Sample records for cddo methyl amide

  1. Bardoxolone methyl (CDDO-Me) as a therapeutic agent: an update on its pharmacokinetic and pharmacodynamic properties. (United States)

    Wang, Yan-Yang; Yang, Yin-Xue; Zhe, Hong; He, Zhi-Xu; Zhou, Shu-Feng


    Triterpenoids have been used for medicinal purposes in many Asian countries because of their anti-inflammatory, antioxidant, antiproliferative, anticancer, and anticarcinogenic properties. Bardoxolone methyl, the C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO) known as CDDO-Me or RTA 402, is one of the derivatives of synthetic triterpenoids. CDDO-Me has been used for the treatment of chronic kidney disease, cancer (including leukemia and solid tumors), and other diseases. In this review, we will update our knowledge of the clinical pharmacokinetics and pharmacodynamics of CDDO-Me, highlighting its clinical benefits and the underlying mechanisms involved. The role of the Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1 (Keap1)/the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in the therapeutic activities of CDDO-Me will be discussed. CDDO-Me contains α,β-unsaturated carbonyl groups on rings A and C that can generate reversible adducts with the thiol groups of Cys residues in target proteins such as Keap1 and IκB kinase. At low nanomolar concentrations, CDDO-Me protects the cells against oxidative stress via inhibition of reactive oxygen species generation, while CDDO-Me at low micromolar concentrations induces apoptosis by increasing reactive oxygen species and decreasinging intracellular glutathione levels. Through Keap1/Nrf2 and nuclear factor-κB pathways, this agent can modulate the activities of a number of important proteins that regulate inflammation, redox balance, cell proliferation and programmed cell death. In a Phase I trial in cancer patients, CDDO-Me was found to have a slow and saturable oral absorption, a relatively long terminal phase half-life (39 hours at 900 mg/day), nonlinearity (dose-dependent) at high doses (600-1,300 mg/day), and high interpatient variability. As a multifunctional agent, CDDO-Me has improved the renal function in patients with chronic kidney disease

  2. Dihydro-CDDO-trifluoroethyl amide suppresses inflammatory responses in macrophages via activation of Nrf2

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Abdalrahman, Akram; Lai, Yimu; Janicki, Joseph S. [Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Ward, Keith W.; Meyer, Colin J. [Department of Pharmacology, Reata Pharmaceuticals, Inc., Irving, TX 75063 (United States); Wang, Xing Li [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Tang, Dongqi, E-mail: [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Cui, Taixing, E-mail: [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States)


    Highlights: • Dh404 suppresses the expression of a selected set of pro-inflammatory cytokines in inflamed macrophages via activating Nrf2. • Dh404 activates Nrf2 while keeping Keap1 function intact in macrophages. • Dh404 minimally regulates NF-κB pathway in macrophages. - Abstract: Nuclear factor erythroid 2-related factor (Nrf2) is the major regulator of cellular defenses against various pathological stresses in a variety of organ systems, thus Nrf2 has evolved to be an attractive drug target for the treatment and/or prevention of human disease. Several synthetic oleanolic triterpenoids including dihydro-CDDO-trifluoroethyl amide (dh404) appear to be potent activators of Nrf2 and exhibit chemopreventive promises in multiple disease models. While the pharmacological efficacy of Nrf2 activators may be dependent on the nature of Nrf2 activation in specific cell types of target organs, the precise role of Nrf2 in mediating biological effects of Nrf2 activating compounds in various cell types remains to be further explored. Herein we report a unique and Nrf2-dependent anti-inflammatory profile of dh404 in inflamed macrophages. In lipopolysaccharide (LPS)-inflamed RAW264.7 macrophages, dh404 dramatically suppressed the expression of pro-inflammatory cytokines including inducible nitric oxide synthase (iNOS), monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein-1 beta (MIP-1β), while minimally regulating the expression of interleulin-6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNFα). Dh404 potently activated Nrf2 signaling; however, it did not affect LPS-induced NF-κB activity. Dh404 did not interrupt the interaction of Nrf2 with its endogenous inhibitor Kelch-like ECH associating protein 1 (Keap1) in macrophages. Moreover, knockout of Nrf2 blocked the dh404-induced anti-inflammatory responses in LPS-inflamed macrophages. These results demonstrated that dh404 suppresses pro-inflammatory responses in macrophages via an activation

  3. Bardoxolone methyl (CDDO-Me as a therapeutic agent: an update on its pharmacokinetic and pharmacodynamic properties

    Directory of Open Access Journals (Sweden)

    Wang YY


    Full Text Available Yan-Yang Wang,1,2 Yin-Xue Yang,3 Hong Zhe,1 Zhi-Xu He,4 Shu-Feng Zhou2,4 1Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China; 2Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA; 3Department of Colon-rectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China; 4Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People’s Republic of China Abstract: Triterpenoids have been used for medicinal purposes in many Asian countries because of their anti-inflammatory, antioxidant, antiproliferative, anticancer, and anticarcinogenic properties. Bardoxolone methyl, the C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO known as CDDO-Me or RTA 402, is one of the derivatives of synthetic triterpenoids. CDDO-Me has been used for the treatment of chronic kidney disease, cancer (including leukemia and solid tumors, and other diseases. In this review, we will update our knowledge of the clinical pharmacokinetics and pharmacodynamics of CDDO-Me, highlighting its clinical benefits and the underlying mechanisms involved. The role of the Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1 (Keap1/the nuclear factor erythroid 2-related factor 2 (Nrf2 pathway in the therapeutic activities of CDDO-Me will be discussed. CDDO-Me contains a,ß-unsaturated carbonyl groups on rings A and C that can generate reversible adducts with the thiol groups of Cys residues in target proteins such as Keap1 and IκB kinase. At low nanomolar concentrations, CDDO-Me protects the cells against oxidative stress via inhibition of reactive oxygen species generation, while CDDO-Me at low micromolar

  4. Therapeutic effects of C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO-Me; bardoxolone methyl) on radiation-induced lung inflammation and fibrosis in mice. (United States)

    Wang, Yan-Yang; Zhang, Cui-Ying; Ma, Ya-Qiong; He, Zhi-Xu; Zhe, Hong; Zhou, Shu-Feng


    The C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO-Me), one of the synthetic triterpenoids, has been found to have potent anti-inflammatory and anticancer properties in vitro and in vivo. However, its usefulness in mitigating radiation-induced lung injury (RILI), including radiation-induced lung inflammation and fibrosis, has not been tested. The aim of this study was to explore the therapeutic effect of CDDO-Me on RILI in mice and the underlying mechanisms. Herein, we found that administration of CDDO-Me improved the histopathological score, reduced the number of inflammatory cells and concentrations of total protein in bronchoalveolar lavage fluid, suppressed secretion and expression of proinflammatory cytokines, including transforming growth factor-β and interleukin-6, elevated expression of the anti-inflammatory cytokine interleukin-10, and downregulated the mRNA level of profibrotic genes, including for fibronectin, α-smooth muscle actin, and collagen I. CDDO-Me attenuated radiation-induced lung inflammation. CDDO-Me also decreased the Masson's trichrome stain score, hydroxyproline content, and mRNA level of profibrotic genes, and blocked radiation-induced collagen accumulation and fibrosis. Collectively, these findings suggest that CDDO-Me ameliorates radiation-induced lung inflammation and fibrosis, and this synthetic triterpenoid is a promising novel therapeutic agent for RILI. Further mechanistic, efficacy, and safety studies are warranted to elucidate the role of CDDO-Me in the management of RILI.

  5. CDDO-Me: A Novel Synthetic Triterpenoid for the Treatment of Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Deeb, Dorrah; Gao, Xiaohua [Department of General Surgery, Henry Ford Health System, Detroit, MI 48202 (United States); Arbab, Ali S. [Department of Diagnostic Radiology, Henry Ford Health System, Detroit, MI 48202 (United States); Barton, Kenneth [Department of Radiation Oncology, Henry Ford Health System, Detroit, MI 48202 (United States); Dulchavsky, Scott A., E-mail:; Gautam, Subhash C., E-mail: [Department of General Surgery, Henry Ford Health System, Detroit, MI 48202 (United States)


    Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal human malignancy with dismal prognosis and few effective therapeutic options. Novel agents that are safe and effective are urgently needed. Oleanolic acid-derived synthetic triterpenoids are potent antitumorigenic agents, but their efficacy or the mechanism of action for pancreatic cancer has not been adequately investigated. In this study, we evaluated the antitumor activity and the mechanism of action of methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate (CDDO-Me), a oleanane-derived synthetic triterpenoid for human pancreatic cancer cell lines. CDDO-Me inhibited the growth of both K-ras mutated (MiaPaca2, Panc1 and Capan2) and wild-type K-ras (BxPC3) pancreatic cancer cells at very low concentrations. The growth inhibitory activity of CDDO-Me was attributed to the induction of apoptosis characterized by increased annexin-V-FITC binding and cleavage of PARP-1 and procaspases-3, -8 and-9. In addition, CDDO-Me induced the loss of mitochondrial membrane potential and release of cytochrome C. The antitumor activity of CDDO-Me was associated with the inhibition of prosurvival p-Akt, NF-κB and mammalian target of rapamycin (mTOR) signaling proteins and the downstream targets of Akt and mTOR, such as p-Foxo3a (Akt) and p-S6K1, p-eIF-4E and p-4E-BP1 (mTOR). Silencing of Akt or mTOR with gene specific-siRNA sensitized the pancreatic cancer cells to CDDO-Me, demonstrating Akt and mTOR as molecular targets of CDDO-Me for its growth inhibitory and apoptosis-inducing activity.

  6. CDDO-Me: A Novel Synthetic Triterpenoid for the Treatment of Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Dorrah Deeb


    Full Text Available Pancreatic ductal adenocarcinoma (PDA is one of the most lethal human malignancy with dismal prognosis and few effective therapeutic options. Novel agents that are safe and effective are urgently needed. Oleanolic acid-derived synthetic triterpenoids are potent antitumorigenic agents, but their efficacy or the mechanism of action for pancreatic cancer has not been adequately investigated. In this study, we evaluated the antitumor activity and the mechanism of action of methyl-2-cyano-3,12-dioxooleana-1,9(11-dien-28-oate (CDDO-Me, a oleanane-derived synthetic triterpenoid for human pancreatic cancer cell lines. CDDO-Me inhibited the growth of both K-ras mutated (MiaPaca2, Panc1 and Capan2 and wild-type K-ras (BxPC3 pancreatic cancer cells at very low concentrations. The growth inhibitory activity of CDDO-Me was attributed to the induction of apoptosis characterized by increased annexin-V-FITC binding and cleavage of PARP-1 and procaspases-3, -8 and-9. In addition, CDDO-Me induced the loss of mitochondrial membrane potential and release of cytochrome C. The antitumor activity of CDDO-Me was associated with the inhibition of prosurvival p-Akt, NF-κB and mammalian target of rapamycin (mTOR signaling proteins and the downstream targets of Akt and mTOR, such as p-Foxo3a (Akt and p-S6K1, p-eIF-4E and p-4E-BP1 (mTOR. Silencing of Akt or mTOR with gene specific-siRNA sensitized the pancreatic cancer cells to CDDO-Me, demonstrating Akt and mTOR as molecular targets of CDDO-Me for its growth inhibitory and apoptosis-inducing activity.

  7. The triterpenoid CDDO-Me inhibits bleomycin-induced lung inflammation and fibrosis.

    Directory of Open Access Journals (Sweden)

    Ajit A Kulkarni

    Full Text Available Pulmonary Fibrosis (PF is a devastating progressive disease in which normal lung structure and function is compromised by scarring. Lung fibrosis can be caused by thoracic radiation, injury from chemotherapy and systemic diseases such as rheumatoid arthritis that involve inflammatory responses. CDDO-Me (Methyl 2-cyano-3,12-dioxooleana-1,9(11dien-28-oate, Bardoxolone methyl is a novel triterpenoid with anti-fibrotic and anti-inflammatory properties as shown by our in vitro studies. Based on this evidence, we hypothesized that CDDO-Me would reduce lung inflammation, fibrosis and lung function impairment in a bleomycin model of lung injury and fibrosis. To test this hypothesis, mice received bleomycin via oropharyngeal aspiration (OA on day zero and CDDO-Me during the inflammatory phase from days -1 to 9 every other day. Bronchoalveolar lavage fluid (BALF and lung tissue were harvested on day 7 to evaluate inflammation, while fibrosis and lung function were evaluated on day 21. On day 7, CDDO-Me reduced total BALF protein by 50%, alveolar macrophage infiltration by 40%, neutrophil infiltration by 90% (p≤0.01, inhibited production of the inflammatory cytokines KC and IL-6 by over 90% (p≤0.001, and excess production of the pro-fibrotic cytokine TGFβ by 50%. CDDO-Me also inhibited α-smooth muscle actin and fibronectin mRNA by 50% (p≤0.05. On day 21, CDDO-Me treatment reduced histological fibrosis, collagen deposition and αSMA production. Lung function was significantly improved at day 21 by treatment with CDDO-Me, as demonstrated by respiratory rate and dynamic compliance. These new findings reveal that CDDO-Me exhibits potent anti-fibrotic and anti-inflammatory properties in vivo. CDDO-Me is a potential new class of drugs to arrest inflammation and ameliorate fibrosis in patients who are predisposed to lung injury and fibrosis incited by cancer treatments (e.g. chemotherapy and radiation and by systemic autoimmune diseases.

  8. Preclinical evidences toward the use of triterpenoid CDDO-Me for solid cancer prevention and treatment. (United States)

    Wang, Yan-Yang; Zhe, Hong; Zhao, Ren


    Solid cancer remains a major cause of death in the world. As limited treatment options are currently available to patients with solid cancer, novel preventive control and effective therapeutic approaches are considered to be reasonable and decisive measures to combat this disease. The plant-derived triterpenoids, commonly used for medicinal purposes in many Asian countries, poses various pharmacological properties. A large number of triterpenoids exhibit cytotoxicity against a variety of cancer cells, and cancer preventive, as well as anticancer efficacy in preclinical animal models. To improve antitumor activity, some synthetic triterpenoid derivatives have been synthesized, including cyano-3,12-dioxooleana-1,9(11)- dien-28-oic (CDDO), its methyl ester (CDDO-Me), and imidazolide (CDDO-Im) derivatives. In this review, we will critically examine the current preclinical evidences of cancer preventive and therapeutic activity about one of the synthetic triterpenoids, CDDO-Me. Both in vitro and in vivo effects of this agent and related molecular mechanisms are presented.

  9. The effect of ex vivo CDDO-Me activation on nuclear factor erythroid 2-related factor 2 pathway in white blood cells from patients with septic shock. (United States)

    Noel, Sanjeev; Zheng, Laura; Navas-Acien, Ana; Fuchs, Ralph J


    Nuclear factor erythroid 2-related factor 2 (NRF2) has been shown to protect against experimental sepsis in mice and lipopolysaccharide (LPS)-induced inflammation in ex vivo white blood cells from healthy subjects by upregulating cellular antioxidant genes. The objective of this study was to test the hypothesis that ex vivo methyl 2-cyano-3,12-dioxoolean-1,9-dien-28-oate (CDDO-Me) activates NRF2-regulated antioxidant genes in white blood cells from patients with septic shock and protects against LPS-induced inflammation and reactive oxidative species production. Peripheral blood was collected from 18 patients with septic shock who were being treated in medical and surgical intensive care units. Real-time polymerase chain reaction was used to quantify the expression of NRF2 target genes (NQO1, HO-1, GCLM, and FTL) and IL-6 in peripheral blood mononuclear cells (PBMCs), monocytes, and neutrophils after CDDO-Me treatment alone or after subsequent LPS exposure. Superoxide anion (O2) was measured to assess the effect of CDDO-Me pretreatment on subsequent LPS exposure. Treatment with CDDO-Me increased the gene expression of NQO1 (P = 0.04) and decreased the expression of HO-1 (P = 0.03) in PBMCs from patients with septic shock. Purified monocytes exhibited significant increases in the expression of NQO1 (P = 0.01) and GCLM (P = 0.003) after CDDO-Me treatment. Levels of other NRF2 target genes (HO-1 and FTL) remained similar to those of vehicle-treated cells. Peripheral blood mononuclear cells showed a trend toward increased IL-6 gene expression after CDDO-Me treatment, whereas purified monocytes showed a trend toward decreased IL-6. There was no discernible trend in the IL-6 expression subsequent to LPS treatment in either vehicle-treated or CDDO-Me-treated PBMCs and monocytes. Treatment with CDDO-Me significantly increased O2 production in PBMCs (P = 0.04). Although CDDO-Me pretreatment significantly attenuated O2 production to subsequent LPS exposure (P = 0.03), the

  10. Conformational isomerization of N-(naphthalen-1-yl)-N-(phenyl(quinolin-3-yl)methyl)amide derivatives

    Institute of Scientific and Technical Information of China (English)


    A series of N-(naphthalen-1-yl)-N-(phenyl(quinolin-3-yl)methyl)amide derivatives were designed and synthesized as anti-Mycobacterium tuberculosis drugs. NMR spectra showed that two conformational isomers of these compounds exist in solution,which is not due to cis-trans isomerization of amide bond. We proposed that the spatial interactions between three large aromatic groups caused the conformational isomerization,which was supported by molecular modeling and X-ray diffraction.

  11. Quantification of primary fatty acid amides in commercial tallow and tallow fatty acid methyl esters by HPLC-APCI-MS. (United States)

    Madl, Tobias; Mittelbach, Martin


    Primary fatty acid amides are a group of biologically highly active compounds which were already identified in nature. Here, these substances were determined in tallow and tallow fatty acid methyl esters for the first time. As tallow is growing in importance as an oleochemical feedstock for the soap manufacturing, the surfactant as well as the biodiesel industry, the amounts of primary fatty acid amides have to be considered. As these compounds are insoluble in tallow as well as in the corresponding product e.g. tallow fatty acid methyl esters, filter plugging can occur. For the quantification in these matrices a purification step and a LC-APCI-MS method were developed. Although quantification of these compounds can be performed by GC-MS, the presented approach omitted any derivatization and increased the sensitivity by two orders of magnitude. Internal standard calibration using heptadecanoic acid amide and validation of the method yielded a limit of detection of 18.5 fmol and recoveries for the tallow and fatty acid methyl ester matrices of 93% and 95%, respectively. A group of commercially available samples were investigated for their content of fatty acid amides resulting in an amount of up to 0.54%m/m (g per 100 g) in tallow and up to 0.16%m/m (g per 100 g) in fatty acid methyl esters.

  12. Amide cis-trans isomerization in aqueous solutions of methyl N-formyl-D-glucosaminides and methyl N-acetyl-D-glucosaminides: chemical equilibria and exchange kinetics. (United States)

    Hu, Xiaosong; Zhang, Wenhui; Carmichael, Ian; Serianni, Anthony S


    Amide cis-trans isomerization (CTI) in methyl 2-deoxy-2-acylamido-d-glucopyranosides was investigated by (1)H and (13)C NMR spectroscopy. Singly (13)C-labeled methyl 2-deoxy-2-formamido-d-glucopyranoside (MeGlcNFm) anomers provided standard (1)H and (13)C chemical shifts and (1)H-(1)H and (13)C-(13)C spin-coupling constants for cis and trans amides that are detected readily in aqueous solution. Equipped with this information, doubly (13)C-labeled methyl 2-deoxy-2-acetamido-d-glucopyranoside (MeGlcNAc) anomers were investigated, leading to the detection and quantification of cis and trans amides in this biologically important aminosugar. In comparison to MeGlcNFm anomers, the percentage of cis amide in aqueous solutions of MeGlcNAc anomers is small ( approximately 23% for MeGlcNFm versus approximately 1.8% for MeGlcNAc at 42 degrees C) but nevertheless observable with assistance from (13)C-labeling. Temperature studies gave thermodynamic parameters DeltaG degrees , DeltaH degrees , and DeltaS degrees for cis-trans interconversion in MeGlcNFm and MeGlcNAc anomers. Cis/trans equilibria depended on anomeric configuration, with solutions of alpha-anomers containing less cis amide than those of beta-anomers. Confirmation of the presence of cis amide in MeGlcNAc solutions derived from quantitative (13)C saturation transfer measurements of CTI rate constants as a function of solution temperature, yielding activation parameters E(act), DeltaG degrees (), DeltaH degrees (), and DeltaS degrees () for saccharide CTI. Rate constants for the conversion of trans to cis amide in MeGlcNFm and MeGlcNAc anomers ranged from 0.02 to 3.59 s(-1) over 31-85 degrees C, compared to 0.24-80 s(-1) for the conversion of cis to trans amide over the same temperature range. Energies of activation ranged from 16-19 and 19-20 kcal/mol for the cis --> trans and trans --> cis processes, respectively. Complementary DFT calculations on MeGlcNFm and MeGlcNAc model structures were conducted to evaluate

  13. In vitro evaluation of N-methyl amide tripeptidomimetics as substrates for the human intestinal di-/tri-peptide transporter hPEPT1

    DEFF Research Database (Denmark)

    Andersen, Rikke; Nielsen, Carsten Uhd; Begtrup, Mikael;


    application of N-methyl amide bioisosteres as peptide bond replacements in tripeptides in order to decrease degradation by peptidases and yet retain affinity for and transport via hPEPT1. Seven structurally diverse N-methyl amide tripeptidomimetics were selected based on a principal component analysis...... of structural properties of 6859 N-methyl amide tripeptidomimetics. In vitro extracellular degradation of the selected tripeptidomimetics as well as affinity for and transepithelial transport via hPEPT1 were investigated in Caco-2 cells. Decreased apparent degradation was observed for all tripeptidomimetics...... to be substrates for hPEPT1 than tripeptidomimetics with charged side chains. The results of the present study indicate that the N-methyl amide peptide bond replacement approach for increasing bioavailability of tripeptidomimetic drug candidates is not generally applicable to all tripeptides. Nevertheless...

  14. Synthesis of new fatty acids amides from aminolysis of fatty acid methyl esters (FAMEs); Sintese de novas amidas graxas a partir da aminolise de esteres metilicos

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Carolina R.; Montes D' Oca, Caroline da Ros; Duarte, Rodrigo da C.; Kurz, Marcia H.S.; Primel, Ednei G.; Clementin, Rosilene M.; Villarreyes, Joaquin Ariel M.; Montes D' Oca, Marcelo G., E-mail: dqmdoca@furg.b [Universidade Federal do Rio Grande, RS (Brazil). Escola de Quimica e Alimentos


    Recent biochemical and pharmacological studies have led to the characterization of different fatty acid amides as a new family of biologically active lipids. Here, we describe the synthesis of new amides from C16:0, 18:0, 18:1 and 18:1, OH fatty acids (FFA) families with cyclic and acyclic amines and demonstrate for the first time that these compounds produce cytotoxic effects. Application of this method to the synthesis of fatty acid amides was performed using the esters aminolysis as a key step and various carboxylic amides were prepared in good yield from fatty acid methyl esters (FAMEs). (author)

  15. Synthesis and Crystal Structure of Cis-syn Cyclobutane 1-(Carboxyethyl)thymine Dimer Monopentyl Amide Monotryptophan Methyl Ester Amide

    Institute of Scientific and Technical Information of China (English)

    TANG Wen-Jian; SONG Hai-Bin; SONG Qin-Hua


    The crystal structure of the title compound (C34H47N7O9, Mr=697.79) has been determined by single-crystal X-ray diffraction. The crystal belongs to monoclinic, space group P21 with a=9.000(8), b=11.360(10), c=17.841(15)(A), β=97.083(14)°, V=1810(3) (A)3, Z=2, F(000)=744, Dc=1.280 g/cm3, μ=0.094 mm-1, the final R=0.0721 and wR=0.1942 for 2479 observed reflections with Ⅰ > 2σ(Ⅰ). The two methyl groups attached to the cyclobutane ring are cis oriented. An intramolecular hydrogen bond (N(6)-H(6)…O(8)) (A)ntroduces rigidity into the title molecule and the crystal structure is stabilized by intermolecular N-H…O hydrogen bonds.

  16. Synthesis, structural and conformational study of new amides derived from 2-methyl-2-azabicyclo[2.2.2]octan-5 syn ( anti) amines (United States)

    Toledano, M. S.; Fernández, M. J.; Huertas, R.; Gálvez, E.; Server, J.; Cano, F. H.; Bellanato, J.; Carmona, P.


    A series of amides derived from syn and anti 2-methyl-2-azabicyclo[2.2.2]octan-5-amines has been synthesized and studied by IR, Raman, 1H and 13C NMR spectroscopy. The crystal structure of 2-methyl-5- syn-(4-quinolinecarboxamide)-2-azabicyclo[2.2.2]octane Id has been determined by X-ray diffraction. It has been found that syn amides present a preferred conformation in CDCl 3 solution, with the CH 3H bond in exo position. This is also observed for compound Id in the solid state. However, for anti amides the CH 3N bond adopts a favoured endo position. A conformational analysis using molecular modelling techniques was undertaken in order to gain additional information.

  17. Physicochemical and electrochemical properties of N-methyl-N-methoxymethylpyrrolidinium bis(fluorosulfonyl)amide and its lithium salt composites (United States)

    Horiuchi, Shunsuke; Yoshizawa-Fujita, Masahiro; Takeoka, Yuko; Rikukawa, Masahiro


    The ionic liquid (IL) N-Methyl-N-methoxymethylpyrrolidinium bis(fluorosulfonyl)amide ([Pyr1,1O1][FSA]) was synthesized, and its physicochemical and electrochemical properties were investigated with respect to its application as an electrolyte in lithium-ion secondary batteries operating over a wide temperature range. [Pyr1,1O1][FSA]/Li salt (0.34 mol kg-1) composites were prepared by adding lithium bis(trifluoromethylsulfonyl)amide (LiTFSA) into the IL. [Pyr1,1O1][FSA] and [Pyr1,1O1][FSA]/LiTFSA exhibited melting temperatures (Tm) below -30 °C. [Pyr1,1O1][FSA] exhibited a higher ionic conductivity value as compared with that of the corresponding IL with only alkyl substituents. The electrochemical window for both [Pyr1,1O1][FSA] and [Pyr1,1O1][FSA]/LiTFSA was 5.1 V. Stable lithium deposition and dissolution occurred on a Ni electrode at 25 °C.

  18. Synthesis, Antifungal Activity and Structure-Activity Relationships of Novel 3-(Difluoromethyl-1-methyl-1H-pyrazole-4-carboxylic Acid Amides

    Directory of Open Access Journals (Sweden)

    Shijie Du


    Full Text Available A series of novel 3-(difluoromethyl-1-methyl-1H-pyrazole-4-carboxylic acid amides were synthesized and their activities were tested against seven phytopathogenic fungi by an in vitro mycelia growth inhibition assay. Most of them displayed moderate to excellent activities. Among them N-(2-(5-bromo-1H-indazol-1-ylphenyl-3-(difluoro-methyl-1-methyl-1H-pyrazole-4-carboxamide (9m exhibited higher antifungal activity against the seven phytopathogenic fungi than boscalid. Topomer CoMFA was employed to develop a three-dimensional quantitative structure-activity relationship model for the compounds. In molecular docking, the carbonyl oxygen atom of 9m could form hydrogen bonds towards the hydroxyl of TYR58 and TRP173 on SDH.

  19. Bardoxolone methyl induces apoptosis and autophagy and inhibits epithelial-to-mesenchymal transition and stemness in esophageal squamous cancer cells. (United States)

    Wang, Yan-Yang; Yang, Yin-Xue; Zhao, Ren; Pan, Shu-Ting; Zhe, Hong; He, Zhi-Xu; Duan, Wei; Zhang, Xueji; Yang, Tianxin; Qiu, Jia-Xuan; Zhou, Shu-Feng


    Natural and synthetic triterpenoids have been shown to kill cancer cells via multiple mechanisms. The therapeutic effect and underlying mechanism of the synthetic triterpenoid bardoxolone methyl (C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid; CDDO-Me) on esophageal cancer are unclear. Herein, we aimed to investigate the anticancer effects and underlying mechanisms of CDDO-Me in human esophageal squamous cell carcinoma (ESCC) cells. Our study showed that CDDO-Me suppressed the proliferation and arrested cells in G2/M phase, and induced apoptosis in human ESCC Ec109 and KYSE70 cells. The G2/M arrest was accompanied with upregulated p21Waf1/Cip1 and p53 expression. CDDO-Me significantly decreased B-cell lymphoma-extra large (Bcl-xl), B-cell lymphoma 2 (Bcl-2), cleaved caspase-9, and cleaved poly ADP ribose polymerase (PARP) levels but increased the expression level of Bcl-2-associated X (Bax). Furthermore, CDDO-Me induced autophagy in both Ec109 and KYSE70 cells via suppression of the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway. There were interactions between the autophagic and apoptotic pathways in Ec109 and KYSE70 cells subject to CDDO-Me treatment. CDDO-Me also scavenged reactive oxygen species through activation of the nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2) pathway in Ec109 and KYSE70 cells. CDDO-Me inhibited cell invasion, epithelial-mesenchymal transition, and stemness in Ec109 and KYSE70 cells. CDDO-Me significantly downregulated E-cadherin but upregulated Snail, Slug, and zinc finger E-box-binding homeobox 1 (TCF-8/ZEB1) in Ec109 and KYSE70 cells. CDDO-Me significantly decreased the expression of octamer-4, sex determining region Y-box 2 (Sox-2), Nanog, and B lymphoma Mo-MLV insertion region 1 homolog (Bmi-1), all markers of cancer cell stemness, in Ec109 and KYSE70 cells. Taken together, these results indicate that CDDO-Me is a promising anticancer agent

  20. A comparative study of MP2, B3LYP, RHF and SCC-DFTB force fields in predicting the vibrational spectra of N-acetyl-L-alanine-N'-methyl amide: VA and VCD spectra

    DEFF Research Database (Denmark)

    Bohr, Henrik; Jalkanen, Karl J.; Elstner, M.;


    spectroscopic probes which can be used to identify specific secondary structural elements in peptides, polypeptides and proteins. In this work we present our comparative analysis of the MP2, B3LYP, RHF and SCC-DFTB quantum force fields to predict the vibrational absorption (VA) and vibrational circular......Recently we have looked for spectroscopic probes for secondary structural elements in the vibrational spectra of N-acetyl-L-alanine N'-methyl amide (NALANMA), L-alanine (LA), N-acetyl-L-alanyl-L-alanine N'-methyl amide (NALALANMA) and L-alanyl-L-alanine (LALA). Our goal has been to identify...

  1. Corrosion of Ni in 1-butyl-1-methyl-pyrrolidinium bis (trifluoromethylsulfonyl) amide room-temperature ionic liquid: an in situ X-ray imaging and spectromicroscopy study. (United States)

    Bozzini, Benedetto; Gianoncelli, Alessandra; Kaulich, Burkhard; Kiskinova, Maya; Mele, Claudio; Prasciolu, Mauro


    This paper reports a pioneering application of soft X-ray scanning transmission microscopy (STXM), combined with micro-spot X-ray absorption spectroscopy (XAS) and X-ray fluorescence spectroscopy (XRF), for the investigation of the corrosion of metal electrodes in contact with room-temperature ionic liquids (RTIL). Using an open electrochemical cell in vacuo we explore some fundamental aspects of the aggressiveness of the 1-butyl-1-methyl-pyrrolidinium bis(trifluoromethylsulfonyl)amide ([BMP][TFSA]) RTIL towards Ni under in situ electrochemical polarisation. The possibility of imaging electrochemically-induced morphological features in conjunction with micro-XAS and XRF spectroscopies has provided unprecedented details regarding the space distribution and chemical state of corrosion products.

  2. Gas Phase Decarbonylation and Cyclization Reactions of Protonated N-Methyl- N-Phenylmethacrylamide and Its Derivatives Via an Amide Claisen Rearrangement (United States)

    Wang, Hao-Yang; Xu, Chu; Zhu, Wei; Liu, Guo-Sheng; Guo, Yin-Long


    Gas phase decarbonylation and cyclization reactions of protonated N-methyl- N-phenylmethacrylamide and its derivatives ( M·H+) were studied by electrospray ionization-tandem mass spectrometry (ESI-MS/MS). MS/MS experiments of M·H+ showed product ions were formed by loss of CO, which could only occur with an amide Claisen rearrangement. Mechanisms for the gas phase decarbonylation and cyclization reactions were proposed based on the accurate m/z measurements and MS/MS experiments with deuterated compounds. Theoretical computations showed the gas phase Claisen rearrangement was a major driving force for initiating gas phase decarbonylation and cyclization reactions of M·H+. Finally, the influence of different phenyl substituents on the gas phase Claisen rearrangement was evaluated. Electron-donating groups at the para-position of the phenyl moiety promoted the gas phase Claisen rearrangement to give a high abundance of fragment ions [ M - CO + H]+. By contrast, electron-withdrawing groups on the phenyl moiety retarded the Claisen rearrangement, but gave a fragment ion at m/z 175 by loss of neutral radicals of substituents on the phenyl, and a fragment ion at m/z 160 by further loss of a methyl radical.

  3. Synthesis, structural, conformational and pharmacological study of some amides derived from 3 -methyl-2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9α-amine (United States)

    Iriepa, I.; Bellanato, J.; Gálvez, E.; Gil-Alberdi, B.


    Some mono-substituted amides ( 2- 5) derived from 3-methyl-2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9α-amine were synthesized and studied by IR, 1H and 13C NMR spectroscopy. The crystal structure of 3-methyl-2,4-diphenyl-9α-(3,5-dichlorobenzamido)-3-azabicyclo[3.3.1]nonane ( 3) was determined by X-ray diffraction. NMR data showed that all compounds adopt in CDCl 3 a preferred flattened chair-chair conformation with the N-CH 3 group in equatorial disposition. X-ray data agreed with this conformation in the case of compound 3. IR data revealed that compounds 2 and 3 present a C dbnd O⋯HN intermolecular bond in the solid state. This conclusion was also confirmed by X-ray data of compound 3. In the case of compound 5, IR results suggested intermolecular NH⋯N-heterocyclic bonding. On the contrary, in the pyrazine derivative ( 4), IR, 1H and 13C NMR data showed the presence of an intramolecular NH⋯N1″-heterocyclic hydrogen bond in the solid state and solution. Moreover, NMR and IR data showed a preferred trans disposition for the NH-C dbnd O group. NMR also revealed free rotation of the -NH-CO-R group around C9-NH bond. Pharmacological assays on mice were drawn to evaluate analgesic activity.


    Institute of Scientific and Technical Information of China (English)

    DING Youjun; QI Daquan


    The copolymerizations of methyl acrylate (MA) with different N- arylmethacrylamide ( N - ArMA )were carried out in benzene solution by free radical initiation.The compositions of the copolymers were deter mined by 1H NMR method. The monomer reactivity ratios were calculated by the Fineman- Ross (F- R)method. The reactivity ratios and the activity of various N- ArMA with MA were investigated.

  5. N-Ethyl-2-[1-(2-hy-droxy-4-methyl-phen-yl)ethyl-idene]hydrazinecarbo-thio-amide. (United States)

    Anderson, Brian J; Hall, Jeffrey R; Jasinski, Jerry P


    The title compound, C12H17N3OS, crystallizes with two independent mol-ecules (A and B) in the asymmetric unit. The dihedral angle between the mean planes of the benzene ring and the hydrazinecarbo-thio-amide group are 6.9 (4) and 37.2 (5)° in mol-ecules A and B, respectively. An intra-molecular O-H⋯N hydrogen bond is observed in each mol-ecule. This serves to maintain an approximately planar conformation for mol-ecule A, but leaves a significant twist between these two groups in mol-ecule B. In the crystal, a weak N-H⋯S inter-action is observed, forming inversion dimers among the B mol-ecules and resulting in an R 2 (2)(8) motif. These dimers are further inter-connected by weak N-H⋯O and C-H⋯O inter-molecular inter-actions, forming chains along [011].

  6. Synthesis, structural and conformational study of some amides derived from 3-methyl-3-azabicyclo[3.2.1]octan-8α(β)-amines (United States)

    Iriepa, I.; Bellanato, J.; Gálvez, E.; Madrid, A. I.


    Some amides ( 1α- 7α and 1β- 7β) derived from 3-methyl-3-azabicyclo[3.2.1]octan-8α(β)-amines were synthesized and studied by IR, 1H and 13C NMR spectroscopies. The assignment of all carbon and protons resonances was achieved through the application of one dimensional selective NOE and two dimensional NMR techniques: homonuclear NOESY and heteronuclear 1H- 13C gHSQC correlated spectroscopies. Total correlation spectroscopy (TOCSY) experiments were also carried out. In CDCl 3 solution, at room temperature, all compounds adopt a chair-envelope conformation with the N-CH 3 group in equatorial disposition. In the α-epimers the piperidine ring is puckered at C8 to relieve the interactions between the amido group and the H6(7)x protons. α- and β-Epimers show a preferred trans disposition for the NH-CO group and free rotation of the NH-CO-R group around the C8-NH bond. Finally, NMR and IR data reveal that compounds 7α and 7β adopt in CDCl 3 solution a preferred s-cis conformation for the O dbnd C-C dbnd C system, the proportion of this conformation increasing when the polarity of the solvent decreases.

  7. Bardoxolone methyl induces apoptosis and autophagy and inhibits epithelial-to-mesenchymal transition and stemness in esophageal squamous cancer cells

    Directory of Open Access Journals (Sweden)

    Wang YY


    Full Text Available Yan-Yang Wang,1,2 Yin-Xue Yang,3 Ren Zhao,1 Shu-Ting Pan,2,4 Hong Zhe,1 Zhi-Xu He,5 Wei Duan,6 Xueji Zhang,7 Tianxin Yang,8 Jia-Xuan Qiu,4 Shu-Feng Zhou2,51Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China; 2Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA; 3Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China; 4Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 5Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, People’s Republic of China; 6School of Medicine, Deakin University, Waurn Ponds, VIC, Australia; 7Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People’s Republic of China; 8Department of Internal Medicine, University of Utah and Salt Lake Veterans Affairs Medical Center, Salt Lake City, UT, USAAbstract: Natural and synthetic triterpenoids have been shown to kill cancer cells via multiple mechanisms. The therapeutic effect and underlying mechanism of the synthetic triterpenoid bardoxolone methyl (C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid; CDDO-Me on esophageal cancer are unclear. Herein, we aimed to investigate the anticancer effects and underlying mechanisms of CDDO-Me in human esophageal squamous cell carcinoma (ESCC cells. Our study showed that CDDO-Me suppressed the proliferation and arrested cells in G2/M phase, and induced apoptosis in human ESCC Ec109 and KYSE70 cells. The G2/M arrest was accompanied with upregulated p21Waf1/Cip1 and p53 expression. CDDO-Me significantly decreased B-cell lymphoma-extra large (Bcl-xl, B-cell lymphoma 2 (Bcl-2

  8. Structural, conformational and pharmacological study of some amides derived from 3-methyl-2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9 β-amine as potential analgesics (United States)

    Iriepa, I.; Gil-Alberdi, B.; Gálvez, E.; Herranz, M. J.; Bellanato, J.; Carmona, P.; Orjales, A.; Berisa, A.; Labeaga, L.


    A series of amides derived from 3-methyl-2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9 β-amine were synthesized and studied by IR, Raman, 1H and 13C NMR spectroscopy. The compounds studied displayed in CDCl 3 a preferred flattened chair-chair conformation. IR (at room and variable temperature) and 1H and 13C NMR data showed the presence of an intramolecular NH⋯N-heterocyclic hydrogen bond in the pirazine derivative ( IV). Pharmacological assays on mice were drawn to evaluate drug-induced behavioral alteration peripheral or central acute toxicity and analgesic activity.

  9. Structure of the BTB domain of Keap1 and its interaction with the triterpenoid antagonist CDDO.

    Directory of Open Access Journals (Sweden)

    Anne Cleasby

    Full Text Available The protein Keap1 is central to the regulation of the Nrf2-mediated cytoprotective response, and is increasingly recognized as an important target for therapeutic intervention in a range of diseases involving excessive oxidative stress and inflammation. The BTB domain of Keap1 plays key roles in sensing environmental electrophiles and in mediating interactions with the Cul3/Rbx1 E3 ubiquitin ligase system, and is believed to be the target for several small molecule covalent activators of the Nrf2 pathway. However, despite structural information being available for several BTB domains from related proteins, there have been no reported crystal structures of Keap1 BTB, and this has precluded a detailed understanding of its mechanism of action and interaction with antagonists. We report here the first structure of the BTB domain of Keap1, which is thought to contain the key cysteine residue responsible for interaction with electrophiles, as well as structures of the covalent complex with the antagonist CDDO/bardoxolone, and of the constitutively inactive C151W BTB mutant. In addition to providing the first structural confirmation of antagonist binding to Keap1 BTB, we also present biochemical evidence that adduction of Cys 151 by CDDO is capable of inhibiting the binding of Cul3 to Keap1, and discuss how this class of compound might exert Nrf2 activation through disruption of the BTB-Cul3 interface.

  10. A synthetic triterpenoid CDDO-Im inhibits tumorsphere formation by regulating stem cell signaling pathways in triple-negative breast cancer.

    Directory of Open Access Journals (Sweden)

    Jae Young So

    Full Text Available Triple-negative breast cancer is associated with poor prognosis because of a high rate of tumor recurrence and metastasis. Previous studies demonstrated that the synthetic triterpenoid, CDDO-Imidazolide (CDDO-Im induced cell cycle arrest and apoptosis in triple-negative breast cancer. Since a small subpopulation of cancer stem cells has been suggested to be responsible for drug resistance and metastasis of tumors, our present study determined whether the effects of CDDO-Im in triple-negative breast cancer are due to the inhibition of a cancer stem cell subpopulation. CDDO-Im treatment markedly induced cell cycle arrest at G2/M-phase and apoptosis in the triple-negative breast cancer cell lines, SUM159 and MDA-MB-231. Because SUM159 cells were more sensitive to CDDO-Im than MDA-MB-231 cells, the effects of CDDO-Im on the cancer stem cell subpopulation were further investigated in SUM159 cells. SUM159 cells formed tumorspheres in culture, and the cancer stem cell subpopulation, CD24-/EpCAM+ cells, was markedly enriched in SUM159 tumorspheres. The CD24-/EpCAM+ cells in SUM159 tumorspheres were significantly inhibited by CDDO-Im treatment. CDDO-Im also significantly decreased sphere forming efficiency and tumorsphere size in both primary and secondary sphere cultures. PCR array of stem cell signaling genes showed that expression levels of many key molecules in the stem cell signaling pathways, such as Notch, TGF-β/Smad, Hedgehog and Wnt, were significantly down-regulated by CDDO-Im in SUM159 tumorspheres. Protein levels of Notch receptors (c-Notch1, Notch1 and Notch3, TGF-β/Smad (pSmad2/3 and Hedgehog downstream effectors (GLI1 also were markedly reduced by CDDO-Im. In conclusion, the present study demonstrates that the synthetic triterpenoid, CDDO-Im, is a potent anti-cancer agent against triple-negative breast cancer cells by targeting the cancer stem cell subpopulation.

  11. A new prearranged tripodant ligand ¤N,N',N''¤-trimethyl-¤N,N',N''¤tris(3-pyridyl)-1,3,5-benzene tricarboxamide is easily obtained via the ¤N¤-methyl amide effect

    DEFF Research Database (Denmark)

    Jørgensen, M.; Krebs, Frederik C


    The N-methyl amide cis generating effect has been utilised to create a new prearranged tripodant ligand in two synthetic steps from benzene-1,3,5-tricarbuxylic acid. Crystals of rhc ligand itself and of complexes with metal sails such as silver(I) triflate, copper(I) and copper(II) chloride...

  12. Nuclear magnetic resonance, fluorescence correlation spectroscopy and time-resolved fluorescence anisotropy studies of intermolecular interactions in bis(1-methyl-1H-imidazol-3-ium-3-yl)dihydroborate bis(trifluoromethylsulfonyl)amide and its mixtures with various cosolvents (United States)

    Sahu, Prabhat Kumar; Nanda, Raju; Seth, Sudipta; Ghosh, Arindam; Sarkar, Moloy


    Keeping in mind the potential usefulness of mixed ionic liquid (IL)-cosolvents systems in several industrial applications, intermolecular interactions between a borate-based IL, bis(1-methyl-1H-imidazol-3-ium-3-yl)dihydroborate bis(trifluoromethylsulfonyl)amide ([BIMIMDBA][TF2N]), and its binary mixtures with several molecular solvents has been investigated through NMR and fluorescence spectroscopy. Analysis of the 1H chemical shifts (δ/ppm) and translational diffusion coefficients (D) of the IL in different solvent mixtures demonstrate interplay of nonspecific (ion-dipole) and specific (hydrogen bonding) interactions in governing the properties of these mixtures. Fluorescence correlation spectroscopy (FCS) and time-resolved fluorescence anisotropy data provide evidence in favour of different IL-solvent interaction for different IL-cosolvent systems.

  13. The therapeutic response of CDDO-Me in the esophageal squamous cell carcinoma (ESCC) cells is mediated by CaMKIIα. (United States)

    Wang, Yan-Yang; Zhou, Shun; Zhao, Ren; Hai, Ping; Zhe, Hong


    CDDO-Me has exhibited a potent anticancer effect in human esophageal squamous cell carcinoma (ESCC) cells in our previous study, but the molecular interactome remains elusive. We applied the approach of stable-isotope labeling by amino acids in cell culture (SILAC) to assess the proteomic responses of CDDO-Me treatment in human ESCC Ec109 cells. The data were subsequently validated using Western blot assay. The results of our study revealed that CDDO-Me increased the expression level of 543 protein molecules, but decreased the expression level of 709 protein molecules in Ec109 cells. Among these modulated protein molecules, calcium/calmodulin-dependent protein kinase type II subunit α (CaMKIIα) was highly expressed in all tested ESCC cell lines, whereas its expression levels were substantially lower in normal control cell line. Its silencing by small interfering RNA inhibited CDDO-Me induced apoptosis and autophagy in ESCC cells. Collectively, these data demonstrate that the therapeutic response of CDDO-Me in the human ESCC cells is mediated by CaMKIIα.

  14. Cytoprotection of Human Endothelial Cells Against Oxidative Stress by 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im): Application of Systems Biology to Understand the Mechanism of Action (United States)


    oyl]imidazole (CDDO-Im): Application of systems biology to understand the mechanism of action Xinyu Wang a,n, James A. Bynumb,c, Solomon Stavchansky...2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im): Application of systems biology to understand the mechanism of action 5a. CONTRACT...wide systems biology approach. In the study, we examined the cytoprotective effect of CDDO-Im against oxidative stress in HUVEC and compared it to

  15. Stability of a Ag/AgCl reference electrode equipped with an ionic liquid salt bridge composed of 1-methyl-3-octylimidazolium bis(trifluoromethanesulfonyl)-amide in potentiometry of pH standard buffers. (United States)

    Shibata, Manabu; Yamanuki, Mikito; Iwamoto, Yasukazu; Nomura, Satoshi; Kakiuchi, Takashi


    The stability of a Ag/AgCl reference electrode equipped with a gelled ionic liquid, 1-methyl-3-octylimidazolium bis(trifluoromethanesulfonyl)amide (C(8)mimC(1)C(1)N), as a salt bridge, was examined in the potentiometry of pH standard solutions. The variation in the liquid junction potential (LJP) of the ionic liquid (IL)-type reference electrode, measured with respect to a double junction-type KCl reference electrode, was within 1 mV when one standard solution was replaced by another, except for the phthalate standard. The time course of the potential of the IL-type reference electrode showed a standard deviation of ±0.3 mV in all buffer solutions. The reproducible deviation of the potential of the IL-type reference electrode in the phthalate pH standard amounted to 5 mV. The deviation is due to the partition of the hydrogen phthalate in the C(8)mimC(1)C(1)N, influencing the phase boundary potential (PBP) across the interface between C(8)mimC(1)C(1)N and the phthalate standard. If a citrate standard is used instead of the phthalate buffer, the IL salt bridge works satisfactorily as a salt bridge for a reference electrode suitable for potentiometoric pH measurements.

  16. Retinobenzoic acids. 4. Conformation of aromatic amides with retinoidal activity. Importance of trans-amide structure for the activity. (United States)

    Kagechika, H; Himi, T; Kawachi, E; Shudo, K


    N-Methylation of two retinoidal amide compounds, 4-[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)carbamoyl]benz oic acid (3, Am80) and 4-[[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2- naphthalenyl)carbonyl]amino]benzoic acid (5, Am580), resulted in the disappearance of their potent differentiation-inducing activity on human promyelocytic leukemia cell line HL-60. Studies with 1H NMR and UV spectroscopy indicated that large conformational differences exist between the active secondary amides and the inactive N-methyl amides. From a comparison of the spectroscopic results of these amides with those of stilbene derivatives, the conformations of the active amides are expected to resemble that of (E)-stilbene, whereas the inactive amides resemble the Z isomer: 3 (Am80) and 5 (Am580) have a trans-amide bond and their whole structures are elongated, while the N-methylated compounds [4 (Am90) and 6 (Am590)] have a cis-amide bond, resulting in the folding of the two benzene rings. These structures in the crystals were related to those in solution by 13C NMR spectroscopic comparison between the two phases (solid and solution).

  17. An azole, an amide and a limonoid from Vepris uguenensis (Rutaceae). (United States)

    Cheplogoi, Peter K; Mulholland, Dulcie A; Coombes, Philip H; Randrianarivelojosia, Milijaona


    The limonoid derivative, methyl uguenenoate, the azole, uguenenazole, and the amide, uguenenonamide, together with the known furoquinoline alkaloids flindersiamine and maculosidine, and syringaldehyde have been isolated from the root of the East African Rutaceae Vepris uguenensis. While methyl uguenenoate and the furoquinoline alkaloids displayed mild antimalarial activity, the azole and amide were completely inactive.

  18. Cytoprotection of human endothelial cells against oxidative stress by 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im): application of systems biology to understand the mechanism of action. (United States)

    Wang, Xinyu; Bynum, James A; Stavchansky, Solomon; Bowman, Phillip D


    Cellular damage from oxidative stress, in particular following ischemic injury, occurs during heart attack, stroke, or traumatic injury, and is potentially reducible with appropriate drug treatment. We previously reported that caffeic acid phenethyl ester (CAPE), a plant-derived polyphenolic compound, protected human umbilical vein endothelial cells (HUVEC) from menadione-induced oxidative stress and that this cytoprotective effect was correlated with the capacity to induce heme oxygenase-1 (HMOX1) and its protein product, a phase II cytoprotective enzyme. To further improve this cytoprotective effect, we studied a synthetic triterpenoid, 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im), which is known as a potent phase II enzyme inducer with antitumor and anti-inflammatory activities, and compared it to CAPE. CDDO-Im at 200nM provided more protection to HUVEC against oxidative stress than 20μM CAPE. We explored the mechanism of CDDO-Im cytoprotection with gene expression profiling and pathway analysis and compared to that of CAPE. In addition to potent up-regulation of HMOX1, heat shock proteins (HSP) were also found to be highly induced by CDDO-Im in HUVEC. Pathway analysis results showed that transcription factor Nrf2-mediated oxidative stress response was among the top canonical pathways commonly activated by both CDDO-Im and CAPE. Compared to CAPE, CDDO-Im up-regulated more HSP and some of them to a much higher extent. In addition, CDDO-Im treatment affected Nrf2 pathway more significantly. These findings may provide an explanation why CDDO-Im is a more potent cytoprotectant than CAPE against oxidative stress in HUVEC.

  19. An Efficient Amide-Aldehyde-Alkene Condensation: Synthesis for the N-Allyl Amides. (United States)

    Quan, Zheng-Jun; Wang, Xi-Cun


    The allylamine skeleton represents a significant class of biologically active nitrogen compounds that are found in various natural products and drugs with well-recognized pharmacological properties. In this personal account, we will briefly discuss the synthesis of allylamine skeletons. We will focus on showing a general protocol for Lewis acid-catalyzed N-allylation of electron-poor N-heterocyclic amides and sulfonamide via an amide-aldehyde-alkene condensation reaction. The substrate scope with respect to N-heterocyclic amides, aldehydes, and alkenes will be discussed. This method is also capable of preparing the Naftifine motif from N-methyl-1-naphthamide or methyl (naphthalene-1-ylmethyl)carbamate, with paraformaldehyde and styrene in a one-pot manner.

  20. Preparation of amidated derivatives of carboxymethylcellulose. (United States)

    Taubner, Tomáš; Synytsya, Andriy; Čopíková, Jana


    Carboxymethylcellulose (CMC) was selected as substrate for amidation based on previous results described for monocarboxy cellulose (MCC) with the aim to prepare highly substituted products. In comparison with MCC containing uronic carboxyl groups at C-6 position, O-carboxymethyl groups in CMC should be more accessible for reagents because they are more distant from the polysaccharide chain. Two-step way of amidation was based on the esterification of CMC carboxyls by reaction with methanol and further amino-de-alkoxylation (aminolysis) of the obtained methyl ester with amidation reagents (n-alkylamines, hydrazine and hydroxylamine). Purity and substitution degree of the products were monitored by the vibration spectroscopic methods (FTIR and Raman) and organic elemental analysis. Analytical methods confirmed the preparation of highly or moderately substituted N-alkylamides, hydrazide and hydroxamic acid of CMC.

  1. Reliable determination of amidicity in acyclic amides and lactams. (United States)

    Glover, Stephen A; Rosser, Adam A


    Two independent computational methods have been used for determination of amide resonance stabilization and amidicities relative to N,N-dimethylacetamide for a wide range of acyclic and cyclic amides. The first method utilizes carbonyl substitution nitrogen atom replacement (COSNAR). The second, new approach involves determination of the difference in amide resonance between N,N-dimethylacetamide and the target amide using an isodesmic trans-amidation process and is calibrated relative to 1-aza-2-adamantanone with zero amidicity and N,N-dimethylacetamide with 100% amidicity. Results indicate excellent coherence between the methods, which must be regarded as more reliable than a recently reported approach to amidicities based upon enthalpies of hydrogenation. Data for acyclic planar and twisted amides are predictable on the basis of the degrees of pyramidalization at nitrogen and twisting about the C-N bonds. Monocyclic lactams are predicted to have amidicities at least as high as N,N-dimethylacetamide, and the β-lactam system is planar with greater amide resonance than that of N,N-dimethylacetamide. Bicyclic penam/em and cepham/em scaffolds lose some amidicity in line with the degree of strain-induced pyramidalization at the bridgehead nitrogen and twist about the amide bond, but the most puckered penem system still retains substantial amidicity equivalent to 73% that of N,N-dimethylacetamide.

  2. Incorporation of different crystallizable amide blocks in segmented poly(ester amide)s

    NARCIS (Netherlands)

    Lips, P.A.M.; Broos, R.; Heeringen, van M.J.M.; Dijkstra, P.J.; Feijen, J.


    High molecular weight segmented poly(ester amide)s were prepared by melt polycondensation of dimethyl adipate, 1,4-butanediol and a symmetrical bisamide-diol based on ε-caprolactone and 1,2-diaminoethane or 1,4-diaminobutane. FT-IR and WAXD analysis revealed that segmented poly(ester amide)s based

  3. Synthesis of novel poly(aryl ether amide)s containing the phthalazinone moiety

    Institute of Scientific and Technical Information of China (English)

    CHENG, Lin(程琳); JIAN, Xi- Gao(蹇锡高)


    Two novel heterocyclic diamine monomers: 1,2-dihydro-2-(4-aminophenyl)-4- [ 4-( 4-aminophenoxy ) phenyl ]-( 2H )-phtha-lazin-1-one and 1, 2-dihydro-2-( 4-aminophenyl)-4-[ 4-( 4-aminophenoxy)-3, 5-dimethylphenyl]-(2H)-phthalazin-1-one were successfully synthesized using readily available heterocyclic bisphenol-like monomers through two steps in high yield. A series of novel poly(aryl ether amide)s containing the phthalazinone moiety with inherent viscosities of 1.16-1.67 dL/g were prepared by the direct polymerization of the novel diamines and aromatic dicarboxylic acids using triphenyl phosphite and pyridine as condensing agents. The polymers were readily soluble in a variety of solvents such as N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc),dimethylsulfoxide (DMSO), N-methyl-2-pyrrolidinone (NMP), and pyridine. The polymers had high glass transition tenperatured(Tg) in the 291-329℃ range.

  4. Mechanism of fluorescence quenching of tyrosine derivatives by amide group (United States)

    Wiczk, Wiesław; Rzeska, Alicja; Łukomska, Joanna; Stachowiak, Krystyna; Karolczak, Jerzy; Malicka, Joanna; Łankiewicz, Leszek


    The difference between fluorescence lifetimes of the following amino acids: phenylalanine (Phe), tyrosine (Tyr), ( O-methyl)tyrosine (Tyr(Me)), (3-hydroxy)tyrosine (Dopa), (3,4-dimethoxy)phenylalanine (Dopa(Me) 2) and their amides was used to testify the mechanism of fluorescence quenching of aromatic amino acids by the amide group. On the basis of the Marcus theory of photoinduced electron transfer parabolic relationships between ln kET and ionization potentials reduced by energy of excitation ( IP-E ∗0,0) for the above-mentioned amino acids were obtained. This finding indicates the occurrence of photoinduced electron transfer from the excited chromophore group to the amide group.

  5. Chemical constituents from red algae Bostrychia radicans (Rhodomelaceae): new amides and phenolic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Ana Ligia Leandrini de; Silva, Denise B. da; Lopes, Norberto P.; Debonsi, Hosana M. [Universidade de Sao Paulo (FCFRP/USP), Ribeirao Preto, SP (Brazil). Fac. de Ciencias Farmaceuticas de Ribeirao Preto. Dept. de Quimica e Fisica; Yokoya, Nair S., E-mail: [Instituto de Botanica, Sao Paulo, SP (Brazil). Secao de Ficologia


    This study describes the isolation and structural determination of two amides, isolated for the first time: N,4-dihydroxy-N-(2'-hydroxyethyl)-benzamide (0.019%) and N,4-dihydroxy-N-(2'-hydroxyethyl)-benzeneacetamide (0.023%). These amides, produced by the red macroalgae Bostrychia radicans, had their structures assigned by NMR spectral data and MS analyses. In addition, this chemical study led to the isolation of cholesterol, heptadecane, squalene, trans-phytol, neophytadiene, tetradecanoic and hexadecanoic acids, methyl hexadecanoate and methyl 9-octadecenoate, 4-(methoxymethyl)-phenol, 4-hydroxybenzaldehyde, methyl 4-hydroxybenzeneacetate, methyl 2-hydroxy-3-(4-hydroxyphenyl)-propanoate, hydroquinone, methyl 4-hydroxymandelate, methyl 4-hydroxybenzoate, 4-hydroxybenzeneacetic acid and (4-hydroxyphenyl)-oxo-acetaldehyde. This is the first report concerning these compounds in B. radicans, contributing by illustrating the chemical diversity within the Rhodomelaceae family. (author)

  6. Chemical constituents from red algae Bostrychia radicans (Rhodomelaceae: new amides and phenolic compounds

    Directory of Open Access Journals (Sweden)

    Ana Lígia Leandrini de Oliveira


    Full Text Available This study describes the isolation and structural determination of two amides, isolated for the first time: N,4-dihydroxy-N-(2'-hydroxyethyl-benzamide (0.019% and N,4-dihydroxy-N-(2'-hydroxyethyl-benzeneacetamide (0.023%. These amides, produced by the red macroalgae Bostrychia radicans, had their structures assigned by NMR spectral data and MS analyses. In addition, this chemical study led to the isolation of cholesterol, heptadecane, squalene, trans-phytol, neophytadiene, tetradecanoic and hexadecanoic acids, methyl hexadecanoate and methyl 9-octadecenoate, 4-(methoxymethyl-phenol, 4-hydroxybenzaldehyde, methyl 4-hydroxybenzeneacetate, methyl 2-hydroxy-3-(4-hydroxyphenyl-propanoate, hydroquinone, methyl 4-hydroxymandelate, methyl 4-hydroxybenzoate, 4-hydroxybenzeneacetic acid and (4-hydroxyphenyl-oxo-acetaldehyde. This is the first report concerning these compounds in B. radicans, contributing by illustrating the chemical diversity within the Rhodomelaceae family.

  7. Coumarin amide derivatives as fluorescence chemosensors for cyanide anions

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qianqian [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China); Liu, Zhiqiang [State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong (China); Cao, Duxia, E-mail: [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China); Guan, Ruifang, E-mail: [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China); Wang, Kangnan; Shan, Yanyan; Xu, Yongxiao; Ma, Lin [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China)


    Four coumarin amide derivatives with 4-methyl coumarin or pyrene as terminal group have been synthesized. Their photophysical properties and recognition properties for cyanide anions have been examined. The results indicate that the compounds can recognize cyanide anions with obvious absorption and fluorescence spectra change, at the same time, obvious color and fluorescence change can be observed by naked eye. The in situ hydrogen nuclear magnetic resonance spectra and photophysical properties change confirm that Michael additions between the chemosensors and cyanide anions take place at the 4-position of coumarin. - Highlights: • Four coumarin amide derivatives with 4-methyl coumarin or pyrene as terminal group were synthesized. • The compounds can recognize cyanide anions with obvious absorption and fluorescence spectra change. • Michael additions between the chemosensors and cyanide anions take place at the 4-position of coumarin.

  8. Polycarbonate modified with crystallisable bis-ester tetra-amide units in a reaction extrusion process

    NARCIS (Netherlands)

    Zuiderduin, W.C.J.; Gaymans, R.J.


    Dry blends of polycarbonate (PC) and a bis-ester tetra-amide were extruded at 305 °C with a mini twin screw extruder. The bis-ester tetra-amide diamide (T6T6T-dimethyl) was composed of two and a half repeat units of Nylon 6,T and had methyl ester endgroups. During the extrusion, a trans-esterificati

  9. Iron(III) Chloride mediated reduction of Bis(1-isoquinolylcarbonyl)amide to an Amide

    Indian Academy of Sciences (India)

    Rojalin Sahu; Papuli Chaliha; Vadivelu Manivannan


    In methanol, FeCl3 reacted readily with L1H (L1H = bis(1-isoquinolylcarbonyl)amide) and afforded a complex having the formula [Fe(L2)Cl2] (1) {L2− = -((1-isoquinolyl)(methoxy)methyl)isoquinoline-1-carboxamide ion}. This reaction involves reduction of one of the two carbonyl groups present in L1H to (methoxy)methyl group. A plausible mechanism for the conversion of L1H to L2− has been proposed. Determination of molecular structure of 1 confirmed this conversion. Fe(III) ion is surrounded by three nitrogen atoms of the ligand and two chloride ions, imparting a rare distorted trigonal bipyramidal N3Cl2 coordination environment.

  10. Studies of linear correlation factor of dielectric polarization and excess dipolar free energies of amides in apolar solvents

    Indian Academy of Sciences (India)

    M Malathi; R Sabesan; S Krishnan


    The Kirkwood–Frohlich correlation factor (), Eyring's parameters and * and the dipolar excess free energies of dilute solutions of formamide, acetamide, -methyl acetamide, , -dimethyl formamide and , -dimethyl acetamide in 1,4-dioxan/benzene were obtained from a measurement of their static dielectric permittivities at 308 K. The fluid structure of these amides is discussed. Both in formamide and acetamide a dimeric linear chain with the individual dipoles more or less parallely oriented is preferred. In -methyl acetamide, the antiparallel orientation of dipoles at lower concentrations turns into a parallel orientation with increase of concentration. In tertiary amides, with increase of concentration, parallel orientation of dipoles with global value of tending to unity is observed. The dipolar excess free energy of mixing in a given solvent is of the order primary amide > secondary amide > tertiary amide.

  11. On the temperature dependence of amide I frequencies of peptides in solution. (United States)

    Amunson, Krista E; Kubelka, Jan


    The temperature dependence of the amide I vibrational frequencies of peptides in solution was investigated. In D2O, the amide I' bands of both an alpha-helical oligopeptide, the random-coil poly(L-lysine), and the simplest amide, N-methyl acetamide (NMA), exhibit linear frequency shifts of approximately 0.07 cm(-1)/degrees C with increasing temperature. Similar amide I frequency shifts are also observed for NMA in both polar (acetonitrile and DMSO) and nonpolar (1,4-dioxane) organic solvents, thus ruling out hydrogen-bonding strength as the cause of these effects. The experimental NMA amide I frequencies in the organic solvents can be accurately described by a simple theory based on the Onsager reaction field with temperature-dependent solvent dielectric properties and a solute molecular cavity. DFT-level calculations (BPW91/cc-pVDZ) for NMA with an Onsager reaction field confirm the significant contribution of the molecular cavity to the predicted amide I frequencies. Comparison of the computations to experimental data shows that the frequency-dependent response of the reaction field, taken into account by the index of refraction, is crucial for describing the amide I frequencies in polar solvents. The poor predictions of the model for the NMA amide I band in D2O might be due, in part, to the unknown temperature dependence of the refractive index of D2O in the mid-IR range, which was approximated by the available values in the visible region.

  12. Characteristic Conformation of Mosher’s Amide Elucidated Using the Cambridge Structural Database

    Directory of Open Access Journals (Sweden)

    Akio Ichikawa


    Full Text Available Conformations of the crystalline 3,3,3-trifluoro-2-methoxy-2-phenylpropanamide derivatives (MTPA amides deposited in the Cambridge Structural Database (CSD were examined statistically as Racid-enantiomers. The majority of dihedral angles (48/58, ca. 83% of the amide carbonyl groups and the trifluoromethyl groups ranged from –30° to 0° with an average angle θ1 of −13°. The other conformational properties were also clarified: (1 one of the fluorine atoms was antiperiplanar (ap to the amide carbonyl group, forming a staggered conformation; (2 the MTPA amides prepared from primary amines showed a Z form in amide moieties; (3 in the case of the MTPA amide prepared from a primary amine possessing secondary alkyl groups (i.e., Mosher-type MTPA amide, the dihedral angles between the methine groups and the carbonyl groups were syn and indicative of a moderate conformational flexibility; (4 the phenyl plane was inclined from the O–Cchiral bond of the methoxy moiety with an average dihedral angle θ2 of +21°; (5 the methyl group of the methoxy moiety was ap to the ipso-carbon atom of the phenyl group.

  13. Characteristic conformation of Mosher's amide elucidated using the cambridge structural database. (United States)

    Ichikawa, Akio; Ono, Hiroshi; Mikata, Yuji


    Conformations of the crystalline 3,3,3-trifluoro-2-methoxy-2-phenylpropanamide derivatives (MTPA amides) deposited in the Cambridge Structural Database (CSD) were examined statistically as Racid-enantiomers. The majority of dihedral angles (48/58, ca. 83%) of the amide carbonyl groups and the trifluoromethyl groups ranged from -30° to 0° with an average angle θ1 of -13°. The other conformational properties were also clarified: (1) one of the fluorine atoms was antiperiplanar (ap) to the amide carbonyl group, forming a staggered conformation; (2) the MTPA amides prepared from primary amines showed a Z form in amide moieties; (3) in the case of the MTPA amide prepared from a primary amine possessing secondary alkyl groups (i.e., Mosher-type MTPA amide), the dihedral angles between the methine groups and the carbonyl groups were syn and indicative of a moderate conformational flexibility; (4) the phenyl plane was inclined from the O-Cchiral bond of the methoxy moiety with an average dihedral angle θ2 of +21°; (5) the methyl group of the methoxy moiety was ap to the ipso-carbon atom of the phenyl group.

  14. Comparison of pH-sensitive degradability of maleic acid amide derivatives. (United States)

    Kang, Sunyoung; Kim, Youngeun; Song, Youngjun; Choi, Jin Uk; Park, Euddeum; Choi, Wonmin; Park, Jeongseon; Lee, Yan


    We synthesized five maleic acid amide derivatives (maleic, citraconic, cis-aconitic, 2-(2'-carboxyethyl) maleic, 1-methyl-2-(2'-carboxyethyl) maleic acid amide), and compared their degradability for the future development of pH-sensitive biomaterials with tailored kinetics of the release of drugs, the change of charge density, and the degradation of scaffolds. The degradation kinetics was highly dependent upon the substituents on the cis-double bond. Among the maleic acid amide derivatives, 2-(2'-carboxyethyl) maleic acid amide with one carboxyethyl and one hydrogen substituent showed appropriate degradability at weakly acidic pH, and the additional carboxyl group can be used as a pH-sensitive linker.

  15. Synthesis of Eu(Ⅲ) and Tb(Ⅲ) Complexes with New Aryl Amide Type Tetrapodal Ligand and Their Luminescence Properties

    Institute of Scientific and Technical Information of China (English)

    蔡正洪; 谭民裕


    A new aryl amide type tetrapodal ligand L (1, 1, 1, 1-tetrakis-{[(2-benzylaminoformyl) phenoxyl]methyl}methane) and its europium and terbium nitrate complexes were synthesized. The luminescence properties of these complexes were also studied.

  16. 40 CFR 721.3720 - Fatty amide. (United States)


    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty amide. 721.3720 Section 721.3720... Fatty amide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a fatty amide (PMN P-91-87) is subject to reporting under this...

  17. 40 CFR 721.2120 - Cyclic amide. (United States)


    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Cyclic amide. 721.2120 Section 721... Cyclic amide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a cyclic amide (PMN P-92-131) is subject to reporting under this section for...

  18. One-pot synthesis of amides by aerobic oxidative coupling of alcohols or aldehydes with amines using supported gold and base as catalysts

    DEFF Research Database (Denmark)

    Kegnæs, Søren; Mielby, Jerrik Jørgen; Mentzel, Uffe Vie


    Synthesis of amides by aerobic oxidative coupling of alcohols or aldehydes with amines via intermediate formation of methyl esters is highly efficient and selective when using a catalytic system comprised of supported gold nanoparticles and added base in methanol.......Synthesis of amides by aerobic oxidative coupling of alcohols or aldehydes with amines via intermediate formation of methyl esters is highly efficient and selective when using a catalytic system comprised of supported gold nanoparticles and added base in methanol....

  19. Amide-based inhibitors of p38alpha MAP kinase. Part 2: design, synthesis and SAR of potent N-pyrimidyl amides. (United States)

    Tester, Richland; Tan, Xuefei; Luedtke, Gregory R; Nashashibi, Imad; Schinzel, Kurt; Liang, Weiling; Jung, Joon; Dugar, Sundeep; Liclican, Albert; Tabora, Jocelyn; Levy, Daniel E; Do, Steven


    Optimization of a tri-substituted N-pyridyl amide led to the discovery of a new class of potent N-pyrimidyl amide based p38alpha MAP kinase inhibitors. Initial SAR studies led to the identification of 5-dihydrofuran as an optimal hydrophobic group. Additional side chain modifications resulted in the introduction of hydrogen bond interactions. Through extensive SAR studies, analogs bearing free amino groups and alternatives to the parent (S)-alpha-methyl benzyl moiety were identified. These compounds exhibited improved cellular activities and maintained balance between p38alpha and CYP3A4 inhibition.

  20. Preparation and evaluation at the delta opioid receptor of a series of linear leu-enkephalin analogues obtained by systematic replacement of the amides. (United States)

    Rochon, Kristina; Proteau-Gagné, Arnaud; Bourassa, Philippe; Nadon, Jean-François; Côté, Jérome; Bournival, Véronique; Gobeil, Fernand; Guérin, Brigitte; Dory, Yves L; Gendron, Louis


    Leu-enkephalin analogues, in which the amide bonds were sequentially and systematically replaced either by ester or N-methyl amide bonds, were prepared using classical organic chemistry as well as solid phase peptide synthesis (SPPS). The peptidomimetics were characterized using competition binding, ERK1/2 phosphorylation, receptor internalization, and contractility assays to evaluate their pharmacological profile over the delta opioid receptor (DOPr). The lipophilicity (LogD7.4) and plasma stability of the active analogues were also measured. Our results revealed that the last amide bond can be successfully replaced by either an ester or an N-methyl amide bond without significantly decreasing the biological activity of the corresponding analogues when compared to Leu-enkephalin. The peptidomimetics with an N-methyl amide function between residues Phe and Leu were found to be more lipophilic and more stable than Leu-enkephalin. Findings from the present study further revealed that the hydrogen-bond donor properties of the fourth amide of Leu-enkephalin are not important for its biological activity on DOPr. Our results show that the systematic replacement of amide bonds by isosteric functions represents an efficient way to design and synthesize novel peptide analogues with enhanced stability. Our findings further suggest that such a strategy can also be useful to study the biological roles of amide bonds.

  1. Three new amides from Streptomyces sp. H7372


    Cheenpracha, Sarot; Borris,Robert P; Tran,Tammy T.; Jee,Jap Meng; Seow, Heng Fong; Cheah,Hwen-Yee; Ho,Coy Choke; Chang, Leng Chee


    Three new amides, methyl phenatate A (1), actiphenamide (2) and actiphenol 1-β-D-glucopyranoside (3), along with thirteen known compounds, were isolated from the organic extract of a fermentation culture of Streptomyces sp. H7372. The structures were elucidated by spectroscopic methods including 1D- and 2D-NMR techniques, and MS analyses. Cycloheximide (6) and cyclo(ΔAla-L-Val) (8) gave a clear zone of inhibition of Ras-Raf-1 interaction in the yeast two-hybrid assay which showed hi...

  2. Rational design and synthesis of an orally bioavailable peptide guided by NMR amide temperature coefficients (United States)

    Wang, Conan K.; Northfield, Susan E.; Colless, Barbara; Chaousis, Stephanie; Hamernig, Ingrid; Lohman, Rink-Jan; Nielsen, Daniel S.; Schroeder, Christina I.; Liras, Spiros; Price, David A.; Fairlie, David P.; Craik, David J.


    Enhancing the oral bioavailability of peptide drug leads is a major challenge in drug design. As such, methods to address this challenge are highly sought after by the pharmaceutical industry. Here, we propose a strategy to identify appropriate amides for N-methylation using temperature coefficients measured by NMR to identify exposed amides in cyclic peptides. N-methylation effectively caps these amides, modifying the overall solvation properties of the peptides and making them more membrane permeable. The approach for identifying sites for N-methylation is a rapid alternative to the elucidation of 3D structures of peptide drug leads, which has been a commonly used structure-guided approach in the past. Five leucine-rich peptide scaffolds are reported with selectively designed N-methylated derivatives. In vitro membrane permeability was assessed by parallel artificial membrane permeability assay and Caco-2 assay. The most promising N-methylated peptide was then tested in vivo. Here we report a novel peptide (15), which displayed an oral bioavailability of 33% in a rat model, thus validating the design approach. We show that this approach can also be used to explain the notable increase in oral bioavailability of a somatostatin analog. PMID:25416591

  3. Nucleoside phosphorylation in amide solutions (United States)

    Schoffstall, A. M.; Kokko, B.


    The paper deals with phosphorylation in possible prebiotic nonaqueous solvents. To this end, phosphorylation of nucleosides using inorganic phosphates in amide solutions is studied at room and elevated temperatures. Reaction proceeds most readily in formamide and N-methylformamide. Products obtained at elevated temperature are nucleotides, nucleoside 2',3'-cyclic phosphates, and when the phosphate concentration is high, nucleoside diphosphates. At room temperature, adenosine afforded a mixture of nucleotides, but none of the cyclic nucleotide. Conditions leading to the highest relative percentage of cyclic nucleotide involve the use of low concentrations of phosphate and an excess of nucleoside.

  4. Biocompatibility and degradation of aliphatic segmented poly(ester amide)s : in vitro and in vivo evaluation

    NARCIS (Netherlands)

    Lips, PAM; van Luyn, MJA; Chiellini, F; Brouwer, LA; Velthoen, IW; Dijkstra, PJ; Feijen, J


    Aliphatic segmented poly(ester amide)s, comprising a crystallizable amide phase and a flexible amorphous ester phase, were investigated for potential use in biomedical applications. By varying the amide content and the type of crystallizable amide segments, the polymer's thermal and mechanical prope

  5. Design, synthesis, and fungicidal activities of imino diacid analogs of valine amide fungicides. (United States)

    Sun, Man; Yang, Hui-Hui; Tian, Lei; Li, Jian-Qiang; Zhao, Wei-Guang


    The novel imino diacid analogs of valine amides were synthesized via several steps, including the protection, amidation, deprotection, and amino alkylation of valine, with the resulting structures confirmed by (1)H and (13)C NMR and HRMS. Bioassays showed that some of these compounds exhibited good fungicidal activity. Notably, isopropyl 2-((1-((1-(3-fluorophenyl)ethyl)amino)-3-methyl-1-oxobutan-2-yl)amino)propanoate 5i displayed significant levels of control, at 50%, against Erysiphe graminis at 3.9μM as well as a level of potency very similar to the reference azoxystrobin, which gave 60% activity at this concentration. The present work demonstrates that imino diacid analogs of valine amides could be potentially useful key compounds for the development of novel fungicides against wheat powdery mildew.

  6. Catalytic synthesis of amides via aldoximes rearrangement. (United States)

    Crochet, Pascale; Cadierno, Victorio


    Amide bond formation reactions are among the most important transformations in organic chemistry because of the widespread occurrence of amides in pharmaceuticals, natural products and biologically active compounds. The Beckmann rearrangement is a well-known method to generate secondary amides from ketoximes. However, under the acidic conditions commonly employed, aldoximes RHC=NOH rarely rearrange into the corresponding primary amides RC(=O)NH2. In recent years, it was demonstrated that this atom-economical transformation can be carried out efficiently and selectively with the help of metal catalysts. Several homogeneous and heterogenous systems have been described. In addition, protocols offering the option to generate the aldoximes in situ from the corresponding aldehydes and hydroxylamine, or even from alcohols, have also been developed, as well as a series of tandem processes allowing the access to N-substituted amide products. In this Feature article a comprehensive overview of the advances achieved in this particular research area is presented.

  7. Pb(II)-promoted amide cleavage: mechanistic comparison to a Zn(II) analogue. (United States)

    Elton, Eric S; Zhang, Tingting; Prabhakar, Rajeev; Arif, Atta M; Berreau, Lisa M


    Two new Pb(II) complexes of the amide-appended nitrogen/sulfur epppa (N-((2-ethylthio)ethyl)-N-((6-pivaloylamido-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine) chelate ligand, [(epppa)Pb(NO3)2] (4-NO3) and [(epppa)Pb(ClO4)2] (4-ClO4), were prepared and characterized. In the solid state, 4-NO3 exhibits κ(5)-epppa chelate ligand coordination as well as the coordination of two bidentate nitrate ions. In acetonitrile, 4-NO3 is a 1:1 electrolyte with a coordinated NO3(-), whereas 4-ClO4 is a 1:2 electrolyte. Treatment of 4-ClO4 with 1 equiv Me4NOH·5H2O in CH3CN:CH3OH (3:5) results in amide methanolysis in a reaction that is akin to that previously reported for the Zn(II) analogue [(epppa)Zn](ClO4)2 (3-ClO4). (1)H NMR kinetic studies of the amide methanolysis reactions of 4-ClO4 and 3-ClO4 as a function of temperature revealed free energies of activation of 21.3 and 24.5 kcal/mol, respectively. The amide methanolysis reactions of 4-ClO4 and 3-ClO4 differ in terms of the effect of the concentration of methanol (saturation kinetics for 4-ClO4; second-order behavior for 3-ClO4), the observation of a small solvent kinetic isotope effect (SKIE) only for the reaction of the Zn(II)-containing 3-ClO4, and the properties of an initial intermediate isolated from each reaction upon treatment with Me4NOH·5H2O. These experimental results, combined with computational studies of the amide methanolysis reaction pathways of 4-ClO4 and 3-ClO4, indicate that the Zn(II)-containing 3-ClO4 initially undergoes amide deprotonation upon treatment with Me4NOH·5H2O. Subsequent amide protonation from coordinated methanol yields a structure containing a coordinated neutral amide and methoxide anion from which amide cleavage can then proceed. The rate-determining step in this pathway is either amide protonation or protonation of the leaving group. The Pb(II)-containing 4-ClO4 instead directly forms a neutral amide-containing, epppa-ligated Pb(II)-OH/Pb(II)-OCH3 equilibrium mixture upon treatment

  8. Microorganisms hydrolyse amide bonds; knowledge enabling read-across of biodegradability of fatty acid amides. (United States)

    Geerts, Roy; Kuijer, Patrick; van Ginkel, Cornelis G; Plugge, Caroline M


    To get insight in the biodegradation and potential read-across of fatty acid amides, N-[3-(dimethylamino)propyl] cocoamide and N-(1-ethylpiperazine) tall oil amide were used as model compounds. Two bacteria, Pseudomonas aeruginosa PK1 and Pseudomonas putida PK2 were isolated with N-[3-(dimethylamino)propyl] cocoamide and its hydrolysis product N,N-dimethyl-1,3-propanediamine, respectively. In mixed culture, both strains accomplished complete mineralization of N-[3-(dimethylamino)propyl] cocoamide. Aeromonas hydrophila PK3 was enriched with N-(1-ethylpiperazine) tall oil amide and subsequently isolated using agar plates containing dodecanoate. N-(2-Aminoethyl)piperazine, the hydrolysis product of N-(1-ethylpiperazine) tall oil amide, was not degraded. The aerobic biodegradation pathway for primary and secondary fatty acid amides of P. aeruginosa and A. hydrophila involved initial hydrolysis of the amide bond producing ammonium, or amines, where the fatty acids formed were immediately metabolized. Complete mineralization of secondary fatty acid amides depended on the biodegradability of the released amine. Tertiary fatty acid amides were not transformed by P. aeruginosa or A. hydrophila. These strains were able to utilize all tested primary and secondary fatty acid amides independent of the amine structure and fatty acid. Read-across of previous reported ready biodegradability results of primary and secondary fatty acid amides is justified based on the broad substrate specificity and the initial hydrolytic attack of the two isolates PK1 and PK3.

  9. Synthesis and Characterization of Poly(ether amide)s Containing Bisphthalazinone and Ether Linkages

    Institute of Scientific and Technical Information of China (English)

    Cheng LIU; Shou Hai ZHANG; Ming Jing WANG; Qi Zhen LIANG; Xi Gao JIAN


    A novel aromatic diacid, 4, 4'-bis[2-(4-carboxyphenyl)phthalazin-1-one-4-yl]-bisphenyl ether Ⅲ, containing bisphthalazinone and ether linkages was prepared from nucleophilic substitution of p-chlorobenzonitrile with the bisphenol-like monomer Ⅰ, followed by alkaline hydrolysis of the intermediate dinitrile Ⅱ. A series of poly(ether amide)s containing bisphthalazinone and ether linkages derived from diacid Ⅲ and aromatic diamines were synthesized by one-step solution condensation polymerization using triphenyl phosphite and pyridine as condensing agents. Moreover, the properties of poly(ether amide)s including thermal stability,solubility and crystallinity were also studied.

  10. How amide hydrogens exchange in native proteins. (United States)

    Persson, Filip; Halle, Bertil


    Amide hydrogen exchange (HX) is widely used in protein biophysics even though our ignorance about the HX mechanism makes data interpretation imprecise. Notably, the open exchange-competent conformational state has not been identified. Based on analysis of an ultralong molecular dynamics trajectory of the protein BPTI, we propose that the open (O) states for amides that exchange by subglobal fluctuations are locally distorted conformations with two water molecules directly coordinated to the N-H group. The HX protection factors computed from the relative O-state populations agree well with experiment. The O states of different amides show little or no temporal correlation, even if adjacent residues unfold cooperatively. The mean residence time of the O state is ∼100 ps for all examined amides, so the large variation in measured HX rate must be attributed to the opening frequency. A few amides gain solvent access via tunnels or pores penetrated by water chains including native internal water molecules, but most amides access solvent by more local structural distortions. In either case, we argue that an overcoordinated N-H group is necessary for efficient proton transfer by Grotthuss-type structural diffusion.

  11. Structures of Highly Twisted Amides Relevant to Amide N-C Cross-Coupling: Evidence for Ground-State Amide Destabilization. (United States)

    Pace, Vittorio; Holzer, Wolfgang; Meng, Guangrong; Shi, Shicheng; Lalancette, Roger; Szostak, Roman; Szostak, Michal


    Herein, we show that acyclic amides that have recently enabled a series of elusive transition-metal-catalyzed N-C activation/cross-coupling reactions are highly twisted around the N-C(O) axis by a new destabilization mechanism of the amide bond. A unique effect of the N-glutarimide substituent, leading to uniformly high twist (ca. 90°) irrespective of the steric effect at the carbon side of the amide bond has been found. This represents the first example of a twisted amide that does not bear significant steric hindrance at the α-carbon atom. The (15) N NMR data show linear correlations between electron density at nitrogen and amide bond twist. This study strongly supports the concept of amide bond ground-state twist as a blueprint for activation of amides toward N-C bond cleavage. The new mechanism offers considerable opportunities for organic synthesis and biological processes involving non-planar amide bonds.

  12. Green and selective synthesis of N-substituted amides using water soluble porphyrazinato copper(II) catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Ghodsinia, Sara S.E.; Akhlaghinia, Batool; Eshghi, Hossein, E-mail: [Ferdowsi University of Mashhad (Iran, Islamic Republic of). Faculty of Sciences. Department of Chemistry; Safaei, Elham [Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan (Iran, Islamic Republic of). Department of Chemistry


    N, N',N{sup ,} N{sup '}-Tetramethyl tetra-2,3-pyridinoporphyrazinato copper(II) methyl sulfate ([Cu(2,3-tmtppa)](MeSO{sub 4}){sub 4}) efficiently catalyzed the direct conversion of nitriles to N-substituted amides. The one pot selective synthesis of the N-substituted amides from nitriles and primary amines was performed in refluxing H{sub 2}O. The catalyst was recovered and reused at least four times, maintaining its efficiency. (author)

  13. Syntheses and metal ions recognition of dendritic calix[n]arenes(n=6,8)amide derivative

    Institute of Scientific and Technical Information of China (English)

    WANG Yunyan; CAI Yahua; YAN Chaoguo


    Dendritic p-t'butylcalix[n]arene amide derivatives with terminal amino groups of the first and second generations were synthesized by using divergent methods from ammonolysis of ethyl calixarylacetate with 1,6-diaminohexane and Michael addition of methyl acrylate.Their structures were confirmed by IR,1H NMR.The recognition properties of these amide derivatives for several kinds of metal ions were studied with UV-Vis spectroscopy.The results showed a great affinity for soft Ag+ and UO22+ ions and formed 1:2 or 1:3 stoichiometric complexes.

  14. Amide-induced phase separation of hexafluoroisopropanol-water mixtures depending on the hydrophobicity of amides. (United States)

    Takamuku, Toshiyuki; Wada, Hiroshi; Kawatoko, Chiemi; Shimomura, Takuya; Kanzaki, Ryo; Takeuchi, Munetaka


    Amide-induced phase separation of hexafluoro-2-propanol (HFIP)-water mixtures has been investigated to elucidate solvation properties of the mixtures by means of small-angle neutron scattering (SANS), (1)H and (13)C NMR, and molecular dynamics (MD) simulation. The amides included N-methylformamide (NMF), N-methylacetamide (NMA), and N-methylpropionamide (NMP). The phase diagrams of amide-HFIP-water ternary systems at 298 K showed that phase separation occurs in a closed-loop area of compositions as well as an N,N-dimethylformamide (DMF) system previously reported. The phase separation area becomes wider as the hydrophobicity of amides increases in the order of NMF amides due to the hydrophobic interaction gives rise to phase separation of the mixtures. In contrast, the disruption of HFIP clusters causes the recovery of the homogeneity of the ternary systems. The present results showed that HFIP clusters are evolved with increasing amide content to the lower phase separation concentration in the same mechanism among the four amide systems. However, the disruption of HFIP clusters in the NMP and DMF systems with further increasing amide content to the upper phase separation concentration occurs in a different way from those in the NMF and NMA systems.

  15. Salt forms of the pharmaceutical amide dihydrocarbamazepine. (United States)

    Buist, Amanda R; Kennedy, Alan R


    Carbamazepine (CBZ) is well known as a model active pharmaceutical ingredient used in the study of polymorphism and the generation and comparison of cocrystal forms. The pharmaceutical amide dihydrocarbamazepine (DCBZ) is a less well known material and is largely of interest here as a structural congener of CBZ. Reaction of DCBZ with strong acids results in protonation of the amide functionality at the O atom and gives the salt forms dihydrocarbamazepine hydrochloride {systematic name: [(10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)(hydroxy)methylidene]azanium chloride, C15H15N2O(+)·Cl(-)}, dihydrocarbamazepine hydrochloride monohydrate {systematic name: [(10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)(hydroxy)methylidene]azanium chloride monohydrate, C15H15N2O(+)·Cl(-)·H2O} and dihydrocarbamazepine hydrobromide monohydrate {systematic name: [(10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)(hydroxy)methylidene]azanium bromide monohydrate, C15H15N2O(+)·Br(-)·H2O}. The anhydrous hydrochloride has a structure with two crystallographically independent ion pairs (Z' = 2), wherein both cations adopt syn conformations, whilst the two hydrated species are mutually isostructural and have cations with anti conformations. Compared to neutral dihydrocarbamazepine structures, protonation of the amide group is shown to cause changes to both the molecular (C=O bond lengthening and C-N bond shortening) and the supramolecular structures. The amide-to-amide and dimeric hydrogen-bonding motifs seen for neutral polymorphs and cocrystalline species are replaced here by one-dimensional polymeric constructs with no direct amide-to-amide bonds. The structures are also compared with, and shown to be closely related to, those of the salt forms of the structurally similar pharmaceutical carbamazepine.

  16. Sequential backbone assignment based on dipolar amide-to-amide correlation experiments. (United States)

    Xiang, ShengQi; Grohe, Kristof; Rovó, Petra; Vasa, Suresh Kumar; Giller, Karin; Becker, Stefan; Linser, Rasmus


    Proton detection in solid-state NMR has seen a tremendous increase in popularity in the last years. New experimental techniques allow to exploit protons as an additional source of information on structure, dynamics, and protein interactions with their surroundings. In addition, sensitivity is mostly improved and ambiguity in assignment experiments reduced. We show here that, in the solid state, sequential amide-to-amide correlations turn out to be an excellent, complementary way to exploit amide shifts for unambiguous backbone assignment. For a general assessment, we compare amide-to-amide experiments with the more common (13)C-shift-based methods. Exploiting efficient CP magnetization transfers rather than less efficient INEPT periods, our results suggest that the approach is very feasible for solid-state NMR.

  17. Sequential backbone assignment based on dipolar amide-to-amide correlation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, ShengQi; Grohe, Kristof; Rovó, Petra; Vasa, Suresh Kumar; Giller, Karin; Becker, Stefan; Linser, Rasmus, E-mail: [Max Planck Institute for Biophysical Chemistry, Department for NMR-Based Structural Biology (Germany)


    Proton detection in solid-state NMR has seen a tremendous increase in popularity in the last years. New experimental techniques allow to exploit protons as an additional source of information on structure, dynamics, and protein interactions with their surroundings. In addition, sensitivity is mostly improved and ambiguity in assignment experiments reduced. We show here that, in the solid state, sequential amide-to-amide correlations turn out to be an excellent, complementary way to exploit amide shifts for unambiguous backbone assignment. For a general assessment, we compare amide-to-amide experiments with the more common {sup 13}C-shift-based methods. Exploiting efficient CP magnetization transfers rather than less efficient INEPT periods, our results suggest that the approach is very feasible for solid-state NMR.

  18. Assignment of methyl NMR resonances of a 52 kDa protein with residue-specific 4D correlation maps

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Subrata H.; Frueh, Dominique P., E-mail: [Johns Hopkins University School of Medicine, Department of Biophysics and Biophysical Chemistry (United States)


    Methyl groups have become key probes for structural and functional studies by nuclear magnetic resonance. However, their NMR signals cluster in a small spectral region and assigning their resonances can be a tedious process. Here, we present a method that facilitates assignment of methyl resonances from assigned amide groups. Calculating the covariance between sensitive methyl and amide 3D spectra, each providing correlations to C{sup α} and C{sup β} separately, produces 4D correlation maps directly correlating methyl groups to amide groups. Optimal correlation maps are obtained by extracting residue-specific regions, applying derivative to the dimensions subject to covariance, and multiplying 4D maps stemming from different 3D spectra. The latter procedure rescues weak signals that may be missed in traditional assignment procedures. Using these covariance correlation maps, nearly all assigned isoleucine, leucine, and valine amide resonances of a 52 kDa nonribosomal peptide synthetase cyclization domain were paired with their corresponding methyl groups.

  19. Role of an amide bond for self-assembly of surfactants. (United States)

    Bordes, Romain; Tropsch, Juergen; Holmberg, Krister


    Self-assembly in solution and adsorption at the air-water interface and at solid surfaces were investigated for two amino-acid-based surfactants with conductimetry, NMR, tensiometry, quartz crystal microbalance with monitoring of the dissipation (QCM-D), and surface plasmon resonance (SPR). The surfactants studied were sodium N-lauroylglycinate and sodium N-lauroylsarcosinate, differing only in a methyl group on the amide nitrogen for the sarcosinate. Thus, the glycinate but not the sarcosinate surfactant is capable of forming intermolecular hydrogen bonds via the amide group. It was found that the amide bond, N-methylated or not, gave a substantial contribution to the hydrophilicity of the amphiphile. The ability to form intermolecular hydrogen bonds led to tighter packing at the air-water interface and at a hydrophobic surface. It also increased the tendency for precipitation as an acid-soap pair on addition of acid. Adsorption of the surfactants at a gold surface was also investigated and gave unexpected results. The sarcosine-based surfactant seemed to give bilayer adsorption, while the glycine derivative adsorbed as a monolayer.

  20. Synthesis of Calix[4]resorcinarene Amide Derivatives

    Institute of Scientific and Technical Information of China (English)

    Chao Guo YAN; Yun GE


    Three different synthetic routes were developed to introduce carbamoyloxy functional groups at the upper periphery of two calix[4]resorcinarenes. By treating activated esters 2a-b with excess corresponding amine such as 3-(dimethylamino)propylamine 3, α-phenethylamine 4 and triethylenetetramine 5, six amide derivatives 6a~8b were obtained in high yield (Route 1). The pyridine-linked amide derivatives 9a-b were prepared by using acid chloride intermediate (Route 2). The amide derivatives 10a-b were obtained in moderate yields by direct alkylation of phenolic hydroxyl groups of 1a-b with N,N-dipropylchloroacetoamide in the presence of K2CO3/KI in acetone (Route 3).

  1. Polyimides Containing Amide And Perfluoroisopropyl Links (United States)

    Dezem, James F.


    New polyimides synthesized from reactions of aromatic hexafluoroisopropyl dianhydrides with asymmetric amide diamines. Soluble to extent of at least 10 percent by weight at temperature of about 25 degrees C in common amide solvents such as N-methylpyrrolidone, N,N-dimethylacetamide, and N,N-dimethylformamide. Polyimides form tough, flexible films, coatings, and moldings. Glass-transition temperatures ranged from 300 to 365 degrees C, and crystalline melting temperatures observed between 543 and 603 degrees C. Display excellent physical, chemical, and electrical properties. Useful as adhesives, laminating resins, fibers, coatings for electrical and decorative purposes, films, wire enamels, and molding compounds.

  2. Enantioselective synthesis of α-oxy amides via Umpolung amide synthesis. (United States)

    Leighty, Matthew W; Shen, Bo; Johnston, Jeffrey N


    α-Oxy amides are prepared through enantioselective synthesis using a sequence beginning with a Henry addition of bromonitromethane to aldehydes and finishing with Umpolung Amide Synthesis (UmAS). Key to high enantioselection is the finding that ortho-iodo benzoic acid salts of the chiral copper(II) bis(oxazoline) catalyst deliver both diastereomers of the Henry adduct with high enantiomeric excess, homochiral at the oxygen-bearing carbon. Overall, this approach to α-oxy amides provides an innovative complement to alternatives that focus almost entirely on the enantioselective synthesis of α-oxy carboxylic acids.

  3. Amide-transforming activity of Streptomyces: possible application to the formation of hydroxy amides and aminoalcohols. (United States)

    Yamada, Shinya; Miyagawa, Taka-Aki; Yamada, Ren; Shiratori-Takano, Hatsumi; Sayo, Noboru; Saito, Takao; Takano, Hideaki; Beppu, Teruhiko; Ueda, Kenji


    To develop an efficient bioconversion process for amides, we screened our collection of Streptomyces strains, mostly obtained from soil, for effective transformers. Five strains, including the SY007 (NBRC 109343) and SY435 (NBRC 109344) of Streptomyces sp., exhibited marked conversion activities from the approximately 700 strains analyzed. These strains transformed diverse amide compounds such as N-acetyltetrahydroquinoline, N-benzoylpyrrolidine, and N-benzoylpiperidine into alcohols or N,O-acetals with high activity and regioselectivity. N,O-acetal was transformed into alcohol by serial tautomerization and reduction reactions. As such, Streptomyces spp. can potentially be used for the efficient preparation of hydroxy amides and aminoalcohols.

  4. Benzoxazole and benzothiazole amides as novel pharmacokinetic enhancers of HIV protease inhibitors. (United States)

    Jonckers, Tim H M; Rouan, Marie-Claude; Haché, Geerwin; Schepens, Wim; Hallenberger, Sabine; Baumeister, Judith; Sasaki, Jennifer C


    A new class of benzoxazole and benzothiazole amide derivatives exhibiting potent CYP3A4 inhibiting properties was identified. Extensive lead optimization was aimed at improving the CYP3A4 inhibitory properties as well as overall ADME profile of these amide derivatives. This led to the identification of thiazol-5-ylmethyl (2S,3R)-4-(2-(ethyl(methyl)amino)-N-isobutylbenzo[d]oxazole-6-carboxamido)-3-hydroxy-1-phenylbutan-2-ylcarbamate (C1) as a lead candidate for this class. This compound together with structurally similar analogues demonstrated excellent 'boosting' properties when tested in dogs. These findings warrant further evaluation of their properties in an effort to identify valuable alternatives to Ritonavir as pharmacokinetic enhancers.

  5. Synthesis of Poly(aryl amide imide)s Derived from o-diphenyltrimellitic Anhydride

    Institute of Scientific and Technical Information of China (English)


    The synthesis and characterization of a series of novel poly(aryl amide imide)s based on o-diphenyltrimellitic anhydride are described.The poly(aryl amide-imide)s having inherent viscosities of 0.39-1.43dL/g in N-methyl-2-pyrrolidinone at 30℃,were prepared by polymerization with aromatic diamines in N,N-dimethylacetamide and subsequent chemical imidization.All the polymers were amorphous,readily soluble in aprotic polar solvents such as DMAC,NMP,DMF,DMSO,and m-cresol,and could be cast to form flexible and tough films.The glass trsanition temperatures were in the range of 284-336℃,and the temperatures for 5% weight loss in nitrogen were above 468℃.

  6. Variation of protein backbone amide resonance by electrostatic field


    Sharley, John N.


    Amide resonance is found to be sensitive to electrostatic field with component parallel or antiparallel the amide C-N bond. This effect is linear and without threshold in the biologically plausible electrostatic field range -0.005 to 0.005 au. Variation of amide resonance varies Resonance-Assisted Hydrogen Bonding such as occurs in the hydrogen bonded chains of backbone amides of protein secondary structures such as beta sheet and alpha helix, varying the stability of the secondary structure....

  7. Metabolism of amino acid amides in Pseudomonas putida ATCC 12633

    NARCIS (Netherlands)

    Hermes, H.F.M.; Croes, L.M.; Peeters, W.P.H.; Peters, P.J.H.; Dijkhuizen, L.


    The metabolism of the natural amino acid L-valine, the unnatural amino acids D-valine, and D-, L-phenylglycine (D-, L-PG), and the unnatural amino acid amides D-, L-phenylglycine amide (D, L-PG-NH2) and L-valine amide (L-Val-NH2) was studied in Pseudomonas putida ATCC 12633. The organism possessed c

  8. Efficient Amide Based Halogenide Anion Receptors

    Institute of Scientific and Technical Information of China (English)

    Hong Xing WU; Feng Hua LI; Hai LIN; Shou Rong ZHU; Hua Kuan LIN


    In this paper, we present the synthesis and anion recognition properties of the amide based phenanthroline derivatives 1, 2 and 3. In all cases 1:1 receptor: anion complexes were observed. The receptors were found to be selective for fluoride and chloride respectively over other putative anionic guest species.


    thoracic and abdominal aorta. The use of a composite construction utilizing acrylate-amide foam is being evaluated in prostheses for mitral valve ...bleeding. The success of the initial experimental work has led to a clinical trial in which 99 replacement , bypass, or patch-angioplasty procedures... replacement , superior vena cava patch venoplasty, and esophageal replacement . (Author)

  10. Platinum catalysed hydrolytic amidation of unactivated nitriles

    NARCIS (Netherlands)

    Cobley, Christopher J.; Heuvel, Marco van den; Abbadi, Abdelilah; Vries, Johannes G. de


    The platinum(II) complex, [(Me2PO··H··OPMe2)PtH(PMe2OH)], efficiently catalyses the direct conversion of unactivated nitriles to N-substituted amides with both primary and secondary amines. Possible mechanisms for this reaction are discussed and evidence for initial amidine formation is reported. Is

  11. New optically active poly(amide-imide)s based on N,N '-(pyromellitoyl)-bis-L-amino acid and methylene diphenyl-4,4 '-diisocyanate

    DEFF Research Database (Denmark)

    Tian, Xiaoyu; Yao, Jinshui; Zhang, Xian;


    Five new optically active poly(amide-imide)s were synthesized through the direct polycondensation reaction between chiral N,N-(pyromellitoyl)-bis-L-amino acids and methylene diphenyl-4,4-diisocyanate in a medium consisting of N-methyl-2-pyrrolidone (NMP) and xylene. The resulted polymers were fully......,N-dimethyl formamide, dimethyl sulfoxide (DMSO), NMP, sulfuric acid, and para-methyl phenol. Same specific rotations of these polymers in these different solvents were obtained....

  12. Synthesis and structural studies of amino amide salts derived from 2-(aminomethyl)benzimidazole and α-amino acids (United States)

    Avila-Montiel, Concepción; Tapia-Benavides, Antonio R.; Falcón-León, Martha; Ariza-Castolo, Armando; Tlahuext, Hugo; Tlahuextl, Margarita


    2-{[(Ammoniumacetyl)amino]methyl}-1H-benzimidazol-3-ium dichloride 4, 2-{[(2-ammoniumpropanoyl)amino]methyl}-1H-benzimidazol-3-ium dichloride 5, and 2-{[(2-ammonium-3-phenylpropanoyl)amino]methyl}-1H-benzimidazol-3-ium dichloride 6 amino amides were synthesized via condensation of 2AMBZ dihydrochloride with the corresponding amino acid. Compounds 7-12 were obtained by replacing chloride ions (in salts 4-6) with nitrate or tetrachlorozincate ions. The results of X-ray diffraction crystallographic studies indicated that the geometries, charges and sizes of the anions are essential for the formation of the strong hydrogen bond interactions of compounds 4, 5, 9-12. Moreover, in most cases, the presence of water and solvent molecules stabilizes the supramolecular structures of these compounds. Nuclear magnetic resonance (NMR) and infrared (IR) spectroscopy indicated that the presence of chloride or tetrachlorozincate anions increases the acidity of the benzimidazolic and amide groups more significantly than the presence of nitrate anions. However, Quantum Theory of Atoms in Molecules (QTAIM) computations of the crystal structures demonstrate that amino amides interact more strongly with NO3- than with Cl- and ZnCl42- anions; this difference explains the spectroscopic results.

  13. Tertiary fatty amides as diesel fuel substitutes

    Energy Technology Data Exchange (ETDEWEB)

    Serdari, Aikaterini; Lois, Euripides; Stournas, Stamoulis [National Technical Univ. of Athens, Dept. of Chemical Engineering, Athens (Greece)


    This paper presents experimental results regarding the impact of adding different tertiary amides of fatty acids to mineral diesel fuel; an assessment of the behaviour of these compounds as possible diesel fuel extenders is also included. Measurements of cetane number, cold flow properties (cloud point, pour point and CFPP), density, kinematic viscosity, flash point and distillation temperatures are reported, while initial experiments concerning the effects on particulate emissions are also described. Most of the examined tertiary fatty amides esters have very good performance and they can be easily prepared from fatty acids (biomass). Such compounds or their blends could be used as mineral diesel fuel or even fatty acid methylesters (FAME, biodiesel) substitutes or extenders. (Author)

  14. An amidated carboxymethylcellulose hydrogel for cartilage regeneration. (United States)

    Leone, Gemma; Fini, Milena; Torricelli, Paola; Giardino, Roberto; Barbucci, Rolando


    An amidic derivative of carboxymethylcellulose was synthesized (CMCA). The new polysaccharide was obtained by converting a large percentage of carboxylic groups ( approximately 50%) of carboxymethylcellulose into amidic groups rendering the macromolecule quite similar to hyaluronan. Then, the polysaccharide (CMCA) was crosslinked. The behavior of CMCA hydrogel towards normal human articular chondrocytes (NHAC) was in vitro studied monitoring the cell proliferation and synthesis of extra cellular matrix (ECM) components and compared with a hyaluronan based hydrogel (Hyal). An extracellular matrix rich in cartilage-specific collagen and proteoglycans was secreted in the presence of hydrogels. The injectability of the new hydrogels was also analysed. An experimental in vivo model was realized to study the effect of CMCA and Hyal hydrogels in the treatment of surgically created partial thickness chondral defects in the rabbit knee. The preliminary results pointed out that CMCA hydrogel could be considered as a potential compound for cartilage regeneration.

  15. Amide-based Fluorescent Macrocyclic Anion Receptors

    Institute of Scientific and Technical Information of China (English)

    ZENG, Zhen-Ya(曾振亚); XU, Kuo-Xi(徐括喜); HE, Yong-Bing(何永炳); LIU, Shun-Ying(刘顺英); WU, Jin-Long(吴进龙); WEI, Lan-Hua(隗兰华); MENG, Ling-Zhi(孟令芝)


    Two fluorescent anion receptors (1 and 2) based on amide macrocycle were synthesized and corresponding fluorescence quenching induced by anion complexation was observed in different degree. Receptors form 1: 1 complexes with anions by hydrogen bonding interactions. Receptor 1 bound anions in the order of F->Cl->H2PO4->CH3COO->>Br-, I- and receptor 2 showed high selectivity to F- over other anions.

  16. Polyimides containing amide and perfluoroisopropylidene connecting groups (United States)

    Dezern, James F. (Inventor)


    New, thermooxidatively stable polyimides were prepared from the reaction of aromatic dianhydrides containing isopropylidene bridging groups with aromatic diamines containing amide connecting groups between the rings. Several of these polyimides were shown to be semi-crystalline as evidenced by wide angle x ray scattering and differential scanning calorimetry. Most of the polyimides form tough, flexible films with high tensile properties. These polyimide films exhibit enhanced solubility in organic solvents.

  17. DNA Methylation


    Alokail, Majed S.; Alenad, Amal M.


    The DNA of E. coli contains 19,120 6-methyladenines and 12,045 5-methylcytosines in addition to the four regular bases and these are formed by the postreplicative action of three DNA methyltransferases. The majority of the methylated bases are formed by the Dam and Dcm methyltransferases encoded by the dam (DNA adenine methyltransferase) and dcm (DNA cytosine methyltransferase) genes. Although not essential, Dam methylation is important for strand discrimination during repair of replication e...

  18. Luciferin Amides Enable in Vivo Bioluminescence Detection of Endogenous Fatty Acid Amide Hydrolase Activity. (United States)

    Mofford, David M; Adams, Spencer T; Reddy, G S Kiran Kumar; Reddy, Gadarla Randheer; Miller, Stephen C


    Firefly luciferase is homologous to fatty acyl-CoA synthetases. We hypothesized that the firefly luciferase substrate d-luciferin and its analogs are fatty acid mimics that are ideally suited to probe the chemistry of enzymes that release fatty acid products. Here, we synthesized luciferin amides and found that these molecules are hydrolyzed to substrates for firefly luciferase by the enzyme fatty acid amide hydrolase (FAAH). In the presence of luciferase, these molecules enable highly sensitive and selective bioluminescent detection of FAAH activity in vitro, in live cells, and in vivo. The potency and tissue distribution of FAAH inhibitors can be imaged in live mice, and luciferin amides serve as exemplary reagents for greatly improved bioluminescence imaging in FAAH-expressing tissues such as the brain.

  19. Conversion of amides to esters by the nickel-catalysed activation of amide C-N bonds. (United States)

    Hie, Liana; Fine Nathel, Noah F; Shah, Tejas K; Baker, Emma L; Hong, Xin; Yang, Yun-Fang; Liu, Peng; Houk, K N; Garg, Neil K


    Amides are common functional groups that have been studied for more than a century. They are the key building blocks of proteins and are present in a broad range of other natural and synthetic compounds. Amides are known to be poor electrophiles, which is typically attributed to the resonance stability of the amide bond. Although amides can readily be cleaved by enzymes such as proteases, it is difficult to selectively break the carbon-nitrogen bond of an amide using synthetic chemistry. Here we demonstrate that amide carbon-nitrogen bonds can be activated and cleaved using nickel catalysts. We use this methodology to convert amides to esters, which is a challenging and underdeveloped transformation. The reaction methodology proceeds under exceptionally mild reaction conditions, and avoids the use of a large excess of an alcohol nucleophile. Density functional theory calculations provide insight into the thermodynamics and catalytic cycle of the amide-to-ester transformation. Our results provide a way to harness amide functional groups as synthetic building blocks and are expected to lead to the further use of amides in the construction of carbon-heteroatom or carbon-carbon bonds using non-precious-metal catalysis.

  20. New Umami Amides: Structure-Taste Relationship Studies of Cinnamic Acid Derived Amides and the Natural Occurrence of an Intense Umami Amide in Zanthoxylum piperitum. (United States)

    Frerot, Eric; Neirynck, Nathalie; Cayeux, Isabelle; Yuan, Yoyo Hui-Juan; Yuan, Yong-Ming


    A series of aromatic amides were synthesized from various acids and amines selected from naturally occurring structural frameworks. These synthetic amides were evaluated for umami taste in comparison with monosodium glutamate. The effect of the substitution pattern of both the acid and the amine parts on umami taste was investigated. The only intensely umami-tasting amides were those made from 3,4-dimethoxycinnamic acid. The amine part was more tolerant to structural changes. Amides bearing an alkyl- or alkoxy-substituted phenylethylamine residue displayed a clean umami taste as 20 ppm solutions in water. Ultraperformance liquid chromatography coupled with a high quadrupole-Orbitrap mass spectrometer (UPLC/MS) was subsequently used to show the natural occurrence of these amides. (E)-3-(3,4-Dimethoxyphenyl)-N-(4-methoxyphenethyl)acrylamide was shown to occur in the roots and stems of Zanthoxylum piperitum, a plant of the family Rutaceae growing in Korea, Japan, and China.

  1. Synthesis of Novel Poly(aryl ether amide)s Containing the Phthalazinone Moiety

    Institute of Scientific and Technical Information of China (English)


    Two novel heterocyclic diamine monomers: 1,2-dihydro-2-(4-aminophenyl)-4-[4-(4-amin- ophenoxy)phenyl](2H)phthalazin-1-one and 1,2-dihydro-2-(4-aminophenyl)-4-[4-(4-aminophenoxy)-3,5-dimethylphenyl](2H)phthalazin-1-one were successfully synthesized from readily available heterocyclic bisphenol-like monomers in two steps in high yield. A series of novel poly(aryl ether amide)s containing the phthalazinone moiety were successfully prepared by the direct polymerization of the novel diamines and aromatic dicarboxylic acids using triphenyl phosphite and pyridine as condensing agents.


    Institute of Scientific and Technical Information of China (English)

    Xing-He Fan; Jing-Lun Zhou; Xiao-Fang Chen; Xin-Hua Wan; Qi-Feng Zhou


    A series of new optically active aromatic poly(ester amide)s containing a chiral group in the side chain prepared from the p-toluenesulfonic acid salt of o,o'-bis(leucyl)-hexanediol (TS-+LHD+TS-) and p-phthaloyl chloride and styrene-2,5-dicarbonyl chloride styrene have been synthesized by interfacial polymerization. The structure of the monomer is elucidated by FT-IR and elemental analysis. The thermal properties of the polymers were studied by DSC and TGA. The chiroptical properties of the above polymer have also been studied by circular dichroism (CD) spectroscopy. Results indicated that these polymers form helical structures.

  3. Variation of protein backbone amide resonance by electrostatic field

    CERN Document Server

    Sharley, John N


    Amide resonance is found to be sensitive to electrostatic field with component parallel or antiparallel the amide C-N bond. This effect is linear and without threshold in the biologically plausible electrostatic field range -0.005 to 0.005 au. Variation of amide resonance varies Resonance Assisted Hydrogen Bonding such as occurs in the hydrogen bonded chains of backbone amides of protein secondary structures such as beta sheet and non-polyproline helix such as alpha helix, varying the stability of the secondary structure. The electrostatic properties including permittivity of amino acid residue sidegroups influence the electrostatic field component parallel or antiparallel the C-N bond of each amide. The significance of this factor relative to other factors in protein folding depends on the magnitude of electrostatic field component parallel or antiparallel the C-N bond of each amide, and preliminary protein-scale calculations of the magnitude of these components suggest this factor warrants investigation in ...

  4. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2014. Scientific Opinion on Flavouring Group Evaluation 300, Revision 1 (FGE.300Rev1): One cyclo-aliphatic amide from chemical group 33

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Frandsen, Henrik Lauritz; Nørby, Karin Kristiane

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate a flavouring substance,cyclopropanecarboxylic acid (2-isopropyl-5-methyl-cyclohexyl)-amide [FL-no: 16.115] in the Flavouring Group Evaluation 300, Revision 1...... (FGE.300Rev1) using the Procedure in Commission Regulation (EC) No 1565/2000. This revision is made due to a re-evaluation of the flavouring substance, cyclopropanecarboxylic acid (2-isopropyl-5-methyl-cyclohexyl)-amide [FL-no: 16.115], as a 90-day dietary study in rats has become available...

  5. Electrochemical reduction of nitrate in the presence of an amide (United States)

    Dziewinski, Jacek J.; Marczak, Stanislaw


    The electrochemical reduction of nitrates in aqueous solutions thereof in the presence of amides to gaseous nitrogen (N.sub.2) is described. Generally, electrochemical reduction of NO.sub.3 proceeds stepwise, from NO.sub.3 to N.sub.2, and subsequently in several consecutive steps to ammonia (NH.sub.3) as a final product. Addition of at least one amide to the solution being electrolyzed suppresses ammonia generation, since suitable amides react with NO.sub.2 to generate N.sub.2. This permits nitrate reduction to gaseous nitrogen to proceed by electrolysis. Suitable amides include urea, sulfamic acid, formamide, and acetamide.

  6. AMID: autonomous modeler of intragenic duplication. (United States)

    Kummerfeld, Sarah K; Weiss, Anthony S; Fekete, Alan; Jermiin, Lars S


    Intragenic duplication is an evolutionary process where segments of a gene become duplicated. While there has been much research into whole-gene or domain duplication, there have been very few studies of non-tandem intragenic duplication. The identification of intragenically replicated sequences may provide insight into the evolution of proteins, helping to link sequence data with structure and function. This paper describes a tool for autonomously modelling intragenic duplication. AMID provides: identification of modularly repetitive genes; an algorithm for identifying repeated modules; and a scoring system for evaluating the modules' similarity. An evaluation of the algorithms and use cases are presented.

  7. DNA methylation

    DEFF Research Database (Denmark)

    Williams, Kristine; Christensen, Jesper; Helin, Kristian


    DNA methylation is involved in key cellular processes, including X-chromosome inactivation, imprinting and transcriptional silencing of specific genes and repetitive elements. DNA methylation patterns are frequently perturbed in human diseases such as imprinting disorders and cancer. The recent...... discovery that the three members of the TET protein family can convert 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) has provided a potential mechanism leading to DNA demethylation. Moreover, the demonstration that TET2 is frequently mutated in haematopoietic tumours suggests that the TET...... proteins are important regulators of cellular identity. Here, we review the current knowledge regarding the function of the TET proteins, and discuss various mechanisms by which they contribute to transcriptional control. We propose that the TET proteins have an important role in regulating DNA methylation...

  8. Reaction mechanism of the acidic hydrolysis of highly twisted amides: Rate acceleration caused by the twist of the amide bond. (United States)

    Mujika, Jon I; Formoso, Elena; Mercero, Jose M; Lopez, Xabier


    We present an ab initio study of the acid hydrolysis of a highly twisted amide and a planar amide analogue. The aim of these studies is to investigate the effect that the twist of the amide bond has on the reaction barriers and mechanism of acid hydrolysis. Concerted and stepwise mechanisms were investigated using density functional theory and polarizable continuum model calculations. Remarkable differences were observed between the mechanism of twisted and planar amide, due mainly to the preference for N-protonation of the former and O-protonation of the latter. In addition, we were also able to determine that the hydrolytic mechanism of the twisted amide will be pH dependent. Thus, there is a preference for a stepwise mechanism with formation of an intermediate in the acid hydrolysis, whereas the neutral hydrolysis undergoes a concerted-type mechanism. There is a nice agreement between the characterized intermediate and available X-ray data and a good agreement with the kinetically estimated rate acceleration of hydrolysis with respect to analogous undistorted amide compounds. This work, along with previous ab initio calculations, describes a complex and rich chemistry for the hydrolysis of highly twisted amides as a function of pH. The theoretical data provided will allow for a better understanding of the available kinetic data of the rate acceleration of amides upon twisting and the relation of the observed rate acceleration with intrinsic differential reactivity upon loss of amide bond resonance.

  9. New optically active poly(amide-imide)s derived from N,N'-(4,4-diphthaloyl)-bis-L-leucine and hydantoin derivatives: Synthesis and properties

    Institute of Scientific and Technical Information of China (English)

    Khalil Faghihi


    Six new optically active poly(amide-imide)s (5a-f) were synthesized through the direct polycondensation reaction of N,N'-(4,4'-diphthaloyl)-bis-L-leucine (3) with six hydantoin derivatives (4a-f). Triphenyl phosphlte (TPP)/pyridine in the presence of calcium chloride (CaCl_2) and N-methyl-2-pyrrolidone (NMP) were successfully applied for direct polycondensation. The polycondensation reactions produce a series of new poly(amide-imide)s (Sa-f) in high yields, and inherent viscosity between 0.42 and 0.55 dL/g. The resulting poly(amide-imide)s (Sa-f) were characterized by elemental analysis, viscosity measurements, thermal gravimetric analysis (TGA and DTG), solubility test and FT-IR spectroscopy.

  10. C-C bond formation and related reactions at the CNC backbone in (smif)FeX (smif = 1,3-di-(2-pyridyl)-2-azaallyl): dimerizations, 3 + 2 cyclization, and nucleophilic attack; transfer hydrogenations and alkyne trimerization (X = N(TMS)2, dpma = (di-(2-pyridyl-methyl)-amide)). (United States)

    Frazier, Brenda A; Williams, Valerie A; Wolczanski, Peter T; Bart, Suzanne C; Meyer, Karsten; Cundari, Thomas R; Lobkovsky, Emil B


    Molecular orbital analysis depicts the CNC(nb) backbone of the smif (1,3-di-(2-pyridyl)-2-azaallyl) ligand as having singlet diradical and/or ionic character where electrophilic or nucleophilic attack is plausible. Reversible dimerization of (smif)Fe{N(SiMe3)2} (1) to [{(Me3Si)2N}Fe]2(μ-κ(3),κ(3)-N,py2-smif,smif) (2) may be construed as diradical coupling. A proton transfer within the backbone-methylated, and o-pyridine-methylated smif of putative ((b)Me2(o)Me2smif)FeN(SiMe3)2 (8) provides a route to [{(Me3Si)2N}Fe]2(μ-κ(4),κ(4)-N,py2,C-((b)Me,(b)CH2,(o)Me2(smif)H))2 (9). A 3 + 2 cyclization of ditolyl-acetylene occurs with 1, leading to the dimer [{2,5-di(pyridin-2-yl)-3,4-di-(p-tolyl-2,5-dihydropyrrol-1-ide)}FeN(SiMe3)2]2 (11), and the collateral discovery of alkyne cyclotrimerization led to a brief study that identified Fe(N(SiMe3)2(THF) as an effective catalyst. Nucleophilic attack by (smif)2Fe (13) on (t)BuNCO and (2,6-(i)Pr2C6H3)NCO afforded (RNHCO-smif)2Fe (14a, R = (t)Bu; 14b, 2,6-(i)PrC6H3). Calculations suggested that (dpma)2Fe (15) would favorably lose dihydrogen to afford (smif)2Fe (13). H2-transfer to alkynes, olefins, imines, PhN═NPh, and ketones was explored, but only stoichiometric reactions were affected. Some physical properties of the compounds were examined, and X-ray structural studies on several dinuclear species were conducted.

  11. Synthesis and characterisation of uniform bisester tetra-amide segments

    NARCIS (Netherlands)

    Krijgsman, J.; Husken, D.; Gaymans, R.J.


    The synthesis and characterisation of a new type of high melting and fast crystallising amide units that can be used for copolymerisation have been studied. These bisester tetra-amide or TxTxT-dimethyl segments (T is a terephthalic unit and x=(CH2)n (n=2–8)) can be synthesised in a two-step reaction

  12. Synthesis of Novel Extractants——Amide Podands

    Institute of Scientific and Technical Information of China (English)

    TANGHong-bin; ZHUWen-bin; YEGuo-an; ZHUZhi-xuan; CHENWen-jun


    Amide podands which are used as a novel extractants are widely concerned recently. In the early stage, the studies were focused on the amide potands substituted with short-chain alky group, and for avoiding the formation of the second organic phase, aromatic, halogenated or higher alcohol compound must be used as diluents.

  13. Picosecond thermometer in the amide I band of myoglobin

    DEFF Research Database (Denmark)

    Austin, R.H.; Xie, A.; Meer, L. van der;


    The amide I and II bands in myoglobin show a heterogeneous temperature dependence, with bands at 6.17 and 6.43 mu m which are more intense at low temperatures. The amide I band temperature dependence is on the long wavelength edge of the band, while the short wavelength side has almost no tempera...

  14. Understanding the Amide-II Vibrations in β-Peptides. (United States)

    Zhao, Juan; Wang, Jianping


    In this work, the vibrational characteristics of the amide-II modes in β-peptides in five helical conformations, namely, 8-, 10-, 12-, 14-, and 10/12-helices, have been examined. Remarkable conformational dependence of the amide-II spectral profile is obtained by ab initio computations as well as modeling analysis. Intramolecular hydrogen-bonding interaction and its influence on backbone structure and on the amide-II local-mode transition frequencies and intensities are examined. Through-space and through-bond contributions of the amide-II vibrational couplings are analyzed, and it was found that hydrogen-bonding interaction is not a determining factor for the coupling strength. The results reported here provide useful benchmarks for understanding experimental amide-II infrared spectra of β-peptides and suggest the potential application of this mode on monitoring the structures and dynamics of β-peptides.

  15. Fatty acid amide hydrolase inhibition by neurotoxic organophosphorus pesticides. (United States)

    Quistad, G B; Sparks, S E; Casida, J E


    Organophosphorus (OP) compound-induced inhibition of acetylcholinesterase (AChE) and neuropathy target esterase explains the rapid onset and delayed neurotoxic effects, respectively, for OP insecticides and related compounds but apparently not a third or intermediate syndrome with delayed onset and reduced limb mobility. This investigation tests the hypothesis that fatty acid amide hydrolase (FAAH), a modulator of endogenous signaling compounds affecting sleep (oleamide) and analgesia (anandamide), is a sensitive target for OP pesticides with possible secondary neurotoxicity. Chlorpyrifos oxon inhibits 50% of the FAAH activity (IC50 at 15 min, 25 degrees C, pH 9.0) in vitro at 40--56 nM for mouse brain and liver, whereas methyl arachidonyl phosphonofluoridate, ethyl octylphosphonofluoridate (EOPF), oleyl-4H-1,3,2-benzodioxaphosphorin 2-oxide (oleyl-BDPO), and dodecyl-BDPO give IC50s of 0.08--1.1 nM. These BDPOs and EOPF inhibit mouse brain FAAH in vitro with > or =200-fold higher potency than for AChE. Five OP pesticides inhibit 50% of the brain FAAH activity (ED50) at diazinon, and methamidophos occurs near acutely toxic levels, profenofos and tribufos are effective at asymptomatic doses. Two BDPOs (dodecyl and phenyl) and EOPF are potent inhibitors of FAAH in vivo (ED50 0.5--6 mg/kg). FAAH inhibition of > or =76% in brain depresses movement of mice administered anandamide at 30 mg/kg ip, often leading to limb recumbency. Thus, OP pesticides and related inhibitors of FAAH potentiate the cannabinoid activity of anandamide in mice. More generally, OP compound-induced FAAH inhibition and the associated anandamide accumulation may lead to reduced limb mobility as a secondary neurotoxic effect.

  16. 2-Bromo-2-methyl-N-p-tolylpropanamide

    Directory of Open Access Journals (Sweden)

    Rodolfo Moreno-Fuquen


    Full Text Available In the title molecule, C11H14BrNO, there is twist between the mean plane of the amide group and the benzene ring [C(=O—N—C...;C torsion angle = −31.2 (5°]. In the crystal, intermolecular N—H...O and weak C—H...O hydrogen bonds link molecules into chains along [100]. The methyl group H atoms are disordered over two sets of sites with equal occupancy.

  17. Cytotoxic cassaine diterpenoid-diterpenoid amide dimers and diterpenoid amides from the leaves of Erythrophleum fordii. (United States)

    Du, Dan; Qu, Jing; Wang, Jia-Ming; Yu, Shi-Shan; Chen, Xiao-Guang; Xu, Song; Ma, Shuang-Gang; Li, Yong; Ding, Guang-Zhi; Fang, Lei


    Detailed phytochemical investigation from the leaves of Erythrophleum fordii resulted in the isolation of 13 compounds, including three cassaine diterpenoid-diterpenoid amide dimers (1, 3 and 5), and seven cassaine diterpenoid amides (6 and 8-13), together with three previously reported ones, erythrophlesins D (2), C (4) and 3beta-hydroxynorerythrosuamide (7). Compounds 1, 3 and 5 are further additions to the small group of cassaine diterpenoid dimers represented by erythrophlesins A-D. Their structures were determined by analysis of extensive one- and two-dimensional NMR experiments and ESIMS methods. Cytotoxic activities of the isolated compounds were tested against HCT-8, Bel-7402, BGC-823, A549 and A2780 human cancer cell lines in the MTT test. Results showed that compounds 1 and 3-5 exhibited significantly selective cytotoxic activities (IC(50)<10 microM) against these cells, respectively.

  18. Structural Characterization of N-Alkylated Twisted Amides: Consequences for Amide Bond Resonance and N-C Cleavage. (United States)

    Hu, Feng; Lalancette, Roger; Szostak, Michal


    Herein, we describe the first structural characterization of N-alkylated twisted amides prepared directly by N-alkylation of the corresponding non-planar lactams. This study provides the first experimental evidence that N-alkylation results in a dramatic increase of non-planarity around the amide N-C(O) bond. Moreover, we report a rare example of a molecular wire supported by the same amide C=O-Ag bonds. Reactivity studies demonstrate rapid nucleophilic addition to the N-C(O) moiety of N-alkylated amides, indicating the lack of n(N) to π*(C=O) conjugation. Most crucially, we demonstrate that N-alkylation activates the otherwise unreactive amide bond towards σ N-C cleavage by switchable coordination.

  19. Hepatoprotective amide constituents from the fruit of Piper chaba: Structural requirements, mode of action, and new amides. (United States)

    Matsuda, Hisashi; Ninomiya, Kiyofumi; Morikawa, Toshio; Yasuda, Daisuke; Yamaguchi, Itadaki; Yoshikawa, Masayuki


    The 80% aqueous acetone extract from the fruit of Piper chaba (Piperaceae) was found to have hepatoprotective effects on D-galactosamine (D-GalN)/lipopolysaccharide-induced liver injury in mice. From the ethyl acetate-soluble fraction, three new amides, piperchabamides E, G, and H, 33 amides, and four aromatic constituents were isolated. Among the isolates, several amide constituents inhibited D-GalN/tumor necrosis factor-alpha (TNF-alpha)-induced death of hepatocytes, and the following structural requirements were suggested: (i) the amide moiety is essential for potent activity; and (ii) the 1,9-decadiene structure between the benzene ring and the amide moiety tended to enhance the activity. Moreover, a principal constituent, piperine, exhibited strong in vivo hepatoprotective effects at doses of 5 and 10 mg/kg, po and its mode of action was suggested to depend on the reduced sensitivity of hepatocytes to TNF-alpha.

  20. Benzoylureas as removable cis amide inducers: synthesis of cyclic amides via ring closing metathesis (RCM). (United States)

    Brady, Ryan M; Khakham, Yelena; Lessene, Guillaume; Baell, Jonathan B


    Rapid and high yielding synthesis of medium ring lactams was made possible through the use of a benzoylurea auxiliary that serves to stabilize a cisoid amide conformation, facilitating cyclization. The auxiliary is released after activation under the mild conditions required to deprotect a primary amine, such as acidolysis of a Boc group in the examples given here. This methodology is a promising tool for the synthesis of medium ring lactams, macrocyclic natural products and peptides.

  1. Poly(amide-graft-acrylate) interfacial compounds (United States)

    Zamora, Michael Perez

    Graft copolymers with segments of dissimilar chemistries have been shown to be useful in a variety of applications as surfactants, compatibilizers, impact modifiers, and surface modifiers. The most common route to well defined graft copolymers is through the use of macromonomers, polymers containing a reactive functionality and thus capable of further polymerization. However, the majority of the studies thus far have focused on the synthesis of macromonomers capable of reacting with vinyl monomers to form graft copolymers. This study focused on the synthesis of macromonomers capable of participating in condensation polymerizations. A chain transfer functionalization method was utilized. Cysteine was evaluated as a chain transfer agent for the synthesis of amino acid functionalized poly(acrylate) and poly(methacrylate) macromonomers. Low molar mass, functionalized macromonomers were produced. These macromonomers were proven to be capable of reacting with amide precursors to form poly(amide-g-acrylate) graft copolymers. Macromonomers and graft copolymers were characterized by gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) spectroscopy, elemental analysis (EA), inductively coupled plasma (ICP), and differential scanning calorimetry (DSC). The second part of this research involved poly(dimethacrylate) dental restorative materials. Volumetric shrinkage during the cure of these resins results in a poor interface between the resin and the remaining tooth structure, limiting the lifetime of these materials. Cyclic anhydrides were incorporated into common monomer compositions used in dental applications. Volume expansion from the ring opening hydrolysis of these anhydrides was shown to be feasible. The modified dental resins were characterized by swelling, extraction and ultraviolet spectroscopy (UV), and density measurements. Linear poLymers designed to model the crosslinked dental resins were

  2. A reduced-amide inhibitor of Pin1 binds in a conformation resembling a twisted-amide transition state. (United States)

    Xu, Guoyan G; Zhang, Yan; Mercedes-Camacho, Ana Y; Etzkorn, Felicia A


    The mechanism of the cell cycle regulatory peptidyl prolyl isomerase (PPIase), Pin1, was investigated using reduced-amide inhibitors designed to mimic the twisted-amide transition state. Inhibitors, R-pSer-Ψ[CH(2)N]-Pro-2-(indol-3-yl)ethylamine, 1 [R = fluorenylmethoxycarbonyl (Fmoc)] and 2 (R = Ac), of Pin1 were synthesized and bioassayed. Inhibitor 1 had an IC(50) value of 6.3 μM, which is 4.5-fold better for Pin1 than our comparable ground-state analogue, a cis-amide alkene isostere-containing inhibitor. The change of Fmoc to Ac in 2 improved aqueous solubility for structural determination and resulted in an IC(50) value of 12 μM. The X-ray structure of the complex of 2 bound to Pin1 was determined to 1.76 Å resolution. The structure revealed that the reduced amide adopted a conformation similar to the proposed twisted-amide transition state of Pin1, with a trans-pyrrolidine conformation of the prolyl ring. A similar conformation of substrate would be destabilized relative to the planar amide conformation. Three additional reduced amides, with Thr replacing Ser and l- or d-pipecolate (Pip) replacing Pro, were slightly weaker inhibitors of Pin1.

  3. Methyl gallate

    Directory of Open Access Journals (Sweden)

    Silvina Pagola


    Full Text Available The crystal structure of the title compound (systematic name: methyl 3,4,5-trihydroxybenzoate, C8H8O5, is composed of essentially planar molecules [maximum departures from the mean carbon and oxygen skeleton plane of 0.0348 (10 Å]. The H atoms of the three hydroxyl groups, which function as hydrogen-bond donors and acceptors simultaneously, are oriented in the same direction around the aromatic ring. In addition to two intramolecular hydrogen bonds, each molecule is hydrogen bonded to six others, creating a three-dimensional hydrogen-bonded network.

  4. Photodynamic activity of the boronated chlorin e6 amide in artificial and cellular membranes. (United States)

    Antonenko, Yuri N; Kotova, Elena A; Omarova, Elena O; Rokitskaya, Tatyana I; Ol'shevskaya, Valentina A; Kalinin, Valery N; Nikitina, Roza G; Osipchuk, Julia S; Kaplan, Mikhail A; Ramonova, Alla A; Moisenovich, Mikhail M; Agapov, Igor I; Kirpichnikov, Mikhail P


    Photodynamic tumor-destroying activity of the boronated chlorin e6 derivative BACE (chlorin e6 13(1)-N-{2-[N-(1-carba-closo-dodecaboran-1-yl)methyl]aminoethyl}amide-15(2), 17(3)-dimethyl ester), previously described in Moisenovich et al. (2010) PLoS ONE 5(9) e12717, was shown here to be enormously higher than that of unsubstituted chlorin e6, being supported by the data on much higher photocytotoxicity of BACE in M-1 sarcoma cell culture. To validate membrane damaging effect as the basis of the enhanced tumoricidal activity, BACE was compared with unsubstituted chlorin e6 in the potency to photosensitize dye leakage from liposomes, transbilayer lipid flip-flop, inactivation of gramicidin A ionic channels in planar lipid membranes and erythrocyte hemolysis. In all the models comprising artificial and cellular membranes, the photodynamic effect of BACE exceeded that of chlorin e6. BACE substantially differed from chlorin e6 in the affinity to liposomes and erythrocytes, as monitored by fluorescence spectroscopy, flow cytometry and centrifugation. The results support the key role of membrane binding in the photodynamic effect of the boronated chlorin e6 amide.

  5. Copper/N,N-Dimethylglycine Catalyzed Goldberg Reactions Between Aryl Bromides and Amides, Aryl Iodides and Secondary Acyclic Amides

    Directory of Open Access Journals (Sweden)

    Liqin Jiang


    Full Text Available An efficient and general copper-catalyzed Goldberg reaction at 90–110 °C between aryl bromides and amides providing the desired products in good to excellent yields has been developed using N,N-dimethylglycine as the ligand. The reaction is tolerant toward a wide range of amides and a variety of functional group substituted aryl bromides. In addition, hindered, unreactive aromatic and aliphatic secondary acyclic amides, known to be poor nucleophiles, are efficiently coupled with aryl iodides through this simple and cheap copper/N,N-dimethylglycine catalytic system.


    Microbial transformation rate constants were determined for seven amides in natural pond water. A second-order mathematical rate expression served as the model for describing the microbial transformation. Also investigated was the relationship between the infrared spectra and the...

  7. Silver-catalyzed synthesis of amides from amines and aldehydes (United States)

    Madix, Robert J; Zhou, Ling; Xu, Bingjun; Friend, Cynthia M; Freyschlag, Cassandra G


    The invention provides a method for producing amides via the reaction of aldehydes and amines with oxygen adsorbed on a metallic silver or silver alloy catalyst. An exemplary reaction is shown in Scheme 1: (I), (II), (III). ##STR00001##


    Institute of Scientific and Technical Information of China (English)



    Amide derivatives of ginkgolide A were prepared and evaluated for their in vitro ability to inhibit the PAF-induced aggregation of rabbit platelets. They showed less activities than their parent compound ginkgolide A.

  9. Amid the Economic Rubble,Shangkong will Rise

    Institute of Scientific and Technical Information of China (English)


    @@ Two years ago, bankers and policymakers were arguing heatedly over whether New York or London was the world's premier financial centre. Amid the post-crisis rubble that covers both cities, those arguments now look terribly passé.

  10. Efficient Synthesis of Single-Chain Polymer Nanoparticles via Amide Formation

    Directory of Open Access Journals (Sweden)

    Ana Sanchez-Sanchez


    Full Text Available Single-chain technology (SCT allows the transformation of individual polymer chains to folded/collapsed unimolecular soft nanoparticles. In this work we contribute to the enlargement of the SCT toolbox by demonstrating the efficient synthesis of single-chain polymer nanoparticles (SCNPs via intrachain amide formation. In particular, we exploit cross-linking between active methylene groups and isocyanate moieties as powerful “click” chemistry driving force for SCNP construction. By employing poly(methyl methacrylate- (PMMA- based copolymers bearing β-ketoester units distributed randomly along the copolymer chains and bifunctional isocyanate cross-linkers, SCNPs were successfully synthesized at r.t. under appropriate reaction conditions. Characterization of the resulting SCNPs was carried out by means of a combination of techniques including size exclusion chromatography (SEC, infrared (IR spectroscopy, proton nuclear magnetic resonance (1H NMR spectroscopy, dynamic light scattering (DLS, and elemental analysis (EA.

  11. Phase space investigation of the lithium amide halides

    Energy Technology Data Exchange (ETDEWEB)

    Davies, Rosalind A. [Hydrogen Storage Chemistry Group, School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Hydrogen and Fuel Cell Group, School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Hewett, David R.; Korkiakoski, Emma [Hydrogen Storage Chemistry Group, School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Thompson, Stephen P. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom); Anderson, Paul A., E-mail: [Hydrogen Storage Chemistry Group, School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)


    Highlights: • The lower limits of halide incorporation in lithium amide have been investigated. • The only amide iodide stoichiometry observed was Li{sub 3}(NH{sub 2}){sub 2}I. • Solid solutions were observed in both the amide chloride and amide bromide systems. • A 46% reduction in chloride content resulted in a new phase: Li{sub 7}(NH{sub 2}){sub 6}Cl. • New low-chloride phase maintained improved H{sub 2} desorption properties of Li{sub 4}(NH{sub 2}){sub 3}Cl. - Abstract: An investigation has been carried out into the lower limits of halide incorporation in lithium amide (LiNH{sub 2}). It was found that the lithium amide iodide Li{sub 3}(NH{sub 2}){sub 2}I was unable to accommodate any variation in stoichiometry. In contrast, some variation in stoichiometry was accommodated in Li{sub 7}(NH{sub 2}){sub 6}Br, as shown by a decrease in unit cell volume when the bromide content was reduced. The amide chloride Li{sub 4}(NH{sub 2}){sub 3}Cl was found to adopt either a rhombohedral or a cubic structure depending on the reaction conditions. Reduction in chloride content generally resulted in a mixture of phases, but a new rhombohedral phase with the stoichiometry Li{sub 7}(NH{sub 2}){sub 6}Cl was observed. In comparison to LiNH{sub 2}, this new low-chloride phase exhibited similar improved hydrogen desorption properties as Li{sub 4}(NH{sub 2}){sub 3}Cl but with a much reduced weight penalty through addition of chloride. Attempts to dope lithium amide with fluoride ions have so far proved unsuccessful.

  12. Artists with Arthritis Create Beauty amid Pain

    Institute of Scientific and Technical Information of China (English)

    Alan; Mozes; 蔡峥伟


    得此来稿,我们曾犹豫再三,是否刊用此文。因为,其内容给人的第一印象颇有点离奇。Artists with Arthritis Create Beauty amid Pain,怎么可能呢?细读之下,你也许会觉得,此文虽是一家之言,但也并非荒唐。尤其是本文的收尾句,笔锋一转,抖出了妙言: addition to the emotional support such stories can give RA patients,there are now new drug options that far surpass the treatment choices Renoir faced. 此句是否可译:除了此类故事能够给患风湿病者一种情感上的支持之外,现在可选的新药要比Renoir(雷诺阿,法国印象派画家。主要作品有《包厢》、《游船上的午餐》、《浴女》等。)时代强得多。

  13. Nonplanar tertiary amides in rigid chiral tricyclic dilactams. Peptide group distortions and vibrational optical activity. (United States)

    Pazderková, Markéta; Profant, Václav; Hodačová, Jana; Sebestík, Jaroslav; Pazderka, Tomáš; Novotná, Pavlína; Urbanová, Marie; Safařík, Martin; Buděšínský, Miloš; Tichý, Miloš; Bednárová, Lucie; Baumruk, Vladimír; Maloň, Petr


    We investigate amide nonplanarity in vibrational optical activity (VOA) spectra of tricyclic spirodilactams 5,8-diazatricyclo[6,3,0,0(1,5)]undecan-4,9-dione (I) and its 6,6',7,7'-tetradeuterio derivative (II). These rigid molecules constrain amide groups to nonplanar geometries with twisted pyramidal arrangements of bonds to amide nitrogen atoms. We have collected a full range vibrational circular dichroism (VCD) and Raman optical activity (ROA) spectra including signals of C-H and C-D stretching vibrations. We report normal-mode analysis and a comparison of calculated to experimental VCD and ROA. The data provide band-to-band assignment and offer a possibility to evaluate roles of constrained nonplanar tertiary amide groups and rigid chiral skeletons. Nonplanarity shows as single-signed VCD and ROA amide I signals, prevailing the couplets expected to arise from the amide-amide interaction. Amide-amide coupling dominates amide II (mainly C'-N stretching, modified in tertiary amides by the absence of a N-H bond) transitions (strong couplet in VCD, no significant ROA) probably due to the close proximity of amide nitrogen atoms. At lower wavenumbers, ROA spectra exhibit another likely manifestation of amide nonplanarity, showing signals of amide V (δ(oop)(N-C) at ~570 cm(-1)) and amide VI (δ(oop)(C'═O) at ~700 cm(-1) and ~650 cm(-1)) vibrations.

  14. Cations bind only weakly to amides in aqueous solutions. (United States)

    Okur, Halil I; Kherb, Jaibir; Cremer, Paul S


    We investigated salt interactions with butyramide as a simple mimic of cation interactions with protein backbones. The experiments were performed in aqueous metal chloride solutions using two spectroscopic techniques. In the first, which provided information about contact pair formation, the response of the amide I band to the nature and concentration of salt was monitored in bulk aqueous solutions via attenuated total reflection Fourier transform infrared spectroscopy. It was found that molar concentrations of well-hydrated metal cations (Ca(2+), Mg(2+), Li(+)) led to the rise of a peak assigned to metal cation-bound amides (1645 cm(-1)) and a decrease in the peak associated with purely water-bound amides (1620 cm(-1)). In a complementary set of experiments, the effect of cation identity and concentration was investigated at the air/butyramide/water interface via vibrational sum frequency spectroscopy. In these studies, metal ion-amide binding led to the ordering of the adjacent water layer. Such experiments were sensitive to the interfacial partitioning of cations in either a contact pair with the amide or as a solvent separated pair. In both experiments, the ordering of the interactions of the cations was: Ca(2+) > Mg(2+) > Li(+) > Na(+) ≈ K(+). This is a direct cationic Hofmeister series. Even for Ca(2+), however, the apparent equilibrium dissociation constant of the cation with the amide carbonyl oxygen was no tighter than ∼8.5 M. For Na(+) and K(+), no evidence was found for any binding. As such, the interactions of metal cations with amides are far weaker than the analogous binding of weakly hydrated anions.

  15. Biological activity of novel N-substituted amides of endo-3-(3-methylthio-1,2,4-triazol-5-yl)bicyclo[2.2.1]hept-5-ene-2-carboxylic acid and N-substituted amides of 1-(5-methylthio-1,2,4-triazol-3-yl)cyclohexane-2-carboxylic acids. (United States)

    Pachuta-Stec, Anna; Kosikowska, Urszula; Chodkowska, Anna; Pitucha, Monika; Malm, Anna; Jagiełło-Wójtowicz, Ewa


    N-Substituted amides of endo-3-(3-methylthio-1,2,4-triazol-5-yl)bicyclo[2.2.1]hept-5-ene-2-carboxylic acid and 1-(5-methylthio-1,2,4-triazol-3-yl)cyclohexane-2-carboxylic acid were prepared by the condensation reaction of endo-S-methyl-N1-(bicyclo[2.2.1]hept-5-ene-2,3-dicarbonyl)isothiosemicarbazide and S-methyl-N1-(cyclohexane-2,3-dicarbonyl)isothiosemicarbazide with primary amines. The synthesized compounds were screened for their microbiological and pharmacological activities.

  16. Preparation and modification of itaconic anhydride–methyl methacrylate copolymers

    Directory of Open Access Journals (Sweden)



    Full Text Available The free radical copolymerisation of itaconic anhydride and methyl methacrylate in solution was studied at 60 °C. The copolymer composition was determined by 1H-NMR spectroscopy and the obtained monomer reactivity ratios were calculated, rITA = 1.35±0.11; rMMA = 0.22±0.22 (by the Fineman–Ross method and rITA = 1.27±0.38; rMMA = 0.10±0.05 (by the Mayo–Lewis method. The synthesised copolymers were modified by reaction with di-n-butyl amine. The copolymer composition after amidation was determined by elemental analysis via the nitrogen content. Amidation of the anhydride units in the copolymers with di-n-butyl amine resulted in complete conversion to itaconamic acid.

  17. A convenient method to generate methylated and un-methylated control DNA in methylation studies

    Directory of Open Access Journals (Sweden)

    Mehdi Manoochehri


    Full Text Available Methylated and un-methylated control DNA is an important part of DNA methylation studies. Although human and mouse DNA methylation control sets are commercially available, in case of methylation studies on other species such as animals, plants, and bacteria, control sets need to be prepared. In this paper a simple method of generating methylated and un-methylated control DNA is described. Whole genome amplification and enzymatic methylation were performed to generate un-methylated and methylated DNA. The generated DNA were confirmed using methylation sensitive/dependant enzymes, and methylation specific PCR. Control reaction assays confirmed the generated methylated and un-methylated DNA.

  18. VCD Robustness of the Amide-I and Amide-II Vibrational Modes of Small Peptide Models. (United States)

    Góbi, Sándor; Magyarfalvi, Gábor; Tarczay, György


    The rotational strengths and the robustness values of amide-I and amide-II vibrational modes of For(AA)n NHMe (where AA is Val, Asn, Asp, or Cys, n = 1-5 for Val and Asn; n = 1 for Asp and Cys) model peptides with α-helix and β-sheet backbone conformations were computed by density functional methods. The robustness results verify empirical rules drawn from experiments and from computed rotational strengths linking amide-I and amide-II patterns in the vibrational circular dichroism (VCD) spectra of peptides with their backbone structures. For peptides with at least three residues (n ≥ 3) these characteristic patterns from coupled amide vibrational modes have robust signatures. For shorter peptide models many vibrational modes are nonrobust, and the robust modes can be dependent on the residues or on their side chain conformations in addition to backbone conformations. These robust VCD bands, however, provide information for the detailed structural analysis of these smaller systems.

  19. Chiral separation of amides using supercritical fluid chromatography. (United States)

    Xiang, Yanqiao; Dunetz, Joshua R; Lovdahl, Michael


    Nine amide derivatives bearing α-stereocenters as well as different substitutions on the amide nitrogen were synthesized via an n-propanephosphonic acid cyclic anhydride (T3P)-mediated coupling, and their enantiomeric pairs were separated using supercritical fluid chromatography (SFC). Five polysaccharide-based chiral stationary phases (CSPs), Chiralcel OD-H, and OJ-H, and Chiralpak AD-H, AS-H and IC columns were explored for the chiral separation of these compounds. None of the compounds could be resolved on all five columns, and no single column could separate all nine pairs of enantiomers. Comparatively, the IC and OD-H columns showed the best results for this group of amides, yielding baseline separations for eight of nine pairs. The type of polar functional group and aromatic substitution in the CSPs and the substitutions on the amide nitrogen had a significant impact on the enantiomeric resolution of the compounds in the interaction between the analyte and the stationary phases. The potential separation mechanism and the effect of substitutions in the CSPs and amide solutes on the separation are discussed. The effects of the organic modifiers, modifier composition, mobile phase additives, and temperature were investigated for the separation of these amides on the IC or the OD-H column. Baseline resolution was achieved under optimized chromatographic conditions using an IC or an OD-H column. Linearity, reproducibility, and limit of quantitation were also demonstrated for the compound 9. Approximately three-fold improvement in signal-to-noise was observed using a SFC system with better instrument design.

  20. Studies on the amide compounds ofMirabilis. Jalapa. L

    Institute of Scientific and Technical Information of China (English)

    SHEN; XuWei


    Mirabilis himalaica(Edgew.)Heinerl Var. Chinensis Heimerl belonging to the genus Mirabilis are used in chinese medicine as a remedy for various diseases[1].Its chemical constituents,however, have not been reported so far. we have carried out a detailed chemical investigatigation of the seeds and have isolated two new amides along with three known compounds.  The known compounds were identified by comparing their spectral data with those of authentic samples or with those reported in literature as daucosterol[2], bsitoserol[2], boeravinone E[3], in the present note, the structural elucidation of two new amides is reported.  ……

  1. Study on Alternating Copolymerization of Polyester-amides

    Institute of Scientific and Technical Information of China (English)

    WEI Wen-liang; LI Jian-mei; ZHU Fang-liang


    The preparing methods, choice of catalysts and reaction kinetics of one of the monomers, diesteramide(DEA), of polyester-amides were investigated in details. The chemical structure of DEA was analyzed. And the Polyester-amides (PEA) were obtained by melt copolymerization with DEA. It is shown that DEA can be synthesized by DMT and hexamethylene diamine with the catalyst EX - 1 or EX - 2. The relationship between reaction rate of synthesizing monomer and concentration of hexamethylene diamine is first order kinetic relation.

  2. Studies on the amide compounds ofMirabilis. Jalapa. L

    Institute of Scientific and Technical Information of China (English)


    @@ Mirabilis himalaica(Edgew.)Heinerl Var. Chinensis Heimerl belonging to the genus Mirabilis are used in chinese medicine as a remedy for various diseases[1].Its chemical constituents,however, have not been reported so far. we have carried out a detailed chemical investigatigation of the seeds and have isolated two new amides along with three known compounds. The known compounds were identified by comparing their spectral data with those of authentic samples or with those reported in literature as daucosterol[2], bsitoserol[2], boeravinone E[3], in the present note, the structural elucidation of two new amides is reported.

  3. Use of triphenyl phosphate as risk mitigant for metal amide hydrogen storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Cortes-Concepcion, Jose A.; Anton, Donald L.


    A process in a resulting product of the process in which a hydrogen storage metal amide is modified by a ball milling process using an additive of TPP. The resulting product provides for a hydrogen storage metal amide having a coating that renders the hydrogen storage metal amide resistant to air, ambient moisture, and liquid water while improving useful hydrogen storage and release kinetics.

  4. FMRF-amide-like immunoreactivity in brain and pituitary of the hagfish Eptatretus burgeri (Cyclostomata)

    DEFF Research Database (Denmark)

    Jirikowski, G; Erhart, G; Grimmelikhuijzen, C J


    the hypothalamus to the olfactory system and caudally to the medulla oblongata. FMRF-amide-like immunoreactivity was also found in cells of the adenohypophysis. These observations suggest that the hagfish possesses a brain FMRF-amide-like transmitter system and pituitary cells containing FMRF-amide-like material...

  5. 40 CFR 721.10176 - Amides, peanut-oil, N-[3-(dimethylamino)propyl]. (United States)


    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amides, peanut-oil, N- . 721.10176... Substances § 721.10176 Amides, peanut-oil, N- . (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amides, peanut-oil, N- (PMN P-04-144; CAS No....

  6. 40 CFR 721.720 - Alkoxylated fatty acid amide, alkylsulfate salt. (United States)


    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkoxylated fatty acid amide... Specific Chemical Substances § 721.720 Alkoxylated fatty acid amide, alkylsulfate salt. (a) Chemical... as an alkoxylated fatty acid amide, alkylsulfate salt (PMN P-97-136) is subject to reporting...

  7. 40 CFR 721.9075 - Quaternary ammonium salt of fluorinated alkylaryl amide. (United States)


    ... fluorinated alkylaryl amide. 721.9075 Section 721.9075 Protection of Environment ENVIRONMENTAL PROTECTION... amide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as quaternary ammonium salt of fluorinated alkylaryl amide (PMN No. P-92-688)...

  8. 40 CFR 721.10063 - Halo substituted hydroxy nitrophenyl amide (generic). (United States)


    ... amide (generic). 721.10063 Section 721.10063 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10063 Halo substituted hydroxy nitrophenyl amide (generic). (a) Chemical... as halo substituted hydroxy nitrophenyl amide (PMN P-04-792) is subject to reporting under...

  9. 40 CFR 721.10191 - Amides, coco, N-[3-(dibutylamino)propyl]. (United States)


    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amides, coco, N- . 721.10191 Section... Substances § 721.10191 Amides, coco, N- . (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amides, coco, N- (PMN P-06-262; CAS No. 851544-20-2)...

  10. 40 CFR 721.10192 - Amides, coco, N-[3-(dibutylamino)propyl], acrylates. (United States)


    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amides, coco, N- , acrylates. 721... Substances § 721.10192 Amides, coco, N- , acrylates. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amides, coco, N- , acrylates (PMN...

  11. Polyurethane elastomers with amide chain extenders of uniform length

    NARCIS (Netherlands)

    Schuur, van der Martijn; Noordover, Bart; Gaymans, Reinoud J.


    Toluene diisocyanate based polyurethanes with amide extenders were synthesized poly(propylene oxide) with a number average molecular weight of 2000 and endcapped with toluene diisocyanate was used as the polyether segment. The chain extenders were based on poly(hexamethylene terephthalamide): hexame

  12. Intramolecular Amide Hydrolysis in N-Methylmaleamic Acid Revisited

    Institute of Scientific and Technical Information of China (English)


    The intramolecular amide hydrolysis of N-methylmaleamic acid have been revisited by use of density functional theory and inclusion of solvent effects. The results indicate that concerted reaction mechanism is favored over stepwise reaction mechanism. This is in agreement with the previous theoretical study. Sovlent effects have significant influence on the reaction barrier.

  13. Modeling the amide I bands of small peptides

    NARCIS (Netherlands)

    Jansen, Thomas la Cour; Dijkstra, Arend G.; Watson, Tim M.; Hirst, Jonathan D.; Knoester, Jasper


    In this paper different floating oscillator models for describing the amide I band of peptides and proteins are compared with density functional theory (DFT) calculations. Models for the variation of the frequency shifts of the oscillators and the nearest-neighbor coupling between them with respect

  14. Method for enhancing amidohydrolase activity of fatty acid amide hydrolase

    Energy Technology Data Exchange (ETDEWEB)

    John, George; Nagarajan, Subbiah; Chapman, Kent; Faure, Lionel; Koulen, Peter


    A method for enhancing amidohydrolase activity of Fatty Acid Amide Hydrolase (FAAH) is disclosed. The method comprising administering a phenoxyacylethanolamide that causes the enhanced activity. The enhanced activity can have numerous effects on biological organisms including, for example, enhancing the growth of certain seedlings. The subject matter disclosed herein relates to enhancers of amidohydrolase activity.

  15. KNH2-KH: a metal amide-hydride solid solution. (United States)

    Santoru, Antonio; Pistidda, Claudio; Sørby, Magnus H; Chierotti, Michele R; Garroni, Sebastiano; Pinatel, Eugenio; Karimi, Fahim; Cao, Hujun; Bergemann, Nils; Le, Thi T; Puszkiel, Julián; Gobetto, Roberto; Baricco, Marcello; Hauback, Bjørn C; Klassen, Thomas; Dornheim, Martin


    We report for the first time the formation of a metal amide-hydride solid solution. The dissolution of KH into KNH2 leads to an anionic substitution, which decreases the interaction among NH2(-) ions. The rotational properties of the high temperature polymorphs of KNH2 are thereby retained down to room temperature.

  16. Insecticidal, repellent and fungicidal properties of novel trifluoromethylphenyl amides. (United States)

    Tsikolia, Maia; Bernier, Ulrich R; Coy, Monique R; Chalaire, Katelyn C; Becnel, James J; Agramonte, Natasha M; Tabanca, Nurhayat; Wedge, David E; Clark, Gary G; Linthicum, Kenneth J; Swale, Daniel R; Bloomquist, Jeffrey R


    Twenty trifluoromethylphenyl amides were synthesized and evaluated as fungicides and as mosquito toxicants and repellents. Against Aedes aegypti larvae, N-(2,6-dichloro-4-(trifluoromethyl)phenyl)-3,5-dinitrobenzamide (1e) was the most toxic compound (24 h LC50 1940 nM), while against adults N-(2,6-dichloro-4-(trifluoromethyl)phenyl)-2,2,2-trifluoroacetamide (1c) was most active (24 h LD50 19.182 nM, 0.5 μL/insect). However, the 24 h LC50 and LD50 values of fipronil against Ae. aegypti larvae and adults were significantly lower: 13.55 nM and 0.787 × 10(-4) nM, respectively. Compound 1c was also active against Drosophila melanogaster adults with 24 h LC50 values of 5.6 and 4.9 μg/cm(2) for the Oregon-R and 1675 strains, respectively. Fipronil had LC50 values of 0.004 and 0.017 μg/cm(2) against the two strains of D. melanogaster, respectively. In repellency bioassays against female Ae. aegypti, 2,2,2-trifluoro-N-(2-(trifluoromethyl)phenyl)acetamide (4c) had the highest repellent potency with a minimum effective dosage (MED) of 0.039 μmol/cm(2) compared to DEET (MED of 0.091 μmol/cm(2)). Compound N-(2-(trifluoromethyl)phenyl)hexanamide (4a) had an MED of 0.091 μmol/cm(2) which was comparable to DEET. Compound 4c was the most potent fungicide against Phomopsis obscurans. Several trends were discerned between the structural configuration of these molecules and the effect of structural changes on toxicity and repellency. Para- or meta- trifluoromethylphenyl amides with an aromatic ring attached to the carbonyl carbon showed higher toxicity against Ae. aegypti larvae, than ortho- trifluoromethylphenyl amides. Ortho- trifluoromethylphenyl amides with trifluoromethyl or alkyl group attached to the carbonyl carbon produced higher repellent activity against female Ae. aegypti and Anopheles albimanus than meta- or para- trifluoromethylphenyl amides. The presence of 2,6-dichloro- substitution on the phenyl ring of the amide had an influence on larvicidal and repellent

  17. Synthesis, structure, and reactivity of tris(amidate) mono(amido) and tetrakis(amidate) complexes of group 4 transition metals. (United States)

    Payne, Philippa R; Thomson, Robert K; Medeiros, Diane M; Wan, Geoff; Schafer, Laurel L


    The syntheses of a series of tris(amidate) mono(amido) titanium and zirconium complexes are reported. The binding motif of the amidate ligand has been determined to depend on the size of the metal centre for these sterically demanding N,O-chelating ligands; the larger zirconium metal centre supports three κ(2)-(N,O) bound amidate ligands while the titanium analogue has one ligand bound in a κ(1)-(O) fashion to alleviate steric strain. Reactivity studies indicate that, despite high steric crowding about the tris(amidate) mono(amido) zirconium metal centre, transamination of the reactive dimethylamido ligand can be achieved using aniline. This complex is also an active precatalyst for intramolecular alkene hydroamination, in which protonolysis of one amidate ligand in the presence of excess amine is observed as an initiation step prior to catalytic turnover. Eight-coordinate homoleptic κ(2)-amidate complexes of zirconium and hafnium have also been prepared.

  18. Discovery of competing anaerobic and aerobic pathways in umpolung amide synthesis allows for site-selective amide 18O-labeling. (United States)

    Shackleford, Jessica P; Shen, Bo; Johnston, Jeffrey N


    The mechanism of umpolung amide synthesis was probed by interrogating potential sources for the oxygen of the product amide carbonyl that emanates from the α-bromo nitroalkane substrate. Using a series of (18)O-labeled substrates and reagents, evidence is gathered to advance two pathways from the putative tetrahedral intermediate. Under anaerobic conditions, a nitro-nitrite isomerization delivers the amide oxygen from nitro oxygen. The same homolytic nitro-carbon fragmentation can be diverted by capture of the carbon radical intermediate with oxygen gas (O(2)) to deliver the amide oxygen from O(2). This understanding was used to develop a straightforward protocol for the preparation of (18)O-labeled amides in peptides by simply performing the umpolung amide synthesis reaction under an atmosphere of 18O2.

  19. Porphyrin amino acids-amide coupling, redox and photophysical properties of bis(porphyrin) amides. (United States)

    Melomedov, Jascha; Wünsche von Leupoldt, Anica; Meister, Michael; Laquai, Frédéric; Heinze, Katja


    New trans-AB2C meso-substituted porphyrin amino acid esters with meso-substituents of tunable electron withdrawing power (B = mesityl, 4-C6H4F, 4-C6H4CF3, C6F5) were prepared as free amines 3a-3d, as N-acetylated derivatives Ac-3a-Ac-3d and corresponding zinc(II) complexes Zn-Ac-3a-Zn-Ac-3d. Several amide-linked bis(porphyrins) with a tunable electron density at each porphyrin site were obtained from the amino porphyrin precursors by condensation reactions (4a-4d) and mono- and bis(zinc(II)) complexes Zn(2)-4d and Zn(1)Zn(2)-4d were prepared. The electronic interaction between individual porphyrin units in bis(porphyrins) 4 is probed by electrochemical experiments (CV, EPR), electronic absorption spectroscopy, steady-state and time-resolved fluorescence spectroscopy in combination with DFT/PCM calculations on diamagnetic neutral bis(porphyrins) 4 and on respective charged mixed-valent radicals 4(+/-). The interaction via the -C6H4-NHCO-C6H4- bridge, the site of oxidation and reduction and the lowest excited singlet state S1, is tuned by the substituents on the individual porphyrins and the metalation state.

  20. Dissociation dynamics of methylal

    Energy Technology Data Exchange (ETDEWEB)

    Beaud, P.; Frey, H.-M.; Gerber, T.; Mischler, B.; Radi, P.P.; Tzannis, A.-P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)


    The dissociation of methylal is investigated using mass spectrometry, combined with a pyrolytic radical source and femtosecond pump probe experiments. Based on preliminary results two reaction paths of methylal dissociation are proposed and discussed. (author) 4 fig., 3 refs.

  1. Sodium borohydride reduction of aromatic carboxylic acids via methyl esters

    Indian Academy of Sciences (India)

    Aamer Saeed; Zaman Ashraf


    A number of important aromatic carboxylic acids precursors, or intermediates in the syntheses of natural products, are converted into methyl esters and reduced to the corresponding primary alcohols using a sodium borohydride-THF-methanol system. The alcohols are obtained in 70-92% yields in 2-5 hours, in a pure state. This two-step procedure not only provides a better alternative to aluminum hydride reduction of acids but also allows the selective reduction of esters in presence of acids, amides, nitriles or nitro functions which are not affected under these conditions.

  2. Amide I'-II' 2D IR spectroscopy provides enhanced protein secondary structural sensitivity. (United States)

    Deflores, Lauren P; Ganim, Ziad; Nicodemus, Rebecca A; Tokmakoff, Andrei


    We demonstrate how multimode 2D IR spectroscopy of the protein amide I' and II' vibrations can be used to distinguish protein secondary structure. Polarization-dependent amide I'-II' 2D IR experiments on poly-l-lysine in the beta-sheet, alpha-helix, and random coil conformations show that a combination of amide I' and II' diagonal and cross peaks can effectively distinguish between secondary structural content, where amide I' infrared spectroscopy alone cannot. The enhanced sensitivity arises from frequency and amplitude correlations between amide II' and amide I' spectra that reflect the symmetry of secondary structures. 2D IR surfaces are used to parametrize an excitonic model for the amide I'-II' manifold suitable to predict protein amide I'-II' spectra. This model reveals that the dominant vibrational interaction contributing to this sensitivity is a combination of negative amide II'-II' through-bond coupling and amide I'-II' coupling within the peptide unit. The empirically determined amide II'-II' couplings do not significantly vary with secondary structure: -8.5 cm(-1) for the beta sheet, -8.7 cm(-1) for the alpha helix, and -5 cm(-1) for the coil.

  3. Characterization of Lipids and Fatty Acid Methyl Ester Contents in Leaves and Roots of Crocus vallicola


    YAYLI, Nurettin; KIRAN, Zerrin; SEYMEN, Hasan; GENÇ, Hasan


    The chemical composition of the fatty acids methyl esters (FAMEs) and other lipids in leaves and roots of Crocusvallicola were analyzed by gas chromatography-mass spectrometry(GC-MS). In this work, twenty-eight compounds, including 22 FAMEs, 1 aldehyde, 3 hydrocarbons (substitute alkane and alkene), 2 alcohols in the leaves and twenty-one compounds (17 FAMEs, 1 anhydride, 1 substitute alcohol, 1 ketone, 1 substitute amide) in the roots were identified by GC-MS from C. vallicola. Th...

  4. Synthesis and characterization of new optically active copoly(amid-imide)s based on N-phthalimido-L-aspartic acid and aromatic diamines

    Institute of Scientific and Technical Information of China (English)

    Khalil; Faghihi; Hamidreza; Alimohammadi


    In this article,six new optically active copoly(amide-imide)s(10a-f) were synthesized through the direct polycondensation reaction of N-phthalimido-L-aspartic acid(4) with 1,5-diamino naphthalene(8),3,4-diamino benzophenone(9) in the presence of therphthahc acid(7),fumaric acid(6) and adipic acid(5) as a second diacid in a medium consisting of N-methyl-2-pyrrolidone,triphenyl phosphite, calcium chloride and pyridine.The resulting copolymers were fully characterized by means of FT-IR spectroscopy,elementa...

  5. Intracellular Self-Assembly of Cyclic d-Luciferin Nanoparticles for Persistent Bioluminescence Imaging of Fatty Acid Amide Hydrolase. (United States)

    Yuan, Yue; Wang, Fuqiang; Tang, Wei; Ding, Zhanling; Wang, Lin; Liang, Lili; Zheng, Zhen; Zhang, Huafeng; Liang, Gaolin


    Fatty acid amide hydrolase (FAAH) overexpression induces several disorder symptoms in nerve systems, and therefore long-term tracing of FAAH activity in vivo is of high importance but remains challenging. Current bioluminescence (BL) methods are limited in detecting FAAH activity within 5 h. Herein, by rational design of a latent BL probe (d-Cys-Lys-CBT)2 (1), we developed a "smart" method of intracellular reduction-controlled self-assembly and FAAH-directed disassembly of its cyclic d-luciferin-based nanoparticles (i.e., 1-NPs) for persistent BL imaging of FAAH activity in vitro, in cells, and in vivo. Using aminoluciferin methyl amide (AMA), Lys-amino-d-luciferin (Lys-Luc), and amino-d-luciferin (NH2-Luc) as control BL probes, we validated that the persistent BL of 1 from luciferase-expressing cells or tumors was controlled by the activity of intracellular FAAH. With the property of long-term tracing of FAAH activity in vivo of 1, we envision that our BL precursor 1 could probably be applied for in vivo screening of FAAH inhibitors and the diagnosis of their related diseases (or disorders) in the future.

  6. Electrodeposition of Al in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ionic liquids: in situ STM and EQCM studies. (United States)

    Moustafa, E M; El Abedin, S Zein; Shkurankov, A; Zschippang, E; Saad, A Y; Bund, A; Endres, F


    In the present paper, the electrodeposition of Al on flame-annealed Au(111) and polycrystalline Au substrates in two air- and water-stable ionic liquids namely, 1-butyl-1-methyl-pyrrolidinium bis(trifluoromethylsulfonyl)amide, [Py(1,4)]Tf(2)N, and 1-ethyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)amide, [EMIm]Tf(2)N, has been investigated by in situ scanning tunneling microscopy (STM), electrochemical quartz crystal microbalance (EQCM), and cyclic voltammetry. The cyclic voltammogram of aluminum deposition and stripping on Au(111) in the upper phase of the biphasic mixture of AlCl(3)/[EMIm]Tf(2)N at room temperature (25 degrees C) shows that the electrodeposition process is completely reversible as also evidenced by in situ STM and EQCM studies. Additionally, a cathodic peak at an electrode potential of about 0.55 V vs Al/Al(III) is correlated to the aluminum UPD process that was evidenced by in situ STM. A surface alloying of Al with Au at the early stage of deposition occurs. It has been found that the Au(111) surface is subject to a restructuring/reconstruction in the upper phase of the biphasic mixture of AlCl(3)/[Py(1,4)]Tf(2)N at room temperature (25 degrees C) and that the deposition is not fully reversible. Furthermore, the underpotential deposition of Al in [Py(1,4)]Tf(2)N is not as clear as in [EMIm]Tf(2)N. The frequency shift in the EQCM experiments in [Py(1,4)]Tf(2)N shows a surprising result as an increase in frequency and a decrease in damping with bulk aluminum deposition at potentials more negative than -1.8 V was observed at room temperature. However, at 100 degrees C there is a frequency decrease with ongoing Al deposition. At -2.0 V vs Al/Al(III), a bulk aluminum deposition sets in.

  7. Enzymatic synthesis of fatty amides from palm olein. (United States)

    Al-Mulla, Emad A Jaffar; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa Bt; Rahman, Mohd Zaki A


    Fatty amides have been successfully synthesized from palm olein and urea by a one-step lipase catalyzed reaction. The use of immobilized lipase as the catalyst for the preparation reaction provides an easy isolation of the enzyme from the products and other components in the reaction mixture. The fatty amides were characterized using Fourier transform infrared (FTIR) spectroscopy, proton nuclear magnetic resonance ((1)H NMR) technique and elemental analysis. The highest conversion percentage (96%) was obtained when the process was carried out for 36 hours using urea to palm oil ratio of 5.2: 1.0 at 40 degrees C. The method employed offers several advantages such as renewable and abundant of the raw material, simple reaction procedure, environmentally friendly process and high yield of the product.

  8. In vivo behavior of hydrogel beads based on amidated pectins. (United States)

    Munjeri, O; Collett, J H; Fell, J T; Sharma, H L; Smith, A M


    Radio-labeled hydrogel beads, based on amidated pectin, have been produced by adding droplets of an amidated pectin solution to calcium chloride. Incorporation of model drugs into the beads and measurement of the dissolution rate showed that the properties of the beads were unaffected by the incorporation of the radiolabel. The labeled beads were used to carry out an in vivo study of their behavior in the gastrointestinal tract using human volunteers. The volunteers were given the beads after an overnight fast and images were obtained at frequent intervals during transit through the upper gastrointestinal tract and the colon. The beads exhibited rapid gastric emptying and proceeded to pass through the small intestine individually before regrouping at the ileo-caecal junction. Once in the colon, the beads again proceeded as individuals and evidence of the degradation of the beads was observed.

  9. Halo substituent effects on intramolecular cycloadditions involving furanyl amides. (United States)

    Padwa, Albert; Crawford, Kenneth R; Straub, Christopher S; Pieniazek, Susan N; Houk, K N


    Intramolecular Diels-Alder reactions involving a series of N-alkenyl-substituted furanyl amides were investigated. Stable functionalized oxanorbornenes were formed in high yield upon heating at 80-110 degrees C. The cycloaddition reactions include several bromo-substituted furanyl amides, and these systems were found to proceed at a much faster rate and in higher yield than without substitution. This effect was observed by incorporating a halogen in the 3- or 5-position of the furan ring and appears to be general. The origin of increased cycloaddition rates for halo-substituted furans has been investigated with quantum mechanical calculations. The success of these reactions is attributed to increases in reaction exothermicities; this both decreases activation enthalpies and increases barriers to retrocycloadditions. Halogen substitution on furan increases reactant energy and stabilizes the product, which is attributed to the preference of electronegative halogens to be attached to a more highly alkylated and therefore more electropositive framework.

  10. Simulations of the temperature dependence of amide I vibration. (United States)

    Kaminský, Jakub; Bouř, Petr; Kubelka, Jan


    For spectroscopic studies of peptide and protein thermal denaturation it is important to single out the contribution of the solvent to the spectral changes from those originated in the molecular structure. To obtain insights into the origin and size of the temperature solvent effects on the amide I spectra, combined molecular dynamics and density functional simulations were performed with the model N-methylacetamide molecule (NMA). The computations well reproduced frequency and intensity changes previously observed in aqueous NMA solutions. An empirical correction of vacuum frequencies in single NMA molecule based on the electrostatic potential of the water molecules provided superior results to a direct density functional average obtained for a limited number of solute-solvent clusters. The results thus confirm that the all-atom quantum and molecular mechanics approach captures the overall influence of the temperature dependent solvent properties on the amide I spectra and can improve the accuracy and reliability of molecular structural studies.

  11. Cleavage of an amide bond by a ribozyme (United States)

    Dai, X.; De Mesmaeker, A.; Joyce, G. F.; Miller, S. L. (Principal Investigator)


    A variant form of a group I ribozyme, optimized by in vitro evolution for its ability to catalyze magnesium-dependent phosphoester transfer reactions involving DNA substrates, also catalyzes the cleavage of an unactivated alkyl amide when that linkage is presented in the context of an oligodeoxynucleotide analog. Substrates containing an amide bond that joins either two DNA oligos, or a DNA oligo and a short peptide, are cleaved in a magnesium-dependent fashion to generate the expected products. The first-order rate constant, kcat, is 0.1 x 10(-5) min-1 to 1 x 10(-5) min-1 for the DNA-flanked substrates, which corresponds to a rate acceleration of more than 10(3) as compared with the uncatalyzed reaction.

  12. Potent and orally efficacious benzothiazole amides as TRPV1 antagonists. (United States)

    Besidski, Yevgeni; Brown, William; Bylund, Johan; Dabrowski, Michael; Dautrey, Sophie; Harter, Magali; Horoszok, Lucy; Hu, Yin; Johnson, Dean; Johnstone, Shawn; Jones, Paul; Leclerc, Sandrine; Kolmodin, Karin; Kers, Inger; Labarre, Maryse; Labrecque, Denis; Laird, Jennifer; Lundström, Therese; Martino, John; Maudet, Mickaël; Munro, Alexander; Nylöf, Martin; Penwell, Andrea; Rotticci, Didier; Slaitas, Andis; Sundgren-Andersson, Anna; Svensson, Mats; Terp, Gitte; Villanueva, Huascar; Walpole, Christopher; Zemribo, Ronald; Griffin, Andrew M


    Benzothiazole amides were identified as TRPV1 antagonists from high throughput screening using recombinant human TRPV1 receptor and structure-activity relationships were explored to pinpoint key pharmacophore interactions. By increasing aqueous solubility, through the attachment of polar groups to the benzothiazole core, and enhancing metabolic stability, by blocking metabolic sites, the drug-like properties and pharmokinetic profiles of benzothiazole compounds were sufficiently optimized such that their therapeutic potential could be verified in rat pharmacological models of pain.

  13. Accumulation of hydroxycinnamic acid amides in winter wheat under snow. (United States)

    Jin, Shigeki; Yoshida, Midori; Nakajima, Takashi; Murai, Akio


    It was found that the content of antifungal compounds p-coumaroylagmatine [1-(trans-4'-hydroxycinnamoylamino)-4-guanidinobutane] and p-coumaroyl-3-hydroxyagmatine [1-(trans-4'-hydroxycinnamoylamino)-3-hydroxy-4-guanidinobutane] in the crown of winter wheat (Triticum aestivum L. cv Chihokukomugi) significantly increased under snow cover. This finding suggests that the accumulation of these hydroxycinnamic acid amides was caused by winter stress and related to protecting the plant against snow mold under snow cover.

  14. Guidelines for Middle Managers for Thriving amid Continuous Change



    This thesis suggests the much needed guidelines for middle managers for thriving amid continuous change. Middle managers, being an integral part of their organizations, needed a set of consolidated guidelines for thriving in the times of continuous change. Thriving requires high engagement, learning and growth as a response in stressful situations. The proposed guidelines include elements from literature and recommendations of the middle managers which came from co-creation sessions with midd...

  15. T. thermophila group I introns that cleave amide bonds (United States)

    Joyce, Gerald F. (Inventor)


    The present invention relates to nucleic acid enzymes or enzymatic RNA molecules that are capable of cleaving a variety of bonds, including phosphodiester bonds and amide bonds, in a variety of substrates. Thus, the disclosed enzymatic RNA molecules are capable of functioning as nucleases and/or peptidases. The present invention also relates to compositions containing the disclosed enzymatic RNA molecule and to methods of making, selecting, and using such enzymes and compositions.

  16. An efficient computational model to predict protonation at the amide nitrogen and reactivity along the C-N rotational pathway. (United States)

    Szostak, Roman; Aubé, Jeffrey; Szostak, Michal


    N-Protonation of amides is critical in numerous biological processes, including amide bonds proteolysis and protein folding as well as in organic synthesis as a method to activate amide bonds towards unconventional reactivity. A computational model enabling prediction of protonation at the amide bond nitrogen atom along the C-N rotational pathway is reported. Notably, this study provides a blueprint for the rational design and application of amides with a controlled degree of rotation in synthetic chemistry and biology.

  17. Synthesis, morphology and properties of segmented poly(ether ester amide)s comprising uniform glycine or β-alanine extended bisoxalamide hard segments

    NARCIS (Netherlands)

    Sijbrandi, N.J.; Kimenai, A.J.; Mes, E.P.C.; Broos, R.; Bar, G.; Rosenthal, M.; Odarchenko, Y.; Ivanov, D.A.; Feijen, J.; Dijkstra, P.J.


    Segmented poly(ether ester amide)s comprising glycine or β-alanine extended bisoxalamide hard segments are highly phase separated thermoplastic elastomers with a broad temperature independent rubber plateau. These materials with molecular weights, Mn, exceeding 30 × 103 g mol−1 are conveniently prep

  18. Secondary amides of (R)-3,3,3-trifluoro-2-hydroxy-2-methylpropionic acid as inhibitors of pyruvate dehydrogenase kinase. (United States)

    Aicher, T D; Anderson, R C; Gao, J; Shetty, S S; Coppola, G M; Stanton, J L; Knorr, D C; Sperbeck, D M; Brand, L J; Vinluan, C C; Kaplan, E L; Dragland, C J; Tomaselli, H C; Islam, A; Lozito, R J; Liu, X; Maniara, W M; Fillers, W S; DelGrande, D; Walter, R E; Mann, W R


    N'-methyl-N-(4-tert-butyl-1,2,5,6-tetrahydropyridine)thiourea, SDZ048-619 (1), is a modest inhibitor (IC(50) = 180 microM) of pyruvate dehydrogenase kinase (PDHK). In an optimization of the N-methylcarbothioamide moiety of 1, it was discovered that amides with a small acyl group, in particular appropriately substituted amides of (R)-3,3,3-trifluoro-2-hydroxy-2-methylpropionic acid, are inhibitors of PDHK. Utilizing this acyl moiety, herein is reported the rationale leading to the optimization of a series of acylated piperazine derivatives. Methyl substitution of the piperazine at the 2- and 5-positions (with S and R absolute stereochemistry) markedly increased the potency of the lead compound (>1,000-fold). Oral bioavailability of the compounds in this series is good and is optimal (as measured by AUC) when the 4-position of the piperazine is substituted with an electron-poor benzoyl moiety. (+)-1-N-[2,5-(S, R)-Dimethyl-4-N-(4-cyanobenzoyl)piperazine]-(R)-3,3, 3-trifluoro-2-hydroxy-2-methylpropanamide (14e) inhibits PDHK in the primary enzymatic assay with an IC(50) of 16 +/- 2 nM, enhances the oxidation of [(14)C]lactate into (14)CO(2) in human fibroblasts with an EC(50) of 57 +/- 13 nM, diminishes lactate significantly 2.5 h post-oral-dose at doses as low as 1 micromol/kg, and increases the ex vivo activity of PDH in muscle, liver, and fat tissues in normal Sprague-Dawley rats. These PDHK inhibitors, however, do not lower glucose in diabetic animal models.

  19. Symmetrical and unsymmetrical α,ω-nucleobase amide-conjugated systems

    Directory of Open Access Journals (Sweden)

    Sławomir Boncel


    Full Text Available We present the synthesis and selected physicochemical properties of several novel symmetrical and unsymmetrical α,ω-nucleobase mono- and bis-amide conjugated systems containing aliphatic, aromatic or saccharidic linkages. The final stage of the synthesis involves condensation of a subunit bearing carboxylic group with an amine subunit. 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl-4-methylmorpholinium chloride (DMT-MM was found to be a particularly effective condensing agent. The subunits containing carboxylic groups were obtained by acidic hydrolysis of N-1 Michael adducts of uracils or N-9 Michael adducts of 6-chloropurine with methyl acrylate. The amines used were aliphatic/aromatic diamines, adenine, 5-substituted 1-(ω-aminoalkyluracils and 5′-amino-2′,5′-dideoxythymidine. The title compounds may find application as antiprotozoal agents. Moreover, preliminary microscopy TEM studies of supramolecular behaviour showed that target molecules with bolaamphiphilic structures were capable of forming highly ordered assemblies, mainly nanofibres.

  20. Pain and beyond: fatty acid amides and fatty acid amide hydrolase inhibitors in cardiovascular and metabolic diseases. (United States)

    Pillarisetti, Sivaram; Alexander, Christopher W; Khanna, Ish


    Fatty acid amide hydrolase (FAAH) is responsible for the hydrolysis of several important endogenous fatty acid amides (FAAs), including anandamide, oleoylethanolamide and palmitoylethanolamide. Because specific FAAs interact with cannabinoid and vanilloid receptors, they are often referred to as 'endocannabinoids' or 'endovanilloids'. Initial interest in this area, therefore, has focused on developing FAAH inhibitors to augment the actions of FAAs and reduce pain. However, recent literature has shown that these FAAs - through interactions with unique receptors (extracellular and intracellular) - can induce a diverse array of effects that include appetite suppression, modulation of lipid and glucose metabolism, vasodilation, cardiac function and inflammation. This review gives an overview of FAAs and diverse FAAH inhibitors and their potential therapeutic utility in pain and non-pain indications.

  1. Single-conformation infrared spectra of model peptides in the amide I and amide II regions: experiment-based determination of local mode frequencies and inter-mode coupling. (United States)

    Buchanan, Evan G; James, William H; Choi, Soo Hyuk; Guo, Li; Gellman, Samuel H; Müller, Christian W; Zwier, Timothy S


    Single-conformation infrared spectra in the amide I and amide II regions have been recorded for a total of 34 conformations of three α-peptides, three β-peptides, four α/β-peptides, and one γ-peptide using resonant ion-dip infrared spectroscopy of the jet-cooled, isolated molecules. Assignments based on the amide NH stretch region were in hand, with the amide I/II data providing additional evidence in favor of the assignments. A set of 21 conformations that represent the full range of H-bonded structures were chosen to characterize the conformational dependence of the vibrational frequencies and infrared intensities of the local amide I and amide II modes and their amide I/I and amide II/II coupling constants. Scaled, harmonic calculations at the DFT M05-2X/6-31+G(d) level of theory accurately reproduce the experimental frequencies and infrared intensities in both the amide I and amide II regions. In the amide I region, Hessian reconstruction was used to extract local mode frequencies and amide I/I coupling constants for each conformation. These local amide I frequencies are in excellent agreement with those predicted by DFT calculations on the corresponding (13)C = (18)O isotopologues. In the amide II region, potential energy distribution analysis was combined with the Hessian reconstruction scheme to extract local amide II frequencies and amide II/II coupling constants. The agreement between these local amide II frequencies and those obtained from DFT calculations on the N-D isotopologues is slightly worse than for the corresponding comparison in the amide I region. The local mode frequencies in both regions are dictated by a combination of the direct H-bonding environment and indirect, "backside" H-bonds to the same amide group. More importantly, the sign and magnitude of the inter-amide coupling constants in both the amide I and amide II regions is shown to be characteristic of the size of the H-bonded ring linking the two amide groups. These amide I/I and

  2. [DNA methylation and epigenetics]. (United States)

    Vaniushin, B F


    In eukaryotic cells, nuclear DNA is subject to enzymatic methylation with the formation of 5-methylcytosine residues, mostly within the CG and CNG sequences. In plants and animals this DNA methylation is species-, tissue-, and organelle-specific. It changes (decreases) with age and is regulated by hormones. On the other hand, genome methylation can control hormonal signal. Replicative and post-replicative DNA methylation types are distinguished. They are mediated by multiple DNA methyltransferases with different site-specificity. Replication is accompanied by the appearance of hemimethylated DNA sites. Pronounced asymmetry of the DNA strand methylation disappears to the end of the cell cycle. A model of methylation-regulated DNA replication is proposed. DNA methylation controls all genetic processes in the cell (replication, transcription, DNA repair, recombination, and gene transposition). It is the mechanism of cell differentiation, gene discrimination and silencing. In animals, suppression of DNA methylation stops development (embryogenesis), switches on apoptosis, and is usually lethal. Disruption of DNA methylation pattern results in the malignant cell transformation and serves as one of the early diagnostic features of carcinogenesis. In malignant cell the pattern of DNA methylation, as well as the set of DNA methyltransferase activities, differs from that in normal cell. In plants inhibition of DNA methylation is accompanied by the induction of seed storage and florescence genes. In eukaryotes one and the same gene can be simultaneously methylated both at cytosine and adenine residues. It can be thus suggested, that the plant cell contains at least two different, and probably, interdependent systems of DNA methylation. The first eukaryotic adenine DNA methyltransferase was isolated from plants. This enzyme methylates DNA with the formation of N6-methyladenine residues in the sequence TGATCA (TGATCA-->TGm6ATCA). Plants possess AdoMet-dependent endonucleases

  3. Novel Synthesis of N-Substituted p-Hydroxybenzoic Amides on Soluble Polymer-Support

    Institute of Scientific and Technical Information of China (English)

    胡春玲; 陈祖兴; 杨桂春


    The synthesis of N-substituted p-hydroxybenzoic amides using a liquid phase approach is described. Poly(ethylene glycol)(PEG) and p-hydroxybenzoic acid were linked by oxalyl chloride to give compound 1, which was chlorinated by thionyl chloride, followed by amidation with NHR1R2 to yield compound 3. Hydrolysis of compound 3 gave the title amide 4.These crude library members were obtained in good yields with high purities.

  4. Fabrication and characterization of poly(amide-imides)/TiO₂ nanocomposite gas separation membranes



    Nanosized Ti02 rich domains were generated in-situ within poly(amide-imide) (PAl) and 6F-poly(amide-imide) (6FPAl) by a sol-gel process. The composite films showed a high optical transparency. The morphology of the Ti02 rich domains was observed by transmission electron microscopy (TEM). The Ti02 rich domains were well dispersed within the poly(amide-imide) and 6F-poly(amide-imide) matrices and were 5 nm to 50 nm in size. Limited study was also carried out for the fabrication o...

  5. N-Hydroxyimide Ugi Reaction toward α-Hydrazino Amides (United States)


    The Ugi four-component reaction (U-4CR) with N-hydroxyimides as a novel carboxylic acid isostere has been reported. This reaction provides straightforward access to α-hydrazino amides. A broad range of aldehydes, amines, isocyanides and N-hydroxyimides were employed to give products in moderate to high yields. This reaction displays N–N bond formation by cyclic imide migration in the Ugi reaction. Thus, N-hydroxyimide is added as a new acid component in the Ugi reaction and broadens the scaffold diversity. PMID:28220702

  6. Identification of nitrogen compounds and amides from spent hydroprocessing catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.H.K.; Gray, M.R. (University of Alberta, Edmonton, AB (Canada). Dept. of Chemical Engineering)


    A spent commercial naphtha hydrotreating catalyst was analyzed to identify compounds which had accumulated on the catalyst surface during its active life. The catalyst was extracted with methylene chloride, methanol and pyridine to remove adsorbed organic material, which was rich in nitrogen and oxygen. A series of quinolones were identified in the methanol extract after enrichment with HCl-modified silica gel adsorption and subsequent silica gel chromatography. Tetra- and hexahydroquinolones with alkyl substituents up to C{sub 3} were identified. Similar amides have been identified in asphaltenes, and are very resistant to hydrogenation. Tetrahydroquinolines and piperidines were detected in the pyridine extract. 36 refs., 8 figs., 2 tabs.

  7. Antifungal activity of natural and synthetic amides from Piper species

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Joaquim V.; Oliveira, Alberto de; Kato, Massuo J., E-mail: majokato@iq.usp.b [Universidade de Sao Paulo (IQ/USP), SP (Brazil). Inst. de Quimica; Raggi, Ludmila; Young, Maria C. [Instituto de Botanica, Sao Paulo, SP (Brazil). Secao de Fisiologia e Bioquimica de Plantas


    The antifungal leaves extract from Piper scutifolium was submitted to bioactivity-guided chromatographic separation against Cladosporium cladosporioides and C. sphaerospermum yielding piperine, piperlonguminine and corcovadine as the active principles which displayed a detection limit of 1 {mu}g. Structure-activity relationships were investigated with the preparation of twelve analogs having differences in the number of unsaturations, aromatic ring substituents and in the amide moiety. Analogs having a single double-bond and no substituent in the aromatic ring displayed higher activity, while N,N,-diethyl analogs displayed higher dose-dependent activity. (author)

  8. Synthesis and structures of new helical,nanoscale ferrocenylphenyl amides

    Institute of Scientific and Technical Information of China (English)

    XU Yan; RAN Chunling; WANG Haixian; SONG Maoping


    Two novel ferrocenylphenyl-containing amides have been synthesized by reaction of ferrocenylbencarboxylchloride and 1,2-di-(o-aminophenoxy)ethane.A single crystal X-ray analysis shows that compound 3 crystallizes in the triclinic system,space group P-1,and compound 4 crystallizes in orthorhombic system,space group Pca21.There areintramolecular H-bonds in both the compounds,two H-bonds in compound 3 and one in compound 4.The dihedral angels of Cp-ring and phenyl ring range from 3.8° to 20.8°.

  9. Preparation and evaluation of some amide ether carboxylate surfactants

    Directory of Open Access Journals (Sweden)

    M.M.A. El-Sukkary


    Full Text Available A homologous series of new mild surfactants, namely: Alkyl amide ether carboxylates surfactants (AEC RCO–NHCH2CH2O (CH2CH2O6CH2COONa, were synthesized by esterification, amidation, ethoxylation and carboxymethylation reaction steps of fatty acids (Lauric, Myristic, palmitic, stearic, oleic or linoleic. The chemical structures of the prepared compounds were confirmed using different spectroscopic techniques, FTIR spectroscopy, mass spectra and HNMR. The surface properties including surface and interfacial tensions, foaming height, emulsification power, calcium ion stability, stability to hydrolysis and critical micelle concentration (cmc were determined. The study of their surface properties showed their stability in hard water and in acidic and alkaline media. These compounds have high calcium ion stability. The low foaming power could have an application in the dyeing auxiliary industry. The lower values of the interfacial tension values indicate the ability of using these surfactants in several applications as corrosion inhibitors and biocides. The data revealed various advantages and potentials as a main surfactant as well as co- surfactants.


    Institute of Scientific and Technical Information of China (English)

    R.K.Mishra; A.Anis; S.Mondal; M.Dutt; A.K.Banthia


    The work presents the synthesis and characterization of ami dated pectin(AP)based polymer electrolyte membranes(PEM)crosslinked with glutaraldehyde(GA).The prepared membranes are characterized by Fourier transform infrared spectroscopy(FTIR),organic elemental analysis,X-ray diffraction studies(XRD),thermogravimetric analysis (TGA)and impedance spectroscopy.Mechanical properties of the membranes are evaluated by tensile tests.The degree of amidation(DA),molar and mass reaction yields(YM and YN)are calculated based on the results of organic elemental analysis.FTIR spectroscopy indicated the presence of primary and secondary amide absorption bands.XRD pattern of membranes clearly indicates that there is a considerable increase in crystallinity as compared to parent pectin.TGA studies indicate that AP is less thermally stable than reference pectin.A maximum room temperature conductivity of 1.098×10-3 Scm-1 is obtained in the membrane,which is designated as AP-3.These properties make them good candidates for low cost biopolymer electrolyte membranes for fuel cell applications.

  11. Amidated pectin based hydrogels: synthesis, characterization and cytocompatibility study. (United States)

    Mishra, R K; Singhal, J P; Datt, M; Banthia, A K


    The design and development of pectin-based hydrogels were attempted through the chemical modification of pectin with diethanolamine (DA). Diethanolamine modified pectin (DAMP) was synthesized by the chemical modification of pectin with varying concentrations of DA (1:1,1:2,1:3 and 1:4) at 5 oC in methanol. The modified product was used for the preparation of the hydrogel with glutaraldehyde (GA) reagent. The prepared hydrogels were characterized by Fourier transform infrared (FTIR) spectroscopy; organic elemental analysis, and X-ray diffraction (XRD), and swelling, hemocompatibility and cytocompatibility studies of the prepared hydrogels were also done. FTIR spectroscopy indicated the presence of primary and secondary amide absorption bands. The XRD pattern of the DAMP hydrogel clearly indicated that there was a considerable increase in crystallinity as compared to parent pectin. The degree of amidation (DA) and molar and mass reaction yields (Ym and Yn) was calculated based on the results of organic elemental analysis. Drug release studies from the hydrogel membranes were also evaluated in a Franz's diffusion cell. The hydrogels demonstrated good water holding properties and were found to be compatible with B-16 melanoma cells and human blood.

  12. Collagen and component polypeptides: Low frequency and amide vibrations (United States)

    Fontaine-Vive, F.; Merzel, F.; Johnson, M. R.; Kearley, G. J.


    Collagen is a fibrous protein, which exists widely in the human body. The biomechanical properties of collagen depend on its triple helix structure and the corresponding low frequency vibrations. We use first-principles, density functional theory methods and analytical force fields to investigate the molecular vibrations of a model collagen compound, the results being validated by comparison with published, inelastic neutron scattering data. The results from these atomistic simulations are used at higher frequency to study the Amide I and V vibrations and therefore the vibrational signature of secondary and tertiary structure formation. In addition to collagen, its component homopolymers, poly-glycine and poly-proline are also studied. The Amide V vibration of glycine is strongly modified in going from the single helix of poly-glycine II to the triple helix of collagen. The collagen models are hydrated and this work allows us to discuss the relative merits of density functional theory and force field methods when tackling complex, partially crystalline systems.

  13. Poly(ester amide)s based on (L)-lactic acid oligomers and α-amino acids: influence of the α-amino acid side chain in the poly(ester amide)s properties. (United States)

    Fonseca, Ana C; Coelho, Jorge F J; Valente, Joana F A; Correia, Tiago R; Correia, Ilídio J; Gil, Maria H; Simões, Pedro N


    Novel biodegradable and low cytotoxic poly(ester amide)s (PEAs) based on α-amino acids and (L)-lactic acid (L-LA) oligomers were successfully synthesized by interfacial polymerization. The chemical structure of the new polymers was confirmed by spectroscopic analyses. Further characterization suggests that the α-amino acid plays a critical role on the final properties of the PEA. L-phenylalanine provides PEAs with higher glass transition temperature, whereas glycine enhances the crystallinity. The hydrolytic degradation in PBS (pH = 7.4) at 37 °C also depends on the α-amino acid, being faster for glycine-based PEAs. The cytotoxic profiles using fibroblast human cells indicate that the PEAs did not elicit an acute cytotoxic effect. The strategy presented in this work opens the possibility of synthesizing biodegradable PEAs with low citotoxicity by an easy and fast method. It is worth to mention also that the properties of these materials can be fine-tuned only by changing the α-amino acid.

  14. Stability of caffeic acid phenethyl amide (CAPA) in rat plasma. (United States)

    Yang, John; Kerwin, Sean M; Bowman, Phillip D; Stavchansky, Salomon


    A validated C₁₈ reverse-phase HPLC method with UV detection at 320 nm was developed and used for the stability evaluation of caffeic acid phenethyl amide (CAPA) and caffeic acid phenethyl ester (CAPE) in rat plasma. CAPA is the amide derivative of CAPE, a naturally occurring polyphenolic compound that has been found to be active in a variety of biological pathways. CAPA has been shown to protect endothelial cells against hydrogen peroxide-induced oxidative stress to a similar degree to CAPE. CAPE has been reported to be rapidly hydrolyzed in rat plasma via esterase enzymes. CAPA is expected to display a longer half-life than CAPE by avoiding hydrolysis via plasma esterases. The stability of CAPA and CAPE in rat plasma was investigated at three temperatures. The half-lives for CAPA were found to be 41.5, 10 and 0.82 h at 25, 37 and 60 °C, respectively. The half-lives for CAPE were found to be 1.95, 0.35 and 0.13 h at 4, 25 and 37 °C, respectively. The energy of activation was found to be 22.1 kcal/mol for CAPA and 14.1 kcal/mol for CAPE. A more stable compound could potentially extend the beneficial effects of CAPE.

  15. Synthesis and Crystal Structure of a New Adamantane Amide Derivative

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ying-Hua; LV Qi-Chun; ZHANG Qian; CHENG Yong; SHENG En-Hong


    A novel adamantane acyl amide derivative containing two phthalimido pendant groups(C31H31N3O5) has been synthesized,and its structure was characterized by elemental analysis,IR,1 H NMR spectra,and single-crystal X-ray diffraction.The crystal belongs to triclinic,space group P1 with a=7.3158(10),b=13.2405(18),c=14.378(2),α=72.419(2),β=84.496(2),γ=81.799(2)o,V=1312.0(3)3,Z=2,Dc=1.330 g/cm 3,μ=0.09 mm-1,Mr=525.59,F(000)=556,S=1.001,R=0.0523 and wR=0.0707 for 5901 unique reflections with 2363 observed ones(I〉2σ(I)).π-π stacking interactions(offset face-to-face) exist between the two rings of phthalimides from the neighboring molecules in the title crystal structure.The intermolecular dihedral angle between the two rings of neighboring phthalic amides is 6.26° and the distance is 4.008.

  16. Calorimetric Investigation of Hydrogen Bonding of Formamide and Its Methyl Derivatives in Organic Solvents and Water (United States)

    Varfolomeev, Mikhail A.; Rakipov, Ilnaz T.; Solomonov, Boris N.


    Formamide and its derivatives have a large number of practical applications; also they are structural fragments of many biomolecules. Hydrogen bonds strongly affect their physicochemical properties. In the present work a calorimetric study of formamide and its methyl derivatives was carried out. Enthalpies of solution at infinite dilution of formamide, N-methylformamide, and N, N-dimethylformamide in organic solvents at 298.15 K were measured. The relationships between the obtained enthalpies of solvation and the structure of the studied compounds were observed. Hydrogen-bond enthalpies of amides with chlorinated alkanes, ethers, ketones, esters, nitriles, amines, alcohols, and water were determined. The strength of hydrogen bonds of formamide, N-methylformamide, and N, N-dimethylformamide with proton donor solvents is practically equal. Enthalpies of hydrogen bonds of formamide with the proton acceptor solvents are two times larger in magnitude than the enthalpies of N-methylformamide. The process of hydrogen bonding of amides in aliphatic alcohols and water is complicated. The obtained enthalpies of hydrogen bonding in aliphatic alcohols vary considerably from the amide structure due to the competition between solute-solvent and solvent-solvent hydrogen bonds. Fourier transform infrared spectroscopic measurements were carried out to explain the calorimetric data. Hydration enthalpies of methyl derivatives of formamides contain a contribution of the hydrophobic effect. New thermochemical data on the hydrogen bonding of formamides may be useful for predicting the properties of biomacromolecules.

  17. Two enzymes which catalyze the amidation of peptide C-terminals are synthesized by a single mRNA. Peptide C mattan amid ka hanno wo shokubaisuru futatsu no koso wa ippon no mRNA yori goseisareru

    Energy Technology Data Exchange (ETDEWEB)

    Kato, I.; Yonekura, H.; Okamoto, H. (Tohoku Univ., Sendai (Japan))


    Recent findings by the authors are reviewed on the amidation that forms amid structure essential to physiological activities in C-terminals of peptide hormones such as oxytocin,VIP,PP. It is noted that the amidation had been considered to be catalyzed by peptidylglycine{alpha} -amidating monooxyganase ( PAM ) and that the authors investigated the PAM function by expression of PAM cDNA isolated from rat pituitary and its deletion mutant into COS-7 cells, reaching to the important findings of a singl PMA mRNA encoding two enzymes, namely one at 5 {prime} side, peptidylglicine {alpha} hydroxylase which catalyses the conversion of C-termianl glycine on peptide to the hydroxylated form ( the first step of amidation ),and another at 3{prime} side, {alpha}- hydroxylglycine amidating dealkylase which catalyzes the conversion of hydroxylated glycine to the amidated form ( the second step of amidation). 19 refs., 4 figs.

  18. Alpha-amidated peptides derived from pro-opiomelanocortin in normal human pituitary

    DEFF Research Database (Denmark)

    Fenger, M; Johnsen, A H


    Normal human pituitaries were extracted in boiling water and acetic acid, and the alpha-amidated peptide products of pro-opiomelanocortin (POMC), alpha-melanocyte-stimulating hormone (alpha MSH), gamma-melanocyte-stimulating hormone (gamma 1MSH), and amidated hinge peptide (HP-N), as well...

  19. A General and Efficient CuBr2-Catalyzed N-Arylation of Secondary Acyclic Amides

    Institute of Scientific and Technical Information of China (English)

    王满刚; 于华; 尤心稳; 吴军; 商志才


    A general and efficient Cu(II)-catalyzed cross-coupling method is reported for the preparation of acyclic tertiary amides. Generally moderate to excellent yields and functional group tolerance were obtained with secondary acyclic amides and aryl halides as substrates in toluene.

  20. A nordehydroabietyl amide-containing chiral diene for rhodium-catalysed asymmetric arylation to nitroolefins. (United States)

    Li, Ruikun; Wen, Zhongqing; Wu, Na


    A highly enantioselective rhodium catalysed asymmetric arylation (RCAA) of nitroolefins with arylboronic acids is presented using a newly developed, C1-symmetric, non-covalent interacted, phellandrene derived, nordehydroabietyl amide-containing chiral diene under mild conditions. Stereoelectronic effects were studied, suggesting an activation of the bound substrate through the secondary amide as a hydrogen-bond donor.

  1. Palladium-catalyzed Substitution of Ketone or Aldehyde Bearing Aryl Triflates by Amines or Amides

    Institute of Scientific and Technical Information of China (English)

    TAO Xiaochun; DAI Chunya; CAO Xiongjie; CAI Lisheng; PIKE Victor W


    Various aryl triflates, bearing ketone or aldehyde groups, were evaluated for palladium-mediated introduction of an amino group at the triflate position in the presence of various phosphine ligands. BINAP was best for secondary amines, MOP-type ligand for primary or small secondary amines and Xantphos for primary or cyclic secondary amides. No ligand was found effective for acyclic secondary amides.

  2. A case study on the myth of emission from aliphatic amides (United States)

    Singh, Avinash Kumar; Das, Sreyashi; Datta, Anindya


    For several decades, aliphatic amidic compounds have been believed to be emissive. We report that this contention is incorrect and that the anomalous emission from amides originates in fluorescent impurities generated during their synthesis. In order to make this point, we have synthesized fluorescent compounds and have compared the absorption spectra with excitation spectra.

  3. 1H NMR spectra. Part 30(+): 1H chemical shifts in amides and the magnetic anisotropy, electric field and steric effects of the amide group. (United States)

    Abraham, Raymond J; Griffiths, Lee; Perez, Manuel


    The (1)H spectra of 37 amides in CDCl(3) solvent were analysed and the chemical shifts obtained. The molecular geometries and conformational analysis of these amides were considered in detail. The NMR spectral assignments are of interest, e.g. the assignments of the formamide NH(2) protons reverse in going from CDCl(3) to more polar solvents. The substituent chemical shifts of the amide group in both aliphatic and aromatic amides were analysed using an approach based on neural network data for near (≤3 bonds removed) protons and the electric field, magnetic anisotropy, steric and for aromatic systems π effects of the amide group for more distant protons. The electric field is calculated from the partial atomic charges on the N.C═O atoms of the amide group. The magnetic anisotropy of the carbonyl group was reproduced with the asymmetric magnetic anisotropy acting at the midpoint of the carbonyl bond. The values of the anisotropies Δχ(parl) and Δχ(perp) were for the aliphatic amides 10.53 and -23.67 (×10(-6) Å(3)/molecule) and for the aromatic amides 2.12 and -10.43 (×10(-6) Å(3)/molecule). The nitrogen anisotropy was 7.62 (×10(-6) Å(3)/molecule). These values are compared with previous literature values. The (1)H chemical shifts were calculated from the semi-empirical approach and also by gauge-independent atomic orbital calculations with the density functional theory method and B3LYP/6-31G(++) (d,p) basis set. The semi-empirical approach gave good agreement with root mean square error of 0.081 ppm for the data set of 280 entries. The gauge-independent atomic orbital approach was generally acceptable, but significant errors (ca. 1 ppm) were found for the NH and CHO protons and also for some other protons.


    Enzymology of Arsenic MethylationDavid J. Thomas, Pharmacokinetics Branch, Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park...

  5. Lysine methylation: beyond histones

    Institute of Scientific and Technical Information of China (English)

    Xi Zhang; Hong Wen; Xiaobing Shi


    Posttranslational modifications (PTMs) of histone proteins,such as acetylation,methylation,phosphorylation,and ubiquitylation,play essential roles in regulating chromatin dynamics.Combinations of different modifications on the histone proteins,termed 'histone code' in many cases,extend the information potential of the genetic code by regulating DNA at the epigenetic level.Many PTMs occur on non-histone proteins as well as histones,regulating protein-protein interactions,stability,localization,and/or enzymatic activities of proteins involved in diverse cellular processes.Although protein phosphorylation,ubiquitylation,and acetylation have been extensively studied,only a few proteins other than histones have been reported that can be modified by lysine methylation.This review summarizes the current progress on lysine methylation of nonhistone proteins,and we propose that lysine methylation,like phosphorylation and acetylation,is a common PTM that regulates proteins in diverse cellular processes.

  6. Robust trans-amide helical structure of oligomers of bicyclic mimics of β-proline: impact of positional switching of bridgehead substituent on amide cis-trans equilibrium. (United States)

    Wang, Siyuan; Otani, Yuko; Liu, Xin; Kawahata, Masatoshi; Yamaguchi, Kentaro; Ohwada, Tomohiko


    Because homooligomers of 7-azabicyclo[2.2.1]heptane-2-endo-carboxylic acid, a bridged β-proline analogue with a substituent installed at the remote C4-bridgehead position, completely biased the amide cis-trans equilibrium to the cis-amide structure, we expected that introduction of a substituent at the C1-bridgehead position adjacent to the carboxylic acid moiety, rather than the remote C4-bridgehead position, would tip the cis-trans amide equilibrium toward trans-amide structure without the aid of hydrogen bonding. Thus, in this work we established an efficient synthetic route to an optically active bicyclic analogue of 1,1-disubstituted β-proline, bearing a substituent at the C1-bridgehead position. Crystallographic, spectroscopic, and computational studies showed that indeed oligomers of this analogue take a consistent helical structure involving all-trans-amide linkages, independently of the number of residues, from the dimer up to the octamer. Oligomers composed of (R)-β-amino acid units form an extended left-handed helix with about 2.7 residues per turn and an approximately 4.0 Å rise per residue, characterized by complete lack of main-chain hydrogen bonding. This unique helical structure shows some similarity in shape to the trans-amide-based polyproline II (PPII) helix. The present helix was stable in various kinds of solvents such as alcohols. The present work provided a fundamental structural basis for future applications.

  7. Fast acquisition of high resolution 4-D amide-amide NOESY with diagonal suppression, sparse sampling and FFT-CLEAN. (United States)

    Werner-Allen, Jon W; Coggins, Brian E; Zhou, Pei


    Amide-amide NOESY provides important distance constraints for calculating global folds of large proteins, especially integral membrane proteins with beta-barrel folds. Here, we describe a diagonal-suppressed 4-D NH-NH TROSY-NOESY-TROSY (ds-TNT) experiment for NMR studies of large proteins. The ds-TNT experiment employs a spin state selective transfer scheme that suppresses diagonal signals while providing TROSY optimization in all four dimensions. Active suppression of the strong diagonal peaks greatly reduces the dynamic range of observable signals, making this experiment particularly suitable for use with sparse sampling techniques. To demonstrate the utility of this method, we collected a high resolution 4-D ds-TNT spectrum of a 23kDa protein using randomized concentric shell sampling (RCSS), and we used FFT-CLEAN processing for further reduction of aliasing artifacts - the first application of these techniques to a NOESY experiment. A comparison of peak parameters in the high resolution 4-D dataset with those from a conventionally-sampled 3-D control spectrum shows an accurate reproduction of NOE crosspeaks in addition to a significant reduction in resonance overlap, which largely eliminates assignment ambiguity. Likewise, a comparison of 4-D peak intensities and volumes before and after application of the CLEAN procedure demonstrates that the reduction of aliasing artifacts by CLEAN does not systematically distort NMR signals.

  8. Pyrrolic Amide: A New Hydrogen Bond Building Block for Self-assembly

    Institute of Scientific and Technical Information of China (English)

    YIN Zhen-Ming; LI Jian-Feng; HE Jia-Qi; ZHU Xiao-Qing; CHENG Jin-Pei


    @@ Molecular self-assembly has emerged as a powerful technology for the synthesis of nanostructured materials. In design of various molecular assemblies, hydrogen bonding is a preferably selected intra- or inter-molecular weak interaction in recent research by virtue of the directionality and specificity. The research for novel hydrogen bond building blocks that self-assembly into well defined structures is great important not only for gaining an understanding of the concepts of self-assembly but also for the design of new molecular materials. Pyrrolic amide moiety has one hydrogen bond acceptor (C =O) and two hydrogen bond donors (pyrrole NH and amide NH). By deliberately design, pyrrolic amide compounds would be new kinds hydrogen bond building blocks. So, pyrrolic amide compounds 1 ~ 6, which bear one, two or three pyrrolic amide moieties respectively, were designed and synthesized.

  9. Synthesis and antimicrobial activity of amide derivatives of polyether antibiotic-salinomycin. (United States)

    Huczyński, Adam; Janczak, Jan; Stefańska, Joanna; Antoszczak, Michał; Brzezinski, Bogumil


    For the first time a direct and practical approach to the synthesis of eight amide derivatives of polyether antibiotic-salinomycin is described. The structure of allyl amide (3a) has been determined using X-ray diffraction. Salinomycin and its amide derivatives have been screened for their in vitro antimicrobial activity against the typical gram-positive cocci, gram-negative rods and yeast-like organisms, as well as against a series of clinical isolates of methicillin-resistant Staphylococcus aureus and methicillin-sensitive S. aureus. Amides of salinomycin have been found to show a wide range of activities, from inactive at 256 μg/mL to active with MIC of 2 μg/mL, comparable with salinomycin. As a result, phenyl amide (3b) was found to be the most active salinomycin derivative against gram-positive bacteria, MRSA and MSSA.

  10. Structure-activity studies on the C-terminal amide of substance P. (United States)

    Escher, E; Couture, R; Poulos, C; Pinas, N; Mizrahi, J; Theodoropoulos, D; Regoli, D


    Twelve C-terminal heptapeptide analogues of substance P have been synthesized by solid phase and by the classical solution method. The modifications concerned all the C-terminal primary amide of SP and should therefore help to understand the biological significance of this carboxamide, as evaluated by in vivo and in vitro bioassays. From the results it can be seen that not the slightest change of the two amide protons is tolerated without an important loss of activity: replacement of one or two amide protons with alkyl groups, extension of the amide to the hydrazide and its alkyl analogues, and exchange of the amide with an ester or a carboxylic acid all reduce the relative activity/affinity at least by 2-fold. It is not clear for what reason all these modifications produce such a drastic activity reduction.

  11. Synthesis of amide-functionalized cellulose esters by olefin cross-metathesis. (United States)

    Meng, Xiangtao; Edgar, Kevin J


    Cellulose esters with amide functionalities were synthesized by cross-metathesis (CM) reaction of terminally olefinic esters with different acrylamides, catalyzed by Hoveyda-Grubbs 2nd generation catalyst. Chelation by amides of the catalyst ruthenium center caused low conversions using conventional solvents. The effects of both solvent and structure of acrylamide on reaction conversion were investigated. While the inherent tendency of acrylamides to chelate Ru is governed by the acrylamide N-substituents, employing acetic acid as a solvent significantly improved the conversion of certain acrylamides, from 50% to up to 99%. Homogeneous hydrogenation using p-toluenesulfonyl hydrazide successfully eliminated the α,β-unsaturation of the CM products to give stable amide-functionalized cellulose esters. The amide-functionalized product showed higher Tg than its starting terminally olefinic counterpart, which may have resulted from strong hydrogen bonding interactions of the amide functional groups.

  12. Cu-catalyzed arylation of phosphinic amide facilitated by (±)-trans-cyclohexane-1,2-diamine

    Institute of Scientific and Technical Information of China (English)

    Juan Li; Song Lin Zhang; Chuan Zhou Tao; Yao Fu; Qing Xiang Guo


    Cu-catalyzed cross coupling between phosphinic amides and aryl halides was accomplished for the first time by using (±)-transcyclohexane-1,2-diamine as the ligand. This reaction provided a novel approach for synthesizing arylated phosphinic amides. Both kinetic measurement and theoretical calculation indicated that phosphinic amides were much less reactive than amides by about 10times in Cu-catalyzed cross coupling.

  13. Analgesic effects of fatty acid amide hydrolase inhibition in a rat model of neuropathic pain. (United States)

    Jhaveri, Maulik D; Richardson, Denise; Kendall, David A; Barrett, David A; Chapman, Victoria


    Cannabinoid-based medicines have therapeutic potential for the treatment of pain. Augmentation of levels of endocannabinoids with inhibitors of fatty acid amide hydrolase (FAAH) is analgesic in models of acute and inflammatory pain states. The aim of this study was to determine whether local inhibition of FAAH alters nociceptive responses of spinal neurons in the spinal nerve ligation model of neuropathic pain. Electrophysiological studies were performed 14-18 d after spinal nerve ligation or sham surgery, and the effects of the FAAH inhibitor cyclohexylcarbamic acid 3-carbamoyl biphenyl-3-yl ester (URB597) on mechanically evoked responses of spinal neurons and levels of endocannabinoids were determined. Intraplantar URB597 (25 microg in 50 microl) significantly (p < 0.01) attenuated mechanically evoked responses of spinal neurons in sham-operated rats. Effects of URB597 were blocked by the cannabinoid 1 receptor (CB1) antagonist AM251 [N-1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide] (30 microg in 50 microl) and the opioid receptor antagonist naloxone. URB597 treatment increased levels of anandamide, 2-arachidonyl glycerol, and oleoyl ethanolamide in the ipsilateral hindpaw of sham-operated rats. Intraplantar URB597 (25 microg in 50 microl) did not, however, alter mechanically evoked responses of spinal neurons in spinal nerve ligated (SNL) rats or hindpaw levels of endocannabinoids. Intraplantar injection of a higher dose of URB597 (100 microg in 50 microl) significantly (p < 0.05) attenuated evoked responses of spinal neurons in SNL rats but did not alter hindpaw levels of endocannabinoids. Spinal administration of URB597 attenuated evoked responses of spinal neurons and elevated levels of endocannabinoids in sham-operated and SNL rats. These data suggest that peripheral FAAH activity may be altered or that alternative pathways of metabolism have greater importance in SNL rats.

  14. Catalysis of a Flavoenzyme-Mediated Amide Hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Tathagata; Zhang, Yang; Abdelwahed, Sameh; Ealick, Steven E.; Begley, Tadhg P. (Cornell); (TAM)


    A new pyrimidine catabolic pathway (the Rut pathway) was recently discovered in Escherichia coli K12. In this pathway, uracil is converted to 3-hydroxypropionate, ammonia, and carbon dioxide. The seven-gene Rut operon is required for this conversion. Here we demonstrate that the flavoenzyme RutA catalyzes the initial uracil ring-opening reaction to give 3-ureidoacrylate. This reaction, while formally a hydrolysis reaction, proceeds by an oxidative mechanism initiated by the addition of a flavin hydroperoxide to the C4 carbonyl. While peroxide-catalyzed amide hydrolysis has chemical precedent, we are not aware of a prior example of analogous chemistry catalyzed by flavin hydroperoxides. This study further illustrates the extraordinary catalytic versatility of the flavin cofactor.

  15. Lead optimization studies of cinnamic amide EP2 antagonists. (United States)

    Ganesh, Thota; Jiang, Jianxiong; Yang, Myung-Soon; Dingledine, Ray


    Prostanoid receptor EP2 can play a proinflammatory role, exacerbating disease pathology in a variety of central nervous system and peripheral diseases. A highly selective EP2 antagonist could be useful as a drug to mitigate the inflammatory consequences of EP2 activation. We recently identified a cinnamic amide class of EP2 antagonists. The lead compound in this class (5d) displays anti-inflammatory and neuroprotective actions. However, this compound exhibited moderate selectivity to EP2 over the DP1 prostanoid receptor (∼10-fold) and low aqueous solubility. We now report compounds that display up to 180-fold selectivity against DP1 and up to 9-fold higher aqueous solubility than our previous lead. The newly developed compounds also display higher selectivity against EP4 and IP receptors and a comparable plasma pharmacokinetics. Thus, these compounds are useful for proof of concept studies in a variety of models where EP2 activation is playing a deleterious role.


    Institute of Scientific and Technical Information of China (English)

    WU Qixian; CHEN Yongrong; ZHOU Zuowan


    Poly(phenylene sulfide amide) (PPSA) has been synthesized by using sulfur as Ssource which reacts with dichlorobenzamide (DCBA) and alkali in polar organic solvent atthe atmospheric pressure. The polymer structures were determined by elemental analysis,FT-IR and 1H-NMR. It is shown that the yielded polymer has linear structure and itsstructure unit is -p-C6H4-CONH -p-C6H4-S-. The polymer morphology was studied byX-ray diffraction and polarized microscopy. The results show that PPSA is a crystallinepolymer and its spherulites are the aggregation of nontwisting lamella or micro-threadstructure. Under shearing force, these crystals are dispersed to form micro-fibrillarstructure. The decomposition kinetics of PPSA was also studied at different heating rates.The decomposition energy of PPSA is higher than that of PPS.

  17. Effect of Antimicrobial Peptide-Amide: Indolicidin on Biological Membranes

    Directory of Open Access Journals (Sweden)

    Attila Gergely Végh


    Full Text Available Indolicidin, a cationic antimicrobial tridecapeptide amide, is rich in proline and tryptophan residues. Its biological activity is intensively studied, but the details how indolicidin interacts with membranes are not fully understood yet. We report here an in situ atomic force microscopic study describing the effect of indolicidin on an artificial supported planar bilayer membrane of dipalmitoyl phosphatidylcholine (DPPC and on purple membrane of Halobacterium salinarum. Concentration dependent interaction of the peptide and membranes was found in case of DPPC resulting the destruction of the membrane. Purple membrane was much more resistant against indolicidin, probably due to its high protein content. Indolicidin preferred the border of membrane disks, where the lipids are more accessible. These data suggest that the atomic force microscope is a powerful tool in the study of indolicidin-membrane interaction.

  18. Polymer amide in the Allende and Murchison meteorites (United States)

    McGeoch, Julie E. M.; McGeoch, Malcolm W.


    It has been proposed that exothermic gas phase polymerization of amino acids can occur in the conditions of a warm dense molecular cloud to form hydrophobic polymer amide (HPA) (McGeoch and McGeoch 2014). In a search for evidence of this presolar chemistry Allende and Murchison meteorites and a volcano control were diamond burr-etched and Folch extracted for potential HPA yielding 85 unique peaks in the meteorite samples via matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI TOF/MS). The amino acids after acid hydrolysis in Allende were below the level of detection but many of the Allende peaks via the more sensitive MALDI/TOF analysis could be fitted to a polymer combination of glycine, alanine, and alpha-hydroxyglycine with high statistical significance. A similar significant fit using these three amino acids could not be applied to the Murchison data indicating more complex polymer chemistry.

  19. Interacting Blends of Novel Unsaturated Polyester Amide Resin with Styrene

    Directory of Open Access Journals (Sweden)

    Hasmukh S. Patel


    Full Text Available Novel unsaturated poly (ester-amide resins (UPEAs were prepared by the reaction between an epoxy resin, namely diglycidyl ether of bisphenol–A (DGEBA and unsaturated aliphatic bisamic acids using a base catalyst. These UPEAs were then blended with a vinyl monomer namely, Styrene (STY. to produce a homogeneous resin syrup. The curing of these UPEAs-STY. resin blends was carried out by using benzoyl peroxide (BPO as a catalyst and was monitored by using a differential scanning calorimeter (DSC. The glass fibre reinforced composites (i.e. laminates of these UPEA-STY. resin blends were fabricated using the DSC data. The chemical, mechanical and electrical properties of the glass fibre composites have also been evaluated. The unreinforced cured samples of the UPEA-STY. resin blends were also analyzed by thermogravimetry (TGA.

  20. Interaction of Thioamides, Selenoamides, and Amides With Diiodine

    Directory of Open Access Journals (Sweden)

    Nick Hadjiliadis


    Full Text Available We review the results of our work on the iodine interaction with thioamides, selenoamides, and amides. Complexes with (i “spoke” or “extended spoke” structures, D⋅I2 and D⋅I2⋅I2, respectively, (D is the ligand donor (ii iodonium salts of {[D2−I]+[In]−} (n=3, 7 and {[D2−I]+[FeCl4]−} formulae and (iii disulfides of the categories (a [D-D], (b {[D-DH]+[I3]−} have been isolated and characterized. A compound of formula {[D2−I]+[I3]−[D⋅I2]} containing both types of complexes (i and (ii was also isolated. The interaction of diiodine with selenium analogs of the antithyroid drug 6-n-propyl-2-thiouracil (PTU, of formulae RSeU (6-alkyl-2-Selenouracil results in the formation of complexes with formulae [(RSeUI2]. All these results are correlated with the mechanism of action of antithyroid drugs. Finally, we review here our work on the diiodine interaction with the amides (LO.

  1. Ground-State Distortion in N-Acyl-tert-butyl-carbamates (Boc) and N-Acyl-tosylamides (Ts): Twisted Amides of Relevance to Amide N-C Cross-Coupling. (United States)

    Szostak, Roman; Shi, Shicheng; Meng, Guangrong; Lalancette, Roger; Szostak, Michal


    Amide N-C(O) bonds are generally unreactive in cross-coupling reactions employing low-valent transition metals due to nN → π*C═O resonance. Herein we demonstrate that N-acyl-tert-butyl-carbamates (Boc) and N-acyl-tosylamides (Ts), two classes of acyclic amides that have recently enabled the development of elusive amide bond N-C cross-coupling reactions with organometallic reagents, are intrinsically twisted around the N-C(O) axis. The data have important implications for the design of new amide cross-coupling reactions with the N-C(O) amide bond cleavage as a key step.

  2. Synergistic effects of amides from two piper species on generalist and specialist herbivores. (United States)

    Richards, Lora A; Dyer, Lee A; Smilanich, Angela M; Dodson, Craig D


    Plants use a diverse mix of defenses against herbivores, including multiple secondary metabolites, which often affect herbivores synergistically. Chemical defenses also can affect natural enemies of herbivores via limiting herbivore populations or by affecting herbivore resistance to parasitoids. In this study, we performed feeding experiments to examine the synergistic effects of imides and amides (hereafter "amides") from Piper cenocladum and P. imperiale on specialist (Eois nympha, Geometridae) and generalist (Spodoptera frugiperda, Noctuidae) lepidopteran larvae. Each Piper species has three unique amides, and in each experiment, larvae were fed diets containing different concentrations of single amides or combinations of the three. The amides from P. imperiale had negative synergistic effects on generalist survival and specialist pupal mass, but had no effect on specialist survival. Piper cenocladum amides also acted synergistically to increase mortality caused by parasitoids, and the direct negative effects of mixtures on parasitoid resistance and pupal mass were stronger than indirect effects via changes in growth rate and approximate digestibility. Our results are consistent with plant defense theory that predicts different effects of plant chemistry on generalist versus adapted specialist herbivores. The toxicity of Piper amide mixtures to generalist herbivores are standard bottom-up effects, while specialists experienced the top-down mediated effect of mixtures causing reduced parasitoid resistance and associated decreases in pupal mass.

  3. Amides are excellent mimics of phosphate internucleoside linkages and are well tolerated in short interfering RNAs. (United States)

    Mutisya, Daniel; Selvam, Chelliah; Lunstad, Benjamin D; Pallan, Pradeep S; Haas, Amanda; Leake, Devin; Egli, Martin; Rozners, Eriks


    RNA interference (RNAi) has become an important tool in functional genomics and has an intriguing therapeutic potential. However, the current design of short interfering RNAs (siRNAs) is not optimal for in vivo applications. Non-ionic phosphate backbone modifications may have the potential to improve the properties of siRNAs, but are little explored in RNAi technologies. Using X-ray crystallography and RNAi activity assays, the present study demonstrates that 3'-CH2-CO-NH-5' amides are excellent replacements for phosphodiester internucleoside linkages in RNA. The crystal structure shows that amide-modified RNA forms a typical A-form duplex. The amide carbonyl group points into the major groove and assumes an orientation that is similar to the P-OP2 bond in the phosphate linkage. Amide linkages are well hydrated by tandem waters linking the carbonyl group and adjacent phosphate oxygens. Amides are tolerated at internal positions of both the guide and passenger strand of siRNAs and may increase the silencing activity when placed near the 5'-end of the passenger strand. As a result, an siRNA containing eight amide linkages is more active than the unmodified control. The results suggest that RNAi may tolerate even more extensive amide modification, which may be useful for optimization of siRNAs for in vivo applications.

  4. New synthesis route for ternary transition metal amides as well as ultrafast amide-hydride hydrogen storage materials. (United States)

    Cao, Hujun; Santoru, Antonio; Pistidda, Claudio; Richter, Theresia M M; Chaudhary, Anna-Lisa; Gizer, Gökhan; Niewa, Rainer; Chen, Ping; Klassen, Thomas; Dornheim, Martin


    K2[Mn(NH2)4] and K2[Zn(NH2)4] were successfully synthesized via a mechanochemical method. The mixture of K2[Mn(NH2)4] and LiH showed excellent rehydrogenation properties. In fact, after dehydrogenation K2[Mn(NH2)4]-8LiH fully rehydrogenates within 60 seconds at ca. 230 °C and 5 MPa of H2. This is one of the fastest rehydrogenation rates in amide-hydride systems known to date. This work also shows a strategy for the synthesis of transition metal nitrides by decomposition of the mixtures of M[M'(NH2)n] (where M is an alkali or alkaline earth metal and M' is a transition metal) and metal hydrides.

  5. Acceleration of Amide Bond Rotation by Encapsulation in the Hydrophobic Interior of a Water-Soluble Supramolecular Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Pluth, Michael D.; Bergman, Robert G.; Raymond, Kenneth N.


    The hydrophobic interior cavity of a self-assembled supramolecular assembly exploits the hydrophobic effect for the encapsulation of tertiary amides. Variable temperature 1H NMR experiments reveal that the free energy barrier for rotation around the C-N amide bond is lowered by up to 3.6 kcal/mol upon encapsulation. The hydrophobic cavity of the assembly is able to stabilize the less polar transition state of the amide rotation process. Carbon-13 labeling studies showed that the {sup 13}C NMR carbonyl resonance increases with temperature for the encapsulated amides which suggests that the assembly is able to favor a twisted for of the amide.

  6. Probing the production of amidated peptides following genetic and dietary copper manipulations.

    Directory of Open Access Journals (Sweden)

    Ping Yin

    Full Text Available Amidated neuropeptides play essential roles throughout the nervous and endocrine systems. Mice lacking peptidylglycine α-amidating monooxygenase (PAM, the only enzyme capable of producing amidated peptides, are not viable. In the amidation reaction, the reactant (glycine-extended peptide is converted into a reaction intermediate (hydroxyglycine-extended peptide by the copper-dependent peptidylglycine-α-hydroxylating monooxygenase (PHM domain of PAM. The hydroxyglycine-extended peptide is then converted into amidated product by the peptidyl-α-hydroxyglycine α-amidating lyase (PAL domain of PAM. PHM and PAL are stitched together in vertebrates, but separated in some invertebrates such as Drosophila and Hydra. In addition to its luminal catalytic domains, PAM includes a cytosolic domain that can enter the nucleus following release from the membrane by γ-secretase. In this work, several glycine- and hydroxyglycine-extended peptides as well as amidated peptides were qualitatively and quantitatively assessed from pituitaries of wild-type mice and mice with a single copy of the Pam gene (PAM(+/- via liquid chromatography-mass spectrometry-based methods. We provide the first evidence for the presence of a peptidyl-α-hydroxyglycine in vivo, indicating that the reaction intermediate becomes free and is not handed directly from PHM to PAL in vertebrates. Wild-type mice fed a copper deficient diet and PAM(+/- mice exhibit similar behavioral deficits. While glycine-extended reaction intermediates accumulated in the PAM(+/- mice and reflected dietary copper availability, amidated products were far more prevalent under the conditions examined, suggesting that the behavioral deficits observed do not simply reflect a lack of amidated peptides.

  7. Probing the production of amidated peptides following genetic and dietary copper manipulations. (United States)

    Yin, Ping; Bousquet-Moore, Danielle; Annangudi, Suresh P; Southey, Bruce R; Mains, Richard E; Eipper, Betty A; Sweedler, Jonathan V


    Amidated neuropeptides play essential roles throughout the nervous and endocrine systems. Mice lacking peptidylglycine α-amidating monooxygenase (PAM), the only enzyme capable of producing amidated peptides, are not viable. In the amidation reaction, the reactant (glycine-extended peptide) is converted into a reaction intermediate (hydroxyglycine-extended peptide) by the copper-dependent peptidylglycine-α-hydroxylating monooxygenase (PHM) domain of PAM. The hydroxyglycine-extended peptide is then converted into amidated product by the peptidyl-α-hydroxyglycine α-amidating lyase (PAL) domain of PAM. PHM and PAL are stitched together in vertebrates, but separated in some invertebrates such as Drosophila and Hydra. In addition to its luminal catalytic domains, PAM includes a cytosolic domain that can enter the nucleus following release from the membrane by γ-secretase. In this work, several glycine- and hydroxyglycine-extended peptides as well as amidated peptides were qualitatively and quantitatively assessed from pituitaries of wild-type mice and mice with a single copy of the Pam gene (PAM(+/-)) via liquid chromatography-mass spectrometry-based methods. We provide the first evidence for the presence of a peptidyl-α-hydroxyglycine in vivo, indicating that the reaction intermediate becomes free and is not handed directly from PHM to PAL in vertebrates. Wild-type mice fed a copper deficient diet and PAM(+/-) mice exhibit similar behavioral deficits. While glycine-extended reaction intermediates accumulated in the PAM(+/-) mice and reflected dietary copper availability, amidated products were far more prevalent under the conditions examined, suggesting that the behavioral deficits observed do not simply reflect a lack of amidated peptides.

  8. Methyl 4-[N-(5-bromopyrimidin-2-ylcarbamoyl]benzoate

    Directory of Open Access Journals (Sweden)

    Hui-Ling Hu


    Full Text Available In the title compound, C13H10BrN3O3, the pyrimidine and benzene rings are twisted with an interplanar angle of 58.4 (1°. The secondary amide group adopts a cis conformation with an H—N—C—O torsion angle of 14.8 (1°. In the crystal, molecules are connected into inversion dimers via pairs of N—H...N hydrogen bonds, generating an R22(8 motif. The dimers are further connected through a C—Br...O interaction [3.136 (1 Å and 169.31 (1°] into a chain along [110]. Weak C—H...N hydrogen bonds between the methyl benzoate groups and pyrimidine rings are also observed in the crystal structure.

  9. The Catalysis of NAD+, NADP+ and Nicotinic Amide for Methanol Electrooxidation at Platinum Electrode

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ping; SHI Yufang; ZHANG Qiaolian; TANG Zhiyong; ZHENG Hongtao; YUAN Runzhang


    A group of liquid catalysts composed of nicotinic amide functioning on the anode of DMFC were investigated at a Pt electrode, which were nicotinic amide, nicotinamide adenine dinucleotide (NAD+) and its phosphate (NAD(P)+). The kinetics of methanol anode oxidation in the three reaction systems was compared by measuring potentiodynamic current-potential curves and AC impedances. The experimental results show that the dynamic behavior of methanol oxidation at a Pt electrode has been changed with adding the three substances. The influence of temperature on the catalysis of these coenzymes and nicotinic amide was discussed by comparing the AC impedances spectra of methanol oxidation at different temperatures.

  10. Ruthenium(II)-Catalyzed Regioselective Ortho Amidation of Imidazo Heterocycles with Isocyanates. (United States)

    Shakoor, S M Abdul; Kumari, Santosh; Khullar, Sadhika; Mandal, Sanjay K; Kumar, Anil; Sakhuja, Rajeev


    Direct ortho amidation at the phenyl ring of 2-phenylimidazo heterocycles with aryl isocyanates has been achieved via a chelation-assisted cationic ruthenium(II) complex catalyzed mechanism. The methodology provides a straightforward, high-yielding regioselective approach toward the synthesis of an array of ortho-amidated phenylimidazo heterocycles without prior activation of C(sp(2))-H. This also reports the first method for coupling of aryl isocyanates with the imidazo[1,2-a]pyridine system via a pentacyclometalated intermediate. The methodology is found to be easily scalable and could be applied toward the selective ortho amidation of 2-heteroarylimidazo[1,2-a]pyridine frameworks.

  11. Amide Synthesis from Alcohols and Amines by the Extrusion of Dihydrogen

    DEFF Research Database (Denmark)

    Nordstrøm, Lars Ulrik Rubæk; Vogt, Henning; Madsen, R.


    An environmentally friendly method for synthesis of amides is presented where a simple ruthenium catalyst mediates the direct coupling between an alcohol and an amine with the liberation of two molecules of dihydrogen. The active catalyst is generated in situ from an easily available ruthenium...... complex, an N-heterocyclic carbene and a phosphine. The reaction allows primary alcohols to be coupled with primary alkyamines to afford the corresponding secondary amides in good yields. The amide formation presumably proceeds through a catalytic cycle where the intermediate aldehyde and hemiaminal...

  12. Studies and Applications of Metals for the Synthesis of Carbinols, Amides and Carbohydrates

    DEFF Research Database (Denmark)

    Osztrovszky, Gyorgyi

    the carbonyl addition was found to be faster or comparable to the protonation by the reagent. Project 2: Ruthenium catalyzed synthesis of amides from primary alcohols and amines The direct synthesis of amides from alcohols and amines with the simultaneous liberation of dihydrogen was previously discovered...... for the amidation. These two systems do not show any significant differences in reactivity indicating that the same catalytically active species is operating. Project 3: Synthesis of a trisaccharide probe as a putative dengue virus receptor At the Institute for Glycomics major research has been devoted to identify...

  13. Chelate effects in sulfate binding by amide/urea-based ligands. (United States)

    Jia, Chuandong; Wang, Qi-Qiang; Begum, Rowshan Ara; Day, Victor W; Bowman-James, Kristin


    The influence of chelate and mini-chelate effects on sulfate binding was explored for six amide-, amide/amine-, urea-, and urea/amine-based ligands. Two of the urea-based hosts were selective for SO4(2-) in water-mixed DMSO-d6 systems. Results indicated that the mini-chelate effect provided by a single urea group with two NH binding sites appears to provide enhanced binding over two amide groups. Furthermore, additional urea binding sites incorporated into the host framework appeared to overcome to some extent competing hydration effects with increasing water content.

  14. Mesoporous Niobium Oxide Spheres as an Effective Catalyst for the Transamidation of Primary Amides with Amines

    KAUST Repository

    Ghosh, Subhash Chandra


    Mesoporous niobium oxide spheres (MNOS), conveniently prepared by a novel antisolvent precipitation approach, have been shown to be an effective catalyst for the transamidation of primary amides with amines. This novel transamidation can be efficiently carried out under solvent-free conditions and is applicable to a wide range of primary amides and amines to provide N-alkyl amides in good to excellent yields. The catalyst is highly stable and reusable. The application of this transamidation reaction has been demonstrated in the synthesis of antidepressant drug moclobemide and other druglike compounds. © 2014 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim.

  15. Palladium-catalyzed Suzuki-Miyaura coupling of amides by carbon-nitrogen cleavage: general strategy for amide N-C bond activation. (United States)

    Meng, Guangrong; Szostak, Michal


    The first palladium-catalyzed Suzuki-Miyaura cross-coupling of amides with boronic acids for the synthesis of ketones by sterically-controlled N-C bond activation is reported. The transformation is characterized by operational simplicity using bench-stable, commercial reagents and catalysts, and a broad substrate scope, including substrates with electron-donating and withdrawing groups on both coupling partners, steric-hindrance, heterocycles, halides, esters and ketones. The scope and limitations are presented in the synthesis of >60 functionalized ketones. Mechanistic studies provide insight into the catalytic cycle of the cross-coupling, including the first experimental evidence for Pd insertion into the amide N-C bond. The synthetic utility is showcased by a gram-scale cross-coupling and cross-coupling at room temperature. Most importantly, this process provides a blueprint for the development of a plethora of metal catalyzed reactions of typically inert amide bonds via acyl-metal intermediates. A unified strategy for amide bond activation to enable metal insertion into N-C amide bond is outlined ().

  16. Apoptosis and DNA Methylation

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Huan X.; Hackett, James A. [MRC Human Genetics Unit, IGMM, Western General Hospital, Edinburgh EH4 2XU (United Kingdom); Nestor, Colm [MRC Human Genetics Unit, IGMM, Western General Hospital, Edinburgh EH4 2XU (United Kingdom); Breakthrough Research Unit, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU (United Kingdom); Dunican, Donncha S.; Madej, Monika; Reddington, James P. [MRC Human Genetics Unit, IGMM, Western General Hospital, Edinburgh EH4 2XU (United Kingdom); Pennings, Sari [Queen' s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ (United Kingdom); Harrison, David J. [Breakthrough Research Unit, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU (United Kingdom); Meehan, Richard R., E-mail: [MRC Human Genetics Unit, IGMM, Western General Hospital, Edinburgh EH4 2XU (United Kingdom); Breakthrough Research Unit, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU (United Kingdom)


    Epigenetic mechanisms assist in maintaining gene expression patterns and cellular properties in developing and adult tissues. The molecular pathology of disease states frequently includes perturbation of DNA and histone methylation patterns, which can activate apoptotic pathways associated with maintenance of genome integrity. This perspective focuses on the pathways linking DNA methyltransferases and methyl-CpG binding proteins to apoptosis, and includes new bioinformatic analyses to characterize the evolutionary origin of two G/T mismatch-specific thymine DNA glycosylases, MBD4 and TDG.

  17. Apoptosis and DNA Methylation

    Directory of Open Access Journals (Sweden)

    Richard R. Meehan


    Full Text Available Epigenetic mechanisms assist in maintaining gene expression patterns and cellular properties in developing and adult tissues. The molecular pathology of disease states frequently includes perturbation of DNA and histone methylation patterns, which can activate apoptotic pathways associated with maintenance of genome integrity. This perspective focuses on the pathways linking DNA methyltransferases and methyl-CpG binding proteins to apoptosis, and includes new bioinformatic analyses to characterize the evolutionary origin of two G/T mismatch-specific thymine DNA glycosylases, MBD4 and TDG.

  18. Cyclodextrin-mediated enantioseparation of phenylalanine amide derivatives and amino alcohols by capillary electrophoresis-role of complexation constants and complex mobilities. (United States)

    Aranyi, Anita; Péter, Antal; Ilisz, István; Fülöp, Ferenc; Scriba, Gerhard K E


    The separation of the enantiomers of phenylalanine amide and N-methyl derivatives as well as some amino alcohols was studied by CE in acidic BGEs using CDs as chiral selectors. The native CDs displayed only low chiral recognition ability at a concentration of 15 mg/mL in 20 mM sodium phosphate buffer, pH 2.5. In contrast, the analyte enantiomers were separated in the presence of randomly sulfated CDs under reversed polarity of the applied voltage. Sulfated β-CD proved to be the most universal selector resulting in the enantioseparation of all analytes. Opposite enantiomer migration order depending on the size of the CD cavity was observed for phenylalanine amide and 2-amino-2-phenylethanol. The R-enantiomers migrated first in the presence of sulfated α-CD and γ-CD while the S-enantiomers were detected first in the presence of sulfated β-CD. The enantioseparations could be rationalized based on analyte complexation by the respective CDs except for 2-amino-2-phenylethanol and sulfated β-CD where essentially equal complexation constants were derived for the enantiomers. In this case, the migration behavior could be attributed to the mobilities of the enantiomer-CD complexes adding another example to the CE-specific phenomenon of enantioseparations based primarily on complex mobilities.

  19. Methylated β-Cyclodextrins

    DEFF Research Database (Denmark)

    Schönbeck, Jens Christian Sidney; Westh, Peter; Madsen, Jens Christian


    groups at O2 promote complexation by extending the hydrophobic cavity. Like in the case of 2-hydroxypropylated cyclodextrins, the methyl substituents cause an increased release of ordered water from the hydration shell of the bile salts, resulting in a strong increase in both the enthalpy and the entropy...

  20. Crystal structure of N-[(methyl­sulfan­yl)carbon­yl]urea (United States)

    Diop, Mouhamadou Birame; Diop, Libasse; Oliver, Allen G.


    The almost planar (r.m.s. deviation = 0.055 Å) title compound, (MeS)C(O)NHC(O)NH2, was formed during an attempted crystallization of dimethyl cyano­carbonimidodi­thio­ate with CrO2Cl2; an unexpected redox reaction converted the cyano­carbonimido moiety to a urea group and removed one methyl­thiol group. In the crystal, hydrogen-bonding inter­actions from the amide and amido N—H groups to carbonyl O atoms of neighbouring mol­ecules result in [010] ribbon-like chains. PMID:27006798

  1. Functional properties of Pfr(Tic)amide and BIBP3226 at human neuropeptide FF2 receptors. (United States)

    Engström, Mia; Wurster, Siegfried; Savola, Juha-Matti; Panula, Pertti


    The functional characteristics of two putative neuropeptide FF (NPFF) antagonists, BIBP3226 and PFR(Tic)amide, on the human neuropeptide FF receptor subtype 2 (hNPFF2) were investigated. Surprisingly, PFR(Tic)amide was shown to exhibit agonist properties in the [35S]guanosine-5'-O-(3-thio)triphosphate ([35S]GTPgammaS) binding assay. The efficacy of PFR(Tic)amide was significantly greater than that of (1DMe)Y8Fa, a stable analog of NPFF, and PFR(Tic)amide can therefore be classified as a 'super-agonist'. BIBP3226 did act as a reversible competitive antagonist on the hNPFF2 receptor. However, high concentrations of BIBP3226 also non-specifically increased [35S]GTP-gammaS binding. The usefulness of BIBP3226 as an antagonist tool on the NPFF receptor is thus limited.

  2. First Novozym 435 lipase-catalyzed Morita-Baylis-Hillman reaction in the presence of amides. (United States)

    Tian, Xuemei; Zhang, Suoqin; Zheng, Liangyu


    The first Novozym 435 lipase-catalyzed Morita-Baylis-Hillman (MBH) reaction with amides as co-catalyst was realized. Results showed that neither Novozym 435 nor amide can independently catalyze the reaction. This co-catalytic system that used a catalytic amount of Novozym 435 with a corresponding amount of amide was established and optimized. The MBH reaction strongly depended on the structure of aldehyde substrate, amide co-catalyst, and reaction additives. The optimized reaction yield (43.4%) was achieved in the Novozym 435-catalyzed MBH reaction of 2, 4-dinitrobenzaldehyde and cyclohexenone with isonicotinamide as co-catalyst and β-cyclodextrin as additive only in 2 days. Although enantioselectivity of Novozym 435 was not found, the results were still significant because an MBH reaction using lipase as biocatalyst was realized for the first time.

  3. Stereoelectronic effects dictate molecular conformation and biological function of heterocyclic amides. (United States)

    Reid, Robert C; Yau, Mei-Kwan; Singh, Ranee; Lim, Junxian; Fairlie, David P


    Heterocycles adjacent to amides can have important influences on molecular conformation due to stereoelectronic effects exerted by the heteroatom. This was shown for imidazole- and thiazole-amides by comparing low energy conformations (ab initio MP2 and DFT calculations), charge distribution, dipole moments, and known crystal structures which support a general principle. Switching a heteroatom from nitrogen to sulfur altered the amide conformation, producing different three-dimensional electrostatic surfaces. Differences were attributed to different dipole and orbital alignments and spectacularly translated into opposing agonist vs antagonist functions in modulating a G-protein coupled receptor for inflammatory protein complement C3a on human macrophages. Influences of the heteroatom were confirmed by locking the amide conformation using fused bicyclic rings. These findings show that stereoelectronic effects of heterocycles modulate molecular conformation and can impart strikingly different biological properties.

  4. Crystal structure of the high-energy-density material guanylurea dipicryl-amide. (United States)

    Deblitz, Raik; Hrib, Cristian G; Hilfert, Liane; Edelmann, Frank T


    The title compound, 1-carbamoylguanidinium bis-(2,4,6-tri-nitro-phen-yl)amide [H2NC(=O)NHC(NH2)2](+)[N{C6H2(NO2)3-2,4,6}2](-) (= guanylurea dipicryl-amide), was prepared as dark-red block-like crystals in 70% yield by salt-metathesis reaction between guanylurea sulfate and sodium dipicryl-amide. In the solid state, the new compound builds up an array of mutually linked guanylurea cations and dipicryl-amide anions. The crystal packing is dominated by an extensive network of N-H⋯O hydrogen bonds, resulting in a high density of 1.795 Mg m(-3), which makes the title compound a potential secondary explosive.

  5. GLP-1-(9-36) amide reduces blood glucose in anesthetized pigs by a mechanism that does not involve insulin secretion

    DEFF Research Database (Denmark)

    Deacon, Carolyn F; Plamboeck, Astrid; Møller, Søren;


    impossible to assess its true efficacy in vivo. In chloralose-anesthetized pigs given valine-pyrrolidide (to block endogenous DPP IV activity), the independent effects of GLP-1-(7-36) amide on glucose and insulin responses to intravenous glucose were assessed, and the metabolite generated by DPP IV, GLP-1......-(9-36) amide, was investigated for any ability to influence these responses. GLP-1-(7-36) amide enhanced insulin secretion (P amide was without effect, either alone or when coinfused with GLP-1-(7-36) amide. In contrast, GLP-1-(9-36) amide did affect glucose responses (P...... amide (73 +/- 19 mmol x l(-1) x min; P amide (62 +/- 13 mmol x l(-1) x min; P amide + GLP-1-(9-36) amide (50 +/-13 mmol x l(-1) x min; P

  6. Preparation and phytotoxicity of novel kaurane diterpene amides with potential use as herbicides. (United States)

    Boaventura, Maria Amélia Diamantino; Pereira, Rondinelle Gomes; de Oliveira Freitas, Luiza B; Dos Reis, Leandro Alves; da Silva Vieira, Henriete


    Novel kaurane ditepene monoamides were synthesized in good yields directly from kaurenoic ( 1) and grandiflorenic ( 2) acids and unprotected symmetrical diamines, using a modified protocol for monoacylation. Amides from 1 and 2 and monoamines were also obtained and tested against seed germination and growth of radicle and shoot of Lactuca sativa (lettuce), at 10 (-3), 10 (-5), and 10 (-7) M. Amides from symmetrical diamines showed significant inhibitory activity at higher concentrations.

  7. The Synthesis and Characterisation of Novel Amide Initiators for the ATRP of OEGMA


    Kliene, Aaron


    Whilst atom transfer radical polymerisation (ATRP) has been shown to be a robust and versatile technique for the creation of a wide range of polymers from many different initiators, there is relatively little previous research into the usage of initiators containing amide functionality. Low initiator efficiencies, often resulting in higher than predicted molecular weight parameters, and slow polymerisations with variable rates of reaction are generally reported when amide initiators have prev...

  8. Zirconyl chloride promoted highly efficient solid phase synthesis of amide derivatives

    Institute of Scientific and Technical Information of China (English)


    An efficient solid phase route for the synthesis of amide derivatives by the reaction of carboxylic acids with urea in the presence of catalytic amount of zirconyl chloride under microwave irradiation conditions was described. In this way, a range of interesting amide derivatives was obtained in good to excellent yields. The catalyst was recycled with fresh reactants and it gave almost similar results without significant loss of activity up to the third run.

  9. Electron capture dissociation proceeds with a low degree of intramolecular migration of peptide amide hydrogens

    DEFF Research Database (Denmark)

    Rand, Kasper D; Adams, Christopher M; Zubarev, Roman A;


    scrambling) that occurs during vibrational excitation of gas-phase ions. Unlike traditional collisional ion activation, electron capture dissociation (ECD) is not associated with substantial vibrational excitation. We investigated the extent of intramolecular backbone amide hydrogen (1H/2H) migration upon...... ECD using peptides with a unique selective deuterium incorporation. Our results show that only limited amide hydrogen migration occurs upon ECD, provided that vibrational excitation prior to the electron capture event is minimized. Peptide ions that are excessively vibrationally excited...

  10. Syntheses of Macrocyclic Amides from L-Amino Acid Esters by RCM

    Institute of Scientific and Technical Information of China (English)


    A series of succinate-derived macrocyclic amides( 1 ) was synthesized via ring-closing metathesis (RCM) as the key step. The substrate included 12 to 15 members. The metathesis precursors were obtained from the amide coupling of tert-butyl 3-carboxyhex-5-enoate(2) with numerous side-chain alkenylated amino acid esters of general type(3)derived from L-lysine and L-ornithine.

  11. Hyperbranched Poly(amide-ester) Mildly Synthesized and Its Characterization

    Institute of Scientific and Technical Information of China (English)


    AB2-type-prepolymerized monomer was rapidly (2 h) prepared atIoom temperature (25℃) using commercially available maleic anhydride (MA) and diethanolamine (DEA) as raw materials.By employing toluene-p-sulfonic acid as a catalyzer, a series of hyperbranched poly(amide-ester) (HBPAE) were successfully synthesized from prepared AB2 monomer by solution condensation polymerization through "one-step process" or "pseudo one-step process" (using pen taerythritol as a center core).The processes were carried out at high temperature of 120 C for 6 h in air atmosphere (inert protection free) with reduced pressure distillation (0.08~0.096 MPa).The results of FT-IR, UV-Vis, TGA, and intrinsic viscosity testing by Ubbelodhe viscometer showed that the prepared HBPAEspossess three-dimensional configuration with unsaturated conjugate structure,large numbers of branches and numerous terminal hydroxyl groups.These result in their lowviscosity, high solubility and thermal stability.

  12. Synthesis, characterization and pharmacological evaluation of amide prodrugs of Flurbiprofen

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Ashutosh; Veerasamy, Ravichandran; Jain, Prateek Kumar; Dixit, Vinod Kumar; Agrawal, Ram Kishor [Dr. H. S. Gour Vishwavidyalaya, Sagar (India). Dept. of Pharmaceutical Sciences. Pharmaceutical Chemistry Research Lab.]. E-mail:


    Flurbiprofen (FB) suffers from the general side effects of NSAIDs, owing to presence of free carboxylic acid group. The study was aimed to retard the adverse effects of gastrointestinal origin. Ten prodrugs of FB were synthesized by amidation with ethyl esters of amino acids, namely, glycine, L-phenylalanine, L-tryptophan, L-valine, L-isoleucine, L-alanine, L-leucine, L-glutamic acid, L-aspartic acid and {beta} alanine. Purified synthesized prodrugs were characterized by m.p., TLC, solubility, partition coefficients, elemental analyses, UV, FTIR, NMR and MS. Synthesized prodrugs were subjected for bioavailability studies, analgesic, anti-inflammatory activities and ulcerogenic index. Marked reduction of ulcerogenic index and comparable analgesic, antiinflammatory activities were obtained in all cases as compared to FB. Among synthesized prodrugs AR-9, AR-10 and AR-2 showing excellent pharmacological response and encouraging hydrolysis rate both in (Simulated Intestinal Fluid) SIF and in 80% human plasma. Prodrugs with increased aliphatic side chain length or introduction of aromatic substituent resulted in enhanced partition coefficient but diminished dissolution and hydrolysis rate. Such prodrugs can be considered for sustained release purpose. (author)

  13. NMR study of hydroxy and amide protons in hyaluronan polymers. (United States)

    Nestor, Gustav; Sandström, Corine


    Hyaluronan (HA) is an important and well characterized glycosaminoglycan with high viscosity and water-retaining capacity. Nonetheless, it is not fully understood whether conformational properties of the easily characterized HA oligomers can be transferred to HA polymers. To investigate possible differences in hydration, hydrogen bonding and flexibility between HA polymers and oligomers, hydroxy and amide protons of HA polymers were studied by solution-state and high-resolution magic angle spinning (HR-MAS) NMR spectroscopy. Measurements of chemical shifts, temperature coefficients and NOEs in HA polymers revealed that the NMR data are very similar compared to the interior of a HA octasaccharide, supporting transient hydrogen bond interactions across the β(1→3) and β(1→4) glycosidic linkages. However, differences in NOEs suggested a cis-like orientation between NH and H2 in the HA polymer. The lack of concentration dependence of the hydroxy proton chemical shifts suggests that there are no direct inter-chain interactions involving hydroxy protons at the concentrations investigated.

  14. Effect of amide bonds on the self-assembly of gemini surfactants. (United States)

    Hoque, Jiaul; Gonuguntla, Spandhana; Yarlagadda, Venkateswarlu; Aswal, Vinod K; Haldar, Jayanta


    This study provides an insight into the micellar aggregation properties in aqueous solutions of various gemini surfactants bearing one or more amide groups at the side chains and/or in the spacer by conductivity and small angle neutron scattering (SANS) studies. The amide functionality was found to enhance the surfactant aggregation properties as compared to the surfactants having no amide bond. Furthermore, the aggregation properties of the gemini surfactants bearing amide groups were found to strongly depend on the position and number of amide bonds. With the increase in the number of amide bonds, the aggregation number (N) and the size of the micelles increased. Additionally, the size and shape of the micelles were also found to depend both on the hydrocarbon chain length and the spacer chain length. It was also found that the aggregation number and the size of the micelles increased with an increase in concentration and decreased with an increase in temperature. The critical micellar concentration (CMC) values of the gemini surfactants obtained by a conductometric method were found to vary greatly with variation in the hydrocarbon chain.

  15. Smart synthesis of high performance thermosets based on ortho-(amide-co-imide functional benzoxazines

    Directory of Open Access Journals (Sweden)

    Hatsuo eIshida


    Full Text Available High performance thermosets via amide-imide functional benzoxazine resins as precursors have been synthesized. The structures of synthesized monomers have been confirmed by 1H NMR and FT-IR. Among these two benzoxazine monomers, the ortho-amide-imide functional benzoxazine resin shows powerful features both in the synthesis of benzoxazine monomers and the properties of the corresponding thermosets. For the cross-linked poly(amide-co-imide based on ortho-amide-imide functional benzoxazine, a smart route is adopted to develop a more thermally stable cross-linked poly(benzoxazole-co-imide. Besides, the poly(benzoxazole-co-imide can also undergo a further thermal treatment to form polybenzoxazole. Furthermore, a main-chain type ortho-functional polybenzoxazine with amide-co-imide and benzoxazine groups as repeating units has also been prepared. Both the ortho-amide-imide functional benzoxazine and main-chain type polybenzoxazine resins show the possibility to form high performance thermosets with low cost and easy processability .

  16. UV resonance Raman investigation of the aqueous solvation dependence of primary amide vibrations. (United States)

    Punihaole, David; Jakubek, Ryan S; Dahlburg, Elizabeth M; Hong, Zhenmin; Myshakina, Nataliya S; Geib, Steven; Asher, Sanford A


    We investigated the normal mode composition and the aqueous solvation dependence of the primary amide vibrations of propanamide. Infrared, normal Raman, and UV resonance Raman (UVRR) spectroscopy were applied in conjunction with density functional theory (DFT) to assign the vibrations of crystalline propanamide. We examined the aqueous solvation dependence of the primary amide UVRR bands by measuring spectra in different acetonitrile/water mixtures. As previously observed in the UVRR spectra of N-methylacetamide, all of the resonance enhanced primary amide bands, except for the Amide I (AmI), show increased UVRR cross sections as the solvent becomes water-rich. These spectral trends are rationalized by a model wherein the hydrogen bonding and the high dielectric constant of water stabilizes the ground state dipolar (-)O-C═NH2(+) resonance structure over the neutral O═C-NH2 resonance structure. Thus, vibrations with large C-N stretching show increased UVRR cross sections because the C-N displacement between the electronic ground and excited state increases along the C-N bond. In contrast, vibrations dominated by C═O stretching, such as the AmI, show a decreased displacement between the electronic ground and excited state, which result in a decreased UVRR cross section upon aqueous solvation. The UVRR primary amide vibrations can be used as sensitive spectroscopic markers to study the local dielectric constant and hydrogen bonding environments of the primary amide side chains of glutamine (Gln) and asparagine (Asn).

  17. Retinoic acid amide inhibits JAK/STAT pathway in lung cancer which leads to apoptosis. (United States)

    Li, Hong-Xing; Zhao, Wei; Shi, Yan; Li, Ya-Na; Zhang, Lian-Shuang; Zhang, Hong-Qin; Wang, Dong


    Small cell lung cancer (SCLC) accounts for 12 to 16% of lung neoplasms and has a high rate of metastasis. The present study demonstrates the antiproliferative effect of retinoic acid amide in vitro and in vivo against human lung cancer cells. The results from MTT assay showed a significant growth inhibition of six tested lung cancer cell lines and inhibition of clonogenic growth at 30 μM. Retinoic acid amide also leads to G2/M-phase cell cycle arrest and apoptosis of lung cancer cells. It caused inhibition of JAK2, STAT3, and STAT5, increased the level of p21WAF1, and decreased cyclin A, cyclin B1, and Bcl-XL expression. Retinoic acid amide exhibited a synergistic effect on antiproliferative effects of methotrexate in lung cancer cells. In lung tumor xenografts, the tumor volume was decreased by 82.4% compared to controls. The retinoic acid amide-treated tumors showed inhibition of JAK2/STAT3 activation and Bcl-XL expression. There was also increase in expression of caspase-3 and caspase-9 in tumors on treatment with retinoic acid amide. Thus, retinoic acid amide exhibits promising antiproliferative effects against human lung cancer cells in vitro and in vivo and enhances the antiproliferative effect of methotrexate.

  18. Computational Amide I Spectroscopy for Refinement of Disordered Peptide Ensembles: Maximum Entropy and Related Approaches (United States)

    Reppert, Michael; Tokmakoff, Andrei

    The structural characterization of intrinsically disordered peptides (IDPs) presents a challenging biophysical problem. Extreme heterogeneity and rapid conformational interconversion make traditional methods difficult to interpret. Due to its ultrafast (ps) shutter speed, Amide I vibrational spectroscopy has received considerable interest as a novel technique to probe IDP structure and dynamics. Historically, Amide I spectroscopy has been limited to delivering global secondary structural information. More recently, however, the method has been adapted to study structure at the local level through incorporation of isotope labels into the protein backbone at specific amide bonds. Thanks to the acute sensitivity of Amide I frequencies to local electrostatic interactions-particularly hydrogen bonds-spectroscopic data on isotope labeled residues directly reports on local peptide conformation. Quantitative information can be extracted using electrostatic frequency maps which translate molecular dynamics trajectories into Amide I spectra for comparison with experiment. Here we present our recent efforts in the development of a rigorous approach to incorporating Amide I spectroscopic restraints into refined molecular dynamics structural ensembles using maximum entropy and related approaches. By combining force field predictions with experimental spectroscopic data, we construct refined structural ensembles for a family of short, strongly disordered, elastin-like peptides in aqueous solution.

  19. Neural-network analysis of the vibrational spectra of N-acetyl L-alanyl N '-methyl amide conformational states

    DEFF Research Database (Denmark)

    Bohr, Henrik; Frimand, Kenneth; Jalkanen, Karl J.


    Density-functional theory (DFT) calculations utilizing the Becke 3LYP hybrid functional have been carried out for N-acetyl L-alanine N'-methylamide and examined with respect to the effect of water on the structure, the vibrational frequencies, vibrational absorption (VA), vibrational circular...... data for a given conformer of the molecule by interpolation. Finally the neural network performances are used to monitor a sensitivity analysis of the importance of secondary structures and the influence of the solvent. The neural network is shown to be good in distinguishing the different conformers...

  20. O-Methyl cyclolaudenol

    Directory of Open Access Journals (Sweden)

    Nisar Hussain


    Full Text Available The title compound (systematic name: 3-methoxy-24-methyl-9,19-cyclolanost-25-ene, C32H54O, is a triterpenoid which has been isolated from Skimmia laureola. The three six-membered rings adopt chair, slightly distorted half-chair and distorted boat conformations, and the five-membered ring adopts an envelope conformation. All the rings are trans fused.

  1. N-acetylcysteine amide, a promising antidote for acetaminophen toxicity. (United States)

    Khayyat, Ahdab; Tobwala, Shakila; Hart, Marcia; Ercal, Nuran


    Acetaminophen (N-acetyl-p-aminophenol, APAP) is one of the most widely used over the counter antipyretic and analgesic medications. It is safe at therapeutic doses, but its overdose can result in severe hepatotoxicity, a leading cause of drug-induced acute liver failure in the USA. Depletion of glutathione (GSH) is one of the initiating steps in APAP-induced hepatotoxicity; therefore, one strategy for restricting organ damage is to restore GSH levels by using GSH prodrugs. N-acetylcysteine (NAC), a GSH precursor, is the only currently approved antidote for an acetaminophen overdose. Unfortunately, fairly high doses and longer treatment times are required due to its poor bioavailability. In addition, oral and I.V. administration of NAC in a hospital setting are laborious and costly. Therefore, we studied the protective effects of N-acetylcysteine amide (NACA), a novel antioxidant with higher bioavailability, and compared it with NAC in APAP-induced hepatotoxicity in C57BL/6 mice. Our results showed that NACA is better than NAC at a low dose (106mg/kg) in preventing oxidative stress and protecting against APAP-induced damage. NACA significantly increased GSH levels and the GSH/GSSG ratio in the liver to 66.5% and 60.5% of the control, respectively; and it reduced the level of ALT by 30%. However, at the dose used, NAC was not effective in combating the oxidative stress induced by APAP. Thus, NACA appears to be better than NAC in reducing the oxidative stress induced by APAP. It would be of great value in the health care field to develop drugs like NACA as more effective and safer options for the prevention and therapeutic intervention in APAP-induced toxicity.

  2. Methylation in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Regina M. Santella


    Full Text Available

    The development of HCC is a complex, multistep, multistage process. The molecular pathogenesis of HCC appears to involve multiple genetic aberrations in the molecular control of hepatocyte proliferation, differentiation and death and the maintenance of genomic integrity. This process is influenced by the cumulative activation and inactivation of oncogenes, tumor suppressor genes and other genes. p53, a tumor suppressor gene, is the most frequently mutated gene in human cancers. There is also a striking sequence specific binding and induction of mutations by AFB1 at codon 249 of p53 in HCC.

    Epigenetic alterations are also involved in cancer development and progression. Methylation of promoter CpG islands is associated with inhibition of transcriptional initiation and permanent silencing of downstream genes.

    It is now known that most important tumor suppressor genes are inactivated, not only by mutations and deletions but also by promoter methylation. Several studies indicated that p16, p15, RASSF1A, MGMT, and GSTP1 promoter hypermethylation are prevalent in HCC. In addition, geographic variation in the methylation status of tumor DNA indicates that environmental factors may influence the frequent and concordant degree of hypermethylation in multiple genes in HCC and that epigeneticenvironmental interactions may be involved in hepatocarcinogenesis. We have found significant relationships between promoter methylation and AFB1-DNA adducts confirming the impact of environmental exposures on gene methylation.

    DNA isolated from serum or plasma of cancer patients frequently contains the same genetic and

  3. Methylation profiling using methylated DNA immunoprecipitation and tiling array hybridization. (United States)

    Cheung, Hoi-Hung; Lee, Tin-Lap; Rennert, Owen M; Chan, Wai-Yee


    DNA methylation is an important epigenetic modification that regulates development and plays a role in the pathophysiology of many diseases. It is dynamically changed during germline development. Methylated DNA immunoprecipitation (MeDIP) is an efficient, cost-effective method for locus-specific and genome-wide analysis. Methylated DNA fragments are enriched by a 5-methylcytidine-recognizing antibody, therefore allowing the analysis of both CpG and non-CpG methylation. The enriched DNA fragments can be amplified and hybridized to tiling arrays covering CpG islands, promoters, or the entire genome. Comparison of different methylomes permits the discovery of differentially methylated regions that might be important in disease- or tissue-specific expression. Here, we describe an established MeDIP protocol and tiling array hybridization method for profiling methylation of testicular germ cells.

  4. Event extraction for DNA methylation

    Directory of Open Access Journals (Sweden)

    Ohta Tomoko


    Full Text Available Abstract Background We consider the task of automatically extracting DNA methylation events from the biomedical domain literature. DNA methylation is a key mechanism of epigenetic control of gene expression and implicated in many cancers, but there has been little study of automatic information extraction for DNA methylation. Results We present an annotation scheme for DNA methylation following the representation of the BioNLP shared task on event extraction, select a set of 200 abstracts including a representative sample of all PubMed citations relevant to DNA methylation, and introduce manual annotation for this corpus marking nearly 3000 gene/protein mentions and 1500 DNA methylation and demethylation events. We retrain a state-of-the-art event extraction system on the corpus and find that automatic extraction of DNA methylation events, the methylated genes, and their methylation sites can be performed at 78% precision and 76% recall. Conclusions Our results demonstrate that reliable extraction methods for DNA methylation events can be created through corpus annotation and straightforward retraining of a general event extraction system. The introduced resources are freely available for use in research from the GENIA project homepage


    Institute of Scientific and Technical Information of China (English)

    Y. Mansoori; S. Shah Sanaei; S.V. Atghia; M.R. Zamanloo; Gh. Imanzadeh


    In this work,the syntheses of new thermally stable poly(amide-imide)s with pendant 2-pyridyl-1,3,4-oxadiazole units in n-butyl methyl imidazolium bromide as reaction media have been reported.A new dicarboxylic acid has been derived from the reaction of diamine,2-(5-(3,5-diaminophenyl)-1,3,4-oxadiazole-2-yl)pyridine (POBD),and trimellitic acid anhydride.Polymers were prepared from the reaction of the diimide-diacid (DIDA) and different aromatic diamines in butyl methyl imidazolium bromide,[bmim][Br],in the presence of triphenyl phosphite (TPP) as condensing agent without needing any extra components.The prepared poly(amide-imide)s were characterized by FTIR,elemental analysis,and through the synthesis of a model compound.The prepared polymers were soluble in polar and aprotic solvents,such as DMF,DMSO,NMP and DMAc.The inherent viscosity of the polymer solutions was in the range of 0.52-1.33 dL/g measured in concentrated H2SO4 at a concentration of 0.125 g/dL at (25 ± 0.5)℃.The results are compared with the results obtained from common direct polycondensation with NMP as solvent.Polymers obtained in ionic liquid showed higher inherent viscosity than that of polymers obtained via classical method in NMP.Thermal properties of the polymers were studied with DSC and TGA methods.

  6. Arg-Phe-amide-related peptides influence gonadotropin-releasing hormone neurons

    Institute of Scientific and Technical Information of China (English)

    Haluk Kelestimur; Emine Kacar; Aysegul Uzun; Mete Ozcan; Selim Kutlu


    The hypothalamic Arg-Phe-amide-related peptides, gonadotropin-inhibitory hormone and orthologous mammalian peptides of Arg-Phe-amide, may be important regulators of the hypothalamus-pituitary-gonadal reproductive axis. These peptides may modulate the effects of kisspeptins because they are presently recognized as the most potent activators of the hypothalamus-pituitary-gonadal axis. However, their effects on gonadotropin-releasing hormone neurons have not been investigated. In the current study, the GT1–7 cell line-expressing gonadotropin-releasing hormone was used as a model to explore the effects of Arg-Phe- amide-related peptides on kisspeptin activation. Intracellular calcium concentration was quantified using the calcium-sensitive dye, fura-2 acetoxymethyl ester. Gonadotropin-releasing hormone released into the medium was detected via enzyme-linked immunosorbent assay. Results showed that 100 nmol/L kisspeptin-10 significantly increased gonadotropin-releasing hormone levels (at 120 minutes of exposure) and intracellular calcium concentrations. Co-treatment of kisspeptin with 1 μmol/L gonadotropin-inhibitory hormone or 1 μmol/L Arg-Phe-amide-related peptide-1 significantly attenuated levels of kisspeptin-induced gonadotropin-releasing hormone but did not affect kisspeptin-induced elevations of intracellular calcium concentration. Overall, the results suggest that gonadotropin-inhibitory hormone and Arg-Phe-amide-related peptide-1 may have inhibitory effects on kisspeptin-activated gonadotropin-releasing hormone neurons independent of the calcium signaling pathway.

  7. Measurement of amide hydrogen exchange rates with the use of radiation damping. (United States)

    Fan, Jing-Song; Lim, Jackwee; Yu, Binhan; Yang, Daiwen


    A simple method for measuring amide hydrogen exchange rates is presented, which is based on the selective inversion of water magnetization with the use of radiation damping. Simulations show that accurate exchange rates can be measured despite the complications of radiation damping and cross relaxation to the exchange process between amide and water protons. This method cannot eliminate the contributions of the exchange-relayed NOE and direct NOE to the measured exchange rates, but minimize the direct NOE contribution. In addition, the amides with a significant amount of such indirect contributions are possible to be identified from the shape of the exchange peak intensity profiles or/and from the apparent relaxation rates of amide protons which are extracted from fitting the intensity profiles to an equation established here for our experiment. The method was tested on ubiquitin and also applied to an acyl carrier protein. The amide exchange rates for the acyl carrier protein at two pHs indicate that the entire protein is highly dynamic on the second timescale. Low protection factors for the residues in the regular secondary structural elements also suggest the presence of invisible unfolded species. The highly dynamic nature of the acyl carrier protein may be crucial for its interactions with its substrate and enzymes.

  8. Enhancing ionic conductivity in lithium amide for improved energy storage materials (United States)

    Davies, Rosalind A.; Hewett, David R.; Anderson, Paul A.


    Non-stoichiometry and bulk cation transport have been identified as key factors in the release and uptake of hydrogen in the Li-N-H system. Amide halide phases have been synthesized that have ionic conductivities several orders of magnitude greater than lithium amide, a faster rate of hydrogen release and elimination of the by-product, ammonia. Here we report the effect of both anion- and cation-doping on the hydrogen desorption properties of lithium amide, focusing in particular on how the presence of chloride anions and magnesium cations affects and controls the structure of the amide and imide compounds at the sub-nanometre level. Reducing the chloride content resulted in new low-chloride rhombohedral phases that contain around half of the chloride present in earlier amide chlorides, but maintained the enhancements seen in hydrogen desorption properties when compared to the halide-free system. These materials may also have potential in a range of other energy applications such as all solid state lithium ion batteries, supercapacitors, and CO2 capture and storage membranes. Invited talk at the 7th International Workshop on Advanced Materials Science and Nanotechnology IWAMSN2014, 2-6 November 2014, Ha Long, Vietnam.

  9. A comparative study of the complexation of uranium(VI) withoxydiacetic acid and its amide derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Linfeng; Tian, Guoxin


    There has been significant interest in recent years in the studies of alkyl-substituted amides as extractants for actinide separation because the products of radiolytic and hydrolytic degradation of amides are less detrimental to separation processes than those of organophosphorus compounds traditionally used in actinide separations. Stripping of actinides from the amide-containing organic solvents is relatively easy. In addition, the amide ligands are completely incinerable so that the amount of secondary wastes generated in nuclear waste treatment could be significantly reduced. One group of alkyl-substituted oxa-diamides have been shown to be promising in the separation of actinides from nuclear wastes. For example, tetraoctyl-3-oxa-glutaramide and tetraisobutyl-oxa-glutaramide form actinide complexes that can be effectively extracted from nitric acid solutions. To understand the thermodynamic principles governing the complexation of actinides with oxa-diamides, we have studied the complexation of U(VI) with dimethyl-3-oxa-glutaramic acid (DMOGA) and tetramethyl-3-oxa-glutaramide (TMOGA) in aqueous solutions, in comparison with oxydiacetic acid (ODA) (Figure 1). Previous studies have indicated that the complexation of U(VI) with ODA is strong and entropy-driven. Comparing the results for DMOGA and TMOGA with those for ODA could provide insight into the energetics of amide complexation with U(VI) and the relationship between the thermodynamic properties and the ligand structure.

  10. The design, synthesis of amide KARI inhibitors and their biological activities

    Institute of Scientific and Technical Information of China (English)

    Baolei WANG; Yi MA; Yonghong LI; Suhua WANG; Zhengming LI


    Ketol-acid reductoisomerase(KARI) is a promising target for the design of herbicides yet there are only few reports on the molecular design of KARI inhibitors. In this paper, based on the reported 0.165 nm high resolution crystal structure of the spinach KARI complex, 279 molecules with low binding energy toward KARI were obtained from an MDL/ACD 3D database search using the program DOCK 4.0. According to the structural information of 279 molecules provided, some amide compounds have been designed and synthesized. The bioassay results show that most of these amides had inhibitory activity to rice KARI at a test concentration of 200 μg/mL. Among which eight amides, compounds 1 and 6 show 57.4% and 48.1% inhibitory activity to KARI. The herbicidal activities of these amides were further investigated on di-cotyledonous rape (Brassica campestris) and mono-cotyledonous bar-nyardgrass (Echinochloa crusgalli). Compounds 1 and 6 were more favorable than others and showed 52.0% and 72.6% inhibitory activity on rape root at 100 μg/mL concentration, respectively. These amides could be further optimized for finding more potent candidates.

  11. Lanthanide(III) complexation with an amide derived pyridinophane. (United States)

    Castro, Goretti; Bastida, Rufina; Macías, Alejandro; Pérez-Lourido, Paulo; Platas-Iglesias, Carlos; Valencia, Laura


    Herein we report a detailed investigation of the solid state and solution structures of lanthanide(III) complexes with the 18-membered pyridinophane ligand containing acetamide pendant arms TPPTAM (TPPTAM = 2,2',2″-(3,7,11-triaza-1,5,9(2,6)-tripyridinacyclododecaphane-3,7,11-triyl)triacetamide). The ligand crystallizes in the form of a clathrated hydrate, where the clathrated water molecule establishes hydrogen-bonding interactions with the amide NH groups and two N atoms of the macrocycle. The X-ray structures of 13 different Ln(3+) complexes obtained as the nitrate salts (Ln(3+) = La(3+)-Yb(3+), except Pm(3+)) have been determined. Additionally, the X-ray structure of the La(3+) complex obtained as the triflate salt was also obtained. In all cases the ligand provides 9-fold coordination to the Ln(3+) ion, ten coordination being completed by an oxygen atom of a coordinated water molecule or a nitrate or triflate anion. The bond distances of the metal coordination environment show a quadratic change along the lanthanide series, as expected for isostructural series of Ln(3+) complexes. Luminescence lifetime measurements obtained from solutions of the Eu(3+) and Tb(3+) complexes in H2O and D2O point to the presence of a water molecule coordinated to the metal ion in aqueous solutions. The analysis of the Ln(3+)-induced paramagnetic shifts indicates that the complexes are ten-coordinated throughout the lanthanide series from Ce(3+) to Yb(3+), and that the solution structure is very similar to the structures observed in the solid state. The complexes of the light Ln(3+) ions are fluxional due to a fast Δ(λλλλλλ) ↔ Λ(δδδδδδ) interconversion that involves the inversion of the macrocyclic ligand and the rotation of the acetamide pendant arms. The complexes of the small Ln(3+) ions are considerably more rigid, the activation free energy determined from VT (1)H NMR for the Lu(3+) complex being ΔG(⧧)298 = 72.4 ± 5.1 kJ mol(-1).

  12. Synthesis and crystal structure of imidazole containing amide as a turn on fluorescent probe for nickel ion in aqueous media. An experimental and theoretical investigation (United States)

    Annaraj, B.; Mitu, L.; Neelakantan, M. A.


    Imidazole containing amide fluorescence probe (PAIC) for Ni2+ was designed and successfully synthesized in good yield by reaction between 1-methyl-1H-imidazole-2-carboxylic acid and L-phenylalanine methyl ester. The probe was characterized by FTIR, 1H NMR, ESI-MS, UV-vis and fluorescence spectroscopy. Single crystal XRD analysis reveals that PAIC crystallizes in a monoclinic crystal lattice system with the space group of P21/n. Chemosensor property of PAIC was tested against different metal ions by UV-vis and fluorescent techniques in aqueous medium. Test results show that PAIC has high selectivity for Ni2+ compared to other metal ions (Na+, K+, Ca2+, Ag+, Co2+, Cu2+, Fe2+, Fe3+, Hg2+, Mn2+, Zn2+ and Pb2+). Time-dependent density functional theory (TD-DFT) and configuration interaction singles (CIS) calculations were carried out to understand the sensing mechanism. The practical applicability of PAIC was tested in real water samples.

  13. Synthesis and Antibacterial Activities of 4-Amino-3-( 1-aryl-5-methyl-1,2,3-triazol-4-yl)-5-mercapto-1,2,4- triazoles/2-Amino-5- ( 1- aryl-5- methyl- 1,2,3- triazol-4- yl )- 1,3,4- thiadiazoles and Their Derivatives

    Institute of Scientific and Technical Information of China (English)

    ZHANG,Yan(张艳); SUN,Xiao-Wen(孙小文); HUI,Xin-Ping(惠新平); ZHANG,Zi-Yi(张自义); WANG,Qin(王勤); ZHANG,Qi(张琪)


    Treatment of 4-amino-3- (1-aryl-5-methyl-1,2, 3-triazol-4-yl)-5-mercapto-1, 2, 4-triazoles/2-amino-5-( 1-aryi-5-methyl-1, 2,3-triazol-4-yl)-1, 3,4-thiadiazoles with benzaldehyde, acetone and ω-bromoacetophenone was tested and compared. The title compounds Schiff bases, amides, imidazolo[2,1-b]-1,3,4-thiadiazoles and 7H-s-triazolo [3, 4-b ]-1, 3, 4-thiadiazines have been confirmed by elemental analyses, 1H NMR, IR and MS spectra. All the compounds have also been screened for their antibacterial activities against B. subtilis, S. aureus and E. coli.

  14. Synthesis and Characterization of Novel Polyurethanes Based on Vegetable Oils Amide and Ester Polyols

    Directory of Open Access Journals (Sweden)

    Vladimir YAKUSHIN


    Full Text Available Amide and ester type polyols were synthesized from rapeseed, sunflower and castor oils, and two types of ethanolamine (diethanolamine and triethanolamine at different molar ratio. Poly(urethane amides and polyester urethanes based on the synthesized polyols were prepared. The effect of the chemical structure of the obtained polyurethanes on density, glass transition temperature, thermal stability and mechanical properties was investigated. The influence of the content of OH groups in the synthesized polyols on the specified characteristics was estimated. It has been found that poly(urethane amides have better mechanical characteristics, but their thermal stability is lower than that of polyester urethanes. The chemical structure of the synthesized polyols and polyurethanes is qualitatively confirmed by IR-spectroscopy data. DOI:

  15. Synthesis, Anticancer and Antibacterial Activity of Salinomycin N-Benzyl Amides

    Directory of Open Access Journals (Sweden)

    Michał Antoszczak


    Full Text Available A series of 12 novel monosubstituted N-benzyl amides of salinomycin (SAL was synthesized for the first time and characterized by NMR and FT-IR spectroscopic methods. Molecular structures of three salinomycin derivatives in the solid state were determined using single crystal X-ray method. All compounds obtained were screened for their antiproliferative activity against various human cancer cell lines as well as against the most problematic bacteria strains such as methicillin-resistant Staphylococcus aureus (MRSA and Staphylococcus epidermidis (MRSE, and Mycobacterium tuberculosis. Novel salinomycin derivatives exhibited potent anticancer activity against drug-resistant cell lines. Additionally, two N-benzyl amides of salinomycin revealed interesting antibacterial activity. The most active were N-benzyl amides of SAL substituted at -ortho position and the least anticancer active derivatives were those substituted at the -para position.

  16. Synthesis, anticancer and antibacterial activity of salinomycin N-benzyl amides. (United States)

    Antoszczak, Michał; Maj, Ewa; Napiórkowska, Agnieszka; Stefańska, Joanna; Augustynowicz-Kopeć, Ewa; Wietrzyk, Joanna; Janczak, Jan; Brzezinski, Bogumil; Huczyński, Adam


    A series of 12 novel monosubstituted N-benzyl amides of salinomycin (SAL) was synthesized for the first time and characterized by NMR and FT-IR spectroscopic methods. Molecular structures of three salinomycin derivatives in the solid state were determined using single crystal X-ray method. All compounds obtained were screened for their antiproliferative activity against various human cancer cell lines as well as against the most problematic bacteria strains such as methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis (MRSE), and Mycobacterium tuberculosis. Novel salinomycin derivatives exhibited potent anticancer activity against drug-resistant cell lines. Additionally, two N-benzyl amides of salinomycin revealed interesting antibacterial activity. The most active were N-benzyl amides of SAL substituted at -ortho position and the least anticancer active derivatives were those substituted at the -para position.

  17. Amide Rotation Hindrance Predicts Proteolytic Resistance of Cystine-Knot Peptides. (United States)

    Zhou, Yanzi; Xie, Daiqian; Zhang, Yingkai


    Cystine-knot peptides have remarkable stability against protease degradation and are attractive scaffolds for peptide-based therapeutic and diagnostic agents. In this work, by studying the hydrolysis reaction of a cystine-knot inhibitor MCTI-A and its variants with ab initio QM/MM molecular dynamics simulations, we have elucidated an amide rotation hindrance mechanism for proteolysis resistance: The proteolysis of MCTI-A is retarded due to the higher free energy cost during the rotation of NH group around scissile peptide bond at the tetrahedral intermediate of acylation, and covalent constraint provided by disulfide bonds is the key factor to hinder this rotation. A nearly linear correlation has been revealed between free energy barriers of the peptide hydrolysis reaction and the amide rotation free energy changes at the protease-peptide Michaelis complex state. This suggests that amide rotation hindrance could be one useful feature to estimate peptide proteolysis stability.

  18. Alpha-amidated peptides derived from pro-opiomelanocortin in human pituitary tumours

    DEFF Research Database (Denmark)

    Fenger, M; Johnsen, A H


    Human pituitary tumours, obtained at surgery for Cushing's disease and Nelson's syndrome, were extracted and the content and molecular forms of pro-opiomelanocortin (POMC)-derived peptides determined by radioimmunoassay, gel chromatography, reversed-phase high-performance liquid chromatography....... In conclusion, all the molecular forms of the amidated peptides detected in tumours from patients with Cushing's disease and Nelson's syndrome were similar to the molecular forms found in the normal human pituitary. The main difference between the tumours and the normal pituitary was the greater amount...... (HPLC) and sequence analysis. In the tumours from patients with Cushing's disease the mean concentrations of amidated peptides relative to the total amount of POMC were as follows: alpha-MSH, 1.7%; amidated gamma-MSH (gamma 1-MSH), 8.5% and the peptide linking gamma-MSH and ACTH in the precursor (hinge...

  19. Synthesis and characterization of ester and amide derivatives of titanium(IV) carboxymethylphosphonate (United States)

    Melánová, Klára; Beneš, Ludvík; Trchová, Miroslava; Svoboda, Jan; Zima, Vítězslav


    A set of layered ester and amide derivatives of titanium(IV) carboxymethylphosphonate was prepared by solvothermal treatment of amorphous titanium(IV) carboxymethylphosphonate with corresponding 1-alkanols, 1,ω-alkanediols, 1-aminoalkanes, 1,ω-diaminoalkanes and 1,ω-amino alcohols and characterized by powder X-ray diffraction, IR spectroscopy and thermogravimetric analysis. Whereas alkyl chains with one functional group form bilayers tilted to the layers, 1,ω-diaminoalkanes and most of 1,ω-alkanediols form bridges connecting the adjacent layers. In the case of amino alcohols, the alkyl chains form bilayer and either hydroxyl or amino group is used for bonding. This simple method for the synthesis of ester and amide derivatives does not require preparation of acid chloride derivative as a precursor or pre-intercalation with alkylamines and can be used also for the preparation of ester and amide derivatives of titanium carboxyethylphosphonate and zirconium carboxymethylphosphonate.

  20. Recombinant production of peptide C-terminal α-amides using an engineered intein

    DEFF Research Database (Denmark)

    Albertsen, Louise; Shaw, Allan C; Norrild, Jens Chr.;


    is that they contain a C-terminal that is α-amidated, and this amidation is crucial for biological function. A challenge is to generate such peptides by recombinant means and particularly in a production scale. Here, we have examined an intein-mediated approach to generate a PYY derivative in a larger scale. Initially...... of the 198 amino acid intein with an eight amino acid linker. The optimized intein construct was used to produce the PYY derivative under high cell density cultivation conditions, generating the peptide thioester precursor in good yields and subsequent amidation provided the target peptide......., we experienced challenges with hydrolysis of the intein fusion protein, which was reduced by a T3C mutation in the intein. Subsequently, we further engineered the intein to decrease the absolute size and improve the relative yield of the PYY derivative, which was achieved by substituting 54 residues...

  1. Alpha-amidated peptides derived from pro-opiomelanocortin in normal human pituitary

    DEFF Research Database (Denmark)

    Fenger, M; Johnsen, A H


    Normal human pituitaries were extracted in boiling water and acetic acid, and the alpha-amidated peptide products of pro-opiomelanocortin (POMC), alpha-melanocyte-stimulating hormone (alpha MSH), gamma-melanocyte-stimulating hormone (gamma 1MSH), and amidated hinge peptide (HP-N), as well...... as their glycine-extended precursors, were characterized by sequence-specific radioimmunoassays, gel-chromatography, h.p.l.c. and amino acid sequencing. alpha MSH and gamma 1MSH constituted 0.27-1.32% and 0.10-5.10%, respectively, of the POMC-derived products [calculated as the sum of adrenocorticotropic hormone...... (ACTH)-(1-39), ACTH-(1-14) and alpha MSH immunoreactivity]. alpha MSH and ACTH-(1-14) were only present in non- or mono-acetylated forms. Only large forms of gamma 1MSH and gamma 2MSH were present in partly glycosylated states. The hinge peptides were amidated to an extent two to three orders...

  2. Synthesis and characterization of alternating poly(amide urea)s and poly(amide urethane urethane)s from ε-caprolactam, diamines, and diphenyl carbonate or ethylene carbonate

    NARCIS (Netherlands)

    Ubaghs, Luc; Sharma, Bhaskar; Keul, Helmut; Höcker, Hartwig; Loontjens, Ton; Benthem, Rolf van


    Alternating poly(amide urea)s from ε-caprolactam, diamines H2N-(CH2)x-NH2 (x = 2 - 4), and diphenyl carbonate were prepared in two steps. The microstructure of the poly(amide urea)s, as determined by means of 1H NMR spectroscopy, reveals a strictly alternating sequence of the building blocks. The mo

  3. Amide functionalized MWNT/SPEEK composite membrane for better electrochemical performance (United States)

    Gahlot, Swati; Sharma, Prem P.; Kulshrestha, Vaibhav


    Nanocomposite membranes based on multiwalled carbon nanotube /SPEEK (sulfonated poly ether ether ketone) have been synthesized via simple solution casting. Prior to use CNT have been purified and grafted with carboxylic acid groups onto its walls by means of sulfuric and nitric acid. Afterwards, amidation of carboxylated CNTs (c-CNT) has been done. Amidated CNT (a-CNT) is then incorporated in SPEEK polymer matrix to synthesize nanocomposite membranes. Physicochemical, structural, thermal and mechanical characterizations are done through the respective techniques. Electric and ionic conductivities have also been evaluated. Composites membranes show the enhanced electrochemical performance with higher electric conductivity.

  4. Protein structure validation and refinement using amide proton chemical shifts derived from quantum mechanics

    DEFF Research Database (Denmark)

    Christensen, Anders Steen; Linnet, Troels Emtekær; Borg, Mikael;


    We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts - sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM) calculations and reproduces high level...... QM results obtained for a small protein with an RMSD of 0.25 ppm (r = 0.94). ProCS is interfaced with the PHAISTOS protein simulation program and is used to infer statistical protein ensembles that reflect experimentally measured amide proton chemical shift values. Such chemical shift...

  5. Occurrence, biological activities and {sup 13}C NMR data of amides from Piper (Piperaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Jeferson C. do; Paula, Vanderlucia F. de [Universidade Estadual do Sudoeste da Bahia, Jequie, BA (Brazil). Dept. de Quimica e Exatas; David, Jorge M. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Quimica; David, Juceni P., E-mail: [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Fac. de Farmacia


    This manuscript describes an update review with up to 285 references concerning the occurrence of amides from a variety of species of the genus Piper (Piperaceae). Besides addressing occurrence, this review also describes the biological activities attributed to extracts and pure compounds, a compiled {sup 13}C NMR data set, the main correlations between structural and NMR spectroscopic data of these compounds, and employment of hyphened techniques such as LC-MS, GC-MS and NMR for analysis of amides from biological samples and crude Piper extracts. (author)

  6. Naphthalene/quinoline amides and sulfonylureas as potent and selective antagonists of the EP4 receptor. (United States)

    Burch, Jason D; Farand, Julie; Colucci, John; Sturino, Claudio; Ducharme, Yves; Friesen, Richard W; Lévesque, Jean-François; Gagné, Sébastien; Wrona, Mark; Therien, Alex G; Mathieu, Marie-Claude; Denis, Danielle; Vigneault, Erika; Xu, Daigen; Clark, Patsy; Rowland, Steve; Han, Yongxin


    Two new series of EP(4) antagonists based on naphthalene/quinoline scaffolds have been identified as part of our on-going efforts to develop treatments for inflammatory pain. One series contains an acidic sulfonylurea pharmacophore, whereas the other is a neutral amide. Both series show subnanomolar intrinsic binding potency towards the EP(4) receptor, and excellent selectivity towards other prostanoid receptors. While the amide series generally displays poor pharmacokinetic parameters, the sulfonylureas exhibit greatly improved profile. MF-592, the optimal compound from the sulfonylurea series, has a desirable overall preclinical profile that suggests it is suitable for further development.

  7. Occurrence, biological activities and 13C NMR data of amides from Piper (Piperaceae

    Directory of Open Access Journals (Sweden)

    Jeferson C. do Nascimento


    Full Text Available This manuscript describes an update review with up to 285 references concerning the occurrence of amides from a variety of species of the genus Piper (Piperaceae. Besides addressing occurrence, this review also describes the biological activities attributed to extracts and pure compounds, a compiled 13C NMR data set, the main correlations between structural and NMR spectroscopic data of these compounds, and employment of hyphened techniques such as LC-MS, GC-MS and NMR for analysis of amides from biological samples and crude Piper extracts.

  8. Cis–Trans Amide Bond Rotamers in β-Peptoids and Peptoids: Evaluation of Stereoelectronic

    DEFF Research Database (Denmark)

    Laursen, Jonas Striegler; Engel-Andreasen, Jens; Fristrup, Peter;


    to folding propensity. Thus, we here report an investigation of the effect of structural variations on the cis–trans amide bond rotamer equilibria in a selection of monomer model systems. In addition to various side chain effects, which correlated well with previous studies of α-peptoids, we present...... the synthesis and investigation of cis–trans isomerism in the first examples of peptoids and β-peptoids containing thioamide bonds as well as trifluoroacetylated peptoids and β-peptoids. These systems revealed an increase in the preference for cis-amides as compared to their parent compounds, and thus provide...

  9. Shear and dielectric responses of propylene carbonate, tripropylene glycol, and a mixture of two secondary amides

    DEFF Research Database (Denmark)

    Gainaru, Catalin; Hecksher, Tina; Olsen, Niels Boye


    to calculate the dielectric from the mechanical response and vice versa. Using a single parameter for a given system, good agreement between model calculations and experimental data is achieved for the entire relaxation spectra, including secondary relaxations and the Debye-like dielectric peak......Propylene carbonate and a mixture of two secondary amides, N-ethylformamide and Nethylacetamide, are investigated by means of broadband dielectric and mechanical shear spectroscopy. The similarities between the rheological and the dielectric responses of these liquids and of the previously...... in the secondary amides. In addition, the predictions of the shoving model are confirmed for the investigated liquids...

  10. Synthesis and characterization of alternating poly(amide urethane)s from ε-caprolactone, diamines and diphenyl carbonate

    NARCIS (Netherlands)

    Sharma, Bhaskar; Keul, Helmut; Höcker, Hartwig; Loontjens, Ton; Benthem, Rolf van


    The synthesis of alternating poly(amide urethane)s 5a–d was performed in three steps using ε-caprolactone, diamines, and diphenyl carbonate as starting materials. The microstructure and nature of the end groups of the poly(amide urethane)s were determined by means of 1H NMR spectroscopy, which revea

  11. Synthesis of new opioid derivatives with a propellane skeleton and their pharmacology. Part 2: Propellane derivatives with an amide side chain. (United States)

    Nagase, Hiroshi; Akiyama, Junko; Nakajima, Ryo; Hirayama, Shigeto; Nemoto, Toru; Gouda, Hiroaki; Hirono, Shuichi; Fujii, Hideaki


    We designed and synthesized propellane derivatives with a 6- or 7-amide side chain on the basis of the active conformation of the κ selective agonist nalfurafine. The 6-amides showed high affinities for the κ receptor, and one of the 6β-amides showed higher κ selectivity than nalfurafine. On the other hand, although the affinities of the 7-amides decreased compared to the 6-amides, some 7α-amides showed the highest selectivities for the κ receptor among the tested compounds. The affinities of 7β-isomers were extremely low, which was postulated to result from the shielding effect of the 7β-amide side chain against the lone electron pair on the 17-nitrogen. This is the first conformational information about the 7-amide side chain in propellane derivatives.

  12. Uniformity of Peptide Release Is Maintained by Methylation of Release Factors

    Directory of Open Access Journals (Sweden)

    William E. Pierson


    Full Text Available Termination of protein synthesis on the ribosome is catalyzed by release factors (RFs, which share a conserved glycine-glycine-glutamine (GGQ motif. The glutamine residue is methylated in vivo, but a mechanistic understanding of its contribution to hydrolysis is lacking. Here, we show that the modification, apart from increasing the overall rate of termination on all dipeptides, substantially increases the rate of peptide release on a subset of amino acids. In the presence of unmethylated RFs, we measure rates of hydrolysis that are exceptionally slow on proline and glycine residues and approximately two orders of magnitude faster in the presence of the methylated factors. Structures of 70S ribosomes bound to methylated RF1 and RF2 reveal that the glutamine side-chain methylation packs against 23S rRNA nucleotide 2451, stabilizing the GGQ motif and placing the side-chain amide of the glutamine toward tRNA. These data provide a framework for understanding how release factor modifications impact termination.

  13. DNA methylation in metabolic disorders

    DEFF Research Database (Denmark)

    Barres, Romain; Zierath, Juleen R


    DNA methylation is a major epigenetic modification that controls gene expression in physiologic and pathologic states. Metabolic diseases such as diabetes and obesity are associated with profound alterations in gene expression that are caused by genetic and environmental factors. Recent reports...... have provided evidence that environmental factors at all ages could modify DNA methylation in somatic tissues, which suggests that DNA methylation is a more dynamic process than previously appreciated. Because of the importance of lifestyle factors in metabolic disorders, DNA methylation provides...... a mechanism by which environmental factors, including diet and exercise, can modify genetic predisposition to disease. This article considers the current evidence that defines a role for DNA methylation in metabolic disorders....

  14. DNA methylation and carcinogenesis. (United States)

    Lichtenstein, A V; Kisseljova, N P


    In the world of easy things truth is opposed to lie; in the world of complicated things one profound truth is opposed to another not less profound than the first. Neils Bohr The hypothesis of the exclusively genetic origin of cancer ("cancer is a disease of genes, a tumor without any damage to the genome does not exist") dominated in the oncology until recently. A considerable amount of data confirming this hypothesis was accumulated during the last quarter of the last century. It was demonstrated that the accumulation of damage of specific genes lies at the origin of a tumor and its following progression. The damage gives rise to structural changes in the respective proteins and, consequently, to inappropriate mitogenic stimulation of cells (activation of oncogenes) or to the inactivation of tumor suppressor genes that inhibit cell division, or to the combination of both (in most cases). According to an alternative (epigenetic) hypothesis that was extremely unpopular until recently, a tumor is caused not by a gene damage, but by an inappropriate function of genes ("cancer is a disease of gene regulation and differentiation"). However, recent studies led to the convergence of these hypotheses that initially seemed to be contradictory. It was established that both factors--genetic and epigenetic--lie at the origin of carcinogenesis. The relative contribution of each varies significantly in different human tumors. Suppressor genes and genes of repair are inactivated in tumors due to their damage or methylation of their promoters (in the latter case an "epimutation", an epigenetic equivalent of a mutation, occurs, producing the same functional consequences). It is becoming evident that not only the mutagens, but various factors influencing cell metabolism, notably methylation, should be considered as carcinogens.

  15. Amide-Exchange-Rate-Edited NMR (AERE-NMR) Experiment:A Novel Method for Resolving Overlapping Resonances

    Institute of Scientific and Technical Information of China (English)

    LIU Xue-Hui; LIN Dong-Hai


    This paper describes an amide-exchange-rate-edited (AERE) NMR method that can effectively alleviate the problem of resonance overlap for proteins and peptides. This method exploits the diversity of amide proton exchange rates and consists of two complementary experiments: (1) SEA (solvent exposed amide)-type NMR experiments to map exchangeable surface residues whose amides are not involved in hydrogen bonding, and (2) presat-type NMR experiments to map solvent inaccessibly buried residues or nonexchangeable residues located in hydrogen-bonded secondary structures with properly controlled saturation transfer via amide proton exchanges with the solvent. This method separates overlapping resonances in a spectrum into two complementary spectra. The AERE-NMR method was demonstrated with a sample of 15N/13C/2H(70%) labeled ribosome-inactivating protein trichosanthin of 247 residues.

  16. RF-amide neuropeptides and their receptors in Mammals: Pharmacological properties, drug development and main physiological functions. (United States)

    Quillet, Raphaëlle; Ayachi, Safia; Bihel, Frédéric; Elhabazi, Khadija; Ilien, Brigitte; Simonin, Frédéric


    RF-amide neuropeptides, with their typical Arg-Phe-NH2 signature at their carboxyl C-termini, belong to a lineage of peptides that spans almost the entire life tree. Throughout evolution, RF-amide peptides and their receptors preserved fundamental roles in reproduction and feeding, both in Vertebrates and Invertebrates. The scope of this review is to summarize the current knowledge on the RF-amide systems in Mammals from historical aspects to therapeutic opportunities. Taking advantage of the most recent findings in the field, special focus will be given on molecular and pharmacological properties of RF-amide peptides and their receptors as well as on their implication in the control of different physiological functions including feeding, reproduction and pain. Recent progress on the development of drugs that target RF-amide receptors will also be addressed.

  17. Pregna-5,17(20)-dien-21-oyl amides affecting sterol and triglyceride biosynthesis in Hep G2 cells. (United States)

    Stulov, Sergey V; Mankevich, Olga V; Dugin, Nikita O; Novikov, Roman A; Timofeev, Vladimir P; Misharin, Alexander Yu


    Synthesis of series [17(20)Z]- and [17(20)E]-pregna-5,17(20)-dien-21-oyl amides, containing polar substituents in amide moiety, based on rearrangement of 17α-bromo-21-iodo-3β-acetoxypregn-5-en-20-one caused by amines, is presented. The titled compounds were evaluated for their potency to regulate sterol and triglyceride biosynthesis in human hepatoma Hep G2 cells in comparison with 25-hydroxycholesterol. Three [17(20)E]-pregna-5,17(20)-dien-21-oyl amides at a concentrations of 5 μM inhibited sterol biosynthesis and stimulated triglyceride biosynthesis; their regulatory potency was dependent on the structure of amide moiety; the isomeric [17(20)Z]-pregna-5,17(20)-dien-21-oyl amides were inactive.

  18. 5'-酰胺腺苷衍生物的合成%Synthesis of 5′-amide-adenosyl Derivative

    Institute of Scientific and Technical Information of China (English)



    N6-Benzoyl-2′,3′-O-isopropylidene-5′-(N-methoxy,N-methylcarboxamide)adenosine,the Weinreb amide derived adenosine,was the key intermediate of Weinreb ketone derived adenosine.A concise synthetic approach was developed for N6-benzoyl-2′,3′-O-isopropylidene-5′-(N-methoxy,N-methyl carboxamide)adenosine.It was synthesized from 2′,3′-O-isopropylideneadenosine by benzoylation,oxidation and amide formation in total 45% yield,and the structure confirmed by 1H NMR,13C NMR and HRMS.%N6-苯甲酰基-2',3'-O-异亚丙基-5'-(N-甲基-N-甲氧基酰胺)腺苷,Weinreb酰胺腺苷衍生物是用于制备Weinreb酮腺苷衍生物的重要中间体。报道了N6-苯甲酰基-2',3'-O-异亚丙基-5'-(N-甲基-N-甲氧基酰胺)腺苷的合成方法,以2',3'-O-异亚丙基腺苷为原料,经苯甲酰化、氧化反应和酰胺化反应,总收率为45%,其结构经1H NMR,13C NMR和HRMS表征。

  19. 40 CFR 721.9672 - Amides, tall-oil fatty, N-[2-[2-hydroxyethyl)amino]ethyl], reaction products with sulfur dioxide... (United States)


    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amides, tall-oil fatty, N- ethyl... Specific Chemical Substances § 721.9672 Amides, tall-oil fatty, N- ethyl], reaction products with sulfur... and significant new uses subject to reporting. (1) The chemical substance identified as amides,...

  20. The glucagon-like peptide-1 metabolite GLP-1-(9-36) amide reduces postprandial glycemia independently of gastric emptying and insulin secretion in humans

    DEFF Research Database (Denmark)

    Meier, Juris J; Gethmann, Arnica; Nauck, Michael A;


    Glucagon-like peptide 1 (GLP-1) lowers glycemia by modulating gastric emptying and endocrine pancreatic secretion. Rapidly after its secretion, GLP-1-(7-36) amide is degraded to the metabolite GLP-1-(9-36) amide. The effects of GLP-1-(9-36) amide in humans are less well characterized. Fourteen he...

  1. Rh(III-catalyzed directed C–H bond amidation of ferrocenes with isocyanates

    Directory of Open Access Journals (Sweden)

    Satoshi Takebayashi


    Full Text Available [RhCp*(OAc2(H2O] [Cp* = pentamethylcyclopentadienyl] catalyzed the C–H bond amidation of ferrocenes possessing directing groups with isocyanates in the presence of 2 equiv/Rh of HBF4·OEt2. A variety of disubstituted ferrocenes were prepared in high yields, or excellent diastereoselectivities.

  2. High Performance Liquid Chromatographic Analysis of Phytoplankton Pigments Using a C16-Amide Column (United States)

    A reverse-phase high performance liquid chromatographic (RP-HPLC) method was developed to analyze in a single run, most polar and non-polar chlorophylls and carotenoids from marine phytoplankton. The method is based on a RP-C16-Amide column and a ternary gradient system consistin...

  3. Effects of indole amides on lettuce and onion germination and growth. (United States)

    Borgati, Thiago F; Boaventura, Maria Amelia D


    Auxins, such as indole-3-acetic acid (IAA), are important in plant germination and growth, while physiological polyamines, such as putrescine, are involved in cell proliferation and differentiation, and their concentrations increase during germination. In this work, novel indole amides were synthesized in good yields by monoacylation of morpholine and unprotected symmetrical diamines with indole-3-carboxylic acid, a putative metabolite of IAA, possessing no auxin-like activity. These amides were tested for their effects on seed germination and growth of the radicles and shoots of Lactuca sativa (lettuce) and Allium cepa (onion) seedlings, at 100.0, 1.0, and 0.01 microM concentrations. Germination was generally stimulated, with the exception of amide 3, derived from morpholine, at 100 microM. On radicle and shoot growth, the effect of these compounds was predominantly inhibitory. Compound 3 was the best inhibitor of growth of lettuce and onion, at the highest concentration. Amides, such as propanil, among others, are described as having herbicidal activity.

  4. Synthesis and characterization of some N-substituted amides of salicylic acid


    Lupea Xenia Alfa; Padure Mirabela


    The synthesis of some N-substituted aromatic amides in the salicylic acid series was achieved, by direct reaction between primary amines and salicylic acid in inert organic solvent, in the presence of PCl3. The compounds that were obtained, partially not described in literature, were characterized by chemical-physical methods.

  5. Synthesis and characterization of some N-substituted amides of salicylic acid

    Directory of Open Access Journals (Sweden)

    Lupea Xenia Alfa


    Full Text Available The synthesis of some N-substituted aromatic amides in the salicylic acid series was achieved, by direct reaction between primary amines and salicylic acid in inert organic solvent, in the presence of PCl3. The compounds that were obtained, partially not described in literature, were characterized by chemical-physical methods.

  6. Amides from Piper capense with CNS activity

    DEFF Research Database (Denmark)

    Pedersen, Mikael Egebjerg; Metzler, Bjørn; Stafford, Gary Ivan;


    (A) receptor (IC(50) values of 1.2 mM and 1.0 mM, respectively). The present study suggests that strict structural properties of the amides are essential for affinity. Taken together, these observations suggest that the carbon chain must contain not less than four carbons, and that a conjugated double bond...

  7. Amide, urea and thiourea-containing triphenylene derivatives: influence of H-bonding on mesomorphic properties

    NARCIS (Netherlands)

    Paraschiv, I.; Tomkinson, A.; Giesbers, M.; Sudhölter, E.J.R.; Zuilhof, H.; Marcelis, A.T.M.


    The synthesis and thermotropic properties are reported for a series of hexaalkoxytriphenylenes that contain an amide, urea or thiourea group in one of their alkoxy tails. The intermolecular hydrogen bonding abilities of these molecules have a disturbing influence on the formation and stability of th

  8. Mosher Amides: Determining the Absolute Stereochemistry of Optically-Active Amines (United States)

    Allen, Damian A.; Tomaso, Anthony E., Jr.; Priest, Owen P.; Hindson, David F.; Hurlburt, Jamie L.


    The use of chiral reagents for the derivatization of optically-active amines and alcohols for the purpose of determining their enantiomeric purity or absolute configuration is a tool used by many chemists. Among the techniques used, Mosher's amide and Mosher's ester analyses are among the most reliable and one of the most often used. Despite this,…

  9. Structure-activity relationship in 34 trifluoromethylphenyl amides against Aedes aegypti (United States)

    As part of our mission to discover new mosquito insecticides, 34 trifluoromethylphenyl amides were designed and synthesized. These compounds have trifluoromethyl- groups located in the ortho-, meta- or para- positions on the phenyl ring and have various substituents attached to the carbonyl carbon, ...

  10. 2,4-dimethoxybenzyl: An amide protecting group for 2-acetamido glycosyl donors

    DEFF Research Database (Denmark)

    Kelly, N.M.; Jensen, Knud Jørgen


    2,4-Dimethoxybenzyl (Dmob) was used as an amide protecting group for 2-acetamido glycosyl donors. The N-Dmob group was introduced by imine formation between 2,4-dimethoxybenzaldehyde and d-glucosamine, followed by per-O-acylation, reduction to form the amine, and finally N-acetylation to give 1...

  11. A protocol for amide bond formation with electron deficient amines and sterically hindered substrates

    DEFF Research Database (Denmark)

    Due-Hansen, Maria E; Pandey, Sunil K; Christiansen, Elisabeth;


    A protocol for amide coupling by in situ formation of acyl fluorides and reaction with amines at elevated temperature has been developed and found to be efficient for coupling of sterically hindered substrates and electron deficient amines where standard methods failed....

  12. Communication: Quantitative multi-site frequency maps for amide I vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Reppert, Mike [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Department of Chemistry, University of Chicago, Chicago, Illinois 60637 (United States); Tokmakoff, Andrei, E-mail: [Department of Chemistry, University of Chicago, Chicago, Illinois 60637 (United States)


    An accurate method for predicting the amide I vibrational spectrum of a given protein structure has been sought for many years. Significant progress has been made recently by sampling structures from molecular dynamics simulations and mapping local electrostatic variables onto the frequencies of individual amide bonds. Agreement with experiment, however, has remained largely qualitative. Previously, we used dipeptide fragments and isotope-labeled constructs of the protein G mimic NuG2b as experimental standards for developing and testing amide I frequency maps. Here, we combine these datasets to test different frequency-map models and develop a novel method to produce an optimized four-site potential (4P) map based on the CHARMM27 force field. Together with a charge correction for glycine residues, the optimized map accurately describes both experimental datasets, with average frequency errors of 2–3 cm{sup −1}. This 4P map is shown to be convertible to a three-site field map which provides equivalent performance, highlighting the viability of both field- and potential-based maps for amide I spectral modeling. The use of multiple sampling points for local electrostatics is found to be essential for accurate map performance.

  13. Mechanistic insight into benzenethiol catalyzed amide bond formations from thioesters and primary amines

    DEFF Research Database (Denmark)

    Stuhr-Hansen, Nicolai; Bork, Nicolai; Strømgaard, Kristian


    of thiophenol (PhSH) in a slurry of disodium hydrogen phosphate in dry DMF. Quantitative conversions into the resulting amide were observed within a few hours in the presence of equimolar amounts of thiophenol. Ab initio calculations showed that the reaction mechanism in DMF is similar to the well-known aqueous...

  14. Biocatalytic Synthesis of Highly Enantiopure 1,4-Benzodioxane-2-carboxylic Acid and Amide

    Institute of Scientific and Technical Information of China (English)

    LIU Jun; WANG De-Xian; ZHENG Qi-Yu; WANG Mei-Xiang


    Catalyzed by Rhodococcus erythropolis A J270, a nitrile hydratase and amidase containing microbial whole-cell catalyst, at 10 ℃ and with the use of methanol as a co-solvent, nitrile and amide biotransformations produce 2S-1,4-benzodioxane-2-carboxamide and 2R-1,4-benzodioxane-2-carboxylic acid in high yields with excellent enantioselectivity.

  15. Computational Amide I 2D IR Spectroscopy as a Probe of Protein Structure and Dynamics (United States)

    Reppert, Mike; Tokmakoff, Andrei


    Two-dimensional infrared spectroscopy of amide I vibrations is increasingly being used to study the structure and dynamics of proteins and peptides. Amide I, a primarily carbonyl stretching vibration of the protein backbone, provides information on secondary structures as a result of vibrational couplings and on hydrogen-bonding contacts when isotope labeling is used to isolate specific sites. In parallel with experiments, computational models of amide I spectra that use atomistic structures from molecular dynamics simulations have evolved to calculate experimental spectra. Mixed quantum-classical models use spectroscopic maps to translate the structural information into a quantum-mechanical Hamiltonian for the spectroscopically observed vibrations. This allows one to model the spectroscopy of large proteins, disordered states, and protein conformational dynamics. With improvements in amide I models, quantitative modeling of time-dependent structural ensembles and of direct feedback between experiments and simulations is possible. We review the advances in developing these models, their theoretical basis, and current and future applications.

  16. Synthesis and Quantitation of Six Phenolic Amides in Amaranthus spp

    DEFF Research Database (Denmark)

    Pedersen, Hans A; Steffensen, Stine Krogh; Christophersen, Carsten


    Cinnamoylphenethylamines are phenolic amides in which cinnamic acid provides the acid moiety and phenethylamine the amine moiety. Single ion monitoring (SIM) in LC-MS was performed on amaranth leaf extracts. Masses corresponding to sets of regioisomers, including previously reported compounds, we...

  17. Microstructure and Kinetic Rheological Behavior of Amidated and Nonamidated LM Pectin Gels

    NARCIS (Netherlands)

    Lofgren, C.; Guillotin, S.E.; Hermansson, A.M.


    The microstructure, kinetics of gelation, and rheological properties have been investigated for gels of nonamidated pectin (C30), amidated pectin (G), and saponified pectin (sG) at different pH values, both with and without sucrose. The low-methoxyl (LM) pectin gels were characterized in the presenc

  18. Synthesis of polypiperazine-amide thin-film membrane on PPESK hollow fiber UF membrane

    Institute of Scientific and Technical Information of China (English)


    A new interfacial polymerization (IP) procedure is developed in order to synthesize polypiperazine-amide thin-film membrane on the inner surface of poly(phthalazinone ether sulfone ketone) (PPESK) hollow fiber ultrafiltration (UF) membrane. A hollow fiber composite membrane with good performance was prepared and studied by FT-IR and scanning electron microscopy.

  19. Formation of amide bonds without a condensation agent and implications for origin of life. (United States)

    Keller, M; Blöchl, E; Wächtershäuser, G; Stetter, K O


    Amide bonds are of central importance for biochemistry; in the guise of peptide bonds, they form the backbone of proteins. The formation of amide bonds without the assistance of enzymes poses a major challenge for theories of the origin of life. Enzyme-free formation of amide bonds between amino acids has been demonstrated in the presence of condensing agents such as cyanamide. Here we report the formation of amide bonds in aqueous solution in the absence of any condensing agent. We find that the formation of pyrite (FeS2) from FeS and H2S can provide the driving force for reductive acetylation of amino acids with mercaptoacetic acid (HSCH2COOH). The redox energy of pyrite formation permits the activation of the carboxylic acid group, which is converted to a species that reacts readily with amines. This process provides support for the chemo-autotrophic theory for the origin of life, in which pyrite formation supplies the energy source for the first autocatalytic reproduction cycle.

  20. Multidrug resistance-selective antiproliferative activity of Piper amide alkaloids and synthetic analogues. (United States)

    Wang, Yue-Hu; Goto, Masuo; Wang, Li-Ting; Hsieh, Kan-Yen; Morris-Natschke, Susan L; Tang, Gui-Hua; Long, Chun-Lin; Lee, Kuo-Hsiung


    Twenty-five amide alkaloids (1-25) from Piper boehmeriifolium and 10 synthetic amide alkaloid derivatives (39-48) were evaluated for antiproliferative activity against eight human tumor cell lines, including chemosensitive and multidrug-resistant (MDR) cell lines. The results suggested tumor type-selectivity. 1-[7-(3,4,5-Trimethoxyphenyl)heptanoyl]piperidine (46) exhibited the best inhibitory activity (IC50=4.94 μM) against the P-glycoprotein (P-gp)-overexpressing KBvin MDR sub-line, while it and all other tested compounds, except 9, were inactive (IC50 >40 μM) against MDA-MB-231 and SK-BR-3. Structure-activity relationships (SARs) indicated that (i) 3,4,5-trimethoxy phenyl substitution is critical for selectivity against KBvin, (ii) the 4-methoxy group in this pattern is crucial for antiproliferative activity, (iii) double bonds in the side chain are not needed for activity, and (iv), in arylalkenylacyl amide alkaloids, replacement of an isobutylamino group with pyrrolidin-1-yl or piperidin-1-yl significantly improved activity. Further study on Piper amides is warranted, particularly whether side chain length affects the ability to overcome the MDR cancer phenotype.

  1. Segmented copolymers of uniform tetra-amide units and poly(phenylene oxide) by direct coupling

    NARCIS (Netherlands)

    Krijgsman, J.; Biemond, G.J.E.; Gaymans, R.J.


    Segmented copolymers with telechelic poly(2,6-dimethyl-1,4-phenylene ether) (PPE) segments and crystallizable bisester tetra-amide units (two-and-a-half repeating unit of nylon-6,T) were studied. The copolymers were synthesized by reacting bifunctional PPE with hydroxylic end groups with an average

  2. Synthesis and intrinsic blue fluorescence study of hyperbranched poly(ester-amide-ether)

    Institute of Scientific and Technical Information of China (English)


    A series of hyperbranched poly(ester-amide-ether)s (H-PEAEs) were synthesized via the A2+CB3 approach by the self-transesterification of ethyl ester-amide-ethers end-capped with three hydroxyl groups and ethyl ester group at two terminals.The molecular structures were characterized with 1H NMR and FT-IR spectroscopy.The number average molecular weights were estimated by GPC analysis to possess bimodal wide distribution from 1.57 to 2.09.The strong inherent blue fluorescence was observed at 330 nm for excitation and 390 nm for emission.Moreover,the emission intensity and fluorescence quantum yield increased along with the incorporated ether chain length,as well as almost linearly with the H-PEAE concentration in an aqueous solution.For comparing the fluorescence performance,the linear poly(ester-amide-ether) (L-PEAE) and hyperbranched poly(ester-amide) (H-PEA) were synthesized.The results showed that the coexistence of ether bond and carboxyl group in the molecular chain was essential for generating the strong fluorescence.However,the compact backbone of H-PEAE would be propitious to the enhancement of fluorescence properties.

  3. Development of chiral metal amides as highly reactive catalysts for asymmetric [3 + 2] cycloadditions (United States)

    Yamashita, Yasuhiro; Yoshimoto, Susumu; Dutton, Mark J


    Summary Highly efficient catalytic asymmetric [3 + 2] cycloadditions using a chiral copper amide are reported. Compared with the chiral CuOTf/Et3N system, the CuHMDS system showed higher reactivity, and the desired reactions proceeded in high yields and high selectivities with catalyst loadings as low as 0.01 mol %. PMID:27559396

  4. One pot direct synthesis of amides or oxazolines from carboxylic acids using Deoxo-Fluor reagent. (United States)

    Kangani, Cyrous O; Kelley, David E


    A mild and highly efficient one pot-one step condensation and/or condensation-cyclization of various acids to amides and/or oxazolines using Deoxo-Fluor reagents is described. Parallel syntheses of various free fatty acids with 2-amino-2, 2-dimethyl-1-propanol resulted with excellent yields.

  5. Learner Identity Amid Figured Worlds: Constructing (In)competence at an Urban High School (United States)

    Rubin, Beth C.


    This article explores the figured world of learning at urban Oakcity High School, describing the learner identities that were available to students amid the practices, categories, discourses and interactions of this world. My aims are 2-fold and interconnected: (1) to reframe a taken-for-granted phenomenon--that students tend to do poorly at urban…

  6. Protein structure validation and refinement using amide proton chemical shifts derived from quantum mechanics

    DEFF Research Database (Denmark)

    Christensen, Anders Steen; Linnet, Troels Emtekær; Borg, Mikael;


    We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts - sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM) calculations and reproduces high level...

  7. Methylation-Specific PCR Unraveled

    Directory of Open Access Journals (Sweden)

    Sarah Derks


    Full Text Available Methylation‐specific PCR (MSP is a simple, quick and cost‐effective method to analyze the DNA methylation status of virtually any group of CpG sites within a CpG island. The technique comprises two parts: (1 sodium bisulfite conversion of unmethylated cytosine's to uracil under conditions whereby methylated cytosines remains unchanged and (2 detection of the bisulfite induced sequence differences by PCR using specific primer sets for both unmethylated and methylated DNA. This review discusses the critical parameters of MSP and presents an overview of the available MSP variants and the (clinical applications.

  8. Methyl 2-(4-chlorobenzamidobenzoate

    Directory of Open Access Journals (Sweden)

    Shahzad Sharif


    Full Text Available In the title compound, C15H12ClNO3, the central C—C(O—N—C amide unit makes dihedral angles of 6.60 (2 and 3.42 (2°, respectively, with the 4-chlorobenzene and anilino rings. The dihedral angle between the two benzene rings is 3.32 (3°. Intramolecular N—H...O and C—H...O hydrogen bonds form S(6 rings and contribute to the planarity of this portion of the molecule. In the crystal, intermolecular C—H...O hydrogen bonds are observed, which link the molecules into [010] C(7 chains.

  9. Gas-phase acidities of aspartic acid, glutamic acid, and their amino acid amides (United States)

    Li, Zhong; Matus, Myrna H.; Velazquez, Hector Adam; Dixon, David A.; Cassady, Carolyn J.


    Gas-phase acidities (GA or [Delta]Gacid) for the two most acidic common amino acids, aspartic acid and glutamic acid, have been determined for the first time. Because of the amide linkage's importance in peptides and as an aid in studying side chain versus main chain deprotonation, aspartic acid amide and glutamic acid amide were also studied. Experimental GA values were measured by proton transfer reactions in an electrospray ionization/Fourier transform ion cyclotron resonance mass spectrometer. Calculated GAs were obtained by density functional and molecular orbital theory approaches. The best agreement with experiment was found at the G3MP2 level; the MP2/CBS and B3LYP/aug-cc-pVDZ results are 3-4 kcal/mol more acidic than the G3MP2 results. Experiment shows that aspartic acid is more acidic than glutamic acid by ca. 3 kcal/mol whereas the G3MP2 results show a smaller acidity difference of 0.2 kcal/mol. Similarly, aspartic acid amide is experimentally observed to be ca. 2 kcal/mol more acidic than glutamic acid amide whereas the G3MP2 results show a correspondingly smaller energy difference of 0.7 kcal/mol. The computational results clearly show that the anions are all ring-like structures with strong hydrogen bonds between the OH or NH2 groups and the CO2- group from which the proton is removed. The two amino acids are main-chain deprotonated. In addition, use of the COSMO model for the prediction of the free energy differences in aqueous solution gave values in excellent agreement with the most recent experimental values for pKa. Glutamic acid is predicted to be more acidic than aspartic acid in aqueous solution due to differential solvation effects.

  10. Gas-phase Acidities of Aspartic Acid, Glutamic Acid, and their Amino Acid Amides.

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhong; Matus, Myrna H; Velazquez, Hector A; Dixon, David A; Cassady, Carolyn J


    Gas-phase acidities (GA or ΔGacid) for the two most acidic common amino acids, aspartic acid and glutamic acid, have been determined for the first time. Because of the amide linkage’s importance in peptides and as an aid in studying side chain versus main chain deprotonation, aspartic acid amide and glutamic acid amide were also studied. Experimental GA values were measured by proton transfer reactions in an electrospray ionization/Fourier transform ion cyclotron resonance mass spectrometer. Calculated GAs were obtained by density functional and molecular orbital theory approaches. The best agreement with experiment was found at the G3MP2 level; the MP2/CBS and B3LYP/aug-cc-pVDZ results are 3–4 kcal/mol more acidic than the G3MP2 results. Experiment shows that aspartic acid is more acidic than glutamic acid by ca. 3 kcal/mol whereas the G3MP2 results show a smaller acidity difference of 0.2 kcal/mol. Similarly, aspartic acid amide is experimentally observed to be ca. 2 kcal/mol more acidic than glutamic acid amide whereas the G3MP2 results show a correspondingly smaller energy difference of 0.7 kcal/mol. The computational results clearly show that the anions are all ring-like structures with strong hydrogen bonds between the OH or NH2 groups and the CO2- group from which the proton is removed. The two amino acids are main-chain deprotonated. In addition, use of the COSMO model for the prediction of the free energy differences in aqueous solution gave values in excellent agreement with the most recent experimental values for pKa. Glutamic acid is predicted to be more acidic than aspartic acid in aqueous solution due to differential solvation effects.

  11. Biaryl amide compounds reduce the inflammatory response in macrophages by regulating Dectin-1. (United States)

    Hyung, Kyeong Eun; Lee, Mi Ji; Lee, Yun-Jung; Lee, Do Ik; Min, Hye Young; Park, So-Young; Min, Kyung Hoon; Hwang, Kwang Woo


    Macrophages are archetypal innate immune cells that play crucial roles in the recognition and phagocytosis of invading pathogens, which they identify using pattern recognition receptors (PRRs). Dectin-1 is essential for antifungal immune responses, recognizing the fungal cellular component β-glucan, and its role as a PRR has been of increasing interest. Previously, we discovered and characterized a novel biaryl amide compound, MPS 03, capable of inhibiting macrophage phagocytosis of zymosan. Therefore, in this study we aimed to identify other biaryl amide compounds with greater effectiveness than MPS 03, and elucidate their cellular mechanisms. Several MPS 03 derivatives were screened, four of which reduced zymosan phagocytosis in a similar manner to MPS 03. To establish whether such phagocytosis inhibition influenced the production of inflammatory mediators, pro-inflammatory cytokine and nitric oxide (NO) levels were measured. The production of TNF-α, IL-6, IL-12, and NO was significantly reduced in a dose-dependent manner. Moreover, the inflammation-associated MAPK signaling pathway was also affected by biaryl amide compounds. To investigate the underlying cellular mechanism, PRR expression was measured. MPS 03 and its derivatives were found to inhibit zymosan phagocytosis by decreasing Dectin-1 expression. Furthermore, when macrophages were stimulated by zymosan after pretreatment with biaryl amide compounds, downstream transcription factors such as NFAT, AP-1, and NF-κB were downregulated. In conclusion, biaryl amide compounds reduce zymosan-induced inflammatory responses by downregulating Dectin-1 expression. Therefore, such compounds could be used to inhibit Dectin-1 in immunological experiments and possibly regulate excessive inflammatory responses.

  12. Protein topology determines cysteine oxidation fate: the case of sulfenyl amide formation among protein families. (United States)

    Defelipe, Lucas A; Lanzarotti, Esteban; Gauto, Diego; Marti, Marcelo A; Turjanski, Adrián G


    Cysteine residues have a rich chemistry and play a critical role in the catalytic activity of a plethora of enzymes. However, cysteines are susceptible to oxidation by Reactive Oxygen and Nitrogen Species, leading to a loss of their catalytic function. Therefore, cysteine oxidation is emerging as a relevant physiological regulatory mechanism. Formation of a cyclic sulfenyl amide residue at the active site of redox-regulated proteins has been proposed as a protection mechanism against irreversible oxidation as the sulfenyl amide intermediate has been identified in several proteins. However, how and why only some specific cysteine residues in particular proteins react to form this intermediate is still unknown. In the present work using in-silico based tools, we have identified a constrained conformation that accelerates sulfenyl amide formation. By means of combined MD and QM/MM calculation we show that this conformation positions the NH backbone towards the sulfenic acid and promotes the reaction to yield the sulfenyl amide intermediate, in one step with the concomitant release of a water molecule. Moreover, in a large subset of the proteins we found a conserved beta sheet-loop-helix motif, which is present across different protein folds, that is key for sulfenyl amide production as it promotes the previous formation of sulfenic acid. For catalytic activity, in several cases, proteins need the Cysteine to be in the cysteinate form, i.e. a low pKa Cys. We found that the conserved motif stabilizes the cysteinate by hydrogen bonding to several NH backbone moieties. As cysteinate is also more reactive toward ROS we propose that the sheet-loop-helix motif and the constraint conformation have been selected by evolution for proteins that need a reactive Cys protected from irreversible oxidation. Our results also highlight how fold conservation can be correlated to redox chemistry regulation of protein function.

  13. Uncovering the Sensitivity of Amide-II Vibration to Peptide-Ion Interactions. (United States)

    Zhao, Juan; Wang, Jianping


    In this work, linear infrared spectroscopy was used to examine the effect of salt on the amide-II mode in a model β-peptide (N-ethylpropionamide, NEPA) in its deuterated form, to reveal the sensitivity of this mode in reporting peptide-ion interactions. In comparison to the case of NEPA in water, the amide-II spectra mainly showed a red-shifted component in four typical saline solutions (NaCl, CaCl2, MgCl2, and AlCl3) examined in this work. Our results suggest that highly populated hydrated ion complexes under high salt concentration conditions destroy the hydration layer of the model peptide and result in mostly a salting-out state of the peptide. Molecular dynamics simulations suggest that the hydrated cation mainly interacts with the peptide backbone on the amide C═O side, whereas the hydrated anion interacts on the amide N-H side. As the amide-II mode is mainly a combination of the C-N stretching and N-H in-plane-bending vibrations, this mode is advantageous in being responsive to ionic interaction from both the C═O and N-H sides. Such a dual sensitivity should be very useful in probing the breaking and/or formation of the interamide hydrogen bond between the C═O and N-H groups, which is a very important interaction involved in the solvation and stabilization, as well as folding/unfolding of proteins.

  14. Orientation and Order of the Amide Group of Sphingomyelin in Bilayers Determined by Solid-State NMR. (United States)

    Matsumori, Nobuaki; Yamaguchi, Toshiyuki; Maeta, Yoshiko; Murata, Michio


    Sphingomyelin (SM) and cholesterol (Chol) are considered essential for the formation of lipid rafts; however, the types of molecular interactions involved in this process, such as intermolecular hydrogen bonding, are not well understood. Since, unlike other phospholipids, SM is characterized by the presence of an amide group, it is essential to determine the orientation of the amide and its order in the lipid bilayers to understand the nature of the hydrogen bonds in lipid rafts. For this study, 1'-(13)C-2-(15)N-labeled and 2'-(13)C-2-(15)N-labeled SMs were prepared, and the rotational-axis direction and order parameters of the SM amide in bilayers were determined based on (13)C and (15)N chemical-shift anisotropies and intramolecular (13)C-(15)N dipole coupling constants. Results revealed that the amide orientation was minimally affected by Chol, whereas the order was enhanced significantly in its presence. Thus, Chol likely promotes the formation of an intermolecular hydrogen-bond network involving the SM amide without significantly changing its orientation, providing a higher order to the SM amide. To our knowledge, this study offers new insight into the significance of the SM amide orientation with regard to molecular recognition in lipid rafts, and therefore provides a deeper understanding of the mechanism of their formation.

  15. Structural insights into the specific recognition of N-heterocycle biodenitrogenation-derived substrates by microbial amide hydrolases. (United States)

    Wu, Geng; Chen, Duoduo; Tang, Hongzhi; Ren, Yiling; Chen, Qihua; Lv, Yang; Zhang, Zhenyi; Zhao, Yi-Lei; Yao, Yuxiang; Xu, Ping


    N-heterocyclic compounds from industrial wastes, including nicotine, are environmental pollutants or toxicants responsible for a variety of health problems. Microbial biodegradation is an attractive strategy for the removal of N-heterocyclic pollutants, during which carbon-nitrogen bonds in N-heterocycles are converted to amide bonds and subsequently severed by amide hydrolases. Previous studies have failed to clarify the molecular mechanism through which amide hydrolases selectively recognize diverse amide substrates and complete the biodenitrogenation process. In this study, structural, computational and enzymatic analyses showed how the N-formylmaleamate deformylase Nfo and the maleamate amidase Ami, two pivotal amide hydrolases in the nicotine catabolic pathway of Pseudomonas putida S16, specifically recognize their respective substrates. In addition, comparison of the α-β-α groups of amidases, which include Ami, pinpointed several subgroup-characteristic residues differentiating the two classes of amide substrates as containing either carboxylate groups or aromatic rings. Furthermore, this study reveals the molecular mechanism through which the specially tailored active sites of deformylases and amidases selectively recognize their unique substrates. Our work thus provides a thorough elucidation of the molecular mechanism through which amide hydrolases accomplish substrate-specific recognition in the microbial N-heterocycles biodenitrogenation pathway.

  16. Self-assembly and antimicrobial activity of long-chain amide-functionalized ionic liquids in aqueous solution. (United States)

    Garcia, M Teresa; Ribosa, Isabel; Perez, Lourdes; Manresa, Angeles; Comelles, Francesc


    Surface active amide-functionalized ionic liquids (ILs) consisting of a long alkyl chain (C6C14) connected to a polar head group (methylimidazolium or pyridinium cation) via an amide functional group were synthesized and their thermal stability, micellar properties and antimicrobial activity in aqueous solution investigated. The incorporation of an amide group increased the thermal stability of the functionalized ionic liquids compared to simple alkyl chain substituted ionic liquids. The surface activity and aggregation behaviour in aqueous solution of amide-functionalized ionic liquids were examined by tensiometry, conductivity and spectrofluorimetry. Amide-functionalized ILs displayed surface activity and their critical micelle concentration (cmc) in aqueous media decreased with the elongation of the alkyl side chain as occurs for typical surfactants. Compared to non-functionalized ILs bearing the same alkyl chain, ionic liquids with an amide moiety possess higher surface activity (pC20) and lower cmc values. The introduction of an amide group in the hydrophobic chain close to the polar head enhances adsorption at the air/water interface and micellization which could be attributed to the H-bonding in the headgroup region. The antimicrobial activity was evaluated against a panel of representative Gram-negative and Gram-positive bacteria and fungi. Amide-functionalized ILs with more than eight carbon atoms in the side chain showed broad antimicrobial activity. Antibacterial activities were found to increase with the alkyl chain length being the C12 homologous the most effective antimicrobial agents. The introduction of an amide group enhanced significantly the antifungal activity as compared to non-functionalized ILs.

  17. Structure-based interpretation of biotransformation pathways of amide-containing compounds in sludge-seeded bioreactors. (United States)

    Helbling, Damian E; Hollender, Juliane; Kohler, Hans-Peter E; Fenner, Kathrin


    Partial microbial degradation of xenobiotic compounds in wastewater treatment plants (WWTPs) results in the formation of transformation products, which have been shown to be released and detectable in surface waters. Rule-based systems to predict the structures of microbial transformation products often fail to discriminate between alternate transformation pathways because structural influences on enzyme-catalyzed reactions in complex environmental systems are not well understood. The amide functional group is one such common substructure of xenobiotic compounds that may be transformed through alternate transformation pathways. The objective of this work was to generate a self-consistent set of biotransformation data for amide-containing compounds and to develop a metabolic logic that describes the preferred biotransformation pathways of these compounds as a function of structural and electronic descriptors. We generated transformation products of 30 amide-containing compounds in sludge-seeded bioreactors and identified them by means of HPLC-linear ion trap-orbitrap mass spectrometry. Observed biotransformation reactions included amide hydrolysis and N-dealkylation, hydroxylation, oxidation, ester hydrolysis, dehalogenation, nitro reduction, and glutathione conjugation. Structure-based interpretation of the results allowed for identification of preferences in biotransformation pathways of amides: primary amides hydrolyzed rapidly; secondary amides hydrolyzed at rates influenced by steric effects; tertiary amides were N-dealkylated unless specific structural moieties were present that supported other more readily enzyme-catalyzed reactions. The results allowed for the derivation of a metabolic logic that could be used to refine rule-based biotransformation pathway prediction systems to more specifically predict biotransformations of amide-containing compounds.

  18. Application of mid-infrared free-electron laser tuned to amide bands for dissociation of aggregate structure of protein. (United States)

    Kawasaki, Takayasu; Yaji, Toyonari; Ohta, Toshiaki; Tsukiyama, Koichi


    A mid-infrared free-electron laser (FEL) is a linearly polarized, high-peak powered pulse laser with tunable wavelength within the mid-infrared absorption region. It was recently found that pathogenic amyloid fibrils could be partially dissociated to the monomer form by the irradiation of the FEL targeting the amide I band (C=O stretching vibration), amide II band (N-H bending vibration) and amide III band (C-N stretching vibration). In this study, the irradiation effect of the FEL on keratin aggregate was tested as another model to demonstrate an applicability of the FEL for dissociation of protein aggregates. Synchrotron radiation infrared microscopy analysis showed that the α-helix content in the aggregate structure decreased to almost the same level as that in the monomer state after FEL irradiation tuned to 6.06 µm (amide I band). Both irradiations at 6.51 µm (amide II band) and 8.06 µm (amide III band) also decreased the content of the aggregate but to a lesser extent than for the irradiation at the amide I band. On the contrary, the irradiation tuned to 5.6 µm (non-absorbance region) changed little the secondary structure of the aggregate. Scanning-electron microscopy observation at the submicrometer order showed that the angular solid of the aggregate was converted to non-ordered fragments by the irradiation at each amide band, while the aggregate was hardly deformed by the irradiation at 5.6 µm. These results demonstrate that the amide-specific irradiation by the FEL was effective for dissociation of the protein aggregate to the monomer form.

  19. Phases and phase transition in insoluble and adsorbed monolayers of amide amphiphiles: Specific characteristics of the condensed phases. (United States)

    Vollhardt, D


    For understanding the role of amide containing amphiphiles in inherently complex biological processes, monolayers at the air-water interface are used as simple biomimetic model systems. The specific characteristics of the condensed phases and phase transition in insoluble and adsorbed monolayers of amide amphiphiles are surveyed to highlight the effect of the chemical structure of the amide amphiphiles on the interfacial interactions in model monolayers. The mesoscopic topography and/or two-dimensional lattice structures of selected amino acid amphiphiles, amphiphilic N-alkylaldonamide, amide amphiphiles with specific tailored headgroups, such as amide amphiphiles based on derivatized ethanolamine, e.g. acylethanolamines (NAEs) and N-,O-diacylethanolamines (DAEs) are presented. Special attention is devoted the dominance of N,O-diacylated ethanolamine in mixed amphiphilic acid amide monolayers. The evidence that a first order phase transition can occur in adsorption layers and that condensed phase domains of mesoscopic scale can be formed in adsorption layers was first obtained on the basis of the experimental characteristics of a tailored amide amphiphile. New thermodynamic and kinetic concepts for the theoretical description of the characteristics of amide amphiphile's monolayers were developed. In particular, the equation of state for Langmuir monolayers generalized for the case that one, two or more phase transitions occur, and the new theory for phase transition in adsorbed monolayers are experimentally confirmed at first by amide amphiphile monolayers. Despite the significant progress made towards the understanding the model systems, these model studies are still limited to transfer the gained knowledge to biological systems where the fundamental physical principles are operative in the same way. The study of biomimetic systems, as described in this review, is only a first step in this direction.

  20. Metal Complexation Studies of 1-(4-Carboxy-3-hydroxy-N-methyl phenyl- amino methyl 2-methyl perimidine

    Directory of Open Access Journals (Sweden)

    Umang N. Patel


    Full Text Available Aminomethylation of 2-methyl perimidine was carried out by treating 2-methyl perimidine with formaldehyde and 4-aminosalicylic acid. The resultant compound was designed as 1-(4-caroxy-3-hydroxy-N-methyl phenylamino methyl2-methyl perimidine. The transition metal complexes of Cu2+, Co2+, Ni2+, Mn2+ and Zn2+ have been prepared and characterized by elemental analysis, spectral studies, magnetic moment determination, molar conductivity measurement and antimicrobial activity.

  1. Tissue and plasma concentrations of amidated and glycine-extended glucagon-like peptide I in humans

    DEFF Research Database (Denmark)

    Orskov, C; Rabenhøj, L; Wettergren, A


    plasma were 7 +/- 1 and 6 +/- 1 pM, respectively (n = 6). In response to a breakfast meal, the concentration of amidated GLP-I rose significantly amounting to 41 +/- 5 pM 90 min after the meal ingestion, whereas the concentration of glycine-extended GLP-I only rose slightly to a maximum of 10 +/- 1 p......M. Thus, both amidated and glycine-extended GLP-I molecules are produced in the small intestine and in the pancreas in humans. Both amidated and glycine-extended GLP-I are measurable in fasting plasma.(ABSTRACT TRUNCATED AT 250 WORDS)...

  2. Mapping temperature-induced conformational changes in the Escherichia coli heat shock transcription factor sigma 32 by amide hydrogen exchange

    DEFF Research Database (Denmark)

    Rist, Wolfgang; Jørgensen, Thomas J D; Roepstorff, Peter;


    gene transcription. To investigate possible heat-induced conformational changes in sigma 32 we performed amide hydrogen (H/D) exchange experiments under optimal growth and heat shock conditions combined with mass spectrometry. We found a rapid exchange of around 220 of the 294 amide hydrogens at 37...... degrees C, indicating that sigma 32 adopts a highly flexible structure. At 42 degrees C we observed a slow correlated exchange of 30 additional amide hydrogens and localized it to a helix-loop-helix motif within domain sigma 2 that is responsible for the recognition of the -10 region in heat shock...

  3. Construction of Differential-Methylation Subtractive Library

    Directory of Open Access Journals (Sweden)

    Wei Hu


    Full Text Available Stress-induced ROS changes DNA methylation patterns. A protocol combining methylation-sensitive restriction endonuclease (MS-RE digestion with suppression subtractive hybridization (SSH to construct the differential-methylation subtractive library was developed for finding genes regulated by methylation mechanism under cold stress. The total efficiency of target fragment detection was 74.64%. DNA methylation analysis demonstrated the methylation status of target fragments changed after low temperature or DNA methyltransferase inhibitor treatment. Transcription level analysis indicated that demethylation of DNA promotes gene expression level. The results proved that our protocol was reliable and efficient to obtain gene fragments in differential-methylation status.

  4. Novel endogenous N-acyl amides activate TRPV1-4 receptors, BV-2 microglia, and are regulated in brain in an acute model of inflammation

    Directory of Open Access Journals (Sweden)

    Siham eRaboune


    Full Text Available A family of endogenous lipids, structurally analogous to the endogenous cannabinoid, N-arachidonoyl ethanolamine (Anandamide, and called N-acyl amides have emerged as a family of biologically active compounds at TRP receptors. N-acyl amides are constructed from an acyl group and an amine via an amide bond. This same structure can be modified by changing either the fatty acid or the amide to form potentially hundreds of lipids. More than 70 N-acyl amides have been identified in nature. We have ongoing studies aimed at isolating and characterizing additional members of the family of N-acyl amides in both central and peripheral tissues in mammalian systems. Here, using a unique in-house library of over 70 N-acyl amides we tested the following three hypotheses: 1 Additional N-acyl amides will have activity at TRPV1-4, 2 Acute peripheral injury will drive changes in CNS levels of N-acyl amides, and 3 N-acyl amides will regulate calcium in CNS-derived microglia. Through these studies, we have identified 20 novel N-acyl amides that collectively activate (stimulating or inhibiting TRPV1-4. Using lipid extraction and HPLC coupled to tandem mass spectrometry we showed that levels of at least 10 of these N-acyl amides that activate TRPVs are regulated in brain after intraplantar carrageenan injection. We then screened the BV2 microglial cell line for activity with this N-acyl amide library and found overlap with TRPV receptor activity as well as additional activators of calcium mobilization from these lipids. Together these data provide new insight into the family of N-acyl amides and their roles as signaling molecules at ion channels, in microglia, and in the brain in the context of inflammation.

  5. Whole genome methylation profiling by immunoprecipitation of methylated DNA. (United States)

    Sharp, Andrew J


    I provide a protocol for DNA methylation profiling based on immunoprecipitation of methylated DNA using commercially available monoclonal antibodies that specifically recognize 5-methylcytosine. Quantification of the level of enrichment of the resulting DNA enables DNA methylation to be assayed for any genomic locus, including entire chromosomes or genomes if appropriate microarray or high-throughput sequencing platforms are used. In previous studies (1, 2), I have used hybridization to oligonucleotide arrays from Roche Nimblegen Inc, which allow any genomic region of interest to be interrogated, dependent on the array design. For example, using modern tiling arrays comprising millions of oligonucleotide probes, several complete human chromosomes can be assayed at densities of one probe per 100 bp or greater, sufficient to yield high-quality data. However, other methods such as quantitative real-time PCR or high-throughput sequencing can be used, giving either measurement of methylation at a single locus or across the entire genome, respectively. While the data produced by single locus assays is relatively simple to analyze and interpret, global assays such as microarrays or high-throughput sequencing require more complex statistical approaches in order to effectively identify regions of differential methylation, and a brief outline of some approaches is given.

  6. Beta-methyl substitution of cyclohexylalanine in Dmt-Tic-Cha-Phe peptides results in highly potent delta opioid antagonists. (United States)

    Tóth, Géza; Ioja, Eniko; Tömböly, Csaba; Ballet, Steven; Tourwé, Dirk; Péter, Antal; Martinek, Tamás; Chung, Nga N; Schiller, Peter W; Benyhe, Sándor; Borsodi, Anna


    The opioid peptide TIPP (H-Tyr-Tic-Phe-Phe-OH, Tic:1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) was substituted with Dmt (2',6'-dimethyltyrosine) and a new unnatural amino acid, beta-MeCha (beta-methyl-cyclohexylalanine). This double substitution led to a new series of opioid peptides displaying subnanomolar delta antagonist activity and mu agonist or antagonist properties depending on the configuration of the beta-MeCha residue. The most promising analog, H-Dmt-Tic-(2S,3S)-beta-MeCha-Phe-OH was a very selective delta antagonist both in the mouse vas deferens (MVD) assay (Ke = 0.241 +/- 0.05 nM) and in radioligand binding assay (K i delta = 0.48 +/- 0.05 nM, K i mu/K i delta = 2800). The epimeric peptide H-Dmt-Tic-(2S,3R)-beta-MeCha-Phe-OH and the corresponding peptide amide turned out to be mixed partial mu agonist/delta antagonists in the guinea pig ileum and MVD assays. Our results constitute further examples of the influence of Dmt and beta-methyl substitution as well as C-terminal amidation on the potency, selectivity, and signal transduction properties of TIPP related peptides. Some of these compounds represent valuable pharmacological tools for opioid research.

  7. Water-stable helical structure of tertiary amides of bicyclic β-amino acid bearing 7-azabicyclo[2.2.1]heptane. Full control of amide cis-trans equilibrium by bridgehead substitution. (United States)

    Hosoya, Masahiro; Otani, Yuko; Kawahata, Masatoshi; Yamaguchi, Kentaro; Ohwada, Tomohiko


    Helical structures of oligomers of non-natural β-amino acids are significantly stabilized by intramolecular hydrogen bonding between main-chain amide moieties in many cases, but the structures are generally susceptible to the environment; that is, helices may unfold in protic solvents such as water. For the generation of non-hydrogen-bonded ordered structures of amides (tertiary amides in most cases), control of cis-trans isomerization is crucial, even though there is only a small sterical difference with respect to cis and trans orientations. We have established methods for synthesis of conformationally constrained β-proline mimics, that is, bridgehead-substituted 7-azabicyclo[2.2.1]heptane-2-endo-carboxylic acids. Our crystallographic, 1D- and 2D-NMR, and CD spectroscopic studies in solution revealed that a bridgehead methoxymethyl substituent completely biased the cis-trans equilibrium to the cis-amide structure along the main chain, and helical structures based on the cis-amide linkage were generated independently of the number of residues, from the minimalist dimer through the tetramer, hexamer, and up to the octamer, and irrespective of the solvent (e.g., water, alcohol, halogenated solvents, and cyclohexane). Generality of the control of the amide equilibrium by bridgehead substitution was also examined.

  8. Antifungal agents. 4. Chemical modification of antibiotics from Polyangium cellulosum var. fulvum. Ester and amide analogues of ambruticin. (United States)

    Connor, D T; von Strandtmann, M


    A series of ester and amide analogues of ambruticin (1) was prepared. The analogues were tested against Histoplasma capsulatum, Microsporum fulvum, Candida albicans and Streptococcus pyogenes. Structure-activity relationships are described.

  9. Sulfonated reduced graphene oxide as a highly efficient catalyst for direct amidation of carboxylic acids with amines using ultrasonic irradiation. (United States)

    Mirza-Aghayan, Maryam; Tavana, Mahdieh Molaee; Boukherroub, Rabah


    Sulfonated reduced graphene oxide nanosheets (rGO-SO3H) were prepared by grafting sulfonic acid-containing aryl radicals onto chemically reduced graphene oxide (rGO) under sonochemical conditions. rGO-SO3H catalyst was characterized by Fourier-transform infrared (FT-IR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS). rGO-SO3H catalyst was successfully applied as a reusable solid acid catalyst for the direct amidation of carboxylic acids with amines into the corresponding amides under ultrasonic irradiation. The direct sonochemical amidation of carboxylic acid takes place under mild conditions affording in good to high yields (56-95%) the corresponding amides in short reaction times.

  10. High sensitivity of amide V bands in uracil and its derivatives to the strengths of hydrogen bonding (United States)

    Bandekar, Jagdeesh; Zundel, Georg

    Bands due to CO, CH and NH out-of-plane bending modes have been identified and studied as a function of temperature in the cis-amide uracil and its derivatives. Only the bands due to NH out-of-plane bending modes, the so-called amide V bands, are found to be sensitive to the strengths of hydrogen bonds. This sensitivity is found to be as great as that of NH stretching bands. It is shown that the amide V bands could be used, among other things, to detect the possibility and/or extent of hydrogen bonding in Hoogsteen-type base-pairs. This provides a very simple way to detect the presence of undesirable uncomplexed bases in the study of base-paired complexes. These results point to the need to understand better the origin of amide V bands.

  11. Is there any difference in Amide and NOE CEST effects between white and gray matter at 7 T? (United States)

    Khlebnikov, Vitaliy; Siero, Jeroen C. W.; Wijnen, Jannie; Visser, Fredy; Luijten, Peter R.; Klomp, Dennis W. J.; Hoogduin, Hans


    Measurement of Chemical Exchange Saturation Transfer (CEST) is providing tissue physiology dependent contrast, e.g. by looking at Amide and NOE (Nuclear Overhauser Enhancement) effects. CEST is unique in providing quantitative metabolite information at high imaging resolution. However, direct comparison of Amide and NOE effects between different tissues may result in wrong conclusions on the metabolite concentration due to the additional contributors to the observed CEST contrast, such as water content (WC) and water T1 relaxation (T1w). For instance, there are multiple contradictory reports in the literature on Amide and NOE effects in white matter (WM) and gray matter (GM) at 7 T. This study shows that at 7 T, tissue water T1 relaxation is a stronger contributor to CEST contrasts than WC. After water T1 correction, there was no difference in Amide effects between WM and GM, whereas WM/GM contrast was enhanced for NOE effects.

  12. Design, synthesis, and evaluation of caffeic acid amides as synergists to sensitize fluconazole-resistant Candida albicans to fluconazole. (United States)

    Dai, Li; Zang, Chengxu; Tian, Shujuan; Liu, Wei; Tan, Shanlun; Cai, Zhan; Ni, Tingjunhong; An, Maomao; Li, Ran; Gao, Yue; Zhang, Dazhi; Jiang, Yuanying


    A series of caffeic acid amides were designed, synthesized, and their synergistic activity with fluconazole against fluconazole-resistant Candida albicans was evaluated in vitro. The title caffeic acid amides 3-30 except 26 exhibited potent activity, and the subsequent SAR study was conducted. Compound 3, 5, 21, and 34c, at a concentration of 1.0 μg/ml, decreased the MIC₈₀ of fluconazole from 128.0 μg/ml to 1.0-0.5 μg/ml against the fluconazole-resistant C. albicans. This result suggests that the caffeic acid amides, as synergists, can sensitize drug-resistant fungi to fluconazole. The SAR study indicated that the dihydroxyl groups and the amido groups linking to phenyl or heterocyclic rings are the important pharmacophores of the caffeic acid amides.

  13. β-Amino functionalization of cinnamic Weinreb amides in ionic liquid

    Directory of Open Access Journals (Sweden)

    Yi-Ning Wang


    Full Text Available 2-Ns-Protected β-amino Weinreb amides were synthesized by aminochlorination of α,β-unsaturated Weinreb amides in an ionic liquid, 1-n-butyl-3-methylimidazolium bis(trifluoromethanesulfonylimide ([BMIM][NTf2]. Processed without the use of metal catalysts or the need of an inert gas atmosphere, the presented process can be readily performed as a one-pot synthesis at room temperature. Moreover, the preparation has the distinct advantages of the use of 2-NsNCl2 as an inexpensive and stable nitrogen/halogen source and the ionic liquid as a recyclable reaction media. Nine examples were examined, and modest to good isolated chemical yields (40–83% were obtained.

  14. Nanoporous amide networks based on tetraphenyladamantane for selective CO2capture

    KAUST Repository

    Zulfiqar, Sonia


    Reduction of anthropogenic CO2 emissions and CO2 separation from post-combustion flue gases are among the imperative issues in the spotlight at present. Hence, it is highly desirable to develop efficient adsorbents for mitigating climate change with possible energy savings. Here, we report the design of a facile one pot catalyst-free synthetic protocol for the generation of three different nitrogen rich nanoporous amide networks (NANs) based on tetraphenyladamantane. Besides the porous architecture, CO2 capturing potential and high thermal stability, these NANs possess notable CO2/N2 selectivity with reasonable retention while increasing the temperature from 273 K to 298 K. The quantum chemical calculations also suggest that CO2 interacts mainly in the region of polar amide groups (-CONH-) present in NANs and this interaction is much stronger than that with N2 thus leading to better selectivity and affirming them as promising contenders for efficient gas separation. © The Royal Society of Chemistry 2016.

  15. Amide Synthesis from Alcohols and Amines Catalyzed by Ruthenium N-Heterocyclic Carbene Complexes

    DEFF Research Database (Denmark)

    Dam, Johan Hygum; Osztrovszky, Gyorgyi; Nordstrøm, Lars Ulrik Rubæk


    The direct synthesis of amides from alcohols and amines is described with the simultaneous liberation of dihydrogen. The reaction does not require any stoichiometric additives or hydrogen acceptors and is catalyzed by ruthenium N-heterocyclic carbene complexes. Three different catalyst systems...... chloride and base. A range of different primary alcohols and amines have been coupled in the presence of the three catalyst systems to afford the corresponding amides in moderate to excellent yields. The best results are obtained with sterically unhindered alcohols and amines. The three catalyst systems do...... not show any significant differences in reactivity, which indicates that the same catalytically active species is operating. The reaction is believed to proceed by initial dehydrogenation of the primary alcohol to the aldehyde that stays coordinated to ruthenium and is not released into the reaction...

  16. Mechanism of arylboronic acid-catalyzed amidation reaction between carboxylic acids and amines. (United States)

    Wang, Chen; Yu, Hai-Zhu; Fu, Yao; Guo, Qing-Xiang


    Arylboronic acids were found to be efficient catalysts for the amidation reactions between carboxylic acids and amines. Theoretical calculations have been carried out to investigate the mechanism of this catalytic process. It is found that the formation of the acyloxyboronic acid intermediates from the carboxylic acid and the arylboronic acid is kinetically facile but thermodynamically unfavorable. Removal of water (as experimentally accomplished by using molecular sieves) is therefore essential for overall transformation. Subsequently C-N bond formation between the acyloxyboronic acid intermediates and the amine occurs readily to generate the desired amide product. The cleavage of the C-O bond of the tetracoordinate acyl boronate intermediates is the rate-determining step in this process. Our analysis indicates that the mono(acyloxy)boronic acid is the key intermediate. The high catalytic activity of ortho-iodophenylboronic acid is attributed to the steric effect as well as the orbital interaction between the iodine atom and the boron atom.

  17. Preparation and characterization of amidated pectin based hydrogels for drug delivery system. (United States)

    Mishra, R K; Datt, M; Pal, K; Banthia, A K


    In the current studies attempts were made to prepare hydrogels by chemical modification of pectin with ethanolamine (EA) in different proportions. Chemically modified pectin products were crosslinked with glutaraldehyde reagent for preparing hydrogels. The hydrogels were characterized by Fourier transform infrared spectroscopy (FTIR), organic elemental analysis, X-ray diffraction studies (XRD), swelling studies, biocompatibility and hemocompatibility studies. Mechanical properties of the prepared hydrogels were evaluated by tensile test. The hydrogels were loaded with salicylic acid (used as a model drug) and drug release studies were done in a modified Franz's diffusion cell. FTIR spectroscopy indicated the presence of primary and secondary amide absorption bands. XRD studies indicated increase in crystallinity in the hydrogels as compared to unmodified pectin. The degree of amidation (DA) and molar and mass reaction yields (YM and YN) was calculated based on the results of organic elemental analysis. The hydrogels showed good water holding properties and were found to be compatible with B-16 melanoma cells & human blood.

  18. Synthesis, Characterization and Properties of Amide Anions Based Ionic Liquids Containing Nitrile Group

    Institute of Scientific and Technical Information of China (English)

    ZOU Ting; LU Liang; LIU Xiuli; ZHANG Zhan; XUE Yunrong; YANG Yu; Li Caimeng; FU Xianlei; GAO Guohua


    A series of novel amide anion based ionic liquids containing nitrile groups have been synthesized using the method of ion-exchange between potassium amide and various quaternary halide salts such as trimethylamine,triethylamine,tributylamine,N-methylpyrrolidine,and N-methylimidazole.All of the functionalised ionic liquids were characterized by IR,1H and 13C NMR,and MS.The synthesized ionic liquids exhibited advantageously high thermal stability.The decomposition temperature of ionic liquids measured via TGA ranged from 224 to 289 ℃.The functionalised ionic liquid,l-ethyl-3-methylimidazolium propionyl cyanamide ([EMIm][N(CN)COC2H5]),was used as a ligand in the palladium catalyzed Suzuki coupling reaction.The yields of the coupling reaction increased by 10%-20% by the addition of [EMIm]IN(CN)COC2H5].

  19. Synthesis and characterization of poly(ester amide from remewable resources through melt polycondensation

    Directory of Open Access Journals (Sweden)

    B. B. Wang


    Full Text Available Biodegradable poly(ester amides (PEAs were synthesized from lactic acid and 11-aminoundecanoic acid via melt polycondensation. Molecular weights, chemical structures and thermal properties of the poly(ester amides were characterized in terms of gel permeation chromatography (GPC, Fourier transform infrared spectroscopy (FTIR, 1H nuclear magnetic resonance (1H NMR, differential scanning calorimetry (DSC and thermogravimetric analysis (TGA, respectively. The PEAs have low molecular weights and display a lower cold crystallization temperature as well as smaller crystallinity by comparison with the pure poly(lactic acid (PLA. The incorporation of the 11-aminoundecanoic acid into the PLA chain not only improved the thermal stability but changed the decomposition process.

  20. Diverging Novobiocin Anti-Cancer Activity from Neuroprotective Activity through Modification of the Amide Tail. (United States)

    Ghosh, Suman; Liu, Yang; Garg, Gaurav; Anyika, Mercy; McPherson, Nolan T; Ma, Jiacheng; Dobrowsky, Rick T; Blagg, Brian S J


    Novobiocin is a natural product that binds the Hsp90 C-terminus and manifests Hsp90 inhibitory activity. Structural investigations on novobiocin led to the development of both anti-cancer and neuroprotective agents. The varied pharmacological activity manifested by these novobiocin analogs prompted the investigation of structure-function studies to identify these contradictory effects, which revealed that modifications to the amide side chain produce either anti-cancer or neuroprotective activity. Compounds that exhibit neuroprotective activity contain a short alkyl or cycloalkyl amide side chain. In contrast, anti-cancer agents contain five or more carbons, disrupt interactions between Hsp90α and Aha1, and induce the degradation of Hsp90-dependent client proteins.

  1. Temperature-Dependence of the Amide-I Frequency Map for Peptides and Proteins

    Institute of Scientific and Technical Information of China (English)

    Chen Han; Jian-ping Wang


    In our recent work [Phys.Chem.Chem.Phys.11,9149 (2009)],a molecular-mechanics force field-based amide-I vibration frequency map (MM-map) for peptides and proteins was constructed.In this work,the temperature dependence of the MM-map is examined based on high-temperature molecular dynamics simulations and infrared (IR) experiments.It is shown that the 298-K map works for up to 500-K molecular dynamics trajectories,which reasonably reproduces the 88 ℃ experimental IR results.Linear IR spectra are also simulated for two tripeptides containing natural and unnatural amino acid residues,and the results are in reasonable agreement with experiment.The results suggest the MM-map can be used to obtain the temperature-dependent amide-I local mode frequencies and their distributions for peptide oligomers,which is useful in particular for understanding the IR signatures of the thermally unfolded species.

  2. Design and optimization of selective azaindole amide M1 positive allosteric modulators. (United States)

    Davoren, Jennifer E; O'Neil, Steven V; Anderson, Dennis P; Brodney, Michael A; Chenard, Lois; Dlugolenski, Keith; Edgerton, Jeremy R; Green, Michael; Garnsey, Michelle; Grimwood, Sarah; Harris, Anthony R; Kauffman, Gregory W; LaChapelle, Erik; Lazzaro, John T; Lee, Che-Wah; Lotarski, Susan M; Nason, Deane M; Obach, R Scott; Reinhart, Veronica; Salomon-Ferrer, Romelia; Steyn, Stefanus J; Webb, Damien; Yan, Jiangli; Zhang, Lei


    Selective activation of the M1 receptor via a positive allosteric modulator (PAM) is a new approach for the treatment of the cognitive impairments associated with schizophrenia and Alzheimer's disease. A novel series of azaindole amides and their key pharmacophore elements are described. The nitrogen of the azaindole core is a key design element as it forms an intramolecular hydrogen bond with the amide N-H thus reinforcing the bioactive conformation predicted by published SAR and our homology model. Representative compound 25 is a potent and selective M1 PAM that has well aligned physicochemical properties, adequate brain penetration and pharmacokinetic (PK) properties, and is active in vivo. These favorable properties indicate that this series possesses suitable qualities for further development and studies.

  3. Amides from Piper capense with CNS Activity – A Preliminary SAR Analysis

    Directory of Open Access Journals (Sweden)

    Hasse B. Rasmussen


    Full Text Available Piper capense L.f. (Piperaceae is used traditionally in South Africa as a sleep inducing remedy. Bioassay-guided fractionation of the roots of P. capense led to the isolation of piperine (1 and 4,5-dihydropiperine (2, which showed moderate affinity for the benzodiazepine site on the GABAA receptor (IC50 values of 1.2 mM and 1.0 mM, respectively. The present study suggests that strict structural properties of the amides are essential for affinity. Taken together, these observations suggest that the carbon chain must contain not less than four carbons, and that a conjugated double bond, adjacent to the amide group, is necessary for binding to the receptor and that the amine part should be bulky.

  4. Microwave assisted synthesis and solid-state characterization of lithocholyl amides of isomeric aminopyridines. (United States)

    Ahonen, Kari V; Lahtinen, Manu K; Valkonen, Arto M; Dracínský, Martin; Kolehmainen, Erkki T


    Microwave (MW) assisted synthesis and solid state structural characterizations of novel lithocholyl amides of 2-, 3-, and 4-aminopyridine are reported. It is shown that the MW technique is a proper method in the preparation of N-lithocholyl amides of isomeric aminopyridines. It offers many advantages compared to conventional heating. The molecular and crystal structures as well as the polymorphic and hydrated forms of prepared conjugates with their thermodynamic stabilities have been characterized by means of high resolution liquid- and solid-state NMR spectroscopy, single crystal and powder X-ray diffraction, and thermogravimetric analysis. Owing to the many biological functions of bile acids and amino substituted nitrogen heterocycles, knowledge of the crystal packing of these novel conjugates may have relevance for potential pharmaceutical applications.

  5. Novel hydrazone derivatives containing pyridine amide moiety: Design, synthesis, and insecticidal activity. (United States)

    Yang, Zai-Bo; Hu, De-Yu; Zeng, Song; Song, Bao-An


    A series of novel hydrazone derivatives containing pyridine amide moiety were designed, synthesized, and evaluated for their insecticidal activity. Bioassays indicated that some of the target compounds exhibited good insecticidal activities against Nilaparvata lugens (N. lugens), Plutella xylostella (P. xylostella), Mythimna separata (M. separata), Helicoverpa armigera (H. armigera), Pyrausta nubilalis (P. nubilalis), and Culex pipiens pallens (C. pipiens pallens). In particular, compound 5j revealed excellent insecticidal activity against C. pipiens pallens, with the 50% lethal concentration (LC50) and the 95% lethal concentration (LC95) values of 2.44 and 5.76 mg/L, respectively, which were similar to those of chlorpyrifos (3.26 and 6.98 mg/L, respectively), tebufenozide (1.22 and 2.49 mg/L, respectively), and RH-5849 (2.61 and 6.37 mg/L, respectively). These results indicated that hydrazone derivatives containing pyridine amide moiety could be developed as novel and promising insecticides.

  6. Iron(II) cage complexes of N-heterocyclic amide and bis(trimethylsilyl)amide ligands: synthesis, structure, and magnetic properties. (United States)

    Sulway, Scott A; Collison, David; McDouall, Joseph J W; Tuna, Floriana; Layfield, Richard A


    Metallation of hexahydropyrimidopyrimidine (hppH) by [Fe{N(SiMe(3))(2)}(2)] (1) produces the trimetallic iron(II) amide cage complex [{(Me(3)Si)(2)NFe}(2)(hpp)(4)Fe] (2), which contains three iron(II) centers, each of which resides in a distorted tetrahedral environment. An alternative, one-pot route that avoids use of the highly air-sensitive complex 1 is described for the synthesis of the iron(II)-lithium complex [{(Me(3)Si)(2)N}(2)Fe{Li(bta)}](2) (3) (where btaH = benzotriazole), in which both iron(II) centers reside in 3-coordinated pyramidal environments. The structure of 3 is also interpreted in terms of the ring laddering principle developed for alkali metal amides. Magnetic susceptibility measurements reveal that both compounds display very weak antiferromagnetic exchange between the iron(II) centers, and that the iron(II) centers in 2 and 3 possess large negative axial zero-field splittings.

  7. A mechanistic study on the amidation of esters mediated by sodium formamide. (United States)

    Ramirez, Antonio; Mudryk, Boguslaw; Rossano, Lucius; Tummala, Srinivas


    Kinetic and computational studies on the amidation of esters with mixtures of formamide and sodium methoxide are described. Rate studies are consistent with a fast deprotonation of formamide followed by two reversible acyl transfers affected by solvent participation. MP2 calculations suggest that the first acyl transfer between the ester and sodium formamide is rate-determining. The transition structures leading to the formation and collapse of the first tetrahedral intermediate are calculated to be isoenergetic.

  8. End-Crosslinking Gelation of Poly(amide acid) Gels studied with Scanning Microscopic Light Scattering


    Furukawa, Hidemitsu; Kobayashi, Mizuha; Miyashita, Yoshiharu; HORIE, Kazuyuki


    Network formation in the gelation process of end-crosslinked poly(amide acid) gels, which are the precursor of end-crosslinked polyimide gels, was studied by scanning dynamic light scattering. The gelation process is essentially non-reversible due to the formation of covalent bonds. The molecular structure formed in the gelation process is controlled by varying the equivalence ratio of end-crosslinker to oligomer during the preparation. It was found that a couple of relaxation modes are obser...

  9. Synthesis and Absorption Properties of Calix[6]amides-based Polymers

    Institute of Scientific and Technical Information of China (English)


    Reacting calix[6]arene hexaesters with poly(ethyleneimine), a series of calix [6]amides- based polymers were obtained for the first time.It is found that they show high absorption capacities towards soft cations comparing to hard cations, and the absorption abilities enhanced with the increasing of calixarene content, which may indicates the cavity of calixarene plays crucial role in absorption.Polymer 2c shows good selective absorption capability towards Ag+ among the tested cations.

  10. Selective Colorimetric Fluoride Sensor: A Heteroditopic Re-ceptor Combining Pyrrolic Amide with Urea

    Institute of Scientific and Technical Information of China (English)

    YIN Zhenming; LIU Shangyuan


    A heteroditopic anion receptor, beating one pyrrolic amide site and a urea site, has been synthesized. UV-Vis spectrum studies in CH3CN solution revealed that the receptor had higher anion binding ability than the homoditopic one. A naked-eye detectable color change, from colorless to yellow, of the receptor solution took place when fluoride was added, which indicates that the receptor has potential application to selective colorimetric fluo-ride sensing.

  11. Settlement of Internal Cutthroat Competition Amid IT Group Companies: Away from "Prisoners' Dilemma" of Price Wars

    Institute of Scientific and Technical Information of China (English)

    CHEN Chao-long


    Cutthroat competition amid subsidiary companies of IT Group Company due to immanent characteristics of IT industry and grouping management mechanism infringes upon the collective profits. Two ways to avoid cutthroat competition of group company with game theory are studied: the assessment objective made by IT group company for subsidiary companies focuses on profits not revenue;the supervisory department of group company shall intensify law enforcement strength and give severe punishment against illegal depreciation of the subsidiary company.

  12. Chiral amide from (1, 2)-(+)-norephedrine and furoic acid: An efficient catalyst for asymmetric Reformatsky reaction

    Indian Academy of Sciences (India)

    Nallamuthu Ananthi; Sivan Velmathi


    Chiral amide derived from (1, 2)-(+)-norephedrine and 2-furoic acid was found to catalyse the asymmetric Reformatsky reaction between prochiral aldehydes and α-bromo ethylacetate with diethylzinc as zinc source. The corresponding chiral -hydroxy esters were formed in 99% yield with over 80% enantiomeric excess. The presence of air was found to be essential for the effective C-C bond formation. The mechanism for the catalytic reaction was proposed.

  13. Anti-proliferative activity of Monensin and its tertiary amide derivatives. (United States)

    Huczyński, Adam; Klejborowska, Greta; Antoszczak, Michał; Maj, Ewa; Wietrzyk, Joanna


    New tertiary amide derivatives of polyether ionophore Monensin A (MON) were synthesised and their anti-proliferative activity against cancer cell lines was studied. Very high activity (IC50=0.09 μM) and selectivity (SI=232) of MON against human biphenotypic myelomonocytic leukemia cell line (MV4-11) was demonstrated. The MON derivatives obtained exhibit interesting anti-proliferative activity, high selectivity index and also are able to break the drug-resistance of cancer cell line.

  14. New improved thermosets obtained from DGEBA and a hyperbranched poly(ester-amide)


    Morell, Mireia; Ramis Juan, Xavier; Ferrando Piera, Francesc; Yu, Yingfeng; Serra Albet, Àngels


    The influence on the curing process of a commercial hydroxy-functionalized hyperbranched poly(ester-amide) (HBP) Hybrane® S1200 on diglycidylether of bisphenol A (DGEBA) was studied. By Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared Spectroscopy (FTIR) the curing reaction was studied and the covalent incorporation of the modifier in the matrix was proved. By Thermomechanical Analysis (TMA) the reduction of the contraction after gelation on changing the S1200 proportio...

  15. Synthesis and Properties of Lactic Acid-based Cross-linked Poly(ester-amide)

    Institute of Scientific and Technical Information of China (English)

    Yue Ying HE; Cong Ming XIAO


    A novel lactic acid-based cross-linked poly(ester-amide) (LCPEA) was synthesized. The gel fraction of the LCPEA could be modulated by the reaction conditions and it affected the mechanical and thermal properties of the LCPEA. The tensile strength, elastic modulus and bend strength of the LCPEA of 65% gel fraction were 4.65, 136.55 and 39.63 MPa, respectively. The thermal decomposition temperature (50 wt%) of the LCPEA was around 410 ℃.

  16. A new feruloyl amide derivative from the fruits of Tribulus terrestris. (United States)

    Zhang, Xiaopo; Wei, Na; Huang, Jian; Tan, Yinfeng; Jin, Dejun


    A new feruloyl amide derivative, named tribulusamide C, was isolated from the fruits of Tribulus terrestris. Its structure was determined on the basis of spectroscopic analysis including IR, 1-D-, 2-D-NMR and HR-ESI-MS. The structure of tribulusamide C was characterised by a unit of pyrrolidine-2,5-dione, which distinguished it from other lignanamides previously isolated from the fruits of T. terrestris.

  17. A new route to indazolone via amidation reaction of o-carboxyazobenzene. (United States)

    Li, Chengjie; Zhang, Tianyi; Zeng, Zhe; Liu, Xiujun; Zhao, Yunfeng; Zhang, Bao; Feng, Yaqing


    One new route for the synthesis of amino-substituted indazol-3,5-dione via the amidation reaction of o-carboxyazobenzenes is reported. Optimization which includes effects of the solvents, molar ratio of starting materials, and dehydrating agents on this reaction has been studied. A possible reaction mechanism has been proposed on the basis of the product's structure, and the steric hindrance could be the main reason for low yield.

  18. Synthesis, structural and conformational study of some amides derived from N-methylpiperazine (United States)

    Iriepa, I.; Madrid, A. I.; Gálvez, E.; Bellanato, J.


    Some amides ( 1- 6) derived from N-methylpiperazine were synthesized and studied by IR, 1H and 13C NMR spectroscopy. In CDCl 3 solution, at room temperature, a fast interconversion of the piperazine ring with the N-CH 3 group in equatorial position can be proposed. α,β-unsaturated compounds 4 and 5 adopt in liquid state and in solution (CCl 4, CCl 2dbnd6 CCl 2, CDCl 3) both s- cis and s- trans conformations.

  19. Photoinduced intramolecular substitution reaction of aryl halide with carbonyl oxygen of amide group

    CERN Document Server

    Park, Y T; Kim, M S; Kwon, J H


    Photoreaction of N-(o-halophenyl)acetamide in basic acetonitrile produces an intramolecular substituted product, 2-methylbenzoxazole in addition to reduced product, acetanilide, whereas photoreaction of N-(o-halobenzyl)acetamide affords a reduced product, N-benzylacetamide only. On the basis of preparative reaction, kinetics, and UV/vis absorption behavior, an electrophilic aromatic substitution of aryl halide with oxygen of its amide bond are proposed.

  20. Inferential protein structure determination and refinement using fast, electronic structure based backbone amide chemical shift predictions

    CERN Document Server

    Christensen, Anders S


    This report covers the development of a new, fast method for calculating the backbone amide proton chemical shifts in proteins. Through quantum chemical calculations, structure-based forudsiglese the chemical shift for amidprotonen in protein has been parameterized. The parameters are then implemented in a computer program called Padawan. The program has since been implemented in protein folding program Phaistos, wherein the method andvendes to de novo folding of the protein structures and to refine the existing protein structures.

  1. Arg-Phe-amide-like peptides in the primitive nervous systems of coelenterates

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, C J; Ebbesen, Ditte Graff


    By using immunocytochemistry and radioimmunoassays, several substances resembling vertebrate or invertebrate neuropeptides have been found in the nervous systems of coelenterates. The most abundant neuropeptides were those related to the molluscan neuropeptide Phe-Met-Arg-Phe-amide (FMRFamide......). Of antisera against different fragments of FMRFamide, those against RFamide were superior in recognizing the coelenterate peptide. Incubation of whole mounts with these RFamide antisera visualized the coelenterate nervous system in such a detail as has previously not been possible. By using a radioimmunoassay...

  2. Synthesis of 2, 6-(substituded) pyridine Derivatives Using Amide and Imine Groups

    Institute of Scientific and Technical Information of China (English)


    A new ‘two-armed' acyclic diamide Ⅰa 2, 6-bis(1-ethanecarbozamido-2-amino)pyridine,and a new series of aromatic aldehyde schiff bases containing pyridine ring and amide bridge, Ⅱa-f,were prepared. The compounds were characterized by elemental analysis, IR, 1HNMR and MS.The bioactivity half inhibitory concentration C1/2 is given.

  3. Oxazoline-Promoted Rh-Catalyzed C-H Amidation of Benzene Derivatives with Sulfonamides and Trifluoroacetamide. A Comparative Study. (United States)

    Maiden, Tracy M M; Swanson, Stephen; Procopiou, Panayiotis A; Harrity, Joseph P A


    A Rh-catalyzed ortho-amidation of 2-aryloxazolines offers an efficient and direct route to a range of sulfonamides. The scope of the reaction is very broad with respect to sulfonamide substrate, but the position and electronic nature of the substituents on the aryl moiety of the oxazoline lead to a surprising modulation of reactivity. The reactivity of sulfonamides in comparison to trifluoroacetamide is compared, the latter undergoing Rh-catalyzed amidation more rapidly.

  4. Structure and property of self-assemble valinyl bolaform amides having different chirality. (United States)

    Doi, M; Asano, A; Yoshida, H; Inouguchi, M; Iwanaga, K; Sasaki, M; Katsuya, Y; Taniguchi, T; Yamamoto, D


    Bolaform amides were designed from N,N'-bis(carboethoxy-L-valinyl)-diaminoethane (1) by linking t-butyloxycarbonyl-valine through ethylenediamine (EDA) to enable spectroscopic and X-ray diffraction analyses. N,N'-Bis(Boc-L-valinyl)-diaminoethane (2) and N,N'-bis(Boc-D-valinyl)-diaminoethane (3) were composed of L-Val and D-Val, respectively. N-(Boc-L-valinyl)-N'-(Boc-D-valinyl)-diaminoethane (4) was composed of both L-Val and D-Val, and was achiral (meso-peptide). Peptide 5 was a 1:1 mixture of 2 and 3, and was also achiral (racemate). These peptides mediated gelation of corn oil at a concentration of approximately 1%. Within crystals, the peptides formed beta-sheet ribbons, but differences were observed in hydrogen-bonding patterns and side-chain arrangements. These differences were also deduced from temperature dependence of amide protons. Force-field calculations based on the crystal structures indicated that association of beta-sheet ribbons had energy benefits, and it was assumed that molecular aggregation progressed spontaneously. These structural studies indicated the chirality of amino acids affected for the properties of bolaform amides.

  5. Amides from Piper nigrum L. with dissimilar effects on melanocyte proliferation in-vitro. (United States)

    Lin, Zhixiu; Liao, Yonghong; Venkatasamy, Radhakrishnan; Hider, Robert C; Soumyanath, Amala


    Melanocyte proliferation stimulants are of interest as potential treatments for the depigmentary skin disorder, vitiligo. Piper nigrum L. (Piperaceae) fruit (black pepper) water extract and its main alkaloid, piperine (1), promote melanocyte proliferation in-vitro. A crude chloroform extract of P. nigrum containing piperine was more stimulatory than an equivalent concentration of the pure compound, suggesting the presence of other active components. Piperine (1), guineensine (2), pipericide (3), N-feruloyltyramine (4) and N-isobutyl-2E, 4E-dodecadienamide (5) were isolated from the chloroform extract. Their activity was compared with piperine and with commercial piperlongumine (6) and safrole (7), and synthetically prepared piperettine (8), piperlonguminine (9) and 1-(3, 4-methylenedioxyphenyl)-decane (10). Compounds 6-10 either occur in P. nigrum or are structurally related. Compounds 1, 2, 3, 8 and 9 stimulated melanocyte proliferation, whereas 4, 5, 6, 7 and 10 did not. Comparison of structures suggests that the methylenedioxyphenyl function is essential for melanocyte stimulatory activity. Only those compounds also possessing an amide group were active, although the amino component of the amide group and chain linking it to the methylenedioxyphenyl group can vary. P. nigrum, therefore, contains several amides with the ability to stimulate melanocyte proliferation. This finding supports the traditional use of P. nigrum extracts in vitiligo and provides new lead compounds for drug development for this disease.

  6. Menkes protein contributes to the function of peptidylglycine alpha-amidating monooxygenase. (United States)

    Steveson, Tami C; Ciccotosto, Giuseppe D; Ma, Xin-Ming; Mueller, Gregory P; Mains, Richard E; Eipper, Betty A


    Menkes protein (ATP7A) is a P-type ATPase involved in copper uptake and homeostasis. Disturbed copper homeostasis occurs in patients with Menkes disease, an X-linked disorder characterized by mental retardation, neurodegeneration, connective tissue disorders, and early childhood death. Mutations in ATP7A result in malfunction of copper-requiring enzymes, such as tyrosinase and copper/zinc superoxide dismutase. The first step of the two-step amidation reaction carried out by peptidylglycine alpha-amidating monooxygenase (PAM) also requires copper. We used tissue from wild-type rats and mice and an ATP7A-specific antibody to determine that ATP7A is expressed at high levels in tissues expressing high levels of PAM. ATP7A is largely localized to the trans Golgi network in pituitary endocrine cells. The Atp7a mouse, bearing a mutation in the Atp7a gene, is an excellent model system for examining the consequences of ATP7A malfunction. Despite normal levels of PAM protein, levels of several amidated peptides were reduced in pituitary and brain extracts of Atp7a mice, demonstrating that PAM function is compromised when ATP7A is inactive. Based on these results, we conclude that a reduction in the ability of PAM to produce bioactive end-products involved in neuronal growth and development could contribute to many of the biological effects associated with Menkes disease.

  7. Clicked Cinnamic/Caffeic Esters and Amides as Radical Scavengers and 5-Lipoxygenase Inhibitors

    Directory of Open Access Journals (Sweden)

    Jérémie A. Doiron


    Full Text Available 5-Lipoxygenase (5-LO is the key enzyme responsible for the conversion of arachidonic acid to leukotrienes, a class of lipid mediators implicated in inflammatory disorders. In this paper, we describe the design, synthesis, and preliminary activity studies of novel clicked caffeic esters and amides as radical scavengers and 5-LO inhibitors. From known 5-LO inhibitor 3 as a lead, cinnamic esters 8a–h and amides 9a–h as well as caffeic esters 15a–h and amides 16a–h were synthesized by Cu(I-catalyzed [1,3]-dipolar cycloaddition with the appropriate azide precursors and terminal alkynes. All caffeic analogs are proved to be good radical scavengers (IC50: 10–20 μM. Esters 15g and 15f possessed excellent 5-LO inhibition activity in HEK293 cells and were equipotent with the known 5-LO inhibitor CAPE and more potent than Zileuton. Several synthesized esters possess activities rivaling Zileuton in stimulated human polymorphonuclear leukocytes.

  8. Synthesis and thermal degradation characterization of novel poly(phosphazene-aryl amides

    Directory of Open Access Journals (Sweden)

    Z. P. Zhao


    Full Text Available New fully aromatic poly(phosphazene-aryl amides were prepared by polycondensation reaction of our synthesized aromatic diamine: 1,1,3,5-tetraphenoxy-4,6-bis(4-aminophenoxyoligocyclotriphosphazene (monomer 1 with terephthaloyl dichloride. Their chemical structure and composition were characterized by elemental analysis, 1H and 31P NMR (Nuclear Magnetic Resonance, and FT-IR (Fourier transform infrared spectroscopy, whereas their thermal degradation properties were determined by DSC (Differential Scanning Calorimetry and TGA (Thermal Gravimertic Analysis techniques. The solid residues of all samples were analysed by FT-IR and SEM (Scanning Electron Microscopy. Compared to conventional PPTA (poly(p-phenylene terephthamide, PPAA (poly(phosphazene-aryl amide shows excellent thermal stability and solubility in polar protic solvents. All poly(phosphazene-aryl amides show two thermal degradation in the temperature range 150–600°C. The monomer 1, due to its structure, shows the first maximum rate of thermal decomposition temperature around 150–350°C, which may be due to the decomposition of the P–O–C bone. Morphology of the solid residues by Scanning Electron Microscope exhibit that the granular of the solid residues gradual disappearance with the increase of monomer 1 content. The surface layer of PPAA solid residues has been grumous, for the syneresis of P–O–P took place.

  9. Temperature dependence of amino acid side chain IR absorptions in the amide I' region. (United States)

    Anderson, Benjamin A; Literati, Alex; Ball, Borden; Kubelka, Jan


    Amide I' IR spectra are widely used for studies of structural changes in peptides and proteins as a function of temperature. Temperature dependent absorptions of amino acid side-chains that overlap the amide I' may significantly complicate the structural analyses. While the side-chain IR spectra have been investigated previously, thus far their dependence on temperature has not been reported. Here we present the study of the changes in the IR spectra with temperature for side-chain groups of aspartate, glutamate, asparagine, glutamine, arginine, and tyrosine in the amide I' region (in D2O). Band fitting analysis was employed to extract the temperature dependence of the individual spectral parameters, such as peak frequency, integrated intensity, band width, and shape. As expected, the side-chain IR bands exhibit significant changes with temperature. The majority of the spectral parameters, particularly the frequency and intensity, show linear dependence on temperature, but the direction and magnitude vary depending on the particular side-chain group. The exception is arginine, which exhibits a distinctly nonlinear frequency shift with temperature for its asymmetric CN3H5(+) bending signal, although a linear fit can account for this change to within ~1/3 cm(-1). The applicability of the determined spectral parameters for estimations of temperature-dependent side-chain absorptions in peptides and proteins are discussed.

  10. Amide group anchored glucose oxidase based anodic catalysts for high performance enzymatic biofuel cell (United States)

    Chung, Yongjin; Ahn, Yeonjoo; Kim, Do-Heyoung; Kwon, Yongchai


    A new enzyme catalyst is formed by fabricating gold nano particle (GNP)-glucose oxidase (GOx) clusters that are then attached to polyethyleneimine (PEI) and carbon nanotube (CNT) with cross-linkable terephthalaldehyde (TPA) (TPA/[CNT/PEI/GOx-GNP]). Especially, amide bonds belonging to TPA play an anchor role for incorporating rigid bonding among GNP, GOx and CNT/PEI, while middle size GNP is well bonded with thiol group of GOx to form strong GNP-GOx cluster. Those bonds are identified by chemical and electrochemical characterizations like XPS and cyclic voltammogram. The anchording effect of amide bonds induces fast electron transfer and strong chemical bonding, resulting in enhancements in (i) catalytic activity, (ii) amount of immobilized GOx and (ii) performance of enzymatic biofuel cell (EBC) including the catalyst. Regarding the catalytic activity, the TPA/[CNT/PEI/GOx-GNP] produces high electron transfer rate constant (6 s-1), high glucose sensitivity (68 μA mM-1 cm-2), high maximum current density (113 μA cm-2), low charge transfer resistance (17.0 Ω cm2) and long-lasting durability while its chemical structure is characterized by XPS confirming large portion of amide bond. In EBC measurement, it has high maximum power density (0.94 mW cm-2) compatible with catalytic acitivity measurements.

  11. First synthesis and structural determination of a monomeric, unsolvated lithium amide, LiNH(2). (United States)

    Grotjahn, D B; Sheridan, P M; Al Jihad, I; Ziurys, L M


    Alkali metal amides typically aggregate in solution and the solid phase, and even in the gas phase. In addition, even in the few known monomeric structures, the coordination number of the alkali metal is raised by binding of Lewis-basic solvent molecules, with concomitant changes in structure. In contrast, the simplest lithium amide LiNH(2) has never been made in a monomeric form, even though its structure has been theoretically predicted several times. Here, the first experimental structural data for a monomeric, unsolvated lithium amide are determined using a combination of gas-phase synthesis and millimeter/submillimeter-wave spectroscopy. All data point to a planar structure for LiNH(2). The r(o) structure of LiNH(2) has a Li-N distance of 1.736(3) A, an N-H distance of 1.022(3) A, and a H-N-H angle of 106.9(1) degrees. These results are compared with theoretical predictions for LiNH(2), and experimental data for oligomeric, solid-phase samples, which could not resolve the question of whether LiNH(2) is planar or not. In addition, comparisons are made with revised gas-phase and solid-phase data and calculated structures of NaNH(2).

  12. A revised mechanism for the α-ketoacid hydroxylamine amide forming ligations. (United States)

    Patil, Mahendra


    Computational investigations of the α-ketoacid-hydroxylamine amide-forming (KAHA) ligation of O-unsubstituted (type-I) and O-benzoyl substituted (type-II) hydroxylamine have revealed a distinct mechanistic pathway for the KAHA ligation reactions. Instead of a pathway involving lactone and oxiridine intermediates for the reaction of O-unsubstituted hydroxylamine and ketoacids (type-I KAHA), as had been proposed in the experimental studies, the computational results favor the pathway which involves migration of the hydroxy group (-OH) to the adjacent carbon in one of the key steps. The new pathway for the type I KAHA reaction explains the distribution of the (18)O label in the final product (amide) that is observed in (18)O labeling experiments of type-I ligation reaction. A coherent mechanistic course is also identified for the reaction of O-benzoyl substituted hydroxylamine and ketoacid (type II KAHA) reactions. The proposed pathway for the type-II KAHA ligation reaction proceeds with the retention of an oxygen atom of the keto group of ketoacids rather than hydroxylamine in the final product (amide). These findings are consistent with the results of (18)O labeling experiments performed by Bode and coworkers on the KAHA reactions.

  13. Protein structure validation and refinement using amide proton chemical shifts derived from quantum mechanics

    CERN Document Server

    Christensen, Anders S; Borg, Mikael; Boomsma, Wouter; Lindorff-Larsen, Kresten; Hamelryck, Thomas; Jensen, Jan H


    We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts - sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM) calculations and reproduces high level QM results obtained for a small protein with an RMSD of 0.25 ppm (r = 0.94). ProCS is interfaced with the PHAISTOS protein simulation program and is used to infer statistical protein ensembles that reflect experimentally measured amide proton chemical shift values. Such chemical shift-based structural refinements, starting from high-resolution X-ray structures of Protein G, ubiquitin, and SMN Tudor Domain, result in average chemical shifts, hydrogen bond geometries, and trans-hydrogen bond (h3JNC') spin-spin coupling constants that are in excellent agreement with experiment. We show that the structural sensitivity of the QM-based amide proton chemical shift predictions is needed to refine protein structures to this...

  14. Structural origins of chiral second-order optical nonlinearity in collagen: amide I band. (United States)

    Reiser, Karen M; McCourt, Alexander B; Yankelevich, Diego R; Knoesen, André


    The molecular basis of nonlinear optical (NLO) chiral effects in the amide I region of type I collagen was investigated using sum-frequency generation vibrational spectroscopy; chiral and achiral tensor elements were separated using different input/output beam polarization conditions. Spectra were obtained from native rat tail tendon (RTT) collagen and from cholesteric liquid crystal-like (LC) type I collagen films. Although RTT and LC collagen both possess long-range order, LC collagen lacks the complex hierarchical organization of RTT collagen. Their spectra were compared to assess the role of such organization in NLO chirality. No significant differences were observed between RTT and LC with respect to chiral or achiral spectra. These findings suggest that amide I NLO chiral effects in type I collagen assemblies arise predominantly from the chiral organization of amide chromophores within individual collagen molecules, rather than from supramolecular structures. The study suggests that sum-frequency generation vibrational spectroscopy may be uniquely valuable in exploring fundamental aspects of chiral nonlinearity in complex macromolecular structures.

  15. Reactions of the cumyloxyl and benzyloxyl radicals with tertiary amides. Hydrogen abstraction selectivity and the role of specific substrate-radical hydrogen bonding. (United States)

    Salamone, Michela; Milan, Michela; DiLabio, Gino A; Bietti, Massimo


    A time-resolved kinetic study in acetonitrile and a theoretical investigation of hydrogen abstraction reactions from N,N-dimethylformamide (DMF) and N,N-dimethylacetamide (DMA) by the cumyloxyl (CumO(•)) and benzyloxyl (BnO(•)) radicals was carried out. CumO(•) reacts with both substrates by direct hydrogen abstraction. With DMF, abstraction occurs from the formyl and N-methyl C-H bonds, with the formyl being the preferred abstraction site, as indicated by the measured kH/kD ratios and by theory. With DMA, abstraction preferentially occurs from the N-methyl groups, whereas abstraction from the acetyl group represents a minor pathway, in line with the computed C-H BDEs and the kH/kD ratios. The reactions of BnO(•) with both substrates were best described by the rate-limiting formation of hydrogen-bonded prereaction complexes between the BnO(•) α-C-H and the amide oxygen, followed by intramolecular hydrogen abstraction. This mechanism is consistent with the very large increases in reactivity measured on going from CumO(•) to BnO(•) and with the observation of kH/kD ratios close to unity in the reactions of BnO(•). Our modeling supports the different mechanisms proposed for the reactions of CumO(•) and BnO(•) and the importance of specific substrate/radical hydrogen bond interactions, moreover providing information on the hydrogen abstraction selectivity.

  16. Chlorination of N-methylacetamide and amide-containing pharmaceuticals. Quantum-chemical study of the reaction mechanism. (United States)

    Šakić, Davor; Šonjić, Pavica; Tandarić, Tana; Vrček, Valerije


    Chlorination of amides is of utmost importance in biochemistry and environmental chemistry. Despite the huge body of data, the mechanism of reaction between amides and hypochlorous acid in aqueous environment remains unclear. In this work, the three different reaction pathways for chlorination of N-methylacetamide by HOCl have been considered: the one-step N-chlorination of the amide, the chlorination via O-chlorinated intermediate, and the N-chlorination of the iminol intermediate. The high-level quantum chemical G3B3 composite procedure, double-hybrid B2-PLYPD, B2K-PLYP methods, and global hybrid M06-2X and BMK methods have been employed. The calculated energy barriers have been compared to the experimental value of ΔG(#)298 ≈ 87 kJ/mol, which corresponds to reaction rate constant k(r) ≈ 0.0036 M(-1) s(-1). Only the mechanism in which the iminol form of N-methylacetamide reacts with HOCl is consistent (ΔG(#)298 = 87.3 kJ/mol at G3B3 level) with experimental results. The analogous reaction mechanism has been calculated as the most favorable pathway in the chlorination of small-sized amides and amide-containing pharmaceuticals: carbamazepine, acetaminophen, and phenytoin. We conclude that the formation of the iminol intermediate followed by its reaction with HOCl is the general mechanism of N-chlorination for a vast array of amides.

  17. N-( p-Ethynylbenzoyl) derivatives of amino acid and dipeptide methyl esters - Synthesis and structural study (United States)

    Eißmann, Frank; Weber, Edwin


    A series of N-( p-ethynylbenzoyl) derivatives ( 1-4) of the amino acids glycine and L-alanine as well as the dipeptides glycylglycine and L-alanylglycine has been synthesized via a two-step reaction sequence including the reaction of an appropriate N-( p-bromobenzoyl) precursor with trimethylsilylacetylene followed by deprotection of the trimethylsilyl protecting group, respectively. X-ray crystal structures of the amino acid and dipeptide methyl esters 1-4 are reported. The amide and peptide bonds within each molecular structure are planar and adopt the trans-configuration. The packing structures are governed by N sbnd H⋯O interactions leading to the formation of characteristic strand motifs. Further stabilization results from weaker C sbnd H⋯O and C sbnd H⋯π contacts.

  18. Synthesis and characterization of new optically active poly(amide-imide)s derived from N,N'-(pyromellitoyl) bis-L-tyrosine and various diamines (United States)

    Khalaf, H. I.; Wady, A. N.; Daham, H. K.


    Five new optically active poly(amide-imide)s(PAIs) 5a-e were prepared by direct polycondensation reaction of N,N'- (pyromellitoyl) bis-L-tyrosine 3 as chiral dicarboxylic acid with various aromatic diamines 4a-e. Triphenylphosphite(TPP)/pyridine(py) in the presence of calcium chloride (CaCl2) and N-methyl-2-pyrrolidone (NMP) were successfully applied to direct polycondensation reaction. The resulting new polymers were obtained in good yields with inherent viscosities ranging between 0.48 dL/g and 0.6 dL/g. They were analyzed with a C.H.N. elemental analyzer, FTIR, 1H-NMR, UV-VIS spectroscopy and polarimeter (specific rotation measurement, [α]{D/25}). Thermogravimetric analysis (TGA) indicated that the residual weight percentage of polymers at 600 °C were between 48.66 % and 64.21 %, which showed their thermal stability. These polymers are attractive to be used as packing materials in chromatography columns for separation of enantiomers.

  19. Synthesis and characterization of optically active and organosoluble poly(amide-imide)s containing imidazole rings as pendent groups by direct polycondensation

    Institute of Scientific and Technical Information of China (English)

    KHALIL; Faghihi; MEISAM; Shabanian


    Six new optically active poly(amide-imide)s(PAIs) 6a-f were prepared by direct polycondensation reaction of N-trimelli-tylimido-L-histidine 4 as a chiral diacid with various aromatic diamines 5a-f.Triphenyl phosphite(TPP)/pyridine(Py) in the presence of calcium chloride(CaCl2) and N-methyl-2-pyrrolidone(NMP) were successfully applied to direct polycondensation reaction.The resulting new polymers were in good yields,and had inherent viscosities ranging between 0.29 and 0.41 dL g-1 and were detected with elemental analysis,FTIR,1H-NMR spectroscopy,specific rotation and differential scanning calorimeter(DSC),thermogravimetric analysis(TGA),and derivative of thermaogravimetry(DTG).Imidazole pendent groups of the polymer chains disturb interchain and intrachain interactions and make these PAIs readily soluble in polar aprotic solvents such as N,N-dimethylacetamide(DMAc),N,N-dimethylformamide(DMF),dimethylsulfoxide(DMSO),NMP and solvents such as sulfuric acid.Thermogravimetric analysis indicated that the residual weight percents of polymers at 600 °C were between 56.47% and 68.76%,which show their thermal stability.

  20. Histone Methylation by Temozolomide; A Classic DNA Methylating Anticancer Drug (United States)

    Pickard, Amanda J.; Diaz, Anthony Joseph; Mura, Hugo; Nyuwen, Lila; Coello, Daniel; Sheva, Saif; Maria, Nava; Gallo, James M.; Wang, Tieli


    Background/Aim The alkylating agent, temozolomide (TMZ), is considered the standard-of-care for high-grade astrocytomas –known as glioblastoma multiforme (GBM)– an aggressive type of tumor with poor prognosis. The therapeutic benefit of TMZ is attributed to formation of DNA adducts involving the methylation of purine bases in DNA. We investigated the effects of TMZ on arginine and lysine amino acids, histone H3 peptides and histone H3 proteins. Materials and Methods Chemical modification of amino acids, histone H3 peptide and protein by TMZ was performed in phosphate buffer at physiological pH. The reaction products were examined by mass spectrometry and western blot analysis. Results Our results showed that TMZ following conversion to a methylating cation, can methylate histone H3 peptide and histone H3 protein, suggesting that TMZ exerts its anticancer activity not only through its interaction with DNA, but also through alterations of protein post-translational modifications. Conclusion The possibility that TMZ can methylate histones involved with epigenetic regulation of protein indicates a potentially unique mechanism of action. The study will contribute to the understanding the anticancer activity of TMZ in order to develop novel targeted molecular strategies to advance the cancer treatment. PMID:27354585

  1. Observation of the side chain O-methylation of glutamic acid or aspartic acid containing model peptides by electrospray ionization-mass spectrometry. (United States)

    Atik, A Emin; Guray, Melda Z; Yalcin, Talat


    O-methylation of the side chains of glutamic acid (E) and aspartic acid (D) residues is generally observed modification when an acidified methanol/water (MeOH/dH2O) mixture is used as a solvent system during sample preparation for proteomic research. This chemical modification may result misidentification with endogenous protein methylation; therefore, a special care should be taken during sample handling prior to mass spectrometric analysis. In the current study, we systematically examined the extent of E/D methylation and C-terminus carboxyl group of synthetic model peptides in terms of different incubation temperatures, storage times, and added acid types as well as its percentages. To monitor these effects, C-terminus amidated and free acid forms of synthetic model peptides comprised of E or D residue(s) have been analyzed by electrospray ionization-mass spectrometry (ESI-MS). Additionally, LC-MS/MS experiments were performed to confirm the formation of methylated peptide product. The results showed that the rate of methylation was increased as the temperature increases along with prolong incubation times. Moreover, the extent of methylation was remarkably high when formic acid (FA) used as a protonation agent instead of acetic acid (AA). In addition, it was found that the degree of methylation was significantly decreased by lowering acid percentages in ESI solution. More than one acidic residue containing model peptides have been also used to explore the extent of multiple methylation reaction. Lastly, the ethanol (EtOH) and isopropanol (iPrOH) have been substituted separately with MeOH in sample preparation step to investigate the extent of esterification reaction under the same experimental conditions. However, in the positive perspective of view, this method can be used as a simple, rapid and cheap method for methylation of acidic residues under normal laboratory conditions.

  2. Methyl 3-(4-methylbenzylidenecarbazate

    Directory of Open Access Journals (Sweden)

    Yu-Feng Li


    Full Text Available The title compound, C10H12N2O2, was prepared by the reaction of methyl carbazate and 4-methylbenzaldehyde. The dihedral angle between the benzene ring and the carbazate fragment is 20.86 (10°. In the crystal structure, molecules are linked by intermolecular N—H...O hydrogen bonds.

  3. Bacterial production of methyl ketones

    Energy Technology Data Exchange (ETDEWEB)

    Beller, Harry R.; Goh, Ee-Been


    The present invention relates to methods and compositions for increasing production of methyl ketones in a genetically modified host cell that overproduces .beta.-ketoacyl-CoAs through a re-engineered .beta.-oxidation pathway and overexpresses FadM.

  4. Water Column Methylation in Estuaries (United States)

    Schartup, A. T.; Calder, R.; Soerensen, A. L.; Mason, R. P.; Balcom, P. H.; Sunderland, E. M.


    Methylmercury (MeHg) is a neurotoxin that bioaccumulates in aquatic food webs and affects humans and wildlife through fish consumption. Many studies have measured active methylation/demethylation in ocean margin sediments but few have reported similar rates for the marine water column. This presentation will review available evidence for water column methylation in estuaries, including new experimental measurements of methylation/demethylation rates from a deep subarctic fjord in Labrador Canada collected in Spring and Fall of 2012-2013. We used these and other data to construct a mass budget for MeHg in the estuary and show that water column methylation (with rates ranging from 1.5 to 2.8 % day-1), is the largest contributor, followed by inputs from rivers (4.9 mol year-1), to the in situ pool of MeHg available for uptake by biota. By contrast, the sediment in this system is a net sink for MeHg (-1.5 mol year-1). We discuss the relationship between observed MeHg and other ancillary environmental factors (organic carbon, sulfur and nutrients) as well as implications for the response time of fish to future changes in mercury inputs.

  5. Synthesis and Antitumor Activity of 3-Methyl-4-oxo-3,4-dihydroimidazo [5,1-d][1,2,3,5]tetrazine-8-carboxylates and -carboxamides

    Directory of Open Access Journals (Sweden)

    Lin-Xiang Zhao


    Full Text Available Seventeen novel 3-methyl-4-oxo-3,4-dihydroimidazo[5,1-d][1,2,3,5]tetrazine-8-carboxylate and -carboxamide derivatives were synthesized and evaluated for their growth inhibition in seven human solid tumor and a human leukemia HL-60 cell lines. Compound IVa showed more activity than the other compounds and the positive control temozolomide. In the presence of 40 mg/mL of IVa, the survival rate of all tested tumor cells was less than 10%. Esters displayed more potent antitumour activity than amides and temozolomide against HL-60 cells. These compounds also exhibited considerably enhanced water-solubility.

  6. Structure elucidation and in vitro cytotoxicity of ochratoxin α amide, a new degradation product of ochratoxin A. (United States)

    Bittner, Andrea; Cramer, Benedikt; Harrer, Henning; Humpf, Hans-Ulrich


    The mycotoxin ochratoxin A is a secondary metabolite occurring in a wide range of commodities. During the exposure of ochratoxin A to white and blue light, a cleavage between the carbon atom C-14 and the nitrogen atom was described. As a reaction product, the new compound ochratoxin α amide has been proposed based on mass spectrometry (MS) experiments. In the following study, we observed that this compound is also formed at high temperatures such as used for example during coffee roasting and therefore represents a further thermal ochratoxin A degradation product. To confirm the structure of ochratoxin α amide, the compound was prepared in large scale and complete structure elucidation via nuclear magnetic resonance (NMR) and MS was performed. Additionally, first studies on the toxicity of ochratoxin α amide were performed using immortalized human kidney epithelial (IHKE) cells, a cell line known to be sensitive against ochratoxin A with an IC50 value of 0.5 μM. Using this system, ochratoxin α amide revealed no cytotoxicity up to concentrations of 50 μM. Thus, these results propose that the thermal degradation of ochratoxin A to ochratoxin α amide might be a detoxification process. Finally, we present a sample preparation and a HPLC-tandem mass spectrometry (HPLC-MS/MS) method for the analysis of ochratoxin α amide in extrudates and checked its formation during the extrusion of artificially contaminated wheat grits at 150 and 180 °C, whereas no ochratoxin α amide was detectable under these conditions.

  7. Electronic transport in methylated fragments of DNA

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, M. L. de; Oliveira, J. I. N.; Lima Neto, J. X.; Gomes, C. E. M.; Fulco, U. L., E-mail:; Albuquerque, E. L. [Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil); Freire, V. N. [Departamento de Física, Universidade Federal do Ceará, 60455-760 Fortaleza, CE (Brazil); Caetano, E. W. S. [Instituto Federal de Educação, Ciência e Tecnologia do Ceará, 60040-531 Fortaleza, CE (Brazil); Moura, F. A. B. F. de; Lyra, M. L. [Instituto de Física, Universidade Federal de Alagoas, 57072-900 Maceió-AL (Brazil)


    We investigate the electronic transport properties of methylated deoxyribonucleic-acid (DNA) strands, a biological system in which methyl groups are added to DNA (a major epigenetic modification in gene expression), sandwiched between two metallic platinum electrodes. Our theoretical simulations apply an effective Hamiltonian based on a tight-binding model to obtain current-voltage curves related to the non-methylated/methylated DNA strands. The results suggest potential applications in the development of novel biosensors for molecular diagnostics.

  8. [Bis(2-methoxyethyl)amino]sulfur trifluoride, the Deoxo-Fluor reagent: application toward one-flask transformations of carboxylic acids to amides. (United States)

    White, Jonathan M; Tunoori, Ashok Rao; Turunen, Brandon J; Georg, Gunda I


    The use of the Deoxo-Fluor reagent is a versatile method for acyl fluoride generation and subsequent one-flask amide coupling. It provides mild conditions and facile purification of the desired products in good to excellent yields. We have explored the utility of this reagent for the one-flask conversion of acids to amides and Weinreb amides and as a peptide-coupling reagent.

  9. The role of methylation in urological tumours

    NARCIS (Netherlands)

    Heijden, A.G. van der


    Alterations in DNA methylation have been described in human cancer for more than thirty years now. Since the last decade DNA methylation gets more and more important in cancer research. In this review the different alterations of DNA methylation are discussed in testicular germ cell tumours, Wilms't

  10. Quantitative DNA Methylation Profiling in Cancer. (United States)

    Ammerpohl, Ole; Haake, Andrea; Kolarova, Julia; Siebert, Reiner


    Epigenetic mechanisms including DNA methylation are fundamental for the regulation of gene expression. Epigenetic alterations can lead to the development and the evolution of malignant tumors as well as the emergence of phenotypically different cancer cells or metastasis from one single tumor cell. Here we describe bisulfite pyrosequencing, a technology to perform quantitative DNA methylation analyses, to detect aberrant DNA methylation in malignant tumors.

  11. N-(4-Methyl-2-nitrophenylsuccinamic acid

    Directory of Open Access Journals (Sweden)

    Sabine Foro


    Full Text Available In the title compound, C11H12N2O5, the conformation of the N—H bond in the amide segment is syn to the ortho-nitro group in the benzene ring. The amide C=O and the carboxyl C=O of the acid segment are syn to each other and both are anti to the H atoms on the adjacent –CH2 groups. Furthermore, the C=O and O—H bonds of the acid group are in syn positions with respect to each other. The dihedral angle between the benzene ring and the amide group is 36.1 (1°. The amide H atom shows bifurcated intramolecular hydrogen bonding with an O atom of the ortho-nitro group and an intermolecular hydrogen bond with the carbonyl O atom of another molecule. In the crystal, the N—H...O(C hydrogen bonds generate a chain running along the [100] direction. Inversion dimers are formed via a pair of O—H...O(C interactions, that form an eight-membered hydrogen-bonded ring involving the carboxyl group.

  12. Far-infrared amide IV-VI spectroscopy of isolated 2- and 4-Methylacetanilide (United States)

    Yatsyna, Vasyl; Bakker, Daniël J.; Feifel, Raimund; Rijs, Anouk M.; Zhaunerchyk, Vitali


    Delocalized molecular vibrations in the far-infrared and THz ranges are highly sensitive to the molecular structure, as well as to intra- and inter-molecular interactions. Thus, spectroscopic studies of biomolecular structures can greatly benefit from an extension of the conventional mid-infrared to the far-infrared wavelength range. In this work, the conformer-specific gas-phase far-infrared spectra of two aromatic molecules containing the peptide -CO-NH- link, namely, 2- and 4-Methylacetanilide, are investigated. The planar conformations with trans configuration of the peptide link have only been observed in the supersonic-jet expansion. The corresponding far-infrared signatures associated with the vibrations of the peptide -CO-NH- moiety, the so-called amide IV-VI bands, have been assigned and compared with the results of density functional theory frequency calculations based on the anharmonic vibrational second-order perturbation theory approach. The analysis of the experimental and theoretical data shows that the amide IV-VI bands are highly diagnostic for the geometry of the peptide moiety and the molecular backbone. They are also strongly blue-shifted upon formation of the NH⋯O-C hydrogen bonding, which is, for example, responsible for the formation of secondary protein structures. Furthermore, the amide IV-VI bands are also diagnostic for the cis configuration of the peptide link, which can be present in cyclic peptides. The experimental gas-phase data presented in this work can assist the vibrational assignment of similar biologically important systems, either isolated or in natural environments.

  13. Far-infrared amide IV-VI spectroscopy of isolated 2- and 4-Methylacetanilide. (United States)

    Yatsyna, Vasyl; Bakker, Daniël J; Feifel, Raimund; Rijs, Anouk M; Zhaunerchyk, Vitali


    Delocalized molecular vibrations in the far-infrared and THz ranges are highly sensitive to the molecular structure, as well as to intra- and inter-molecular interactions. Thus, spectroscopic studies of biomolecular structures can greatly benefit from an extension of the conventional mid-infrared to the far-infrared wavelength range. In this work, the conformer-specific gas-phase far-infrared spectra of two aromatic molecules containing the peptide -CO-NH- link, namely, 2- and 4-Methylacetanilide, are investigated. The planar conformations with trans configuration of the peptide link have only been observed in the supersonic-jet expansion. The corresponding far-infrared signatures associated with the vibrations of the peptide -CO-NH- moiety, the so-called amide IV-VI bands, have been assigned and compared with the results of density functional theory frequency calculations based on the anharmonic vibrational second-order perturbation theory approach. The analysis of the experimental and theoretical data shows that the amide IV-VI bands are highly diagnostic for the geometry of the peptide moiety and the molecular backbone. They are also strongly blue-shifted upon formation of the NH⋯O-C hydrogen bonding, which is, for example, responsible for the formation of secondary protein structures. Furthermore, the amide IV-VI bands are also diagnostic for the cis configuration of the peptide link, which can be present in cyclic peptides. The experimental gas-phase data presented in this work can assist the vibrational assignment of similar biologically important systems, either isolated or in natural environments.

  14. Proximate and qualitative analysis of different parts of Piper sarmentosum, and quantification of total amides in various extracts

    Directory of Open Access Journals (Sweden)

    K Hussain


    Full Text Available Present study aimed to analyze crude powders and extracts of different parts of Piper sarmentosum for proximate, qualitative and quantitative studies to prepare standardized botanical drugs from the plant. Unlike synthetic drugs, standardization of botanical drugs is always challenging for natural product researchers due to inadequacy and unavailability of standards and methods. Standardization of botanical drugs is not just an analytical process which ends with the detection of few constituents rather it embodies a set of analytical, biochemical and biological protocols. Keeping analytical protocols in view, crude powders were analyzed for the content of moisture, total ash, acid insoluble ash, sulphated ash and soluble extractives in water and methanol. These physicochemical properties were found within specified limits. Comparison of Fourier Transform Infrared (FTIR fingerprints of crude powders of different parts indicated the difference of constituents. Similarly, comparison of ultra violet (UV profiles of extracts of all the parts exhibited discrimination. Qualitative analysis of aqueous and ethanol extracts by high performance thin layer chromatography (HPTLC indicated the presence of amides in ethanol extracts of all parts of the plant. Quantitative analysis of extracts indicated that total amide content was significantly higher by colorimetry as compared to UV spectrophotometry. The distribution of amides in different parts was in the order fruit > root > leaf > stem (P=0.000. It is concluded from the study that amide content varies in different parts of the plant and ethanol is a better solvent for their extraction. Additionally, colorimetric method exhibits high content of amides.

  15. Distribution of serotonin and FMRF-amide in the brain of Lymnaea stagnalis with respect to the visual system

    Institute of Scientific and Technical Information of China (English)

    Oksana P.TUCHINA; Valery V.ZHUKOV; Victor B.MEYER-ROCHOW


    Despite serotonin's and FMRF-amide's wide distribution in the nervous system of invertebrates and their importance as neurotransmitters,the exact roles they play in neuronal networks leaves many questions.We mapped the presence of serotonin and FMRF-amide-immunoreactivity in the central nervous system and eyes of the pond snail Lymnaea stagnalis and interpreted the results in connection with our earlier findings on the central projections of different peripheral nerves.Since the chemical nature of the intercellular connections in the retina of L.stagnalis is still largely unknown,we paid special attention to clarifying the role of serotonin and FMRF-amide in the visual system of this snail and compared our findings with those reported from other species.At least one serotonin- and one FMRF-amidergic fibre were labeled in each optic nerve,and since no cell bodies in the eye showed immunoreactivity to these neurotransmitters,we believe that efferent fibres with somata located in the central ganglia branch at the base of the eye and probably release 5HT and FMRF-amide as neuro-hormones.Double labelling revealed retrograde transport of neurobiotin through the optic nerve,allowing us to conclude that the central pathways and serotonin- and FMRF-amide-immunoreactive cells and fibres have different locations in the CNS in L.stagnalis.The chemical nature of the fibres,which connect the two eyes in L.stagnalis,is neither serotoninergic nor FMRF-amidergic.

  16. Involvement of mammalian RF-amide peptides and their receptors in the modulation of nociception in rodents

    Directory of Open Access Journals (Sweden)

    Safia eAyachi


    Full Text Available Mammalian RF-amide peptides, which all share a conserved carboxyl-terminal Arg-Phe-NH2 sequence, constitute a family of five groups of neuropeptides that are encoded by five different genes. They act through five G protein-coupled receptors and each group of peptide binds to and activates mostly one receptor: RF-amide related peptide (RFRP group binds to NPFFR1, neuropeptide FF (NPFF group to NPFFR2, pyroglutamylated RF-amide peptide (QRFP group to QRFPR, prolactin releasing peptide (PrRP group to PrRPR, and kisspeptin group to Kiss1R. These peptides and their receptors have been involved in the modulation of several functions including reproduction, feeding and cardiovascular regulation. Data from the literature now provide emerging evidence that all RF-amide peptides and their receptors are also involved in the modulation of nociception. This review will present the current knowledge on the involvement in rodents of the different mammalian RF-amide peptides and their receptors in the modulation of nociception in basal and chronic pain conditions as well as their modulatory effects on the analgesic effects of opiates.

  17. Structure-activity relationships of amide-phosphonate derivatives as inhibitors of the human soluble epoxide hydrolase. (United States)

    Kim, In-Hae; Park, Yong-Kyu; Nishiwaki, Hisashi; Hammock, Bruce D; Nishi, Kosuke


    Structure-activity relationships of amide-phosphonate derivatives as inhibitors of the human soluble epoxide hydrolase (sEH) were investigated. First, a series of alkyl or aryl groups were substituted on the carbon alpha to the phosphonate function in amide compounds to see whether substituted phosphonates can act as a secondary pharmacophore. A tert-butyl group (16) on the alpha carbon was found to yield most potent inhibition on the target enzyme. A 4-50-fold drop in inhibition was induced by other substituents such as aryls, substituted aryls, cycloalkyls, and alkyls. Then, the modification of the O-substituents on the phosphonate function revealed that diethyl groups (16 and 23) were preferable for inhibition to other longer alkyls or substituted alkyls. In amide compounds with the optimized diethylphosphonate moiety and an alkyl substitution such as adamantane (16), tetrahydronaphthalene (31), or adamantanemethane (36), highly potent inhibitions were gained. In addition, the resulting potent amide-phosphonate compounds had reasonable water solubility, suggesting that substituted phosphonates in amide inhibitors are effective for both inhibition potency on the human sEH and water solubility as a secondary pharmacophore.

  18. Novel amide derivatives as inhibitors of histone deacetylase: design, synthesis and SAR

    DEFF Research Database (Denmark)

    Andrianov, V.; Gailite, V.; Lola, D.;


    HDAC inhibitors (HDACi), with IC(50) values in the low nanomolar (nM) range against enzyme activity in HeLa cell extracts and sub-microM for their in vitro anti-proliferative effect on cell lines. The introduction of an unsaturated linking group between the terminal aryl ring and the amide moiety...... was the key to obtain good potency. This approach yielded compounds such as (E)-N-[6-(hydroxyamino)-6-oxohexyl]-3-(7-quinolinyl)-2-propenamide (27) (HDAC IC(50) 8 nM) which showed potent in vivo activity in the P388 mouse leukemia syngeneic model (an increased lifespan (ILS) of 111% was obtained...

  19. Discovery of MK-3168: A PET Tracer for Imaging Brain Fatty Acid Amide Hydrolase. (United States)

    Liu, Ping; Hamill, Terence G; Chioda, Marc; Chobanian, Harry; Fung, Selena; Guo, Yan; Chang, Linda; Bakshi, Raman; Hong, Qingmei; Dellureficio, James; Lin, Linus S; Abbadie, Catherine; Alexander, Jessica; Jin, Hong; Mandala, Suzanne; Shiao, Lin-Lin; Li, Wenping; Sanabria, Sandra; Williams, David; Zeng, Zhizhen; Hajdu, Richard; Jochnowitz, Nina; Rosenbach, Mark; Karanam, Bindhu; Madeira, Maria; Salituro, Gino; Powell, Joyce; Xu, Ling; Terebetski, Jenna L; Leone, Joseph F; Miller, Patricia; Cook, Jacquelynn; Holahan, Marie; Joshi, Aniket; O'Malley, Stacey; Purcell, Mona; Posavec, Diane; Chen, Tsing-Bau; Riffel, Kerry; Williams, Mangay; Hargreaves, Richard; Sullivan, Kathleen A; Nargund, Ravi P; DeVita, Robert J


    We report herein the discovery of a fatty acid amide hydrolase (FAAH) positron emission tomography (PET) tracer. Starting from a pyrazole lead, medicinal chemistry efforts directed toward reducing lipophilicity led to the synthesis of a series of imidazole analogues. Compound 6 was chosen for further profiling due to its appropriate physical chemical properties and excellent FAAH inhibition potency across species. [(11)C]-6 (MK-3168) exhibited good brain uptake and FAAH-specific signal in rhesus monkeys and is a suitable PET tracer for imaging FAAH in the brain.

  20. Using ovality to predict nonmutagenic, orally efficacious pyridazine amides as cell specific spleen tyrosine kinase inhibitors. (United States)

    Lucas, Matthew C; Bhagirath, Niala; Chiao, Eric; Goldstein, David M; Hermann, Johannes C; Hsu, Pei-Yuan; Kirchner, Stephan; Kennedy-Smith, Joshua J; Kuglstatter, Andreas; Lukacs, Christine; Menke, John; Niu, Linghao; Padilla, Fernando; Peng, Ying; Polonchuk, Liudmila; Railkar, Aruna; Slade, Michelle; Soth, Michael; Xu, Daigen; Yadava, Preeti; Yee, Calvin; Zhou, Mingyan; Liao, Cheng


    Inhibition of spleen tyrosine kinase has attracted much attention as a mechanism for the treatment of cancers and autoimmune diseases such as asthma, rheumatoid arthritis, and systemic lupus erythematous. We report the structure-guided optimization of pyridazine amide spleen tyrosine kinase inhibitors. Early representatives of this scaffold were highly potent and selective but mutagenic in an Ames assay. An approach that led to the successful identification of nonmutagenic examples, as well as further optimization to compounds with reduced cardiovascular liabilities is described. Select pharmacokinetic and in vivo efficacy data are presented.

  1. Clean SEA-TROSY Experiments to Map Solvent Exposed Amides in Large Proteins

    Institute of Scientific and Technical Information of China (English)



    It is well known that the SEA-TROSY experiment could alleviate some of the problems of resonance overlap in 15N/2H labeled proteins as it was designed to selectively map solvent exposed amide protons. However, SEATROSY spectra may be contaminated with exchange-relayed NOE contributions from fast exchanged hydroxyl or amine protons and contributions from longitudinal relaxation. Also, perdeuteration of the protein sample is a prerequisite for this experiment. In this communication, a modified version, clean SEA-TROSY, was proposed to eliminate these artifacts and to allow the experiment to be applied to protonated or partially deuterated proteins and protein complexes.

  2. Oxidative burst inhibitory and cytotoxic amides and lignans from the stem bark of Fagara heitzii (Rutaceae). (United States)

    Mbaze, Luc Meva'a; Lado, Jean Alexandre; Wansi, Jean Duplex; Shiao, Tze Chieh; Chiozem, David Dako; Mesaik, Muhammad Ahmed; Choudhary, Muhammad Iqbal; Lacaille-Dubois, Marie-Aleth; Wandji, Jean; Roy, René; Sewald, Norbert


    Two amides, heitziamide A and heitziamide B and two phenylethanoids, heitziethanoid A and heitziethanoid B together with thirteen known compounds were isolated from F. heitzii (Letouzey). The structures of all compounds were established by spectroscopic analysis. Nine compounds were evaluated for oxidative burst inhibitory activity in a chemoluminescence assay and for cytotoxicity against PC-3 prostate cancer cells. All compounds exhibited a clear suppressive effect on phagocytosis response upon activation with serum opsonized zymosan at the range of IC(50)=2.0-6.5 microM, but no cytotoxic effect was observed (IC(50)>100 microM).

  3. A Three-Dimensional View of Turbulence Amid Complex Structure in the HD 163296 Protoplanetary Disk (United States)

    Flaherty, Kevin M.; Hughes, A. Meredith; Rose, Sanaea; Andrews, Sean M.; Wilner, David J.; Chiang, Eugene; Simon, Jacob B.


    Gas kinematics are an important part of planet formation, influencing processes ranging from the growth of sub-micron sized grains to the migration of gas giant planets. Dynamical behavior can be traced with both synoptic observations of the mid-infrared excess, sensitive to the inner disk, and spatially resolved radio observations of gas emission, sensitive to the outer disk. I report new constraints on the vertical structure of turbulence in the disk around HD 163296, based on ALMA observations of DCO+ and CO isotoplogues that are sensitive to different layers of the disk. These data place upper limits on the turbulence (ALMA constraints on turbulence amid differing ionization environments.

  4. The Role of Arginine-Phenylalanine-Amide-Related Peptides in Mammalian Reproduction

    Directory of Open Access Journals (Sweden)

    Mohammad Saied Salehi


    Full Text Available Until 2000 it was believed that gonadotropin-releasing hormone (GnRH was the sole regulator of hypophyseal gonadotropes. In 2000, the discovery of a gonadotropin inhibitory hormone (GnIH initiated a revolution in the field of reproductive physiology. Identification of GnIH homologues in mammals, the arginine-phenylalanine- amide (RFamide-related peptides (RFRPs, indicated a similar function. Subsequently, further works conducted in various laboratories worldwide have shown that these neuropeptides inhibit the hypothalamic-hypophyseal axis. This review discusses the role of RFRPs in mammalian reproductive processes.

  5. Methods for attaching polymerizable ceragenins to water treatment membranes using amine and amide linkages (United States)

    Hibbs, Michael; Altman, Susan J.; Jones, Howland D.T.; Savage, Paul B.


    This invention relates to methods for chemically grafting and attaching ceragenin molecules to polymer substrates; methods for synthesizing ceragenin-containing copolymers; methods for making ceragenin-modified water treatment membranes and spacers; and methods of treating contaminated water using ceragenin-modified treatment membranes and spacers. Ceragenins are synthetically produced antimicrobial peptide mimics that display broad-spectrum bactericidal activity. Alkene-functionalized ceragenins (e.g., acrylamide-functionalized ceragenins) can be attached to polyamide reverse osmosis membranes using amine-linking, amide-linking, UV-grafting, or silane-coating methods. In addition, silane-functionalized ceragenins can be directly attached to polymer surfaces that have free hydroxyls.

  6. New Neutral Receptors for Fluoride Based on Calix[4]arene Bearing Thiourea and Amide

    Institute of Scientific and Technical Information of China (English)

    刘顺英; 徐括喜; 何永炳; 秦海娟; 孟令芝


    Two-armed neutral anion receptors (4,5), calix[4]arenes beating thiourea and amide binding sites, were prepared and examined their anion-binding ability by the UV-vis spectra. The results of non-linear curve fitting and Job plot indicate that 4 or 5 forms 1:1 stoichiometry complex with fluoride by hydrogen bonding interactions. Receptors 4 and 5 have an excellent selectivity for fluoride but have no binding ability with acetate, dihydrogen phosphate and the halogen anions (Cl-,Br-,I-).

  7. Pyrazole phenylcyclohexylcarbamates as inhibitors of human fatty acid amide hydrolases (FAAH). (United States)

    Aghazadeh Tabrizi, Mojgan; Baraldi, Pier Giovanni; Ruggiero, Emanuela; Saponaro, Giulia; Baraldi, Stefania; Romagnoli, Romeo; Martinelli, Adriano; Tuccinardi, Tiziano


    Fatty acid amide hydrolase (FAAH) inhibitors have gained attention as potential therapeutic targets in the management of neuropathic pain. Here, we report a series of pyrazole phenylcyclohexylcarbamate derivatives standing on the known carbamoyl FAAH inhibitor URB597. Structural modifications led to the recognition of compound 22 that inhibited human recombinant FAAH (hrFAAH) in the low nanomolar range (IC50 = 11 nM). The most active compounds of this series showed significant selectivity toward monoacylglycerol lipase (MAGL) enzyme. In addition, molecular modeling and reversibility behavior of the new class of FAAH inhibitors are presented in this article.

  8. Methods in DNA methylation profiling. (United States)

    Zuo, Tao; Tycko, Benjamin; Liu, Ta-Ming; Lin, Juey-Jen L; Huang, Tim H-M


    Metastable and somatically heritable patterns of DNA methylation provide an important level of genomic regulation. In this article, we review methods for analyzing these genome-wide epigenetic patterns and offer a perspective on the ever-expanding literature, which we hope will be useful for investigators who are new to this area. The historical aspects that we cover will be helpful in interpreting this literature and we hope that our discussion of the newest analytical methods will stimulate future progress. We emphasize that no single approach can provide a complete view of the overall methylome, and that combinations of several modalities applied to the same sample set will give the clearest picture. Given the unexpected epigenomic patterns and new biological principles, as well as new disease markers, that have been uncovered in recent studies, it is likely that important discoveries will continue to be made using genome-wide DNA methylation profiling.

  9. DNA methylation in hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Iris Tischoff; Andrea Tannapfel


    As for many other tumors, development of hepatocellular carcinoma (HCC) must be understood as a multistep process with accumulation of genetic and epigenetic alterations in regulatory genes, leading to activation of oncogenes and inactivation or loss of tumor suppressor genes (TSG). In the last decades, in addition to genetic alterations, epigenetic inactivation of (tumor suppressor) genes by promoter hypermethylation has been recognized as an important and alternative mechanism in tumorigenesis. In HCC, aberrant methylation of promoter sequences occurs not only in advanced tumors, it has been also observed in premalignant conditions just as chronic viral hepatitis B or C and cirrhotic liver. This review discusses the epigenetic alterations in hepatocellular carcinoma focusing DNA methylation.

  10. miRNAting control of DNA methylation

    Indian Academy of Sciences (India)

    Ashwani Jha; Ravi Shankar


    DNA methylation is a type of epigenetic modification where a methyl group is added to the cytosine or adenine residue of a given DNA sequence. It has been observed that DNA methylation is achieved by some collaborative agglomeration of certain proteins and non-coding RNAs. The assembly of IDN2 and its homologous proteins with siRNAs recruits the enzyme DRM2, which adds a methyl group at certain cytosine residues within the DNA sequence. In this study, it was found that de novo DNA methylation might be regulated by miRNAs through systematic targeting of the genes involved in DNA methylation. A comprehensive genome-wide and system-level study of miRNA targeting, transcription factors, DNA-methylation-causing genes and their target genes has provided a clear picture of an interconnected relationship of all these factors which regulate DNA methylation in Arabidopsis. The study has identified a DNA methylation system that is controlled by four different genes: IDN2, IDNl1, IDNl2 and DRM2. These four genes along with various critical transcription factors appear to be controlled by five different miRNAs. Altogether, DNA methylation appears to be a finely tuned process of opposite control systems of DNA-methylation-causing genes and certain miRNAs pitted against each other.

  11. Methylated genes as new cancer biomarkers.

    LENUS (Irish Health Repository)

    Duffy, M J


    Aberrant hypermethylation of promoter regions in specific genes is a key event in the formation and progression of cancer. In at least some situations, these aberrant alterations occur early in the formation of malignancy and appear to be tumour specific. Multiple reports have suggested that measurement of the methylation status of the promoter regions of specific genes can aid early detection of cancer, determine prognosis and predict therapy responses. Promising DNA methylation biomarkers include the use of methylated GSTP1 for aiding the early diagnosis of prostate cancer, methylated PITX2 for predicting outcome in lymph node-negative breast cancer patients and methylated MGMT in predicting benefit from alkylating agents in patients with glioblastomas. However, prior to clinical utilisation, these findings require validation in prospective clinical studies. Furthermore, assays for measuring gene methylation need to be standardised, simplified and evaluated in external quality assurance programmes. It is concluded that methylated genes have the potential to provide a new generation of cancer biomarkers.

  12. DNA methylation profiling of hematopoietic stem cells. (United States)

    Begtrup, Amber Hogart


    DNA methylation is a key epigenetic mark that is essential for properly functioning hematopoietic stem cells. Determining where functionally relevant DNA methylation marks exist in the genome is crucial to understanding the role that methylation plays in hematopoiesis. This chapter describes a method to profile DNA methylation by selectively enriching methylated DNA sequences that are bound in vitro by methyl-binding domain (MBD) proteins. The MBD-pulldown approach selects for DNA sequences that have the potential to be "read" by the endogenous machinery involved in epigenetic regulation. Furthermore, this approach is feasible with very small quantities of DNA, and is compatible with the use of any downstream high-throughput sequencing approach. This technique offers a reliable, simple, and powerful tool for exploration of the role of DNA methylation in hematopoietic stem cells.

  13. Conventional and nanotechniques for DNA methylation profiling. (United States)

    Shanmuganathan, Rajasree; Basheer, Nazeema B; Amirthalingam, Laxmi; Muthukumar, Harshiny; Kaliaperumal, Rajendran; Shanmugam, Kumaran


    DNA methylation is critical for gene silencing and is associated with the incidence of many diseases, including cancer. Underlying molecular mechanisms of human diseases and tissue-specific gene expression have been elucidated based on DNA methylation studies. This review highlights the advantages and drawbacks of various methylation screening techniques: blotting, genomic sequencing, bisulfite sequencing, methylation-specific PCR, methylated DNA immunoprecipitation, microarray analysis, matrix-assisted laser desorption ionization time-of-flight mass spectroscopy, nanowire transistor detection procedure, quantum dot-based nanoassay, single-molecule real-time detection, fluorimetric assay, electrochemical detection, and atomic force spectroscopy. The review provides insight for selecting a method or a combination of methods for DNA methylation analysis. Convergence of conventional and contemporary nanotechniques to enumerate methylation at specific CpG sites of oncogene would fill the gap in diagnosis of cancer.

  14. Putting muscle in DNA methylation

    Institute of Scientific and Technical Information of China (English)

    James P Reddington; Richard R Meehan


    Over 25 years ago seminal experiments from the labs of Peter Jones and Harold Weintraub demonstrated that alteration in the DNA modification state underlie the myogenic conversion of fibroblast cell lines [1,2].This paved the way for the identification of myogenic helix-loop-helix (HLH) proteins in muscle differentiation,but the mechanism by which DNA methylation regulates muscle differentiation has remained elusive [3].

  15. The cardiovascular effects of PFRFamide and PFR(Tic)amide, a possible agonist and antagonist of neuropeptide FF (NPFF). (United States)

    Huang, E Y; Li, J Y; Tan, P P; Wong, C H; Chen, J C


    Neuropeptide FF (NPFF), an endogenous opioid-related neuromodulater, has been reported to show significant effects on the cardiovascular system, namely elevation of arterial blood pressure (BP) and heart rate (HR) in rats. In the present study, we synthesized two novel NPFF analogs, PFRFamide (putative NPFF agonist) and PFR(Tic)amide (putative NPFF antagonist), and examined their cardiovascular effect on BP and HR in anesthetized rats. The arterial mean BP and HR were measured by way of direct femoral artery catheterization. The data showed that PFRFamide increased BP in a dose-dependent manner, while PFR(Tic)amide decreased BP dose-dependently. These results revealed the possibility of PFRFamide and PFR(Tic)amide to be NPFF agonist and antagonist (or inverse agonist), respectively. These two NPFF analogs may possess potential in new drug design, and the NPFF system could be very important in mammalian cardiovascular function.

  16. Ab initio molecular orbital and infrared spectroscopic study of the conformation of secondary amides: derivatives of formanilide, acetanilide and benzylamides (United States)

    Ilieva, S.; Hadjieva, B.; Galabov, B.


    Ab initio molecular orbital calculations at HF/4-31G level and infrared spectroscopic data for the frequencies are applied to analyse the grouping in a series model aromatic secondary amides: formanilide; acetanilide; o-methylacetanilide; 2,6-dimethylformanilide, 2,6-dimethylacetanilide; N-benzylacetamide and N-benzylformamide. The theoretical and experimental data obtained show that the conformational state of the molecules studied is determined by the fine balance of several intramolecular factors: resonance effect between the amide group and the aromatic ring, steric interaction between various substituents around the -NH-CO- grouping in the aromatic ring, conjugation between the carbonyl bond and the nitrogen lone pair as well as direct field influences inside the amide group.


    Institute of Scientific and Technical Information of China (English)

    WANG Shanger; MO Zhishen; ZHANG Hongfang; FENG Zhiliu


    Flexible oxyethylene-ether was introduced into the aromatic copolyesters and copoly (ester-amide)s to reduce the melting point of resulting polymers. The melting point was greatly reduced to 200℃ or even lower in some cases, and the molecular weight was satisfactorily high as reflected by inherent viscosity. The polymers exhibited high thermal stability and good mechanical properties as determined by TGA and mechanical tests. The copolyester showed better crystallinity and liquid crystallinity than corresponding copoly(ester-amide)s with similar monomer composition as reflected by POM observation and WAXD study. The melting points for both copolyesters and copoly (ester-amide)s showed great dependence on the pacetoxybenzoic acid (PAB) content in monomer composition and reached the lowest value when PAB was 29 mol%.

  18. Detailed insights into the retention mechanism of caffeine metabolites on the amide stationary phase in hydrophilic interaction chromatography. (United States)

    Guo, Yong; Shah, Rajan


    The amide phase was investigated using a wide range of acetonitrile content in the mobile phase in both the HILIC and RPLC modes. Using caffeine metabolites as the model compounds, the retention, thermodynamic and kinetic data was obtained under various mobile phase conditions and supported the previous postulation that there might be a transition of the predominant retention mechanism in relation to the acetonitrile content in HILIC. On the amide phase, hydrophilic partitioning seemed to be the predominant retention mechanism below 85% acetonitrile; and a different retention mechanism (presumably surface adsorption) made more and more significant contributions to the overall retention when the acetonitrile content reached above 85%. This study also provided more direct evidences to explain the effect of salt concentration on the retention of non-charged solutes in HILIC. In addition, the retention, thermodynamic and kinetic data suggest that the amide phase behaved very differently from the conventional C18 phase in the RPLC mode.

  19. Unravelling exceptional acetylene and carbon dioxide adsorption within a tetra-amide functionalized metal-organic framework (United States)

    Moreau, Florian; da Silva, Ivan; Al Smail, Nada H.; Easun, Timothy L.; Savage, Mathew; Godfrey, Harry G. W.; Parker, Stewart F.; Manuel, Pascal; Yang, Sihai; Schröder, Martin


    Understanding the mechanism of gas-sorbent interactions is of fundamental importance for the design of improved gas storage materials. Here we report the binding domains of carbon dioxide and acetylene in a tetra-amide functionalized metal-organic framework, MFM-188, at crystallographic resolution. Although exhibiting moderate porosity, desolvated MFM-188a exhibits exceptionally high carbon dioxide and acetylene adsorption uptakes with the latter (232 cm3 g-1 at 295 K and 1 bar) being the highest value observed for porous solids under these conditions to the best of our knowledge. Neutron diffraction and inelastic neutron scattering studies enable the direct observation of the role of amide groups in substrate binding, representing an example of probing gas-amide binding interactions by such experiments. This study reveals that the combination of polyamide groups, open metal sites, appropriate pore geometry and cooperative binding between guest molecules is responsible for the high uptakes of acetylene and carbon dioxide in MFM-188a.

  20. Probing the role of backbone hydrogen bonds in protein-peptide interactions by amide-to-ester mutations

    DEFF Research Database (Denmark)

    Eildal, Jonas N N; Hultqvist, Greta; Balle, Thomas;


    -protein interactions, those of the PDZ domain family involve formation of intermolecular hydrogen bonds: C-termini or internal linear motifs of proteins bind as β-strands to form an extended antiparallel β-sheet with the PDZ domain. Whereas extensive work has focused on the importance of the amino acid side chains...... of the protein ligand, the role of the backbone hydrogen bonds in the binding reaction is not known. Using amide-to-ester substitutions to perturb the backbone hydrogen-bonding pattern, we have systematically probed putative backbone hydrogen bonds between four different PDZ domains and peptides corresponding...... to natural protein ligands. Amide-to-ester mutations of the three C-terminal amides of the peptide ligand severely affected the affinity with the PDZ domain, demonstrating that hydrogen bonds contribute significantly to ligand binding (apparent changes in binding energy, ΔΔG = 1.3 to >3.8 kcal mol(-1...

  1. First evidence of DNA methylation in insect Tribolium castaneum: environmental regulation of DNA methylation within heterochromatin. (United States)

    Feliciello, Isidoro; Parazajder, Josip; Akrap, Ivana; Ugarković, Durđica


    DNA methylation has been studied in many eukaryotic organisms, in particular vertebrates, and was implicated in developmental and phenotypic variations. Little is known about the role of DNA methylation in invertebrates, although insects are considered as excellent models for studying the evolution of DNA methylation. In the red flour beetle, Tribolium castaneum (Tenebrionidae, Coleoptera), no evidence of DNA methylation has been found till now. In this paper, a cytosine methylation in Tribolium castaneum embryos was detected by methylation sensitive restriction endonucleases and immuno-dot blot assay. DNA methylation in embryos is followed by a global demethylation in larvae, pupae and adults. DNA demethylation seems to proceed actively through 5-hydroxymethylcytosine, most probably by the action of TET enzyme. Bisulfite sequencing of a highly abundant satellite DNA located in pericentromeric heterochromatin revealed similar profile of cytosine methylation in adults and embryos. Cytosine methylation was not only restricted to CpG sites but was found at CpA, CpT and CpC sites. In addition, complete cytosine demethylation of heterochromatic satellite DNA was induced by heat stress. The results reveal existence of DNA methylation cycling in T. castaneum ranging from strong overall cytosine methylation in embryos to a weak DNA methylation in other developmental stages. Nevertheless, DNA methylation is preserved within heterochromatin during development, indicating its role in heterochromatin formation and maintenance. It is, however, strongly affected by heat stress, suggesting a role for DNA methylation in heterochromatin structure modulation during heat stress response.

  2. Bioactive surface modification on amide-photografted poly(3-hydroxybutyrate-co-3-hydroxyvalerate)

    Energy Technology Data Exchange (ETDEWEB)

    Ke Yu; Xue Wei [Institute of Life and Health Engineering, Jinan University, Guangzhou (China); Wang Yingjun; Ren Li; Wu Gang, E-mail: [Biomaterial Research Institute, College of Material Science and Engineering, South China University of Technology, Guangzhou (China)


    Collagen was chemically immobilized on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) films via hydrophilic polyacrylamide spacers, aiming to establish the bioactive surface and the inner surface models. The inner surface modified films presented higher wettability than the surface modified films. Wide-angle x-ray diffraction results showed that the d-spacing values of the inner surface model increased compared with those of the surface model, but there was no significant difference between the amide- and collagen-modified PHBV films. The peak melting temperatures of PHBV and the special endotherm around 70 {sup 0}C were following the order: PHBV > amide-modified PHBV > collagen-modified PHBV. The weight loss of the collagen-modified PHBV (inner surface model) might involve hydrolyzation and mineralization during 360 days of incubation, with a maximum value of 18.24%, while PHBV films did not show significant weight loss. The pH value of the degradation fluids fluctuated in the range of 6.86-7.22, as the initial pH was recorded at 7.20. Based on the surface model, collagen-modified PHBV scaffolds were prepared, which enhanced chondrocyte adhesion and spread on the biomimetic surface. Two surface modification models might develop a protocol with a view to generating a biocompatible and biomechanical scaffold for use in meniscus regeneration.

  3. Mapping the amide I absorption in single bacteria and mammalian cells with resonant infrared nanospectroscopy (United States)

    Baldassarre, L.; Giliberti, V.; Rosa, A.; Ortolani, M.; Bonamore, A.; Baiocco, P.; Kjoller, K.; Calvani, P.; Nucara, A.


    Infrared (IR) nanospectroscopy performed in conjunction with atomic force microscopy (AFM) is a novel, label-free spectroscopic technique that meets the increasing request for nano-imaging tools with chemical specificity in the field of life sciences. In the novel resonant version of AFM-IR, a mid-IR wavelength-tunable quantum cascade laser illuminates the sample below an AFM tip working in contact mode, and the repetition rate of the mid-IR pulses matches the cantilever mechanical resonance frequency. The AFM-IR signal is the amplitude of the cantilever oscillations driven by the thermal expansion of the sample after absorption of mid-IR radiation. Using purposely nanofabricated polymer samples, here we demonstrate that the AFM-IR signal increases linearly with the sample thickness t for t \\gt 50 nm, as expected from the thermal expansion model of the sample volume below the AFM tip. We then show the capability of the apparatus to derive information on the protein distribution in single cells through mapping of the AFM-IR signal related to the amide-I mid-IR absorption band at 1660 cm-1. In Escherichia Coli bacteria we see how the topography changes, observed when the cell hosts a protein over-expression plasmid, are correlated with the amide I signal intensity. In human HeLa cells we obtain evidence that the protein distribution in the cytoplasm and in the nucleus is uneven, with a lateral resolution better than 100 nm.

  4. Benzothiazole derivatives bearing amide moiety: potential cytotoxic and apoptosis-inducing agents against cervical cancer. (United States)

    Singh, Meenakshi; Modi, Arusha; Narayan, Gopeshwar; Singh, Sushil K


    Cervical cancer is a major cause of morbidity and mortality in women worldwide. In recent years, benzothiazole analogues have attracted considerable attention in anticancer research. Therefore, in this study, the earlier reported amide series of benzothiazole derivatives were investigated for their antiproliferative activity. The activity of amide derivatives was evaluated using the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, flow cytometric analysis, apoptosis assay, and DNA fragmentation on two human cervical cancer cell lines: SiHa and C33-A. The data reported from this investigation indicated that benzothiazole derivatives show pronounced cytotoxicity in the HPV16-positive SiHa cells compared with HPV-negative C-33A cells. The in-vitro cytotoxicity of the compounds on the HEK-293 noncancer cell line was evaluated to establish selectivity. Cells treated with benzothiazole derivatives showed prominent morphological features as evidenced by cell shrinkage, membrane blebbing, apoptotic nuclei, and DNA fragmentation. The benzothiazole derivatives show accumulation of cells in the sub-G1 and S-phase of the cell cycle in SiHa and C33-A, respectively. In addition, these derivatives exert their beneficial effect by inducing apoptosis, in the chemoprevention of cervical cancer cells, and were further ascertained using a DNA fragmentation assay. The compounds studied showed potent cytotoxic and apoptotic properties against SiHa and C33-A cancer cell lines and thus represent an excellent starting point for further optimization of therapeutically effective anticancer drugs.

  5. Enhanced Cellular Uptake and Pharmacokinetic Characteristics of Doxorubicin-Valine Amide Prodrug. (United States)

    Park, Yohan; Park, Ju-Hwan; Park, Suryeon; Lee, Song Yi; Cho, Kwan Hyung; Kim, Dae-Duk; Shim, Won-Sik; Yoon, In-Soo; Cho, Hyun-Jong; Maeng, Han-Joo


    In this study, we synthesized the valine (Val)-conjugated amide prodrug of doxorubicin (DOX) by the formation of amide bonds between DOX and Val. The synthesis of the DOX-Val prodrug was identified by a proton nuclear magnetic resonance (¹H-NMR) assay. In the MCF-7 cells (human breast adenocarcinoma cell; amino acid transporter-positive cell), the cellular accumulation efficiency of DOX-Val was higher than that of DOX according to the flow cytometry analysis data. Using confocal laser scanning microscopy (CLSM) imaging, it was confirmed that DOX-Val as well as DOX was mainly distributed in the nucleus of cancer cells. DOX-Val was intravenously administered to rats at a dose of 4 mg/kg, and the plasma concentrations of DOX-Val (prodrug) and DOX (formed metabolite) were quantitatively determined. Based on the systemic exposure (represented as area under the curve (AUC) values) of DOX-Val (prodrug) and DOX (formed metabolite), approximately half of DOX-Val seemed to be metabolized into DOX. However, it is expected that the remaining DOX-Val may exert improved cellular uptake efficiency in cancer cells after its delivery to the cancer region.

  6. An Investigation of Solid-State Amidization and Imidization Reactions in Vapor Deposited Poly (amic acid)

    Energy Technology Data Exchange (ETDEWEB)

    Anthamatten, M; Letts, S A; Day, K; Cook, R C; Gies, A P; Hamilton, T P; Nonidez, W K


    The condensation polymerization reaction of 4,4'-oxydianiline (ODA) with pyromellitic dianhydride (PMDA) to form poly(amic acid) and the subsequent imidization reaction to form polyimide were investigated for films prepared using vapor deposition polymerization techniques. Fourier-transform infrared spectroscopy (FT-IR), thermal analysis, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) of films at different temperatures indicate that additional solid-state polymerization occurs prior to imidization reactions. Experiments reveal that, upon vapor deposition, poly(amic acid) oligomers form that have a number-average molecular weight of about 1500 Daltons. Between 100 - 130 C these chains undergo additional condensation reaction to form slightly higher molecular weight oligomers. Calorimetry measurements show that this reaction is exothermic ({Delta}H {approx} -30 J/g) with an activation energy of about 120 kJ/mol. Experimental reaction enthalpies are compared to results from ab initio molecular modeling calculations to estimate the number of amide groups formed. At higher temperatures (150 - 300 C) imidization of amide linkages occurs as an endothermic reaction ({Delta}H {approx} +120 J/g) with an activation energy of about 130 kJ/mol. Solid-state kinetics were found to depend on reaction conversion as well as the processing conditions used to deposit films.

  7. Amide bond cleavage initiated by coordination with transition metal ions and tuned by an auxiliary ligand. (United States)

    Yang, Yongpo; Lu, Chunxin; Wang, Hailong; Liu, Xiaoming


    The reaction of ligand , N,N-bis(pyridin-2-ylmethyl)acetamide, with five transition metal salts, FeCl3·6H2O, CuCl2·2H2O, Cu(ClO4)2·6H2O, ZnCl2 and K2PtCl4/KI, produced five metal complexes, [(μ-O)(FeClL')(FeCl3)] (), [CuLCl2] (), [CuBPA(ClO4)(CHCN)] ClO4 (), [ZnLCl2] () and [PtLI2] (), where = 1-(2,4,5-tri(pyridin-2-yl)-3-(pyridin-2-ylmethyl)imidazolidin-1-yl)ethanone which formed in situ, and BPA = bis(pyridin-2-ylmethyl)amine. The ligand and complexes were characterized by a variety of spectroscopic techniques including X-ray single crystal diffraction where applicable. Depending on the metal ion and auxiliary ligand of the complex, the acetyl group of the ligand could be either intact or cleaved. When ferric chloride hexahydrate was used, the deacetylation proceeded even further and a novel heterocyclic compound () was formed in situ. A possible mechanism was proposed for the formation of the heterocyclic compound found in complex . Our results indicate that to cleave effectively an amide bond, it is essential for a metal centre to bind to the amide bond and the metal centre is of sufficient Lewis acidity.

  8. Synthesis and Evaluation of Coumaroyl Dipeptide Amide as Potential Whitening Agents

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaeil; Lee, Jaeho [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Lee, Hyesuk; Shin, Kyonghoon; Ryu, Geunseog; Cho, Inshik; Kim, Hanyoung [Central Research Laboratories, Daejeon (Korea, Republic of)


    Coumaroyl dipeptide amide, Coumaric acid-LG-NH{sub 2}, was prepared successfully using the solid-phase method, and its efficacy as a skin whitening agent was studied. Coumaric acid-LG-NH{sub 2} was prepared with Rink-amide resin, and 96.354% of purity was obtained. Using MTT assay and LDH release assay, we found that it exhibited very low cytotoxicity. And, we found that Coumaric acid-LG-NH{sub 2} inhibited tyrosinase activity dose-dependently and showed superior tyrosinase inhibitory activity to well-known whitening agent, arbutin. IC{sub 50} value of Coumaric acid-LG-NH{sub 2} was 182.4 μM, and IC{sub 50} value of arbutin was 384.6 μM. Also, in measurement of melanin contents using B16F1 melanoma cell lines, Coumaric acid-LG-NH{sub 2} reduced melanin production induced by α-MSH statistically significant, and showed superior melanin inhibitory activity to p-coumaric acid or arbutin. In addition, Coumaric acid-LG-NH{sub 2} reduced MC1R mRNA expression level. Thus, we concluded that MC1R pathway is the significant pathway of Coumaric acid-LG-NH{sub 2}, and Coumaric acid-LG-NH{sub 2} has great potential to be used as novel whitening agents.

  9. Development of CXCR4 modulators by virtual HTS of a novel amide-sulfamide compound library. (United States)

    Bai, Renren; Shi, Qi; Liang, Zhongxing; Yoon, Younghyoun; Han, Yiran; Feng, Amber; Liu, Shuangping; Oum, Yoonhyeun; Yun, C Chris; Shim, Hyunsuk


    CXCR4 plays a crucial role in recruitment of inflammatory cells to inflammation sites at the beginning of the disease process. Modulating CXCR4 functions presents a new avenue for anti-inflammatory strategies. However, using CXCR4 antagonists for a long term usage presents potential serious side effect due to their stem cell mobilizing property. We have been developing partial CXCR4 antagonists without such property. A new computer-aided drug design program, the FRESH workflow, was used for anti-CXCR4 lead compound discovery and optimization, which coupled both compound library building and CXCR4 docking screens in one campaign. Based on the designed parent framework, 30 prioritized amide-sulfamide structures were obtained after systemic filtering and docking screening. Twelve compounds were prepared from the top-30 list. Most synthesized compounds exhibited good to excellent binding affinity to CXCR4. Compounds Ig and Im demonstrated notable in vivo suppressive activity against xylene-induced mouse ear inflammation (with 56% and 54% inhibition). Western blot analyses revealed that Ig significantly blocked CXCR4/CXCL12-mediated phosphorylation of Akt. Moreover, Ig attenuated the amount of TNF-α secreted by pathogenic E. coli-infected macrophages. More importantly, Ig had no observable cytotoxicity. Our results demonstrated that FRESH virtual high throughput screening program of targeted chemical class could successfully find potent lead compounds, and the amide-sulfamide pharmacophore was a novel and effective framework blocking CXCR4 function.

  10. Amidation reaction of eugenyl oxyacetate ethyl ester with 1,3 diaminopropane (United States)

    Suryanti, V.; Wibowo, F. R.; Kusumaningsih, T.; Wibowo, A. H.; Khumaidah, S. A.; Wijayanti, L. A.


    Eugenol having various substituents on the aromatic ring (hydroxy, methoxy and allyl) are useful for starting material in synthesizing of its derivatives. Eugenol derivatives have shown wide future potential applications in many areas, especially as future drugs against many diseases. The aim of this work was to synthesize an amide of eugenol derivative. The starting material used was eugenol from clove oil and the reaction was conducted in 3 step reactions to give the final product. Firstly, eugenol was converted into eugenyl oxyacetate [2-(4-allyl-2-methoxyphenoxy) acetic acid] as a white crystal with 70.5% yield, which was then esterified with ethanol to have eugenyl oxyacetate ethyl ester [ethyl 2-(4-allyl-2-methoxyphenoxy) acetate] as brown liquid in 75.7%. The last step was the reaction between eugenyl oxyacetate ethyl ester and 1,3 diaminopropane to give 2-(4-allyl-2-methoxyphenoxy)-N-(3-aminopropyl) acetamide as a brown powder with 71.6% yield, where the amidation reaction was occurred.

  11. Dethreading of Tetraalkylsuccinamide-Based [2]Rotaxanes for Preparing Benzylic Amide Macrocycles. (United States)

    Martinez-Cuezva, Alberto; Rodrigues, Leticia V; Navarro, Cristian; Carro-Guillen, Fernando; Buriol, Lilian; Frizzo, Clarissa P; Martins, Marcos A P; Alajarin, Mateo; Berna, Jose


    The dethreading of a series of succinamide-based [2]rotaxanes bearing benzylic amide macrocycles is reported herein. These transformations proceeded quantitatively either under flash vacuum pyrolysis, conventional heating, or microwave irradiation. Studying the size complementarity of the stoppers at the ends of the thread and the cavity of the macrocycle allowed us to set up the best substituents for implementing the extrusion of the thread from the interlocked precursors. A variety of (1)H NMR kinetic experiments were carried out in order to evaluate the rate constants of the dethreading process, the half-life times of the rotaxanes, and the influence of temperature and solvents on these processes. The use of dibutylamino groups as stoppers yielded the rotaxane precursor in a reasonable yield and allowed the quantitative deslipping of the rotaxane. The overall process, including the rotaxane formation and its further dethreading, has been exploited for preparing benzylic amide macrocycles enhancing, in most cases, the results of the classical (2 + 2) condensation and other reported stepwise syntheses. The kinetics of the dethreading process is fairly sensitive to the electronic effects of the substituents on the isophthalamide unit or to the electronic nature of the pyridine rings through a conformational equilibrium expanding or contracting the cavity of the interlocked precursor.

  12. Papain-like protease (PLpro) inhibitory effects of cinnamic amides from Tribulus terrestris fruits. (United States)

    Song, Yeong Hun; Kim, Dae Wook; Curtis-Long, Marcus John; Yuk, Heung Joo; Wang, Yan; Zhuang, Ningning; Lee, Kon Ho; Jeon, Kwon Seok; Park, Ki Hun


    Tribulus terrestris fruits are well known for their usage in pharmaceutical preparations and food supplements. The methanol extract of T. terrestris fruits showed potent inhibition against the papain-like protease (PLpro), an essential proteolylic enzyme for protection to pathogenic virus and bacteria. Subsequent bioactivity-guided fractionation of this extract led to six cinnamic amides (1-6) and ferulic acid (7). Compound 6 emerged as new compound possessing the very rare carbinolamide motif. These compounds (1-7) were evaluated for severe acute respiratory syndrome coronavirus (SARS-CoV) PLpro inhibitory activity to identify their potencies and kinetic behavior. Compounds (1-6) displayed significant inhibitory activity with IC50 values in the range 15.8-70.1 µM. The new cinnamic amide 6 was found to be most potent inhibitor with an IC50 of 15.8 µM. In kinetic studies, all inhibitors exhibited mixed type inhibition. Furthermore, the most active PLpro inhibitors (1-6) were proven to be present in the native fruits in high quantities by HPLC chromatogram and liquid chromatography with diode array detection and electrospray ionization mass spectrometry (LC-DAD-ESI/MS).

  13. Cinnamic acid amides from Tribulus terrestris displaying uncompetitive α-glucosidase inhibition. (United States)

    Song, Yeong Hun; Kim, Dae Wook; Curtis-Long, Marcus J; Park, Chanin; Son, Minky; Kim, Jeong Yoon; Yuk, Heung Joo; Lee, Keun Woo; Park, Ki Hun


    The α-glucosidase inhibitory potential of Tribulus terrestris extracts has been reported but as yet the active ingredients are unknown. This study attempted to isolate the responsible metabolites and elucidate their inhibition mechanism of α-glucosidase. By fractionating T. terristris extracts, three cinnamic acid amide derivatives (1-3) were ascertained to be active components against α-glucosidase. The lead structure, N-trans-coumaroyltyramine 1, showed significant inhibition of α-glucosidase (IC50 = 0.42 μM). Moreover, all active compounds displayed uncompetitive inhibition mechanisms that have rarely been reported for α-glucosidase inhibitors. This kinetic behavior was fully demonstrated by showing a decrease of both Km and Vmax, and Kik/Kiv ratio ranging between 1.029 and 1.053. We progressed to study how chemical modifications to the lead structure 1 may impact inhibition. An α, β-unsaturation carbonyl group and hydroxyl group in A-ring of cinnamic acid amide emerged to be critical functionalities for α-glucosidase inhibition. The molecular modeling study revealed that the inhibitory activities are tightly related to π-π interaction as well as hydrogen bond interaction between enzyme and inhibitors.

  14. Enhanced Cellular Uptake and Pharmacokinetic Characteristics of Doxorubicin-Valine Amide Prodrug

    Directory of Open Access Journals (Sweden)

    Yohan Park


    Full Text Available In this study, we synthesized the valine (Val-conjugated amide prodrug of doxorubicin (DOX by the formation of amide bonds between DOX and Val. The synthesis of the DOX-Val prodrug was identified by a proton nuclear magnetic resonance (1H-NMR assay. In the MCF-7 cells (human breast adenocarcinoma cell; amino acid transporter–positive cell, the cellular accumulation efficiency of DOX-Val was higher than that of DOX according to the flow cytometry analysis data. Using confocal laser scanning microscopy (CLSM imaging, it was confirmed that DOX-Val as well as DOX was mainly distributed in the nucleus of cancer cells. DOX-Val was intravenously administered to rats at a dose of 4 mg/kg, and the plasma concentrations of DOX-Val (prodrug and DOX (formed metabolite were quantitatively determined. Based on the systemic exposure (represented as area under the curve (AUC values of DOX-Val (prodrug and DOX (formed metabolite, approximately half of DOX-Val seemed to be metabolized into DOX. However, it is expected that the remaining DOX-Val may exert improved cellular uptake efficiency in cancer cells after its delivery to the cancer region.

  15. A New Amide from the Stem Bark of Illiciumdifengpi and Its Anti-inflammatory Activity

    Directory of Open Access Journals (Sweden)

    Chuntong Li


    Full Text Available A new amide, named ( 2E, 4E-5-phenyl-N-(2-phenylethyl-2,4-pentadienamide (1 , together with one known amide, N -2-phenylet hylcinnamide (2 and two known ceramides, 2-​hydroxy-​N-​[(1S,​2R,​3E​-​2-​hydroxy-​1-​(hydroxymethyl​-​3-​heptadecenyl]​-pentadecanamide (3, 1-O-(β-D-glucopyranosyl-(2S,3R,4E,8E-2-[(2R-2-hydroxypentadecanoylamino]-4,8-octadecadiene-1,3-diol (4 were isolated from the stem bark of Illicium difengpi. The structures of the isolated compounds were elucidated by analyses of their 1H and 13C NMR, COSY, H S QC, HMBC spectr a and HR-ESI/MS mass spectrometric data. Anti-inflammatory assays with compounds 1‒4 were carried out, compounds 1 and 2 showed significant inhibitory effect on TNF- α release in LPS stimulated RAW 264.7 macrophages .

  16. Chelating tris(amidate) ligands: versatile scaffolds for nickel(II). (United States)

    Jones, Matthew B; Newell, Brian S; Hoffert, Wesley A; Hardcastle, Kenneth I; Shores, Matthew P; MacBeth, Cora E


    The synthesis and characterization of nickel complexes supported by a family of open-chain, tetradentate, tris(amidate) ligands, [N(o-PhNC(O)R)(3)](3-) ([L(R)](3-) where R = (i)Pr, (t)Bu, and Ph) is described. The complexes [Ni(L(iPr))](-), [Ni(L(tBu))](-), and [Ni(L(Ph))(CH(3)CN)](-) have been characterized by solution-state spectroscopic methods and single crystal X-ray diffraction. Each ligand gives rise to a different primary coordination sphere about the nickel centre. These studies indicate that the ligands' acyl substituents can be used to regulate the coordination mode of the amidate donors to nickel and the coordination number of the nickel centres. In addition, the ability of these complexes to bind cyanide has been explored. These experiments demonstrate that only one of these complexes, [Ni(L(iPr))](-), is able to irreversibly bind cyanide and can be used to assemble [Et(4)N](3)[Ni(L(iPr))(mu(2)-CN)Co(L(iPr))], a cyanide bridged, heterobimetallic complex. The synthesis and characterization of the cyanide containing complexes, including magnetic susceptibility studies, are described.

  17. Microwave assisted synthesis, spectral, magnetic and bioevolution of few Mn (II)-amide complexes (United States)

    Joshi, Gaurav; Verma, K. K.; Gudesaria, D. D.; Bhojak, N.


    The importance and versatility of amide group containing ligands have promoted the selection of this class of ligands and their complexes for the study. The present work describes the synthesis, spectral and biological investigations on the complexes of amides derived from heterocyclic amines with Mn (II) ions. Four ligands derived 2-aminopyridine and their complexes with Mn (II) have been synthesized. A method for the synthesis of complexes has been developed by the use of microwave irradiation which is in agreement to Green chemistry approach. The complexes have been characterized on the basis of elemental analysis, infrared, electronic, ESR spectra and magnetic susceptibility studies. The diffuse reflectance spectrum of the complexes show bands in the region 20,000 cm-1 to 26,000 cm-1 assignable to 6A1g → 4T2g and 6A1g → 4E1g transitions. These are also typical of tetrahedral environment around the manganese. The magnetic moment (5.80 BM) of the complex indicates high spin tetrahedral environment. The microwave method of synthesis of complexes have been found easier, convenient and ecofriendly. Antimicrobial activities of compounds were also carried out against bacteria and fungi. Further minimal inhibitory concentration (MIC) was also determined for each compound.

  18. Refining Disordered Peptide Ensembles with Computational Amide I Spectroscopy: Application to Elastin-Like Peptides (United States)

    Reppert, Mike; Roy, Anish R.; Tempkin, Jeremy O. B.; Dinner, Aaron R.; Tokmakoff, Andrei


    The characterization of intrinsically disordered protein (IDP) ensembles is complicated both by inherent heterogeneity and by the fact that many common experimental techniques function poorly when applied to IDPs. For this reason, the development of alternative structural tools for probing IDP ensembles has attracted considerable attention. Here we describe our recent work in developing experimental and computational tools for characterizing IDP ensembles using Amide I (backbone carbonyl stretch) vibrational spectroscopy. In this approach, the infrared (IR) absorption frequencies of isotope-labeled amide bonds probe their local electrostatic environments and structures. Empirical frequency maps allow us to use this spectroscopic data as a direct experimental test of atomistic structural models. We apply these methods to a family of short elastin-like peptides (ELPs), fragments of the elastin protein based around the Pro-Gly turn motif characteristic of the elastomeric segments of the full protein. Using a maximum entropy analysis of experimental spectra on the basis of predicted spectra from molecular dynamics (MD) ensembles, we find that peptides with Ala or Val sidechains preceding the Pro-Gly turn unit exhibit a stronger tendency toward extended structures than do Gly-Pro-Gly motifs, suggesting an important role for steric interactions in tuning the molecular properties of elastin. PMID:27736076

  19. C(alpha)-methyl proline: a unique example of split personality. (United States)

    Moretto, Alessandro; Terrenzani, Francesco; Crisma, Marco; Formaggio, Fernando; Kaptein, Bernard; Broxterman, Quirinus B; Toniolo, Claudio


    Methylation at the C(alpha)-position of a Pro residue was expected to lock the preceding tertiary amide (omega) torsion angle of the resulting (alphaMe)Pro to the trans disposition and to restrict the phi,psi surface to the single region where the 3(10)/alpha-helices are found (in this five-membered ring residue phi is severely constrained to about +/-65 degrees by its cyclic nature). The results of the present X-ray diffraction work on a selected set of four N(alpha)-blocked, (alphaMe)Pro-containing, dipeptide N'-alkylamides clearly show that, although the region of the conformational map largely preferred by (alphaMe)Pro would indeed be that typical of 3(10)/alpha-helices, the semi-extended [type-II poly(Pro)(n) helix] region can also be explored by this extremely sterically demanding C(alpha)-tetrasubstituted alpha-amino acid. In addition, the known high propensity for beta-turn formation of the Pro residue is further enhanced in peptides based on its C(alpha)-methylated derivative.

  20. Biodistribution of Amine-Amide Chlorin e6 Derivative Conjugate with a Boron Nanoparticle for Boron Neutron-Capture Therapy


    А.B. Volovetsky; N.Y. Shilyagina; V.V. Dudenkova; S.О. Pasynkova; М.А. Grin; А.F. Mironov; А.V. Feofanov; I.V. Balalaeva; А.V. Maslennikova


    The aim of the investigation was to study the biodistribution of amino-amide chlorin e6 derivative conjugate with cobalt bis-dicarbollide as a potential boron transporter for the tasks of boron neutron-capture therapy. Materials and Methods. The experiments were carried out on Balb/c mice with induced murine colon carcinoma CT-26. Amino-amide chlorin e6 derivative conjugate with cobalt bis-dicarbollide was administered intravenously, the dose being 5 and 10 mg/kg body mass. The sampling for m...

  1. Amide as an efficient ligand in the palladium-catalyzed Suzuki coupling reaction in water/ethanol under aerobic conditions

    Institute of Scientific and Technical Information of China (English)

    Hai Yang Liu; Kun Wang; Hai Yan Fu; Mao Lin Yuan; Hua Chen; Rui Xiang Li


    Amide, which is derived from proline and is inexpensive and air-stable, has been synthesized and characterized by 1H NMR,13C NMR, and MS. It was found to be an efficient ligand in the palladium-catalyzed Suzuki cross-coupling reaction. In the Pd/amide catalytic system, aryl bromides can be coupled with phenylboronic acid in ethanol/water (1:2;v/v) in excellent yields even with a low Pd loading of 0.01 mol%. Moreover, the scope of the reaction is broad, and a wide variety of functional groups are tolerant.

  2. Biodegradable gadolinium-chelated cationic poly(urethane amide) copolymers for gene transfection and magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xiaolong [Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065 (China); Wang, Gangmin [Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040 (China); Shi, Ting [The Institute for Translational Nanomedicine, Shanghai East Hospital, Institute for Biomedical Engineering and Nanoscience, Tongji University School of Medicine, Shanghai 200092 (China); Shao, Zhihong [Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065 (China); Zhao, Peng; Shi, Donglu [The Institute for Translational Nanomedicine, Shanghai East Hospital, Institute for Biomedical Engineering and Nanoscience, Tongji University School of Medicine, Shanghai 200092 (China); Ren, Jie [Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804 (China); Lin, Chao, E-mail: [The Institute for Translational Nanomedicine, Shanghai East Hospital, Institute for Biomedical Engineering and Nanoscience, Tongji University School of Medicine, Shanghai 200092 (China); Wang, Peijun, E-mail: [Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065 (China)


    Theranostic nano-polyplexes containing gene and imaging agents hold a great promise for tumor diagnosis and therapy. In this work, we develop a group of new gadolinium (Gd)-chelated cationic poly(urethane amide)s for gene delivery and T{sub 1}-weighted magnetic resonance (MR) imaging. Cationic poly(urethane amide)s (denoted as CPUAs) having multiple disulfide bonds, urethane and amide linkages were synthesized by stepwise polycondensation reaction between 1,4-bis(3-aminopropyl)piperazine and a mixture of di(4-nitrophenyl)-2, 2′-dithiodiethanocarbonate (DTDE-PNC) and diethylenetriaminepentaacetic acid (DTPA) dianhydride at varied molar ratios. Then, Gd-chelated CPUAs (denoted as GdCPUAs) were produced by chelating Gd(III) ions with DTPA residues of CPUAs. These GdCPUAs could condense gene into nanosized and positively-charged polyplexes in a physiological condition and, however, liberated gene in an intracellular reductive environment. In vitro transfection experiments revealed that the GdCPUA at a DTDE-PNC/DTPA residue molar ratio of 85/15 induced the highest transfection efficiency in different cancer cells. This efficiency was higher than that yielded with 25 kDa branched polyethylenimine as a positive control. GdCPUAs and their polyplexes exhibited low cytotoxicity when an optimal transfection activity was detected. Moreover, GdCPUAs may serve as contrast agents for T{sub 1}-weighted magnetic resonance imaging. The results of this work indicate that biodegradable Gd-chelated cationic poly(urethane amide) copolymers have high potential for tumor theranostics. - Highlights: • Novel cationic gadolinium-chelated poly(urethane amide)s (GdCPUAs) are prepared. • GdCPUAs can induce a high transfection efficacy in different cancer cells. • GdCPUAs reveal good cyto-compatibility against cancer cells. • GdCPUAs may be applied as T{sub 1}-contrast agents for magnetic resonance imaging. • GdCPUAs hold high potential for cancer theranostics.

  3. Processing of pro-opiomelanocortin-derived amidated joining peptide and glycine-extended precursor in monkey pituitary

    DEFF Research Database (Denmark)

    Fenger, M


    The molecular forms of proopiomelanocortin (POMC) derived amidated and C-terminal glycine-extended joining peptide from monkey (Macaca mulatta) pituitary were determined. The predominant forms of joining peptide found were the low molecular peptides POMC(76-105) and POMC(76-106), respectively....... Significant amounts of N-terminally truncated POMC(78-105) and POMC(78-106) were also detected in the posterior-intermediate lobe. No N-terminal extended forms were detected. The relative amount of amidated joining peptide to total joining peptide was 6-35%. It is concluded that not only is the primary...

  4. Potentiation of glucose-induced insulin release in islets by desHis1[Glu9]glucagon amide

    DEFF Research Database (Denmark)

    Kofod, Hans; Unson, C G; Merrifield, R B


    Glucagon and secretin and some of their hybrid analogs potentiate glucose-induced release of insulin from isolated mouse pancreatic islets. It was recently shown that the synthetic glucagon analog, desHis1[Glu9]glucagon amide, does not stimulate the formation of cyclic adenosine monophosphate...... in the rat hepatocyte membrane, but binds well to the glucagon receptor and is a good competitive antagonist of glucagon. In the present study the effect of this analog on isolated islets was examined. desHis1-[Glu9]glucagon amide at 3 x 10(-7) M, in the presence of 0.01 M D-glucose, increased the release...

  5. Influence of alkali and alkaline earth ions on the -alkylation of the lower rim phenolic-OH groups of -tert-butyl-calix[4]arene to result in amide-pendants: Template action of K+ and the structure of K+ bound tetra-amide derivative crystallized with a -tert-butylcalix[4]arene anion

    Indian Academy of Sciences (India)

    Amjad Ali; Chebrolu P Rao; Philippe Guionneau


    Role of alkali and alkaline earth ions on the formation of calix[4]arene-amide derivatives through -alkylation of the lower rim phenolic-OH groups in general and template action of K+ in particular have been explored. Na+ and K+ ions among alkali, and Ca2+ and Sr2+ ions among alkaline earth have shown tetra-amide derivatives bound to metal ion species. Among all these, potassium salts act as template and yields a K+ bound tetra-amide derivative where the charge is counter balanced by a calix[4] arene-monoanion and the product is crystallographically characterized. Change in the amide precursor used in these -alkylation reactions has no effect on the type of the amide derivative formed. Also demonstrated is a direct one-step reaction for the preparation of 1,3-di-amide derivative in high yield and low reaction period using CsHCO3.

  6. The genetic basis for bacterial mercury methylation. (United States)

    Parks, Jerry M; Johs, Alexander; Podar, Mircea; Bridou, Romain; Hurt, Richard A; Smith, Steven D; Tomanicek, Stephen J; Qian, Yun; Brown, Steven D; Brandt, Craig C; Palumbo, Anthony V; Smith, Jeremy C; Wall, Judy D; Elias, Dwayne A; Liang, Liyuan


    Methylmercury is a potent neurotoxin produced in natural environments from inorganic mercury by anaerobic bacteria. However, until now the genes and proteins involved have remained unidentified. Here, we report a two-gene cluster, hgcA and hgcB, required for mercury methylation by Desulfovibrio desulfuricans ND132 and Geobacter sulfurreducens PCA. In either bacterium, deletion of hgcA, hgcB, or both genes abolishes mercury methylation. The genes encode a putative corrinoid protein, HgcA, and a 2[4Fe-4S] ferredoxin, HgcB, consistent with roles as a methyl carrier and an electron donor required for corrinoid cofactor reduction, respectively. Among bacteria and archaea with sequenced genomes, gene orthologs are present in confirmed methylators but absent in nonmethylators, suggesting a common mercury methylation pathway in all methylating bacteria and archaea sequenced to date.

  7. An Integrated Workflow for DNA Methylation Analysis

    Institute of Scientific and Technical Information of China (English)

    Pingchuan Li; Feray Demirci; Gayathri Mahalingam; Caghan Demirci; Mayumi Nakano; Blake C.Meyers


    The analysis of cytosine methylation provides a new way to assess and describe epigenetic regulation at a whole-genome level in many eukaryotes.DNA methylation has a demonstrated role in the genome stability and protection,regulation of gene expression and many other aspects of genome function and maintenance.BS-seq is a relatively unbiased method for profiling the DNA methylation,with a resolution capable of measuring methylation at individual cytosines.Here we describe,as an example,a workflow to handle DNA methylation analysis,from BS-seq library preparation to the data visualization.We describe some applications for the analysis and interpretation of these data.Our laboratory provides public access to plant DNA methylation data via visualization tools available at our "Next-Gen Sequence" websites (,along with small RNA,RNA-seq and other data types.

  8. Detection of DNA methylation in eucaryotic cells.

    Directory of Open Access Journals (Sweden)

    Lech Chyczewski


    Full Text Available The methods of molecular biology allow for analyzing the methylation pattern in the whole genome and in particular genes. We differentiate methylated sequences from unmethylated ones by means of cutting the genomic template with methylation-sensitive restriction enzymes or by sodium bisulfite DNA modification. Chemical modification precedes most quantitative and qualitative PCR techniques: MS-PCR, MS-nested PCR, Real-Time PCR, QAMA, HeavyMethyl, MSHRM. Restriction enzymes, on the other hand, may be used together with PCR or hybridisation methods (Southern blot and microarrays. PCRs are conducted with primers specific for methylated and unmethylated sequences and sometimes, similarly to hybridisation techniques, with specifically labeled probes or dyes intercalating to double-stranded nucleic acids. The most advanced methylation detection techniques (MALDI-TOF MS and HPLC significantly reduce the amount of biological material used for tests, but they require specialist equipment.

  9. Vibrational Spectroscopy of Methyl benzoate

    CERN Document Server

    Maiti, Kiran Sankar


    Methyl benzoate (MB) is studied as a model compound for the development of new IR pulse schemes with possible applicability to biomolecules. Anharmonic vibrational modes of MB are calculated on different level (MP2, SCS, CCSD(T) with varying basis sets) ab-initio PESs using the vibrational self-consistent field (VSCF) method and its correlation corrected extensions. Dual level schemes, combining different quantum chemical methods for diagonal and coupling potentials, are systematically studied and applied successfully to reduce the computational cost. Isotopic substitution of {\\beta}-hydrogen by deuterium is studied to obtain a better understanding of the molecular vibrational coupling topology.

  10. Hypoxic radiosensitization by the antimicrobial methyl paraben

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, G.P.; Sade, N.


    The antimicrobial preservative, methyl paraben (methyl-4-hydroxybenzoate) sensitizes anoxic buffered suspensions of Staphylococcus aureus to gamma-radiation. The maximal response at an 0.5 mM concentration represents a 150 percent increase in response over that for deoxygenated suspensions without additive, and 80 percent of the response for aerated suspensions alone. Methyl paraben is not toxic to the test organism under the present test conditions.



    Abdullah, Abdullah; Triyono, Triyono; Trisunaryanti, Wega; Haryadi, Winarto


    Kinetics parameter values of methyl ricinoleate nitration (rate constant, reaction order and the rate of reaction) have been determined. Nitration was carried out with both concentrations of HNO3 and acetic anhydride in excess to the concentration of methyl ricinoleate. Thus, the kinetics parameter value was only affected by the concentration of methyl ricinoleate. Based on kinetic study conducted, it could be concluded that the nitration follows pseudo first-order, and the reaction rate for ...

  12. Distinct Methylation of IFNG in the Gut


    Gonsky, Rivkah; Deem, Richard L; Targan, Stephan R.


    Mucosal expression of proinflammatory cytokines plays a pivotal role in inflammatory bowel disease (IBD) pathogenesis. Epigenetic remodeling of chromatin via DNA methylation regulates gene expression. In this study, IFNG DNA methylation was analyzed within the mucosal compartment in both normal and IBD populations and compared to its peripheral counterparts. Overall IFNG methylation (across eight CpG sites) was significantly lower in lamina propria (LP) T cells compared to peripheral blood (P...

  13. Direct synthesis of methyl phosphoramidates in carbohydrates. (United States)

    Dhurandhare, Vijay M; Mishra, Girija Prasad; Lam, Sarah; Wang, Cheng-Chung


    A direct installation of a methyl phosphoramidate group by using methyl benzylphosphoramidochloridate into carbohydrates and amino acid is described. This one-step synthesis is efficient for both primary and secondary alcohols and exhibited excellent regioselectivity and functional group compatibility. Formation of a single diastereomer is observed in certain cases. The N-benzyl protecting group on methyl phosphoramidates is easily removed under mild conditions.

  14. GLP-1 amidation efficiency along the length of the intestine in mice, rats and pigs and in GLP-1 secreting cell lines. (United States)

    Kuhre, Rune Ehrenreich; Albrechtsen, Nicolai Wewer; Windeløv, Johanne Agerlin; Svendsen, Berit; Hartmann, Bolette; Holst, Jens Juul


    XXX: Measurements of plasma concentrations of the incretin hormone GLP-1 are complex because of extensive molecular heterogeneity. This is partly due to a varying and incompletely known degree of C-terminal amidation. Given that virtually all GLP-1 assays rely on a C-terminal antibody, it is essential to know whether or not the molecule one wants to measure is amidated. We performed a detailed analysis of extractable GLP-1 from duodenum, proximal jejunum, distal ileum, caecum, proximal colon and distal colon of mice (n=9), rats (n=9) and pigs (n=8) and determined the degree of amidation and whether this varied with the six different locations. We also analyzed the amidation in 3 GLP-1 secreting cell lines (GLUTag, NCI-H716 and STC-1). To our surprise there were marked differences between the 3 species with respect to the concentration of GLP-1 in gut. In the mouse, concentrations increased continuously along the intestine all the way to the rectum, but were highest in the distal ileum and proximal colon of the rat. In the pig, very little or no GLP-1 was present before the distal ileum with similar levels from ileum to distal colon. In the mouse, GLP-1 was extensively amidated at all sampling sites, whereas rats and pigs on average had around 2.5 and 4 times higher levels of amidated compared to non-amidated GLP-1, although the ratio varied depending upon the location. GLUTag, NCI-H716 and STC-1 cells all exhibited partial amidation with 2-4 times higher levels of amidated compared to non-amidated GLP-1.

  15. Using non-invasive molecular spectroscopic techniques to detect unique aspects of protein Amide functional groups and chemical properties of modeled forage from different sourced-origins. (United States)

    Ji, Cuiying; Zhang, Xuewei; Yu, Peiqiang


    The non-invasive molecular spectroscopic technique-FT/IR is capable to detect the molecular structure spectral features that are associated with biological, nutritional and biodegradation functions. However, to date, few researches have been conducted to use these non-invasive molecular spectroscopic techniques to study forage internal protein structures associated with biodegradation and biological functions. The objectives of this study were to detect unique aspects and association of protein Amide functional groups in terms of protein Amide I and II spectral profiles and chemical properties in the alfalfa forage (Medicago sativa L.) from different sourced-origins. In this study, alfalfa hay with two different origins was used as modeled forage for molecular structure and chemical property study. In each forage origin, five to seven sources were analyzed. The molecular spectral profiles were determined using FT/IR non-invasive molecular spectroscopy. The parameters of protein spectral profiles included functional groups of Amide I, Amide II and Amide I to II ratio. The results show that the modeled forage Amide I and Amide II were centered at 1653 cm(-1) and 1545 cm(-1), respectively. The Amide I spectral height and area intensities were from 0.02 to 0.03 and 2.67 to 3.36 AI, respectively. The Amide II spectral height and area intensities were from 0.01 to 0.02 and 0.71 to 0.93 AI, respectively. The Amide I to II spectral peak height and area ratios were from 1.86 to 1.88 and 3.68 to 3.79, respectively. Our results show that the non-invasive molecular spectroscopic techniques are capable to detect forage internal protein structure features which are associated with forage chemical properties.

  16. Using non-invasive molecular spectroscopic techniques to detect unique aspects of protein Amide functional groups and chemical properties of modeled forage from different sourced-origins (United States)

    Ji, Cuiying; Zhang, Xuewei; Yu, Peiqiang


    The non-invasive molecular spectroscopic technique-FT/IR is capable to detect the molecular structure spectral features that are associated with biological, nutritional and biodegradation functions. However, to date, few researches have been conducted to use these non-invasive molecular spectroscopic techniques to study forage internal protein structures associated with biodegradation and biological functions. The objectives of this study were to detect unique aspects and association of protein Amide functional groups in terms of protein Amide I and II spectral profiles and chemical properties in the alfalfa forage (Medicago sativa L.) from different sourced-origins. In this study, alfalfa hay with two different origins was used as modeled forage for molecular structure and chemical property study. In each forage origin, five to seven sources were analyzed. The molecular spectral profiles were determined using FT/IR non-invasive molecular spectroscopy. The parameters of protein spectral profiles included functional groups of Amide I, Amide II and Amide I to II ratio. The results show that the modeled forage Amide I and Amide II were centered at 1653 cm- 1 and 1545 cm- 1, respectively. The Amide I spectral height and area intensities were from 0.02 to 0.03 and 2.67 to 3.36 AI, respectively. The Amide II spectral height and area intensities were from 0.01 to 0.02 and 0.71 to 0.93 AI, respectively. The Amide I to II spectral peak height and area ratios were from 1.86 to 1.88 and 3.68 to 3.79, respectively. Our results show that the non-invasive molecular spectroscopic techniques are capable to detect forage internal protein structure features which are associated with forage chemical properties.

  17. Effect of the solvent type and polymerization conditions on the curing kinetics, thermal and viscoelastic performance of poly(amide-imide resins

    Directory of Open Access Journals (Sweden)

    Z. Rasheva


    Full Text Available Isothermal and non-isothermal curing kinetics of both N-methyl-2-pyrrolidone (NMP and N-methylimidazole (MI based poly(amide-imide (PAI resins were investigated by DSC analysis using tightly closed high-pressure crucibles. Several exothermal peaks on the non-isothermal DSC-traces were observed and attributed to the reactions of different functional groups of PAI-resin. Furthermore the final conversion (polymerization degree of PAI was determined under isothermal conditions, simulating three programs with the post-curing temperatures set as 215, 240 and 270°C. For the MI-PAI based resin, the conversion values were found to be much higher compared to those for the NMP-PAI system. Compared to NMP-based PAI-resin, a shift of the main exothermal peaks to the lower temperatures was observed in the non-isothermal kinetic investigations when MI was used as a solvent. This was accompanied with a reduction of activation energy (Ea values, as up to a factor of 3 determined by the Flynn-Wall-Ozawa approach for all the main formation reactions. It indicates a catalytic effect of MI on the PAI polymerization. In addition, conversion values were determined according to the Di Benedetto equation for both systems cured using open molds in the oven. Regardless the different post-curing temperatures, the conversion values were similar for all the samples. Thermal and viscoelastic properties as well as crosslink density (nc were also investigated for these systems. It was found that the MI-based samples demonstrate lower nc values compared to the NMP-based ones at an almost two times higher storage modulus (E' at room temperature.

  18. Synthetic polyspermine imidazole-4, 5-amide as an efficient and cytotoxicity-free gene delivery system

    Directory of Open Access Journals (Sweden)

    Duan S


    Full Text Available Shi-Yue Duan, Xue-Mei Ge, Nan Lu, Fei Wu, Weien Yuan, Tuo JinSchool of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of ChinaAbstract: A chemically dynamic spermine-based polymer: polyspermine imidazole-4, 5-amide (PSIA, Mw > 7 kDa was designed, synthesized, and evaluated in terms of its ability to deliver nucleic acids. This polymer was made from an endogenous monomer professionally condensing genes in sperms, spermine, and a known safety drug metabolite, imidazole-4, 5-dicarboxylic acid, through a bis-amide bond conjugated with the imidazole ring. This polymer can condense pDNA at a W/W ratio above 10 to form polyplexes (100–200 nm in diameter, which is consistent with the observation by transmission electron microscopy (TEM, and the zeta potential was in the range of 10–20 mV. The pDNA packaged polymer was stable in phosphate buffer solution (PBS at pH 7.4 (simulated body fluid while the polyplexes were releasing pDNA into the solution at pH 5.8 (simulated endo-lysosomes due to the degradation of the bis-amide linkages in response to changes in pH values. PSIA-polyplexes were able to achieve efficient cellular uptake and luciferase gene silencing by co-transfection of pDNA and siRNA in COS-7 cells and HepG2 cells with negligible cytotoxicity. Biodistribution of Rhodamine B-labeled PSIA-polyplexes after being systemically injected in BALB/c nude-mice showed that the polyplexes circulated throughout the body, accumulated mainly in the kidney at 4 hours of sample administration, and moved to the liver and spleen after 24 hours. All the results suggested that PSIA offered a promising example to balance the transfection efficiency and toxicity of a synthetic carrier system for the delivery of therapeutic nucleic acids.Keywords: gene delivery, polyspermine, cytotoxicity, transfection efficiency, biodistribution

  19. C-terminal amide to alcohol conversion changes the cardiovascular effects of endomorphins in anesthetized rats. (United States)

    Yu, Ye; Wang, Chang-lin; Cui, Yun; Fan, Ying-zhe; Liu, Jing; Shao, Xuan; Liu, Hong-mei; Wang, Rui


    Endomorphin1-ol (Tyr-Pro-Trp-Phe-ol, EM1-ol) and endomorphin2-ol (Tyr-Pro-Phe-Phe-ol, EM2-ol), with C-terminal alcohol (-ol) containing, have been shown to exhibit higher affinity and lower intrinsic efficacy in vitro than endomorphins. In the present study, in order to investigate the alterations of systemic hemodynamic effects induced by C-terminal amide to alcohol conversion, responses to intravenous (i.v.) or intracerebroventricular (i.c.v.) injection of EM1-ol, EM2-ol and their parents were compared in the system arterial pressure (SAP) and heart rate (HR) of anesthetized rats. Both EM1-ol and EM2-ol induced dose-related decrease in SAP and HR when injected in doses of 3-100 nmol/kg, i.v. In terms of relative vasodepressor activity, it is interesting to note that EM2-ol was more potent than endomorphin2 [the dose of 25% decrease in SAP (DD25) = 6.01+/-3.19 and 13.99+/-1.56 nmol/kg, i.v., respectively] at a time when responses to EM1-ol were less potent than endomorphin1. Moreover, decreases in SAP in response to EM1-ol and EM2-ol were reduced by naloxone, atropine sulfate, L-NAME and bilateral vagotomy. It indicated that the vasodepressor responses were possibly mediated by a naloxone-sensitive, nitric oxide release, vagus-activated mechanism. It is noteworthy that i.c.v. injections of -ol derivatives produced dose-related decreases in SAP and HR, which were significantly less potent than endomorphins and were attenuated by naloxone and atropine sulfate. In summary, the results of the present study indicated that the C-terminal amide to alcohol conversion produced different effects on the vasodepressor activity of endomorphin1 and endomorphin2 and endowed EM2-ol distinctive hypotension characters in peripheral (i.v.) and central (i.c.v.) tissues. Moreover, these results provided indirect evidence that amidated C-terminus might play an important role in the regulation of the cardiovascular system.

  20. Influence of DNA methylation on transgene expression

    Institute of Scientific and Technical Information of China (English)


    DNA methylation plays an important role in gene expression in eukaryote. But DNA methylation of transgene usually leads to target gene silencing in plant genetic engineering. In this research, reporter gene b-glu- curonidase (GUS) gene (uidA) was introduced into tobaccos via Agrobacterium-mediated transformation method, and the foreign uidA gene became inactive in some transgenic tobaccos. No mRNA of uidA was detected in these plants by Northern blotting analysis, and DNA methylation of promoter region was found. The results indicated that gene silencing might be caused by DNA methylation of promoter.

  1. Colorectal Cancer "Methylator Phenotype": Fact or Artifact?

    Directory of Open Access Journals (Sweden)

    Charles Anacleto


    Full Text Available It has been proposed that human colorectal tumors can be classified into two groups: one in which methylation is rare, and another with methylation of several loci associated with a "CpG island methylated phenotype (CIMP," characterized by preferential proximal location in the colon, but otherwise poorly defined. There is considerable overlap between this putative methylator phenotype and the well-known mutator phenotype associated with microsatellite instability (MSI. We have examined hypermethylation of the promoter region of five genes (DAPK, MGMT, hMLH1, p16INK4a, and p14ARF in 106 primary colorectal cancers. A graph depicting the frequency of methylated loci in the series of tumors showed a continuous, monotonically decreasing distribution quite different from the previously claimed discontinuity. We observed a significant association between the presence of three or more methylated loci and the proximal location of the tumors. However, if we remove from analysis the tumors with hMLH1 methylation or those with MSI, the significance vanishes, suggesting that the association between multiple methylations and proximal location was indirect due to the correlation with MSI. Thus, our data do not support the independent existence of the so-called methylator phenotype and suggest that it rather may represent a statistical artifact caused by confounding of associations.

  2. Chiral methyl-branched pheromones. (United States)

    Ando, Tetsu; Yamakawa, Rei


    Insect pheromones are some of the most interesting natural products because they are utilized for interspecific communication between various insects, such as beetles, moths, ants, and cockroaches. A large number of compounds of many kinds have been identified as pheromone components, reflecting the diversity of insect species. While this review deals only with chiral methyl-branched pheromones, the chemical structures of more than one hundred non-terpene compounds have been determined by applying excellent analytical techniques. Furthermore, their stereoselective syntheses have been achieved by employing trustworthy chiral sources and ingenious enantioselective reactions. The information has been reviewed here not only to make them available for new research but also to understand the characteristic chemical structures of the chiral pheromones. Since biosynthetic studies are still limited, it might be meaningful to examine whether the structures, particularly the positions and configurations of the branched methyl groups, are correlated with the taxonomy of the pheromone producers and also with the function of the pheromones in communication systems.

  3. Methylation diet and methyl group genetics in risk for adenomatous polyp occurrence

    Directory of Open Access Journals (Sweden)

    Mark Lucock


    Conclusion: A methylation diet influences methyl group synthesis in the regulation of blood homocysteine level, and is modulated by genetic interactions. Methylation-related nutrients also interact with key genes to modify risk of AP, a precursor of colorectal cancer. Independent of diet, two methylation-related genes (A2756G-MS and A66G-MSR were directly associated with AP occurrence.

  4. Backbone amide linker strategy for the synthesis of 1,4-triazole-containing cyclic tetra- and pentapeptides

    NARCIS (Netherlands)

    Springer, J.; de Cuba, K.R.; Calvet-Vitale, S.; Geenevasen, J.A.J.; Hermkens, P.H.H.; Hiemstra, H.; van Maarseveen, J.H.


    A backbone amide linker strategy was chosen for the solid-phase synthesis of triazole-containing Cyclic tetra- and pentapeptides. An alkyne-substituted linker derived from 4-hydroxy-2-methoxybenzaldehyde was elongated by using standard "Fmoc-based" solid phase chemistry and terminated by coupling of

  5. An insight into the photophysical properties of amide hydrogen bonded N-(benzo[d]thiazol-2-yl) acetamide crystals (United States)

    Balijapalli, Umamahesh; Udayadasan, Sathiskumar; Panyam Muralidharan, Vivek; Sukumarapillai, Dileep Kumar; Shanmugam, Easwaramoorthi; Paduthapillai Gopal, Aravindan; S. Rathore, Ravindranath; Kulathu Iyer, Sathiyanarayanan


    Three distinct, hydrogen bond associated N-(benzo[d]thiazol-2-yl) acetamides were synthesized by refluxing benzothiazoles with acetic acid. The nature of the assemblies was characteristic to the substituent in the benzothiazole moiety. In N-(benzo[d]thiazol-2-yl)acetamide, water acts as a bridge for forming three hydrogen bonds, as an acceptor to amide Nsbnd H, and donors to carbonyl of amide and thiazole nitrogen assembles of three different N-(benzo[d]thiazol-2-yl)acetamide molecules. The N-(6-methylbenzo[d]thiazol-2-yl)acetamide formed a (amide) N-H…N (thiazole) bonded R22(8) molecular dimers by two homo-intermolecular hydrogen bonding interactions. N-(6-methoxybenzo[d]thiazol-2-yl)acetamide formed (amide)N-H…O (acid) & (acid)O-H…N (thiazole) interactions with the acetic acid, forming a R22(8) hydrogen-bonded ring by two hetero-intermolecular hydrogen bonding interactions.

  6. Rapid and efficient synthesis of new chiral aromatic amide molecular tweezers under solvent-free conditions using microwave

    Institute of Scientific and Technical Information of China (English)

    Xiao Xiang Zhao; Zhi Gang Zhao; Xing Li Liu; Xiu Ming Wu


    An efficient and simple method for the synthesis of new chiral aromatic amide molecular tweezers by irradiation with microwave under solvent-free conditions has been developed.Its main advantages are short reaction times.good conversions and the environmentally friendly nature of the process.

  7. Amidate prodrugs of 9-[2-(phosphonomethoxy)ethyl]adenine as inhibitors of adenylate cyclase toxin from Bordetella pertussis. (United States)

    Šmídková, Markéta; Dvoráková, Alexandra; Tloust'ová, Eva; Česnek, Michal; Janeba, Zlatko; Mertlíková-Kaiserová, Helena


    Adenylate cyclase toxin (ACT) is the key virulence factor of Bordetella pertussis that facilitates its invasion into the mammalian body. 9-[2-(Phosphonomethoxy)ethyl]adenine diphosphate (PMEApp), the active metabolite of the antiviral drug bis(POM)PMEA (adefovir dipivoxil), has been shown to inhibit ACT. The objective of this study was to evaluate six novel amidate prodrugs of PMEA, both phenyloxy phosphonamidates and phosphonodiamidates, for their ability to inhibit ACT activity in the J774A.1 macrophage cell line. The two phenyloxy phosphonamidate prodrugs exhibited greater inhibitory activity (50% inhibitory concentration [IC50] = 22 and 46 nM) than the phosphonodiamidates (IC50 = 84 to 3,960 nM). The inhibitory activity of the prodrugs correlated with their lipophilicity and the degree of their hydrolysis into free PMEA in J774A.1 cells. Although the prodrugs did not inhibit ACT as effectively as bis(POM)PMEA (IC50 = 6 nM), they were significantly less cytotoxic. Moreover, they all reduced apoptotic effects of ACT and prevented an ACT-induced elevation of intracellular [Ca(2+)]i. The amidate prodrugs were less susceptible to degradation in Caco-2 cells compared to bis(POM)PMEA, while they exerted good transepithelial permeability in this assay. As a consequence, a large amount of intact amidate prodrug is expected to be available to target macrophages in vivo. This feature makes nontoxic amidate prodrugs attractive candidates for further investigation as novel antimicrobial agents.

  8. Is there any difference in Amide and NOE CEST effects between white and gray matter at 7T?

    NARCIS (Netherlands)

    Khlebnikov, Vitaly; Siero, JCW; Wijnen, Jannie; Visser, F; Luijten, Peter R; Klomp, DWJ; Hoogduin, Hans


    Measurement of Chemical Exchange Saturation Transfer (CEST) is providing tissue physiology dependent contrast, e.g. by looking at Amide and NOE (Nuclear Overhauser Enhancement) effects. CEST is unique in providing quantitative metabolite information at high imaging resolution. However, direct compar

  9. Fatty Acid Amide Hydrolase (FAAH) Inhibition Enhances Memory Acquisition through Activation of PPAR-alpha Nuclear Receptors (United States)

    Mazzola, Carmen; Medalie, Julie; Scherma, Maria; Panlilio, Leigh V.; Solinas, Marcello; Tanda, Gianluigi; Drago, Filippo; Cadet, Jean Lud; Goldberg, Steven R.; Yasar, Sevil


    Inhibitors of fatty acid amide hydrolase (FAAH) increase endogenous levels of anandamide (a cannabinoid CB[subscript 1]-receptor ligand) and oleoylethanolamide and palmitoylethanolamide (OEA and PEA, ligands for alpha-type peroxisome proliferator-activated nuclear receptors, PPAR-alpha) when and where they are naturally released in the brain.…

  10. 40 CFR 721.6183 - Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines... (United States)


    ... - maleic anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine... Substances § 721.6183 Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow... anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine (PMN...


    In 1976, fluorine in human blood serum was thought to be present as perfluorooctanic acid; however, in the 1990s it was correctly identified by LC/MS as perfluorooctanesulfonate (PFOS). PFOS was both a commercial product and an end-stage metabolite of numerous substituted amides ...

  12. Sol–gel immobilization of Alcalase from Bacillus licheniformis for application in the synthesis of C-terminal peptide amides

    NARCIS (Netherlands)

    Corici, L.N.; Frissen, A.E.; Zoelen, van D.J.; Eggen, I.F.; Peter, F.; Davidescu, C.M.; Boeriu, C.G.


    Alcalase 2.4L FG, a commercial preparation of Subtilisin A, was physically entrapped in glass sol–gel matrices using alkoxysilanes of different types mixed with tetramethoxysilane (TMOS). The materials were used for catalyzing C-terminal amidation of Z-Ala-Phe-OMe in a mixture of tert-butanol/DMF. F

  13. Copper-Catalyzed N-Arylation of Amides Using (S-N-Methylpyrrolidine-2-carboxylate as the Ligand

    Directory of Open Access Journals (Sweden)

    Dong-Sheng Ma


    Full Text Available (S-N-methylpyrrolidine-2-carboxylate, a derivative of natural L-proline, was found to be an efficient ligand for the copper-catalyzed Goldberg-type N-arylation of amides with aryl halides under mild conditions. A variety of N-arylamides were synthesized in good to high yields.

  14. Selective and reactive hydration of nitriles to amides in water using silver nanoparticles stabilized by organic ligands

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Koji [Hokkaido University, Division of Materials Science and Engineering, Faculty of Engineering (Japan); Kawakami, Hayato [Miyoshi Oil & Fat Co., Ltd. (Japan); Narushima, Takashi; Yonezawa, Tetsu, E-mail: [Hokkaido University, Division of Materials Science and Engineering, Faculty of Engineering (Japan)


    Water-dispersible silver nanoparticles stabilized by silver–carbon covalent bonds were prepared. They exhibited high catalytic activities for the selective hydration of nitriles to amides in water. The activation of a nitrile group by the functional groups of the substrates and the hydrophobic layer on the nanoparticles influenced the catalyzed reaction were confirmed. Alkyl nitriles could also be selectively hydrated.

  15. Application of two-dimensional infrared spectroscopy to benchmark models for the amide I band of proteins

    NARCIS (Netherlands)

    Bondarenko, Anna S.; Jansen, Thomas L. C.


    In this paper, we present a novel benchmarking method for validating the modelling of vibrational spectra for the amide I region of proteins. We use the linear absorption spectra and two-dimensional infrared spectra of four experimentally well-studied proteins as a reference and test nine combinatio

  16. Immobilization of lysozyme-cellulose amide-linked conjugates on cellulose i and ii cotton nanocrystalline preparations (United States)

    Lysozyme was attached through an amide linkage between some of the protein’s aspartate and glutamate residues to amino-glycine-cellulose (AGC), which was prepared by esterification of glycine to preparations of cotton nanocrystals (CNC). The nanocrystalline preparations were produced through acid h...

  17. Proton-driven amide bond-cleavage pathways of gas-phase peptide ions lacking mobile protons. (United States)

    Bythell, Benjamin J; Suhai, Sándor; Somogyi, Arpád; Paizs, Béla


    The mobile proton model (Dongre, A. R., Jones, J. L., Somogyi, A. and Wysocki, V. H. J. Am. Chem. Soc. 1996, 118 , 8365-8374) of peptide fragmentation states that the ionizing protons play a critical role in the gas-phase fragmentation of protonated peptides upon collision-induced dissociation (CID). The model distinguishes two classes of peptide ions, those with or without easily mobilizable protons. For the former class mild excitation leads to proton transfer reactions which populate amide nitrogen protonation sites. This enables facile amide bond cleavage and thus the formation of b and y sequence ions. In contrast, the latter class of peptide ions contains strongly basic functionalities which sequester the ionizing protons, thereby often hindering formation of sequence ions. Here we describe the proton-driven amide bond cleavages necessary to produce b and y ions from peptide ions lacking easily mobilizable protons. We show that this important class of peptide ions fragments by different means from those with easily mobilizable protons. We present three new amide bond cleavage mechanisms which involve salt-bridge, anhydride, and imine enol intermediates, respectively. All three new mechanisms are less energetically demanding than the classical oxazolone b(n)-y(m) pathway. These mechanisms offer an explanation for the formation of b and y ions from peptide ions with sequestered ionizing protons which are routinely fragmented in large-scale proteomics experiments.

  18. Rat NPFF(1) receptor-mediated signaling: functional comparison of neuropeptide FF (NPFF), FMRFamide and PFR(Tic)amide. (United States)

    Chen, Jin-Chung; Lee, Wei-Hsin; Chen, Pei-Chun; Tseng, Ching-Ping; Huang, Eagle Yi-Kung


    Neuropeptide FF (NPFF) participates in many physiological functions associated with opioids in the mammalian CNS. We established a pheochromocytoma PC-12 cell line clone stably expressing rat NPFF1 receptors. Both NPFF and FMRFamide activated NPFF1 receptors to couple with Gi/o protein and inhibited adenylyl cyclase activity in PC-12/rNPFF1 cells, but there were no effects on MAPKs (ERK1/2 and p38 MAPK) or PI3K/Akt pathway. FMRFamide also inhibited DARPP-32/Thr34 phosphorylation in the presence of forskolin. Similarly, PFR(Tic)amide, a 'super-agonist' of NPFF receptors, inhibited the production of cAMP and slightly decreased DARPP-32/Thr34 phosphorylation in PC-12/rNPFF1 cells. Intracerebroventricular injections of PFR(Tic)amide blocked behavioral sensitization of locomotor activity to amphetamine, and intrathecal injection of PFR(Tic)amide caused a dose-dependent antinociception in vivo in rats. Thus, "over-activation" of NPFF receptors by PFR(Tic)amide induced different bio-effects from those induced by NPFF in vivo.

  19. Amidated joining peptide in the human pituitary, gut, adrenal gland and bronchial carcinoids. Immunocytochemical and immunochemical evidence

    DEFF Research Database (Denmark)

    Bjartell, A; Fenger, M; Ekman, R;


    The distribution of the proopiomelanocortin-derivated amidated joining peptide (JP-N) was examined in the human pituitary gland, adrenal gland, gut and in three bronchial carcinoids. Double immunostaining showed coexistence of immunoreactive JP-N and other proopiomelanocortin derivatives, e...

  20. Aminolysis reaction of calix [ 4 ] arene esters and crystal structures and conformational behaviors of calix[4]arene amides

    Institute of Scientific and Technical Information of China (English)

    WU, Yong; LIU, Hui-Biao; HU, Jun; DUAN, Chun-Ying; XU, Zheng


    We first make use of aminolysis of calix[4]arene esters to synthesize calix[4]arene amides. When the two ethyl esters of the calix[4]arene esters are aminolysized, the 1, 3-amide derivative is formed selectively. The crystal structures of the calix[4]arene with two butyl amide (3b) and four butyl amide moieties (4b) were determined. The intermolecular hydrogen bonds make 4b form two-dimensional net work insolid state.The 1H NMR spectra prove that 3b is of a pinched cone conformation, while 4b and tetraheptylamide-calix[4]arene (6b)take fast interconversion between two C2v isomers in solution and appear an apparent cone conformation at room temperature. As decreasing temperature, the interconversion rate decreases gradually and, finally, the interconversion process is frozen at Tc= - 10℃, which makes both conformations of 4b and 6b the pinched cone structures. The hydrogen bond improves the interconversion barrier, and the large different values of the potential barrier between 6b and 4b (or 6b) may be of forming different hydrogen bonds.