WorldWideScience

Sample records for cdf run ii

  1. Jet physics at CDF Run II

    Energy Technology Data Exchange (ETDEWEB)

    Safonov, A.; /UC, Davis

    2004-12-01

    The latest results on jet physics at CDF are presented and discussed. Particular attention is paid to studies of the inclusive jet cross section using 177 pb{sup -1} of Run II data. Also discussed is a study of gluon and quark jet fragmentation.

  2. The CDF Run II disk inventory manager

    International Nuclear Information System (INIS)

    Hubbard, Paul; Lammel, Stephan

    2001-01-01

    The Collider Detector at Fermilab (CDF) experiment records and analyses proton-antiproton interactions at a center-of-mass energy of 2 TeV. Run II of the Fermilab Tevatron started in April of this year. The duration of the run is expected to be over two years. One of the main data handling strategies of CDF for Run II is to hide all tape access from the user and to facilitate sharing of data and thus disk space. A disk inventory manager was designed and developed over the past years to keep track of the data on disk, to coordinate user access to the data, and to stage data back from tape to disk as needed. The CDF Run II disk inventory manager consists of a server process, a user and administrator command line interfaces, and a library with the routines of the client API. Data are managed in filesets which are groups of one or more files. The system keeps track of user access to the filesets and attempts to keep frequently accessed data on disk. Data that are not on disk are automatically staged back from tape as needed. For CDF the main staging method is based on the mt-tools package as tapes are written according to the ANSI standard

  3. CDF run II run control and online monitor

    International Nuclear Information System (INIS)

    Arisawa, T.; Ikado, K.; Badgett, W.; Chlebana, F.; Maeshima, K.; McCrory, E.; Meyer, A.; Patrick, J.; Wenzel, H.; Stadie, H.; Wagner, W.; Veramendi, G.

    2001-01-01

    The authors discuss the CDF Run II Run Control and online event monitoring system. Run Control is the top level application that controls the data acquisition activities across 150 front end VME crates and related service processes. Run Control is a real-time multi-threaded application implemented in Java with flexible state machines, using JDBC database connections to configure clients, and including a user friendly and powerful graphical user interface. The CDF online event monitoring system consists of several parts: the event monitoring programs, the display to browse their results, the server program which communicates with the display via socket connections, the error receiver which displays error messages and communicates with Run Control, and the state manager which monitors the state of the monitor programs

  4. First paper from Tevatron Run II submitted by CDF collaboration

    CERN Multimedia

    2003-01-01

    "Scientists of the Collider Detector at Fermilab submitted today (March 19) the first scientific publication of Collider Run II to the science journal Physical Review D. The paper titled "Measurement of the Mass Difference m(Ds+)-m(D+) at CDF II" summarizes the results of an analysis carried out by CDF scientists Christoph Paus and Ivan Furic, MIT, describing the mass measurement of particles containing charm quarks" (1 page).

  5. The CDF SVX II upgrade for the Tevatron Run II

    International Nuclear Information System (INIS)

    Bortoletto, Daniela

    1997-01-01

    A microstrip silicon detector SVX II has been proposed for the upgrade of CDF to be installed in 1999 for Run II of the Tevatron. Three barrels of five layers of double-sided silicon microstrip detectors will cover the interaction region. A description of the project status will be presented. Emphasis will be given to the R and D program for silicon sensors which includes capacitance minimization, the study of coupling capacitor integrity, the operation of the detectors in conjunction with the SVXH and SVX2 readout chips in two beam tests and the determination of the detectors performance deterioration due to radiation damage

  6. Computing Models of CDF and D0 in Run II

    International Nuclear Information System (INIS)

    Lammel, S.

    1997-05-01

    The next collider run of the Fermilab Tevatron, Run II, is scheduled for autumn of 1999. Both experiments, the Collider Detector at Fermilab (CDF) and the D0 experiment are being modified to cope with the higher luminosity and shorter bunchspacing of the Tevatron. New detector components, higher event complexity, and an increased data volume require changes from the data acquisition systems up to the analysis systems. In this paper we present a summary of the computing models of the two experiments for Run II

  7. Computing Models of CDF and D0 in Run II

    International Nuclear Information System (INIS)

    Lammel, S.

    1997-01-01

    The next collider run of the Fermilab Tevatron, Run II, is scheduled for autumn of 1999. Both experiments, the Collider Detector at Fermilab (CDF) and the D0 experiment are being modified to cope with the higher luminosity and shorter bunch spacing of the Tevatron. New detector components, higher event complexity, and an increased data volume require changes from the data acquisition systems up to the analysis systems. In this paper we present a summary of the computing models of the two experiments for Run II

  8. Electroweak physics prospects for CDF in Run II

    International Nuclear Information System (INIS)

    Eric James

    2003-01-01

    The CDF collaboration will vigorously pursue a comprehensive program of electroweak physics during Run II at the Tevatron based strongly on the successful Run I program. The Run IIa integrated luminosity goal of 2 fb -1 will lead to a CDF dataset twenty times larger than that collected in Run I. In addition, an increase in the energy of the colliding beams from √s = 1.80 TeV to √s = 1.96 TeV for Run II provides a 10% increase in the W and Z boson production cross sections and a corresponding enlargement of the electroweak event samples. In the near term, CDF expects to collect a dataset with 2-3 times the integrated luminosity of Run I by September of 2003. Utilizing these new datasets CDF will be able to make improved, precision measurements of Standard Model electroweak parameters including M W , M top , Λ W , and sin 2 θ W eff . The goal of these measurements will be to improve our understanding of the self-consistency of the Standard Model and knowledge of the Higgs boson mass within the model. The top plot in Fig. 1 illustrates our current knowledge of the Standard Model Higgs mass based on measurements of M W and M top . The constraints imposed by combined CDF and D0 Run I measurements of M W (80.456 ± 0.059GeV/c 2 ) and M top (174.3 ± 5.1GeV/c 2 ) are illustrated by the shaded oval region on the plot. The hatched rectangle shows the additional constraint imposed by the recent LEP2 measurement of M W . The bottom plot in Fig. 1 illustrates the expected improvement in these constraints based on Run II CDF measurements utilizing a 2 fb -1 dataset. The shaded oval region in this plot is based on current estimates of a 40 MeV/c 2 uncertainty for measuring M W and a 2-3 GeV/c 2 uncertainty for measuring M top

  9. B physics with the CDF Run II upgrade

    International Nuclear Information System (INIS)

    DeJongh, F.

    1996-01-01

    During the Run 1 data taking period, from 1992 through 1995, CDF has acquired 110 pb -1 of p anti p collisions at a center of mass energy of 1,800 GeV. This data has provided many results on B physics, and provides a basis for extrapolating to Run 2, which is scheduled to start in 1999 after major upgrades to both the accelerator and detector. The authors present herein a summary of Run 1 results relevant to an analysis of the CP asymmetry in B → J/ψK s , the CDF upgrade plans for Run 2, and some of the main B physics goals related to the exploration of the origin of CP violation

  10. CDF silicon vertex tracker: tevatron run II preliminary results

    International Nuclear Information System (INIS)

    Ashmanskas, W.; Belforte, S.; Budagov, Yu.

    2002-01-01

    The Online Silicon Vertex Tracker (SVT) is the unique new trigger processor dedicated to the 2-D reconstruction of charged particle trajectories at Level 2 of the CDF trigger. The SVT has been successfully built, installed and operated during the 2000 and 20001 CDF data taking runs. The performance of the SVT is already very close to the design. The SVT is able to find tracks and calculate their impact parameter with high precision (σ d = 35 μm). It is possible to correct the beam position offset and give the beam position feedback to accelerator in real time. In fact, the beam position is calculated online every few seconds with an accuracy of 1 to 5 μm. The beam position is continuously sent to the accelerator control. By using trigger tracks, parent particles such as K S 's and D 0 's are reconstructed, proving that the SVT is ready to be used for physics studies

  11. A Measurement of the Bs Lifetime at CDF Run II

    Energy Technology Data Exchange (ETDEWEB)

    Farrington, Sinead [Boston Univ., MA (United States)

    2004-01-01

    This thesis describes a measurement of the proper lifetime of the B$0\\atop{s}$ mesons produced in proton-antiproton collisions at a center of mass energy of 1.96 TeV, collected by the CDF experiment at Fermilab. The B$0\\atop{s}$ meson lifetime is measured in its semileptonic decay mode, B$0\\atop{s}$ → ℓ+vD$-\\atop{s}$. The D$-\\atop{s}$ meson candidates are reconstructed in the decay mode D$-\\atop{s}$ → Φπ, with Φ → K+K-, in a trigger sample which requires a muon or an electron and another track which has a large impact parameters. The large impact parameter track is required by the silicon vertex trigger which is an innovative triggering device which has not previously been used in lifetime measurements. A total of 905 ± B$0\\atop{s}$ candidates are reconstructed in a sample which has an integrated luminosity of 140 pb-1 using data gathered between February 2002 and August 2003. The pseudo-proper lifetime distribution of these candidates is fitted with an unbinned maximum likelihood fit. This fit takes into account the missing momentum carried by the neutrino and the bias caused by requiring a track with large impact parameter by modeling these effects in simulations. The fit yields the result for the B$0\\atop{s}$ proper lifetime: cτ(B$0\\atop{s}$) = 419 ± 28$+16\\atop{-13}$ μm and τ(B$0\\atop{s}$) = 1.397 ± 0.093$+0.053\\atop{-0.043}$ ps where the first error is statistical and the second is systematic.

  12. A Final Review of the Performance of the CDF Run II Data Acquisition System

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The CDF Collider Detector at Fermilab ceased data collection on September 30, 2011 after over twenty five years of operation. We review the performance of the CDF Run II data acquisition systems over the last ten of these years while recording nearly 10 fb-1 of proton-antiproton collisions with a high degree of efficiency. Technology choices in the online control and configuration systems and front-end embedded processing have impacted the efficiency and quality of the data accumulated by CDF, and have had to perform over a large range of instantaneous luminosity values and trigger rates. We identify significant sources of problems and successes. In particular, we present our experience computing and acquiring data in a radiation environment, and attempt to correlate system technical faults with radiation dose rate and technology choices.

  13. A Final Review of the Performance of the CDF Run II Data Acquisition System

    International Nuclear Information System (INIS)

    Badgett, W

    2012-01-01

    The CDF Collider Detector at Fermilab ceased data collection on September 30, 2011 after over twenty-five years of operation. We review the performance of the CDF Run II data acquisition systems over the last ten of these years while recording nearly 10 inverse femtobarns of proton-antiproton collisions with a high degree of efficiency - exceeding 83%. Technology choices in the online control and configuration systems and front-end embedded processing have impacted the efficiency and quality of the data accumulated by CDF, and have had to perform over a large range of instantaneous luminosity values and trigger rates. We identify significant sources of problems and successes. In particular, we present our experience computing and acquiring data in a radiation environment, and attempt to correlate system technical faults with radiation dose rate and technology choices.

  14. Operational Experience, Improvements, and Performance of the CDF Run II Silicon Vertex Detector

    CERN Document Server

    Aaltonen, T; Boveia, A.; Brau, B.; Bolla, G; Bortoletto, D; Calancha, C; Carron, S.; Cihangir, S.; Corbo, M.; Clark, D.; Di Ruzza, B.; Eusebi, R.; Fernandez, J.P.; Freeman, J.C.; Garcia, J.E.; Garcia-Sciveres, M.; Gonzalez, O.; Grinstein, S.; Hartz, M.; Herndon, M.; Hill, C.; Hocker, A.; Husemann, U.; Incandela, J.; Issever, C.; Jindariani, S.; Junk, T.R.; Knoepfel, K.; Lewis, J.D.; Martinez-Ballarin, R.; Mathis, M.; Mattson, M.; Merkel, P; Mondragon, M.N.; Moore, R.; Mumford, J.R.; Nahn, S.; Nielsen, J.; Nelson, T.K.; Pavlicek, V.; Pursley, J.; Redondo, I.; Roser, R.; Schultz, K.; Spalding, J.; Stancari, M.; Stanitzki, M.; Stuart, D.; Sukhanov, A.; Tesarek, R.; Treptow, K.; Wallny, R.; Worm, S.

    2013-01-01

    The Collider Detector at Fermilab (CDF) pursues a broad physics program at Fermilab's Tevatron collider. Between Run II commissioning in early 2001 and the end of operations in September 2011, the Tevatron delivered 12 fb-1 of integrated luminosity of p-pbar collisions at sqrt(s)=1.96 TeV. Many physics analyses undertaken by CDF require heavy flavor tagging with large charged particle tracking acceptance. To realize these goals, in 2001 CDF installed eight layers of silicon microstrip detectors around its interaction region. These detectors were designed for 2--5 years of operation, radiation doses up to 2 Mrad (0.02 Gy), and were expected to be replaced in 2004. The sensors were not replaced, and the Tevatron run was extended for several years beyond its design, exposing the sensors and electronics to much higher radiation doses than anticipated. In this paper we describe the operational challenges encountered over the past 10 years of running the CDF silicon detectors, the preventive measures undertaken, an...

  15. Measurement of the inclusive jet cross section using the midpoint algorithm in Run II at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Group, Robert Craig [Univ. of Florida, Gainesville, FL (United States)

    2006-01-01

    A measurement is presented of the inclusive jet cross section using the Midpoint jet clustering algorithm in five different rapidity regions. This is the first analysis which measures the inclusive jet cross section using the Midpoint algorithm in the forward region of the detector. The measurement is based on more than 1 fb-1 of integrated luminosity of Run II data taken by the CDF experiment at the Fermi National Accelerator Laboratory. The results are consistent with the predictions of perturbative quantum chromodynamics.

  16. Search for non-standard model signatures in the WZ/ZZ final state at CDF run II

    Energy Technology Data Exchange (ETDEWEB)

    Norman, Matthew [Univ. of California, San Diego, CA (United States)

    2009-01-01

    This thesis discusses a search for non-Standard Model physics in heavy diboson production in the dilepton-dijet final state, using 1.9 fb -1 of data from the CDF Run II detector. New limits are set on the anomalous coupling parameters for ZZ and WZ production based on limiting the production cross-section at high š. Additionally limits are set on the direct decay of new physics to ZZ andWZ diboson pairs. The nature and parameters of the CDF Run II detector are discussed, as are the influences that it has on the methods of our analysis.

  17. Search for non-standard model signatures in the WZ/ZZ final state at CDF Run II

    International Nuclear Information System (INIS)

    Norman, Matthew

    2009-01-01

    This thesis discusses a search for non-Standard Model physics in heavy diboson production in the dilepton-dijet final state, using 1.9 fb -1 of data from the CDF Run II detector. New limits are set on the anomalous coupling parameters for ZZ and WZ production based on limiting the production cross-section at high (cflx s). Additionally limits are set on the direct decay of new physics to ZZ andWZ diboson pairs. The nature and parameters of the CDF Run II detector are discussed, as are the influences that it has on the methods of our analysis.

  18. Search for the neutral MSSM Higgs bosons in the ditau decay channels at CDF Run II

    Energy Technology Data Exchange (ETDEWEB)

    Almenar, Cristobal Cuenca [Univ. of Valencia (Spain)

    2008-04-01

    This thesis presents the results on a search for the neutral MSSM Higgs bosons decaying to tau pairs, with least one of these taus decays leptonically. The search was performed with a sample of 1.8 fb-1 of proton-antiproton collisions at √s = 1.96 TeV provided by the Tevatron and collected by CDF Run II. No significant excess over the Standard Model prediction was found and a 95% confidence level exclusion limit have been set on the cross section times branching ratio as a function of the Higgs boson mass. This limit has been translated into the MSSM Higgs sector parameter plane, tanβ vs. MA, for the four different benchmark scenarios.

  19. The CDF SVX II detector upgrade

    International Nuclear Information System (INIS)

    Skarha, J.E.

    1993-10-01

    The proposed CDF SVX II detector upgrade for secondary vertex detection during the Fermilab Tevatron Run II collider run is described. The general design and important features of this silicon vertex detector are presented. The CDF physics goals which are addressed by this detector are also given

  20. Search for Supersymmetry in the Dilepton Final State with Taus at CDF Run II

    International Nuclear Information System (INIS)

    Forrest, Robert David

    2011-01-01

    This thesis presents the results a search for chargino and neutralino supersymmetric particles yielding same signed dilepton final states including one hadronically decaying tau lepton using 6.0 fb -1 of data collected by the the CDF II detector. This signature is important in SUSY models where, at high tan β, the branching ratio of charginos and neutralinos to tau leptons becomes dominant. We study event acceptance, lepton identification cuts, and efficiencies. We set limits on the production cross section as a function of SUSY particle mass for certain generic models.

  1. Search for Supersymmetry in the Dilepton Final State with Taus at CDF Run II

    Energy Technology Data Exchange (ETDEWEB)

    Forrest, Robert David [Univ. of California, Davis, CA (United States)

    2011-01-01

    This thesis presents the results a search for chargino and neutralino supersymmetric particles yielding same signed dilepton final states including one hadronically decaying tau lepton using 6.0 fb-1 of data collected by the the CDF II detector. This signature is important in SUSY models where, at high tan β, the branching ratio of charginos and neutralinos to tau leptons becomes dominant. We study event acceptance, lepton identification cuts, and efficiencies. We set limits on the production cross section as a function of SUSY particle mass for certain generic models.

  2. Modelling Energy Loss Mechanisms and a Determination of the Electron Energy Scale for the CDF Run II W Mass Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Riddick, Thomas [Univ. College London, Bloomsbury (United Kingdom)

    2012-06-15

    The calibration of the calorimeter energy scale is vital to measuring the mass of the W boson at CDF Run II. For the second measurement of the W boson mass at CDF Run II, two independent simulations were developed. This thesis presents a detailed description of the modification and validation of Bremsstrahlung and pair production modelling in one of these simulations, UCL Fast Simulation, comparing to both geant4 and real data where appropriate. The total systematic uncertainty on the measurement of the W boson mass in the W → eve channel from residual inaccuracies in Bremsstrahlung modelling is estimated as 6.2 ±3.2 MeV/c2 and the total systematic uncertainty from residual inaccuracies in pair production modelling is estimated as 2.8± 2.7 MeV=c2. Two independent methods are used to calibrate the calorimeter energy scale in UCL Fast Simulation; the results of these two methods are compared to produce a measurement of the Z boson mass as a cross-check on the accuracy of the simulation.

  3. $t\\bar{t}$ Production in Multijet Events at CDF (RunII)

    Energy Technology Data Exchange (ETDEWEB)

    Gresele, Ambra Alessia [Univ. of Bologna (Italy)

    2003-03-14

    This thesis describes the all hadronic $t\\bar{t}$ analysis on the ~100 pb-1 of data collected so far by the CDF experiment (chapter 2 and chapter 3) in the $p\\bar{p}$ collisions at √s = 2 TeV of Tevatron (Fermilab).

  4. Measurement of the W Plus N Inclusive Jets Cross-Section at CDF Run II

    Energy Technology Data Exchange (ETDEWEB)

    Stentz, Dale James [Northwestern Univ., Evanston, IL (United States)

    2012-01-01

    In this thesis we present the study of the production of the W boson in association with hadronic jets at the Collider Detector at Fermilab (CDF). Along with the electroweak properties the W boson, we examine jet kinematic variables with the aim of studying predictions of perturbative quantum chromodynamics. We derive several di erential crosssections as a function of the inclusive jet multiplicity and the transverse momenta of each jet. In this analysis, we are using 2.8 fb-1 of data and consider both the electron and muon lepton nal states for the W boson decay.

  5. The 'miniskirt' counter array at CDF II

    International Nuclear Information System (INIS)

    Artikov, A.; Budagov, Yu.; Bellettini, G.

    2002-01-01

    Muon detection is fundamental to many of the interesting analyses at CDF II. For more efficient muon registration in Run II it was decided to increase geometrical coverage. The so-called 'miniskirt' counters are part of this upgrade. The original design parameters of the 'miniskirt' and mixed 'miniskirt' scintillation counters for the CDF Muon System are presented. The modifications, testing and installation of these counters within the CDF Upgrade Project are described in detail. The timing characteristics of mixed 'miniskirt' counters are also investigated using cosmic muons. The measurements show that the time resolution does not exceed 2.2 ns

  6. Top-quark mass measurement in the tt-bar-dilepton channel using the full CDF Run II data set

    International Nuclear Information System (INIS)

    Budagov, J.; Glagolev, V.; Suslov, I.; Velev, G.

    2014-01-01

    We present a measurement of the top-quark mass with tt-bar-dilepton events using the full CDF Run II data set, which corresponds to an integrated luminosity of 9.1 fb -1 collected from √s = 1.96 TeV pp-bar collisions at the Fermilab Tevatron. A sample of 520 events is obtained after all selection requirements. The top-quark mass is estimated by a fit of the distribution of some variable to a sum of signal and background contributions. This variable is defined using special approach to reduce the systematic error due to the jet energy scale uncertainty. Templates are built from simulated tt-bar and background events, and parameterized in order to provide probability distribution functions. A likelihood fit of the data returns the top-quark mass of (170.80∓1.83 (stat.)∓2.69 (syst.)) GeV/c 2 (or (170.80∓3.25) GeV/c 2 ).

  7. Measurements of $\\sigma(V+D^{*})/\\sigma(V)$ in $9.7$ fb$^{-1}$ at CDF Run II

    Energy Technology Data Exchange (ETDEWEB)

    Matera, Keith [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2014-01-01

    The Standard Model of particle physics has been remarkably successful, but the non-perturbative features of quantum chromodynamics must be tested and modeled with data. There have been many such tests, focused primarily on the use of jet-based probes of heavy flavor (bottom and charm quark) production at hadron colliders. In this thesis, we propose and test a strategy for identifying heavy flavor in events containing a W or Z vector boson (a V boson); this technique probes a much lower energy regime than can be explored by jet-based methods. In a sample of W and Z events skimmed from 9.7 fb-1 of high- pT electron and muon data from CDF Run II p p collisions at center of mass energy √s = 1:96 GeV , we identify charm by fully reconstructing D* (2010) → D0(→ Kπ )π s decays at the track level. Using a binned fit of Δm=m(Kππ s) m(Kπ ) to count reconstructed D* candidates, we then unfold these raw counts with acceptance values derived from Monte Carlo, and present measurements of σ(W + D* )/ σ(W) and σ(Z + D* )/ σ(Z) in the W/Z leptonic decay channels. All measurements are found to be in agreement with the predictions of Pythia 6.2 (PDF set CTEQ5L). These results include the first measurement of W/Z + c production in events with zero jet objects at the Tevatron, and the first measurement of W/Z +c production with pT (c) < 15 GeV at the Tevatron.

  8. Measurement of the cross section for prompt isolated diphoton production using the full CDF run II data sample.

    Science.gov (United States)

    Aaltonen, T; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Butti, P; Buzatu, A; Calamba, A; Camarda, S; Campanelli, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Cho, K; Chokheli, D; Ciocci, M A; Clark, A; Clarke, C; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Cremonesi, M; Cruz, D; Cuevas, J; Culbertson, R; d'Ascenzo, N; Datta, M; De Barbaro, P; Demortier, L; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dorigo, M; Driutti, A; Ebina, K; Edgar, R; Elagin, A; Erbacher, R; Errede, S; Esham, B; Eusebi, R; Farrington, S; Fernández Ramos, J P; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Frisch, H; Funakoshi, Y; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González López, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gramellini, E; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Hahn, S R; Han, J Y; Happacher, F; Hara, K; Hare, M; Harr, R F; Harrington-Taber, T; Hatakeyama, K; Hays, C; Heinrich, J; Herndon, M; Hocker, A; Hong, Z; Hopkins, W; Hou, S; Hughes, R E; Husemann, U; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kambeitz, M; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kim, Y J; Kimura, N; Kirby, M; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Kruse, M; Kuhr, T; Kurata, M; Laasanen, A T; Lammel, S; Lancaster, M; Lannon, K; Latino, G; Lee, H S; Lee, J S; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lipeles, E; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, P; Martínez, M; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Nigmanov, T; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagliarone, C; Palencia, E; Palni, P; Papadimitriou, V; Parker, W; Pauletta, G; Paulini, M; Paus, C; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Prokoshin, F; Pranko, A; Ptohos, F; Punzi, G; Ranjan, N; Redondo Fernández, I; Renton, P; Rescigno, M; Riddick, T; Rimondi, F; Ristori, L; Robson, A; Rodriguez, T; Rolli, S; Ronzani, M; Roser, R; Rosner, J L; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schwarz, T; Scodellaro, L; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sinervo, P; Sliwa, K; Smith, J R; Snider, F D; Sorin, V; Song, H; Stancari, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thomson, E; Thukral, V; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Vázquez, F; Velev, G; Vellidis, C; Vernieri, C; Vidal, M; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wallny, R; Wang, S M; Warburton, A; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wilbur, S; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Zanetti, A M; Zeng, Y; Zhou, C; Zucchelli, S

    2013-03-08

    This Letter reports a measurement of the cross section for producing pairs of central prompt isolated photons in proton-antiproton collisions at a total energy sqrt[s] = 1.96 TeV using data corresponding to 9.5 fb(-1) integrated luminosity collected with the CDF II detector at the Fermilab Tevatron. The measured differential cross section is compared to three calculations derived from the theory of strong interactions. These include a prediction based on a leading order matrix element calculation merged with a parton shower model, a next-to-leading order calculation, and a next-to-next-to-leading order calculation. The first and last calculations reproduce most aspects of the data, thus showing the importance of higher-order contributions for understanding the theory of strong interaction and improving measurements of the Higgs boson and searches for new phenomena in diphoton final states.

  9. Measurement of the forward-backward asymmetry of top-quark and antiquark pairs using the full CDF Run II data set

    Science.gov (United States)

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; D'Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; Donati, S.; D'Onofrio, M.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Erbacher, R.; Errede, S.; Esham, B.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Galloni, C.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grosso-Pilcher, C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Marchese, L.; Margaroli, F.; Marino, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Song, H.; Sorin, V.; St. Denis, R.; Stancari, M.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Waters, D.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.; CDF Collaboration

    2016-06-01

    We measure the forward-backward asymmetry of the production of top-quark and antiquark pairs in proton-antiproton collisions at center-of-mass energy √{s }=1.96 TeV using the full data set collected by the Collider Detector at Fermilab (CDF) in Tevatron Run II corresponding to an integrated luminosity of 9.1 fb-1 . The asymmetry is characterized by the rapidity difference between top quarks and antiquarks (Δ y ) and measured in the final state with two charged leptons (electrons and muons). The inclusive asymmetry, corrected to the entire phase space at parton level, is measured to be AFBt t ¯=0.12 ±0.13 , consistent with the expectations from the standard model (SM) and previous CDF results in the final state with a single charged lepton. The combination of the CDF measurements of the inclusive AFBt t ¯ in both final states yields AFBt t ¯=0.160 ±0.045 , which is consistent with the SM predictions. We also measure the differential asymmetry as a function of Δ y . A linear fit to AFBt t ¯(|Δ y |), assuming zero asymmetry at Δ y =0 , yields a slope of α =0.14 ±0.15 , consistent with the SM prediction and the previous CDF determination in the final state with a single charged lepton. The combined slope of AFBt t ¯(|Δ y |) in the two final states is α =0.227 ±0.057 , which is 2.0 σ larger than the SM prediction.

  10. 'Miniskirt' counter array at CDF II

    International Nuclear Information System (INIS)

    Artikov, A.; Artikov, A.

    2006-01-01

    Full text: Muon detection is fundamental for the most of the interesting analyses at CDF. At the course of Run II, the collaboration expects to collect hundreds of t t-bar decays yielding a muon as well as several million B-hadron events involving J/ψ → μ + μ - decays. Muon detection is also of fundamental importance in the study of W-boson properties and in the search for Higgs production associated with W or Z bosons. Considerable effort therefore went into extending the muon detector coverage for Run II, which started in March 2001. The CDF II muon detector system consists of multiple layers of drift chambers and scintillation counters, which span the pseudorapidity (|η|) range between 0 and 1.5. Detectors spanning different ranges have different geometries, and the muon scintillation counter system includes subsystems in the regions that have come to be known as the 'central' (0 pe for WLS fiber readout is smaller than for conventional readout, we can also expect an increase in the statistical contribution to the overall uncertainty. Our first concern, before adopting this solution, was therefore to ascertain that the mean timing resolution obtained under these conditions was adequate. The modifications, testing and installation of these counters within the CDF Upgrade Project are described in detail. The timing characteristics of MSX' counters are also investigated using cosmic muons. The measurements show that the time resolution does not exceed 2.2 ns. (author)

  11. Recent results of high p(T) physics at the CDF II

    Energy Technology Data Exchange (ETDEWEB)

    Tsuno, Soushi; /Okayama U.

    2005-02-01

    The Tevatron Run II program has been in progress since 2001. The CDF experiment has accumulated roughly five times as much data as did Run I, with much improved detectors. Preliminary results from the CDF experiment are presented. The authors focus on recent high p{sub T} physics results in the Tevatron Run II program.

  12. Mechanical design of the CDF SVX II silicon vertex detector

    International Nuclear Information System (INIS)

    Skarha, J.E.

    1994-08-01

    A next generation silicon vertex detector is planned at CDF for the 1998 Tevatron collider run with the Main Injector. The SVX II silicon vertex detector will allow high luminosity data-taking, enable online triggering of secondary vertex production, and greatly increase the acceptance for heavy flavor physics at CDF. The design specifications, geometric layout, and early mechanical prototyping work for this detector are discussed

  13. Search for Third Generation Squarks in the Missing Transverse Energy plus Jet Sample at CDF Run II

    Energy Technology Data Exchange (ETDEWEB)

    Marono, Miguel Vidal [Complutense Univ. of Madrid (Spain)

    2010-03-01

    lightest SUSY particle (LSP) which would provide a candidate for cold dark matter, that account for 23% of the universe content, as strongly suggested by recent astrophysical data [1]. The Tevatron is a hadron collider operating at Fermilab, USA. This accelerator provides proton-antiproton (p$\\bar{p}$) collisions with a center of mass energy of √s = 1.96 TeV. CDF and D0 are the detectors built to analyse the products of the collisions provided by the Tevatron. Both experiments have produced a very significant scientific output in the last few years, like the discovery of the top quark or the measurement of the Bs mixing. The Tevatron experiments are also reaching sensitivity to the SM Higgs boson. The scientific program of CDF includes a broad spectrum on searches for physics signatures beyond the Standard Model. Tevatron is still the energy frontier, what means an unique opportunity to produce a discovery in physic beyond the Standard Model. The analyses presented in this thesis focus on the search for third generation squarks in the missing transverse energy plus jets final state. The production of sbottom ($\\tilde{b}$) and stop ($\\tilde{t}$) quarks could be highly enhanced at the Tevatron, giving the possibility of discovering new physics or limiting the parameter space available in the theory. No signal is found over the predicted Standard Model background in both searches. Instead, 95% confidence level limits are set on the production cross section, and then translated into the mass plane of the hypothetical particles. This thesis sketches the basic theory concepts of the Standard Model and the Minimal Supersymmetric Extension in Chapter 2. Chapter 3, describes the Tevatron and CDF. Based on the CDF subsystems information, Chapter 4 and 5 describe the analysis objet reconstruction and the heavy flavor tagging tools. The development of the analyses is shown in Chapter 6 and Chapter 7. Finally, Chapter 8 is devoted to discuss the results and conclusions

  14. A Measurement of the Lifetime of the Λb Baryon with the CDF Detector at the Tevatron Run II

    Energy Technology Data Exchange (ETDEWEB)

    Unverhau, Tatjana Alberta Hanna [Univ. of Glasgow, Scotland (United Kingdom)

    2004-12-01

    In March 2001 the Tevatron accelerator entered its Run II phase, providing colliding proton and anti-proton beams with an unprecedented center-of-mass energy of 1.96 TeV. The Tevatron is currently the only accelerator to produce Λb baryons, which provides a unique opportunity to measure the properties of these particles. This thesis presents a measurement of the mean lifetime of the Λb baryon in the semileptonic channel Λ$0\\atop{b}$ → Λ$+\\atop{c}$ μ- $\\bar{v}$μ. In total 186 pb-1 of data were used for this analysis, collected with the CDF detector between February 2002 and September 2003. To select the long-lived events from b-decays, the secondary vertex trigger was utilized. This significant addition to the trigger for Run II allows, for the first time, the selection of events with tracks displaced from the primary interaction vertex at the second trigger level. After the application of selection cuts this trigger sample contains approximately 991 Λb candidates. To extract the mean lifetime of Λb baryons from this sample, they transverse decay length of the candidates is fitted with an unbinned maximum likelihood fit under the consideration of the missing neutrino momentum and the bias introduced by the secondary vertex trigger. The mean lifetime of the Λb is measured to be τ = 1.29 ± 0.11(stat.) ± 0.07(syst.) ps equivalent to a mean decay length of cτ = 387 ± 33(stat.) ± 21 (syst.) μm.

  15. Entdeckung elektroschwacher Produktion einzelner Top-Quarks mit dem CDF II Experiment; Discovery electroweak production of single top quarks with the CDF II Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Luck, Jan [Karlsruhe Inst. of Technology (KIT) (Germany)

    2009-01-01

    This thesis presents a neural network search for combined as well as separate s- and t-channel single top-quark production with the CDF II experiment at the Tevatron using 3.2 fb-1 of collision data. It is the twelfth thesis dealing with single top-quark production performed within the CDF Collaboration, whereas three have been done in Run I [53–55] and eight in Run II [23, 25, 28, 39, 56–59].

  16. Search for the decays B_{(s)};{0} --> e;{+} micro;{-} and B_{(s)};{0} --> e;{+} e;{-} in CDF run II.

    Science.gov (United States)

    Aaltonen, T; Adelman, J; Akimoto, T; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burke, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cordelli, M; Cortiana, G; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heijboer, A; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C-S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lucchesi, D; Luci, C; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Griso, S Pagan; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Rutherford, B; Saarikko, H; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Stuart, D; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wenzel, H; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Würthwein, F; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zhang, X; Zheng, Y; Zucchelli, S

    2009-05-22

    We report results from a search for the lepton flavor violating decays B_{s};{0} --> e;{+} micro;{-} and B;{0} --> e;{+} micro;{-}, and the flavor-changing neutral-current decays B_{s};{0} --> e;{+} e;{-} and B;{0} --> e;{+} e;{-}. The analysis uses data corresponding to 2 fb;{-1} of integrated luminosity of pp[over ] collisions at sqrt[s] = 1.96 TeV collected with the upgraded Collider Detector (CDF II) at the Fermilab Tevatron. The observed number of B0 and B_{s};{0} candidates is consistent with background expectations. The resulting Bayesian upper limits on the branching ratios at 90% credibility level are B(B_{s};{0} --> e;{+} micro;{-}) e;{+} micro;{-}) e;{+} e;{-}) e;{+} e;{-}) e;{+} micro;{-}), the following lower bounds on the Pati-Salam leptoquark masses are also derived: M_{LQ}(B_{s};{0} --> e;{+} micro;{-}) > 47.8 TeV/c;{2}, and M_{LQ}(B;{0} --> e;{+} micro;{-}) > 59.3 TeV / c;{2}, at 90% credibility level.

  17. A Study of The Standard Model Higgs, WW and ZZ Production in Dilepton Plus Missing Transverse Energy Final State at CDF Run II

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Shih-Chieh [Univ. of California, San Diego, CA (United States)

    2008-01-01

    We report on a search for Standard Model (SM) production of Higgs to WW* in the two charged lepton (e, μ) and two neutrino final state in p$\\bar{p}$ collisions at a center of mass energy √s = 1.96 TeV. The data were collected with the CDF II detector at the Fermilab Tevatron and correspond to an integrated luminosity of 1.9fb-1. The Matrix Element method is developed to calculate the event probability and to construct a likelihood ratio discriminator. There are 522 candidates observed with an expectation of 513 ± 41 background events and 7.8 ± 0.6 signal events for Higgs mass 160GeV/c2 at next-to-next-to-leading logarithmic level calculation. The observed 95% C.L. upper limit is 0.8 pb which is 2.0 times the SM prediction while the median expected limit is 3.1$+1.3\\atop{-0.9}$ with systematics included. Results for 9 other Higgs mass hypotheses ranging from 110GeV/c2 to 200GeV/c2 are also presented. The same dilepton plus large transverse energy imbalance (ET) final state is used in the SM ZZ production search and the WW production study. The observed significance of ZZ → llvv channel is 1.2σ. It adds extra significance to the ZZ → 4l channel and leads to a strong evidence of ZZ production with 4.4 σ significance. The potential improvement of the anomalous triple gauge coupling measurement by using the Matrix Element method in WW production is also studied.

  18. Search for Bs Oscillations at CDF II

    International Nuclear Information System (INIS)

    Menzemer, Stephanie

    2006-01-01

    We report updated results in the search for Bs flavor oscillations performed at CDF II. We analyze a dataset of approximately 355 pb-1 from proton-antiproton collisions at a center-of-mass energy of 1.96 TeV collected in 2002-2004 with the CDF II detector at the Tevatron Collider. Samples of both fully reconstructed Bs → Ds(3)π, and partially reconstructed, Bs → DslX, decays have been studied. A combination of opposite side tagging algorithms has been used to determine the flavor of the Bs mesons at production time. Information about the oscillation frequency of the system, Δms, is obtained by performing an amplitude scan of the data, from which an exclusion limit Δms ≥ 8.6 ps -1 (at 95% C.L.), with a measured sensitivity of 13.0 ps-1 has been derived; Combination with previously available measurements increases the world exclusion limit from 14.5 ps-1 to 16.6 ps-1 (at 95% C.L.)

  19. The CDF II eXtremely fast tracker upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Abulencia, A.; Azzurri, P.; Cochran, E.; Dittmann, J.; Donati, S.; Efron, J.; Erbacher, R.; Errede, D.; Fedorko, I.; Flanagan, G.; Forrest, R.; /Illinois U., Urbana

    2006-09-01

    The CDF II Extremely Fast Tracker is the trigger track processor which reconstructs charged particle tracks in the transverse plane of the CDF II central outer tracking chamber. The system is now being upgraded to perform a three dimensional track reconstruction. A review of the upgrade is presented here.

  20. Measurement of B(t→Wb)/B(t→Wq) in top-quark-pair decays using dilepton events and the full CDF Run II data set.

    Science.gov (United States)

    Aaltonen, T; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Butti, P; Buzatu, A; Calamba, A; Camarda, S; Campanelli, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Cho, K; Chokheli, D; Clark, A; Clarke, C; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Cremonesi, M; Cruz, D; Cuevas, J; Culbertson, R; d'Ascenzo, N; Datta, M; de Barbaro, P; Demortier, L; Deninno, M; D'Errico, M; Devoto, F; Di Canto, A; Di Ruzza, B; Dittmann, J R; Donati, S; D'Onofrio, M; Dorigo, M; Driutti, A; Ebina, K; Edgar, R; Elagin, A; Erbacher, R; Errede, S; Esham, B; Farrington, S; Fernández Ramos, J P; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Frisch, H; Funakoshi, Y; Galloni, C; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González López, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gramellini, E; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Hahn, S R; Han, J Y; Happacher, F; Hara, K; Hare, M; Harr, R F; Harrington-Taber, T; Hatakeyama, K; Hays, C; Heinrich, J; Herndon, M; Hocker, A; Hong, Z; Hopkins, W; Hou, S; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kambeitz, M; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S H; Kim, S B; Kim, Y J; Kim, Y K; Kimura, N; Kirby, M; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Kruse, M; Kuhr, T; Kurata, M; Laasanen, A T; Lammel, S; Lancaster, M; Lannon, K; Latino, G; Lee, H S; Lee, J S; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lipeles, E; Lister, A; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucchesi, D; Lucà, A; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Marchese, L; Margaroli, F; Marino, P; Martínez, M; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Nigmanov, T; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagliarone, C; Palencia, E; Palni, P; Papadimitriou, V; Parker, W; Pauletta, G; Paulini, M; Paus, C; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Pranko, A; Prokoshin, F; Ptohos, F; Punzi, G; Ranjan, N; Redondo Fernández, I; Renton, P; Rescigno, M; Rimondi, F; Ristori, L; Robson, A; Rodriguez, T; Rolli, S; Ronzani, M; Roser, R; Rosner, J L; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schwarz, T; Scodellaro, L; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sliwa, K; Smith, J R; Snider, F D; Song, H; Sorin, V; St Denis, R; Stancari, M; Stentz, D; Strologas, J; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thomson, E; Thukral, V; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Vázquez, F; Velev, G; Vellidis, C; Vernieri, C; Vidal, M; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wallny, R; Wang, S M; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wilbur, S; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Zanetti, A M; Zeng, Y; Zhou, C; Zucchelli, S

    2014-06-06

    We present a measurement of the ratio of the top-quark branching fractions R=B(t→Wb)/B(t→Wq), where q represents any quark flavor, in events with two charged leptons, imbalance in total transverse energy, and at least two jets. The measurement uses proton-antiproton collision data at center-of-mass energy 1.96 TeV, corresponding to an integrated luminosity of 8.7  fb^{-1} collected with the Collider Detector at Fermilab during Run II of the Tevatron. We measure R to be 0.87±0.07, and extract the magnitude of the top-bottom quark coupling to be |V_{tb}|=0.93±0.04, assuming three generations of quarks. Under these assumptions, a lower limit of |V_{tb}|>0.85(0.87) at 95% (90%) credibility level is set.

  1. The CDF calorimeter upgrade for RunIIb

    CERN Document Server

    Huston, J; Kuhlmann, S; Lami, S; Miller, R; Paoletti, R; Turini, N; Ukegawa, F

    2004-01-01

    The physics program at the Fermilab Tevatron Collider will continue to explore the high energy elementary particle physics until the LHC commissioning. The upgrade of the CDF calorimeter opens a new window for improving the jet energy resolution, important in finding various signals such as Higgs by correcting the energy loss in the dead material and adding information in the jet algorithms using charged particles. It plays an important role in soft electron tagging of b- jets and photon identification in SUSY. The upgrade of the CDF calorimeter includes: a) the replacement of slow gas detector on the front face of the Central Calorimeter with Preshower (CPR) based on 2cm thick scintillator tiles segmented in eta and Phi and read out by WLS fibers running into a groove on the surface of each tiles. The WLS fibers are placed to clear fibers after leaving the tiles; b) the replacement of the Central Crack Chamber (CCR) with 5mm thick scintillator tiles read with the same technique: To finalize the design parame...

  2. Results on QCD Physics from the CDF-II Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pagliarone, C.; /Cassino U. /INFN, Pisa

    2006-12-01

    In this paper the authors review a selection of recent results obtained, in the area of QCD physics, from the CDF-II experiment that studies p{bar p} collisions at {radical}s = 1.96 TeV provided by the Fermilab Tevatron Collider. All results shown correspond to analysis performed using the Tevatron Run II data samples. In particular they will illustrate the progress achieved and the status of the studies on the following QCD processes: jet inclusive production, using different jet clustering algorithm, W({yields} e{nu}{sub e}) + jets and Z({yields} e{sup +}e{sup -}) + jets production, {gamma} + b-jet production, dijet production in double pomeron exchange and finally exclusive e{sup +}e{sup -} and {gamma}{gamma} production. No deviations from the Standard Model have been observed so far.

  3. Search for a Standard Model Higgs Boson in the Channel $VH\\to VWW$ with Leptons and Hadronic $\\tau$ in the Full CDF Run II Data Set

    Energy Technology Data Exchange (ETDEWEB)

    Bertoli, Gabriele [Univ. of Trieste (Italy)

    2015-08-27

    We present the results of the CDF search for a Standard Model Higgs boson decaying into a pair of W bosons with electrons, muons and hadronically decaying taus in the final state. In particular, we investigate a channel with three objects, two leptons and a tau. In 9.7 fb-1 of data we expect 40.0 ± 5.4 background events and 0.54 ± 0.05 signal events for a Higgs mass hypothesis of 160 GeV/c2, whereas in data we count 28 events. We set a 95% C.L. upper limit on σ/σSM of 12.6 for a Higgs mass hypothesis of 160 GeV/c2. The expected 95% C.L. upper limit for the same mass is 12.4. Results for other ninete 0 GeV/c2 to 200 GeV/c2 are also presented.

  4. Measurement of the Electroweak Single Top Quark Production Cross Section and the CKM Matrix Element $|V_{tb}|$ at CDF Run II

    Energy Technology Data Exchange (ETDEWEB)

    Larana, Bruno Casal [Univ. of Cantabria (Spain)

    2010-01-01

    The establishment of the electroweak single top quark production at CDF is experimentally challenging. The small single top signal hidden under large uncertain background processes makes it necessary an excellent understanding of the detector and a detailed study of the processes involved. Moreover, simple counting experiments are not sufficient to extract enough information from the candidate event sample and multivariate analysis techniques are crucial to distinguish signal from background. This thesis presents the world’s most sensitive individual search, together with CDF’s Neural Network analysis, for the combined s- and t-channel single top production. This analysis uses a dataset that corresponds to an integrated luminosity of 3.2fb-1, and is based on a Boosted Decision Tree method that combines information from several input variables to construct a final powerful discriminant, reaching a sensitivity to the combined single top quark production equivalent to 5.2σ. The measured combined single top quark production cross section is 2.1+0.7 -0.6 pb assuming a top quark mass of 175 GeV/c2. The probability that this result comes from a background-only fluctuation (p-value) is 0.0002, which corresponds to 3.5σ.

  5. The CDF-II silicon tracking system

    Energy Technology Data Exchange (ETDEWEB)

    F. Palmonari et al.

    2002-01-18

    The CDFII silicon tracking system, SVX, for Run II of the Fermilab Tevatron has up to 8 cylindrical layers with average radii spanning from {approx} (1.5 to 28.7) cm, and lengths ranging from {approx} (90 to 200) cm for a total active-area of {approx} 6 m{sup 2} and {approx} 7.2 x 10{sup 5} readout channels. SVX will improve the CDFII acceptance and efficiency for both B and high-Pt physics dependent upon b-tagging. Along with the description of the SVX we report some alignment survey data from the SVX assembly phase and the actual status of the alignment as it results from the offline data analysis. The problems encountered are also reviewed.

  6. Measurement of the $B_{s} \\to K^{+}K^{-}$ lifetime and extraction of the $\\Delta\\Gamma_{CP}/\\Gamma_{CP}$ at CDF Run II and Development of the ATLAS-SCT endcap modules

    Energy Technology Data Exchange (ETDEWEB)

    Donega, Mauro [Univ. of Geneva (Switzerland)

    2006-01-01

    In the first part of the present work we present the first measurement of the Bd and Bs meson lifetimes in charmless decays (Bd → K+π-, Bd → π+π-, Bs → K+K-) based on 360pb-1 of p$\\bar{p}$ collision taken at the CDF Run II detector and the extraction $\\frac{ΔΓCP}{ΓCP}$ for the Bs-meson. We find the Bd-meson lifetime (in the Bd → K+π- and Bd → π+π- decay modes) to be: cτ (Bd) = 452 ± 24 (stat) ± 6 (syst) µm τ (Bd) = 1.51 ± 0.08 (stat) ± 0.02 (syst) ps and the Bs-meson lifetime (in the Bs → K+K- decay mode) to be: cτ (Bs → K+K-) = 458 ± 53 (stat) ± 6 (syst) µm τ (Bs → K+K-) = 1.53 ± 0.18 (stat) ± 0.02 (syst) ps Both measurements are consistent with the world averages. We calculate the ΔΓCP CP for the Bs meson combining the measured lifetime in the Bs → K+K- decay with the world average value of the Bs-meson lifetime in the flavour specific decays: We find: cτfs = 441 ± 13 µm τfs = 1.472 ± 0.045 ps ΔΓCP /ΓCP = -0.08 ± 0.23 (stat.) ± 0.03 (syst.) that is compatible with the theoretical expectation of (7.2 ± 2.4) × 10-2. In the second part of the present work, a few steps of the final R&D of the ATLAS-SCT endcaps modules will be reported. Two module layouts have been developed on two different electrical hybrids de- signs. Both layouts have been produced in small prototype series and tested before and after exposing them to a particle fluence equivalent to that expected at the end of the ATLAS data taking.

  7. Test of long scintillating counter prototypes for CDF-II

    International Nuclear Information System (INIS)

    Budagov, Yu.; Chirikov-Zorin, I.; Pukhov, O.; Incagli, M.; Leone, S.; Menzione, A.; Pauletta, G.; Tokar, S.

    2000-01-01

    New type long (up to 3 m) scintillating counter prototypes, developed for CDF-II, have been tested. The shift-spectrum fiber ribbons were used for light collection, and modern ultra compact photomultipliers R5600 were used for light detection. The efficiency for m.i.p. was excellent for all prototypes. The light yield from the far end of the counters was found to be more than 20 photoelectrons

  8. The design and PCB layout of the CDF Run 2 calorimetry readout module

    International Nuclear Information System (INIS)

    Theresa Shaw

    1999-01-01

    The CDF Calorimetry Readout module, called the ADMEM, has been designed to contain both the analog circuitry which digitizes the phototube charge pulses, and the digital logic which supports the readout of the results through the CDF Run 2 DAQ system. The ADMEM module is a 9Ux400mm VMEbus module, which is housed in a CDF VMEbus VIPA crate. The ADMEM must support near deadtimeless operation, with data being digitized and stored for possible readout every 132ns or 7.6 Mhz. This paper will discuss the implementation of the analog and digital portions of the ADMEM module, and how the board was laid out to avoid the coupling of digital noise into the analog circuitry

  9. Run 2 analysis computing for CDF and D0

    International Nuclear Information System (INIS)

    Fuess, S.

    1995-11-01

    Two large experiments at the Fermilab Tevatron collider will use upgraded of running. The associated analysis software is also expected to change, both to account for higher data rates and to embrace new computing paradigms. A discussion is given to the problems facing current and future High Energy Physics (HEP) analysis computing, and several issues explored in detail

  10. The CDF II eXtremely Fast Tracker Upgrade

    CERN Document Server

    Fedorko, I; Errede, D; Gerberich, H; Junk, T; Kasten, M; Levine, S; Mokos, R; Pitts, K; Rogers, E; Veramendi, G; Azzurri, P; Donati, S; Staveris-Polykalas, A; Cochran, E; Efron, J; Gartner, J; Hughes, R; Johnson, M; Kilminster, B; Lannon, K; McKim, J; Olivito, D; Parks, B; Slaunwhite, J; Winer, B; Dittmann, J; Hewamanage, S; Krumnack, N; Wilson, J S; Erbacher, R; Forrest, R; Ivanov, A; Soha, A; Flanagan, G; Jones, T; Holm, S; Klein, R; Schmidt, E E; Scott, L; Shaw, T; Wilson, P J

    2008-01-01

    The CDF II eXtremely Fast Tracker (XFT) is the trigger processor which reconstructs charged particle tracks in the transverse plane of the central tracking chamber. The XFT tracks are also extrapolated to the electromagnetic calorimeter and muon chambers to generate trigger electron and muon candidates. The XFT is crucial for the entire CDF II physics program: it detects high pT leptons from W/Z and heavy flavor decays and, in conjunction with the Level 2 processors, it identifies secondary vertices from beauty decays. The XFT has thus been crucial for the recent measurement of the oscilation and Σb discovery. The increase of the Tevatron instantaneous luminosity demanded an upgrade of the system to cope with the higher occupancy of the chamber. In the upgraded XFT, three dimensional tracking reduces the level of fake tracks and measures the longitudinal track parameters, which strongly reinforce the trigger selections. This allows to mantain the trigger perfectly efficient at the record luminosities 2–3·...

  11. B-physics at CDF and prospects for the next run

    International Nuclear Information System (INIS)

    Wenzel, H.

    1991-09-01

    Current CDF b-physics results are presented. The analysis is based on data corresponding to an integrated luminosity of 4.4 pb -1 recorded with the CDF detector in 88--89 at the Fermilab Tevatron p bar p collider (√ bar s = 1.8 TeV). Preliminary results include the differential cross section dPt / dσ(b) , some reconstructed exclusive B-decays, a limit for the rare decay B 0 → μ + μ - and a measurement of B bar B-mixing parameters. Finally we will discuss the prospects concerning b-physics for the next data run which will start in February 1992. 12 refs., 8 figs

  12. Run II jet physics: Proceedings of the Run II QCD and weak boson physics workshop

    International Nuclear Information System (INIS)

    Gerald C. Blazey

    2000-01-01

    The Run II jet physics group includes the Jet Algorithms, Jet Shape/Energy Flow, and Jet Measurements/Correlations subgroups. The main goal of the jet algorithm subgroup was to explore and define standard Run II jet finding procedures for CDF and D0. The focus of the jet shape/energy flow group was the study of jets as objects and the energy flows around these objects. The jet measurements/correlations subgroup discussed measurements at different beam energies; α S measurements; and LO, NLO, NNLO, and threshold jet calculations. As a practical matter the algorithm and shape/energy flow groups merged to concentrate on the development of Run II jet algorithms that are both free of theoretical and experimental difficulties and able to reproduce Run I measurements. Starting from a review of the experience gained during Run I, the group considered a variety of cone algorithms, and K T algorithms. The current understanding of both types of algorithms, including calibration issues, are discussed in this report along with some preliminary experimental results. The jet algorithms group recommends that CDF and D0 employ the same version of both a cone algorithm and a K T algorithm during Run II. Proposed versions of each type of algorithm are discussed. The group also recommends the use of full 4-vector kinematic variables whenever possible. The recommended algorithms attempt to minimize the impact of seeds in the case of the cone algorithm and preclustering in the case of the K T algorithm. Issues regarding precluster definitions and merge/split criteria require further study

  13. Search for WW and WZ production in lepton, neutrino plus jets final states at CDF Run II and Silicon module production and detector control system for the ATLAS SemiConductor Tracker

    Energy Technology Data Exchange (ETDEWEB)

    Sfyrla, Anna [Univ. of Geneva (Switzerland)

    2008-03-10

    In the first part of this work, we present a search for WW and WZ production in charged lepton, neutrino plus jets final states produced in p$\\bar{p}$ collisions with √s = 1.96 TeV at the Fermilab Tevatron, using 1.2 fb-1 of data accumulated with the CDF II detector. This channel is yet to be observed in hadron colliders due to the large singleWplus jets background. However, this decay mode has a much larger branching fraction than the cleaner fully leptonic mode making it more sensitive to anomalous triple gauge couplings that manifest themselves at higher transverse W momentum. Because the final state is topologically similar to associated production of a Higgs boson with a W, the techniques developed in this analysis are also applicable in that search. An Artificial Neural Network has been used for the event selection optimization. The theoretical prediction for the cross section is σWW/WZtheory x Br(W → ℓv; W/Z → jj) = 2.09 ± 0.14 pb. They measured NSignal = 410 ± 212(stat) ± 102(sys) signal events that correspond to a cross section σWW/WZ x Br(W → ℓv; W/Z → jj) = 1.47 ± 0.77(stat) ± 0.38(sys) pb. The 95% CL upper limit to the cross section is estimated to be σ x Br(W → ℓv; W/Z → jj) < 2.88 pb. The second part of the present work is technical and concerns the ATLAS SemiConductor Tracker (SCT) assembly phase. Although technical, the work in the SCT assembly phase is of prime importance for the good performance of the detector during data taking. The production at the University of Geneva of approximately one third of the silicon microstrip end-cap modules is presented. This collaborative effort of the university of Geneva group that lasted two years, resulted in 655 produced modules, 97% of which were good modules, constructed within the mechanical and electrical specifications and delivered in the SCT collaboration for assembly on the end-cap disks. The SCT end-caps and barrels

  14. Silicon Tracking Upgrade at CDF

    International Nuclear Information System (INIS)

    Kruse, M.C.

    1998-04-01

    The Collider Detector at Fermilab (CDF) is scheduled to begin recording data from Run II of the Fermilab Tevatron in early 2000. The silicon tracking upgrade constitutes both the upgrade to the CDF silicon vertex detector (SVX II) and the new Intermediate Silicon Layers (ISL) located at radii just beyond the SVX II. Here we review the design and prototyping of all aspects of these detectors including mechanical design, data acquisition, and a trigger based on silicon tracking

  15. Top-quark mass measurement from dilepton events at CDF II.

    Science.gov (United States)

    Abulencia, A; Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Ben-Haim, E; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Bourov, S; Boveia, A; Brau, B; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carron, S; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chapman, J; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chu, P H; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Connolly, A; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Cruz, A; Cuevas, J; Culbertson, R; Cyr, D; DaRonco, S; D'Auria, S; D'Onofrio, M; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, M; Demers, S; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J; Dituro, P; Dörr, C; Dominguez, A; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Ebina, K; Efron, J; Ehlers, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Fujii, Y; Furic, I; Gajjar, A; Gallinaro, M; Galyardt, J; Garcia, J E; Garcia Sciverez, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerchtein, E; Gerdes, D; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giolo, K; Giordani, M; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Haber, C; Hahn, S R; Hahn, K; Halkiadakis, E; Hamilton, A; Han, B-Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hatakeyama, K; Hauser, J; Hays, C; Hayward, H; Heijboer, A; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Huston, J; Ikado, K; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Kang, J; Karagoz-Unel, M; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, Y K; Kirby, M; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kobayashi, H; Kondo, K; Kong, D J; Konigsberg, J; Kordas, K; Korytov, A; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreps, M; Kreymer, A; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecci, C; LeCompte, T; Lee, J; Lee, J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Li, K; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Maki, T; Maksimovic, P; Manca, G; Margaroli, F; Marginean, R; Marino, C; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P; McNamara, P; McNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; von der Mey, M; Miao, T; Miladinovic, N; Miles, J; Miller, R; Miller, J S; Mills, C; Milnik, M; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Mulhearn, M; Muller, Th; Mumford, R; Murat, P; Nachtman, J; Nahn, S; Nakano, I; Napier, A; Naumov, D; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Ogawa, T; Oh, S H; Oh, Y D; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Papikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K; Plager, C; Pondrom, L; Pope, G; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Rakitin, A; Rappoccio, S; Ratnikov, F; Reisert, B; Rekovic, V; van Remortel, N; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Rinnert, K; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Rott, C; Ruiz, A; Russ, J; Rusu, V; Ryan, D; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Salto, O; Saltzberg, D; Sanchez, C; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sill, A; Sinervo, P; Sisakyan, A; Sjolin, J; Skiba, A; Slaughter, A J; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Tafirout, R; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, A; Vallecorsa, S; Varganov, A; Vataga, E; Velev, G; Veramendi, G; Veszpremi, V; Vickey, T; Vidal, R; Vila, I; Vilar, R; Vollrath, I; Volobouev, I; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Wan, Z; Wang, M J; Wang, S M; Warburton, A; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Worm, S; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, Y; Yang, C; Yang, U K; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhang, X; Zhou, J; Zucchelli, S

    2006-04-21

    We report a measurement of the top-quark mass using events collected by the CDF II detector from pp collisions at square root of s = 1.96 TeV at the Fermilab Tevatron. We calculate a likelihood function for the top-quark mass in events that are consistent with tt --> bl(-)nu(l)bl'+ nu'(l) decays. The likelihood is formed as the convolution of the leading-order matrix element and detector resolution functions. The joint likelihood is the product of likelihoods for each of 33 events collected in 340 pb(-1) of integrated luminosity, yielding a top-quark mass M(t) = 165.2 +/- 6.1(stat) +/- 3.4(syst) GeV/c2. This first application of a matrix-element technique to tt --> bl+ nu(l)bl'- nu(l') decays gives the most precise single measurement of M(t) in dilepton events. Combined with other CDF run II measurements using dilepton events, we measure M(t) = 167.9 +/- 5.2(stat) +/- 3.7(syst) GeV/c2.

  16. Precise measurement of the top quark mass in the lepton+jets topology at CDF II

    Energy Technology Data Exchange (ETDEWEB)

    Abulencia, A.; /Illinois U., Urbana; Adelman, J.; /Chicago U.; Affolder, T.; /UC, Santa Barbara; Akimoto, T.; /Tsukuba U.; Albrow, M.G.; /Fermilab; Amerio, S.; /Padua U.; Amidei, D.; /Michigan U.; Anastassov, A.; /Rutgers U., Piscataway; Anikeev, K.; /Fermilab; Annovi, A.; /Frascati; Antos, J.; /Comenius U. /Tsukuba U.

    2007-03-01

    The authors present a measurement of the mass of the top quark from proton-antiproton collisions recorded at the CDF experiment in Run II of the Fermilab Tevatron. They analyze events from the single lepton plus jets final state (t{bar t} {yields} W{sup +}bW{sup -}{bar b} {yields} lvbq{bar q}{bar b}). The top quark mass is extracted using a direct calculation of the probability density that each event corresponds to the t{bar t} final state. The probability is a function of both the mass of the top quark and the energy scale of the calorimeter jets, which is constrained in situ by the hadronic W boson mass. Using 167 events observed in 955 pb{sup -1} of integrated luminosity, they achieve the single most precise measurement of the top quark mass, 170.8 {+-} 2.2(stat.) {+-} 1.4(syst.) GeV/c{sup 2}.

  17. SVX II a silicon vertex detector for run II of the tevatron

    International Nuclear Information System (INIS)

    Bortoletto, D.

    1994-11-01

    A microstrip silicon detector SVX II has been proposed for the upgrade of the vertex detector of the CDF experiment to be installed for run II of the Tevatron in 1998. Three barrels of four layers of double sided detectors will cover the interaction region. The requirement of the silicon tracker and the specification of the sensors are discussed together with the proposed R ampersand D to verify the performance of the prototypes detectors produced by Sintef, Micron and Hamamatsu

  18. Observation of Electroweak Single Top-Quark Production with the CDF II Experiment

    International Nuclear Information System (INIS)

    Lueck, Jan

    2009-01-01

    The standard model of elementary particle physics (SM) predicts, besides the top-quark pair production via the strong interaction, also the electroweak production of single top-quarks (19). Up to now, the Fermilab Tevatron proton-antiproton-collider is the only place to produce and study top quarks emerging from hadron-hadron-collisions. Top quarks were directly observed in 1995 during the Tevatron Run I at a center-of-mass energy of √s = 1.8 TeV simultaneously by the CDF and D0 Collaborations via the strong production of top-quark pairs. Run II of the Tevatron data taking period started 2001 at √s = 1.96 TeV after a five year upgrade of the Tevatron accelerator complex and of both experiments. One main component of its physics program is the determination of the properties of the top quark including its electroweak production. Even though Run II is still ongoing, the study of the top quark is already a successful endeavor, confirmed by dozens of publications from both Tevatron experiments. A comprehensive review of top-quark physics can be found in reference. The reasons for searching for single top-quark production are compelling. As the electroweak top-quark production proceeds via a Wtb vertex, it provides the unique opportunity of the direct measurement of the CKM matrix element |V tb |, which is expected to be |V tb | ∼ 1 in the SM. Significant deviations from unity could be an indication of a fourth quark generation, a production mode via flavor-changing neutral currents, and other new phenomena, respectively. There are two dominating electroweak top-quark production modes at the Fermilab Tevatron: the t-channel exchange of a virtual W boson striking a b quark and the s-channel production of a timelike W boson via the fusion of two quarks. In proton-antiproton-collisions the third electroweak production mode, the associated Wt production of an on-shell W boson in conjunction with a top quark has a comparatively negligible small predicted cross section

  19. Observation of Electroweak Single Top-Quark Production with the CDF II Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lueck, Jan [Karlsruhe Inst. of Technology (Germany)

    2009-07-24

    The standard model of elementary particle physics (SM) predicts, besides the top-quark pair production via the strong interaction, also the electroweak production of single top-quarks [19]. Up to now, the Fermilab Tevatron proton-antiproton-collider is the only place to produce and study top quarks emerging from hadron-hadron-collisions. Top quarks were directly observed in 1995 during the Tevatron Run I at a center-of-mass energy of √s = 1.8 TeV simultaneously by the CDF and D0 Collaborations via the strong production of top-quark pairs. Run II of the Tevatron data taking period started 2001 at √s = 1.96 TeV after a five year upgrade of the Tevatron accelerator complex and of both experiments. One main component of its physics program is the determination of the properties of the top quark including its electroweak production. Even though Run II is still ongoing, the study of the top quark is already a successful endeavor, confirmed by dozens of publications from both Tevatron experiments. A comprehensive review of top-quark physics can be found in reference. The reasons for searching for single top-quark production are compelling. As the electroweak top-quark production proceeds via a Wtb vertex, it provides the unique opportunity of the direct measurement of the CKM matrix element |Vtb|, which is expected to be |Vtb| ~ 1 in the SM. Significant deviations from unity could be an indication of a fourth quark generation, a production mode via flavor-changing neutral currents, and other new phenomena, respectively. There are two dominating electroweak top-quark production modes at the Fermilab Tevatron: the t-channel exchange of a virtual W boson striking a b quark and the s-channel production of a timelike W boson via the fusion of two quarks. In proton-antiproton-collisions the third electroweak production mode, the associated Wt production of an on-shell W boson in conjunction with a top quark has a comparatively negligible small

  20. Search for new physics using high mass tau pairs with ppbar collisions at 1.96 Tev using cdf ii

    International Nuclear Information System (INIS)

    Acosta, D.; The CDF Collaboration

    2005-01-01

    We present the results of a search for anomalous resonant production of tau lepton pairs with large invariant mass, the first such search using the CDF II Detector in Run II of the Tevatron p(bar p) collider. Such anomalous production could arise from various new physics processes. In a data sample corresponding to 195 pb -1 of integrated luminosity we predict 2.8 ± 0.5 events from Standard Model background processes and observe 4. We use this result to set limits on the production of heavy scalar and vector particles decaying to tau lepton pairs

  1. Search for Electroweak Single-Top Quark Production with the CDF II Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Buehler, Matthias; /Karlsruhe U., EKP

    2006-08-01

    The CDF II experiment and the Tevatron proton-antiproton collider are parts of the Fermi National Laboratories (Fermilab). The Fermilab is located in the vicinity of Chicago, USA. Today, the Tevatron is the only collider which is able to produce the heaviest known elementary particle, the top quark. The top quark was discovered at the Tevatron by the CDF and the D0 collaborations in 1995 [1]. So far, all the top quarks found are produced via the strong interaction as top-antitop pairs. The Standard Model of elementary particle physics also predicts single-top quark production via the electroweak interaction. This production mode has not yet been observed. The CDF and the D0 collaborations have set upper limits on the cross section for that process in Run I [2, 3] and improved those results in Run II [4, 5]. Single-top quark production is one of the major interests in Run II of the Tevatron as it offers several ways to test the Standard Model and to search for potential physics beyond the Standard Model. The measurement of the cross section of singly produced top quarks via the electroweak interaction offers the possibility to determine the Cabbibo-Kobayashi-Maskawa (CKM) matrix element V{sub tb} directly. The CKM matrix defines the transformation from the eigenstates of the electroweak interactions to the mass eigenstates of the quarks. V{sub tb} gives the strength of the coupling at the Wtb vertex. The single-top quark is produced at this vertex and therefore the cross section of the single-top quark production is directly proportional to |V{sub tb}|{sup 2}. In the Standard Model, three generations of quarks and the unitarity of the CKM matrix are predicted. This leads to V{sub tb} {approx} 1. Up to now, there is no possibility to measure V{sub tb} without using the assumption that there are a certain number of quark generations. Since the measurement of the cross section of single-top quark production is independent of this assumption it could verify another

  2. Determination of W boson helicity fractions in top quark decays in p anti-p collisions at CDF Run II and production of endcap modules for the ATLAS Silicon Tracker

    International Nuclear Information System (INIS)

    Moed, Shulamit; Geneva U

    2007-01-01

    . The production monitoring and summary using this package is shown in this thesis. The second part of the thesis reports a measurement of the fraction of longitudinal and right-handed helicity states of W bosons in top quark decays. This measurement was done using 955 pb -1 of data collected with the CDF detector at the TEvatron, where protons and anti-protons are collided with a center-of-mass energy of 1.96 TeV. the helicity fraction measurements take advantage of the fact that the angular distribution of the W boson decay products depends on the helicity state of the W which they originate from. They analyze t(bar t) events in the 'lepton+jets' channel and look at the leptonic side of decay. They construct templates for the distribution of cosθ*, the angle between the charged lepton and the W flight direction in the rest frame of the top quark. Using Monte Carlo techniques, they construct probability distributions ('templates') for cosθ* in the case of left-handed, longitudinal and right-handed Ws and a template for the background model. They extract the W helicity fractions using an unbinned likelihood fitter based on the information of these templates. The Standard Model predicts the W helicity fractions to be about 70% longitudinal and 30% left-handed, while the fraction of right-handed W bosons in top decays is highly suppressed and vanishes when neglecting the mass of the b quark

  3. Measurement of low $p_{T}$ $D^{0}$ meson production cross section at CDF II

    Energy Technology Data Exchange (ETDEWEB)

    Mussini, Manuel [Univ. of Bologna (Italy)

    2011-05-01

    In this thesis we present a study of the production of D0 meson in the low transverse momentum region. In particular the inclusive differential production cross section of the D0 meson (in the two-body decay channel D0 → K-π+) is obtained extending the published CDF II measurement to pT as low as 1.5 GeV/c. This study is performed at the Tevatron Collider at Fermilab with the CDF II detector.

  4. Measurement of the polarization amplitudes of the Bs → φφ decay at CDF II

    International Nuclear Information System (INIS)

    Dorigo, Mirco

    2009-01-01

    In this thesis we present the first measurement of the polarization amplitudes for the charmless B s → φφ → (K + K - )(K + K - ) decay of the B s meson. The result is achieved using an unbinned Maximum Likelihood fit to the data collected by the Collider Detector at Fermilab (CDF) in Run II (CDFII), in a period starting from March 2001 till April 2008, which corresponds to an integrated luminosity of 2.9 fb -1 . The resulting yield consists of 300 signal events selected by the Two Track Trigger (TTT). Furthermore, our work puts in evidence an original topic, that was never observed until now: an unexpected dependence of the signal acceptance on the proper decay time (t) of the B s mesons. This specific issue, which is most likely a general feature induced by any signal selection based on the lifetime information, is supposed to be related to the on-line TTT and off-line selections based on the impact parameter. The involved fit, indeed, reproduces the biases observed in large statistics Monte Carlo (MC) samples. The thesis presents the same analysis performed for the B s 0 → Jψφ decay as well, which is used as a control sample. The polarizations amplitudes we find are consistent with the published ones; this result contributes to enforce the reliability of the analysis. This work is considered ready to begin the procedure for official approval by the CDF collaboration pending the finalization of the systematic uncertainty which has not yet been fully completed.

  5. Measurement of the polarization amplitudes of the Bs -> PhiPhi decay at CDF II

    Energy Technology Data Exchange (ETDEWEB)

    Dorigo, Mirco; /Trieste U. /INFN, Trieste

    2009-10-01

    In this thesis we present the first measurement of the polarization amplitudes for the charmless B{sub s} {yields} {phi}{phi} {yields} [K{sup +}K{sup -}][K{sup +}K{sup -}] decay of the B{sub s} meson. The result is achieved using an unbinned Maximum Likelihood fit to the data collected by the Collider Detector at Fermilab (CDF) in Run II (CDFII), in a period starting from March 2001 till April 2008, which corresponds to an integrated luminosity of 2.9 fb{sup -1}. The resulting yield consists of 300 signal events selected by the Two Track Trigger (TTT). Furthermore, our work puts in evidence an original topic, that was never observed until now: an unexpected dependence of the signal acceptance on the proper decay time (t) of the B{sub s} mesons. This specific issue, which is most likely a general feature induced by any signal selection based on the lifetime information, is supposed to be related to the on-line TTT and off-line selections based on the impact parameter. The involved fit, indeed, reproduces the biases observed in large statistics Monte Carlo (MC) samples. The thesis presents the same analysis performed for the B{sub s}{sup 0} {yields} J{psi}{phi} decay as well, which is used as a control sample. The polarizations amplitudes we find are consistent with the published ones; this result contributes to enforce the reliability of the analysis. This work is considered ready to begin the procedure for official approval by the CDF collaboration pending the finalization of the systematic uncertainty which has not yet been fully completed.

  6. Database usage and performance for the Fermilab Run II experiments

    International Nuclear Information System (INIS)

    Bonham, D.; Box, D.; Gallas, E.; Guo, Y.; Jetton, R.; Kovich, S.; Kowalkowski, J.; Kumar, A.; Litvintsev, D.; Lueking, L.; Stanfield, N.; Trumbo, J.; Vittone-Wiersma, M.; White, S.P.; Wicklund, E.; Yasuda, T.; Maksimovic, P.

    2004-01-01

    The Run II experiments at Fermilab, CDF and D0, have extensive database needs covering many areas of their online and offline operations. Delivering data to users and processing farms worldwide has represented major challenges to both experiments. The range of applications employing databases includes, calibration (conditions), trigger information, run configuration, run quality, luminosity, data management, and others. Oracle is the primary database product being used for these applications at Fermilab and some of its advanced features have been employed, such as table partitioning and replication. There is also experience with open source database products such as MySQL for secondary databases used, for example, in monitoring. Tools employed for monitoring the operation and diagnosing problems are also described

  7. Dedicated OO expertise applied to Run II software projects

    International Nuclear Information System (INIS)

    Amidei, D.

    2000-01-01

    The change in software language and methodology by CDF and D0 to object-oriented from procedural Fortran is significant. Both experiments requested dedicated expertise that could be applied to software design, coding, advice and review. The Fermilab Run II offline computing outside review panel agreed strongly with the request and recommended that the Fermilab Computing Division hire dedicated OO expertise for the CDF/D0/Computing Division joint project effort. This was done and the two experts have been an invaluable addition to the CDF and D0 upgrade software projects and to the Computing Division in general. These experts have encouraged common approaches and increased the overall quality of the upgrade software. Advice on OO techniques and specific advice on C++ coding has been used. Recently a set of software reviews has been accomplished. This has been a very successful instance of a targeted application of computing expertise, and constitutes a very interesting study of how to move toward modern computing methodologies in HEP

  8. Study of the $ZZ$ diboson production at CDF II

    Energy Technology Data Exchange (ETDEWEB)

    Bauce, Matteo [Univ. of Padua (Italy)

    2013-01-01

    The subject of this Thesis is the production of a pair of massive Z vector bosons in the proton antiproton collisions at the Tevatron, at the center-of-mass energy √s = 1.96 TeV. We measure the ZZ production cross section in two different leptonic decay modes: into four charged leptons (e or μ) and into two charged leptons plus two neutrinos. The results are based on the whole dataset collected by the Collider Detector at Fermilab (CDF), corresponding to 9.7 fb-1 of data. The combination of the two cross section measurements gives (p$\\bar{p}$→ZZ) = 1.38+0.28 -0.27 pb, and is the most precise ZZ cross section measurement at the Tevatron to date. We further investigate the four lepton final state searching for the production of the scalar Higgs particle in the decay H →ZZ(*) →ℓℓℓ'ℓ'. No evidence of its production has been seen in the data, hence was set a 95% Confidence Level upper limit on its production cross section as a function of the Higgs particle mass, mH, in the range from 120 to 300 GeV/c2.

  9. Precise measurement of the top-quark mass in the lepton+jets topology at CDF II.

    Science.gov (United States)

    Aaltonen, T; Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carrillo, S; Carlsmith, D; Carosi, R; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Cilijak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; DaRonco, S; Datta, M; D'Auria, S; Davies, T; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Dörr, C; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraan, A C; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuno, S; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vazquez, F; Velev, G; Vellidis, C; Veramendi, G; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S

    2007-11-02

    We present a measurement of the mass of the top quark from proton-antiproton collisions recorded at the CDF experiment in Run II of the Fermilab Tevatron. We analyze events from the single lepton plus jets final state (tt-->W(+)bW(-)b-->lnubqq'b). The top-quark mass is extracted using a direct calculation of the probability density that each event corresponds to the tt final state. The probability is a function of both the mass of the top quark and the energy scale of the calorimeter jets, which is constrained in situ by the hadronic W boson mass. Using 167 events observed in 955 pb(-1) of integrated luminosity, we achieve the single most precise measurement of the top-quark mass, 170.8+/-2.2(stat.)+/-1.4(syst.) GeV/c(2).

  10. B physics at CDF

    International Nuclear Information System (INIS)

    Donati, S.

    1998-09-01

    B physics results from the CDF Collaboration based on data collected during the 1992-1996 Tevatron run are presented. In particular, we report the discovery of the B c meson in the semileptonic decay B c → J/ψlνX, updates of b hadrons lifetime measurements, with a description of the B s lifetime measurement, the B 0 d - anti B 0 d mixing results and the limits set on rare B decay branching ratios. Current results are used to extrapolate B physics prospects for the future high luminosity run II

  11. SAMGrid experiences with the Condor technology in Run II computing

    International Nuclear Information System (INIS)

    Baranovski, A.; Loebel-Carpenter, L.; Garzoglio, G.; Herber, R.; Illingworth, R.; Kennedy, R.; Kreymer, A.; Kumar, A.; Lueking, L.; Lyon, A.; Merritt, W.; Terekhov, I.; Trumbo, J.; Veseli, S.; White, S.; St. Denis, R.; Jain, S.; Nishandar, A.

    2004-01-01

    SAMGrid is a globally distributed system for data handling and job management, developed at Fermilab for the D0 and CDF experiments in Run II. The Condor system is being developed at the University of Wisconsin for management of distributed resources, computational and otherwise. We briefly review the SAMGrid architecture and its interaction with Condor, which was presented earlier. We then present our experiences using the system in production, which have two distinct aspects. At the global level, we deployed Condor-G, the Grid-extended Condor, for the resource brokering and global scheduling of our jobs. At the heart of the system is Condor's Matchmaking Service. As a more recent work at the computing element level, we have been benefiting from the large computing cluster at the University of Wisconsin campus. The architecture of the computing facility and the philosophy of Condor's resource management have prompted us to improve the application infrastructure for D0 and CDF, in aspects such as parting with the shared file system or reliance on resources being dedicated. As a result, we have increased productivity and made our applications more portable and Grid-ready. Our fruitful collaboration with the Condor team has been made possible by the Particle Physics Data Grid

  12. Online track processor for the CDF upgrade

    International Nuclear Information System (INIS)

    Thomson, E. J.

    2002-01-01

    A trigger track processor, called the eXtremely Fast Tracker (XFT), has been designed for the CDF upgrade. This processor identifies high transverse momentum (> 1.5 GeV/c) charged particles in the new central outer tracking chamber for CDF II. The XFT design is highly parallel to handle the input rate of 183 Gbits/s and output rate of 44 Gbits/s. The processor is pipelined and reports the result for a new event every 132 ns. The processor uses three stages: hit classification, segment finding, and segment linking. The pattern recognition algorithms for the three stages are implemented in programmable logic devices (PLDs) which allow in-situ modification of the algorithm at any time. The PLDs reside on three different types of modules. The complete system has been installed and commissioned at CDF II. An overview of the track processor and performance in CDF Run II are presented

  13. Prototype Si microstrip sensors for the CDF-II ISL detector

    CERN Document Server

    Hara, K; Kanao, K; Kim, S; Ogasawara, M; Ohsugi, T; Shimojima, M; Takikawa, K

    1999-01-01

    Prototype Si microstrip sensors for the CDF-II ISL were fabricated by Hamamatsu Photonics and SEIKO Instruments using 4'' technology. The sensor is AC coupled and double-sided forming a stereo angle of 1.207 degree sign . The strip pitch is 112 mu m on both sides. The main differences between the two manufacturers lie on the technologies of passivation and the structure of coupling capacitors. We describe the design of the sensor and evaluation results of the performance. The evaluations include the total and individual strip currents and interstrip capacitance measured before and after sup 6 sup 0 Co gamma irradiation. (author)

  14. Search for anomalous kinematics in tt dilepton events at CDF II.

    Science.gov (United States)

    Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Arguin, J-F; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barker, G J; Barnes, V E; Barnett, B A; Baroiant, S; Barone, M; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Ben-Haim, E; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Bolla, G; Bolshov, A; Booth, P S L; Bortoletto, D; Boudreau, J; Bourov, S; Brau, B; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canepa, A; Casarsa, M; Carlsmith, D; Carron, S; Carosi, R; Cavalli-Sforza, M; Castro, A; Catastini, P; Cauz, D; Cerri, A; Cerrito, L; Chapman, J; Chen, C; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chu, M L; Chuang, S; Chung, J Y; Chung, W-H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A G; Clark, D; Coca, M; Connolly, A; Convery, M; Conway, J; Cooper, B; Cordelli, M; Cortiana, G; Cranshaw, J; Cuevas, J; Culbertson, R; Currat, C; Cyr, D; Dagenhart, D; Da Ronco, S; D'Auria, S; de Barbaro, P; De Cecco, S; De Lentdecker, G; Dell'Agnello, S; Dell'Orso, M; Demers, S; Demortier, L; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; Dörr, C; Doksus, P; Dominguez, A; Donati, S; Donega, M; Donini, J; D'Onofrio, M; Dorigo, T; Drollinger, V; Ebina, K; Eddy, N; Ehlers, J; Ely, R; Erbacher, R; Erdmann, M; Errede, D; Errede, S; Eusebi, R; Fang, H-C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferretti, C; Field, R D; Flanagan, G; Flaugher, B; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Fujii, Y; Furic, I; Gajjar, A; Gallas, A; Galyardt, J; Gallinaro, M; Garcia-Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D W; Gerchtein, E; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giolo, K; Giordani, M; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, D; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grosso-Pilcher, C; Grundler, U; Guenther, M; Guimaraes da Costa, J; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harr, R F; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Hays, C; Hayward, H; Heider, E; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Hill, C; Hirschhbuehl, D; Hocker, A; Hoffman, K D; Holloway, A; Hou, S; Houlden, M A; Huffman, B T; Huang, Y; Hughes, R E; Huston, J; Ikado, K; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Issever, C; Ivanov, A; Iwata, Y; Iyutin, B; James, E; Jang, D; Jarrell, J; Jeans, D; Jensen, H; Jeon, E J; Jones, M; Joo, K K; Jun, S Y; Junk, T; Kamon, T; Kang, J; Karagoz Unel, M; Karchin, P E; Kartal, S; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, T H; Kim, Y K; King, B T; Kirby, M; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kobayashi, H; Koehn, P; Kong, D J; Kondo, K; Konigsberg, J; Kordas, K; Korn, A; Korytov, A; Kotelnikov, K; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreymer, A; Kroll, J; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, J; Lancaster, M; Lander, R; Lannon, K; Lath, A; Latino, G; Lauhakangas, R; Lazzizzera, I; Le, Y; Lecci, C; LeCompte, T; Lee, J; Lee, J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Li, K; Lin, C; Lin, C S; Lindgren, M; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; MacQueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Malferrari, L; Manca, G; Marginean, R; Marino, C; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P M; McNamara, P; NcNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miller, L; Miller, R; Miller, J S; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Miyazaki, Y; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla Fernandez, P A; Mukherjee, A; Mulhearn, M; Muller, T; Mumford, R; Munar, A; Murat, P; Nachtman, J; Nahn, S; Nakamura, I; Nakano, I; Napier, A; Napora, R; Naumov, D; Necula, V; Niell, F; Nielsen, J; Nelson, C; Nelson, T; Neu, C; Neubauer, M S; Newman-Holmes, C; Nigmanov, T; Nodulman, L; Norniella, O; Oesterberg, K; Ogawa, T; Oh, S H; Oh, Y D; Ohsugi, T; Okusawa, T; Oldeman, R; Orava, R; Orejudos, W; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Pauly, T; Paus, C; Pellett, D; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K T; Plager, C; Pompos, A; Pondrom, L; Pope, G; Portell, X; Poukhov, O; Prakoshyn, F; Pratt, T; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Rademachker, J; Rahaman, M A; Rakitine, A; Rappoccio, S; Ratnikov, F; Ray, H; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Rimondi, F; Rinnert, K; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rolli, S; Rosenson, L; Roser, R; Rossin, R; Rott, C; Russ, J; Rusu, V; Ruiz, A; Ryan, D; Saarikko, H; Sabik, S; Safonov, A; St Denis, R; Sakumoto, W K; Salamanna, G; Saltzberg, D; Sanchez, C; Sansoni, A; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Siegrist, J; Siket, M; Sill, A; Sinervo, P; Sisakyan, A; Skiba, A; Slaughter, A J; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S V; Spalding, J; Spezziga, M; Spiegel, L; Spinella, F; Spiropulu, M; Squillacioti, P; Stadie, H; Stelzer, B; Stelzer-Chilton, O; Strologas, J; Stuart, D; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Tafirout, R; Takach, S F; Takano, H; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tanimoto, N; Tapprogge, S; Tecchio, M; Teng, P K; Terashi, K; Tesarek, R J; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Trkaczyk, S; Toback, D; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tseng, J; Tsuchiya, R; Tsuno, S; Tsybychev, D; Turini, N; Turner, M; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, A; Varganov, A; Vataga, E; Vejcik, S; Velev, G; Veszpremi, V; Veramendi, G; Vickey, T; Vidal, R; Vila, I; Vilar, R; Vollrath, I; Volobouev, I; von der Mey, M; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Yamashita, T; Yamamoto, K; Wan, Z; Wang, M J; Wang, S M; Warburton, A; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester, W C; Whitehouse, B; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolter, M; Worcester, M; Worm, S; Wright, T; Wu, X; Würthwein, F; Wyatt, A; Yagil, A; Yang, C; Yang, U K; Yao, W; Yeh, G P; Yi, K; Yoh, J; Yoon, P; Yorita, K; Yoshida, T; Yu, I; Yu, S; Yu, Z; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhou, J; Zsenei, A; Zucchelli, S

    2005-07-08

    We report on a search for anomalous kinematics of tt dilepton events in pp collisions at square root of s=1.96 TeV using 193 pb(-1) of data collected with the CDF II detector. We developed a new a priori technique designed to isolate the subset in a data sample revealing the largest deviation from standard model (SM) expectations and to quantify the significance of this departure. In the four-variable space considered, no particular subset shows a significant discrepancy, and we find that the probability of obtaining a data sample less consistent with the SM than what is observed is 1.0%-4.5%.

  15. New measurements from fully reconstructed hadronic final states of the $B^0_2$ meson at CDF II experiment

    Energy Technology Data Exchange (ETDEWEB)

    Da Ronco, Saverio [Univ. of Padua (Italy)

    2006-01-01

    This thesis reports the reconstruction and lifetime measurement of B+, B$0/atop{d}$ and B$0/atop{s}$ mesons, performed using fully reconstructed hadronic decays collected by a dedicated trigger at CDF II experiment. This dedicated trigger selects significantly displaced tracks from primary vertex of p$\\bar{p}$ collisions generated at Tevatron collider, obtaining, in this way, huge data samples enriched of long-lived particles, and is therefore suitable for reconstruction of B meson in hadronic decay modes. Due to the trigger track impact parameter selections, the proper decay time distributions of the B mesons no longer follow a simply exponential decay law. This complicates the lifetime measurement and requires a correct understanding and treatment of all the involved effects to keep systematic uncertainties under control. This thesis presents a method to extract the lifetime of B mesons in “ct- biased” samples, based on a Monte Carlo approach, to correct for the effects of the trigger and analysis selections. We present the results of this method when applied on fully re- constructed decays of B collected by CDF II in the data taking runs up to August 2004, corresponding to an integrated luminosity of about 360 pb-1. The lifetimes are extracted using the decay modes B+ → $\\bar{D}$0π+,B$0\\atop{d}$ → D-π+, B$0\\atop{d}$ → D-π+π-π+, B$0\\atop{s}$ → D$-\\atop{s}$π+ and B$0\\atop{s}$ → D$-\\atop{s}$ π+π-π+(and c.c.) and performing combined mass-lifetime unbinned maximum likelihood fits.

  16. Search for the Production of Gluinos and Squarks with the CDF II Experiment at the Tevatron Collider

    Energy Technology Data Exchange (ETDEWEB)

    De Lorenzo, Gianluca [Autonomous Univ. of Barcelona (Spain)

    2010-05-19

    This thesis reports on two searches for the production of squarks and gluinos, supersymmetric partners of the Standard Model (SM) quarks and gluons, using the CDF detector at the Tevatron √s = 1.96 TeV p$\\bar{p}$ collider. An inclusive search for squarks and gluinos pair production is performed in events with large ET and multiple jets in the final state, based on 2 fb-1 of CDF Run II data. The analysis is performed within the framework of minimal supergravity (mSUGRA) and assumes R-parity conservation where sparticles are produced in pairs. The expected signal is characterized by the production of multiple jets of hadrons from the cascade decays of squarks and gluinos and large missing transverse energy ET from the lightest supersymmetric particles (LSP). The measurements are in good agreement with SM predictions for backgrounds. The results are translated into 95% confidence level (CL) upper limits on production cross sections and squark and gluino masses in a given mSUGRA scenario. An upper limit on the production cross section is placed in the range between 1 pb and 0.1 pb, depending on the gluino and squark masses considered. The result of the search is negative for gluino and squark masses up to 392 GeV/c2 in the region where gluino and squark masses are close to each other, gluino masses up to 280 GeV/c2 regardless of the squark mass, and gluino masses up to 423 GeV=c2 for squark masses below 378 GeV/c2. These results are compatible with the latest limits on squark/gluino production obtained by the D0 Collaboration and considerably improve the previous exclusion limits from direct and indirect searches at LEP and the Tevatron. The inclusive search is then extended to a scenario where the pair production of sbottom squarks is dominant. The new search is performed in a generic MSSM scenario with R-parity conservation. A specific SUSY particle mass hierarchy is assumed such that the

  17. The CDF online silicon vertex tracker

    International Nuclear Information System (INIS)

    Ashmanskas, W.

    2001-01-01

    The CDF Online Silicon Vertex Tracker reconstructs 2-D tracks by linking hit positions measured by the Silicon Vertex Detector to the Central Outer Chamber tracks found by the eXtremely Fast Tracker. The system has been completely built and assembled and it is now being commissioned using the first CDF run II data. The precision measurement of the track impact parameter will allow triggering on B hadron decay vertices and thus investigating important areas in the B sector, like CP violation and B s mixing. In this paper we briefly review the architecture and the tracking algorithms implemented in the SVT and we report on the performance of the system achieved in the early phase of CDF run II

  18. The CDF online Silicon Vertex Tracker

    International Nuclear Information System (INIS)

    Ashmanskas, W.; Bardi, A.; Bari, M.; Belforte, S.; Berryhill, J.; Bogdan, M.; Carosi, R.; Cerri, A.; Chlachidze, G.; Culbertson, R.; Dell'Orso, M.; Donati, S.; Fiori, I.; Frisch, H.J.; Galeotti, S.; Giannetti, P.; Glagolev, V.; Moneta, L.; Morsani, F.; Nakaya, T.; Passuello, D.; Punzi, G.; Rescigno, M.; Ristori, L.; Sanders, H.; Sarkar, S.; Semenov, A.; Shochet, M.; Speer, T.; Spinella, F.; Wu, X.; Yang, U.; Zanello, L.; Zanetti, A.M.

    2002-01-01

    The CDF Online Silicon Vertex Tracker (SVT) reconstructs 2D tracks by linking hit positions measured by the Silicon Vertex Detector to the Central Outer Chamber tracks found by the eXtremely Fast Tracker (XFT). The system has been completely built and assembled and it is now being commissioned using the first CDF run II data. The precision measurement of the track impact parameter will allow triggering on B hadron decay vertices and thus investigating important areas in the B sector, like CP violation and B s mixing. In this paper we briefly review the architecture and the tracking algorithms implemented in the SVT and we report on the performance of the system achieved in the early phase of CDF run II

  19. Search for anomalous kinematics in t anti-t dilepton events at CDF II

    International Nuclear Information System (INIS)

    Acosta, D.; The CDF Collaboration

    2004-01-01

    We report on a search for anomalous kinematics of t(bar t) dilepton events in p(bar p) collisions at √s = 1.96 TeV using 193 pb -1 of data collected with the CDF II detector. We developed a new a priori technique designed to isolate the subset in a data sample revealing the largest deviation from standard model (SM) expectations and to quantify the significance of this departure. In the four-variable space considered, no particular subset shows a significant discrepancy and we find that the probability of obtaining a data sample less consistent with the SM than what is observed is 1.0-4.5%

  20. Search for heavy long-lived particles that decay to photons at CDF II.

    Science.gov (United States)

    Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carillo, S; Carlsmith, D; Carosi, R; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Cilijak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Almenar, C Cuenca; Cuevas, J; Culbertson, R; Cully, J C; Daronco, S; Datta, M; D'Auria, S; Davies, T; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Dörr, C; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; da Costa, J Guimaraes; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraan, A C; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, E; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuno, S; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vazquez, F; Velev, G; Veramendi, G; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S

    2007-09-21

    We present the first search for heavy, long-lived particles that decay to photons at a hadron collider. We use a sample of gamma + jet + missing transverse energy events in pp[over] collisions at square root[s] = 1.96 TeV taken with the CDF II detector. Candidate events are selected based on the arrival time of the photon at the detector. Using an integrated luminosity of 570 pb(-1) of collision data, we observe 2 events, consistent with the background estimate of 1.3+/-0.7 events. While our search strategy does not rely on model-specific dynamics, we set cross section limits in a supersymmetric model with [Formula: see text] and place the world-best 95% C.L. lower limit on the [Formula: see text] mass of 101 GeV/c(2) at [Formula: see text].

  1. Precise measurement of the $W$-boson mass with the CDF II detector

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, T.; /Helsinki Inst. of Phys.; Alvarez Gonzalez, B.; /Oviedo U. /Cantabria Inst. of Phys.; Amerio, S.; /INFN, Padua; Amidei, D.; /Michigan U.; Anastassov, A.; /Northwestern U. /Fermilab; Annovi, A.; /Frascati; Antos, J.; /Comenius U.; Apollinari, G.; /Fermilab; Appel, J.A.; /Fermilab; Arisawa, T.; /Waseda U.; Artikov, A.; /Dubna, JINR /Texas A-M

    2012-03-01

    We have measured the W-boson mass M{sub W} using data corresponding to 2.2 fb{sup -1} of integrated luminosity collected in p{bar p} collisions at {radical}s = 1.96 TeV with the CDF II detector at the Fermilab Tevatron collider. Samples consisting of 470 126 W {yields} e{nu} candidates and 624 708 W {yields} {mu}{nu} candidates yield the measurement M{sub W} = 80 387 {+-} 12{sub stat} {+-} 15{sub syst} = 80 387 {+-} 19 MeV/c{sup 2}. This is the most precise measurement of the W-boson mass to date and significantly exceeds the precision of all previous measurements combined.

  2. First measurement of the W-boson mass in run II of the Tevatron.

    Science.gov (United States)

    Aaltonen, T; Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carrillo, S; Carlsmith, D; Carosi, R; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Cilijak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Almenar, C Cuenca; Cuevas, J; Culbertson, R; Cully, J C; Daronco, S; Datta, M; D'Auria, S; Davies, T; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Dörr, C; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; da Costa, J Guimaraes; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraan, A C; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moon, C S; Moore, R; Morello, M; Fernandez, P Movilla; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; Denis, R St; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuno, S; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vazquez, F; Velev, G; Vellidis, C; Veramendi, G; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S

    2007-10-12

    We present a measurement of the W-boson mass using 200 pb{-1} of data collected in pp[over ] collisions at sqrt[s]=1.96 TeV by the CDF II detector at run II of the Fermilab Tevatron. With a sample of 63 964 W-->enu candidates and 51 128 W-->munu candidates, we measure M_{W}=80 413+/-34{stat}+/-34{syst}=80,413+/-48 MeV/c;{2}. This is the most precise single measurement of the W-boson mass to date.

  3. First measurement of the w boson mass with CDF in Run 2

    International Nuclear Information System (INIS)

    Stelzer-Chilton, Oliver; Toronto U.

    2005-01-01

    This thesis describes a first measurement of the W Boson mass through the decay into a muon and a neutrino in Run 2 of the Tevatron. The W Bosons are produced in proton-antiproton collisions at a center of mass energy of 1.96 TeV. The data sample used for this analysis corresponds to 200 pb -1 recorded by the upgraded Collider Detector at Fermilab. The most important quantity in this measurement is the momentum of the muon measured in a magnetic spectrometer which is calibrated using the two quarkonium resonances J/Ψ and Υ(1S). Systematic uncertainties arise from the modeling of the recoil when the W Boson is produced, the momentum calibration, the modeling of W Boson production and decay dynamics and backgrounds. The result is: M W = 80408 ± 50(stat.) ± 57(syst.) MeV/c 2

  4. The CDF silicon vertex detector SVX and its upgrades

    International Nuclear Information System (INIS)

    Seidel, S.; Univ. of New Mexico, Albuquerque, NM

    1994-11-01

    The three generations of CDF silicon vertex detectors, SVX, SVX', and SVX II, are described. SVX, which operated during Tevatron run Ia, achieved 10.6 μm resolution in r - φ. SVX' is a radiation-hard device for run Ib with a similar but improved mechanical design and improved signal/noise. SVX II, which will be installed for run II, will track in three dimensions with radiation tolerance and electronics appropriate to a Main Injector environment

  5. The D0 run II trigger system

    International Nuclear Information System (INIS)

    Schwienhorst, Reinhard; Michigan State U.

    2004-01-01

    The D0 detector at the Fermilab Tevatron was upgraded for Run II. This upgrade included improvements to the trigger system in order to be able to handle the increased Tevatron luminosity and higher bunch crossing rates compared to Run I. The D0 Run II trigger is a highly exible system to select events to be written to tape from an initial interaction rate of about 2.5 MHz. This is done in a three-tier pipelined, buffered system. The first tier (level 1) processes fast detector pick-off signals in a hardware/firmware based system to reduce the event rate to about 1. 5kHz. The second tier (level 2) uses information from level 1 and forms simple Physics objects to reduce the rate to about 850 Hz. The third tier (level 3) uses full detector readout and event reconstruction on a filter farm to reduce the rate to 20-30 Hz. The D0 trigger menu contains a wide variety of triggers. While the emphasis is on triggering on generic lepton and jet final states, there are also trigger terms for specific final state signatures. In this document we describe the D0 trigger system as it was implemented and is currently operating in Run II

  6. Luminosity Measurements at LHCb for Run II

    CERN Multimedia

    Coombs, George

    2018-01-01

    A precise measurement of the luminosity is a necessary component of many physics analyses, especially cross-section measurements. At LHCb two different direct measurement methods are used to determine the luminosity: the “van der Meer scan” (VDM) and the “Beam Gas Imaging” (BGI) methods. A combined result from these two methods gave a precision of less than 2% for Run I and efforts are ongoing to provide a similar result for Run II. Fixed target luminosity is determined with an indirect method based on the single electron scattering cross-section.

  7. Direct Searches for Scalar Leptoquarks at the Run II Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, Daniel Edward [Tufts Univ., Medford, MA (United States)

    2004-08-01

    This dissertation sets new limits on the mass of the scalar leptoquark from direct searches carried out at the Run II CDF detector using data from March 2001 to October 2003. The data analyzed has a total time-integrated measured luminosity of 198 pb-1 of p$\\bar{p}$ collisions with √s = 1.96 TeV. Leptoquarks are assumed to be pair-produced and to decay into a lepton and a quark of the same generation. They consider two possible leptoquark decays: (1) β = BR(LQ → μq) = 1.0, and (2) β = BR(LQ → μq) = 0.5. For the β = 1 channel, they focus on the signature represented by two isolated high-pT muons and two isolated high-pT jets. For the β = 1/2 channel, they focus on the signature represented by one isolated high-pT muon, large missing transverse energy, and two isolated high-pT jets. No leptoquark signal is experimentally detected for either signature. Using the next to leading order theoretical cross section for scalar leptoquark production in p$\\bar{p}$ collisions [1], they set new mass limits on second generation scalar leptoquarks. They exclude the existence of second generation scalar leptoquarks with masses below 221(175) GeV/c2 for the β = 1(1/2) channels.

  8. Observation of D⁰-D¯⁰ mixing using the CDF II detector.

    Science.gov (United States)

    Aaltonen, T; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Butti, P; Buzatu, A; Calamba, A; Camarda, S; Campanelli, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Cho, K; Chokheli, D; Clark, A; Clarke, C; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Cremonesi, M; Cruz, D; Cuevas, J; Culbertson, R; d'Ascenzo, N; Datta, M; de Barbaro, P; Demortier, L; Deninno, M; D'Errico, M; Devoto, F; Di Canto, A; Di Ruzza, B; Dittmann, J R; Donati, S; D'Onofrio, M; Dorigo, M; Driutti, A; Ebina, K; Edgar, R; Elagin, A; Erbacher, R; Errede, S; Esham, B; Farrington, S; Fernández Ramos, J P; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Frisch, H; Funakoshi, Y; Galloni, C; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González López, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gramellini, E; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Hahn, S R; Han, J Y; Happacher, F; Hara, K; Hare, M; Harr, R F; Harrington-Taber, T; Hatakeyama, K; Hays, C; Heinrich, J; Herndon, M; Hocker, A; Hong, Z; Hopkins, W; Hou, S; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kambeitz, M; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S H; Kim, S B; Kim, Y J; Kim, Y K; Kimura, N; Kirby, M; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Kruse, M; Kuhr, T; Kulkarni, N; Kurata, M; Laasanen, A T; Lammel, S; Lancaster, M; Lannon, K; Latino, G; Lee, H S; Lee, J S; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lipeles, E; Lister, A; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucchesi, D; Lucà, A; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Marchese, L; Margaroli, F; Marino, P; Martínez, M; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Nigmanov, T; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagliarone, C; Palencia, E; Palni, P; Papadimitriou, V; Parker, W; Pauletta, G; Paulini, M; Paus, C; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Pranko, A; Prokoshin, F; Ptohos, F; Punzi, G; Ranjan, N; Redondo Fernández, I; Renton, P; Rescigno, M; Rimondi, F; Ristori, L; Robson, A; Rodriguez, T; Rolli, S; Ronzani, M; Roser, R; Rosner, J L; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schwarz, T; Scodellaro, L; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sliwa, K; Smith, J R; Snider, F D; Song, H; Sorin, V; St Denis, R; Stancari, M; Stentz, D; Strologas, J; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thomson, E; Thukral, V; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Vázquez, F; Velev, G; Vellidis, C; Vernieri, C; Vidal, M; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wallny, R; Wang, S M; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wilbur, S; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Zanetti, A M; Zeng, Y; Zhou, C; Zucchelli, S

    2013-12-06

    We measure the time dependence of the ratio of decay rates for D0→K(+)π(-) to the Cabibbo-favored decay D(0)→K(-)π(+). The charge conjugate decays are included. A signal of 3.3×10(4) D(*+)→π(+)D(0), D(0)→K(+)π(-) decays is obtained with D0 proper decay times between 0.75 and 10 mean D0 lifetimes. The data were recorded with the CDF II detector at the Fermilab Tevatron and correspond to an integrated luminosity of 9.6  fb(-1) for pp¯ collisions at √s=1.96  TeV. Assuming CP conservation, we search for D0-D¯0 mixing and measure the mixing parameters to be R(D)=(3.51±0.35)×10(-3), y'=(4.3±4.3)×10(-3), and x'2=(0.08±0.18)×10(-3). We report Bayesian probability intervals in the x'2-y' plane and find that the significance of excluding the no-mixing hypothesis is equivalent to 6.1 Gaussian standard deviations, providing the second observation of D0-D¯0 mixing from a single experiment.

  9. Study of Low $p_{T}$ $D^{0}$ Meson Production at CDF II in $p\\bar{p}$ Collisions at $\\sqrt{s}$ = 900 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Gramellini, Elena [Univ. of Bologna (Italy)

    2012-01-01

    In this thesis a study of the D0 meson production in proton-antiproton collisions is presented. The data were collected with the CDF II detector at the Tevatron Collider of the Fermi National Accelerator Laboratory. This work is part of a specific effort by the CDF Collaboration to measure the inclusive differential cross section of prompt charmed mesons in the low pT kinematic region.

  10. Measurement of the charge asymmetry in top-antitop quark production with the CDF II experiment

    Energy Technology Data Exchange (ETDEWEB)

    Weinelt, Julia; /Karlsruhe U., EKP

    2006-12-01

    distribution of the top quarks. This leads to large negative values of the charge asymmetry in event samples that contain only events with exactly five, six or more jets. This finding requires a modification of the original analysis strategy, since an asymmetry measured in an inclusive sample will be a composition of the asymmetry in the four-jets and five-jets sub-samples. Therefore, they perform for the first time a measurement of the asymmetry separately in the exclusive four- and five-jets sub-samples to separate the contribution of hard gluon radiation to the asymmetry. They analyze a data sample, collected by the CDF II detector in the years 2002-2006, that corresponds to an integrated luminosity of about 955 pb{sup -1}.

  11. The CDF muon system

    International Nuclear Information System (INIS)

    LeCompte, T.J.; Papadimitriou, V.

    1993-01-01

    The authors describe the characteristics of the CDF muon system and their experience with it. They explain how the trigger works and how they identify muons offline. They also describe the future upgrades of the system and their trigger plans for Run IB and beyond

  12. Search for supersymmetry with gauge-mediated breaking in diphoton events with missing transverse energy at CDF II.

    Science.gov (United States)

    Aaltonen, T; Adelman, J; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'Orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; d'Errico, M; Di Canto, A; di Giovanni, G P; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, T; Dube, S; Ebina, K; Elagin, A; Erbacher, R; Errede, D; Errede, S; Ershaidat, N; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Garosi, P; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Hurwitz, M; Husemann, U; Hussein, M; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kuhr, T; Kulkarni, N P; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leone, S; Lewis, J D; Lin, C-J; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Lovas, L; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Mastrandrea, P; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Mesropian, C; Miao, T; Mietlicki, D; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramanov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Potamianos, K; Poukhov, O; Prokoshin, F; Pronko, A; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Rutherford, B; Saarikko, H; Safonov, A; Sakumoto, W K; Santi, L; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Simonenko, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Suh, J S; Sukhanov, A; Suslov, I; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wolfe, H; Wright, T; Wu, X; Würthwein, F; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zhang, X; Zheng, Y; Zucchelli, S

    2010-01-08

    We present the results of a search for supersymmetry with gauge-mediated breaking and chi(1)(0) --> gammaG in the gammagamma + missing transverse energy final state. In 2.6+/-0.2 fb(-1) of pp collisions at square root(s) = 1.96 TeV recorded by the CDF II detector we observe no candidate events, consistent with a standard model background expectation of 1.4+/-0.4 events. We set limits on the cross section at the 95% C.L. and place the world's best limit of 149 GeV/c2 on the chi(1)(0) mass at tau(chi(1)(0)) < 1 ns. We also exclude regions in the chi(1)(0) mass-lifetime plane for tau(chi(1)(0)) approximately < 2 ns.

  13. Measurement of the top-quark mass in all-hadronic decays in pp collisions at CDF II.

    Science.gov (United States)

    Aaltonen, T; Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Budroni, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carillo, S; Carlsmith, D; Carosi, R; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Almenar, C Cuenca; Cuevas, J; Culbertson, R; Cully, J C; Cyr, D; Daronco, S; Datta, M; D'Auria, S; Davies, T; D'Onofrio, M; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; Dituro, P; Dörr, C; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Grundler, U; da Costa, J Guimaraes; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kovalev, A; Kraan, A C; Kraus, J; Kravchenko, I; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Manca, G; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moore, R; Morello, M; Fernandez, P Movilla; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Nachtman, J; Nagano, A; Naganoma, J; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ranjan, N; Rappoccio, S; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Saltzberg, D; Sánchez, C; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Sjolin, J; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Veramendi, G; Veszpremi, V; Vidal, R; Vila, I; Vilar, R; Vine, T; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waschke, S; Waters, D; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S

    2007-04-06

    We present a measurement of the top-quark mass Mtop in the all-hadronic decay channel tt-->W+bW-b-->q1q2bq3q4b. The analysis is performed using 310 pb-1 of sqrt[s]=1.96 TeV pp[over ] collisions collected with the CDF II detector using a multijet trigger. The mass measurement is based on an event-by-event likelihood which depends on both the sample purity and the value of the top-quark mass, using 90 possible jet-to-parton assignments in the six-jet final state. The joint likelihood of 290 selected events yields a value of Mtop=177.1+/-4.9(stat)+/-4.7(syst) GeV/c2.

  14. Measurement of the WW + WZ production cross section using the lepton + jets final state at CDF II.

    Science.gov (United States)

    Aaltonen, T; Adelman, J; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'Orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; d'Errico, M; Di Canto, A; di Giovanni, G P; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, T; Dube, S; Ebina, K; Elagin, A; Erbacher, R; Errede, D; Errede, S; Ershaidat, N; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Hughes, R E; Hurwitz, M; Husemann, U; Hussein, M; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kuhr, T; Kulkarni, N P; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leone, S; Lewis, J D; Lin, C-J; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Lovas, L; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Mastrandrea, P; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Mesropian, C; Miao, T; Mietlicki, D; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramanov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Potamianos, K; Poukhov, O; Prokoshin, F; Pronko, A; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Rutherford, B; Saarikko, H; Safonov, A; Sakumoto, W K; Santi, L; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Simonenko, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Suh, J S; Sukhanov, A; Suslov, I; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wolfe, H; Wright, T; Wu, X; Würthwein, F; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zhang, X; Zheng, Y; Zucchelli, S

    2010-03-12

    We report two complementary measurements of the WW + WZ cross section in the final state consisting of an electron or muon, missing transverse energy, and jets, performed using pp collision data at square root of s = 1.96 TeV collected by the CDF II detector. The first method uses the dijet invariant mass distribution while the second more sensitive method uses matrix-element calculations. The result from the second method has a signal significance of 5.4sigma and is the first observation of WW + WZ production using this signature. Combining the results gives sigma(WW + WZ) = 16.0 +/- 3.3 pb, in agreement with the standard model prediction.

  15. $W$ boson polarization measurement in the $t\\bar{t}$ dilepton channel using the CDF II Detector

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, T.; /Helsinki Inst. of Phys.; Alvarez Gonzalez, B.; /Oviedo U. /Cantabria Inst. of Phys.; Amerio, S.; /INFN, Padua; Amidei, D.; /Michigan U.; Anastassov, A.; /Northwestern U. /Fermilab; Annovi, A.; /Frascati; Antos, J.; /Comenius U.; Apollinari, G.; /Fermilab; Appel, J.A.; /Fermilab; Arisawa, T.; /Waseda U.; Artikov, A.; /Dubna, JINR /Texas A-M

    2012-05-01

    We present a measurement of W boson polarization in top-quark decays in t{bar t} events with decays to dilepton final states using 5.1 fb{sup -1} integrated luminosity in p{bar p} collisions collected by the CDF II detector at the Tevatron. A simultaneous measurement of the fractions of longitudinal (f{sub 0}) and right-handed (f{sub +}) W bosons yields the results f{sub 0} = 0.71{sub -0.17}{sup +0.18}(stat) {+-} 0.06(syst) and f{sub +} = -0.07 {+-} 0.09(stat) {+-} 0.03(syst). Combining this measurement with our previous result based on single lepton final states, we obtain f{sub 0} = 0.84 {+-} 0.09(stat) {+-} 0.05(syst) and f{sub +} = -0.16 {+-} 0.05(stat) {+-} 0.04(syst). The results are consistent with standard model expectation.

  16. Measurement of the W boson helicity in top-antitop quark events with the CDF II experiment

    International Nuclear Information System (INIS)

    Chwalek, Thorsten; Karlsruhe U., EKP

    2006-01-01

    quarks, the measurement of F 0 is sensitive to the mechanism of electroweak symmetry breaking. Alternative models can lead to an altered F 0 fraction. In this analysis the W helicity fractions are measured in a selected sample rich in t(bar B) events where one lepton, at least four jets, and missing transverse energy are required. All kinematic quantities describing the t(bar t) decay are determined. As a sensitive observable, we use the cosine of the decay angle θ*, which is defined as the angle between the momentum of the charged lepton in the W boson rest frame and the W boson momentum in the top quark rest frame. The data used in this analysis were taken with the Collider Detector at Fermilab (CDF II) in the years 2002-2006 and correspond to an integrated luminosity of about 955 pb -1 . Previous CDF measurements of the W boson helicity fractions in top quark decays used either the square of the invariant mass of the charged lepton and the b quark jet, M # ell# b 2 , or the lepton p T distribution as a discriminant. The D0 collaboration used a matrix-element method to extract a value of F 0 ; in a second analysis the reconstructed distribution of cos θ* was utilized to measure F + . CDF gives the latest value of F 0 = 0.74 -0.34 +0.22 , while D measured F 0 = 0.56 ± 0.31. The CDF collaboration also gives the current upper limit of F + < 0.09

  17. Observation of single top-quark production with the CDF II experiment

    International Nuclear Information System (INIS)

    Lueck, J.

    2010-01-01

    We present the observation of electroweak single top-quark production using up to 3.2 fb -1 of data collected by the CDF experiment. Lepton plus jets candidate events are classified by four parallel analysis techniques: one likelihood discriminant, one matrix-element discriminant, one decision-tree discriminant, and one neural-network discriminant. These outputs are combined with a super discriminant based on a neural-network analysis in order to improve the expected sensitivity. In conjunction with one neural-network discriminant using a complementary dataset of MET plus jets events with a veto on identified leptons we observe a signal consistent with the standard model but inconsistent with the background-only model by 5.0 standard deviations, with a median expected sensitivity in excess of 5.9 standard deviations.

  18. A Search for the Standard Model Higgs Boson in CDF II Data

    Energy Technology Data Exchange (ETDEWEB)

    Lockwitz, Sarah E. [Yale Univ., New Haven, CT (United States)

    2012-01-01

    This dissertation presents a search for the standard model Higgs boson in the associated production process p $\\bar{p}$ → ZH → e+e-b$\\bar{b}$. Data amounting to an integrated luminosity of 7.5 fb-1 at √s = 1.96 TeV collected at the Collider Detector at Fermilab (CDF) at the Tevatron are analyzed. Two objectives are pursued in the methods applied: maximize acceptance, and distinguish the signal from background. The first aim is met by applying a neural-network-based electron identi cation and considering multiple electron triggers in an effort to improve Z acceptance. In an attempt to maximize the Higgs acceptance, three b quark identification schemes are used allowing for varying event conditions. The latter goal is met by employing more multivariate techniques. First, the dijet mass resolution is improved by a neural network. Then, both single variables and boosted decision tree outputs are fed into a segmented final discriminant simultaneously isolating the signal-like events from the Z with additional jets background and the kinematically di erent tt background. Good agreement is seen with the null hypothesis and upper production cross section ( ZH) times branching ratio (BR(H →b $\\bar{b}$)) limits are set for 11 mass hypotheses between 100 and 150 GeV/c2 at the 95% confidence level. For a Higgs boson mass of 115 GeV/c2, this channel sets an observed (expected) upper limit of 3.9 (5.8) times the standard model value of ZH BR(H → b $\\bar{b}$). The inclusion of this channel within the combined CDF and Tevatron limits is discussed.

  19. Search for the Higgs Boson in the ZH->vvbb Channel at CDF Run II

    International Nuclear Information System (INIS)

    Parks, Brandon Scott; Ohio State U.

    2008-01-01

    This analysis focuses on a low mass Higgs boson search with 1.7 fb -1 of data. The focus is on Higgs events in which it is produced in association with a W or Z boson. Such events are expected to leave a distinct signature of large missing transverse energy for either a Z → νν decay or a leptonic W decay in which the lepton goes undetected, as well as jets with taggable secondary vertices from the H → b(bar B) decay. Utilizing a new track based technique for removing QCD multi-jet processes as well as a neural network discriminant, an expected limit of 8.3 times the Standard Model prediction at the 95% CL for a Higgs boson mass of 115 GeV/c 2 is calculated, with an observed limit of 8.0*SM

  20. CDF tau triggers, analysis and other developments

    International Nuclear Information System (INIS)

    J. R. Smith

    2003-01-01

    This note is a write-up of contribution made by the author to the HCP2002 conference. It has two principal subjects. The first subject concerns the CDF τ triggers, τ-cone algorithms and τ physics analysis. τ physics is going to be very important in Run II because τ's can extend SUSY searches at large tan β in particular, τ's will help in the searches for (tilde χ) 1 ± (tilde χ) 2 0 , MSSM Higgs and other non Standard Model (SM) processes. Also, τ events are important for various Standard Model processes including Precision Electroweak, t(bar t), and SM Higgs searches. τ triggers are installed and operating at CDF. The second subject of this contribution to the HCP2002 conference concerns the algorithms of backwards differentiation abstracted from their usual setting inside of Automatic Differentiation software packages. Backwards differentiation (reverse-mode differentiation) provides a useful means for optimizing many kinds of problems

  1. SMQIE: Challenges associated with a low frequency charge integrator and encoder for the CDF II Calorimeter

    International Nuclear Information System (INIS)

    J. Hoff, G. Drake, A. Byon-Wagner, G. Foster and M. Lindgren

    1999-01-01

    The SMQIE is the newest member of the QIE family of integrated circuits. It has been developed specifically for the Shower Max Detector upgrade of the CDF Plug and Central Calorimeters at Fermilab. Like its predecessors, it converts charges over a wide dynamic range with a variable resolution. Unlike its predecessors it contains its own Flash, trigger delay pipeline and buffer area. Furthermore, it operates both at a lower frequency and with only a simple 5-volt power supply. The simultaneous requirements of low frequency and reduced voltage force the front end into a low current, high impedance regime. Specialized circuitry is necessary to prevent charge slopped-over into subsequent time slices. The considerable amount of digital circuitry monolithic with the analog front end makes for a noisy substrate. Specialized circuitry and layout techniques are necessary to keep this chip from being noise-limited. The final design is a two-channel single-ended Charge Integrator and Encoder (QIE) that operates at a frequency of 7.6MHz with a least significant bit resolution of 15 fC in its lowest range

  2. Review of recent LHCb results and prospects for Run II

    CERN Document Server

    Hicheur, A

    2015-01-01

    As first Run II data acquisition has begun, it is useful to expose the pending questions by reviewing some of the most recent results obtained with Run I data analyses. Early results of the current data taking and middle-term prospects are also shown to illustrate the efficiency of the acquisition and analysis chain.

  3. Review of recent LHCb results and expectations for Run II

    CERN Document Server

    Hicheur, Adlene

    2016-01-01

    As first Run II data acquisition has begun, it is useful to expose the pending questions by reviewing some of the most recent results obtained with Run I data analyses. Early results of the current data taking and middle-term prospects are also shown to illustrate the efficiency of the acquisition and analysis chain.

  4. Recent CDF results

    International Nuclear Information System (INIS)

    Conway, J.S.

    1996-07-01

    Preliminary results form the CDF detector, based on analysis of data collected in Run 1a and Run 1b at the Tevatron, totaling 110 pb - 1 integrated luminosity, place new limits on the masses and couplings of new particles including charged Higgs bosons, supersymmetric gauge particles and quarks, and new vector bosons. One of the observed events, having an e + e - pair, two photons, and large missing energy would not occur with significant rate in the Standard Model, leading to speculation regarding its origin and the possible existence of related events

  5. Signature-based global searches at CDF

    International Nuclear Information System (INIS)

    Hocker, James Andrew

    2008-01-01

    Data collected in Run II of the Fermilab Tevatron are searched for indications of new electroweak scale physics. Rather than focusing on particular new physics scenarios, CDF data are analyzed for discrepancies with respect to the Standard Model prediction. Gross features of the data, mass bumps, and significant excesses of events with large summed transverse momentum are examined in a model-independent and quasi-model-independent approach. This global search for new physics in over three hundred exclusive final states in 2 fb -1 of p(bar p) collisions at √s = 1.96 TeV reveals no significant indication of physics beyond the Standard Model

  6. Charm and beauty production at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Bishai, M.; /Brookhaven

    2005-01-01

    Using the data samples collected with the CDF Run II detector during 2002 and early 2003, new measurements of the production cross sections of charm and beauty hadrons at {radical}s = 1960 GeV are presented. New measurements of the cross sections of centrally produced b-hadrons and J/{psi} mesons down to zero transverse momenta have been carried out. The large charm signals made available by the silicon vertex track trigger have enabled the measurement of the cross sections of D{sup 0}, D*, D{sup {+-}}, and D{sub s} mesons.

  7. The performance of the CDF luminosity monitor

    CERN Document Server

    Acosta, D; Konigsberg, J; Korytov, A; Mitselmakher, G; Necula, V; Nomerotski, A; Pronko, A; Sukhanov, A; Safonov, A; Tsybychev, D; Wang, S M; Wong, M

    2002-01-01

    We describe the initial performance of the detector used for the luminosity measurement in the CDF experiment in Run II at the Tevatron. The detector consists of low-mass gaseous Cherenkov counters with high light yield (approx 100 photoelectrons) and monitors the process of inelastic pp-bar scattering. It allows for several methods of precise luminosity measurements at peak instantaneous luminosities of 2x10 sup 3 sup 2 cm sup - sup 2 s sup - sup 1 , corresponding to an average of six pp-bar interactions per bunch crossing.

  8. Parton distributions for the LHC Run II

    CERN Document Server

    Ball, Richard D.; Carrazza, Stefano; Deans, Christopher S.; Del Debbio, Luigi; Forte, Stefano; Guffanti, Alberto; Hartland, Nathan P.; Latorre, José I.; Rojo, Juan; Ubiali, Maria

    2015-01-01

    We present NNPDF3.0, the first set of parton distribution functions (PDFs) determined with a methodology validated by a closure test. NNPDF3.0 uses a global dataset including HERA-II deep-inelastic inclusive cross-sections, the combined HERA charm data, jet production from ATLAS and CMS, vector boson rapidity and transverse momentum distributions from ATLAS, CMS and LHCb, W+c data from CMS and top quark pair production total cross sections from ATLAS and CMS. Results are based on LO, NLO and NNLO QCD theory and also include electroweak corrections. To validate our methodology, we show that PDFs determined from pseudo-data generated from a known underlying law correctly reproduce the statistical distributions expected on the basis of the assumed experimental uncertainties. This closure test ensures that our methodological uncertainties are negligible in comparison to the generic theoretical and experimental uncertainties of PDF determination. This enables us to determine with confidence PDFs at different pertu...

  9. Search for the Higgs Boson in the All-Hadronic Final State Using the CDF II Detector

    Energy Technology Data Exchange (ETDEWEB)

    Devoto, Francesco [Univ. of Helsinki (Finland)

    2013-01-01

    This thesis reports the result of a search for the Standard Model Higgs boson in events containing four reconstructed jets associated with quarks. For masses below 135 GeV/c2, the Higgs boson decays to bottom-antibottom quark pairs are dominant and result primarily in two hadronic jets. An additional two jets can be produced in the hadronic decay of a W or Z boson produced in association with the Higgs boson, or from the incoming quarks that produced the Higgs boson through the vector boson fusion process. The search is performed using a sample of s = sqrt(1.96) TeV proton-antiproton collisions corresponding to an integrated luminosity of 9.45 fb-1 recorded by the CDF II detector. The data are in agreement with the background model and 95% credibility level upper limits on Higgs boson production are set as a function of the Higgs boson mass. The median expected (observed) limit for a 125 GeV/c2 Higgs boson is 11.0 (9.0) times the predicted standard model rate.

  10. D-Zero run II data management and access

    International Nuclear Information System (INIS)

    Lueking, L.

    1997-03-01

    During the Run II data taking period at Fermilab, scheduled to begin in 1999, D0 plans to accumulate at least 200 TB of raw and reconstructed data per year. Data access patterns observed in the Run I experience have been examined in an attempt to establish an efficient data access environment. The needs and models for storing and processing the upcoming data are discussed

  11. Instrument Front-Ends at Fermilab During Run II

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Thomas; Slimmer, David; Voy, Duane; /Fermilab

    2011-07-13

    The optimization of an accelerator relies on the ability to monitor the behavior of the beam in an intelligent and timely fashion. The use of processor-driven front-ends allowed for the deployment of smart systems in the field for improved data collection and analysis during Run II. This paper describes the implementation of the two main systems used: National Instruments LabVIEW running on PCs, and WindRiver's VxWorks real-time operating system running in a VME crate processor.

  12. Instrument front-ends at Fermilab during Run II

    International Nuclear Information System (INIS)

    Meyer, T; Slimmer, D; Voy, D

    2011-01-01

    The optimization of an accelerator relies on the ability to monitor the behavior of the beam in an intelligent and timely fashion. The use of processor-driven front-ends allowed for the deployment of smart systems in the field for improved data collection and analysis during Run II. This paper describes the implementation of the two main systems used: National Instruments LabVIEW running on PCs, and WindRiver's VxWorks real-time operating system running in a VME crate processor.

  13. Instrument Front-Ends at Fermilab During Run II

    International Nuclear Information System (INIS)

    Meyer, Thomas; Slimmer, David; Voy, Duane

    2011-01-01

    The optimization of an accelerator relies on the ability to monitor the behavior of the beam in an intelligent and timely fashion. The use of processor-driven front-ends allowed for the deployment of smart systems in the field for improved data collection and analysis during Run II. This paper describes the implementation of the two main systems used: National Instruments LabVIEW running on PCs, and WindRiver's VxWorks real-time operating system running in a VME crate processor.

  14. Instrument front-ends at Fermilab during Run II

    Science.gov (United States)

    Meyer, T.; Slimmer, D.; Voy, D.

    2011-11-01

    The optimization of an accelerator relies on the ability to monitor the behavior of the beam in an intelligent and timely fashion. The use of processor-driven front-ends allowed for the deployment of smart systems in the field for improved data collection and analysis during Run II. This paper describes the implementation of the two main systems used: National Instruments LabVIEW running on PCs, and WindRiver's VxWorks real-time operating system running in a VME crate processor. Work supported by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.

  15. Experience with parallel optical link for the CDF silicon detector

    International Nuclear Information System (INIS)

    Hou, S.

    2003-01-01

    The Dense Optical Interface Module (DOIM) is a byte-wide optical link developed for the Run II upgrade of the CDF silicon tracking system [1]. The module consists of a transmitter with a laser-diode array for conversion of digitized detector signals to light outputs, a 22 m optical fiber ribbon cable for light transmission, and a receiver converting the light pulses back to electrical signals. We report on the design feature, characteristics, and radiation tolerance

  16. The Muon system of the run II D0 detector

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, V.M.; Acharya, B.S.; Alexeev, G.D.; Alkhazov, G.; Anosov, V.A.; Baldin, B.; Banerjee, S.; Bardon, O.; Bartlett, J.F.; Baturitsky, M.A.; Beutel, D.; Bezzubov,; Bodyagin, V.; Butler, J.M.; Cease, H.; Chi, E.; Denisov, D.; Denisov, S.P.; Diehl, H.T.; Doulas, S.; Dugad, S.R.; /Beijing, Inst. High Energy Phys. /Charles U. /Prague, Tech.

    2005-03-01

    The authors describe the design, construction and performance of the upgraded D0 muon system for Run II of the Fermilab Tevatron collider. Significant improvements have been made to the major subsystems of the D0 muon detector: trigger scintillation counters, tracking detectors, and electronics. The Run II central muon detector has a new scintillation counter system inside the iron toroid and an improved scintillation counter system outside the iron toroid. In the forward region, new scintillation counter and tracking systems have been installed. Extensive shielding has been added in the forward region. A large fraction of the muon system electronics is also new.

  17. Evidence for D0-D(0) mixing using the CDF II detector.

    Science.gov (United States)

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; González, B Alvarez; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'orso, M; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Gerberich, H; Gerdes, D; Giagu, S; Giakoumopolou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyria, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Denis, R St; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S

    2008-03-28

    We measure the time dependence of the ratio of decay rates for the rare decay D{0}-->K{+}pi{-} to the Cabibbo-favored decay D{0}-->K{-}pi;{+}. A signal of 12.7x10;{3} D{0}-->K{+}pi{-} decays was obtained using the Collider Detector at Fermilab II detector at the Fermilab Tevatron with an integrated luminosity of 1.5 fb;{-1}. We measure the D0-D[over ]{0} mixing parameters (R_{D},y{'},x{'2}), and find that the data are inconsistent with the no-mixing hypothesis with a probability equivalent to 3.8 Gaussian standard deviations.

  18. PDF4LHC recommendations for LHC Run II

    NARCIS (Netherlands)

    Butterworth, Jon; Carrazza, Stefano; Cooper-Sarkar, Amanda; Roeck, Albert de; Feltesse, Joel; Forte, Stefano; Gao, Jun; Glazov, Sasha; Huston, Joey; Kassabov, Zahari; McNulty, Ronan; Morsch, Andreas; Nadolsky, Pavel; Radescu, Voica; Rojo, Juan; Thorne, Robert S.

    2015-01-01

    We provide an updated recommendation for the usage of sets of parton distribution functions (PDFs) and the assessment of PDF and PDF+$\\alpha_s$ uncertainties suitable for applications at the LHC Run II. We review developments since the previous PDF4LHC recommendation, and discuss and compare the new

  19. LHCb detector and trigger performance in Run II

    Science.gov (United States)

    Francesca, Dordei

    2017-12-01

    The LHCb detector is a forward spectrometer at the LHC, designed to perform high precision studies of b- and c- hadrons. In Run II of the LHC, a new scheme for the software trigger at LHCb allows splitting the triggering of events into two stages, giving room to perform the alignment and calibration in real time. In the novel detector alignment and calibration strategy for Run II, data collected at the start of the fill are processed in a few minutes and used to update the alignment, while the calibration constants are evaluated for each run. This allows identical constants to be used in the online and offline reconstruction, thus improving the correlation between triggered and offline selected events. The required computing time constraints are met thanks to a new dedicated framework using the multi-core farm infrastructure for the trigger. The larger timing budget, available in the trigger, allows to perform the same track reconstruction online and offline. This enables LHCb to achieve the best reconstruction performance already in the trigger, and allows physics analyses to be performed directly on the data produced by the trigger reconstruction. The novel real-time processing strategy at LHCb is discussed from both the technical and operational point of view. The overall performance of the LHCb detector on the data of Run II is presented as well.

  20. Run II of the LHC: The Accelerator Science

    Science.gov (United States)

    Redaelli, Stefano

    2015-04-01

    In 2015 the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) starts its Run II operation. After the successful Run I at 3.5 TeV and 4 TeV in the 2010-2013 period, a first long shutdown (LS1) was mainly dedicated to the consolidation of the LHC magnet interconnections, to allow the LHC to operate at its design beam energy of 7 TeV. Other key accelerator systems have also been improved to optimize the performance reach at higher beam energies. After a review of the LS1 activities, the status of the LHC start-up progress is reported, addressing in particular the status of the LHC hardware commissioning and of the training campaign of superconducting magnets that will determine the operation beam energy in 2015. Then, the plans for the Run II operation are reviewed in detail, covering choice of initial machine parameters and strategy to improve the Run II performance. Future prospects of the LHC and its upgrade plans are also presented.

  1. Measurement of the t (bar t) cross section at the Run II Tevatron using Support Vector Machines

    International Nuclear Information System (INIS)

    Whitehouse, Benjamin Eric

    2010-01-01

    This dissertation measures the t(bar t) production cross section at the Run II CDF detector using data from early 2001 through March 2007. The Tevatron at Fermilab is a p(bar p) collider with center of mass energy √s = 1.96 TeV. This data composes a sample with a time-integrated luminosity measured at 2.2 ± 0.1 fb -1 . A system of learning machines is developed to recognize t(bar t) events in the 'lepton plus jets' decay channel. Support Vector Machines are described, and their ability to cope with a multi-class discrimination problem is provided. The t(bar t) production cross section is then measured in this framework, and found to be σ t# bar t# = 7.14 ± 0.25 (stat) -0.86 +0.61 (sys) pb.

  2. Recent QCD results from CDF

    International Nuclear Information System (INIS)

    Yun, J.C.

    1990-01-01

    In this paper we report recent QCD analysis with the new data taken from CDF detector. CDF recorded an integrated luminosity of 4.4 nb -1 during the 1988--1989 run at center of mass system (CMS) energy of 1.8 TeV. The major topics of this report are inclusive jet, dijet, trijet and direct photon analysis. These measurements are compared of QCD predictions. For the inclusive jet an dijet analysis, tests of quark compositeness are emphasized. 11 refs., 6 figs

  3. Higgs Boson Measurements in CMS with Run II Data

    CERN Document Server

    Kumar, Ashok

    2017-01-01

    Latest results from the CMS experiment on studies of Higgs boson production are presented. Studies involving the 125 GeV Higgs boson using various Standard Model production and decay modes have been performed using proton proton collisions from data accumulated during the LHC Run II with center-of-mass energy of 13 TeV. Similar datasets have also been used to place constraints on physics beyond the Standard Model involving extended Higgs boson sectors.

  4. Higgs searches and prospects at CDF

    International Nuclear Information System (INIS)

    Pavel A Murat

    2003-01-01

    The Standard model of electroweak interactions (SM) has been extremely successful in describing interactions of elementary particles over the last decades. The Higgs scalar boson is one of the key elements of the SM: Higgs interactions with the other particles generate the particle masses and allow to keep the theory renormalizable at electroweak scale. All the particles predicted by the SM but the Higgs boson have already been observed experimentally and therefore search for the Higgs is one of the most important scientific goals for high energy physics. The current lower limit on the SM Higgs mass M H > 114.4 GeV at 95% CL has been established by LEP experiments. In this paper we review CDF Run I results on Higgs searches including the Higgs bosons predicted by the minimal supersymmetric extention of the Standard Model (MSSM) and discuss the Run II prospects

  5. Search for [corrected] B0(s) --> mu+ mu- and B0(d) [corrected] --> mu + mu- decays in pp collisions with CDF II.

    Science.gov (United States)

    Abulencia, A; Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Ben-Haim, E; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Bourov, S; Boveia, A; Brau, B; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carron, S; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chapman, J; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chu, P H; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Connolly, A; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Cruz, A; Cuevas, J; Culbertson, R; Cyr, D; DaRonco, S; D'Auria, S; D'onofrio, M; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, M; Demers, S; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J; DiTuro, P; Dörr, C; Dominguez, A; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Ebina, K; Efron, J; Ehlers, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Fujii, Y; Furic, I; Gajjar, A; Gallinaro, M; Galyardt, J; Garcia, J E; Garcia Sciverez, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerchtein, E; Gerdes, D; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giolo, K; Giordani, M; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Haber, C; Hahn, S R; Hahn, K; Halkiadakis, E; Hamilton, A; Han, B-Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hatakeyama, K; Hauser, J; Hays, C; Hayward, H; Heijboer, A; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Huston, J; Ikado, K; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Kang, J; Karagoz-Unel, M; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, Y K; Kirby, M; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kobayashi, H; Kondo, K; Kong, D J; Konigsberg, J; Kordas, K; Korytov, A; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreps, M; Kreymer, A; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecci, C; LeCompte, T; Lee, J; Lee, J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Li, K; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Manca, G; Margaroli, F; Marginean, R; Marino, C; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P; McNamara, P; McNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; von der Mey, M; Miao, T; Miladinovic, N; Miles, J; Miller, R; Miller, J S; Mills, C; Milnik, M; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Mulhearn, M; Muller, Th; Mumford, R; Murat, P; Nachtman, J; Nahn, S; Nakano, I; Napier, A; Naumov, D; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Ogawa, T; Oh, S H; Oh, Y D; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Papikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K; Plager, C; Pondrom, L; Pope, G; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Rakitin, A; Rappoccio, S; Ratnikov, F; Reisert, B; Rekovic, V; van Remortal, N; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Rinnert, K; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Rott, C; Ruiz, A; Russ, J; Rusu, V; Ryan, D; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Salto, O; Saltzberg, D; Sanchez, C; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sill, A; Sinervo, P; Sisakyan, A; Sjolin, J; Skiba, A; Slaughter, A J; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Tafirout, R; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, A; Vallecorsa, S; Varganov, A; Vataga, E; Velev, G; Veramendi, G; Veszpremi, V; Vickey, T; Vidal, R; Vila, I; Vilar, R; Vollrath, I; Volobouev, I; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Wan, Z; Wang, M J; Wang, S M; Warburton, A; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Worm, S; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, Y; Yang, C; Yang, U K; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhang, X; Zhou, J; Zucchelli, S

    2005-11-25

    We report on a search for B0(s) --> mu+ mu- and B0(d) --> mu + mu- decays in pp collisions at square root(s) = 1.96 TeV using 364 pb(-1) of data collected by the CDF II detector at the Fermilab Tevatron Collider. After applying all selection requirements, we observe no candidates inside the B0(s) or B0(d) mass windows. The resulting upper limits on the branching fractions are B(B0(s) --> mu+ mu-) mu+ mu-) < 3.9 x 10(-8) at 90% confidence level.

  6. PDF4LHC recommendations for LHC Run II

    CERN Document Server

    Butterworth, Jon; Cooper-Sarkar, Amanda; De Roeck, Albert; Feltesse, Joel; Forte, Stefano; Gao, Jun; Glazov, Sasha; Huston, Joey; Kassabov, Zahari; McNulty, Ronan; Morsch, Andreas; Nadolsky, Pavel; Radescu, Voica; Rojo, Juan; Thorne, Robert

    2016-01-01

    We provide an updated recommendation for the usage of sets of parton distribution functions (PDFs) and the assessment of PDF and PDF+$\\alpha_s$ uncertainties suitable for applications at the LHC Run II. We review developments since the previous PDF4LHC recommendation, and discuss and compare the new generation of PDFs, which include substantial information from experimental data from the Run I of the LHC. We then propose a new prescription for the combination of a suitable subset of the available PDF sets, which is presented in terms of a single combined PDF set. We finally discuss tools which allow for the delivery of this combined set in terms of optimized sets of Hessian eigenvectors or Monte Carlo replicas, and their usage, and provide some examples of their application to LHC phenomenology.

  7. VeloTT tracking for LHCb Run II

    CERN Document Server

    Bowen, Espen Eie; Tresch, Marco

    2016-01-01

    This note describes track reconstruction in the LHCb tracking system upstream of the magnet, combining VELO tracks with hits in the TT sub-detector. The implementation of the VeloTT algorithm and its performance in terms of track reconstruction efficiency, ghost rate and execution time are presented. The algorithm has been rewritten for use in the first software trigger level for LHCb Run II. The momentum and charge information obtained for the VeloTT tracks (due to a fringe magnetic field between the VELO and TT sub-detectors) can reduce the total execution time for the full tracking sequence.

  8. The CMS Level-1 trigger for LHC Run II

    Science.gov (United States)

    Tapper, A.

    2018-02-01

    During LHC Run II the centre-of-mass energy of pp collisions has increased from 8 TeV up to 13 TeV and the instantaneous luminosity has progressed towards 2 × 1034 cm-2s-1. In order to guarantee a successful and ambitious physics programme under these conditions, the CMS trigger system has been upgraded. The upgraded CMS Level-1 trigger is designed to improve performance at high luminosity and large number of simultaneous inelastic collisions per crossing. The trigger design, implementation and commissioning are summarised, and performance results are described.

  9. Improvements to ATLAS Track Reconstruction for Run-II

    CERN Document Server

    Cairo, Valentina Maria; The ATLAS collaboration

    2015-01-01

    Run-II of the LHC will provide new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. In addition, the Insertable B-layer (IBL) is a fourth pixel layer, which has been inserted at the centre of ATLAS during the shutdown of the LHC. We will discuss improvements to track reconstruction developed during the two year shutdown of the LHC. These include novel techniques developed to improve the performance in the dense cores of jets, optimisation for the expected conditions, and a big software campaign which lead to more than a factor of three decrease in the CPU time needed to process each recorded event.

  10. Search for a $Z(4430)^{\\pm} \\to \\psi(2S)\\pi^{\\pm}$ resonance in hadron collisions at CDF II

    Energy Technology Data Exchange (ETDEWEB)

    Rubbo, Francesco [Univ. of Turin, Torino (Italy)

    2010-01-01

    The work described in this thesis is the first search for a Z-(4430) resonance in hadron collisions and has been conceived, carried out and concluded entirely by the author. An ad-hoc analysis framework has been developed based on reconstruction code already consolidated in other analysis, adapted and modified for the purpose of this work. The progress of the work has been periodically presented in internal meetings of the CDF B-physics group and documented in internal notes.

  11. Search for the top quark with CDF

    International Nuclear Information System (INIS)

    Barbaro-Galtieri, A.

    1991-01-01

    During the 1988--89 Tevatron Collider run the CDF detector has collected data for an integrated luminosity of 4.4 pb -1 . The sample has been used to search for the top quark in several topologies. Preliminary results show that a top mass below 89 GeV is excluded at the 95% confidence level, thus extending the limit of 77 GeV previously published by CDF. 14 refs., 8 figs

  12. Measurement of the Branching fraction ratio BR(B+ → (bar D)0 K+ → [K+π-]K+)/BR(B+ → (bar D)0 π+ → [K+π-]π+) with the CDF II detector

    International Nuclear Information System (INIS)

    Squillacioti, Paola

    2006-01-01

    In this thesis the author has described the first measurement performed at a hadron collider of the branching fraction of the Cabibbo-suppressed mode B + → (bar D) 0 K + . The analysis has been performed with 360 pb -1 of data collected by the CDF II detector

  13. CMS detector tracking performance in Run-II

    CERN Document Server

    Brondolin, Erica

    2017-01-01

    Since the start of Run-II in June 2015, LHC has delivered pp collisions at a center of mass energy of 13TeV and with a bunch time separation of 25 ns. On avarage, more than 25 inelastic collisions are superimposed on the event of interest. Under these new conditions, the CMS collaboration has re-calibrated and verified the performance of the whole detector. In particular, the CMS tracking performance has been measured both directly and indirectly. Direct measurements are, among others, the beam spot determination, the vertex resolution and the muon reconstruction efficiency with the tag and probe technique. An indirect assessment can be given by the pion reconstruction efficiency and the low-mass resonance parameters as a function of different single track kinematics.

  14. LHCb-The LHCb trigger in Run II

    CERN Multimedia

    Michielin, Emanuele

    2016-01-01

    The LHCb trigger system has been upgraded to exploit the real-time alignment, calibration and analysis capabilities of LHCb in Run-II. An increase in the CPU and disk capacity of the event filter farm, combined with improvements to the reconstruction software, mean that efficient, exclusive selections can be made in the first stage of the High Level Trigger (HLT1). The output of HLT1 is buffered to the 5 PB of disk on the event filter farm, while the detector is aligned and calibrated in real time. The second stage, HLT2, performs complete, offline quality, event reconstruction. Physics analyses can be performed directly on this information, and for the majority of charm physics selections, a reduced event format can be written out, which permits higher event rates.

  15. Improvements to ATLAS track reconstruction for Run II

    Energy Technology Data Exchange (ETDEWEB)

    Cairo, Valentina Maria Martina, E-mail: valentina.maria.cairo@cern.ch [University of Calabria, Arcavacata di Rende (Italy); CERN, Meyrin (Switzerland)

    2016-07-11

    Run II of the LHC will provide new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. A major change to the Inner Detector layout during the shutdown period has been the installation of the Insertable B-Layer, a fourth pixel layer located at a radius of 33 mm. This contribution discusses improvements to track reconstruction developed during the two year shutdown of the LHC. These include novel techniques developed to improve the performance in the dense cores of jets, optimisation for the expected conditions, and a big software campaign which lead to more than a factor of three decrease in the CPU time needed to process each recorded event.

  16. Boosted H­->bb Tagger In Run II

    CERN Document Server

    Sahinsoy, Merve; The ATLAS collaboration

    2016-01-01

    Several searches for Higgs bosons decaying to b­quark pairs benefit from the increased Run II centre­of­mass energy by exploiting the large transvers­momentum (boosted) Higgs boson regime, where the two b­jets are merged into one large­radius jet. ATLAS uses a boosted H­>bb tagger algorithm to separate the Higgs signal from the background processes (QCD, W and Z bosons, top quarks). The tagger takes as input a large­R=1.0 jet calibrating the pseudorapidity, energy and mass scale. The tagger employs b­tagging, Higgs candidate mass, and substructure information. The performance of several operating points in Higgs boson signal and QCD and ttbar all­hadronic backgrounds are presented. Systematic uncertainties are evaluated so that this tagger can be used in analyses.

  17. LUCID Upgrade for ATLAS Luminosity Measurement in Run II

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00444244; The ATLAS collaboration

    2016-01-01

    The main ATLAS luminosity monitor, LUCID, and its read-out electronics have been completely rebuilt for the LHC Run II in order to cope with a higher center of mass energy ($\\sqrt{s}$=13 TeV) and the 25 ns bunch-spacing. The LUCID detector is measuring Cherenkov light produced in photomultiplier quartz windows and in quartz optical fibers. It has a novel calibration system that uses radioactive $^{207}$Bi sources that produce internal-conversion electrons with energy above the Cherenkov threshold in quartz. The new electronics can count signals with amplitude above a predefined threshold (hits) as well as the integrated pulseheight of the signals, which makes it possible to measure luminosity with complementary methods. The new detector, calibration system and electronics will be described, together with the results of the 2015 luminosity measurement.

  18. The CMS Level-1 Calorimeter Trigger for LHC Run II

    CERN Document Server

    Zabi, Alexandre; Cadamuro, Luca; Davignon, Olivier; Romanteau, Thierry; Strebler, Thomas; Cepeda, Maria Luisa; Sauvan, Jean-baptiste; Wardle, Nicholas; Aggleton, Robin Cameron; Ball, Fionn Amhairghen; Brooke, James John; Newbold, David; Paramesvaran, Sudarshan; Smith, D; Taylor, Joseph Ross; Fountas, Konstantinos; Baber, Mark David John; Bundock, Aaron; Breeze, Shane Davy; Citron, Matthew; Elwood, Adam Christopher; Hall, Geoffrey; Iles, Gregory Michiel; Laner Ogilvy, Christian; Penning, Bjorn; Rose, A; Shtipliyski, Antoni; Tapper, Alexander; Durkin, Timothy John; Harder, Kristian; Harper, Sam; Shepherd-Themistocleous, Claire; Thea, Alessandro; Williams, Thomas Stephen; Dasu, Sridhara Rao; Dodd, Laura Margaret; Klabbers, Pamela Renee; Levine, Aaron; Ojalvo, Isabel Rose; Ruggles, Tyler Henry; Smith, Nicholas Charles; Smith, Wesley; Svetek, Ales; Forbes, R; Tikalsky, Jesra Lilah; Vicente, Marcelo

    2017-01-01

    Results from the completed Phase 1 Upgrade of the Compact Muon Solenoid (CMS) Level-1 Calorimeter Trigger are presented. The upgrade was completed in two stages, with the first running in 2015 for proton and Heavy Ion collisions and the final stage for 2016 data taking. The Level-1 trigger has been fully commissioned and has been used by CMS to collect over 43 fb-1 of data since the start of the Large Hadron Collider (LHC) Run II. The new trigger has been designed to improve the performance at high luminosity and large number of simultaneous inelastic collisions per crossing (pile-up). For this purpose it uses a novel design, the Time Multiplexed Trigger (TMT), which enables the data from an event to be processed by a single trigger processor at full granularity over several bunch crossings. The TMT design is a modular design based on the uTCA standard. The trigger processors are instrumented with Xilinx Virtex-7 690 FPGAs and 10 Gbps optical links. The TMT architecture is flexible and the number of trigger p...

  19. LHCb Run II tracking performance and prospects for the Upgrade

    CERN Multimedia

    2016-01-01

    The LHCb tracking system consists of a Vertex Locator around the interaction point, a tracking station with four layers of silicon strip detectors in front of the magnet, and three tracking stations, using either straw-tubes or silicon strip detectors, behind the magnet. This system allows to reconstruct charged particles with a high efficiency (typically > 95% for particles with momentum > 5 GeV) and an excellent momentum resolution (0.5% for particles with momentum < 20 GeV). The high momentum resolution results in very narrow mass peaks, leading to a very good signal-to-background ratio in such key channels as $B_s\\to\\mu^+\\mu^-$. Furthermore an optimal decay time resolution is an essential element in the studies of time dependent CP violation. For Run II a novel reconstruction strategy was adopted, allowing to run the same track reconstruction in the software trigger as offline. This convergence was possible due to a staged approach in the track reconstruction and a large reduction in the processing tim...

  20. New-generation large-area muon scintillation counters with wavelength shifter fiber readout for CDF II

    International Nuclear Information System (INIS)

    Artikov, A.; Budagov, Yu.; Chirikov-Zorin, I.

    2006-01-01

    New scintillation counters have been designed and constructed for upgrading of the CDF detector at the Fermilab Tevatron. A novel light collection technique using wavelength shifting fibers, together with a high-quality polystyrene-based scintillator UPS 923A, has resulted in compact counters with good and stable light collection efficiency over their lengths extending up to 320 cm. Design, construction and performance of counters are presented. Properties of the fibers and the scintillator, such as light output, light attenuation, decay time and long-term stability, are investigated. It is found that the polystyrene-based scintillator, unlike the polyvinyltoluene-based one, has better properties adequate for long-term experiments

  1. $B$ physics at the Tevatron: Run II and beyond

    CERN Document Server

    Anikeev, K; Azfar, F.; Bailey, S.; Bauer, C.W.; Bell, W.; Bodwin, G.; Braaten, E.; Burdman, G.; Butler, J.N.; Byrum, K.; Cason, N.; Cerri, A.; Cheung, H.W.K.; Dighe, A.; Donati, S.; Ellis, R.K.; Falk, A.; Feild, G.; Fleming, S.; Furic, I.; Gardner, S.; Grossman, Y.; Gutierrez, G.; Hao, W; Harris, B.W.; Hewett, J.; Hiller, G.; Jesik, R.; Jones, M.; Kasper, P.A.; El-Khadra, A.; Kirk, M.; Kiselev, V.V.; Kroll, J.; Kronfeld, A.S.; Kutschke, R.; Kuznetsov, V.E.; Laenen, E.; Lee, J.; Leibovich, A.K.; Lewis, J.D.; Ligeti, Z.; Likhoded, A.K.; Logan, H.E.; Luke, M.; Maciel, A.; Majumder, G.; Maksimovic, P.; Martin, M.; Menary, S.; Nason, P.; Nierste, U.; Nir, Y.; Nogach, L.; Norrbin, E.; Oleari, C.; Papadimitriou, V.; Paulini, M.; Paus, C.; Petteni, M.; Poling, R.; Procario, M.; Punzi, G.; Quinn, H.; Rakitine, A.; Ridolfi, G.; Shestermanov, K.; Signorelli, G.; Silva, J.P.; Skwarnicki, T.; Smith, A.; Speakman, B.; Stenson, K.; Stichelbaut, F.; Stone, S.; Sumorok, K.; Tanaka, M.; Taylor, W.; Trischuk, W.; Tseng, J.; Van Kooten, R.; Vasiliev, A.; Voloshin, M.; Wang, J.C.; Wicklund, A.B.; Wurthwein, F.; Xuan, N.; Yarba, J.; Yip, K.; Zieminski, A.

    2002-01-01

    This report provides a comprehensive overview of the prospects for B physics at the Tevatron. The work was carried out during a series of workshops starting in September 1999. There were four working groups: 1) CP Violation, 2) Rare and Semileptonic Decays, 3) Mixing and Lifetimes, 4) Production, Fragmentation and Spectroscopy. The report also includes introductory chapters on theoretical and experimental tools emphasizing aspects of B physics specific to hadron colliders, as well as overviews of the CDF, D0, and BTeV detectors, and a Summary.

  2. Measurement of the charge asymmetry and the W boson helicity in top-antitop quark events with the CDF II experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hirschbuehl, Dominic [Univ. of Karlsruhe (Germany)

    2005-12-23

    In 1995 the heaviest elementary particle, top quark, was discovered at the Tevatron collider in top-antitop quark pair production. Since the top quark mass is of the same order as the electroweak symmetry breaking scale, measurements of the properties of the top quark like mass, charge, spin or the production mechanism, offer a good opportunity to test the Standard Model at such high energies. Top quarks at the Tevatron are predominantly pair-produced through light quark-antiquark annihilation. Higher order perturbative QCD calculations predict a sizeable asymmetry between the number of top quarks and antitop quarks produced in forward direction. This asymmetry is induced through radiative corrections. A measurement of the asymmetry can check the perturbative QCD predictions. Due to the high mass of the top quark, nearly the mass of a gold nucleus, the life time of the top quark is much shorter than the hadronization time-scale. This means that the top quark decays before it has a chance to form a bound state. The Standard Model predicts that the top quark decays in nearly 100% of the cases into a W boson and a b quark via a charge-current weak interaction. The measurement of the W boson helicity probes the V-A structure of the weak interaction and differences to the expectation would give evidence for new physics. Until the start of the Large Hadron Collider at CERN, the Tevatron is the only experiment where top quarks can be directly produced and their properties be measured. The Tevatron reaches a center-of-mass energy of 1.96 TeV in proton antiproton collisions. The data used in this analysis were taken in Run II of the Tevatron with the Collider Detector at Fermilab (CDF) in the years 2001-2004 and represent an integrated luminosity of 319 pb{sup -1}. The thesis is organized in the following way: In the first chapter a short overview of the Standard Model is given. The theoretical aspects of the top quark decay are described with particular emphasis on the

  3. B-physics at CDF

    International Nuclear Information System (INIS)

    Abe, F.; Fukui, Y.; Mikamo, S.; Mishina, M.; Amidei, D.; Atac, M.; Beretvas, A.; Berge, J.P.; Binkley, M.; Booth, A.W.; Carroll, J.T.; Chadwick, K.; Cihangir, S.; Clark, A.G.; Cooper, J.; Crane, D.; Day, C.; Elias, J.E.; Foster, G.W.; Freeman, J.; Hahn, S.R.; Huth, J.; Jensen, H.; Johnson, R.P.; Joshi, U.; Kadel, R.W.; Kephart, R.; Maas, P.; Marriner, J.P.; Mukherjee, A.; Nelson, C.; Newman-Holmes, C.; Para, A.; Patrick, J.; Plunkett, R.; Quarrie, D.; Savvoy-Navarro, A.; Schmidt, E.E.; Segler, S.; Theriot, D.; Thaczyk, S.; Tollestrup, A.; Vidal, R.; Wagner, R.L.; Yagil, A.; Yeh, G.P.; Yoh, J.; Yun, J.C.; Apollinari, G.; Bedeschi, F.; Belforte, S.; Bellettini, G.; Cervelli, F.; Dell'Agnello, S.; Dell'Orso, M.; Gianetti, P.; Grassmann, H.; Incagli, M.; Mangano, M.; Menzione, A.; Paoletti, R.; Punzi, G.; Ristori, L.; Scribano, A.; Sestini, P.; Smith, D.A.; Stefanini, A.; Tonelli, G.; Westhusing, T.; Zetti, F.; Auchincloss, P.; Buckley, E.; Devlin, T.; Flaugher, B.; Hu, P.; Kuns, E.; Watts, T.; Baden, A.R.; Bradenburgh, G.; Brown, D.; Carey, R.; Franklin, M.; Geer, S.; Jessop, C.P.; Kearns, E.; Ng, J.S.T.; Pare, E.; Phillips, T.J.; Schwitters, R.; Shapiro, M.; St Denis, R.; Trischuk, W.; Barbaro-Galtieri, A.; Carithers, W.; Chinowsky, W.; Drucker, R.B.; Ely, R.; Gold, M.; Haber, C.; Harris, R.M.; Hubbard, B.; Siegrist, J.; Tipton, P.; Wester, W.C. III; Winer, B.L.; Barnes, V.E.; Byon, A.; Garfinkel, A.F.; Huffman, B.T.; Laasanen, A.T.; Schub, M.H.; Tonnison, J.; Behrends, S.; Bensinger, J.; Blocker, C.; Contreras, M.; Demortier, L.; Kesten, P.; Kirsch, L.; Mattingly, R.; Moulding, S.; Nakae, L.F.; Tarem, S.; Bellinger, J.; Byrum, K.L.; Carlsmith, D.; Handler, R.; Lamoureux, J.I.; Markeloff, R.; Markosky, L.A.; Pondrom, L.; Rhoades, J.; Sheaff, M.; Skarha, J.; Wendt, C.; Bertolucci, S.; Chiarelli, G.; Cordelli, M.; Curatolo, M.; Esposito, B.; Giromini, P.; Miscetti, S.; Sansoni, A.; Bhadra, S.; Errede, S.

    1991-01-01

    During the 1988/1989 run at the Fermilab Tevatron, the CDF detector collected ≅ 4.1 pb -1 of p bar p data at √s = 1.8 TeV. The main goals of this run being physics at high p t , the CDF trigger was tuned for maximizing signals from Z 0 s, Ws, t-quarks, and etc. As such, compared to the high pt physics, the b-physics program was of secondary importance other than that which would be used for background calculations. Also, CDF had no vertex chamber capability for seeing displaced vertices. However, significant b-quark physics results are evident in two data samples: (1) inclusive electrons; (2) inclusive J/ψ where J/ψ → μ + μ - . In this paper, the author will try to specify the goals for b-physics using the inclusive electrons and J/ψ signals for the 1988/89 data set. He will then provide a brief look at the data, and will finish with some highly speculative guesses as to whether or not experiments at the Tevatron which look for CP violation in the b sector are possible

  4. Measurement of the $W+$ jets differential cross-sections in $p\\bar{p}$ collisions at $\\sqrt{s} = 1.96$ TeV using the CDF II Detector

    Energy Technology Data Exchange (ETDEWEB)

    Driutti, Anna [Univ. of Udine (Italy)

    2016-01-01

    In this thesis the measurements of differential cross sections for the production of the $W$-boson in association with jets in $p\\bar{p}$ collisions at $\\sqrt{s} = 1.96$ TeV are presented. The measurements are based on 9.0 fb$^{-1}$ of CDF Run II data (i.e., the full dataset). Only events in which the W-boson decays leptonically (i.e., W → ev and W → μv)and at least one jet is present are considered. The lepton candidates are required to have a transverse energy $E^{\\ell}_T > 25$GeV and pseudorapidity in the range |n| < 1 whereas, the jets are reconstructed using the JETCLU algorithm with a radius of 0.4 requiring transverse energy $E^{jet}_T > 25$GeV and pseudorapidity in the range |ηjet| < 2. The reconstructed W-boson transverse mass should be greater than 40GeV/c2. The differential cross sections as a function of the jet multiplicity ($N$ > or = to 1, 2, 3, 4) and the leading jet transverse energy, are measured separately for each decay channel and then combined. For a meaningful comparison with theory the measured cross-sections are unfolded to remove detector effects. The resulting particle-level cross-sections are compared to theoretical predictions.

  5. B physics at CDF

    International Nuclear Information System (INIS)

    Wicklund, A. B.

    1998-01-01

    The CDF experiment at the Fermilab Tevatron has proven to be well suited for precision studies of b physics. Thanks to the excellent performance of the Tevatron Collider and the detector, CDF has accumulated very large data samples and roughly a decade of experience with b physics in p-bar p collisions. With the much higher luminosities expected for the Main Injector era, the next decade promises to be an even more fruitful period for CDF. Here we offer a brief overview of issues in hadron-collider b physics and a summary of CDF's accomplishments and future plans

  6. Model-Independent and Quasi-Model-Independent Search for New Physics at CDF

    OpenAIRE

    CDF Collaboration

    2007-01-01

    Data collected in Run II of the Fermilab Tevatron are searched for indications of new electroweak scale physics. Rather than focusing on particular new physics scenarios, CDF data are analyzed for discrepancies with respect to the standard model prediction. A model-independent approach (Vista) considers the gross features of the data, and is sensitive to new large cross section physics. A quasi-model-independent approach (Sleuth) searches for a significant excess of events with large summed t...

  7. The Higgs and Supersymmetry at Run II of the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Shih, David [Rutgers Univ., Piscataway, NJ (United States)

    2016-04-14

    Prof. David Shih was supported by DOE grant DE-SC0013678 from April 2015 to April 2016. His research during this year focused on the phenomenology of super-symmetry (SUSY) and maximizing its future discovery potential at Run II of the LHC. SUSY is one of the most well-motivated frameworks for physics beyond the Standard Model. It solves the "naturalness" or "hierarchy" problem by stabilizing the Higgs mass against otherwise uncontrolled quantum corrections, predicts "grand unification" of the fundamental forces, and provides many potential candidates for dark matter. However, after decades of null results from direct and indirect searches, the viable parameter space for SUSY is increasingly constrained. Also, the discovery of a Standard Model-like Higgs with a mass at 125 GeV places a stringent constraint on SUSY models. In the work supported on this grant, Shih has worked on four different projects motivated by these issues. He has built natural SUSY models that explain the Higgs mass and provide viable dark matter; he has studied the parameter space of "gauge mediated supersymmetry breaking" (GMSB) that satisfies the Higgs mass constraint; he has developed new tools for the precision calculation of flavor and CP observables in general SUSY models; and he has studied new techniques for discovery of supersymmetric partners of the top quark.

  8. The Higgs and Supersymmetry at Run II of the LHC

    International Nuclear Information System (INIS)

    Shih, David

    2016-01-01

    Prof. David Shih was supported by DOE grant DE-SC0013678 from April 2015 to April 2016. His research during this year focused on the phenomenology of super-symmetry (SUSY) and maximizing its future discovery potential at Run II of the LHC. SUSY is one of the most well-motivated frameworks for physics beyond the Standard Model. It solves the 'naturalness' or 'hierarchy' problem by stabilizing the Higgs mass against otherwise uncontrolled quantum corrections, predicts 'grand unification' of the fundamental forces, and provides many potential candidates for dark matter. However, after decades of null results from direct and indirect searches, the viable parameter space for SUSY is increasingly constrained. Also, the discovery of a Standard Model-like Higgs with a mass at 125 GeV places a stringent constraint on SUSY models. In the work supported on this grant, Shih has worked on four different projects motivated by these issues. He has built natural SUSY models that explain the Higgs mass and provide viable dark matter; he has studied the parameter space of 'gauge mediated supersymmetry breaking' (GMSB) that satisfies the Higgs mass constraint; he has developed new tools for the precision calculation of flavor and CP observables in general SUSY models; and he has studied new techniques for discovery of supersymmetric partners of the top quark.

  9. The CMS calorimeter trigger upgrade for the LHC Run II

    CERN Document Server

    Zabi, Alexandre

    2014-01-01

    The CMS experiment implements a sophisticated two-level online selection system that achieves a rejection factor of nearly 10e5. The first level (L1) is based on coarse information coming from the calorimeters and the muon detectors while the High-Level Trigger combines fine-grain information from all sub-detectors. During Run II, the LHC will increase its centre of mass energy up to 13 TeV and progressively reach an instantaneous luminosity of 2e34 cm-2s-1. In order to guarantee a successful and ambitious physics program under this intense environment, the CMS Trigger and Data acquisition system must be consolidated. In particular the L1 calorimeter Trigger hardware and architecture will be modified. The goal is to maintain the current thresholds (e.g., for electrons and photons) and improve the performance for the selection of tau leptons. This can only be achieved by designing an updated trigger architecture based on the recent microTCA technology. Racks can be equipped with fast optical links and latest...

  10. Search for Excited or Exotic Electron Production Using the Dielectron + Photon Signature at CDF in Run II

    Energy Technology Data Exchange (ETDEWEB)

    Gerberich, Heather Kay [Duke Univ., Durham, NC (United States)

    2004-01-01

    The author presents a search for excited or exotic electrons decaying to an electron and a photon with high transverse momentum. An oppositely charged electron is produced in association with the excited electron, yielding a final state dielectron + photon signature. The discovery of excited electrons would be a first indication of lepton compositeness. They use ~ 202 pb-1 of data collected in p$\\bar{p}$ collisions at √s = 1.96 TeV with the Collider Detector at Fermilab during March 2001 through September 2003. The data are consistent with standard model expectations. Upper limits are set on the experimental cross-section σ($\\bar{p}$p → ee* → eeγ) at the 95% confidence level in a contact-interaction model and a gauge-mediated interaction model. Limits are also presented as exclusion regions in the parameter space of the excited electron mass (Me*) and the compositeness energy scale (Λ). In the contact-interaction model, for which there are no previously published limits, they find Me* < 906 GeV is excluded for Me* = Λ. In the gauge-mediated model, the exclusion region in the Me* versus the phenomenological coupling f/Λ parameter space is extended to M{sub e*} < 430 GeV for f/Λ ~ 10-2 GeV-1. In comparison, other experiments have excluded Me* < 280 GeV for f/Λ ~ 10-2 GeV-1.

  11. Search for the Higgs Boson in the ZH → vvb$\\bar{b}$ Channel at CDF Run II

    Energy Technology Data Exchange (ETDEWEB)

    Parks, Brandon Scott [The Ohio State Univ., Columbus, OH (United States)

    2008-01-01

    This analysis focuses on a low mass Higgs boson search with 1.7 fb-1 of data. The focus is on Higgs events in which it is produced in association with a W or Z boson. Such events are expected to leave a distinct signature of large missing transverse energy for either a Z → vv decay or a leptonic W decay in which the lepton goes undetected, as well as jets with taggable secondary vertices from the H → b$\\bar{b}$ decay. Utilizing a new track based technique for removing QCD multi-jet processes as well as a neural network discriminant, an expected limit of 8.3 times the Standard Model prediction at the 95% CL for a Higgs boson mass of 115 GeV/c2 is calculated, with an observed limit of 8.0*SM.

  12. Using Drell-Yan to probe the underlying event in Run II at Collider Detector at Fermilab (CDF)

    Energy Technology Data Exchange (ETDEWEB)

    Kar, Deepak [Univ. of Florida, Gainesville, FL (United States)

    2008-12-01

    We study the behavior of charged particles produced in association with Drell-Yan lepton-pairs in the region of the Z-boson in proton-antiproton collisions at 1.96 TeV. We use the direction of the Z-boson in each event to define 'toward', 'away', and 'transverse' regions. For Drell-Yan production (excluding the leptons) both the 'toward' and 'transverse' regions are very sensitive to the 'underlying event', which is defined as everything except the two hard scattered components. The data are corrected to the particle level and are then compared with several PYTHIA models (with multiple parton interactions) and HERWIG (without multiple parton interactions) at the particle level (i.e. generator level). The data are also compared with a previous analysis on the behavior of the 'underlying event' in high transverse momentum jet production. The goal is to produce data that can be used by the theorists to tune and improve the QCD Monte-Carlo models of the 'underlying event' that are used to simulate hadron-hadron collisions.

  13. Measurement of the t$\\bar{t}$ cross section at the Run II Tevatron using Support Vector Machines

    Energy Technology Data Exchange (ETDEWEB)

    Whitehouse, Benjamin Eric [Tufts Univ., Medford, MA (United States)

    2010-08-01

    This dissertation measures the t$\\bar{t}$ production cross section at the Run II CDF detector using data from early 2001 through March 2007. The Tevatron at Fermilab is a p$\\bar{p}$ collider with center of mass energy √s = 1.96 TeV. This data composes a sample with a time-integrated luminosity measured at 2.2 ± 0.1 fb-1. A system of learning machines is developed to recognize t$\\bar{t}$ events in the 'lepton plus jets' decay channel. Support Vector Machines are described, and their ability to cope with a multi-class discrimination problem is provided. The t$\\bar{t}$ production cross section is then measured in this framework, and found to be σt$\\bar{t}$ = 7.14 ± 0.25 (stat)-0.86+0.61(sys) pb.

  14. The PDF4LHC report on PDFs and LHC data: results from Run I and preparation for Run II

    International Nuclear Information System (INIS)

    Rojo, Juan; Accardi, Alberto; Ball, Richard D; Cooper-Sarkar, Amanda; Gwenlan, Claire; Roeck, Albert de; Mangano, Michelangelo; Farry, Stephen; Ferrando, James; Forte, Stefano; Gao, Jun; Harland-Lang, Lucian; Huston, Joey; Glazov, Alexander; Lipka, Katerina; Gouzevitch, Maxime; Lisovyi, Mykhailo; Nadolsky, Pavel

    2015-01-01

    The accurate determination of the parton distribution functions (PDFs) of the proton is an essential ingredient of the Large Hadron Collider (LHC) program. PDF uncertainties impact a wide range of processes, from Higgs boson characterization and precision Standard Model measurements to new physics searches. A major recent development in modern PDF analyses has been to exploit the wealth of new information contained in precision measurements from the LHC Run I, as well as progress in tools and methods to include these data in PDF fits. In this report we summarize the information that PDF-sensitive measurements at the LHC have provided so far, and review the prospects for further constraining PDFs with data from the recently started Run II. This document aims to provide useful input to the LHC collaborations to prioritize their PDF-sensitive measurements at Run II, as well as a comprehensive reference for the PDF-fitting collaborations. (topical review)

  15. The PDF4LHC report on PDFs and LHC data. Results from Run I and preparation for Run II

    International Nuclear Information System (INIS)

    Rojo, Juan; Ball, Richard D.; CERN, Geneva

    2015-07-01

    The accurate determination of the Parton Distribution Functions (PDFs) of the proton is an essential ingredient of the Large Hadron Collider (LHC) program. PDF uncertainties impact a wide range of processes, from Higgs boson characterisation and precision Standard Model measurements to New Physics searches. A major recent development in modern PDF analyses has been to exploit the wealth of new information contained in precision measurements from the LHC Run I, as well as progress in tools and methods to include these data in PDF fits. In this report we summarise the information that PDF-sensitive measurements at the LHC have provided so far, and review the prospects for further constraining PDFs with data from the recently started Run II. This document aims to provide useful input to the LHC collaborations to prioritise their PDF-sensitive measurements at Run II, as well as a comprehensive reference for the PDF-fitting collaborations.

  16. The PDF4LHC report on PDFs and LHC data: Results from Run I and preparation for Run II

    CERN Document Server

    Rojo, Juan; Ball, Richard D; Cooper-Sarkar, Amanda; de Roeck, Albert; Farry, Stephen; Ferrando, James; Forte, Stefano; Gao, Jun; Harland-Lang, Lucian; Huston, Joey; Glazov, Alexander; Gouzevitch, Maxime; Gwenlan, Claire; Lipka, Katerina; Lisovyi, Mykhailo; Mangano, Michelangelo; Nadolsky, Pavel; Perrozzi, Luca; Placakyte, Ringaile; Radescu, Voica; Salam, Gavin P; Thorne, Robert

    2015-01-01

    The accurate determination of the Parton Distribution Functions (PDFs) of the proton is an essential ingredient of the Large Hadron Collider (LHC) program. PDF uncertainties impact a wide range of processes, from Higgs boson characterisation and precision Standard Model measurements to New Physics searches. A major recent development in modern PDF analyses has been to exploit the wealth of new information contained in precision measurements from the LHC Run I, as well as progress in tools and methods to include these data in PDF fits. In this report we summarise the information that PDF-sensitive measurements at the LHC have provided so far, and review the prospects for further constraining PDFs with data from the recently started Run II. This document aims to provide useful input to the LHC collaborations to prioritise their PDF-sensitive measurements at Run II, as well as a comprehensive reference for the PDF-fitting collaborations.

  17. Measurement of the helicity fractions of W bosons from top quark decays using fully reconstructed t anti-t events with CDF II

    Energy Technology Data Exchange (ETDEWEB)

    Abulencia, A.; Adelman, J.; Affolder, T.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; Annovi, A.; /Taiwan, Inst. Phys.

    2006-12-01

    The authors present a measurement of the fractions F{sub 0} and F{sub +} of longitudinally polarized and right-handed W bosons in top quark decays using data collected with the CDF II detector. The data set used in the analysis corresponds to an integrated luminosity of approximately 318 pb{sup -1}. They select t{bar t} candidate events with one lepton, at least four jets, and missing transverse energy. The helicity measurement uses the decay angle {theta}*, which is defined as the angle between the momentum of the charged lepton in the W boson rest frame and the W momentum in the top quark rest frame. The cos {theta}* distribution in the data is determined by full kinematic reconstruction of the t{bar t} candidates. They find F{sub 0} = 0.85{sub -0.22}{sup +0.15}(stat){+-}0.06(syst) and F{sub +} = 0.05{sub -0.05}{sup +0.11}(stat) {+-} 0.03(syst), which is consistent with the standard model prediction. They set an upper limit on the fraction of right-handed W bosons of F{sub +} < 0.26 at the 95% confidence level.

  18. Developement of a same-side kaon tagging algorithm of B^0_s decays for measuring delta m_s at CDF II

    Energy Technology Data Exchange (ETDEWEB)

    Menzemer, Stephanie; /Heidelberg U.

    2006-06-01

    The authors developed a Same-Side Kaon Tagging algorithm to determine the production flavor of B{sub s}{sup 0} mesons. Until the B{sub s}{sup 0} mixing frequency is clearly observed the performance of the Same-Side Kaon Tagging algorithm can not be measured on data but has to be determined on Monte Carlo simulation. Data and Monte Carlo agreement has been evaluated for both the B{sub s}{sup 0} and the high statistics B{sup +} and B{sup 0} modes. Extensive systematic studies were performed to quantify potential discrepancies between data and Monte Carlo. The final optimized tagging algorithm exploits the particle identification capability of the CDF II detector. it achieves a tagging performance of {epsilon}D{sup 2} = 4.0{sub -1.2}{sup +0.9} on the B{sub s}{sup 0} {yields} D{sub s}{sup -} {pi}{sup +} sample. The Same-Side Kaon Tagging algorithm presented here has been applied to the ongoing B{sub s}{sup 0} mixing analysis, and has provided a factor of 3-4 increase in the effective statistical size of the sample. This improvement results in the first direct measurement of the B{sub s}{sup 0} mixing frequency.

  19. LHCb computing in Run II and its evolution towards Run III

    CERN Document Server

    Falabella, Antonio

    2016-01-01

    his contribution reports on the experience of the LHCb computing team during LHC Run 2 and its preparation for Run 3. Furthermore a brief introduction on LHCbDIRAC, i.e. the tool to interface to the experiment distributed computing resources for its data processing and data management operations, is given. Run 2, which started in 2015, has already seen several changes in the data processing workflows of the experiment. Most notably the ability to align and calibrate the detector between two different stages of the data processing in the high level trigger farm, eliminating the need for a second pass processing of the data offline. In addition a fraction of the data is immediately reconstructed to its final physics format in the high level trigger and only this format is exported from the experiment site to the physics analysis. This concept have successfully been tested and will continue to be used for the rest of Run 2. Furthermore the distributed data processing has been improved with new concepts and techn...

  20. Eurogrid: a new glideinWMS based portal for CDF data analysis

    Science.gov (United States)

    Amerio, S.; Benjamin, D.; Dost, J.; Compostella, G.; Lucchesi, D.; Sfiligoi, I.

    2012-12-01

    The CDF experiment at Fermilab ended its Run-II phase on September 2011 after 11 years of operations and 10 fb-1 of collected data. CDF computing model is based on a Central Analysis Farm (CAF) consisting of local computing and storage resources, supported by OSG and LCG resources accessed through dedicated portals. At the beginning of 2011 a new portal, Eurogrid, has been developed to effectively exploit computing and disk resources in Europe: a dedicated farm and storage area at the TIER-1 CNAF computing center in Italy, and additional LCG computing resources at different TIER-2 sites in Italy, Spain, Germany and France, are accessed through a common interface. The goal of this project is to develop a portal easy to integrate in the existing CDF computing model, completely transparent to the user and requiring a minimum amount of maintenance support by the CDF collaboration. In this paper we will review the implementation of this new portal, and its performance in the first months of usage. Eurogrid is based on the glideinWMS software, a glidein based Workload Management System (WMS) that works on top of Condor. As CDF CAF is based on Condor, the choice of the glideinWMS software was natural and the implementation seamless. Thanks to the pilot jobs, user-specific requirements and site resources are matched in a very efficient way, completely transparent to the users. Official since June 2011, Eurogrid effectively complements and supports CDF computing resources offering an optimal solution for the future in terms of required manpower for administration, support and development.

  1. The CDF upgrade

    International Nuclear Information System (INIS)

    Newman-Holmes, C.

    1995-01-01

    The Collider Detector at Fermilab (CDF) has been used to study proton-antiproton collisions at the Fermilab Tevatron since 1985. Over the years, the detector has evolved steadily to increase its physics capability and to keep pace with improvements to the Tevatron. Fermilab is currently building a new Main Injector accelerator which will lead to even larger luminosity values. This paper describes upgrades to CDF that will allow one to exploit the higher luminosity of the Main Injector

  2. ISTP CDF Skeleton Editor

    Science.gov (United States)

    Chimiak, Reine; Harris, Bernard; Williams, Phillip

    2013-01-01

    Basic Common Data Format (CDF) tools (e.g., cdfedit) provide no specific support for creating International Solar-Terrestrial Physics/Space Physics Data Facility (ISTP/SPDF) standard files. While it is possible for someone who is familiar with the ISTP/SPDF metadata guidelines to create compliant files using just the basic tools, the process is error-prone and unreasonable for someone without ISTP/SPDF expertise. The key problem is the lack of a tool with specific support for creating files that comply with the ISTP/SPDF guidelines. There are basic CDF tools such as cdfedit and skeletoncdf for creating CDF files, but these have no specific support for creating ISTP/ SPDF compliant files. The SPDF ISTP CDF skeleton editor is a cross-platform, Java-based GUI editor program that allows someone with only a basic understanding of the ISTP/SPDF guidelines to easily create compliant files. The editor is a simple graphical user interface (GUI) application for creating and editing ISTP/SPDF guideline-compliant skeleton CDF files. The SPDF ISTP CDF skeleton editor consists of the following components: A swing-based Java GUI program, JavaHelp-based manual/ tutorial, Image/Icon files, and HTML Web page for distribution. The editor is available as a traditional Java desktop application as well as a Java Network Launching Protocol (JNLP) application. Once started, it functions like a typical Java GUI file editor application for creating/editing application-unique files.

  3. LHCb's Time-Real Alignment in RunII

    CERN Multimedia

    Batozskaya, Varvara

    2015-01-01

    LHCb has introduced a novel real-time detector alignment and calibration strategy for LHC Run 2. Data collected at the start of the fill will be processed in a few minutes and used to update the alignment, while the calibration constants will be evaluated for each run. This procedure will improve the quality of the online alignment. Critically, this new real-time alignment and calibration procedure allows identical constants to be used in the online and offline reconstruction, thus improving the correlation between triggered and offline selected events. This offers the opportunity to optimise the event selection in the trigger by applying stronger constraints. The required computing time constraints are met thanks to a new dedicated framework using the multi-core farm infrastructure for the trigger. The motivation for a real-time alignment and calibration of the LHCb detector is discussed from both the operational and physics performance points of view. Specific challenges of this novel configur...

  4. The ATLAS Muon Trigger Performance in Run I and Initial Run II Performance

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00437899; The ATLAS collaboration

    2015-01-01

    Events with muons in the final state are an important signature for many physics topics at the Large Hadron Collider (LHC). An efficient trigger on muons and a detailed understanding of its performance are required. In 2012, the last year of Run I, the instantaneous luminosity of the LHC reached 7.7x1033 cm-2s-1 and the average number of events that occur in a same bunch crossing was 25. The ATLAS Muon trigger has successfully adapted to this changing environment by making use of isolation requirements, combined trigger signatures with electron and jet trigger objects, and by using so-called full-scan triggers, which make use of the full event information to search for di-lepton signatures, seeded by single lepton objects. A stable and highly efficient muon trigger was vital in the discovery of Higgs boson in 2012 and for many searches for new physics. The performance of muon triggers during the LHC Run 1 data-taking campaigns is presented, together with an overview and preliminary results of the new muon str...

  5. The ATLAS Muon Trigger Performance in Run I and Initial Run II Performance

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00437899; The ATLAS collaboration

    2016-01-01

    Events with muons in the final state are an important signature for many physics topics at the Large Hadron Collider. An efficient trigger on muons and a detailed understanding of its performance are required. In 2012, the last year of Run I, the instantaneous luminosity reached $7.7\\times10^{33}$ cm$^{-2}$s$^{-1}$ and the average number of interactions that occur in the same bunch crossing was 25. The ATLAS muon trigger has successfully adapted to this challenging environment by making use of isolation requirements, combined trigger signatures with electron and jet trigger objects, and by using so-called full-scan triggers, which make use of the full event information to search for di-lepton signatures, seeded by single lepton objects. A stable and highly efficient muon trigger was vital in the discovery of the Higgs boson in 2012 and for many searches for new physics. The performance of muon triggers during the Large Hadron Collider Run I data-taking campaigns is presented, together with an overview and pre...

  6. Top quark pair production and top quark properties at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Chang-Seong [INFN, Pisa

    2016-06-02

    We present the most recent measurements of top quark pairs production and top quark properties in proton-antiproton collisions with center-of-mass energy of 1.96 TeV using CDF II detector at the Tevatron. The combination of top pair production cross section measurements and the direct measurement of top quark width are reported. The test of Standard Model predictions for top quark decaying into $b$-quarks, performed by measuring the ratio $R$ between the top quark branching fraction to $b$-quark and the branching fraction to any type of down quark is shown. The extraction of the CKM matrix element $|V_{tb}|$ from the ratio $R$ is discussed. We also present the latest measurements on the forward-backward asymmetry ($A_{FB}$) in top anti-top quark production. With the full CDF Run II data set, the measurements are performed in top anti-top decaying to final states that contain one or two charged leptons (electrons or muons). In addition, we combine the results of the leptonic forward-backward asymmetry in $t\\bar t$ system between the two final states. All the results show deviations from the next-to-leading order (NLO) standard model (SM) calculation.

  7. W Boson Mass Measurement at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Kotwal, Ashutosh V. [Duke Univ., Durham, NC (United States). Physics Dept.

    2017-03-27

    This is the closeout report for the grant for experimental research at the energy frontier in high energy physics. The report describes the precise measurement of the W boson mass at the CDF experiment at Fermilab, with an uncertainty of ≈ 12 MeV, using the full dataset of ≈ 9 fb-1 collected by the experiment up to the shutdown of the Tevatron in 2011. In this analysis, the statistical and most of the experimental systematic uncertainties have been reduced by a factor of two compared to the previous measurement with 2.2 fb-1 of CDF data. This research has been the culmination of the PI's track record of producing world-leading measurements of the W boson mass from the Tevatron. The PI performed the first and only measurement to date of the W boson mass using high-rapidity leptons using the D0 endcap calorimeters in Run 1. He has led this measurement in Run 2 at CDF, publishing two world-leading measurements in 2007 and 2012 with total uncertainties of 48 MeV and 19 MeV respectively. The analysis of the final dataset is currently under internal review in CDF. Upon approval of the internal review, the result will be available for public release.

  8. The ATLAS Trigger System: Ready for Run II

    CERN Document Server

    Czodrowski, Patrick; The ATLAS collaboration

    2015-01-01

    The ATLAS trigger system has been used successfully for data collection in the 2009-2013 Run 1 operation cycle of the CERN Large Hadron Collider (LHC) at center-of-mass energies of up to 8 TeV. With the restart of the LHC for the new Run 2 data-taking period at 13 TeV, the trigger rates are expected to rise by approximately a factor of 5. The trigger system consists of a hardware-based first level (L1) and a software-based high-level trigger (HLT) that reduces the event rate from the design bunch-crossing rate of 40 MHz to an average recording rate of ~ 1kHz. This presentation will give an overview of the upgrades to the ATLAS trigger system that have been implemented during the LHC shutdown period in order to deal with the increased trigger rates while efficiently selecting the physics processes of interest. These upgrades include changes to the L1 calorimeter trigger, the introduction of a new L1 topological trigger module, improvements in the L1 muon system, and the merging of the previously two-level HLT ...

  9. QCD tests at CDF

    International Nuclear Information System (INIS)

    Kovacs, E.

    1996-02-01

    We present results for the inclusive jet cross section and the dijet mass distribution. The inclusive cross section and dijet mass both exhibit significant deviations from the predictions of NLO QCD for jets with E T >200 GeV, or dijet masses > 400 GeV/c 2 . We show that it is possible, within a global QCD analysis that includes the CDF inclusive jet data, to modify the gluon distribution at high x. The resulting increase in the jet cross-section predictions is 25-35%. Owing to the presence of k T smearing effects, the direct photon data does not provide as strong a constraint on the gluon distribution as previously thought. A comparison of the CDF and UA2 jet data, which have a common range in x, is plagued by theoretical and experimental uncertainties, and cannot at present confirm the CDF excess or the modified gluon distribution

  10. Electron identification at CDF

    International Nuclear Information System (INIS)

    Kim, Shinhong

    1990-01-01

    Electron identification at CDF is performed using the information of lateral and longitudinal shower spread, the track-cluster position match and the energy-momentum match. The tracking chamber with a solenoidal magnetic field at CDF is powerful for rejecting the backgrounds such as the π ± - π 0 overlaps, the π 0 /γ conversions and interactive π ± in electromagnetic calorimeter: The energy- momentum match cut can decrease the background due to the π ± - π 0 overlaps for non-isolated electrons with Et above 10 GeV by a factor of 20. The conversion electrons are identified using track information with an efficiency of 80 ± 3%. The charge of electrons from W decay can be determined in the pseudorapidity range of |η| < 1.7 at CDF. The charge determination is useful for background estimation of Drell-Yan physics and heavy flavor physics. 5 refs., 5 figs

  11. LHCb : LHCbVELO: Performance and Radiation Damage in LHC Run I and Preparationfor Run II

    CERN Multimedia

    Szumlak, Tomasz

    2015-01-01

    LHCb is a dedicated experiment to study New Physics in the decays of heavy hadrons at the Large Hadron Collider (LHC) at CERN. Heavy hadrons are identified through their flight distance in the Vertex Locator (VELO). The VELO comprises 42 modules made of two n+-on-n 300 um thick half-disc silicon sensors with R-measuring and Phi-measuring micro-strips. In order to allow retracting the detector, the VELO is installed as two movable halves containing 21 modules each. The detectors are operated in a secondary vacuum and are cooled by a bi-phase CO2 cooling system. During data taking in LHC Run 1 the LHCb VELO has operated with an extremely high efficiency and excellent performance. The track finding efficiency is typically greater than 98%. An impact parameter resolution of less than 35 um is achieved for particles with transverse momentum greater than 1 GeV/c. An overview of all important performance parameters will be given. The VELO sensors have received a large and non-uniform radiation dose of up to 1.2 x 10...

  12. LUCID Upgrade for ATLAS Luminosity Measurement in Run II.

    CERN Document Server

    Ucchielli, Giulia; The ATLAS collaboration

    2016-01-01

    The main ATLAS luminosity monitor LUCID and its read-out electronics has been completely rebuilt for the 2015 LHC run in order to cope with a higher center of mass energy (13 TeV) and with 25 ns bunch-spacing. The LUCID detector is measuring Cherenkov light produced in photomultiplier quartz windows and in quartz optical fibers. It has a novel calibration system that uses radioactive Bi$^{207}$ sources that produces internal conversion electrons above the Cherenkov threshold in quartz. The new electronics can count particle hits above a threshold but also the integrated pulseheight of the signals from the particles which makes it possible to measure luminosity with new methods. The new detector, calibration system and electronics will be covered by the contribution as well as the results of the luminosity measurements with the detector in 2015.

  13. Vector resonances at LHC Run II in composite 2HDM

    Energy Technology Data Exchange (ETDEWEB)

    Chiara, Stefano Di [National Institute of Chemical Physics and Biophysics,Rävala 10, 10143 Tallinn (Estonia); Heikinheimo, Matti; Tuominen, Kimmo [Helsinki Institute of Physics, University of Helsinki,P.O. Box 64, FI-000140, Helsinki (Finland); Department of Physics, University of Helsinki,P.O. Box 64, FI-000140, Helsinki (Finland)

    2017-03-02

    We consider a model where the electroweak symmetry breaking is driven by strong dynamics, resulting in an electroweak doublet scalar condensate, and transmitted to the standard model matter fields via another electroweak doublet scalar. At low energies the effective theory therefore shares features with a type-I two Higgs doublet model. However, important differences arise due to the rich composite spectrum expected to contain new vector resonances accessible at the LHC. We carry out a systematic analysis of the vector resonance signals at LHC and find that the model remains viable, but will be tightly constrained by direct searches as the projected integrated luminosity, around 200 fb{sup −1}, of the current run becomes available.

  14. The updated ATLAS Jet Trigger for the LHC Run II

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00359694; The ATLAS collaboration

    2015-01-01

    After the current shutdown, the LHC is about to resume operation for a new data-taking period, when it will operate with increased luminosity, event rate and center of mass energy. The new conditions will impose more demanding constraints on the ATLAS online trigger reconstruction and selection system. To cope with such increased constraints, the ATLAS High-Level Trigger, placed after a first hardware-based Level~1 trigger, has been redesigned by merging two previously separated software-based processing levels. In the new joint processing level, the algorithms run in the same computing nodes, thus sharing resources, minimizing the data transfer from the detector buffers and increasing the algorithm flexibility. The jet trigger software selects events containing high transverse momentum hadronic jets. It needs optimal jet energy resolution to help rejecting an overwhelming background while retaining good efficiency for interesting jets. In particular, this requires the CPU-intensive reconstruction of tridimen...

  15. ATLAS Jet Trigger Update for the LHC Run II

    CERN Document Server

    Prince, Sebastien; The ATLAS collaboration

    2015-01-01

    After the current shutdown, the LHC is about to resume operation for a new data-taking period, when it will operate with increased luminosity, event rate and centre of mass energy. The new conditions will impose more demanding constraints on the ATLAS online trigger reconstruction and selection system. To cope with such increased constraints, the ATLAS High Level Trigger, placed after a first hardware-based Level-1 trigger, has been redesigned by merging two previously separated software-based processing levels. In the new joint processing level, the algorithms run in the same computing nodes, thus sharing resources, minimizing the data transfer from the detector buffers and increasing the algorithm flexibility. The Jet trigger software selects events containing high transverse momentum hadronic jets. It needs optimal jet energy resolution to help rejecting an overwhelming background while retaining good efficiency for interesting jets. In particular, this requires the CPU-intensive reconstruction of tridimen...

  16. CDF Top Physics

    Science.gov (United States)

    Tartarelli, G. F.; CDF Collaboration

    1996-05-01

    The authors present the latest results about top physics obtained by the CDF experiment at the Fermilab Tevatron collider. The data sample used for these analysis (about 110 pb{sup{minus}1}) represents almost the entire statistics collected by CDF during four years (1992--95) of data taking. This large data size has allowed detailed studies of top production and decay properties. The results discussed here include the determination of the top quark mass, the measurement of the production cross section, the study of the kinematics of the top events and a look at top decays.

  17. Luminosity monitoring and measurement at CDF

    International Nuclear Information System (INIS)

    Cronin-Hennessy, D.; Beretvas, A.; Derwent, P.F.

    2000-01-01

    Using two telescopes of beam-beam counters, CDF (Collider Detector at Fermilab) has measured the luminosity to an accuracy of 4.1% (3.6%) in run Ib (Ia). For run Ib (Ia) the average luminosity was 9.1(3.3)x10 30 cm -2 s -1 . For a typical data set the integrated luminosity was 86.47 (19.65) pb -1 in run Ib (Ia) resulting in a total integrated luminosity of 106.1±4.1 pb -1 . This paper shows how we have determined the accuracy of our results

  18. Update on the di-jet mass spectrum in W+2jet events at CDF

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    In 2011 CDF reported an excess of events with respect to SM background expectations in the W + 2 jet final state, potentially consistent with a resonance in the dijet invariant mass spectrum in the neighborhood of 145 GeV/c^2. Here, we report on updated CDF results for this channel using the full Run II data set and incorporating improvements in the techniques used to model SM background contributions. In addition, we report on searches performed in orthogonal final states where one might also expect to observe contributions from a non-SM production mechanism if this was in fact the explanation for the previously observed excess in the W + 2 jet final state.

  19. The CDF level-3 trigger

    International Nuclear Information System (INIS)

    Devlin, T.

    1993-01-01

    The Collider Detector at Fermilab (CDF) has been operating at the Tevatron and collecting data on proton-antiproton interactions with collision rates above 250,000 Hz. Three levels of filtering select events for data logging at a rate of about 4 Hz. The Level 3 trigger provides most of the capabilities of the offline production programs for event reconstruction and physics analysis. The type of physics triggers, application of cuts, and combinations of logical requirements for event selection are controlled at run time by a trigger table using a syntax fully integrated with the Level 1 and Level 2 hardware triggers. The level 3 software operates in 48 RISC/UNIX processors (over 1000 mips) served by four 20-MByte/sec data buses for input, output and control. The system architecture, debugging, code validation, error reporting, analysis capabilities and performance will be described

  20. Enhancing the CDF's B physics program with a faster data acquisition system.

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Petar Maksimovic

    2011-03-02

    The physics program of Run II at the Tevatron includes precision electroweak measurements such as the determination of the top quark and W boson masses; bottom and charm physics including the determination of the B{sub s} and D{sup 0} mixing parameters; studies of the strong interaction; and searches for the Higgs particle, supersymmetric particles, hidden space-time dimensions and quark substructure. All of these measurements benefit from a high-resolution tracking detector. Most of them rely heavily on the efficient identification of heavy flavored B hadrons by detection of displaced secondary vertices, and are enhanced by the capability to trigger on tracks not coming from the primary vertex. This is uniquely provided by CDF's finely-segmented silicon detectors surrounding the interaction region. Thus CDF experiment's physics potential critically depends on the performance of its silicon detectors. The CDF silicon detectors were designed to operate up to 2-3 fb{sup -1} of accumulated pji collisions, with an upgrade planned thereafter. However, the upgrade project was canceled in 2003 and Run II has been extended through 2011, with an expected total delivered integrated luminosity of 12 fb{sup -1} or more. Several preventive measures were taken to keep the original detector operational and maintain its performance. The most important of these are the decrease in the operating temperature of the detector, which reduces the impact of radiation exposure, and measures to minimize damage due to integrated radiation dose, thermal cycles, and wire bond resonance conditions. Despite these measures the detectors operating conditions continue to change with issues arising from radiation damage to the sensors, aging infrastructure and electronics. These, together with the basic challenges posed by the inaccessibility of the detector volume and large number (about 750 thousand) of readout channels, make the silicon detector operations the single most complex and

  1. Enhancing the CDF's B physics program with a faster data acquisition system

    International Nuclear Information System (INIS)

    Maksimovic, Petar

    2011-01-01

    The physics program of Run II at the Tevatron includes precision electroweak measurements such as the determination of the top quark and W boson masses; bottom and charm physics including the determination of the B s and D 0 mixing parameters; studies of the strong interaction; and searches for the Higgs particle, supersymmetric particles, hidden space-time dimensions and quark substructure. All of these measurements benefit from a high-resolution tracking detector. Most of them rely heavily on the efficient identification of heavy flavored B hadrons by detection of displaced secondary vertices, and are enhanced by the capability to trigger on tracks not coming from the primary vertex. This is uniquely provided by CDF's finely-segmented silicon detectors surrounding the interaction region. Thus CDF experiment's physics potential critically depends on the performance of its silicon detectors. The CDF silicon detectors were designed to operate up to 2-3 fb -1 of accumulated pji collisions, with an upgrade planned thereafter. However, the upgrade project was canceled in 2003 and Run II has been extended through 2011, with an expected total delivered integrated luminosity of 12 fb -1 or more. Several preventive measures were taken to keep the original detector operational and maintain its performance. The most important of these are the decrease in the operating temperature of the detector, which reduces the impact of radiation exposure, and measures to minimize damage due to integrated radiation dose, thermal cycles, and wire bond resonance conditions. Despite these measures the detectors operating conditions continue to change with issues arising from radiation damage to the sensors, aging infrastructure and electronics. These, together with the basic challenges posed by the inaccessibility of the detector volume and large number (about 750 thousand) of readout channels, make the silicon detector operations the single most complex and high priority job in the CDF

  2. Quarkonia production at CDF

    International Nuclear Information System (INIS)

    Demina, R.

    1996-08-01

    We present the results of J/ψ, ψ', χ c and Υ(1S), Υ(2S), Υ(3S) production in the proton-antiproton collisions at √s = 1800 GeV measured with the CDF Detector. Contributions of different production mechanisms are discussed. 10 refs., 7 figs

  3. Log(s) physics results from CDF

    International Nuclear Information System (INIS)

    1989-01-01

    The Collider Detector at Fermilab (CDF) is a large, azimuthally symmetric detector designed to study bar pp interactions at the Fermilab Tevatron Collider. Results are presented from data taken with a minimum bias trigger at √s = 630 and 1800 GeV during the 1987 run. The topics include the current analysis of dn/dη and some very preliminary results on short range pseudorapidity correlations and Bose-Einstein correlations. 7 refs., 5 figs., 2 tabs

  4. Measurement of the CP-Violating Phase beta_s in B0s -> J/Psi Phi Decays with the CDF II Detector

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, T. [Helsinki Institute of Physics (Finland); et al.

    2012-04-01

    We present a measurement of the \\CP-violating parameter \\betas using approximately 6500 $\\BsJpsiPhi$ decays reconstructed with the CDF\\,II detector in a sample of $p\\bar p$ collisions at $\\sqrt{s}=1.96$ TeV corresponding to 5.2 fb$^{-1}$ integrated luminosity produced by the Tevatron Collider at Fermilab. We find the \\CP-violating phase to be within the range $\\betas \\in [0.02, 0.52] \\cup [1.08, 1.55]$ at 68% confidence level where the coverage property of the quoted interval is guaranteed using a frequentist statistical analysis. This result is in agreement with the standard model expectation at the level of about one Gaussian standard deviation. We consider the inclusion of a potential $S$-wave contribution to the $\\Bs\\to J/\\psi K^+K^-$ final state which is found to be negligible over the mass interval $1.009 < m(K^+K^-)<1.028 \\gevcc$. Assuming the standard model prediction for the \\CP-violating phase \\betas, we find the \\Bs decay width difference to be $\\deltaG = 0.075 \\pm 0.035\\,\\textrm{(stat)} \\pm 0.006\\,\\textrm{(syst)} \\ps$. We also present the most precise measurements of the \\Bs mean lifetime $\\tau(\\Bs) = 1.529 \\pm 0.025\\,\\textrm{(stat)} \\pm 0.012\\,\\textrm{(syst)}$ ps, the polarization fractions $|A_0(0)|^2 = 0.524 \\pm 0.013\\,\\textrm{(stat)} \\pm 0.015\\,\\textrm{(syst)}$ and $|A_{\\parallel}(0)|^2 = 0.231 \\pm 0.014\\,\\textrm{(stat)} \\pm 0.015\\,\\textrm{(syst)}$, as well as the strong phase $\\delta_{\\perp}= 2.95 \\pm 0.64\\,\\textrm{(stat)} \\pm 0.07\\,\\textrm{(syst)} \\textrm{rad}$. In addition, we report an alternative Bayesian analysis that gives results consistent with the frequentist approach.

  5. New particle searches at CDF

    International Nuclear Information System (INIS)

    Nodulman, L.J.

    1995-09-01

    One of the fundamental roles of a general purpose detector exploring, by means of increasing luminosity, higher and higher mass reach, is to search for new particles and exotic phenomena. This is a continuing effort for the CDF collaboration, and will report on several searches using about 20 pb -1 from the 1992/93 run labelled open-quotes run 1aclose quotes and ∼50 of the 90 pb -1 so far from the current open-quotes run 1b.close quotes These are mostly preliminary analyses, typically using a total of 70 pb -1 . Our limits on SUSY using missing E T with jets as well as three leptons are discussed elsewhere; results from the D0 collaboration are similar. I will discuss searches for additional vector bosons Z' and W', second generation scalar leptoquarks, as well as a broad search for objects decaying into jet pairs, including b-tagged jet pairs. I will also describe two events which do not fit in comfortably with either the standard model or a phenomenologically motivated search

  6. Technical design report for the upgrade of the ICD for D-Zero Run II

    International Nuclear Information System (INIS)

    Sawyer, L.; De, K.; Draper, P.; Gallas, E.; Li, J.; Sosebee, M.; Stephens, R.W.; White, A.

    1998-01-01

    The Inter Cryostat Detector (ICD) used in Run I of the D0 Experiment will be inoperable in the central, high magnetic field planned for Run II. In Run I, the ICD enhanced the hermeticity and uniformity of the D0 calorimeter system, improving both missing transverse energy and jet energy resolution. The goals for the Run II ICD are the same. In this document, the physics arguments for maintaining the ICD are presented, followed by a detailed description of the planned design changes, prototype tests, construction, installation, and commissioning of the device for the Run II D0 detector. Estimates of costs and schedule can be found on //DOSERVER2/Operations/Upgrade Project/ subareas available via DZERO's WinFrame Program Manager. This detector is not intended to provide any ''L0'' capabilities (for luminosity monitoring), or to provide any EM coverage in the intermediate region, or to provide additional coverage in the intermediate regions, unlike previous upgrades proposed in this detector region. The ICD upgrade described here maintains most of the Run I capabilities in a high magnetic field environment

  7. Jet physics at CDF

    International Nuclear Information System (INIS)

    Melese, P.

    1997-05-01

    We present high E T jet measurements from CDF at the Fermilab Tevatron Collider. The incfilusive jet cross section at √s = 1800 GeV with ∼ 5 times more data is compared to the published CDF results, preliminary D0 results, and next-to-leading order QCD predictions. The summation E T cross section is also compared to QCD predictions and the dijet angular distribution is used to place a limit on quark compositeness. The inclusive jet cross section at √s = 630 GeV is compared with that at 1800 GeV to test the QCD predictions for the scaling of jet cross sections with √s. Finally, we present momentum distributions of charged particles in jets and compare them to Modified Leading Log Approximation predictions

  8. Beautiful physics at CDF

    International Nuclear Information System (INIS)

    Bauer, G.

    1998-01-01

    B-physics with p anti p collisions at CDF is reviewed, including production cross sections, masses, and decay properties. with a focus on lifetime and mixing measurements. A two-component lifetime fit of B 0 s → l + D - s X results in the limit ΔΓ s /Γ s s . From our five B 0 d -anti B 0 d oscillation analyses, we highlight the use of ''same side'' flavor tagging

  9. Level-3 Calorimetric Resolution available for the Level-1 and Level-2 CDF Triggers

    CERN Document Server

    Canepa, A.; Liu, T.; Cortiana, G.; Flanagan, G.; Frisch, H.; Krop, D.; Pilcher, C.; Rusu, V.; Cavaliere, V.; Greco, V.; Giannetti, P.; Piendibene, M.; Sartori, L.; Vidal, Miguel

    2008-01-01

    As the Tevatron luminosity increases sophisticated selections are required to be efficient in selecting rare events among a very huge background. To cope with this problem, CDF has pushed the offline calorimeter algorithm reconstruction resolution up to Level 2 and, when possible, even up to Level 1, increasing efficiency and, at the same time, keeping under control the rates. The CDF Run II Level 2 calorimeter trigger is implemented in hardware and is based on a simple algorithm that was used in Run I. This system has worked well for Run II at low luminosity. As the Tevatron instantaneous luminosity increases, the limitation due to this simple algorithm starts to become clear: some of the most important jet and MET (Missing ET) related triggers have large growth terms in cross section at higher luminosity. In this paper, we present an upgrade of the Level 2 Calorimeter system which makes the calorimeter trigger tower information available directly to a CPU allowing more sophisticated algorithms to be impleme...

  10. Muon reconstruction and identification with the Run II D0 detector

    Czech Academy of Sciences Publication Activity Database

    Abazov, V. M.; Abbott, B.; Acharya, B.S.; Kupčo, Alexander; Lokajíček, Miloš

    2014-01-01

    Roč. 737, Feb (2014), s. 281-294 ISSN 0168-9002 R&D Projects: GA MŠk(CZ) LG12006 Institutional support: RVO:68378271 Keywords : Fermilab * D0 * Tevatron Run II * muon identification * muon reconstruction Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.216, year: 2014

  11. Operation of the DC current transformer intensity monitors at FNAL during run II

    Energy Technology Data Exchange (ETDEWEB)

    Crisp, J.; Fellenz, B.; Heikkinen, D.; Ibrahim, M.A.; Meyer, T.; Vogel, G.; /Fermilab

    2012-01-01

    Circulating beam intensity measurements at FNAL are provided by five DC current transformers (DCCT), one per machine. With the exception of the DCCT in the Recycler, all DCCT systems were designed and built at FNAL. This paper presents an overview of both DCCT systems, including the sensor, the electronics, and the front-end instrumentation software, as well as their performance during Run II.

  12. Kinematic top analyses at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Grassmann, H.; CDF Collaboration

    1995-03-01

    We present an update of the top quark analysis using kinematic techniques in p{bar p} collisions at {radical}s = 1.8 TeV with the Collider Detector at Fermilab (CDF). We reported before on a study which used 19.3 pb{sup {minus}1} of data from the 1992--1993 collider run, but now we use a larger data sample of 67 pb{sup {minus}1}. First, we analyze the total transverse energy of the hard collision in W+{ge}3 jet events, showing the likely presence of a t{bar t} component in the event sample. Next, we compare in more detail the kinematic structure of W+ {ge}3 jet events with expectations for top pair production and with background processes, predominantly direct W+ jet production. We again find W+ {ge} 3 jet events which cannot be explained in terms of background, but show kinematic features as expected from top. These events also show evidence for beauty quarks, in agreement with expectations from top, but not compatible with expectations from backgrounds. The findings confirm the observation of top events made earlier in the data of the 1992--1993 collider run.

  13. Measurement of the $s$-channel Single Top Quark Cross Section at the CDF Experiment and Contributions to the Evidence of $H\\rightarrow bb$ at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hao [Univ. of Virginia, Charlottesville, VA (United States)

    2014-08-01

    In this thesis, we present the measurement of the s-channel single top quark production cross section. In the cross section measurement we use data generated by protonantiproton collisions at the center-of-mass energy √s = 1.96 TeV and collected by the CDF Run II detector. The total data set corresponds to an integrated luminosity of 9.4 fb-1.

  14. PHYTOREMEDIATION OF DREDGED SEDIMENTS: A CASE STUDY AT THE JONES ISLAND CDF

    Science.gov (United States)

    The Jones Island Confined Disposal Facility (CDF) is a 44 acre in-lake area that receives dredged material from Milwaukee Harbor and the surrounding waterways. Some of those materials are contaminated with industrial waste and urban run-off. The CDF is nearing the end of its desi...

  15. CDF results on B decays

    International Nuclear Information System (INIS)

    Skarha, J.E.

    1995-05-01

    The authors present recent CDF results on B lifetimes, B meson mass measurements, ratios of branching ratios, and rare decays. In addition, they present the first measurement of time-dependent B d mixing at CDF. Several results have been updated and a few new ones included since the workshop

  16. The CDF Silicon Vertex Trigger

    International Nuclear Information System (INIS)

    Dell'Orso, Mauro

    2006-01-01

    Motivations, design, performance and ongoing upgrade of the CDF Silicon Vertex Trigger are presented. The system provides CDF with a powerful tool for online tracking with offline quality in order to enhance the reach on B-physics and large P t -physics coupled to b quarks

  17. Measurement of the Branching fraction ratio BR (B+ $\\bar{D}$0K+→ [K+π-] K+)/(BR (B+ $\\bar{D}$0π+ [K+π-+) with the CDF II detector

    Energy Technology Data Exchange (ETDEWEB)

    Squillacioti, Paola [Univ. of Siena (Italy)

    2006-11-01

    In this thesis the author has described the first measurement performed at a hadron collider of the branching fraction of the Cabibbo-suppressed mode B+ → $\\bar{D}$0 K+. The analysis has been performed with 360 pb-1 of data collected by the CDF II detector.

  18. Search for Anomalous Production of Photon + Jets + Missing Transverse Energy in $p\\bar{p}$ Collisions at $\\sqrt{s}=1.96$~TeV Using the CDF II Detector

    Energy Technology Data Exchange (ETDEWEB)

    Hewamanage, Samantha Kaushalya [Baylor Univ., Waco, TX (United States)

    2011-01-01

    A model-independent signature-based search for physics beyond the Standard Model is performed in the photon + jets + missing transverse energy channel in \\ppbar collisions at a center of mass energy of 1.96 TeV using the CDF II detector. Events with a photon + jets are predicted by the Standard Model and also by many theoretical models beyond the Standard Model. In the Standard Model, the main mechanisms for photon + jets production include quark-antiquark annihilation and quark-gluon scattering. No intrinsic missing transverse energy is present in any of these Standard Model processes. In this search, photon + $\\geq$1 jet and photon + $\\geq$2 jet events are analyzed with and without a minimum requirement on the missing transverse energy. Numerous mass distributions and kinematic distributions are studied and no significant excess over the background prediction is found. All results indicate good agreement with expectations of the Standard Model.

  19. Search for B⁰s → μ+ μ- and B⁰d → mu+mu- decays in p anti-p collisions with CDF. II.

    Energy Technology Data Exchange (ETDEWEB)

    Abulencia, A.; Acosta, D.; Adelman, J.; Affolder, T.; Akimoto, T.; Albrow, M. G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; Annovi, A.; Antos, J.; Aoki, M.; Apollinari, G.; Arguin, J. -F.; Arisawa, T.; Artikov, A.; Ashmanskas, W.; Attal, A.; Azfar, F.

    2005-08-01

    We report on a search for B⁰s → μ+ μ- and B⁰d → mu+mu- decays in p anti-p collisions at √s = 1.96 TeV using 364.4 pb -1 of data collected by the CDF II dectector at Fermilab Tevatron Collider. After applying all selection requirements, we observe no candidates inside the B⁰s or B⁰d mass windows. The resulting upper limits on the branching fractions are β(B⁰s → μ+μ-) < 1.5 x 10-7 and β(B⁰d → μ+μ-) < 3.9 x 10-8 at 90 % confidence level. (auth)

  20. Alignment of the ATLAS Inner Detector in the LHC Run II

    CERN Document Server

    Barranco Navarro, Laura; The ATLAS collaboration

    2015-01-01

    ATLAS physics goals require excellent resolution, unbiased measurement of all charged particle kinematic parameters. These critically depend on the layout and performance of the tracking system and on the quality of its offline alignment. ATLAS is equipped with a tracking system built using different technologies, silicon planar sensors (pixel and micro-strip) and gaseous drift- tubes, all embedded in a 2T solenoidal magnetic field. For the Run II of the LHC, the system was upgraded with the installation of a new pixel layer, the Insertable B-layer (IBL). An outline of the track based alignment approach and its implementation within the ATLAS software will be presented. Special attention will be paid to integration of the IBL into the alignment framework, techniques allowing to identify and eliminate tracking systematics as well as strategies to deal with time-dependent alignment. Performance from the commissioning of Cosmic data and potentially early LHC Run II proton-proton collisions will be discussed.

  1. Achieving the optimal performance of the CMS ECAL in Run II

    CERN Document Server

    Sun, Menglei

    2016-01-01

    Many physics analyses using the Compact Muon Solenoid (CMS) detector at the LHC require accurate, high resolution electron and photon energy measurements. Particularly important are decays of the Higgs boson resulting in electromagnetic particles in the final state. Di-photon events in CMS are also a very important channel in the search for Higgs boson production in association with other particles or in the search for possible new resonances of higher mass. The requirement for high performance electromagnetic calorimetry therefore remains high during LHC Run II. Following the excellent performance achieved in Run~I at a center of mass energy of 7 and 8 TeV, the CMS electromagnetic calorimeter (ECAL) started operating at the LHC in Spring 2015 with proton-proton collisions at 13 TeV center-of-mass energy. The instantaneous luminosity delivered by the LHC during Run~II is expected to exceed the levels achieved in Run I, using 25 ns bunch spacing. The average number of concurrent proton-proton collisions per bu...

  2. Beauty and charm rare decays at the LHC: prospects for Run II

    CERN Document Server

    Fiorendi, Sara; De Sanctis, Umberto

    2016-01-01

    The main results on the searches for rare decays of B and D mesons from ATLAS, CMS and LHCb experiments are summarised in this report. Particular attention will be given to the measurements performed by at least two of the three experiments, where common aspects and differences are highlighted. Detector improvements and perspectives of the three experiments for Run II ongoing data campaign are also discussed.

  3. New shower maximum trigger for electrons and photons at CDF

    International Nuclear Information System (INIS)

    Amidei, D.; Burkett, K.; Gerdes, D.; Miao, C.; Wolinski, D.

    1994-01-01

    For the 1994 Tevatron collider run, CDF has upgraded the electron and photo trigger hardware to make use of shower position and size information from the central shower maximum detector. For electrons, the upgrade has resulted in a 50% reduction in backgrounds while retaining approximately 90% of the signal. The new trigger also eliminates the background to photon triggers from single-phototube spikes

  4. New shower maximum trigger for electrons and photons at CDF

    International Nuclear Information System (INIS)

    Gerdes, D.

    1994-08-01

    For the 1994 Tevatron collider run, CDF has upgraded the electron and photon trigger hardware to make use of shower position and size information from the central shower maximum detector. For electrons, the upgrade has resulted in a 50% reduction in backgrounds while retaining approximately 90% of the signal. The new trigger also eliminates the background to photon triggers from single-phototube discharge

  5. Top physics at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, R.E. [Univ. of Rochester, NY (United States)

    1997-01-01

    We report on top physics results using a 100 pb{sup -1} data sample of p{bar p} collisions at {radical}s = 1.8 TeV collected with the Collider Detector at Fermilab (CDF). We have identified top signals in a variety of decay channels, and used these channels to extract a measurement of the top mass and production cross section. A subset of the data (67 pb{sup -1}) is used to determine M{sub top} = 176 {+-} 8(stat) {+-} 10(syst) and {sigma}(tt) = 7.6 {sub -2.0}{sup +2.4} pb. We present studies of the kinematics of t{bar t} events and extract the first direct measurement of V{sub tb}. Finally, we indicate prospects for future study of top physics at the Tevatron.

  6. Evaluation of CCTF Core-II second acceptance Test C2-AC2 (Run 052)

    International Nuclear Information System (INIS)

    Okubo, Tsutomu; Murao, Yoshio

    1984-03-01

    In order to investigate the thermo-hydrodynamic behavior in a PWR during the reflood phase of the LOCA, large scale reflooding tests have been conducted at JAERI using the CCTF Core-I and Core-II facilities. This report presents the investigation on the difference in the thermo-hydrodynamic behavior observed between in the CCTF Core-I and Core-II facilities. For this purpose the test data of the second CCTF Core-II acceptance test C2-AC2 (Run 052) were evaluated by using the data of the Test CL-21 (Run 040) in the Core-I test series. The experimental conditions for these two tests were almost identical. Comparing the data of those two tests, the following is obtained. 1. The system behavior observed in the Core-II facility was nearly identical to that observed in the Core-I facility. 2. The core behavior observed in the Core-II facility was also nearly identical to that observed in the Core-I facility except for the top quenching behavior. 3. The differences in the top quenching behavior between the two facilities were as follows: (1) The selective occurrence of top quenching below the open holes of the upper core support plate observed in the Core-I facility was not observed in the Core-II facility. (2) Top quenching tended to occur less in the Core-II facility in the region where the initial average linear power density was over 1.69 kW/m. (author)

  7. Search for chargino and neutralino at Run II of the Tevatron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Canepa, Anadi [Purdue Univ., West Lafayette, IN (United States)

    2006-08-01

    In this dissertation we present a search for the associated production of charginos and neutralinos, the supersymmetric partners of the Standard Model bosons. We analyze a data sample representing 745 pb-1 of integrated luminosity collected by the CDF experiment at the p$\\bar{p}$ Tevatron collider. We compare the Standard Model predictions with the observed data selecting events with three leptons and missing transverse energy. Finding no excess, we combine the results of our search with similar analyses carried out at CDF and set an upper limit on the chargino mass in SUSY scenarios.

  8. MAX: an expert system for running the modular transport code APOLLO II

    International Nuclear Information System (INIS)

    Loussouarn, O.; Ferraris, C.; Boivineau, A.

    1990-01-01

    MAX is an expert system built to help users of the APOLLO II code to prepare the input data deck to run a job. APOLLO II is a modular transport-theory code for calculating the neutron flux in various geometries. The associated GIBIANE command language allows the user to specify the physical structure and the computational method to be used in the calculation. The purpose of MAX is to bring into play expertise in both neutronic and computing aspects of the code, as well as various computational schemes, in order to generate automatically a batch data set corresponding to the APOLLO II calculation desired by the user. MAX is implemented on the SUN 3/60 workstation with the S1 tool and graphic interface external functions

  9. Prospects of physics at CDF with the SVX

    International Nuclear Information System (INIS)

    Dell'Agnello, S.

    1991-09-01

    During next physics run CDF will strongly enhance its heavy flavor tagging capabilities with the installation of a silicon vertex detector (SVX), that will allow precise measurements of secondary decay vertices in the plane transverse to the beam (impact parameter resolution ≅ 12 μm). We expect this detector to have a significant impact on b-physics (cτ B ≅ 350 μm) and top search. In the following we will discuss CDF prospects for top search and for CP violation asymmetry measurements in the B-sector. 16 refs., 5 figs., 1 tabs

  10. Novel Real-time Calibration and Alignment Procedure for LHCb Run II

    CERN Multimedia

    Prouve, Claire

    2016-01-01

    In order to achieve optimal detector performance the LHCb experiment has introduced a novel real-time detector alignment and calibration strategy for Run II of the LHC. For the alignment tasks, data is collected and processed at the beginning of each fill while the calibrations are performed for each run. This real time alignment and calibration allows the same constants being used in both the online and offline reconstruction, thus improving the correlation between triggered and offline selected events. Additionally the newly computed alignment and calibration constants can be instantly used in the trigger, making it more efficient. The online alignment and calibration of the RICH detectors also enable the use of hadronic particle identification in the trigger. The computing time constraints are met through the use of a new dedicated framework using the multi-core farm infrastructure for the LHCb trigger. An overview of all alignment and calibration tasks is presented and their performance is shown.

  11. The CMS Level-1 tau lepton and Vector Boson Fusion triggers for the LHC Run II

    CERN Document Server

    Amendola, Chiara

    2017-01-01

    The CMS experiment implements a sophisticated two-level triggering system composed of Level-1, instrumented by custom-design hardware boards, and a software High-Level-Trigger. A new Level-1 trigger architecture with improved performance is now being used to maintain the thresholds that were used in LHC Run I for the more challenging luminosity conditions experienced during Run II. The upgrades to the calorimetry trigger will be described along with performance data. The algorithms for the selection of final states with tau leptons, both for precision measurements and for searches of new physics beyond the Standard Model, will be described in detail. The implementation of the first dedicated Vector Boson Fusion trigger algorithm will be presented as well, along with its performance on benchmark physics signals.

  12. Electrons and photons at High Level Trigger in CMS for Run II

    CERN Document Server

    Bin Anuar, Afiq Aizuddin

    2015-01-01

    The CMS experiment has been designed with a 2-level trigger system. The first level is implemented using custom-designed electronics. The second level is the so-called High Level Trigger (HLT), a streamlined version of the CMS offline reconstruction software running on a computer farm. For Run II of the Large Hadron Collider, the increase in center-of-mass energy and luminosity will raise the event rate to a level challenging for the HLT algorithms. New approaches have been studied to keep the HLT output rate manageable while maintaining thresholds low enough to cover physics analyses. The strategy mainly relies on porting online the ingredients that have been successfully applied in the offline reconstruction, thus allowing to move HLT selection closer to offline cuts. Improvements in HLT electron and photon definitions will be presented, focusing in particular on updated clustering algorithm and the energy calibration procedure, new Particle-Flow-based isolation approach and pileup mitigation techniques, a...

  13. Combination of CDF and D0 results on the mass of the top quark using up to 9.7 fb$^{-1}$ at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Tevatron Electroweak Working Group, Tevatron Group

    2014-07-10

    We summarize the current top-quark mass measurements from the CDF and D0 experiments at Fermilab. We combine published Run I (1992--1996) results with the most precise published and preliminary Run II (2001--2011) measurements based on data corresponding to up to 9.7 fb$^{-1}$ of $p\\bar{p}$ collisions. Taking correlations of uncertainties into account, and combining the statistical and systematic uncertainties, the resulting preliminary Tevatron average mass of the top quark is $M_{top} = 174.34 \\pm 0.64 ~GeV/c^2$, corresponding to a relative precision of 0.37%.

  14. Constraining top quark effective theory in the LHC Run II era

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, Andy; Englert, Christoph; Ferrando, James; Miller, David J.; Moore, Liam; Russell, Michael; White, Chris D. [School of Physics and Astronomy, Scottish Universities Physics Alliance, University of Glasgow,Glasgow G12 8QQ, Scotland (United Kingdom); Collaboration: The TopFitter collaboration

    2016-04-04

    We perform an up-to-date global fit of top quark effective theory to experimental data from the Tevatron, and from LHC Runs I and II. Experimental data includes total cross-sections up to 13 TeV, as well as differential distributions, for both single top and pair production. We also include the top quark width, charge asymmetries, and polarisation information from top decay products. We present bounds on the coefficients of dimension six operators, and examine the interplay between inclusive and differential measurements, and Tevatron/LHC data. All results are currently in good agreement with the Standard Model.

  15. Novel real-time alignment and calibration of the LHCb detector in Run II

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z., E-mail: zhirui.xu@epfl.ch; Tobin, M.

    2016-07-11

    An automatic real-time alignment and calibration strategy of the LHCb detector was developed for the Run II. Thanks to the online calibration, tighter event selection criteria can be used in the trigger. Furthermore, the online calibration facilitates the use of hadronic particle identification using the Ring Imaging Cherenkov (RICH) detectors at the trigger level. The motivation for a real-time alignment and calibration of the LHCb detector is discussed from both the operational and physics performance points of view. Specific challenges of this novel configuration are discussed, as well as the working procedures of the framework and its performance.

  16. Novel real-time alignment and calibration of the LHCb detector in Run II

    CERN Document Server

    AUTHOR|(CDS)2086132; Tobin, Mark

    2016-01-01

    An automatic real-time alignment and calibration strategy of the LHCb detector was developed for the Run II. Thanks to the online calibration, tighter event selection criteria can be used in the trigger. Furthermore, the online calibration facilitates the use of hadronic particle identification using the Ring Imaging Cherenkov (RICH) detectors at the trigger level. The motivation for a real-time alignment and calibration of the LHCb detector is discussed from both the operational and physics performance points of view. Specific challenges of this novel configuration are discussed, as well as the working procedures of the framework and its performance.

  17. Beauty production at CDF

    International Nuclear Information System (INIS)

    Shears, Tara

    2008-01-01

    A review of recent measurements of beauty production, based on proton antiproton collision data at √s = 1.96 TeV and using the CDF detector, is given. Previous measurements of beauty (b) quark production at the Tevatron, carried out at centre-of-mass energies √s = 1.8 TeV, have shown discrepancies when compared to Next to Leading Order (NLO) predictions [1]. Improved predictions and experimental procedures have reduced this discrepancy [2]. Improved parton density functions, better fragmentation functions and more complete theoretical calculations have improved theoretical accuracy. Experimentally, measurements of beauty production at √s = 1.96 TeV are now presented in terms of b hadrons or B mesons, to avoid problems unfolding back to the quark level. In this review [3] measurements of inclusive beauty (where one beauty jet or hadron is reconstructed in the event), and beauty + X (where X can be a boson or another beauty jet or hadron), production will be presented: inclusive beauty jet cross-section; semi and fully reconstructed B meson cross-section; beauty dijet cross-section; semi-reconstructed B B meson cross-section; Z boson + beauty jet cross-section. More information concerning other measurements of heavy quark production can be found elsewhere [4

  18. Search for supersymmetric particles at CDF

    International Nuclear Information System (INIS)

    Wagner, R.G.

    1989-01-01

    Analyses of events with large unbalanced transverse energy from the 1987 and 1988-89 CDF data runs have set limits on the masses of supersymmetric squarks and gluinos. In a simple model with a stable photino as the lightest supersymmetric particle, the 1987 data with an integrated luminosity of 25.3 nb -1 have excluded at the 90% CL, squarks of mass less than 73 GeV/c 2 and gluinos of mass less than 74 GeV/c 2 . Preliminary results from an analysis of 1 pb -1 of data from the current 1988-89 run imply that the existence of a squark of mass less than 150 GeV/c 2 is unlikely. 4 refs., 2 fig., 1 tab

  19. Performance of the CMS electromagnetic calorimeter in Run II and its role in the measurement of the Higgs boson properties

    CERN Document Server

    Organtini, Giovanni

    2017-01-01

    The characterisation of the Higgs boson discovered in 2012 around 125 GeV, and confirmed with the data collected in Run II, requires the precise determination of its mass, width and couplings. The electromagnetic calorimeter (ECAL) of the Compact Muon Solenoid Experiment (CMS) is crucial for measurements in the highest resolution channels, $H\\to \\gamma \\gamma$ and $H\\to 4$ leptons. In particular the energy resolution, the scale uncertainty and the position resolution for electrons and photons are required to be as good as possible.During Run II the LHC is continuously operating with 25 ns bunch spacing and increasing instantaneous luminosity. The calorimeter reconstruction algorithm has been adapted to cope with increasing levels of pile-up and the calibration and monitoring strategy have been optimised to maintain the excellent performance of the CMS ECAL throughout Run II. We show first performance results from the Run II data taking periods, achieved through energy calibrations using physics events, with...

  20. Run II performance of luminosity and beam condition monitors at CMS

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Jessica Lynn [DESY, Hamburg (Germany)

    2016-07-01

    The BRIL (Beam Radiation Instrumentation and Luminosity) system of CMS consists of instrumentation to measure the luminosity online and offline, and to monitor the LHC beam conditions inside CMS. An accurate luminosity measurement is essential to the CMS physics program, and measurement of the beam background is necessary to ensure safe operation of CMS. Many of the BRIL subsystems have been upgraded and others have been added for LHC Run II to complement the existing measurements. The beam condition monitor (BCM) consists of several sets of diamond sensors used to measure online luminosity and beam background with a single-bunch-crossing resolution. The BCM also detects when beam conditions become unfavorable for CMS running and may trigger a beam abort to protect the detector. The beam halo monitor (BHM) uses quartz bars to measure the background of the incoming beams at larger radii. The pixel luminosity telescope (PLT) consists of telescopes of silicon sensors designed to provide a CMS online and offline luminosity measurement. In addition, the forward hadronic calorimeter (HF) delivers an independent luminosity measurement, making the whole system robust and allowing for cross-checks of the systematics. An overview of the performance during 2015 LHC running for the new/updated BRIL subsystems will be given, including the uncertainties of the luminosity measurements.

  1. Search for neutral MSSM Higgs bosons in association with b quarks in the tau-tau decay channels at CDF Run II

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Charles A. [Univ. of California, Davis, CA (United States)

    2013-01-01

    This thesis presents the results of a search for neutral MSSM Higgs bosons decaying to ττ with 5.9 fb.–1 of data. The analysis requires at least one of the taus to decay leptonically, and explores three detection modes in two channels: τeτ μ, τeτhad, and τμτhad, where the index denotes the type of tau decay. In all modes we explore the tagged and untagged channel. No signal is observed limits were set on σ( p$\\bar{p}$ → Φ + X) × BR(Φ → ττ) as a function of Higgs mass. The results are also interpreted as exclusions of parameter space in the tanβ vs mA plane for several benchmark scenarios.

  2. Identifying a light charged Higgs boson at the LHC Run II

    Directory of Open Access Journals (Sweden)

    Abdesslam Arhrib

    2017-11-01

    Full Text Available We analyse the phenomenological implications of a light Higgs boson, h, within the CP-conserving 2-Higgs Doublet Model (2HDM Type-I, for the detection prospects of the charged H± state at Run II of the Large Hadron Collider (LHC, assuming s=13 TeV as energy and O(100 fb−1 as luminosity. When sufficiently light, this h state can open up the bosonic decay channel H±→W±(⁎h, which may have a branching ratio significantly exceeding those of the H±→τν and H±→cs channels. We perform a broad scan of the 2HDM Type-I parameter space, assuming the heavier of the two CP-even Higgs bosons, H, to be the observed SM-like state with a mass near 125 GeV. Through these scans we highlight regions in which mH±Run II.

  3. Evaluation report on CCTF Core-II reflood test C2-4 (Run 62)

    International Nuclear Information System (INIS)

    Okubo, Tsutomu; Iguchi, Tadashi; Sugimoto, Jun; Akimoto, Hajime; Murao, Yoshio; Okabe, Kazuharu.

    1985-03-01

    This report presents a data evaluation of the CCTF Core-II test C2-4 (Run 62), which was conducted on May 12, 1983. This test was conducted to investigate the reproducibility of tests in the CCTF Core-II test series. Therefore, the initial and boundary conditions of the present test were determined to be the same as those for the previously performed base case test (Test C2-SH1). Comparing the data of the present test with those of Test C2-SH1, the following results are obtained. (1) The initial and boundary conditions for the two tests were nearly identical except the temperature of the core barrel and the lower plenum fluid. The difference in the latter is considered to result in the difference in the core inlet subcooling of about 6 K at most. (2) The system behavior was almost identical. (3) The core cooling behavior was also nearly identical except a little difference in the rod surface temperature in the upper part of the high power region. (4) Taking account that the difference mentioned above in item (3) is small and can be explained qualitatively to be caused by the difference in the core inlet subcooling mentioned above in item (1), it is considered practically that there is the reproducibility of the thermo-hydrodynamic behavior in the CCTF Core-II tests. (author)

  4. Search for the Standard Model Higgs Boson in the Diphoton Final State in $p\\bar{p}$ Collisions at $\\sqrt{s}$ = 1.96 TeV Using the CDF II Detector

    Energy Technology Data Exchange (ETDEWEB)

    Bland, Karen Renee [Baylor Univ., Waco, TX (United States)

    2012-01-01

    We present a search for the Standard Model Higgs boson decaying into a pair of photons produced in p$p\\bar{p}$ collisions with a center of mass energy of 1.96 TeV. The results are based on data corresponding to an integrated luminosity of 10 fb-1 collected by the CDF II detector. Higgs boson candidate events are identified by reconstructing two photons in either the central or plug regions of the detector. The acceptance for identifying photons is significantly increased by using a new algorithm designed to reconstruct photons in the central region that have converted to an electron-positron pair. In addition, a new neural network discriminant is employed to improve the identification of non-converting central photons. No evidence for the Higgs boson is observed in the data, and we set an upper limit on the cross section for Higgs boson production multiplied by the H → γγ branching ratio. For a Higgs boson mass of 125 GeV/c 2 , we obtain an observed (expected) limit of 12.2 (10.8) times the Standard Model prediction at the 95% credibility level.

  5. CERN scientists take part in the Tevatron Run II performance review committee

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Tevatron Run II is under way at Fermilab, exploring the high-energy frontier with upgraded detectors that will address some of the biggest questions in particle physics.Until CERN's LHC switches on, the Tevatron proton-antiproton collider is the world's only source of top quarks. It is the only place where we can search for supersymmetry, for the Higgs boson, and for signatures of additional dimensions of space-time. The US Department of Energy (DOE) recently convened a high-level international review committee to examine Fermilab experts' first-phase plans for the accelerator complex. Pictured here with a dipole magnet in CERN's LHC magnet test facility are the four CERN scientists who took part in the DOE's Tevatron review. Left to right: Francesco Ruggiero, Massimo Placidi, Flemming Pedersen, and Karlheinz Schindl. Further information: CERN Courier 43 (1)

  6. Novel methods and expected run II performance of ATLAS track reconstruction in dense environments

    CERN Document Server

    Jansky, Roland Wolfgang; The ATLAS collaboration

    2015-01-01

    Detailed understanding and optimal track reconstruction performance of ATLAS in the core of high pT objects is paramount for a number of techniques such as jet energy and mass calibration, jet flavour tagging, and hadronic tau identification as well as measurements of physics quantities like jet fragmentation functions. These dense environments are characterized by charged particle separations on the order of the granularity of ATLAS’s inner detector. With the insertion of a new innermost layer in this tracking detector, which allows measurements closer to the interaction point, and an increase in the centre of mass energy, these difficult environments will become even more relevant in Run II, such as in searches for heavy resonances. Novel algorithmic developments to the ATLAS track reconstruction software targeting these topologies as well as the expected improved performance will be presented.

  7. Boosted $H\\rightarrow b \\bar{b}$ Tagger in Run II

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00394595; The ATLAS collaboration

    2016-01-01

    Many searches for Higgs bosons decaying to b quark pairs benefit from the increased Run II centre of mass energy by exploiting the large transverse momentum (boosted) Higgs boson regime, where the two b-jets are merged into one large radius jet. ATLAS uses a boosted $H \\rightarrow b\\bar{b}$ tagger algorithm to separate Higgs signal from background processes (QCD, W and Z bosons, top quarks). The tagger takes as input a large R=1.0 jet with calibrated pseudorapidity, energy and mass scale. It employs b-tagging, Higgs candidate mass, and substructure information. The performance of several operating points in Higgs boson signal, QCD and $t\\bar{t}$ all-hadronic backgrounds are presented. Systematic uncertainties are evaluated so that this tagger can be used in analyses.

  8. B-Physics at CMS with LHC Run-II and Beyond

    CERN Document Server

    Chen, Kai-Feng

    2015-01-01

    The LHC is entering into operation with an increased centre-of-mass energy of 13~TeV, and within the next 3 years of operations (Run-II) the foreseen integrated luminosity delivered to CMS will be about 100 fb$^{-1}$. The B hadron production cross section is expected to nearly double at this energy, thus potentially increasing by almost one order of magnitude the collected statistics relative to the previous operation period. This will enable CMS to perform enhanced measurements in the B-physics sector. A further increase in integrated luminosity is expected to occur in two more steps after the second LHC long shutdown (LS) in 2018 and the third LS in 2021, thus enabling to significantly improve the precision of several B-physics measurements, including $B_s(B_d)\\to\\mu^+\\mu^-$, and search for rarer decays. This proceeding reports on the prospects for B-physics measurements with high statistics data at CMS.

  9. CMS operations for Run II preparation and commissioning of the offline infrastructure

    CERN Document Server

    Cerminara, Gianluca

    2016-01-01

    The restart of the LHC coincided with an intense activity for the CMS experiment. Both at the beginning of Run II in 2015 and the restart of operations in 2016, the collaboration was engaged in an extensive re-commissioning of the CMS data-taking operations. After the long stop, the detector was fully aligned and calibrated. Data streams were redesigned, to fit the priorities dictated by the physics program for 2015 and 2016. A new reconstruction software (both online and offline) was commissioned with early collisions and further developed during the year. A massive campaign of Monte Carlo production was launched, to assist physics analyses. This presentation reviews the main event of this commissioning journey and describes the status of CMS physics performances for 2016.

  10. Study of the heavy flavour fractions in z+jets events from $p\\bar{p}$ collisions at energy √s = 1.96 TeV with the CDF II detector at the Tevatron collider

    Energy Technology Data Exchange (ETDEWEB)

    Mastrandrea, Paolo [Univ. of Siena (Italy)

    2008-06-01

    to provide collisions for the experiments at the end of 2008. In the meanwhile the only running accelerator able to provide collisions suitable for the search of the Higgs boson is the Tevatron at Fermilab, a proton-antiproton collider with a center of mass energy of 1.96 TeV working at 3 • 1032cm-2s-1 peak luminosity. These features make the Tevatron able for the direct search of the Higgs boson in the 115-200 GeV mass range. Since the coupling of the Higgs boson is proportional to the masses of the particles involved, the decay in b{bar b} has the largest branching ratio for Higgs mass < 135 GeV and thus the events Z/W + $b\\bar{b}$ are the main background to the Higgs signal in the most range favored by Standard Model fits. In this thesis a new technique to identify Heavy Flavour quarks inside high - PT jets is applied to events with a reconstructed Z boson to provide a measurement of the Z+b and Z+c inclusive cross sections. The study of these channels represent also a test of QCD in high transferred momentum regime, and can provide information on proton pdf. This new Heavy Flavour identication technique (tagger) provides an increased statistical separation between b, c and light flavours, using a new vertexing algorithm and a chain of artificial Neural Networks to exploit as much information as possible in each event. For this work I collaborated with the Universita di Roma 'La Sapienza' group working in the CDF II experiment at Tevatron, that has at first developed this tagger. After a brief theoretical introduction (chapter 1) and a description of the experimental apparatus (chapter 2), the tagger itself and its calibration procedure are described in chapter 3 and 4. The chapter 5 is dedicated to the event selection and the chapter 6 contains the results of the measurement and the study of the systematic errors.

  11. A study of tau decays of the W boson at CDF [Collider Detector at Fermilab

    International Nuclear Information System (INIS)

    Gladney, L.D.

    1990-01-01

    A report is given of a search for tau decays of the W boson in p bar p collisions at √s = 1.8 TeV using the Collider Detector at Fermilab (CDF). A description of a hardware trigger specifically designed to enhance the number of events with tau decays is presented along with the results of a preliminary analysis of data taken during the 1988--89 run of CDF. 10 refs., 4 figs

  12. Color coherence in multijet events at CDF

    International Nuclear Information System (INIS)

    Meschi, E.

    1992-11-01

    Results of a search for an evidence of color coherence in CDF bar pp → 3jet + X data from the 1988--89 run high statistics inclusive jet sample (4.2pb -1 of integrated luminosity) are presented. We study the geometric correlation between the third jet (regarded as the product of ''soft' branchings in the Leading Log Approximation) and the second one, in comparison to Isajet and Herwig shower Monte Carlos predictions. A geometric variable for this correlation is found which is sensitive to interference: the qualitative agreement of Herwig (with coherent shower development) to the data distribution, contrasted to the disagreement of Isajet (independent development) is consistent with the observation of a color interference effect. Further evidence for this interpretation comes from ''switching off'' interference in Herwig by means of a proper event selection, which yields a distribution much similar to the Isajet one

  13. Beauty baryons: Recent CDF results

    International Nuclear Information System (INIS)

    Tseng, J.

    1996-12-01

    Using data collected between 1992 and 1995 at the Fermilab Tevatron, CDF has searched for the Λ b baryon through both semileptonic and hadronic decay channels. This presentation reviews measurements of the Λ b mass, lifetime, and production and decay rates performed with this data

  14. Top mass measurement at CDF

    International Nuclear Information System (INIS)

    Rolli, S.

    1996-06-01

    We present the measurement of the top quark mass using L = 110 pb -1 data sample of pp collisions at √s = 1.8 TeV collected with the Collider Detector at Fermilab (CDF). We show the results for the different channels and discuss with some emphasis the determination of the systematic uncertainties. 7 refs., 10 figs., 5 tabs

  15. The CDF Silicon Vertex Detector

    International Nuclear Information System (INIS)

    Tkaczyk, S.; Carter, H.; Flaugher, B.

    1993-01-01

    A silicon strip vertex detector was designed, constructed and commissioned at the CDF experiment at the Tevatron collider at Fermilab. The mechanical design of the detector, its cooling and monitoring are presented. The front end electronics employing a custom VLSI chip, the readout electronics and various components of the SVX system are described. The system performance and the experience with the operation of the

  16. Breached fuel pin contamination from Run Beyond Cladding Breach (RBCB) tests in EBR-II

    International Nuclear Information System (INIS)

    Colburn, R.P.; Strain, R.V.; Lambert, J.D.B.; Ukai, S.; Shibahara, I.

    1988-09-01

    Studies indicate there may be a large economic incentive to permit some continued reactor operation with breached fuel pin cladding. A major concern for this type of operation is the potential spread of contamination in the primary coolant system and its impact on plant maintenance. A study of the release and transport of contamination from naturally breached mixed oxide Liquid Metal Reactor (LMR) fuel pins was performed as part of the US Department of Energy/Power Reactor and Nuclear Fuel Development Corporation (DOE/PNC) Run Beyond Cladding Breach (RBCB) Program at EBR-II. The measurements were made using the Breached Fuel Test Facility (BFTF) at EBR-II with replaceable deposition samplers located approximately 1.5 meters from the breached fuel test assemblies. The effluent from the test assemblies containing the breached fuel pins was routed up through the samplers and past dedicated instrumentation in the BFTF before mixing with the main coolant flow stream. This paper discusses the first three contamination tests in this program. 2 refs., 5 figs., 2 tabs

  17. Long term data preservation for CDF at INFN-CNAF

    International Nuclear Information System (INIS)

    Amerio, S; Chiarelli, L; Dell'Agnello, L; Girolamo, D De; Gregori, D; Pezzi, M; Prosperini, A; Ricci, P; Rosso, F; Zani, S

    2014-01-01

    Long-term preservation of experimental data (intended as both raw and derived formats) is one of the emerging requirements coming from scientific collaborations. Within the High Energy Physics community the Data Preservation in High Energy Physics (DPHEP) group coordinates this effort. CNAF is not only one of the Tier-1s for the LHC experiments, it is also a computing center providing computing and storage resources to many other HEP and non-HEP scientific collaborations, including the CDF experiment. After the end of data taking in 2011, CDF is now facing the challenge to both preserve the large amount of data produced during several years of data taking and to retain the ability to access and reuse it in the future. CNAF is heavily involved in the CDF Data Preservation activities, in collaboration with the Fermilab National Laboratory (FNAL) computing sector. At the moment about 4 PB of data (raw data and analysis-level ntuples) are starting to be copied from FNAL to the CNAF tape library and the framework to subsequently access the data is being set up. In parallel to the data access system, a data analysis framework is being developed which allows to run the complete CDF analysis chain in the long term future, from raw data reprocessing to analysis-level ntuple production. In this contribution we illustrate the technical solutions we put in place to address the issues encountered as we proceeded in this activity.

  18. Model-independent and quasi-model-independent search for new physics at CDF

    International Nuclear Information System (INIS)

    Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.; Abulencia, A.; Budd, S.; Ciobanu, C. I.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Junk, T. R.; Kraus, J.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.

    2008-01-01

    Data collected in run II of the Fermilab Tevatron are searched for indications of new electroweak scale physics. Rather than focusing on particular new physics scenarios, CDF data are analyzed for discrepancies with respect to the standard model prediction. A model-independent approach (Vista) considers the gross features of the data and is sensitive to new large cross section physics. A quasi-model-independent approach (Sleuth) searches for a significant excess of events with large summed transverse momentum and is particularly sensitive to new electroweak scale physics that appears predominantly in one final state. This global search for new physics in over 300 exclusive final states in 927 pb -1 of pp collisions at √(s)=1.96 TeV reveals no such significant indication of physics beyond the standard model.

  19. Performances of the ATLAS Level-1 Muon barrel trigger during the Run-II data taking

    CERN Document Server

    Sessa, Marco; The ATLAS collaboration

    2017-01-01

    The Level-1 Muon Barrel Trigger is one of the main elements of the event selection of the ATLAS experiment at the Large Hadron Collider. It exploits the Resistive Plate Chambers (RPC) detectors to generate the trigger signal. The RPCs are placed in the barrel region of the ATLAS experiment: they are arranged in three concentric double layers and operate in a strong magnetic toroidal field. RPC detectors cover the pseudo-rapidity range $|\\eta|<1.05$ for a total surface of more than $4000\\ m^2$ and about 3600 gas volumes. The Level-1 Muon Trigger in the barrel region allows to select muon candidates with respect to their transverse momentum and associates them with the correct bunch-crossing number. The trigger system is able to take a decision within a latency of about 2 $\\mu s$. The detailed measurement of the RPC detector efficiencies and of the trigger performance during the ATLAS Run-II data taking is here presented.

  20. Searching for R-parity violation at run-II of the tevatron

    International Nuclear Information System (INIS)

    Allanach, B.; Banerjee, S.; Berger, E. L.; Chertok, M.; Diaz, M. A.; Dreiner, H.; Eboli, O. J. P.; Harris, B. W.; Hewett, J.; Magro, M. B.; Mondal, N. K.; Narasimham, V. S.; Navarro, L.; Parua, N.; Porod, W.; Restrepo, D. A.; Richardson, P.; Rizzo, T.; Seymour, M. H.; Sullivan, Z.; Valle, J. W. F.; Campos, F. de

    1999-01-01

    The authors present an outlook for possible discovery of supersymmetry with broken R-parity at Run II of the Tevatron. They first present a review of the literature and an update of the experimental bounds. In turn they then discuss the following processes: (1) resonant slepton production followed by R P decay, (a) via LQD c and (b) via LLE c ; (2) how to distinguish resonant slepton production from Zprime or Wprime production; (3) resonant slepton production followed by the decay to neutralino LSP, which decays via LQD c ; (4) resonant stop production followed by the decay to a chargino, which cascades to the neutralino LSP; (5) gluino pair production followed by the cascade decay to charm squarks which decay directly via L 1 Q 2 D 1 c ; (6) squark pair production followed by the cascade decay to the neutralino LSP which decays via L 1 Q 2 D 1 c ; (7) MSSM pair production followed by the cascade decay to the LSP which decays (a) via LLE c , (b) via LQD c , and (c) via U c D c D c , respectively; and (8) top quark and top squark decays in spontaneous R P

  1. Alignment of the ATLAS Inner Detector upgraded for the LHC Run II

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00386283; The ATLAS collaboration

    2015-01-01

    ATLAS is a multipurpose experiment at the LHC proton-proton collider. Its physics goals require high resolution, unbiased measurement of all charged particle kinematic parameters. These critically depend on the layout and performance of the tracking system, notably quality of its offline alignment. ATLAS is equipped with a tracking system built using different technologies, silicon planar sensors (pixel and micro-strip) and gaseous drift- tubes, all embedded in a 2T solenoidal magnetic field. For the LHC Run II, the system has been upgraded with the installation of a new pixel layer, the Insertable B-layer (IBL). Offline track alignment of the ATLAS tracking system has to deal with about 700,000 degrees of freedom (DoF) defining its geometrical parameters. The task requires using very large data sets and represents a considerable numerical challenge in terms of both CPU time and precision. The adopted strategy uses a hierarchical approach to alignment, combining local and global least squares techniques. An o...

  2. Alignment of the ATLAS inner detector for the LHC Run II

    CERN Document Server

    Butti, Pierfrancesco; The ATLAS collaboration

    2015-01-01

    ATLAS a multipurpose experiment at the LHC proton-proton collider. Its physics goals require high resolution, unbiased measurement of all charged particle kinematic parameters. These critically depend on the layout and performance of the tracking system, notably quality of its offline alignment. ATLAS is equipped with a tracking system built using different technologies, silicon planar sensors (pixel and micro-strip) and gaseous drift- tubes, all embedded in a 2T solenoidal magnetic field. For the LHC Run II, the system has been upgraded with the installation of a new pixel layer, the Insertable B-layer (IBL). Offline track alignment of the ATLAS tracking system has to deal with about 700,000 degrees of freedom (DoF) defining its geometrical parameters. The task requires using very large data sets and represents a considerable numerical challenge in terms of both CPU time and precision. The adopted strategy uses a hierarchical approach to alignment, combining local and global least squares techniques. An outl...

  3. Alignment of the ATLAS Inner Detector Upgraded for the LHC Run II

    CERN Document Server

    Butti, Pierfrancesco; The ATLAS collaboration

    2015-01-01

    ATLAS is a multipurpose experiment at the LHC proton-proton collider. Its physics goals require high resolution, unbiased measurement of all charged particle kinematic parameters. These critically depend on the layout and performance of the tracking system, notably quality of its offline alignment. ATLAS is equipped with a tracking system built using different technologies, silicon planar sensors (pixel and micro-strip) and gaseous drift- tubes, all embedded in a 2T solenoidal magnetic field. For the LHC Run II, the system has been upgraded with the installation of a new pixel layer, the Insertable B-layer (IBL). Offline track alignment of the ATLAS tracking system has to deal with about 700,000 degrees of freedom (DoF) defining its geometrical parameters. The task requires using very large data sets and represents a considerable numerical challenge in terms of both CPU time and precision. The adopted strategy uses a hierarchical approach to alignment, combining local and global least squares techniques. An o...

  4. Level-1 trigger selection of electrons and photons with CMS for LHC Run-II.

    CERN Document Server

    AUTHOR|(CDS)2088114

    2016-01-01

    The CMS experiment has a sophisticated two-level online selection system that achieves a rejection factor of nearly $10^5$. The first, hardware-level trigger (L1) is based on coarse information coming from the calorimeters and the muon detectors while the High-Level Trigger combines fine-grain information from all subdetectors. During Run II, the LHC will increase its center of mass energy to 13 or 14 TeV, and progressively reach an instantaneous luminosity of $2\\times10^{34} \\mathrm{cm}^{-2}\\mathrm{s}^{-1}$. In order to guarantee a successful and ambitious physics programme in this intense environment, the CMS trigger and data acquisition system must be upgraded. The L1 calorimeter trigger hardware and architecture in particular has been redesigned to maintain the current thresholds even in presence of more demanding conditions (e.g., for electrons and photons) and improve the performance for the selection of $\\tau$ leptons. This design benefits from recent $\\mu$TCA technology, allowing sophisticated algorit...

  5. Optimisation of the level-1 calorimeter trigger at ATLAS for Run II

    Energy Technology Data Exchange (ETDEWEB)

    Suchek, Stanislav [Kirchhoff-Institute for Physics, Im Neuenheimer Feld 227, 69120 Heidelberg (Germany); Collaboration: ATLAS-Collaboration

    2015-07-01

    The Level-1 Calorimeter Trigger (L1Calo) is a central part of the ATLAS Level-1 Trigger system, designed to identify jet, electron, photon, and hadronic tau candidates, and to measure their transverse energies, as well total transverse energy and missing transverse energy. The optimisation of the jet energy resolution is an important part of the L1Calo upgrade for Run II. A Look-Up Table (LUT) is used to translate the electronic signal from each trigger tower to its transverse energy. By optimising the LUT calibration we can achieve better jet energy resolution and better performance of the jet transverse energy triggers, which are vital for many physics analyses. In addition, the improved energy calibration leads to significant improvements of the missing transverse energy resolution. A new Multi-Chip Module (MCM), as a part of the L1Calo upgrade, provides two separate LUTs for jets and electrons/photons/taus, allowing to optimise jet transverse energy and missing transverse energy separately from the electromagnetic objects. The optimisation is validated using jet transverse energy and missing transverse energy triggers turn-on curves and rates.

  6. Alignment of the CMS Tracker: Latest results from LHC Run-II

    CERN Document Server

    Mittag, Gregor

    2017-01-01

    The all-silicon design of the tracking system of the CMS experiment provides excellent measurements of charged-particle tracks and an efficient tagging of jets. Conditions of the CMS tracker changed repeatedly during the 2015/2016 shutdown and the 2016 data-taking period. Still the true position and orientation of each of the 15 148 silicon strip and 1440 silicon pixel modules need to be known with high precision for all intervals. The alignment constants also need to be promptly re-adjusted each time the state of the CMS magnet is changed between 0T and 3.8 T. Latest Run-II results of the CMS tracker alignment and resolution performance are presented, which are obtained using several millions of reconstructed tracks from collision and cosmic-ray data of 2016. The geometries and the resulting performance of physics observables are carefully validated. In addition to the offline alignment, an online procedure has been put in place which continuously monitors movements of the pixel high-level structures and tri...

  7. Remote data monitoring for CDF

    International Nuclear Information System (INIS)

    Kippenhan, H.A. Jr.; Lidinsky, W.; Roediger, G.

    1995-11-01

    Remote data monitoring from the physicists' home institutions has become an important issue in large international experiments to ensure high performance of the detectors and high quality of data and scientific results. The CDF experiment is a collaboration of 450 physicists from 36 institutions in the U.S., Japan, Canada, Italy and Taiwan. Future experiments at Fermilab, CERN and elsewhere will be even larger, and will be performed over a period of order 10 years. The ability of collaborators at remote sites to monitor the increasingly complex detectors and feed the results back into the data acquisition process will be of great importance We report on the status and performance of remote monitoring from Japan of the CDF experiment in Batavia Illinois. We also discuss feasibilities for modest Remote Control Rooms

  8. Search for MSSM Higgs decaying to tau pairs in ppbar collision at s**(1/2) = 1.96 TeV at CDF

    International Nuclear Information System (INIS)

    Jang, Dongwook; Rutgers U., Piscataway

    2006-01-01

    This thesis presents the search for neutral Minimal Supersymmetric extension of Standard Model (MSSM) Higgs bosons decaying to tau pairs where one of the taus decays leptonically, and the other one hadronically. CDF Run II data with L int = 310 pb -1 are used. There is no evidence of MSSM Higgs existence, which results in the upper limits on σ(p(bar p) → φ) x BR(φ → ττ) in m A range between 115 and 250 GeV. These limits exclude some area in tan β vs m A parameter space

  9. Evaluation report on CCTF Core-II reflood Test C2-15 (Run 75)

    International Nuclear Information System (INIS)

    Okubo, Tsutomu; Iguchi, Tadashi; Akimoto, Hajime; Murao, Yoshio

    1992-01-01

    This report presents an evaluation on the CCTF Core-II Test C2-15 (Run 75). The purpose of the test is to investigate whether the thermo-hydrodynamic behavior is different between the CCTF and the FLECHT-SET reflooding tests. For this purpose, test conditions of the present test were set as close as possible to those of concerned FLECHT-SET 2714B experiment, taking account of differences in facility design. Investigating results of both the tests, the following conclusions are obtained: (1) Some discrepancies were observed in the measured test conditions between the two tests. Out of them, difference in the Acc injection duration was large and affected test results, such as the water accumulation in the downcomer and the core and the core cooling, during the initial period. However, this effect was found to become small with time. (2) Taking account of this difference and the difference in the broken cold leg pressure loss coefficient between the two facilities, the overall reflooding behavior is judged to be similar in the two facilities. (3) The CCTF test results showed the core heat transfer enhancement in the higher power region due to its steep radial power distribution, whereas the FLECHT-SET did not due to its rather flat radial power distribution. This enhancement was observed significantly at 1.83 m but was smaller at the higher elevation. (4) The heat transfer was nearly identical between the two tests and an existing correlation could well predict the heat transfer coefficients of both the tests at the location where the heat transfer enhancement mentioned above (3) were small, during the time period when the effect of the difference in the Acc injection mentioned above (1) were small. (5) Therefore, the core cooling is expected to be almost the same in the CCTF and the FLECHT-SET under the same core boundary conditions and core radial power distribution. (author)

  10. Electroweak production of the top quark in the Run II of the D0 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Clement, Benoit [Louis Pasteur Univ., Strasbourg (France)

    2006-04-28

    The work exposed in this thesis deals with the search for electroweak production of top quark (single top) in proton-antiproton collisions at √s = 1.96 TeV. This production mode has not been observed yet. Analyzed data have been collected during the Run II of the D0 experiment at the Fermilab Tevatron collider. These data correspond to an integrated luminosity of 370 pb-1. In the Standard Model, the decay of a top quark always produce a high momentum bottom quark. Therefore bottom quark jets identification plays a major role in this analysis. The large lifetime of b hadrons and the subsequent large impact parameters relative to the interaction vertex of charged particle tracks are used to tag bottom quark jets. Impact parameters of tracks attached to a jet are converted into the probability for the jet to originate from the primary vertex. This algorithm has a 45% tagging efficiency for a 0.5% mistag rate. Two processes (s and t channels) dominate single top production with slightly different final states. The searched signature consists in 2 to 4 jets with at least one bottom quark jet, one charged lepton (electron or muon) and missing energy accounting for a neutrino. This final state is background dominated and multivariate techniques are needed to separate the signal from the two main backgrounds: associated production of a W boson and jets and top quarks pair production. The achieved sensitivity is not enough to reach observation and we computed upper limits at the 95% confidence level at 5 pb (s-channel) and 4.3 pb (t-channel) on single top production cross-sections.

  11. Operation and performance of the silicon vertex detector (SVX') at CDF

    International Nuclear Information System (INIS)

    Singh, P.P.

    1994-10-01

    The authors describe the operation and performance of the Silicon Vertex Detector (SVX'), which replaced the CDF SVX detector for run lb of the Fermilab Tevatron Collider. The new features of the SVX' include AC coupled readout, Field OXide Field Effect Transistor (FOXFET) biasing and radiation hard front end electronics. The authors expect the detector to survive beyond the 100 pb -1 of data taking anticipated for the present CDF physics run. Preliminary results from the collider data show that the detector has a resolution of about 12 μm. This provides a powerful tool to do top and bottom physics

  12. Event-building and PC farm based level-3 trigger at the CDF experiment

    CERN Document Server

    Anikeev, K; Furic, I K; Holmgren, D; Korn, A J; Kravchenko, I V; Mulhearn, M; Ngan, P; Paus, C; Rakitine, A; Rechenmacher, R; Shah, T; Sphicas, Paris; Sumorok, K; Tether, S; Tseng, J

    2000-01-01

    In the technical design report the event building process at Fermilab's CDF experiment is required to function at an event rate of 300 events/sec. The events are expected to have an average size of 150 kBytes (kB) and are assembled from fragments of 16 readout locations. The fragment size from the different locations varies between 12 kB and 16 kB. Once the events are assembled they are fed into the Level-3 trigger which is based on processors running programs to filter events using the full event information. Computing power on the order of a second on a Pentium II processor is required per event. The architecture design is driven by the cost and is therefore based on commodity components: VME processor modules running VxWorks for the readout, an ATM switch for the event building, and Pentium PCs running Linux as an operation system for the Level-3 event processing. Pentium PCs are also used to receive events from the ATM switch and further distribute them to the processing nodes over multiple 100 Mbps Ether...

  13. Performance of the CMS precision electromagnetic calorimeter at LHC Run II and prospects for High-Luminosity LHC

    Science.gov (United States)

    Zhang, Zhicai

    2018-04-01

    Many physics analyses using the Compact Muon Solenoid (CMS) detector at the LHC require accurate, high-resolution electron and photon energy measurements. Following the excellent performance achieved during LHC Run I at center-of-mass energies of 7 and 8 TeV, the CMS electromagnetic calorimeter (ECAL) is operating at the LHC with proton-proton collisions at 13 TeV center-of-mass energy. The instantaneous luminosity delivered by the LHC during Run II has achieved unprecedented levels. The average number of concurrent proton-proton collisions per bunch-crossing (pileup) has reached up to 40 interactions in 2016 and may increase further in 2017. These high pileup levels necessitate a retuning of the ECAL readout and trigger thresholds and reconstruction algorithms. In addition, the energy response of the detector must be precisely calibrated and monitored. We present new reconstruction algorithms and calibration strategies that were implemented to maintain the excellent performance of the CMS ECAL throughout Run II. We will show performance results from the 2015-2016 data taking periods and provide an outlook on the expected Run II performance in the years to come. Beyond the LHC, challenging running conditions for CMS are expected after the High-Luminosity upgrade of the LHC (HL-LHC) . We review the design and R&D studies for the CMS ECAL and present first test beam studies. Particular challenges at HL-LHC are the harsh radiation environment, the increasing data rates, and the extreme level of pile-up events, with up to 200 simultaneous proton-proton collisions. We present test beam results of hadron irradiated PbWO crystals up to fluences expected at the HL-LHC . We also report on the R&D for the new readout and trigger electronics, which must be upgraded due to the increased trigger and latency requirements at the HL-LHC.

  14. CDF [Collider Detector at Fermilab] detector simulation

    International Nuclear Information System (INIS)

    Freeman, J.

    1987-12-01

    The Collider Detector at Fermilab (CDF) uses several different simulation programs, each tuned for specific applications. The programs rely heavily on the extensive test beam data that CDF has accumulated. Sophisticated shower parameterizations are used, yielding enormous gains in speed over full cascade programs. 3 refs., 5 figs

  15. A search for the Standard Model Higgs boson in the process ZH → ℓ+-b$\\bar{b}$ in 4.1 fb-1 of CDF II data

    Energy Technology Data Exchange (ETDEWEB)

    Shalhout, Shalhout Zaki [Wayne State Univ., Detroit, MI (United States)

    2010-05-01

    parameter in the theory. Experimental evidence suggests that the Higgs mass has a value between 114.4 and 186 GeV/c2. Particles with a mass in this range can be produced in collisions of less massive particles accelerated to near the speed of light. Currently, one of only a few machines capable of achieving collision energies large enough to potentially produce a standard model Higgs boson is the Tevatron proton-antiproton collider located at Fermi National Accelerator Laboratory in Batavia, Illinois. This dissertation describes the effort to observe the standard model Higgs in Tevatron collisions recorded by the Collider Detector at Fermilab (CDF) II experiment in the ZH →ℓ+-b$\\bar{b}$ production and decay channel. In this process, the Higgs is produced along with a Z boson which decays to a pair of electrons or muons (Z →ℓ+-), while the Higgs decays to a bottom anti-bottom quark pair (H → b$\\bar{b}$). A brief overview of the standard model and Higgs theory is presented in Chapter 2. Chapter 3 explores previous searches for the standard model Higgs at the Tevatron and elsewhere. The search presented in this dissertation expands upon the techniques and methods developed in previous searches. The fourth chapter contains a description of the Tevatron collider and the CDF II detector. The scope of the discussion in Chapter 4 is limited to the experimental components relevant to the current ZH →ℓ+-b$\\bar{b}$ search. Chapter 5 presents the details of object reconstruction; the methods used to convert detector signals into potential electrons, muons or quarks. Chapter six describes the data sample studied for the presence of a ZH →ℓ+-b$\\bar{b}$ signal and details the techniques used to model the data. The model accounts for both signal and non-signal processes (backgrounds) which are expected to contribute to the observed event sample. Chapters 7

  16. Novel real-time alignment and calibration of LHCb detector for Run II and tracking for the upgrade.

    CERN Document Server

    AUTHOR|(CDS)2091576

    2016-01-01

    LHCb has introduced a novel real-time detector alignment and calibration strategy for LHC Run II. Data collected at the start of the fill is processed in a few minutes and used to update the alignment, while the calibration constants are evaluated for each run. The procedure aims to improve the quality of the online selection and performance stability. The required computing time constraints are met thanks to a new dedicated framework using the multi-core farm infrastructure for the trigger. A similar scheme is planned to be used for Run III foreseen to start in 2020. At that time LHCb will run at an instantaneous luminosity of $2 \\times 10^{33}$ cm$^2$ s$^1$ and a fully software based trigger strategy will be used. The new running conditions and the tighter timing constraints in the software trigger (only 13 ms per event are available) represent a big challenge for track reconstruction. The new software based trigger strategy implies a full detector read-out at the collision rate of 40 MHz. High performance ...

  17. Using Feedback to Control Deadtime in the CDF Trigger System

    Energy Technology Data Exchange (ETDEWEB)

    Torretta, D.; /Fermilab

    2007-04-01

    The CDF experiment uses a three-level trigger system to select events produced during p{bar p} collisions. As the luminosity of the Tevatron accelerator falls by a factor of four over a 24 hour period, trigger selections are adjusted automatically in order to make full use of the data processing bandwidth. The selections are made to maximize high purity triggers and keep the deadtime as low as possible at any given luminosity throughout the entire course of a run. We describe the algorithms used to obtain these goals and how the changing conditions are accounted for in the analysis of the data.

  18. Measurement of correlated b quark cross sections at CDF

    International Nuclear Information System (INIS)

    Gerdes, D.

    1994-09-01

    Using data collected during the 1992--93 collider run at Fermilab, CDF has made measurements of correlated b quark cross section where one b is detected from a muon from semileptonic decay and the second b is detected with secondary vertex techniques. We report on measurements of the cross section as a function of the momentum of the second b and as a function of the azimuthal separation of the two b quarks, for transverse momentum of the initial b quark greater than 15 GeV. Results are compared to QCD predictions

  19. Recent results on QCD at the Tevatron (CDF and D0)

    International Nuclear Information System (INIS)

    Meschi, E.

    1993-11-01

    In the last run the Tevatron collider delivered an integrated luminosity of 29.9 pb -1 to CDF and D0. We describe here some preliminary result from analyses of relevant QCD processes in the 1992--1993 data from the two experiments

  20. Double boson production at CDF

    International Nuclear Information System (INIS)

    Neuberger, D.

    1996-07-01

    New measurements of boson pair production in p anti p collisions have been performed by the CDF collaboration using a data sample of approximately 110 pb -1 . The cross sections for WW and WZ production are measured in the pure leptonic decay channel to σ(p anti p → WZ) = 3.2 +5.0 -3. 2 pb and σ(p anti p → W + W - ) = 10.2 +6.5 -5.3 pb, respectively. Limits on anomalous coupling parameters are set in the searches for WW and WZ production. Assuming an energy scale of Λ FF = 2 TeV, we find for the WWZ and WWγ couplings at 95% CL: -0.4 < λ < 0.3 (δκ 0) and -0.5 < δκ < 0.5 (λ = 0)

  1. Measurement of the inclusive isolated prompt photon production cross section at the Tevatron using the CDF detector

    International Nuclear Information System (INIS)

    Deluca Silberberg, Carolina

    2009-01-01

    In this thesis we present the measurement of the inclusive isolated prompt photon cross section with a total integrated luminosity of 2.5 fb -1 of data collected with the CDF Run II detector at the Fermilab Tevatron Collider. The prompt photon cross section is a classic measurement to test perturbative QCD (pQCD) with potential to provide information on the parton distribution function (PDF), and sensitive to the presence of new physics at large photon transverse momentum. Prompt photons also constitute an irreducible background for important searches such as H → γγ, or SUSY and extra-dimensions with energetic photons in the final state. The Tevatron at Fermilab (Batavia, U.S.A.) is currently the hadron collider that operates at the highest energies in the world. It collides protons and antiprotons with a center-of-mass energy of 1.96 TeV. The CDF and the D0 experiments are located in two of its four interaction regions. In Run I at the Tevatron, the direct photon production cross section was measured by both CDF and DO, and first results in Run II have been presented by the DO Collaboration based on 380 pb -1 . Both Run I and Run II results show agreement with the theoretical predictions except for the low p T γ region, where the observed and predicted shapes are different. Prompt photon production has been also extensively measured at fixed-target experiments in lower p T γ ranges, showing excess of data compared to the theory, particularly at high x T . From an experimental point of view, the study of the direct photon production has several advantages compared to QCD studies using jets. Electromagnetic calorimeters have better energy resolution than hadronic calorimeters, and the systematic uncertainty on the photon absolute energy scale is smaller. Furthermore, the determination of the photon kinematics does not require the use of jet algorithms. However, the measurements using photons require a good understanding of the background, mainly dominated by

  2. Measurement of WW and WZ production in the lepton plus heavy flavor jets final state at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Leone, Sandra [Fermilab

    2016-11-16

    We present the CDF measurement of the diboson WW and WZ production cross section in a final state consistent with leptonic W decay and jets originating from heavy flavor quarks, based on the full Tevatron Run II dataset. The analysis of the di–jet invariant mass spectrum allows the observation of 3.7 sigma evidence for the combined production processes of either WW or WZ bosons. The different heavy flavor decay pattern of the W and Z bosons and the analysis of the secondary–decay vertex properties allow to independently measure the WW and WZ production cross section in a hadronic final state. The measured cross sections are consistent with the standard model predictions and correspond to signal significances of 2.9 and 2.1 sigma for WW and WZ production, respectively.

  3. Combined search for the standard model Higgs boson decaying to a bb pair using the full CDF data set.

    Science.gov (United States)

    Aaltonen, T; Álvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M E; Bisello, D; Bizjak, I; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Calamba, A; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chung, W H; Chung, Y S; Ciocci, M A; Clark, A; Clarke, C; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuevas, J; Culbertson, R; Dagenhart, D; d'Ascenzo, N; Datta, M; de Barbaro, P; Dell'Orso, M; Demortier, L; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, M; Dorigo, T; Ebina, K; Elagin, A; Eppig, A; Erbacher, R; Errede, S; Ershaidat, N; Eusebi, R; Farrington, S; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Funakoshi, Y; Furic, I; Gallinaro, M; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Hahn, S R; Halkiadakis, E; Hamaguchi, A; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Hewamanage, S; Hocker, A; Hopkins, W; Horn, D; Hou, S; Hughes, R E; Hurwitz, M; Husemann, U; Hussain, N; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeans, D T; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kim, Y J; Kimura, N; Kirby, M; Klimenko, S; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Kruse, M; Krutelyov, V; Kuhr, T; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; LeCompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lin, C-J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maeshima, K; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Martínez, M; Mastrandrea, P; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Prokoshin, F; Pranko, A; Ptohos, F; Punzi, G; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Rescigno, M; Riddick, T; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sinervo, P; Sliwa, K; Smith, J R; Snider, F D; Soha, A; Sorin, V; Song, H; Squillacioti, P; Stancari, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Tipton, P; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Varganov, A; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wagner, R L; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Wick, F; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zhou, C; Zucchelli, S

    2012-09-14

    We combine the results of searches for the standard model (SM) Higgs boson based on the full CDF Run II data set obtained from sqrt[s]=1.96  TeV pp collisions at the Fermilab Tevatron corresponding to an integrated luminosity of 9.45  fb(-1). The searches are conducted for Higgs bosons that are produced in association with a W or Z boson, have masses in the range 90-150  GeV/c(2), and decay into bb pairs. An excess of data is present that is inconsistent with the background prediction at the level of 2.5 standard deviations (the most significant local excess is 2.7 standard deviations).

  4. Differential satellite cell density of type I and II fibres with lifelong endurance running in old men

    DEFF Research Database (Denmark)

    Mackey, Abigail; Karlsen, A; Couppé, C

    2014-01-01

    AIM: To investigate the influence of lifelong endurance running on the satellite cell pool of type I and type II fibres in healthy human skeletal muscle. METHODS: Muscle biopsies were collected from 15 healthy old trained men (O-Tr) who had been running 43 ± 16 (mean ± SD) kilometres a week for 28...... ± 9 years. Twelve age-matched untrained men (O-Un) and a group of young trained and young untrained men were recruited for comparison. Frozen sections were immunohistochemically stained for Pax7, type I myosin and laminin, from which fibre area, the number of satellite cells, and the relationship......-Un. A strong positive relationship between fibre size and satellite cell content was detected in trained individuals. In line with a history of myofibre repair, a greater number of fibres with centrally located myonuclei were detected in O-Tr. CONCLUSION: Lifelong endurance training (i) does not deplete...

  5. Measurement of the Inclusive Jet Cross Section using the k(T) algorithm in p anti-p collisions at s**(1/2) = 1.96-TeV with the CDF II Detector

    Energy Technology Data Exchange (ETDEWEB)

    Abulencia, A.; /Illinois U., Urbana; Adelman, J.; /Chicago U., EFI; Affolder, Anthony Allen; /UC, Santa Barbara; Akimoto, T.; /Tsukuba U.; Albrow, Michael G.; /Fermilab; Ambrose, D.; /Fermilab; Amerio, S.; /Padua U.; Amidei, Dante E.; /Michigan U.; Anastassov, A.; /Rutgers U., Piscataway; Anikeev, Konstantin; /Fermilab; Annovi, A.; /Frascati /Comenius U.

    2007-01-01

    The authors report on measurements of the inclusive jet production cross section as a function of the jet transverse momentum in p{bar p} collisions at {radical}s = 1.96 TeV, using the k{sub T} algorithm and a data sample corresponding to 1.0 fb{sup -1} collected with the Collider Detector at Fermilab in Run II. The measurements are carried out in five different jet rapidity regions with |y{sup jet}| < 2.1 and transverse momentum in the range 54 < p{sub T}{sup jet} < 700 GeV/c. Next-to-leading order perturbative QCD predictions are in good agreement with the measured cross sections.

  6. Operational experience with the CMS pixel detector in LHC Run II

    CERN Document Server

    Karancsi, Janos

    2016-01-01

    The CMS pixel detector was repaired successfully, calibrated and commissioned for the second run of Large Hadron Collider during the first long shutdown between 2013 and 2015. The replaced pixel modules were calibrated separately and show the expected behavior of an un-irradiated detector. In 2015, the system performed very well with an even improved spatial resolution compared to 2012. During this time, the operational team faced various challenges including the loss of a sector in one half shell which was only partially recovered. In 2016, the detector is expected to withstand instantaneous luminosities beyond the design limits and will need a combined effort of both online and offline teams in order to provide the high quality data that is required to reach the physics goals of CMS. We present the operational experience gained during the second run of the LHC and show the latest performance results of the CMS pixel detector.

  7. Photon production at CDF and DO/

    International Nuclear Information System (INIS)

    Lamoureux, J.I.

    1996-01-01

    Prompt photon production has been studied in bar pp collisions at √s=1.8 TeV using the CDF and DO/ detectors at Fermilab. The measured inclusive isolated photon spectrum at CDF and DO/ are used to test NLO QCD predictions. The CDF result shows that additional soft radiation (K T ) in excess of NLO QCD is required to explain the data. No new resonance is observed in the photon+jet mass spectrum from DO/ which is consistent with NLO QCD predictions. The pseudorapidity distribution of the leading jet in photon events at CDF is compared to different parton distribution sets. The angular distribution is found to be better explained by a larger Bremsstrahlung contribution. copyright 1996 American Institute of Physics

  8. Diffractive dijet and W production in CDF

    International Nuclear Information System (INIS)

    Goulianos, K.

    1998-01-01

    Results on diffractive dijet and W-boson production from CDF are reviewed and compared with predictions based on factorization of the diffractive structure function of the proton measured in deep inelastic scattering at HERA

  9. Evidence for the Heavy Baryon Resonance State $\\Lambda_{b}^{\\ast0}$ Observed with the CDF II Detector, and Studies of New Particle Tracking Technologies Using the LANSCE Proton Beam

    Energy Technology Data Exchange (ETDEWEB)

    Palni, Prabhakar [Univ. of New Mexico, Albuquerque, NM (United States)

    2014-05-01

    To discover and probe the properties of new particles, we need to collide highly energetic particles. The Tevatron at Fermilab has collided protons and anti-protons at very high energies. These collisions produce short lived and stable particles, some known and some previously unknown. The CDF detector is used to study the products of such collisions and discover new elementary particles. To study the interaction between high energy charged particles and the detector materials often requires development of new instruments. Thus this dissertation involves a measurement at a contemporary experiment and development of technologies for related future experiments that will build on the contemporary one.

  10. Combination of CDF and D0 results on the mass of the top quark using up $9.7\\:{\\rm fb}^{-1}$ at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Tevatron Electroweak Working Group, Tevatron Group [Fermilab; Aaltonen, T. [Fermilab

    2016-08-05

    We summarize the current top quark mass (mt) measurements from the CDF and D0 experiments at Fermilab. We combine published results from Run I (1992–1996) with the most precise published and preliminary Run II (2001–2011) measurements based on $p\\bar{p}$ data corresponding to up to 9.7 fb$-$1 of $p\\bar{p}$ collisions. Taking correlations of uncertainties into account, and combining the statistical and systematic contributions in quadrature, the preliminary Tevatron average mass value for the top quark is mt = 174.30 ± 0.65 GeV/c2, corresponding to a relative precision of 0.37%.

  11. High ET jet cross sections at CDF

    International Nuclear Information System (INIS)

    Flaugher, B.

    1996-08-01

    The inclusive jet cross section for p anti p collisions at √s = 1.8 TeV as measured by the CDF collaboration will be presented. Preliminary CDF measurements of the Σ E T cross section at √s = 1.8 TeV and the central inclusive jet cross section at √s = 0.630 TeV will also be shown

  12. Performance of the CMS precision electromagnetic calorimeter at LHC Run II and prospects for High-Luminosity LHC

    CERN Document Server

    Zhang, Zhicai

    2017-01-01

    Many physics analyses using the Compact Muon Solenoid (CMS) detector at the LHC require accurate, high-resolution electron and photon energy measurements. Following the excellent performance achieved during LHC Run I at center-of-mass energies of 7 and 8 TeV, the CMS electromagnetic calorimeter (ECAL) is operating at the LHC with proton-proton collisions at 13 TeV center-of-mass energy. The instantaneous luminosity delivered by the LHC during Run II has achieved unprecedented levels. The average number of concurrent proton-proton collisions per bunch-crossing (pileup) has reached up to 40 interactions in 2016 and may increase further in 2017. These high pileup levels necessitate a retuning of the ECAL readout and trigger thresholds and reconstruction algorithms. In addition, the energy response of the detector must be precisely calibrated and monitored. We present new reconstruction algorithms and calibration strategies that were implemented to maintain the excellent performance of the CMS ECAL throughout Run...

  13. CDF GlideinWMS usage in Grid computing of high energy physics

    International Nuclear Information System (INIS)

    Zvada, Marian; Sfiligoi, Igor; Benjamin, Doug

    2010-01-01

    Many members of large science collaborations already have specialized grids available to advance their research in the need of getting more computing resources for data analysis. This has forced the Collider Detector at Fermilab (CDF) collaboration to move beyond the usage of dedicated resources and start exploiting Grid resources. Nowadays, CDF experiment is increasingly relying on glidein-based computing pools for data reconstruction. Especially, Monte Carlo production and user data analysis, serving over 400 users by central analysis farm middleware (CAF) on the top of Condor batch system and CDF Grid infrastructure. Condor is designed as distributed architecture and its glidein mechanism of pilot jobs is ideal for abstracting the Grid computing by making a virtual private computing pool. We would like to present the first production use of the generic pilot-based Workload Management System (glideinWMS), which is an implementation of the pilot mechanism based on the Condor distributed infrastructure. CDF Grid computing uses glideinWMS for its data reconstruction on the FNAL campus Grid, user analysis and Monte Carlo production across Open Science Grid (OSG). We review this computing model and setup used including CDF specific configuration within the glideinWMS system which provides powerful scalability and makes Grid computing working like in a local batch environment with ability to handle more than 10000 running jobs at a time.

  14. Search for squarks and gluinos in the D0 experiment of the Run-II-a at the Tevatron

    International Nuclear Information System (INIS)

    Verdier, P.

    2007-11-01

    The D0 experiment is recording pp-bar collisions at a center-of-mass energy of 1.96 TeV since the beginning of the Run II-a of the Tevatron in 2001. The design of processor boards for the D0 level 2 trigger system is first presented. Those boards were installed in 2003, and they have been working perfectly since that date. Performances of missing transverse energy (/ ET ) reconstruction are then described. This quantity is important at hadron colliders especially for new particles searches. Finally, squarks and gluinos, supersymmetric partners of quarks and gluons, could be the most copiously produced supersymmetric particles at the Tevatron, if they are sufficiently light. Those particles were searched for in 0.96 fb -1 of data recorded by D0 during the Run II-a. The final state consists of jets and missing transverse energy. The numbers of observed events are in good agreement with the Standard Model predictions. Lower mass limits at 95 % confidence level are obtained on the squark and gluino masses in the framework of the mSUGRA model. Contributions to other D0 data analyses are also shortly described. Those analyses are the search for first generation leptoquarks and the search for squarks in jets+τ(s)+E T events. The possibility to constrain a 'Little Higgs' model using the results of the jets+E T searches is then discussed. (author)

  15. CDF electroweak studies and the search for the top quark

    International Nuclear Information System (INIS)

    Frisch, H.J.

    1994-02-01

    The second major run of the bar pp Fermilab Tevatron Collider ended on May 30. The CDF detector has accumulated almost five times the data sample of its previous 1988-1989 run. The author presents new results on electroweak physics, including the ratio of W to Z boson production cross-sections, and the charge asymmetry in W decay. He gives a progress report on the measurement of the W mass. New results from the 1988-1989 data on W-γ production are also presented. The status of the search for the top quark in the dilepton modes is described. In addition a status report of the ongoing search in the lepton + jets mode is given

  16. Real-time alignment and calibration of the LHCb Detector in Run II

    CERN Multimedia

    Dujany, Giulio

    2016-01-01

    Stable, precise spatial alignment and PID calibration are necessary to achieve optimal detector performance. During Run2, LHCb has a new real-time detector alignment and calibration to allow equivalent performance in the online and offline reconstruction to be reached. This offers the opportunity to optimise the event selection by applying stronger constraints, and to use hadronic particle identification at the trigger level. The computing time constraints are met through the use of a new dedicated framework using the multi-core farm infrastructure for the trigger. The motivation for a real-time alignment and calibration of the LHCb detector is discussed from the operative and physics performance point of view. Specific challenges of this configuration are discussed, as well as the designed framework and its performance.

  17. Real-time alignment and calibration of the LHCb Detector in Run II

    CERN Multimedia

    Dujany, Giulio

    2015-01-01

    Stable, precise spatial alignment and PID calibration are necessary to achieve optimal detector performance. During Run2, LHCb will have a new real-time detector alignment and calibration to allow equivalent performance in the online and offline reconstruction to be reached. This offers the opportunity to optimise the event selection by applying stronger constraints, and to use hadronic particle identification at the trigger level. The computing time constraints are met through the use of a new dedicated framework using the multi-core farm infrastructure for the trigger. The motivation for a real-time alignment and calibration of the LHCb detector is discussed from the operative and physics performance point of view. Specific challenges of this configuration are discussed, as well as the designed framework and its performance.

  18. A neural jet charge tagger for the measurement of the B/s0 anti-B/s0 oscillation frequency at CDF

    International Nuclear Information System (INIS)

    Lecci, Claudia; Karlsruhe U., EKP

    2005-01-01

    A Jet Charge Tagger algorithm for b-flavour tagging for the measurement of Δm s at CDF has been presented. The tagger is based on a b-track probability variable and a b-jet probability variable, both obtained by combining the information available in b(bar b) events with a Neural Network. The tagging power measured on data is 0.917 ± 0.031% e+SVT sample; 0.938 ± 0.029% μ+SVT sample which is ∼30% larger than the cut based Jet Charge Tagger employed for the B s 0 mixing analysis presented by CDF at the Winter Conferences 2005. The improved power of the tagger is due to the selection of the b-jet with a Neural Network variable, which uses correlated jet variables in an optimal way. The development of the track and jet probability has profited from studies performed on simulated events, which allowed to understand better the features of b(bar b) events. For the first time in the CDF B group a Monte Carlo sample comprising flavour creation and additional b(bar b) production processes has been examined and compared to Run II data. It has been demonstrated that a Monte Carlo sample with only flavour creation b(bar b) production processes is not sufficient to describe b(bar b) data collected at CDF. The sample with additional processes introduced in this thesis is thus essential for tagging studies. Although the event description is satisfactory, the flavour information in the Monte Carlo sample differs with respect to data. This difference needs to be clarified by further studies. In addition, the track and the jet probabilities are the first official tools based on Neural Networks for B-Physics at CDF. They have proven that the simulation is understood to such an advanced level that Neural Networks can be employed. Further work is going on in this direction: a Soft Electron and a Soft Muon Tagger based on Neural Networks are under development as of now. Several possible tagger setups have been studied and the Jet Charge Tagger reached a high level of optimization

  19. Evaluation report on CCTF Core-II reflood test C2-16 (Run 76)

    International Nuclear Information System (INIS)

    Iguchi, Tadashi; Akimoto, Hajime; Okubo, Tsutomu; Hojo, Tsuneyuki; Murao, Yoshio; Sugimoto, Jun.

    1987-03-01

    This report presents the result of the upper plenum injection (UPI) test C2-16 (Run 76), which was conducted on October 23, 1984, with the Cylindrical Core Test Facility (CCTF) at Japan Atomic Energy Research Institute (JAERI). The CCTF is a 1/21.4 scale model of a 1,100 MWe PWR with four loop active components to provide information on the system and core thermo-hydrodynamics during reflood. The objectives of the test are to investigate the reflood phenomena with single failure UPI condition and to investigate the effect of the asymmetry of UPI on the reflood phenomena. The test was performed with an asymmetric UPI condition at the injection rate simulating single failure of LPCI pumps. It was observed that, (1) a UPI test simulating no LPCI pump failure gave the slightly lower peak clad temperature than a UPI test simulating single LPCI pump failure, indicating that single LPCI pump failure assumption is conserrative for UPI condition, and (2) an asymmetric UPI lead to a higher core water accumulation and then a higher heat transfer coefficient, resultantly a lower peak clad temperature than a symmetric UPI, indicating that asymmetric UPI does not lead to a poorer core cooling than symmetric UPI. (author)

  20. The ALICE Transition Radiation Detector: status and perspectives for Run II

    CERN Document Server

    Klein, Jochen

    2016-01-01

    The ALICE Transition Radiation Detector contributes to the tracking, particle identification, and triggering capabilities of the experiment. It is composed of six layers of multi-wire proportional chambers, each of which is preceded by a radiator and a Xe/CO$_2$-filled drift volume. The signal is sampled in timebins of 100~ns over the drift length which allows for the reconstruction of chamber-wise track segments, both online and offline. The particle identification is based on the specific energy loss of charged particles and additional transition radiation photons, the latter being a signature for electrons. The detector is segmented into 18 sectors, of which 13 were installed in Run I. The TRD was included in data taking since the LHC start-up and was successfully used for electron identification and triggering. During the Long Shutdown 1, the detector was completed and now covers the full azimuthal acceptance. Furthermore, the readout and trigger components were upgraded. When data taking was started for ...

  1. Evaluation report on CCTF core-II reflood test C2-6 (Run 64)

    International Nuclear Information System (INIS)

    Akimoto, Hajime; Iguchi, Tadashi; Sugimoto, Jun; Okubo, Tsutomu; Murao, Yoshio; Okabe, Kazuharu.

    1985-03-01

    In order to evaluate the effect of the radial power profile on the system behavior and the core thermal hydraulic behavior during the reflood phase of a PWR LOCA, a test was performed using the Cylindrical Core Test Facility(CCTF) with the flat radial power profile. The test was conducted with the same total core power as that of the steep radial power test C2-5(Run 63). Through the comparisons of the results from these two tests, the following conclusions were obtained: (1) The radial power profile in the core has weak effect on the thermal hydraulic behavior in the primary system except the core. (2) Almost the same differential pressure was observed at various elevations in the periphery of the core regardless of different radial power profile. The result suggests that the core differential pressure is determined mainly by the total power and the total stored energy rather than by the local power and the local stored energy. (3) The test results support the single channel core model with the average power rod used in the reactor safety analysis codes such as REFLA-1DS, WREM for the evaluation of the overall system behavior. (4) In the steep radial power test, the heat transfer coefficient in the central(high power) region was higher than that in the peripheral(low power) region. The tendency was not explained by the estimation with the heat transfer correlation developed by Murao and Sugimoto assuming that the void fraction was uniform in a horizontal cross section. It is necessary to study more the dependency of core heat transfer on the radial power profile in the wide core. (author)

  2. Evaluation report on CCTF core-II reflood test C2 - 18 (Run 78)

    International Nuclear Information System (INIS)

    Iguchi, Tadashi; Akimoto, Hajime; Okubo, Tsutomu; Murao, Yoshio; Sugimoto, Jun; Hojo, Tsuneyuki.

    1987-03-01

    This report presents the result of the upper plenum injection (UPI) test C2 - 18 (Run 78), which was conducted on November 13, 1984 with the Cylindrical Core Test Facility (CCTF) at Japan Atomic Energy Research Institute (JAERI). The CCTF is a 1/21.4 scale model of a 1,100 MWe PWR with four loop active components to provide information on the system and core thermo-hydrodynamics during reflood phase. The objectives of the test are to investigate the refill behavior with UPI condition and to investigate the reflood behavior with UPI Best-Estimate (BE) condition. The test was performed to simulate refill/reflood behavior with UPI and BE conditions (However, the LPCI flow rate was determined based on single failure of LPCI pumps.). The result of the test showed the followings. (1) Little special phenomena were recognized under UPI and BE conditions in comparison with those under UPI and Evaluation-Model (EM) conditions, although certain special phenoma (i.e. significant fluid oscillation) were recognized under Cold-Leg-Injection (CLI) and BE conditions in comparison with those under CLI and EM conditions. (2) Water inventory in lower plenum increased smoothly due to water injected into both upper plenum and cold leg during refill phase, similarly to that in refill-simulation test with CLI condition. Small difference in refill behavior with UPI condition is the existing of steam condensation in upper plenum, resulting in lower steam binding and higher core cooling during early reflood phase. This indicates the conservatism of UPI against CLI during early reflood phase. (3) The good core-cooling capability was confirmed under UPI and BE conditions. (author)

  3. Heavy flavor decay of Zγ at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Harrington-Taber, Timothy M. [Univ. of Iowa, Iowa City, IA (United States)

    2013-01-01

    Diboson production is an important and frequently measured parameter of the Standard Model. This analysis considers the previously neglected p$\\bar{p}$ →Z γ→ b$\\bar{b}$ channel, as measured at the Collider Detector at Fermilab. Using the entire Tevatron Run II dataset, the measured result is consistent with Standard Model predictions, but the statistical error associated with this method of measurement limits the strength of this correlation.

  4. Measurement of the W Boson Mass with the D0 Run II Detector using the Electron P(T) Spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Andeen, Jr., Timothy R. [Northwestern Univ., Evanston, IL (United States)

    2008-06-01

    This thesis is a description of the measurement of the W boson mass using the D0 Run II detector with 770 pb-1 of p$\\bar{p}$ collision data. These collisions were produced by the Tevatron at √s = 1.96 TeV between 2002 and 2006. We use a sample of W → ev and Z → ee decays to determine the W boson mass with the transverse momentum distribution of the electron and the transverse mass distribution of the boson. We measure MW = 80340 ± 37 (stat.) ± 26 (sys. theo.) ± 51 (sys. exp.) MeV = 80340 ± 68 MeV with the transverse momentum distribution of the electron and MW = 80361 ± 28 (stat.) ± 17 (sys. theo.) ± 51 (sys. exp.) MeV = 80361 ± 61 MeV with the transverse mass distribution.

  5. Angiotensin II receptor blocker telmisartan enhances running endurance of skeletal muscle through activation of the PPAR-δ/AMPK pathway.

    Science.gov (United States)

    Feng, Xiaoli; Luo, Zhidan; Ma, Liqun; Ma, Shuangtao; Yang, Dachun; Zhao, Zhigang; Yan, Zhencheng; He, Hongbo; Cao, Tingbing; Liu, Daoyan; Zhu, Zhiming

    2011-07-01

    Clinical trials have shown that angiotensin II receptor blockers reduce the new onset of diabetes in hypertensives; however, the underlying mechanisms remain unknown. We investigated the effects of telmisartan on peroxisome proliferator activated receptor γ (PPAR-δ) and the adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway in cultured myotubes, as well as on the running endurance of wild-type and PPAR-δ-deficient mice. Administration of telmisartan up-regulated levels of PPAR-δ and phospho-AMPKα in cultured myotubes. However, PPAR-δ gene deficiency completely abolished the telmisartan effect on phospho-AMPKαin vitro. Chronic administration of telmisartan remarkably prevented weight gain, enhanced running endurance and post-exercise oxygen consumption, and increased slow-twitch skeletal muscle fibres in wild-type mice, but these effects were absent in PPAR-δ-deficient mice. The mechanism is involved in PPAR-δ-mediated stimulation of the AMPK pathway. Compared to the control mice, phospho-AMPKα level in skeletal muscle was up-regulated in mice treated with telmisartan. In contrast, phospho-AMPKα expression in skeletal muscle was unchanged in PPAR-δ-deficient mice treated with telmisartan. These findings highlight the ability of telmisartan to improve skeletal muscle function, and they implicate PPAR-δ as a potential therapeutic target for the prevention of type 2 diabetes. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  6. Sparticle mass hierarchies, simplified models from SUGRA unification, and benchmarks for LHC Run-II SUSY searches

    International Nuclear Information System (INIS)

    Francescone, David; Akula, Sujeet; Altunkaynak, Baris; Nath, Pran

    2015-01-01

    Sparticle mass hierarchies contain significant information regarding the origin and nature of supersymmetry breaking. The hierarchical patterns are severely constrained by electroweak symmetry breaking as well as by the astrophysical and particle physics data. They are further constrained by the Higgs boson mass measurement. The sparticle mass hierarchies can be used to generate simplified models consistent with the high scale models. In this work we consider supergravity models with universal boundary conditions for soft parameters at the unification scale as well as supergravity models with nonuniversalities and delineate the list of sparticle mass hierarchies for the five lightest sparticles. Simplified models can be obtained by a truncation of these, retaining a smaller set of lightest particles. The mass hierarchies and their truncated versions enlarge significantly the list of simplified models currently being used in the literature. Benchmarks for a variety of supergravity unified models appropriate for SUSY searches at future colliders are also presented. The signature analysis of two benchmark models has been carried out and a discussion of the searches needed for their discovery at LHC Run-II is given. An analysis of the spin-independent neutralino-proton cross section exhibiting the Higgs boson mass dependence and the hierarchical patterns is also carried out. It is seen that a knowledge of the spin-independent neutralino-proton cross section and the neutralino mass will narrow down the list of the allowed sparticle mass hierarchies. Thus dark matter experiments along with analyses for the LHC Run-II will provide strong clues to the nature of symmetry breaking at the unification scale.

  7. J/ψ production and beauty physics at CDF

    International Nuclear Information System (INIS)

    Smith, D.A.

    1991-01-01

    The Fermilab proton-antiproton collider makes about 50 beauty mesons per second, giving a unique opportunity to test the higher order QCD calculations that have recently been completed. CDF, the Collider Detector at Fermilab, finished its first large-scale data run in June 1989, recording 4.7 pb -1 using a variety of triggers. As of this workshop, only half of the data have been fully reconstructed, and the beauty analysis is at an early stage. Therefore this paper shows only work-in-progress on the analysis methods. The authors estimate the B cross section to be consistent with theoretical predictions. CDF is an azimuthally symmetric detector with good solid angle coverage, consisting of high-granularity hadron calorimeters and shower counters, high-resolution tracking in an 1.4-T axial magnetic field, a vertex time projection chamber, and muon tracking. This paper shows the geometry of the muon chambers. Sets of muon chambers lie behind five interaction lengths of calorimetry, over the angle 56 degrees < θ < 124 degrees from the beam. They have four layers of δφ ∼ 1 degree cells, using charge division to measure the longitudinal track coordinate and drift time for the transverse coordinate. A level-1 trigger rejects low transverse momentum tracks by testing the drift-time difference between alternate layers of the chambers, which amounts to a cut on the bending of the track in the magnetic field

  8. Searches for new phenomena at CDF

    International Nuclear Information System (INIS)

    Wilson, P.J.

    1997-07-01

    We present recent results of searches for new physics in 110 pb - 1 of p anti p collisions at √s = 1800 GeV using the CDF detector. Presented are searches for third generation leptoquarks, charged and neutral Higgs bosons and the supersymmetric partner of the top quark (t). A search for new physics in diphoton events tests some models attempting to explain the CDF ''eeγγE T '' event. Finding no signal in any of these channels, production limits are presented

  9. CDF central detector installation. An efficient merge of digital photogrammetry and laser tracker metrology

    International Nuclear Information System (INIS)

    Greenwood, John A.; Wojcik, George J.

    2003-01-01

    Metrology for Run II at the Collider Detector at Fermilab (CDF) required a very complex geodetic survey. The Collision Hall network, surveyed with a Laser Tracker and digital level, provides a constraining network for the positioning of the Central Detector (CD). A part-based Laser Tracker network, which surrounded the 2,000-ton CD, was used as control for assembly. Subassembly surveys of the Detector's major components were measured as independent networks using Laser Tracker, V-STARS/S (Video-Simultaneous Triangulation And Resection System/Single camera) digital photogrammetry system, and BETS (Brunson Electronic Theodolite System) theodolite triangulation system. Each subassembly survey was transformed into and constrained by the part-based network. For roll-in, the CD part-based network was transformed into the Collision Hall network coordinate system. The CD was positioned in the Collision Hall using two Laser Trackers in 'stakeout mode.' This paper discusses the survey, adjustment, transformation, and precision of the various networks. (author)

  10. Combination of CDF and D0 measurements of the $W$ boson helicity in top quark decays

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, T.; /Helsinki Inst. of Phys.; Abazov, V.M.; /Dubna, JINR; Abbott, B.; /Oklahoma U.; Acharya, B.S.; /Tata Inst.; Adams, M.; /Illinois U., Chicago; Adams, T.; /Florida State U.; Alexeev, G.D.; /Dubna, JINR; Alkhazov, G.; /St. Petersburg, INP; Alton, A.; /Augustana Coll., Sioux Falls /Michigan U.; Alvarez Gonzalez, B.; /Oviedo U. /Cantabria Inst. of Phys.; Alverson, G.; /Northeastern U. /INFN, Padua

    2012-02-01

    We report the combination of recent measurements of the helicity of the W boson from top quark decay by the CDF and D0 collaborations, based on data samples corresponding to integrated luminosities of 2.7-5.4 fb{sup -1} of p{bar p} collisions collected during Run II of the Fermilab Tevatron Collider. Combining measurements that simultaneously determine the fractions of W bosons with longitudinal (f{sub 0}) and right-handed (f{sub +}) helicities, we find f{sub 0} = 0.722 {+-} 0.081 [{+-} 0.062 (stat.) {+-} 0.052 (syst.)] and f{sub +} = -0.033 {+-} 0.046 [{+-} 0.034 (stat.) {+-} 0.031 (syst.)]. Combining measurements where one of the helicity fractions is fixed to the value expected in the standard model, we find f{sub 0} = 0.682 {+-} 0.057 [{+-} 0.035 (stat.) {+-} 0.046 (syst.)] and f{sub +} = ?0.015 {+-} 0.035 [{+-} 0.018 (stat.) {+-} 0.030 (syst.)]. The results are consistent with standard model expectations.

  11. Indirectly cooled large thin superconducting CDF solenoid

    International Nuclear Information System (INIS)

    Kondo, Kunitaka; Mori, Shigeki; Yoshizaki, Ryozo; Saito, Ryusei; Asano, Katsuhiko.

    1985-01-01

    The manufacturing technique of the indirectly cooled large thin superconducting solenoid for the collider detector facility (CDF solenoid) has been studied through cooperation of University of Tsukuba and the National Laboratory for High Energy Physics of the Ministry of Education of Japan, and the Fermi National Accelerator Laboratory in the U.S. Fabrication and testing of the solenoid has recently been completed by Hitachi. The CDF solenoid has a large-sized thin structure for meeting the requirement by experiments to be applied. Hitachi has thus developed a variety of new technologies including the design standard, coil cooling method, material selection, and manufacturing technique in accordance with experimental data, which were confirmed in a series of analyses and tests made on various prototypes. The CDF solenoid, built using Hitachi's new technologies, is of the world's top class among equipment of this type. This paper outlines the design criteria for the major components employed in the CDF solenoid and the test results of the solenoid. (author)

  12. Isolated prompt photon production at CDF

    International Nuclear Information System (INIS)

    Maas, P.A.

    1992-11-01

    This note describes measurements of isolated prompt photon production at √s = 1.8 TeV using the CDF experiment. The measurements are compared to recent NLO QCD calculations, including recently obtained parton distribution functions. Qualitatively, the QCD calculation with the new parton distribution functions agrees better with the data than the previous parton distribution functions

  13. Scaling behavior of jet production at CDF

    International Nuclear Information System (INIS)

    Behrends, S.

    1992-11-01

    Inclusive jet cross-sections have been measured in bar pp collisions at √s = 546 and 1800 GeV, using the CDF detector at the Fermilab Tevatron. The ratio of jet cross-sections is compared to predictions from simple scaling and 0(α s 3 ) QCD

  14. Scaling behavior of jet production at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Behrends, S. [Brandeis Univ., Waltham, MA (United States). Dept. of Physics; The CDF Collaboration

    1992-11-01

    Inclusive jet cross-sections have been measured in {bar p}p collisions at {radical}s = 546 and 1800 GeV, using the CDF detector at the Fermilab Tevatron. The ratio of jet cross-sections is compared to predictions from simple scaling and 0({alpha}{sub s{sup 3}}) QCD.

  15. A measurement of the b bar b cross section at CDF

    International Nuclear Information System (INIS)

    Yu, I.

    1994-08-01

    We report a measurement of the b bar b cross section at CDF from the 1992--1993 run of the Tevatron Collider. Dimuon events from inclusive b → μ decays of b bar b pairs are used to obtain the cross section as a function of P T (b 1 ) and P T (b 2 ). The results are compared to the predictions of next-to-leading order QCD and are found to be consistent

  16. Summary of the half-day internal review of LHC performance limitations (linked to transverse collective effects) during run II (CERN, 29/11/2016)

    CERN Document Server

    Metral, Elias; Biancacci, Nicolo; Buffat, Xavier; Carver, Lee Robert; Iadarola, Giovanni; Li, Kevin Shing Bruce; Persson, Tobias Hakan Bjorn; Romano, Annalisa; Schenk, Michael; Tambasco, Claudia; CERN. Geneva. ATS Department

    2017-01-01

    In this note the half-day internal review of LHC performance limitations (linked to transverse collective effects) during run II (2015-2016), which took place at CERN on 29/11/2016 (https://indico.cern.ch/event/589625/), is summarised and the next steps are discussed.

  17. Level II scour analysis for Bridge 18 (SHEFTH00410018) on Town Highway 41, crossing Millers Run, Sheffield, Vermont

    Science.gov (United States)

    Wild, Emily C.; Boehmler, Erick M.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure SHEFTH00410018 on Town Highway 41 crossing Millers Run, Sheffield, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the White Mountain section of the New England physiographic province in northeastern Vermont. The 16.2-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is grass upstream and downstream of the bridge while the immediate banks have dense woody vegetation. In the study area, Millers Run has an incised, straight channel with a slope of approximately 0.01 ft/ft, an average channel top width of 50 ft and an average bank height of 6 ft. The channel bed material ranges from sand to boulder with a median grain size (D50) of 50.9 mm (0.167 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 1, 1995, indicated that the reach was laterally unstable, which is evident in the moderate to severe fluvial erosion in the upstream reach. The Town Highway 41 crossing of the Millers Run is a 30-ft-long, one-lane bridge consisting of a 28-foot steel-stringer span (Vermont Agency of Transportation, written communication, March 28, 1995). The opening length of the structure parallel to the bridge face is 22.2 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 20 degrees to the opening. The computed

  18. Collider Detector (CDF) at FERMILAB: an overview

    International Nuclear Information System (INIS)

    Theriot, D.

    1984-07-01

    CDF, the Collider Detector at Fermilab, is a collaboration of almost 150 physicists from ten US universities (University of Chicago, Brandeis University, Harvard University, University of Illinois, University of Pennsylvania, Purdue University, Rockefeller University, Rutgers University, Texas A and M University, and University of Wisconsin), three US DOE supported national laboratories (Fermilab, Argonne National Laboratory, and Lawrence Berkeley Laboratory), Italy (Frascati Laboratory and University of Pisa), and Japan (KEK National Laboratory and Unversity of Tsukuba). The primary physics goal for CDF is to study the general features of proton-antiproton collisions at 2 TeV center-of-mass energy. On general grounds, we expect that parton subenergies in the range 50 to 500 GeV will provide the most interesting physics at this energy. Work at the present CERN Collider has already demonstrated the richness of the 100 GeV scale in parton subenergies

  19. Collider detector at Fermilab - CDF. Progress report

    International Nuclear Information System (INIS)

    Theriot, D.

    1985-06-01

    CDF, the Collider Detector at Fermilab, is a collaboration of almost 180 physicists from ten US universities (University of Chicago, Brandeis University, Harvard University, University of Illinois, University of Pennsylvania, Purdue University, Rockefeller University, Rutgers University, Texas A and M University, and University of Wisconsin), three US DOE supported national laboratories (Fermilab, Argonne National Laboratory, and Lawrence Berkeley Laboratory), Italy (Frascati National Laboratory and University of Pisa), and Japan (KEK National Laboratory and University of Tsukuba). The primary physics goal for CDF is to study the general features of proton-antiproton collisions at 2 TeV center-of-mass energy. On general grounds, we expect that parton subenergies in the range 50 to 500 GeV will provide the most interesting physics at this energy. Work at the present CERN Collider has already demonstrated the richness of the 100 GeV scale in parton subenergies. 7 refs., 14 figs

  20. CDF End Plug calorimeter Upgrade Project

    International Nuclear Information System (INIS)

    Apollinari, G.; de Barbaro, P.; Mishina, M.

    1994-01-01

    We report on the status of the CDF End Plug Upgrade Project. In this project, the CDF calorimeters in the end plug and the forward regions will be replaced by a single scintillator based calorimeter. After an extensive R ampersand D effort on the tile/fiber calorimetry, we have now advanced to a construction phase. We review the results of the R ampersand D leading to the final design of the calorimeters and the development of tooling devised for this project. The quality control program of the production of the electromagnetic and hadronic calorimeters is described. A shower maximum detector for the measurement of the shower centroid and the shower profile of electrons, γ and π 0 has been designed. Its performance requirements, R ampersand D results and mechanical design are discussed

  1. The CDF central and endwall hadron calorimeter

    International Nuclear Information System (INIS)

    Bertolucci, S.; Cordelli, M.; Eposito, B.; Curatolo, M.; Giromini, P.; Miscetti, S.; Sansoni, A.; Barnes, V.E.; Di Virgilio, A.; Garfinkel, A.F.; Kuhlmann, S.E.; Laasanen, A.T.

    1988-01-01

    The CDF central and endwall hadron calorimeter covers the polar region between 30 0 and 150 0 and a full 2π in azimuth. It consists of 48 steel-scintillator central modules with 2.5 cm sampling and 48 steel-scintillator endwall modules with 5.0 cm sampling. A general description of the detector is given. Calibration techniques and performance are discussed. Some results of the test beam studies are shown. (orig.)

  2. Measurement of sigma(pp'bar' → W) x BF(W → eν) in the CDF experiment, and single photoelectron analysis of light signals

    International Nuclear Information System (INIS)

    Fedorko, I.

    2004-01-01

    In this work, I present a measurement of the cross section of W production at collider Tevatron times branching fraction for W → eν (sigma(pp'bar' → W) x BF(W → eν)) with electron reconstructed in the forward region of the detector CDF, using combined calorimetric and tracking information. This is the first CDF measurement in the forward rapidity range and is the first step for study of W properties at large η. For the period Run II, started from autumn 2001, was made upgrade of CDF detector. The forward region (for pseudorapidity |η| > 1) was strongly affected by this upgrade. Mainly due to new silicon tracking system and new forward calorimeter. With combination of tracking detectors SVXII and ISL it is now possible to reconstruct '3D' tracks. The analysis starts from calorimeter-based selection criteria finished with sample of W candidates. This selection is followed by matching '3D' tracks (to remove remaining background) with reconstructed cluster in electromagnetic calorimeter, which is measuring not only energy, but also position of electromagnetic object by Preshower detector (part of calorimeter). Besides MET PEM trigger and tracking efficiencies were established as a helpful numbers for other analysis in forward region. The measured value of the σ x BF(W → eν) is 2.874 ± 0.034(stat) ± 0.167(sys) ± 0.172(lum)nb for data sample of integrated luminosity 64 pb -1 , taken from February 2002 until the January 2003 shutdown. Presented value is in agreement with measurements performed by CDF in the central region and with theoretical estimates. Analysis of the photomultiplier (PMT) pulse height spectra from faint light sources (usually called the single-photoelectron spectra) is of a great importance because it reveals many features and can be used to find relevant parameters of PMTs. A deconvolution method is based on a sophisticated photomultiplier response function, which takes into account also photoeffect on first dynode and non

  3. The B-Physics Programme of ATLAS in LHC Run-II and in HL-LHC

    CERN Document Server

    Reznicek, P; The ATLAS collaboration

    2014-01-01

    Slides for the talk to be given at Beauty 2014 conference in Edinburgh, 14-18 July 2014. The talk describes the ATLAS B-physics programme planned to future LHC runs: Run 2, 3 and HL-LHC. The relevant ATLAS detector upgrades are dicussed and a results of pilot sensitivity study of $B_{s} \\to J/\\psi \\phi$ measurement in the future runs are shown.

  4. Running the running

    OpenAIRE

    Cabass, Giovanni; Di Valentino, Eleonora; Melchiorri, Alessandro; Pajer, Enrico; Silk, Joseph

    2016-01-01

    We use the recent observations of Cosmic Microwave Background temperature and polarization anisotropies provided by the Planck satellite experiment to place constraints on the running $\\alpha_\\mathrm{s} = \\mathrm{d}n_{\\mathrm{s}} / \\mathrm{d}\\log k$ and the running of the running $\\beta_{\\mathrm{s}} = \\mathrm{d}\\alpha_{\\mathrm{s}} / \\mathrm{d}\\log k$ of the spectral index $n_{\\mathrm{s}}$ of primordial scalar fluctuations. We find $\\alpha_\\mathrm{s}=0.011\\pm0.010$ and $\\beta_\\mathrm{s}=0.027\\...

  5. Search for gluino and squark production in multi-jets plus missing transverse energy final states at the Tevatron using the CDF detector

    Energy Technology Data Exchange (ETDEWEB)

    Portell i Bueso, Xavier [Autonomous Univ. of Barcelona, Bellaterra (Spain). Inst. for High Energy Physics

    2007-01-01

    In this thesis, the results of the search for squarks and gluinos in multiple jets plus missing transverse energy final states have been presented. No evidence of these new particles have been found in 371 pb-1 of CDF Run II data. New limits have been set which exclude gluino masses below 220 GeV and, in the region where M$\\tilde{g}$ ~ M$\\tilde{q}$, masses below 380 GeV/c2 are excluded. These limits are valid in a mSUGRA scenario with tan β = 5, A = 0 and μ < 0 assuming the lightest four squark flavours degenerate in mass. To obtain these results a careful study of the beam conditions and their contribution to events with ET final states has been performed. Special attention has been taken in studying the different SM backgrounds and their normalizations at NLO. Dedicated cuts have been introduced to remove the background processes and main discriminating variables have been optimized for different signal regions. The different systematic uncertainties have also been considered. This is the first time that this search is performed at CDF Run II and the results presented here show significant improvements with respect to the constraints from previous experiments. Thus, this analysis has established the procedure to continue searching for squarks and gluinos with the new data samples that CDF is collecting from Tevatron. Some improvements may also be implemented by considering other hadron final states with different jet multiplicities. This could help extending the sensitivity of the analysis to regions where gluino and squark masses are not similar. At the forthcoming LHC, the search for squarks and gluinos in this inclusive channel constitutes one of the first analyses to be performed. The ET and multiple jets final states are present in multiple decay modes of many models beyond the SM. The experience from Tevatron in working on an hadron collider environment will be useful for these kind of

  6. Measurement of the Inclusive $b$-jet cross section in $p\\bar{p}$ collisions at CDF RunII and Development of silicon microstrip detectors for the ATLAS silicon tracker

    Energy Technology Data Exchange (ETDEWEB)

    D' Onofrio, Monica [Univ. of Geneva (Switzerland)

    2005-01-01

    In the past twenty years, the study of events with bottom quark has led to many important Tevatron results- as the discovery of the top quark- and it will be as well crucial at the LHC for the search of new physics phenomena. This analysis exploits the good tracking capabilities of the detector and relies on b-jet identification made by secondary vertex reconstruction. The study of the Inner Tracker system performance and in particular the Semi conductor Tracker (SCT), can be considered one of the fundamental issues in the construction of the apparatus. The second part of this thesis work reports some of the crucial tests performed during the development of the silicon microstrip detectors composing the SCT.

  7. The RASNIK real-time relative alignment monitor for the CDF inner tracking detectors

    International Nuclear Information System (INIS)

    Goldstein, David; Saltzberg, David

    2003-01-01

    We describe the design and operation of the RASNIK optical relative alignment system designed for and installed on the CDF inner tracking detectors. The system provides low-cost minute-by-minute alignment monitoring with submicron precision. To reduce ambiguities, we modified the original three-element RASNIK design to a two-element one. Since the RASNIKs are located within 10-40 cm of the beam line, the systems were built from low-mass and radiation-hard components and are operated in a mode which reduces damage from radiation. We describe the data-acquisition system, which has been running without interruption since before the CDF detector was rolled into its collision hall in March 2001. We evaluate what has been learned about sources of detector motion from almost 2 years of RASNIK data and discuss possible improvements to the system

  8. Evaluation report on CCTF Core-II reflood tests C2-AC1 (run 51) and C2-4 (run 62)

    International Nuclear Information System (INIS)

    Sugimoto, Jun; Iguchi, Tadashi; Murao, Yoshio

    1984-02-01

    A reflood test program has been conducted at Japan Atomic Energy Research Institute (JAERI) using large scale test facilities named Cylindrical Core Test Facility (CCTF) and Slab Core Test Facility (SCTF). The present report describes the effect of the initial clad temperature i.e., the initial stored energy on reflood phenomena observed in CCTF Core-II tests C2-ACl and C2-4. The peak clad temperatures of tests C2-ACl and C2-4 were 863 K and 1069 K, respectively at reflood initiation. With higher initial clad temperature, obtained were lower water accumulation in the core and upper plenum, and higher loop mass flow rate in an early reflood transient due to larger heat release of the stored energy in the core. Core inlet flow conditions were only affected shortly after the reflood initiation, causing the suppressed flooding rate and the larger U-tube flow oscillation between the core and the downcomer. In the core, with higher initial clad temperature, slower quench front propagation and higher turnaround temperature were observed. Responses to a higher initial clad temperature were similar to those observed in CCTF Core-I and FLECHT tests. Thus, the lower temperature rise with higher initial clad temperature was experimentally confirmed. The importance of higher flooding rate at initial period was analytically shown for further decreasing the temperature rise. (author)

  9. MR-CDF: Managing multi-resolution scientific data

    Science.gov (United States)

    Salem, Kenneth

    1993-01-01

    MR-CDF is a system for managing multi-resolution scientific data sets. It is an extension of the popular CDF (Common Data Format) system. MR-CDF provides a simple functional interface to client programs for storage and retrieval of data. Data is stored so that low resolution versions of the data can be provided quickly. Higher resolutions are also available, but not as quickly. By managing data with MR-CDF, an application can be relieved of the low-level details of data management, and can easily trade data resolution for improved access time.

  10. CDF-XL: computing cumulative distribution functions of reaction time data in Excel.

    Science.gov (United States)

    Houghton, George; Grange, James A

    2011-12-01

    In experimental psychology, central tendencies of reaction time (RT) distributions are used to compare different experimental conditions. This emphasis on the central tendency ignores additional information that may be derived from the RT distribution itself. One method for analysing RT distributions is to construct cumulative distribution frequency plots (CDFs; Ratcliff, Psychological Bulletin 86:446-461, 1979). However, this method is difficult to implement in widely available software, severely restricting its use. In this report, we present an Excel-based program, CDF-XL, for constructing and analysing CDFs, with the aim of making such techniques more readily accessible to researchers, including students (CDF-XL can be downloaded free of charge from the Psychonomic Society's online archive). CDF-XL functions as an Excel workbook and starts from the raw experimental data, organised into three columns (Subject, Condition, and RT) on an Input Data worksheet (a point-and-click utility is provided for achieving this format from a broader data set). No further preprocessing or sorting of the data is required. With one click of a button, CDF-XL will generate two forms of cumulative analysis: (1) "standard" CDFs, based on percentiles of participant RT distributions (by condition), and (2) a related analysis employing the participant means of rank-ordered RT bins. Both analyses involve partitioning the data in similar ways, but the first uses a "median"-type measure at the participant level, while the latter uses the mean. The results are presented in three formats: (i) by participants, suitable for entry into further statistical analysis; (ii) grand means by condition; and (iii) completed CDF plots in Excel charts.

  11. Jet shapes at D0 and CDF

    International Nuclear Information System (INIS)

    Streets, K.T.

    1995-05-01

    The distribution of the transverse energy in jets has been measured in p bar p collisions at √s = 1.8 TeV at the Fermilab Tevatron collider using the CDF and DO detectors. This measurement of the jet shape is made as a function of jet transverse energy in both experiments and as a function of the jet pseudorapidity in the D0 experiment. Comparisons to Monte Carlo simulations and next-to-leading order partonic QCD calculations, Ο(α s 3 ), are presented

  12. Study of Exclusive Final States at CDF

    International Nuclear Information System (INIS)

    Pinfold, James

    2008-01-01

    We present the current status of the searches, using the CDF detector at the Tevatron, for the exclusive processes: pp-bar →p(e + e - )p-bar and pp-bar →p(μ + μ - )p-bar , produced via two photon interactions; pp-bar →p(γγ)p-bar and pp-bar →p(J/ψ+γ)p-bar , from double pomeron exchange; and, pp-bar →p(J/ψ(→μ + μ - ))p-bar ; from photon-pomeron fusion

  13. Construction of the CDF silicon vertex detector

    International Nuclear Information System (INIS)

    Skarha, J.; Barnett, B.; Boswell, C.; Snider, F.; Spies, A.; Tseng, J.; Vejcik, S.; Carter, H.; Flaugher, B.; Gonzales, B.; Hrycyk, M.; Nelson, C.; Segler, S.; Shaw, T.; Tkaczyk, S.; Turner, K.; Wesson, T.; Carithers, W.; Ely, R.; Haber, C.; Holland, S.; Kleinfelder, S.; Merrick, T.; Schneider, O.; Wester, W.; Wong, M.; Amidei, D.; Derwent, P.; Gold, M.; Matthews, J.; Bacchetta, N.; Bisello, D.; Busetto, G.; Castro, A.; Loreti, M.; Pescara, L.; Bedeschi, F.; Bolognesi, V.; Dell'Agnello, S.; Galeotti, S.; Mariotti, M.; Menzione, A.; Punzi, G.; Raffaelli, F.; Risotri, L.; Tartarelli, F.; Turini, N.; Wenzel, H.; Zetti, F.; Bailey, M.; Garfinkel, A.; Shaw, N.; Tipton, P.; Watts, G.

    1992-04-01

    Technical details and methods used in constructing the CDF silicon vertex detector are presented. This description includes a discussion of the foam-carbon fiber composite structure used to silicon microstrip detectors and the procedure for achievement of 5 μm detector alignment. The construction of the beryllium barrel structure, which houses the detector assemblies, is also described. In addition, the 10 μm placement accuracy of the detectors in the barrel structure is discussed and the detector cooling and mounting systems are described. 12 refs

  14. Searching for new physics at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Shreyber, Irina; /Moscow, ITEP

    2006-11-01

    We present recent results on searches for physics beyond the Standard Model obtained from the analysis of 1 fb{sup -1} of data collected at the Tevatron Collider by the CDF Collaboration. We report on model-independent studies for anomalous production of {ell}{gamma} + X, {ell}{gamma}bE{sub T} and {gamma}{gamma} + E{sub T}, Standard Model t{bar t}{gamma} production. We also present results for the Randall-Sundrum Gravitons, the same-sign dileptons and the trileptons searches. No significant excess of data over the predicted background is observed.

  15. Lifetime of B hadrons from CDF

    International Nuclear Information System (INIS)

    Miao, Ting.

    1996-08-01

    A review of the lifetimes of B hadrons measured by the CDF collaboration at Fermilab is presented. The data corresponds to 110 pb -1 of p anti p collisions at √s = 1.8 TeV. The inclusive B hadron lifetime is measured using a high statistics sample of B → J/ΨΧ decays. Species specific lifetimes of the B + , B 0 , B 0 s , and Λ 0 b are determined using both fully reconstructed decays and partially reconstructed decays consisting of a lepton associated with a charm hadron

  16. Charmless b-hadrons decays at CDF

    International Nuclear Information System (INIS)

    Morello, Michael Joseph

    2008-01-01

    We present CDF results on the branching fractions and time-integrated direct CP asymmetries for Bd, Bs and Lb decay modes into pairs of charmless charged hadrons (pions, kaons and protons). The data-set for these measurements amounts to 1fb -1 of p(bar p) collisions at a center of mass energy 1.96TeV. We report on the first observation of the Bs->Kpi, Lb-ppi and Lb->pK decay modes and on the measurement of their branching fractions and direct CP asymmetries

  17. Performance of the CDF Silicon VerteX detector

    International Nuclear Information System (INIS)

    Schneider, O.

    1992-11-01

    The current status of the online and offline performance of the CDF Silicon VerteX detector is presented. So far, at low radiation dose, the device delivers good quality data. After the latest alignment using collision data, a spatial resolution of 13 pm is achieved in the transverse plane, demonstrating that CDF has a powerful tool to detect b decay vertices

  18. More loosely bound hadron molecules at CDF?

    CERN Document Server

    Bignamini, C; Piccinini, F; Polosa, A D; Riquer, V; Sabelli, C

    2010-01-01

    In a recent paper we have proposed a method to estimate the prompt production cross section of X(3872) at the Tevatron assuming that this particle is a loosely bound molecule of a D and a D*bar meson. Under this hypothesis we find that it is impossible to explain the high prompt production cross section found by CDF at sigma(X(3872)) \\sim 30-70 nb as our theoretical prediction is about 300 times smaller than the measured one. Following our work, Artoisenet and Braaten, have suggested that final state interactions in the DD*bar system might be so strong to push the result we obtained for the cross section up to the experimental value. Relying on their conclusions we show that the production of another very narrow loosely bound molecule, the X_s=D_s D_s*bar, could be similarly enhanced. X_s should then be detectable at CDF with a mass of 4080 MeV and a prompt production cross section of sigma(X_s) \\sim 1-3 nb.

  19. Performance of the CMS precision electromagnetic calorimeter at the LHC Run II and prospects for high-luminosity LHC

    CERN Document Server

    Negro, Giulia

    2017-01-01

    The Compact Muon Solenoid (CMS) electromagnetic calorimeter (ECAL) is a high-performance calorimeter wich will operate also at the High Luminosity Large Hadron Collider (HL-LHC). This talk will describe the strategies that have been employed to maintain the excellent performance of the CMS ECAL throughout Run 2. Performance results from the 2015-2016 data taking periods will be shown and an outlook on the expected Run 2 performance in the years to come will be provided. The status and plans for the upgraded ECAL barrel electronics for the HL-LHC will be presented, based on recent results from simulations, laboratory tests, and test beam measurements of prototype devices.

  20. Semiconductor CdF2:Ga and CdF2:In Crystals as Media for Real-Time Holography

    Science.gov (United States)

    Ryskin, Alexander I.; Shcheulin, Alexander S.; Angervaks, Alexander E.

    2012-01-01

    Monocrystalline cadmium fluoride is a dielectric solid that can be converted into a semiconductor by doping with donor impurities and subsequent heating in the reduction atmosphere. For two donor elements, Ga and In, the donor (“shallow”) state is a metastable one separated from the ground (“deep”) state by a barrier. Photoinduced deep-to-shallow state transition underlies the photochromism of CdF2:Ga and CdF2:In. Real-time phase holograms are recorded in these crystals capable of following up optical processes in a wide frequency range. The features of photochromic transformations in CdF2:Ga and CdF2:In crystals as well as holographic characteristics of these media are discussed. Exemplary applications of CdF2-based holographic elements are given. PMID:28817009

  1. Error handling for the CDF Silicon Vertex Tracker

    CERN Document Server

    Belforte, S; Dell'Orso, Mauro; Donati, S; Galeotti, S; Giannetti, P; Morsani, F; Punzi, G; Ristori, L; Spinella, F; Zanetti, A M

    2000-01-01

    The SVT online tracker for the CDF upgrade reconstructs two- dimensional tracks using information from the Silicon Vertex detector (SVXII) and the Central Outer Tracker (COT). The SVT has an event rate of 100 kHz and a latency time of 10 mu s. The system is composed of 104 VME 9U digital boards (of 8 different types) and it is implemented as a data driven architecture. Each board runs on its own 30 MHz clock. Since the data output from the SVT (few Mbytes/sec) are a small fraction of the input data (200 Mbytes/sec), it is extremely difficult to track possible internal errors by using only the output stream. For this reason several diagnostic tools have been implemented: local error registers, error bits propagated through the data streams and the Spy Buffer system. Data flowing through each input and output stream of every board are continuously copied to memory banks named Spy Buffers which act as built in logic state analyzers hooked continuously to internal data streams. The contents of all buffers can be ...

  2. Search for New Heavy Charged Vector Bosons at CDF

    Science.gov (United States)

    CDF Collaboration

    1996-05-01

    We present the preliminary results of a search for new heavy charged vector bosons using 110 pb-1 of data collected with the CDF detector during the 1992--95 Tevatron collider runs at Fermilab. We identify candidate events which contain an electron and a neutrino with high transverse energies and search for mass peaks in the eν transverse mass spectra. We also identify candidate events which contain a W boson decaying via W arrow e ν and at least two jets with transverse energy ET >= 20 GeV. The invariant mass spectra for the W + two jets and jet-jet combinations are searched for peaks. We obtain upper limits on σ cdot Br for new heavy charged vector boson production. *We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Science and Culture of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; and the A. P. Sloan Foundation. Supported by U.S. NSF PHY-9406402.

  3. Search for New Particles Decaying to Dijets at CDF

    Science.gov (United States)

    Wei, Chao; Fortney, Lloyd R.; Harris, Robert M.

    1996-05-01

    We present a search for new particles decaying to dijets using CDF data from the 1992-3 and 1993-5 runs. The dijet mass spectrum extends from 180 GeV/c^2 to about 1 TeV/c^2. Fitting the data to a smooth background function plus a mass resonance, we obtain prelimary upper limits on the cross section for new particles as a function of mass. We use this to set mass limits on axigluons, excited quarks, technirhos and other new particles. We also search the dijet angular distributions for indications of new physics. ^ Supported by U.S. DOE under Contract No. DE-FG05-91ER40665. ^ Supported by U.S. DOE under Contract No. DE-AC02-76CH03000. ^*We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Science and Culture of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; and the A. P. Sloan Foundation.

  4. Commissioning of the control and data acquisition electronics for the CDF Silicon Vertex Detector

    International Nuclear Information System (INIS)

    Tkaczyk, S.M.; Turner, K.J.; Nelson, C.A.; Shaw, T.M.; Wesson, T.R.; Bailey, M.W.; Kruse, M.C.; Castro, A.

    1991-11-01

    The SVX data acquisition system includes three components: a Fastbus Sequencer, an SVX Rabbit Crate Controller and a Digitizer. These modules are integrated into the CDF DAQ system and operate the readout chips. The results of the extensive functional tests of the SVX modules are reported. We discuss the stability of the Sequencers, systematic differences between them and methods of synchronization with the Tevatron beam crossings. The Digitizer ADC calibration procedure run on the microsequencer is described. The microsequencer code used for data taking and SVX chip calibration modes is described. Measurements of the SVX data scan time are discussed

  5. Dual-use tools and systematics-aware analysis workflows in the ATLAS Run-II analysis model

    CERN Document Server

    FARRELL, Steven; The ATLAS collaboration

    2015-01-01

    The ATLAS analysis model has been overhauled for the upcoming run of data collection in 2015 at 13 TeV. One key component of this upgrade was the Event Data Model (EDM), which now allows for greater flexibility in the choice of analysis software framework and provides powerful new features that can be exploited by analysis software tools. A second key component of the upgrade is the introduction of a dual-use tool technology, which provides abstract interfaces for analysis software tools to run in either the Athena framework or a ROOT-based framework. The tool interfaces, including a new interface for handling systematic uncertainties, have been standardized for the development of improved analysis workflows and consolidation of high-level analysis tools. This presentation will cover the details of the dual-use tool functionality, the systematics interface, and how these features fit into a centrally supported analysis environment.

  6. Measurement of Inclusive Jet Cross Sections in Z/gamma*(->e+e-) + jets Production in ppbar Collisions at s**(1/2) = 1.96 TeV with the CDF Detector

    International Nuclear Information System (INIS)

    Salto Bauza, Oriol; Barcelona, IFAE

    2008-01-01

    This Ph.D. thesis presents the measurement of inclusive jet cross sections in Z/γ* → e + e - events using 1.7 fb -1 of data collected by the upgraded CDF detector during the Run II of the Tevatron. The Midpoint cone algorithm is used to search for jets in the events after identifying the presence of a Z/γ* boson through the reconstruction of its decay products. The measurements are compared to next-to-LO (NLO) pQCD predictions for events with one and two jets in the final state. The perturbative predictions are corrected for the contributions of non-perturbative processes, like the underlying event and the fragmentation of the partons into jets of hadrons. These processes are not described by perturbation theory and must be estimated from phenomenological models. In this thesis, a number of measurements are performed to test different models of underlying event and hadronization implemented in LO plus parton shower Monte Carlo generator programs. Chapter 2 is devoted to the description of the theory of strong interactions and jet phenomenology at hadron colliders. Chapter 3 contains the description of the Tevatron collider and the CDF detector. The analysis is described in detail in Chapter 4. Chapter 5 shows the measurement of those observables sensitive to non-perturbative effects compared to the predictions from several Monte Carlo programs. Chapter 6 discusses the final results and the comparison with theoretical expectations. Finally, Chapter 7 is devoted to the conclusions

  7. Search for new phenomena with the CDF detector

    International Nuclear Information System (INIS)

    Azzi, P.

    1997-05-01

    We present the results of the searches for new phenomena in pp collisions at √s=1.8 TeV with the CDF detector using the full data sample of 110 pb -1 collected between 1992 and 1995. We have searched for new physics in events with two photons, testing some of the hypotheses proposed to explain the appearance of the CDF eeγγ E T event. New results on the search for a heavy neutral scalar object, charged Higgs bosons (H ± ) and the scalar top quark are presented. Finally we summarize the CDF results on the search for third generation leptoquarks

  8. Search for the Standard Model Higgs Boson associated with a W Boson using Matrix Element Technique in the CDF detector at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Barbara Alvarez [Univ. of Oviedo (Spain)

    2010-05-01

    In this thesis a direct search for the Standard Model Higgs boson production in association with a W boson at the CDF detector in the Tevatron is presented. This search contributes predominantly in the region of low mass Higgs region, when the mass of Higgs boson is less than about 135 GeV. The search is performed in a final state where the Higgs boson decays into two b quarks, and the W boson decays leptonically, to a charged lepton (it can be an electron or a muon) and a neutrino. This work is organized as follows. Chapter 2 gives an overview of the Standard Model theory of particle physics and presents the SM Higgs boson search results at LEP, and the Tevatron colliders, as well as the prospects for the SM Higgs boson searches at the LHC. The dataset used in this analysis corresponds to 4.8 fb-1 of integrated luminosity of p$\\bar{p}$ collisions at a center of mass energy of 1.96 TeV. That is the luminosity acquired between the beginning of the CDF Run II experiment, February 2002, and May 2009. The relevant aspects, for this analysis, of the Tevatron accelerator and the CDF detector are shown in Chapter 3. In Chapter 4 the particles and observables that make up the WH final state, electrons, muons, ET, and jets are presented. The CDF standard b-tagging algorithms to identify b jets, and the neural network flavor separator to distinguish them from other flavor jets are also described in Chapter 4. The main background contributions are those coming from heavy flavor production processes, such as those coming from Wbb, Wcc or Wc and tt. The signal and background signatures are discussed in Chapter 5 together with the Monte CArlo generators that have been used to simulate almost all the events used in this thesis. WH candidate events have a high-pT lepton (electron or muon), high missing transverse energy, and two or more than two jets in the final state. Chapter 6 describes the event selection applied in this analysis and the

  9. Precision top-quark mass measurement at CDF.

    Science.gov (United States)

    Aaltonen, T; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bisello, D; Bizjak, I; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Calamba, A; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chung, W H; Chung, Y S; Ciocci, M A; Clark, A; Clarke, C; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuevas, J; Culbertson, R; Dagenhart, D; d'Ascenzo, N; Datta, M; de Barbaro, P; Dell'Orso, M; Demortier, L; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, M; Dorigo, T; Ebina, K; Elagin, A; Eppig, A; Erbacher, R; Errede, S; Ershaidat, N; Eusebi, R; Farrington, S; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Funakoshi, Y; Furic, I; Gallinaro, M; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Hahn, S R; Halkiadakis, E; Hamaguchi, A; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Hewamanage, S; Hocker, A; Hopkins, W; Horn, D; Hou, S; Hughes, R E; Hurwitz, M; Husemann, U; Hussain, N; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kim, Y J; Kimura, N; Kirby, M; Klimenko, S; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Kruse, M; Krutelyov, V; Kuhr, T; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; LeCompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lin, C-J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maeshima, K; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Martínez, M; Mastrandrea, P; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Prokoshin, F; Pranko, A; Ptohos, F; Punzi, G; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Rescigno, M; Riddick, T; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sinervo, P; Sliwa, K; Smith, J R; Snider, F D; Soha, A; Sorin, V; Song, H; Squillacioti, P; Stancari, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Varganov, A; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wagner, R L; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Wick, F; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zhou, C; Zucchelli, S

    2012-10-12

    We present a precision measurement of the top-quark mass using the full sample of Tevatron √s = 1.96 TeV proton-antiproton collisions collected by the CDF II detector, corresponding to an integrated luminosity of 8.7 fb(-1). Using a sample of tt¯ candidate events decaying into the lepton+jets channel, we obtain distributions of the top-quark masses and the invariant mass of two jets from the W boson decays from data. We then compare these distributions to templates derived from signal and background samples to extract the top-quark mass and the energy scale of the calorimeter jets with in situ calibration. The likelihood fit of the templates from signal and background events to the data yields the single most-precise measurement of the top-quark mass, M(top)=172.85±0.71(stat)±0.85(syst) GeV/c(2).

  10. On extracting design principles from biology: II. Case study—the effect of knee direction on bipedal robot running efficiency

    International Nuclear Information System (INIS)

    Haberland, M; Kim, S

    2015-01-01

    Comparing the leg of an ostrich to that of a human suggests an important question to legged robot designers: should a robot's leg joint bend in the direction of running (‘forwards’) or opposite (‘backwards’)? Biological studies cannot answer this question for engineers due to significant differences between the biological and engineering domains. Instead, we investigated the inherent effect of joint bending direction on bipedal robot running efficiency by comparing energetically optimal gaits of a wide variety of robot designs sampled at random from a design space. We found that the great majority of robot designs have several locally optimal gaits with the knee bending backwards that are more efficient than the most efficient gait with the knee bending forwards. The most efficient backwards gaits do not exhibit lower touchdown losses than the most efficient forward gaits; rather, the improved efficiency of backwards gaits stems from lower torque and reduced motion at the hip. The reduced hip use of backwards gaits is enabled by the ability of the backwards knee, acting alone, to (1) propel the robot upwards and forwards simultaneously and (2) lift and protract the foot simultaneously. In the absence of other information, designers interested in building efficient bipedal robots with two-segment legs driven by electric motors should design the knee to bend backwards rather than forwards. Compared to common practices for choosing robot knee direction, application of this principle would have a strong tendency to improve robot efficiency and save design resources. (paper)

  11. The Long Term Data Preservation (LTDP) project at INFN CNAF: CDF use case

    International Nuclear Information System (INIS)

    Amerio, S; Chiarelli, L; Dell'Agnello, L; Gregori, D; Pezzi, M; Ricci, P; Rosso, F; Zani, S

    2015-01-01

    In the last years the problem of preservation of scientific data has become one of the most important topics inside international scientific communities. In particular the long term preservation of experimental data, raw and all related derived formats including calibration information, is one of the emerging requirements within the High Energy Physics (HEP) community for experiments that have already concluded the data taking phase. The DPHEP group (Data Preservation in HEP) coordinates the local teams within the whole collaboration and the different Tiers (computing centers). The INFN-CNAF Tier-1 is one of the reference sites for data storage and computing in the LHC community but it also offers resources to many other HEP and non-HEP collaborations. In particular the CDF experiment has used the INFN-CNAF Tier-1 resources for many years and after the end of data taking in 2011, it is now facing the challenge to both preserve the large amount of data produced during several years and to retain the ability to access and reuse the whole amount of it in the future. According to this task the CDF Italian collaboration, together with the INFN-CNAF computing center, has developed and is now implementing a long term future data preservation project in collaboration with Fermilab (FNAL) computing sector. The project comprises the copy of all CDF raw data and user level ntuples (about 4 PB) at the INFN-CNAF site and the setup of a framework which will allow to access and analyze the data in the long term future. A portion of the 4 PB of data (raw data and analysis-level ntuples) are currently being copied from FNAL to the INFN-CNAF tape library backend and a system to allow data access is being setup. In addition to this data access system, a data analysis framework is being developed in order to run the complete CDF analysis chain in the long term future, from raw data reprocessing to analysis-level ntuples production and analysis. In this contribution we first illustrate

  12. Common Data Format (CDF) and Coordinated Data Analysis Web (CDAWeb)

    Science.gov (United States)

    Candey, Robert M.

    2010-01-01

    The Coordinated Data Analysis Web (CDAWeb) data browsing system provides plotting, listing and open access v ia FTP, HTTP, and web services (REST, SOAP, OPeNDAP) for data from mo st NASA Heliophysics missions and is heavily used by the community. C ombining data from many instruments and missions enables broad resear ch analysis and correlation and coordination with other experiments a nd missions. Crucial to its effectiveness is the use of a standard se lf-describing data format, in this case, the Common Data Format (CDF) , also developed at the Space Physics Data facility , and the use of metadata standa rds (easily edited with SKTeditor ). CDAweb is based on a set of IDL routines, CDAWlib . . The CDF project also maintains soft ware and services for translating between many standard formats (CDF. netCDF, HDF, FITS, XML) .

  13. Scintillation properties of CdF2 crystal

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Fujimoto, Yutaka; Koshimizu, Masanori; Fukuda, Kentaro

    2015-01-01

    CdF 2 single crystal was prepared by Tokuyama Corp. with the μ-PD method to investigate Auger free luminescence of this material. From optical transmittance spectrum, bandgap wavelength was around 280 nm. In X-ray induced radioluminescence spectrum, emission lines appeared around 350 nm and 420 nm. Excitation wavelength was investigated and excitation peak was around 250 nm. Photoluminescence and scintillation decay times were evaluated and decay time was few ns. Temperature dependence of X-ray induced radioluminescence was compared with conventional BaF 2 scintillator and scintillation of CdF 2 decreased when the temperature increased. Consequently, scintillation of CdF 2 is possibly emission at color centers or exciton related one. - Highlights: • CdF 2 crystal scinitillator was synthesized. • Emission wavelengths of CdF 2 appeared around 350 and 420 nm. • Scintillation decay time of CdF 2 was quite fast, 1.75 ns. • Excitation bands were investigated by using Synchrotron facility, UVSOR

  14. Search for Charged Higgs in CDF

    Science.gov (United States)

    CDF Collaboration

    1996-05-01

    We present results of a search for charged Higgs production from pbarp collisions at √s=1.8 TeV at Fermilab's Tevatron collider using the CDF detector. An expanded Higgs sector containing charged Higgs bosons is a persistent feature of candidate theories to replace the Standard Model. The minimal supersymmetric extention of the Standard Model, for example, predicts that the dominant decay mode of the top quark is tarrow H+barrow τ+ν b for large values of tanβ. We use the hadronic decays of the tau lepton in this channel to set a new limit on charged Higgs production. *We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Science and Culture of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; and the A. P. Sloan Foundation. Supported by U.S. NSF NSF-94-17820.

  15. The upgraded Pixel Detector of the ATLAS Experiment for Run-II at the Large Hadron Collider

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00407702

    2016-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of the LHC. Taking advantage of the detector development period 2013 – 2014, the detector was extracted from the experiment and brought to surface to equip it with new service panels and to repair modules furthermore this helped with the installation of the Insertable B-Layer (IBL), fourth layer of pixel, installed in between the existing Pixel Detector and a new beam-pipe at a radius of 3.3 cm. To cope with the high radiation and increased pixel occupancy due to the proximity to the interaction point, two different silicon sensor technologies (planar and 3D) have been used. A new readout chip has been designed with CMOS 130nm technology with larger area, smaller pixel size and faster readout capability. Dedicated design features in combination with a new composite material were considered and used in order to reduce the material budget of the support structure while keeping the optimal thermo-mechanical perfor...

  16. Measurement of the Top Quark Mass at D0 Run II with the Matrix Element Method in the Lepton+Jets Final State

    Energy Technology Data Exchange (ETDEWEB)

    Schieferdecker, Philipp [Ludwig Maximilian Univ. of Munich (Germany)

    2005-08-05

    The mass of the top quark is a fundamental parameter of the Standard Model. Its precise knowledge yields valuable insights into unresolved phenomena in and beyond the Standard Model. A measurement of the top quark mass with the matrix element method in the lepton+jets final state in D0 Run II is presented. Events are selected requiring an isolated energetic charged lepton (electron or muon), significant missing transverse energy, and exactly four calorimeter jets. For each event, the probabilities to originate from the signal and background processes are calculated based on the measured kinematics, the object resolutions and the respective matrix elements. The jet energy scale is known to be the dominant source of systematic uncertainty. The reference scale for the mass measurement is derived from Monte Carlo events. The matrix element likelihood is defined as a function of both, m{sub top} and jet energy scale JES, where the latter represents a scale factor with respect to the reference scale. The top mass is obtained from a two-dimensional correlated fit, and the likelihood yields both the statistical and jet energy scale uncertainty. Using a dataset of 320 pb-1 of D0 Run II data, the mass of the top quark is measured to be: m$ℓ+jets\\atop{top}$ = 169.5 ± 4.4(stat. + JES)$+1.7\\atop{-1.6}$(syst.) GeV; m$e+jets\\atop{top}$ = 168.8 ± 6.0(stat. + JES)$+1.9\\atop{-1.9}$(syst.) GeV; m$μ+jets\\atop{top}$ = 172.3 ± 9.6(stat.+JES)$+3.4\\atop{-3.3}$(syst.) GeV. The jet energy scale measurement in the ℓ+jets sample yields JES = 1.034 ± 0.034, suggesting good consistency of the data with the simulation. The measurement forecasts significant improvements to the total top mass uncertainty during Run II before the startup of the LHC, as the data sample will grow by a factor of ten and D0's tracking capabilities will be employed in jet energy reconstruction and flavor identification.

  17. THE MATRYOSHKA RUN. II. TIME-DEPENDENT TURBULENCE STATISTICS, STOCHASTIC PARTICLE ACCELERATION, AND MICROPHYSICS IMPACT IN A MASSIVE GALAXY CLUSTER

    International Nuclear Information System (INIS)

    Miniati, Francesco

    2015-01-01

    We use the Matryoshka run to study the time-dependent statistics of structure-formation-driven turbulence in the intracluster medium of a 10 15 M ☉ galaxy cluster. We investigate the turbulent cascade in the inner megaparsec for both compressional and incompressible velocity components. The flow maintains approximate conditions of fully developed turbulence, with departures thereof settling in about an eddy-turnover time. Turbulent velocity dispersion remains above 700 km s –1 even at low mass accretion rate, with the fraction of compressional energy between 10% and 40%. The normalization and the slope of the compressional turbulence are susceptible to large variations on short timescales, unlike the incompressible counterpart. A major merger occurs around redshift z ≅ 0 and is accompanied by a long period of enhanced turbulence, ascribed to temporal clustering of mass accretion related to spatial clustering of matter. We test models of stochastic acceleration by compressional modes for the origin of diffuse radio emission in galaxy clusters. The turbulence simulation model constrains an important unknown of this complex problem and brings forth its dependence on the elusive microphysics of the intracluster plasma. In particular, the specifics of the plasma collisionality and the dissipation physics of weak shocks affect the cascade of compressional modes with strong impact on the acceleration rates. In this context radio halos emerge as complex phenomena in which a hierarchy of processes acting on progressively smaller scales are at work. Stochastic acceleration by compressional modes implies statistical correlation of radio power and spectral index with merging cores distance, both testable in principle with radio surveys

  18. Search for singly-produced vector-like quarks in lepton and jets final state with the ATLAS detector in Run-II

    Energy Technology Data Exchange (ETDEWEB)

    Biedermann, Dustin; Dietrich, Janet; Grancagnolo, Sergio; Lacker, Heiko; Sperlich, Dennis [Humboldt-Universitaet zu Berlin (Germany)

    2016-07-01

    Vector-like quarks are predicted by many extensions of the Standard Model of particle physics. They provide the possibility to solve some long-standing problems such as the hierarchy problem and also might help to explain the b-quark forward-backward asymmetry in e{sup +}e{sup -} collisions measured at LEP. Candidates for these vector-like quarks are the top-like T and the Y quark. The Y quarks decay exclusively into a W-boson and a b-quark, which appears also to be the dominant decay channel of the T quarks. We present the search strategy for singly-produced T/Y quarks and the expected sensitivity using the first LHC run-II data recorded by the ATLAS detector in 2015.

  19. Physics performance and fast turn around: the challenge of calibration and alignment at the CMS experiment during the LHC Run-II

    CERN Document Server

    Di Guida, Salvatore; Franzoni, Giovanni; Govi, Giacomo; Musich, Marco; Pfeiffer, Andreas

    2017-01-01

    The CMS detector at the Large Hadron Collider (LHC) is a very complex apparatus with more than 70 million acquisition channels. To exploit its full physics potential, a very careful calibra- tion of the various components, together with an optimal knowledge of their position in space, is essential. The CMS Collaboration has set up a powerful infrastructure to allow for the best knowledge of these conditions at any given moment. The quick turnaround of these workflows was proven crucial both for the algorithms performing the online event selection and for the ul- timate resolution of the offline reconstruction of the physics objects. The contribution will report about the design and performance of these workflows during the operations of the 13TeV LHC RunII.

  20. Search for OB stars running away from young star clusters. II. The NGC 6357 star-forming region

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.; Kroupa, P.; Oh, S.

    2011-11-01

    Dynamical few-body encounters in the dense cores of young massive star clusters are responsible for the loss of a significant fraction of their massive stellar content. Some of the escaping (runaway) stars move through the ambient medium supersonically and can be revealed via detection of their bow shocks (visible in the infrared, optical or radio). In this paper, which is the second of a series of papers devoted to the search for OB stars running away from young ( ≲ several Myr) Galactic clusters and OB associations, we present the results of the search for bow shocks around the star-forming region NGC 6357. Using the archival data of the Midcourse Space Experiment (MSX) satellite and the Spitzer Space Telescope, and the preliminary data release of the Wide-Field Infrared Survey Explorer (WISE), we discovered seven bow shocks, whose geometry is consistent with the possibility that they are generated by stars expelled from the young (~1-2 Myr) star clusters, Pismis 24 and AH03 J1725-34.4, associated with NGC 6357. Two of the seven bow shocks are driven by the already known OB stars, HD 319881 and [N78] 34. Follow-up spectroscopy of three other bow-shock-producing stars showed that they are massive (O-type) stars as well, while the 2MASS photometry of the remaining two stars suggests that they could be B0 V stars, provided that both are located at the same distance as NGC 6357. Detection of numerous massive stars ejected from the very young clusters is consistent with the theoretical expectation that star clusters can effectively lose massive stars at the very beginning of their dynamical evolution (long before the second mechanism for production of runaway stars, based on a supernova explosion in a massive tight binary system, begins to operate) and lends strong support to the idea that probably all field OB stars have been dynamically ejected from their birth clusters. A by-product of our search for bow shocks around NGC 6357 is the detection of three circular

  1. Search for the standard model Higgs boson produced in association with a Z boson in 7.9 fb.sup.−1./sup. of p¯p collisions at √ s = 1.96 TeV using the CDF II detector

    Czech Academy of Sciences Publication Activity Database

    Aaltonen, T.; Gonzalez, B.A.; Amerio, S.; Lysák, Roman

    2012-01-01

    Roč. 715, 1-3 (2012), s. 98-104 ISSN 0370-2693 R&D Projects: GA MŠk LC527 Institutional research plan: CEZ:AV0Z10100502 Keywords : Higgs boson search * multivariate techniques * Z0 leptonic decay * Batavia TEVATRON * CDF * hadronic decay Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.569, year: 2012 http://arxiv.org/abs/arXiv:1203.5815

  2. Analysis of Bs flavor oscillations at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Guerreiro Leonardo, Nuno Teotonio Viegas [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2006-09-01

    The search for and study of flavor oscillations in the neutral BsBs meson system is an experimentally challenging task. It constitutes a flagship analysis of the Tevatron physics program. In this dissertation, they develop an analysis of the time-dependent Bs flavor oscillations using data collected with the CDF detector. The data samples are formed of both fully and partially reconstructed B meson decays: Bs → Dsπ(ππ) and Bs → Dslv. A likelihood fitting framework is implemented and appropriate models and techniques developed for describing the mass, proper decay time, and flavor tagging characteristics of the data samples. The analysis is extended to samples of B+ and B0 mesons, which are further used for algorithm calibration and method validation. The B mesons lifetimes are extracted. The measurement of the B0 oscillation frequency yields Δmd = 0.522 ± 0.017 ps-1. The search for Bs oscillations is performed using an amplitude method based on a frequency scanning procedure. Applying a combination of lepton and jet charge flavor tagging algorithms, with a total tagging power ϵ'D2 of 1.6%, to a data sample of 355 pb-1, a sensitivity of 13.0 ps-1 is achieved. They develop a preliminary same side kaon tagging algorithm, which is found to provide a superior tagging power of about 4.0% for the Bs meson species. A study of the dilution systematic uncertainties is not reported. From its application as is to the Bs samples the sensitivity is significantly increased to about 18 ps-1 and a hint of a signal is seen at about 175. ps-1. They demonstrate that the extension of the analysis to the increasing data samples with the inclusion of the same side tagging algorithm is capable of providing an observation of Bs mixing beyond the

  3. Liquidity Runs

    NARCIS (Netherlands)

    Matta, R.; Perotti, E.

    2016-01-01

    Can the risk of losses upon premature liquidation produce bank runs? We show how a unique run equilibrium driven by asset liquidity risk arises even under minimal fundamental risk. To study the role of illiquidity we introduce realistic norms on bank default, such that mandatory stay is triggered

  4. Tests of structure functions using leptons at CDF: The charge asymmetry in W-boson decays

    International Nuclear Information System (INIS)

    DeBarbaro, P.

    1994-08-01

    The charge asymmetry of W-bosons produced in p bar p collisions has been measured using 19 039 W → eν and W → μν decays recorded by the CDF detector during the 1992--93 Tevatron collider run. The asymmetry is sensitive to the slope of the proton's d/u quark distribution ratio down to x 2 ∼ M W 2 , where nonperturbative QCD effects are minimal. Of recent parton distribution functions, those of Martin, Roberts and Stirling are favored over those of the CTEQ collaboration. This difference is seen even though both sets agree, at the level of the nuclear shadowing corrections, with the recent NMC measurements of F 2 μn /F 2 μp

  5. Jet studies at all rapidities from D0 and CDF

    International Nuclear Information System (INIS)

    Varelas, N.

    1996-08-01

    We present results on measurements of jet shapes, color coherence, and topology of multijet events from p anti p collisions at √s = TeV at the Fermilab Tevatron collider using the CDF and D null detectors. The data are compared to next-to-leading order QCD calculations, or to predictions of parton shower based Monte Carlo models

  6. SVT: an online silicon vertex tracker for the CDF upgrade

    International Nuclear Information System (INIS)

    Bardi, A.; Belforte, S.; Berryhill, J.

    1997-07-01

    The SVT is an online tracker for the CDF upgrade which will reconstruct 2D tracks using information from the Silicon VerteX detector (SVXII) and Central Outer Tracker (COT). The precision measurement of the track impact parameter will then be used to select and record large samples of B hadrons. We discuss the overall architecture, algorithms, and hardware implementation of the system

  7. CDF experience with monte carlo production using LCG grid

    International Nuclear Information System (INIS)

    Griso, S P; Lucchesi, D; Compostella, G; Sfiligoi, I; Cesini, D

    2008-01-01

    The upgrades of the Tevatron collider and CDF detector have considerably increased the demand on computing resources, in particular for Monte Carlo production. This has forced the collaboration to move beyond the usage of dedicated resources and start exploiting the Grid. The CDF Analysis Farm (CAF) model has been reimplemented into LcgCAF in order to access Grid resources by using the LCG/EGEE middleware. Many sites in Italy and in Europe are accessed through this portal by CDF users mainly to produce Monte Carlo data but also for other analysis jobs. We review here the setup used to submit jobs to Grid sites and retrieve the output, including CDF-specific configuration of some Grid components. We also describe the batch and interactive monitor tools developed to allow users to verify the jobs status during their lifetime in the Grid environment. Finally we analyze the efficiency and typical failure modes of the current Grid infrastructure reporting the performances of different parts of the system used

  8. Dummy run for a phase II study of stereotactic body radiotherapy of T1-T2 N0M0 medical inoperable non-small cell lung cancer

    DEFF Research Database (Denmark)

    Djärv, Emma; Nyman, Jan; Baumann, Pia

    2006-01-01

    of       SBRT of T1-T2N0M0 inoperable NSCLC in a dummy run oriented on volumes and       doses. Six Scandinavian centres participated. Each centre received       CT-scans covering the whole lung volumes of two patients with instructions       to follow the study protocol when outlining tumour and target volumes......In forthcoming multicentre studies on stereotactic body radiotherapy       (SBRT) compliance with volume and dose prescriptions will be mandatory to       avoid unnecessary heterogeneity bias. To evaluate compliance in a       multicentre setting we used two cases from an ongoing phase II study......,       prescribing doses and creating dose plans. Volumes and doses of the 12       dose plans were evaluated according to the study protocol. For the two       patients the GTV volume range was 24 to 39 cm3 and 26 to 41 cm3,       respectively. The PTV volume range was 90 to 116 cm3, and 112 to 155 cm3...

  9. CASY: a dynamic simulation of the gas-cooled fast breeder reactor core auxiliary cooling system. Volume II. Example computer run

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    A listing of a CASY computer run is presented. It was initiated from a demand terminal and, therefore, contains the identification ST0952. This run also contains an INDEX listing of the subroutine UPDATE. The run includes a simulated scram transient at 30 seconds.

  10. CASY: a dynamic simulation of the gas-cooled fast breeder reactor core auxiliary cooling system. Volume II. Example computer run

    International Nuclear Information System (INIS)

    1979-09-01

    A listing of a CASY computer run is presented. It was initiated from a demand terminal and, therefore, contains the identification ST0952. This run also contains an INDEX listing of the subroutine UPDATE. The run includes a simulated scram transient at 30 seconds

  11. Hadronic final states in high -pT QCD at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Matera, Keith [University of Illinois, Urbana-Champaign

    2013-11-18

    The heavy quark content of gauge boson events is of great interest to studies of QCD. These events probe the gluon and heavy-quark parton distribution functions of the proton, and also provide a measurement of the rate of final state gluon splitting to heavy flavor. In addition, gauge boson plus heavy quark events are representative of backgrounds to Higgs, single top, and supersymmetric particle searches. Recent work with the CDF II detector at the Fermilab Tevatron has measured the cross-section of several gauge boson plus heavy flavor production processes, including the first Tevatron observation of specific charm process p{p bar} → W +c. Results are found to be in agreement with NLO predictions that include an enhanced rate of g → {cc bar}/bb splitting. Lastly, a new analysis promises to probe a lower pT (c) region than has been previously explored, by fully reconstructing D* → D0(Kπ)π decays in the full CDF dataset (9.7 fb-1).

  12. Study of the top quark electric charge at the CDF experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bartos, Pavol [Comenius Univ., Bratislava (Slovakia)

    2011-01-01

    We report on the measurement of the top quark electric charge using the jet charge tagging method on events containing a single lepton collected by the CDF II detector at Fermilab between February 2002 and February 2010 at the center-of-mass energy √s = 1.96 TeV. There are three main components to this measurement: determining the charge of the W (using the charge of the lepton), pairing the W with the b-jet to ensure that they are from the same top decay branch and finally determining the charge of the b-jet using the Jet Charge algorithm. We found, on a sample of 5.6 fb-1 of data, that the p-value under the standard model hypothesis is equal to 13.4%, while the p-value under the exotic model hypothesis is equal to 0.014%. Using the a priori criteria generally accepted by the CDF collaboration, we can say that the result is consistent with the standard model, while we exclude an exotic quark hypothesis with 95% confidence. Using the Bayesian approach, we obtain for the Bayes factor (2ln(BF)) a value of 19.6, that favors very strongly the SM hypothesis over the XM one. The presented method has the highest sensitivity to the top quark electric charge among the presented so far top quark charge analysis.

  13. Study of the top quark electric charge at the cdf experiment

    International Nuclear Information System (INIS)

    Bartos, P.

    2011-01-01

    We report on the measurement of the top quark electric charge using the jet charge tagging method on events containing a single lepton collected by the CDF II detector at Fermilab between February 2002 and February 2010 at the center-of-mass energy ps = 1.96 TeV . There are three main components to this measurement: determining the charge of the W (using the charge of the lepton), pairing the W with the b-jet to ensure that they are from the same top decay branch and finally determining the charge of the b-jet using the Jet Charge algorithm. We found, on a sample of 5.6 fb -1 of data, that the p-value under the standard model hypothesis is equal to 13.4%, while the p-value under the exotic model hypothesis is equal to 0.014%. Using the a priori criteria generally accepted by the CDF collaboration, we can say that the result is consistent with the standard model, while we exclude an exotic quark hypothesis with 95% confidence. Using the Bayesian approach, we obtain for the Bayes factor (2 · ln(BF)) a value of 19.6, that favors very strongly the SM hypothesis over the XM one. The presented method has the highest sensitivity to the top quark electric charge among the presented so far top quark charge analysis. (author)

  14. Running Linux

    CERN Document Server

    Dalheimer, Matthias Kalle

    2006-01-01

    The fifth edition of Running Linux is greatly expanded, reflecting the maturity of the operating system and the teeming wealth of software available for it. Hot consumer topics such as audio and video playback applications, groupware functionality, and spam filtering are covered, along with the basics in configuration and management that always made the book popular.

  15. RUN COORDINATION

    CERN Multimedia

    C. Delaere

    2013-01-01

    Since the LHC ceased operations in February, a lot has been going on at Point 5, and Run Coordination continues to monitor closely the advance of maintenance and upgrade activities. In the last months, the Pixel detector was extracted and is now stored in the pixel lab in SX5; the beam pipe has been removed and ME1/1 removal has started. We regained access to the vactank and some work on the RBX of HB has started. Since mid-June, electricity and cooling are back in S1 and S2, allowing us to turn equipment back on, at least during the day. 24/7 shifts are not foreseen in the next weeks, and safety tours are mandatory to keep equipment on overnight, but re-commissioning activities are slowly being resumed. Given the (slight) delays accumulated in LS1, it was decided to merge the two global runs initially foreseen into a single exercise during the week of 4 November 2013. The aim of the global run is to check that we can run (parts of) CMS after several months switched off, with the new VME PCs installed, th...

  16. A precise measurement of the top quark mass in dilepton final states using 9.7 fb$^{-1}$ of D{Ø} Run II data

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Huanzhao [Southern Methodist Univ., Dallas, TX (United States)

    2015-05-16

    The top quark is a very special fundamental particle in the Standard Model (SM) mainly due to its heavy mass. The top quark has extremely short lifetime and decays before hadronization. This reduces the complexity for the measurement of its mass. The top quark couples very strongly to the Higgs boson since the fermion-Higgs Yukawa coupling linearly depends on the fermion’s mass. Therefore, the top quark is also heavily involved in Higgs production and related study. A precise measurement of the top quark mass is very important, as it allows for self-consistency check of the SM, and also gives a insight about the stability of our universe in the SM context. This dissertation presents my work on the measurement of the top quark mass in dilepton final states of t$\\bar{t}$ events in p$\\bar{p}$ collisions at √s = 1.96 TeV, using the full DØ Run II data corresponding to an integrated luminosity of 9.7 fb-1 at the Fermilab Tevatron. I extracted the top quark mass by reconstructing event kinematics, and integrating over expected neutrino rapidity distributions to obtain solutions over a scanned range of top quark mass hypotheses. The analysis features a comprehensive optimization that I made to minimize the expected statistical uncertainty. I also improve the calibration of jets in dilepton events by using the calibration determined in t$\\bar{t}$ → lepton+jets events, which reduces the otherwise limiting systematic uncertainty from the jet energy scale. The measured mass is 173.11 ± 1.34(stat)+0.83 -0.72(sys) GeV .

  17. Measurement of $Z/\\gamma^* + b$-jet Production Cross section in $p\\bar{p}$ collisions at $\\sqrt{s}= 1.96$ TeV with the CDF detector

    Energy Technology Data Exchange (ETDEWEB)

    Ortolan, Lorenzo [Univ. Autonoma de Barcelona (Spain). Inst. Catalana de Recerca i Estudis Avancats (ICREA) and Inst. de Fisica d' Altes Energies (IFAE)

    2012-07-01

    Processes at hadron colliders, such as the production of jets, are described by the Quantum Chromodynamics theory (QCD). Precise descriptions of processes involving jets in association with a vector boson have nowadays large relevance as they represent irreducible background to other Standard Model (SM) processes and searches for new physics. The experimental study and understanding of the b-jet production in association with a Z boson are crucial for many reasons. For one side, it is the most important background for a light Higgs boson decaying into a bottom-antibottom quark pair and produced in the ZH mode.This is one of the most promising channels for the Higgs search at Tevatron in particular since the latest results have excluded the high mass region (MH > 127 GeV/c2 ). For another side the signature of b-jets and a Z boson is also background to new physics searches, such as supersymmetry, where a large coupling of the Higgs boson to bottom quarks is allowed. The produ ction cross section measurement of b-jets in events with a Z boson has already been performed at hadron colliders, at the Tevatron by CDF and D0 experiments and are now pursued at the LHC by ATLAS and CMS. In particular the CDF measurement was performed with only 2 fb-1 and was limited by the statistical uncertainty. This PhD thesis presents a new measurement of the $Z/\\gamma^* + b$-jet production cross section using the complete dataset collected by CDF during the Run II. $Z/\\gamma^*$ bosons are selected in the electron and muon decay modes and are required to have 66 < MZ < 116 GeV/c2 while jets, reconstructed with the MidPoint algorithm, have to be central (|Y| < 1.5) with pT > 20 GeV/c . The per jet cross section is measured with respect to the $Z/\\gamma^*$ inclusive and the $Z/\\gamma^* +$ jets cross sections. Results are compared to leading order (LO) event generator plus parton shower and next-to-leading order (NLO) predictions corrected for non

  18. Measurement of the Mass Difference Between Top and Anti-top Quarks at CDF

    CERN Document Server

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V.E.; Barnett, B.A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bisello, D.; Bizjak, I.; Bland, K.R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H.S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Calamba, A.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y.C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chung, W.H.; Chung, Y.S.; Ciocci, M.A.; Clark, A.; Clarke, C.; Compostella, G.; Convery, M.E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C.A.; Cox, D.J.; Crescioli, F.; Cuevas, J.; Culbertson, R.; Dagenhart, D.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Dell'Orso, M.; Demortier, L.; Deninno, M.; Devoto, F.; d'Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J.R.; D'Onofrio, M.; Donati, S.; Dong, P.; Dorigo, M.; Dorigo, T.; Ebina, K.; Elagin, A.; Eppig, A.; Erbacher, R.; Errede, S.; Ershaidat, N.; Eusebi, R.; Farrington, S.; Feindt, M.; Fernandez, J.P.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M.J.; Franklin, M.; Freeman, J.C.; Funakoshi, Y.; Furic, I.; Gallinaro, M.; Garcia, J.E.; Garfinkel, A.F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C.M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; Gonzalez, O.; Gorelov, I.; Goshaw, A.T.; Goulianos, K.; Grinstein, S.; Grosso-Pilcher, C.; Group, R.C.; Guimaraes da Costa, J.; Hahn, S.R.; Halkiadakis, E.; Hamaguchi, A.; Han, J.Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R.F.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Hewamanage, S.; Hocker, A.; Hopkins, W.; Horn, D.; Hou, S.; Hughes, R.E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E.J.; Jindariani, S.; Jones, M.; Joo, K.K.; Jun, S.Y.; Junk, T.R.; Kamon, T.; Karchin, P.E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D.H.; Kim, H.S.; Kim, J.E.; Kim, M.J.; Kim, S.B.; Kim, S.H.; Kim, Y.K.; Kim, Y.J.; Kimura, N.; Kirby, M.; Klimenko, S.; Knoepfel, K.; Kondo, K.; Kong, D.J.; Konigsberg, J.; Kotwal, A.V.; Kreps, M.; Kroll, J.; Krop, D.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A.T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R.L.; Lannon, K.; Lath, A.; Latino, G.; LeCompte, T.; Lee, E.; Lee, H.S.; Lee, J.S.; Lee, S.W.; Leo, S.; Leone, S.; Lewis, J.D.; Limosani, A.; Lin, C.J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D.O.; Liu, C.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima, K.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Martinez, M.; Mastrandrea, P.; Matera, K.; Mattson, M.E.; Mazzacane, A.; Mazzanti, P.; McFarland, K.S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M.N.; Moon, C.S.; Moore, R.; Morello, M.J.; Morlock, J.; Movilla Fernandez, P.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M.S.; Nielsen, J.; Nodulman, L.; Noh, S.Y.; Norniella, O.; Oakes, L.; Oh, S.H.; Oh, Y.D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Paramonov, A.A.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D.E.; Penzo, A.; Phillips, T.J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Prokoshin, F.; Pranko, A.; Ptohos, F.; Punzi, G.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W.K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, A.; Schmidt, E.E.; Schwarz, T.; Scodellaro, L.; Scribano, A.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S.Z.; Shears, T.; Shepard, P.F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sinervo, P.; Sliwa, K.; Smith, J.R.; Snider, F.D.; Soha, A.; Sorin, V.; Song, H.; Squillacioti, P.; Stancari, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Strycker, G.L.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P.K.; Thom, J.; Thome, J.; Thompson, G.A.; Thomson, E.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Varganov, A.; Vazquez, F.; Velev, G.; Vellidis, C.; Vidal, M.; Vila, I.; Vilar, R.; Vizan, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wagner, R.L.; Wakisaka, T.; Wallny, R.; Wang, S.M.; Warburton, A.; Waters, D.; Wester, W.C., III; Whiteson, D.; Wicklund, A.B.; Wicklund, E.; Wilbur, S.; Wick, F.; Williams, H.H.; Wilson, J.S.; Wilson, P.; Winer, B.L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U.K.; Yang, Y.C.; Yao, W.M.; Yeh, G.P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G.B.; Yu, I.; Yu, S.S.; Yun, J.C.; Zanetti, A.; Zeng, Y.; Zhou, C.; Zucchelli, S.

    2013-03-18

    We present a measurement of the mass difference between top ($t$) and anti-top ($\\bar{t}$) quarks using $t\\bar{t}$ candidate events reconstructed in the final state with one lepton and multiple jets. We use the full data set of Tevatron $\\sqrt{s} = 1.96$ TeV proton-antiproton collisions recorded by the CDF II detector, corresponding to an integrated luminosity of 8.7 fb$^{-1}$. We estimate event-by-event the mass difference to construct templates for top-quark signal events and background events. The resulting mass difference distribution of data compared to signal and background templates using a likelihood fit yields $\\Delta M_{top} = {M}_{t} - {M}_{\\bar{t}} = -1.95 $pm$ 1.11 (stat) $pm$ 0.59 (syst)$ and is in agreement with the standard model prediction of no mass difference.

  19. Search for high-mass resonances decaying to dimuons at CDF.

    Science.gov (United States)

    Aaltonen, T; Adelman, J; Akimoto, T; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burke, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cordelli, M; Cortiana, G; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'Orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heijboer, A; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Hussein, M; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C-S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lucchesi, D; Luci, C; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlok, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Pagan Griso, S; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Stuart, D; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Würthwein, F; Wynne, S M; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zhang, X; Zheng, Y; Zucchelli, S

    2009-03-06

    We present a search for high-mass neutral resonances using dimuon data corresponding to an integrated luminosity of 2.3 fb(-1) collected in pp[over ] collisions at sqrt[s]=1.96 TeV by the CDF II detector at the Fermilab Tevatron. No significant excess above the standard model expectation is observed in the dimuon invariant-mass spectrum. We set 95% confidence level upper limits on sigmaBR(pp-->X-->micromicro), where X is a boson with spin-0, 1, or 2. Using these cross section limits, we determine lower mass limits on sneutrinos in R-parity-violating supersymmetric models, Z' bosons, and Kaluza-Klein gravitons in the Randall-Sundrum model.

  20. Search for high-mass diphoton states and limits on Randall-Sundrum gravitons at CDF.

    Science.gov (United States)

    Aaltonen, T; Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carrillo, S; Carlsmith, D; Carosi, R; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Cilijak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; DaRonco, S; Datta, M; D'Auria, S; Davies, T; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Dörr, C; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraan, A C; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moon, C S; Moore, R; Morello, M; Fernandez, P Movilla; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuno, S; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vazquez, F; Velev, G; Vellidis, C; Veramendi, G; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S

    2007-10-26

    We have performed a search for new particles which decay to two photons using 1.2 fb(-1) of integrated luminosity from pp[over] collisions at square root s = 1.96 TeV collected using the CDF II detector at the Fermilab Tevatron. We find the diphoton mass spectrum to be in agreement with the standard model expectation, and set limits on the cross section times branching ratio for the Randall-Sundrum graviton, as a function of diphoton mass. We subsequently derive lower limits for the graviton mass of 230 GeV/c(2) and 850 GeV/c(2), at the 95% confidence level, for coupling parameters (k/M[over](Pl)) of 0.01 and 0.1, respectively.

  1. Search for a Higgs boson decaying to two W bosons at CDF.

    Science.gov (United States)

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burke, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cordelli, M; Cortiana, G; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heijboer, A; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kusakabe, Y; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C-S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lucchesi, D; Luci, C; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlok, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Griso, S Pagan; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Rekovic, V; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Stuart, D; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester Iii, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Würthwein, F; Wynne, S M; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zhang, X; Zheng, Y; Zucchelli, S

    2009-01-16

    We present a search for a Higgs boson decaying to two W bosons in pp[over ] collisions at sqrt[s]=1.96 TeV center-of-mass energy. The data sample corresponds to an integrated luminosity of 3.0 fb;(-1) collected with the CDF II detector. We find no evidence for production of a Higgs boson with mass between 110 and 200 GeV/c;(2), and determine upper limits on the production cross section. For the mass of 160 GeV/c;(2), where the analysis is most sensitive, the observed (expected) limit is 0.7 pb (0.9 pb) at 95% Bayesian credibility level which is 1.7 (2.2) times the standard model cross section.

  2. Measurement of the top-quark mass with dilepton events selected using neuroevolution at CDF.

    Science.gov (United States)

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Copic, K; Cordelli, M; Cortiana, G; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kusakabe, Y; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, E; Lee, S W; Leone, S; Lewis, J D; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlok, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shears, T; Shekhar, R; Shepard, P F; Sherman, D; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Whiteson, S; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S

    2009-04-17

    We report a measurement of the top-quark mass M_{t} in the dilepton decay channel tt[over ] --> bl;{'+} nu_{l};{'}b[over ]l;{-}nu[over ]_{l}. Events are selected with a neural network which has been directly optimized for statistical precision in top-quark mass using neuroevolution, a technique modeled on biological evolution. The top-quark mass is extracted from per-event probability densities that are formed by the convolution of leading order matrix elements and detector resolution functions. The joint probability is the product of the probability densities from 344 candidate events in 2.0 fb;{-1} of pp[over ] collisions collected with the CDF II detector, yielding a measurement of M_{t} = 171.2 +/- 2.7(stat) +/- 2.9(syst) GeV / c;{2}.

  3. Measurement of the top quark mass with dilepton events selected using neuroevolution at CDF

    International Nuclear Information System (INIS)

    Aaltonen, T.; Helsinki Inst. of Phys.; Adelman, J.; Chicago U., EFI; Akimoto, T.; Tsukuba U.; Albrow, M.G.; Fermilab; Alvarez Gonzalez, B.; Cantabria U., Santander; Amerio, S.; Padua U.; Amidei, D.; Michigan U.; Anastassov, A.; Northwestern U.; Annovi, A.; Frascati; Antos, J.; Comenius U.; Apollinari, G.

    2008-01-01

    We report a measurement of the top quark mass M t in the dilepton decay channel t(bar t) to b(ell)(prime) + ν(prime) # ell# (bar b)(ell) - (bar ν) # ell#. Events are selected with a neural network which has been directly optimized for statistical precision in top quark mass using neuroevolution, a technique modeled on biological evolution. The top quark mass is extracted from per-event probability densities that are formed by the convolution of leading order matrix elements and detector resolution functions. The joint probability is the product of the probability densities from 344 candidate events in 2.0 fb -1 of p(bar p) collisions collected with the CDF II detector, yielding a measurement of M t = 171.2 ± 2.7(stat.) ± 2.9(syst.) GeV/c 2

  4. Measurement of the Top-Quark Mass with Dilepton Events Selected Using Neuroevolution at CDF

    International Nuclear Information System (INIS)

    Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; Remortel, N. van; Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Krop, D.; Kwang, S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wolfe, C.; Yang, U. K.

    2009-01-01

    We report a measurement of the top-quark mass M t in the dilepton decay channel tt→bl '+ ν l ' bl - ν l . Events are selected with a neural network which has been directly optimized for statistical precision in top-quark mass using neuroevolution, a technique modeled on biological evolution. The top-quark mass is extracted from per-event probability densities that are formed by the convolution of leading order matrix elements and detector resolution functions. The joint probability is the product of the probability densities from 344 candidate events in 2.0 fb -1 of pp collisions collected with the CDF II detector, yielding a measurement of M t =171.2±2.7(stat)±2.9(syst) GeV/c 2

  5. Top quark mass measurement in non-tagged lepton + jets events at CDF

    International Nuclear Information System (INIS)

    Bellettini, G.; Budagov, Yu.; Chlachidze, G.; Velev, G.

    2005-01-01

    We report on the first CDF-II measurement of the top quark mass in non-tagged sample of lepton + 4 jet events from p anti p collisions at √s=1.96 TeV. The integrated luminosity of the data sample is 193.5 pb -1 . To improve the sample purity a cut at E T >21 GeV was applied on transverse energy of the jets. 39 events were reconstructed as t anti t and fitted as a superposition of top and W + jet events. The signal-constrained fit imposing a signal of 15.5±3.2 events returned a mass M top =179.1± 9.5 10.5 (stat.) ±8.5 (syst.) GeV/c 2 . The unconstrained fit returned M top =177.5± 7.7 9.1 (stat.) ±8.5 (syst.) GeV/c 2

  6. A verilog simulation of the CDF DAQ system

    Energy Technology Data Exchange (ETDEWEB)

    Schurecht, K.; Harris, R. (Fermi National Accelerator Lab., Batavia, IL (United States)); Sinervo, P.; Grindley, R. (Toronto Univ., ON (Canada). Dept. of Physics)

    1991-11-01

    A behavioral simulation of the CDF data acquisition system was written in the Verilog modeling language in order to investigate the effects of various improvements to the existing system. This system is modeled as five separate components that communicate with each other via Fastbus interrupt messages. One component of the system, the CDF event builder, is modeled in substantially greater detail due to its complex structure. This simulation has been verified by comparing its performance with that of the existing DAQ system. Possible improvements to the existing systems were studied using the simulation, and the optimal upgrade path for the system was chosen on the basis of these studies. The overall throughput of the modified system is estimated to be double that of the existing setup. Details of this modeling effort will be discussed, including a comparison of the modeled and actual performance of the existing system.

  7. Performance and system flexibility of the CDF Hardware Event Builder

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, T.M.; Schurecht, K. (Fermi National Accelerator Lab., Batavia, IL (United States)); Sinervo, P. (Toronto Univ., ON (Canada). Dept. of Physics)

    1991-11-01

    The CDF Hardware Event Builder (1) is a flexible system which is built from a combination of three different 68020-based single width Fastbus modules. The system may contain as few as three boards or as many as fifteen, depending on the specific application. Functionally, the boards receive a command to read out the raw event data from a set of Fastbus based data buffers ( scanners''), reformat data and then write the data to a Level 3 trigger/processing farm which will decide to throw the event away or to write it to tape. The data acquisition system at CDF will utilize two nine board systems which will allow an event rate of up to 35 Hz into the Level 3 trigger. This paper will present detailed performance factors, system and individual board architecture, and possible system configurations.

  8. Architecture and development of the CDF hardware event builder

    International Nuclear Information System (INIS)

    Shaw, T.M.; Booth, A.W.; Bowden, M.

    1989-01-01

    A hardware Event Builder (EVB) has been developed for use at the Collider Detector experiment at Fermi National Accelerator (CDF). the Event builder presently consists of five FASTBUS modules and has the task of reading out the front end scanners, reformatting the data into YBOS bank structure, and transmitting the data to a Level 3 (L3) trigger system which is composed of multiple VME processing nodes. The Event Builder receives its instructions from a VAX based Buffer Manager (BFM) program via a Unibus Processor Interface (UPI). The Buffer Manager instructs the Event Builder to read out one of the four CDF front end buffers. The Event Builder then informs the Buffer Manager when the event has been formatted and then is instructed to push it up to the L3 trigger system. Once in the L3 system, a decision is made as to whether to write the event to tape

  9. A verilog simulation of the CDF DAQ system

    International Nuclear Information System (INIS)

    Schurecht, K.; Harris, R.; Sinervo, P.; Grindley, R.

    1991-11-01

    A behavioral simulation of the CDF data acquisition system was written in the Verilog modeling language in order to investigate the effects of various improvements to the existing system. This system is modeled as five separate components that communicate with each other via Fastbus interrupt messages. One component of the system, the CDF event builder, is modeled in substantially greater detail due to its complex structure. This simulation has been verified by comparing its performance with that of the existing DAQ system. Possible improvements to the existing systems were studied using the simulation, and the optimal upgrade path for the system was chosen on the basis of these studies. The overall throughput of the modified system is estimated to be double that of the existing setup. Details of this modeling effort will be discussed, including a comparison of the modeled and actual performance of the existing system

  10. J/ψ and Υ production at CDF

    International Nuclear Information System (INIS)

    Liss, T.

    1990-01-01

    Characteristics of J/ψ and Υ produced at the Tevatron and detected in the dimuon channel at CDF are reviewed. The masses of the J/ψ and Υ are measured to be 3.096 ± 0.001 GeV/c 2 and 9.469 ± 0.010 GeV/c 2 respectively. These mass measurements are used to determine the systematic uncertainty on the momentum scale in the central tracking chamber. 2 refs., 14 figs

  11. Software development tools for the CDF MX scanner

    Energy Technology Data Exchange (ETDEWEB)

    Stuermer, W.; Turner, K.; Littleton-Sestini, S.

    1991-11-01

    This paper discuses the design of the high level assembler and diagnostic control program developed for the MX, a high speed, custom designed computer used in the CDF data acquisition system at Fermilab. These programs provide a friendly productive environment for the development of software on the MX. Details of their implementation and special features, and some of the lessons learned during their development are included.

  12. The upgraded CDF front end electronics for calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Drake, G.; Frei, D.; Hahn, S.R.; Nelson, C.A.; Segler, S.L.; Stuermer, W.

    1991-11-01

    The front end electronics used in the calorimetry of the CDF detector has been upgraded to meet system requirements for higher expected luminosity. A fast digitizer utilizing a 2 {mu}Sec, 16 bit ADC has been designed and built. Improvements to the front end trigger circuitry have been implemented, including the production of 900 new front end modules. Operational experience with the previous system is presented, with discussion of the problems and performance goals.

  13. The upgraded CDF front end electronics for calorimetry

    International Nuclear Information System (INIS)

    Drake, G.; Frei, D.; Hahn, S.R.; Nelson, C.A.; Segler, S.L.; Stuermer, W.

    1991-11-01

    The front end electronics used in the calorimetry of the CDF detector has been upgraded to meet system requirements for higher expected luminosity. A fast digitizer utilizing a 2 μSec, 16 bit ADC has been designed and built. Improvements to the front end trigger circuitry have been implemented, including the production of 900 new front end modules. Operational experience with the previous system is presented, with discussion of the problems and performance goals

  14. Rapidity gaps between jets at D0 and CDF

    International Nuclear Information System (INIS)

    Bertram, I.

    1995-08-01

    Results are presented from analyses of particle multiplicity distributions between high transverse energy jets produced at the Fermilab Tevatron p bar p collider at √s = 1.8 Tev. D0 and CDF examine the particle multiplicity distribution between the two highest transverse energy jets. Both experiments observe a significant excess of events at low tagged particle multiplicity which is consistent with a strongly interacting color-singlet exchange process

  15. Precision top-quark mass measurements at CDF

    Czech Academy of Sciences Publication Activity Database

    Aaltonen, T.; Gonzalez, B.A.; Amerio, S.; Lysák, Roman

    2012-01-01

    Roč. 109, č. 15 (2012), "152003-1"-"152003-7" ISSN 0031-9007 R&D Projects: GA MŠk LC527 Institutional research plan: CEZ:AV0Z10100502 Keywords : top mass * top pair production * dijet mass spectrum * CDF * Batavia TEVATRON Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 7.943, year: 2012 http://arxiv.org/abs/arXiv:1207.6758

  16. Di-jet production by double pomeron exchange in CDF

    International Nuclear Information System (INIS)

    Albrow, M.G.

    1998-05-01

    We have studied events with a high-x F antiproton and two central jets with E T > 7 GeV in CDF, in p anti p collisions at √s = 1800 GeV. We find an excess of events with a rapidity gap at least 3.5 units wide in the proton direction, which we interpret as di-jet production in double pomeron exchange events

  17. Software development tools for the CDF MX scanner

    International Nuclear Information System (INIS)

    Stuermer, W.; Turner, K.; Littleton-Sestini, S.

    1991-11-01

    This paper discuses the design of the high level assembler and diagnostic control program developed for the MX, a high speed, custom designed computer used in the CDF data acquisition system at Fermilab. These programs provide a friendly productive environment for the development of software on the MX. Details of their implementation and special features, and some of the lessons learned during their development are included

  18. Running Club

    CERN Multimedia

    Running Club

    2011-01-01

    The cross country running season has started well this autumn with two events: the traditional CERN Road Race organized by the Running Club, which took place on Tuesday 5th October, followed by the ‘Cross Interentreprises’, a team event at the Evaux Sports Center, which took place on Saturday 8th October. The participation at the CERN Road Race was slightly down on last year, with 65 runners, however the participants maintained the tradition of a competitive yet friendly atmosphere. An ample supply of refreshments before the prize giving was appreciated by all after the race. Many thanks to all the runners and volunteers who ensured another successful race. The results can be found here: https://espace.cern.ch/Running-Club/default.aspx CERN participated successfully at the cross interentreprises with very good results. The teams succeeded in obtaining 2nd and 6th place in the Mens category, and 2nd place in the Mixed category. Congratulations to all. See results here: http://www.c...

  19. RUN COORDINATION

    CERN Multimedia

    Christophe Delaere

    2013-01-01

    The focus of Run Coordination during LS1 is to monitor closely the advance of maintenance and upgrade activities, to smooth interactions between subsystems and to ensure that all are ready in time to resume operations in 2015 with a fully calibrated and understood detector. After electricity and cooling were restored to all equipment, at about the time of the last CMS week, recommissioning activities were resumed for all subsystems. On 7 October, DCS shifts began 24/7 to allow subsystems to remain on to facilitate operations. That culminated with the Global Run in November (GriN), which   took place as scheduled during the week of 4 November. The GriN has been the first centrally managed operation since the beginning of LS1, and involved all subdetectors but the Pixel Tracker presently in a lab upstairs. All nights were therefore dedicated to long stable runs with as many subdetectors as possible. Among the many achievements in that week, three items may be highlighted. First, the Strip...

  20. RUN COORDINATION

    CERN Multimedia

    M. Chamizo

    2012-01-01

      On 17th January, as soon as the services were restored after the technical stop, sub-systems started powering on. Since then, we have been running 24/7 with reduced shift crew — Shift Leader and DCS shifter — to allow sub-detectors to perform calibration, noise studies, test software upgrades, etc. On 15th and 16th February, we had the first Mid-Week Global Run (MWGR) with the participation of most sub-systems. The aim was to bring CMS back to operation and to ensure that we could run after the winter shutdown. All sub-systems participated in the readout and the trigger was provided by a fraction of the muon systems (CSC and the central RPC wheel). The calorimeter triggers were not available due to work on the optical link system. Initial checks of different distributions from Pixels, Strips, and CSC confirmed things look all right (signal/noise, number of tracks, phi distribution…). High-rate tests were done to test the new CSC firmware to cure the low efficiency ...

  1. Measurement of the top quark mass using dilepton events and a neutrino weighting algorithm with the DOe experiment at the Tevatron (Run II)

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, J.

    2007-07-01

    Several measurements of the top quark mass in the dilepton final states with the DOe experiment are presented. The theoretical and experimental properties of the top quark are described together with a brief introduction of the Standard Model of particle physics and the physics of hadron collisions. An overview over the experimental setup is given. The Tevatron at Fermilab is presently the highest-energy hadron collider in the world with a center-of-mass energy of 1.96 TeV. There are two main experiments called CDF and DOe, A description of the components of the multipurpose DOe detector is given. The reconstruction of simulated events and data events is explained and the criteria for the identification of electrons, muons, jets, and missing transverse energy is given. The kinematics in the dilepton final state is underconstraint. Therefore, the top quark mass is extracted by the so-called Neutrino Weighting method. This method is introduced and several different approaches are described, compared, and enhanced. Results for the international summer conferences 2006 and winter 2007 are presented. The top quark mass measurement for the combination of all three dilepton channels with a dataset of 1.05 1/fb yields: mtop=172.5{+-}5.5 (stat.) {+-} 5.8 (syst.) GeV. This result is presently the most precise top quark mass measurement of the DOe experiment in the dilepton chann el. It entered the top quark mass wold average from March 2007. (orig.)

  2. Minimum bias and underlying event studies at CDF

    International Nuclear Information System (INIS)

    Moggi, Niccolo

    2010-01-01

    Soft, non-perturbative, interactions are poorly understood from the theoretical point of view even though they form a large part of the hadronic cross section at the energies now available. We review the CDF studies on minimum-bias ad underlying event in p(bar p) collisions at 2 TeV. After proposing an operative definition of 'underlying event', we present part of a systematic set of measurements carried out by the CDF Collaboration with the goal to provide data to test and improve the QCD models of hadron collisions. Different analysis strategies of the underlying event and possible event topologies are discussed. Part of the CDF minimum-bias results are also presented: in this sample, that represent the full inelastic cross-section, we can test simultaneously our knowledge of all the components that concur to form hadronic interactions. Comparisons with MonteCarlo simulations are always shown along with the data. These measurements will also contribute to more precise estimates of the soft QCD background of high-p T observables.

  3. First search at CDF for the Higgs boson decaying to a W-boson pair in proton-antiproton collisions at the center-of-mass energy of 1.96 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Shan-Huei S. [Univ. of Wisconsin, Madison, WI (United States)

    2006-01-01

    By way of retaining the gauge invariance of the Standard Model (SM) and giving masses to the W± and Z0 bosons and the fermions, the Higgs mechanism predicts the existence of a neutral scalar bosonic particle, whose mass is not exactly known. The Higgs boson is the only experimentally unconfirmed SM particle to date. This thesis documents a search for the Higgs boson in p$\\bar{p}$ collisions at √s = 1.96 TeV at the Tevatron, using 360 ± pb -1 data collected by the Run II Collider Detector at Fermilab (CDF II), as part of the most important quest for contemporary particle physicists. The search was for a Higgs boson decaying to a pair of W± bosons, where each W boson decays to an electron, a muon or a tau that further decays to an electron or a muon with associated neutrinos. Events with two charged leptons plus large missing energy were selected in data triggered on a high p$\\bar{p}$ lepton and compared to the signal and backgrounds modeled using Monte Carlo and jet data. No signal-like excess was observed in data. Therefore, upper limits on the HWW production cross-section in the analyzed mass range were extracted using the binned likelihood maximum from distributions of dilepton azimuthal angle at 95% Bayesian credibility level (CL), as shown in the table below.

  4. Measurement of the inclusive b-lifetime using Jp's at the CDF-experiment.

    Science.gov (United States)

    Wenzel, Hans; Benjamin, Doug

    1996-05-01

    We present the measurement of the average lifetime of b-hadrons produced in pbarp collisions at √s = 1.8 TeV weighted by their branching ratios into J/ψ We use dimuon data which corresponds to an integrated luminosity of ≈ 90 pb-1 recorded with the CDF-detector during the 1994 to 95 running period. After all selection cuts and background subtraction we are left with a high statistics sample of 62656 J/ψ decaying into μ^+μ^- reconstructed in the CDF Silicon VerteX detector (SVX) where 17.8% of these events come from b-decays. We measure the average B lifetime to be 1.52 ; ± 0.015; (stat);^+0.038_-0.027;(sys); ps (preliminary). The precision of this measurement is significantly improved compared to the inclusive lifetime measurement published previously using ≈ 10 pb-1 of data recorded in 91-92. ^ Supported by U.S. DOE DE-AC03-76SF00098. ^ Supported by U.S. DOE DEFG03-95-ER-40938. ^*We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Science and Culture of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; and the A. P. Sloan Foundation.

  5. RUN COORDINATION

    CERN Multimedia

    G. Rakness.

    2013-01-01

    After three years of running, in February 2013 the era of sub-10-TeV LHC collisions drew to an end. Recall, the 2012 run had been extended by about three months to achieve the full complement of high-energy and heavy-ion physics goals prior to the start of Long Shutdown 1 (LS1), which is now underway. The LHC performance during these exciting years was excellent, delivering a total of 23.3 fb–1 of proton-proton collisions at a centre-of-mass energy of 8 TeV, 6.2 fb–1 at 7 TeV, and 5.5 pb–1 at 2.76 TeV. They also delivered 170 μb–1 lead-lead collisions at 2.76 TeV/nucleon and 32 nb–1 proton-lead collisions at 5 TeV/nucleon. During these years the CMS operations teams and shift crews made tremendous strides to commission the detector, repeatedly stepping up to meet the challenges at every increase of instantaneous luminosity and energy. Although it does not fully cover the achievements of the teams, a way to quantify their success is the fact that that...

  6. Measurements of the top-quark decay width and mass at CDF using the template method.

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jian [Univ. of Chicago, IL (United States)

    2012-05-10

    Measurements of the top quark decay width and mass are presented using the tt events produced in p p collisions at Fermilab's Tevatron collider and collected by the CDF II detector. A data sample corresponding to 4.3 fb-1 of integrated luminosity is used for the top quark width measurement. Two estimators, the reconstructed top quark mass and the mass of hadronically decaying W boson that comes from the top-quark decay are reconstructed for each event and compared with templates of different input top quark widths and deviations from nominal CDF jet energy scale (ΔJES) to perform a simultaneous fit for both parameters. ΔJES is used for the in situ calibration of the jet energy scale at CDF. By applying a Feldman-Cousins limit-setting approach, we establish an upper limit at 95% confidence level (CL) of Γtop < 7.6 GeV and a two-sided 68% CL interval of (0.3 GeV, 4.4) GeV assuming a top quark mass of 172.5 GeV/c2, which are consistent with the standard model prediction. The measurement of the top quark mass uses a data sample of tt events in 5.7 fb-1 of integrated luminosity collected by the same detector. Candidate events in the top quark mass measurement are required to have large missing transverse energy, no identified charged leptons, and four, five, or six jets with at least one jet tagged as coming from a b quark. This analysis considers events from the semileptonic tt decay channel, including events that contain tau leptons. The measurement is based on a multidimensional template method, in a similar way to the top quark width measurement, and the top quark mass is measured to be Mtop = 172.32 ± 2.37 ± 0.98 GeV/c2 .

  7. Top quark production cross-section at the Tevatron Run 2

    OpenAIRE

    Cabrera, S.

    2003-01-01

    The top quark pair production cross-section ${\\sigma}_{t\\bar{t}}$ has been measured in $p\\bar{p}$ collisions at center of mass energies of 1.96 TeV using Tevatron Run 2 data. In the begining of Run 2 both CDF and D\\O\\ $\\sigma_{t\\bar{t}}$ measurements in the {\\it dilepton} channel $t\\bar{t}{\\to}WbW\\bar{b}{\\to}\\bar{\\ell}{\

  8. Is there really an eccentric action of the hamstrings during the swing phase of high-speed running? Part II: Implications for exercise.

    Science.gov (United States)

    Van Hooren, Bas; Bosch, Frans

    2017-12-01

    We have previously argued that there may actually be no significant eccentric, but rather predominantly an isometric action of the hamstring muscle fibres during the swing phase of high-speed running when the attachment points of the hamstrings are moving apart. Based on this we suggested that isometric rather than eccentric exercises are a more specific way of conditioning the hamstrings for high-speed running. In this review we argue that some of the presumed beneficial adaptations following eccentric training may actually not be related to the eccentric muscle fibre action, but to other factors such as exercise intensity. Furthermore, we discuss several disadvantages associated with commonly used eccentric hamstring exercises. Subsequently, we argue that high-intensity isometric exercises in which the series elastic element stretches and recoils may be equally or even more effective at conditioning the hamstrings for high-speed running, since they also avoid some of the negative side effects associated with eccentric training. We provide several criteria that exercises should fulfil to effectively condition the hamstrings for high-speed running. Adherence to these criteria will guarantee specificity with regards to hamstrings functioning during running. Practical examples of isometric exercises that likely meet several criteria are provided.

  9. Personal extrapolation of CDF test beam use to the SSC

    International Nuclear Information System (INIS)

    Nodulman, L.

    1986-01-01

    The author's personal experience in test beam usage at CDF is used to predict SSC needs at the point of turn-on. It is concluded that the test beam demand will reflect the scale of effort involved in SSC detectors rather than the total number of them. Provision for later expansion is recommended. It is also recommended that the test beam facilities, as well as detector electronics, should reflect the available dynamic range; particularly, a single high energy beam derived from the SSC could be shared by several groups

  10. Personal extrapolation of CDF test beam use to the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Nodulman, L.

    1986-06-23

    The author's personal experience in test beam usage at CDF is used to predict SSC needs at the point of turn-on. It is concluded that the test beam demand will reflect the scale of effort involved in SSC detectors rather than the total number of them. Provision for later expansion is recommended. It is also recommended that the test beam facilities, as well as detector electronics, should reflect the available dynamic range; particularly, a single high energy beam derived from the SSC could be shared by several groups. (LEW)

  11. The CDF top search in the multijet decay mode

    International Nuclear Information System (INIS)

    Denby, B.

    1994-01-01

    A status report on the CDF top search in the multijet channel is given. After topological cuts and the requirement of a secondary vertex in the silicon microvertex detector, about 120 events remain (21.4 pb -1 ), in which the signal to background ratio (for a nominal top mass of 160 GeV) is estimated to be 1/10. With further improvements it should be possible to improve this ratio to 1/1 while retaining good efficiency for top, which will make the multijet channel an important cross check for the leptonic modes

  12. Jet studies at CDF/D0 collaborations

    International Nuclear Information System (INIS)

    Bartalini, P.

    1994-01-01

    Both CDF and D0 collaboration measure inclusive jet cross section, energy flow and observe color coherence effects in p-barp collisions at √s 1800 GeV. The results on new compositeness limit using inclusive jet cross section and energy flow within a jet are described. Data are in good agreement with next to leading order QCD calculations. Color coherence effects are demonstrated by measuring spatial correlations between soft and leading jets in multi jet events. (author). 14 refs., 3 figs

  13. Search for new charged massive stable particles at CDF

    Science.gov (United States)

    CDF Collaboration

    1996-05-01

    We report on a general search at CDF for new particles which are electrically charged and sufficiently long-lived to allow detection (γ c τ >= 1m). Examples of such particles include free quarks, 4th generation leptons which are lighter than their neutrino, and sextet quarks. Their signature would be particles with high momentum but relatively low velocity, β Fisica Nucleare; the Ministry of Education, Science and Culture of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; and the A. P. Sloan Foundation. Supported by U.S. DOE under Contract No. DE-AC02-76CH03000.

  14. Inclusive jet cross sections and jet shapes at CDF

    International Nuclear Information System (INIS)

    Wainer, N.

    1991-09-01

    The inclusive jet cross section and jet shapes at √s = 1.8 TeV have been measured by CDF at the Fermilab Tevatron Collider. results are compared to recent next-to-leading order QCD calculations, which predict variation of the cross section with cone size, as well as variation of the jet shape with energy. A lower limit on the parameter Λ c , which characterize a contact interaction associated with quark sub-structure is determined to be 1400 GeV at the 95% confidence level. 3 refs., 4 figs

  15. Running Club

    CERN Multimedia

    Running Club

    2010-01-01

    The 2010 edition of the annual CERN Road Race will be held on Wednesday 29th September at 18h. The 5.5km race takes place over 3 laps of a 1.8 km circuit in the West Area of the Meyrin site, and is open to everyone working at CERN and their families. There are runners of all speeds, with times ranging from under 17 to over 34 minutes, and the race is run on a handicap basis, by staggering the starting times so that (in theory) all runners finish together. Children (< 15 years) have their own race over 1 lap of 1.8km. As usual, there will be a “best family” challenge (judged on best parent + best child). Trophies are awarded in the usual men’s, women’s and veterans’ categories, and there is a challenge for the best age/performance. Every adult will receive a souvenir prize, financed by a registration fee of 10 CHF. Children enter free (each child will receive a medal). More information, and the online entry form, can be found at http://cern.ch/club...

  16. RUN COORDINATION

    CERN Multimedia

    Christophe Delaere

    2012-01-01

      On Wednesday 14 March, the machine group successfully injected beams into LHC for the first time this year. Within 48 hours they managed to ramp the beams to 4 TeV and proceeded to squeeze to β*=0.6m, settings that are used routinely since then. This brought to an end the CMS Cosmic Run at ~Four Tesla (CRAFT), during which we collected 800k cosmic ray events with a track crossing the central Tracker. That sample has been since then topped up to two million, allowing further refinements of the Tracker Alignment. The LHC started delivering the first collisions on 5 April with two bunches colliding in CMS, giving a pile-up of ~27 interactions per crossing at the beginning of the fill. Since then the machine has increased the number of colliding bunches to reach 1380 bunches and peak instantaneous luminosities around 6.5E33 at the beginning of fills. The average bunch charges reached ~1.5E11 protons per bunch which results in an initial pile-up of ~30 interactions per crossing. During the ...

  17. RUN COORDINATION

    CERN Multimedia

    C. Delaere

    2012-01-01

      With the analysis of the first 5 fb–1 culminating in the announcement of the observation of a new particle with mass of around 126 GeV/c2, the CERN directorate decided to extend the LHC run until February 2013. This adds three months to the original schedule. Since then the LHC has continued to perform extremely well, and the total luminosity delivered so far this year is 22 fb–1. CMS also continues to perform excellently, recording data with efficiency higher than 95% for fills with the magnetic field at nominal value. The highest instantaneous luminosity achieved by LHC to date is 7.6x1033 cm–2s–1, which translates into 35 interactions per crossing. On the CMS side there has been a lot of work to handle these extreme conditions, such as a new DAQ computer farm and trigger menus to handle the pile-up, automation of recovery procedures to minimise the lost luminosity, better training for the shift crews, etc. We did suffer from a couple of infrastructure ...

  18. Design and production of a new surface mount charge-integrating amplifier for CDF

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, C.; Drake, G.

    1991-12-31

    We present our experiences in designing and producing 26,000 new charge-integrating amplifiers for CDF, using surface-mount components. The new amplifiers were needed to instrument 920 new 24-channel CDF RABBIT boards, which are replacing an older design rendered obsolete by increases in the collision rate. Important design considerations were frequency response, physical size and cost. 5 refs.

  19. Design and production of a new surface mount charge-integrating amplifier for CDF

    International Nuclear Information System (INIS)

    Nelson, C.; Drake, G.

    1991-01-01

    We present our experiences in designing and producing 26,000 new charge-integrating amplifiers for CDF, using surface-mount components. The new amplifiers were needed to instrument 920 new 24-channel CDF RABBIT boards, which are replacing an older design rendered obsolete by increases in the collision rate. Important design considerations were frequency response, physical size and cost. 5 refs

  20. Measurement of ttbar forward-backward asymmetry at CDF

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    Early measurements of the forward-backward ttbar production asymmetry at CDF and D0 suggested significant asymmetries that have been interpreted as evidence for exotic gluon partners or new t-channel interactions. We present new measurements performed with 5 fb-1 of Tevatron ppbar collisions at Ecm = 1.96 TeV, recorded and analyzed at CDF. Significant inclusive asymmetries are observed in both the lepton+jets and the dilepton decay modes of the ttbar pair. In the dilepton mode, the asymmetry is observed in the reconstructed top rapidity, and in the lepton rapidity difference, which is independent of any top reconstruction. In the lepton plus jets sample, the full reconstruction of the top kinematics is used to measure the dependence of the asymmetry on the tt bar rapidity difference Delta(y) and the invariant mass M_(ttbar ) of the ttbar system. The asymmetry is found to be most significant at large Delta(y) and M_(ttbar) . For M_(ttbar) > 450 GeV/c2, the parton-level asymmetry in the t-tbar rest frame is...

  1. Search for supersymmetric particles decaying into tri-leptons through R-parity violation, with D0 Run-II experiment at Fermilab; Recherche de particules supersymetriques se desintegrant en R-parite violee (couplage {lambda}(121)) dans un etat final a trois leptons, avec les donnees du Run-II de l'experience D0 au TeVatron

    Energy Technology Data Exchange (ETDEWEB)

    Magnan, A.M

    2005-07-15

    This thesis is dedicated to the study of the first data taken by the D0 detector during the Run II of the Tevatron. Supersymmetric particles have been search for in proton-antiproton collisions, with a center of mass energy of 1.96 TeV. In the framework of supersymmetry with R-parity violation, I have studied the pair production of Gauginos, leading to a pair of LSP (0,{chi}{sub 1}), each one decaying into ee{nu}{sub {mu}} or e{mu}{nu}{sub e} with a {lambda}(121) coupling. The final state contains at least two electrons: I have thus paid special attention in this work to the methods concerning identification and mis-identification of electromagnetic particles, as well as reconstruction, triggering, and correction (of the reconstructed energy). In a selection of tri-leptons, with at least two electrons, and some transverse missing energy, we observed 0 event in the 350 pb{sup -1} of analyzed data, for 0.4 + 0.35 - 0.05 (sta) {+-} 0.16 (sys) expected from the Standard Model contributions. In the signal considered in this analysis, the selection efficiency is around 12 per cent. Results have been studied in two models: mSUGRA and MSSM. In mSUGRA model, limits on m(1/2) and lightest gauginos's masses have been obtained, with tan({beta}) = 5, A{sub 0} = 0, m{sub 0} = 100 and 1000 GeV.c{sup -2} and both signs of {mu}. In MSSM, with the hypothesis of massive sfermions (1000 GeV.c{sup -2}), we can exclude, at 95% Confidence Level, the region m({chi}{sub 1}{sup {+-}}) < 200 GeV.c{sup -2} for all masses of {chi}{sub 1}{sup 0} LSP. (author)

  2. A search for particle dark matter using cryogenic germanium and silicon detectors in the one- and two- tower runs of CDMS-II at Soudan

    International Nuclear Information System (INIS)

    Ogburn, Reuben Walter IV

    2008-01-01

    Images of the Bullet Cluster of galaxies in visible light, X-rays, and through gravitational lensing confirm that most of the matter in the universe is not composed of any known form of matter. The combined evidence from the dynamics of galaxies and clusters of galaxies, the cosmic microwave background, big bang nucleosynthesis, and other observations indicates that 80% of the universe's matter is dark, nearly collisionless, and cold. The identify of the dar, matter remains unknown, but weakly interacting massive particles (WIMPs) are a very good candidate. They are a natural part of many supersymmetric extensions to the standard model, and could be produced as a nonrelativistic, thermal relic in the early universe with about the right density to account for the missing mass. The dark matter of a galaxy should exist as a spherical or ellipsoidal cloud, called a 'halo' because it extends well past the edge of the visible galaxy. The Cryogenic Dark Matter Search (CDMS) seeks to directly detect interactions between WIMPs in the Milky Way's galactic dark matter halo using crystals of germanium and silicon. Our Z-sensitive ionization and phonon ('ZIP') detectors simultaneously measure both phonons and ionization produced by particle interactions. In order to find very rare, low-energy WIMP interactions, they must identify and reject background events caused by environmental radioactivity, radioactive contaminants on the detector,s and cosmic rays. In particular, sophisticated analysis of the timing of phonon signals is needed to eliminate signals caused by beta decays at the detector surfaces. This thesis presents the firs two dark matter data sets from the deep underground experimental site at the Soudan Underground Laboratory in Minnesota. These are known as 'Run 118', with six detectors (1 kg Ge, 65.2 live days before cuts) and 'Run 119', with twelve detectors (1.5 kg Ge, 74.5 live days before cuts). They have analyzed all data from the two runs together in a single

  3. Search for new physics in trilepton events and limits on the associated chargino-neutralino production at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d’Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; D’Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; Donati, S.; D’Onofrio, M.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Elagin, A.; Erbacher, R.; Errede, S.; Esham, B.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Galloni, C.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Marchese, L.; Margaroli, F.; Marino, P.; Martínez, M.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Ranjan, N.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Song, H.; Sorin, V.; St. Denis, R.; Stancari, M.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Vázquez, F.; Wagner, P.; Wallny, R.; Wang, S. M.; Waters, D.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W. -M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.

    2014-07-23

    We perform a search for new physics using final states consisting of three leptons and a large imbalance in transverse momentum resulting from proton-antiproton collisions at 1.96 TeV center-of-mass energy. We use data corresponding to 5.8 fb-1 of integrated luminosity recorded by the CDF II detector at the Tevatron collider. Our main objective is to investigate possible new low-momentum (down to 5 GeV/c) multi-leptonic final states not investigated by LHC experiments. Relative to previous CDF analyses, we expand the geometric and kinematic coverage of electrons and muons and utilize tau leptons that decay hadronically. Inclusion of tau leptons is particularly important for supersymmetry (SUSY) searches. The results are consistent with standard-model predictions. By optimizing our event selection to increase sensitivity to the minimal supergravity (mSUGRA) SUSY model, we set limits on the associated production of chargino and neutralino, the SUSY partners of the electroweak gauge bosons. We exclude cross sections up to 0.1 pb and chargino masses up to 168 GeV/c2 at 95% CL, for a suited set of mSUGRA parameters. We also exclude a region of the two-dimensional space of the masses of the neutralino and the supersymmetric partner of the tau lepton, not previously excluded at the Tevatron.

  4. Visualizing NetCDF Files by Using the EverVIEW Data Viewer

    Science.gov (United States)

    Conzelmann, Craig; Romañach, Stephanie S.

    2010-01-01

    Over the past few years, modelers in South Florida have started using Network Common Data Form (NetCDF) as the standard data container format for storing hydrologic and ecologic modeling inputs and outputs. With its origins in the meteorological discipline, NetCDF was created by the Unidata Program Center at the University Corporation for Atmospheric Research, in conjunction with the National Aeronautics and Space Administration and other organizations. NetCDF is a portable, scalable, self-describing, binary file format optimized for storing array-based scientific data. Despite attributes which make NetCDF desirable to the modeling community, many natural resource managers have few desktop software packages which can consume NetCDF and unlock the valuable data contained within. The U.S. Geological Survey and the Joint Ecosystem Modeling group, an ecological modeling community of practice, are working to address this need with the EverVIEW Data Viewer. Available for several operating systems, this desktop software currently supports graphical displays of NetCDF data as spatial overlays on a three-dimensional globe and views of grid-cell values in tabular form. An included Open Geospatial Consortium compliant, Web-mapping service client and charting interface allows the user to view Web-available spatial data as additional map overlays and provides simple charting visualizations of NetCDF grid values.

  5. A Precise Measurement of the W Boson Mass with CDF

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The W boson mass measurement probes quantum corrections to the W propagator, such as those arising from supersymmetric particles or Higgs bosons. The new measurement from CDF is more precise than the previous world average, providing a stringent constraint on the mass of the Higgs boson in the context of the Standard Model. I describe this measurement, performed with 2.2/fb of data using 1.1 million candidates in the electron and muon decay channels, with three kinematic fits in each channel. The measurement uses in-situ calibrations from cosmic rays, J/psi and Upsilon data, and W- and Z-boson decays, with multiple cross-checks including independent determinations of the Z boson mass in both channels. The W-boson mass is measured to be 80387 +- 19 MeV/c^2.

  6. System software design for the CDF Silicon Vertex Detector

    Energy Technology Data Exchange (ETDEWEB)

    Tkaczyk, S. (Fermi National Accelerator Lab., Batavia, IL (United States)); Bailey, M. (Purdue Univ., Lafayette, IN (United States))

    1991-11-01

    An automated system for testing and performance evaluation of the CDF Silicon Vertex Detector (SVX) data acquisition electronics is described. The SVX data acquisition chain includes the Fastbus Sequencer and the Rabbit Crate Controller and Digitizers. The Sequencer is a programmable device for which we developed a high level assembly language. Diagnostic, calibration and data acquisition programs have been developed. A distributed software package was developed in order to operate the modules. The package includes programs written in assembly and Fortran languages that are executed concurrently on the SVX Sequencer modules and either a microvax or an SSP. Test software was included to assist technical personnel during the production and maintenance of the modules. Details of the design of different components of the package are reported.

  7. System software design for the CDF Silicon Vertex Detector

    International Nuclear Information System (INIS)

    Tkaczyk, S.; Bailey, M.

    1991-11-01

    An automated system for testing and performance evaluation of the CDF Silicon Vertex Detector (SVX) data acquisition electronics is described. The SVX data acquisition chain includes the Fastbus Sequencer and the Rabbit Crate Controller and Digitizers. The Sequencer is a programmable device for which we developed a high level assembly language. Diagnostic, calibration and data acquisition programs have been developed. A distributed software package was developed in order to operate the modules. The package includes programs written in assembly and Fortran languages that are executed concurrently on the SVX Sequencer modules and either a microvax or an SSP. Test software was included to assist technical personnel during the production and maintenance of the modules. Details of the design of different components of the package are reported

  8. Search for Penguin Decays of $B$ Mesons at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Kordas, Kostas [McGill U.

    2000-01-01

    Using a data sample of integrated luminosity $\\int$ Ldt = 28.9 $\\pm$ 1.2 $pb^{-1}$ of proton antiproton collisions at a center-of-mass energy $\\sqrt{s}$ = 1.8 TeV collected with the CDF detector at the Fermilab Tevatron collider, we searched for "penguin" radiative decays of $B^0_d$ and $B^0_s$ mesons which involve the flavor-changing neutral-current transition of a $b$ quark into an $s$ quark with the emission of a photon, $b \\to s\\gamma$ . Speciffcally, we searched for the decays $B^0_d \\to K^{*0}$, $K^{*0} \\to K^+ \\pi^-$ and $B^0_s \\to \\phi\\gamma, \\phi \\to K^+ K^-$, as well as for the charge conjugate chains....

  9. Study of the Effect of Temporal Sampling Frequency on DSCOVR Observations Using the GEOS-5 Nature Run Results. Part II; Cloud Coverage

    Science.gov (United States)

    Holdaway, Daniel; Yang, Yuekui

    2016-01-01

    This is the second part of a study on how temporal sampling frequency affects satellite retrievals in support of the Deep Space Climate Observatory (DSCOVR) mission. Continuing from Part 1, which looked at Earth's radiation budget, this paper presents the effect of sampling frequency on DSCOVR-derived cloud fraction. The output from NASA's Goddard Earth Observing System version 5 (GEOS-5) Nature Run is used as the "truth". The effect of temporal resolution on potential DSCOVR observations is assessed by subsampling the full Nature Run data. A set of metrics, including uncertainty and absolute error in the subsampled time series, correlation between the original and the subsamples, and Fourier analysis have been used for this study. Results show that, for a given sampling frequency, the uncertainties in the annual mean cloud fraction of the sunlit half of the Earth are larger over land than over ocean. Analysis of correlation coefficients between the subsamples and the original time series demonstrates that even though sampling at certain longer time intervals may not increase the uncertainty in the mean, the subsampled time series is further and further away from the "truth" as the sampling interval becomes larger and larger. Fourier analysis shows that the simulated DSCOVR cloud fraction has underlying periodical features at certain time intervals, such as 8, 12, and 24 h. If the data is subsampled at these frequencies, the uncertainties in the mean cloud fraction are higher. These results provide helpful insights for the DSCOVR temporal sampling strategy.

  10. Status of the Tevatron CDF and D0 experiments

    International Nuclear Information System (INIS)

    Rolli, Simona

    2010-01-01

    The status of the Tevatron Collider is reviewed and highlights of the rich physics program carried out by the CDF and D0 experiments are presented. The Tevatron Collider has been performing remarkably well in the past few years and it is continuing to deliver record luminosity. The machine collides proton and anti-proton beams at an energy in the center of mass of 1.96 TeV, with average peak luminosity of 300E30 cm -2 s -1 . The total delivered luminosity is slightly above 9 fb -1 . The CDF and D0 experiments have been collecting data with an average efficiency of 90%, while the experiments have enjoyed an annual doubling of the integrated luminosity delivered and recorded. This has led to an avalanche of new results from areas as diverse as QCD, top, searches for new physics and the area of electroweak symmetry breaking with particular focus on direct searches for the Higgs boson. The physics reach of the Tevatron is built on a mountain of measurements that confirm the ability of the Tevatron collaborations to use their detectors to discover new particles. Each measurement is of itself a significant result. Measurements begin with the largest cross section processes, those of B physics, but move on to processes with small branching ratios and backgrounds that are hard to distinguish from the signal. The measurement of Bs oscillations demonstrates the performance of the silicon tracking and vertexing. Discovery of single top production, WZ production, and evidence for the ZZ production in both leptonic and now hadronic modes provide the final base camp from which the Higgs summit is in sight. Processes such as single top and ZZ act as important messengers heralding the impending arrival of the Higgs. This journey through lower and lower cross section processes represents our approach to provide convincing evidence of these processes, first as discovery then as measurements that constrain the Standard Model.

  11. Search for resonances decaying to top and bottom quarks with the CDF experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, Timo Antero [Univ. of Helsinki, Helsinki (Finland). et al.

    2015-08-03

    We report on a search for charged massive resonances decaying to top (t) and bottom (b) quarks in the full data set of proton-antiproton collisions at a center-of-mass energy of √s = 1.96 TeV collected by the CDF II detector at the Tevatron, corresponding to an integrated luminosity of 9.5 fb–1. No significant excess above the standard model background prediction is observed. We set 95% Bayesian credibility mass-dependent upper limits on the heavy charged-particle production cross section times branching ratio to tb. Using a standard model extension with a W' → tb and left-right-symmetric couplings as a benchmark model, we constrain the W' mass and couplings in the 300–900 GeV/c2 range. As a result, the limits presented here are the most stringent for a charged resonance with mass in the range 300–600 GeV/c2 decaying to top and bottom quarks.

  12. Search for Resonances Decaying to Top and Bottom Quarks with the CDF Experiment.

    Science.gov (United States)

    Aaltonen, T; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Anzà, F; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bianchi, L; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Butti, P; Buzatu, A; Calamba, A; Camarda, S; Campanelli, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Cho, K; Chokheli, D; Clark, A; Clarke, C; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Cremonesi, M; Cruz, D; Cuevas, J; Culbertson, R; d'Ascenzo, N; Datta, M; de Barbaro, P; Demortier, L; Deninno, M; D'Errico, M; Devoto, F; Di Canto, A; Di Ruzza, B; Dittmann, J R; Donati, S; D'Onofrio, M; Dorigo, M; Driutti, A; Ebina, K; Edgar, R; Elagin, A; Erbacher, R; Errede, S; Esham, B; Farrington, S; Fernández Ramos, J P; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Frisch, H; Funakoshi, Y; Galloni, C; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González López, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gramellini, E; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Hahn, S R; Han, J Y; Happacher, F; Hara, K; Hare, M; Harr, R F; Harrington-Taber, T; Hatakeyama, K; Hays, C; Heinrich, J; Herndon, M; Hocker, A; Hong, Z; Hopkins, W; Hou, S; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kambeitz, M; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S H; Kim, S B; Kim, Y J; Kim, Y K; Kimura, N; Kirby, M; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Kruse, M; Kuhr, T; Kurata, M; Laasanen, A T; Lammel, S; Lancaster, M; Lannon, K; Latino, G; Lee, H S; Lee, J S; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lipeles, E; Lister, A; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucchesi, D; Lucà, A; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Marchese, L; Margaroli, F; Marino, P; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Nigmanov, T; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagliarone, C; Palencia, E; Palni, P; Papadimitriou, V; Parker, W; Pauletta, G; Paulini, M; Paus, C; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Pranko, A; Prokoshin, F; Ptohos, F; Punzi, G; Redondo Fernández, I; Renton, P; Rescigno, M; Rimondi, F; Ristori, L; Robson, A; Rodriguez, T; Rolli, S; Ronzani, M; Roser, R; Rosner, J L; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schwarz, T; Scodellaro, L; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sliwa, K; Smith, J R; Snider, F D; Song, H; Sorin, V; St Denis, R; Stancari, M; Stentz, D; Strologas, J; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thomson, E; Thukral, V; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Vázquez, F; Velev, G; Vellidis, C; Vernieri, C; Vidal, M; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wallny, R; Wang, S M; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wilbur, S; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Zanetti, A M; Zeng, Y; Zhou, C; Zucchelli, S

    2015-08-07

    We report on a search for charged massive resonances decaying to top (t) and bottom (b) quarks in the full data set of proton-antiproton collisions at a center-of-mass energy of √[s]=1.96  TeV collected by the CDF II detector at the Tevatron, corresponding to an integrated luminosity of 9.5  fb(-1). No significant excess above the standard model background prediction is observed. We set 95% Bayesian credibility mass-dependent upper limits on the heavy charged-particle production cross section times branching ratio to tb. Using a standard model extension with a W'→tb and left-right-symmetric couplings as a benchmark model, we constrain the W' mass and couplings in the 300-900  GeV/c(2) range. The limits presented here are the most stringent for a charged resonance with mass in the range 300-600  GeV/c(2) decaying to top and bottom quarks.

  13. Search for supersymmetry with like-sign lepton-tau events at CDF.

    Science.gov (United States)

    Aaltonen, T; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Butti, P; Buzatu, A; Calamba, A; Camarda, S; Campanelli, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Cho, K; Chokheli, D; Ciocci, M A; Clark, A; Clarke, C; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Cremonesi, M; Cruz, D; Cuevas, J; Culbertson, R; d'Ascenzo, N; Datta, M; De Barbaro, P; Demortier, L; Deninno, M; d'Errico, M; Devoto, F; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dorigo, M; Driutti, A; Ebina, K; Edgar, R; Elagin, A; Erbacher, R; Errede, S; Esham, B; Eusebi, R; Farrington, S; Fernández Ramos, J P; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Frisch, H; Funakoshi, Y; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González López, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gramellini, E; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Hahn, S R; Han, J Y; Happacher, F; Hara, K; Hare, M; Harr, R F; Harrington-Taber, T; Hatakeyama, K; Hays, C; Heinrich, J; Herndon, M; Hocker, A; Hong, Z; Hopkins, W; Hou, S; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kambeitz, M; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y J; Kim, Y K; Kimura, N; Kirby, M; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Kruse, M; Kuhr, T; Kurata, M; Laasanen, A T; Lammel, S; Lancaster, M; Lannon, K; Latino, G; Lee, H S; Lee, J S; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lipeles, E; Lister, A; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucà, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, P; Martínez, M; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Nigmanov, T; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagliarone, C; Palencia, E; Palni, P; Papadimitriou, V; Parker, W; Pauletta, G; Paulini, M; Paus, C; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Pranko, A; Prokoshin, F; Ptohos, F; Punzi, G; Ranjan, N; Redondo Fernández, I; Renton, P; Rescigno, M; Rimondi, F; Ristori, L; Robson, A; Rodriguez, T; Rolli, S; Ronzani, M; Roser, R; Rosner, J L; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schwarz, T; Scodellaro, L; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sinervo, P; Sliwa, K; Smith, J R; Snider, F D; Song, H; Sorin, V; Stancari, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thomson, E; Thukral, V; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Vázquez, F; Velev, G; Vellidis, C; Vernieri, C; Vidal, M; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wallny, R; Wang, S M; Warburton, A; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wilbur, S; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Zanetti, A M; Zeng, Y; Zhou, C; Zucchelli, S

    2013-05-17

    We present a search for chargino-neutralino associated production using like electric charge dilepton events collected by the CDF II detector at the Fermilab Tevatron in proton-antiproton collisions at sqrt[s] = 1.96 TeV. One lepton is identified as the hadronic decay of a tau lepton, while the other is an electron or muon. In data corresponding to 6.0 fb(-1) of integrated luminosity, we obtain good agreement with standard model predictions and set limits on the chargino-neutralino production cross section for simplified gravity- and gauge-mediated models. As an example, assuming that the chargino and neutralino decays to taus dominate, in the simplified gauge-mediated model we exclude cross sections greater than 300 fb at 95% credibility level for chargino and neutralino masses of 225 GeV/c(2). This analysis is the first to extend the LHC searches for electroweak supersymmetric production of gauginos to high tanβ and slepton next-to-lightest supersymmetric particle scenarios.

  14. Search for technicolor particles produced in association with a W Boson at CDF.

    Science.gov (United States)

    Aaltonen, T; Adelman, J; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; d'Errico, M; Di Canto, A; di Giovanni, G P; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, T; Dube, S; Ebina, K; Elagin, A; Erbacher, R; Errede, D; Errede, S; Ershaidat, N; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heijboer, A; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Hughes, R E; Hurwitz, M; Husemann, U; Hussein, M; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kuhr, T; Kulkarni, N P; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leone, S; Lewis, J D; Lin, C-J; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Lovas, L; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Mastrandrea, P; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Mesropian, C; Miao, T; Mietlicki, D; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramanov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Potamianos, K; Poukhov, O; Prokoshin, F; Pronko, A; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Rutherford, B; Saarikko, H; Safonov, A; Sakumoto, W K; Santi, L; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Simonenko, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Suh, J S; Sukhanov, A; Suslov, I; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wolfe, H; Wright, T; Wu, X; Würthwein, F; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zhang, X; Zheng, Y; Zucchelli, S

    2010-03-19

    We present a search for the technicolor particles rho{T} and pi_{T} in the process pp-->rho{T}-->Wpi{T} at a center of mass energy of sqrt[s]=1.96 TeV. The search uses a data sample corresponding to approximately 1.9 fb{-1} of integrated luminosity accumulated by the CDF II detector at the Fermilab Tevatron. The event signature we consider is W-->lnu and pi{T}-->bb, bc or bu depending on the pi{T} charge. We select events with a single high-p{T} electron or muon, large missing transverse energy, and two jets. Jets corresponding to bottom quarks are identified with multiple b-tagging algorithms. The observed number of events and the invariant mass distributions are consistent with the standard model background expectations, and we exclude a region at 95% confidence level in the rho{T}-pi{T} mass plane. As a result, a large fraction of the region m(rho{T})=180-250 GeV/c{2} and m(pi{T})=95-145 GeV/c{2} is excluded.

  15. Measurement of the $WW+WZ$ production cross section in a semileptonic decay mode at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Hurwitz, Martina [Univ. of Chicago, IL (United States)

    2010-03-01

    The measurement of the WW + WZ production cross section in a semileptonic decay mode is presented. The measurement is carried out with 4.6 fb-1 of integrated luminosity collected by the CDF II detector in √s = 1.96 TeV proton-antiproton collisions at the Tevatron. The main experimental challenge is identifying the signal in the overwhelming background from W+jets production. The modeling of the W+jets background is carefully studied and a matrix element technique is used to build a discriminant to separate signal and background. The cross section of WW + WZ production is measured to be σ(p$\\bar{p}$ → WW + WZ) = 16.5-3.0+3.3 pb, in agreement with the next-to-leading order theoretical prediction of 15.1 ± 0.9 pb. The significance of the signal is evaluated to be 5.4σ. This measurement is an important milestone in the search for the Standard Model Higgs boson at the Tevatron.

  16. Search for WZ+ZZ Production with Missing Transverse Energy and b Jets at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Poprocki, Stephen [Cornell Univ., Ithaca, NY (United States)

    2013-01-01

    Observation of diboson processes at hadron colliders is an important milestone on the road to discovery or exclusion of the standard model Higgs boson. Since the decay processes happen to be closely related, methods, tools, and insights obtained through the more common diboson decays can be incorporated into low-mass standard model Higgs searches. The combined WW + WZ + ZZ diboson cross section has been measured at the Tevatron in hadronic decay modes. In this thesis we take this one step closer to the Higgs by measuring just the WZ + ZZ cross section, exploiting a novel arti cial neural network based b-jet tagger to separate the WW background. The number of signal events is extracted from data events with large ET using a simultaneous t in events with and without two jets consistent with B hadron decays. Using 5:2 fb-1 of data from the CDF II detector, we measure a cross section of (p $\\bar{p}$ → WZ,ZZ) = 5:8+3.6 -3.0 pb, in agreement with the standard model.

  17. Search for New Physics in the B02→J/ΨΦ and B02→ΦΦ Decays at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Dorigo, Mirco [Univ. of Trieste (Italy)

    2012-12-01

    We present a search for physics beyond the standard model (SM) through a measurement of the violation of the charge-parity (CP) symmetry in two decays of the B02 meson using data collected by the Collider Detector at Fermilab (CDF) in proton-antiproton collisions at the center-of-mass energy of 1.96TeV. We exploit the decays B02→J/Ψ(→ μ+μ-)(→ K+K-) and B02→Φ (→ K+K-)Φ(→ K+K-), for which the SM accurately predicts very small or vanishing CP violation; both decay modes are very sensitive to new sources of CP violation expected in a broad class of SM extensions. We analyze the time-dependent CP asymmetry of the B02→J/ΨΦ decays collected in the full CDF Run II dataset for providing the final measurement of the B02 -¯B02 mixing phase, 2βs, and we present the first measurement of CP violation in B02→ΦΦ decays, through the determination of two time-integrated CP asymmetries, Av and Au, using an original method developed in this work. We find: -0.06 < βs < 0.30 at the 68% confidence level; Av = (-12.0 ± 6.4(stat) ± 1.6(syst))%; and Au = (-0.7 ± 6.4(stat) ± 1.8(syst))%. In addition, we provide measurements of the decay width difference between the light and heavy mass eigenstates of the B02 meson,ΔΓs 0.068 ± 0.026(stat) ± 0.009(syst) ps-1; and of their mean lifetime, τs = 1.528 ± 0.019(stat) ± 0.009(syst) ps. All results are among the most precise determinations from a single experiment and exhibit an excellent agreement with the SM predictions.

  18. A search for charged higgs boson decays of the top quark using hadronic decays of the tau lepton in proton-antiproton collisions at square √s = 1.8 TeV at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Groer, Leslie Stevan [Rutgers Univ., New Brunswick, NJ (United States)

    1999-01-26

    The Standard Model predicts the existence of one neutral scalar Higgs boson, which is a remnant of the mechanism that breaks the SU(2)LxU(1)Y electroweak symmetry and generates masses for the heavy vector bosons and fermions. Many extensions to the Standard Model predict two or more Higgs doublets, resulting in a larger spectrum of Higgs bosons including a charged Higgs boson (H±). For a light charged Higgs boson mass, the top decay into a charged Higgs boson and bottom quark might occur. This thesis presents results of a direct search for this top quark decay mode via the charged Higgs decay to a tau lepton and tau-neutrino, using the hadronic decays of the tau leptons. The search data consist of 100 pb-1 of Run 1 data collected between 1992-1995 at the CDF detector, from p$\\bar{p}$ collisions at a center-of-mass energy of 1.8 TeV produced at Fermilab's Tevatron accelerator. A total of seven events are observed in two search channels with an expected background contribution of 7.4±2.0 events coming from fake taus (5.4±1.5), heavy vector boson decays with jets (1.9±1.3) and dibosons(0.08±0.06). Lacking evidence for a signal, we set limits on charged Higgs production at the 95% confidence level in the charged Higgs mass plane versus tanβ(a parameter of the theory) for a top quark mass of 175 GeV/c2 and for top production cross sections (σ t$\\bar{t}$) of 5.0 and 7.5 pb, assuming the Type-II Two-Higgs-Doublet-Model. For large tanβ, this analysis excludes a charged Higgs boson of mass below 147(158)GeV/c2 for σ t$\\bar{t}$=5.0(7.5)pb. Using the Standard Model measured top quark cross section from CDF, this limit increases to 168 GeV/c2 and we also exclude a branching fraction of top decays via this charged Higgs mode of greater than 43% for charged Higgs masses below 168 GeV/c2.

  19. Measurement of the $b\\bar{b}$ di-jet cross section at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Vallecorsa, Sofia [Univ. of Geneva (Switzerland)

    2007-01-01

    The dominant b production mechanism at the Tevatron is pair production through strong interactions. The lowest order QCD diagrams contain only b and $\\bar{b}$ quarks in the final state, for which momentum conservation requires the quarks to be produced back-to-back in azimuthal opening angle. When higher order QCD processes are considered, the presence of additional light quarks and gluons in the final state allows the azimuthal angle difference, Δφ, to spread. The next to leading order QCD calculation includes diagrams up to O(α$3\\atop{s}$) some of which, commonly known as flavor excitation and gluon splitting, provide a contribution of approximately the same magnitude as the lowest order diagrams. The study of b$\\bar{b}$ angular correlation gives predictions on the effective b quark production mechanisms and on the different contributions of the leading order and next-to-leading order terms. The first experimental results on inclusive bottom production at the Tevatron were strongly underestimated by the exact NLO QCD prediction. Later on this disagreement had been explained and reduced by theoretical and experimental improvements: new QCD calculations that implement the Fixed Order with Next-to- Leading-Logarithms calculation (FONLL); updated parton distribution functions and fragmentation functions; and more precise measurements. Previous measurements of b$\\bar{b}$ azimuthal angle correlation have, instead, reached various level of agreement with parton shower Monte Carlo and NLO predictions. Here we present a measurement of the b$\\bar{b}$ jet cross section and azimuthal angle correlation performed on about 260 pb-1 of data collected by the CDF II detector at Fermilab from March 2002 to September 2004. This study extends the energy range investigated by previous analyses, measuring jet transverse energies (ET) up to values of about 220 GeV. It relies on the good tracking capabilities of the CDF detector both at the trigger level and

  20. Characterising the Decays of High-pt Top Quarks and Addressing Naturalness with Jet Substructure in ATLAS Runs I and II

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00397460

    The coupling of the Standard Model top quark to the Higgs boson is O(1), which leads to large quantum corrections in the perturbative expansion of the Higgs boson mass. Possible solutions to this so-called naturalness problem include supersymmetric models with gluinos and stop squarks whose masses are at the electroweak scale, O(1 TeV). If supersymmetry is realised in nature at this scale, these particles are expected to be accessible with the Large Hadron Collider at CERN. A search for gluino pair production with decays mediated by stop- and sbottom-squark loops in the initial 14.8 ifb of the ATLAS run 2 dataset is presented in terms of a pair of simplified models, which targets extreme regions of phase space using jet substructure techniques. No excess is observed and limits are set which greatly extend the previous exclusion region of this search, up to 1.9 TeV (1.95 TeV) for gluinos decaying through light stop (sbottom) squarks to the lightest neutralinos. A performance study of top tagging algorithms in ...

  1. Measurement of b-quark Jet Shapes at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Lister, Alison [Univ. of Oxford (United Kingdom)

    2006-01-01

    The main topic of this thesis is the measurement of b-quark jet shapes at CDF. CDF is an experiment located at Fermilab, in the United States, which studies proton-antiproton collisions at a center of mass energy of 1.96TeV. To reach this energy, the particles are accelerated using the Tevatron accelerator which is currently the highest energy collider in operation. The data used for this analysis were taken between February 2002 and September 2004 and represent an integrated luminosity of about 300 pb-1. This is the first time that b-quark jet shapes have been measured at hadron colliders. The basis of this measurement lies in the possibility of enhancing the b-quark jet content of jet samples by requiring the jets to be identified as having a displaced vertex inside the jet cone. Such jets are called tagged. This enhances the b-quark jet fraction from about 5% before tagging to 20-40% after tagging, depending on the transverse momentum of the jets. I verified that it is possible to apply this secondary vertex tagging algorithm to different cone jet algorithms (MidPoint and JetClu) and different cone sizes (0.4 and 0.7). I found that the performance of the algorithm does not change significantly, as long as the sub-cone inside which tracks are considered for the tagging is kept at the default value of 0.4. Because the b-quark purity of the jets is still relatively low, it is necessary to extract the shapes of b-quark jets in a statistical manner from the jet shapes both before and after tagging. The other parameters that enter into the unfolding equation used to extract the b-quark jet shapes are the b-jet purities, the biases due to the tagging requirement both for b- and nonbjets and the hadron level corrections. The last of these terms corrects the measured b-jet shapes back to the shapes expected at hadron level which makes comparisons with theoretical models and other experimental results possible. This measurement shows that, despite relatively

  2. Exclusion of exotic top-like quarks with -4/3 electric charge using jet-charge tagging in single-lepton ttbar events at CDF

    CERN Document Server

    Aaltonen, T.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V.E.; Barnett, B.A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K.R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Boisvert, V.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H.S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y.C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Ciocci, M.A.; Clark, A.; Clarke, C.; Convery, M.E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C.A.; Cox, D.J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; d'Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J.R.; D'Onofrio, M.; Donati, S.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Elagin, A.; Erbacher, R.; Errede, S.; Esham, B.; Eusebi, R.; Farrington, S.; Fernandez Ramos, J.P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J.C.; Frisch, H.; Funakoshi, Y.; Garfinkel, A.F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C.M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; Gonzalez Lopez, O.; Gorelov, I.; Goshaw, A.T.; Goulianos, K.; Gramellini, E.; Grinstein, S.; Grosso-Pilcher, C.; Group, R.C.; Guimaraes da Costa, J.; Hahn, S.R.; Han, J.Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R.F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R.E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E.J.; Jindariani, S.; Jones, M.; Joo, K.K.; Jun, S.Y.; Junk, T.R.; Kambeitz, M.; Kamon, T.; Karchin, P.E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D.H.; Kim, H.S.; Kim, J.E.; Kim, M.J.; Kim, S.B.; Kim, S.H.; Kim, Y.J.; Kim, Y.K.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D.J.; Konigsberg, J.; Kotwal, A.V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A.T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H.S.; Lee, J.S.; Leo, S.; Leone, S.; Lewis, J.D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Luca, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, P.; Martinez, M.; Matera, K.; Mattson, M.E.; Mazzacane, A.; Mazzanti, P.; McFarland, K.S.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C.S.; Moore, R.; Morello, M.J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Nigmanov, T.; Nodulman, L.; Noh, S.Y.; Norniella, O.; Oakes, L.; Oh, S.H.; Oh, Y.D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T.J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Ranjan, N.; Redondo Fernandez, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J.L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W.K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E.E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S.Z.; Shears, T.; Shepard, P.F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sinervo, P.; Sliwa, K.; Smith, J.R.; Snider, F.D.; Song, H.; Sorin, V.; Stancari, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P.K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vazquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizan, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S.M.; Warburton, A.; Waters, D.; Wester, W.C., III; Whiteson, D.; Wicklund, A.B.; Wilbur, S.; Williams, H.H.; Wilson, J.S.; Wilson, P.; Winer, B.L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U.K.; Yang, Y.C.; Yao, W.M.; Yeh, G.P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G.B.; Yu, I.; Zanetti, A.M.; Zeng, Y.; Zhou, C.; Zucchelli, S.

    2013-08-05

    We report on a measurement of the top-quark electric charge in ttbar events in which one W boson originating from the top-quark pair decays into leptons and the other into hadrons. The event sample was collected by the CDF II detector in sqrt(s)=1.96 TeV proton-antiproton collisions and corresponds to 5.6 fb^(-1). We find the data to be consistent with the standard model and exclude the existence of an exotic quark with -4/3 electric charge and mass of the conventional top quark at the 99% confidence level.

  3. Search for $B_c \\to B_s \\pi$, $B_s \\to J/\\psi \\phi$ decay with the CDF Detector

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Edwin Lloyd [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2010-01-01

    This analysis details the search for B$+\\atop{c}$ → B$0\\atop{s}$ π+, B$0\\atop{s}$ → J/ΨΦ decays, and the charge conjugate mode, using the CDF II detector at the Fermi National Accelerator Laboratory. The search is derived from a sample of 5.84 fb-1 of data from p$\\bar{p}$ collisions of √s = 1.96 TeV collected via J/Ψ trigger paths.

  4. First Observation of Charmed Resonances in the $\\Lambda^0_b \\to \\Lambda^+_c \\pi^- \\pi^+ \\pi^-$ Inclusive Decay and Measurement of Their Relative Branching Ratios at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Barria, Patrizia [Univ. of Siena (Italy)

    2012-01-01

    We present the observation of the $\\Lambda^0_b$ decay into a $\\Lambda^+_c \\pi^- \\pi^+ \\pi^-$ final state, in $p\\bar{p}$ collisions at $\\sqrt{s}$ = 1:96 TeV. The data analyzed were collected by the CDF II detector at the Fermilab Tevatron collider, and correspond to 2:4 $fb^{-1}$ of integrated luminosity. We fit the invariant mass distribution of the reconstructed candidates to extract a signal yield of 848 $\\pm$ 93 $\\Lambda^0_b$ into $\\Lambda^+_c \\pi^- \\pi^+ \\pi^-$....

  5. The measurement of the W boson mass from CDF

    International Nuclear Information System (INIS)

    1994-06-01

    Recent results from LEP experiments have substantially improved the knowledge of the Z boson. However, hadron colliders remain the only source of direct measurements of the W boson. There have been measurements of the W boson mass from the UA2 and CDF collaborations. The W mass continues to be a subject of great interest in testing the Standard Model. Here, the authors have made a preliminary determination of the W boson mass M W = 80.38 ± 0.23 GeV/c 2 from a combined analysis of W → eν and W → μν in anti pp collisions at √s = 1.8 TeV. The electron data alone yields M W = 80.47 ± 0.15(stat.) ± 0.25(syst.) GeV/c 2 , while the muon data gives M W = 80.29 ± 0.20(stat.) ± 0.24(syst.) GeV/c 2

  6. A NEW MEASUREMENT OF THE W BOSON MASS FROM CDF

    CERN Multimedia

    Ashutosh Kotwal

    CDF has measured the W boson mass using approx. 200pb-1 of data collected at  s = 1.96 TeV. The preliminary result mW = 80.413 ± 0.034(stat) ± 0.034(syst) GeV supports and strengthens the hypothesis of a light Higgs boson, based on the global electroweak fit in the standard model framework. The total measurement uncertainty of 48 MeV makes this result the most precise single measurement of the W boson mass to date. The mass of the W boson is a very interesting quantity. Experimentally, it can be measured precisely because of the two-body decay of the W boson into a charged lepton and a neutrino. Theoretically, it receives self-energy corrections due to vacuum fluctuations involving virtual particles. Thus the W boson mass probes the particle spectrum in nature, including those particles that have yet to be observed directly. The hypothetical particle of most immediate interest is the Higgs boson, representing the quantum of the Higgs field that spontaneously acquires a vacuu...

  7. Tevatron optics with magnet moves for Roman pots at CDF

    International Nuclear Information System (INIS)

    Johnstone, John A.

    2001-01-01

    CDF would like to install high precision track detectors. There is ample room on A-sector side, but space needs to be created at B11. The favored plan is to shove the first 3 B11 dipoles inwards toward the IP by 2.274 m. This would require removal of the inert Q1 quadrupole and its spool plus an extensive number of other mechanical and cryogenic modifications. The orbit distortion these modifications introduce would then be compensated by shifting the six B16 and B17 dipoles outwards by about half that amount. Space for this dipole move could be generated by replacing the 72 inch spool at B18 with a short 43 inch spool, and removing the 16.5 inch spacer after B17-5. The above scheme certainly recloses the orbit, and doesn't require the detector to move. However, by moving the B16 and B17 dipoles, the B17 and B18 arc quadrupoles also get shifted downstream--B17 by 1.115 m, and B18 by 0.696 m. Longitudinal movements of arc quads by such large fractions of their magnetic lengths will clearly impact the overall machine optics

  8. Dr. Sheehan on Running.

    Science.gov (United States)

    Sheehan, George A.

    This book is both a personal and technical account of the experience of running by a heart specialist who began a running program at the age of 45. In its seventeen chapters, there is information presented on the spiritual, psychological, and physiological results of running; treatment of athletic injuries resulting from running; effects of diet…

  9. B physics with CDF: Recent results and future prospects

    International Nuclear Information System (INIS)

    Mueller, J.A.

    1994-08-01

    Using data collected during the 1992--1993 collider run, we report on measurements of the B o , B + , and B s lifetimes. We also present our revised measurement of the B s mass. Production studies involving inclusive modes decaying into J/ψ or ψ(2S), semileptonic decays involving D o or D* + mesons, and fully reconstructed B mesons are also presented. We present the prospects for future work with this data, as well as that being collected in the 1994--1995 collider run. Upgrades to the detector and estimates of physics capabilities for future collider runs are also presented

  10. NCWin — A Component Object Model (COM) for processing and visualizing NetCDF data

    Science.gov (United States)

    Liu, Jinxun; Chen, J.M.; Price, D.T.; Liu, S.

    2005-01-01

    NetCDF (Network Common Data Form) is a data sharing protocol and library that is commonly used in large-scale atmospheric and environmental data archiving and modeling. The NetCDF tool described here, named NCWin and coded with Borland C + + Builder, was built as a standard executable as well as a COM (component object model) for the Microsoft Windows environment. COM is a powerful technology that enhances the reuse of applications (as components). Environmental model developers from different modeling environments, such as Python, JAVA, VISUAL FORTRAN, VISUAL BASIC, VISUAL C + +, and DELPHI, can reuse NCWin in their models to read, write and visualize NetCDF data. Some Windows applications, such as ArcGIS and Microsoft PowerPoint, can also call NCWin within the application. NCWin has three major components: 1) The data conversion part is designed to convert binary raw data to and from NetCDF data. It can process six data types (unsigned char, signed char, short, int, float, double) and three spatial data formats (BIP, BIL, BSQ); 2) The visualization part is designed for displaying grid map series (playing forward or backward) with simple map legend, and displaying temporal trend curves for data on individual map pixels; and 3) The modeling interface is designed for environmental model development by which a set of integrated NetCDF functions is provided for processing NetCDF data. To demonstrate that the NCWin can easily extend the functions of some current GIS software and the Office applications, examples of calling NCWin within ArcGIS and MS PowerPoint for showing NetCDF map animations are given.

  11. A bias-corrected CMIP5 dataset for Africa using the CDF-t method - a contribution to agricultural impact studies

    Science.gov (United States)

    Moise Famien, Adjoua; Janicot, Serge; Delfin Ochou, Abe; Vrac, Mathieu; Defrance, Dimitri; Sultan, Benjamin; Noël, Thomas

    2018-03-01

    The objective of this paper is to present a new dataset of bias-corrected CMIP5 global climate model (GCM) daily data over Africa. This dataset was obtained using the cumulative distribution function transform (CDF-t) method, a method that has been applied to several regions and contexts but never to Africa. Here CDF-t has been applied over the period 1950-2099 combining Historical runs and climate change scenarios for six variables: precipitation, mean near-surface air temperature, near-surface maximum air temperature, near-surface minimum air temperature, surface downwelling shortwave radiation, and wind speed, which are critical variables for agricultural purposes. WFDEI has been used as the reference dataset to correct the GCMs. Evaluation of the results over West Africa has been carried out on a list of priority user-based metrics that were discussed and selected with stakeholders. It includes simulated yield using a crop model simulating maize growth. These bias-corrected GCM data have been compared with another available dataset of bias-corrected GCMs using WATCH Forcing Data as the reference dataset. The impact of WFD, WFDEI, and also EWEMBI reference datasets has been also examined in detail. It is shown that CDF-t is very effective at removing the biases and reducing the high inter-GCM scattering. Differences with other bias-corrected GCM data are mainly due to the differences among the reference datasets. This is particularly true for surface downwelling shortwave radiation, which has a significant impact in terms of simulated maize yields. Projections of future yields over West Africa are quite different, depending on the bias-correction method used. However all these projections show a similar relative decreasing trend over the 21st century.

  12. Determination of Delta m(d) and absolute calibration of flavor taggers for the Delta m(s) analysis, in fully reconstructed decays at the CDF experiment

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Jonatan Piedra [University of Cantabria, (Spain). Inst. of Physics

    2005-04-21

    The new trigger processor, the Silicon Vertex Tracking (SVT), has dramatically improved the B physics capabilities of the upgraded CDF II Detector; for the first time in a hadron collider, the SVT has enabled the access to non-lepton-triggered B meson decays. Within the new available range of decay modes, the B$0\\atop{s}$ → D$-\\atop{s}$π+ signature is of paramount importance in the measurement of the Δms mixing frequency. The analysis reported here is a step towards the measurement of this frequency; two where our goals: carrying out the absolute calibration of the opposite side flavor taggers, used in the Δms measurement; and measuring the B$0\\atop{d}$ mixing frequency in a B → Dπ sample, establishing the feasibility of the mixing measurement in this sample whose decay-length is strongly biased by the selective SVT trigger. We analyze a total integrated luminosity of 355 pb-1 collected with the CDF II Detector. By triggering on muons, using the conventional di-muon trigger; or displaced tracks, using the SVT trigger, we gather a sample rich in bottom and charm mesons.

  13. СЦИНТИЛЛЯЦИОННЫЕ ДЕТЕКТОРЫ УСТАНОВКИ CDF П В ЭКСПЕРИМЕНТАХ ПО ФИЗИКЕ ТЯЖЁЛЫХ КВАРКОВ НА ТЭВА ТРОНЕ

    Energy Technology Data Exchange (ETDEWEB)

    Chokheli, Davit [Joint Inst. for Nuclear Research (JINR), Dubna (Russian Federation)

    2007-01-01

    The author presents the following: 1) Development and creation from scratch of scintillation detectors system for CDF II muon trigger using more than 1140 scintillation counters different type and size; development of the contol and monitoring software/hardware systems; 2) Development and creation of updgraded preshower CPR II for electromagnet calorimeter CDF II with better segmentation by pseydorapidity (10 times more against previous version) to be able collect the data with increased Tevatron luminosity; 3) Aging study for scintillation counters used at CDF II and its long-term efficiency estimation; and 4) Research of the possibility to use the proposed new muon trigger at $1.0 \\leq \\mu \\leq 1.25$ region by pseudorapidity by creation of additional layers of muon scintillation detectors.

  14. A Study of NetCDF as an Approach for High Performance Medical Image Storage

    International Nuclear Information System (INIS)

    Magnus, Marcone; Prado, Thiago Coelho; Von Wangenhein, Aldo; De Macedo, Douglas D J; Dantas, M A R

    2012-01-01

    The spread of telemedicine systems increases every day. The systems and PACS based on DICOM images has become common. This rise reflects the need to develop new storage systems, more efficient and with lower computational costs. With this in mind, this article discusses a study for application in NetCDF data format as the basic platform for storage of DICOM images. The study case comparison adopts an ordinary database, the HDF5 and the NetCDF to storage the medical images. Empirical results, using a real set of images, indicate that the time to retrieve images from the NetCDF for large scale images has a higher latency compared to the other two methods. In addition, the latency is proportional to the file size, which represents a drawback to a telemedicine system that is characterized by a large amount of large image files.

  15. The antiphasic regulatory module comprising CDF5 and its antisense RNA FLORE links the circadian clock to photoperiodic flowering.

    Science.gov (United States)

    Henriques, Rossana; Wang, Huan; Liu, Jun; Boix, Marc; Huang, Li-Fang; Chua, Nam-Hai

    2017-11-01

    Circadian rhythms of gene expression are generated by the combinatorial action of transcriptional and translational feedback loops as well as chromatin remodelling events. Recently, long noncoding RNAs (lncRNAs) that are natural antisense transcripts (NATs) to transcripts encoding central oscillator components were proposed as modulators of core clock function in mammals (Per) and fungi (frq/qrf). Although oscillating lncRNAs exist in plants, their functional characterization is at an initial stage. By screening an Arabidopsis thaliana lncRNA custom-made array we identified CDF5 LONG NONCODING RNA (FLORE), a circadian-regulated lncRNA that is a NAT of CDF5. Quantitative real-time RT-PCR confirmed the circadian regulation of FLORE, whereas GUS-staining and flowering time evaluation were used to determine its biological function. FLORE and CDF5 antiphasic expression reflects mutual inhibition in a similar way to frq/qrf. Moreover, whereas the CDF5 protein delays flowering by directly repressing FT transcription, FLORE promotes it by repressing several CDFs (CDF1, CDF3, CDF5) and increasing FT transcript levels, indicating both cis and trans function. We propose that the CDF5/FLORE NAT pair constitutes an additional circadian regulatory module with conserved (mutual inhibition) and unique (function in trans) features, able to fine-tune its own circadian oscillation, and consequently, adjust the onset of flowering to favourable environmental conditions. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  16. Tau Identification at CMS in Run II

    CERN Document Server

    Ojalvo, Isabel

    2016-01-01

    During LHC Long Shutdown 1 necessary upgrades to the CMS detector were made. CMS also took the opportunity to improve further particle reconstruction. A number of improvements were made to the Hadronic Tau reconstruction and Identification algorithms. In particular, electromag- netic strip reconstruction of the Hadron plus Strips (HPS) algorithm was improved to better model signal of pi0 from tau decays. This modification improves energy response and removes the tau footprint from isolation area. In addition to this, improvement to discriminators combining iso- lation and tau life time variables, and anti-electron in MultiVariate Analysis technique was also developed. The results of these improvements are presented and validation of Tau Identification using a variety of techniques is shown.

  17. The D-Zero Run II Trigger

    International Nuclear Information System (INIS)

    Blazey, G. C.

    1997-01-01

    The general purpose D0 collider detector, located at Fermi National Accelerator Laboratory, requires significantly enhanced data acquisition and triggering to operate in the high luminosity (L = 2 x 10 32 cm -2 s -1 ), high rate environment (7 MHz or 132 ns beam crossings) of the upgraded TeVatron proton anti-proton accelerator. This article describes the three major levels and frameworks of the new trigger. Information from the first trigger stage (L1) which includes scintillating, tracking and calorimeter detectors will provide a deadtimeless, 4.2 (micro)s trigger decision with an accept rate of 10 kHz. The second stage (L2), comprised of hardware engines associated with specific detectors and a single global processor will test for correlations between L1 triggers. L2 will have an accept rate of 1 kHz at a maximum deadtime of 5% and require a 100 (micro)s decision time. The third and final stage (L3) will reconstruct events in a farm of processors for a final instantaneous accept rate of 50 Hz

  18. Vertex Reconstruction in ATLAS Run II

    CERN Document Server

    Zhang, Matt; The ATLAS collaboration

    2016-01-01

    Vertex reconstruction is the process of taking reconstructed tracks and using them to determine the locations of proton collisions. In this poster we present the performance of our current vertex reconstruction algorithm, and look at investigations into potential improvements from a new seed finding method.

  19. The LHCb trigger in Run II

    CERN Document Server

    Michielin, Emanuele

    2016-01-01

    The LHCb trigger system has been upgraded to allow alignment, calibration and physics analysis to be performed in real time. An increased CPU capacity and improvements in the software have allowed lifetime unbiased selections of beauty and charm decays in the high level trigger. Thanks to offline quality event reconstruction already available online, physics analyses can be performed directly on this information and for the majority of charm physics selections a reduced event format can be written out. Beauty hadron decays are more efficiently triggered by re-optimised inclusive selections, and the HLT2 output event rate is increased by a factor of three.

  20. Investigation of tt in the full hadronic final state at CDF with a neural network approach

    CERN Document Server

    Sidoti, A; Busetto, G; Castro, A; Dusini, S; Lazzizzera, I; Wyss, J

    2001-01-01

    In this work we present the results of a neural network (NN) approach to the measurement of the tt production cross-section and top mass in the all-hadronic channel, analyzing data collected at the Collider Detector at Fermilab (CDF) experiment. We have used a hardware implementation of a feedforward neural network, TOTEM, the product of a collaboration of INFN (Istituto Nazionale Fisica Nucleare)-IRST (Istituto per la Ricerca Scientifica e Tecnologica)-University of Trento, Italy. Particular attention has been paid to the evaluation of the systematics specifically related to the NN approach. The results are consistent with those obtained at CDF by conventional data selection techniques. (38 refs).

  1. Bs Physics at LEP, SLD, and CDF Delta m_s and Delta Gamma_s

    CERN Document Server

    Boix, G

    2001-01-01

    The current status of the experimental knowledge of $\\Bs$ meson physics is reviewed. Results from LEP and CDF on the width difference $\\dgs$ are presented, the corresponding average is found to be in good agreement with the present theoretical estimation. The $\\Bs$ oscillations have not yet been resolved, despite the progress recently achieved by SLD and ALEPH. The world combination, including results from the LEP experiments, SLD and CDF, is presented, together with the expected and observed lower limit on the $\\Bs$ oscillation frequency. A tantalizing hint of an oscillation is observed around $\\dms\\sim17 \\psin$, near future results could increase the significance of this hint.

  2. Inclusive Jet Production from Pbar P Collisions at SQRTS=630 GEV in the Cdf Detector

    Science.gov (United States)

    Akopian, Alexander

    1996-05-01

    We present a preliminary analysis of the inclusive jet cross section from pbar p collisions at √ s= 630 GeV, measured using the CDF detector. We compare these results with previous CDF measurements at 546 and 1800 GeV. ^Supported by U.S. DOE under Contract No. DE-FG02-91ER-40651. Supported by the U.S. Department of Energy; the National Science Foundation; the Istituto Nazionale di Fisica Nucleare, Italy; the Ministry of Science, Culture and Education of Japan; the A.P. Sloan Foundation, and the Alexander von Humboldt-Stiftung.

  3. Combination of the CDF and D0 Effective Leptonic Electroweak Mixing Angles

    Energy Technology Data Exchange (ETDEWEB)

    The Tevatron Electroweak Working Group

    2016-07-31

    CDF and D0 have measured the effective leptonic weak mixing angle $sin^2 \\theta^{lept}_{eff}$ , using their full Tevatron datasets. This note describes the Tevatron combination of these measurements, and the zfitter standard model-based inference of the on-shell electroweak mixing angle $sin^2 \\theta_W$, or equivalently, the W-boson mass. The combination of CDF and D0 results yields: $sin^2 \\theta^{lept}_ {eff}$ = 0.23179 ± 0.00035, and $sin^2 \\theta_W$ = 0.22356 ± 0.00035, or equivalently, $M_W$(indirect) = 80.351 ± 0.018 GeV/$c^2$.

  4. Running and osteoarthritis.

    Science.gov (United States)

    Willick, Stuart E; Hansen, Pamela A

    2010-07-01

    The overall health benefits of cardiovascular exercise, such as running, are well established. However, it is also well established that in certain circumstances running can lead to overload injuries of muscle, tendon, and bone. In contrast, it has not been established that running leads to degeneration of articular cartilage, which is the hallmark of osteoarthritis. This article reviews the available literature on the association between running and osteoarthritis, with a focus on clinical epidemiologic studies. The preponderance of clinical reports refutes an association between running and osteoarthritis. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Mixing and CP violation in the BS0 meson system at CDF

    International Nuclear Information System (INIS)

    Di Giovanni, G.P.

    2008-01-01

    The two analyses presented in the thesis, the B s 0 mixing analysis and the B s 0 → J/ψφ angular analysis, share most of the technical implementations and features. Thus, my choice was to pursue in parallel the common aspects of the analyses, avoiding, whenever possible, repetitions. Each Chapter is split in two parts, the first one dedicated to the B s 0 mixing analysis and the second one describing the angular analysis on the B s 0 → J/ψφ decay mode. They are organized as follows. In Chapter 1 we present the theoretical framework of the B s 0 neutral mesons system. After a general introduction on the Standard Model, we focus on the quantities which are relevant to the Δm s measurement and the CP violation phenomena, underlying the details concerning the study of pseudo-scalar to vector vector decays, P → VV, which allow to carry out an angular analysis. A discussion on the implication of the measurements performed in the search of physics beyond the Standard Model is presented. The accelerator facilities and the CDF-II detector are reported in Chapter 2. While describing the detector, more emphasis is given to the components fundamental to perform B physics analyses at CDF. The Chapter 3 is focused on the reconstruction and selection of the data samples. The Chapter starts with a description of the on-line trigger requirements, according to the B s 0 sample considered, followed by the offline selection criteria implemented to reconstruct B s 0 semileptonic and hadronic decays, fully and partially reconstructed, for the B s 0 mixing analysis, as well as the B s 0 → J/ψφ decay mode for the angular analysis. The subsequent Chapter 4 is dedicated to the revision of the technical ingredients needed in the final analyses. The B s 0 mixing elements are firstly described. The methodology historically used in the oscillation searches, the 'amplitude scan', is here introduced together with the calibration of the proper-decay-time resolution and the flavor

  6. Approaching the CDF Top Quark Mass Legacy Measurement in the Lepton+Jets channel with the Matrix Element Method

    Energy Technology Data Exchange (ETDEWEB)

    Tosciri, Cecilia [Univ. of Pisa (Italy)

    2016-01-01

    The discovery of the bottom quark in 1977 at the Tevatron Collider triggered the search for its partner in the third fermion isospin doublet, the top quark, which was discovered 18 years later in 1995 by the CDF and D=0 experiments during the Tevatron Run I. By 1990, intensive efforts by many groups at several accelerators had lifted to over 90 GeV=c2 the lower mass limit, such that since then the Tevatron became the only accelerator with high-enough energy to possibly discover this amazingly massive quark. After its discovery, the determination of top quark properties has been one of the main goals of the Fermilab Tevatron Collider, and more recently also of the Large Hadron Collider (LHC) at CERN. Since the mass value plays an important role in a large number of theoretical calculations on fundamental processes, improving the accuracy of its measurement has been at any time a goal of utmost importance. The present thesis describes in detail the contributions given by the candidate to the massive preparation work needed to make the new analysis possible, during her 8 months long stay at Fermilab.

  7. Search for the flavor changing neutral current B-meson decays B^+arrow μ^+ μ^- K^+ and B^0arrow μ^+ μ^-K^*0 at CDF.

    Science.gov (United States)

    Erdmann, Wolfram; Speer, Thomas

    1997-04-01

    We present a search for rare B-meson decays B^+arrow μ^+ μ^- K^+ and B^0arrow μ^+ μ^-K^*0 using data from pbarp collisions at √s = 1.8 TeV recorded with CDF during the 1994 to 95 running period. We set upper limits on BR(B^+arrow μ^+ μ^- K^+) and BR(B^0arrow μ^+ μ^-K^*0). ^ Supported by U.S. DOE DE-AC02-76CH03000. ^*We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Instituto Nazionale di Fisica Nucleare; the Ministry of Education, Science and Culture of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; and the A. P. Sloan Foundation.

  8. Control and data acquisition electronics for the CDF Silicon Vertex Detector

    Energy Technology Data Exchange (ETDEWEB)

    Turner, K.J.; Nelson, C.A.; Shaw, T.M.; Wesson, T.R.

    1991-11-01

    A control and data acquisition system has been designed for the CDF Silicon Vertex Detector (SVX) at Fermilab. The system controls the operation of the SVX Rev D integrated circuit (SVX IC) that is used to instrument a 46,000 microstrip silicon detector. The system consists of a Fastbus Sequencer, a Crate Controller and Digitizer modules. 11 refs., 6 figs., 3 tabs.

  9. Control and data acquisition electronics for the CDF silicon vertex detector

    International Nuclear Information System (INIS)

    urner, K.J.; Nelson, C.A.; Shaw, T.M.; Wesson, T.R.

    1992-01-01

    This paper reports on a control and data acquisition system that has been designed for the CDF Silicon Vertex Detector (SVX) at Fermilab. The system controls the operation of the SVX Rev D integrated circuit (SVX IC) that is used to instrument a 46,000 microstrip silicon detector. The system consists of a Fastbus Sequencer, a Crate Controller and Digitizer modules

  10. Control and data acquisition electronics for the CDF Silicon Vertex Detector

    International Nuclear Information System (INIS)

    Turner, K.J.; Nelson, C.A.; Shaw, T.M.; Wesson, T.R.

    1991-11-01

    A control and data acquisition system has been designed for the CDF Silicon Vertex Detector (SVX) at Fermilab. The system controls the operation of the SVX Rev D integrated circuit (SVX IC) that is used to instrument a 46,000 microstrip silicon detector. The system consists of a Fastbus Sequencer, a Crate Controller and Digitizer modules. 11 refs., 6 figs., 3 tabs

  11. The CDF Central Electromagnetic Calorimeter for Proton - Anti-proton Collision Experiment at Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Kamon, Teruki [Univ. of Tsukuba (Japan)

    1986-06-01

    The CDF central electromagnetic calorimeter modules were calibrated with test beam and cosmic ray muons. It is found that (a) the modules are identical to each other by 1 % on the response map and (b) the uncertaity on the measurement of the energy of showering particle is better than 1.1 % in the 85 % of whole area.

  12. Operation of the CDF Silicon Vertex Detector with colliding beams at Fermilab

    International Nuclear Information System (INIS)

    Bedeschi, F.; Bolognesi, V.; Dell'Agnello, S.; Galeotti, S.; Grieco, G.; Mariotti, M.; Menzione, A.; Punzi, G.; Raffaelli, F.; Ristori, L.; Tartarelli, F.; Turini, N.; Wenzel, H.; Zetti, F.; Bailey, M.W.; Garfinkel, A.F.; Kruse, M.C.; Shaw, N.M.; Carithers, W.C.; Ely, R.; Haber, C.; Holland, S.; Kleinfelder, S.; Merrick, T.; Schneider, O.; Wester, W.; Wong, M.; Yao, W.; Carter, H.; Flaugher, B.; Nelson, C.; Segler, S.; Shaw, T.; Tkaczyk, S.; Turner, K.; Wesson, T.R.; Barnett, B.; Boswell, C.; Skarha, J.; Snider, F.D.; Spies, A.; Tseng, J.; Vejcik, S.; Amidei, D.; Derwent, P.F.; Song, T.Y.; Dunn, A.; Gold, M.; Matthews, J.; Bacchetta, N.; Azzi, P.; Bisello, D.; Busetto, G.; Castro, A.; Loreti, M.; Pescara, L.; Tipton, P.; Watts, G.

    1992-10-01

    In this paper we briefly describe the main features of the CDF Silicon Vertex Detector (SVX) and discuss its performance during actual colliding beam operation at the Fermilab Tevatron. Details on S/N ratio, alignment, resolution and efficiency are given

  13. Electron run-away

    International Nuclear Information System (INIS)

    Levinson, I.B.

    1975-01-01

    The run-away effect of electrons for the Coulomb scattering has been studied by Dricer, but the question for other scattering mechanisms is not yet studied. Meanwhile, if the scattering is quasielastic, a general criterion for the run-away may be formulated; in this case the run-away influence on the distribution function may also be studied in somewhat general and qualitative manner. (Auth.)

  14. Triathlon: running injuries.

    Science.gov (United States)

    Spiker, Andrea M; Dixit, Sameer; Cosgarea, Andrew J

    2012-12-01

    The running portion of the triathlon represents the final leg of the competition and, by some reports, the most important part in determining a triathlete's overall success. Although most triathletes spend most of their training time on cycling, running injuries are the most common injuries encountered. Common causes of running injuries include overuse, lack of rest, and activities that aggravate biomechanical predisposers of specific injuries. We discuss the running-associated injuries in the hip, knee, lower leg, ankle, and foot of the triathlete, and the causes, presentation, evaluation, and treatment of each.

  15. Search for the Higgs Boson in the $ZH\\to\\mu^+\\mu^- b\\bar{b}$ Channel at CDF Using Novel Multivariate Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pilot, Justin R. [Ohio State U.

    2011-01-01

    We present a search for the Standard Model Higgs Boson using the process $ZH\\to\\mu^+\\mu^- b\\bar{b}$. We use a dataset corresponding to 9.2 fb$^{-1}$ of integrated luminosity from proton-antiproton collisions with center-of-mass energy 1.96 TeV at the Fermilab Tevatron, collected with the CDF II detector. This analysis benefits from several new multivariate techniques that have not been used in previous analyses at CDF. We use a multivariate function to select muon candidates, increasing signal acceptance while simultaneously keeping fake rates small. We employ an inclusive trigger selection to further increase acceptance. To enhance signal discrimination, we utilize a multi-layer approach consisting of expert discriminants. This multi-layer discriminant method helps isolate the two main classes of background events, $t\\bar{t}$ and $Z$+jets production. It also includes a flavor separator, to distinguish light flavor jets from jets consistent with the decay of a $B$-hadron. Wit h this novel multi-layer approach, we proceed to set limits on the $ZH$ production cross section times branching ratio. For a Higgs boson with mass 115 GeV/$c^2$, we observe (expect) a limit of 8.0 (4.9) times the Standard Model prediction.

  16. Overcoming the "Run" Response

    Science.gov (United States)

    Swanson, Patricia E.

    2013-01-01

    Recent research suggests that it is not simply experiencing anxiety that affects mathematics performance but also how one responds to and regulates that anxiety (Lyons and Beilock 2011). Most people have faced mathematics problems that have triggered their "run response." The issue is not whether one wants to run, but rather…

  17. Overuse injuries in running

    DEFF Research Database (Denmark)

    Larsen, Lars Henrik; Rasmussen, Sten; Jørgensen, Jens Erik

    2016-01-01

    What is an overuse injury in running? This question is a corner stone of clinical documentation and research based evidence.......What is an overuse injury in running? This question is a corner stone of clinical documentation and research based evidence....

  18. PRECIS Runs at IITM

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. PRECIS Runs at IITM. Evaluation experiment using LBCs derived from ERA-15 (1979-93). Runs (3 ensembles in each experiment) already completed with LBCs having a length of 30 years each, for. Baseline (1961-90); A2 scenario (2071-2100); B2 scenario ...

  19. Spectroscopy of Orbitally Excited $B_{s}$ Mesons with the CDF II Detector

    Energy Technology Data Exchange (ETDEWEB)

    Heck, Martin [Karlsruhe Inst. of Technology (KIT) (Germany)

    2009-07-17

    The aim of particle physics is to understand the properties of matter on the most fundamental level. The two main questions are: ’What are the constituents of matter?’ and ’How do those constituents interact with one another?’ One approach used throughout the experimental testing of theories of matter, that aim to answer these questions, is the study of the energy spectrum of excited states. Especially in cases of simple configurations as found in the hydrogenium atom, the potential energy related to an interaction can be studied. In chapter 2 I describe basics of the Standard Model related to the study of orbitally excited mesons made of a b- and an s-quark [Bs], theoretical predictions, and results of previous experiments. In chapter 3 one can find a description of the experiment used to collect the data. In chapter 4 the important tools used in my analysis are explained. The following chapter 5 describes the first core of the analysis, the reconstruction and selection, before in chapter 6 the fits to the data, and the considered systematic uncertainties are presented.

  20. The LHCb Run Control

    CERN Document Server

    Alessio, F; Callot, O; Duval, P-Y; Franek, B; Frank, M; Galli, D; Gaspar, C; v Herwijnen, E; Jacobsson, R; Jost, B; Neufeld, N; Sambade, A; Schwemmer, R; Somogyi, P

    2010-01-01

    LHCb has designed and implemented an integrated Experiment Control System. The Control System uses the same concepts and the same tools to control and monitor all parts of the experiment: the Data Acquisition System, the Timing and the Trigger Systems, the High Level Trigger Farm, the Detector Control System, the Experiment's Infrastructure and the interaction with the CERN Technical Services and the Accelerator. LHCb's Run Control, the main interface used by the experiment's operator, provides access in a hierarchical, coherent and homogeneous manner to all areas of the experiment and to all its sub-detectors. It allows for automated (or manual) configuration and control, including error recovery, of the full experiment in its different running modes. Different instances of the same Run Control interface are used by the various sub-detectors for their stand-alone activities: test runs, calibration runs, etc. The architecture and the tools used to build the control system, the guidelines and components provid...

  1. Client and event driven data hub system at CDF

    International Nuclear Information System (INIS)

    Kilminster, Ben; McFarland, Kevin; Vaiciulis, Tony; Matsunaga, Hiroyuki; Shimojima, Makoto

    2001-01-01

    The Consumer-Server Logger (CSL) system at the Collider Detector at Fermilab is a client and event driven data hub capable of receiving physics events from multiple connections, and logging them to multiple streams while distributing them to multiple online analysis programs (consumers). Its multiple-partitioned design allows data flowing through different paths of the detector sub-systems to be processed separately. The CSL system, using a set of internal memory buffers and message queues mapped to the location of events within its programs, and running on an SGI 2200 Server, is able to process at least the required 20 MB/s of constant event logging (75 Hz of 250 KB events) while also filtering up to 10 MB/s to consumers requesting specific types of events

  2. Search for resonant top-antitop production in the lepton plus jets decay mode using the full CDF data set.

    Science.gov (United States)

    Aaltonen, T; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Butti, P; Buzatu, A; Calamba, A; Camarda, S; Campanelli, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Cho, K; Chokheli, D; Ciocci, M A; Clark, A; Clarke, C; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Cremonesi, M; Cruz, D; Cuevas, J; Culbertson, R; d'Ascenzo, N; Datta, M; De Barbaro, P; Demortier, L; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dorigo, M; Driutti, A; Ebina, K; Edgar, R; Elagin, A; Erbacher, R; Errede, S; Esham, B; Eusebi, R; Farrington, S; Fernández Ramos, J P; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Frisch, H; Funakoshi, Y; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González López, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gramellini, E; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Hahn, S R; Han, J Y; Happacher, F; Hara, K; Hare, M; Harr, R F; Harrington-Taber, T; Hatakeyama, K; Hays, C; Heinrich, J; Herndon, M; Hocker, A; Hong, Z; Hopkins, W; Hou, S; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kambeitz, M; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kim, Y J; Kimura, N; Kirby, M; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Kruse, M; Kuhr, T; Kurata, M; Laasanen, A T; Lammel, S; Lancaster, M; Lannon, K; Latino, G; Lee, H S; Lee, J S; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lipeles, E; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, P; Martínez, M; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Nigmanov, T; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagliarone, C; Palencia, E; Palni, P; Papadimitriou, V; Parker, W; Pauletta, G; Paulini, M; Paus, C; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Prokoshin, F; Pranko, A; Ptohos, F; Punzi, G; Ranjan, N; Redondo Fernández, I; Renton, P; Rescigno, M; Riddick, T; Rimondi, F; Ristori, L; Robson, A; Rodriguez, T; Rolli, S; Ronzani, M; Roser, R; Rosner, J L; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schwarz, T; Scodellaro, L; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sinervo, P; Sliwa, K; Smith, J R; Snider, F D; Sorin, V; Song, H; Stancari, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thomson, E; Thukral, V; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Vázquez, F; Velev, G; Vellidis, C; Vernieri, C; Vidal, M; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wallny, R; Wang, S M; Warburton, A; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wilbur, S; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Zanetti, A M; Zeng, Y; Zhou, C; Zucchelli, S

    2013-03-22

    This Letter reports a search for a narrow resonant state decaying into two W bosons and two b quarks where one W boson decays leptonically and the other decays into a quark-antiquark pair. The search is particularly sensitive to top-antitop resonant production. We use the full data sample of proton-antiproton collisions at a center-of-mass energy of 1.96 TeV collected by the CDF II detector at the Fermilab Tevatron, corresponding to an integrated luminosity of 9.45 fb(-1). No evidence for resonant production is found, and upper limits on the production cross section times branching ratio for a narrow resonant state are extracted. Within a specific benchmark model, we exclude a Z' boson with mass, M(Z'), below 915 GeV/c(2) decaying into a top-antitop pair at the 95% credibility level assuming a Z' boson decay width of Γ(Z') = 0.012 M(Z'). This is the most sensitive search for a narrow qq-initiated tt resonance in the mass region below 750 GeV/c(2).

  3. Measurement of bottom-quark hadron masses in exclusive J/psi decays with the CDF detector.

    Science.gov (United States)

    Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Arguin, J-F; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachocou, H; Badgett, W; Barbaro-Galtieri, A; Barker, G J; Barnes, V E; Barnett, B A; Baroiant, S; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Ben-Haim, E; Benjamin, D; Beretvas, A; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Bourov, S; Brau, B; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Casarsa, M; Carlsmith, D; Carosi, R; Carron, S; Cavalli-Sforza, M; Castro, A; Catastini, P; Cauz, D; Cerri, A; Cerrito, L; Chapman, J; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chuang, S; Chung, K; Chung, W-H; Chung, Y S; Cijliak, M; Ciobanu, C I; Ciocci, M A; Clark, A G; Clark, D; Coca, M; Connolly, A; Convery, M; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Cranshaw, J; Cuevas, J; Cruz, A; Culbertson, R; Currat, C; Cyr, D; Dagenhart, D; Da Ronco, S; D'Auria, S; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, M; Demers, S; Demortier, L; Deninno, M; Depedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; DiTuro, P; Dörr, C; Dominguez, A; Donati, S; Donega, M; Donini, J; D'Onofrio, M; Dorigo, T; Ebina, K; Efron, J; Ehlers, J; Erbacher, R; Erdmann, M; Errede, D; Errede, S; Eusebi, R; Fang, H-C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R D; Flanagan, G; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Fujii, Y; Furic, I; Gajjar, A; Gallinaro, M; Galyardt, J; Garcia-Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D W; Gerchtein, E; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giolo, K; Giordani, M; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, D; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grosso-Pilcher, C; Grundler, U; da Costa, J Guimaraes; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harr, R F; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Hays, C; Hayward, H; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Hill, C; Hirschbuehl, D; Hocker, A; Hoffman, K D; Holloway, A; Hou, S; Houlden, M A; Huffman, B T; Huang, Y; Hughes, R E; Huston, J; Ikado, K; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Issever, C; Ivanov, A; Iwata, Y; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jones, M; Joo, K K; Jun, S Y; Junk, T; Kamon, T; Kang, J; Karagoz Unel, M; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, Y K; Kirby, M; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kobayashi, H; Kong, D J; Kondo, K; Konigsberg, J; Kordas, K; Korn, A; Korytov, A; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreymer, A; Kroll, J; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecci, C; LeCompte, T; Lee, J; Lee, J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Li, K; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; MacQueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Manca, G; Margaroli, F; Marginean, R; Marino, C; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P M; McNamara, P; McNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, L; Miller, R; Miller, J S; Mills, C; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Moggi, N; Mohr, B; Moore, R; Morello, M; Fernandez, P A Movilla; Muelmenstaedt, J; Mukherjee, A; Mulhearn, M; Muller, T; Mumford, R; Munar, A; Murat, P; Nachtman, J; Nahn, S; Nakano, I; Napier, A; Napora, R; Naumov, D; Necula, V; Nielsen, J; Nelson, T; Neu, C; Neubauer, M S; Nigmanov, T; Nodulman, L; Norniella, O; Ogawa, T; Oh, S H; Oh, Y D; Ohsugi, T; Okusawa, T; Oldeman, R; Orava, R; Orejudos, W; Osterberg, K; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Paramonov, A A; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K T; Plager, C; Pondrom, L; Pope, G; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Rademacker, J; Rahaman, M A; Rakitine, A; Rappoccio, S; Ratnikov, F; Ray, H; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Rimondi, F; Rinnert, K; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rolli, S; Roser, R; Rossin, R; Rott, C; Russ, J; Rusu, V; Ruiz, A; Ryan, D; Saarikko, H; Sabik, S; Safonov, A; St Denis, R; Sakumoto, W K; Salamanna, G; Saltzberg, D; Sanchez, C; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sill, A; Sinervo, P; Sisakyan, A; Sjolin, J; Skiba, A; Slaughter, A J; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S V; Spalding, J; Spezziga, M; Spinella, F; Squillacioti, P; Stadie, H; Stanitzki, M; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Tafirout, R; Takano, H; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tanimoto, N; Tecchio, M; Teng, P K; Terashi, K; Tesarek, R J; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Trischuk, W; Tsuchiya, R; Tsuno, S; Tsybychev, D; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, A; Varganov, A; Vejcik, S; Velev, G; Veszpremi, V; Veramendi, G; Vickey, T; Vidal, R; Vila, I; Vilar, R; Vollrath, I; Volobouev, I; von der Mey, M; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Wan, Z; Wang, M J; Wang, S M; Warburton, A; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wolter, M; Worcester, M; Worm, S; Wright, T; Wu, X; Würthwein, F; Wyatt, A; Yagil, A; Yamashita, T; Yamamoto, K; Yamaoka, J; Yang, C; Yang, U K; Yao, W; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, I; Yu, S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhou, J; Zucchelli, S

    2006-05-26

    We measure the masses of b hadrons in exclusively reconstructed final states containing a J/psi --> mu-mu+ decay using 220 pb(-1) of data collected by the CDF II experiment. We find: m(B+) = 5279.10 +/- 0.41(stat.) +/- 0.36(sys.) MeV/c2, m(B0) = 5279.63 +/- 0.53(stat.) +/- 0.33(sys.) MeV/c2, m(B(s)0) = 5366.01 +/- 0.73(stat.) +/- 0.33(sys.) MeV/c2, m(lambda(b)0) = 5619.7 +/- 1.2(stat.) +/- 1.2(sys.) MeV/c2. m(B+) - m(B0) = -0.53 +/- 0.67(stat.) +/- 0.14(sys.) MeV/c2, m(B(s)0) - m(B0) = 86.38 +/- 0.90(stat.) +/- 0.06(sys.) MeV/c2, m(lambda(b)0) - m(B0) = 339.2 +/- 1.4(stat.) +/- 0.1(sys.) MeV/c2. The measurements of the B(s)0, lambda(b)0 mass, m(B(s)0) - m(B0) and m(lambda(b)0) - m(B0) mass difference are of better precision than the current world averages.

  4. Symmetry in running.

    Science.gov (United States)

    Raibert, M H

    1986-03-14

    Symmetry plays a key role in simplifying the control of legged robots and in giving them the ability to run and balance. The symmetries studied describe motion of the body and legs in terms of even and odd functions of time. A legged system running with these symmetries travels with a fixed forward speed and a stable upright posture. The symmetries used for controlling legged robots may help in elucidating the legged behavior of animals. Measurements of running in the cat and human show that the feet and body sometimes move as predicted by the even and odd symmetry functions.

  5. RUNNING INJURY DEVELOPMENT

    DEFF Research Database (Denmark)

    Johansen, Karen Krogh; Hulme, Adam; Damsted, Camma

    2017-01-01

    BACKGROUND: Behavioral science methods have rarely been used in running injury research. Therefore, the attitudes amongst runners and their coaches regarding factors leading to running injuries warrants formal investigation. PURPOSE: To investigate the attitudes of middle- and long-distance runners...... able to compete in national championships and their coaches about factors associated with running injury development. METHODS: A link to an online survey was distributed to middle- and long-distance runners and their coaches across 25 Danish Athletics Clubs. The main research question was: "Which...... factors do you believe influence the risk of running injuries?". In response to this question, the athletes and coaches had to click "Yes" or "No" to 19 predefined factors. In addition, they had the possibility to submit a free-text response. RESULTS: A total of 68 athletes and 19 coaches were included...

  6. Running Injury Development

    DEFF Research Database (Denmark)

    Krogh Johansen, Karen; Hulme, Adam; Damsted, Camma

    2017-01-01

    Background: Behavioral science methods have rarely been used in running injury research. Therefore, the attitudes amongst runners and their coaches regarding factors leading to running injuries warrants formal investigation. Purpose: To investigate the attitudes of middle- and long-distance runners...... able to compete in national championships and their coaches about factors associated with running injury development. Methods: A link to an online survey was distributed to middle- and long-distance runners and their coaches across 25 Danish Athletics Clubs. The main research question was: “Which...... factors do you believe influence the risk of running injuries?”. In response to this question, the athletes and coaches had to click “Yes” or “No” to 19 predefined factors. In addition, they had the possibility to submit a free-text response. Results: A total of 68 athletes and 19 coaches were included...

  7. The LHCb Run Control

    Energy Technology Data Exchange (ETDEWEB)

    Alessio, F; Barandela, M C; Frank, M; Gaspar, C; Herwijnen, E v; Jacobsson, R; Jost, B; Neufeld, N; Sambade, A; Schwemmer, R; Somogyi, P [CERN, 1211 Geneva 23 (Switzerland); Callot, O [LAL, IN2P3/CNRS and Universite Paris 11, Orsay (France); Duval, P-Y [Centre de Physique des Particules de Marseille, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Franek, B [Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX (United Kingdom); Galli, D, E-mail: Clara.Gaspar@cern.c [Universita di Bologna and INFN, Bologna (Italy)

    2010-04-01

    LHCb has designed and implemented an integrated Experiment Control System. The Control System uses the same concepts and the same tools to control and monitor all parts of the experiment: the Data Acquisition System, the Timing and the Trigger Systems, the High Level Trigger Farm, the Detector Control System, the Experiment's Infrastructure and the interaction with the CERN Technical Services and the Accelerator. LHCb's Run Control, the main interface used by the experiment's operator, provides access in a hierarchical, coherent and homogeneous manner to all areas of the experiment and to all its sub-detectors. It allows for automated (or manual) configuration and control, including error recovery, of the full experiment in its different running modes. Different instances of the same Run Control interface are used by the various sub-detectors for their stand-alone activities: test runs, calibration runs, etc. The architecture and the tools used to build the control system, the guidelines and components provided to the developers, as well as the first experience with the usage of the Run Control will be presented

  8. Search for the standard model Higgs boson decaying to a bb pair in events with two oppositely charged leptons using the full CDF data set.

    Science.gov (United States)

    Aaltonen, T; Álvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M E; Bisello, D; Bizjak, I; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Calamba, A; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chung, W H; Chung, Y S; Ciocci, M A; Clark, A; Clarke, C; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuevas, J; Culbertson, R; Dagenhart, D; d'Ascenzo, N; Datta, M; de Barbaro, P; Dell'Orso, M; Demortier, L; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, M; Dorigo, T; Ebina, K; Elagin, A; Eppig, A; Erbacher, R; Errede, S; Ershaidat, N; Eusebi, R; Farrington, S; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Funakoshi, Y; Furic, I; Gallinaro, M; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Hahn, S R; Halkiadakis, E; Hamaguchi, A; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Hewamanage, S; Hocker, A; Hopkins, W; Horn, D; Hou, S; Hughes, R E; Hurwitz, M; Husemann, U; Hussain, N; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeans, D T; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kim, Y J; Kimura, N; Kirby, M; Klimenko, S; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Kruse, M; Krutelyov, V; Kuhr, T; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; LeCompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lin, C-J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maeshima, K; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Martínez, M; Mastrandrea, P; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Prokoshin, F; Pranko, A; Ptohos, F; Punzi, G; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Rescigno, M; Riddick, T; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sinervo, P; Sliwa, K; Smith, J R; Snider, F D; Soha, A; Sorin, V; Song, H; Squillacioti, P; Stancari, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Tipton, P; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Varganov, A; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wagner, R L; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Wick, F; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zhou, C; Zucchelli, S

    2012-09-14

    We present a search for the standard model Higgs boson produced in association with a Z boson in data collected with the CDF II detector at the Tevatron, corresponding to an integrated luminosity of 9.45  fb(-1). In events consistent with the decay of the Higgs boson to a bottom-quark pair and the Z boson to electron or muon pairs, we set 95% credibility level upper limits on the ZH production cross section times the H→bb branching ratio as a function of Higgs boson mass. At a Higgs boson mass of 125  GeV/c(2), we observe (expect) a limit of 7.1 (3.9) times the standard model value.

  9. Has the substructure of quarks been found by the CDF experiment?

    International Nuclear Information System (INIS)

    Akama, Keiichi; Terazawa, Hidezumi.

    1996-08-01

    The significant excess recently found by the CDF Collaboration in the inclusive jet cross section for jet transverse energies E T ≥ 200 GeV over current QCD predictions can be explained either by possible production of excited bosons (excited gluons, weak bosons, Higgs scalars, etc.) or by that of excited quarks. The masses of the excited boson and the excited quark are estimated to be around 1600 GeV and 500 GeV, respectively. (author)

  10. Unbinned maximum likelihood fit for the CP conserving couplings for W + photon production at CDF

    International Nuclear Information System (INIS)

    Lannon, K.

    1994-01-01

    We present an unbinned maximum likelihood fit as an alternative to the currently used fit for the CP conserving couplings W plus photon production studied at CDF. We show that a four parameter double exponential fits the E T spectrum of the photon very well. We also show that the fit parameters can be related to and by a second order polynomial. Finally, we discuss various conclusions we have reasoned from our results to the fit so far

  11. Numerical Modeling of Wave Overtopping of Buffalo Harbor Confined Disposal Facility (CDF4)

    Science.gov (United States)

    2017-10-01

    navigation channel , and harbor complex. Though there are anecdotal claims and debris indicating possible sediment movement, there has been no evidence of...littoral sediments inside the disposal area, into the channel and harbor, and other adjacent areas to the CDF4. 1.4 Study plan 1.4.1 Purpose There...locations. 2.4 Maintenance dredging data The need for maintenance dredging arises from sedimentation in the navigation channels , which impedes

  12. Tracking in the trigger from the CDF experience to CMS upgrade

    CERN Document Server

    Palla, F

    2007-01-01

    Precise tracking information in the online selection of interesting physics events is extremely beneficial at hadron colliders. The CDF experiment at the Tevatron, has shown for the first time the impact of the tracking in triggers, allowing to achieve unprecedented precision in B-physics measurements. The CMS experiment at LHC will largely make use of tracking information at high level trigger, after the Level-1 acceptance. The increased luminosity of the Super-LHC collider will impose to CMS a drastic revision of the Level-1 trigger strategy, incorporating the tracker information at the first stage of the selection. After a review of the CDF and CMS approaches we will discuss several possible Level-1 tracker based concepts for the upgraded CMS detector at Super-LHC. One approach is based on associative memories, which has already been demonstrated in CDF. It makes use of binary readout in the front end electronics, followed by transfer of the full granularity data off detector using optical links to dedicat...

  13. Running Boot Camp

    CERN Document Server

    Toporek, Chuck

    2008-01-01

    When Steve Jobs jumped on stage at Macworld San Francisco 2006 and announced the new Intel-based Macs, the question wasn't if, but when someone would figure out a hack to get Windows XP running on these new "Mactels." Enter Boot Camp, a new system utility that helps you partition and install Windows XP on your Intel Mac. Boot Camp does all the heavy lifting for you. You won't need to open the Terminal and hack on system files or wave a chicken bone over your iMac to get XP running. This free program makes it easy for anyone to turn their Mac into a dual-boot Windows/OS X machine. Running Bo

  14. Fermilab DART run control

    International Nuclear Information System (INIS)

    Oleynik, G.; Engelfried, J.; Mengel, L.

    1996-01-01

    DART is the high speed, Unix based data acquisition system being developed by Fermilab in collaboration with seven High Energy Physics Experiments. This paper describes DART run control, which has been developed over the past year and is a flexible, distributed, extensible system for the control and monitoring of the data acquisition systems. The authors discuss the unique and interesting concepts of the run control and some of the experiences in developing it. They also give a brief update and status of the whole DART system

  15. Fermilab DART run control

    International Nuclear Information System (INIS)

    Oleynik, G.; Engelfried, J.; Mengel, L.

    1995-05-01

    DART is the high speed, Unix based data acquisition system being developed by Fermilab in collaboration with seven High Energy Physics Experiments. This paper describes DART run control, which has been developed over the past year and is a flexible, distributed, extensible system for the, control and monitoring of the data acquisition systems. We discuss the unique and interesting concepts of the run control and some of our experiences in developing it. We also give a brief update and status of the whole DART system

  16. 'Outrunning' the running ear

    African Journals Online (AJOL)

    Chantel

    In even the most experienced hands, an adequate physical examination of the ears can be difficult to perform because of common problems such as cerumen blockage of the auditory canal, an unco- operative toddler or an exasperated parent. The most common cause for a running ear in a child is acute purulent otitis.

  17. ATLAS inner detector: the Run 1 to Run 2 transition, and first experience from Run 2

    CERN Document Server

    Dobos, Daniel; The ATLAS collaboration

    2015-01-01

    The ATLAS experiment is equipped with a tracking system, the Inner Detector, built using different technologies, silicon planar sensors (pixel and micro-strip) and gaseous drift- tubes, all embedded in a 2T solenoidal magnetic field. For the LHC Run II, the system has been upgraded; taking advantage of the long showdown, the Pixel Detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL), a fourth layer of pixel detectors, installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm from the beam axis. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point and the increase of Luminosity that LHC will face in Run-2, a new read-out chip within CMOS 130nm and two different silicon sensor pixel technologies (planar and 3D) have been developed. SCT and TRT systems consolidation was also carri...

  18. The CDF silicon vertex trigger for B-mesons physics study

    International Nuclear Information System (INIS)

    Belforte, S.; Donati, S.; Ristori, L.; Spinella, F.; Budagov, Yu.; Chlachidze, G.; Glagolev, V.; Semenov, A.; Sisakyan, A.; Punzi, G.

    2001-01-01

    The CDF scientific program includes particularly the study of some key topics of the Standard Model: 1) constraint of the CKM matrix: CP violation in B sector (B 0 → π + π - ) and B s mixing (B s 0 → D s - π + , B s 0 → D s - π + π - π + ); 2) t-quark physics (t → Wb); and processes beyond the Standard Model - e.g., Higgs searching (MSSM) in the H → b bar b mode. All the above processes have the common feature - the presence of b-quarks (B-mesons). B hadrons of sufficiently high transverse momentum are characterized by a large mean value of distribution of the impact parameter with respect to the beam axis. That means events containing this kind of particles can be recognized and separated from non-long-lived background simply by cutting on the track's impact parameter. The upgraded CDF is equipped by the so-called Silicon Vertex Tracker (SVT), a unique electronic device for real time track reconstruction using the data from two CDF track detectors: the silicon strip vertex detector and drift chamber. The SVT is a level-2 trigger which within 10 μs reconstructs the tracks and obtains the transverse momentum (p t ), azimuthal angle (φ) and impact parameter (d) with 30 μm precision. The simulation studies show the background reduction by factor 1000 for B 0 π + π - by demand d > 100 μm for at least two tracks. This trigger is the first one of this sort ever used for hadron collider experiments: it enables to trigger on the secondary vertex, which opens the unique new opportunities in the heavy quark physics study. The basic logic, architecture and perspectives of SVT application are briefly described

  19. NetCDF based data archiving system applied to ITER Fast Plant System Control prototype

    International Nuclear Information System (INIS)

    Castro, R.; Vega, J.; Ruiz, M.; De Arcas, G.; Barrera, E.; López, J.M.; Sanz, D.; Gonçalves, B.; Santos, B.; Utzel, N.; Makijarvi, P.

    2012-01-01

    Highlights: ► Implementation of a data archiving solution for a Fast Plant System Controller (FPSC) for ITER CODAC. ► Data archiving solution based on scientific NetCDF-4 file format and Lustre storage clustering. ► EPICS control based solution. ► Tests results and detailed analysis of using NetCDF-4 and clustering technologies on fast acquisition data archiving. - Abstract: EURATOM/CIEMAT and Technical University of Madrid (UPM) have been involved in the development of a FPSC (Fast Plant System Control) prototype for ITER, based on PXIe (PCI eXtensions for Instrumentation). One of the main focuses of this project has been data acquisition and all the related issues, including scientific data archiving. Additionally, a new data archiving solution has been developed to demonstrate the obtainable performances and possible bottlenecks of scientific data archiving in Fast Plant System Control. The presented system implements a fault tolerant architecture over a GEthernet network where FPSC data are reliably archived on remote, while remaining accessible to be redistributed, within the duration of a pulse. The storing service is supported by a clustering solution to guaranty scalability, so that FPSC management and configuration may be simplified, and a unique view of all archived data provided. All the involved components have been integrated under EPICS (Experimental Physics and Industrial Control System), implementing in each case the necessary extensions, state machines and configuration process variables. The prototyped solution is based on the NetCDF-4 (Network Common Data Format) file format in order to incorporate important features, such as scientific data models support, huge size files management, platform independent codification, or single-writer/multiple-readers concurrency. In this contribution, a complete description of the above mentioned solution is presented, together with the most relevant results of the tests performed, while focusing in the

  20. Electron identification in the CDF [Collider Detector at Fermilab] central calorimeter

    International Nuclear Information System (INIS)

    Proudfoot, J.

    1989-01-01

    Efficient identification of electrons both from W decay and QCD heavy flavour production has been achieved with the CDF Central Calorimeter, which is a lead -- scintillator plate calorimeter incorporating tower geometry. The fine calorimetry granularity (0.1 /times/ 0.26 in /eta/, /phi/ space) allows identification of electrons well within the typical jet cone and is wholly sufficient for the measurement of the isolation of electrons from W decay. With minor improvements, such a detector is a realistic option for electron identification in the central rapidity region at the SSC. 1 ref., 7 figs

  1. Test on 2,000 photomultipliers for the CDF endplug calorimeter upgrade

    International Nuclear Information System (INIS)

    Fiori, I.

    1997-01-01

    A systematic test of various characteristics, such as gain, dark current, maximum peak current, stability and relative quantum efficiency, has been made to evaluate about 2,000 photomultiplier tubes for the upgraded CDF Endplug calorimeters. The phototubes are Hamamatsu R4125,19mm diameter with green-extended photocathode. In this report we discuss the distribution of the major characteristics measured and the failure mode. Comparisons between independent measurements made on some of the characteristics are used to evaluate the quality of the measurement itself

  2. Running economy and energy cost of running with backpacks.

    Science.gov (United States)

    Scheer, Volker; Cramer, Leoni; Heitkamp, Hans-Christian

    2018-05-02

    Running is a popular recreational activity and additional weight is often carried in backpacks on longer runs. Our aim was to examine running economy and other physiological parameters while running with a 1kg and 3 kg backpack at different submaximal running velocities. 10 male recreational runners (age 25 ± 4.2 years, VO2peak 60.5 ± 3.1 ml·kg-1·min-1) performed runs on a motorized treadmill of 5 minutes durations at three different submaximal speeds of 70, 80 and 90% of anaerobic lactate threshold (LT) without additional weight, and carrying a 1kg and 3 kg backpack. Oxygen consumption, heart rate, lactate and RPE were measured and analysed. Oxygen consumption, energy cost of running and heart rate increased significantly while running with a backpack weighing 3kg compared to running without additional weight at 80% of speed at lactate threshold (sLT) (p=0.026, p=0.009 and p=0.003) and at 90% sLT (p<0.001, p=0.001 and p=0.001). Running with a 1kg backpack showed a significant increase in heart rate at 80% sLT (p=0.008) and a significant increase in oxygen consumption and heart rate at 90% sLT (p=0.045 and p=0.007) compared to running without additional weight. While running at 70% sLT running economy and cardiovascular effort increased with weighted backpack running compared to running without additional weight, however these increases did not reach statistical significance. Running economy deteriorates and cardiovascular effort increases while running with additional backpack weight especially at higher submaximal running speeds. Backpack weight should therefore be kept to a minimum.

  3. Mixing and CP violation in the B$0\\atop{s}$ meson system at CDF; Mélange et violation de CP dans le système des mésons B$0\\atop{s}$ à CDF

    Energy Technology Data Exchange (ETDEWEB)

    Di Giovanni, Gian Piero [Univ. of Paris VI-VII (France)

    2008-01-01

    The two analyses presented in the thesis, the B$0\\atop{s}$ mixing analysis and the B$0\\atop{s}$ → J/ψφ angular analysis, share most of the technical implementations and features. Thus, my choice was to pursue in parallel the common aspects of the analyses, avoiding, whenever possible, repetitions. Each Chapter is split in two parts, the first one dedicated to the B$0\\atop{s}$ mixing analysis and the second one describing the angular analysis on the B$0\\atop{s}$ → J/ψφ decay mode. They are organized as follows. In Chapter 1 we present the theoretical framework of the B$0\\atop{s}$ neutral mesons system. After a general introduction on the Standard Model, we focus on the quantities which are relevant to the Δms measurement and the CP violation phenomena, underlying the details concerning the study of pseudo-scalar to vector vector decays, P → VV, which allow to carry out an angular analysis. A discussion on the implication of the measurements performed in the search of physics beyond the Standard Model is presented. The accelerator facilities and the CDF-II detector are reported in Chapter 2. While describing the detector, more emphasis is given to the components fundamental to perform B physics analyses at CDF. The Chapter 3 is focused on the reconstruction and selection of the data samples. The Chapter starts with a description of the on-line trigger requirements, according to the B$0\\atop{s}$ sample considered, followed by the offline selection criteria implemented to reconstruct B$0\\atop{s}$ semileptonic and hadronic decays, fully and partially reconstructed, for the B$0\\atop{s}$ mixing analysis, as well as the B$0\\atop{s}$ → J/ψφ decay mode for the angular analysis. The subsequent Chapter 4 is dedicated to the revision of the technical ingredients needed in the final analyses. The B$0\\atop{s}$ mixing elements are firstly described. The methodology historically used in the oscillation searches, the 'amplitude scan', is here

  4. A Measurement of the B0$\\bar{B}$0 mixing Using Muon Pairs at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Meschi, E. [Scuola Normale Superiore (SNS), Pisa (Italy)

    1995-10-01

    This thesis concerns the experimental study of B mesons (mesons containing a b quark) produced in proton-antiproton collisions at center of mass energy of 1800 GeV. This work has been performed within the CDF collaboration. CDF is a general purpose detector located at Fermilab, in Batavia, which exploits the Fermilab proton-antiproton collider.

  5. Ubuntu Up and Running

    CERN Document Server

    Nixon, Robin

    2010-01-01

    Ubuntu for everyone! This popular Linux-based operating system is perfect for people with little technical background. It's simple to install, and easy to use -- with a strong focus on security. Ubuntu: Up and Running shows you the ins and outs of this system with a complete hands-on tour. You'll learn how Ubuntu works, how to quickly configure and maintain Ubuntu 10.04, and how to use this unique operating system for networking, business, and home entertainment. This book includes a DVD with the complete Ubuntu system and several specialized editions -- including the Mythbuntu multimedia re

  6. Investigation of tt-bar in the full hadronic final state at CDF with a neural network approach

    International Nuclear Information System (INIS)

    Sidoti, A.; Azzi, P.; Busetto, G.; Castro, A.; Dusini, S.; Lazzizzera, I.; Wyss, J.L.

    2001-01-01

    In this work we present the results of a neural network (NN) approach to the measurement of the tt-bar production cross-section and top mass in the all-hadronic channel, analyzing data collected at the Collider Detector at Fermilab (CDF) experiment. We have used a hardware implementation of a feed forward neural network, TOTEM, the product of a collaboration of INFN (Istituto Nazionale Fisica Nucleare) - IRST (Istituto per la Ricerca Scientifica e Tecnologica) - University of Trento, Italy. Particular attention has been paid to the evaluation of the systematics specifically related to the NN approach. The results are consistent with those obtained at