown, route to synthesize semiconductor quantum wires using high pressure sintering of self-assembled quantum dot crystals. We believe that this new, pressure driven synthesis approach holds great potential as a new tool for nanomaterials synthesis and engineering.

  8. ABWR-II Core Design with Spectral Shift Rods for Operation with All Control Rods Withdrawn

    International Nuclear Information System (INIS)

    Moriwaki, Masanao; Aoyama, Motoo; Anegawa, Takafumi; Okada, Hiroyuki; Sakurada, Koichi; Tanabe, Akira

    2004-01-01

    An innovative reactor core concept applying spectral shift rods (SSRs) is proposed to improve the plant economy and the operability of the 1700-MW(electric) Advanced Boiling Water Reactor II (ABWR-II). The SSR is a new type of water rod in which a water level is naturally developed during operation and changed according to the coolant flow rate through the channel. By taking advantage of the large size of the ABWR-II bundle, the enhanced spectral shift operation by eight SSRs allows operation of the ABWR-II with all control rods withdrawn. In addition, the uranium-saving factor of 6 to 7% relative to the reference ABWR-II core with conventional water rods can be expected due to the greater effect of spectral shift. The combination of these advantages means the ABWR-II with SSRs should be an attractive alternative for the next-generation nuclear reactor

  9. Analysis of buffering process of control rod hydraulic absorber

    International Nuclear Information System (INIS)

    Bao Jishi; Qin Benke; Bo Hanliang

    2011-01-01

    Control Rod Hydraulic Drive Mechanism(CRHDM) is a newly invented build-in control rod drive mechanism. Hydraulic absorber is the key part of this mechanism, and is used to cushion the control rod when the rod scrams. Thus, it prevents the control rod from being deformed and damaged. In this paper dynamics program ANSYS CFX is used to calculate all kinds of flow conditions in hydraulic absorber to obtain its hydraulic characteristics. Based on the flow resistance coefficients obtained from the simulation results, fluid mass and momentum equations were developed to get the trend of pressure change in the hydraulic cylinder and the displacement of the piston rod during the buffering process of the control rod. The results obtained in this paper indicate that the hydraulic absorber meets the design requirement. The work in this paper will be helpful for the design and optimization of the control rod hydraulic absorber. (author)

  10. Experimental studies of the effect of rod spacing on burnout in a simulated rod bundle

    International Nuclear Information System (INIS)

    Lee, D.H.; Little, R.B.

    1962-08-01

    Tests on a dumb-bell shaped flow passage simulating the gap between rods in a fuel element indicated that burnout was not significantly affected by inter-rod gap in the range 0.032'' to 0.22''. Test conditions were: 960 p.s.i.a., 2 x 10 6 1b/ft 2 hr mass velocity, and 10% mean exit quality with vertical upflow of water. (author)

  11. Uncovering the role of the ZnS treatment in the performance of quantum dot sensitized solar cells.

    Science.gov (United States)

    Guijarro, Néstor; Campiña, José M; Shen, Qing; Toyoda, Taro; Lana-Villarreal, Teresa; Gómez, Roberto

    2011-07-07

    Among the third-generation photovoltaic devices, much attention is being paid to the so-called Quantum Dot sensitized Solar Cells (QDSCs). The currently poor performance of QDSCs seems to be efficiently patched by the ZnS treatment, increasing the output parameters of the devices, albeit its function remains rather unclear. Here new insights into the role of the ZnS layer on the QDSC performance are provided, revealing simultaneously the most active recombination pathways. Optical and AFM characterization confirms that the ZnS deposit covers, at least partially, both the TiO(2) nanoparticles and the QDs (CdSe). Photoanodes submitted to the ZnS treatment before and/or after the introduction of colloidal CdSe QDs were studied by electrochemical impedance spectroscopy, cyclic voltammetry and photocurrent experiments. The corresponding results prove that the passivation of the CdSe QDs rather than the blockage of the TiO(2) surface is the main factor leading to the efficiency improvement. In addition, a study of the ultrafast carrier dynamics by means of the Lens-Free Heterodyne Detection Transient Grating technique indicates that the ZnS shell also increases the rate of electron transfer. The dual role of the ZnS layer should be kept in mind in the quest for new modifiers for enhancing the performance of QDSCs. This journal is © the Owner Societies 2011

  12. Quantum ontologies

    International Nuclear Information System (INIS)

    Stapp, H.P.

    1988-12-01

    Quantum ontologies are conceptions of the constitution of the universe that are compatible with quantum theory. The ontological orientation is contrasted to the pragmatic orientation of science, and reasons are given for considering quantum ontologies both within science, and in broader contexts. The principal quantum ontologies are described and evaluated. Invited paper at conference: Bell's Theorem, Quantum Theory, and Conceptions of the Universe, George Mason University, October 20-21, 1988. 16 refs

  13. Sucker rod string design of the pumping systems

    Directory of Open Access Journals (Sweden)

    Chun Hua Liu

    2015-05-01

    Full Text Available The existing design of sucker rod string mainly focuses on the simplifying assumptions that rod string was exposed to simple tension loading. And its goal was to have equal modified stress at the top of each taper. The improved rod design was to have the same degree of safety at each section, and it used a dynamic force distribution that was proportional along the whole string. However, the available procedures did not provide the desired accuracy of its pertinent analysis, and the operators could not identify the specific phenomena that occur in CBM wells. In this paper, the mathematical models of rod loads and string length were developed based on the cyclic nature of rod string loading; the fatigue endurance method is used to design the single rod string; and the tapered rod string is designed to have an equal equivalent stress at the top of each section. Its application characteristics are demonstrated by the example of CBM wells in Ordos Basin. The interpretations of results show that the previous design gave the single rods a larger diameter and the top rods in the string a greater percent than the proposed method. The calculation should concern about inertial, vibration and friction forces to illustrate the elastic force waves travelling in the rod material with the speed of sound. The single string should be designed using fatigue endurance ratings due to asymmetric pulsating tension of rod loading; and the tapered string should involve a balanced design by setting the fatigue endurance at each section equal. A shorter stroke length gives a greater rod taper percentage and an increased load capacity results to an enhanced rod diameter. The rod diameter increases with the pump size and load capacity for the single string, and the rod taper percentage of the top rod strings increases with plunger diameter for the tapered string. The proposed research improves efficiency of the pumping system, assures good operating conditions, and reduces

  14. Quantum Computer Games: Quantum Minesweeper

    Science.gov (United States)

    Gordon, Michal; Gordon, Goren

    2010-01-01

    The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…

  15. Low fluid level in pulse rod shock absorber

    International Nuclear Information System (INIS)

    Aderhold, H.C.

    1974-01-01

    On various occasions during pulse mode operation the shim and regulating control rods would drop when the pulse rod was withdrawn. Subsequent investigation traced the problem to the pulse rod shock absorber which was found to be low in hydraulic fluid. The results of the investigation, the corrective action taken, and a method for measuring the shock absorber fluid level are presented. (author)

  16. Ultrasonics aids the identification of failed fuel rods

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Over a number of years Brown Boveri Reaktor of West Germany has developed and commercialized an ultrasonic failed fuel rod detection system. Sipping has up to now been the standard technique for failed fuel detection, but sipping can only indicate whether or not an assembly contains defective rods; the BBR system can tell which rod is defective. (author)

  17. 77 FR 1504 - Stainless Steel Wire Rod From India

    Science.gov (United States)

    2012-01-10

    ... COMMISSION Stainless Steel Wire Rod From India Determination On the basis of the record \\1\\ developed in the... antidumping duty order on stainless steel wire rod From India would be likely to lead to continuation or... contained in USITC Publication 4300 (January 2012), entitled Stainless Steel Wire Rod From India...

  18. ROD INTERNAL PRESSURE QUANTIFICATION AND DISTRIBUTION ANALYSIS USING FRAPCON

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Kostadin [Pennsylvania State University, University Park; Jessee, Matthew Anderson [ORNL

    2016-01-01

    The discharge rod internal pressure (RIP) and cladding hoop stress (CHS) distributions are quantified forWatts BarNuclearUnit 1 (WBN1) fuel rods by modeling core cycle design data, intercycle assembly movements, operation data (including modeling significant trips and downpowers), and as-built fuel enrichments and densities of each fuel rod in FRAPCON-3.5. An alternate model for the amount of helium released from zirconium diboride (ZrB2) integral fuel burnable absorber (IFBA) layers is derived and applied to FRAPCON output data to quantify the RIP and CHS for these fuel rods. SCALE/Polaris is used to quantify fuel rod-specific spectral quantities and the amount of gaseous fission products produced in the fuel for use in FRAPCON inputs. Fuel rods with ZrB2 IFBA layers (i.e., IFBA rods) are determined to have RIP predictions that are elevated when compared to fuel rod without IFBA layers (i.e., standard rods) despite the fact that IFBA rods often have reduced fill pressures and annular fuel blankets. Cumulative distribution functions (CDFs) are prepared from the distribution of RIP predictions for all standard and IFBA rods. The provided CDFs allow for the determination of the portion of WBN1 fuel rods that exceed a specified RIP limit. Lastly, improvements to the computational methodology of FRAPCON are proposed.

  19. Structural, optical and electrical characterization of vacuum-evaporated nanocrystalline CdSe thin films for photosensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vipin; Sharma, D.K.; Sharma, Kapil [Krishna Institute of Engineering and Technology, Department of Physics, Ghaziabad (India); Dwivedi, D.K. [M.M.M University of Technology, Department of Physics, Gorakhpur (India)

    2016-11-15

    II-VI nanocrystalline semiconductors offer a wide range of applications in electronics, optoelectronics and photonics. Thin films of CdSe were deposited onto ultra-clean glass substrates by vacuum evaporation method. The as-deposited films were annealed in vacuum at 350 K. The structural, elemental, morphological, optical and electrical investigations of annealed films were carried out. The X-ray diffraction pattern of the films shows that films were polycrystalline in nature having hexagonal structure with preferential orientation of grains along (002) plane. SEM image indicates that the films were uniform and well covered to the glass substrate. EDAX analysis confirms the stoichiometric composition of the film. Raman spectra were used to observe the characteristic vibrational modes of CdSe. The energy band gap of these films was obtained by absorption spectra. The films were found to have a direct type of transition of band gap occurring at 1.75 eV. The dark electrical conductivity and photoconductivity reveals that the films were semiconducting in nature indicating the suitability of these films for photosensor applications. The Hall effect measurement reveals that the films have n-type electrical conductivity. (orig.)

  20. Graphene oxide based CdSe photocatalysts: Synthesis, characterization and comparative photocatalytic efficiency of rhodamine B and industrial dye

    International Nuclear Information System (INIS)

    Ghosh, Trisha; Lee, Jeong-Ho; Meng, Ze-Da; Ullah, Kefayat; Park, Chong-Yeon; Nikam, Vikram; Oh, Won-Chun

    2013-01-01

    Highlights: ► CdSe–graphene is synthesized by hydrothermal method. ► Three molar solutions of CdSe were used making three different composites. ► RhB and Texbrite MST-L were used as sample dye solutions. ► Texbrite MST-L is photo degraded in visible light. ► UV-spectroscopic analysis was done to measure degradation. - Abstract: CdSe–graphene composites were prepared using simple “hydrothermal method” where the graphene surface was modified using different molar solutions of cadmium selenide (CdSe) in aqueous media. The characterization of CdSe–graphene composites were studied by X-ray diffraction (XRD), energy dispersive X-ray (EDX), scanning electron microscope (SEM), and with transmission electron microscope (TEM). The catalytic activities of CdSe-composites were evaluated by degradation of rhodamine B (RhB) and commercial industrial dye “Texbrite MST-L (TXT-MST)” with fixed concentration. The degradation was observed by the decrease in the absorbance peak studied by UV spectrophotometer. The decrease in the dye concentration indicated catalytic degradation effect by CdSe–graphene composites

  1. Z-Contrast STEM Imaging and EELS of CdSe Nanocrystals: Towards the Analysis of Individual Nanocrystal Surfaces

    International Nuclear Information System (INIS)

    Erwin, M.; Kadavanich, A.V.; Kippeny, T.; Pennycook, S.J.; Rosenthal, S.J.

    1999-01-01

    We have applied Atomic Number Contract Scanning Transmission Electron Microscopy (Z-Contrast STEM) and STEM/EELS (Electron Energy Loss Spectroscopy) towards the study of colloidal CdSe semiconductor nanocrystals embedded in MEH-PPV polymer films. Unlike the case of conventional phase-contrast High Resolution TEM, Z-Contrast images are direct projections of the atomic structure. Hence they can be interpreted without the need for sophisticated image simulation and the image intensity is a direct measure of the thickness of a nanocrystal. Our thickness measurements are in agreement with the predicted faceted shape of these nanocrystals. Our unique 1.3A resolution STEM has successfully resolve3d the sublattice structure of these CdSe nanocrystals. In [010] projection (the polar axis in the image plane) we can distinguish Se atom columns from Cd columns. Consequently we can study the effects of lattice polarity on the nanocrystal morphology. Furthermore, since the STEM technique does not rely on diffraction, it is superbly suited to the study of non-periodic detail, such as the surface structure of the nanocrystals. EELS measurements on individual nanocrystals indicate a significant amount (equivalet to 0.5-1 surface monolayers) of oxygen on the nanocrystals, despite processing in an inert atmosphere. Spatially resolved measurements at 7A resolution suggest a surface oxide layer. However, the uncertainty in the measurement precludes definitive assignment at this time. The source of the oxygen is under investigation as well

  2. Transient rod failure in a pulsing TRIGA Mark I reactor

    International Nuclear Information System (INIS)

    Draper, E.L. Jr.; Atkinson, G.D. Jr.

    1972-01-01

    Full text: On July 7, 1970 the University of Texas at Austin TRIGA Mark I Pulsing Reactor experienced a failure of the transient control rod. Although no danger to personnel or damage to the reactor other than the pulse rod occurred, the failure was promptly reported to the USAEC regional compliance office. The first indication of an abnormal situation was unusual multiplication behavior during the first start-up of the day. As usual for steady state operation, the operator removed the transient rod and began to withdraw the shim and regulating rods. After partial withdrawal, he noticed that the count rate was not increasing as rapidly as was customary. While remaining at the console,the operator had a technician make a visual inspection of the core. The technician observed the transient drive rod was swinging freely in the pool and the poison section was detached. It was concluded, based on the indications of the.reactor instrumentation and visual inspection, that the transient control rod had broken off and remained in position in the core. The regulating and shim rods were inserted and the transient rod was manually cranked to the down position. The manual manipulation of the transient rod, instead of dropping the rod by gravity, was used so that the connecting rod could be reinserted in the control rod guide tube. The reactor core was then partially unloaded so that a critical mass was not present. The transient rod drive and connecting rod were removed from the pool. The poison section was retrieved from its position in the core by welding a tap to a long rod and tapping into the top of the poison section. Visual inspection of the poison section showed that the weld joining the male threads on the poison section to the main body of the control rod had failed. The threads remained screwed in the control rod drive shaft upon separation and the poison section remained fully inserted in the core. A new control rod was fabricated by Gulf General Atomic and shipped

  3. Effect of CdSe nanoparticles on the fluorescence spectra of conjugate polymer P3HT: An experimental and theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Mastour, Nouha, E-mail: mastournouha@yahoo.fr; Bouchriha, Habib

    2016-11-25

    In this work we have investigated the effect of CdSe nanoparticles (Nps) on the fluorescence spectra of conjugate polymer Poly(3-hexylthiophene-2,5-diyl) (P3HT). The fluorescence intensity is significantly decreased in both solution and solid films by the incorporation of CdSe Nps. This observed effect in the nanocomposite P3HT-CdSe is analyzed by using the Franck–Condon theory which reproduces correctly the decrease of the fluorescence with the Nps concentration and permits to reach the Huang–Rhys factor and the relaxation energy which are shown efficient to explain the fluorescence quenching. - Highlights: • The effects of CdSe nanoparticles concentration on the fluorescence spectra of conjugate polymer P3HT are investigated. • Theoretical approach based on Franck–Condon analysis is proposed. • The Huang–Rhys factor and the relaxation energy as a function of the CdSe Nps are determined. • The fluorescence quenching has been explained.

  4. Effect of CdSe nanoparticles on the fluorescence spectra of conjugate polymer P3HT: An experimental and theoretical study

    International Nuclear Information System (INIS)

    Mastour, Nouha; Bouchriha, Habib

    2016-01-01

    In this work we have investigated the effect of CdSe nanoparticles (Nps) on the fluorescence spectra of conjugate polymer Poly(3-hexylthiophene-2,5-diyl) (P3HT). The fluorescence intensity is significantly decreased in both solution and solid films by the incorporation of CdSe Nps. This observed effect in the nanocomposite P3HT-CdSe is analyzed by using the Franck–Condon theory which reproduces correctly the decrease of the fluorescence with the Nps concentration and permits to reach the Huang–Rhys factor and the relaxation energy which are shown efficient to explain the fluorescence quenching. - Highlights: • The effects of CdSe nanoparticles concentration on the fluorescence spectra of conjugate polymer P3HT are investigated. • Theoretical approach based on Franck–Condon analysis is proposed. • The Huang–Rhys factor and the relaxation energy as a function of the CdSe Nps are determined. • The fluorescence quenching has been explained.

  5. Layer-by-layer assembled composite films of side-functionalized poly(3-hexylthiophene) and CdSe nanocrystals: electrochemical, spectroelectrochemical and photovoltaic properties

    NARCIS (Netherlands)

    de Girolamo, Julia; Reiss, Peter; Zagorska, Malgorzata; de Bettignies, Remi; Bailly, Severine; Mevellec, Jean-Yves; Lefrant, Serge; Travers, Jean-Pierre; Pron, Adam

    2008-01-01

    Regioregular poly(3-hexylthiophene) containing one diaminopyrimidine side group per ten repeat units (P3HT-co-P3(ODAP)HT) can form molecular composites with 1-(6-mercaptohexyl)thymine capped CdSe nanocrystals (CdSe(MHT)) via hydrogen bonds directed molecular recognition. Here we report complementary

  6. Charge Carrier Dynamics of Quantum Confined Semiconductor Nanoparticles Analyzed via Transient Absorption Spectroscopy

    Science.gov (United States)

    Thibert, Arthur Joseph, III

    Semiconductor nanoparticles are tiny crystalline structures (typically range from 1 - 100 nm) whose shape in many cases can be dictated through tailored chemical synthesis with atomic scale precision. The small size of these nanoparticles often results in quantum confinement (spatial confinement of wave functions), which imparts the ability to manipulate band-gap energies thus allowing them to be optimally engineered for different applications (i.e., photovoltaics, photocatalysis, imaging). However, charge carriers excited within these nanoparticles are often involved in many different processes: trapping, trap migration, Auger recombination, non-radiative relaxation, radiative relaxation, oxidation / reduction, or multiple exciton generation. Broadband ultrafast transient absorption laser spectroscopy is used to spectrally resolve the fate of excited charge carriers in both wavelength and time, providing insight as to what synthetic developments or operating conditions will be necessary to optimize their efficiency for certain applications. This thesis outlines the effort of resolving the dynamics of excited charge carriers for several Cd and Si based nanoparticle systems using this experimental technique. The thesis is organized into five chapters and two appendices as indicated below. Chapter 1 provides a brief introduction to the photophysics of semiconductor nanoparticles. It begins by defining what nanoparticles, semiconductors, charge carriers, and quantum confinement are. From there it details how the study of charge carrier dynamics within nanoparticles can lead to increased efficiency in applications such as photocatalysis. Finally, the experimental methodology associated with ultrafast transient absorption spectroscopy is introduced and its power in mapping charge carrier dynamics is established. Chapter 2 (JPCC, 19647, 2011) introduces the first of the studied samples: water-solubilized 2D CdSe nanoribbons (NRs), which were synthesized in the Osterloh

  7. Quantum memristors

    Science.gov (United States)

    Pfeiffer, P.; Egusquiza, I. L.; Di Ventra, M.; Sanz, M.; Solano, E.

    2016-01-01

    Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems. PMID:27381511

  8. Cytocompatibility of direct water synthesized cadmium selenide quantum dots in colo-205 cells

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Torres, Marcos R. [Universidad Metropolitana, Nanomaterials Science Laboratory, School of Science and Technology (United States); Velez, Christian; Zayas, Beatriz [Universidad Metropolitana, ChemTox Laboratory, School of Environmental Affairs (United States); Rivera, Osvaldo [Universidad Metropolitana, Nanomaterials Science Laboratory, School of Science and Technology (United States); Arslan, Zikri [Jackson State University, Department of Chemistry (United States); Gonzalez-Vega, Maxine N. [Universidad Metropolitana, Nanomaterials Science Laboratory, School of Science and Technology (United States); Diaz-Diestra, Daysi; Beltran-Huarac, Juan; Morell, Gerardo [University of Puerto Rico, Molecular Science Research Center (United States); Primera-Pedrozo, Oliva M., E-mail: oprimera1@suagm.edu [Universidad Metropolitana, Nanomaterials Science Laboratory, School of Science and Technology (United States)

    2015-06-15

    Cadmium selenide quantum dots (CdSe QDs), inorganic semiconducting nanocrystals, are alluring increased attraction due to their highly refined chemistry, availability, and super tunable optical properties suitable for many applications in different research areas, such as photovoltaics, light-emitting devices, environmental sciences, and nanomedicine. Specifically, they are being widely used in bio-imaging in contrast to organic dyes due to their high brightness and improved photo-stability, and their ability to tune their absorption and emission spectra upon changing the crystal size. The production of CdSe QDs is mostly assisted by trioctylphosphine oxide compound, which acts as solvent or solubilizing agent and renders the QDs soluble in organic compounds (such as toluene, chloroform, and hexane) that are highly toxic. To circumvent the toxicity-related factor in CdSe QDs, we report the synthesis of CdSe QDs capped with thioglycolic acid (TGA) in an aqueous medium, and their biocompatibility in colo-205 cancer cells. In this study, the [Cd{sup 2+}]/[TGA] ratio was adjusted to 11:1 and the Se concentration (10 and 15 mM) was monitored in order to evaluate its influence on the optical properties and cytocompatibility. QDs resulted to be quite stable in water (after purification) and RPMI cell medium and no precipitation was observed for long contact times, making them appealing for in vitro experiments. The spectroscopy analysis, advanced electron microscopy, and X-ray diffractometry studies indicate that the final products were successfully formed exhibiting an improved optical response. Colo-205 cells being exposed to different concentrations of TGA-capped CdSe QDs for 12, 24, and 48 h with doses ranging from 0.5 to 2.0 mM show high tolerance reaching cell viabilities as high as 93 %. No evidence of cellular apoptotic pathways was observed as pointed out by our Annexin V assays at higher concentrations. Moreover, confocal microscopy analysis conducted to

  9. Toxicological effects of CdSe nanocrystals on the marine diatom Phaeodactylum tricornutum: The first mass spectrometry-based proteomic approach.

    Science.gov (United States)

    Poirier, Isabelle; Pallud, Marie; Kuhn, Lauriane; Hammann, Philippe; Demortière, Arnaud; Jamali, Arash; Chicher, Johana; Caplat, Christelle; Gallon, Régis Kevin; Bertrand, Martine

    2018-05-15

    In the marine environment, benthic diatoms from estuarine and coastal sediments are among the first targets of nanoparticle pollution whose potential toxicity on marine organisms is still largely unknown. It is therefore relevant to improve our knowledge of interactions between these new pollutants and microalgae, the key players in the control of marine resources. In this study, the response of P. tricornutum to CdSe nanocrystals (CdSe NPs) of 5 nm (NP5) and 12 nm (NP12) in diameter was evaluated through microscopic, physiological, biochemical and proteomic approaches. NP5 and NP12 affected cell growth but oxygen production was only slightly decreased by NP5 after 1-d incubation time. In our experimental conditions, a high CdSe NP dissolution was observed during the first day of culture, leading to Cd bioaccumulation and oxidative stress, particularly with NP12. However, after a 7-day incubation time, proteomic analysis highlighted that P. tricornutum responded to CdSe NP toxicity by regulating numerous proteins involved in protection against oxidative stress, cellular redox homeostasis, Ca 2+ regulation and signalling, S-nitrosylation and S-glutathionylation processes and cell damage repair. These proteome changes allowed algae cells to regulate their intracellular ROS level in contaminated cultures. P. tricornutum was also capable to control its intracellular Cd concentration at a sufficiently low level to preserve its growth. To our knowledge, this is the first work allowing the identification of proteins differentially expressed by P. tricornutum subjected to NPs and thus the understanding of some molecular pathways involved in its cellular response to nanoparticles. The microalgae play a key role in the control of marine resources. Moreover, they produce 50% of the atmospheric oxygen. CdSe NPs are extensively used in the industry of renewable energies and it is regrettably expected that these pollutants will sometime soon appear in the marine environment

  10. Application of quantum dots as vectors in targeted survivin gene siRNA delivery

    Directory of Open Access Journals (Sweden)

    Zhao JJ

    2013-04-01

    Full Text Available Jianjiang Zhao, Xiaoling Qiu, Zhiping Wang, Jie Pan, Jun Chen, Jiusong Han Department of Surgery, Guangdong Provincial Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China Abstract: Gene silencing using short interfering RNA (siRNA is becoming an attractive approach for probing gene function in mammalian cells. This study evaluated the specificity and efficiency of quantum dots (QDs as non-viral gene vectors for delivery of survivin siRNA and downregulation of survivin gene expression in oral squamous cell carcinoma Tca8113 cells. Water-dispersible cationically-modified QDs were electrostatically attached to anionic siRNA molecules and complexed with siRNA for downregulating expression of the survivin gene. Cellular uptake and allocation of QD–siRNA complexes in Tca8113 cells were monitored using confocal laser scanning microscopy. Real-time polymerase chain reaction (PCR was used to quantify survivin messenger RNA (mRNA levels. CdSe QDs were observed with high intensity fluorescence under confocal laser scanning microscopy. Tca8113 cells were successfully transfected by QDs with survivin siRNA, and the red fluorescence from CdSe QDs and green fluorescein amidite fluorescence from siRNA could both be easily observed after 6 hours of incubation. The release of siRNA into the cytoplasm was verified through real-time PCR quantification that showed reduced survivin mRNA levels. In this study, survivin siRNA successfully complexed with water-soluble CdSe QDs and exhibited excellent fluorescent properties and downregulated the expression of the survivin gene in oral squamous cell carcinoma Tca8113 cells. QDs are a novel non-viral gene delivery vector. Keywords: quantum dots, survivin, siRNA delivery, transfection, Tca8113, tongue cancer cells

  11. Synthesis, solubilization, and surface functionalization of highly fluorescent quantum dots for cellular targeting through a small molecule

    Science.gov (United States)

    Galloway, Justin F.

    To achieve long-term fluorescence imaging with quantum dots (QDs), a CdSe core/shell must first be synthesized. The synthesis of bright CdSe QDs is not trivial and as a consequence, the role of surfactant in nucleation and growth was investigated. It was found that the type of surfactant used, either phosphonic or fatty acid, played a pivotal role in the size of the CdSe core. The study of surfactant on CdSe synthesis, ultimately led to an electrical passivation method that utilized a short-chained phosphonic acid and highly reactive organometallic precursors to achieve high quantum yield (QY) as has been previously described. The synthesis of QDs using organometallic precursors and a phosphonic acid for passivation resulted in 4 out of 9 batches of QDs achieving QYs greater than 50% and 8 out of 9 batches with QYs greater than 35%. The synthesis of CdSe QDs was done in organic solutions rendering the surface of the particle hydrophobic. To perform cell-targeting experiments, QDs must be transferred to water. The transfer of QDs to water was successfully accomplished by using single acyl chain lipids. A systematic study of different lipid combinations and coatings demonstrated that 20-40 mol% single acyl chained lipids were able to transfer QDs to water resulting in monodispersed, stable QDs without adversely affecting the QY. The advantage to water solubilization using single acyl chain lipids is that the QD have a hydrodynamic radius less than 15 nm, QYs that can exceed 50% and additional surface functionalization can be down using the reactive sites incorporated into the lipid bilayer. QDs that are bright and stable in water were studied for the purpose of targeting G protein-coupled Receptors (GPCR). GPCRs are transmembrane receptors that internalize extracellular cues, and thus mediate signal transduction. The cyclic Adenosine Monophosphate Receptor 1 of the model organism Dictyostelium disodium was the receptor of interest. The Halo protein, a genetically

  12. Rebirth of a control rod at the Phenix power plant

    International Nuclear Information System (INIS)

    De Carvalho, Corinne; Vignau, Bernard; Masson, Marc

    2007-01-01

    This paper outlines the operations involved in cleaning the control rod for the complementary shutdown system in the Phenix Power Plant, the French sodium-cooled fast reactor. The Phenix reactor is controlled by six control rods and a complementary shutdown system. The latter comprises a control rod and a mechanism maintaining the rod in position by means of an electromagnet. The electromagnet is continuously supplied with power and holds the rod control assembly in position by magnetisation on a plane circular surface made from pure iron. The bearing capacity of the mechanism on the rod was initially 80 daN with a rod weight of 26.3 daN. This deteriorated progressively over time. The bearing surface of the rod and the electromagnet became contaminated with a deposit of sodium oxides and metallic particles, thus creating an air gap. This reached a figure of 36 daN in 2005 and was deemed not to be sufficient to prevent the rod from dropping at the wrong time during reactor operation. The Power Plant thus decided to replace the rod mechanism in the reactor in an initial phase, followed by the control rod itself. As the Phenix Power Plant had no spare control rods left, they initiated a 'salvage' plan, over two stages, for the rod removed from the reactor and placed in the fuel storage drum: - Inspection of the bearing surface of the rod by means of a borescope to check whether the rod could be salvaged, - A cleaning operation on the bearing face and checks on the bearing capacity of the rod. The operation is subject to very stringent requirements: the rod must not be taken out of the sodium to ensure that it can be reused in the reactor. The operation must thus take place in the fuel storage drum where there are no facilities for such an operation and where operating conditions are very hostile: high temperatures (the sodium in the fuel storage drum is at a temperature of 150 deg. C, high dose rate (3 mGy/h on the bearing surface) and the bearing surface is submerged

  13. Modeling of microcrack density based damage evolution in ceramic rods

    International Nuclear Information System (INIS)

    Grove, D.J.; Rajendran, A.M.

    2000-01-01

    This paper presents results from simulations of shock wave propagation in ceramic rods with and without confinement. The experiments involved steel and graded-density flyer plates impacting sleeved and unsleeved AD995 ceramic rods. The main objectives of simulating these experiments were: 1) to validate the Rajendran-Grove (RG) ceramic model constants, and 2) to investigate the effects of confinement on damage evolution in ceramic rods, as predicted by the RG model. While the experimental measurements do not indicate the details of damage evolution in the ceramic rod, the numerical modeling has provided some valuable insight into the damage initiation and propagation processes in ceramic rods

  14. Measurement and analysis of CEFR safety and shim rod worth

    International Nuclear Information System (INIS)

    Chen Yiyu; Yang Yong; Gang Zhi; Xu Li; Yang Xiaoyan; Zhou Keyuan; Hu Dingsheng

    2013-01-01

    The reactivity worth of safety rods and shim rods in critical phase and operating phase was calculated respectively using Monte Carlo program in this paper. In addition, the reactivity worth of safety rods and shim rods was measured by the rod drop-off method and period method. The experimental results are in good agreement with the calculated values with less than 5% error. It illustrates the high calculation precision of Monte Carlo program, which provides a practical reference for subsequent application of Monte Carlo program in future demonstration fast reactors. (authors)

  15. Composites reinforcement by rods a SAS study

    CERN Document Server

    Urban, V; Pyckhout-Hintzen, W; Richter, D; Straube, E

    2002-01-01

    The mechanical properties of composites are governed by size, shape and dispersion degree of so-called reinforcing particles. Polymeric fillers based on thermodynamically driven microphase separation of block copolymers offer the opportunity to study a model system of controlled rod-like filler particles. We chose a triblock copolymer (PBPSPB) and carried out SAS measurements with both X-rays and neutrons, in order to characterize separately the hard phase and the cross-linked PB matrix. The properties of the material depend strongly on the way that stress is carried and transferred between the soft matrix and the hard fibers. The failure of the strain-amplification concept and the change of topological contributions to the free energy and scattering factor have to be addressed. In this respect the composite shows a similarity to a two-network system, i.e. interpenetrating rubber and rod-like filler networks. (orig.)

  16. [Rod of Asclepius. Symbol of medicine].

    Science.gov (United States)

    Young, Pablo; Finn, Bárbara C; Bruetman, Julio E; Cesaro Gelos, Jorge; Trimarchi, Hernán

    2013-09-01

    Symbolism is one of the most archaic forms of human thoughts. Symbol derives from the Latin word symbolum, and the latter from the Greek symbolon or symballo, which means "I coincide, I make matches". The Medicine symbol represents a whole series of historical and ethical values. Asclepius Rod with one serpent entwined, has traditionally been the symbol of scientific medicine. In a misconception that has lasted 500 years, the Caduceus of Hermes, entwined by two serpents and with two wings, has been considered the symbol of Medicine. However, the Caduceus is the current symbol of Commerce. Asclepius Rod and the Caduceus of Hermes represent two professions, Medicine and Commerce that, in ethical practice, should not be mixed. Physicians should be aware of their real emblem, its historical origin and meaning.

  17. Experience with a fuel rod enrichment scanner

    International Nuclear Information System (INIS)

    Kubik, R.N.; Pettus, W.G.

    1975-01-01

    This enrichment scanner views all fuel rods produced at B and W's Commercial Nuclear Fuel Plant. The scanner design is derived from the PAPAS System reported by R. A. Forster, H. D. Menlove, and their associates at Los Alamos. The spatial resolution of the system and smoothing of the data are discussed in detail. The cost-effectiveness of multi-detector versus single detector scanners of this general design is also discussed

  18. Synthesis of disk-on-rod antennas

    Science.gov (United States)

    Dubrovka, F. F.; Lenivenko, V. A.

    1993-05-01

    The analysis and synthesis of disk-on-rod antennas (DORAs) with canonical and stepwise disk shapes are considered. A comparison of theoretical and experimental results shows that mathematical models and software developed by solving the appropriate boundary value problems can be used for the design of optimal DORAs. A broadband centimeter-wave DORA is considered as an example of the application of the proposed method for the constructive synthesis of DORAs using multicriterial optimization.

  19. Multiphoton response of retinal rod photoreceptors

    Directory of Open Access Journals (Sweden)

    Vasilios Alexiades

    2007-02-01

    Full Text Available Phototransduction is the process by which light is converted into an electrical response in retinal photoreceptors. Rod photoreceptors contain a stack of (about 1000 disc membranes packed with photopigment rhodopsin molecules, which absorb the photons. We present computational experiments which show the profound effect on the response of the distances (how many discs apart photons happen to be absorbed at. This photon-distribution effect alone can account for much of the observed variability in response.

  20. Rod Driven Frequency Entrainment and Resonance Phenomena

    Directory of Open Access Journals (Sweden)

    Christina Salchow

    2016-08-01

    Full Text Available A controversy exists on photic driving in the human visual cortex evoked by intermittent photic stimulation. Frequency entrainment and resonance phenomena are reported for frequencies higher than 12 Hz in some studies while missing in others. We hypothesized that this might be due to different experimental conditions, since both high and low intensity light stimulation were used. However, most studies do not report radiometric measurements, which makes it impossible to categorize the stimulation according to photopic, mesopic, and scotopic vision. Low intensity light stimulation might lead to scotopic vision, where rod perception dominates. In this study, we investigated photic driving for rod-dominated visual input under scotopic conditions. Twelve healthy volunteers were stimulated with low intensity light flashes at 20 stimulation frequencies, leading to rod activation only. The frequencies were multiples of the individual alpha frequency (α of each volunteer in the range from 0.40–2.30*α. 306-channel whole head magnetoencephalography recordings were analyzed in time, frequency, and spatiotemporal domains with the Topographic Matching Pursuit algorithm. We found resonance phenomena and frequency entrainment for stimulations at or close to the individual alpha frequency (0.90–1.10*α and half of the alpha frequency (0.40–0.55*α. No signs of resonance and frequency entrainment phenomena were revealed around 2.00*α. Instead, on-responses at the beginning and off-responses at the end of each stimulation train were observed for the first time in a photic driving experiment at frequencies of 1.30–2.30*α, indicating that the flicker fusion threshold was reached. All results, the resonance and entrainment as well as the fusion effects, provide evidence for rod-dominated photic driving in the visual cortex.