WorldWideScience

Sample records for cdc42-deficient mouse liver

  1. Continuous cell injury promotes hepatic tumorigenesis in cdc42-deficient mouse liver

    DEFF Research Database (Denmark)

    van Hengel, Jolanda; D'Hooge, Petra; Hooghe, Bart;

    2008-01-01

    BACKGROUND & AIMS: The Rho small guanosine triphosphatase Cdc42 is critical for diverse cellular functions, including regulation of actin organization, cell polarity, intracellular membrane trafficking, transcription, cell-cycle progression, and cell transformation. This implies that Cdc42 might be...

  2. An update on the mouse liver proteome

    OpenAIRE

    Borlak Jürgen; Gazzana Giuseppe

    2009-01-01

    Abstract Background Decoding of the liver proteome is subject of intense research, but hampered by methodological constraints. We recently developed an improved protocol for studying rat liver proteins based on 2-DE-MALDI-TOF-MS peptide mass finger printing. This methodology was now applied to develop a mouse liver protein database. Results Liver proteins were extracted by two different lysis buffers in sequence followed by a liquid-phase IEF pre-fractionation and separation of proteins by 2 ...

  3. An update on the mouse liver proteome

    Directory of Open Access Journals (Sweden)

    Borlak Jürgen

    2009-09-01

    Full Text Available Abstract Background Decoding of the liver proteome is subject of intense research, but hampered by methodological constraints. We recently developed an improved protocol for studying rat liver proteins based on 2-DE-MALDI-TOF-MS peptide mass finger printing. This methodology was now applied to develop a mouse liver protein database. Results Liver proteins were extracted by two different lysis buffers in sequence followed by a liquid-phase IEF pre-fractionation and separation of proteins by 2 DE at two different pH ranges, notably 5-8 and 7-10. Based on 9600 in gel digests a total of 643 mouse liver proteins with high sequence coverage (> 20 peptides per protein could be identified by MALDI-TOF-MS peptide mass finger printing. Notably, 255 proteins are novel and have not been reported so far by conventional two-dimensional electrophoresis proteome mapping. Additionally, the results of the present findings for mouse liver were compared to published data of the rat proteome to compile as many proteins as possible in a rodent liver database. Conclusion Based on 2-DE MALDI-TOF-MS a significantly improved proteome map of mouse liver was obtained. We discuss some prominent members of newly identified proteins for a better understanding of liver biology.

  4. Complete reconstitution of mouse liver with xenogeneic hepatocytes.

    OpenAIRE

    Rhim, J A; Sandgren, E P; Palmiter, R D; Brinster, R L

    1995-01-01

    We have developed a system for studying hepatocellular growth potential in which liver cells are introduced into the diseased livers of albumin-urokinase (Alb-uPA) transgenic mice. To use this system to study xenogeneic cell transplantation, rat liver cells were introduced into immunotolerant Alb-uPA transgenic mice. In regenerated recipient livers, up to 100% of hepatocellular gene expression was of rat origin, demonstrating the creation of a functional mouse liver in which parenchyma is der...

  5. Replacement of Diseased Mouse Liver by Hepatic Cell Transplantation

    Science.gov (United States)

    Rhim, Jonathan A.; Sandgren, Eric P.; Degen, Jay L.; Palmiter, Richard D.; Brinster, Ralph L.

    1994-02-01

    Adult liver has the unusual ability to fully regenerate after injury. Although regeneration is accomplished by the division of mature hepatocytes, the replicative potential of these cells is unknown. Here, the replicative capacity of adult liver cells and their medical usefulness as donor cells for transplantation were investigated by transfer of adult mouse liver cells into transgenic mice that display an endogenous defect in hepatic growth potential and function. The transplanted liver cell populations replaced up to 80 percent of the diseased recipient liver. These findings demonstrate the enormous growth potential of adult hepatocytes, indicating the feasibility of liver cell transplantation as a method to replace lost or diseased hepatic parenchyma.

  6. Orthotopic mouse liver transplantation to study liver biology and allograft tolerance.

    Science.gov (United States)

    Yokota, Shinichiro; Ueki, Shinya; Ono, Yoshihiro; Kasahara, Naoya; Pérez-Gutiérrez, Angélica; Kimura, Shoko; Yoshida, Osamu; Murase, Noriko; Yasuda, Yoshikazu; Geller, David A; Thomson, Angus W

    2016-07-01

    Orthotopic liver transplantation in the mouse is a powerful research tool that has led to important mechanistic insights into the regulation of hepatic injury, liver immunopathology, and transplant tolerance. However, it is a technically demanding surgical procedure. Setup of the orthotopic liver transplantation model comprises three main stages: surgery on the donor mouse; back-table preparation of the liver graft; and transplant of the liver into the recipient mouse. In this protocol, we describe our procedure in stepwise detail to allow efficient completion of both the donor and recipient operations. The protocol can result in consistently high technical success rates when performed by personnel experienced in the protocol. The technique can be completed in ∼2-3 h when performed by an individual who is well practiced in performing mouse transplantation in accordance with this protocol. We have achieved a perioperative survival rate close to 100%. PMID:27254462

  7. Proteomic and Bioinformatics Analyses of Mouse Liver Microsomes

    Directory of Open Access Journals (Sweden)

    Fang Peng

    2012-01-01

    Full Text Available Microsomes are derived mostly from endoplasmic reticulum and are an ideal target to investigate compound metabolism, membrane-bound enzyme functions, lipid-protein interactions, and drug-drug interactions. To better understand the molecular mechanisms of the liver and its diseases, mouse liver microsomes were isolated and enriched with differential centrifugation and sucrose gradient centrifugation, and microsome membrane proteins were further extracted from isolated microsomal fractions by the carbonate method. The enriched microsome proteins were arrayed with two-dimensional gel electrophoresis (2DE and carbonate-extracted microsome membrane proteins with one-dimensional gel electrophoresis (1DE. A total of 183 2DE-arrayed proteins and 99 1DE-separated proteins were identified with tandem mass spectrometry. A total of 259 nonredundant microsomal proteins were obtained and represent the proteomic profile of mouse liver microsomes, including 62 definite microsome membrane proteins. The comprehensive bioinformatics analyses revealed the functional categories of those microsome proteins and provided clues into biological functions of the liver. The systematic analyses of the proteomic profile of mouse liver microsomes not only reveal essential, valuable information about the biological function of the liver, but they also provide important reference data to analyze liver disease-related microsome proteins for biomarker discovery and mechanism clarification of liver disease.

  8. Transcriptomic profiling of trichloroethylene exposure in male mouse liver

    Directory of Open Access Journals (Sweden)

    Yan Jiang

    2015-03-01

    Full Text Available Chronic Trichloroethylene (TCE exposure could induce hepatocellular carcinoma in mice, and occupational exposure in humans was suggested to be associated with liver cancer. To understand the role of non-genotoxic mechanism(s for TCE action, we examined the gene expression and DNA methylation changes in the liver of B6C3F1 mice orally administered with TCE for 5 days. As a beginning step, we profiled gene expression alterations induced by the TCE in mouse livers. Here we describe in detail the experimental methods, quality controls, and other information associated with our data deposited into Gene Expression Omnibus (GEO under GSE58819. Our data provide useful information for gene expression responses to TCE in mouse liver.

  9. Mouse models of liver fibrosis mimic human liver fibrosis of different etiologies.

    Science.gov (United States)

    Martínez, Allyson K; Maroni, Luca; Marzioni, Marco; Ahmed, Syed T; Milad, Mena; Ray, Debolina; Alpini, Gianfranco; Glaser, Shannon S

    2014-12-01

    The liver has the amazing capacity to repair itself after injury; however, the same processes that are involved in liver regeneration after acute injury can cause serious consequences during chronic liver injury. In an effort to repair damage, activated hepatic stellate cells trigger a cascade of events that lead to deposition and accumulation of extracellular matrix components causing the progressive replacement of the liver parenchyma by scar tissue, thus resulting in fibrosis. Although fibrosis occurs as a result of many chronic liver diseases, the molecular mechanisms involved depend on the underlying etiology. Since studying liver fibrosis in human subjects is complicated by many factors, mouse models of liver fibrosis that mimic the human conditions fill this void. This review summarizes the general mouse models of liver fibrosis and mouse models that mimic specific human disease conditions that result in liver fibrosis. Additionally, recent progress that has been made in understanding the molecular mechanisms involved in the fibrogenic processes of each of the human disease conditions is highlighted. PMID:25396098

  10. Spaceflight Activates Lipotoxic Pathways in Mouse Liver

    Science.gov (United States)

    Jonscher, Karen R.; Alfonso-Garcia, Alba; Suhalim, Jeffrey L.; Orlicky, David J.; Potma, Eric O.; Ferguson, Virginia L.; Bouxsein, Mary L.; Bateman, Ted A.; Stodieck, Louis S.; Levi, Moshe; Friedman, Jacob E.; Gridley, Daila S.; Pecaut, Michael J.

    2016-01-01

    Spaceflight affects numerous organ systems in the body, leading to metabolic dysfunction that may have long-term consequences. Microgravity-induced alterations in liver metabolism, particularly with respect to lipids, remain largely unexplored. Here we utilize a novel systems biology approach, combining metabolomics and transcriptomics with advanced Raman microscopy, to investigate altered hepatic lipid metabolism in mice following short duration spaceflight. Mice flown aboard Space Transportation System -135, the last Shuttle mission, lose weight but redistribute lipids, particularly to the liver. Intriguingly, spaceflight mice lose retinol from lipid droplets. Both mRNA and metabolite changes suggest the retinol loss is linked to activation of PPARα-mediated pathways and potentially to hepatic stellate cell activation, both of which may be coincident with increased bile acids and early signs of liver injury. Although the 13-day flight duration is too short for frank fibrosis to develop, the retinol loss plus changes in markers of extracellular matrix remodeling raise the concern that longer duration exposure to the space environment may result in progressive liver damage, increasing the risk for nonalcoholic fatty liver disease. PMID:27097220

  11. Effects of retrorsine on mouse hepatocyte proliferation after liver injury

    Institute of Scientific and Technical Information of China (English)

    Xiao-Fei Zhou; Qian Wang; Jian-Xin Chu; Ai-Lian Liu

    2006-01-01

    AIM: To study the effect of retrorsine on mouse hepatocyte proliferation.METHODS: Mice and rats were treated respectively with two injections of retrorsine (as retrosine-treated group) or saline (as non-treated group) at 2 wk intervals.They received a single injection of carbon tetrachloride (CCl4) 4 wk later. On d 0, 1, 2, 3, 4, 6, 15 after CCl4 administration, the animals were killed and their livers were excised. Hematoxylin and eosin (HE) staining and Ki-67 antibody immunohistochemical analysis of liver samples were used to evaluate the pathological changes and hepatocyte proliferation.RESULTS: In rats treated with retrorsine and CCl4, the liver displayed obvious megalocytosis, proliferation of mild bile duct, small hepatocyte-forming nodule, which were not found in liver samples from non-treated group.However, in mice treated with retrorsine combined with CCl4, the liver displayed hepatocyte degeneration and necrosis in perivenous areas. There was no obvious difference between retrorsine-treated group and nontreated group. Ki-67 immunohistochemical analysis showed that in rats treated with retrorsine, the positive hepatocytes mainly found in small hepatocyte nodules,were obviously less than those in non-treated group. The mice treated with retrorsine showed that the number of Ki-67 positive hepatocytes was very high and more than that in non-treated group.CONCLUSION: Retrorsine has no effect on mouse hepatocyte proliferation.

  12. Evaluation of strategy for analyzing mouse liver plasma membrane proteome

    Institute of Scientific and Technical Information of China (English)

    CHEN; Ping; ZHANG; LiJun; LI; XuanWen; WANG; XiE; CAO; Rui; LIU; Zhen; XIONG; JiXian; PENG; Xia; WEI; YingJuan; YING; XingFeng; WANG; XianChun; LIANG; SongPing

    2007-01-01

    Plasma membrane (PM) proteome is one of the major subproteomes present in the cell,and is very important in liver function. In the present work, C57 mouse liver PM was purified by density-gradient centrifugation. The purified PM was verified by electron microscope analysis and Western blotting. The results showed that the PM was enriched by more than 20-fold and the contamination of mitochondria was reduced by 2-fold compared with the homogenization fraction. Proteins were separated by 2DE and 1DE, trypsin-digested and submitted to ESI-Q-TOF and MALDI-TOF-TOF mass spectrometry or directly digested in solution and analyzed by LC-ESI ion trap mass spectrometry. In all, 547 non-redundant mouse liver PM proteins were identified, of which 34% contributed to plasma membrane or plasma membrane-related proteins. This study optimized and evaluated the HLPP plasma membrane proteome analysis method and made a systematic analysis on PM proteome.

  13. Cloning and characterization of a mouse liver-specific gene mfrep-1, upregulated in liver regeneration

    Institute of Scientific and Technical Information of China (English)

    JUN; YAN; HAO; YING; FEI; GU; JIN; HE; YU; LI; LI; HUI; MIN; LIU; YONG; HUA; XU

    2002-01-01

    Human fibrinogen-related protein-1/liver fibrinogen-related protein-1 (HFREP-1/LFIRE-1), a liver-specificprotein, is a member of fibrinogen superfamily that exerts various biological activities. However, the func-tion of HFREP-1/LFIRE-1 in liver remains unknown. Here we isolated its mouse ortholog gene-mousefibrinogen-related protein-1 (mfrep-1), which encoded 314 amino acids, exhibiting 80.4% similarity toHFREP-1/LFIRE-1. Northern blot analysis revealed that 1.2-kb mfrep-1 mRNA was detected selectivelyin mouse liver. To explore the function of MFREP-1, we examined the levels of mfrep-1 mRNA duringregeneration after 70% partial hepatectomy (PHx) in mice. mfrep-1 mRNA increased in the regeneratingliver and reached the first shoulder peak at 2-4 h after PHx. Cycloheximide pretreatment could suppress theinduction of mfrep-1, indicating the up-regulation of this gene need de novo protein synthesis. Its mRNAcontinued to elevate at 6 h thereafter and reached the second peak at 24 h. The enhanced expression ofmfrep-1 maintained high until 72 h and then declined slowly to the basal level. Immunohistochemistryassessment confirmed the up-regulated expression of MFREP-1 protein in parenchymal cells during liverregeneration. These data suggested that MFREP-1 might play an important role in liver regeneration andbe involved in the regulation of cell growth.

  14. Discrimination of tumorigenic triazole conazoles from phenobarbital by transcriptional analyses of mouse liver gene expression

    Science.gov (United States)

    Conazoles are fungicides used to control fungal growth in environmental settings and to treat humans with fungal infections. Mouse hepatotumorigenic conazoles display many of the same hepatic toxicologic responses as the mouse liver carcinogen phenobarbital (PB): constitutive and...

  15. Case Study: Polycystic Livers in a Transgenic Mouse Line

    Energy Technology Data Exchange (ETDEWEB)

    Lovaglio, Jamie A.; Artwohl, James E.; Ward, Christopher J.; Diekwisch, Thomas G. H.; Ito, Yoshihiro; Fortman, Jeffrey D.

    2014-04-01

    Three mice (2 male, 1 female; age, 5 to 16 mo) from a mouse line transgenic for keratin 14 (K14)-driven LacZ expression and on an outbred Crl:CD1(ICR) background, were identified as having distended abdomens and livers that were diffusely enlarged by numerous cysts (diameter, 0.1 to 2.0 cm). Histopathology revealed hepatic cysts lined by biliary type epithelium and mild chronic inflammation, and confirmed the absence of parasites. Among 21 related mice, 5 additional affected mice were identified via laparotomy. Breeding of these 5 mice (after 5 mo of age) did not result in any offspring; the K14 mice with olycystic livers failed to reproduce. Affected male mice had degenerative testicular lesions, and their sperm was immotile. Nonpolycystic K14 control male mice bred well, had no testicular lesions, and had appropriate sperm motility. Genetic analysis did not identify an association of this phenotype with the transgene or insertion site.

  16. A potential microRNA signature for tumorigenic conazoles in mouse liver

    Science.gov (United States)

    Triadimefon, propiconazole and myclobutanil are conazoles, an important class of agricultural fungicides. Triadimefon and propiconazole are mouse liver tumorigens, while myclobutanil is not. As part of a coordinated study to understand the molecular determinants of conazole tumor...

  17. Altered microRNA expression induced by tumorigenic conazoles in mouse liver.

    Science.gov (United States)

    Triadimefon, propiconazole, and myclobutanil are conazoles, an important class of agricultural and therapeutic fungicides. Triadimefon and propiconazole are mouse liver tumorigens, while myclobutanil is not. As part of a coordinated study to understand the molecular determinants ...

  18. A microRNA signature for tumorigenic conazoles in mouse liver.

    Science.gov (United States)

    Triadimefon, propiconazole and myclobutanil are conazoles, an important class of agricultural and therapeutic fungicides. Triadimefon and propiconazole are mouse liver tumorigens, while myclobutanil is not. As part of a coordinated study to understand the molecular determinants o...

  19. Analyzing the temporal regulation of translation efficiency in mouse liver

    Directory of Open Access Journals (Sweden)

    Peggy Janich

    2016-06-01

    Full Text Available Mammalian physiology and behavior follow daily rhythms that are orchestrated by endogenous timekeepers known as circadian clocks. Rhythms in transcription are considered the main mechanism to engender rhythmic gene expression, but important roles for posttranscriptional mechanisms have recently emerged as well (reviewed in Lim and Allada (2013 [1]. We have recently reported on the use of ribosome profiling (RPF-seq, a method based on the high-throughput sequencing of ribosome protected mRNA fragments, to explore the temporal regulation of translation efficiency (Janich et al., 2015 [2]. Through the comparison of around-the-clock RPF-seq and matching RNA-seq data we were able to identify 150 genes, involved in ribosome biogenesis, iron metabolism and other pathways, whose rhythmicity is generated entirely at the level of protein synthesis. The temporal transcriptome and translatome data sets from this study have been deposited in NCBI's Gene Expression Omnibus under the accession number GSE67305. Here we provide additional information on the experimental setup and on important optimization steps pertaining to the ribosome profiling technique in mouse liver and to data analysis.

  20. Enteric Dysbiosis Associated with a Mouse Model of Alcoholic Liver Disease

    OpenAIRE

    Yan, Arthur W.; Fouts, Derrick E.; Brandl, Johannes; Starkel, Peter; Torralba, Manolito; Schott, Eckart; Tsukamoto, Hide; Nelson, Karen E; Brenner, David A.; Schnabl, Bernd

    2010-01-01

    The translocation of bacteria and bacterial products into the circulation contributes to alcoholic liver disease. Intestinal bacterial overgrowth is common in patients with alcoholic liver disease. The aims of our study were to investigate bacterial translocation, changes in the enteric microbiome, and its regulation by mucosal antimicrobial proteins in alcoholic liver disease. We used a mouse model of continuous intragastric feeding of alcohol or an isocaloric diet. Bacterial translocation o...

  1. Regulatory T Cells Prevent Liver Fibrosis During HIV Type 1 Infection in a Humanized Mouse Model

    OpenAIRE

    Nunoya, Jun-ichi; Washburn, Michael L.; Kovalev, Grigoriy I; Su, Lishan

    2013-01-01

    Human immunodeficiency virus type 1 (HIV-1) disease is associated with aberrant immune activation, and coinfection with hepatitis C virus (HCV) exacerbates hepatic inflammation and fibrosis. However, the role of HIV-1 infection or host immune modulation in liver pathogenesis is not clearly defined. Here, we report that regulatory T (Treg) cells prevent liver immunopathogenesis during HIV-1 infection in a humanized mouse model. In the absence of Treg cells, HIV-1 infection induced liver fibros...

  2. Comprehensive Analysis of in Vivo Phosphoproteome of Mouse Liver Microsomes.

    Science.gov (United States)

    Kwon, Oh Kwang; Sim, JuHee; Kim, Sun Ju; Sung, Eunji; Kim, Jin Young; Jeong, Tae Cheon; Lee, Sangkyu

    2015-12-01

    Protein phosphorylation at serine, threonine, and tyrosine residues are some of the most widespread reversible post-translational modifications. Microsomes are vesicle-like bodies, not ordinarily present within living cells, which form from pieces of the endoplasmic reticulum (ER), plasma membrane, mitochondria, or Golgi apparatus of broken eukaryotic cells. Here we investigated the total phosphoproteome of mouse liver microsomes (MLMs) using TiO2 enrichment of phosphopeptides coupled to on-line 2D-LC-MS/MS. In total, 699 phosphorylation sites in 527 proteins were identified in MLMs. When compared with the current phosphoSitePlus database, 155 novel phosphoproteins were identified in MLM. The distributions of phosphosites were 89.4, 8.0, and 2.6% for phosphoserine, phosphotheronine, and phosphotyrosine, respectively. By Motif-X analysis, eight Ser motifs and one Thr motif were found, and five acidic, two basophilic-, and two proline-directed motifs were assigned. The potential functions of phosphoproteins in MLM were assigned by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. In GO annotation, phosphorylated microsomal proteins were involved in mRNA processing, mRNA metabolic processes, and RNA splicing. In the KEGG pathway analysis, phosphorylated microsomal proteins were highly enriched in ribosome protein processing in ER and ribosomes and in RNA transport. Furthermore, we determined that 52 and 23 phosphoproteins were potential substrates of cAMP-dependent protein kinase A and casein kinase II, respectively, many of which are 40S/60S ribosomal proteins. Overall, our results provide an overview of features of protein phosphorylation in MLMs that should be a valuable resource for the future understanding of protein synthesis or translation involving phosphorylation. PMID:26487105

  3. Activation of farnesoid X receptor induces RECK expression in mouse liver

    International Nuclear Information System (INIS)

    Highlights: •RECK is a novel transcriptional target gene of FXR in mouse liver. •The FXR response element is located within the intron 1 of RECK gene. •FXR agonist reverses the down-regulation of RECK in the liver in mouse NASH model. -- Abstract: Farnesoid X receptor (FXR) belongs to the ligand-activated nuclear receptor superfamily, and functions as a transcription factor regulating the transcription of numerous genes involved in bile acid homeostasis, lipoprotein and glucose metabolism. In the present study, we identified RECK, a membrane-anchored inhibitor of matrix metalloproteinases, as a novel target gene of FXR in mouse liver. We found that FXR agonist substantially augmented hepatic RECK mRNA and protein expression in vivo and in vitro. FXR regulated the transcription of RECK through directly binding to FXR response element located within intron 1 of the mouse RECK gene. Moreover, FXR agonist reversed the down-regulation of RECK in the livers from mice fed a methionine and choline deficient diet. In summary, our data suggest that RECK is a novel transcriptional target of FXR in mouse liver, and provide clues to better understanding the function of FXR in liver

  4. Activation of farnesoid X receptor induces RECK expression in mouse liver

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Xiaomin [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032 (China); Wu, Weibin [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032 (China); Institutes of Biomedical Sciences, Fudan University, Shanghai 200032 (China); Zhu, Bo; Sun, Zhichao; Ji, Lingling; Ruan, Yuanyuan [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032 (China); Zhou, Meiling, E-mail: meilingzhou2012@gmail.com [Department of Radiology, Zhongshan Hospital of Fudan University and Shanghai Institute of Medical Imaging, Shanghai 200032 (China); Zhou, Lei, E-mail: yhchloech@gmail.com [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032 (China); Gu, Jianxin [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032 (China); Institutes of Biomedical Sciences, Fudan University, Shanghai 200032 (China)

    2014-01-03

    Highlights: •RECK is a novel transcriptional target gene of FXR in mouse liver. •The FXR response element is located within the intron 1 of RECK gene. •FXR agonist reverses the down-regulation of RECK in the liver in mouse NASH model. -- Abstract: Farnesoid X receptor (FXR) belongs to the ligand-activated nuclear receptor superfamily, and functions as a transcription factor regulating the transcription of numerous genes involved in bile acid homeostasis, lipoprotein and glucose metabolism. In the present study, we identified RECK, a membrane-anchored inhibitor of matrix metalloproteinases, as a novel target gene of FXR in mouse liver. We found that FXR agonist substantially augmented hepatic RECK mRNA and protein expression in vivo and in vitro. FXR regulated the transcription of RECK through directly binding to FXR response element located within intron 1 of the mouse RECK gene. Moreover, FXR agonist reversed the down-regulation of RECK in the livers from mice fed a methionine and choline deficient diet. In summary, our data suggest that RECK is a novel transcriptional target of FXR in mouse liver, and provide clues to better understanding the function of FXR in liver.

  5. Activation of farnesoid X receptor induces RECK expression in mouse liver.

    Science.gov (United States)

    Peng, Xiaomin; Wu, Weibin; Zhu, Bo; Sun, Zhichao; Ji, Lingling; Ruan, Yuanyuan; Zhou, Meiling; Zhou, Lei; Gu, Jianxin

    2014-01-01

    Farnesoid X receptor (FXR) belongs to the ligand-activated nuclear receptor superfamily, and functions as a transcription factor regulating the transcription of numerous genes involved in bile acid homeostasis, lipoprotein and glucose metabolism. In the present study, we identified RECK, a membrane-anchored inhibitor of matrix metalloproteinases, as a novel target gene of FXR in mouse liver. We found that FXR agonist substantially augmented hepatic RECK mRNA and protein expression in vivo and in vitro. FXR regulated the transcription of RECK through directly binding to FXR response element located within intron 1 of the mouse RECK gene. Moreover, FXR agonist reversed the down-regulation of RECK in the livers from mice fed a methionine and choline deficient diet. In summary, our data suggest that RECK is a novel transcriptional target of FXR in mouse liver, and provide clues to better understanding the function of FXR in liver. PMID:24291500

  6. Evidence of oxidative injury during aging of the liver in a mouse model.

    OpenAIRE

    Colantoni, Alessandra; Idilman, Ramazan; De Maria, Nicola; Duffner, Lisa A.; VAN THIEL, DAVID H.; Witte, Pamela L.; Kovacs, Elizabeth J.

    2001-01-01

    The aim of the present study was to determine whether oxidative stress contributes to aging of the liver in a mouse model. Liver was obtained from young (3–5 months old) and aged (18–24 months old) mice. No age-induced gross changes in liver morphology were detected by light microscopy. Apoptosis was measured using the fragment end labeling of DNA for the immunohistochemical identification of the apoptotic nuclei. The total apoptotic cells represented 1% of the total cells in livers of young ...

  7. Co-expression network analysis identifies transcriptional modules in the mouse liver.

    Science.gov (United States)

    Liu, Wei; Ye, Hua

    2014-10-01

    The mouse liver transcriptome has been extensively studied but little is known about the global hepatic gene network of the mouse under normal physiological conditions. Understanding this will help reveal the transcriptional organization of the liver and elucidate its functional complexity. Here, weighted gene co-expression network analysis (WGCNA) was carried out to explore gene co-expression networks using large-scale microarray data from normal mouse livers. A total of 7,203 genes were parsed into 16 gene modules associated with protein catabolism, RNA processing, muscle contraction, transcriptional regulation, oxidation reduction, sterol biosynthesis, translation, fatty acid metabolism, immune response and others. The modules were organized into higher order co-expression groups. Hub genes in each module were found to be critical for module function. In sum, the analyses revealed the gene modular map of the mouse liver under normal physiological condition. These results provide a systems-level framework to help understand the complexity of the mouse liver at the molecular level, and should be beneficial in annotating uncharacterized genes. PMID:24816893

  8. Adrenergic regulation of clock gene expression in mouse liver

    OpenAIRE

    Terazono, Hideyuki; Mutoh, Tatsushi; Yamaguchi, Shun; Kobayashi, Masaki; Akiyama, Masashi; Udo, Rhyuta; Ohdo, Shigehiro; Okamura, Hitoshi; Shibata, Shigenobu

    2003-01-01

    A main oscillator in the suprachiasmatic nucleus (SCN) conveys circadian information to the peripheral clock systems for the regulation of fundamental physiological functions. Although polysynaptic autonomic neural pathways between the SCN and the liver were observed in rats, whether activation of the sympathetic nervous system entrains clock gene expression in the liver has yet to be understood. To assess sympathetic innervation from the SCN to liver tissue, we investigated whether inj...

  9. Interleukins in chronic liver disease: lessons learned from experimental mouse models

    Directory of Open Access Journals (Sweden)

    Hammerich L

    2014-09-01

    Full Text Available Linda Hammerich, Frank Tacke Department of Medicine III, University Hospital Aachen, Aachen, Germany Abstract: Interleukins represent a class of immunomodulatory cytokines, small intercellular signaling proteins, that are critically involved in the regulation of immune responses. They are produced in large amounts by various cell types during inflammatory reactions, and the balance of cytokines determines the outcome of an immune response. Therefore, cytokines are regarded as interesting therapeutic targets for the treatment of patients with liver diseases. Mouse models provide a good tool for in vivo studies on cytokine function, as human and mouse cytokines share many homologies. Sophisticated mouse models either mimicking distinct pathological conditions or targeting cytokines and cytokine-signaling pathways in the liver or even in distinct cellular compartments have provided enormous insight into the different functions of interleukins during hepatic inflammation. Interleukins may have pro- as well as anti-inflammatory functions in chronic liver diseases, some interleukins even both, dependent on the inflammatory stimulus, the producing and the responding cell type. IL-17, for example, promotes hepatic fibrogenesis through activation of hepatic stellate cells and facilitates development of liver cancer through recruitment of myeloid-derived suppressor cells. IL-22, on the other hand, protects from development of fibrosis or steatohepatitis. IL-12 balances T-helper (Th-1 and Th2 cell responses in infectious disease models. IL-13 and IL-33, two cytokines related to Th2 cells and innate lymphoid cells, promote fibrotic responses in the liver. IL-10 is the prototypic anti-inflammatory interleukin with tissue-protective functions during chronic liver injury and fibrogenesis. Despite its critical role for inducing the acute-phase response in the liver, IL-6 signaling is protective during fibrosis progression, but promotes hepatocellular carcinoma

  10. Mouse models in liver cancer research: A review of current literature

    Institute of Scientific and Technical Information of China (English)

    Martijn WH Leenders; Maarten W Nijkamp; Inne HM Borel Rinkes

    2008-01-01

    Primary liver cancer remains one of the most lethal malignancies worldwide. Due to differences in prevalence of etiological factors the incidence of primary liver cancer varies among the world, with a peak in EasL-Asia. As this disease is still lethal in most of the cases, research has to be done to improve our understanding of the disease, offering insights for possible treatment options. For this purpose, animal models are widely used,especially mouse models. In this review, we describe the different types of mouse models used in liver cancer research, with emphasis on genetically engineered mice used in this field. We focus on hepatocellular carcinoma (HCC), as this is by far the most common Lype of primary liver cancer, accounting for 70%-85% of cases.

  11. Malaria Liver Stage Susceptibility Locus Identified on Mouse Chromosome 17 by Congenic Mapping

    OpenAIRE

    Lígia Antunes Gonçalves; Paulo Almeida; Maria Manuel Mota; Carlos Penha-Gonçalves

    2008-01-01

    Host genetic variants are known to confer resistance to Plasmodium blood stage infection and to control malaria severity both in humans and mice. This work describes the genetic mapping of a locus for resistance to liver stage parasite in the mouse. First, we show that decreased susceptibility to the liver stage of Plasmodium berghei in the BALB/c mouse strain is attributable to intra-hepatic factors and impacts on the initial phase of blood stage infection. We used QTL mapping techniques to ...

  12. A novel method of mouse ex utero transplantation of hepatic progenitor cells into the fetal liver

    International Nuclear Information System (INIS)

    Avoiding the limitations of the adult liver niche, transplantation of hepatic stem/progenitor cells into fetal liver is desirable to analyze immature cells in a hepatic developmental environment. Here, we established a new monitor tool for cell fate of hepatic progenitor cells transplanted into the mouse fetal liver by using ex utero surgery. When embryonic day (ED) 14.5 hepatoblasts were injected into the ED14.5 fetal liver, the transplanted cells expressed albumin abundantly or α-fetoprotein weakly, and contained glycogen in the neonatal liver, indicating that transplanted hepatoblasts can proliferate and differentiate in concord with surrounding recipient parenchymal cells. The transplanted cells became mature in the liver of 6-week-old mice. Furthermore, this method was applicable to transplantation of hepatoblast-like cells derived from mouse embryonic stem cells. These data indicate that this unique technique will provide a new in vivo experimental system for studying cell fate of hepatic stem/progenitor cells and liver organogenesis.

  13. Reference gene selection for real-time RT-PCR in regenerating mouse livers

    International Nuclear Information System (INIS)

    The liver has an intrinsic ability to undergo active proliferation and recover functional liver mass in response to an injury response. This regenerative process involves a complex yet well orchestrated change in the gene expression profile. To produce accurate and reliable gene expression of target genes during various stages of liver regeneration, the determination of internal control housekeeping genes (HKGs) those are uniformly expressed is required. In the present study, the gene expression of 8 commonly used HKGs, including GAPDH, ACTB, HPRT1, GUSB, PPIA, TBP, TFRC, and RPL4, were studied using mouse livers that were quiescent and actively regenerating induced by partial hepatectomy. The amplification of the HKGs was statistically analyzed by two different mathematical algorithms, geNorm and NormFinder. Using this method, PPIA and TBP gene expression found to be relatively stable regardless of the stages of liver regeneration and would be ideal for normalization to target gene expression

  14. Metabolism, genomics, and DNA repair in the mouse aging liver

    DEFF Research Database (Denmark)

    Lebel, Michel; de Souza-Pinto, Nadja C; Bohr, Vilhelm A

    2011-01-01

    , such as oxidized bases or persistent breaks, increase with age and correlate well with the presence of senescent hepatocytes. The level of DNA damage and/or mutation can be affected by changes in carcinogen activation, decreased ability to repair DNA, or a combination of these factors. This paper...... covers some of the DNA repair pathways affecting liver homeostasis with age using rodents as model systems....... hepatic metabolic and detoxification activities, with implications for systemic aging and age-related disease. It has become clear, using rodent models as biological tools, that genetic instability in the form of gross DNA rearrangements or point mutations accumulate in the liver with age. DNA lesions...

  15. Genotoxic, epigenetic, and transcriptomic effects of tamoxifen in mouse liver

    International Nuclear Information System (INIS)

    Highlights: • Treatment of female mice with tamoxifen caused genotoxic changes in the livers. • Tamoxifen treatment did not affect the hepatic epigenome. • Tamoxifen caused over-expression of hepatic Lcn13 and Pparγ genes. • Mice are resistant to tamoxifen-induced liver carcinogenesis and fatty liver injury. - Abstract: Tamoxifen is a non-steroidal anti-estrogenic drug widely used for the treatment and prevention of breast cancer in women; however, there is evidence that tamoxifen is hepatocarcinogenic in rats, but not in mice. Additionally, it has been reported that tamoxifen may cause non-alcoholic fatty liver disease (NAFLD) in humans and experimental animals. The goals of the present study were to (i) investigate the mechanisms of the resistance of mice to tamoxifen-induced hepatocarcinogenesis, and (ii) clarify effects of tamoxifen on NAFLD-associated liver injury. Feeding female WSB/EiJ mice a 420 p.p.m. tamoxifen-containing diet for 12 weeks resulted in an accumulation of tamoxifen-DNA adducts, (E)-α-(deoxyguanosin-N2-yl)-tamoxifen (dG-TAM) and (E)-α-(deoxyguanosin-N2-yl)-N-desmethyltamoxifen (dG-DesMeTAM), in the livers. The levels of hepatic dG-TAM and dG-DesMeTAM DNA adducts in tamoxifen-treated mice were 578 and 340 adducts/108 nucleotides, respectively, while the extent of global DNA and repetitive elements methylation and histone modifications did not differ from the values in control mice. Additionally, there was no biochemical or histopathological evidence of NAFLD-associated liver injury in mice treated with tamoxifen. A transcriptomic analysis of differentially expressed genes demonstrated that tamoxifen caused predominantly down-regulation of hepatic lipid metabolism genes accompanied by a distinct over-expression of the lipocalin 13 (Lcn13) and peroxisome proliferator receptor gamma (Pparγ), which may prevent the development of NAFLD. The results of the present study demonstrate that the resistance of mice to tamoxifen-induced liver

  16. Genetic variation in the metabolism of coumarin in mouse liver

    NARCIS (Netherlands)

    Lovell, D.P.; Iersel, van M.P.L.S.; Walters, D.G.; Price, R.J.; Lake, B.G.

    1999-01-01

    The metabolism of 50 μM [3-14C] coumarin to polar products separated by high performance liquid chromatography (HPLC) and covalently bound metabolites in liver microsomes was compared in a series of inbred strains of mice. Coumarin metabolism to total polar products was higher in female than male mi

  17. 31P-NMR studies on perfused mouse liver

    International Nuclear Information System (INIS)

    From a metabolic viewpoint, the most important organ in the body is the liver. In contrast to more specialized organs such as heart and kidney which perform only one major function, the liver performs a number of major metabolic functions. Two of the most important functions are the catabolism and storage of foodstuffs (in the form of glycogen) and the control of most of the constituents of the blood (in particular, the blood glucose level). Most of these functions are localized within a single type of cell. One way that the liver is able to regulate these diverse reactions is by the control of the ATP level in the cell. Encouraged by the recent success of many groups in using 31P-NMR to provide a continuous and non-destructive monitor of ATP levels in isolated cells, skeletal muscle, and perfused organs such as heart and kidney, 31P-NMR was used to investigate ATP levels in perfused liver of mice

  18. Protracted elimination of gold nanoparticles from mouse liver

    DEFF Research Database (Denmark)

    Sadauskas, Evaldas; Wallin, Håkan; Stoltenberg, Meredin;

    2009-01-01

    The present study aims at revealing the fate of 40-nm gold nanoparticles after intravenous injections. The gold nanoparticles were traced histochemically with light and transmission electron microscopy using autometallographic (AMG) staining, and the gold content in the liver was determined with ...

  19. Effect of lipid composition of liposomes on their clearance from the blood stream and accumulation in the mouse liver

    International Nuclear Information System (INIS)

    The authors study the effect of the phospholipid and glycolipid composition of the liposomes on their elimination time from the circulation and on their accumulation in the mouse liver. Liposomes were obtained from ovolecithin, cholesterol, and cholesteryl-14C-oleate. It is shown that liposomes obtained from total liver phospholipids and with the addition of gangliosides from the liver can, in principle, be used for supplying physiologically active substances rapidly and efficiently to the liver cells

  20. Adult mouse model of early hepatocellular carcinoma promoted by alcoholic liver disease

    Science.gov (United States)

    Ambade, Aditya; Satishchandran, Abhishek; Gyongyosi, Benedek; Lowe, Patrick; Szabo, Gyongyi

    2016-01-01

    AIM: To establish a mouse model of alcohol-driven hepatocellular carcinoma (HCC) that develops in livers with alcoholic liver disease (ALD). METHODS: Adult C57BL/6 male mice received multiple doses of chemical carcinogen diethyl nitrosamine (DEN) followed by 7 wk of 4% Lieber-DeCarli diet. Serum alanine aminotransferase (ALT), alpha fetoprotein (AFP) and liver Cyp2e1 were assessed. Expression of F4/80, CD68 for macrophages and Ly6G, MPO, E-selectin for neutrophils was measured. Macrophage polarization was determined by IL-1β/iNOS (M1) and Arg-1/IL-10/CD163/CD206 (M2) expression. Liver steatosis and fibrosis were measured by oil-red-O and Sirius red staining respectively. HCC development was monitored by magnetic resonance imaging, confirmed by histology. Cellular proliferation was assessed by proliferating cell nuclear antigen (PCNA). RESULTS: Alcohol-DEN mice showed higher ALTs than pair fed-DEN mice throughout the alcohol feeding without weight gain. Alcohol feeding resulted in increased ALT, liver steatosis and inflammation compared to pair-fed controls. Alcohol-DEN mice had reduced steatosis and increased fibrosis indicating advanced liver disease. Molecular characterization showed highest levels of both neutrophil and macrophage markers in alcohol-DEN livers. Importantly, M2 macrophages were predominantly higher in alcohol-DEN livers. Magnetic resonance imaging revealed increased numbers of intrahepatic cysts and liver histology confirmed the presence of early HCC in alcohol-DEN mice compared to all other groups. This correlated with increased serum alpha-fetoprotein, a marker of HCC, in alcohol-DEN mice. PCNA immunostaining revealed significantly increased hepatocyte proliferation in livers from alcohol-DEN compared to pair fed-DEN or alcohol-fed mice. CONCLUSION: We describe a new 12-wk HCC model in adult mice that develops in livers with alcoholic hepatitis and defines ALD as co-factor in HCC. PMID:27122661

  1. Detection of differentially expressed candidate genes for a fatty liver QTL on mouse chromosome 12

    OpenAIRE

    Kobayashi, Misato; Suzuki, Miyako; Ohno, Tamio; Tsuzuki, Kana; Taguchi, Chie; Tateishi, Soushi; Kawada, Teruo; Kim, Young-Il; Murai, Atsushi; Horio, Fumihiko

    2016-01-01

    Background The SMXA-5 mouse is an animal model of high-fat diet-induced fatty liver. The major QTL for fatty liver, Fl1sa on chromosome 12, was identified in a SM/J × SMXA-5 intercross. The SMXA-5 genome consists of the SM/J and A/J genomes, and the A/J allele of Fl1sa is a fatty liver-susceptibility allele. The existence of the responsible genes for fatty liver within Fl1sa was confirmed in A/J-12SM consomic mice. The aim of this study was to identify candidate genes for Fl1sa, and to invest...

  2. Expression of tissue inhibitor of matrix metalloproteinase-1 in aging of transgenic mouse liver

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Background Tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) is related to the aging of many organs, but few data are available on the change of TIMP-1 in liver aging. The purpose of this study was to investigate the expression and role of TIMP-1, matrix metalloproteinase-2 (MMP-2) and MMP-9 in the process of natural aging in the livers of normal and transgenic mice, and to detect the effects of TIMP-1 on oxidative level and anti-oxidative ability of the livers of transgenic young mice.Methods Normal and transgenic mice were divided into 3 groups according to their age: 3-month-old group (n=5), 12-month-old group (n=5) and 24-month-old group (n=5). Histopathological changes of the liver were observed after HE and Masson staining. The messenger RNA (mRNA) levels of TIMP-1, MMP-2 and MMP-9 were determined by semi-quantitative reverse transcriptional polymerase chain reaction; protein expression was measured by Western blot in the livers of normal and transgenic mice of various ages. Changes in levels of superoxide dismutase (SOD), monoamine oxidase (MAO), malondialdehyde (MDA) as well as oxidative and anti-oxidative ability were measured.Results Histologically, more fatty degeneration and collagen deposition were found in the aging livers of transgenic mice than in those of the normal mice as their age of months increased. The mRNA and protein expressions of TIMP-1 were significantly high in the oldest animals. The histopathological changes, mRNA and protein expressions of TIMP-1 increased significantly in the liver of transgenic mice as compared with normal mice. The expression of MMP-2 and MMP-9 showed a minor change in the process of aging. Liver change and collagen deposition were not observed in young mice, but the activity of SOD decreased (P<0.05), and the activity of MAO (P<0.01) and the content of MDA increased in the liver of transgenic mice (P<0.01).Conclusions The expression of TIMP-1 is significantly high in the liver of transgenic mouse in the

  3. Dataset from proteomic analysis of rat, mouse, and human liver microsomes and S9 fractions

    OpenAIRE

    Makan Golizeh; Christina Schneider; Leanne B. Ohlund; Lekha Sleno

    2015-01-01

    Rat, mouse and human liver microsomes and S9 fractions were analyzed using an optimized method combining ion exchange fractionation of digested peptides, and ultra-high performance liquid chromatography (UHPLC) coupled to high resolution tandem mass spectrometry (HR-MS/MS). The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository (Vizcaíno et al., 2013 [1]) with the dataset identif...

  4. PATHOPHYSIOLOGIC BASIS OF LIVER DISEASE IN CYSTIC FIBROSIS EMPLOYING A ΔF508 MOUSE MODEL

    OpenAIRE

    Freudenberg, Folke; BRODERICK, ANNEMARIE L.; Yu, Bian B.; Leonard, Monika R.; Glickman, Jonathan N.; CAREY, MARTIN C.

    2008-01-01

    The molecular pathogenesis of cystic fibrosis (CF) liver disease is unknown. This study investigates its earliest pathophysiologic manifestations employing a mouse model carrying ΔF508, the commonest human CF mutation. We hypothesized that, if increased bile salt spillage into the colon occurs as in the human disease, this should lead to a hydrophobic bile salt profile and to “hyperbilirubinbilia” because of induced enterohepatic cycling of unconjugated bilirubin. Hyperbilirubinbilia may then...

  5. Repair of radiation damages to haemopoietic stem cells of mouse embryonal liver: kinetic aspects

    International Nuclear Information System (INIS)

    The method of fractionated irradiation was used to study kinetic aspects of repair of sublethal radiation damages in precursor cells from mouse embryonal liver that form in vivo colonies on 8th and 11th days. It was shown that 11-day CFUs had a lesser ability to repair sublethal radiation damages than 8-day ones at different time-intervals between radiation fractions (from 2 to 6 h). These two CFUs subpopulations differed also in the repair kinetics

  6. Effects of thyroxine on L-cysteine desulfuration in mouse liver.

    OpenAIRE

    Wróbel M; Ubuka T; Yao WB; Abe T

    2000-01-01

    The effect of exogenous thyroxine (T4) administration on the activity of rhodanese, cystathionase, and 3-mercaptopyruvate sulfurtransferase (MPST) in the mitochondrial and cytosolic fractions of mouse liver was investigated. Three groups of mice were treated for 6 consecutive days with subcutaneous injections of T4 (50 micrograms, 100 micrograms, and 250 micrograms per 100 g of body wt, respectively). The other 3 groups were given 100 micrograms of T4 per 100 g of body wt for 1, 2, or 3 days....

  7. Effects of social isolation stress on immune response and survival time of mouse with liver cancer

    Institute of Scientific and Technical Information of China (English)

    Hui Liu; Zhun Wang

    2005-01-01

    AIM: To investigate the effects of isolation stress on mouse with liver cancer and possible associated mechanisms.METHODS: Transplantable murine hepatoma22 (H22) model was used to evaluate the effects of social isolation stress on murine liver cancer. Mice were immunized with sheep red blood cell (SRBC) and intraperitoneally inoculated with H22 cell, then divided into two groups, one reared individually as group (Ⅰ) and the other reared in groups as group (G). Titer of antibody to SRBC and interleukin 2 (IL-2) in serum was monitored. The survival time of mouse with liver cancer was observed.RESULTS: The titer of antibody to SRBC in group (G) was 1:24.5 and that in group (Ⅰ) was 1:11.2. There was a significant difference between these two groups (t = 2.60,P = 0.02). A significant difference in IL-2 concentration was observed between group (G) (39.6 ng/L) and group (Ⅰ) (47.1 ng/L, t= 2.14, P = 0.046). The survival time in group (G) (16.5 d) was markedly longer than that in group (Ⅰ) (13.2 d, t = 3.46, P = 0.002).CONCLUSION: Our study suggests that survival time of the mouse bearing H22 tumor is affected by the social isolation stress and the associated mechanism may be the immunological changes under the social isolation stress.

  8. Regulation of retinoid X receptor gamma expression by fed state in mouse liver

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sangkyu, E-mail: 49park@cku.ac.kr [Department of Biochemistry, College of Medicine, Catholic Kwandong University, Gangneung 210-701 (Korea, Republic of); Lee, Yoo Jeong [Division of Metabolic Disease, Center for Biomedical Sciences, National Institute of Health Korea, Osong 361-709 (Korea, Republic of); Ko, Eun Hee [Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Kim, Jae-woo [Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 120-752 (Korea, Republic of)

    2015-02-27

    Glucose metabolism is balanced by glycolysis and gluconeogenesis with precise control in the liver. The expression of genes related to glucose metabolism is regulated primarily by glucose and insulin at transcriptional level. Nuclear receptors play important roles in regulating the gene expression of glucose metabolism at transcriptional level. Some of these nuclear receptors form heterodimers with RXRs to bind to their specific regulatory elements on the target promoters. To date, three isotypes of RXRs have been identified; RXRα, RXRβ and RXRγ. However, their involvement in the interactions with other nuclear receptors in the liver remains unclear. In this study, we found RXRγ is rapidly induced after feeding in the mouse liver, indicating a potential role of RXRγ in controlling glucose or lipid metabolism in the fasting–feeding cycle. In addition, RXRγ expression was upregulated by glucose in primary hepatocytes. This implies that glucose metabolism governed by RXRγ in conjunction with other nuclear receptors. The luciferase reporter assay showed that RXRγ as well as RXRα increased SREBP-1c promoter activity in hepatocytes. These results suggest that RXRγ may play an important role in tight control of glucose metabolism in the fasting–feeding cycle. - Highlights: • Refeeding increases the RXRγ expression level in mouse liver. • RXRγ expression is induced by high glucose condition in primary hepatocytes. • RXRγ and LXRα have synergistic effect on SREBP-1c promoter activity. • RXRγ binds to LXRE(-299/-280) located within SREBP-1c promoter region and interacts with LXRα.

  9. Regulation of retinoid X receptor gamma expression by fed state in mouse liver

    International Nuclear Information System (INIS)

    Glucose metabolism is balanced by glycolysis and gluconeogenesis with precise control in the liver. The expression of genes related to glucose metabolism is regulated primarily by glucose and insulin at transcriptional level. Nuclear receptors play important roles in regulating the gene expression of glucose metabolism at transcriptional level. Some of these nuclear receptors form heterodimers with RXRs to bind to their specific regulatory elements on the target promoters. To date, three isotypes of RXRs have been identified; RXRα, RXRβ and RXRγ. However, their involvement in the interactions with other nuclear receptors in the liver remains unclear. In this study, we found RXRγ is rapidly induced after feeding in the mouse liver, indicating a potential role of RXRγ in controlling glucose or lipid metabolism in the fasting–feeding cycle. In addition, RXRγ expression was upregulated by glucose in primary hepatocytes. This implies that glucose metabolism governed by RXRγ in conjunction with other nuclear receptors. The luciferase reporter assay showed that RXRγ as well as RXRα increased SREBP-1c promoter activity in hepatocytes. These results suggest that RXRγ may play an important role in tight control of glucose metabolism in the fasting–feeding cycle. - Highlights: • Refeeding increases the RXRγ expression level in mouse liver. • RXRγ expression is induced by high glucose condition in primary hepatocytes. • RXRγ and LXRα have synergistic effect on SREBP-1c promoter activity. • RXRγ binds to LXRE(-299/-280) located within SREBP-1c promoter region and interacts with LXRα

  10. Fulminant liver failure models with subsequent encephalopathy in the mouse

    Institute of Scientific and Technical Information of China (English)

    Ann-Marie T Baine; Tomohide Hori; Feng Chen; Lindsay B Gardner; Shinji Uemoto; Justin H Nguyen

    2011-01-01

    BACKGROUND:  A reliable model of fulminant liver failure (FLF) is urgently required in this research field. This study aimed to develop a murine FLF model. METHODS: We used three groups of male C57BL/6 mice:control, with azoxymethane treatment (AOM group), and with galactosamine and tumor necrosis factor-alpha treatment (Gal+TNF-α group). The effects of body temperature (BT) control on survival in all three groups were investigated. Using BT control, we compared the survival, histopathological findings and biochemical/coagulation profiles between the two experimental groups. The effects of hydration on international normalized ratios of prothrombin time (PT-INRs) were also checked. Dose-dependent survival curves were constructed for both experimental groups. Neurological behavior was assessed using a coma scale. RESULTS: No unexpected BT effects were seen in the control group. The AOM group, but not the Gal+TNF-α group, showed a significant difference in survival curves between those with and without BT care. Histopathological assessment showed consistent FLF findings in both experimental groups with BT care. There were significant differences between the experimental groups in aspartate aminotransferase levels and PT-INRs, and significant differences in PT-INRs between the sufficiently and insufficiently hydrated groups. There were significant differences between FLF models in the duration of each coma stage, with significant differences in stages 1 and 3 as percentages of the disease state (stages 1-4). The two FLF models with BT care showed different survival curves in the dose-dependent survival study. CONCLUSIONS: AOM provides a good FLF model, but requires a specialized environment and careful BT control. Other FLF models may also be useful, depending on the research purpose. Thoughtful attention to caregiving and close observation are indispensable for successful FLF models.

  11. Liver fatty acid-binding protein binds monoacylglycerol in vitro and in mouse liver cytosol.

    Science.gov (United States)

    Lagakos, William S; Guan, Xudong; Ho, Shiu-Ying; Sawicki, Luciana Rodriguez; Corsico, Betina; Kodukula, Sarala; Murota, Kaeko; Stark, Ruth E; Storch, Judith

    2013-07-01

    Liver fatty acid-binding protein (LFABP; FABP1) is expressed both in liver and intestinal mucosa. Mice null for LFABP were recently shown to have altered metabolism of not only fatty acids but also monoacylglycerol, the two major products of dietary triacylglycerol hydrolysis (Lagakos, W. S., Gajda, A. M., Agellon, L., Binas, B., Choi, V., Mandap, B., Russnak, T., Zhou, Y. X., and Storch, J. (2011) Am. J. Physiol. Gastrointest. Liver Physiol. 300, G803-G814). Nevertheless, the binding and transport of monoacylglycerol (MG) by LFABP are uncertain, with conflicting reports in the literature as to whether this single chain amphiphile is in fact bound by LFABP. In the present studies, gel filtration chromatography of liver cytosol from LFABP(-/-) mice shows the absence of the low molecular weight peak of radiolabeled monoolein present in the fractions that contain LFABP in cytosol from wild type mice, indicating that LFABP binds sn-2 MG in vivo. Furthermore, solution-state NMR spectroscopy demonstrates two molecules of sn-2 monoolein bound in the LFABP binding pocket in positions similar to those found for oleate binding. Equilibrium binding affinities are ∼2-fold lower for MG compared with fatty acid. Finally, kinetic studies examining the transfer of a fluorescent MG analog show that the rate of transfer of MG is 7-fold faster from LFABP to phospholipid membranes than from membranes to membranes and occurs by an aqueous diffusion mechanism. These results provide strong support for monoacylglycerol as a physiological ligand for LFABP and further suggest that LFABP functions in the efficient intracellular transport of MG. PMID:23658011

  12. Liver Fatty Acid-binding Protein Binds Monoacylglycerol in Vitro and in Mouse Liver Cytosol*

    Science.gov (United States)

    Lagakos, William S.; Guan, Xudong; Ho, Shiu-Ying; Sawicki, Luciana Rodriguez; Corsico, Betina; Kodukula, Sarala; Murota, Kaeko; Stark, Ruth E.; Storch, Judith

    2013-01-01

    Liver fatty acid-binding protein (LFABP; FABP1) is expressed both in liver and intestinal mucosa. Mice null for LFABP were recently shown to have altered metabolism of not only fatty acids but also monoacylglycerol, the two major products of dietary triacylglycerol hydrolysis (Lagakos, W. S., Gajda, A. M., Agellon, L., Binas, B., Choi, V., Mandap, B., Russnak, T., Zhou, Y. X., and Storch, J. (2011) Am. J. Physiol. Gastrointest. Liver Physiol. 300, G803–G814). Nevertheless, the binding and transport of monoacylglycerol (MG) by LFABP are uncertain, with conflicting reports in the literature as to whether this single chain amphiphile is in fact bound by LFABP. In the present studies, gel filtration chromatography of liver cytosol from LFABP−/− mice shows the absence of the low molecular weight peak of radiolabeled monoolein present in the fractions that contain LFABP in cytosol from wild type mice, indicating that LFABP binds sn-2 MG in vivo. Furthermore, solution-state NMR spectroscopy demonstrates two molecules of sn-2 monoolein bound in the LFABP binding pocket in positions similar to those found for oleate binding. Equilibrium binding affinities are ∼2-fold lower for MG compared with fatty acid. Finally, kinetic studies examining the transfer of a fluorescent MG analog show that the rate of transfer of MG is 7-fold faster from LFABP to phospholipid membranes than from membranes to membranes and occurs by an aqueous diffusion mechanism. These results provide strong support for monoacylglycerol as a physiological ligand for LFABP and further suggest that LFABP functions in the efficient intracellular transport of MG. PMID:23658011

  13. Gene Expression Profile Change and Associated Physiological and Pathological Effects in Mouse Liver Induced by Fasting and Refeeding

    OpenAIRE

    Zhang, Fang; Xu, Xiang; Zhou, Ben; He, Zhishui; Zhai, Qiwei

    2011-01-01

    Food availability regulates basal metabolism and progression of many diseases, and liver plays an important role in these processes. The effects of food availability on digital gene expression profile, physiological and pathological functions in liver are yet to be further elucidated. In this study, we applied high-throughput sequencing technology to detect digital gene expression profile of mouse liver in fed, fasted and refed states. Totally 12162 genes were detected, and 2305 genes were si...

  14. Epigenetic regulation of developmental expression of Cyp2d genes in mouse liver

    Directory of Open Access Journals (Sweden)

    Ye Li

    2012-04-01

    Full Text Available CYP2D6 expression in liver is age-dependent. Because epigenetic mechanisms, such as DNA methylation and histone modifications, modulate age-related gene expression during development, and are highly conserved among species, the current study examined the epigenetic regulation of age-related expression of the Cyp2d genes in mouse liver. DNA methylation (DNAme, histone 3 lysine 4 dimethylation (H3K4me2, and histone 3 lysine 27 trimethylation (H3K27me3 was established by ChIP-on-chip tiling microarrays from mouse livers at prenatal, neonatal, and adult stages. Levels of DNAme, H3K4me2, and H3K27me3 were analyzed in a genomic region containing the Cyp2d clustering genes and their surrounding genes. Gradually increased expression levels of the Cyp2d9, Cyp2d10, Cyp2d22, and Cyp2d26 genes from prenatal, through neonatal, to adult are associated with gradually increased levels of H3K4me2 in the nucleosomes associated with these genes. Gene expression patterns during liver development in several Cyp2d surrounding genes, such as Srebf2, Sept3, Ndufa6, Tcf2, Nfam1, and Cyb5r3, could be also explained by changes of DNA methylation, H3K4me2, or H3K27me3 in those genes. In conclusion, the current study demonstrates that the changes of DNA methylation and histone modifications are associated with age-related expression patterns of the Cyp2d genes and their surrounding genes in liver cells during development.

  15. Evaluation of immunological escape mechanisms in a mouse model of colorectal liver metastases

    International Nuclear Information System (INIS)

    The local and systemic activation and regulation of the immune system by malignant cells during carcinogenesis is highly complex with involvement of the innate and acquired immune system. Despite the fact that malignant cells do have antigenic properties their immunogenic effects are minor suggesting tumor induced mechanisms to circumvent cancer immunosurveillance. The aim of this study is the analysis of tumor immune escape mechanisms in a colorectal liver metastases mouse model at different points in time during tumor growth. CT26.WT murine colon carcinoma cells were injected intraportally in Balb/c mice after median laparotomy using a standardized injection technique. Metastatic tumor growth in the liver was examined by standard histological procedures at defined points in time during metastatic growth. Liver tissue with metastases was additionally analyzed for cytokines, T cell markers and Fas/Fas-L expression using immunohistochemistry, immunofluorescence and RT-PCR. Comparisons were performed by analysis of variance or paired and unpaired t test when appropriate. Intraportal injection of colon carcinoma cells resulted in a gradual and time dependent metastatic growth. T cells of regulatory phenotype (CD4+CD25+Foxp3+) which might play a role in protumoral immune response were found to infiltrate peritumoral tissue increasingly during carcinogenesis. Expression of cytokines IL-10, TGF-β and TNF-α were increased during tumor growth whereas IFN-γ showed a decrease of the expression from day 10 on following an initial increase. Moreover, liver metastases of murine colon carcinoma show an up-regulation of FAS-L on tumor cell surface with a decreased expression of FAS from day 10 on. CD8+ T cells express FAS and show an increased rate of apoptosis at perimetastatic location. This study describes cellular and macromolecular changes contributing to immunological escape mechanisms during metastatic growth in a colorectal liver metastases mouse model simulating the

  16. Amarogentin regulates self renewal pathways to restrict liver carcinogenesis in experimental mouse model.

    Science.gov (United States)

    Sur, Subhayan; Pal, Debolina; Banerjee, Kaustav; Mandal, Suvra; Das, Ashes; Roy, Anup; Panda, Chinmay Kumar

    2016-07-01

    Amarogentin, a secoiridoid glycoside isolated from medicinal plant Swertia chirata, was found to restrict CCl4 /N-nitrosodiethyl amine (NDEA) induced mouse liver carcinogenesis by modulating G1/S cell cycle check point and inducing apoptosis. To understand its therapeutic efficacy on stem cell self renewal pathways, prevalence of CD44 positive cancer stem cell (CSC) population, expressions (mRNA/protein) of some key regulatory genes of self renewal Wnt and Hedgehog pathways along with expressions of E-cadherin and EGFR were analyzed during the liver carcinogenesis and in liver cancer cell line HepG2. It was observed that amarogentin could significantly reduce CD44 positive CSCs in both pre and post initiation stages of carcinogenesis than carcinogen control mice. In Wnt pathway, amarogentin could inhibit expressions of β-catenin, phospho β-catenin (Y-654) and activate expressions of antagonists sFRP1/2 and APC in the liver lesions. In Hedgehog pathway, decreased expressions of Gli1, sonic hedgehog ligand, and SMO along with up-regulation of PTCH1 were seen in the liver lesions due to amarogentin treatment. Moreover, amarogentin could up-regulate E-cadherin expression and down-regulate expression of EGFR in the liver lesions. Similarly, amarogentin could inhibit HepG2 cell growth along with expression and prevalence of CD44 positive CSCs. Similar to in vivo analysis, amarogentin could modulate the expressions of the key regulatory genes of the Wnt and hedgehog pathways and EGFR in HepG2 cells. Thus, our data suggests that the restriction of liver carcinogenesis by amarogentin might be due to reduction of CD44 positive CSCs and modulation of the self renewal pathways. © 2015 Wiley Periodicals, Inc. PMID:26154024

  17. Time-course comparison of xenobiotic activators of CAR and PPARα in mouse liver

    International Nuclear Information System (INIS)

    Constitutive androstane receptor (CAR) and peroxisome proliferator activated receptor (PPAR)α are transcription factors known to be primary mediators of liver effects, including carcinogenesis, by phenobarbital-like compounds and peroxisome proliferators, respectively, in rodents. Many similarities exist in the phenotypes elicited by these two classes of agents in rodent liver, and we hypothesized that the initial transcriptional responses to the xenobiotic activators of CAR and PPARα will exhibit distinct patterns, but at later time-points these biological pathways will converge. In order to capture the global transcriptional changes that result from activation of these nuclear receptors over a time-course in the mouse liver, microarray technology was used. First, differences in basal expression of liver genes between C57Bl/6J wild-type and Car-null mice were examined and 14 significantly differentially expressed genes were identified. Next, mice were treated with phenobarbital (100 mg/kg by gavage for 24 h, or 0.085% w/w diet for 7 or 28 days), and liver gene expression changes with regards to both time and treatment were identified. While several pathways related to cellular proliferation and metabolism were affected by phenobarbital in wild-type mice, no significant changes in gene expression were found over time in the Car-nulls. Next, we determined commonalities and differences in the temporal response to phenobarbital and WY-14,643, a prototypical activator of PPAR α. Gene expression signatures from livers of wild-type mice C57Bl6/J mice treated with PB or WY-14,643 were compared. Similar pathways were affected by both compounds; however, considerable time-related differences were present. This study establishes common gene expression fingerprints of exposure to activators of CAR and PPARα in rodent liver and demonstrates that despite similar phenotypic changes, molecular pathways differ between classes of chemical carcinogens

  18. Humanized Mouse Models to Study Cell-Mediated Immune Responses to Liver-Stage Malaria Vaccines.

    Science.gov (United States)

    Good, Michael F; Hawkes, Michael T; Yanow, Stephanie K

    2015-11-01

    Malaria vaccine development is hampered by the lack of small animal models that recapitulate human immune responses to Plasmodium falciparum. We review the burgeoning literature on humanized mice for P. falciparum infection, including challenges in engraftment of human immune cells, hepatocytes, and erythrocytes. Recent advances in immune-compromised mouse models and stem cell technology have already enabled proof of concept that the entire parasite life cycle can be sustained in a murine model and that adaptive human immune responses to several parasite stages can be measured. Nonetheless, optimization is needed to achieve a reproducible and relevant murine model for malaria vaccine development. This review is focused on the complexities of T cell development in a mouse humanized with both a lymphoid system and hepatocytes. An understanding of this will facilitate the use of humanized mice in the development of liver-stage vaccines. PMID:26458783

  19. Morphological Lesions in Mouse Liver and Lungs After Lung Exposure to Carbon Nanotubes

    DEFF Research Database (Denmark)

    Szarek, J.; Mortensen, Alicja; Jackson, P.; Saber, A.T.; Kyjovska, Z.O.; Wallin, H.; Vogel, U.; Hougaard, K.S.

    2013-01-01

    . Materials and Methods: One day before mating, 30 mice (C57BL/6BomTac, Taconic Europe, Denmark) were given 67 μg multi-walled carbon nanotubes (NM-400, Nanocyl, Belgium) intratracheally (group A). A further 30 control mice (group B) received vehicle (Millipore water with 2% mouse serum). Lungs and liver were...... macrophages. Oedema was slight in A2 mice, but infiltration of macrophages was more intense. In the liver, microfoci of necrosis, infiltration of inflammatory cells and lesions of Kupffer cells were more intense in A1 than A2 mice. Conclusions: Intratracheal exposure to multi-walled carbon nanotubes caused...... taken from six animals from each group for histopathological examination (haematoxylin and eosin staining) 6 weeks (A1, B1 group) and 4 months (A2, B2) after exposure. Results: Lungs in A1 mice showed bronchiolar subepithelial oedema and perivascular oedema and sporadic hyperaemia and the presence of...

  20. Morphological Lesions in Mouse Liver and Lungs After Lung Exposure to Carbon Nanotubes

    DEFF Research Database (Denmark)

    Szarek, J.; Mortensen, Alicja; Jackson, P.;

    2013-01-01

    Introduction: Engineered nanoparticles are smaller than 100 nm in at least one direction and designed to improve or achieve new physicochemical properties. Consequently, toxicological properties may also change. Carbon nanotubes have attracted industrial interest due to their unique properties....... Materials and Methods: One day before mating, 30 mice (C57BL/6BomTac, Taconic Europe, Denmark) were given 67 μg multi-walled carbon nanotubes (NM-400, Nanocyl, Belgium) intratracheally (group A). A further 30 control mice (group B) received vehicle (Millipore water with 2% mouse serum). Lungs and liver were...

  1. Perturbations in phosphoinositide metabolism and protein kinase C activity in mouse liver following whole body irradiation

    International Nuclear Information System (INIS)

    The involvement of the signal transduction pathway in mouse liver following whole body irradiation was investigated. Mice were exposed to 60Co gamma rays (3 Gy) and sacrificed after different time intervals. Various elements of phosphatidyl inositol signal transduction pathway were investigated. Alterations could be seen as early as 15 min of irradiation. These changes are reflected in elevation in DAG levels and increased activation of PKC, an enzyme which is involved in tumorigenesis. The chronological appearance of various transducers following whole body irradiation is of significance since these early effects may set the stage for radiation-induced tumorigenesis and hence may be used to manipulate tumor response to radiotherapy. (author)

  2. Gene expression profiling in the lung and liver of PFOA-exposed mouse fetuses

    International Nuclear Information System (INIS)

    Perfluorooctanoic acid (PFOA) is a stable perfluoroalkyl acid used to synthesize fluoropolymers during the manufacture of a wide variety of products. Concerns have been raised over the potential health effects of PFOA because it is persistent in the environment and can be detected in blood and other tissues of many animal species, including humans. PFOA has also been shown to induce growth deficits and mortality in murine neonates. To better understand the mechanism of PFOA induced developmental toxicity, lung and liver gene expression profiling was conducted in PFOA-exposed full-term mouse fetuses. Thirty timed-pregnant CD-1 mice were orally dosed from gestation days 1-17 with either 0, 1, 3, 5, or 10 mg/(kg day) PFOA in water. At term, fetal lung and liver were collected, total RNA prepared, and samples pooled from three fetuses per litter. Five biological replicates consisting of individual litter samples were then evaluated for each treatment group using Affymetrix mouse 4302 microarrays. The expression of genes related to fatty acid catabolism was altered in both the fetal liver and lung. In the fetal liver, the effects of PFOA were robust and also included genes associated with lipid transport, ketogenesis, glucose metabolism, lipoprotein metabolism, cholesterol biosynthesis, steroid metabolism, bile acid biosynthesis, phospholipid metabolism, retinol metabolism, proteosome activation, and inflammation. These changes are consistent with transactivation of PPARα, although, with regard to bile acid biosynthesis and glucose metabolism, non-PPARα related effects were suggested as well. Additional studies will be needed to more thoroughly address the role of PPARα, and other nuclear receptors, in PFOA mediated developmental toxicity

  3. CAR-mediated repression of Foxo1 transcriptional activity regulates the cell cycle inhibitor p21 in mouse livers

    International Nuclear Information System (INIS)

    Highlights: • CAR activation decreased the level of Foxo1 in mouse livers. • CAR activation decreased the level of p21 in mouse livers. • CAR activation inhibited Foxo1 transcriptional activity in mouse livers. - Abstract: 1,4-Bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP), an agonist of constitutive androstane receptor (CAR), is a well-known strong primary chemical mitogen for the mouse liver. Despite extensive investigation of the role of CAR in the regulation of cell proliferation, our knowledge of the intricate mediating mechanism is incomplete. In this study, we demonstrated that long-term CAR activation by TCPOBOP increased liver-to-body weight ratio and decreased tumour suppressor Foxo1 expression and transcriptional activity, which were correlated with reduced expression of genes regulated by Foxo1, including the cell-cycle inhibitor Cdkn1a(p21), and upregulation of the cell-cycle regulator Cyclin D1. Moreover, we demonstrated the negative regulatory effect of TCPOBOP-activated CAR on the association of Foxo1 with the target Foxo1 itself and Cdkn1a(p21) promoters. Thus, we identified CAR-mediated repression of cell cycle inhibitor p21, as mediated by repression of FOXO1 expression and transcriptional activity. CAR-FOXO1 cross-talk may provide new opportunities for understanding liver diseases and developing more effective therapeutic approaches to better drug treatments

  4. Macrophage Migration Inhibitor Factor Upregulates MCP-1 Expression in an Autocrine Manner in Hepatocytes during Acute Mouse Liver Injury

    Science.gov (United States)

    Xie, Jieshi; Yang, Le; Tian, Lei; Li, Weiyang; Yang, Lin; Li, Liying

    2016-01-01

    Macrophage migration inhibitor factor (MIF), a multipotent innate immune mediator, is an upstream component of the inflammatory cascade in diseases such as liver disease. Monocyte chemoattractant protein-1 (MCP-1), a highly representative chemokine, is critical in liver disease pathogenesis. We investigated the role of MIF in regulating hepatocytic MCP-1 expression. MIF and MCP-1 expression were characterized by immunochemistry, RT-PCR, ELISA, and immunoblotting in CCl4-treated mouse liver and isolated hepatocytes. MIF was primarily distributed in hepatocytes, and its expression increased upon acute liver injury. Its expression was also increased in injured hepatocytes, induced by LPS or CCl4, which mimic liver injury in vitro. MIF was expressed earlier than MCP-1, strongly inducing hepatocytic MCP-1 expression. Moreover, the increase in MCP-1 expression induced by MIF was inhibited by CD74- or CD44-specific siRNAs and SB203580, a p38 MAPK inhibitor. Further, CD74 or CD44 deficiency effectively inhibited MIF-induced p38 activation. MIF inhibitor ISO-1 reduced MCP-1 expression and p38 phosphorylation in CCl4-treated mouse liver. Our results showed that MIF regulates MCP-1 expression in hepatocytes of injured liver via CD74, CD44, and p38 MAPK in an autocrine manner, providing compelling information on the role of MIF in liver injury, and implying a new regulatory mechanism for liver inflammation. PMID:27273604

  5. Mouse precision-cut liver slices as an ex vivo model to study idiosyncratic drug-induced liver injury.

    Science.gov (United States)

    Hadi, Mackenzie; Chen, Yixi; Starokozhko, Viktoriia; Merema, Marjolijn T; Groothuis, Geny M M

    2012-09-17

    Idiosyncratic drug-induced liver injury (IDILI) has been the top reason for withdrawing drugs from the market or for black box warnings. IDILI may arise from the interaction of a drug's reactive metabolite with a mild inflammation that renders the liver more sensitive to injury resulting in increased toxicity (inflammatory stress hypothesis). Aiming to develop a robust ex vivo screening method to study inflammatory stress-related IDILI mechanisms and to find biomarkers that can detect or predict IDILI, mouse precision-cut liver slices (mPCLS) were coincubated for 24 h with IDILI-related drugs and lipopolysaccharide. Lipopolysaccharide exacerbated ketoconazole (15 μM) and clozapine (45 μM) toxicity but not their non-IDILI-related comparators, voriconazole (1500 μM) and olanzapine (45 μM). However, the other IDILI-related drugs tested [diclofenac (200 μM), carbamazepine (400 μM), and troglitazone (30 μM)] did not cause synergistic toxicity with lipopolysaccharide after 24 h of incubation. Lipopolysaccharide further decreased the reduced glutathione levels caused by ketoconazole or clozapine in mPCLS after 24 h of incubation, which was not the case for the other drugs. Lipopolysaccharide significantly increased nitric oxide (NO), cytokine, and chemokine release into the mPCLS media, while the treatment with the drugs alone did not cause any substantial change. All seven drugs drastically reduced lipopolysaccharide-induced NO production. Interestingly, only ketoconazole and clozapine increased the lipopolysaccharide-induced granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) release. Pilot experiments showed that diclofenac and troglitazone, but not carbamazepine, demonstrated synergistic toxicity with lipopolysaccharide after a longer incubation of 48 h in mPCLS. In conclusion, we have developed an ex vivo model to detect inflammatory stress-related liver toxicity and identified ketoconazole, clozapine

  6. Proteomic analysis of glutathione S-transferase isoforms in mouse liver mitochondria

    Institute of Scientific and Technical Information of China (English)

    Hai-Dan Sun; Ya-Wei Ru; Dong-Juan Zhang; Song-Yue Yin; Liang Yin; Ying-Ying Xie; You-Fei Guan; Si-Qi Liu

    2012-01-01

    AIM:To survey glutathione (GSH) S-transferase (GST)isoforms in mitochondria and to reveal the isoforms' biological significance in diabetic mice.METHODS:The presence of GSTs in mouse liver mitochondria was systematically screened by two proteomic approaches,namely,GSH affinity chromatography/two dimensional electrophoresis (2DE/MALDI TOF/TOFMS) and SDS-PAGE/LC ESI MS/MS.The proteomic results were further confirmed by Western blotting using monoclonal antibodies against GSTs.To evaluate the liver mitochondrial GSTs quantitatively,calibration curves were generated by the loading amounts of individual recombinant GST protein vs the relative intensities elicited from the Western blotting.An extensive comparison of the liver mitochondrial GSTs was conducted between normal and db/db diabetic mice.Student's t test was adopted for the estimation of regression and significant difference.RESULTS:Using GSH affinity/2DF/MALDI TOF/TOF MS,three GSTs,namely,alpha3,mu1 and pi1,were identified; whereas five GSTs,alpha3,mu1,pi1,kappa1 and zeta1,were detected in mouse liver mitochondria using SDS-PAGE/LC ESI MS/MS,of these GSTs,GST kappa1 was reported as a specific mitochondrial GST.The R2 values of regression ranged between values of about 0.86 and 0.98,which were acceptable for the quantification.Based on the measurement of the GST abundances in liver mitochondria of normal and diabetic mice,the four GSTs,alpha3,kappa1,mu1 and zeta1,were found to be almost comparable between the two sets of animals,whereas,lower GST pi1 was detected in the diabetic mice compared with normal ones,the signal of Western blotting in control and db/ db diabetic mice liver mitochondria is 134.61 ± 53.84vs 99.74 ± 46.2,with P < 0.05.CONCLUSION:Our results indicate that GSTs exist widely in mitochondria and its abundances of mitochondrial GSTs might be tissue-dependent and disease-related.

  7. The organoid-initiating cells in mouse pancreas and liver are phenotypically and functionally similar

    Directory of Open Access Journals (Sweden)

    Craig Dorrell

    2014-09-01

    Full Text Available Pancreatic Lgr5 expression has been associated with organoid-forming epithelial progenitor populations but the identity of the organoid-initiating epithelial cell subpopulation has remained elusive. Injury causes the emergence of an Lgr5+ organoid-forming epithelial progenitor population in the adult mouse liver and pancreas. Here, we define the origin of organoid-initiating cells from mouse pancreas and liver prior to Lgr5 activation. This clonogenic population was defined as MIC1-1C3+/CD133+/CD26− in both tissues and the frequency of organoid initiation within this population was approximately 5% in each case. The transcriptomes of these populations overlapped extensively and showed enrichment of epithelial progenitor-associated regulatory genes such as Sox9 and FoxJ1. Surprisingly, pancreatic organoid cells also had the capacity to generate hepatocyte-like cells upon transplantation to Fah−/− mice, indicating a differentiation capacity similar to hepatic organoids. Although spontaneous endocrine differentiation of pancreatic progenitors was not observed in culture, adenoviral delivery of fate-specifying factors Pdx1, Neurog3 and MafA induced insulin expression without glucagon or somatostatin. Pancreatic organoid cultures therefore preserve many key attributes of progenitor cells while allowing unlimited expansion, facilitating the study of fate determination.

  8. Measurement of mouse liver glutathione S-transferase activity by the integrated method

    Institute of Scientific and Technical Information of China (English)

    廖飞; 李甲初; 康格非; 曾昭淳; 左渝萍

    2003-01-01

    Objective: The integrated method was investigated to measure Vm/Km of mouse liver glutathione S-transferase (GST) activity on GSH and 7-Cl-4-nitrobenzofurazozan. Methods: Presetting concentration of one substrate twenty-fold above the others and taking maximum product absorbance Am as parameter while Km as constant, Vm/Km was obtained by nonlinear fitting of GST reaction curve to the integrated Michaelis-Menten equation ln [Am/(Am-Ai)]+Ai/(ε×Km)=(Vm/Km)×ti (1). Results: Vm/Km for GST showed slight dependence on initial substrate concentration and data range, but it was resistant to background absorbance, error in reaction origin and small deviation in presetting Km. Vm/Km was proportional to the amount of GST with upper limit higher than that by initial rate. There was close correlation between Vm/Km and initial rate of the same GST. Consistent results were obtained by this integrated method and classical initial rate method for the measurement of mouse liver GST. Conclusion: With the concentration of one substrate twenty-fold above the others, this integrated method was reliable to measure the activity of enzyme on two substrates, and substrate concentration of the lower one close to its apparent Km was able to be used.

  9. Effects of thyroxine on L-cysteine desulfuration in mouse liver.

    Directory of Open Access Journals (Sweden)

    Wróbel M

    2000-02-01

    Full Text Available The effect of exogenous thyroxine (T4 administration on the activity of rhodanese, cystathionase, and 3-mercaptopyruvate sulfurtransferase (MPST in the mitochondrial and cytosolic fractions of mouse liver was investigated. Three groups of mice were treated for 6 consecutive days with subcutaneous injections of T4 (50 micrograms, 100 micrograms, and 250 micrograms per 100 g of body wt, respectively. The other 3 groups were given 100 micrograms of T4 per 100 g of body wt for 1, 2, or 3 days. The dose of 100 micrograms T4 per 100 g of body wt given for 6 days exerted the strongest effect on the activity of all of the investigated enzymes. In comparison to the control, rhodanese activity diminished in the mitochondrial fraction by 40% (P < 0.05, cystathionase activity diminished in the cytosolic fraction by 15% (P < 0.05, and MPST activity in the mitochondrial fraction was reduced by 34% (P < 0.05, whereas cytosolic MPST activity was unaltered. Simultaneously, in the liver homogenate, elevated levels of ATP and sulfate were observed after 6 days of T4 administration. Thus, the present results seem to suggest that in the mouse liver, after 6 days of administration of 100 micrograms T4 per 100 g of body wt, the desulfuration metabolism of L-cysteine is diminished, which is probably accompanied by an increase in oxidative L-cysteine metabolism. The dose of 100 micrograms per 100 g of body wt administered for a shorter period, and the use of a lower dosage (50 micrograms T4 per 100 g of body wt for 6 days had a stimulatory effect upon MPST activity level, and an increased level of sulfane sulfur was observed.

  10. A novel mouse model of intrahepatic cholangiocarcinoma induced by liver-specific Kras activation and Pten deletion

    OpenAIRE

    Tsuneo Ikenoue; Yumi Terakado; Hayato Nakagawa; Yohko Hikiba; Tomoaki Fujii; Daisuke Matsubara; Rei Noguchi; Chi Zhu; Keisuke Yamamoto; Yotaro Kudo; Yoshinari Asaoka; Kiyoshi Yamaguchi; Hideaki Ijichi; Keisuke Tateishi; Noriyoshi Fukushima

    2016-01-01

    Intrahepatic cholangiocarcinoma (ICC) is an aggressive malignancy with poor prognosis and its incidence is increasing worldwide. Recently, several types of cells have been considered as the origin of ICC, namely cholangiocytes, liver progenitor cells, and hepatocytes. Here, we have established a novel mouse model of ICC by liver-specific Kras activation and Pten deletion. An activating mutation of Kras in combination with deletion of Pten was introduced in embryonic hepatic bipotential progen...

  11. Genetically modified mouse models for the study of nonalcoholic fatty liver disease

    Institute of Scientific and Technical Information of China (English)

    Perumal Nagarajan; M Jerald Mahesh Kumar; Ramasamy Venkatesan; Subeer S Majundar; Ramesh C Juyal

    2012-01-01

    Nonalcoholic fatty liver disease (NAFLD) is associated with obesity,insulin resistance,and type 2 diabetes.NAFLD represents a large spectrum of diseases ranging from (1) fatty liver (hepatic steatosis); (2) steatosis with inflammation and necrosis; to (3) cirrhosis.The animal models to study NAFLD/nonalcoholic steatohepatitis (NASH) are extremely useful,as there are still many events to be elucidated in the pathology of NASH.The study of the established animal models has provided many clues in the pathogenesis of steatosis and steatohepatitis,but these remain incompletely understood.The different mouse models can be classified in two large groups.The first one includes genetically modified (transgenic or knockout) mice that spontaneously develop liver disease,and the second one includes mice that acquire the disease after dietary or pharmacological manipulation.Although the molecular mechanism leading to the development of hepatic steatosis in the pathogenesis of NAFLD is complex,genetically modified animal models may be a key for the treatment of NAFLD.Ideal animal models for NASH should closely resemble the pathological characteristics observed in humans.To date,no single animal model has encompassed the full spectrum of human disease progression,but they can imitate particular characteristics of human disease.Therefore,it is important that the researchers choose the appropriate animal model.This review discusses various genetically modified animal models developed and used in research on NAFLD.

  12. Metabolic conversion of 12-O-tetradecanoylphorbol-13-acetate in adult and newborn mouse skin and mouse liver microsomes

    Energy Technology Data Exchange (ETDEWEB)

    Berry, D.L.; Bracken, W.M.; Fischer, S.M.; Viaje, A.; Slaga, T.J.

    1978-08-01

    Tritiated 12-O-tetradecanoylphorbol-13-acetate (TPA) was applied to adult mouse skin; at specified time intervals the mice were killed, and the labeled phorbol was extracted and subjected to separation and quantitation by high-pressure liquid chromatography. After 24 hr, TPA comprised >96% of the recovered label from the skin, and its apparent half-life was 17.8 hr. Pretreatment of adult skin with TPA for 4 weeks before treatment with labeled TPA resulted in an increase in the clearance rate of TPA from the skin. Skin from newborn mice was capable of converting TPA into monoesters and pharbol, but the clearance rate in the adult was about 12 times more rapid than it was in the newborn. Epidermal homogenates converted TPA into 12-O-tetradecanoylphorbol, phorbol-13-acetate, and phorbol. Hepatic homogenates were able to convert TPA to monoesters and phorbol at rates 14 to 15 times faster than were epidermal homogenates. Attempts to isolate any previously undescribed metabolites of TPA by use of liver homogenates were unsuccessful, and mixed-function oxidation did not contribute to the metabolism of TPA. From inhibitor studies it was judged that esterases were implicated in the conversion of TPA to monoesters and phorbol. The results support the hyphothesis that the tumor-promoting activity of TPA is directly related to its concentration in a specific tissue and that conversion of TPA to an active metabolite probably does not occur.

  13. Subchronic effects of valproic acid on gene expression profiles for lipid metabolism in mouse liver

    International Nuclear Information System (INIS)

    Valproic acid (VPA) is used clinically to treat epilepsy, however it induces hepatotoxicity such as microvesicular steatosis. Acute hepatotoxicity of VPA has been well documented by biochemical studies and microarray analysis, but little is known about the chronic effects of VPA in the liver. In the present investigation, we profiled gene expression patterns in the mouse liver after subchronic treatment with VPA. VPA was administered orally at a dose of 100 mg/kg/day or 500 mg/kg/day to ICR mice, and the livers were obtained after 1, 2, or 4 weeks. The activities of serum liver enzymes did not change, whereas triglyceride concentration increased significantly. Microarray analysis revealed that 1325 genes of a set of 32,996 individual genes were VPA responsive when examined by two-way ANOVA (P 1.5). Consistent with our previous results obtained using an acute VPA exposure model (Lee et al., Toxicol Appl Pharmacol. 220:45-59, 2007), the most significantly over-represented biological terms for these genes included lipid, fatty acid, and steroid metabolism. Biological pathway analysis suggests that the genes responsible for increased biosynthesis of cholesterol and triglyceride, and for decreased fatty acid β-oxidation contribute to the abnormalities in lipid metabolism induced by subchronic VPA treatment. A comparison of the VPA-responsive genes in the acute and subchronic models extracted 15 commonly altered genes, such as Cyp4a14 and Adpn, which may have predictive power to distinguish the mode of action of hepatotoxicants. Our data provide a better understanding of the molecular mechanisms of VPA-induced hepatotoxicity and useful information to predict steatogenic hepatotoxicity

  14. UDP-glucuronosyltransferase expression in mouse liver is increased in obesity- and fasting-induced steatosis.

    Science.gov (United States)

    Xu, Jialin; Kulkarni, Supriya R; Li, Liya; Slitt, Angela L

    2012-02-01

    UDP-glucuronosyltransferases (Ugt) catalyze phase II conjugation reactions with glucuronic acid, which enhances chemical polarity and the elimination from the body. Few studies have addressed whether Ugt expression and activity are affected by liver disease, such as steatosis. The purpose of this study was to determine whether steatosis induced by obesity or fasting could affect liver Ugt mRNA expression and activity. Male C57BL/6J and Lep(ob/ob) (ob/ob) mice were fed ad libitum or food was withheld for 24 h. In steatotic livers of ob/ob mice, Ugt1a1, -1a6, -1a9, -2a3, -3a1, and -3a2 mRNA expression increased. Fasting, which also induced steatosis, increased hepatic Ugt1a1, -1a6, -1a7, -1a9, -2b1, -2b5, -2a3, -3a1, and -3a2 mRNA expression in mouse liver. Likewise, acetaminophen glucuronidation increased by 47% in hepatic microsomes from ob/ob mice compared with that in C57BL/6J mice, but not after fasting. In both steatosis models, Ugt induction was accompanied by increased aryl hydrocarbon receptor, constitutive androstane receptor (CAR), peroxisome proliferator-activated receptor (PPAR)-α, pregnane X receptor, nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and peroxisome proliferator-activated receptor-γ coactivator-1α mRNA expression. In addition, fasting increased CAR, PPAR, and Nrf2 binding activity. The work points to hepatic triglyceride concentrations corresponding with nuclear receptor and Ugt expression. The findings indicate that steatosis significantly alters hepatic Ugt expression and activity, which could have a significant impact on determining circulating hormone levels, drug efficacy, and environmental chemical clearance. PMID:22031624

  15. Effects of cadmium ions on the initial stage of translation and the cell death in mouse liver

    OpenAIRE

    Sadauskienė, Ilona; Ivanov, Leonid; Lesauskaitė, Vaiva; Ivanovienė, Laima; Gailevičiūtė, Rasa; Karčiauskaitė, Dovilė; Rodovičius, Hiliaras

    2005-01-01

    Objective. To evaluate in vivo and in vitro effects of cadmium ions on the activities of mice liver tRNALeu and leucyl-tRNA synthetase and on the type of liver cells death. Material and methods. White laboratory mice were intoxicated by intraperitoneal injection of cadmium chloride solution (1.6 mg cadmium ions/1 kg of body weigh). Total tRNAs were isolated by adding ethanol and isopropanol into the phenol-deproteinized supernatant of mouse liver homogenate. Post-mitochondrial fraction of ...

  16. Alterations in monoamine oxidase activity of the mouse brain and liver after mixed neutron-gamma irradiation

    International Nuclear Information System (INIS)

    The activity of monoamine oxidase (MAO) was determined in mouse brain and liver after exposure to different kinds of ionizing radiation and after pretreatment with a radioprotective agent. After a lethal dose of mixed neutron-gamma irradiation the MAO activity decreased in the brain and increased in the liver. In contrast, after a lethal dose of 60Co-gamma irradiation enzyme activity was considerably increased in the brain while in the liver it increased like after mixed neutron-gamma irradiation. AET (S2-aminoethyl-isothiuronium-Br x HBr), when administered in a radioprotective dose, inhibited MAO activity in the brain, while it increased in the liver. Even more marked changes of enzyme activity were observed in both brain and liver after AET pretreatment and mixed neutron-gamma irradiation. The possible role of lipid peroxidation in alteration of MAO activity is discussed. (author)

  17. Electrochemical Detection of Alkaline Phosphatase in BALB/c Mouse Fetal Liver Stromal Cells with Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    Xue Mei SUN; Dong LI; Zeng Liang BAI; Wen Rui JIN

    2004-01-01

    A method for determination of alkaline phosphatase (ALP) in BALB/c mouse fetal liver stromal cells has been described based on the catalytic reaction. After the cell extract is incubated with the substrate disodium phenyl phosphate, the reaction product phenol generated by ALP is determined by capillary electrophoresis with electrochemical detection.

  18. Development of Short-term Molecular Thresholds to Predict Long-term Mouse Liver Tumor Outcomes: Phthalate Case Study

    Science.gov (United States)

    Short-term molecular profiles are a central component of strategies to model health effects of environmental chemicals. In this study, a 7 day mouse assay was used to evaluate transcriptomic and proliferative responses in the liver for a hepatocarcinogenic phthalate, di (2-ethylh...

  19. Susceptibility of Different Mouse Wild Type Strains to Develop Diet-Induced NAFLD/AFLD-Associated Liver Disease

    Science.gov (United States)

    Fengler, Vera H. I.; Macheiner, Tanja; Kessler, Sonja M.; Czepukojc, Beate; Gemperlein, Katja; Müller, Rolf; Kiemer, Alexandra K.; Magnes, Christoph; Haybaeck, Johannes; Lackner, Carolin; Sargsyan, Karine

    2016-01-01

    Although non-alcoholic and alcoholic fatty liver disease have been intensively studied, concerning pathophysiological mechanisms are still incompletely understood. This may be due to the use of different animal models and resulting model-associated variation. Therefore, this study aimed to compare three frequently used wild type mouse strains in their susceptibility to develop diet-induced features of non-alcoholic/alcoholic fatty liver disease. Fatty liver disease associated clinical, biochemical, and histological features in C57BL/6, CD-1, and 129Sv WT mice were induced by (i) high-fat diet feeding, (ii) ethanol feeding only, and (iii) the combination of high-fat diet and ethanol feeding. Hepatic and subcutaneous adipose lipid profiles were compared in CD-1 and 129Sv mice. Additionally hepatic fatty acid composition was determined in 129Sv mice. In C57BL/6 mice dietary regimens resulted in heterogeneous hepatic responses, ranging from pronounced steatosis and inflammation to a lack of any features of fatty liver disease. Liver-related serum biochemistry showed high deviations within the regimen groups. CD-1 mice did not exhibit significant changes in metabolic and liver markers and developed no significant steatosis or inflammation as a response to dietary regimens. Although 129Sv mice showed no weight gain, this strain achieved most consistent features of fatty liver disease, apparent from concentration alterations of liver-related serum biochemistry as well as moderate steatosis and inflammation as a result of all dietary regimens. Furthermore, the hepatic lipid profile as well as the fatty acid composition of 129Sv mice were considerably altered, upon feeding the different dietary regimens. Accordingly, diet-induced non-alcoholic/alcoholic fatty liver disease is most consistently promoted in 129Sv mice compared to C57BL/6 and CD-1 mice. As a conclusion, this study demonstrates the importance of genetic background of used mouse strains for modeling diet

  20. Protein Targets of Isoniazid-Reactive Metabolites in Mouse Liver in Vivo.

    Science.gov (United States)

    Koen, Yakov M; Galeva, Nadezhda A; Metushi, Imir G; Uetrecht, Jack; Hanzlik, Robert P

    2016-06-20

    Isoniazid (INH) has been a first-line drug for the treatment of tuberculosis for more than 40 years. INH is well-tolerated by most patients, but some patients develop hepatitis that can be severe in rare cases or after overdose. The mechanisms underlying the hepatotoxicity of INH are not known, but covalent binding of reactive metabolites is known to occur in animals and is suspected in human cases. A major unresolved question is the identity of the liver proteins that are modified by INH metabolites. Treating mice with INH leads to accumulation of isonicotinoyl-lysine residues on numerous proteins in the hepatic S9 fraction. Analysis of this fraction by SDS-PAGE followed by tryptic digestion of bands and LC-MS/MS revealed a single adducted peptide derived from d-dopachrome decarboxylase. When a tryptic digest of whole S9 was applied to anti-INH antibody immobilized on beads, only 12 peptides were retained, 5 of which clearly contained isonicotinoyl-lysine adducts and could be confidently assigned to 5 liver proteins. In another experiment, undigested S9 fractions from INA-treated and untreated (UT) mice were adsorbed in parallel on anti-INA beads and the retained proteins were digested and analyzed by LC-MS/MS. The INA-S9 digest showed 1 adducted peptide that was associated with a unique protein whose identity was corroborated by numerous nonadducted peptides in the digest and 13 other proteins identified only by multiple nonadducted peptides. None of these 14 proteins was associated with any peptides present in the UT-S9 fraction. Overall, we identified 7 mouse liver proteins that became adducted by INH metabolites in vivo. Of these 7 INH target proteins, only 2 have been previously reported as targets of any reactive metabolite in vivo. PMID:27097313

  1. Differences in Liver Injury and Trophoblastic Mitochondrial Damage in Different Preeclampsia-like Mouse Models

    Directory of Open Access Journals (Sweden)

    Yi-Wei Han

    2015-01-01

    Full Text Available Background: Preeclampsia is a multifactorial disease during pregnancy. Dysregulated lipid metabolism may be related to some preeclampsia. We investigated the relationship between triglycerides (TGs and liver injury in different preeclampsia-like mouse models and their potential common pathways. Methods: Preeclampsia-like models (Nw-nitro-L-arginine-methyl ester [L-NAME], lipopolysaccharide [LPS], apolipoprotein C-III [Apo] transgnic mice + L-NAME, β2 glycoprotein I [βGPI] were used in four experimental groups: L-NAME (LN, LPS, Apo-LN and βGPI, respectively, and controls received saline (LN-C, LPS-C, Apo-C, βGPI-C. The first three models were established in preimplantation (PI, early-, mid- and late-gestation (EG, MG and LG. βGPI and controls were injected before implantation. Mean arterial pressure (MAP, 24-hour urine protein, placental and fetal weight, serum TGs, total cholesterol (TC and pathologic liver and trophocyte changes were assessed. Results: MAP and proteinuria were significantly increased in the experimental groups. Placenta and fetal weight in PI, EP and MP subgroups were significantly lower than LP. Serum TGs significantly increased in most groups but controls. TC was not different between experimental and control groups. Spotty hepatic cell necrosis was observed in PI, EG, MG in LN, Apo-LN and βGPI, but no morphologic changes were observed in the LPS group. Similar trophoblastic mitochondrial damage was observed in every experimental group. Conclusions: Earlier preeclampsia onset causes a higher MAP and urine protein level, and more severe placental and fetal damage. Preeclampsia-like models generated by varied means lead to different changes in lipid metabolism and associated with liver injury. Trophoblastic mitochondrial damage may be the common terminal pathway in different preeclampsia-like models.

  2. Cellular distribution of 111In-LDTPA galactose BSA in normal and asialoglycoprotein receptor-deficient mouse liver

    International Nuclear Information System (INIS)

    111In-LDTPA galactose BSA (bovine serum albumin) was used to evaluate the asialoglycoprotein receptor (ASGPR) system in both normal and ASGPR-deficient mice. The radiolabeled glycoprotein had complete liver uptake in both normal and ASGPR-deficient mice. Metabolism and hepatic cell-type distribution studies were performed. The normal mouse excreted greater than 60% of the hepatic activity, while the ASGPR-deficient mouse excreted less than 40% of the hepatic activity. 111In-LDTPA galactose BSA was metabolized to 111In-LDTPA-L-lysine in both mouse types. Normal mice showed 70% of the radioactivity in the hepatocyte, whereas the homozygous ASGPR-deficient mouse had equal activity in the hepatocyte and the hepatic endothelial cell

  3. Quantitative proteomics analysis of the liver reveals immune regulation and lipid metabolism dysregulation in a mouse model of depression.

    Science.gov (United States)

    Wu, You; Tang, Jianyong; Zhou, Chanjuan; Zhao, Libo; Chen, Jin; Zeng, Li; Rao, Chenglong; Shi, Haiyang; Liao, Li; Liang, Zihong; Yang, Yongtao; Zhou, Jian; Xie, Peng

    2016-09-15

    Major depressive disorder (MDD) is a highly prevalent and debilitating mental illness with substantial impairments in quality of life and functioning. However, the pathophysiology of major depression remains poorly understood. Combining the brain and body should provide a comprehensive understanding of the etiology of MDD. As the largest internal organ of the human body, the liver has an important function, yet no proteomic study has assessed liver protein expression in a preclinical model of depression. Using the chronic unpredictable mild stress (CUMS) mouse model of depression, differential protein expression between CUMS and control (CON) mice was examined in the liver proteome using isobaric tag for relative and absolute quantitation (iTRAQ) coupled with tandem mass spectrometry. More than 4000 proteins were identified and 66 most significantly differentiated proteins were used for further bioinformatic analysis. According to the ingenuity pathway analysis (IPA), we found that proteins related to the inflammation response, immune regulation, lipid metabolism and NFκB signaling network were altered by CUMS. Moreover, four proteins closely associated with these processes, hemopexin, haptoglobin, cytochrome P450 2A4 (CYP2A4) and bile salt sulfotransferase 1 (SULT2A1), were validated by western blotting. In conclusion, we report, for the first time, the liver protein expression profile in the CUMS mouse model of depression. Our findings provide novel insight (liver-brain axis) into the multifaceted mechanisms of major depressive disorder. PMID:27247144

  4. Overexpression of Hepatitis B Virus-binding Protein, Squamous Cell Carcinoma Antigen 1, Extends Retention of Hepatitis B Virus in Mouse Liver

    Institute of Scientific and Technical Information of China (English)

    Hong-Bin XIA; Xi-Gu CHEN

    2006-01-01

    How receptors mediate the entry of hepatitis B virus (HBV) into the target liver cells is poorly understood. Recently, human squamous cell carcinoma antigen 1 (SCCA1) has been found to mediate binding and internalization of HBV to liver-derived cell lines in vitro. In this report, we investigate if SCCA1 is able to function as an HBV receptor and mediate HBV entry into mouse liver. SCCA1 transgene under the control of Rous sarcoma virus promoter was constructed in a minicircle DNA vector that was delivered to NOD/SCID mouse liver using the hydrodynamic technique. Subsequently, HBV-positive human serum was injected intravenously. We demonstrated that approximately 30% of the mouse liver cells expressed a high level of recombined SCCA1 protein for at least 37 d. The HBV surface antigen was found to persist in mouse liver for up to 17 d. Furthermore, HBV genome also persisted in mouse liver, as determined by polymerase chain reaction, for up to 17 d, and in mouse circulation for 7 d. These results suggest that SCAA1 might serve as an HBV receptor or co-receptor and play an important role in mediating HBV entry into hepatocytes, although its role in human HBV infection remains to be determined.

  5. PD-L1 Blockade Attenuated Sepsis-Induced Liver Injury in a Mouse Cecal Ligation and Puncture Model

    OpenAIRE

    Weimin Zhu; Rui Bao; Xiaohua Fan; Tianzhu Tao; Jiali Zhu; Jiafeng Wang; Jinbao Li; Lulong Bo; Xiaoming Deng

    2013-01-01

    Liver plays a major role in hypermetabolism and produces acute phase proteins during systemic inflammatory response syndrome and it is of vital importance in host defense and bacteria clearance. Our previous studies indicated that programmed death-1 (PD-1) and its ligand programmed death ligand-1 (PD-L1) are crucial modulators of host immune responses during sepsis. Our current study was designed to investigate the role of PD-L1 in sepsis-induced liver injury by a mouse cecal ligation and pun...

  6. A balanced diet is necessary for proper entrainment signals of the mouse liver clock.

    Directory of Open Access Journals (Sweden)

    Akiko Hirao

    Full Text Available BACKGROUND: The peripheral circadian clock in mice is entrained not only by light-dark cycles but also by daily restricted feeding schedules. Behavioral and cell culture experiments suggest an increase in glucose level as a factor in such feeding-induced entrainment. For application of feeding-induced entrainment in humans, nutrient content and dietary variations should be considered. PRINCIPAL FINDING: To elucidate the food composition necessary for dietary entrainment, we examined whether complete or partial substitution of dietary nutrients affected phase shifts in liver clocks of mice. Compared with fasting mice or ad libitum fed mice, the liver bioluminescence rhythm advanced by 3-4 h on the middle day in Per2::luciferase knock-in mice that were administered a standard mouse diet, i.e. AIN-93M formula [0.6-0.85 g/10 g mouse BW] (composition: 14% casein, 47% cornstarch, 15% gelatinized cornstarch, 10% sugar, 4% soybean oil, and 10% other [fiber, vitamins, minerals, etc.], for 2 days. When each nutrient was tested alone (100% nutrient, an insignificant weak phase advance was found to be induced by cornstarch and soybean oil, but almost no phase advance was induced by gelatinized cornstarch, high-amylose cornstarch, glucose, sucrose, or casein. A combination of glucose and casein without oil, vitamin, or fiber caused a significant phase advance. When cornstarch in AIN-93M was substituted with glucose, sucrose, fructose, polydextrose, high-amylose cornstarch, or gelatinized cornstarch, the amplitude of phase advance paralleled the increase in blood glucose concentration. CONCLUSIONS: Our results strongly suggest the following: (1 balanced diets containing carbohydrates/sugars and proteins are good for restricted feeding-induced entrainment of the peripheral circadian clock and (2 a balanced diet that increases blood glucose, but not by sugar alone, is suitable for entrainment. These findings may assist in the development of dietary

  7. Maintenance of mitochondrial genomic integrity in the absence of manganese superoxide dismutase in mouse liver hepatocytes

    Directory of Open Access Journals (Sweden)

    Anthony R. Cyr

    2013-01-01

    Full Text Available Manganese superoxide dismutase, encoded by the Sod2 gene, is a ubiquitously expressed mitochondrial antioxidant enzyme that is essential for mammalian life. Mice born with constitutive genetic knockout of Sod2 do not survive the neonatal stage, which renders the longitudinal study of the biochemical and metabolic effects of Sod2 loss difficult. However, multiple studies have demonstrated that tissue-specific knockout of Sod2 in murine liver yields no observable gross pathology or injury to the mouse. We hypothesized that Sod2 loss may have sub-pathologic effects on liver biology, including the acquisition of reactive oxygen species-mediated mitochondrial DNA mutations. To evaluate this, we established and verified a hepatocyte-specific knockout of Sod2 in C57/B6 mice using Cre-LoxP recombination technology. We utilized deep sequencing to identify possible mutations in Sod2−/− mitochondrial DNA as compared to wt, and both RT-PCR and traditional biochemical assays to evaluate baseline differences in redox-sensitive pathways in Sod2−/− hepatocytes. Surprisingly, no mutations in Sod2−/− mitochondrial DNA were detected despite measurable increases in dihydroethidium staining in situ and concomitant decreases in complex II activity indicative of elevated superoxide in the Sod2−/− hepatocytes. In contrast, numerous compensatory alterations in gene expression were identified that suggest hepatocytes have a remarkable capacity to adapt and overcome the loss of Sod2 through transcriptional means. Taken together, these results suggest that murine hepatocytes have a large reserve capacity to cope with the presence of additional mitochondrial reactive oxygen species.

  8. Tumor promotion by an anticonvulsant agent, phenytoin, in mouse liver: correlation with CYP2B induction.

    Science.gov (United States)

    Diwan, B A; Henneman, J R; Nims, R W; Rice, J M

    1993-11-01

    To investigate the liver tumor promoting effects of phenytoin (5,5-diphenylhydantoin; DPH), 5 week old male D2B6F1 mice were given a single i.p. dose of 90 mg N-nitrosodiethylamine (NDEA)/kg body wt in tricaprylin. Control groups received tricaprylin alone. After 2 weeks, the mice were given a diet containing 500, 250 or 125 p.p.m. DPH. Ten mice from each treatment group were killed at 30 weeks of age, at which time 10/10 mice given 500 p.p.m. DPH after NDEA initiation had developed multiple hepatocellular foci and adenomas. Such lesions were found only in 2/10 mice given NDEA alone. By 60 weeks, when the experiment was concluded, the incidences (and multiplicities, in units of tumors per tumor-bearing mouse) of hepatocellular adenomas were 60% (1.8 +/- 0.8), 100% (11.6 +/- 5.5), 77% (4.4 +/- 3.3) or 71% (2.6 +/- 1.3) in mice exposed to NDEA alone, or NDEA followed by 500, 250 or 125 p.p.m. DPH respectively. Hepatocellular carcinomas (87% incidence) and hepatoblastomas (33% incidence) were found only in mice given 500 p.p.m. DPH following NDEA initiation. Dose-dependent and profound increases in hepatic CYP2B-mediated benzyloxyresorufin O-dealkylase activity were detected in livers of B6C3F1 mice exposed for 14 days to dietary DPH (125, 250, 500 or 1000 p.p.m.). Similar increases in this activity were observed in D2B6F1 mice exposed to 500 and 250 p.p.m. for 30 or 60 weeks. Thus, increased hepatic CYP2B activity in mice exposed to DPH correlates with the tumor promoting effect of this compound. PMID:8242847

  9. UPTAKE OF [3H]-COLCHICINE INTO BRAIN AND LIVER OF MOUSE, RAT, AND CHICK

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Edward L.; Alberti, Marie Hebert; Flood, James F.

    1980-07-01

    The uptake of [ring A-4-{sup 3}H] colchicine and [ring C-methoxy-{sup 3}H]colchicine has been compared in mice from 1 to 24 hr after administration. Less radioactivity was found in brain after administration of ring-labeled colchicine than after administration of the methoxy-labeled colchicine. Three hr after administration of ring-labeled colchicine, 5% of the label was in liver and about 0.01% of the label was present in brain. Forty percent of the brain radioactivity was bound to tubulin as determined by vinblastine precipitation. After 3 hr, an average of 8% of the radioactivity from methoxy-labeled colchicine was found in the liver and 0.16% in brain. However, less than 5% of the activity in brain was precipitated by vinblastine, and the colchicine equivalent was comparable to that found after administration of the ring-labeled colchicine. The amount of colchicine entering mouse brain after subcutaneous injection is comparable to the minimum behaviorally effective dose when administered to the caudate. The metabolism of [ring C-methoxy-{sup 3}H] and [ring A-{sup 3}H]colchicine was also studied in rats. the general pattern was similar to mice; less radioactivity was found in brain after administration of the ring-labeled alkoloid than after administration of methoxy-labeled colchicine. Again, 40-50% of ring-labeled colchicine was precipitated by vinblastine. A much smaller percentage of the methoxy-labeled drug was precipitated by vinblastine than of the ring A-labeled colchicine. These experiments, together with behavioral experiments [7], support the hypotheses that structural alteration in synapses by recently synthesized proteins which are transported down the axons and dendrites may be an essential process for long-term memory formation.

  10. Impact of high-fat diet on the proteome of mouse liver.

    Science.gov (United States)

    Benard, Outhiriaradjou; Lim, Jihyeon; Apontes, Pasha; Jing, Xiaohong; Angeletti, Ruth H; Chi, Yuling

    2016-05-01

    Chronic overnutrition, for instance, high-fat diet (HFD) feeding, is a major cause of rapidly growing incidence of metabolic syndromes. However, the mechanisms underlying HFD-induced adverse effects on human health are not clearly understood. HFD-fed C57BL6/J mouse has been a popular model employed to investigate the mechanisms. Yet, there is no systematic and comprehensive study of the impact of HFD on the protein profiles of the animal. Here, we present a proteome-wide study of the consequences of long-term HFD feeding. Utilizing a powerful technology, stable isotope labeling of mammals, we detected and quantitatively compared 965 proteins extracted from livers of chow-diet-fed and HFD-fed mice. Among which, 122 proteins were significantly modulated by HFD. Fifty-four percent of those 122 proteins are involved in metabolic processes and the majority participate in lipid metabolism. HFD up-regulates proteins that play important roles in fatty acid uptake and subsequent oxidation and are linked to the transcription factors PPARα and PGC-1α. HFD suppresses lipid biosynthesis-related proteins that play major roles in de novo lipogenesis and are linked to SREBP-1 and PPARγ. These data suggest that HFD-fed mice tend to develop enhanced fat utilization and suppressed lipid biosynthesis, understandably a self-protective mechanism to counteract to excessive fat loading, which causes liver steatosis. Enhanced fatty acid oxidation increases reactive oxygen species and inhibits glucose oxidation, which are associated with hyperglycemia and insulin resistance. This proteomics study provides molecular understanding of HFD-induced pathology and identifies potential targets for development of therapeutics for metabolic syndromes. PMID:27133419

  11. A state of the glutathione system of mouse liver under conditions of the zone with enhanced radiation and its correction with bee-pollen

    International Nuclear Information System (INIS)

    It is established that the increased irradiation background yields acceleration of lipid peroxidation processes in mouse liver and activation of enzymes of the protective antioxidant system. The correlation of the studied indicators with those in bee-pollen is shown

  12. Dichlorodiphenyltrichloroethane technical mixture regulates cell cycle and apoptosis genes through the activation of CAR and ERα in mouse livers

    Energy Technology Data Exchange (ETDEWEB)

    Kazantseva, Yuliya A.; Yarushkin, Andrei A. [Institute of Molecular Biology and Biophysics SB RAMS, Novosibirsk, Timakova str., 2, 630117 (Russian Federation); Pustylnyak, Vladimir O., E-mail: pustylnyak@ngs.ru [Institute of Molecular Biology and Biophysics SB RAMS, Novosibirsk, Timakova str., 2, 630117 (Russian Federation); Novosibirsk State University, Novosibirsk, Pirogova str., 2, 630090 (Russian Federation)

    2013-09-01

    Dichlorodiphenyltrichloroethane (DDT) is a widely used organochlorine pesticide and a xenoestrogen that promotes rodent hepatomegaly and tumours. A recent study has shown significant correlation between DDT serum concentration and liver cancer incidence in humans, but the underlying mechanisms remain elusive. We hypothesised that a mixture of DDT isomers could exert effects on the liver through pathways instead of classical ERs. The acute effects of a DDT mixture containing the two major isomers p,p′-DDT (85%) and o,p′-DDT (15%) on CAR and ERα receptors and their cell cycle and apoptosis target genes were studied in mouse livers. ChIP results demonstrated increased CAR and ERα recruitment to their specific target gene binding sites in response to the DDT mixture. The results of real-time RT-PCR were consistent with the ChIP data and demonstrated that the DDT was able to activate both CAR and ERα in mouse livers, leading to target gene transcriptional increases including Cyp2b10, Gadd45β, cMyc, Mdm2, Ccnd1, cFos and E2f1. Western blot analysis demonstrated increases in cell cycle progression proteins cMyc, Cyclin D1, CDK4 and E2f1 and anti-apoptosis proteins Mdm2 and Gadd45β. In addition, DDT exposure led to Rb phosphorylation. Increases in cell cycle progression and anti-apoptosis proteins were accompanied by a decrease in p53 content and its transcriptional activity. However, the DDT was unable to stimulate the β-catenin signalling pathway, which can play an important role in hepatocyte proliferation. Thus, our results indicate that DDT treatment may result in cell cycle progression and apoptosis inhibition through CAR- and ERα-mediated gene activation in mouse livers. These findings suggest that the proliferative and anti-apoptotic conditions induced by CAR and ERα activation may be important contributors to the early stages of hepatocarcinogenesis as produced by DDT in rodent livers. - Highlights: • DDT activated both CAR and ERα and their cell

  13. Dichlorodiphenyltrichloroethane technical mixture regulates cell cycle and apoptosis genes through the activation of CAR and ERα in mouse livers

    International Nuclear Information System (INIS)

    Dichlorodiphenyltrichloroethane (DDT) is a widely used organochlorine pesticide and a xenoestrogen that promotes rodent hepatomegaly and tumours. A recent study has shown significant correlation between DDT serum concentration and liver cancer incidence in humans, but the underlying mechanisms remain elusive. We hypothesised that a mixture of DDT isomers could exert effects on the liver through pathways instead of classical ERs. The acute effects of a DDT mixture containing the two major isomers p,p′-DDT (85%) and o,p′-DDT (15%) on CAR and ERα receptors and their cell cycle and apoptosis target genes were studied in mouse livers. ChIP results demonstrated increased CAR and ERα recruitment to their specific target gene binding sites in response to the DDT mixture. The results of real-time RT-PCR were consistent with the ChIP data and demonstrated that the DDT was able to activate both CAR and ERα in mouse livers, leading to target gene transcriptional increases including Cyp2b10, Gadd45β, cMyc, Mdm2, Ccnd1, cFos and E2f1. Western blot analysis demonstrated increases in cell cycle progression proteins cMyc, Cyclin D1, CDK4 and E2f1 and anti-apoptosis proteins Mdm2 and Gadd45β. In addition, DDT exposure led to Rb phosphorylation. Increases in cell cycle progression and anti-apoptosis proteins were accompanied by a decrease in p53 content and its transcriptional activity. However, the DDT was unable to stimulate the β-catenin signalling pathway, which can play an important role in hepatocyte proliferation. Thus, our results indicate that DDT treatment may result in cell cycle progression and apoptosis inhibition through CAR- and ERα-mediated gene activation in mouse livers. These findings suggest that the proliferative and anti-apoptotic conditions induced by CAR and ERα activation may be important contributors to the early stages of hepatocarcinogenesis as produced by DDT in rodent livers. - Highlights: • DDT activated both CAR and ERα and their cell

  14. Binding of erythropoietin to CFU-E derived from fetal mouse liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Fukamachi, H.; Saito, T.; Tojo, A.; Kitamura, T.; Urabe, A.; Takaku, F.

    1987-09-01

    The binding of recombinant erythropoietin (EPO) to fetal mouse liver cells (FMLC) was investigated using a radioiodinated derivative which retained full biological activity. FMLC were fractionated using a preformed Percoll density gradient. Using the fractionated FMLC, the ability to form CFU-E colonies in a semisolid culture was examined, and the binding of (/sup 125/I)EPO was measured. The highest specific binding of (/sup 125/I)EPO was observed in a fraction with a density between 1.062 and 1.076 g/ml. The same fraction showed the highest ability to form CFU-E-derived colonies. After suspension culture of FMLC with EPO for 2 days, differentiated erythroid cells with higher density markedly increased. The specific binding of (/sup 125/I)EPO to these cells almost disappeared with differentiation. Scatchard analysis with cells of the CFU-E-enriched fraction showed a nonlinear curve, suggesting the existence of two classes of binding sites. One binding site was high-affinity (Kd1 = 0.41 nM), and the other low-affinity (Kd2 = 3.13 nM). These results suggest that the expression of EPO receptors on the erythroid cells is highest in CFU-E.

  15. Proteome-wide identification and quantification of S-glutathionylation targets in mouse liver.

    Science.gov (United States)

    McGarry, David J; Chen, Wenzhang; Chakravarty, Probir; Lamont, Douglas L; Wolf, C Roland; Henderson, Colin J

    2015-07-01

    Protein S-glutathionylation is a reversible post-translational modification regulating sulfhydryl homeostasis. However, little is known about the proteins and pathways regulated by S-glutathionylation in whole organisms and current approaches lack the sensitivity to examine this modification under basal conditions. We now report the quantification and identification of S-glutathionylated proteins from animal tissue, using a highly sensitive methodology combining high-accuracy proteomics with tandem mass tagging to provide precise, extensive coverage of S-glutathionylated targets in mouse liver. Critically, we show significant enrichment of S-glutathionylated mitochondrial and Krebs cycle proteins, identifying that S-glutathionylation is heavily involved in energy metabolism processes in vivo. Furthermore, using mice nulled for GST Pi (GSTP) we address the potential for S-glutathionylation to be mediated enzymatically. The data demonstrate the impact of S-glutathionylation in cellular homeostasis, particularly in relation to energy regulation and is of significant interest for those wishing to examine S-glutathionylation in an animal model. PMID:25891661

  16. Trihalomethanes in liver pathology: Mitochondrial dysfunction and oxidative stress in the mouse.

    Science.gov (United States)

    Faustino-Rocha, Ana I; Rodrigues, D; da Costa, R Gil; Diniz, C; Aragão, S; Talhada, D; Botelho, M; Colaço, A; Pires, M J; Peixoto, F; Oliveira, P A

    2016-08-01

    Trihalomethanes (THMs) are disinfection byproducts found in chlorinated water, and are associated with several different kinds of cancer in human populations and experimental animal models. Metabolism of THMs proceeds through enzymes such as GSTT1 and CYP2E1 and gives rise to reactive intermediates, which form the basis for their toxic activities. The aim of this study was to assess the mitochondrial dysfunction caused by THMs at low levels, and the resulting hepatic histological and biochemical changes in the mouse. Male ICR mice were administered with two THMs: dibromochloromethane (DBCM) and bromodichloromethane (BDCM); once daily, by gavage, to a total of four administrations. Animals were sacrificed four weeks after DBCM and BDCM administrations. Blood biochemistry was performed for alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total bilirubin (TB), albumin (Alb), total protein (TP), creatinine, and urea. Animals exposed to DBCM and BDCM showed elevated ALT and TB levels (p GST)) in hepatic tissues (p < 0.05). These results add detail to the current understanding of the mechanisms underlying THM-induced toxicity, supporting the role of mitochondrial dysfunction and oxidative stress in liver toxicity caused by DBCM and BDCM. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1009-1016, 2016. PMID:25640707

  17. MEK kinase 1 activity is required for definitive erythropoiesis in the mouse fetal liver

    DEFF Research Database (Denmark)

    Bonnesen, Barbara; Ørskov, Cathrine; Rasmussen, Susanne;

    2005-01-01

    Mitogen-activated protein kinase/extracellular signal to regulated kinase (MEK) kinase 1 (MEKK1) is a c-Jun N-terminal kinase (JNK) activating kinase known to be implicated in proinflammatory responses and cell motility. Using mice deficient for MEKK1 kinase activity (Mekk1(DeltaKD)) we show a role...... for MEKK1 in definitive mouse erythropoiesis. Although Mekk1(DeltaKD) mice are alive and fertile on a 129 x C57/BL6 background, the frequency of Mekk1(DeltaKD) embryos that develop past embryonic day (E) 14.5 is dramatically reduced when backcrossed into the C57/BL6 background. At E13.5, Mekk1(Delta......KD) embryos have normal morphology but are anemic due to failure of definitive erythropoiesis. When Mekk1(DeltaKD) fetal liver cells were transferred to lethally irradiated wild-type hosts, mature red blood cells were generated from the mutant cells, suggesting that MEKK1 functions in a non...

  18. Sexually dimorphic effect of in vitro fertilization (IVF) on adult mouse fat and liver metabolomes.

    Science.gov (United States)

    Feuer, Sky K; Donjacour, Annemarie; Simbulan, Rhodel K; Lin, Wingka; Liu, Xiaowei; Maltepe, Emin; Rinaudo, Paolo F

    2014-11-01

    The preimplantation embryo is particularly vulnerable to environmental perturbation, such that nutritional and in vitro stresses restricted exclusively to this stage may alter growth and affect long-term metabolic health. This is particularly relevant to the over 5 million children conceived by in vitro fertilization (IVF). We previously reported that even optimized IVF conditions reprogram mouse postnatal growth, fat deposition, and glucose homeostasis in a sexually dimorphic fashion. To more clearly interrogate the metabolic changes associated with IVF in adulthood, we used nontargeted mass spectrometry to globally profile adult IVF- and in vivo-conceived liver and gonadal adipose tissues. There was a sex- and tissue-specific effect of IVF on adult metabolite signatures indicative of metabolic reprogramming and oxidative stress and reflective of the observed phenotypes. Additionally, we observed a striking effect of IVF on adult sexual dimorphism. Male-female differences in metabolite concentration were exaggerated in hepatic IVF tissue and significantly reduced in IVF adipose tissue, with the majority of changes affecting amino acid and lipid metabolites. We also observed female-specific changes in markers of oxidative stress and adipogenesis, including reduced glutathione, cysteine glutathione disulfide, ophthalmate, urate, and corticosterone. In summary, embryo manipulation and early developmental experiences can affect adult patterns of sexual dimorphism and metabolic physiology. PMID:25211591

  19. PD-L1 Blockade Attenuated Sepsis-Induced Liver Injury in a Mouse Cecal Ligation and Puncture Model

    Directory of Open Access Journals (Sweden)

    Weimin Zhu

    2013-01-01

    Full Text Available Liver plays a major role in hypermetabolism and produces acute phase proteins during systemic inflammatory response syndrome and it is of vital importance in host defense and bacteria clearance. Our previous studies indicated that programmed death-1 (PD-1 and its ligand programmed death ligand-1 (PD-L1 are crucial modulators of host immune responses during sepsis. Our current study was designed to investigate the role of PD-L1 in sepsis-induced liver injury by a mouse cecal ligation and puncture (CLP model. Our results indicated that there was a significant increase of PD-L1 expression in liver after CLP challenge compared to sham-operated controls, in terms of levels of mRNA transcription and immunohistochemistry. Anti-PD-L1 antibody significantly alleviated the morphology of liver injury in CLP mice. Anti-PD-L1 antibody administration decreased ALT and AST release in CLP mice, decreased the levels of tumor necrosis factor (TNF-α, interleukin (IL-6, and IL-10 mRNA in liver after sepsis challenge. Thus, anti-PD-L1 antibody might have a therapeutic potential in attenuating liver injury in sepsis.

  20. Progressive developmental restriction, acquisition of left-right identity and cell growth behavior during lobe formation in mouse liver development.

    Science.gov (United States)

    Weiss, Mary C; Le Garrec, Jean-Francois; Coqueran, Sabrina; Strick-Marchand, Helene; Buckingham, Margaret

    2016-04-01

    To identify cell-based decisions implicated in morphogenesis of the mammalian liver, we performed clonal analysis of hepatocytes/hepatoblasts in mouse liver development, using a knock-in allele of Hnf4a/laacZ This transgene randomly undergoes a low frequency of recombination that generates a functional lacZ gene that produces β-galactosidase in tissues in which Hnf4a is expressed. Two types of β-galactosidase-positive clones were found. Most have undergone three to eight cell divisions and result from independent events (Luria-Delbrück fluctuation test); we calculate that they arose between E8.5 and E13.5. A second class was mega-clones derived from early endoderm progenitors, generating many descendants. Some originated from multi-potential founder cells, with labeled cells in the liver, pancreas and/or intestine. A few mega-clones populate only one side of the liver, indicating hepatic cell chirality. The patterns of labeled cells indicate cohesive and often oriented growth, notably in broad radial stripes, potentially implicated in the formation of liver lobes. This retrospective clonal analysis gives novel insights into clonal origins, cell behavior of progenitors and distinct properties of endoderm cells that underlie the formation and morphogenesis of the liver. PMID:26893346

  1. Cholesterol esterification by mouse liver homogenate. Contribution to the study of ACYL-CoA: Cholesterol ACYL transferase in mammalian liver

    International Nuclear Information System (INIS)

    A cholesterol- esterifying enzyme from mouse liver has been partially characterized. The enzyme which showed optimum activity at pH 7,1 and required ATP and CoA, was identified as an acyl CoA: cholesterol acyl transferase (E.C.2.3.1.26). As a fuction of time the percentage of esterified cholesterol increased linearly during the first hour of incubation and continued to increase but not linearly with 4 hours, after which time no further net esterefication was observed. The relative concentration of esterified cholesterol remained constant between the fourth and twelveth hours of incubation but afterwards decreased when the incubation continued until 24 hours. The cholesterol- esterifying activity was 24,0+- 2,9 nmoles cholesterol esterified per gram tissue wet weight per minute. The mean percentages of free cholesterol esterified in and 24 hours respectively were 14,8+- 1,6 e 21,9+- 4,5. The subfractionation of labelled cholesteryl esters after one hour incubation of liver homogenate with 4-C14-Cholesterol showed the order of preference for the formation of the different ester classes to be monounsatured > diunsatured ≥ saturated >> polyunsaturated. The properties of the enzyme frommouse liver do not markedly differ from those of the previously recorded ACAT activity of rat liver. (Author)

  2. Completion of hepatitis C virus replication cycle in heterokaryons excludes dominant restrictions in human non-liver and mouse liver cell lines.

    Directory of Open Access Journals (Sweden)

    Anne Frentzen

    2011-04-01

    Full Text Available Hepatitis C virus (HCV is hepatotropic and only infects humans and chimpanzees. Consequently, an immunocompetent small animal model is lacking. The restricted tropism of HCV likely reflects specific host factor requirements. We investigated if dominant restriction factors expressed in non-liver or non-human cell lines inhibit HCV propagation thus rendering these cells non-permissive. To this end we explored if HCV completes its replication cycle in heterokaryons between human liver cell lines and non-permissive cell lines from human non-liver or mouse liver origin. Despite functional viral pattern recognition pathways and responsiveness to interferon, virus production was observed in all fused cells and was only ablated when cells were treated with exogenous interferon. These results exclude that constitutive or virus-induced expression of dominant restriction factors prevents propagation of HCV in these cell types, which has important implications for HCV tissue and species tropism. In turn, these data strongly advocate transgenic approaches of crucial human HCV cofactors to establish an immunocompetent small animal model.

  3. Silymarin attenuated hepatic steatosis through regulation of lipid metabolism and oxidative stress in a mouse model of nonalcoholic fatty liver disease (NAFLD)

    OpenAIRE

    Ni, Xunjun; Wang, Haiyan

    2016-01-01

    Silymarin, which derived from the milk thistle plant (silybum marianum), has been used for centuries as a natural remedy for diseases of the liver and biliary tract. Considering the therapeutic potential to liver disease, we tested efficacy of silymarin on hepatic steatosis with a high fat diet (HFD)-induced mouse model of non-alcoholic fatty liver disease (NAFLD), and investigated possible effects on lipid metabolic pathways. In our study, silymarin could attenuate the hepatic steatosis, whi...

  4. Gene signatures derived from a c-MET-driven liver cancer mouse model predict survival of patients with hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Irena Ivanovska

    Full Text Available Biomarkers derived from gene expression profiling data may have a high false-positive rate and must be rigorously validated using independent clinical data sets, which are not always available. Although animal model systems could provide alternative data sets to formulate hypotheses and limit the number of signatures to be tested in clinical samples, the predictive power of such an approach is not yet proven. The present study aims to analyze the molecular signatures of liver cancer in a c-MET-transgenic mouse model and investigate its prognostic relevance to human hepatocellular carcinoma (HCC. Tissue samples were obtained from tumor (TU, adjacent non-tumor (AN and distant normal (DN liver in Tet-operator regulated (TRE human c-MET transgenic mice (n = 21 as well as from a Chinese cohort of 272 HBV- and 9 HCV-associated HCC patients. Whole genome microarray expression profiling was conducted in Affymetrix gene expression chips, and prognostic significances of gene expression signatures were evaluated across the two species. Our data revealed parallels between mouse and human liver tumors, including down-regulation of metabolic pathways and up-regulation of cell cycle processes. The mouse tumors were most similar to a subset of patient samples characterized by activation of the Wnt pathway, but distinctive in the p53 pathway signals. Of potential clinical utility, we identified a set of genes that were down regulated in both mouse tumors and human HCC having significant predictive power on overall and disease-free survival, which were highly enriched for metabolic functions. In conclusions, this study provides evidence that a disease model can serve as a possible platform for generating hypotheses to be tested in human tissues and highlights an efficient method for generating biomarker signatures before extensive clinical trials have been initiated.

  5. Amelioration of radiation induced decrease in activity of catalase and superoxide dismutase in mouse liver by Punica granatum

    International Nuclear Information System (INIS)

    Ionizing radiation generates reactive oxygen species (ROS) in irradiated tissue. Cells of liver have their own defence system, the antioxidant system to deactivate ROS. Antioxidant system includes enzymatic and non-enzymatic components. Liver is rich in endogenous antioxidants and related enzymes. Catalase and Superoxide dismutase (SOD) are powerful antioxidant enzymes. In the present study Punica granatum fruit rind Ethanol extract (PGFRE) was tested against 60Co gamma radiation induced alteration in Swiss albino mouse. Healthy adult (25±2) Swiss albino mouse were selected and divided into four groups. The first group was sham irradiated. The second group was irradiated with 8 Gy 60Co gamma radiation only and served as control. The third group was administered with Ethanol extract of Punica granatum fruit rind one hour before irradiation at the dose rate of 10 mg/kg body weight orally. Animals were exposed to 8 Gy 60Co gamma radiation. Fourth group was administered with Ethanol extract of Punica granatum fruit rind at the dose rate of 10 mg/kg body weight. Mice were sacrificed at various post irradiation intervals and liver was removed, weighed and analysed biochemically for Catalase and SOD activity. Catalase and SOD activity decreased up till 7th post irradiation day in 8 Gy irradiated group than normal. In PGFRE pretreated irradiated group catalase and SOD activity were higher than the corresponding control group at all the intervals. These results indicate that PGFRE extract protects damage to the catalase and SOD activity in liver of Swiss albino mouse against lethal dose of gamma radiation. (author)

  6. Cinnamon extract improves insulin sensitivity in the brain and lowers liver fat in mouse models of obesity.

    Directory of Open Access Journals (Sweden)

    Tina Sartorius

    Full Text Available OBJECTIVES: Treatment of diabetic subjects with cinnamon demonstrated an improvement in blood glucose concentrations and insulin sensitivity but the underlying mechanisms remained unclear. This work intends to elucidate the impact of cinnamon effects on the brain by using isolated astrocytes, and an obese and diabetic mouse model. METHODS: Cinnamon components (eugenol, cinnamaldehyde were added to astrocytes and liver cells to measure insulin signaling and glycogen synthesis. Ob/ob mice were supplemented with extract from cinnamomum zeylanicum for 6 weeks and cortical brain activity, locomotion and energy expenditure were evaluated. Insulin action was determined in brain and liver tissues. RESULTS: Treatment of primary astrocytes with eugenol promoted glycogen synthesis, whereas the effect of cinnamaldehyde was attenuated. In terms of brain function in vivo, cinnamon extract improved insulin sensitivity and brain activity in ob/ob mice, and the insulin-stimulated locomotor activity was improved. In addition, fasting blood glucose levels and glucose tolerance were greatly improved in ob/ob mice due to cinnamon extracts, while insulin secretion was unaltered. This corresponded with lower triglyceride and increased liver glycogen content and improved insulin action in liver tissues. In vitro, Fao cells exposed to cinnamon exhibited no change in insulin action. CONCLUSIONS: Together, cinnamon extract improved insulin action in the brain as well as brain activity and locomotion. This specific effect may represent an important central feature of cinnamon in improving insulin action in the brain, and mediates metabolic alterations in the periphery to decrease liver fat and improve glucose homeostasis.

  7. Hepatic Glucagon Action Is Essential for Exercise-Induced Reversal of Mouse Fatty Liver

    OpenAIRE

    Berglund, Eric D.; Lustig, Daniel G.; Baheza, Richard A.; Hasenour, Clinton M.; Lee-Young, Robert S.; Donahue, E. Patrick; Lynes, Sara E.; Swift, Larry L.; Charron, Maureen J; Damon, Bruce M.; Wasserman, David H

    2011-01-01

    OBJECTIVE Exercise is an effective intervention to treat fatty liver. However, the mechanism(s) that underlie exercise-induced reductions in fatty liver are unclear. Here we tested the hypothesis that exercise requires hepatic glucagon action to reduce fatty liver. RESEARCH DESIGN AND METHODS C57BL/6 mice were fed high-fat diet (HFD) and assessed using magnetic resonance, biochemical, and histological techniques to establish a timeline for fatty liver development over 20 weeks. Glucagon recep...

  8. Action of DTPA on hepatic plutonium. II. DTPA-induced removal of monomeric plutonium from mouse liver parenchymal cells

    International Nuclear Information System (INIS)

    Liver parenchymal cells were isolated 6 and 24 hr following the administration of diethylenetriaminepentaacetic acid (DTPA, 0.25 mmole/kg) to mice previously injected with 239Pu-citrate (4.4 μCi/kg). Isolated parenchymal cells contained 440 dpm Pu/106 cells at 24 hr after Pu injection, just prior to DTPA administration. The PU content decreased to 330 dpm/106 cells at 6 hr and 140 dpm/106 cells at 24 hr after DTPA administration. Thus DTPA induced a striking decrease in the Pu content of isolated liver parenchymal cells. Parenchymal cells isolated from control mice not treated with DTPA changed little in Pu content from 24 to 48 hr after Pu injection. By 24 hr after DTPA treatment, the decrease in the Pu content of isolated liver parenchymal cells could account for the DTPA-induced release of Pu from the intact liver. Thus in the liver DTPA appears to act preferentially on the Pu associated with parenchymal cells. Liver parenchymal cells isolated 6 hr after DTPA administration and containing 330 dpm Pu/106 cells were incubated in vitro in the absence of added DTPA. After 18 hr of incubation the cells contained 130 dpm Pu/106 cells. This level corresponds to the level observed in cells isolated 24 hr after DTPA administration. Cells isolated from untreated mice lost only 15% of their Pu content during a similar in vitro incubation. Thus, by 6 hr after DTPA administration to the mouse, isolated liver parenchymal cells appeared to retain their ability to release Pu in vitro with no need for additional exposure to DTPA. The physiological significance of this finding is discussed

  9. Chinese Herbal Preparation Xuebijing Potently Inhibits Inflammasome Activation in Hepatocytes and Ameliorates Mouse Liver Ischemia-Reperfusion Injury.

    Directory of Open Access Journals (Sweden)

    Xiqiang Liu

    Full Text Available The Chinese herb preparation Xuebijing injection (XBJ has been widely used in the management of various septic disorders or inflammation-related conditions, however the molecular mechanism of its anti-inflammatory effect remains largely elusive. In the current study, we found that XBJ treatment potently ameliorated mouse hepatic ischemia-reperfusion (IR injury, manifested as decreased liver function tests (LDH, ALT, AST, improved inflammation and less hepatocyte apoptosis. Notably, XBJ markedly inhibited inflammasome activation and IL-1 production in mouse livers subjected to IRI, even in the absence of Kupffer cells, suggesting Kupffer cells are not necessary for hepatic inflammasome activation upon Redox-induced sterile inflammation. This finding led us to investigate the role of XBJ on hepatocyte apoptosis and inflammasome activation using an in vitro hydrogen peroxide (H2O2-triggered hepatocyte injury model. Our data clearly demonstrated that XBJ potently inhibited apoptosis, as well as caspase-1 cleavage and IL-1β production in a time- and dose-dependent manner in isolated hepatocytes, suggesting that in addition to its known modulatory effect on NF-κB-dependent inflammatory gene expression, it also has a direct impact on hepatocyte inflammasome activation. The current study not only deepens our understanding of how XBJ ameliorates inflammation and apoptosis, but also has immediate practical significance in many clinical situations such as partial hepatectomy, liver transplantation, etc.

  10. Transcriptomic responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD in liver: Comparison of rat and mouse

    Directory of Open Access Journals (Sweden)

    Pohjanvirta Raimo

    2008-09-01

    Full Text Available Abstract Background Mouse and rat models are mainstays in pharmacology, toxicology and drug development – but differences between strains and between species complicate data interpretation and application to human health. Dioxin-like polyhalogenated aromatic hydrocarbons represent a major class of environmentally and economically relevant toxicants. In mammals dioxin exposure leads to a broad spectrum of adverse affects, including hepatotoxicity of varying severity. Several studies have shown that dioxins extensively alter hepatic mRNA levels. Surprisingly, though, analysis of a limited portion of the transcriptome revealed that rat and mouse responses diverge greatly (Boverhof et al. Toxicol Sci 94:398–416, 2006. Results We employed oligonucleotide arrays to compare the response of 8,125 rat and mouse orthologs. We confirmed that there is limited inter-species overlap in dioxin-responsive genes. Rat-specific and mouse-specific genes are enriched for specific functional groups which differ between species, conceivably accounting for species-specificities in liver histopathology. While no evidence for the involvement of copy-number variation was found, extensive inter-species variation in the transcriptional-regulatory network was identified; Nr2f1 and Fos emerged as candidates to explain species-specific and species-independent responses, respectively. Conclusion Our results suggest that a small core of genes is responsible for mediating the similar features of dioxin hepatotoxicity in rats and mice but non-overlapping pathways are simultaneously at play to result in distinctive histopathological outcomes. The extreme divergence between mouse and rat transcriptomic responses appears to reflect divergent transcriptional-regulatory networks. Taken together, these data suggest that both rat and mouse models should be used to screen the acute hepatotoxic effects of drugs and toxic compounds.

  11. Selective and continuous elimination of mitochondria microinjected into mouse eggs from spermatids, but not from liver cells, occurs throughout embryogenesis.

    OpenAIRE

    Shitara, H; Kaneda, H.; Sato, A; Inoue, K.; Ogura, A.; Yonekawa, H.; Hayashi, J I

    2000-01-01

    Exclusion of paternal mitochondria in fertilized mammalian eggs is very stringent and ensures strictly maternal mtDNA inheritance. In this study, to examine whether elimination was specific to sperm mitochondria, we microinjected spermatid or liver mitochondria into mouse embryos. Congenic B6-mt(spr) strain mice, which are different from C57BL/6J (B6) strain mice (Mus musculus domesticus) only in possessing M. spretus mtDNA, were used as mitochondrial donors. B6-mt(spr) mice and a quantitativ...

  12. Deregulation of energy metabolism promotes antifibrotic effects in human hepatic stellate cells and prevents liver fibrosis in a mouse model.

    Science.gov (United States)

    Karthikeyan, Swathi; Potter, James J; Geschwind, Jean-Francois; Sur, Surojit; Hamilton, James P; Vogelstein, Bert; Kinzler, Kenneth W; Mezey, Esteban; Ganapathy-Kanniappan, Shanmugasundaram

    2016-01-15

    Liver fibrosis and cirrhosis result from uncontrolled secretion and accumulation of extracellular matrix (ECM) proteins by hepatic stellate cells (HSCs) that are activated by liver injury and inflammation. Despite the progress in understanding the biology liver fibrogenesis and the identification of potential targets for treating fibrosis, development of an effective therapy remains elusive. Since an uninterrupted supply of intracellular energy is critical for the activated-HSCs to maintain constant synthesis and secretion of ECM, we hypothesized that interfering with energy metabolism could affect ECM secretion. Here we report that a sublethal dose of the energy blocker, 3-bromopyruvate (3-BrPA) facilitates phenotypic alteration of activated LX-2 (a human hepatic stellate cell line), into a less-active form. This treatment-dependent reversal of activated-LX2 cells was evidenced by a reduction in α-smooth muscle actin (α-SMA) and collagen secretion, and an increase in activity of matrix metalloproteases. Mechanistically, 3-BrPA-dependent antifibrotic effects involved down-regulation of the mitochondrial metabolic enzyme, ATP5E, and up-regulation of glycolysis, as evident by elevated levels of lactate dehydrogenase, lactate production and its transporter, MCT4. Finally, the antifibrotic effects of 3-BrPA were validated in vivo in a mouse model of carbon tetrachloride-induced liver fibrosis. Results from histopathology & histochemical staining for collagen and α-SMA substantiated that 3-BrPA promotes antifibrotic effects in vivo. Taken together, our data indicate that sublethal, metronomic treatment with 3-BrPA blocks the progression of liver fibrosis suggesting its potential as a novel therapeutic for treating liver fibrosis. PMID:26525850

  13. Model steatogenic compounds (amiodarone, valproic acid, and tetracycline alter lipid metabolism by different mechanisms in mouse liver slices.

    Directory of Open Access Journals (Sweden)

    Ewa Szalowska

    Full Text Available Although drug induced steatosis represents a mild type of hepatotoxicity it can progress into more severe non-alcoholic steatohepatitis. Current models used for safety assessment in drug development and chemical risk assessment do not accurately predict steatosis in humans. Therefore, new models need to be developed to screen compounds for steatogenic properties. We have studied the usefulness of mouse precision-cut liver slices (PCLS as an alternative to animal testing to gain more insight into the mechanisms involved in the steatogenesis. To this end, PCLS were incubated 24 h with the model steatogenic compounds: amiodarone (AMI, valproic acid (VA, and tetracycline (TET. Transcriptome analysis using DNA microarrays was used to identify genes and processes affected by these compounds. AMI and VA upregulated lipid metabolism, whereas processes associated with extracellular matrix remodelling and inflammation were downregulated. TET downregulated mitochondrial functions, lipid metabolism, and fibrosis. Furthermore, on the basis of the transcriptomics data it was hypothesized that all three compounds affect peroxisome proliferator activated-receptor (PPAR signaling. Application of PPAR reporter assays classified AMI and VA as PPARγ and triple PPARα/(β/δ/γ agonist, respectively, whereas TET had no effect on any of the PPARs. Some of the differentially expressed genes were considered as potential candidate biomarkers to identify PPAR agonists (i.e. AMI and VA or compounds impairing mitochondrial functions (i.e. TET. Finally, comparison of our findings with publicly available transcriptomics data showed that a number of processes altered in the mouse PCLS was also affected in mouse livers and human primary hepatocytes exposed to known PPAR agonists. Thus mouse PCLS are a valuable model to identify early mechanisms of action of compounds altering lipid metabolism.

  14. A novel mouse model of intrahepatic cholangiocarcinoma induced by liver-specific Kras activation and Pten deletion.

    Science.gov (United States)

    Ikenoue, Tsuneo; Terakado, Yumi; Nakagawa, Hayato; Hikiba, Yohko; Fujii, Tomoaki; Matsubara, Daisuke; Noguchi, Rei; Zhu, Chi; Yamamoto, Keisuke; Kudo, Yotaro; Asaoka, Yoshinari; Yamaguchi, Kiyoshi; Ijichi, Hideaki; Tateishi, Keisuke; Fukushima, Noriyoshi; Maeda, Shin; Koike, Kazuhiko; Furukawa, Yoichi

    2016-01-01

    Intrahepatic cholangiocarcinoma (ICC) is an aggressive malignancy with poor prognosis and its incidence is increasing worldwide. Recently, several types of cells have been considered as the origin of ICC, namely cholangiocytes, liver progenitor cells, and hepatocytes. Here, we have established a novel mouse model of ICC by liver-specific Kras activation and Pten deletion. An activating mutation of Kras in combination with deletion of Pten was introduced in embryonic hepatic bipotential progenitor cells (so-called hepatoblasts) and mature hepatocytes using the Cre-loxP system. As a result, liver-specific Kras activation and homozygous Pten deletion cooperated to induce ICCs exclusively. In contrast, Kras activation in combination with heterozygous Pten deletion induced both ICCs and HCCs, whereas Kras activation alone resulted in HCCs but not ICCs. Furthermore, a cell-lineage visualization system using tamoxifen-inducible Cre-loxP demonstrated that the ICCs did not originate from hepatocytes but from cholangiocytes. Our data suggest that mice carrying liver-specific Kras activation in combination with homozygous Pten deletion should be useful for the investigation of therapeutic strategies for human ICC. PMID:27032374

  15. Lactobacillus rhamnosus CCFM1107 treatment ameliorates alcohol-induced liver injury in a mouse model of chronic alcohol feeding.

    Science.gov (United States)

    Tian, Fengwei; Chi, Feifei; Wang, Gang; Liu, Xiaoming; Zhang, Qiuxiang; Chen, Yongquan; Zhang, Hao; Chen, Wei

    2015-12-01

    Lactobacillus rhamnosus CCFM1107 was screened for high antioxidative activity from 55 lactobacilli. The present study attempted to explore the protective properties of L. rhamnosus CCFM1107 in alcoholic liver injury. A mouse model was induced by orally feeding alcohol when simultaneously treated with L. rhamnosus CCFM1107, the drug Hu-Gan- Pian (HGP), L. rhamnosus GG (LGG), and L. plantarum CCFM1112 for 3 months. Biochemical analysis was performed for both serum and liver homogenate. Detailed intestinal flora and histological analyses were also carried out. Our results indicated that the administration of L. rhamnosus CCFM1107 significantly inhibited the increase in the levels of serum aminotransferase and endotoxin, as well as the levels of triglyceride (TG) and cholesterol (CHO) in the serum and in the liver. Glutathione (GSH), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) were elevated while the levels of malondialdehyde (MDA) were decreased. The enteric dysbiosis caused by alcohol was restored by increasing the numbers of both lactobacilli and bifidobacteria and decreasing the numbers of both enterococci and enterobacter. Histological analysis confirmed the protective effect of L. rhamnosus CCFM1107. Compared with the other lactobacilli and to the drug Hu-Gan-Pian, there is a high chance that L. rhamnosus CCFM1107 provides protective effects on alcoholic liver injury by reducing oxidative stress and restoring the intestinal flora. PMID:26626356

  16. The fetal mouse is a sensitive genotoxicity model that exposes lentiviral-associated mutagenesis resulting in liver oncogenesis.

    Science.gov (United States)

    Nowrouzi, Ali; Cheung, Wing T; Li, Tingting; Zhang, Xuegong; Arens, Anne; Paruzynski, Anna; Waddington, Simon N; Osejindu, Emma; Reja, Safia; von Kalle, Christof; Wang, Yoahe; Al-Allaf, Faisal; Gregory, Lisa; Themis, Matthew; Holder, Maxine; Dighe, Niraja; Ruthe, Alaine; Buckley, Suzanne Mk; Bigger, Brian; Montini, Eugenio; Thrasher, Adrian J; Andrews, Robert; Roberts, Terry P; Newbold, Robert F; Coutelle, Charles; Schmidt, Manfred; Themis, Mike

    2013-02-01

    Genotoxicity models are extremely important to assess retroviral vector biosafety before gene therapy. We have developed an in utero model that demonstrates that hepatocellular carcinoma (HCC) development is restricted to mice receiving nonprimate (np) lentiviral vectors (LV) and does not occur when a primate (p) LV is used regardless of woodchuck post-translation regulatory element (WPRE) mutations to prevent truncated X gene expression. Analysis of 839 npLV and 244 pLV integrations in the liver genomes of vector-treated mice revealed clear differences between vector insertions in gene dense regions and highly expressed genes, suggestive of vector preference for insertion or clonal outgrowth. In npLV-associated clonal tumors, 56% of insertions occurred in oncogenes or genes associated with oncogenesis or tumor suppression and surprisingly, most genes examined (11/12) had reduced expression as compared with control livers and tumors. Two examples of vector-inserted genes were the Park 7 oncogene and Uvrag tumor suppressor gene. Both these genes and their known interactive partners had differential expression profiles. Interactive partners were assigned to networks specific to liver disease and HCC via ingenuity pathway analysis. The fetal mouse model not only exposes the genotoxic potential of vectors intended for gene therapy but can also reveal genes associated with liver oncogenesis. PMID:23299800

  17. Teratogenic study of phenobarbital and levamisole on mouse fetus liver tissue using biospectroscopy.

    Science.gov (United States)

    Ashtarinezhad, Azadeh; Panahyab, Ataollah; Shaterzadeh-Oskouei, Shahrzad; Khoshniat, Hessam; Mohamadzadehasl, Baharak; Shirazi, Farshad H

    2016-09-01

    Biospectroscopic investigations have attracted attention of both the clinicians and basic sciences researchers in recent years. Scientists are discovering new areas for FTIR biospectroscopy applications in medicine. The aim of this study was to measure the possibility of FTIR-MSP application for the recognition and detection of fetus abnormalities after exposure of pregnant mouse to phenobarbital (PB) and levamisole (LEV) alone or in combination. PB is one of the most widely used antiepileptic drugs (AEDs), with sedative and hypnotic effects. When used by pregnant women, it is known to be a teratogenic agent. LEV is an antihelminthic drug with some applications in immune-deficiency as well as colon cancer therapy. Four groups of ten pregnant mice were selected for the experiments as follows: one control group received only standard diet, one group was injected with 120mg/kg of BP, one group was injected with 10mg/kg of LEV, and the last group was treated simultaneously with both BP and LEV at the above mentioned doses. Drugs administration was performed on gestation day 9 and fetuses were dissected on pregnancy day 15. Each dissected fetus was fixed, dehydrated and embedded in paraffin. Sections of liver (10μm) were prepared from control and treated groups by microtome and deparaffinized with xylene. The spectra were taken by FTIR-MSP in the region of 4000-400cm(-1). All the spectra were normalized based on amide II band (1545cm(-1)) after baseline correction of the entire spectrum, followed by classification using PCA, ANN and SVM. Both morphological and spectral changes were shown in the treated fetuses as compared to the fetuses in the control group. While cleft palate and C-R elongation were seen in PB injected fetuses, developmental retardation was mostly seen in the LEV injected group. Biospectroscopy revealed that both drugs mainly affected the cellular lipids and proteins, with LEV causing more changes in amide I and lipid regions than PB. Application of

  18. Modeling toxicodynamic effects of trichloroethylene on liver in mouse model of autoimmune hepatitis

    OpenAIRE

    Gilbert, Kathleen M.; Reisfeld, Brad; Zurlinden, Todd; Kreps, Meagan N.; Erickson, Stephen W.; Blossom, Sarah J.

    2014-01-01

    Chronic exposure to industrial solvent and water pollutant trichloroethylene (TCE) in female MRL+/+ mice generates disease similar to human autoimmune hepatitis. The current study was initiated to investigate why TCE-induced autoimmunity targeted the liver. Compared to other tissues the liver has an unusually robust capacity for repair and regeneration. This investigation examined both time-dependent and dose-dependent effects of TCE on hepatoprotective and pro-inflammatory events in liver an...

  19. Comparative Proteomic Study of Mouse Liver Exposed to Differing Gravitational Environments

    OpenAIRE

    Phinney, Brett S.; Weber, Darren M.; Fuller, Charles A.; Salemi, Michelle

    2013-01-01

    It has been shown that long term exposure to altered gravitational environments leads to altered intermediary metabolism with a concomitant reduction in body adiposity. This effect on liver protein expression has been poorly examined. Using gel/c MS/MS on extracted liver proteins we will compare protein profiles from mice flown in space compared to control mice maintained at earth's gravity on the ground. Livers were obtained from mice that were exposed for 90 days to three different living c...

  20. Lysophosphatidic acid alters the expression profiles of angiogenic factors, cytokines, and chemokines in mouse liver sinusoidal endothelial cells.

    Directory of Open Access Journals (Sweden)

    Chia-Hung Chou

    Full Text Available Lysophosphatidic acid (LPA is a multi-function glycerophospholipid. LPA affects the proliferation of hepatocytes and stellate cells in vitro, and in a partial hepatectomy induced liver regeneration model, the circulating LPA levels and LPA receptor (LPAR expression levels in liver tissue are significantly changed. Liver sinusoidal endothelial cells (Lsecs play an important role during liver regeneration. However, the effects of LPA on Lsecs are not well known. Thus, we investigated the effects of LPA on the expression profiles of angiogenic factors, cytokines, and chemokines in Lsecs.Mouse Lsecs were isolated using CD31-coated magnetic beads. The mRNA expression levels of LPAR's and other target genes were determined by quantitative RT-PCR. The protein levels of angiogenesis factors, cytokines, and chemokines were determined using protein arrays and enzyme immunoassay (EIA. Critical LPAR related signal transduction was verified by using an appropriate chemical inhibitor.LPAR1 and LPAR3 mRNA's were expressed in mouse LPA-treated Lsecs. Treating Lsecs with a physiological level of LPA significantly enhanced the protein levels of angiogenesis related proteins (cyr61 and TIMP-1, cytokines (C5/C5a, M-CSF, and SDF-1, and chemokines (MCP-5, gp130, CCL28, and CXCL16. The LPAR1 and LPAR3 antagonist ki16425 significantly inhibited the LPA-enhanced expression of cyr61, TIMP-1, SDF-1, MCP-5, gp130, CCL28, and CXCL16, but not that of C5/C5a or M-CSF. LPA-induced C5/C5a and M-CSF expression may have been through an indirect regulation mechanism.LPA regulated the expression profiles of angiogenic factors, cytokines, and chemokines in Lsecs that was mediated via LPAR1 and LPAR3 signaling. Most of the factors that were enhanced by LPA have been found to play critical roles during liver regeneration. Thus, these results may prove useful for manipulating LPA effects on liver regeneration.

  1. Lysophosphatidic Acid Alters the Expression Profiles of Angiogenic Factors, Cytokines, and Chemokines in Mouse Liver Sinusoidal Endothelial Cells

    Science.gov (United States)

    Chou, Chia-Hung; Lai, Shou-Lun; Ho, Cheng-Maw; Lin, Wen-Hsi; Chen, Chiung-Nien; Lee, Po-Huang; Peng, Fu-Chuo; Kuo, Sung-Hsin; Wu, Szu-Yuan; Lai, Hong-Shiee

    2015-01-01

    Background and Aims Lysophosphatidic acid (LPA) is a multi-function glycerophospholipid. LPA affects the proliferation of hepatocytes and stellate cells in vitro, and in a partial hepatectomy induced liver regeneration model, the circulating LPA levels and LPA receptor (LPAR) expression levels in liver tissue are significantly changed. Liver sinusoidal endothelial cells (Lsecs) play an important role during liver regeneration. However, the effects of LPA on Lsecs are not well known. Thus, we investigated the effects of LPA on the expression profiles of angiogenic factors, cytokines, and chemokines in Lsecs. Methods Mouse Lsecs were isolated using CD31-coated magnetic beads. The mRNA expression levels of LPAR’s and other target genes were determined by quantitative RT-PCR. The protein levels of angiogenesis factors, cytokines, and chemokines were determined using protein arrays and enzyme immunoassay (EIA). Critical LPAR related signal transduction was verified by using an appropriate chemical inhibitor. Results LPAR1 and LPAR3 mRNA’s were expressed in mouse LPA-treated Lsecs. Treating Lsecs with a physiological level of LPA significantly enhanced the protein levels of angiogenesis related proteins (cyr61 and TIMP-1), cytokines (C5/C5a, M-CSF, and SDF-1), and chemokines (MCP-5, gp130, CCL28, and CXCL16). The LPAR1 and LPAR3 antagonist ki16425 significantly inhibited the LPA-enhanced expression of cyr61, TIMP-1, SDF-1, MCP-5, gp130, CCL28, and CXCL16, but not that of C5/C5a or M-CSF. LPA-induced C5/C5a and M-CSF expression may have been through an indirect regulation mechanism. Conclusion LPA regulated the expression profiles of angiogenic factors, cytokines, and chemokines in Lsecs that was mediated via LPAR1 and LPAR3 signaling. Most of the factors that were enhanced by LPA have been found to play critical roles during liver regeneration. Thus, these results may prove useful for manipulating LPA effects on liver regeneration. PMID:25822713

  2. Arsenic induces apoptosis in mouse liver is mitochondria dependent and is abrogated by N-acetylcysteine

    International Nuclear Information System (INIS)

    Arsenicosis, caused by arsenic contamination of drinking water supplies, is a major public health problem in India and Bangladesh. Chronic liver disease, often with portal hypertension occurs in chronic arsenicosis, contributes to the morbidity and mortality. The early cellular events that initiate liver cell injury due to arsenicosis have not been studied. Our aim was to identify the possible mechanisms related to arsenic-induced liver injury in mice. Liver injury was induced in mice by arsenic treatment. The liver was used for mitochondrial oxidative stress, mitochondrial permeability transition (MPT). Evidence of apoptosis was sought by TUNEL test, caspase assay and histology. Pretreatment with N-acetyl-L-cysteine (NAC) was done to modulate hepatic GSH level. Arsenic treatment in mice caused liver injury associated with increased oxidative stress in liver mitochondria and alteration of MPT. Altered MPT facilitated cytochrome c release in the cytosol, activation of caspase 9 and caspase 3 activities and apoptotic cell death. Pretreatment of NAC to arsenic-treated mice abrogated all these alteration suggesting a glutathione (GSH)-dependent mechanism. Oxidative stress in mitochondria and inappropriate MPT are important in the pathogenesis of arsenic induced apoptotic liver cell injury. The phenomenon is GSH dependent and supplementation of NAC might have beneficial effects

  3. Hemopoietic support capacity of adult mouse liver. Studies in 89Sr marrow-ablated mice

    International Nuclear Information System (INIS)

    The capacity of normal livers in adult mice to support proliferation of pluripotent hemopoietic stem cells (CFU-S) was studied. We assayed CFU-S of the blood and livers of mice with intact marrows and of mice whose marrows had been ablated with 89Sr (4 μCi/g) either before or after removal of their spleens, the major hemopoietic organ in marrow-ablated mice. Splenectomy alone resulted in an increase in the numbers of blood and hepatic CFU-S; since the spleen is an efficient trapper of CFU-S released from the marrow, in the splenectomized mice more CFU-S were available for trapping by the liver. Mice splenectomized 3 days prior to 89Sr injection had virtually no blood or liver CFU-S by the tenth day after 89Sr injection. Fourteen days after injection of 89Sr there were supranormal numbers of CFU-S in both blood and liver of intact mice. One week after such mice were splenectomized, however, CFU-S were virtually absent from both blood and liver. This study suggests that normal livers in adult mice cannot support detectable proliferation of normal CFU-S even if the animal is subjected to severe and relatively prolonged hemopoietic stress. In addition, the results of our studies demonstrate that normal livers of adult mice have the capacity to trap large numbers of CFU-S

  4. Trichloroethylene-induced gene expression and DNA methylation changes in B6C3F1 mouse liver.

    Directory of Open Access Journals (Sweden)

    Yan Jiang

    Full Text Available Trichloroethylene (TCE, widely used as an organic solvent in the industry, is a common contaminant in air, soil, and water. Chronic TCE exposure induced hepatocellular carcinoma in mice, and occupational exposure in humans was suggested to be associated with liver cancer. To understand the role of non-genotoxic mechanism(s for TCE action, we examined the gene expression and DNA methylation changes in the liver of B6C3F1 mice orally administered with TCE (0, 100, 500 and 1000 mg/kg b.w. per day for 5 days. After 5 days TCE treatment at a dose level of 1000 mg/kg b.w., a total of 431 differentially expressed genes were identified in mouse liver by microarray, of which 291 were up-regulated and 140 down-regulated. The expression changed genes were involved in key signal pathways including PPAR, proliferation, apoptosis and homologous recombination. Notably, the expression level of a number of vital genes involved in the regulation of DNA methylation, such as Utrf1, Tet2, DNMT1, DNMT3a and DNMT3b, were dysregulated. Although global DNA methylation change was not detected in the liver of mice exposed to TCE, the promoter regions of Cdkn1a and Ihh were found to be hypo- and hypermethylated respectively, which correlated negatively with their mRNA expression changes. Furthermore, the gene expression and DNA methylation changes induced by TCE were dose dependent. The overall data indicate that TCE exposure leads to aberrant DNA methylation changes, which might alter the expression of genes involved in the TCE-induced liver tumorgenesis.

  5. Food Additive P-80 Impacts Mouse Gut Microbiota Promoting Intestinal Inflammation, Obesity and Liver Dysfunction

    Science.gov (United States)

    Singh, Ratnesh Kumar; Wheildon, Nolan; Ishikawa, Seiichi

    2016-01-01

    The increasing prevalence of obesity has emerged as one of the most important global public health issue. The change to the human microbiome as a result of changes in the quality and quantity of food intake over the past several decades has been implicated in the development of obesity and metabolic syndrome. We administered polysorbate-80 to mice via gavage. The researchers monitor liver noninvasively using a bioluminescence imaging. For the liver dysfunction we measure the liver enzymes and PAS stain on liver, electron microscopy liver mitochondria. For the assessment of intestinal inflammation we measured fecal LCN2, LPS, MPO and flagellin by ELISA and qPCR. We use confocal microscopy to detect closet bacteria near the epithelium. 16S sequence was used for the composition of microbiota. Compared with control mice, those receiving emulsifier, showed impaired glycemic tolerance, hyperinsulinemia, altered liver enzymes, larger mitochondria and increased gall bladder size. Additionally, mice in the experimental group showed higher levels of DCA, reduced Muc2 RNA expression, reduced mucus thickness in the intestinal epithelium and increased gut permeability. Intestinal bacteria of mice receiving P-80 were found deeper in the mucus and closer to the intestinal epithelium and had increased level of bioactive LPS, flagellin and LCN2 expression. The result of the study are supportive of evidence that emulsifier agents such as polysorbate-80, may be contributing to obesity related intestinal inflammation and progression of liver dysfunction and alternation of gut microbiota.

  6. Gene expression profiling in mouse liver infected with Clonorchis sinensis metacercariae.

    Science.gov (United States)

    Kim, Dong Min; Ko, Byung-Sam; Ju, Jung-Won; Cho, Shin-Hyeong; Yang, Suk-Jin; Yeom, Young Il; Kim, Tong-Soo; Won, Yonggwan; Kim, Il-Chul

    2009-12-01

    Clonorchis sinensis, the parasite that causes clonorchiasis, is endemic in many Asian countries, and infection with the organism drives changes in the liver tissues of the host. However, information regarding the molecular events in clonorchiasis remains limited, and little is currently known about host-pathogen interactions in clonorchiasis. In this study, we assessed the gene expression profiles in mice livers via DNA microarray analysis 1, 2, 4, and 6 weeks after induced metacercariae infection. Functional clustering of the gene expression profile showed that the immunity-involved genes were induced in the livers of the mice at the early stage of metacercariae infection, whereas immune responses were reduced in the 6-week liver tissues after infection in which the metacercariae became adult flukes. Many genes involved in fatty acid metabolism, including Peci, Cyp4a10, Acat1, Ehhadh, Gcdh, and Cyp2 family were downregulated in the infected livers. On the other hand, the liver tissues infected with the parasite expressed Wnt signaling molecules such as Wnt7b, Fzd6, and Pdgfrb and cell cycle-regulating genes including cyclin-D1, Cdca3, and Bcl3. These investigations constitute an excellent starting point for increased understanding of the molecular mechanisms underlying host-pathogen interaction during the development of C. sinensis in the host liver. PMID:19902254

  7. Overexpression of the cholesterol-binding protein MLN64 induces liver damage in the mouse

    Institute of Scientific and Technical Information of China (English)

    Juan Enrique Tichauer; Juan Francisco Miquel; Attilio Rigotti; Silvana Zanlungo; Mar(i)a Gabriela Morales; Ludwig Amigo; Leopoldo Galdames; Andrés Kléin; Verónica Quifio(n)es; Carla Ferrada; Alejandra Alvarez R; Marie-Christine Rio

    2007-01-01

    AIM: To examine the in vivo phenotype associated with hepatic metastatic lymph node 64 (MLN64) over-expression.METHODS: Recombinant-adenovirus-mediated MLN64 gene transfer was used to overexpress MLN64 in the livers of C57BL/6 mice. We measured the effects of MLN64 overexpression on hepatic cholesterol content, bile flow, biliary lipid secretion and apoptosis markers. For in vitro studies cultured CHO cells with transient MLN64 overexpression were utilized and apoptosis by TUNEL assay was measured.RESULTS: Livers from Ad.MLN64-infected mice exhibited early onset of liver damage and apoptosis. This response correlated with increases in liver cholesterol content and biliary bile acid concentration, and impaired bile flow. We investigated whether liver MLN64 expression could be modulated in a murine model of hepatic injury. We found increased hepatic MLN64 mRNA and protein levels in mice with chenodeoxycholic acid-induced liver damage. In addition, cultured CHO cells with transient MLN64 overexpression showed increased apoptosis.CONCLUSION: In summary, hepatic MLN64 over-expression induced damage and apoptosis in murine livers and altered cholesterol metabolism. Further studies are required to elucidate the relevance of these findings under physiologic and disease conditions.

  8. Clinical data and characterization of the liver conditional mouse model exclude neoplasia as a non-neurological manifestation associated with Friedreich’s ataxia

    Directory of Open Access Journals (Sweden)

    Alain Martelli

    2012-11-01

    Friedreich’s ataxia (FRDA is the most common hereditary ataxia in the caucasian population and is characterized by a mixed spinocerebellar and sensory ataxia, hypertrophic cardiomyopathy and increased incidence of diabetes. FRDA is caused by impaired expression of the FXN gene coding for the mitochondrial protein frataxin. During the past ten years, the development of mouse models of FRDA has allowed better understanding of the pathophysiology of the disease. Among the mouse models of FRDA, the liver conditional mouse model pointed to a tumor suppressor activity of frataxin leading to the hypothesis that individuals with FRDA might be predisposed to cancer. In the present work, we investigated the presence and the incidence of neoplasia in the largest FRDA patient cohorts from the USA, Australia and Europe. As no predisposition to cancer could be observed in both cohorts, we revisited the phenotype of the liver conditional mouse model. Our results show that frataxin-deficient livers developed early mitochondriopathy, iron-sulfur cluster deficits and intramitochondrial dense deposits, classical hallmarks observed in frataxin-deficient tissues and cells. With age, a minority of mice developed structures similar to the ones previously associated with tumor formation. However, these peripheral structures contained dying, frataxin-deficient hepatocytes, whereas the inner liver structure was composed of a pool of frataxin-positive cells, due to inefficient Cre-mediated recombination of the Fxn gene, that contributed to regeneration of a functional liver. Together, our data demonstrate that frataxin deficiency and tumorigenesis are not associated.

  9. Phosphatase of Regenerating Liver-3 Promotes Motility and Metastasis of Mouse Melanoma Cells

    OpenAIRE

    Wu, Xiaopeng; Zeng, Hu; Zhang, Xianming; Zhao, Ying; Sha, Haibo; Ge, Xiaomei; Zhang, Minyue; Gao, Xiang; Xu, Qiang

    2004-01-01

    Recent reports suggested that phosphatase of regenerating liver (PRL)-3 might be involved in colorectal carcinoma metastasis with an unknown mechanism. Here we demonstrated that PRL-3 expression was up-regulated in human liver carcinoma compared with normal liver. PRL-3 was also highly expressed in metastatic melanoma B16-BL6 cells but not in its lowly metastatic parental cell line, B16 cells. B16 cells transfected with PRL-3 cDNA displayed morphological transformation from epithelial-like sh...

  10. Bioinformatic analysis of microRNA networks following the activation of the constitutive androstane receptor (CAR) in mouse liver.

    Science.gov (United States)

    Hao, Ruixin; Su, Shengzhong; Wan, Yinan; Shen, Frank; Niu, Ben; Coslo, Denise M; Albert, Istvan; Han, Xing; Omiecinski, Curtis J

    2016-09-01

    The constitutive androstane receptor (CAR; NR1I3) is a member of the nuclear receptor superfamily that functions as a xenosensor, serving to regulate xenobiotic detoxification, lipid homeostasis and energy metabolism. CAR activation is also a key contributor to the development of chemical hepatocarcinogenesis in mice. The underlying pathways affected by CAR in these processes are complex and not fully elucidated. MicroRNAs (miRNAs) have emerged as critical modulators of gene expression and appear to impact many cellular pathways, including those involved in chemical detoxification and liver tumor development. In this study, we used deep sequencing approaches with an Illumina HiSeq platform to differentially profile microRNA expression patterns in livers from wild type C57BL/6J mice following CAR activation with the mouse CAR-specific ligand activator, 1,4-bis-[2-(3,5,-dichloropyridyloxy)] benzene (TCPOBOP). Bioinformatic analyses and pathway evaluations were performed leading to the identification of 51 miRNAs whose expression levels were significantly altered by TCPOBOP treatment, including mmu-miR-802-5p and miR-485-3p. Ingenuity Pathway Analysis of the differentially expressed microRNAs revealed altered effector pathways, including those involved in liver cell growth and proliferation. A functional network among CAR targeted genes and the affected microRNAs was constructed to illustrate how CAR modulation of microRNA expression may potentially mediate its biological role in mouse hepatocyte proliferation. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie. PMID:27080131

  11. A novel in vitro method for the metabolism studies of radiotracers using mouse liver S9 fraction

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Eun Kyoung; Choi, Yearn Seong; Kim, Dong Hyun; Lee, Sang Yoon; Choi, Yong; Lee, Kyung Han; Kim, Byung Tae [School of Medicine, Sungkyunkwan Univ., Seoul (Korea, Republic of)

    2004-08-01

    Usefulness of mouse liver S9 fraction was evaluated for the measurement of the metabolites in the in vitro metabolism study of {sup 18}F-labeled radiotracers. Mouse liver S9 fraction was isolated at an early step in the course of microsome preparation. The in vitro metabolism studies were carried out by incubating a mixture containing the radiotracer, S9 fraction and NADPH at 37.deg.C, and an aliquot of the mixture was analyzed at the indicated time points by radio-TLC. Metabolic defluorination was further confirmed by the incubation with calcium phosphate, a bone mimic. The radiotracer [{sup 18}F]1 underwent metabolic defluorination within 15 min, which was consistent with the results of the in vivo method and the in vitro method using microsome. Radiotracer [{sup 18}F]2 was metabolized to three metabolites including 4-[{sup 18}F]fluorobenzoic acid within 60 min. It is likely that the one of these metabolites at the origin of radio-TLC was identical with the one that obtained from the in vivo and in vitro (microsome) method. Compared with the in vitro method using microsome, the method using S9 fraction gave a similar pattern of the metabolites but with a different ratio, which can be explained by the presence of cytosol in the S9 fraction. These results suggest that the findings of the in vitro metabolism studies using S9 fraction can reflect the in vitro metabolism of novel radiotracers in the liver. Moreover, this method can be used as a tool to determine metabolic defluorination along with calcium phosphate absorption method.

  12. Exercise-induced regulation of key factors in substrate choice and gluconeogenesis in mouse liver

    DEFF Research Database (Denmark)

    Knudsen, Jakob Grunnet; Biensø, Rasmus Sjørup; Hassing, Helle Adser;

    2015-01-01

    As the demand for hepatic glucose production increases during exercise, regulation of liver substrate choice and gluconeogenic activity becomes essential. The aim of the present study was to investigate the effect of a single exercise bout on gluconeogenic protein content and regulation of enzymes...... involved in substrate utilization in the liver. Mice were subjected to 1 h of treadmill exercise, and livers were removed immediately, 4 or 10 h after exercise. Glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxylase (PEPCK) mRNA contents in the liver increased immediately after exercise, while...... the PEPCK protein content increased at 10 h of recovery. Furthermore, 5′AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC), and pyruvate dehydrogenase (PDH)-E1α Ser293 phosphorylations decreased immediately after exercise. In addition, PDH kinase 4 (PDK4) mRNA and protein content increased...

  13. Mouse Monoclonal Antibodies for Liver Cancer Research | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute Laboratory of Molecular Biology seeks parties for collaborative research to co-develop and commercialize antibody drug/toxin conjugates as liver cancer therapy and diagnostics.

  14. Kupffer cells hasten resolution of liver immunopathology in mouse models of viral hepatitis.

    Directory of Open Access Journals (Sweden)

    Giovanni Sitia

    2011-06-01

    Full Text Available Kupffer cells (KCs are widely considered important contributors to liver injury during viral hepatitis due to their pro-inflammatory activity. Herein we utilized hepatitis B virus (HBV-replication competent transgenic mice and wild-type mice infected with a hepatotropic adenovirus to demonstrate that KCs do not directly induce hepatocellular injury nor do they affect the pathogenic potential of virus-specific CD8 T cells. Instead, KCs limit the severity of liver immunopathology. Mechanistically, our results are most compatible with the hypothesis that KCs contain liver immunopathology by removing apoptotic hepatocytes in a manner largely dependent on scavenger receptors. Apoptotic hepatocytes not readily removed by KCs become secondarily necrotic and release high-mobility group box 1 (HMGB-1 protein, promoting organ infiltration by inflammatory cells, particularly neutrophils. Overall, these results indicate that KCs resolve rather than worsen liver immunopathology.

  15. Modeling toxicodynamic effects of trichloroethylene on liver in mouse model of autoimmune hepatitis

    International Nuclear Information System (INIS)

    Chronic exposure to industrial solvent and water pollutant trichloroethylene (TCE) in female MRL +/+ mice generates disease similar to human autoimmune hepatitis. The current study was initiated to investigate why TCE-induced autoimmunity targeted the liver. Compared to other tissues the liver has an unusually robust capacity for repair and regeneration. This investigation examined both time-dependent and dose-dependent effects of TCE on hepatoprotective and pro-inflammatory events in liver and macrophages from female MRL +/+ mice. After a 12-week exposure to TCE in drinking water a dose-dependent decrease in macrophage production of IL-6 at both the transcriptional and protein level was observed. A longitudinal study similarly showed that TCE inhibited macrophage IL-6 production. In terms of the liver, TCE had little effect on expression of pro-inflammatory genes (Tnfa, Saa2 or Cscl1) until the end of the 40-week exposure. Instead, TCE suppressed hepatic expression of genes involved in IL-6 signaling (Il6r, gp130, and Egr1). Linear regression analysis confirmed liver histopathology in the TCE-treated mice correlated with decreased expression of Il6r. A toxicodynamic model was developed to estimate the effects of TCE on IL-6 signaling and liver pathology under different levels of exposure and rates of repair. This study underlined the importance of longitudinal studies in mechanistic evaluations of immuntoxicants. It showed that later-occurring liver pathology caused by TCE was associated with early suppression of hepatoprotection rather than an increase in conventional pro-inflammatory events. This information was used to create a novel toxicodynamic model of IL-6-mediated TCE-induced liver inflammation. - Highlights: • We developed a toxicodynamic model to study effects of trichloroethylene on liver. • We examined protective as well as pro-inflammatory events in the liver. • Trichloroethylene inhibits IL-6 production by macrophages. • Trichloroethylene

  16. Modeling toxicodynamic effects of trichloroethylene on liver in mouse model of autoimmune hepatitis

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Kathleen M., E-mail: gilbertkathleenm@uams.edu [University of Arkansas for Medical Sciences, Arkansas Children' s Hospital Research Institute, Little Rock, AR 72202 (United States); Reisfeld, Brad, E-mail: brad.reisfeld@colostate.edu [Colorado State University, Fort Collins, CO (United States); Zurlinden, Todd J., E-mail: tjzurlin@rams.colostate.edu [Colorado State University, Fort Collins, CO (United States); Kreps, Meagan N., E-mail: MNKreps@uams.edu [University of Arkansas for Medical Sciences, Arkansas Children' s Hospital Research Institute, Little Rock, AR 72202 (United States); Erickson, Stephen W., E-mail: serickson@uams.edu [University of Arkansas for Medical Sciences, Arkansas Children' s Hospital Research Institute, Little Rock, AR 72202 (United States); Blossom, Sarah J., E-mail: blossomsarah@uams.edu [University of Arkansas for Medical Sciences, Arkansas Children' s Hospital Research Institute, Little Rock, AR 72202 (United States)

    2014-09-15

    Chronic exposure to industrial solvent and water pollutant trichloroethylene (TCE) in female MRL +/+ mice generates disease similar to human autoimmune hepatitis. The current study was initiated to investigate why TCE-induced autoimmunity targeted the liver. Compared to other tissues the liver has an unusually robust capacity for repair and regeneration. This investigation examined both time-dependent and dose-dependent effects of TCE on hepatoprotective and pro-inflammatory events in liver and macrophages from female MRL +/+ mice. After a 12-week exposure to TCE in drinking water a dose-dependent decrease in macrophage production of IL-6 at both the transcriptional and protein level was observed. A longitudinal study similarly showed that TCE inhibited macrophage IL-6 production. In terms of the liver, TCE had little effect on expression of pro-inflammatory genes (Tnfa, Saa2 or Cscl1) until the end of the 40-week exposure. Instead, TCE suppressed hepatic expression of genes involved in IL-6 signaling (Il6r, gp130, and Egr1). Linear regression analysis confirmed liver histopathology in the TCE-treated mice correlated with decreased expression of Il6r. A toxicodynamic model was developed to estimate the effects of TCE on IL-6 signaling and liver pathology under different levels of exposure and rates of repair. This study underlined the importance of longitudinal studies in mechanistic evaluations of immuntoxicants. It showed that later-occurring liver pathology caused by TCE was associated with early suppression of hepatoprotection rather than an increase in conventional pro-inflammatory events. This information was used to create a novel toxicodynamic model of IL-6-mediated TCE-induced liver inflammation. - Highlights: • We developed a toxicodynamic model to study effects of trichloroethylene on liver. • We examined protective as well as pro-inflammatory events in the liver. • Trichloroethylene inhibits IL-6 production by macrophages. • Trichloroethylene

  17. Acetylcholinesterase (AChE inhibition aggravates fasting-induced triglyceride accumulation in the mouse liver

    Directory of Open Access Journals (Sweden)

    Shin-Ichi Yokota

    2014-01-01

    Full Text Available Although fasting induces hepatic triglyceride (TG accumulation in both rodents and humans, little is known about the underlying mechanism. Because parasympathetic nervous system activity tends to attenuate the secretion of very-low-density-lipoprotein-triglyceride (VLDL-TG and increase TG stores in the liver, and serum cholinesterase activity is elevated in fatty liver disease, the inhibition of the parasympathetic neurotransmitter acetylcholinesterase (AChE may have some influence on hepatic lipid metabolism. To assess the influence of AChE inhibition on lipid metabolism, the effect of physostigmine, an AChE inhibitor, on fasting-induced increase in liver TG was investigated in mice. In comparison with ad libitum-fed mice, 30 h fasting increased liver TG accumulation accompanied by a downregulation of sterol regulatory element-binding protein 1 (SREBP-1 and liver-fatty acid binding-protein (L-FABP. Physostigmine promoted the 30 h fasting-induced increase in liver TG levels in a dose-dependent manner, accompanied by a significant fall in plasma insulin levels, without a fall in plasma TG. Furthermore, physostigmine significantly attenuated the fasting-induced decrease of both mRNA and protein levels of SREBP-1 and L-FABP, and increased IRS-2 protein levels in the liver. The muscarinic receptor antagonist atropine blocked these effects of physostigmine on liver TG, serum insulin, and hepatic protein levels of SREBP-1 and L-FABP. These results demonstrate that AChE inhibition facilitated fasting-induced TG accumulation with up regulation of the hepatic L-FABP and SREBP-1 in mice, at least in part via the activation of muscarinic acetylcholine receptors. Our studies highlight the crucial role of parasympathetic regulation in fasting-induced TG accumulation, and may be an important source of information on the mechanism of hepatic disorders of lipid metabolism.

  18. Acetylcholinesterase (AChE) inhibition aggravates fasting-induced triglyceride accumulation in the mouse liver.

    Science.gov (United States)

    Yokota, Shin-Ichi; Nakamura, Kaai; Ando, Midori; Kamei, Hiroyasu; Hakuno, Fumihiko; Takahashi, Shin-Ichiro; Shibata, Shigenobu

    2014-01-01

    Although fasting induces hepatic triglyceride (TG) accumulation in both rodents and humans, little is known about the underlying mechanism. Because parasympathetic nervous system activity tends to attenuate the secretion of very-low-density-lipoprotein-triglyceride (VLDL-TG) and increase TG stores in the liver, and serum cholinesterase activity is elevated in fatty liver disease, the inhibition of the parasympathetic neurotransmitter acetylcholinesterase (AChE) may have some influence on hepatic lipid metabolism. To assess the influence of AChE inhibition on lipid metabolism, the effect of physostigmine, an AChE inhibitor, on fasting-induced increase in liver TG was investigated in mice. In comparison with ad libitum-fed mice, 30 h fasting increased liver TG accumulation accompanied by a downregulation of sterol regulatory element-binding protein 1 (SREBP-1) and liver-fatty acid binding-protein (L-FABP). Physostigmine promoted the 30 h fasting-induced increase in liver TG levels in a dose-dependent manner, accompanied by a significant fall in plasma insulin levels, without a fall in plasma TG. Furthermore, physostigmine significantly attenuated the fasting-induced decrease of both mRNA and protein levels of SREBP-1 and L-FABP, and increased IRS-2 protein levels in the liver. The muscarinic receptor antagonist atropine blocked these effects of physostigmine on liver TG, serum insulin, and hepatic protein levels of SREBP-1 and L-FABP. These results demonstrate that AChE inhibition facilitated fasting-induced TG accumulation with up regulation of the hepatic L-FABP and SREBP-1 in mice, at least in part via the activation of muscarinic acetylcholine receptors. Our studies highlight the crucial role of parasympathetic regulation in fasting-induced TG accumulation, and may be an important source of information on the mechanism of hepatic disorders of lipid metabolism. PMID:25383314

  19. Recovery from liver disease in a Niemann-Pick type C mouse model

    OpenAIRE

    Sayre, Naomi L.; Rimkunas, Victoria M.; Graham, Mark J.; Crooke, Rosanne M.; Liscum, Laura

    2010-01-01

    Loss of function of Niemann-Pick C1 (NPC1) leads to lysosomal free cholesterol storage, resulting in the neurodegenerative disease Niemann-Pick disease type C (NPC). Significant numbers of patients with NPC also suffer from liver disease. Currently, no treatments exist that alter patient outcome, and it is unknown if recovery from tissue damage can occur even if a treatment were found. Our laboratory developed a strategy to test whether mice can recover from NPC liver disease. We used antisen...

  20. Acetylcholinesterase (AChE) inhibition aggravates fasting-induced triglyceride accumulation in the mouse liver

    OpenAIRE

    Shin-Ichi Yokota; Kaai Nakamura; Midori Ando; Hiroyasu Kamei; Fumihiko Hakuno; Shin-Ichiro Takahashi; Shigenobu Shibata

    2014-01-01

    Although fasting induces hepatic triglyceride (TG) accumulation in both rodents and humans, little is known about the underlying mechanism. Because parasympathetic nervous system activity tends to attenuate the secretion of very-low-density-lipoprotein-triglyceride (VLDL-TG) and increase TG stores in the liver, and serum cholinesterase activity is elevated in fatty liver disease, the inhibition of the parasympathetic neurotransmitter acetylcholinesterase (AChE) may have some influence on hepa...

  1. Involvement of Mouse Constitutive Androstane Receptor in Acifluorfen-Induced Liver Injury and Subsequent Tumor Development.

    Science.gov (United States)

    Kuwata, Kazunori; Inoue, Kaoru; Ichimura, Ryohei; Takahashi, Miwa; Kodama, Yukio; Shibutani, Makoto; Yoshida, Midori

    2016-06-01

    Acifluorfen (ACI), a protoporphyrinogen oxidase (PROTOX) inhibitor herbicide, promotes the accumulation of protoporphyrin IX (PPIX), and induces tumors in the rodent liver. Porphyria is a risk factor for liver tumors in humans; however, the specific mechanisms through which ACI induces hepatocarcinogenesis in rodents are unclear. Here, we investigated the mode of action of ACI-induced hepatocarcinogenesis, focusing on constitutive androstane receptor (CAR, NR1I3), which is essential for the development of rodent liver tumors in response to certain cytochrome P450 (CYP) 2B inducers. Dietary treatment with 2500 ppm ACI for up to 13 weeks increased Cyp2b10 expression in the livers of wild-type (WT) mice, but not in CAR-knockout (CARKO) mice. Microscopically, ACI treatment-induced cytotoxic changes, including hepatocellular necrosis and inflammation, and caused regenerative changes accompanied by prolonged increases in the numbers of proliferating cell nuclear antigen-positive hepatocytes in WT mice. In contrast, these cytotoxic and regenerative changes in hepatocytes were significantly attenuated, but still observed, in CARKO mice. ACI treatment also increased liver PPIX levels similarly in both genotypes; however, no morphological evidence of porphyrin deposition was found in hepatocytes from either genotype. Treatment with 2500 ppm ACI for 26 weeks after initiation with diethylnitrosamine increased the incidence and multiplicities of altered foci and adenomas in hepatocytes from WT mice; these effects were significantly reduced in CARKO mice. These results indicated that prolonged cytotoxicity in the liver was a key factor for ACI-induced hepatocarcinogenesis, and that CAR played an important role in ACI-induced liver injury and tumor development in mice. PMID:26928356

  2. Down-regulation of microRNA-26a promotes mouse hepatocyte proliferation during liver regeneration.

    Directory of Open Access Journals (Sweden)

    Jian Zhou

    Full Text Available BACKGROUND: Inadequate liver regeneration (LR is still an unsolved problem in major liver resection and small-for-size syndrome post-living donor liver transplantation. A number of microRNAs have been shown to play important roles in cell proliferation. Herein, we investigated the role of miR-26a as a pivotal regulator of hepatocyte proliferation in LR. METHODOLOGY/PRINCIPAL FINDINGS: Adult male C57BL/6J mice, undergoing 70% partial hepatectomy (PH, were treated with Ad5-anti-miR-26a-LUC or Ad5-miR-26a-LUC or Ad5-LUC vector via portal vein. The animals were subjected to in vivo bioluminescence imaging. Serum and liver samples were collected to test liver function, calculate liver-to-body weight ratio (LBWR, document hepatocyte proliferation (Ki-67 staining, and investigate potential targeted gene expression of miR-26a by quantitative real-time PCR and Western blot. The miR-26a level declined during LR after 70% PH. Down-regulation of miR-26a by anti-miR-26a expression led to enhanced proliferation of hepatocytes, and both LBWR and hepatocyte proliferation (Ki-67(+ cells % showed an increased tendency, while liver damage, indicated by aspartate aminotransferase (AST, alanine aminotransferase (ALT and total bilirubin (T-Bil, was reduced. Furthermore, CCND2 and CCNE2, as possible targeted genes of miR-26a, were up-regulated. In addition, miR-26a over-expression showed converse results. CONCLUSIONS/SIGNIFICANCE: MiR-26a plays crucial role in regulating the proliferative phase of LR, probably by repressing expressions of cell cycle proteins CCND2 and CCNE2. The current study reveals a novel miRNA-mediated regulation pattern during the proliferative phase of LR.

  3. Generation and characterization of transgenic mice expressing tamoxifen-inducible cre-fusion protein specifically in mouse liver

    Institute of Scientific and Technical Information of China (English)

    Huan-Zhang Zhu; Jian-Quan Chen; Guo-Xiang Cheng; Jing-Lun Xue

    2003-01-01

    AIM: To establish transgenic mice expressing tamoxifeninducible Cre-ERt recombinase specifically in the liver and to provide an efficient animal model for studying gene function in the liver and creating various mouse models mimicking human diseases.METHODS: Alb-Cre-ERt transgenic mice were produced by microinjecting the construct with Cre-ERt fusion gene of DNA fragments into fertilized eggs derived from inbred C57BL/6strain. Transgenic mice were identified by using PCR and Southern blotting. Expression of Cre-ERt fusion gene was analyzed in the liver, kidney, brain and lung from F1generation transgenic mice at 8 weeks of age by reverse transcription (RT)-PCR.RESULTS: Four hundred and fourteen fertilized eggs of C57 BL/6 mice were microinjected with recombinant AlbCre-ERt DNA fragments, and 312 survival eggs injected were transferred to the oviducts of 12 pseudopregnant recipient mice, 6 of 12 recipient mice became pregnant and gave birth to 44 offsprings. Of the 44 offsprings, two males and one female carried the hybrid Cre-ERt fusion gene. Three mice were determined as founders, and were back crossed to set up F1 generations with other inbred C57BL/6 mice.Transmission of Cre-ERt fusion gene in F1 offspring followed Mendelian rules. The expression of Cre-ERt mRNA was detected only in the liver of F1 offspring from two of three founder mice.CONCLUSION: Transgenic mice expressing tamoxifeninducible Cre-ERt recombinase under control of the liverspecific promoter are preliminary established.

  4. Cross-activating invariant NKT cells and kupffer cells suppress cholestatic liver injury in a mouse model of biliary obstruction.

    Directory of Open Access Journals (Sweden)

    Caroline C Duwaerts

    Full Text Available Both Kupffer cells and invariant natural killer T (iNKT cells suppress neutrophil-dependent liver injury in a mouse model of biliary obstruction. We hypothesize that these roles are interdependent and require iNKT cell-Kupffer cell cross-activation. Female, wild-type and iNKT cell-deficient C57Bl/6 mice were injected with magnetic beads 3 days prior to bile duct ligation (BDL in order to facilitate subsequent Kupffer cell isolation. On day three post-BDL, the animals were euthanized and the livers dissected. Necrosis was scored; Kupffer cells were isolated and cell surface marker expression (flow cytometry, mRNA expression (qtPCR, nitric oxide (NO (. production (Griess reaction, and protein secretion (cytometric bead-array or ELISAs were determined. To address the potential role of NO (. in suppressing neutrophil accumulation, a group of WT mice received 1400W, a specific inducible nitric oxide synthase (iNOS inhibitor, prior to BDL. To clarify the mechanisms underlying Kupffer cell-iNKT cell cross-activation, WT animals were administered anti-IFN-γ or anti-lymphocyte function-associated antigen (LFA-1 antibody prior to BDL. Compared to their WT counterparts, Kupffer cells obtained from BDL iNKT cell-deficient mice expressed lower iNOS mRNA levels, produced less NO (. , and secreted more neutrophil chemoattractants. Both iNOS inhibition and IFN-γ neutralization increased neutrophil accumulation in the livers of BDL WT mice. Anti-LFA-1 pre-treatment reduced iNKT cell accumulation in these same animals. These data indicate that the LFA-1-dependent cross-activation of iNKT cells and Kupffer cells inhibits neutrophil accumulation and cholestatic liver injury.

  5. Human Bone Marrow Mesenchymal Stem Cell-Derived Hepatocytes Improve the Mouse Liver after Acute Acetaminophen Intoxication by Preventing Progress of Injury

    OpenAIRE

    Peggy Stock; Sandra Brückner; Sandra Winkler; Dollinger, Matthias M.; Bruno Christ

    2014-01-01

    Mesenchymal stem cells from human bone marrow (hMSC) have the potential to differentiate into hepatocyte-like cells in vitro and continue to maintain important hepatocyte functions in vivo after transplantation into host mouse livers. Here, hMSC were differentiated into hepatocyte-like cells in vitro (hMSC-HC) and transplanted into livers of immunodeficient Pfp/Rag2−/− mice treated with a sublethal dose of acetaminophen (APAP) to induce acute liver injury. APAP induced a time- and dose-depen...

  6. Effect of bullfrog (Rana catesbeiana oil administered by gavage on the fatty acid composition and oxidative stress of mouse liver

    Directory of Open Access Journals (Sweden)

    L.P. Silva

    2004-10-01

    Full Text Available The aim of the present study was to investigate the effects of daily intragastric administration of bullfrog oil (oleic, linoleic and palmitoleic acid-rich oil, corresponding to 0.4% of body weight for four weeks, on fatty acid composition and oxidative stress (lipid peroxidation and catalase activity in mouse liver. The activities of aspartate aminotransferase (AST, alkaline phosphatase (ALP, alanine aminotransferase (ALT, and gamma-glutamyltransferase (GGT, biomarkers of tissue injury, were determined in liver homogenates and serum. The proportions of 18:2n-6, 20:4n-6, 20:5n-3, and 22:6n-3 (polyunsaturated fatty acids, from 37 to 60% in the total fatty acid content were increased in the liver of the bullfrog oil-treated group (P < 0.05 compared to control. At the same time, a significant decrease in the relative abundance of 14:0, 16:0, and 18:0 (saturated fatty acids, from 49 to 25% was observed. The hepatic content of thiobarbituric acid reactive substances (TBARS was increased from 2.3 ± 0.2 to 12.3 ± 0.3 nmol TBA-MDA/mg protein and catalase activity was increased from 840 ± 32 to 1110 ± 45 µmol reduced H2O2 min-1 mg protein-1 in the treated group. Bullfrog oil administration increased AST and ALP activities in the liver (from 234.10 ± 0.12 to 342.84 ± 0.13 and 9.38 ± 0.60 to 20.06 ± 0.27 U/g, respectively and in serum (from 95.41 ± 6.13 to 120.32 ± 3.15 and 234.75 ± 11.5 to 254.41 ± 2.73 U/l, respectively, suggesting that this treatment induced tissue damage. ALT activity was increased from 287.28 ± 0.29 to 315.98 ± 0.34 U/g in the liver but remained unchanged in serum, whereas the GGT activity was not affected by bullfrog oil treatment. Therefore, despite the interesting modulation of fatty acids by bullfrog oil, a possible therapeutic use requires care since some adverse effects were observed in liver.

  7. Role of PGC-1{alpha} in exercise and fasting induced adaptations in mouse liver

    DEFF Research Database (Denmark)

    Haase, Tobias Nørresø; Jørgensen, Stine Ringholm; Leick, Lotte;

    2011-01-01

    The transcriptional coactivator peroxisome proliferator activated receptor (PPAR)-¿ coactivator (PGC)-1a plays a role in regulation of several metabolic pathways. By use of whole body PGC-1a knockout (KO) mice we investigated the role of PGC-1a in fasting, acute exercise and exercise training...... induced regulation of key proteins in gluconeogenesis and metabolism in the liver. In both wild type (WT) and PGC-1a KO mice liver, the mRNA content of the gluconeogenic proteins glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK) was upregulated during fasting. Pyruvate...... carboxylase (PC) remained unchanged after fasting in WT mice, but was upregulated in PGC-1a KO mice. In response to a single exercise bout G6Pase mRNA was upregulated in both genotypes, whereas no significant changes were detected in PEPCK or PC mRNA. While G6Pase and PC protein remained unchanged, liver...

  8. Arsenite induced oxidative damage in mouse liver is associated with increased cytokeratin 18 expression

    Energy Technology Data Exchange (ETDEWEB)

    Gonsebatt, M.E. [UNAM, Ciudad Universitaria, Dept. Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Mexico (Mexico); Razo, L.M. del; Sanchez-Pena, L.C. [Seccion de Toxicologia, CINVESTAV, Mexico (Mexico); Cerbon, M.A. [Facultad de Quimica, UNAM, Departamento de Biologia, Mexico (Mexico); Zuniga, O.; Ramirez, P. [Facultad de Estudios Superiores Cuautitlan, UNAM, Laboratorio de Toxicologia Celular, Coordinacion General de Estudios de Posgrado e Investigacion, Cuautitlan Izcalli, Estado de Mexico (Mexico)

    2007-09-15

    Cytokeratins (CK) constitute a family of cytoskeletal intermediate filament proteins that are typically expressed in epithelial cells. An abnormal structure and function are effects that are clearly related to liver diseases as non-alcoholic steatohepatitis, cirrhosis and hepatocellular carcinoma. We have previously observed that sodium arsenite (SA) induced the synthesis of CK18 protein and promotes a dose-related disruption of cytoplasmic CK18 filaments in a human hepatic cell line. Both abnormal gene expression and disturbance of structural organization are toxic effects that are likely to cause liver disease by interfering with normal hepatocyte function. To investigate if a disruption in the CK18 expression pattern is associated with arsenite liver damage, we investigated CK18 mRNA and protein levels in liver slices treated with low levels of SA. Organotypic cultures were incubated with 0.01, 1 and 10 {mu}M of SA in the absence and presence of N-acetyl cysteine (NAC). Cell viability and inorganic arsenic metabolism were determined. Increased expression of CK18 was observed after exposure to SA. The addition of NAC impeded the oxidative effects of SA exposure, decreasing the production of thiobarbituric acid-reactive substances and significantly diminishing the up regulation of CK18 mRNA and protein. Liver arsenic levels correlated with increased levels of mRNA. Mice treated with intragastric single doses of 2.5 and 5 mg/kg of SA showed an increased expression of CK18. Results suggest that CK18 expression may be a sensible early biomarker of oxidative stress and damage induced by arsenite in vitro and in vivo. Then, during SA exposure, altered CK expression may compromise liver function. (orig.)

  9. Chlamydia pneumoniae replicates in Kupffer cells in mouse model of liver infection

    Institute of Scientific and Technical Information of China (English)

    Antonella Marangoni; Manuela Donati; Francesca Cavrini; Rita Aldini; Silvia Accardo; Vittorio Sambri; Marco Montagnani; Roberto Cevenini

    2006-01-01

    AIM: To develop an animal model of liver infection with Chlamydia pneumoniae (C.pneumoniae) in intraperitoneally infected mice for studying the presence of chlamydiae in Kupffer cells and hepatocytes.METHODS: A total of 80 BALB/c mice were inoculated intraperitoneally with C. pneumoniae and sacrificed at various time points after infection. Chlamydiae were looked for in liver homogenates as well as in Kupffer cells and hepatocytes separated by liver perfusion with collagenase. C. pneumoniae was detected by both isolation in LLC-MK2 cells and fluorescence in situ hybridization (FISH). The releasing of TNFA-α by C. pneumoniae in vitro stimulated Kupffer cells was studied by enzymelinked immunosorbent assay.RESULTS: C. pneumoniae isolation from liver homogenates reached a plateau on d 7 after infection when 6 of 10 animals were positive, then decreased, and became negative by d 20. C. pneumoniae isolation from separated Kupffer cells reached a plateau on d 7 when 5 of 10 animals were positive, and became negative by d 20.The detection of C. pneumoniae in separated Kupffer cells by FISH, confirmed the results obtained by culture.Isolated hepatocytes were always negative. Stimulation of Kupffer cells by alive C. pneumoniae elicited high TNF-α levels.CONCLUSION: A productive infection by C. pneumoniae may take place in Kupffer cells and C. pneumoniae induces a local pro-inflammatory activity. C. pneumoniae is therefore, able to act as antigenic stimulus when localized in the liver. One could speculate that C. pneumoniae infection, involving cells of the innate immunity such as Kupffer cells, could also trigger pathological immune reactions involving the liver, as observed in human patients with primary biliary cirrhosis.

  10. Peroxisome proliferators induce mouse liver stearoyl-CoA desaturase 1 gene expression.

    OpenAIRE

    Miller, C. W.; Ntambi, J M

    1996-01-01

    Peroxisome proliferators induce stearoyl-CoA desaturase activity (EC 1.14.99.5) in liver [Kawashima, Y., Hanioka, N., Matsumura, M. & Kozuka, H. (1983) Biochim. Biophys. Acta 752, 259-264]. We analyzed the changes in stearoyl-CoA desaturase 1 (SCD1) mRNA to further define the molecular mechanism for the induction of stearoyl-CoA desaturase by peroxisome proliferators. SCD1 mRNA was analyzed from the livers of BALB/c mice that had been fed diets supplemented with clofibrate or gemfibrozil. Clo...

  11. Differential expression of microRNAs in mouse liver under aberrant energy metabolic status[S

    OpenAIRE

    Li, Shengjie; Chen, Xi; Zhang, Hongjie; Liang, Xiangying; Xiang, Yang; Yu, Chaohui; Zen, Ke; Li, Youming; Zhang, Chen-Yu

    2009-01-01

    Despite years of effort, exact pathogenesis of nonalcoholic fatty liver disease (NAFLD) remains obscure. To gain an insight into the regulatory roles of microRNAs (miRNAs) in aberrant energy metabolic status and pathogenesis of NAFLD, we analyzed the expression of miRNAs in livers of ob/ob mice, streptozotocin (STZ)-induced type 1 diabetic mice, and normal C57BL/6 mice by miRNA microarray. Compared with normal C57BL/6 mice, ob/ob mice showed upregulation of eight miRNAs and downregulation of ...

  12. Multi-tracer study on in vivo and in vitro binding of trace elements with mouse liver DNA

    International Nuclear Information System (INIS)

    In vivo, semi-in vivo and in vitro binding of a series of trace elements (Be, Sc, Mn, Co, Zn, As, Se, Rb, Sr, Y, Zr, Tc, Ru and Rh) is studied by the multi-tracer technique. The corresponding nuclides in the multi-tracer solution used are 7Be, 46Sc, 54Mn, 58Co, 65Zn, 74As, 75Se, 83Rb, 85Sr, 88Y, 88Zr, 95Tcm, 103Ru and 102Rhm. It is found that most elements bound mouse liver DNA in vivo except As, Ru and Rh. In the semi-in vivo experiment, only elements Rh and As are not observed to be bound with DNA. In the in vitro experiment, DNA bound with all elements, among which Rb, Se, Zr, Ru and As showed very slight binding. In comparison, the binding in vitro is the strongest, semi-in vivo the medium and in vivo the weakest

  13. Upregulation of TNF-αand IL-6 mRNA in mouse liver induced by bacille Calmette-Guerin plus lipopolysaccharide

    Institute of Scientific and Technical Information of China (English)

    Dao-fang LIU; Wei WEI; Li-hua SONG

    2006-01-01

    Aim:To investigate the mechanism of immunological liver injury induced by bacille Calmette-Guerin (BCG) plus lipopolysaccharide (LPS).Methods:Mice were injected via the tail vein with 125 mg/kg BCG,and 12 d later,the mice were injected intravenously with different doses of LPS (125,250.or 375 μg/kg).Serum alanine aminotransferase (ALT) activity and liver pathological changes were examined.The expression of tumor necrosis factor (TNF)-α,interleukin (IL)-6,lipopolysaccharide binding protein (LBP) and CD14 mRNA,and NF-κB and IκB-α protein in mouse liver at difierent time points after BCG and LPS injection were measured using RT-PCR,immunohistochemistry and Western blotting analysis,respectively.Results:The activity of serum ALT in mice treated witll BCG and LPS was significantly increased.Different degrees of liver injury,such as inflammatory cell infiltration,spotty necrosis,piecemeal necrosis,even bridging necrosis,could be seen in liver sections from mice after BCG and LPS administration.Furthermore,the levels of TNF-α and IL-6 mRNA in mouse liver were significantly elevated after administration of BCG plus LPS (P<0.05).The levels of LBP and CD14 mRNA in mouse liver were markedly upregulated after treatment with BCG and LPS.and treatment with BCG alone led to an increase in CD14 mRNA in mouse liver.Finally.immunoreactivity for NF-κB p65 was predominantly detected in hepatocyte nuclei from mice treated with BCG plus LPS,compared with the normal group.Protein levels of IκB-α were strikingly decreased by LPS or BCG plus LPS treatment.compared with the normal group or BCG group.Conclusion:TNF-α and IL-6 mRNA were partially involved in early immunological liver injury induced by chal lenge with small doses of LPS after BCG priming.Upregulation of TNF-α and IL6 mRNA might be related to increases in LBP and CD14 mRNA expression and activation of NF-kB.Furthermore,BCG priming in immunological liver injury may occur via upregulation of CD14 mRNA expression in

  14. Human bone marrow mesenchymal stem cell-derived hepatocytes improve the mouse liver after acute acetaminophen intoxication by preventing progress of injury.

    Science.gov (United States)

    Stock, Peggy; Brückner, Sandra; Winkler, Sandra; Dollinger, Matthias M; Christ, Bruno

    2014-01-01

    Mesenchymal stem cells from human bone marrow (hMSC) have the potential to differentiate into hepatocyte-like cells in vitro and continue to maintain important hepatocyte functions in vivo after transplantation into host mouse livers. Here, hMSC were differentiated into hepatocyte-like cells in vitro (hMSC-HC) and transplanted into livers of immunodeficient Pfp/Rag2⁻/⁻ mice treated with a sublethal dose of acetaminophen (APAP) to induce acute liver injury. APAP induced a time- and dose-dependent damage of perivenous areas of the liver lobule. Serum levels of aspartate aminotransferase (AST) increased to similar levels irrespective of hMSC-HC transplantation. Yet, hMSC-HC resided in the damaged perivenous areas of the liver lobules short-term preventing apoptosis and thus progress of organ destruction. Disturbance of metabolic protein expression was lower in the livers receiving hMSC-HC. Seven weeks after APAP treatment, hepatic injury had completely recovered in groups both with and without hMSC-HC. Clusters of transplanted cells appeared predominantly in the periportal portion of the liver lobule and secreted human albumin featuring a prominent quality of differentiated hepatocytes. Thus, hMSC-HC attenuated the inflammatory response and supported liver regeneration after acute injury induced by acetaminophen. They hence may serve as a novel source of hepatocyte-like cells suitable for cell therapy of acute liver diseases. PMID:24758938

  15. Human Bone Marrow Mesenchymal Stem Cell-Derived Hepatocytes Improve the Mouse Liver after Acute Acetaminophen Intoxication by Preventing Progress of Injury

    Directory of Open Access Journals (Sweden)

    Peggy Stock

    2014-04-01

    Full Text Available Mesenchymal stem cells from human bone marrow (hMSC have the potential to differentiate into hepatocyte-like cells in vitro and continue to maintain important hepatocyte functions in vivo after transplantation into host mouse livers. Here, hMSC were differentiated into hepatocyte-like cells in vitro (hMSC-HC and transplanted into livers of immunodeficient Pfp/Rag2−/− mice treated with a sublethal dose of acetaminophen (APAP to induce acute liver injury. APAP induced a time- and dose-dependent damage of perivenous areas of the liver lobule. Serum levels of aspartate aminotransferase (AST increased to similar levels irrespective of hMSC-HC transplantation. Yet, hMSC-HC resided in the damaged perivenous areas of the liver lobules short-term preventing apoptosis and thus progress of organ destruction. Disturbance of metabolic protein expression was lower in the livers receiving hMSC-HC. Seven weeks after APAP treatment, hepatic injury had completely recovered in groups both with and without hMSC-HC. Clusters of transplanted cells appeared predominantly in the periportal portion of the liver lobule and secreted human albumin featuring a prominent quality of differentiated hepatocytes. Thus, hMSC-HC attenuated the inflammatory response and supported liver regeneration after acute injury induced by acetaminophen. They hence may serve as a novel source of hepatocyte-like cells suitable for cell therapy of acute liver diseases.

  16. FULL-GENOME ANALYSIS OF ALTERNATIVE SPLICING IN MOUSE LIVER AFTER HEPATOTOXICANT EXPOSURE

    Science.gov (United States)

    Alternative splicing plays a role in determining gene function and protein diversity. We have employed whole genome exon profiling using Affymetrix Mouse Exon 1.0 ST arrays to understand the significance of alternative splicing on a genome-wide scale in response to multiple toxic...

  17. Identification of differentially regulated antioxidant proteins by redox proteomics in irradiated mouse liver

    International Nuclear Information System (INIS)

    Since radiation treatment has been reappraised in the treatment of hepatic tumors, radiation response in liver is emerging as a new interesting area of investigation. The main issue is how to minimize radiation-induced hepatotoxicity. In this study, identification of the repertoire of the proteins was analyzed by a proteomics approach regarding cellular responses of liver tissue to ionizing radiation. C3H/HeJ mice were given 10 Gy radiation and liver tissues were analyzed by 2-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). At least twenty-eight proteins showed significant alteration following radiation. The increased proteins include cytochrome c, glutathione S transferase pi (GSTP), NADH dehydrogenase and peroxiredoxin VI (Prx VI), whereas the proteins such as peroxisomal bifunctional enzyme, phosphatidylethanolamin and ras relative protein decreased after radiation treatment. Mainly GSTP and Prx VI including thiol group seem to be implicated into radiation response in liver. Further study is warranted to elucidate their role in radiation-induced hepatotoxicity

  18. Investigation of Hepatoprotective Activity of Induced Pluripotent Stem Cells in the Mouse Model of Liver Injury

    Directory of Open Access Journals (Sweden)

    Chih-Hung Chiang

    2011-01-01

    Full Text Available To date liver transplantation is the only effective treatment for end-stage liver diseases. Considering the potential of pluripotency and differentiation into tridermal lineages, induced pluripotent stem cells (iPSCs may serve as an alternative of cell-based therapy. Herein, we investigated the effect of iPSC transplantation on thioacetamide- (TAA- induced acute/fulminant hepatic failure (AHF in mice. Firstly, we demonstrated that iPSCs had the capacity to differentiate into hepatocyte-like cells (iPSC-Heps that expressed various hepatic markers, including albumin, α-fetoprotein, and hepatocyte nuclear factor-3β, and exhibited biological functions. Intravenous transplantation of iPSCs effectively reduced the hepatic necrotic area, improved liver functions and motor activity, and rescued TAA-treated mice from lethal AHF. 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate cell labeling revealed that iPSCs potentially mobilized to the damaged liver area. Taken together, iPSCs can effectively rescue experimental AHF and represent a potentially favorable cell source of cell-based therapy.

  19. Role of amidation in bile acid effect on DNA synthesis by regenerating mouse liver.

    Science.gov (United States)

    Barbero, E R; Herrera, M C; Monte, M J; Serrano, M A; Marin, J J

    1995-06-01

    Effect of bile acids on DNA synthesis by the regenerating liver was investigated in mice in vivo after partial hepatectomy (PH). Radioactivity incorporation into DNA after [14C]thymidine intraperitoneal administration peaked at 48 h after PH. At this time a significant taurocholate-induced dose-dependent reduction in DNA synthesis without changes in total liver radioactivity content was found (half-maximal effect at approximately 0.1 mumol/g body wt). Effect of taurocholate (0.5 mumol/g body wt) was mimicked by chocolate, ursodeoxycholate, deoxycholate, dehydrocholate, tauroursodeoxycholate, taurochenodeoxycholate, and taurodeoxycholate. In contrast, chenodeoxycholate, glycocholate, glycochenodeoxycholate, glycoursodeoxycholate, glycodeoxycholate, 5 beta-cholestane, bromosulfophthalein, and free taurine lacked this effect. No relationship between hydrophobic-hydrophilic balance and inhibitory effect was observed. Analysis by high-performance liquid chromatography indicated that inhibition of thymidine incorporation into DNA was not accompanied by an accumulation of phosphorylated DNA precursors in the liver but rather by a parallel increase in nucleotide catabolism. Bile acid-induced modifications in DNA synthesis were observed in vivo even in the absence of changes in toxicity tests, which suggests that the inhibitory effect shared by most unconjugated and tauroconjugated bile acids but not by glycoconjugated bile acids should be accounted for by mechanisms other than nonselective liver cell injury. PMID:7611405

  20. Global transcriptional response to Hfe deficiency and dietary iron overload in mouse liver and duodenum.

    Directory of Open Access Journals (Sweden)

    Alejandra Rodriguez

    Full Text Available Iron is an essential trace element whose absorption is usually tightly regulated in the duodenum. HFE-related hereditary hemochromatosis (HH is characterized by abnormally low expression of the iron-regulatory hormone, hepcidin, which results in increased iron absorption. The liver is crucial for iron homeostasis as it is the main production site of hepcidin. The aim of this study was to explore and compare the genome-wide transcriptome response to Hfe deficiency and dietary iron overload in murine liver and duodenum. Illumina arrays containing over 47,000 probes were used to study global transcriptional changes. Quantitative RT-PCR (Q-RT-PCR was used to validate the microarray results. In the liver, the expression of 151 genes was altered in Hfe(-/- mice while dietary iron overload changed the expression of 218 genes. There were 173 and 108 differentially expressed genes in the duodenum of Hfe(-/- mice and mice with dietary iron overload, respectively. There was 93.5% concordance between the results obtained by microarray analysis and Q-RT-PCR. Overexpression of genes for acute phase reactants in the liver and a strong induction of digestive enzyme genes in the duodenum were characteristic of the Hfe-deficient genotype. In contrast, dietary iron overload caused a more pronounced change of gene expression responsive to oxidative stress. In conclusion, Hfe deficiency caused a previously unrecognized increase in gene expression of hepatic acute phase proteins and duodenal digestive enzymes.

  1. Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells

    International Nuclear Information System (INIS)

    Primary cells are ideal for in vitro toxicity studies since they closely resemble tissue environment. Here, we report a detailed study on the in vitro interactions of 7-20 nm spherical silver nanoparticles (SNP) with primary fibroblasts and primary liver cells isolated from Swiss albino mice. The intended use of silver nanoparticles is in the form of a topical antimicrobial gel formulation for the treatment of burns and wounds. Upon exposure to SNP for 24 h, morphology of primary fibroblasts and primary liver cells remained unaltered up to 25 μg/mL and 100 μg/mL SNP, respectively, although with minor decrease in confluence. IC50 values for primary fibroblasts and primary liver cells as revealed by XTT assay were 61 μg/mL and 449 μg/mL, respectively. Ultra-thin sections of primary cells exposed to 1/2 IC50 SNP for 24 h, visualized under Transmission electron microscope showed the presence of dark, electron dense, spherical aggregates inside the mitochondria, and cytoplasm, probably representing the intracellular SNP. When the cells were challenged with ∼ 1/2 IC50 concentration of SNP (i.e. 30 μg/mL and 225 μg/mL for primary fibroblasts and primary liver cells, respectively), enhancement of GSH (∼ 1.2 fold) and depletion of lipid peroxidation (∼ 1.4 fold) were seen in primary fibroblasts which probably protect the cells from functional damage. In case of primary liver cells; increased levels of SOD (∼ 1.4 fold) and GSH ( 1.1 fold) as compared to unexposed cells were observed. Caspase-3 activity assay indicated that the SNP concentrations required for the onset of apoptosis were found to be much lower (3.12 μg/mL in primary fibroblasts, 12.5 μg/mL in primary liver cells) than the necrotic concentration (100 μg/mL in primary fibroblasts, 500 μg/mL in primary liver cells). These observations were confirmed by CLSM studies by exposure of cells to 1/2 IC50 SNP (resulting in apoptosis) and 2x IC50) cells (resulting in necrosis). These results clearly

  2. Gene expression of drug metabolizing enzymes in adult and aged mouse liver: A modulation by immobilization stress

    International Nuclear Information System (INIS)

    The role of stress in the regulation of enzymatic systems involved in the biotransformation of xenobiotics, as well as endogenous substrates in the liver was investigated using single immobilization stress as a model. Adult (3 months of age) and aged (26 months) C3H/a male mice were used. Cytochrome P450 1A1 and 1A2 (CYP1A1 and CYP1A2), glutathione S-transferase M1 (GSTM1), aryl hydrocarbon receptor (AHR), aryl hydrocarbon receptor nuclear translocator (ARNT) and catechol-O-methyltransferase (COMT) mRNA levels in the mouse liver were measured by a semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) method. Excluding CYP1A1, experiments revealed significant differences in the expression of these genes between adult- and aged-control animals. The influence of stress on the expression of genes studied was shown to be higher in adult mice than in aged ones. Our results clearly demonstrate the lack of response or even the attenuation of gene expression in aged animals that may play an important role in age-related pathologies and diseases

  3. Response of two protective agents to acute injury induced by 12C6+ ions in mouse liver

    International Nuclear Information System (INIS)

    The present study was to evaluate the effect and mechanism of N-acetylcysteine (NAC) and Acetyl-L-Carnitine hydrochloride (ALCAR) against 12C6+ ion beams on acute injury in the mouse liver. Pretreated with NAC (100 mg/kg) and ALCAR (100 mg/kg), Kun-Ming mice were exposed to whole-body irradiation with the dose of 4 Gy. Mice were killed 2 h after irradiation, and then the liver tissues were quickly removed. TAC was measured by using chemical reagent kids, and DNA-single strand breaks were determined by single cell gel electrophoresis, and the percentage of cell apoptosis were assayed by flow cytometry method. The results showed that NAC and ALCAR pretreatment significantly enhanced TAC (P12C6+ ions is stronger than that of NAC (P12C6+ ions in mice. In this study, NAC and ALCAR exert their radioprotective effect by virtue of resisting oxidative stress, enhancing TAC, alleviating DNA-single strand breaks as well as cell apoptosis. Furthermore, the data imply that NAC and ALCAR may be suitable and promising as radioprotective drug against carbon heavy ions. (authors)

  4. CD8 T cell-mediated protection against liver-stage malaria: Lessons from a mouse model

    Directory of Open Access Journals (Sweden)

    John eHarty

    2014-06-01

    Full Text Available Malaria is a major global health problem, with severe mortality in children living is Sub-Saharan Africa, and there is currently no licensed effective vaccine. However, vaccine-induced protection from Plasmodium infection, the causative agent of malaria, was established for humans in small clinical trials and for rodents in the 1960’s. Soon after, a critical role for memory CD8 T cells in vaccine induced protection against Plasmodium liver-stage infection was established in rodent models and is assumed to apply to humans. However, these seminal early studies have led to only modest advances over the ensuing years in our understanding the basic features of memory CD8 T cells required for protection against liver-stage Plasmodium infection, an issue which has likely impeded the development of effective vaccines for humans. Given the ethical and practical limitations in gaining mechanistic insight from human vaccine and challenge studies, animal models still have an important role in dissecting the basic parameters underlying memory CD8 T cell immunity to Plasmodium. Here, we will highlight recent data from our own work in the mouse model of Plasmodium infection that identify quantitative and qualitative features of protective memory CD8 T cell responses. Finally, these lessons will be discussed in the context of recent findings from clinical trials of vaccine–induced protection in controlled human challenge models.

  5. CD8 T-cell-mediated protection against liver-stage malaria: lessons from a mouse model

    Science.gov (United States)

    Van Braeckel-Budimir, Natalija; Harty, John T.

    2014-01-01

    Malaria is a major global health problem, with severe mortality in children living in sub-Saharan Africa, and there is currently no licensed, effective vaccine. However, vaccine-induced protection from Plasmodium infection, the causative agent of malaria, was established for humans in small clinical trials and for rodents in the 1960s. Soon after, a critical role for memory CD8 T cells in vaccine-induced protection against Plasmodium liver-stage infection was established in rodent models and is assumed to apply to humans. However, these seminal early studies have led to only modest advances over the ensuing years in our understanding the basic features of memory CD8 T cells required for protection against liver-stage Plasmodium infection, an issue which has likely impeded the development of effective vaccines for humans. Given the ethical and practical limitations in gaining mechanistic insight from human vaccine and challenge studies, animal models still have an important role in dissecting the basic parameters underlying memory CD8 T-cell immunity to Plasmodium. Here, we will highlight recent data from our own work in the mouse model of Plasmodium infection that identify quantitative and qualitative features of protective memory CD8 T-cell responses. Finally, these lessons will be discussed in the context of recent findings from clinical trials of vaccine-induced protection in controlled human challenge models. PMID:24936199

  6. Studies of Secondary Melanoma on C57BL/6J Mouse Liver Using 1H NMR Metabolomics

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Ju; Isern, Nancy G.; Burton, Sarah D.; Hu, Jian Z.

    2013-10-31

    NMR metabolomics, consisting of solid state high resolution (hr) magic angle spinning (MAS) 1H NMR (1H hr-MAS), liquid state high resolution 1H-NMR, and principal components analysis (PCA) has been used to study secondary metastatic B16-F10 melanoma in C57BL/6J mouse liver . The melanoma group can be differentiated from its control group by PCA analysis of the absolute concentrations or by the absolute peak intensities of metabolites from either 1H hr-MAS NMR data on intact liver tissues or liquid state 1H-NMR spectra on liver tissue extracts. In particular, we found that the absolute concentrations of alanine, glutamate, creatine, creatinine, fumarate and cholesterol are elevated in the melanoma group as compared to controls, while the absolute concentrations of succinate, glycine, glucose, and the family of linear lipids including long chain fatty acids, total choline and acylglycerol are decreased. The ratio of glycerophosphocholine to phosphocholine is increased by about 1.5 fold in the melanoma group, while the absolute concentration of total choline is actually lower in melanoma mice. These results suggest the following picture in secondary melanoma metastasis: Linear lipid levels are decreased by beta oxidation in the melanoma group, which contributes to an increase in the synthesis of cholesterol, and also provides an energy source input for TCA cycle. These findings suggest a link between lipid oxidation, the TCA cycle and the hypoxia-inducible factors (HIF) signal pathway in tumor metastases. Thus this study indicates that the metabolic profile derived from NMR analysis can provide a valuable bio-signature of malignancy and cell hypoxia in metastatic melanoma.

  7. IL-12-based vaccination therapy reverses liver-induced systemic tolerance in a mouse model of hepatitis B virus carrier.

    Science.gov (United States)

    Zeng, Zhutian; Kong, Xiaohui; Li, Fenglei; Wei, Haiming; Sun, Rui; Tian, Zhigang

    2013-10-15

    Liver-induced systemic immune tolerance that occurs during chronic hepadnavirus infection is the biggest obstacle for effective viral clearance. Immunotherapeutic reversal of this tolerance is a promising strategy in the clinic but remains to be explored. In this study, using a hepatitis B virus (HBV)-carrier mouse model, we report that IL-12-based vaccination therapy can efficiently reverse systemic tolerance toward HBV. HBV-carrier mice lost responsiveness to hepatitis B surface Ag (HBsAg) vaccination, and IL-12 alone could not reverse this liver-induced immune tolerance. However, after IL-12-based vaccination therapy, the majority of treated mice became HBsAg(-) in serum; hepatitis B core Ag was also undetectable in hepatocytes. HBV clearance was dependent on HBsAg vaccine-induced anti-HBV immunity. Further results showed that IL-12-based vaccination therapy strongly enhanced hepatic HBV-specific CD8(+) T cell responses, including proliferation and IFN-γ secretion. Systemic HBV-specific CD4(+) T cell responses were also restored in HBV-carrier mice, leading to the arousal of HBsAg-specific follicular Th-germinal center B cell responses and anti-hepatitis B surface Ag Ab production. Recovery of HBsAg-specific responses also correlated with both reduced CD4(+)Foxp3(+) regulatory T cell frequency and an enhanced capacity of effector T cells to overcome inhibition by regulatory T cells. In conclusion, IL-12-based vaccination therapy may reverse liver-induced immune tolerance toward HBV by restoring systemic HBV-specific CD4(+) T cell responses, eliciting robust hepatic HBV-specific CD8(+) T cell responses, and facilitating the generation of HBsAg-specific humoral immunity; thus, this therapy may become a viable approach to treating patients with chronic hepatitis B. PMID:24048897

  8. Ectopic expression of the calcium-binding protein parvalbumin in mouse liver endothelial cells

    DEFF Research Database (Denmark)

    Castillo, M B; Berchtold, M W; Rülicke, T; Schwaller, B; Gotzos, V; Pinzani, M; Reichen, J; Celio, M R

    1997-01-01

    normal mice but virtually not affected in the transgenic animals. This suggests that ectopically expressed parvalbumin is involved in the regulation of Ca2+ signals in the sinusoidal endothelial cells. This animal model could be of interest to those working on the physiology of liver circulation.......To elucidate the physiological role of the Ca2+ binding protein parvalbumin, we have generated transgenic mice carrying the full-length complementary DNA (cDNA) of rat parvalbumin under the control of the heavy-metal inducible metallothionein IIA promoter. Immunohistochemical and biochemical...... methods have been used to detect the presence of ectopic parvalbumin expression in different tissues. Here we show the expression of parvalbumin in endothelial cells lining the liver sinusoids in situ and after isolation in vitro. The hemodynamic effects of endothelin 1, a peptide hormone mediating potent...

  9. Chronic Intake of Japanese Sake Mediates Radiation-Induced Metabolic Alterations in Mouse Liver.

    Directory of Open Access Journals (Sweden)

    Tetsuo Nakajima

    Full Text Available Sake is a traditional Japanese alcoholic beverage that is gaining popularity worldwide. Although sake is reported to have beneficial health effects, it is not known whether chronic sake consumption modulates health risks due to radiation exposure or other factors. Here, the effects of chronic administration of sake on radiation-induced metabolic alterations in the livers of mice were evaluated. Sake (junmai-shu was administered daily to female mice (C3H/He for one month, and the mice were exposed to fractionated doses of X-rays (0.75 Gy/day for the last four days of the sake administration period. For comparative analysis, a group of mice were administered 15% (v/v ethanol in water instead of sake. Metabolites in the liver were analyzed by capillary electrophoresis-time-of-flight mass spectrometry one day following the last exposure to radiation. The metabolite profiles of mice chronically administered sake in combination with radiation showed marked changes in purine, pyrimidine, and glutathione (GSH metabolism, which were only partially altered by radiation or sake administration alone. Notably, the changes in GSH metabolism were not observed in mice treated with radiation following chronic administration of 15% ethanol in water. Changes in several metabolites, including methionine and valine, were induced by radiation alone, but were not detected in the livers of mice who received chronic administration of sake. In addition, the chronic administration of sake increased the level of serum triglycerides, although radiation exposure suppressed this increase. Taken together, the present findings suggest that chronic sake consumption promotes GSH metabolism and anti-oxidative activities in the liver, and thereby may contribute to minimizing the adverse effects associated with radiation.

  10. Sodium Barbital Induced Biochemical, Histological and Histochemical Changes in the Liver of Albino Mouse

    Directory of Open Access Journals (Sweden)

    Shadia Ali Radwan*, Aziza M. El-Wessemy*, Samia M. Sakr

    2006-12-01

    Full Text Available Introduction:The present work was planned to assess and evaluate some physiological parameters, histopathological and histochemical impacts of sodium barbital on the liver of adult male albino mice. Material and Methods :The mice were divided into 3 groups, the first group served as a control group, while the other two groups were treated with the therapeutic dose (60 mg/kg b.wt., i.p. for 7 days (short-term group and 21 days (long-term group as repeated daily doses. Results: Biochemical analysis showed a significant increase in serum glucose level (hyperglycaemia, AST, ALT and bilirubin, in all treated groups. Also, total lipids and triglycerides showed a significant increase in the long-term group and non significant change in the short-term group. On the other hand, alkaline phosphatase ALP, showed a significant decrease in both treated groups. Total cholesterol level showed a significant decrease in the short-term group but exhibited a significant increase in the long-term group. The results obtained from the present study showed marked alterations in the liver tissue. Histopathological changes in liver tissue were congestion of the central veins, wedening of the blood sinusoids, activation of the phagocytic küpffer cells and cytoplasmic degeneration (fatty and hydropic with nuclear lesions. Histochemical changes in liver tissue revealed depletion of polysaccharides and total proteins in both short-term and long-term groups. Conclusion So these results came to conclusion that barbiturates should be prohibited and carefully used specially when prescribed as tranquilizer

  11. Transforming growth factor alpha dramatically enhances oncogene-induced carcinogenesis in transgenic mouse pancreas and liver.

    OpenAIRE

    Sandgren, E P; Luetteke, N C; Qiu, T H; Palmiter, R D; Brinster, R L; Lee, D C

    1993-01-01

    To characterize the effect(s) of transforming growth factor alpha (TGF alpha) during multistage carcinogenesis, we examined tumor development in pancreas and liver of transgenic mice that coexpressed TGF alpha with either viral (simian virus 40 T antigens [TAg]) or cellular (c-myc) oncogenes. In pancreas, TGF alpha itself was not oncogenic, but it nevertheless dramatically accelerated growth of tumors induced by either oncogene alone, thereby reducing the host life span up to 60%. Coexpressio...

  12. Antioxidant capacity of vitamin C in mouse liver and kidney tissues

    OpenAIRE

    Alicia Weyers; Laura I. Ugnia; Hugo García Ovando; Nora B. Gorla

    2008-01-01

    In the present study, the antioxidant capacity of vitamin C was examined in the liver and the kidney tissues of mice with or without ciprofloxacin (CFX) treatment. The antioxidant capacity of the vitamin was evaluated in terms of lipid hydroperoxides (LOOH) and thiobarbituric acid reactive substances (TBARs). The experimental design was 15 days of water (control and CFX groups) or vitamin C (vitamin C and vitamin C plus CFX groups) in drinking water. One dose of CFX was injected, 15 minutes b...

  13. Global Transcriptional Response to Hfe Deficiency and Dietary Iron Overload in Mouse Liver and Duodenum

    OpenAIRE

    Alejandra Rodriguez; Tiina Luukkaala; Fleming, Robert E.; Britton, Robert S.; Bacon, Bruce R.; Seppo Parkkila

    2009-01-01

    Iron is an essential trace element whose absorption is usually tightly regulated in the duodenum. HFE-related hereditary hemochromatosis (HH) is characterized by abnormally low expression of the iron-regulatory hormone, hepcidin, which results in increased iron absorption. The liver is crucial for iron homeostasis as it is the main production site of hepcidin. The aim of this study was to explore and compare the genome-wide transcriptome response to Hfe deficiency and dietary iron overload in...

  14. Carbamazepine suppresses calpain-mediated autophagy impairment after ischemia/reperfusion in mouse livers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Sung, E-mail: Jae.Kim@surgery.ufl.edu; Wang, Jin-Hee, E-mail: jin-hee.wang@surgery.ufl.edu; Biel, Thomas G., E-mail: Thomas.Biel@surgery.ufl.edu; Kim, Do-Sung, E-mail: do-sung.kim@surgery.med.ufl.edu; Flores-Toro, Joseph A., E-mail: Joseph.Flores-Toro@surgery.ufl.edu; Vijayvargiya, Richa, E-mail: rvijayvargiya@ufl.edu; Zendejas, Ivan, E-mail: ivan.zendejas@surgery.ufl.edu; Behrns, Kevin E., E-mail: Kevin.Behrns@surgery.ufl.edu

    2013-12-15

    Onset of the mitochondrial permeability transition (MPT) plays a causative role in ischemia/reperfusion (I/R) injury. Current therapeutic strategies for reducing reperfusion injury remain disappointing. Autophagy is a lysosome-mediated, catabolic process that timely eliminates abnormal or damaged cellular constituents and organelles such as dysfunctional mitochondria. I/R induces calcium overloading and calpain activation, leading to degradation of key autophagy-related proteins (Atg). Carbamazepine (CBZ), an FDA-approved anticonvulsant drug, has recently been reported to increase autophagy. We investigated the effects of CBZ on hepatic I/R injury. Hepatocytes and livers from male C57BL/6 mice were subjected to simulated in vitro, as well as in vivo I/R, respectively. Cell death, intracellular calcium, calpain activity, changes in autophagy-related proteins (Atg), autophagic flux, MPT and mitochondrial membrane potential after I/R were analyzed in the presence and absence of 20 μM CBZ. CBZ significantly increased hepatocyte viability after reperfusion. Confocal microscopy revealed that CBZ prevented calcium overloading, the onset of the MPT and mitochondrial depolarization. Immunoblotting and fluorometric analysis showed that CBZ blocked calpain activation, depletion of Atg7 and Beclin-1 and loss of autophagic flux after reperfusion. Intravital multiphoton imaging of anesthetized mice demonstrated that CBZ substantially reversed autophagic defects and mitochondrial dysfunction after I/R in vivo. In conclusion, CBZ prevents calcium overloading and calpain activation, which, in turn, suppresses Atg7 and Beclin-1 depletion, defective autophagy, onset of the MPT and cell death after I/R. - Highlights: • A mechanism of carbamazepine (CBZ)-induced cytoprotection in livers is proposed. • Impaired autophagy is a key event contributing to lethal reperfusion injury. • The importance of autophagy is extended and confirmed in an in vivo model. • CBZ is a potential

  15. Carbamazepine suppresses calpain-mediated autophagy impairment after ischemia/reperfusion in mouse livers

    International Nuclear Information System (INIS)

    Onset of the mitochondrial permeability transition (MPT) plays a causative role in ischemia/reperfusion (I/R) injury. Current therapeutic strategies for reducing reperfusion injury remain disappointing. Autophagy is a lysosome-mediated, catabolic process that timely eliminates abnormal or damaged cellular constituents and organelles such as dysfunctional mitochondria. I/R induces calcium overloading and calpain activation, leading to degradation of key autophagy-related proteins (Atg). Carbamazepine (CBZ), an FDA-approved anticonvulsant drug, has recently been reported to increase autophagy. We investigated the effects of CBZ on hepatic I/R injury. Hepatocytes and livers from male C57BL/6 mice were subjected to simulated in vitro, as well as in vivo I/R, respectively. Cell death, intracellular calcium, calpain activity, changes in autophagy-related proteins (Atg), autophagic flux, MPT and mitochondrial membrane potential after I/R were analyzed in the presence and absence of 20 μM CBZ. CBZ significantly increased hepatocyte viability after reperfusion. Confocal microscopy revealed that CBZ prevented calcium overloading, the onset of the MPT and mitochondrial depolarization. Immunoblotting and fluorometric analysis showed that CBZ blocked calpain activation, depletion of Atg7 and Beclin-1 and loss of autophagic flux after reperfusion. Intravital multiphoton imaging of anesthetized mice demonstrated that CBZ substantially reversed autophagic defects and mitochondrial dysfunction after I/R in vivo. In conclusion, CBZ prevents calcium overloading and calpain activation, which, in turn, suppresses Atg7 and Beclin-1 depletion, defective autophagy, onset of the MPT and cell death after I/R. - Highlights: • A mechanism of carbamazepine (CBZ)-induced cytoprotection in livers is proposed. • Impaired autophagy is a key event contributing to lethal reperfusion injury. • The importance of autophagy is extended and confirmed in an in vivo model. • CBZ is a potential

  16. Activity of mouse liver glutathione S-transferases toward trans,trans-muconaldehyde and trans-4-hydroxy-2-nonenal.

    Science.gov (United States)

    Goon, D; Saxena, M; Awasthi, Y C; Ross, D

    1993-04-01

    This study investigated the catalytic activities of hepatic glutathione S-transferase (GST) isoenzymes isolated from CD-1 mice toward two activated alkenals of toxicological relevance: trans,trans-muconaldehyde (MA), a putative myelotoxic metabolite of benzene, and trans-4-hydroxy-2-nonenal (HNE), a highly reactive lipid peroxidation product. The activity toward 1-chloro-2,4-dinitrobenzene (CDNB) was also determined. Four isoenzymes with pI values of 9.8, 8.7, 6.4, and 5.7 were each isolated from male and female mice. The isoenzymes with pI values of 8.7 and 6.4 are pi and mu class GSTs, respectively, whereas the pI 9.8 and 5.7 GSTs are both alpha class isoenzymes. CDNB activity was greatest in the pi (pI 8.7) isoenzyme of both sexes. In addition, the CDNB activity of the pi (pI 8.7) isoenzyme from males was markedly greater than the corresponding GST from female mouse liver. In contrast to CDNB, both MA and HNE were better substrates for the acidic alpha (pI 5.7) and mu (pI 6.4) GSTs, whereas minimal activity toward either alkenal was detected in the pi (pI 8.7) and alpha (pI 9.8) isoenzymes. Maximum activity toward MA and HNE was exhibited by the alpha (pI 5.7) isoenzyme of both sexes. The level of HNE activity observed with the alpha (pI 5.7) isoenzyme was five- to sixfold greater than that reported previously for any mouse GST isoenzyme. Moreover, the specific activities of the female alpha (pI 5.7) isoenzyme toward both HNE and MA were markedly greater than those of the corresponding isoenzyme from males. A similar gender-specific difference was noted in the activity of the mu (pI 6.4) isoenzyme toward HNE, but not toward MA. These results show that both MA and HNE are substrates for the alpha (pI 5.7) and mu (pI 6.4) GSTs of murine liver, with maximum activity toward both activated alkenals exhibited by the alpha (pI 5.7) isozyme. In addition, evidence is presented that demonstrates a female-dominant sex difference in the activity of the alpha (pI 5

  17. Comparison of micronucleus frequencies in poly chrome erythrocytes of mouse fetal liver induced by tritiated water

    International Nuclear Information System (INIS)

    Female 10-12 week old mice of NIH strain were exposed on 10 day gestation to β-rays from tritiated water (HTO) or 60Co gamma rays at constant doses for three days. The pregnant mice were killed by cervical dislocation at 12 h after exposure to THO and 60Co. The fetal liver was removed and slides were made. Micronuclei of poly chrome erythrocytes (PCE) were scored under a binocular microscope. The experimental results showed that the total accumulative doses from β-rays of HTO in the three days were 0, 0.047, 0.093, 0.282, 0.564, 0.846 and 1.270 Gy, and the frequencies of micronuclei of PCE in the fetal liver were 1.64, 2.30, 6.81, 8.43, 12.37, 14.46 and 18.52 per mille respectively. The total accumulative doses from 60Co gamma rays in the three days were 0, 0.10, 0.25, 0.50, 0.75, 1.00, 1.25, and 1.50 Gy, and the frequencies of micronuclei of PCE in the fetal liver were 1.64, 4.7, 5.5, 6.4, 6.9, 6.7 and 8.3 per mille, respectively. The RBE of beta rays from HTO at dose range of 0.4-0.1 Gy were 5.5-3.5

  18. MiR-152 May Silence Translation of CaMK II and Induce Spontaneous Immune Tolerance in Mouse Liver Transplantation

    Science.gov (United States)

    Wang, Jingcheng; Yan, Sheng; Zhou, Lin; Xie, Haiyang; Chen, Hui; Li, Hui; Zhang, Jinhua; Zhao, Jiacong; Zheng, Shusen

    2014-01-01

    Spontaneous immune tolerance in mouse liver transplantation has always been a hotspot in transplantation-immune research. Recent studies revealed that regulatory T cells (Tregs), hepatic satellite cells and Kupffer cells play a potential role in spontaneous immune tolerance, however the precise mechanism of spontaneous immune tolerance is still undefined. By using Microarray Chips, we investigated different immune regulatory factors to decipher critical mechanisms of spontaneous tolerance after mouse liver transplantation. Allogeneic (C57BL/6-C3H) and syngeneic (C3H-C3H) liver transplantation were performed by 6-8 weeks old male C57BL/6 and C3H mice. Graft samples (N = 4 each group) were collected from 8 weeks post-operation mice. 11 differentially expressed miRNAs in allogeneic grafts (Allografts) vs. syngeneic grafts (Syngrafts) were identified using Agilent Mouse miRNA Chips. It was revealed that 185 genes were modified by the 11 miRNAs, furthermore, within the 185 target genes, 11 of them were tightly correlated with immune regulation after Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and Genbank data cross-comparison. Verified by real-time PCR and western blot, our results indicated that mRNA expression levels of IL-6 and TAB2 were respectively down regulated following miR-142-3p and miR-155 augment. In addition, increased miR-152 just silenced mRNA of CaMK II and down-regulated translation of CaMK II in tolerated liver grafts, which may play a critical role in immune regulation and spontaneous tolerance induction of mouse liver transplantation. PMID:25133393

  19. MiR-152 may silence translation of CaMK II and induce spontaneous immune tolerance in mouse liver transplantation.

    Directory of Open Access Journals (Sweden)

    Yan Wang

    Full Text Available Spontaneous immune tolerance in mouse liver transplantation has always been a hotspot in transplantation-immune research. Recent studies revealed that regulatory T cells (Tregs, hepatic satellite cells and Kupffer cells play a potential role in spontaneous immune tolerance, however the precise mechanism of spontaneous immune tolerance is still undefined. By using Microarray Chips, we investigated different immune regulatory factors to decipher critical mechanisms of spontaneous tolerance after mouse liver transplantation. Allogeneic (C57BL/6-C3H and syngeneic (C3H-C3H liver transplantation were performed by 6-8 weeks old male C57BL/6 and C3H mice. Graft samples (N = 4 each group were collected from 8 weeks post-operation mice. 11 differentially expressed miRNAs in allogeneic grafts (Allografts vs. syngeneic grafts (Syngrafts were identified using Agilent Mouse miRNA Chips. It was revealed that 185 genes were modified by the 11 miRNAs, furthermore, within the 185 target genes, 11 of them were tightly correlated with immune regulation after Gene Ontology (GO, Kyoto Encyclopedia of Genes and Genomes (KEGG analysis and Genbank data cross-comparison. Verified by real-time PCR and western blot, our results indicated that mRNA expression levels of IL-6 and TAB2 were respectively down regulated following miR-142-3p and miR-155 augment. In addition, increased miR-152 just silenced mRNA of CaMK II and down-regulated translation of CaMK II in tolerated liver grafts, which may play a critical role in immune regulation and spontaneous tolerance induction of mouse liver transplantation.

  20. Carbon tetrachloride-mediated lipid peroxidation induces early mitochondrial alterations in mouse liver.

    Science.gov (United States)

    Knockaert, Laetitia; Berson, Alain; Ribault, Catherine; Prost, Pierre-Emmanuel; Fautrel, Alain; Pajaud, Julie; Lepage, Sylvie; Lucas-Clerc, Catherine; Bégué, Jean-Marc; Fromenty, Bernard; Robin, Marie-Anne

    2012-03-01

    Although carbon tetrachloride (CCl(4))-induced acute and chronic hepatotoxicity have been extensively studied, little is known about the very early in vivo effects of this organic solvent on oxidative stress and mitochondrial function. In this study, mice were treated with CCl(4) (1.5 ml/kg ie 2.38 g/kg) and parameters related to liver damage, lipid peroxidation, stress/defense and mitochondria were studied 3 h later. Some CCl(4)-intoxicated mice were also pretreated with the cytochrome P450 2E1 inhibitor diethyldithiocarbamate or the antioxidants Trolox C and dehydroepiandrosterone. CCl(4) induced a moderate elevation of aminotransferases, swelling of centrilobular hepatocytes, lipid peroxidation, reduction of cytochrome P4502E1 mRNA levels and a massive increase in mRNA expression of heme oxygenase-1 and heat shock protein 70. Moreover, CCl(4) intoxication induced a severe decrease of mitochondrial respiratory chain complex IV activity, mitochondrial DNA depletion and damage as well as ultrastructural alterations. Whereas DDTC totally or partially prevented all these hepatic toxic events, both antioxidants protected only against liver lipid peroxidation and mitochondrial damage. Taken together, our results suggest that lipid peroxidation is primarily implicated in CCl(4)-induced early mitochondrial injury. However, lipid peroxidation-independent mechanisms seem to be involved in CCl(4)-induced early hepatocyte swelling and changes in expression of stress/defense-related genes. Antioxidant therapy may not be an efficient strategy to block early liver damage after CCl(4) intoxication. PMID:22157718

  1. The relevance of covalent binding to mouse liver DNA to the carcinogenic action of hexachlorocyclohexane isomers

    OpenAIRE

    Sagelsdorff, P.; Lutz, Werner K; Schlatter, C.

    2012-01-01

    [lH]Hexachlorocyclohexane (HCH) was synthesized by chlorination of [lß]benzene prepared by catalytic tritiation of benzene with tritiated water. The isomers of HCH were separated by adsorption chromatography on silica gel. In order to determine the covalent binding to DNA, [lß]HCH was administered to male mice by oral gavage, and liver DNA was isolated via cbromatin. The specific radioactivity of the DNA was nonnalized by the dose administered and expressed in the molar units of the Covalent ...

  2. Hepatoprotective effect of MMP-19 deficiency in a mouse model of chronic liver fibrosis

    Czech Academy of Sciences Publication Activity Database

    Jiroušková, Markéta; Žbodáková, Olga; Gregor, Martin; Chalupský, Karel; Sarnová, Lenka; Hajduch, M.; Ehrmann, J.; Jirkovska, M.; Sedláček, Radislav

    2012-01-01

    Roč. 7, č. 10 (2012), e46271. E-ISSN 1932-6203 R&D Projects: GA AV ČR IAA500520812; GA ČR GAP303/10/2044 Grant ostatní: MŠMT(CZ) CZ.1.05/1.1.00/02.0109; MŠMT(CZ) CZ.1.05/2.1.00/01.0030 Institutional support: RVO:68378050 Keywords : matrix metalloproteinase * liver * fibrosis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.730, year: 2012

  3. Sexual dimorphism in the control of amebic liver abscess in a mouse model of disease.

    Science.gov (United States)

    Lotter, Hannelore; Jacobs, Thomas; Gaworski, Iris; Tannich, Egbert

    2006-01-01

    Amebic liver abscess (ALA) is the most common extraintestinal manifestation of human infection by the enteric protozoan parasite Entamoeba histolytica. In contrast to intestinal infection, ALA greatly predominates in males but is rare in females. Since humans are the only relevant host for E. histolytica, experimental studies concerning this sexual dimorphism have been hampered by the lack of a suitable animal model. By serial liver passage of cultured E. histolytica trophozoites in gerbils and mice, we generated amebae which reproducibly induce ALA in C57BL/6 mice. Interestingly, all animals developed ALA, but the time courses of abscess formation differed significantly between the genders. Female mice were able to clear the infection within 3 days, whereas in male mice the parasite could be recovered for at least 14 days. Accordingly, male mice showed a prolonged time of recovery from ALA. Immunohistology of abscesses revealed that polymorphonuclear leukocytes and macrophages were the dominant infiltrates, but in addition, gamma,delta-T cells, NK cells, and natural killer T (NKT) cells were also present at early times during abscess development, whereas conventional alpha,beta-T cells appeared later, when female mice had already cleared the parasite. Interestingly, male and female mice differed in early cytokine production in response to ameba infection. Enzyme-linked immunospot assays performed with spleen cells of infected animals revealed significantly higher numbers of interleukin-4-producing cells in male mice but significantly higher numbers of gamma interferon (IFN-gamma)-producing cells in female mice. Early IFN-gamma production and the presence of functional NKT cells were found to be important for the control of hepatic amebiasis as application of an IFN-gamma-neutralizing monoclonal antibody or the use of NKT knockout mice (Valpha14iNKT, Jalpha 18(-/-)) dramatically increased the size of ALA in female mice. In addition, E. histolytica trophozoites

  4. Gene Expression and Gene Ontology Enrichment Analysis for H3K4me3 and H3K4me1 in Mouse Liver and Mouse Embryonic Stem Cell Using ChIP-Seq and RNA-Seq

    OpenAIRE

    Ngoc Tam L. Tran; Huang, Chun-Hsi

    2014-01-01

    Recent study has identified the cis-regulatory elements in the mouse genome as well as their genomic localizations. Recent discoveries have shown the enrichment of H3 lysine 4 trimethylation (H3K4me3) binding as an active promoter and the presence of H3 lysine 4 monomethylation (H3K4me1) outside promoter regions as a mark for an enhancer. In this work, we further identified highly expressed genes by H3K4me3 mark or by both H3K4me3 and H3K4me1 marks in mouse liver using ChIP-Seq and RNA-Seq. W...

  5. Combined effects of social stress and liver fluke infection in a mouse model.

    Science.gov (United States)

    Avgustinovich, Damira F; Marenina, Mariya K; Zhanaeva, Svetlana Ya; Tenditnik, Mikhail V; Katokhin, Alexey V; Pavlov, Konstantin S; Sivkov, Anton Yu; Vishnivetskaya, Galina B; Lvova, Maria N; Tolstikova, Tatiana G; Mordvinov, Viatcheslav A

    2016-03-01

    The effects of two influences, social stress and acute opisthorchiasis, were investigated in inbred C57BL/6J male mice. In the model of social stress, mice were repeatedly attacked and defeated by aggressive outbred ICR male mice and were in continuous sensory contact with an aggressive conspecific mouse in their home cage for 20days. Acute opisthorchiasis was provoked by invasion of Opisthorchis felineus (50 larvae per animal) on the fourth day after the social stress was induced. Simultaneous action of both factors caused the hypertrophy of adrenal glands, as well as elevated the activity of cathepsins B and L in the spleen. This effect on the activity of the cysteine proteases in the hippocampus and hypothalamus following O. felineus invasion was the predominant result of simultaneous action with social stress. Acute opisthorchiasis, social stress, and their combination caused an increase in the level of blood IL-6 in approximately 30% of the animals. Social stress induced a more pronounced effect on mouse plus-maze behavior than O. felineus invasion. Our results suggest a more severe negative effect of the simultaneous influence of both factors on most of the parameters that were investigated. PMID:26778779

  6. Subcellular distribution of 239Pu in the liver of rat, mouse, Syrian and Chinese hamster

    International Nuclear Information System (INIS)

    An attempt was made to elucidate the biochemical mechanisms responsible for the species differences in the biological half life of plutonium-239 in the liver of rats, mice, Syrian hamsters and Chinese hamsters. Six days after intravenously administered Pu-239, the animals were given Triton i.p. which causes a shift of the density of the lysosomes and thus any lysosomally-associated material can be recognised by a parallel shift. On the tenth day, an MLP fraction was obtained by differential centrifugation of the liver homogenates; the distribution of radioactivity and marker enzymes was then examined after centrifugation of the MLP fraction in a sucrose density gradient. If the parallelism between the shift of Pu-239 and acid phosphatase is taken as a measure for the extent of lysosomal binding, there is clear evidence for association with these organelles for rats and mice, the species with rapid Pu elimination; however these organelles appear to become less important in the species with longer Pu retention, Syrian and especially Chinese hamster. (U.K.)

  7. Subcellular distribution of Pu-239 in the liver of rat, mouse, Syrian and Chinese hamster

    International Nuclear Information System (INIS)

    The aim of our studies was to elucidate the biochemical mechanisms responsible for the differences in the biological half life of actinides in the liver of different mammalian species. Rats and mice were chosen as models for rapid elimination, and Syrian and Chinese hamsters as models for slow elimination. To distinguish between fixation in lysosomes and mitochondria, the lysosomes were isolated following injection of Triton WR1339 6 days after 239Pu administration. The animals were sacrificed 4 days later. In order to study the possible association with ferritin, 59Fe was also injected. Liver homogenates were subjected to differential and isopycnic centrifugation in a sucrose density gradient. The typical shift in the density of the lysosomal marker acid phosphatase from rho approximately 1.2 to rho approximately 1.1 following Triton WR1339 injection was observed in all species. It was possible therefore to separate lysosomes from other cell organelles, especially mitochondria. It was concluded that: 1) Mitochondria can virtually be excluded as binding sites in all four species; 2) Lysosomes are one important storage site in rats, mice and Syrian hamsters; 3) If 239Pu is bound to another cell constituent in addition to lysosomes in the hamster species (which is not yet proven) its density should be approximately 1.17. (H.K.)

  8. The feasibility research of galactosyl-anti-mouse CD3 monoclonal antibody being used as carrier of immunotherapy after surgical operation of liver cancer

    International Nuclear Information System (INIS)

    Objective: To probe into the feasibility of galactosyl-anti-mouse CD3 monoclonal antibody (Gal-Ant-CD3 McAb) being used as carrier of immunotherapy after surgical operation of liver cancer. Methods: Gal-Ant-CD3 McAb was prepared by the covalent coupling of anti-mouse CD3 monoclonal antibody (Ant-CD3 McAb) with a bifunctional reagent, 2-imino-2-methoxyethyl-1-thio-galactose. After Gal-Ant-CD3 McAb and Ant-CD3 McAb were labelled with 131I or 125I, the data of biodistribution in mice, and of imaging in rabbit were obtained. After tumour infiltrating lymphocytes (TIL) and Gal-Ant-CD3 McAb were coupled into Gal-Ant-CD3 McAb-TIL, its liver taxis and cytotoxic activity against autologous cancer cells were measured in vitro. Results: Gal-Ant-CD3 McAb had remarkable livertaxis and its uptake in per gram liver was (59.0 +- 2.1)% that was more than two-fold higher than that of Ant-CD3 McAb. Gal-Ant-CD3 McAb-TIL had an obvious liver taxis and cytotoxic activity against autologous cancer cells in vitro. Conclusion: Gal-Ant-CD3 McAb can be used as the carrier of immunotherapy after surgical operation of liver cancer

  9. Glutamine inhibits CCl4 induced liver fibrosis in mice and TGF-β1 mediated epithelial-mesenchymal transition in mouse hepatocytes.

    Science.gov (United States)

    Shrestha, Nirajan; Chand, Lokendra; Han, Myung Kwan; Lee, Seung Ok; Kim, Chan Young; Jeong, Yeon Jun

    2016-07-01

    Glutamine, traditionally a non-essential amino acid, now has been considered as essential in serious illness and injury. It is a major precursor for glutathione synthesis. However, the anti-fibrotic effect of glutamine and its molecular mechanism in experimental liver fibrosis have not been explored. In the present study we aimed to examine the potential role of glutamine in carbon tetrachloride (CCl4) induced liver fibrosis and TGF-β1 mediated epithelial mesenchymal transition (EMT) and apoptosis in mouse hepatocytes. Liver fibrosis was induced by intraperitoneal injection of CCl4 three times a week for 10 weeks. Glutamine treatment effectively attenuated liver injury and oxidative stress. Collagen content was significantly decreased in liver sections of glutamine treated mice compared to CCl4 model mice. Furthermore, glutamine decreased expression level of α-SMA and TGF-β in liver tissue. Our in vitro study showed that TGF-β1 treatment in hepatocytes resulted in loss of E-cadherin and increased expression of mesenchymal markers and EMT related transcription factor. In addition, TGF-β1 increased the expression of apoptotic markers. However, glutamine interestingly suppressed TGF-β1 mediated EMT and apoptosis. In conclusion, our results suggest that glutamine ameliorates CCl4 induced liver fibrosis and suppresses TGF-β1 induced EMT progression and apoptosis. PMID:27137983

  10. Protoporphyrinogen oxidase: high affinity tetrahydrophthalimide radioligand for the inhibitor/herbicide-binding site in mouse liver mitochondria.

    Science.gov (United States)

    Birchfield, N B; Casida, J E

    1996-01-01

    Protoporphyrinogen oxidase (protox), the last common enzyme in heme and chlorophyll biosynthesis, is the target of several classes of herbicides acting as inhibitors in both plants and mammals. N-(4-Chloro-2-fluoro-5-(propargyloxy)phenyl)-3,4,5,6-tetrahydro phthalimide (a potent protox inhibitor referred to as THP) was synthesized as a candidate radioligand ([3H]-THP) by selective catalytic reduction of 3,6-dihydrophthalic anhydride (DHPA) with tritium gas followed by condensation in 45% yield with 4-chloro-2-fluoro-5-(propargyloxy)aniline. Insertion of tritium at the 3 and 6 carbons of DHPA as well as the expected 4 and 5 carbons resulted in high specific activity [3H]THP (92 Ci/mmol). This radioligand undergoes rapid, specific, saturable, and reversible binding to the inhibitor/herbicide binding site of the protox component of cholate-solubilized mouse liver mitochondria with an apparent Kd of 0.41 nM and Bmax of 0.40 pmol/mg of protein. In the standard assay, mouse preparation (150 micrograms of protein) and [3H]THP (0.5 nM) are incubated in 500 microL of phosphate buffer at pH 7.2 for 15 min at 25 degrees C followed by addition of ammonium sulfate and filtration with glass fiber filters. The potencies of five nitrodiphenyl ethers and two other herbicides as inhibitors of [3H]THP binding correlate well with those for inhibition of protox activity (r2 = 0.97, n = 7), thus validating the binding assay as relevant to enzyme inhibition. It is also suitable to determine in vivo block as illustrated by an approximately 50% decrease in [3H]THP binding in liver mitochondria from mice treated ip with oxyfluorfen at 4 mg/kg. This is the first report of a binding assay for protox in mammals. The high affinity and specific activity of [3H]THP facilitate quantitation of protox and therefore research on a sensitive inhibition site for porphyrin biosynthesis. PMID:8902268

  11. Flow cytometric measurement of the metabolism of benzo [a] pyrene by mouse liver cells in culture

    International Nuclear Information System (INIS)

    The metabolism of benzo[a]pyrene in individual cells was monitored by flow cytometry. The measurements are based on the alterations that occur in the fluorescence emission spectrum of benzo[a]pyrene when it is converted to various metabolities. Using present instrumentation the technique could easily detect 1 x 10/sup 6/ molecules per cells of benzo [a]pyrene and 1 x 10/sup 7/ molecules per cell of the diol epoxide. The analysis of C3H IOT 1/2 mouse fibroblasts growing in culture indicated that there was heterogeneity in the conversion of the parent compound into diol epoxide derivative suggesting that some variation in sensitivity to transformation by benzo[a]pyrene may be due to differences in cellular metabolism

  12. Glutamate Cysteine Ligase—Modulatory Subunit Knockout Mouse Shows Normal Insulin Sensitivity but Reduced Liver Glycogen Storage

    KAUST Repository

    Lavoie, Suzie

    2016-04-21

    Glutathione (GSH) deficits have been observed in several mental or degenerative illness, and so has the metabolic syndrome. The impact of a decreased glucose metabolism on the GSH system is well-known, but the effect of decreased GSH levels on the energy metabolism is unclear. The aim of the present study was to investigate the sensitivity to insulin in the mouse knockout (KO) for the modulatory subunit of the glutamate cysteine ligase (GCLM), the rate-limiting enzyme of GSH synthesis. Compared to wildtype (WT) mice, GCLM-KO mice presented with reduced basal plasma glucose and insulin levels. During an insulin tolerance test, GCLM-KO mice showed a normal fall in glycemia, indicating normal insulin secretion. However, during the recovery phase, plasma glucose levels remained lower for longer in KO mice despite normal plasma glucagon levels. This is consistent with a normal counterregulatory hormonal response but impaired mobilization of glucose from endogenous stores. Following a resident-intruder stress, during which stress hormones mobilize glucose from hepatic glycogen stores, KO mice showed a lower hyperglycemic level despite higher plasma cortisol levels when compared to WT mice. The lower hepatic glycogen levels observed in GCLM-KO mice could explain the impaired glycogen mobilization following induced hypoglycemia. Altogether, our results indicate that reduced liver glycogen availability, as observed in GCLM-KO mice, could be at the origin of their lower basal and challenged glycemia. Further studies will be necessary to understand how a GSH deficit, typically observed in GCLM-KO mice, leads to a deficit in liver glycogen storage.

  13. Evaluation of viral and mammalian promoters for driving transgene expression in mouse liver

    International Nuclear Information System (INIS)

    Fifteen luciferase plasmid constructs driven by various promoters including cytomegalovirus (CMV), Rous sarcoma virus (RSV), human serum albumin (SA), α-1 antitrypsin (AAT), cytochrome P450 CYP1A2, CYP2C9, CYP2C18, CYP2D6, CYP3A4, mouse CYP2b10, human amyloid precursor protein (APP), chicken β actin (ACT), nuclear factor κ B (NFκB), and heat shock protein 70 (HS) promoters were hydrodynamically introduced into mouse hepatocytes, and the level and persistence of luciferase gene expression were examined. Eight hours post-gene transfer, the CMV and AAT promoters showed the highest activity, followed by the CYP2D6, HS, and RSV promoters which were slightly less active. The human serum albumin promoter exhibited the lowest activity among the promoters examined. The time course of gene expression showed a two-phase decline in luciferase activity with a rapid phase within First 5-7 days and a slower decline thereafter. Results from Southern and Northern blot analyses revealed a good correlation between the decline of luciferase activity and the decrease in mRNA level, suggesting promoter silencing as the possible mechanism for the observed transient luciferase gene expression. Inclusion of EBN1 and oriP sequences of Epstein-Barr virus into the plasmid extended the period of active transcription for about one week. These results provide important information concerning the role of promoters in regulating transgene expression and for the proper design of plasmids for gene expression and gene therapy

  14. In vitro metabolism of norbormide in rat, mouse and guinea pig liver preparations.

    Science.gov (United States)

    Ravindran, Shanthinie; Hopkins, Brian; Bova, Sergio; Rennison, David; Brimble, Margaret; Tingle, Malcolm

    2009-01-01

    Differences between species in response to norbormide (NRB) may arise through differential pharmacodynamic and/or pharmacokinetic properties. We hypothesise that species-selectivity is at least partly determined by differences in metabolism based on in vitro data generated in liver preparations from rats, mice and guinea pigs. HPLC separation and LC/MS identification revealed that NRB undergoes metabolism primarily to hydroxylated form that was tentatively identified in both rat and non-rat species with NADPH as the preferred cofactor. However, the metabolic profile and the rate are different between species. Gender differences are also reported in the metabolic rate in rats and we postulate that this may be responsible for different toxic sensitivities seen between sexes. Using this knowledge, we aim to develop pharmacological tool(s) for use in designing a new class of drugs that can be targeted in a tissue-selective manner. Further in vivo pharmacokinetic with receptor affinity studies are warranted. PMID:21783932

  15. Amelioration of ionizing radiation induced lipid peroxidation in mouse liver by Moringa oleifera Lam. leaf extract

    International Nuclear Information System (INIS)

    Protective effect of Moringa oleifera leaf extract (MoLE) against radiation-induced lipid peroxidation has been investigated. Swiss albino mice, selected from an inbred colony, were administered with MoLE (300 mg/kg body wt) for 15 days before exposing to a single dose of 5 Gy 60Co-gamma radiation. After treatments, animals were necropsied at different post irradiation intervals (days 1, 7 and 15) and hepatic lipid peroxidation and reduced glutathione (GSH) contents were estimated to observe the relative changes due to irradiation and its possible amelioration by MoLE. It was observed that, MoLE treatment restored GSH in liver and prevented radiation induced augmentation in hepatic lipid peroxidation. Phytochemical analysis showed that MoLE possess various phytochemicals such as ascorbic acid, phenolics (catechin, epicatechin, ferulic acid, ellagic acid, myricetin) etc., which may play the key role in prevention of hepatic lipid peroxidation by scavenging radiation induced free radicals. (author)

  16. Roles of Oxidized Diacylglycerol for Carbon Tetrachloride-induced Liver Injury and Fibrosis in Mouse

    International Nuclear Information System (INIS)

    Since there is a report that an inhibitor of protein kinase C (PKC) effectively suppresses the development of hepatic fibrosis, it is suggested that the PKC signaling pathway plays an important role in the pathogenesis of hepatic fibrosis. We reported that oxidized diacylglycerol (DAG), which is an activator of PKC, had a remarkably stronger PKC-activating action than un-oxidized DAG. In the present study, we explored the roles of oxidized DAG in hepatic fibrogenesis using mice, the livers of which developed fibrosis by long-term administration of carbon tetrachloride (CCl4). Liver fibrosis models were created by 4- or 8-week repetitive subcutaneous injections of CCl4 to the backs of C57BL/6J mice. The amount of oxidized DAG was significantly increased in the CCl4-treated group. Moreover, it was found that PKCα, βI, βII and δ were activated. In the CCl4-treated group, phosphorylation of ERK and JNK, which are downstream signal transmitters in the PKC pathway, was increased. It was also found in this group that there was an increase in TIMP-1, which is a fibrogenesis-promoting factor whose expression is enhanced by activated JNK, and of TNF-α, an inflammatory cytokine. Analysis by quantitative real-time RT-PCR showed that expressions of αSMA, collagen I, TNF-α and IL-10 were remarkably increased in the 8-week CCl4-treated group. The above results strongly suggested that oxidized DAG, which is increased by augmented oxidative stress, activated PKCα, βI, βII and δ molecular species and that these molecular species in turn stimulated the phosphorylation of MAP kinases including ERK and JNK, resulting in enhancement of hepatic fibrogenesis

  17. A stringent dual control system overseeing transcription and activity of the Cre recombinase for the liver-specific conditional gene knock-out mouse model

    Institute of Scientific and Technical Information of China (English)

    Yu Wu; Yinghua He; Hongyu Zhang; Xinlan Dai; Xiaoyu Zhou; Jun Gu; Guan Wang; Jingde Zhu

    2008-01-01

    Liver cancer is one of the most threatening diseases in Chinese population. Just like in other tissues, tumor initiation and development in liver involve multiple steps of genetic and epigenetic alterations with several unknown details. However, unlike in other tissues, a tis- sue specific inducible Cre recombinase system that allows temporal and spatial deletion of a target DNA fragment is still not available for in vivo functional gene annotation in hepatocytes. In our pursuit to establish such a mouse model, we designed a dual inducible Cre transgene system and tested it in cultured cells. By combining a CCAAT/enhancer binding protein β (C/EBP β) promoter derived Tet-off expression system and the estrogen receptor (ER) mediated functional control, we show a desirable profile of both hepatocyte-specificity and regulability of the Cre expression in a series of critical assessments in the cell culture system, which provides confidence in continua- tion of our ongoing pursuit in mouse.

  18. MiR-152 May Silence Translation of CaMK II and Induce Spontaneous Immune Tolerance in Mouse Liver Transplantation

    OpenAIRE

    Wang, Yan; Tian, Yang; Ding, Yuan; Wang, Jingcheng; Yan, Sheng; Lin ZHOU; Xie, Haiyang; Chen, Hui; Li, Hui; Zhang, Jinhua; Zhao, Jiacong; Zheng, Shusen

    2014-01-01

    Spontaneous immune tolerance in mouse liver transplantation has always been a hotspot in transplantation-immune research. Recent studies revealed that regulatory T cells (Tregs), hepatic satellite cells and Kupffer cells play a potential role in spontaneous immune tolerance, however the precise mechanism of spontaneous immune tolerance is still undefined. By using Microarray Chips, we investigated different immune regulatory factors to decipher critical mechanisms of spontaneous tolerance aft...

  19. Dynamic, Sex-Differential STAT5 and BCL6 Binding to Sex-Biased, Growth Hormone-Regulated Genes in Adult Mouse Liver

    OpenAIRE

    Zhang, Yijing; Laz, Ekaterina V.; Waxman, David J.

    2012-01-01

    Sex-dependent pituitary growth hormone (GH) secretory patterns determine the sex-biased expression of >1,000 genes in mouse and rat liver, affecting lipid and drug metabolism, inflammation, and disease. A fundamental biological question is how robust differential expression can be achieved for hundreds of sex-biased genes simply based on the GH input signal pattern: pulsatile GH stimulation in males versus near-continuous GH exposure in females. STAT5 is an essential transcriptional mediator ...

  20. Protective effects of guarana (Paullinia cupana Mart. var. Sorbilis) against DEN-induced DNA damage on mouse liver.

    Science.gov (United States)

    Fukumasu, H; Avanzo, J L; Heidor, R; Silva, T C; Atroch, A; Moreno, F S; Dagli, M L Z

    2006-06-01

    Guarana (Paullinia cupana Mart. var. Sorbilis) is a plant originally from Brazil, which is rich in tannins. Some tannins are known to present protective effects against DNA damage. This study was performed to investigate the anti-genotoxic/cytotoxic properties of guarana in hepatocytes of mice injected with N-nitrosodiethylamine (DEN). The protective effect of guarana was evaluated both by comet assay and DNA smear fragmentation technique in two month-old female BALB/c mice. These were treated previously with 2.0 mg/g bw of guarana for 16 days and then injected with DEN (160 microg/g body weight) to induce DNA damage. The DEN-only treated group presented higher comet image length than the guarana plus DEN and untreated groups (116.06+/-5.0 microm, 104.09+/-3.3 microm and 93.28+/-14.4 microm, respectively; p<0.01). Guarana treatment presented a 52.54% reduction in comet image length when animals were exposed to DEN (p<0.05). DNA samples from the guarana plus DEN group clearly showed less EtBr fluorescence intensity when compared to the DEN-only group, reinforcing the comet assay data. These results show, for the first time, that guarana has a protective effect against DEN-induced DNA damage in mouse liver. PMID:16406177

  1. Metabolism of trans, trans-muconaldehyde, a cytotoxic metabolite of benzene, in mouse liver by alcohol dehydrogenase Adh1 and aldehyde reductase AKR1A4

    International Nuclear Information System (INIS)

    The reductive metabolism of trans, trans-muconaldehyde, a cytotoxic metabolite of benzene, was studied in mouse liver. Using an HPLC-based stopped assay, the primary reduced metabolite was identified as 6-hydroxy-trans, trans-2,4-hexadienal (OH/CHO) and the secondary metabolite as 1,6-dihydroxy-trans, trans-2,4-hexadiene (OH/OH). The main enzymes responsible for the highest levels of reductase activity towards trans, trans-muconaldehyde were purified from mouse liver soluble fraction first by Q-sepharose chromatography followed by either blue or red dye affinity chromatography. In mouse liver, trans, trans-muconaldehyde is predominantly reduced by an NADH-dependent enzyme, which was identified as alcohol dehydrogenase (Adh1). Kinetic constants obtained for trans, trans-muconaldehyde with the native Adh1 enzyme showed a V max of 2141 ± 500 nmol/min/mg and a K m of 11 ± 4 μM. This enzyme was inhibited by pyrazole with a K I of 3.1 ± 0.57 μM. Other fractions were found to contain muconaldehyde reductase activity independent of Adh1, and one enzyme was identified as the NADPH-dependent aldehyde reductase AKR1A4. This showed a V max of 115 nmol/min/mg and a K m of 15 ± 2 μM and was not inhibited by pyrazole

  2. Cordyceps sinensis prevents apoptosis in mouse liver with D-galactosamine/lipopolysaccharide-induced fulminant hepatic failure.

    Science.gov (United States)

    Cheng, Yu-Jung; Cheng, Shiu-Min; Teng, Yi-Hsien; Shyu, Woei-Cherng; Chen, Hsiu-Ling; Lee, Shin-Da

    2014-01-01

    Cordyceps sinensis (C. sinensis) has long been considered to be an herbal medicine and has been used in the treatment of various inflammatory diseases. The present study examined the cytoprotective properties of C. sinensis on D(+)-galactosamine (GalN)/lipopolysaccharide (LPS)-induced fulminant hepatic failure. Mice were randomly assigned into control, GalN/LPS, CS 20 mg and CS 40 mg groups (C. sinensis, oral gavage, five days/week, four weeks). After receiving saline or C. sinensis, mice were intraperitoneally given GalN (800 mg/kg)/LPS (10 μg/kg). The effects of C. sinensis on TNF-α, IL-10, AST, NO, SOD, and apoptoticrelated proteins after the onset of endotoxin intoxication were determined. Data demonstrated that GalN/LPS increased hepatocyte degeneration, circulating AST, TNF-α, IL-10, and hepatic apoptosis and caspase activity. C. sinensis pre-treatment reduced AST, TNF-α, and NO and increased IL-10 and SOD in GalN/LPS induced fulminant hepatic failure. C. sinensis attenuated the apoptosis of hepatocytes, as evidenced by the TUNEL and capase-3, 6 activity analyses. In summary, C. sinensis alleviates GalN/LPS-induced liver injury by modulating the cytokine response and inhibiting apoptosis. PMID:24707872

  3. Radiation dose to mouse liver cells from ingestion of tritiated food or water

    International Nuclear Information System (INIS)

    Tritium incorporated into tissues and DNA of mice was studied after daily ingestion of tritiated food or tritiated water. The tritiated food used was a commercial preparation mixed with brine shrimp that had been reared in tritiated sea water. After ingestion of tritiated food or water for up to 22 d, the specific activity of 3H in tissues was measured as tissue-free-water 3H, tissue-bound 3H, and DNA-bound 3H. Carbon-14 glucose was added to food and drinking water to compare the 3H intake from food with that from water. The specific activity of 3H in tissues was then corrected by the specific activity of 14C in tissues to determine the 3H incorporation from the same amount of ingested food and water. DNA-bound 3H after the ingestion of tritiated food was 4.6 times higher than that of tritiated water, while tissue-bound 3H was 2.2 times higher. The radiation dose to liver from 3H incorporated through food was twofold higher than from tritiated water, which was mainly from the high incorporation of 3H into DNA. Our results demonstrated that the dose calculation based on tissue-free-water 3H alone would under-estimate the radiation exposure of the human population exposed to tritiated food

  4. High sensitivity 19F MRI of a perfluoro-octyl bromide emulsion: application to a dynamic biodistribution study and oxygen tension mapping in the mouse liver and spleen

    International Nuclear Information System (INIS)

    We have recently developed an optimized multi-spin echo (MSE) sequence dedicated to perfluoro-octyl bromide (PFOB) imaging yielding an excellent sensitivity in vitro. The aim of the present study was to apply this sequence to quantitative measurements in the mouse liver and spleen after intravenous (i.v.) injection of PFOB emulsions. We first performed oxygenation maps 25.5 min after a single infusion of emulsion and, contrary to previous studies, shortly after injection. The signal-to-noise ratio (SNR) in the liver and spleen was as high as 45 and 120, respectively, for 3-min images with 11.7-mL pixels. Values of oxygen tension tended to be slightly higher in the spleen than in the liver. Dynamic biodistribution experiments were then performed immediately after intravenous (i.v.) injection of PFOB emulsions grafted with different quantities of polyethylene glycol (PEG) for stealth. Images were acquired every 7 min for 84 min and the SNR measured in the liver and spleen was at least four from the first time point. Uptake rates could be assessed for each PEG amount and, in spite of high standard deviations (SDs) owing to inter animal variability, our data confirmed that increasing quantities of PEG allow more gradual uptake of the emulsion particles by the liver and spleen. In conclusion, our method seems to be a powerful tool to non-invasively perform accurate in vivo quantitative measurements in the liver and spleen using 19 F MRI. (authors)

  5. Silymarin attenuated hepatic steatosis through regulation of lipid metabolism and oxidative stress in a mouse model of nonalcoholic fatty liver disease (NAFLD).

    Science.gov (United States)

    Ni, Xunjun; Wang, Haiyan

    2016-01-01

    Silymarin, which derived from the milk thistle plant (silybum marianum), has been used for centuries as a natural remedy for diseases of the liver and biliary tract. Considering the therapeutic potential to liver disease, we tested efficacy of silymarin on hepatic steatosis with a high fat diet (HFD)-induced mouse model of non-alcoholic fatty liver disease (NAFLD), and investigated possible effects on lipid metabolic pathways. In our study, silymarin could attenuate the hepatic steatosis, which was proved by both Oil Red O staining and hepatic triglyceride (TG) level determination. Furthermore, compared with INT-747, a potent and selective FXR agonist, silymarin could preserve plasmatic high-density lipoprotein cholesterol (HDL-C) to a higher level and low-density lipoprotein cholesterol (LDL-C) to a lower level, which benefited more to the circulation system. Through real-time PCR analysis, we clarified a vital protective role of silymarin in mRNA regulation of genes involved in lipid metabolism and oxidative stress. It was also shown that silymarin had no effects on body weight, food intake, and liver transaminase. Taken together, silymarin could attenuate hepatic steatosis in a mouse model of NAFLD through regulation of lipid metabolism and oxidative stress, and benefit to the circulation system. All these findings shed new light on NAFLD treatment. PMID:27158393

  6. Lipoprotein lipase expression exclusively in liver. A mouse model for metabolism in the neonatal period and during cachexia.

    OpenAIRE

    Merkel, M.; Weinstock, P H; Chajek-Shaul, T; Radner, H; B. Yin; Breslow, J L; Goldberg, I J

    1998-01-01

    Lipoprotein lipase (LPL), the rate-limiting enzyme in triglyceride hydrolysis, is normally not expressed in the liver of adult humans and animals. However, liver LPL is found in the perinatal period, and in adults it can be induced by cytokines. To study the metabolic consequences of liver LPL expression, transgenic mice producing human LPL specifically in the liver were generated and crossed onto the LPL knockout (LPL0) background. LPL expression exclusively in liver rescued LPL0 mice from n...

  7. Cyclosporin A induced toxicity in mouse liver slices is only slightly aggravated by Fxr-deficiency and co-occurs with upregulation of pro-inflammatory genes and downregulation of genes involved in mitochondrial functions

    NARCIS (Netherlands)

    Szalowska, Ewa; Pronk, T.E.; Peijnenburg, A.A.C.M.

    2015-01-01

    Background: The transcription factor farnesoid X receptor (FXR) governs bile acid and energy homeostasis, is involved in inflammation, and has protective functions in the liver. In the present study we investigated the effect of Fxr deficiency in mouse precision cut liver slices (PCLS) exposed to

  8. Asiatic acid uncouples respiration in isolated mouse liver mitochondria and induces HepG2 cells death.

    Science.gov (United States)

    Lu, Yapeng; Liu, Siyuan; Wang, Ying; Wang, Dang; Gao, Jing; Zhu, Li

    2016-09-01

    Asiatic acid, one of the triterpenoid components isolated from Centella asiatica, has received increasing attention due to a wide variety of biological activities. To date, little is known about its mechanisms of action. Here we examined the cytotoxic effect of asiatic acid on HepG2 cells and elucidated some of the underlying mechanisms. Asiatic acid induced rapid cell death, as well as mitochondrial membrane potential (MMP) dissipation, ATP depletion and cytochrome c release from mitochondria to the cytosol in HepG2 cells. In mitochondria isolated from mouse liver, asiatic acid treatment significantly stimulated the succinate-supported state 4 respiration rate, dissipated the MMP, increased Ca(2+) release from Ca(2+)-loaded mitochondria, decreased ATP content and promoted cytochrome c release, indicating the uncoupling effect of asiatic acid. Hydrogen peroxide (H2O2) produced by succinate-supported mitochondrial respiration was also significantly inhibited by asiatic acid. In addition, asiatic acid inhibited Ca(2+)-induced mitochondrial swelling but did not induce mitochondrial swelling in hyposmotic potassium acetate medium which suggested that asiatic acid may not act as a protonophoric uncoupler. Inhibition of uncoupling proteins (UCPs) or blockade of adenine nucleotide transporter (ANT) attenuated the effect of asiatic acid on MMP dissipation, Ca(2+) release, mitochondrial respiration and HepG2 cell death. When combined inhibition of UCPs and ANT, asiatic acid-mediated uncoupling effect was noticeably alleviated. These results suggested that both UCPs and ANT partially contribute to the uncoupling properties of asiatic acid. In conclusion, asiatic acid is a novel mitochondrial uncoupler and this property is potentially involved in its toxicity on HepG2 cells. PMID:27288117

  9. Metabolic studies of prostanozol with the uPA-SCID chimeric mouse model and human liver microsomes.

    Science.gov (United States)

    Geldof, Lore; Lootens, Leen; Decroix, Lieselot; Botrè, Francesco; Meuleman, Philip; Leroux-Roels, Geert; Deventer, Koen; Van Eenoo, Peter

    2016-03-01

    Anabolic androgenic steroids are prohibited by the World Anti-Doping Agency because of their adverse health and performance enhancing effects. Effective control of their misuse by detection in urine requires knowledge about their metabolism. In case of designer steroids, ethical objections limit the use of human volunteers to perform excretion studies. Therefore the suitability of alternative models needs to be investigated. In this study pooled human liver microsomes (HLM) and an uPA(+/+)-SCID chimeric mouse model were used to examine the metabolism of the designer steroid prostanozol as a reference standard. Metabolites were detected by GC-MS (full scan) and LC-MS/MS (precursor ion scan). In total twenty-four prostanozol metabolites were detected with the in vitro and in vivo metabolism studies, which could be grouped into two broad classes, those with a 17-hydroxy- and those with a 17-keto-substituent. Major first phase metabolic sites were tentatively identified as C-3'; C-4 and C-16. Moreover, 3'- and 16β-hydroxy-17-ketoprostanozol could be unequivocally identified, since authentic reference material was available, in both models. Comparison with published data from humans showed a good correlation, except for phase II metabolism. As metabolites were in contrast to the human studies predominantly present in the free fraction. Two types of metabolites ((di)hydroxylated prostanozol metabolites) that have not been described before could be confirmed in a real positive doping control sample. Hence, the results provide further evidence for the applicability of chimeric mice and HLM to perform metabolism studies of designer steroids. PMID:26774429

  10. Genome-Wide Profiling of Liver X Receptor, Retinoid X Receptor, and Peroxisome Proliferator-Activated Receptor α in Mouse Liver Reveals Extensive Sharing of Binding Sites

    DEFF Research Database (Denmark)

    Boergesen, Michael; Pedersen, Thomas Åskov; Gross, Barbara;

    2012-01-01

    The liver X receptors (LXRs) are nuclear receptors that form permissive heterodimers with retinoid X receptor (RXR) and are important regulators of lipid metabolism in the liver. We have recently shown that RXR agonist-induced hypertriglyceridemia and hepatic steatosis in mice are dependent on LXRs...

  11. Lysophosphatidic Acid Alters the Expression Profiles of Angiogenic Factors, Cytokines, and Chemokines in Mouse Liver Sinusoidal Endothelial Cells

    OpenAIRE

    Chia-Hung Chou; Shou-Lun Lai; Cheng-Maw Ho; Wen-Hsi Lin; Chiung-Nien Chen; Po-Huang Lee; Fu-Chuo Peng; Sung-Hsin Kuo; Szu-Yuan Wu; Hong-Shiee Lai

    2015-01-01

    Background and Aims Lysophosphatidic acid (LPA) is a multi-function glycerophospholipid. LPA affects the proliferation of hepatocytes and stellate cells in vitro, and in a partial hepatectomy induced liver regeneration model, the circulating LPA levels and LPA receptor (LPAR) expression levels in liver tissue are significantly changed. Liver sinusoidal endothelial cells (Lsecs) play an important role during liver regeneration. However, the effects of LPA on Lsecs are not well known. Thus, we ...

  12. Separation and identification of mouse liver membrane proteins using a gel-based approach in combination with 2DnanoLC-Q-TOF-MS/MS

    International Nuclear Information System (INIS)

    In this work, we present results of membrane proteome profiling from mouse liver tissues using a gel-based approach in combination with 2DnanoLC-Q-TOF-MS/MS. Following purification of the membrane fraction, SDS-PAGE was carried out as a useful separation step. After staining, gels with protein bands were cut, reduced, alkylated and trypsin-digested. The peptide mixtures extracted from each gel slice were fractionated by two-dimensional nano liquid chromatography (2DnanoLC) coupled online with tandem mass spectrometry analysis (NanoESI-Q-TOF-MS/MS). The proteins were identified by MASCOT search against a mouse protein database using a peptide and fragment mass tolerance of ±0.5 Da. Protein identification was carried out using a Mowse scoring algorithm with a confidence level of 95% and processed by MSQuant v1.5 software for further validation. In total, 318 verified membrane proteins from mouse liver tissues were identified; 66.67% of them (212 proteins) contained at least one or more transmembrane domains predicted by the SOSUI program and 43 were found to be unique microsome membranes. Furthermore, GRAVY values of membrane proteins varied in the range -1.1276 to 0.9016 and only 31 (9.76%) membrane proteins had positive values. The functions and subcellular locations of the identified proteins were categorized as well, according to universal GO annotations

  13. Mechanisms of amiodarone and valproic acid induced liver steatosis in mouse in vivo act as a template for other hepatotoxicity models.

    Science.gov (United States)

    Vitins, Alexa P; Kienhuis, Anne S; Speksnijder, Ewoud N; Roodbergen, Marianne; Luijten, Mirjam; van der Ven, Leo T M

    2014-08-01

    Liver injury is the leading cause of drug-induced toxicity. For the evaluation of a chemical compound to induce toxicity, in this case steatosis or fatty liver, it is imperative to identify markers reflective of mechanisms and processes induced upon exposure, as these will be the earliest changes reflective of disease. Therefore, an in vivo mouse toxicogenomics study was completed to identify common pathways, nuclear receptor (NR) binding sites, and genes regulated by three known human steatosis-inducing compounds, amiodarone (AMD), valproic acid (VPA), and tetracycline (TET). Over 1, 4, and 11 days of treatment, AMD induced changes in clinical chemistry parameters and histopathology consistent with steatosis. Common processes and NR binding sites involved in lipid, retinol, and drug metabolism were found for AMD and VPA, but not for TET, which showed no response. Interestingly, the pattern of enrichment of these common pathways and NR binding sites over time was unique to each compound. Eleven biomarkers of steatosis were identified as dose responsive and time sensitive to toxicity for AMD and VPA. Finally, this in vivo mouse study was compared to an AMD rat in vivo, an AMD mouse primary hepatocyte, and a VPA human primary hepatocyte study to identify concordance for steatosis. We conclude that concordance is found on the process level independent of species, model or dose*time point. PMID:24535564

  14. Separation and identification of mouse liver membrane proteins using a gel-based approach in combination with 2DnanoLC-Q-TOF-MS/MS

    Science.gov (United States)

    Thanh Tran, The; Phan, Van Chi

    2010-03-01

    In this work, we present results of membrane proteome profiling from mouse liver tissues using a gel-based approach in combination with 2DnanoLC-Q-TOF-MS/MS. Following purification of the membrane fraction, SDS-PAGE was carried out as a useful separation step. After staining, gels with protein bands were cut, reduced, alkylated and trypsin-digested. The peptide mixtures extracted from each gel slice were fractionated by two-dimensional nano liquid chromatography (2DnanoLC) coupled online with tandem mass spectrometry analysis (NanoESI-Q-TOF-MS/MS). The proteins were identified by MASCOT search against a mouse protein database using a peptide and fragment mass tolerance of ±0.5 Da. Protein identification was carried out using a Mowse scoring algorithm with a confidence level of 95% and processed by MSQuant v1.5 software for further validation. In total, 318 verified membrane proteins from mouse liver tissues were identified; 66.67% of them (212 proteins) contained at least one or more transmembrane domains predicted by the SOSUI program and 43 were found to be unique microsome membranes. Furthermore, GRAVY values of membrane proteins varied in the range -1.1276 to 0.9016 and only 31 (9.76%) membrane proteins had positive values. The functions and subcellular locations of the identified proteins were categorized as well, according to universal GO annotations.

  15. The Rho-GTPase cdc42 regulates neural progenitor fate at the apical surface

    DEFF Research Database (Denmark)

    Cappello, Silvia; Attardo, Alessio; Wu, Xunwei; Iwasato, Takuji; Itohara, Shigeyoshi; Wilsch-Bräuninger, Michaela; Eilken, Hanna M; Rieger, Michael A; Schroeder, Timm T; Huttner, Wieland B; Brakebusch, Cord; Götz, Magdalena

    2006-01-01

    fundamental difference between these progenitors. Here we show that the conditional deletion of the small Rho-GTPase cdc42 at different stages of neurogenesis in mouse telencephalon results in an immediate increase in basal mitoses. Whereas cdc42-deficient progenitors have normal cell cycle length...

  16. Autophagy-Modulated Human Bone Marrow-Derived Mesenchymal Stem Cells Accelerate Liver Restoration in Mouse Models of Acute Liver Failure

    Science.gov (United States)

    Amiri, Fatemeh; Molaei, Sedigheh; Bahadori, Marzie; Nasiri, Fatemeh; Deyhim, Mohammad Reza; Jalili, Mohammad Ali; Nourani, Mohammad Reza; Habibi Roudkenar, Mehryar

    2016-01-01

    Background: Mesenchymal stem cells (MSCs) have been recently received increasing attention for cell-based therapy, especially in regenerative medicine. However, the low survival rate of these cells restricts their therapeutic applications. It is hypothesized that autophagy might play an important role in cellular homeostasis and survival. This study aims to investigate the regenerative potentials of autophagy-modulated MSCs for the treatment of acute liver failure (ALF) in mice. Methods: ALF was induced in mice by intraperitoneal injection of 1.5 ml/kg carbon tetrachloride. Mice were intravenously infused with MSCs, which were suppressed in their autophagy pathway. Blood and liver samples were collected at different intervals (24, 48 and 72 h) after the transplantation of MSCs. Both the liver enzymes and tissue necrosis levels were evaluated using biochemical and histopathological assessments. The survival rate of the transplanted mice was also recorded during one week. Results: Biochemical and pathological results indicated that 1.5 ml/kg carbon tetrachloride induces ALF in mice. A significant reduction of liver enzymes and necrosis score were observed in autophagy-modulated MSC-transplanted mice compared to sham (with no cell therapy) after 24 h. After 72 h, liver enzymes reached their normal levels in mice transplanted with autophagy-suppressed MSCs. Interestingly, normal histology without necrosis was also observed. Conclusion: Autophagy suppression in MSCs ameliorates their liver regeneration potentials due to paracrine effects and might be suggested as a new strategy for the improvement of cell therapy in ALF. PMID:26899739

  17. Identification of the development stage—specific factors in mouse fetal liver binding to the human β—globin gene promoter

    Institute of Scientific and Technical Information of China (English)

    CHENYADI; YULONGHU; 等

    1994-01-01

    In order to elucidate the molecular mechanisms of globin gene expression during embryonic development,the nuclear extracts from mouse hematopoietic tissue at different stages of development have been prepared.By using DNase I footprinting and gel mobility shift assays,the binding of protein factors in these extracts to the human β-globin promoter was analyzed.The differences in the binding patterns of protein factors during development were observed.An erythroid-specific and stage-specific nuclear protein in the nuclear extrace from d 18 mouse fetal liver was identified,which can bind to the sequence(from-66bp to-90bp) of human β-globin promoter.We therefore speculate that the function of this cis-acting element may be similar to stage selector element(SSE) in chicken βA-promoter.

  18. N-hydroxylation of 4-aminobiphenyl by CYP2E1 produces oxidative stress in a mouse model of chemically induced liver cancer.

    Science.gov (United States)

    Wang, Shuang; Sugamori, Kim S; Tung, Aveline; McPherson, J Peter; Grant, Denis M

    2015-04-01

    4-Aminobiphenyl (ABP) is a trace component of cigarette smoke and hair dyes, a suspected human carcinogen and a potent rodent liver carcinogen. Postnatal exposure of mice to ABP results in a higher incidence of liver tumors in males than in females, paralleling the sex difference in human liver cancer incidence. A traditional model of ABP tumorigenesis involves initial CYP1A2-mediated N-hydroxylation, which eventually leads to production of mutagenic ABP-DNA adducts that initiate tumor growth. However, several studies have found no correlation between sex or CYP1A2 function and the DNA-damaging, mutagenic, or tumorigenic effects of ABP. Oxidative stress may be an important etiological factor for liver cancer, and it has also been linked to ABP exposure. The goals of this study were to identify novel enzyme(s) that contribute to ABP N-oxidation, and to investigate a potential role for oxidative stress in ABP liver tumorigenicity. Isozyme-selective inhibition experiments using liver microsomes from wild-type and genetically modified mice identified CYP2E1 as a major ABP N-hydroxylating enzyme. The N-hydroxylation of ABP by transiently expressed CYP2E1 produced oxidative stress in cultured mouse hepatoma cells. In vivo postnatal exposure of mice to a tumorigenic dose of ABP also produced oxidative stress in male wild-type mice, but not in male Cyp2e1(-/-) mice or in female mice. However, a stronger NRF2-associated antioxidant response was observed in females. Our results identify CYP2E1 as a novel ABP-N-oxidizing enzyme, and suggest that sex differences in CYP2E1-dependent oxidative stress and antioxidant responses to ABP may contribute to the observed sex difference in tumor incidence. PMID:25601990

  19. Bipotential mouse embryonic liver (BMEL cells spontaneously express Pdx1 and Ngn3 but do not undergo further pancreatic differentiation upon Hes1 down-regulation

    Directory of Open Access Journals (Sweden)

    Martignat Lionel

    2008-12-01

    Full Text Available Abstract Background Liver-to-pancreas conversion offers new possibilities for β-cell engineering for type 1 diabetes therapy. Among conceivable sources of liver cells, we focused on BMEL cells. These untransformed mouse embryonic liver cells have been reproducibly isolated from different inbred mice strains and have the potential to differentiate into hepatocytes and cholangiocytes in vitro and in vivo. Findings Strikingly, we find here that adherent BMEL cells display functional similarities with multipotent pancreatic precursor cells, namely Pdx1 and Ngn3 expression, and further express Hnf6 in floating aggregate culture. Hes1, a direct repressor of Ngn3 and pancreatic endocrine commitment, is expressed in adherent BMEL cells and decreases with time in aggregate culture. However, Hes1 decrease fails to initiate activation of late-stage pancreatic endocrine transcription factors. Conclusion Here we report that BMEL cells present features of pancreatic endocrine progenitor cells. In the field of diabetes research, BMEL cells are of potential interest for the study of inductive signals critical for in vitro β-cell maturation in-liver-to-pancreas conversion.

  20. Effect of diphenyl ether herbicides and oxadiazon on porphyrin biosynthesis in mouse liver, rat primary hepatocyte culture and HepG2 cells.

    Science.gov (United States)

    Krijt, J; van Holsteijn, I; Hassing, I; Vokurka, M; Blaauboer, B J

    1993-01-01

    The effects of the herbicides fomesafen, oxyfluorfen, oxadiazon and fluazifop-butyl on porphyrin accumulation in mouse liver, rat primary hepatocyte culture and HepG2 cells were investigated. Ten days of herbicide feeding (0.25% in the diet) increased the liver porphyrins in male C57B1/6J mice from 1.4 +/- 0.6 to 4.8 +/- 2.1 (fomesafen) 16.9 +2- 2.9 (oxyfluorfen) and 25.9 +/- 3.1 (oxadiazon) nmol/g wet weight, respectively. Fluazifop-butyl had no effect on liver porphyrin metabolism. Fomesafen, oxyfluorfen and oxadiazon increased the cellular porphyrin content of rat hepatocytes after 24 h of incubation (control, 3.2 pmol/mg protein, fomesafen, oxyfluorfen and oxadiazon at 0.125 mM concentration 51.5, 54.3 and 44.0 pmol/mg protein, respectively). The porphyrin content of HepG2 cells increased from 1.6 to 18.2, 10.6 and 9.2 pmol/mg protein after 24 h incubation with the three herbicides. Fluazifop-butyl increased hepatic cytochrome P450 levels and ethoxy- and pentoxyresorufin O-dealkylase (EROD and PROD) activity, oxyfluorfen increased PROD activity. Peroxisomal palmitoyl CoA oxidation increased after fomesafen and fluazifop treatment to about 500% of control values both in mouse liver and rat hepatocytes. Both rat hepatocytes and HepG2 cells can be used as a test system for the porphyrogenic potential of photobleaching herbicides. PMID:8517781

  1. Humanizing π-class glutathione S-transferase regulation in a mouse model alters liver toxicity in response to acetaminophen overdose.

    Directory of Open Access Journals (Sweden)

    Matthew P Vaughn

    Full Text Available BACKGROUND: Glutathione S-transferases (GSTs metabolize drugs and xenobiotics. Yet despite high protein sequence homology, expression of π-class GSTs, the most abundant of the enzymes, varies significantly between species. In mouse liver, hepatocytes exhibit high mGstp expression, while in human liver, hepatocytes contain little or no hGSTP1 mRNA or hGSTP1 protein. π-class GSTs are known to be critical determinants of liver responses to drugs and toxins: when treated with high doses of acetaminophen, mGstp1/2+/+ mice suffer marked liver damage, while mGstp1/2-/- mice escape liver injury. METHODOLOGY/PRINCIPAL FINDINGS: To more faithfully model the contribution of π-class GSTs to human liver toxicology, we introduced hGSTP1, with its exons, introns, and flanking sequences, into the germline of mice carrying disrupted mGstp genes. In the resultant hGSTP1+mGstp1/2-/- strain, π-class GSTs were regulated differently than in wild-type mice. In the liver, enzyme expression was restricted to bile duct cells, Kupffer cells, macrophages, and endothelial cells, reminiscent of human liver, while in the prostate, enzyme production was limited to basal epithelial cells, reminiscent of human prostate. The human patterns of hGSTP1 transgene regulation were accompanied by human patterns of DNA methylation, with bisulfite genomic sequencing revealing establishment of an unmethylated CpG island sequence encompassing the gene promoter. Unlike wild-type or mGstp1/2-/- mice, when hGSTP1+mGstp1/2-/- mice were overdosed with acetaminophen, liver tissues showed limited centrilobular necrosis, suggesting that π-class GSTs may be critical determinants of toxin-induced hepatocyte injury even when not expressed by hepatocytes. CONCLUSIONS: By recapitulating human π-class GST expression, hGSTP1+mGstp1/2-/- mice may better model human drug and xenobiotic toxicology.

  2. Up-regulation of nucleotide excision repair in mouse lung and liver following chronic exposure to aflatoxin B{sub 1} and its dependence on p53 genotype

    Energy Technology Data Exchange (ETDEWEB)

    Mulder, Jeanne E. [Pharmacology and Toxicology Graduate Program, Department of Biomedical and Molecular Sciences, Queen' s University Kingston, Ontario K7L 3N6 (Canada); Bondy, Genevieve S.; Mehta, Rekha [Toxicology Research Division, 2202D, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario K1A 0K9 (Canada); Massey, Thomas E., E-mail: masseyt@queensu.ca [Pharmacology and Toxicology Graduate Program, Department of Biomedical and Molecular Sciences, Queen' s University Kingston, Ontario K7L 3N6 (Canada)

    2014-03-01

    Aflatoxin B{sub 1} (AFB{sub 1}) is biotransformed in vivo into an epoxide metabolite that forms DNA adducts that may induce cancer if not repaired. p53 is a tumor suppressor gene implicated in the regulation of global nucleotide excision repair (NER). Male heterozygous p53 knockout (B6.129-Trp53{sup tm1Brd}N5, Taconic) and wild-type mice were exposed to 0, 0.2 or 1.0 ppm AFB{sub 1} for 26 weeks. NER activity was assessed with an in vitro assay, using AFB{sub 1}-epoxide adducted plasmid DNA as a substrate. For wild-type mice, repair of AFB{sub 1}–N7-Gua adducts was 124% and 96% greater in lung extracts from mice exposed to 0.2 ppm and 1.0 ppm AFB{sub 1} respectively, and 224% greater in liver extracts from mice exposed to 0.2 ppm AFB{sub 1} (p < 0.05). In heterozygous p53 knockout mice, repair of AFB{sub 1}–N7-Gua was only 45% greater in lung extracts from mice exposed to 0.2 ppm AFB{sub 1} (p < 0.05), and no effect was observed in lung extracts from mice treated with 1.0 ppm AFB{sub 1} or in liver extracts from mice treated with either AFB{sub 1} concentration. p53 genotype did not affect basal levels of repair. AFB{sub 1} exposure did not alter repair of AFB{sub 1}-derived formamidopyrimidine adducts in lung or liver extracts of either mouse genotype nor did it affect XPA or XPB protein levels. In summary, chronic exposure to AFB{sub 1} increased NER activity in wild-type mice, and this response was diminished in heterozygous p53 knockout mice, indicating that loss of one allele of p53 limits the ability of NER to be up-regulated in response to DNA damage. - Highlights: • Mice are chronically exposed to low doses of the mycotoxin aflatoxin B{sub 1} (AFB{sub 1}). • The effects of AFB{sub 1} and p53 status on nucleotide excision repair are investigated. • AFB{sub 1} increases nucleotide excision repair in wild type mouse lung and liver. • This increase is attenuated in p53 heterozygous mouse lung and liver. • Results portray the role of p53 in

  3. Up-regulation of nucleotide excision repair in mouse lung and liver following chronic exposure to aflatoxin B1 and its dependence on p53 genotype

    International Nuclear Information System (INIS)

    Aflatoxin B1 (AFB1) is biotransformed in vivo into an epoxide metabolite that forms DNA adducts that may induce cancer if not repaired. p53 is a tumor suppressor gene implicated in the regulation of global nucleotide excision repair (NER). Male heterozygous p53 knockout (B6.129-Trp53tm1BrdN5, Taconic) and wild-type mice were exposed to 0, 0.2 or 1.0 ppm AFB1 for 26 weeks. NER activity was assessed with an in vitro assay, using AFB1-epoxide adducted plasmid DNA as a substrate. For wild-type mice, repair of AFB1–N7-Gua adducts was 124% and 96% greater in lung extracts from mice exposed to 0.2 ppm and 1.0 ppm AFB1 respectively, and 224% greater in liver extracts from mice exposed to 0.2 ppm AFB1 (p < 0.05). In heterozygous p53 knockout mice, repair of AFB1–N7-Gua was only 45% greater in lung extracts from mice exposed to 0.2 ppm AFB1 (p < 0.05), and no effect was observed in lung extracts from mice treated with 1.0 ppm AFB1 or in liver extracts from mice treated with either AFB1 concentration. p53 genotype did not affect basal levels of repair. AFB1 exposure did not alter repair of AFB1-derived formamidopyrimidine adducts in lung or liver extracts of either mouse genotype nor did it affect XPA or XPB protein levels. In summary, chronic exposure to AFB1 increased NER activity in wild-type mice, and this response was diminished in heterozygous p53 knockout mice, indicating that loss of one allele of p53 limits the ability of NER to be up-regulated in response to DNA damage. - Highlights: • Mice are chronically exposed to low doses of the mycotoxin aflatoxin B1 (AFB1). • The effects of AFB1 and p53 status on nucleotide excision repair are investigated. • AFB1 increases nucleotide excision repair in wild type mouse lung and liver. • This increase is attenuated in p53 heterozygous mouse lung and liver. • Results portray the role of p53 in nucleotide excision repair after AFB1 exposure

  4. Lack of effect of furfural on unscheduled DNA synthesis in the in vivo rat and mouse hepatocyte DNA repair assays and in precision-cut human liver slices.

    Science.gov (United States)

    Lake, B G; Edwards, A J; Price, R J; Phillips, B J; Renwick, A B; Beamand, J A; Adams, T B

    2001-10-01

    The ability of furfural to induce unscheduled DNA synthesis (UDS) in hepatocytes of male and female B6C3F(1) mice and male F344 rats after in vivo administration and in vitro in precision-cut human liver slices has been studied. Preliminary toxicity studies established the maximum tolerated dose (MTD) of furfural to be 320 and 50 mg/kg in the mouse and rat, respectively. Furfural was dosed by gavage at levels of 0 (control), 50, 175 and 320 mg/kg to male and female mice and 0, 5, 16.7 and 50 mg/kg to male rats. Hepatocytes were isolated by liver perfusion either 2-4 h or 12-16 h after treatment, cultured in medium containing [3H]thymidine for 4 h and assessed for UDS by grain counting of autoradiographs. Furfural treatment did not produce any statistically significant increase or any dose-related effects on UDS in mouse and rat hepatocytes either 2-4 h or 12-16 h after dosing. In contrast, UDS was markedly induced in mice and rats 2-4 h after treatment with 20 mg/kg dimethylnitrosamine and 12-16 h after treatment of mice and rats with 200 mg/kg o-aminoazotoluene and 50 mg/kg 2-acetylaminofluorene (2-AAF), respectively. Precision-cut human liver slices from four donors were cultured for 24 h in medium containing [3H]thymidine and 0-10 mM furfural. Small increases in the net grain count (i.e. nuclear grain count less mean cytoplasmic grain count) observed with 2-10 mM furfural were not due to any increase in the nuclear grain count. Rather, it was the result of concentration-dependent decreases in the mean cytoplasmic grain counts and to a lesser extent in nuclear grain counts, due to furfural-induced cytotoxicity. In contrast, marked increases in UDS (both net grain and nuclear grain counts) were observed in human liver slices treated with 0.02 and 0.05 mM 2-AAF, 0.002 and 0.02 mM aflatoxin B(1) and 0.005 and 0.05 mM 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. This study demonstrates that furfural does not induce UDS in the hepatocytes of male and female B6C3F

  5. 匹格列酮抑制小鼠肝切除术后肝脏再生%Pioglitazone inhibits mouse liver regeneration induced by partial hepatectomy

    Institute of Scientific and Technical Information of China (English)

    程张军; 杨平华; 周家华; 沈锋

    2012-01-01

    目的:探讨匹格列酮在小鼠肝切除术后肝脏再生中的作用.方法:对C57BL/6J小鼠实施2/3肝切除,建立小鼠肝再生模型.实验组小鼠按体重给予匹格列酮20 mg· kg-1·d-1口服,对照组给予安慰剂口服,在术后不同时间点收集小鼠残余肝脏和血清,计算肝脏体重比;监测术后肝功能和血糖变化;H&E染色观察肝脏形态学变化,免疫组化染色观察肝细胞增殖情况.结果:匹格列酮20 mg· kg-1·d-1对小鼠术后肝功能和血糖无明显影响.与对照组相比,匹格列酮组小鼠术后肝脏生长缓慢,肝细胞增殖受到抑制(P<0.05).结论:匹格列酮抑制小鼠肝切除术后肝脏再生.%AIM: To investigate the effects of pioglitazone on mouse liver regeneration induced by partial hepatectomy. METHODS: 2/3 partial hepatectomy was performed in C57BL/6J mice. The experimental group mice were treated with pioglitazone (20 mg · kg-1 · d-1 ) by oral ga-vage. The control group mice were treated with vehicle. Mouse serum and liver tissue harvest were performed at serials time point post operation. The liver/body weight ratio were calculated; liver histology was assessed by H&.E staining; serum transaminase and glucose were determined by biochemistry assay. Hepatocellular proliferation was eveluated by IHC staining of Ki67 and PH3. RESULTS: There were no hepatic toxic and. side effects caused by pioglitazone under the given dosage. Pioglitazone didn't impair the metabolism of serum glucose. The liver growth and hepatocyte proliferation were delayed and inhibited in pioglitazone treated mice in comparison to that in control mice(P-<0. 05). CONCLUSION: Pioglitazone inhibits liver regeneration following partial hepatectomy in mice.

  6. Effective treatment of steatosis and steatohepatitis by fibroblast growth factor 1 in mouse models of nonalcoholic fatty liver disease

    NARCIS (Netherlands)

    Liu, Weilin; Struik, Dicky; Nies, Vera J M; Jurdzinski, Angelika; Harkema, Liesbeth; de Bruin, Alain; Verkade, Henkjan J; Downes, Michael; Evans, Ronald M; van Zutphen, Tim; Jonker, Johan W

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder and is strongly associated with obesity and type 2 diabetes. Currently, there is no approved pharmacological treatment for this disease, but improvement of insulin resistance using peroxisome proliferator-activated re

  7. Epigenetic effects of the continuous exposure to peroxisome proliferator WY-14,643 in mouse liver are dependent upon peroxisome proliferator activated receptor α

    International Nuclear Information System (INIS)

    Peroxisome proliferators are potent rodent liver carcinogens that act via a non-genotoxic mechanism. The mode of action of these agents in rodent liver includes increased cell proliferation, decreased apoptosis, secondary oxidative stress and other events; however, it is not well understood how peroxisome proliferators are triggering the plethora of the molecular signals leading to cancer. Epigenetic changes have been implicated in the mechanism of liver carcinogenesis by a number of environmental agents. Short-term treatment with peroxisome proliferators and other non-genotoxic carcinogens leads to global and locus-specific DNA hypomethylation in mouse liver, events that were suggested to correlate with a burst of cell proliferation. In the current study, we investigated the effects of long-term exposure to a model peroxisome proliferator WY-14,643 on DNA and histone methylation. Male SV129 mice were fed a control or WY-14,643-containing (1000 ppm) diet for one week, five weeks or five months. Treatment with WY-14,643 led to progressive global hypomethylation of liver DNA as determined by an HpaII-based cytosine extension assay with the maximum effect reaching over 200% at five months. Likewise, trimethylation of histone H4 lysine 20 and H3 lysine 9 was significantly decreased at all time points. The majority of cytosine methylation in mammals resides in repetitive DNA sequences. In view of this, we measured the effect of WY-14,643 on the methylation status of major and minor satellites, as well as in IAP, LINE1 and LINE2 elements in liver DNA. Exposure to WY-14,643 resulted in a gradual loss of cytosine methylation in major and minor satellites, IAP, LINE1 and LINE2 elements. The epigenetic changes correlated with the temporal effects of WY-14,643 on cell proliferation rates in liver, but no sustained effect on (c-Myc) promoter methylation was observed. Finally, WY-14,643 had no effect on DNA and histone methylation status in Pparα-null mice at any of the time

  8. β-Adrenergic Agonist and Antagonist Regulation of Autophagy in HepG2 Cells, Primary Mouse Hepatocytes, and Mouse Liver

    OpenAIRE

    Farah, Benjamin L.; Sinha, Rohit A.; Wu, Yajun; Singh, Brijesh K; Zhou, Jin; Bay, Boon-Huat; Yen, Paul M

    2014-01-01

    Autophagy recently has been shown to be involved in normal hepatic function and in pathological conditions such as non-alcoholic fatty liver disease. Adrenergic signalling also is an important regulator of hepatic metabolism and function. However, currently little is known about the potential role of adrenergic signaling on hepatic autophagy, and whether the β-adrenergic receptor itself may be a key regulator of autophagy. To address these issues, we investigated the actions of the β2-adrener...

  9. Thyroid bud morphogenesis requires CDC42- and SHROOM3-dependent apical constriction

    Science.gov (United States)

    Loebel, David A. F.; Plageman, Timothy F.; Tang, Theresa L.; Jones, Vanessa J.; Muccioli, Maria; Tam, Patrick P. L.

    2016-01-01

    ABSTRACT Early development of the gut endoderm and its subsequent remodeling for the formation of organ buds are accompanied by changes to epithelial cell shape and polarity. Members of the Rho-related family of small GTPases and their interacting proteins play multiple roles in regulating epithelial morphogenesis. In this study we examined the role of Cdc42 in foregut development and organ bud formation. Ablation of Cdc42 in post-gastrulation mouse embryos resulted in a loss of apical-basal cell polarity and columnar epithelial morphology in the ventral pharyngeal endoderm, in conjunction with a loss of apical localization of the known CDC42 effector protein PARD6B. Cell viability but not proliferation in the foregut endoderm was impaired. Outgrowth of the liver, lung and thyroid buds was severely curtailed in Cdc42-deficient embryos. In particular, the thyroid bud epithelium did not display the apical constriction that normally occurs concurrently with the outgrowth of the bud into the underlying mesenchyme. SHROOM3, a protein that interacts with Rho GTPases and promotes apical constriction, was strongly expressed in the thyroid bud and its sub-cellular localization was disrupted in Cdc42-deficient embryos. In Shroom3 gene trap mutant embryos, the thyroid bud epithelium showed no apical constriction, while the bud continued to grow and protruded into the foregut lumen. Our findings indicate that Cdc42 is required for epithelial polarity and organization in the endoderm and for apical constriction in the thyroid bud. It is possible that the function of CDC42 is partly mediated by SHROOM3. PMID:26772200

  10. Metabolomic profiling of a modified alcohol liquid diet model for liver injury in the mouse uncovers new markers of disease

    International Nuclear Information System (INIS)

    Metabolomic evaluation of urine and liver was conducted to assess the biochemical changes that occur as a result of alcohol-induced liver injury. Male C57BL/6J mice were fed an isocaloric control- or alcohol-containing liquid diet with 35% of calories from corn oil, 18% protein and 47% carbohydrate/alcohol for up to 36 days ad libitum. Alcohol treatment was initiated at 7 g/kg/day and gradually reached a final dose of 21 g/kg/day. Urine samples were collected at 22, 30 and 36 days and, in additional treatment groups, liver and serum samples were harvested at 28 days. Steatohepatitis was induced in the alcohol-fed group since a 5-fold increase in serum alanine aminotransferase activity, a 6-fold increase in liver injury score (necrosis, inflammation and steatosis) and an increase in lipid peroxidation in liver were observed. Liver and urine samples were analyzed by nuclear magnetic resonance spectroscopy and electrospray infusion/Fourier transform ion cyclotron resonance-mass spectrometry. In livers of alcohol-treated mice the following changes were noted. Hypoxia and glycolysis were activated as evidenced by elevated levels of alanine and lactate. Tyrosine, which is required for L-DOPA and dopamine as well as thyroid hormones, was elevated possibly reflecting alterations of basal metabolism by alcohol. A 4-fold increase in the prostacyclin inhibitor 7,10,13,16-docosatetraenoic acid, a molecule important for regulation of platelet formation and blood clotting, may explain why chronic drinking causes serious bleeding problems. Metabolomic analysis of the urine revealed that alcohol treatment leads to decreased excretion of taurine, a metabolite of glutathione, and an increase in lactate, n-acetylglutamine and n-acetylglycine. Changes in the latter two metabolites suggest an inhibition of the kidney enzyme aminoacylase I and may be useful as markers for alcohol consumption

  11. Damage to the protein synthesizing apparatus in mouse liver in vivo by magnetocytolysis in the presence of hepatospecific magnetic nanoparticles

    International Nuclear Information System (INIS)

    In the previous work, we incubated THP1 cells and macrophages in vitro with unsubstituted ferrofluid (FF) and placed them in an alternating magnetic field. This resulted in the destruction of the cells (magnetocytolysis). Cell-specific magnetocytolysis in vitro was achieved in MCF7 human breast cancer cells incubated with tamoxifen-bound FF and treated in an alternating magnetic field. In this work, in a search of a model for magnetocytolysis in vivo, we injected mice intravenously with hepatospecific magnetic nanoparticles (HS-USPIO) and subjected the mice to magnetocytolysis in an alternating magnetic field (1 h at 200 A/m). This treatment resulted in a prolongation of blood coagulation time due to depletion of protein coagulation factors that are synthesized exclusively in the liver. The attendant derangement of liver protein synthesis was characterized in cell-free preparations by an inhibition of the endogenously coded protein synthesis coupled with an enhancement of phenylalanine polymerization directed by polyuridylic acid (Poly U). This indication of polyribosome dispersion was confirmed by electron microscopy. Magnetocytolysis did not cause liver necrosis and was neither accompanied by any increase in body or liver temperature, nor damage to any other tissue. The effects of magnetocytolysis were proportional to the amount of injected HS-USPIO, field strength and its application time. Magnetocytolysis did not occur when non-magnetic PolyGalactoseGold particles were substituted for HS-USPIO. PolyGalactoseGold particles were employed to measure asialoglycoprotein receptor (ASGP-R) activity in liver using neutron activation analysis. Injection of PolyGalactoseGold particles to mice, pre-treated by HS-USPIO driven magnetocytolysis, revealed a transient diminution of hepatic ASGP-R. Liver damage from magnetocytolysis was followed by liver regeneration, manifested by the appearance of thymidylate kinase activity, diminution of ASGP-R and return to normal blood

  12. Excess iron modulates endoplasmic reticulum stress-associated pathways in a mouse model of alcohol and high-fat diet-induced liver injury.

    Science.gov (United States)

    Tan, Terrence C H; Crawford, Darrell H G; Jaskowski, Lesley A; Subramaniam, V Nathan; Clouston, Andrew D; Crane, Denis I; Bridle, Kim R; Anderson, Gregory J; Fletcher, Linda M

    2013-12-01

    Endoplasmic reticulum (ER) stress is an important pathogenic mechanism for alcoholic (ALD) and nonalcoholic fatty liver disease (NAFLD). Iron overload is an important cofactor for liver injury in ALD and NAFLD, but its role in ER stress and associated stress signaling pathways is unclear. To investigate this, we developed a murine model of combined liver injury by co-feeding the mildly iron overloaded, the hemochromatosis gene-null (Hfe(-/)) mouse ad libitum with ethanol and a high-fat diet (HFD) for 8 weeks. This co-feeding led to profound steatohepatitis, significant fibrosis, and increased apoptosis in the Hfe(-/-) mice as compared with wild-type (WT) controls. Iron overload also led to induction of unfolded protein response (XBP1 splicing, activation of IRE-1α and PERK, as well as sequestration of GRP78) and ER stress (increased CHOP protein expression) following HFD and ethanol. This is associated with a muted autophagic response including reduced LC3-I expression and impaired conjugation to LC3-II, reduced beclin-1 protein, and failure of induction of autophagy-related proteins (Atg) 3, 5, 7, and 12. As a result of the impaired autophagy, levels of the sequestosome protein p62 were most elevated in the Hfe(-/-) group co-fed ethanol and HFD. Iron overload reduces the activation of adenosine monophosphate protein kinase associated with ethanol and HFD feeding. We conclude that iron toxicity may modulate hepatic stress signaling pathways by impairing adaptive cellular compensatory mechanisms in alcohol- and obesity-induced liver injury. PMID:24126888

  13. Remarkable heterogeneity displayed by oval cells in rat and mouse models of stem cell-mediated liver regeneration

    DEFF Research Database (Denmark)

    Jelnes, Peter; Santoni-Rugiu, Eric; Rasmussen, Morten;

    2007-01-01

    The experimental protocols used in the investigation of stem cell-mediated liver regeneration in rodents are characterized by activation of the hepatic stem cell compartment in the canals of Hering followed by transit amplification of oval cells and their subsequent differentiation along hepatic...... the molecular phenotypes of oval cells in several of the most commonly used protocols of stem cell-mediated liver regeneration-namely, treatment with 2-acetylaminofluorene and partial (70%) hepatectomy (AAF/PHx); a choline-deficient, ethionine-supplemented (CDE) diet; a 3,5-diethoxycarbonyl-1...... results delineate remarkable phenotypic discrepancies exhibited by oval cells in stem cell-mediated liver regeneration between rats and mice and underline the importance of careful extrapolation between individual species....

  14. Targeted gene therapy and in vivo bioluminescent imaging for monitoring postsurgical recurrence and metastasis in mouse models of liver cancer.

    Science.gov (United States)

    He, Q; Yao, C L; Li, L; Xin, Z; Jing, Z K; Li, L X

    2016-01-01

    We investigated the effects of combined targeted gene therapy on recurrence and metastasis after liver cancer resection in nude mice. Twenty BALB/C mice were randomly divided into control and treatment groups with 10 mice in each group and a male/female ratio of 1:1. Luciferase gene-labeled human primary hepatic carcinoma cell line MHCC97-H was then used to prepare a carcinoma model. An optical in vivo imaging technique (OIIT) was used 10 days later to detect the distribution of tumor cells, followed by partial liver resection and gene therapy. In the treatment group, 100 mL phosphate-buffered saline (PBS) containing 1 x 1012 rAAV/AFP/IL-24 gene viral vectors was injected into liver sections and peritumoral posterior peritoneal tissues; in the control group, the same amount of PBS containing 1 x 1012 empty viral vectors was injected at the same sites. OIIT was then used to detect the in vivo tumor metastasis 21 days later. Luciferase gene-labeled human primary hepatic carcinoma cell line MHCC97-H successfully infected 20 nude mice, and OIIT showed that the two groups exhibited metastasis after local tumor resection, but there were more tumor cells in the control group (P AFP/IL-24 gene therapy can inhibit recurrence after liver cancer resection. PMID:27525931

  15. Evaluation of an anti-tumor necrosis factor therapeutic in a mouse model of Niemann-Pick C liver disease.

    Directory of Open Access Journals (Sweden)

    Melanie Vincent

    Full Text Available BACKGROUND: Niemann-Pick type C (NPC disease is a lysosomal storage disease characterized by the accumulation of cholesterol and glycosphingolipids. The majority of NPC patients die in their teen years due to progressive neurodegeneration; however, half of NPC patients also suffer from cholestasis, prolonged jaundice, and hepatosplenomegaly. We previously showed that a key mediator of NPC liver disease is tumor necrosis factor (TNF α, which is involved in both proinflammatory and apoptotic signaling cascades. In this study, we tested the hypothesis that blocking TNF action with an anti-TNF monoclonal antibody (CNTO5048 will slow the progression of NPC liver disease. METHODOLOGY/PRINCIPAL FINDINGS: Treatment of wild-type C57BL/6 mice with NPC1-specific antisense oligonucleotides led to knockdown of NPC1 protein expression in the liver. This caused classical symptoms of NPC liver disease, including hepatic cholesterol accumulation, hepatomegaly, elevated serum liver enzymes, and lipid laden macrophage accumulation. In addition, there was a significant increase in the number of apoptotic cells and a proliferation of stellate cells. Concurrent treatment of NPC1 knockdown mice with anti-TNF had no effect on the primary lipid storage or accumulation of lipid-laden macrophages. However, anti-TNF treatment slightly blunted the increase in hepatic apoptosis and stellate cell activation that was seen with NPC1 knockdown. CONCLUSIONS/SIGNIFICANCE: Current therapeutic options for NPC disease are limited. Our results provide proof of principle that pharmacologically blocking the TNF-α inflammatory cascade can slightly reduce certain markers of NPC disease. Small molecule inhibitors of TNF that penetrate tissues and cross the blood-brain barrier may prove even more beneficial.

  16. MicroRNA-674-5p/5-LO axis involved in autoimmune reaction of Concanavalin A-induced acute mouse liver injury.

    Science.gov (United States)

    Su, Kunkai; Wang, Qi; Qi, Luoyang; Hua, Dasong; Tao, Jingjing; Mangan, Connor J; Lou, Yijia; Li, Lanjuan

    2016-09-01

    Autoimmune hepatitis is characterized, in part, by the pathways involving cysteinyl-leukotriene metabolites of arachidonic acid, the dynamics of which remain unclear. Here, we explored post-transcriptional regulation in the 5-lipoxygenase (5-LO) pathway of arachidonic acid in a Concanavalin A (Con A) induced mouse model. We found that Con A administration lead to 5-LO overexpression and cysteinyl-leukotriene release in early hepatic injury, which was attenuated by cyclosporin A pretreatment. Subsequent microarray and qRT-PCR analysis further showed that microRNA-674-5p (miR-674-5p) displayed a significant decrease in expression in Con A-damaged liver. Noting that miR-674-5p harbors a potential binding region for 5-LO, we further transfected hepatic cell lines with overexpressing miR-674-5p mimic and discovered a negative regulating effect of miR-674-5p on 5-LO expression in the presence of IL-6 or TNF-α. These findings suggest that miR-674-5p might be a negative regulator in 5-LO mediated autoimmune liver injury, representing a compelling avenue towards future therapeutic interventions. PMID:27313091

  17. Developmental methylation of the coding region of c-fos occurs perinatally, stepwise and sequentially in the liver of laboratory mouse.

    Science.gov (United States)

    Sachan, Manisha; Raman, Rajiva

    2008-06-15

    We have studied the dynamics of de novo DNA methylation of 16 contiguous CpGs in the non-CpG island-coding region of the proto-oncogene c-fos during mouse development by Na-bisulfite sequencing. Methylation commences from 16.5 dpc and occurs in stepwise-manner. In liver 7 sites are methylated between 16.5 dpc and day 5 after birth, but all the sites are completely methylated on 20 dpp and remain so in the adult liver. The present study provides evidence that (1) pattern of methylation of c-fos is distinct from those DNA sequences which methylate pre- and post-implantation, both in terms of the timing and spreading, and (2) spacing of CpGs is an important factor in determining the course of methylation. We suggest that there could be other isoforms of Dnmtases for the c-fos like embryonic genes, not only because they methylate later in development but also because of the difference in kinetics of the reaction, and that the nucleation of certain methylated sites facilitate methylation of neighbouring sites and their maintenance in subsequent cell generations. PMID:18442886

  18. In vitro metabolism of l-corydalmine, a potent analgesic drug, in human, cynomolgus monkey, beagle dog, rat and mouse liver microsomes.

    Science.gov (United States)

    Tang, Xiange; Di, Xinyu; Zhong, Zeyu; Xie, Qiushi; Chen, Yang; Wang, Fan; Ling, Zhaoli; Xu, Ping; Zhao, Kaijing; Wang, Zhongjian; Liu, Li; Liu, Xiaodong

    2016-09-01

    l-Corydalmine (l-CDL) was under development as an oral analgesic agent, exhibiting potent analgesic activity in preclinical models. The objective of this study was to compare metabolic profiles of l-CDL in liver microsomes from mouse, rat, monkey, dog and human. Six metabolites (M1-M6) were identified using LC-Q/TOF in liver microsomes from the five species. The metabolism of l-CDL included O-demethylation (M1-3) and hydroxylation (M4-6). The desmethyl metabolites were the major ones among the five species, which accounted for more than 84%. Data from chemical inhibition in human liver microsomes (HLM) and human recombinant CYP450s demonstrated that CYP2D6 exhibited strong catalytic activity towards M1 and M2 formations, while CYP2C9 and CYP2C19 also catalyzed M2 formation. Formations of M3 and hydroxyl metabolites (M4 and M5) were mainly catalyzed by CYP3A4. Further studies showed that M1 and M2 were main metabolites in HLM. The kinetics of M1 and M2 formations in HLM and recombinant CYP450s were also investigated. The results showed that M1 and M2 formations in HLM and recombinant CYP2D6 characterized biphasic kinetics, whereas sigmoid Vmax model was better used to fit M2 formation by recombinant CYP2C9 and CYP2C19. The contributions of CYP2D6 to M1 and M2 formations in HLM were estimated to be 75.3% and 50.7%, respectively. However, the contributions of CYP2C9 and CYP2C19 to M2 formation were only 5.0% and 4.1%, respectively. All these data indicated that M1 and M2 were main metabolites in HLM, and CYP2D6 was the primary enzyme responsible for their formations. PMID:27239758

  19. Rhythmic expression of miR-27b-3p targets the clock gene Bmal1 at the posttranscriptional level in the mouse liver.

    Science.gov (United States)

    Zhang, Wenxiang; Wang, Peng; Chen, Siyu; Zhang, Zhao; Liang, Tingming; Liu, Chang

    2016-06-01

    Circadian clocks orchestrate daily oscillations in mammalian behaviors, physiology, and gene expression. MicroRNAs (miRNAs) play a crucial role in fine-tuning of the circadian system. However, little is known about the direct regulation of the clock genes by specific miRNAs. In this study, we found that miR-27b-3p exhibits rhythmic expression in the metabolic tissues of the mice subjected to constant darkness. MiR-27b-3p's expression is induced in livers of unfed and ob/ob mice. In addition, the oscillation phases of miR-27b-3p can be reversed by restricted feeding, suggesting a role of peripheral clock in regulating its rhythmicity. Bioinformatics analysis indicated that aryl hydrocarbon receptor nuclear translocator-like (also known as Bmal1) may be a direct target of miR-27b-3p. Luciferase reporter assay showed that miR-27b-3p suppressed Bmal1 3' UTR activity in a dose-dependent manner, and mutagenesis of their binding site abolished this suppression. Furthermore, overexpression of miR-27b-3p dose-dependently reduced the protein expression levels of BMAL1 and impaired the endogenous BMAL1 and gluconeogenic protein rhythmicity. Collectively, our results suggest that miR-27b-3p plays an important role in the posttranscriptional regulation of BMAL1 protein in the liver. MiR-27b-3p may serve as a novel node to integrate the circadian clock and energy metabolism.-Zhang, W., Wang, P., Chen, S., Zhang, Z., Liang, T., Liu, C. Rhythmic expression of miR-27b-3p targets the clock gene Bmal1 at the posttranscriptional level in the mouse liver. PMID:26919869

  20. Glutathione transferases P1/P2 regulate the timing of signaling pathway activations and cell cycle progression during mouse liver regeneration.

    Science.gov (United States)

    Pajaud, J; Ribault, C; Ben Mosbah, I; Rauch, C; Henderson, C; Bellaud, P; Aninat, C; Loyer, P; Morel, F; Corlu, A

    2015-01-01

    Glutathione transferases (GST) are phase II enzymes catalyzing the detoxification of endogenous noxious compounds and xenobiotics. They also regulate phosphorylation activities of MAPKinases in a catalytic-independent manner. Previous studies have demonstrated the regulation of JNK-dependent pathway by GSTP1/2. Considering the crucial role of JNK in the early steps of the hepatocyte cell cycle, we sought to determine whether GSTP1/2 were essential for hepatocyte proliferation following partial hepatectomy (PH). Using a conventional double knockout mouse model for the Gstp1 and Gstp2 genes, we found that the lack of GSTP1/P2 reduced the rate of DNA replication and mitotic index during the first wave of hepatocyte proliferation. The lowered proliferation was associated with the decrease in TNFalpha and IL-6 plasma concentrations, reduced hepatic HGF expression and delayed and/or altered activation of STAT3, JNK and ERK1/2 signaling pathways. In addition, the expression and/or activation of cell cycle regulators such as Cyclin D1, CDK4, E2F1 and MCM7 was postponed demonstrating that the absence of GSTP1/2 delayed the entry into and progression through the G1 phase of the cell cycle and impaired the synchrony of proliferation in hepatocytes following PH. Furthermore, while JNK and its downstream targets c-Jun and ATF2 were activated during the early steps of the liver regeneration in wild-type animals, the constitutively active JNK found in the quiescent liver of Gstp1/2 knockout mice underwent a decrease in its activity after PH. Transient induction of antioxidant enzymes and nitric oxide synthase were also delayed or repressed during the regenerative response. Altogether our results demonstrate that GSTP1/2 are a critical regulators of hepatocyte proliferation in the initial phases of liver regeneration. PMID:25590808

  1. Inhibition of bile salt transport by drugs associated with liver injury in primary hepatocytes from human, monkey, dog, rat, and mouse.

    Science.gov (United States)

    Zhang, Jie; He, Kan; Cai, Lining; Chen, Yu-Chuan; Yang, Yifan; Shi, Qin; Woolf, Thomas F; Ge, Weigong; Guo, Lei; Borlak, Jürgen; Tong, Weida

    2016-08-01

    Interference of bile salt transport is one of the underlying mechanisms for drug-induced liver injury (DILI). We developed a novel bile salt transport activity assay involving in situ biosynthesis of bile salts from their precursors in primary human, monkey, dog, rat, and mouse hepatocytes in suspension as well as LC-MS/MS determination of extracellular bile salts transported out of hepatocytes. Glycine- and taurine-conjugated bile acids were rapidly formed in hepatocytes and effectively transported into the extracellular medium. The bile salt formation and transport activities were time‒ and bile-acid-concentration‒dependent in primary human hepatocytes. The transport activity was inhibited by the bile salt export pump (BSEP) inhibitors ketoconazole, saquinavir, cyclosporine, and troglitazone. The assay was used to test 86 drugs for their potential to inhibit bile salt transport activity in human hepatocytes, which included 35 drugs associated with severe DILI (sDILI) and 51 with non-severe DILI (non-sDILI). Approximately 60% of the sDILI drugs showed potent inhibition (with IC50 values <50 μM), but only about 20% of the non-sDILI drugs showed this strength of inhibition in primary human hepatocytes and these drugs are associated only with cholestatic and mixed hepatocellular cholestatic (mixed) injuries. The sDILI drugs, which did not show substantial inhibition of bile salt transport activity, are likely to be associated with immune-mediated liver injury. Twenty-four drugs were also tested in monkey, dog, rat and mouse hepatocytes. Species differences in potency were observed with mouse being less sensitive than other species to inhibition of bile salt transport. In summary, a novel assay has been developed using hepatocytes in suspension from human and animal species that can be used to assess the potential for drugs and/or drug-derived metabolites to inhibit bile salt transport and/or formation activity. Drugs causing sDILI, except those by immune

  2. An energy requirement for the degradation of intravenously injected 125I-labelled albumin in mouse liver and kidney slices

    International Nuclear Information System (INIS)

    Liver and kidney slices prepared 30 min after intravenous injections of formaldehyde-treated 125I-labelled bovine serum albumin into mice degrade approx. 25 to 40% of the protein to a trichloroacetic acid-soluble form during 60 min incubation at 370C. The presence of bicarbonate in Krebs-Ringer phosphate medium inhibited intracellular proteolysis, and similar results were obtained at pH5 or pH7 in kidney or liver slices. Cellular integrity was required to obtain substantial rates of proteolysis. This intralysosomal intracellular degradation of an exogenous protein was partially inhibited by inhibitors of oxidative ATP formation, such as cyanide, azide, 2,4-dinitrophenol and absence of oxygen. Arsenite and iodoacetamide were also effective inhibitors, but the effects of fluoride were variable. These results suggest that an energy requirement exists for intralysosomal proteolysis in intact cells and are consistent with the hypothesis that energy may be required to maintain intralysosomal acidity. (author)

  3. Sex-dependent compensated oxidative stress in the mouse liver upon deletion of catechol O-methyltransferase.

    Science.gov (United States)

    Tenorio-Laranga, Jofre; Männistö, Pekka T; Karayiorgou, Maria; Gogos, Joseph A; García-Horsman, J Arturo

    2009-05-01

    Catechol-O-methyl transferase (COMT) methylates catechols, such as L-dopa and dopamine, and COMT deficient mice show dramatic shifts in the metabolite levels of catechols. Increase in catechol metabolite levels can, in principle, lead to oxidative stress but no indices of oxidative stress have been reported in COMT-knockout (KO) mice [Forsberg MM, Juvonen RO, Helisalmi P, Leppanen J, Gogos JA, Karayiorgou M, et al. Lack of increased oxidative stress in catechol-O-methyltransferase (COMT)-deficient mice. Naunyn Schmiedebergs Arch Pharmacol 2004;370:279-89.]. Here we perform a proteomic based analysis of the livers of COMT-KO mice in search for potential compensatory mechanisms developed to cope with the effects of disrupted catechol metabolism. We found sex specific changes in proteins connected to stress response. Our results show that alterations in protein levels contribute to the homeostatic regulation in the liver of COMT deficient mice. PMID:19426692

  4. Septum Transversum-Derived Mesothelium Gives Rise to Hepatic Stellate Cells and Perivascular Mesenchymal Cells in Developing Mouse Liver

    OpenAIRE

    Asahina, Kinji; Zhou, Bin; William T Pu; Tsukamoto, Hidekazu

    2011-01-01

    The septum transversum mesenchyme (STM) signals to induce hepatogenesis from the foregut endoderm. Hepatic stellate cells (HSCs) are sinusoidal pericytes assumed to originate from the STM and participate in mesenchymal-epithelial interaction in embryonic and adult livers. However, the developmental origin of HSCs remains elusive due to the lack of markers for STM and HSCs. We previously identified submesothelial cells (SubMCs) beneath mesothelial cells (MCs) as a potential precursor for HSCs ...

  5. Transcription Coactivator Mediator Subunit Med1 is Required for the Development of Fatty Liver in the Mouse

    OpenAIRE

    Bai, Liang; Jia, Yuzhi; Viswakarma, Navin; Huang, Jiansheng; Vluggens, Aurore; Wolins, Nathan E.; Jafari, Nadereh; Rao, M. Sambasiva; Borensztajn, Jayme; Yang, Gongshe; Reddy, Janardan K.

    2011-01-01

    Peroxisome proliferator-activated receptor-γ (PPARγ), a nuclear receptor, when overexpressed in liver stimulates the induction of adipocyte-specific and lipogenesis-related genes and causes hepatic steatosis. We report here that MED1 (also known as PBP or TRAP220) a key subunit of the Mediator complex is required for high-fat diet-induced hepatic steatosis as well as PPARγ-stimulated adipogenic hepatic steatosis. Mediator forms the bridge between transcriptional activators and RNA polymerase ...

  6. MicroRNA-155 Deficiency Attenuates Liver Steatosis and Fibrosis without Reducing Inflammation in a Mouse Model of Steatohepatitis

    OpenAIRE

    Csak, Timea; Bala, Shashi; Lippai, Dora; Kodys, Karen; Catalano, Donna; Iracheta-Vellve, Arvin; Szabo, Gyongyi

    2015-01-01

    Background & Aim MicroRNAs (miRs) regulate hepatic steatosis, inflammation and fibrosis. Fibrosis is the consequence of chronic tissue damage and inflammation. We hypothesized that deficiency of miR-155, a master regulator of inflammation, attenuates steatohepatitis and fibrosis. Methods Wild type (WT) and miR-155-deficient (KO) mice were fed methionine-choline-deficient (MCD) or -supplemented (MCS) control diet for 5 weeks. Liver injury, inflammation, steatosis and fibrosis were assessed. Re...

  7. Demethyleneberberine, a natural mitochondria-targeted antioxidant, inhibits mitochondrial dysfunction, oxidative stress, and steatosis in alcoholic liver disease mouse model.

    Science.gov (United States)

    Zhang, Pengcheng; Qiang, Xiaoyan; Zhang, Miao; Ma, Dongshen; Zhao, Zheng; Zhou, Cuisong; Liu, Xie; Li, Ruiyan; Chen, Huan; Zhang, Yubin

    2015-01-01

    Excessive alcohol consumption induces oxidative stress and lipid accumulation in the liver. Mitochondria have long been recognized as the key target for alcoholic liver disease (ALD). Recently, the artificial mitochondria-targeted antioxidant MitoQ has been used to treat ALD effectively in mice. Here, we introduce the natural mitochondria-targeted antioxidant demethyleneberberine (DMB), which has been found in Chinese herb Cortex Phellodendri chinensis. The protective effect of DMB on ALD was evaluated with HepG2 cells and acutely/chronically ethanol-fed mice, mimicking two common patterns of drinking in human. The results showed that DMB, which is composed of a potential antioxidant structure, could penetrate the membrane of mitochondria and accumulate in mitochondria either in vitro or in vivo. Consequently, the acute drinking-caused oxidative stress and mitochondrial dysfunction were significantly ameliorated by DMB. Moreover, we also found that DMB suppressed CYP2E1, hypoxia inducible factor α, and inducible nitric oxide synthase, which contributed to oxidative stress and restored sirtuin 1/AMP-activated protein kinase/peroxisome proliferator-activated receptor-γ coactivator-1α pathway-associated fatty acid oxidation in chronic ethanol-fed mice, which in turn ameliorated lipid peroxidation and macrosteatosis in the liver. Taking these findings together, DMB could serve as a novel and potential therapy for ALD in human beings. PMID:25362106

  8. Adenovirus-mediated over-expression of Septin4 ameliorates hepatic fibrosis in mouse livers infected with Schistosoma japonicum.

    Science.gov (United States)

    He, Xue; Bao, Jing; Chen, Jinling; Sun, Xiaolei; Wang, Jianxin; Zhu, Dandan; Song, Ke; Peng, Wenxia; Xu, Tianhua; Duan, Yinong

    2015-12-01

    Septin4 (Sept4) belongs to Septin family and may be involved in apoptosis, vesicle trafficking and other cell processes. In this study, we attempted to investigate the effect of Sept4 in hepatic fibrosis induced by Schistosoma japonicum. ICR mice infected with S. japonicum for 12weeks were treated with PBS, Ad-ctr and Ad-Sept4, respectively. All mice were killed at 2weeks after injection, and the changes in the fibrotic livers were detected via H&E staining, Sirius red staining, qRT-PCR, western blot and TUNEL analysis. In addition, pcDNA3.1-Sept4 plasmid was transfected into LX-2 cells to observe the effect of Sept4 on apoptosis of HSCs in vitro. Ad-Sept4 could ameliorate liver fibrosis, as detected by H&E staining and Sirius red staining. The number of TUNEL-positive cells was increased in the Ad-Sept4 treated group. The expression of Sept4 and cleaved-caspase-3 were all augmented, while the expression of α-SMA, Col1α1 and IL-13 were reduced in the Ad-Sept4 treated group, compared with that expressed in the Ad-ctr group. Over-expression of Sept4 in LX-2 cells could promote apoptosis of LX-2 cells in vitro. In conclusion, Ad-Sept4 can attenuate the development of liver fibrosis induced by S. japonicum through apoptosis. PMID:26190030

  9. β-Adrenergic agonist and antagonist regulation of autophagy in HepG2 cells, primary mouse hepatocytes, and mouse liver.

    Directory of Open Access Journals (Sweden)

    Benjamin L Farah

    Full Text Available Autophagy recently has been shown to be involved in normal hepatic function and in pathological conditions such as non-alcoholic fatty liver disease. Adrenergic signalling also is an important regulator of hepatic metabolism and function. However, currently little is known about the potential role of adrenergic signaling on hepatic autophagy, and whether the β-adrenergic receptor itself may be a key regulator of autophagy. To address these issues, we investigated the actions of the β2-adrenergic receptor agonist, clenbuterol on hepatic autophagy. Surprisingly, we found that clenbuterol stimulated autophagy and autophagic flux in hepatoma cells, primary hepatocytes and in vivo. Similar effects also were observed with epinephrine treatment. Interestingly, propranolol caused a late block in autophagy in the absence and presence of clenbuterol, both in cell culture and in vivo. Thus, our results demonstrate that the β2-adrenergic receptor is a key regulator of hepatic autophagy, and that the β-blocker propranolol can independently induce a late block in autophagy.

  10. Soybean Oil Is More Obesogenic and Diabetogenic than Coconut Oil and Fructose in Mouse: Potential Role for the Liver.

    Directory of Open Access Journals (Sweden)

    Poonamjot Deol

    Full Text Available The obesity epidemic in the U.S. has led to extensive research into potential contributing dietary factors, especially fat and fructose. Recently, increased consumption of soybean oil, which is rich in polyunsaturated fatty acids (PUFAs, has been proposed to play a causal role in the epidemic. Here, we designed a series of four isocaloric diets (HFD, SO-HFD, F-HFD, F-SO-HFD to investigate the effects of saturated versus unsaturated fat, as well as fructose, on obesity and diabetes. C57/BL6 male mice fed a diet moderately high in fat from coconut oil and soybean oil (SO-HFD, 40% kcal total fat showed statistically significant increases in weight gain, adiposity, diabetes, glucose intolerance and insulin resistance compared to mice on a diet consisting primarily of coconut oil (HFD. They also had fatty livers with hepatocyte ballooning and very large lipid droplets as well as shorter colonic crypt length. While the high fructose diet (F-HFD did not cause as much obesity or diabetes as SO-HFD, it did cause rectal prolapse and a very fatty liver, but no balloon injury. The coconut oil diet (with or without fructose increased spleen weight while fructose in the presence of soybean oil increased kidney weight. Metabolomics analysis of the liver showed an increased accumulation of PUFAs and their metabolites as well as γ-tocopherol, but a decrease in cholesterol in SO-HFD. Liver transcriptomics analysis revealed a global dysregulation of cytochrome P450 (Cyp genes in SO-HFD versus HFD livers, most notably in the Cyp3a and Cyp2c families. Other genes involved in obesity (e.g., Cidec, Cd36, diabetes (Igfbp1, inflammation (Cd63, mitochondrial function (Pdk4 and cancer (H19 were also upregulated by the soybean oil diet. Taken together, our results indicate that in mice a diet high in soybean oil is more detrimental to metabolic health than a diet high in fructose or coconut oil.

  11. Mouse Strain Impacts Fatty Acid Uptake and Trafficking in Liver, Heart, and Brain: A Comparison of C57BL/6 and Swiss Webster Mice.

    Science.gov (United States)

    Seeger, D R; Murphy, E J

    2016-05-01

    C57BL/6 and Swiss Webster mice are used to study lipid metabolism, although differences in fatty acid uptake between these strains have not been reported. Using a steady state kinetic model, [1-(14)C]16:0, [1-(14)C]20:4n-6, or [1-(14)C]22:6n-3 was infused into awake, adult male mice and uptake into liver, heart, and brain determined. The integrated area of [1-(14)C]20:4n-6 in plasma was significantly increased in C57BL/6 mice, but [1-(14)C]16:0 and [1-(14)C]22:6n-3 were not different between groups. In heart, uptake of [1-(14)C]20:4n-6 was increased 1.7-fold in C57BL/6 mice. However, trafficking of [1-(14)C]22:6n-3 into the organic fraction of heart was significantly decreased 33 % in C57BL/6 mice. Although there were limited differences in fatty acid tracer trafficking in liver or brain, [1-(14)C]16:0 incorporation into liver neutral lipids was decreased 18 % in C57BL/6 mice. In heart, the amount of [1-(14)C]16:0 and [1-(14)C]22:6n-3 incorporated into total phospholipids were decreased 45 and 49 %, respectively, in C57BL/6 mice. This was accounted for by a 53 and 37 % decrease in [1-(14)C]16:0 and 44 and 52 % decrease in [1-(14)C]22:6n-3 entering ethanolamine glycerophospholipids and choline glycerophospholipids, respectively. In contrast, there was a significant increase in [1-(14)C]20:4n-6 esterification into all heart phospholipids of C57BL/6 mice. Although changes in uptake were limited to heart, several significant differences were found in fatty acid trafficking into heart, liver, and brain phospholipids. In summary, our data demonstrates differences in tissue fatty acid uptake and trafficking between mouse strains is an important consideration when carrying out fatty acid metabolic studies. PMID:26797754

  12. Obesity resistant mechanisms in the Lean polygenic mouse model as indicated by liver transcriptome and expression of selected genes in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Fievet Catherine

    2011-02-01

    Full Text Available Abstract Background Divergently selected Lean and Fat mouse lines represent unique models for a polygenic form of resistance and susceptibility to obesity development. Previous research on these lines focused mainly on obesity-susceptible factors in the Fat line. This study aimed to examine the molecular basis of obesity-resistant mechanisms in the Lean line by analyzing various fat depots and organs, the liver transcriptome of selected metabolic pathways, plasma and lipid homeostasis and expression of selected skeletal muscle genes. Results Expression profiling using our custom Steroltalk v2 microarray demonstrated that Lean mice exhibit a higher hepatic expression of cholesterol biosynthesis genes compared to the Fat line, although this was not reflected in elevation of total plasma or liver cholesterol. However, FPLC analysis showed that protective HDL cholesterol was elevated in Lean mice. A significant difference between the strains was also found in bile acid metabolism. Lean mice had a higher expression of Cyp8b1, a regulatory enzyme of bile acid synthesis, and the Abcb11 bile acid transporter gene responsible for export of acids to the bile. Additionally, a higher content of blood circulating bile acids was observed in Lean mice. Elevated HDL and upregulation of some bile acids synthesis and transport genes suggests enhanced reverse cholesterol transport in the Lean line - the flux of cholesterol out of the body is higher which is compensated by upregulation of endogenous cholesterol biosynthesis. Increased skeletal muscle Il6 and Dio2 mRNA levels as well as increased activity of muscle succinic acid dehydrogenase (SDH in the Lean mice demonstrates for the first time that changes in muscle energy metabolism play important role in the Lean line phenotype determination and corroborate our previous findings of increased physical activity and thermogenesis in this line. Finally, differential expression of Abcb11 and Dio2 identifies novel

  13. Prednisolone-induced differential gene expression in mouse liver carrying wild type or a dimerization-defective glucocorticoid receptor

    Directory of Open Access Journals (Sweden)

    Dokter Wim

    2010-06-01

    Full Text Available Abstract Background Glucocorticoids (GCs control expression of a large number of genes via binding to the GC receptor (GR. Transcription may be regulated either by binding of the GR dimer to DNA regulatory elements or by protein-protein interactions of GR monomers with other transcription factors. Although the type of regulation for a number of individual target genes is known, the relative contribution of both mechanisms to the regulation of the entire transcriptional program remains elusive. To study the importance of GR dimerization in the regulation of gene expression, we performed gene expression profiling of livers of prednisolone-treated wild type (WT and mice that have lost the ability to form GR dimers (GRdim. Results The GR target genes identified in WT mice were predominantly related to glucose metabolism, the cell cycle, apoptosis and inflammation. In GRdim mice, the level of prednisolone-induced gene expression was significantly reduced compared to WT, but not completely absent. Interestingly, for a set of genes, involved in cell cycle and apoptosis processes and strongly related to Foxo3a and p53, induction by prednisolone was completely abolished in GRdim mice. In contrast, glucose metabolism-related genes were still modestly upregulated in GRdim mice upon prednisolone treatment. Finally, we identified several novel GC-inducible genes from which Fam107a, a putative histone acetyltransferase complex interacting protein, was most strongly dependent on GR dimerization. Conclusions This study on prednisolone-induced effects in livers of WT and GRdim mice identified a number of interesting candidate genes and pathways regulated by GR dimers and sheds new light onto the complex transcriptional regulation of liver function by GCs.

  14. Distinct populations of hepatic stellate cells in the mouse liver have different capacities for retinoid and lipid storage.

    Directory of Open Access Journals (Sweden)

    Diana N D'Ambrosio

    Full Text Available Hepatic stellate cell (HSC lipid droplets are specialized organelles for the storage of retinoid, accounting for 50-60% of all retinoid present in the body. When HSCs activate, retinyl ester levels progressively decrease and the lipid droplets are lost. The objective of this study was to determine if the HSC population in a healthy, uninjured liver demonstrates heterogeneity in its capacity for retinoid and lipid storage in lipid droplets. To this end, we utilized two methods of HSC isolation, which leverage distinct properties of these cells, including their vitamin A content and collagen expression. HSCs were isolated either from wild type (WT mice in the C57BL/6 genetic background by flotation in a Nycodenz density gradient, followed by fluorescence activated cell sorting (FACS based on vitamin A autofluorescence, or from collagen-green fluorescent protein (GFP mice by FACS based on GFP expression from a GFP transgene driven by the collagen I promoter. We show that GFP-HSCs have: (i increased expression of typical markers of HSC activation; (ii decreased retinyl ester levels, accompanied by reduced expression of the enzyme needed for hepatic retinyl ester synthesis (LRAT; (iii decreased triglyceride levels; (iv increased expression of genes associated with lipid catabolism; and (v an increase in expression of the retinoid-catabolizing cytochrome, CYP2S1.Our observations suggest that the HSC population in a healthy, uninjured liver is heterogeneous. One subset of the total HSC population, which expresses early markers of HSC activation, may be "primed" and ready for rapid response to acute liver injury.

  15. Hepatoprotective activity of Picrorhiza kurroa Royle Ex. Benth extract against alcohol cytotoxicity in mouse liver slice culture

    Directory of Open Access Journals (Sweden)

    Sangeeta Sinha

    2011-01-01

    Full Text Available Kutki or Picrorhiza kurroa is a herbal medicinal plant belonging to Scrophulariaceae family and is found in the Himalayan region in India. This herb has been traditionally used in treating liver disorders. The antioxidant properties of P. kurroa were evaluated in vitro using different radical scavenging assays. Furthermore, liver slice culture system was used to test the antioxidant activity of this extract and ethanol was used as a hepatotoxin to generate oxidative stress. Hepatotoxicity was quantified in terms of release of intracellular marker enzymes lactate dehydrogenase, glutamate oxaloacetate transaminase and glutamate pyruvate transaminase. Oxidative stress induced by ethanol and its modulation in the presence of P. kurroa extract was tested by estimating the levels of antioxidant enzymes like catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase and glutathione-S-transferase, and of antioxidant molecules like uric acid and reduced glutathione that were quantitated along with lipid peroxidation. Our results clearly demonstrate that aqueous extract of P. kurroa with high antioxidant activity, as demonstrated using different radical scavenging assays, was effective in suppressing the deleterious effects of ethanol. Addition of P. kurroa aqueous extract along with ethanol restored the activities of antioxidant enzymes and significantly reduced lipid peroxidation.

  16. 虎尾轮根黄酮类化合物对小鼠肝脏功能影响%Effects of Flavonoids from Uraria crinita on Liver Function in Mouse

    Institute of Scientific and Technical Information of China (English)

    陈秋勇; 陈炳华; 黄志坚

    2012-01-01

    以小鼠为动物模型,在饲料中添加分离纯化虎尾轮根的黄酮类化合物,研究其对小鼠肝脏功能的影响。取体重为(20±2)g小鼠84只,随机分为6组,即:空白对照组,模型组,阳性对照组即联苯双酯组(150 mg/kg),以及虎尾轮黄酮高、中、低剂量组(450,300,150 mg/kg),连续给药21 d。以四氯化碳(CCl4)进行建模,采集小鼠血清及肝组织匀浆液进行T-AOC、ALB、TP、AST、ALT、MDA、SOD、GSH-Px等指标的检测;取小鼠肝脏进行组织切片观察。结果表明,(1)与模型组比较,虎尾轮黄酮各剂量组均能分别显著(P〈0.05)或极显著(P〈0.01)地提高小鼠SOD、T-AOC、GSH-Px、ALB、TP水平和降低AST、ALT、MDA水平;(2)各剂量组肉眼观察无明显的病理变化,对各试验组的肝脏组织显微结构进行比较,发现虎尾轮黄酮各剂量组对CCl4引起的肝损伤有不同程度的恢复,保肝护肝作用明显。可见虎尾轮黄酮对小鼠的肝损伤有显著保护作用。%The isolated and purified flavonoids from Uraria crinita were added in the diets of the mouse which were as animal models.The effects of the flavonoids on mouse liver function was studied.Eighty four mouse,weight(20±2) g,were randomly divided into 6 groups,blank control group,model group,the positive control group that bifendate group(150 mg/kg),high dose of flavonoids group(450 mg/kg),medium dose of flavonoids group(300 mg/kg) and low dose of flavonoids group(150 mg/kg).All flavonoids groups of mouse were fed with the chemical for 21 continuous days.Carbon tetrachloride(CCl4) was used in the model group,and the mouse serum and liver tissue homogenates were used to the detection of the TAOC 、ALB、TP、AST、ALT、 MDA、SOD and GSHPx. The livers of mouse were removed to produce the slice.The results showed as follows:(1) The SOD,TAOC, GSHPx, ALB and TP level in the mouse treated with the all flavonoids group were significantly(P0.05) or

  17. Analysis of the heat shock response in mouse liver reveals transcriptional dependence on the nuclear receptor peroxisome proliferator-activated receptor α (PPARα

    Directory of Open Access Journals (Sweden)

    Jonnalagadda Sudhakar

    2010-01-01

    Full Text Available Abstract Background The nuclear receptor peroxisome proliferator-activated receptor alpha (PPARα regulates responses to chemical or physical stress in part by altering expression of genes involved in proteome maintenance. Many of these genes are also transcriptionally regulated by heat shock (HS through activation by HS factor-1 (HSF1. We hypothesized that there are interactions on a genetic level between PPARα and the HS response mediated by HSF1. Results Wild-type and PPARα-null mice were exposed to HS, the PPARα agonist WY-14,643 (WY, or both; gene and protein expression was examined in the livers of the mice 4 or 24 hrs after HS. Gene expression profiling identified a number of Hsp family members that were altered similarly in both mouse strains. However, most of the targets of HS did not overlap between strains. A subset of genes was shown by microarray and RT-PCR to be regulated by HS in a PPARα-dependent manner. HS also down-regulated a large set of mitochondrial genes specifically in PPARα-null mice that are known targets of PPARγ co-activator-1 (PGC-1 family members. Pretreatment of PPARα-null mice with WY increased expression of PGC-1β and target genes and prevented the down-regulation of the mitochondrial genes by HS. A comparison of HS genes regulated in our dataset with those identified in wild-type and HSF1-null mouse embryonic fibroblasts indicated that although many HS genes are regulated independently of both PPARα and HSF1, a number require both factors for HS responsiveness. Conclusions These findings demonstrate that the PPARα genotype has a dramatic effect on the transcriptional targets of HS and support an expanded role for PPARα in the regulation of proteome maintenance genes after exposure to diverse forms of environmental stress including HS.

  18. The roles of tumor necrosis factor-alpha in colon tight junction protein expression and intestinal mucosa structure in a mouse model of acute liver failure

    Directory of Open Access Journals (Sweden)

    Lv Sa

    2009-09-01

    Full Text Available Abstract Background Spontaneous bacterial peritonitis (SBP is a common clinical disease and one of the most severe complications of acute liver failure (ALF. Although the mechanism responsible for SBP is unclear, cytokines play an important role. The aim of this study was to investigate the effects of tumor necrosis factor-alpha (TNF-α on the structure of the intestinal mucosa and the expression of tight junction (Zona Occludens 1; ZO-1 protein in a mouse model of ALF. Methods We induced ALF using D-galactosamine/lipopolysaccharide (GalN/LPS or GalN/TNF-α and assessed the results using transmission electron microscopy, immunohistochemistry, Western blotting, ELISA and real-time quantitative PCR. The effects of administration of anti-TNF-α IgG antibody or anti-TNF-α R1 antibody before administration of GalN/LPS or GalN/TNF-α, respectively, on TNF-α were also assessed. Results Morphological abnormalities in the intestinal mucosa of ALF mice were positively correlated with serum TNF-α level. Electron microscopic analysis revealed tight junction (TJ disruptions, epithelial cell swelling, and atrophy of intestinal villi. Gut bacteria invaded the body at sites where TJ disruptions occurred. Expression of ZO-1 mRNA was significantly decreased in both ALF models, as was the level of ZO-1 protein. Prophylactic treatment with either anti-TNF-α IgG antibody or anti-tumor necrosis factor-a receptor1 (anti-TNF-α R1 antibody prevented changes in intestinal tissue ultrastructure and ZO-1 expression. Conclusion TNF-α affects the structure of the intestinal mucosa, decreases expression of ZO-1, and affects the morphology of the colon in a mouse model of ALF. It also may participate in the pathophysiological mechanism of SBP complicated to ALF.

  19. Flow cytometric measurement of the metabolism of benzo[a]pyrene by mouse liver cells in culture

    International Nuclear Information System (INIS)

    The metabolism of benzo[a]pyrene in individual cells was monitored by flow cytometry. The measurements are based on the alterations that occur in the fluorescence emission spectrum of benzo[a]pyrene when it is converted to various metabolites. Using present instrumentation the technique could easily detect 1x106 molecules per cells of benzo[a]pyrene and 1x107 molecules per cell of the diol epoxide. The analysis of C3H IOT 1/2 mouse fibroblasts growing in culture indicated that there was heterogeneity in the conversion of the parent compound into diol epoxide derivatives suggesting that some variation in sensitivity to transformation by benzo[a]pyrene may be due to differences in cellular metabolism. The technique allows sensitive detection of metabolites in viable cells, and provides a new approach to the study of factors that influence both metabolism and transformation. (orig.)

  20. Activation of the sonic hedgehog signaling pathway occurs in the CD133 positive cells of mouse liver cancer Hepa 1–6 cells

    Science.gov (United States)

    Jeng, Kuo-Shyang; Sheen, I-Shyan; Jeng, Wen-Juei; Yu, Ming-Che; Hsiau, Hsin-I; Chang, Fang-Yu; Tsai, Hsin-Hua

    2013-01-01

    Background The important role of cancer stem cells in carcinogenesis has been emphasized in research. CD133+ cells have been mentioned as liver cancer stem cells in hepatocellular carcinoma (HCC). Some researchers have proposed that the sonic hedgehog (Shh) pathway contributes to hepatocarcinogenesis and that the pathway activation occurs mainly in cancer stem cells. We investigated whether the activation of the Shh pathway occurs in CD133+ cells from liver cancer. Materials and methods We used magnetic sorting to isolate CD133+ cells from mouse cancer Hepa 1–6 cells. To examine the clonogenicity, cell culture and soft agar colony formation assay were performed between CD133+ and CD133− cells. To study the activation of the Shh pathway, we examined the mRNA expressions of Shh, patched homolog 1 (Ptch-1), glioma-associated oncogene homolog 1 (Gli-1), and smoothened homolog (Smoh) by real-time polymerase chain reaction of both CD133+ and CD133− cells. Results The number (mean ± standard deviation) of colonies of CD133+ cells and CD133− cells was 1,031.0 ± 104.7 and 119.7 ± 17.6 respectively. This difference was statistically significant (P < 0.001). Their clonogenicity was 13.7% ± 1.4% and 1.6% ± 0.2% respectively with a statistically significant difference found (P < 0.001). CD133+ cells and CD133− cells were found to have statistically significant differences in Shh mRNA and Smoh mRNA (P = 0.005 and P = 0.043 respectively). Conclusion CD133+ Hepa 1–6 cells have a significantly higher colony proliferation and clonogenicity. The Shh pathway is activated in these cells that harbor stem cell features, with an underexpression of Shh mRNA and an overexpression of Smoh mRNA. Blockade of the Shh signaling pathway may be a potential therapeutic strategy for hepatocarcinogenesis. PMID:23950652

  1. Seeking genes responsible for developmental origins of health and disease from the fetal mouse liver following maternal food restriction.

    Science.gov (United States)

    Ogawa, Tetsuo; Shibato, Junko; Rakwal, Randeep; Saito, Tomomi; Tamura, Gaku; Kuwagata, Makiko; Shioda, Seiji

    2014-11-01

    Low birthweight resulting from a non-optimal fetal environment is correlated epidemiologically to a higher risk of adult diseases, and which has also been demonstrated using animal models for maternal undernutrition. In this study, we subjected pregnant mice to 50% food restriction (FR), and profiled gene expression and promoter DNA methylation genome-wide using the fetal livers. The fact that effect of food restriction is opposite between before and after birth encouraged us to hunt for genes that are expressed oppositely to adult calorie restriction (CR) using the maternal livers. Among oppositely regulated genes, we identified trib1 (tribbles homolog 1). Using genetically modified mice, trib1 has been shown to have a demonstrable contribution to a risk of hypertriglyceridaemia and insulin resistance. Our data showed that the trib1 expression and its promoter DNA methylation could be affected physiologically (by maternal nutrition), and therefore might be a strong candidate gene for developmental origins of adult diseases. Furthermore, lepr (leptin receptor) gene was downregulated by maternal FR, indicating its potential role in induction of obesity and diabetes. Gene expression as well as promoter DNA methylation profiling revealed that glucocorticoid receptor target genes were regulated by maternal FR. This supports previous studies that suggest an important role of fetal glucocorticoid exposure in the mechanism of developmental origins of diseases. Our transcriptomics profiling data also suggested that maternal FR impaired development of the immune system. An inventory of candidate genes responsible for developmental origins of health and disease is presented and discussed in this study. PMID:24754856

  2. MicroRNA-155 Deficiency Attenuates Liver Steatosis and Fibrosis without Reducing Inflammation in a Mouse Model of Steatohepatitis.

    Directory of Open Access Journals (Sweden)

    Timea Csak

    Full Text Available MicroRNAs (miRs regulate hepatic steatosis, inflammation and fibrosis. Fibrosis is the consequence of chronic tissue damage and inflammation. We hypothesized that deficiency of miR-155, a master regulator of inflammation, attenuates steatohepatitis and fibrosis.Wild type (WT and miR-155-deficient (KO mice were fed methionine-choline-deficient (MCD or -supplemented (MCS control diet for 5 weeks. Liver injury, inflammation, steatosis and fibrosis were assessed.MCD diet resulted in steatohepatitis and increased miR-155 expression in total liver, hepatocytes and Kupffer cells. Steatosis and expression of genes involved in fatty acid metabolism were attenuated in miR-155 KO mice after MCD feeding. In contrast, miR-155 deficiency failed to attenuate inflammatory cell infiltration, nuclear factor κ beta (NF-κB activation and enhanced the expression of the pro-inflammatory cytokines tumor necrosis factor alpha (TNFα and monocyte chemoattractant protein-1 (MCP1 in MCD diet-fed mice. We found a significant attenuation of apoptosis (cleaved caspase-3 and reduction in collagen and α smooth muscle actin (αSMA levels in miR-155 KO mice compared to WTs on MCD diet. In addition, we found attenuation of platelet derived growth factor (PDGF, a pro-fibrotic cytokine; SMAD family member 3 (Smad3, a protein involved in transforming growth factor-β (TGFβ signal transduction and vimentin, a mesenchymal marker and indirect indicator of epithelial-to-mesenchymal transition (EMT in miR-155 KO mice. Nuclear binding of CCAAT enhancer binding protein β (C/EBPβ a miR-155 target involved in EMT was significantly increased in miR-155 KO compared to WT mice.Our novel data demonstrate that miR-155 deficiency can reduce steatosis and fibrosis without decreasing inflammation in steatohepatitis.

  3. Activation of the sonic hedgehog signaling pathway occurs in the CD133 positive cells of mouse liver cancer Hepa 1–6 cells

    Directory of Open Access Journals (Sweden)

    Jeng KS

    2013-08-01

    Full Text Available Kuo-Shyang Jeng,1 I-Shyan Sheen,2 Wen-Juei Jeng,2 Ming-Che Yu,3 Hsin-I Hsiau,3 Fang-Yu Chang,3 Hsin-Hua Tsai31Department of Surgery, Far Eastern Memorial Hospital, Taipei, 2Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University, 3Department of Medical Research, Far Eastern Memorial Hospital, Taipei, Taiwan, Republic of ChinaBackground: The important role of cancer stem cells in carcinogenesis has been emphasized in research. CD133+ cells have been mentioned as liver cancer stem cells in hepatocellular carcinoma (HCC. Some researchers have proposed that the sonic hedgehog (Shh pathway contributes to hepatocarcinogenesis and that the pathway activation occurs mainly in cancer stem cells. We investigated whether the activation of the Shh pathway occurs in CD133+ cells from liver cancer.Materials and methods: We used magnetic sorting to isolate CD133+ cells from mouse cancer Hepa 1–6 cells. To examine the clonogenicity, cell culture and soft agar colony formation assay were performed between CD133+ and CD133- cells. To study the activation of the Shh pathway, we examined the mRNA expressions of Shh, patched homolog 1 (Ptch-1, glioma-associated oncogene homolog 1 (Gli-1, and smoothened homolog (Smoh by real-time polymerase chain reaction of both CD133+ and CD133- cells.Results: The number (mean ± standard deviation of colonies of CD133+ cells and CD133- cells was 1,031.0 ± 104.7 and 119.7 ± 17.6 respectively. This difference was statistically significant (P < 0.001. Their clonogenicity was 13.7% ± 1.4% and 1.6% ± 0.2% respectively with a statistically significant difference found (P < 0.001. CD133+ cells and CD133– cells were found to have statistically significant differences in Shh mRNA and Smoh mRNA (P = 0.005 and P = 0.043 respectively.Conclusion: CD133+ Hepa 1–6 cells have a significantly higher colony proliferation and clonogenicity. The Shh pathway is activated in these

  4. Grape Seed Procyanidins and Cholestyramine Differentially Alter Bile Acid and Cholesterol Homeostatic Gene Expression in Mouse Intestine and Liver.

    Science.gov (United States)

    Heidker, Rebecca M; Caiozzi, Gianella C; Ricketts, Marie-Louise

    2016-01-01

    Bile acid (BA) sequestrants, lipid-lowering agents, may be prescribed as a monotherapy or combination therapy to reduce the risk of coronary artery disease. Over 33% of adults in the United States use complementary and alternative medicine strategies, and we recently reported that grape seed procyanidin extract (GSPE) reduces enterohepatic BA recirculation as a means to reduce serum triglyceride (TG) levels. The current study was therefore designed to assess the effects on BA, cholesterol and TG homeostatic gene expression following co-administration with GSPE and the BA sequestrant, cholestyramine (CHY). Eight-week old male C57BL/6 mice were treated for 4 weeks with either a control or 2% CHY-supplemented diet, after which, they were administered vehicle or GSPE for 14 hours. Liver and intestines were harvested and gene expression was analyzed. BA, cholesterol, non-esterified fatty acid and TG levels were also analyzed in serum and feces. Results reveal that GSPE treatment alone, and co-administration with CHY, regulates BA, cholesterol and TG metabolism differently than CHY administration alone. Notably, GSPE decreased intestinal apical sodium-dependent bile acid transporter (Asbt) gene expression, while CHY significantly induced expression. Administration with GSPE or CHY robustly induced hepatic BA biosynthetic gene expression, especially cholesterol 7α-hydroxylase (Cyp7a1), compared to control, while co-administration further enhanced expression. Treatment with CHY induced both intestinal and hepatic cholesterologenic gene expression, while co-administration with GSPE attenuated the CHY-induced increase in the liver but not intestine. CHY also induced hepatic lipogenic gene expression, which was attenuated by co-administration with GSPE. Consequently, a 25% decrease in serum TG levels was observed in the CHY+GSPE group, compared to the CHY group. Collectively, this study presents novel evidence demonstrating that GSPE provides additive and complementary

  5. Grape Seed Procyanidins and Cholestyramine Differentially Alter Bile Acid and Cholesterol Homeostatic Gene Expression in Mouse Intestine and Liver.

    Directory of Open Access Journals (Sweden)

    Rebecca M Heidker

    Full Text Available Bile acid (BA sequestrants, lipid-lowering agents, may be prescribed as a monotherapy or combination therapy to reduce the risk of coronary artery disease. Over 33% of adults in the United States use complementary and alternative medicine strategies, and we recently reported that grape seed procyanidin extract (GSPE reduces enterohepatic BA recirculation as a means to reduce serum triglyceride (TG levels. The current study was therefore designed to assess the effects on BA, cholesterol and TG homeostatic gene expression following co-administration with GSPE and the BA sequestrant, cholestyramine (CHY. Eight-week old male C57BL/6 mice were treated for 4 weeks with either a control or 2% CHY-supplemented diet, after which, they were administered vehicle or GSPE for 14 hours. Liver and intestines were harvested and gene expression was analyzed. BA, cholesterol, non-esterified fatty acid and TG levels were also analyzed in serum and feces. Results reveal that GSPE treatment alone, and co-administration with CHY, regulates BA, cholesterol and TG metabolism differently than CHY administration alone. Notably, GSPE decreased intestinal apical sodium-dependent bile acid transporter (Asbt gene expression, while CHY significantly induced expression. Administration with GSPE or CHY robustly induced hepatic BA biosynthetic gene expression, especially cholesterol 7α-hydroxylase (Cyp7a1, compared to control, while co-administration further enhanced expression. Treatment with CHY induced both intestinal and hepatic cholesterologenic gene expression, while co-administration with GSPE attenuated the CHY-induced increase in the liver but not intestine. CHY also induced hepatic lipogenic gene expression, which was attenuated by co-administration with GSPE. Consequently, a 25% decrease in serum TG levels was observed in the CHY+GSPE group, compared to the CHY group. Collectively, this study presents novel evidence demonstrating that GSPE provides additive and

  6. Grape Seed Procyanidins and Cholestyramine Differentially Alter Bile Acid and Cholesterol Homeostatic Gene Expression in Mouse Intestine and Liver

    Science.gov (United States)

    Heidker, Rebecca M.; Caiozzi, Gianella C.; Ricketts, Marie-Louise

    2016-01-01

    Bile acid (BA) sequestrants, lipid-lowering agents, may be prescribed as a monotherapy or combination therapy to reduce the risk of coronary artery disease. Over 33% of adults in the United States use complementary and alternative medicine strategies, and we recently reported that grape seed procyanidin extract (GSPE) reduces enterohepatic BA recirculation as a means to reduce serum triglyceride (TG) levels. The current study was therefore designed to assess the effects on BA, cholesterol and TG homeostatic gene expression following co-administration with GSPE and the BA sequestrant, cholestyramine (CHY). Eight-week old male C57BL/6 mice were treated for 4 weeks with either a control or 2% CHY-supplemented diet, after which, they were administered vehicle or GSPE for 14 hours. Liver and intestines were harvested and gene expression was analyzed. BA, cholesterol, non-esterified fatty acid and TG levels were also analyzed in serum and feces. Results reveal that GSPE treatment alone, and co-administration with CHY, regulates BA, cholesterol and TG metabolism differently than CHY administration alone. Notably, GSPE decreased intestinal apical sodium-dependent bile acid transporter (Asbt) gene expression, while CHY significantly induced expression. Administration with GSPE or CHY robustly induced hepatic BA biosynthetic gene expression, especially cholesterol 7α-hydroxylase (Cyp7a1), compared to control, while co-administration further enhanced expression. Treatment with CHY induced both intestinal and hepatic cholesterologenic gene expression, while co-administration with GSPE attenuated the CHY-induced increase in the liver but not intestine. CHY also induced hepatic lipogenic gene expression, which was attenuated by co-administration with GSPE. Consequently, a 25% decrease in serum TG levels was observed in the CHY+GSPE group, compared to the CHY group. Collectively, this study presents novel evidence demonstrating that GSPE provides additive and complementary

  7. Lack of liver X receptors leads to cell proliferation in a model of mouse dorsal prostate epithelial cell.

    Directory of Open Access Journals (Sweden)

    Julie Dufour

    Full Text Available Recent studies underline the implication of Liver X Receptors (LXRs in several prostate diseases such as benign prostatic hyperplasia (BPH and prostate cancer. In order to understand the molecular mechanisms involved, we derived epithelial cells from dorsal prostate (MPECs of wild type (WT or Lxrαβ-/- mice. In the WT MPECs, our results show that LXR activation reduces proliferation and correlates with the modification of the AKT-survival pathway. Moreover, LXRs regulate lipid homeostasis with the regulation of Abca1, Abcg1 and Idol, and, in a lesser extent, Srebp1, Fas and Acc. Conversely cells derived from Lxrαβ-/- mice show a higher basal phosphorylation and consequently activation of the survival/proliferation transduction pathways AKT and MAPK. Altogether, our data point out that the cell model we developed allows deciphering the molecular mechanisms inducing the cell cycle arrest. Besides, we show that activated LXRs regulate AKT and MAPK transduction pathways and demonstrate that LXRs could be good pharmacological targets in prostate disease such as cancer.

  8. Effects of CXCR4 siRNA/dextran-spermine nanoparticles on CXCR4 expression and serum LDH levels in a mouse model of colorectal cancer metastasis to the liver

    International Nuclear Information System (INIS)

    Liver metastasis is the main cause of mortality related to colorectal cancer. CXCR4 is necessary for the outgrowth of colon cancer micrometastases. In oncology, it has been demonstrated that several human tumors release lactate dehydrogenase (LDH) into the circulation. CXCR4 gene expression and serum LDH levels are often increased in patients with colorectal cancer. Despite technological advances in cancer therapy, five-year overall survival is still around 50%. Therefore, better treatment needs to be developed. RNA interference (RNAi) is a modern and powerful tool for inhibition of gene expression. However, the rate-limiting step in this technology is effective delivery of RNAi agents. We have investigated a novel strategy of CXCR4 siRNA therapy and its effect on serum LDH levels in a BALB/C mouse model of colorectal cancer metastasis to the liver. Hepatic metastasis was established by injecting a CT26.WT mouse colon carcinoma cell line via the tail vein. Our results demonstrated that CXCR4 siRNA/ dextran-spermine nanoparticles achieved high silencing efficiency with low toxicity. Favorable localization of the nanoparticles was confirmed with CXCR4 gene expression in the liver, that was correlated with serum LDH levels. More research will be needed to determine the effect of CXCR4 silencing on serum LDH levels, which may be a useful marker for predicting liver metastasis in colorectal cancer

  9. Liver Transplant

    Science.gov (United States)

    ... Home > Your Liver > Liver Disease Information > Liver Transplant Liver Transplant Explore this section to learn more about liver ... harmful substances from your blood. What is a liver transplant? A liver transplant is the process of replacing ...

  10. Kit transduced signals counteract erythroid maturation by MAPK-dependent modulation of erythropoietin signaling and apoptosis induction in mouse fetal liver.

    Science.gov (United States)

    Haas, N; Riedt, T; Labbaf, Z; Baßler, K; Gergis, D; Fröhlich, H; Gütgemann, I; Janzen, V; Schorle, H

    2015-05-01

    Signaling by the stem cell factor receptor Kit in hematopoietic stem and progenitor cells is functionally associated with the regulation of cellular proliferation, differentiation and survival. Expression of the receptor is downregulated upon terminal differentiation in most lineages, including red blood cell terminal maturation, suggesting that omission of Kit transduced signals is a prerequisite for the differentiation process to occur. However, the molecular mechanisms by which Kit signaling preserves the undifferentiated state of progenitor cells are not yet characterized in detail. In this study, we generated a mouse model for inducible expression of a Kit receptor carrying an activating mutation and studied its effects on fetal liver hematopoiesis. We found that sustained Kit signaling leads to expansion of erythroid precursors and interferes with terminal maturation beyond the erythroblast stage. Primary KIT(D816V) erythroblasts stimulated to differentiate fail to exit cell cycle and show elevated rates of apoptosis because of insufficient induction of survival factors. They further retain expression of progenitor cell associated factors c-Myc, c-Myb and GATA-2 and inefficiently upregulate erythroid transcription factors GATA-1, Klf1 and Tal1. In KIT(D816V) erythroblasts we found constitutive activation of the mitogen-activated protein kinase (MAPK) pathway, elevated expression of the src kinase family member Lyn and impaired Akt activation in response to erythropoietin. We demonstrate that the block in differentiation is partially rescued by MAPK inhibition, and completely rescued by the multikinase inhibitor Dasatinib. These results show that a crosstalk between Kit and erythropoietin receptor signaling cascades exists and that continuous Kit signaling, partly mediated by the MAPK pathway, interferes with this crosstalk. PMID:25323585

  11. Effects of different fixative for HE staining on mouse liver paraffin sections%不同固定液对小鼠肝脏石蜡切片HE染色的影响

    Institute of Scientific and Technical Information of China (English)

    熊飞

    2013-01-01

    目的:比较经不同固定液处理的小鼠肝脏石蜡切片H E染色效果,优化实验方法。方法用3种不同固定液(10%中性福尔马林、4%多聚甲醛、A F固定液)处理小鼠肝脏组织,经常规脱水、透明、浸蜡、包埋、切片,H E染色,观察比较染色效果。结果10%福尔马林、4%多聚甲醛固定的肝组织结构完整、清晰,细胞界限清楚,染色鲜艳;A F固定液固定的肝组织结构不完整,界限不清,胞浆中出现大量空泡。结论10%中性福尔马林和4%多聚甲醛是制作小鼠肝脏石蜡切片HE染色标本的理想固定液。%Purpose: To compare of mouse liver paraffin section and HE staining effect treatment with different fixative, optimization of experimental method. Methods: Mouse livers were immersed in three different fixatives (10% buffered formalin, 4% polyformaldehyde, and AF fluid) respectively. The tissue were dehydrated, transparentized and immersed in paraffin as routine procedure. The paraffin embedded liver tissue were sectioned and stained with Hematoxylin and Eosin, liver sections were compared under the light microscope. Results: The tissues fixed with 10% buffered formalin and 4% polyformaldehyde showed complete and clear structure, and the hepatocytes wel stained. The structure of liver tissues fixed with AF fluid was not complete, il-defined, and with large vacuoles in cytoplasm.Conclusion: 10% buffered formalin and 4% polyformaldehyde fixative is the most effective fixative for mouse liver HE staining.

  12. Monitoring Cyp2b10 mRNA expression at cessation of 2-year carcinogenesis bioassay in mouse liver provides evidence for a carcinogenic mechanism devoid of human relevance: The dalcetrapib experience

    Energy Technology Data Exchange (ETDEWEB)

    Hoflack, J-C.; Mueller, L., E-mail: Lutz.Mueller@roche.com; Fowler, S.; Braendli-Baiocco, A.; Flint, N.; Kuhlmann, O.; Singer, T.; Roth, A.

    2012-03-15

    Introduction: Dalcetrapib is a cholesteryl ester transfer protein (CETP) modulator in clinical assessment for cardiovascular outcome benefits. In compliance with regulatory requirements, dalcetrapib was evaluated in rodent 2-year carcinogenesis bioassays. In the mouse bioassay, male mice demonstrated increased liver weight and statistically increased incidences of hepatocellular adenoma/carcinoma. Hepatic cytochrome p450 (Cyp) 2b10 mRNA induction and increased Cyp2b10 enzyme activity signify activation of hepatic nuclear receptor constitutive androstane receptor (CAR), a widely established promoter of rodent-specific hepatic tumors. We therefore monitored hepatic Cyp2b10 mRNA and its enzyme activity in a subset of dalcetrapib-treated male mice from the bioassay. Methods: Liver samples were obtained from ∼ 1/3 of male mice from each dose group including vehicle-controls (mean and earliest study day of death 678 and 459 respectively). Quantitative real time PCR (qRT-PCR) was performed to determine Cyp2b10 mRNA expression and Cyp1a-, Cyp2b10- and Cyp3a-selective activities were monitored. Results: Cyp2b10 mRNA was strongly induced by dalcetrapib with an expected wide inter-individual variation (5–1421-fold). Group average fold-induction versus vehicle-controls showed a dose-related increase from 48-fold (250 mg/kg/day) to 160-fold (750 mg/kg/day), which declined slightly at 2000 mg/kg/day (97-fold). Cyp enzyme activities showed approximate doubling of total Cyp P450 content per milligram protein and a 9-fold increase in Cyp2b10-selective pentoxyresorufin O-dealkylase activity (750 mg/kg/day). Discussion: These data from hepatic Cyp2b10 monitoring are strongly suggestive of CAR activation by dalcetrapib, a mechanism devoid of relevance towards hepatocarcinogenesis in humans; results show feasibility of Cyp2b10 as a surrogate marker for this mechanism at cessation of a carcinogenesis bioassay. -- Highlights: ► Liver tumors were induced in male mice by dalcetrapib

  13. Monitoring Cyp2b10 mRNA expression at cessation of 2-year carcinogenesis bioassay in mouse liver provides evidence for a carcinogenic mechanism devoid of human relevance: The dalcetrapib experience

    International Nuclear Information System (INIS)

    Introduction: Dalcetrapib is a cholesteryl ester transfer protein (CETP) modulator in clinical assessment for cardiovascular outcome benefits. In compliance with regulatory requirements, dalcetrapib was evaluated in rodent 2-year carcinogenesis bioassays. In the mouse bioassay, male mice demonstrated increased liver weight and statistically increased incidences of hepatocellular adenoma/carcinoma. Hepatic cytochrome p450 (Cyp) 2b10 mRNA induction and increased Cyp2b10 enzyme activity signify activation of hepatic nuclear receptor constitutive androstane receptor (CAR), a widely established promoter of rodent-specific hepatic tumors. We therefore monitored hepatic Cyp2b10 mRNA and its enzyme activity in a subset of dalcetrapib-treated male mice from the bioassay. Methods: Liver samples were obtained from ∼ 1/3 of male mice from each dose group including vehicle-controls (mean and earliest study day of death 678 and 459 respectively). Quantitative real time PCR (qRT-PCR) was performed to determine Cyp2b10 mRNA expression and Cyp1a-, Cyp2b10- and Cyp3a-selective activities were monitored. Results: Cyp2b10 mRNA was strongly induced by dalcetrapib with an expected wide inter-individual variation (5–1421-fold). Group average fold-induction versus vehicle-controls showed a dose-related increase from 48-fold (250 mg/kg/day) to 160-fold (750 mg/kg/day), which declined slightly at 2000 mg/kg/day (97-fold). Cyp enzyme activities showed approximate doubling of total Cyp P450 content per milligram protein and a 9-fold increase in Cyp2b10-selective pentoxyresorufin O-dealkylase activity (750 mg/kg/day). Discussion: These data from hepatic Cyp2b10 monitoring are strongly suggestive of CAR activation by dalcetrapib, a mechanism devoid of relevance towards hepatocarcinogenesis in humans; results show feasibility of Cyp2b10 as a surrogate marker for this mechanism at cessation of a carcinogenesis bioassay. -- Highlights: ► Liver tumors were induced in male mice by dalcetrapib

  14. A polymethoxy flavonoids-rich Citrus aurantium extract ameliorates ethanol-induced liver injury through modulation of AMPK and Nrf2-related signals in a binge drinking mouse model.

    Science.gov (United States)

    Choi, Bong-Keun; Kim, Tae-Won; Lee, Dong-Ryung; Jung, Woon-Ha; Lim, Jong-Hwan; Jung, Ju-Young; Yang, Seung Hwan; Suh, Joo-Won

    2015-10-01

    Nobiletin and tangeretin are polymethoxy flavonoids (PMFs), found in rich quantities in the peel of citrus fruits. In the present study, we assessed the biological effect of the PMFs on liver damage using a mouse model of binge drinking. First, we extracted PMFs from the peels of Citrus aurantium to make Citrus aurantium extract (CAE). Male C57BL/6 mice were orally treated with silymarin and CAE (50, 100, and 200 mg/kg) for 3 days prior to ethanol (5 g/kg, total of 3 doses) oral gavage. Liver injury was observed in the ethanol alone group, as evidenced by increases in serum hepatic enzymes and histopathologic alteration, as well as by hepatic oxidative status disruption. CAE improved serum marker and hepatic structure and restored oxidative status by enhancing antioxidant enzyme levels and by reducing lipid peroxidation levels. In addition, CAE evidently suppressed inflammation and apoptosis in the livers of mice administered with ethanol, by 85% (tumor necrosis factor-α) and 44% compared to the control group, respectively. Furthermore, CAE activated lipid metabolism related signals and enhanced phosphorylation of AMP-activated protein kinase (AMPK) and nuclear factor E2-related factor 2 (Nrf2) with several cytoprotective proteins including heme oxygenase-1, NAD(P)H quinone oxidoreductase 1, and γ-glutamylcysteine synthetase. Taken together, the present study demonstrated that, CAE possesses antioxidant, anti-inflammatory, and antiapoptotic activity against ethanol-induced liver injury. PMID:26178909

  15. Integration of Genome-Wide Computation DRE Search, AhR ChIP-chip and Gene Expression Analyses of TCDD-Elicited Responses in the Mouse Liver

    Directory of Open Access Journals (Sweden)

    Matthews Jason

    2011-07-01

    Full Text Available Abstract Background The aryl hydrocarbon receptor (AhR is a ligand-activated transcription factor (TF that mediates responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD. Integration of TCDD-induced genome-wide AhR enrichment, differential gene expression and computational dioxin response element (DRE analyses further elucidate the hepatic AhR regulatory network. Results Global ChIP-chip and gene expression analyses were performed on hepatic tissue from immature ovariectomized mice orally gavaged with 30 μg/kg TCDD. ChIP-chip analysis identified 14,446 and 974 AhR enriched regions (1% false discovery rate at 2 and 24 hrs, respectively. Enrichment density was greatest in the proximal promoter, and more specifically, within ± 1.5 kb of a transcriptional start site (TSS. AhR enrichment also occurred distal to a TSS (e.g. intergenic DNA and 3' UTR, extending the potential gene expression regulatory roles of the AhR. Although TF binding site analyses identified over-represented DRE sequences within enriched regions, approximately 50% of all AhR enriched regions lacked a DRE core (5'-GCGTG-3'. Microarray analysis identified 1,896 number of TCDD-responsive genes (|fold change| ≥ 1.5, P1(t > 0.999. Integrating this gene expression data with our ChIP-chip and DRE analyses only identified 625 differentially expressed genes that involved an AhR interaction at a DRE. Functional annotation analysis of differentially regulated genes associated with AhR enrichment identified overrepresented processes related to fatty acid and lipid metabolism and transport, and xenobiotic metabolism, which are consistent with TCDD-elicited steatosis in the mouse liver. Conclusions Details of the AhR regulatory network have been expanded to include AhR-DNA interactions within intragenic and intergenic genomic regions. Moreover, the AhR can interact with DNA independent of a DRE core suggesting there are alternative mechanisms of AhR-mediated gene regulation.

  16. Evaluation of Aroclor 1260 exposure in a mouse model of diet-induced obesity and non-alcoholic fatty liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Wahlang, Banrida [Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202 (United States); Song, Ming [Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202 (United States); Beier, Juliane I. [Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202 (United States); Cameron Falkner, K. [Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202 (United States); Al-Eryani, Laila [Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202 (United States); Clair, Heather B.; Prough, Russell A. [Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40202 (United States); Osborne, Tanasa S.; Malarkey, David E. [Cellular and Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (United States); Christopher States, J. [Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202 (United States); Cave, Matthew C., E-mail: matt.cave@louisville.edu [Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202 (United States); Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202 (United States); The Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206 (United States)

    2014-09-15

    Polychlorinated biphenyls (PCBs) are persistent organic pollutants associated with non-alcoholic fatty liver disease (NAFLD) in epidemiologic studies. The purpose of this study was to evaluate the hepatic effects of a PCB mixture, Aroclor 1260, whose composition mimics human bioaccumulation patterns, in a mouse model of diet-induced obesity (DIO). Male C57Bl/6J mice were fed control diet or 42% high fat diet (HFD) and exposed to Aroclor 1260 (20 mg/kg or 200 mg/kg in corn oil) for 12 weeks. A glucose tolerance test was performed; plasma/tissues were obtained at necropsy for measurements of adipocytokine levels, histology, and gene expression. Aroclor 1260 exposure was associated with decreased body fat in HFD-fed mice but had no effect on blood glucose/lipid levels. Paradoxically, Aroclor 1260 + HFD co-exposed mice demonstrated increased hepatic inflammatory foci at both doses while the degree of steatosis did not change. Serum cytokines, ALT levels and hepatic expression of IL-6 and TNFα were increased only at 20 mg/kg, suggesting an inhibition of pro-inflammatory cytokine production at the 200 mg/kg exposure. Aroclor 1260 induced hepatic expression of cytochrome P450s including Cyp3a11 (Pregnane-Xenobiotic Receptor target) and Cyp2b10 (constitutive androstane receptor target) but Cyp2b10 inducibility was diminished with HFD-feeding. Cyp1a2 (aryl hydrocarbon Receptor target) was induced only at 200 mg/kg. In summary, Aroclor 1260 worsened hepatic and systemic inflammation in DIO. The results indicated a bimodal response of PCB-diet interactions in the context of inflammation which could potentially be explained by xenobiotic receptor activation. Thus, PCB exposure may be a relevant “second hit” in the transformation of steatosis to steatohepatitis. - Highlights: • Aroclor 1260 exposure decreased adiposity in mice fed with high fat diet • Aroclor 1260 exposure induced steatohepatitis in diet-induced obese mice • Aroclor 1260 (20 and 200 mg/kg) induced

  17. Evaluation of Aroclor 1260 exposure in a mouse model of diet-induced obesity and non-alcoholic fatty liver disease

    International Nuclear Information System (INIS)

    Polychlorinated biphenyls (PCBs) are persistent organic pollutants associated with non-alcoholic fatty liver disease (NAFLD) in epidemiologic studies. The purpose of this study was to evaluate the hepatic effects of a PCB mixture, Aroclor 1260, whose composition mimics human bioaccumulation patterns, in a mouse model of diet-induced obesity (DIO). Male C57Bl/6J mice were fed control diet or 42% high fat diet (HFD) and exposed to Aroclor 1260 (20 mg/kg or 200 mg/kg in corn oil) for 12 weeks. A glucose tolerance test was performed; plasma/tissues were obtained at necropsy for measurements of adipocytokine levels, histology, and gene expression. Aroclor 1260 exposure was associated with decreased body fat in HFD-fed mice but had no effect on blood glucose/lipid levels. Paradoxically, Aroclor 1260 + HFD co-exposed mice demonstrated increased hepatic inflammatory foci at both doses while the degree of steatosis did not change. Serum cytokines, ALT levels and hepatic expression of IL-6 and TNFα were increased only at 20 mg/kg, suggesting an inhibition of pro-inflammatory cytokine production at the 200 mg/kg exposure. Aroclor 1260 induced hepatic expression of cytochrome P450s including Cyp3a11 (Pregnane-Xenobiotic Receptor target) and Cyp2b10 (constitutive androstane receptor target) but Cyp2b10 inducibility was diminished with HFD-feeding. Cyp1a2 (aryl hydrocarbon Receptor target) was induced only at 200 mg/kg. In summary, Aroclor 1260 worsened hepatic and systemic inflammation in DIO. The results indicated a bimodal response of PCB-diet interactions in the context of inflammation which could potentially be explained by xenobiotic receptor activation. Thus, PCB exposure may be a relevant “second hit” in the transformation of steatosis to steatohepatitis. - Highlights: • Aroclor 1260 exposure decreased adiposity in mice fed with high fat diet • Aroclor 1260 exposure induced steatohepatitis in diet-induced obese mice • Aroclor 1260 (20 and 200 mg/kg) induced

  18. Tumor necrosis factor-α promotes cholestasis-induced liver fibrosis in the mouse through tissue inhibitor of metalloproteinase-1 production in hepatic stellate cells.

    Directory of Open Access Journals (Sweden)

    Yosuke Osawa

    Full Text Available Tumor necrosis factor (TNF-α, which is a mediator of hepatotoxicity, has been implicated in liver fibrosis. However, the roles of TNF-α on hepatic stellate cell (HSC activation and liver fibrosis are complicated and remain controversial. To explore this issue, the role of TNF-α in cholestasis-induced liver fibrosis was examined by comparing between TNF-α(-/- mice and TNF-α(+/+ mice after bile duct ligation (BDL. Serum TNF-α levels in mice were increased by common BDL combined with cystic duct ligation (CBDL+CDL. TNF-α deficiency reduced liver fibrosis without affecting liver injury, inflammatory cell infiltration, and liver regeneration after CBDL+CDL. Increased expression levels of collagen α1(I mRNA, transforming growth factor (TGF-β mRNA, and α-smooth muscle actin (αSMA protein by CBDL+CDL in the livers of TNF-α(-/- mice were comparable to those in TNF-α(+/+ mice. Exogenous administration of TNF-α decreased collagen α1(I mRNA expression in isolated rat HSCs. These results suggest that the reduced fibrosis in TNF-α(-/- mice is regulated in post-transcriptional level. Tissue inhibitor of metalloproteinase (TIMP-1 plays a crucial role in the pathogenesis of liver fibrosis. TIMP-1 expression in HSCs in the liver was increased by CBDL+CDL, and the induction was lower in TNF-α(-/- mice than in TNF-α(+/+ mice. Fibrosis in the lobe of TIMP-1(-/- mice with partial BDL was also reduced. These findings indicate that TNF-α produced by cholestasis can promote liver fibrosis via TIMP-1 production from HSCs. Thus, targeting TNF-α and TIMP-1 may become a new therapeutic strategy for treating liver fibrosis in cholestatic liver injury.

  19. Inhibition of tumor necrosis factor alpha reduces the outgrowth of hepatic micrometastasis of colorectal tumors in a mouse model of liver ischemia-reperfusion injury

    OpenAIRE

    Jiao, Shu-Fan; Sun, Kai; Chen, Xiao-Jing; Zhao, Xue; Cai, Ning; Liu, Yan-jun; Xu, Long-Mei; Kong, Xian-Ming; Wei, Li-Xin

    2014-01-01

    Background Patients with colorectal cancer (CRC) often develop liver metastases, in which case surgery is considered the only potentially curative treatment option. However, liver surgery is associated with a risk of ischemia-reperfusion (IR) injury, which is thought to promote the growth of colorectal liver metastases. The influence of IR-induced tumor necrosis factor alpha (TNF-α) elevation in the process still is unknown. To investigate the role of TNF-α in the growth of pre-existing micro...

  20. 小鼠肝脏磷酸化蛋白质组鉴定及磷酸化修饰激酶的分析%Mouse liver phosphoproteome methodology optimization and kinase analysis

    Institute of Scientific and Technical Information of China (English)

    林丛; 任亮亮; 姜颖; 贺福初

    2015-01-01

    Objective To analyze the construction of mouse liver phosphoproteome and phosphorylated kinases to provide useful information for integrating mouse kinase phosphorylation regulatory networks.Methods A new method was established to identify phosphoproteome from the mouse liver.First of all, liver protein was digested with trypsin before the resulting peptides were subjected to a two-step phosphopeptide enrichment and separation procedure consisting of TiO2 chro-maphy enrichment combined with high pHHPLC separation.Samples were injected onto aNanolC-Ultra-2Dplus system cou-pled to an AB-Sciex 5600 Triple TOF mass spectrometer instrument.Then data analysis was performed to provide information of new identified phosphorylation sites of kinase.Results and Conclusion Using our efficient and high-throughput platform, we reported the identification of 5386 phosophorylation sites and 4553 phosphopeptides from 1533 proteins of the mouse liver.126 new phosphorylation sites were identified from 116 kinases, which provides valuable infor-mation for phosphorylation networks in the mouse liver.%目的:构建小鼠肝脏磷酸化蛋白质组并对磷酸化激酶进行分析,为完善小鼠激酶磷酸化调控网络提供有价值的信息。方法对正常小鼠肝组织总蛋白提取液进行FASP酶切,用TiO2富集磷酸化肽段,为降低样本的复杂度,对富集到的磷酸化肽段进行反相色谱分离后,质谱鉴定样本中的磷酸化蛋白质组,对鉴定到的磷酸化修饰的激酶进行分析,提供新鉴定到磷酸化修饰位点的信息。结果与结论成功构建了高效的鉴定小鼠肝磷酸化蛋白质组的方法,共鉴定到1533个磷酸化蛋白质,从中确认5386个磷酸化位点和4553个磷酸化肽段,其中包含116磷酸化修饰的激酶,并于发生磷酸化修饰的激酶中成功鉴定到126个新的磷酸化修饰位点,为完善小鼠肝磷酸化信号调控网络提供了有价值的信息。

  1. Effects of CXCR4 siRNA/dextran-spermine nanoparticles on CXCR4 expression and serum LDH levels in a mouse model of colorectal cancer metastasis to the liver

    Directory of Open Access Journals (Sweden)

    Abedini F

    2011-09-01

    Full Text Available Fatemeh Abedini1, Maznah Ismail1,4, Hossein Hosseinkhani2, Tengku Azmi Tengku Ibrahim1,3, Abdul Rahman Omar1,3, Pei Pei Chong4, Mohd Hair Bejo3, Abraham J Domb51Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Selangor Darul Ehsan, Malaysia; 2Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan; 3Faculty of Veterinary Medicine, 4Faculty of Medicine and Health Science, Universiti Putra Malaysia, Selangor Darul Ehsan, Malaysia; 5Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Hebrew University-Hadassah Medical School, Jerusalem, IsraelAbstract: Liver metastasis is the main cause of mortality related to colorectal cancer. CXCR4 is necessary for the outgrowth of colon cancer micrometastases. In oncology, it has been demonstrated that several human tumors release lactate dehydrogenase (LDH into the circulation. CXCR4 gene expression and serum LDH levels are often increased in patients with colorectal cancer. Despite technological advances in cancer therapy, five-year overall survival is still around 50%. Therefore, better treatment needs to be developed. RNA interference (RNAi is a modern and powerful tool for inhibition of gene expression. However, the rate-limiting step in this technology is effective delivery of RNAi agents. We have investigated a novel strategy of CXCR4 siRNA therapy and its effect on serum LDH levels in a BALB/C mouse model of colorectal cancer metastasis to the liver. Hepatic metastasis was established by injecting a CT26.WT mouse colon carcinoma cell line via the tail vein. Our results demonstrated that CXCR4 siRNA/dextran-spermine nanoparticles achieved high silencing efficiency with low toxicity. Favorable localization of the nanoparticles was confirmed with CXCR4 gene expression in the liver, that was correlated with serum LDH levels. More research will be needed to determine the effect of CXCR4

  2. CD8+ T cells from a novel T cell receptor transgenic mouse induce liver-stage immunity that can be boosted by blood-stage infection in rodent malaria.

    Directory of Open Access Journals (Sweden)

    Lei Shong Lau

    2014-05-01

    Full Text Available To follow the fate of CD8+ T cells responsive to Plasmodium berghei ANKA (PbA infection, we generated an MHC I-restricted TCR transgenic mouse line against this pathogen. T cells from this line, termed PbT-I T cells, were able to respond to blood-stage infection by PbA and two other rodent malaria species, P. yoelii XNL and P. chabaudi AS. These PbT-I T cells were also able to respond to sporozoites and to protect mice from liver-stage infection. Examination of the requirements for priming after intravenous administration of irradiated sporozoites, an effective vaccination approach, showed that the spleen rather than the liver was the main site of priming and that responses depended on CD8α+ dendritic cells. Importantly, sequential exposure to irradiated sporozoites followed two days later by blood-stage infection led to augmented PbT-I T cell expansion. These findings indicate that PbT-I T cells are a highly versatile tool for studying multiple stages and species of rodent malaria and suggest that cross-stage reactive CD8+ T cells may be utilized in liver-stage vaccine design to enable boosting by blood-stage infections.

  3. Hydrodynamic Gene Delivery of Interleukin-22 Protects the Mouse Liver from Concanavalin A-, Carbon Tetrachloride-, and Fas Ligand-Induced Injury via Activation of STAT3

    Institute of Scientific and Technical Information of China (English)

    Hongna Pan; Feng Hong; Svetlana Radaeva; Bin Gao

    2004-01-01

    Interleukin-22 (IL-22) is a recently identified T cell-derived cytokine whose biological significance remains obscure. Previously, we have shown that IL-22 plays a protective role in T cell-mediated hepatitis induced by Concanavalin A (Con A), acting as a survival factor for hepatocytes. In the present paper, we demonstrate that hydrodynamic gene delivery of IL-22 cDNA driven either by a liver-specific albumin promoter or a human cytomegalovirus (CMV) promoter results in IL-22 protein expression, STAT3 activation, and expression of several anti-apoptotic proteins, including Bcl-xL, Bcl-2, and Mcl-1 in the liver. Immunohistochemical analysis reveals that IL-22 protein expression is mainly detected in the cytoplasm of hepatocytes. Overexpression of IL-22 by hydrodynamic gene delivery significantly protects against liver injury, necrosis, and apoptosis induced by administration of Con A, carbon tetrachloride (CCl4), or the Fas agonist Jo-2 mAb. Western blot analyses show that overexpression of IL-22 significantly enhances activation of STAT3 and expression of Bcl-xL, Bcl-2,and Mcl-1 proteins in liver injury induced by Con A. In conclusion, hydrodynamic gene delivery of IL-22 protects against liver injury induced by a variety of toxins, suggesting the therapeutic potential of IL-22 in treating human liver disease. Cellular & Molecular Immunology. 2004;1(1):43-49.

  4. Hydrodynamic Gene Delivery of Interleukin-22 Protects the Mouse Liver from Concanavalin A-, Carbon Tetrachloride-, and Fas Ligand-Induced Injury via Activation of STAT3

    Institute of Scientific and Technical Information of China (English)

    HongnaPan; FengHong; SvetlanaRadaeva; BinGao

    2004-01-01

    Interleukin-22 (IL-22) is a recently identified T cell-derived cytokine whose biological significance remains obscure. Previously, we have shown that IL-22 plays a protective role in T cell-mediated hepatitis induced by Concanavalin A (Con A), acting as a survival factor for hepatocytes. In the present paper, we demonstrate that hydrodynamic gene delivery of IL-22 cDNA driven either by a liver-specific albumin promoter or a human cytomegalovirus (CMV) promoter results in IL-22 protein expression, STAT3 activation, and expression of several anti-apoptotic proteins, including Bcl-xL, Bcl-2, and Mcl-1 in the liver. Immunohistochemical analysis reveals that IL-22 protein expression is mainly detected in the cytoplasm of hepatocytes. Overexpression of IL-22 by hydrodynamic gene delivery significantly protects against liver injury, necrosis, and apoptosis induced by administration of Con A, carbon tetrachloride (CCl4), or the Fas agonist Jo-2 mAb. Western blot analyses show that overexpression of IL-22 significantly enhances activation of STAT3 and expression of Bcl-xL, Bcl-2, and Mcl-1 proteins in liver injury induced by Con A. In conclusion, hydrodynamic gene delivery of IL-22 protects against liver injury induced by a variety of toxins, suggesting the therapeutic potential of IL-22 in treating human liver disease. Cellular & Molecular Immunology. 2004;1(1):43-49.

  5. Cross-species comparison of biological themes and underlying genes on a global gene expression scale in a mouse model of colorectal liver metastasis and in clinical specimens

    Directory of Open Access Journals (Sweden)

    Schirmacher Peter

    2008-09-01

    Full Text Available Abstract Background Invasion-related genes over-expressed by tumor cells as well as by reacting host cells represent promising drug targets for anti-cancer therapy. Such candidate genes need to be validated in appropriate animal models. Results This study examined the suitability of a murine model (CT26/Balb/C of colorectal liver metastasis to represent clinical liver metastasis specimens using a global gene expression approach. Cross-species similarity was examined between pure liver, liver invasion, tumor invasion and pure tumor compartments through overlap of up-regulated genes and gene ontology (GO-based biological themes on the level of single GO-terms and of condensed GO-term families. Three out of four GO-term families were conserved in a compartment-specific way between the species: secondary metabolism (liver, invasion (invasion front, and immune response (invasion front and liver. Among the individual GO-terms over-represented in the invasion compartments in both species were "extracellular matrix", "cell motility", "cell adhesion" and "antigen presentation" indicating that typical invasion related processes are operating in both species. This was reflected on the single gene level as well, as cross-species overlap of potential target genes over-expressed in the combined invasion front compartments reached up to 36.5%. Generally, histopathology and gene expression correlated well as the highest single gene overlap was found to be 44% in syn-compartmental comparisons (liver versus liver whereas cross-compartmental overlaps were much lower (e.g. liver versus tumor: 9.7%. However, single gene overlap was surprisingly high in some cross-compartmental comparisons (e.g. human liver invasion compartment and murine tumor invasion compartment: 9.0% despite little histolopathologic similarity indicating that invasion relevant genes are not necessarily confined to histologically defined compartments. Conclusion In summary, cross

  6. 5-Cholesten-3β,25-Diol 3-Sulfate Decreases Lipid Accumulation in Diet-Induced Nonalcoholic Fatty Liver Disease Mouse Model

    OpenAIRE

    Xu, Leyuan; Kim, Jin Koung; Bai, Qianming; Zhang, Xin; Kakiyama, Genta; Min, Hae-Ki; Arun J Sanyal; Pandak, William M.; Ren, Shunlin

    2013-01-01

    Sterol regulatory element-binding protein-1c (SREBP-1c) increases lipogenesis at the transcriptional level, and its expression is upregulated by liver X receptor α (LXRα). The LXRα/SREBP-1c signaling may play a crucial role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). We previously reported that a cholesterol metabolite, 5-cholesten-3β,25-diol 3-sulfate (25HC3S), inhibits the LXRα signaling and reduces lipogenesis by decreasing SREBP-1c expression in primary hepatocytes. T...

  7. Liver metastases

    Science.gov (United States)

    Metastases to the liver; Metastatic liver cancer; Liver cancer - metastatic ... Almost any cancer can spread to the liver. Cancers that can ... Lung cancer Melanoma Pancreatic cancer Stomach cancer The risk ...

  8. Effects of Perfluorooctanoic Acid on Metabolic Profiles in Brain and Liver of Mouse Revealed by a High-throughput Targeted Metabolomics Approach

    Science.gov (United States)

    Yu, Nanyang; Wei, Si; Li, Meiying; Yang, Jingping; Li, Kan; Jin, Ling; Xie, Yuwei; Giesy, John P.; Zhang, Xiaowei; Yu, Hongxia

    2016-04-01

    Perfluorooctanoic acid (PFOA), a perfluoroalkyl acid, can result in hepatotoxicity and neurobehavioral effects in animals. The metabolome, which serves as a connection among transcriptome, proteome and toxic effects, provides pathway-based insights into effects of PFOA. Since understanding of changes in the metabolic profile during hepatotoxicity and neurotoxicity were still incomplete, a high-throughput targeted metabolomics approach (278 metabolites) was used to investigate effects of exposure to PFOA for 28 d on brain and liver of male Balb/c mice. Results of multivariate statistical analysis indicated that PFOA caused alterations in metabolic pathways in exposed individuals. Pathway analysis suggested that PFOA affected metabolism of amino acids, lipids, carbohydrates and energetics. Ten and 18 metabolites were identified as potential unique biomarkers of exposure to PFOA in brain and liver, respectively. In brain, PFOA affected concentrations of neurotransmitters, including serotonin, dopamine, norepinephrine, and glutamate in brain, which provides novel insights into mechanisms of PFOA-induced neurobehavioral effects. In liver, profiles of lipids revealed involvement of β-oxidation and biosynthesis of saturated and unsaturated fatty acids in PFOA-induced hepatotoxicity, while alterations in metabolism of arachidonic acid suggesting potential of PFOA to cause inflammation response in liver. These results provide insight into the mechanism and biomarkers for PFOA-induced effects.

  9. Effects of Perfluorooctanoic Acid on Metabolic Profiles in Brain and Liver of Mouse Revealed by a High-throughput Targeted Metabolomics Approach

    Science.gov (United States)

    Yu, Nanyang; Wei, Si; Li, Meiying; Yang, Jingping; Li, Kan; Jin, Ling; Xie, Yuwei; Giesy, John P.; Zhang, Xiaowei; Yu, Hongxia

    2016-01-01

    Perfluorooctanoic acid (PFOA), a perfluoroalkyl acid, can result in hepatotoxicity and neurobehavioral effects in animals. The metabolome, which serves as a connection among transcriptome, proteome and toxic effects, provides pathway-based insights into effects of PFOA. Since understanding of changes in the metabolic profile during hepatotoxicity and neurotoxicity were still incomplete, a high-throughput targeted metabolomics approach (278 metabolites) was used to investigate effects of exposure to PFOA for 28 d on brain and liver of male Balb/c mice. Results of multivariate statistical analysis indicated that PFOA caused alterations in metabolic pathways in exposed individuals. Pathway analysis suggested that PFOA affected metabolism of amino acids, lipids, carbohydrates and energetics. Ten and 18 metabolites were identified as potential unique biomarkers of exposure to PFOA in brain and liver, respectively. In brain, PFOA affected concentrations of neurotransmitters, including serotonin, dopamine, norepinephrine, and glutamate in brain, which provides novel insights into mechanisms of PFOA-induced neurobehavioral effects. In liver, profiles of lipids revealed involvement of β-oxidation and biosynthesis of saturated and unsaturated fatty acids in PFOA-induced hepatotoxicity, while alterations in metabolism of arachidonic acid suggesting potential of PFOA to cause inflammation response in liver. These results provide insight into the mechanism and biomarkers for PFOA-induced effects. PMID:27032815

  10. Metformin Prevents Fatty Liver and Improves Balance of White/Brown Adipose in an Obesity Mouse Model by Inducing FGF21.

    Science.gov (United States)

    Kim, Eun Kyung; Lee, Seung Hoon; Jhun, Joo Yeon; Byun, Jae Kyeong; Jeong, Jeong Hee; Lee, Seon-Young; Kim, Jae Kyung; Choi, Jong Young; Cho, Mi-La

    2016-01-01

    Obesity and its associated metabolic disorders are related to the onset of fatty liver and the balance of white adipose tissue (WAT) and brown adipose tissue (BAT). We hypothesized that metformin, an effective pharmacological treatment for type 2 diabetes, would inhibit white adipogenesis, fatty liver, and metabolic dysfunction. Metformin was treated daily for 14 weeks in a high-fat dieting C57BL/6J mice. Serum biomarkers were analyzed and protein level was assessed using confocal staining or flow cytometry. The development of lipid drops in the liver cells and white adipocyte was measured using hematoxylin and eosin or Oil Red O stains. Gene expressions were analyzed with quantitative real-time PCR. Metformin treatment decreased the body weight and improved the metabolic profile of obese mice. In obese mice, metformin also induced the expression of BAT-related markers and increased fibroblast growth factor (FGF) 21 expression in the liver and in white adipocyte. Metformin suppressed white adipocyte differentiation via induction of FGF21. Metformin improves Treg/Th17 balance in CD4+ T cells in mice with high-fat diet-induced obesity. Metformin also improves glucose metabolism and metabolic disorder. Interleukin-17 deficiency also decreases inflammation in mice. Therefore, metformin may be therapeutically useful for the treatment of obesity and metabolic dysfunction. PMID:27057099

  11. Transcriptomic signatures of peroxisome proliferator-activated receptor a (PPARa) in different mouse liver models identify novel aspects of its biology

    NARCIS (Netherlands)

    Szalowska, E.; Tesfay, H.A.; Hijum, van S.A.F.T.; Kersten, A.H.

    2014-01-01

    Background The peroxisome proliferator-activated receptor alpha (PPARa) is a ligand-activated transcription factor that regulates lipid catabolism and inflammation and is hepatocarcinogenic in rodents. It is presumed that the functions of PPARa in liver depend on cross-talk between parenchymal (hepa

  12. Transcriptomic signatures of peroxisome proliferator-activated receptor alpha (PPARalpha) in different mouse liver models identify novel aspects of its biology

    NARCIS (Netherlands)

    Szalowska, E.; Tesfay, H.A.; Hijum, S.A.F.T. van; Kersten, S.

    2014-01-01

    BACKGROUND: The peroxisome proliferator-activated receptor alpha (PPARalpha) is a ligand-activated transcription factor that regulates lipid catabolism and inflammation and is hepatocarcinogenic in rodents. It is presumed that the functions of PPARalpha in liver depend on cross-talk between parenchy

  13. LPSF/GQ-02 inhibits the development of hepatic steatosis and inflammation in a mouse model of non-alcoholic fatty liver disease (NAFLD.

    Directory of Open Access Journals (Sweden)

    Amanda Karolina Soares e Silva

    Full Text Available Non-alcoholic fatty liver disease (NAFLD defines a wide spectrum of liver diseases that extends from simple steatosis to non-alcoholic steatohepatitis. Although the pathogenesis of NAFLD remains undefined, it is recognized that insulin resistance is present in almost all patients who develop this disease. Thiazolidinediones (TZDs act as an insulin sensitizer and have been used in the treatment of patients with type 2 diabetes and other insulin-resistant conditions, including NAFLD. Hence, therapy of NAFLD with insulin-sensitizing drugs should ideally improve the key hepatic histological changes, while also reducing cardiometabolic and cancer risks. Controversially, TZDs are associated with the development of cardiovascular events and liver problems. Therefore, there is a need for the development of new therapeutic strategies to improve liver function in patients with chronic liver diseases. The aim of the present study was to assess the therapeutic effects of LPSF/GQ-02 on the liver of LDLR-/- mice after a high-fat diet. Eighty male mice were divided into 4 groups and two different experiments: 1-received a standard diet; 2-fed with a high-fat diet (HFD; 3-HFD+pioglitazone; 4-HFD+LPSF/GQ-02. The experiments were conducted for 10 or 12 weeks and in the last two or four weeks respectively, the drugs were administered daily by gavage. The results obtained with an NAFLD murine model indicated that LPSF/GQ-02 was effective in improving the hepatic architecture, decreasing fat accumulation, reducing the amount of collagen, decreasing inflammation by reducing IL-6, iNOS, COX-2 and F4 / 80, and increasing the protein expression of IκBα, cytoplasmic NFκB-65, eNOS and IRS-1 in mice LDLR -/-. These results suggest a direct action by LPSF/GQ-02 on the factors that affect inflammation, insulin resistance and fat accumulation in the liver of these animals. Further studies are being conducted in our laboratory to investigate the possible mechanism of action

  14. Generation of insulin-producing cells from the mouse liver using β cell-related gene transfer including Mafa and Mafb.

    Directory of Open Access Journals (Sweden)

    Haruka Nagasaki

    Full Text Available Recent studies on the large Maf transcription factors have shown that Mafb and Mafa have respective and distinctive roles in β-cell development and maturation. However, whether this difference in roles is due to the timing of the gene expression (roughly, expression of Mafb before birth and of Mafa after birth or to the specific function of each gene is unclear. Our aim was to examine the functional differences between these genes that are closely related to β cells by using an in vivo model of β-like cell generation. We monitored insulin gene transcription by measuring bioluminescence emitted from the liver of insulin promoter-luciferase transgenic (MIP-Luc-VU mice. Adenoviral gene transfers of Pdx1/Neurod/Mafa (PDA and Pdx1/Neurod/Mafb (PDB combinations generated intense luminescence from the liver that lasted for more than 1 week and peaked at 3 days after transduction. The peak signal intensities of PDA and PDB were comparable. However, PDA but not PDB transfer resulted in significant bioluminescence on day 10, suggesting that Mafa has a more sustainable role in insulin gene activation than does Mafb. Both PDA and PDB transfers ameliorated the glucose levels in a streptozotocin (STZ-induced diabetic model for up to 21 days and 7 days, respectively. Furthermore, PDA transfer induced several gene expressions necessary for glucose sensing and insulin secretion in the liver on day 9. However, a glucose tolerance test and liver perfusion experiment did not show glucose-stimulated insulin secretion from intrahepatic β-like cells. These results demonstrate that bioluminescence imaging in MIP-Luc-VU mice provides a noninvasive means of detecting β-like cells in the liver. They also show that Mafa has a markedly intense and sustained role in β-like cell production in comparison with Mafb.

  15. Increased placental fatty acid transporter 6 and binding protein 3 expression and fetal liver lipid accumulation in a mouse model of obesity in pregnancy.

    Science.gov (United States)

    Díaz, Paula; Harris, Jessica; Rosario, Fredrick J; Powell, Theresa L; Jansson, Thomas

    2015-12-15

    Obesity in pregnancy is associated with increased fetal growth and adiposity, which, in part, is determined by transplacental nutrient supply. Trophoblast uptake and intracellular trafficking of lipids are dependent on placental fatty acid transport proteins (FATP), translocase (FAT/CD36), and fatty acid binding proteins (FABP). We hypothesized that maternal obesity in mice leads to increased placental expression of FAT/CD36, FATPs, and FABPs, and lipid accumulation in the fetal liver. C57/BL6J female mice were fed either a control (C; n = 10) or an obesogenic (OB; n = 10) high-fat, high-sugar diet before mating and throughout pregnancy. At E18.5, placentas and fetal livers were collected. Trophoblast plasma membranes (TPM) were isolated from placental homogenates. Expression of FAT/CD36 and FATP (TPM) and FABP (homogenates) was determined by immunoblotting. Gene expression was assessed by RT-quantitative PCR. Sections of fetal livers were stained for Oil Red O, and lipid droplets were quantified. TPM protein expression of FAT/CD36, FATP 2, and FATP 4 was comparable between C and OB groups. Conversely, TPM FATP 6 expression was increased by 35% in OB compared with C placentas without changes in mRNA expression. FABPs 1, 3-5 and PPARγ were expressed in homogenates, and FABP 3 expression increased 27% in OB compared with C placentas; however, no changes were observed in mRNA expression. Lipid droplet accumulation was 10-fold higher in the livers of fetuses from OB compared with C group. We propose that increased lipid transport capacity in obese mice promotes transplacental fatty acid transport and contributes to excess lipid accumulation in the fetal liver. PMID:26491104

  16. Progression of Liver Disease

    Science.gov (United States)

    ... Browse Related Terms Progression of Liver Disease , Family History of Liver Disease , Liver Wellness , Liver Failure , Liver Biopsy Home > Your Liver > Liver Disease Information > The Progression ...

  17. Galectin-3 Ablation Enhances Liver Steatosis, but Attenuates Inflammation and IL-33-Dependent Fibrosis in Obesogenic Mouse Model of Nonalcoholic Steatohepatitis.

    Science.gov (United States)

    Jeftic, Ilija; Jovicic, Nemanja; Pantic, Jelena; Arsenijevic, Nebojsa; Lukic, Miodrag L; Pejnovic, Nada

    2015-01-01

    The importance of Galectin-3 (Gal-3) in obesity-associated liver pathology is incompletely defined. To dissect the role of Gal-3 in fibrotic nonalcoholic steatohepatitis (NASH), Gal-3-deficient (LGALS3(-/-)) and wild-type (LGALS3(+/+)) C57Bl/6 mice were placed on an obesogenic high fat diet (HFD, 60% kcal fat) or standard chow diet for 12 and 24 wks. Compared to WT mice, HFD-fed LGALS3(-/-) mice developed, in addition to increased visceral adiposity and diabetes, marked liver steatosis, which was accompanied with higher expression of hepatic PPAR-γ, Cd36, Abca-1 and FAS. However, as opposed to LGALS3(-/-) mice, hepatocellular damage, inflammation and fibrosis were more extensive in WT mice which had an elevated number of mature myeloid dendritic cells, proinflammatory CD11b(+)Ly6C(hi) monocytes/macrophages in liver, peripheral blood and bone marrow, and increased hepatic CCL2, F4/80, CD11c, TLR4, CD14, NLRP3 inflammasome, IL-1β and NADPH-oxidase enzymes mRNA expression. Thus, obesity-driven greater steatosis was uncoupled with attenuated fibrotic NASH in Gal-3-deficient mice. HFD-fed WT mice had a higher number of hepatocytes that strongly expressed IL-33 and hepatic CD11b(+)IL-13(+) cells, increased levels of IL-33 and IL-13 and up-regulated IL-33, ST2 and IL-13 mRNA in liver compared with LGALS3(-/-) mice. IL-33 failed to induce ST2 upregulation and IL-13 production by LGALS3(-/-) peritoneal macrophages in vitro. Administration of IL-33 in vivo enhanced liver fibrosis in HFD-fed mice in both genotypes, albeit to a significantly lower extent in LGALS3(-/-) mice, which was associated with less numerous hepatic IL-13-expressing CD11b(+) cells. The present study provides evidence of a novel role for Gal-3 in regulating IL-33-dependent liver fibrosis. PMID:26018806

  18. In vivo MRS assessment of altered fatty acyl unsaturation in liver tumor formation of a TGFα/c-myc transgenic mouse model*

    OpenAIRE

    Griffitts, J.; Tesiram, Y.; Reid, G. E.; Saunders, D; Floyd, R A; Towner, R. A.

    2009-01-01

    Current detection methods (computed tomography, ultrasound, and MRI) for hepatocarcinogenesis in humans rely on visual confirmation of neoplastic formations. A more effective early detection method is needed. Using in vivo magnetic resonance spectroscopy (MRS), we show that alterations in the integral ratios of the bis-allyl to vinyl hydrogen protons in unsaturated lipid fatty acyl groups correlate with the development of neoplastic formations in vivo in a TGFα/c-myc mouse hepatocellular carc...

  19. Retinoic acid enhances expression of neural specific genes in Sca-1+ cells of mouse fetal liver through activating protein kinase C

    Institute of Scientific and Technical Information of China (English)

    Gexiu Liu; Yuan Zhang; Dongmei He

    2006-01-01

    BACKGROUND: Interstitial stem cell is characterized by multiple differentiations,and retinoic acid (RA) can induce differentiation of stromal cells into nerve tissue cells in fetal liver of mice, so, its signal transduction pathway should be discussed to trigger differentiation.OBJECTIVE: To study the effect of RA on expression of neural specific gene and its signal transduction in fetal liver of mice.DESIGN: Paired controlled study on the basis of cell.SETTING: Institute of Hematology, Medical College of Jinan University.MATERIALS: The experiment was completed in the Institute of Hematology, Medical College of Jinan University from April to December 2005. C57BL/6 mice, of clean grade, aged 8-10 weeks, weighting 20-35 g,10 females and 4 males, were selected in this study.METHODS: Sca-1+ cells in fetal liver were prepared with MACS kit and cultured with DMEM + 10% fetal bovine serum (FBS). On the fourth day, it was added with or without protein kinase C (PKC) inhibitor chelerythrine chloride (3 μmol/L) and 5×10-7 mol/L RA for 24 hours, and then incubated in serum-free medium for 5 days. Expressions of genes were assayed by Western blotting and semi-quantitative RT-PCR.MAIN OUTCOME MEASURES: Expression of neural specific gene NF-L, NF-H, BF-1 and TH.RESULTS: Expression of neural specific gene NF-L, NF-H, BF-1 and TH was significantly increased after treatment with RA and they were increased 5.06, 5.15, 4.63 and 3.33 times, respectively. However, chelerythrine chloride could inhibit expression of neural specific gene NF-L, NF-H, BF-1 and TH induced by RA.CONCLUSION: RA can promote the expression of neural specific genes in Sca-1+ cells of fetal liver, and its pathway may be related to PKC.

  20. 小鼠肝脏磷酸化蛋白质组的二维液相色谱分离%Two dimensional liquid phase chromatographic fractionation of phosphoproteome of mouse liver

    Institute of Scientific and Technical Information of China (English)

    黎永明; 陈腾祥; 杨丽萍; 刘亚伟; 姜勇

    2005-01-01

    Objective To fractionate phosphoproteome of mouse liver by two-dimensional (2D) liquid phase chromatography fractionation. Methods Phosphoproteins were extracted from lysates of normal mice livers by phosphate metal affinity chromatography (PMAC) resin. The phosphoproteins were exchanged by start buffer and separated by chromatofocusing in the first dimension. Then the fractions between pH 8.5 and pH 4.0 were separated by non-porous silica (NPS) reverse-phase high performance liquid chromatography (RP-HPLC). Finally, the UV maps were converted into gel-like maps by ProteoVue software. Results Phosphoproteins of mouse liver were successfully extracted and fractionated by two dimensional liquid phase chromatographic fractionation after concentration and desalt. Then pI/UV map of mouse liver phosphoproteome was successfully set-up. There are 16 fractions between pH 8.5 and pH 4.0 after chromatofocusing in the first dimension and the UV maps of each fraction were converted into pI/UV gel-like maps. Conclusions Combination of technique of phosphoproteins enrichment and 2-D liquid phase chromatographic fractionation is an effective approach to research phosphoproteome and the key base for further identification and investigation of phosphoproteins.%目的利用二维液相色谱法分离小鼠肝脏磷酸化蛋白质组.方法取正常小鼠肝脏,裂解肝脏后利用磷酸盐金属亲和层析(PMAC)树脂提取磷酸化蛋白.将磷酸化蛋白用初始缓冲液置换后,进行一维色谱聚焦分离,再将一维收集的pH值在8.5至4.0之间的组分分别进行二维无孔硅胶反相高效液相色谱(RP-HPLC)分离.最后利用ProteoVue软件将二维UV图转换成胶图进行分析.结果成功提取了小鼠肝脏磷酸化蛋白,并在浓缩除盐后通过二维液相色谱分离成功建立小鼠肝脏磷酸化蛋白质组pI/UV图谱.其中,一维色谱聚焦分离pH值在8.5至4.0之间共收集16个组分,每个组分的二维UV图转换成p

  1. Gas Chromatography/Mass Spectrometry-Based Metabolomic Profiling Reveals Alterations in Mouse Plasma and Liver in Response to Fava Beans

    Science.gov (United States)

    Zhong, Guobing; Yan, Dongjing; Zeng, Huazong; Cai, Wangwei

    2016-01-01

    Favism is a life-threatening hemolytic anemia resulting from the intake of fava beans by susceptible individuals with low erythrocytic glucose 6-phosphate dehydrogenase (G6PD) activity. However, little is known about the metabolomic changes in plasma and liver after the intake of fava beans in G6PD normal and deficient states. In this study, gas chromatography/mass spectrometry was used to analyze the plasma and liver metabolic alterations underlying the effects of fava beans in C3H- and G6PD-deficient (G6PDx) mice, and to find potential biomarkers and metabolic changes associated with favism. Our results showed that fava beans induced oxidative stress in both C3H and G6PDx mice. Significantly, metabolomic differences were observed in plasma and liver between the control and fava bean treated groups of both C3H and G6PDx mice. The levels of 7 and 21 metabolites in plasma showed significant differences between C3H-control (C3H-C)- and C3H fava beans-treated (C3H-FB) mice, and G6PDx-control (G6PDx-C)- and G6PDx fava beans-treated (G6PDx-FB) mice, respectively. Similarly, the levels of 7 and 25 metabolites in the liver showed significant differences between C3H and C3H-FB, and G6PDx and G6PDx-FB, respectively. The levels of oleic acid, linoleic acid, and creatinine were significantly increased in the plasma of both C3H-FB and G6PDx-FB mice. In the liver, more metabolic alterations were observed in G6PDx-FB mice than in C3H-FB mice, and were involved in a sugar, fatty acids, amino acids, cholesterol biosynthesis, the urea cycle, and the nucleotide metabolic pathway. These findings suggest that oleic acid, linoleic acid, and creatinine may be potential biomarkers of the response to fava beans in C3H and G6PDx mice and therefore that oleic acid and linoleic acid may be involved in oxidative stress induced by fava beans. This study demonstrates that G6PD activity in mice can affect their metabolic pathways in response to fava beans. PMID:26981882

  2. The roles of co-chaperone CCRP/DNAJC7 in Cyp2b10 gene activation and steatosis development in mouse livers.

    Directory of Open Access Journals (Sweden)

    Marumi Ohno

    Full Text Available Cytoplasmic constitutive active/androstane receptor (CAR retention protein (CCRP and also known as DNAJC7 is a co-chaperone previously characterized to retain nuclear receptor CAR in the cytoplasm of HepG2 cells. Here we have produced CCRP knockout (KO mice and demonstrated that CCRP regulates CAR at multiple steps in activation of the cytochrome (Cyp 2b10 gene in liver: nuclear accumulation, RNA polymerase II recruitment and epigenetic modifications. Phenobarbital treatment greatly increased nuclear CAR accumulation in the livers of KO males as compared to those of wild type (WT males. Despite this accumulation, phenobarbital-induced activation of the Cyp2b10 gene was significantly attenuated. In ChIP assays, a CAR/retinoid X receptor-α (RXRα heterodimer binding to the Cyp2b10 promoter was already increased before phenobarbital treatment and further pronounced after treatment. However, RNA polymerase II was barely recruited to the promoter even after phenobarbital treatment. Histone H3K27 on the Cyp2b10 promoter was de-methylated only after phenobarbital treatment in WT but was fully de-methylated before treatment in KO males. Thus, CCRP confers phenobarbital-induced de-methylation capability to the promoter as well as the phenobarbital responsiveness of recruiting RNA polymerase II, but is not responsible for the binding between CAR and its cognate sequence, phenobarbital responsive element module. In addition, KO males developed steatotic livers and increased serum levels of total cholesterol and high density lipoprotein in response to fasting. CCRP appears to be involved in various hepatic regulations far beyond CAR-mediated drug metabolism.

  3. Effect of low lead doses in vitro and in vivo on the d-ala-d activity of erythrocytes, bone marrow cells, liver and brain of the mouse

    Energy Technology Data Exchange (ETDEWEB)

    Schlick, E.; Mengel, K.; Friedberg, K.D.

    1983-07-01

    The d-ala-d activity in erythrocytes (RBC), femur bone marrow, liver and brain of mice was determined using a modification of the method of Berlin and Schaller. In vitro incubation of lead acetate (PbAc) with these tissues resulted in a dose-dependent inhibition of the d-ala-d activity. The lead concentration which caused a 50% inhibition of the d-ala-d activity after 10 min incubation (ED-50sub((10min))) was 0.78 mg PbAc/femur bone marrow, 3.72 ..mu..g PbAc/ml RBC, 15.85 ..mu..g PbAc/g brain and 43.05 ..mu..g PbAc/g liver. An increase in the incubation time to 60 min reduced these ED-50 values between 44% for the erythrocytic enzyme and 67% for the brain enzyme. In vivo treatment of mice with oral lead administration (absorbed dose range: 1-100 ..mu..g PbAc/kg b.w.) for 1 or 3 months led to a dose-dependent and organ-specific inhibition of the d-ala-d activity. After 3 months of oral lead supply the maximum enzyme inhibition (54%) was found in the bone marrow. At the same time the lowest enzyme inhibition could be seen in the brain which retained 73% of its activity. The erythrocytic and liver enzyme activity was 71% and 72% resp. of the appropriate control. Within 3 weeks after completing the oral lead administration the brain enzyme activity was completely restored. The erythrocytic and liver enzyme activities were still significantly, but not very markedly inhibited, whereas the bone marrow d-ala-d remained seriously depressed. According to these experiments, the lead dose which causes a long term inhibition of the bone marrow and erythrocytic d-ala-d activities is assumed to range between 50 and 100 ..mu..g PbAc/kg b.w. and day, as an absorbed dose.

  4. Liver Panel

    Science.gov (United States)

    ... liver damage. Alpha-feto protein (AFP) – associated with regeneration or proliferation of liver cell Autoimmune antibodies (e. ... the body – such as in the skeletal muscles, pancreas, or heart. It may also indicate early liver ...

  5. Liver biopsy

    Science.gov (United States)

    Biopsy - liver; Percutaneous biopsy ... the biopsy needle to be inserted into the liver. This is often done by using ultrasound. The ... the chance of damage to the lung or liver. The needle is removed quickly. Pressure will be ...

  6. Transplantable liver production plan: "Yamaton"--liver project, Japan.

    Science.gov (United States)

    Hata, Toshiyuki; Uemoto, Shinji; Kobayashi, Eiji

    2013-10-01

    Organ grafts developed in the xenogeneic pig scaffold are expected to resolve most issues of donor safety and ethical concerns about living-donor liver transplantation in Japan. We have been working on so-called "Yamaton" projects to develop transplantable organs using genetically engineered pigs. Our goal is to produce chimeric livers with human parenchyma in such pigs. The Yamaton-Liver project demonstrated the proof of concept by showing that rat-mouse chimeric livers could develop in mice and be successfully transplanted into syngeneic or allogeneic rats. Under conventional immunosuppression, the transplanted livers showed long-term function and protection against rejection. Because chimeric liver grafts have xenogeneic components, additional strategies, such as humanization of pig genes, induction of hematopoietic chimeras in donors, and replacement of pig endothelial cells with human ones, might be required in clinical use. Our projects still need to overcome various hurdles but can bring huge benefits to patients in the future. PMID:23896578

  7. Liver fibrosis

    OpenAIRE

    Bataller, Ramón; Brenner, David A.

    2005-01-01

    Liver fibrosis is the excessive accumulation of extracellular matrix proteins including collagen that occurs in most types of chronic liver diseases. Advanced liver fibrosis results in cirrhosis, liver failure, and portal hypertension and often requires liver transplantation. Our knowledge of the cellular and molecular mechanisms of liver fibrosis has greatly advanced. Activated hepatic stellate cells, portal fibroblasts, and myofibroblasts of bone marrow origin have been identified as major ...

  8. Molecular nature of mutations induced in aging process and X-irradiation in spleen, liver and brain of LacZ-Transgenic mouse

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Tetsuya; Ikehata, Hironobu; Nakamura, Shingo; Saito, Yusuke [Tohoku Univ., Sendai (Japan). Graduate School of Medicine

    2000-07-01

    Mutation is believed to be one of the important factors in radiation-induced carcinogenesis as well as in aging. The study of mutation, however, has long been limited to cultured cells and blood cells. Thus little is known about various tissues in a body. The absence of information on molecular nature of mutations which appear in tissues makes it difficult to understand mechanisms responsible for long-term effects of radiation. The problem, however, has been overcome lately by a development of transgenic mice which are made suitable for mutation assay by introduction of E. coli gene into mouse genome. In the present study, we have used one of these transgenic mice named Muta{sup TM} and examined molecular nature of mutants accumulated in aging process and those induced by high dose of radiation. (author)

  9. Molecular nature of mutations induced in aging process and X-irradiation in spleen, liver and brain of LacZ-Transgenic mouse

    International Nuclear Information System (INIS)

    Mutation is believed to be one of the important factors in radiation-induced carcinogenesis as well as in aging. The study of mutation, however, has long been limited to cultured cells and blood cells. Thus little is known about various tissues in a body. The absence of information on molecular nature of mutations which appear in tissues makes it difficult to understand mechanisms responsible for long-term effects of radiation. The problem, however, has been overcome lately by a development of transgenic mice which are made suitable for mutation assay by introduction of E. coli gene into mouse genome. In the present study, we have used one of these transgenic mice named MutaTM and examined molecular nature of mutants accumulated in aging process and those induced by high dose of radiation. (author)

  10. MTT法检测大豆异黄酮对癌细胞的生长抑制作用%The Effect of Soy Isoflavone on Mouse Erythroleukemia Cell Line and Rat Liver Cancer Cell Line By MTT

    Institute of Scientific and Technical Information of China (English)

    徐春华

    2012-01-01

    本文选择小鼠红白血病细胞系CML-K562和大鼠肝癌细胞系CBRH-7919作为大豆异黄酮的作用对象,通过MTT法检测大豆异黄酮对CML-K562和CBRH-7919的抑制作用.结果显示,大豆异黄酮对小鼠红白血病细胞系CML-K562和大鼠肝癌CBRH-7919细胞生长均有抑制作用,其抑制率达到50%时,所需要的用量即IC50分别为15.36 mg/L和16.58 mg/L.%Mouse erythroleukemia cell line CML-K562 and Rat liver cancer cell line CBRH-7919 were chosen as the targets of soy isoflavone to study its suppression effects.That detected the efficacity of the soy isoflavone and the inhibition rate cell growth by MTT and cell ectogenesis.It was proved that soy isoflavone could greatly inhibit the growth and proliferation of MEL cell CML-K562(IC50 is 15.36mg/L) and Rat Liver Cancer Cell CBRH-7919(IC50 is 16.58mg/L) by use of MTT.It proved that the soy isoflavone could inhibit the growth of the two cancer cells,and the dose was related with the effectiveness.

  11. Selenium Nanoparticle-Enriched Lactobacillus Brevis Causes More Efficient Immune Responses In Vivo And Reduces The Liver Metastasis In Metastatic Form Of Mouse Breast Cancer

    Directory of Open Access Journals (Sweden)

    Mohammad Esfandyar

    2013-04-01

    Full Text Available Background and the purpose of the study:Selenium enriched Lactobacillus has been reported as an immunostimulatory agent which can be used to increase the life span of cancer bearing animals. Lactic acid bacteria can reduce selenium ions to elemental selenium nanoparticles (SeNPs and deposit them in intracellular spaces. In this strategy two known immunostimulators, lactic acid bacteria (LAB and SeNPs, are concomitantly administered for enhancing of immune responses in cancer bearing mice.Methods:Forty five female inbred BALB/c mice were divided into three groups of tests and control, each containing 15 mice. Test mice were orally administered with SeNP-enriched Lactobacillus brevis or Lactobacillus brevis alone for 3 weeks before tumor induction. After that the administration was followed in three cycles of seven days on/three days off. Control group received phosphate buffer saline (PBS at same condition. During the study the tumor growth was monitored using caliper method. At the end of study the spleen cell culture was carried out for both NK cytotoxicity assay and cytokines measurement. Delayed type hypersensitivity (DTH responses were also assayed after 72h of tumor antigen recall. Serum lactate dehydrogenase (LDH and alkaline phosphatase (ALP levels were measured, the livers of mice were removed and prepared for histopathological analysis.Results:High level of IFN-γ and IL-17 besides the significant raised in NK cytotoxicity and DTH responses were observed in SeNP-enriched L. brevis administered mice and the extended life span and decrease in the tumor metastasis to liver were also recorded in this group compared to the control mice or L.brevis alone administered mice.Conclusion:Our results suggested that the better prognosis could be achieved by oral administration of SeNP-enriched L. brevis in highly metastatic breast cancer mice model.

  12. Immunologic analyses of mouse cystathionase in normal and leukemic cells

    International Nuclear Information System (INIS)

    Rabbit antisera have been raised against mouse liver cystathionase and shown to possess enzyme neutralizing activity. Agar gel double immunodiffusion analyses demonstrated that both mouse liver cystathionase and rat liver cystathionase react with the antisera, the latter enzyme being completely cross-reactive with the former. Following radioiodination of the purified rat liver enzyme, a double antibody radioimmunoassay was developed in which greater than 90% of the labeled protein could be specifically precipitated with the anti-mouse cystathionase antibodies. In this test the purified rat liver and mouse liver enzymes were virtually indistinguishable, generating superimposable competition displacement curves on a protein mass basis. These results indicate that both enzymes are immunologically identical, thus validating the use of the rat in lieu of the murine liver enzyme as radiolabeled tracer in an assay for mouse cystathionase. In addition, competition radioimmunoassays demonstrated that the immunological reactivities of both the purified rat liver and mouse liver enzymes were equally heat sensitive. The sensitivity of the assay was determined to be 1 ng of enzyme protein/0.22 mL of assay mixture, and the assay could be used to detect the presence of enzyme protein in tissue homogenates of single mouse organs. Mouse or rat cross-reactivity with human liver cystathionase was incomplete; but, with the exception of heart and spleen, parallel radioimmunoassay competition displacement curves were obtained for cystathionase from different mouse organs including thymus. Extracts of 7-, 9-, and 10-month-old spontaneous AKR mouse thymomas were tested in the radioimmunoassay along with extracts of age-matched thymuses which were grossly tumor free. A reaction of nonidentity was observed for all of the tumor extracts while a reaction identical with that of the pure liver enzyme was found with all of the normal thymus extracts

  13. Thyroid hormone-regulated gene expression in juvenile mouse liver: identification of thyroid response elements using microarray profiling and in silico analyses

    Directory of Open Access Journals (Sweden)

    Paquette Martin A

    2011-12-01

    Full Text Available Abstract Background Disruption of thyroid hormone signalling can alter growth, development and energy metabolism. Thyroid hormones exert their effects through interactions with thyroid receptors that directly bind thyroid response elements and can alter transcriptional activity of target genes. The effects of short-term thyroid hormone perturbation on hepatic mRNA transcription in juvenile mice were evaluated, with the goal of identifying genes containing active thyroid response elements. Thyroid hormone disruption was induced from postnatal day 12 to 15 by adding goitrogens to dams' drinking water (hypothyroid. A subgroup of thyroid hormone-disrupted pups received intraperitoneal injections of replacement thyroid hormones four hours prior to sacrifice (replacement. An additional group received only thyroid hormones four hours prior to sacrifice (hyperthyroid. Hepatic mRNA was extracted and hybridized to Agilent mouse microarrays. Results Transcriptional profiling enabled the identification of 28 genes that appeared to be under direct thyroid hormone-regulation. The regulatory regions of the genome adjacent to these genes were examined for half-site sequences that resemble known thyroid response elements. A bioinformatics search identified 33 thyroid response elements in the promoter regions of 13 different genes thought to be directly regulated by thyroid hormones. Thyroid response elements found in the promoter regions of Tor1a, 2310003H01Rik, Hect3d and Slc25a45 were further validated by confirming that the thyroid receptor is associated with these sequences in vivo and that it can bind directly to these sequences in vitro. Three different arrangements of thyroid response elements were identified. Some of these thyroid response elements were located far up-stream (> 7 kb of the transcription start site of the regulated gene. Conclusions Transcriptional profiling of thyroid hormone disrupted animals coupled with a novel bioinformatics search

  14. Human endostatin gene transfer,either naked or with liposome,has the same inhibitory effect on growth of mouse liver tumor cells in vivo

    Institute of Scientific and Technical Information of China (English)

    Chun-Hong Ma; Wen-Sheng Sun; Yan Zhang; Xiao-Yan Wang; Li-Fen Gao; Hua Liu; Chun Guo; Su-Xia Liu; Ying-Lin Cao; Li-Ning Zhang

    2004-01-01

    AIM: To explore a safe and efficient strategy of tumor therapy using anti-angiogenetic agents.METHODS: Endostatin gene with a signal sequence of human IgG γ chain was amplified by PCR and cloned into pVAX1 plasmid which was the only vector authorized by FDA in clinical trial to construct a recombinant plasmid named as pVAX-sEN. The recombinant plasmid was detected with EcoRI/KpnI and DNA sequencing. BALB/c mice bearing hepatocarcinoma cell line H22 were treated with naked pVAX-sEN or liposome-DNA complex in which the dose of DNA and the ratio of DNA and liposome were different from each other. To compare the efficiency of gene transfection, expression of endostatin at the treated tumor site was assayed with ELISA. To investigate the effect of pVAX1-sEN on hepatocellular carcinoma, pVAX-sEN either naked or in liposome-DNA complex was injected into BALB/c mice bearing H22, then the diameter of tumors was measured, microvessel density was detected by immunohistochemistry, endostatin expression in vivo was assayed at different time points.RESULTS: DNA sequencing showed the endostatin gene with the signal peptide was correctly cloned. In situ gene expression assay indicated that both the ratio of DNA and liposome and the dose of DNA could affect the gene transfection efficiency. Interestingly, naked pVAX-sEN had a similar in situ endostatin expression to pVAX-sEN with liposome. Animal experiments showed that pVAX-sEN together with pVAX-sEN-liposome complex could efficiently suppress the growth of mouse hepatoma cells.CONCLUSION: Naked endostatin plasmid intratumoral injection can get a similar gene transfection efficiency to liposome-DNA complex when used in situ.

  15. Transcription factor-recognition sequences potentially involved in modulation of gene expression after exposure to low-dose-rate γ-rays in the mouse liver

    International Nuclear Information System (INIS)

    In vivo modulation of gene expression profiles after low-dose and low-dose-rate irradiation has been observed in a variety of experimental systems. However, few studies actually investigated the underlying mechanisms for these genetic responses. In this study, we used pre-existing microarray data and searched for gene modulations in response to long-term, low-dose-rate irradiation. Nucleotide sequences in the neighboring region of the up-regulated, down-regulated, and unaffected genes were retrieved from the Entrez Gene database, and recognition sequences for transcription factors (TFs) were searched using the TFSEARCH database. As a result, we suggested 21 potential TF-binding sites with significantly different incidence between the three gene groups (up-regulated, down-regulated and unaffected gene groups). The binding sites for sterol regulatory element-binding protein 1 (SREBP-1), aryl hydrocarbon receptor (AhR/Ar) and olfactory 1 (Olf-1) were suggested to be involved in up-regulation, while the binding sites for glucocorticoid receptor (GR(GGTACAANNT GTYCTK) ) and hepatocyte nuclear factor 1 (HNF-1) were suggested to be involved in down-regulation of the genes. In addition, the binding sites for activating enhancer-binding protein 4 (AP-4), nuclear factor-κB (NFκB), GR (NNNNNNCNNTNTGTNCTNN) and early growth response 3 (Egr-3) were correlated with modulation of gene expression regardless of the direction of modulation. Our results suggest that these TF-binding sites are involved in gene modulations after long-term continuous irradiation with low-dose-rate γ rays. GR and/or SREBP-1 might be associated with the altered metabolic process observed in liver after exposure to low-dose-rate irradiation. (author)

  16. Genome-wide quantitative analysis of histone H3 lysine 4 trimethylation in wild house mouse liver: environmental change causes epigenetic plasticity.

    Directory of Open Access Journals (Sweden)

    Angelika G Börsch-Haubold

    Full Text Available In mammals, exposure to toxic or disease-causing environments can change epigenetic marks that are inherited independently of the intrauterine environment. Such inheritance of molecular phenotypes may be adaptive. However, studies demonstrating molecular evidence for epigenetic inheritance have so far relied on extreme treatments, and are confined to inbred animals. We therefore investigated whether epigenomic changes could be detected after a non-drastic change in the environment of an outbred organism. We kept two populations of wild-caught house mice (Mus musculus domesticus for several generations in semi-natural enclosures on either standard diet and light cycle, or on an energy-enriched diet with longer daylight to simulate summer. As epigenetic marker for active chromatin we quantified genome-wide histone-3 lysine-4 trimethylation (H3K4me3 from liver samples by chromatin immunoprecipitation and high-throughput sequencing as well as by quantitative polymerase chain reaction. The treatment caused a significant increase of H3K4me3 at metabolic genes such as lipid and cholesterol regulators, monooxygenases, and a bile acid transporter. In addition, genes involved in immune processes, cell cycle, and transcription and translation processes were also differently marked. When we transferred young mice of both populations to cages and bred them under standard conditions, most of the H3K4me3 differences were lost. The few loci with stable H3K4me3 changes did not cluster in metabolic functional categories. This is, to our knowledge, the first quantitative study of an epigenetic marker in an outbred mammalian organism. We demonstrate genome-wide epigenetic plasticity in response to a realistic environmental stimulus. In contrast to disease models, the bulk of the epigenomic changes we observed were not heritable.

  17. Bromodeoxyuridine (BrdU) treatment to measure hepatocellular proliferation does not mask furan-induced gene expression changes in mouse liver

    International Nuclear Information System (INIS)

    Bromodeoxyuridine (BrdU) is a synthetic nucleoside used to detect cellular proliferation. BrdU incorporates in the place of thymine but pairs with guanine, thereby increasing the risk of transition mutations in dividing cells. Given its mutagenicity, standard practice is to use a second cohort of animals for parallel toxicogenomics studies; however, the impact of BrdU on global gene expression is unknown. To test this, we performed a case study to determine whether the molecular mode of action of furan, a liver carcinogen, could be detected in BrdU-treated samples. We measure global hepatic gene expression using Agilent DNA microarrays in female B6C3F1 mice that were sub-chronically exposed to 0, 1, 4, or 8 mg/kg bodyweight (bw) per day furan either in the presence (+BrdU) or absence (−BrdU) of BrdU. Exposure to 0.02% BrdU in drinking water for five days resulted in minimal gene expression changes. A comparison of +BrdU versus −BrdU control mice revealed only 11 probes with fold change ≥ 1.5 and false discovery rate (FDR) corrected p ≤ 0.05. The same comparison in the high dose group yielded only 3 differentially expressed probes. Differentially expressed gene lists generated for furan-treated versus control mice and were compared for the −BrdU and +BrdU groups. The high dose of furan had 452 shared probes and 27 and 90 unique probes for −BrdU and +BrdU groups, respectively. These differences did not impact hierarchical clustering. Further, they did not impair detection of the previously reported furan mode of action, which was well represented in the BrdU-treated samples. Taken together, we demonstrate that BrdU treatment does not mask important furan-induced transcriptional changes. We suggest that BrdU-treated mice could be used for toxicogenomic analysis, which would generally halve the number of rodents required for toxicogenomics studies. However, we also recommend that this type of case study be repeated for other chemicals before the use of Brd

  18. Strong evidence from studies with brachymorphic mice and pentachlorophenol that 1'-sulfoöxysafrole is the major ultimate electrophilic and carcinogenic metabolite of 1'-hydroxysafrole in mouse liver.

    Science.gov (United States)

    Boberg, E W; Miller, E C; Miller, J A; Poland, A; Liem, A

    1983-11-01

    The role of sulfation of 1'-hydroxysafrole in the formation of hepatic macromolecular adducts and in hepatic tumor formation in mice given 1'-hydroxysafrole was investigated by the use of: (a) mice treated with the specific sulfotransferase inhibitor pentachlorophenol; and (b) brachymorphic mice, which are characterized by a deficiency in the hepatic synthesis of 3'-phosphoadenosine 5'-phosphosulfate. Cytosolic sulfotransferase activity for 1'-hydroxysafrole in both mouse and rat liver was significantly inhibited by 10 microM pentachlorophenol, usually by greater than 90%. Prior administration of nontoxic amounts of pentachlorophenol, either in the diet of adult female CD-1 mice or by i.p. injection of 12-day-old male C57BL/6 X C3H F1 (hereafter called B6C3F1) mice, resulted in an 85% decrease in the level of adducts formed from 1'-hydroxysafrole in hepatic DNA and RNA as compared to those of non-pentachlorophenol-treated animals. Likewise, the chronic administration of a nontoxic level of pentachlorophenol in the diet of adult female CD-1 mice strongly inhibited hepatic tumor induction by long-term dietary administration of either safrole or 1'-hydroxysafrole. Initiation of hepatic tumors by a single i.p. injection of 1'-hydroxysafrole to 12-day-old male B6C3F1 mice was strongly inhibited by prior treatment with pentachlorophenol. Under these conditions, the hepatocarcinogenicity of diethylnitrosamine was not inhibited by pentachlorophenol. Supplementation with adenosine triphosphate and sulfate of hepatic cytosols from adult female or 12-day-old brachymorphic progeny of a B6C3 background outbred to B6C3F1 mice (B6C3F2), of either sex, resulted in 5- to 10-fold less binding of 1'-hydroxysafrole to added RNA than when cytosols from phenotypically normal B6C3F2 mice were used. On administration of [3H]-1'-hydroxysafrole to adult female or 12-day-old brachymorphic B6C3F2 mice of either sex, the levels of hepatic DNA and RNA adducts were 7- to 12-fold lower than those

  19. Liver biopsy

    Science.gov (United States)

    Biopsy - liver; Percutaneous biopsy ... prevent pain or to calm you (sedative). The biopsy may be done through the abdominal wall: You ... provider will find the correct spot for the biopsy needle to be inserted into the liver. This ...

  20. Liver Diseases

    Science.gov (United States)

    Your liver is the largest organ inside your body. It helps your body digest food, store energy, and remove poisons. There are many kinds of liver diseases. Viruses cause some of them, like hepatitis ...

  1. Liver transplant

    Science.gov (United States)

    ... transplant - series References Keefe EB. Hepatic failure and liver transplantation. In: Goldman L, Schafer AI, eds. Goldman's Cecil ... Elsevier; 2011:chap 157. Martin P, Rosen HR. Liver transplantation. In: Feldman M, Friedman LS, Brandt LJ, eds. ...

  2. Liver resections for liver transplantations

    OpenAIRE

    2010-01-01

    Split-Liver and living-related donor liver transplantation are the newest and both technically and ethically most challenging developments in liver transplantation and have contributed to a reduction in donor shortage. We report the technical aspects of surgical procedures performed to achieve a partial graft from a cadaveric and a live donor.

  3. Detection of two growth hormone receptor mRNAs and primary translation products in the mouse

    OpenAIRE

    Smith, W.C.; Linzer, D I; Talamantes, F

    1989-01-01

    Two mouse growth hormone-receptor primary translation products of Mr 95,900 and 31,800 were identified from in vitro-translated late pregnant mouse liver mRNA. RNA isolated from mouse liver was translated in a rabbit reticulocyte lysate system containing [35S]methionine, and the growth hormone receptor primary translation products were identified by immunoprecipitation with anti-mouse growth hormone receptor antiserum followed by sodium dodecyl sulfate/PAGE and fluorography. Detectable amount...

  4. Benign Liver Tumors

    Science.gov (United States)

    ... Handouts Education Resources Support Services Helpful Links For Liver Health Information Call 1-800-GO-LIVER (1- ... Liver > Liver Disease Information > Benign Liver Tumors Benign Liver Tumors Explore this section to learn more about ...

  5. Identification of Plants That Inhibit Lipid Droplet Formation in Liver Cells: Rubus suavissimus Leaf Extract Protects Mice from High-Fat Diet-Induced Fatty Liver by Directly Affecting Liver Cells

    Science.gov (United States)

    Takahashi, Tomohiro; Sugawara, Wataru; Takiguchi, Yuya; Takizawa, Kento; Nakabayashi, Ami; Nakamura, Mitsuo; Nagano-Ito, Michiyo; Ichikawa, Shinichi

    2016-01-01

    Fatty liver disease is a condition in which abnormally large numbers of lipid droplets accumulate in liver cells. Fatty liver disease induces inflammation under conditions of oxidative stress and may result in cancer. To identify plants that protect against fatty liver disease, we examined the inhibitory effects of plant extracts on lipid droplet formation in mouse hepatoma cells. A screen of 98 water extracts of plants revealed 4 extracts with inhibitory effects. One of these extracts, Rubus suavissimus S. Lee (Tien-cha or Chinese sweet tea) leaf extract, which showed strong inhibitory effects, was tested in a mouse fatty liver model. In these mouse experiments, intake of the plant extract significantly protected mice against fatty liver disease without affecting body weight gain. Our results suggest that RSE directly affects liver cells and protects them from fatty liver disease.

  6. Comprehensive transcriptional landscape of aging mouse liver

    OpenAIRE

    White, Ryan R.; Milholland, Brandon; MacRae, Sheila L.; Lin, Mingyan; Zheng, Deyou; Vijg, Jan

    2015-01-01

    Background Mammalian aging is a highly complex process, a full mechanistic understanding of which is still lacking. One way to help understand the molecular changes underlying aging is through a comprehensive analysis of the transcriptome, the primary determinant of age-related phenotypic diversity. Previous studies have relied on microarray analysis to examine gene expression profiles in different tissues of aging organisms. However, studies have shown microarray-based transcriptional profil...

  7. Liver scintigraphy

    International Nuclear Information System (INIS)

    Liver scintigraphy can be classified into 3 major categories according to the properties of the radiopharmaceuticals used, i.e., methods using radiopharmaceuticals which are (1) incorporated by hepatocytes, (2) taken up by reticulo endothelial cells, and (3) distributed in the blood pool of the liver. Of these three categories, the liver scintigraphy of the present research falls into category 2. Radiopharmaceuticals which are taken up by endothelial cells include 198Au colloids and 99mTc-labelled colloids. Liver scintigraphy takes advantage of the property by which colloidal microparticles are phagocytosed by Kupffer cells, and reflect the distribution of endothelial cells and the intensity of their phagocytic capacity. This examination is indicated in the following situations: (i) when you suspect a localized intrahepatic lesion (tumour, abscess, cyst, etc.), (ii) when you want to follow the course of therapy of a localized lesion, (iii) when you suspect liver cirrhosis, (iv) when you want to know the severity of liver cirrhosis or hepatitis, (v) when there is hepatomegaly and you want to determine the morphology of the liver, (vi) differential diagnosis of upper abdominal masses, and (vii) when there are abnormalities of the right diaphragm and you want to know their relation to the liver

  8. Mouse adhalin

    DEFF Research Database (Denmark)

    Liu, L; Vachon, P H; Kuang, W;

    1997-01-01

    analyze the biological roles of adhalin, we cloned the mouse adhalin cDNA, raised peptide-specific antibodies to its cytoplasmic domain, and examined its expression and localization in vivo and in vitro. The mouse adhalin sequence was 80% identical to that of human, rabbit, and hamster. Adhalin was...... specifically expressed in striated muscle cells and their immediate precursors, and absent in many other cell types. Adhalin expression in embryonic mouse muscle was coincident with primary myogenesis. Its expression was found to be up-regulated at mRNA and protein levels during myogenic differentiation in...

  9. Primary monolayer culture of adult mouse hepatocytes

    International Nuclear Information System (INIS)

    Primary monolayer cultures of adult mouse hepatocytes isolated by collagenase perfusion of the liver in situ were exposed to 2 hepatotropic viruses, an avian influenza A virus adapted to grow in mouse liver in vivo and a herpes simplex type I virus. Influenza virus infection led to lysis of individual hepatocytes and total monolayer destruction within 18 to 120 hours after infection according to the virus dose used. Virus replication was evidenced by assaying hepatocyte supernates for hemagglutinin and infectivity, immunofluorescent staining and by electron microscopy. Herpes virus infection resulted in polykaryocyte formation followed by nuclear pycnosis and cell lysis. Virus replication was assayed by titration of supernate infectivity. (auth.)

  10. What Is Liver Cancer?

    Science.gov (United States)

    ... Topic Key statistics about liver cancer What is liver cancer? Cancer starts when cells in the body ... structure and function of the liver. About the liver The liver is the largest internal organ. It ...

  11. Liver Facts

    Science.gov (United States)

    ... idiopapathic) Liver tumors Biliary atresia Was this information helpful? E-mail us with feedback or questions. Reference ... or other discrepancies. Share this: Was this information helpful? Related topics Find transplant centers specializing in certain ...

  12. Liver spots

    Science.gov (United States)

    Sun-induced skin changes - liver spots; Senile or solar lentigines; Skin spots - aging; Age spots ... your skin by using skin bleaching lotions or creams. Most bleaching lotions use hydroquinone. This medicine is ...

  13. Liver function

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008308 Study on transplantation of induced bone marrow mesenchymal stem cells via a series of the treatment of chronic liver injury. SUN Yan(孙艳), et al. Dept Gastroenterol, 1st Hosp, Jilin Univ, Changchun 130021. Chin J Dig 2008;28(3):171-174.Objective To investigate the efficacy of transplantation of induced bone marrow mesenchymal stem cells(MSCs)via a series of treatment of chronic liver injury.Methods MSCs were isolated and expanded by density

  14. Dual Farnesoid X Receptor/TGR5 Agonist INT-767 Reduces Liver Injury in the Mdr2−/− (Abcb4−/−) Mouse Cholangiopathy Model by Promoting Biliary HCO3− Output

    OpenAIRE

    Baghdasaryan, Anna; Claudel, Thierry; Gumhold, Judith; Silbert, Dagmar; Adorini, Luciano; Roda, Aldo; Vecchiotti, Stefania; Gonzalez, Frank J.; Schoonjans, Kristina; Strazzabosco, Mario; Fickert, Peter; Trauner, Michael

    2011-01-01

    Chronic cholangiopathies have limited therapeutic options and represent an important indication for liver transplantation. The nuclear farnesoid X receptor (FXR) and the membrane G protein-coupled receptor, TGR5, regulate bile acid (BA) homeostasis and inflammation. Therefore, we hypothesized that activation of FXR and/or TGR5 could ameliorate liver injury in Mdr2−/− (Abcb4−/−) mice, a model of chronic cholangiopathy. Hepatic inflammation, fibrosis, as well as bile secretion and key genes of ...

  15. [Liver intervention].

    Science.gov (United States)

    Oi, H

    2000-12-01

    Interventional radiology is now widely performed for the treatment of liver tumors, because surgery is sometimes limited by poor liver function. Transcatheter arterial chemoembolization(TACE) is an effective therapy for hepatocellular carcinoma. Lipiodol TACE shows a strong antitumor effect because of the overflow of excess iodized oil into the portal veins, and segmental TACE is recommended to avoid deteriorating liver function. Selective CT arteriography is performed in order to decide on the treatment area, and TACE under CT guidance leads to effective results in terms of dense accumulation of the chemotherapeutic drug in the individual tumors that are affected by the ischemic state and anticancer drugs. Percutaneous microwave or radiofrequency coagulation therapy is adequate for a few of the hypovascular tumors. Excessive coagulation through the needle tract is indispensable in these therapies, and precisely designed puncture is necessary to minimize damage to the liver parenchyma. Selective chemotherapy to the tumor-bearing organ is the first step in a number of liver tumors. Continuous intra-arterial infusion chemotherapy is performed for multiple liver metastases. The reservoir implantation technique is percutaneously achieved via the left subclavian artery under ultrasound guidance, without the exposure of an artery in the incision method, which can induce thrombus formation. PMID:11197832

  16. Liver Biopsy in Liver Transplant Recipients

    OpenAIRE

    Van Ha, Thuong G.

    2004-01-01

    Liver biopsy has been used in the assessment of the nature and course of liver diseases and to monitor treatments. In nontransplanted patients, liver biopsies have been well described. Less has been written on the biopsies of transplanted livers. In the liver transplant population, liver biopsy remains the “gold standard” for the diagnosis of rejection. The transplanted liver has additional considerations that can make biopsy less routine and more challenging.

  17. Effects of Xiaochaihu Decoction on Damage of Gut-liver-brain in CCl4/Ethanol Induced Mouse Hepatocellular Carcinoma%小柴胡汤对四氯化碳/乙醇诱发小鼠肝癌肠-肝-脑损伤的影响

    Institute of Scientific and Technical Information of China (English)

    胡小剑; 刘晓秋

    2012-01-01

    Objective; To investigate the effects of Xiaochaihu Decoction on damage of gut-liver-brain in CCl4/ethanol-induced mouse hepatocellular carcinoma. Method; Hepatocellular carcinoma group ( HCC ) were induced by subcutaneous injection with 25% CC14 olive oil solution (5 mL 'kg twice per week) and allowed free access to a 8% ethanol solution as drinking fluid for 4 weeks, and allowed free access to 0. 5% CQ4-8% ethanol solution as drinking fluid for 20 weeks; in HCC combined with liver depression and spleen deficiency ( LDSD) group (HCC-LDSD group) , on the basis of HCC modelling, the mice were stimulated with the factor of LDSD, squeezing tails (30 min -d-1 ) , solitary breeding and intermittent fasting for 4 weeks, solitary breeding and intermittent fasting for 20 weeks; Xiaochaihu decoction (XCHD) treated group was administered by gavage for 8 weeks after 4 weeks of the HCC-LDSD modelling. The mortality rates and HCC incidence rates were calculated, weight and clinical signs were monitored daily. The degree of tissue injuries in the gut and liver were studied using a scoring system, and brain weights were measured. Result: The mortality rate in HCC-LDSD group was higher than that in the HCC group, after treatment with XCHD, the mortality rate decreased significantly. In death mouse of HCC group, significantly more injuries in small intestine, cecum, liver and fecal loading in the cecum, with the increased in brain weights, the most in HCC-LDSD group, after treatment with XCHD, all of which were improved. HCC incidence rate in the HCC-LDSD group was higher than that in the HCC group, after treatment with XCHD, the HCC incidence rate decreased significantly. In survival mouse of HCC group, significantly more injuries in small intestine, cecum, liver ( mainly hyperplasia) , with slight decreased in brain weights, the most in HCC-LDSD group, after treatment with XCHD, all of which were improved. Correlative analysis showed that there was a positive or negative

  18. The “Privileged” Liver and Hepatic Tolerogenicity

    OpenAIRE

    Starzl, Thomas E.

    2001-01-01

    The mechanism underlying the immunological advantage of hepatic allografts relative to other organs is incompletely understood. We used molecular probes for the repetitive units on the Y chromosome, to identify an increasing number of male liver venous endothelial cells in needle biopsy samples of men who received female donor liver grafts. We have also shown repopulation of liver endothelium by bone marrow derived cells in a male to female mouse bone marrow transplant model. We conclude that...

  19. Liver transplantation

    OpenAIRE

    Rodríguez-Perálvarez, M; De La Mata, M; Burroughs, A K

    2014-01-01

    Purpose of review: Long-term survival of liver transplant recipients is threatened by increased rates of de-novo malignancy and recurrence of hepatocellular carcinoma (HCC), both events tightly related to immunosuppression. Recent findings: There is accumulating evidence linking increased exposure to immunosuppressants and carcinogenesis, particularly concerning calcineurin inhibitors (CNIs), azathioprine and antilymphocyte agents. A recent study including 219 HCC transplanted patients sh...

  20. Liver cancer - hepatocellular carcinoma

    Science.gov (United States)

    Primary liver cell carcinoma; Tumor - liver; Cancer - liver; Hepatoma ... Hepatocellular carcinoma accounts for most liver cancers. This type of cancer occurs more often in men than women. It is usually diagnosed in people age 50 or ...

  1. Liver transplant - series (image)

    Science.gov (United States)

    The liver is in the right upper abdomen. The liver serves many functions, including the detoxification of substances delivered ... A liver transplant may be recommended for: liver damage due to alcoholism (Alcoholic cirrhosis) primary biliary cirrhosis long-term ( ...

  2. Liver cancer - hepatocellular carcinoma

    Science.gov (United States)

    Primary liver cell carcinoma; Tumor - liver; Cancer - liver; Hepatoma ... Hepatocellular carcinoma accounts for most liver cancers. This type of cancer occurs more often in men than women. It is usually diagnosed in people age 50 or older. ...

  3. Alteration in the Expression of Cytochrome P450s (CYP1A1, CYP2E1, and CYP3A11 in the Liver of Mouse Induced by Microcystin-LR

    Directory of Open Access Journals (Sweden)

    Bangjun Zhang

    2015-03-01

    Full Text Available Microcystins (MCs are cyclic heptapeptide toxins and can accumulate in the liver. Cytochrome P450s (CYPs play an important role in the biotransformation of endogenous substances and xenobiotics in animals. It is unclear if the CYPs are affected by MCs exposure. The objective of this study was to evaluate the effects of microcystin-LR (MCLR on cytochrome P450 isozymes (CYP1A1, CYP2E1, and CYP3A11 at mRNA level, protein content, and enzyme activity in the liver of mice the received daily, intraperitoneally, 2, 4, and 8 µg/kg body weight of MCLR for seven days. The result showed that MCLR significantly decreased ethoxyresorufin-O-deethylase (EROD (CYP1A1 and erythromycin N-demthylase (ERND (CYP3A11 activities and increased aniline hydroxylase (ANH activity (CYP2E1 in the liver of mice during the period of exposure. Our findings suggest that MCLR exposure may disrupt the function of CYPs in liver, which may be partly attributed to the toxicity of MCLR in mice.

  4. Liver cirrhosis and fatty liver

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008310 Expression of αVβ3 integrin and platelet-endothelial cell adhesion molecule-1 in progressive liver fibrosis: experiment with rats. SONG Zhengji(宋正已), et al. Dept Gastroenterol, Zhongshan Hosp, Fudan Univ, Shanghai 200032. Natl Med J China 2008;88(16):1121-1125.Objective To investigate the expression ofαVβ3 integrin and platelet endothelial cell adhesion molecule-1(CD31)in progressive liver fibrosis of rats.Methods Sixty-four SD rats were randomly divided into 4 equal groups:TAA group,undergoing peritoneal injection of

  5. Liver cirrhosis and fatty liver

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008075 Effect of Jiangzhi granules on expression of leptin receptor mRNA, P-JAK2 and P-STAT3 in rats with non-alcoholic fatty liver disease. MA Zansong(马赞颂), et al. Dept Gastroenterol, Instit Spleen and Stomach Dis, Longhua Hosp. Shanghai TCM Univ, Shanghai 200032.World Chin J Digestol 2007;15(32):3360-3366. Objective To study the effect of Jiangzhi granules on non-alcoholic fatty liver disease in rats, and on the expression of

  6. Mouse models for methylmalonic aciduria.

    Directory of Open Access Journals (Sweden)

    Heidi L Peters

    Full Text Available Methylmalonic aciduria (MMA is a disorder of organic acid metabolism resulting from a functional defect of methylmalonyl-CoA mutase (MCM. MMA is associated with significant morbidity and mortality, thus therapies are necessary to help improve quality of life and prevent renal and neurological complications. Transgenic mice carrying an intact human MCM locus have been produced. Four separate transgenic lines were established and characterised as carrying two, four, five or six copies of the transgene in a single integration site. Transgenic mice from the 2-copy line were crossed with heterozygous knockout MCM mice to generate mice hemizygous for the human transgene on a homozygous knockout background. Partial rescue of the uniform neonatal lethality seen in homozygous knockout mice was observed. These rescued mice were significantly smaller than control littermates (mice with mouse MCM gene. Biochemically, these partial rescue mice exhibited elevated methylmalonic acid levels in urine, plasma, kidney, liver and brain tissue. Acylcarnitine analysis of blood spots revealed elevated propionylcarnitine levels. Analysis of mRNA expression confirms the human transgene is expressed at higher levels than observed for the wild type, with highest expression in the kidney followed closely by brain and liver. Partial rescue mouse fibroblast cultures had only 20% of the wild type MCM enzyme activity. It is anticipated that this humanised partial rescue mouse model of MMA will enable evaluation of long-term pathophysiological effects of elevated methylmalonic acid levels and be a valuable model for the investigation of therapeutic strategies, such as cell transplantation.

  7. The City Mouse and the Country Mouse

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Once two mice (老鼠) were good friends. One lived in the city, the other lived in the country (乡村). After many years, the city mouse came to see the country mouse. The country mouse took him to his house in a field. He gave him the nicest food that he could find. The city mouse said,

  8. Mouse lymphotoxin.

    Science.gov (United States)

    Trivers, G; Braungart, D; Leonard, E J

    1976-07-01

    The addition of PHA to C3H mouse spleen cells in tissue culture led to the production of lymphotoxin (LT). Cytotoxicity was assayed by addition of the culture fluids to syngeneic target cells labeled with tritiated thymidine; after an incubation period of 72 hr the amount of radioactivity released into the supernatant was measured. The LT activity in unfractionated culture fluids survived lyophilization, remained unchanged for many weeks at 4 degrees C, and progressively decreased on heating at 56 degrees C for periods from 1 to 9 hr. Based on the G-200 Sephadex distribution coefficients for several preparations, the m.w. of mouse lymphotoxin was about 41,000 daltons. Lymphotoxin from three different spleen cell production runs was recovered from isoelectric focusing columns in sharply focused peaks, the pH of which ranged from 4.4 to 4.8. PMID:1084362

  9. Immunologic analyses of mouse cystathionase in normal and leukemic cells. [Rats, rabbits, /sup 125/I tracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Bikel, I.; Faibes, D.; Uren, J.R.; Livingston, D.M.

    1978-11-28

    Rabbit antisera have been raised against mouse liver cystathionase and shown to possess enzyme neutralizing activity. Agar gel double immunodiffusion analyses demonstrated that both mouse liver cystathionase and rat liver cystathionase react with the antisera, the latter enzyme being completely cross-reactive with the former. Following radioiodination of the purified rat liver enzyme, a double antibody radioimmunoassay was developed in which greater than 90% of the labeled protein could be specifically precipitated with the anti-mouse cystathionase antibodies. In this test the purified rat liver and mouse liver enzymes were virtually indistinguishable, generating superimposable competition displacement curves on a protein mass basis. These results indicate that both enzymes are immunologically identical, thus validating the use of the rat in lieu of the murine liver enzyme as radiolabeled tracer in an assay for mouse cystathionase. In addition, competition radioimmunoassays demonstrated that the immunological reactivities of both the purified rat liver and mouse liver enzymes were equally heat sensitive. The sensitivity of the assay was determined to be 1 ng of enzyme protein/0.22 mL of assay mixture, and the assay could be used to detect the presence of enzyme protein in tissue homogenates of single mouse organs. Mouse or rat cross-reactivity with human liver cystathionase was incomplete; but, with the exception of heart and spleen, parallel radioimmunoassay competition displacement curves were obtained for cystathionase from different mouse organs including thymus. Extracts of 7-, 9-, and 10-month-old spontaneous AKR mouse thymomas were tested in the radioimmunoassay along with extracts of age-matched thymuses which were grossly tumor free. A reaction of nonidentity was observed for all of the tumor extracts while a reaction identical with that of the pure liver enzyme was found with all of the normal thymus extracts.

  10. Engineering liver

    OpenAIRE

    Griffith, Linda G.; Wells, Alan; Stolz, Donna Beer

    2013-01-01

    Interest in “engineering liver” arises from multiple communities: therapeutic replacement; mechanistic models of human processes; and drug safety and efficacy studies. An explosion of micro- and nano-fabrication, biomaterials, microfluidic, and other technologies potentially afford unprecedented opportunity to create microphysiological models of human liver, but engineering design principles for how to deploy these tools effectively towards specific applications, including how to define the e...

  11. Coordinated Regulation of Dimethylarginine Dimethylaminohydrolase-1 and Cationic Amino Acid Transporter-1 by Farnesoid X Receptor in Mouse Liver and Kidney and Its Implication in the Control of Blood Levels of Asymmetric Dimethylarginine

    OpenAIRE

    Li, Jiang; Wilson, Annette; Gao, Xiang; Kuruba, Ramalinga; Liu, Youhua; Poloyac, Samuel; Pitt, Bruce; Xie, Wen; Li, Song

    2009-01-01

    Asymmetric dimethylarginine (ADMA) is a potent endogenous inhibitor of endothelial nitric-oxide synthase (eNOS), and increased plasma concentrations of ADMA have been regarded as a risk factor for a number of cardiovascular diseases. Circulating ADMA is largely taken up by liver and kidney via system y+ carriers of the cationic amino acid (CAT) family and subsequently metabolized by dimethylarginine dimethylaminohydrolases (DDAHs). As such, agents targeted at enhancing ADMA metabolism may pro...

  12. Induction by phenobarbital of aniline-p-hydroxylase in mouse liver under the influence of X-irradiation and 2,4,6-triethyleneimino-1,3,5-triazine

    International Nuclear Information System (INIS)

    The phenobarbital-induced activity of aniline-p-hydroxylase in livers of mice was enhanced additionally when the animals were X-irradiated 4-16 hours before the administration of the inducer. The same effect could be demonstrated after repeated irradiation with low doses. 2,4,6-triethyleneimino-1,3,5-triazine (tretamine) inhibited the induction of aniline-p-hydroxylase only when administered in extremely high doses. Lower doses resulted in 'superinduciton'. (orig.)

  13. Delayed liver regeneration after partial hepatectomy in adiponectin knockout mice

    International Nuclear Information System (INIS)

    We previously demonstrated that adiponectin has anti-fibrogenic and anti-inflammatory effects in the liver of mouse models of various liver diseases. However, its role in liver regeneration remains unclear. The aim of this study was to determine the role of adiponectin in liver regeneration. We assessed liver regeneration after partial hepatectomy in wild-type (WT) and adiponectin knockout (KO) mice. We analyzed DNA replication and various signaling pathways involved in cell proliferation and metabolism. Adiponectin KO mice exhibited delayed DNA replication and increased lipid accumulation in the regenerating liver. The expression levels of peroxisome proliferator-activated receptor (PPAR) α and carnitine palmitoyltransferase-1 (CPT-1), a key enzyme in mitochondrial fatty acid oxidation, were decreased in adiponectin KO mice, suggesting possible contribution of altered fat metabolism to these phenomena. Collectively, the present results highlight a new role for adiponectin in the process of liver regeneration.

  14. Oxidative Stress and Oval Cell Accumulation in Mice and Humans with Alcoholic and Nonalcoholic Fatty Liver Disease

    OpenAIRE

    Roskams, Tania; Yang, Shi Qi; Koteish, Aymen; Durnez, Anne; DeVos, Rita; Huang, Xiawen; Achten, Ruth; Verslype, Chris; Diehl, Anna Mae

    2003-01-01

    In animals, the combination of oxidative liver damage and inhibited hepatocyte proliferation increases the numbers of hepatic progenitors (oval cells). We studied different murine models of fatty liver disease and patients with nonalcoholic fatty liver disease or alcoholic liver disease to determine whether oval cells increase in fatty livers and to clarify the mechanisms for this response. To varying degrees, all mouse models exhibit excessive hepatic mitochondrial production of H2O2, a know...

  15. Antioxidants in liver health

    OpenAIRE

    Casas-Grajales, Sael; Muriel, Pablo

    2015-01-01

    Liver diseases are a worldwide medical problem because the liver is the principal detoxifying organ and maintains metabolic homeostasis. The liver metabolizes various compounds that produce free radicals (FR). However, antioxidants scavenge FR and maintain the oxidative/antioxidative balance in the liver. When the liver oxidative/antioxidative balance is disrupted, the state is termed oxidative stress. Oxidative stress leads to deleterious processes in the liver and produces liver diseases. T...

  16. Transcriptional ontogeny of the developing liver

    Directory of Open Access Journals (Sweden)

    Lee Janice S

    2012-01-01

    Full Text Available Abstract Background During embryogenesis the liver is derived from endodermal cells lining the digestive tract. These endodermal progenitor cells contribute to forming the parenchyma of a number of organs including the liver and pancreas. Early in organogenesis the fetal liver is populated by hematopoietic stem cells, the source for a number of blood cells including nucleated erythrocytes. A comprehensive analysis of the transcriptional changes that occur during the early stages of development to adulthood in the liver was carried out. Results We characterized gene expression changes in the developing mouse liver at gestational days (GD 11.5, 12.5, 13.5, 14.5, 16.5, and 19 and in the neonate (postnatal day (PND 7 and 32 compared to that in the adult liver (PND67 using full-genome microarrays. The fetal liver, and to a lesser extent the neonatal liver, exhibited dramatic differences in gene expression compared to adults. Canonical pathway analysis of the fetal liver signature demonstrated increases in functions important in cell replication and DNA fidelity whereas most metabolic pathways of intermediary metabolism were under expressed. Comparison of the dataset to a number of previously published microarray datasets revealed 1 a striking similarity between the fetal liver and that of the pancreas in both mice and humans, 2 a nucleated erythrocyte signature in the fetus and 3 under expression of most xenobiotic metabolism genes throughout development, with the exception of a number of transporters associated with either hematopoietic cells or cell proliferation in hepatocytes. Conclusions Overall, these findings reveal the complexity of gene expression changes during liver development and maturation, and provide a foundation to predict responses to chemical and drug exposure as a function of early life-stages.

  17. Liver in systemic disease

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Potential causes of abnormal liver function tests include viral hepatitis, alcohol intake, nonalcoholic fatty liver disease, autoimmune liver diseases, hereditary diseases, hepatobiliary malignancies or infection, gallstones and drug-induced liver injury. Moreover, the liver may be involved in systemic diseases that mainly affect other organs. Therefore, in patients without etiology of liver injury by screening serology and diagnostic imaging, but who have systemic diseases, the abnormal liver function test results might be caused by the systemic disease. In most of these patients, the systemic disease should be treated primarily. However, some patients with systemic disease and severe liver injury or fulminant hepatic failure require intensive treatments of the liver.

  18. Adiponectin and its receptors in rodent models of fatty liver disease and liver cirrhosis

    Institute of Scientific and Technical Information of China (English)

    Markus Neumeier; Jürgen Sch(o)lmerich; Christa Buechler; Claus Hellerbrand; Erwin G(a)bele; Roland Buettner; Cornelius Bollheimer; Johanna Weigert; Andreas Sch(a)ffler; Thomas S Weiss; Monika Lichtenauer

    2006-01-01

    AIM: To determine circulating and hepatic adiponectin in rodents with fatty liver disease or liver cirrhosis and investigate expression of the adiponectin receptors AdipoR1 on the mRNA and protein level and AdipoR2 on the mRNA level.METHODS: Fat fed rats were used as a model for fatty liver disease and bile duct ligation in mice to investigate cirrhotic liver. Expression of AdipoR1 and AdipoR2 mRNA was determined by real time RT-PCR. AdipoR1 protein was analysed by immunoblot. Adiponectin was measured by ELISA.RESULTS: Systemic adiponectin is reduced in fat fed rats but is elevated in mice after bile duct ligation (BDL). Hepatic adiponectin protein is lower in steatotic liver but not in the liver of BDL-mice when compared to controls. Adiponectin mRNA was not detected in human liver samples or primary human hepatocytes nor in rat liver but recombinant adiponectin is taken up by isolated hepatocytes in-vitro. AdipoR1 mRNA and AdipoR1 protein levels are similar in the liver tissue of control and fat fed animals whereas AdipoR2 mRNA is induced. AdipoR2 mRNA and AdipoR1 mRNA and protein is suppressed in the liver of BDL-mice.CONCLUSION: Our studies show reduced circulating adiponectin in a rat model of fatty liver disease whereas circulating adiponectin is elevated in a mouse model of cirrhosis and similar findings have been described in humans. Diminished hepatic expression of adiponectin receptors was only found in liver cirrhosis.

  19. Isolation of liver aldehyde oxidase containing fractions from different animals and determination of kinetic parameters for benzaldehyde

    Directory of Open Access Journals (Sweden)

    Kadam R

    2008-01-01

    Full Text Available Aldehyde oxidase activity containing fractions from rabbit, guinea pig, rat and mouse livers were obtained by heat treatment and ammonium sulfate precipitation. Aldehyde oxidase activity was observed in rabbit and guinea pig livers, while aldehyde oxidase activity was absent in rat and mouse liver fractions. Enzyme kinetic parameters, K m and V max , were determined for the oxidation of benzaldehyde to benzoic acid by rabbit and guinea pig liver fractions, by spectrophotometric method, with potassium ferricyanide as the electron acceptor. The K m values obtained for both animal liver fractions were in the range of 10.3-19.1 µM.

  20. Pyogenic liver abscess

    Science.gov (United States)

    Liver abscess; Bacterial liver abscess ... There are many potential causes of liver abscesses, including: Abdominal infection, such as appendicitis , diverticulitis , or a perforated bowel Infection in the blood Infection of the bile draining tubes ...

  1. A Series of microRNA in the Chromosome 14q32.2 Maternally Imprinted Region Related to Progression of Non-Alcoholic Fatty Liver Disease in a Mouse Model

    Science.gov (United States)

    Hara, Yuichi; Hino, Keisuke

    2016-01-01

    Background & Aims Simple steatosis (SS) and non-alcoholic steatohepatitis (NASH) are subtypes of non-alcoholic fatty liver disease (NAFLD), and the pathogenic differences between SS and NASH remain unclear. MicroRNAs (miRNAs) are endogenous, non-coding, short RNAs that regulate gene expression. The aim of this study was to use animal models and human samples to examine the relationship between miRNA expression profiles and each type of NAFLD (SS and NASH). Methods DD Shionogi, Fatty Liver Shionogi (FLS) and FLS ob/ob mice were used as models for normal control, SS and NASH, respectively. Microarray analysis and real-time PCR were used to identify candidate NAFLD-related miRNAs. Human serum samples were used to examine the expression profiles of these candidate miRNAs in control subjects and patients with SS or NASH. Results Fourteen miRNAs showed clear expression differences among liver tissues from SS, NASH, and control mice with good reproducibility. Among these NAFLD candidate miRNAs, seven showed similar expression patterns and were upregulated in both SS and NASH tissues; these seven candidate miRNAs mapped to an miRNA cluster in the 14q32.2 maternally imprinted region delineated by delta-like homolog 1 and type III iodothyronine deiodinase (Dlk1-Dio3 mat). Software-based predictions indicated that the transforming growth factor-β pathway, insulin like growth factor-1 and 5' adenosine monophosphate activated protein kinase were potential targets of theses Dlk1-Dio3 mat NAFLD candidate miRNAs. In addition, serum samples from patients with SS or NASH differed markedly with regard to expression of the putative Dlk1-Dio3 mat miRNAs, and these differences accurately corresponded with NAFLD diagnosis. Conclusion The expression profiles of seven miRNAs in 14q32.2 mat have high potential as biomarkers for NAFLD and for improving future research on the pathogenesis and treatment of NASH. PMID:27135827

  2. Liver function

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    930136 Epidermal growth factor for enhanc-ing DNA synthesis of hepatocytes and its pro-tecting effect on animals with liver injury.HUANG Huili(黄慧俐),et al.Dept Infect Dis,Southwest Hosp,3rd Milit Med Univ,Chongqing,630038.Natl Med J China 1992;72(10):604-607.Epidermal growth factor(EGF)was purifiedchromatographically from mice submaxillaryglands,and its activity and electrophoretic pure-ness were identified.The effect of EGF,glucagon-insulin(G-Ins)and EGF-glueagon-insulin mixture(EGF-G-Ins)onstimulation of DNA synthesis in primary cul-tures of rat hepatocytes and their protective ef-

  3. Amebic liver abscess

    Science.gov (United States)

    ... liver in response to an intestinal parasite called Entamoeba histolytica . Causes Amebic liver abscess is caused by Entamoeba histolytica. This parasite causes amebiasis , an intestinal infection that ...

  4. Endoderm Generates Endothelial Cells during Liver Development

    Directory of Open Access Journals (Sweden)

    Orit Goldman

    2014-10-01

    Full Text Available Organogenesis requires expansion of the embryonic vascular plexus that migrates into developing organs through a process called angiogenesis. Mesodermal progenitors are thought to derive endothelial cells (ECs that contribute to both embryonic vasculogenesis and the subsequent organ angiogenesis. Here, we demonstrate that during development of the liver, which is an endoderm derivative, a subset of ECs is generated from FOXA2+ endoderm-derived fetal hepatoblast progenitor cells expressing KDR (VEGFR2/FLK-1. Using human and mouse embryonic stem cell models, we demonstrate that KDR+FOXA2+ endoderm cells developing in hepatic differentiation cultures generate functional ECs. This introduces the concept that ECs originate not exclusively from mesoderm but also from endoderm, supported in Foxa2 lineage-tracing mouse embryos by the identification of FOXA2+ cell-derived CD31+ ECs that integrate the vascular network of developing fetal livers.

  5. Alcohol-Related Liver Disease

    Science.gov (United States)

    ... to run events. Please support us. Donate | Volunteer Alcohol-Related Liver Disease Discussion on Inspire Support Community ... Liver > Liver Disease Information > Alcohol-Related Liver Disease Alcohol-Related Liver Disease Explore this section to learn ...

  6. Liver Disease and Pulmonary Hypertension

    Science.gov (United States)

    Liver Disease Pulmonary & PH Hypertension Did you know that if you have liver disease, you are at risk for pulmonary ... to the liver without cirrhosis. How does liver disease relate to pulmonary hypertension? Liver disease can cause what is known ...

  7. Alcoholic Liver Disease and Liver Transplantation.

    Science.gov (United States)

    Gallegos-Orozco, Juan F; Charlton, Michael R

    2016-08-01

    Excessive alcohol use is a common health care problem worldwide and is associated with significant morbidity and mortality. Alcoholic liver disease represents the second most frequent indication for liver transplantation in North America and Europe. The pretransplant evaluation of patients with alcoholic liver disease should aim at identifying those at high risk for posttransplant relapse of alcohol use disorder, as return to excessive drinking can be deleterious to graft and patient survival. Carefully selected patients with alcoholic liver disease, including those with severe alcoholic hepatitis, will have similar short-term and long-term outcomes when compared with other indications for liver transplantation. PMID:27373614

  8. Protective effect of crocin on liver toxicity induced by morphine

    OpenAIRE

    Mohammad Reza Salahshoor; Mojtaba khashiadeh; Shiva Roshankhah; Seyran Kakabaraei; Cyrus Jalili

    2016-01-01

    Crocin, a bioactive molecule of saffron can be purely isolated from the saffron extract. It has different pharmacological effects such as antioxidant and anticancer activities. Morphine is an opioid analgesic drug. It is mainly metabolized in liver and causes devastating effects. It can increase the generation of free radicals. This study was designed to evaluate the protective role of crocin against morphine-induced toxicity in the mouse liver. In this study, various doses of crocin (12.5, 2...

  9. A humanized mouse model of tuberculosis.

    Directory of Open Access Journals (Sweden)

    Veronica E Calderon

    Full Text Available Mycobacterium tuberculosis (M.tb is the second leading infectious cause of death worldwide and the primary cause of death in people living with HIV/AIDS. There are several excellent animal models employed to study tuberculosis (TB, but many have limitations for reproducing human pathology and none are amenable to the direct study of HIV/M.tb co-infection. The humanized mouse has been increasingly employed to explore HIV infection and other pathogens where animal models are limiting. Our goal was to develop a small animal model of M.tb infection using the bone marrow, liver, thymus (BLT humanized mouse. NOD-SCID/γc(null mice were engrafted with human fetal liver and thymus tissue, and supplemented with CD34(+ fetal liver cells. Excellent reconstitution, as measured by expression of the human CD45 pan leukocyte marker by peripheral blood populations, was observed at 12 weeks after engraftment. Human T cells (CD3, CD4, CD8, as well as natural killer cells and monocyte/macrophages were all observed within the human leukocyte (CD45(+ population. Importantly, human T cells were functionally competent as determined by proliferative capacity and effector molecule (e.g. IFN-γ, granulysin, perforin expression in response to positive stimuli. Animals infected intranasally with M.tb had progressive bacterial infection in the lung and dissemination to spleen and liver from 2-8 weeks post infection. Sites of infection in the lung were characterized by the formation of organized granulomatous lesions, caseous necrosis, bronchial obstruction, and crystallization of cholesterol deposits. Human T cells were distributed throughout the lung, liver, and spleen at sites of inflammation and bacterial growth and were organized to the periphery of granulomas. These preliminary results demonstrate the potential to use the humanized mouse as a model of experimental TB.

  10. Liver Function Tests

    Science.gov (United States)

    ... a Healthy Liver In the Field Call to Action - Change Tomorrow, Give Today Liver Lowdown Sept 2013 Recovery Month Path to Wellness ... Patient Story-Lynette In the Field Call to Action 5 Things About Hep Healthy Summer Tips Liver Lowdown June 2013 Liver Lowdown July/Aug 2014 ...

  11. Cod Liver Oil

    Science.gov (United States)

    Cod liver oil can be obtained from eating fresh cod liver or by taking supplements. Cod liver oil is used for high cholesterol, high triglycerides, ... ear infections (otitis media). Some people put cod liver oil on their skin to speed wound healing. ...

  12. Tolerance Induction in Liver

    OpenAIRE

    M.H Karimi; Geramizadeh, B; Malek-Hosseini, S. A.

    2015-01-01

    Liver is an exclusive anatomical and immunological organ that displays a considerable tolerance effect. Liver allograft acceptance is shown to occur spontaneously within different species. Although in human transplant patients tolerance is rarely seen, the severity level and cellular mechanisms of transplant rejection vary. Non-paranchymal liver cells, including Kupffer cells, liver sinusoidal endothelial cells, hepatic stellate cells, and resident dendritic cells may participate in liver tol...

  13. Flow cytometric analysis of mitotic cycle perturbation by chemical carcinogens in cultured epithelial cells. [Effects of benzo(a)pyrene-diol-epoxide on mitotic cycle of cultural mouse liver epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Pearlman, A.L.

    1978-08-01

    A system for kinetic analysis of mitotic cycle perturbation by various agents was developed and applied to the study of the mitotic cycle effects and dependency of the chemical carcinogen benzo(a)pyrene-diolepoxide, DE, upon a mouse lever epithelial cell line, NMuLi. The study suggests that the targets of DE action are not confined to DNA alone but may include cytoplasmic structures as well. DE was found to affect cells located in virtually every phase of the mitotic cycle, with cells that were actively synthesizing DNA showing the strongest response. However, the resulting perturbations were not confined to S-phase alone. DE slowed traversal through S-phase by about 40% regardless of the cycle phase of the cells exposed to it, and slowed traversal through G/sub 2/M by about 50%. When added to G/sub 1/ cells, DE delayed recruitment of apparently quiescent (G/sub 0/) cells by 2 hours, and reduced the synchrony of the cohort of cells recruited into active proliferation. The kinetic analysis system consists of four elements: tissue culture methods for propagating and harvesting cell populations; an elutriation centrifugation system for bulk synchronization of cells in various phases of the mitotic cycle; a flow cytometer (FCM), coupled with appropriate staining protocols, to enable rapid analysis of the DNA distribution of any given cell population; and data reduction and analysis methods for extracting information from the DNA histograms produced by the FCM. The elements of the system are discussed. A mathematical analysis of DNA histograms obtained by FCM is presented. The analysis leads to the detailed implementation of a new modeling approach. The new modeling approach is applied to the estimation of cell cycle kinetic parameters from time series of DNA histograms, and methods for the reduction and interpretation of such series are suggested.

  14. The Influence of Liver Resection on Intrahepatic Tumor Growth.

    Science.gov (United States)

    Brandt, Hannes H; Nißler, Valérie; Croner, Roland S

    2016-01-01

    The high incidence of tumor recurrence after resection of metastatic liver lesions remains an unsolved problem. Small tumor cell deposits, which are not detectable by routine clinical imaging, may be stimulated by hepatic regeneration factors after liver resection. It is not entirely clear, however, which factors are crucial for tumor recurrence. The presented mouse model may be useful to explore the mechanisms that play a role in the development of recurrent malignant lesions after liver resection. The model combines the easy-to-perform and reproducible techniques of defined amounts of liver tissue removal and tumor induction (by injection) in mice. The animals were treated with either a single laparotomy, a 30% liver resection, or a 70% liver resection. All animals subsequently received a tumor cell injection into the remaining liver tissue. After two weeks of observation, the livers and tumors were evaluated for size and weight and examined by immunohistochemistry. After a 70% liver resection, the tumor volume and weight were significantly increased compared to a laparotomy alone (p number of variables like the length of postoperative observation, the cell line used for injection or the timing of injection and liver resection offer multiple angles when exploring a specific question in the context of post-hepatectomy metastases. The limitations of this procedure are the authorization to perform the procedure on animals, access to an appropriate animal testing facility and acquisition of certain equipment. PMID:27166736

  15. Liver resection in liver transplant recipients

    Institute of Scientific and Technical Information of China (English)

    Gabriele Marangoni; Walid Faraj; Harsheet Sethi; Mohamed Rela; Paolo Muiesan; Nigel Heaton

    2008-01-01

    BACKGROUND: Liver resection after liver transplantation is a relatively uncommon procedure. Indications for liver resection include hepatic artery thrombosis (HAT), non-anastomotic biliary stricture (ischemic biliary lesions), liver abscess, liver trauma and recurrence of hepatocellular carcinoma (HCC). Organ shortage and lower survival after re-transplantation have encouraged us to make attempts at graft salvage. METHODS: Eleven resections at a mean of 59 months after liver transplantation were made over 18 years. Indications for liver resection included HCC recurrence in 4 patients, ischemic cholangiopathy, segmental HAT, sepsis and infected hematoma in 2 each, and ischemic segmentⅣafter split liver transplantation in 1. RESULTS: There was no perioperative mortality. Morbidity included one re-laparotomy for small bowel perforation, one bile leak treated conservatively, one right subphrenic collection, one wound infection and 5 episodes of Gram-negative sepsis. One patient underwent re-transplantation 4 months after resection for chronic rejection. There were 3 deaths, two from HCC recurrence and one from post-transplant lymphoproliferative disorder. The overall mean follow-up after resection was 48 months. CONCLUSIONS: Liver resection in liver transplant recipients is safe, and has good outcome in selected patients and avoids re-transplantation in the majority of patients. Recipients with recurrent HCC in graft may beneift from resection, but cure is uncommon.

  16. 含人AGM区、胎肝及骨髓基质细胞培养体系程序化诱导小鼠胚胎干细胞向造血干细胞的分化%Effects of sequential inductive systems with feeder cells from human aorta-gonad-mesonephros region, fetal liver and bone marrow on the differentiation of mouse embryonic stem cells into hematopoietic stem cells

    Institute of Scientific and Technical Information of China (English)

    蔡耘; 张绪超; 陈惠芹; 黄绍良

    2011-01-01

    背景:前期已分别制备人主动脉-性腺-中肾区基质细胞系及胎肝基质细胞系,发现前者可促进小鼠胚胎干细胞定向分化为造血干细胞.目的:模拟胚胎发育过程中永久造血发育的时空顺序,探讨人主动脉-性腺-中肾(AGM)区、胎肝(FL)及骨髓(BM)基质细胞对小鼠胚胎干细胞体外诱导分化为造血干细胞的支持作用,以寻求更佳的诱导条件.方法:将小鼠E14 胚胎干细胞诱导为拟胚体(EB),并利用Transwell 非接触共培养体系依次在人主动脉-性腺-中肾区、胎肝及骨髓基质细胞饲养层上进一步诱导分化,按不同诱导阶段分为拟胚体对照、EB/AGM、EB/AGM+FL 和EB/AGM+FL+BM共4 组.共培养6 d 后分别收获各组拟胚体来源细胞,以流式细胞仪检测Sca-1+c-Kit+细胞含量,进行各系造血细胞集落形成单位分析并观察细胞形态.结果与结论:①EB/AGM+FL 组和EB/AGM+FL+BM 组收获细胞涂片均发现原始造血细胞.②拟胚体来源细胞经AGM 区基质细胞诱导后Sca-1+c-Kit+ 细胞明显升高(P < 0.05).③拟胚体对照组造血细胞集落形成单位低于其他各组(P < 0.05),而EB/AGM+FL、EB/AGM+FL+BM组造血细胞集落形成单位计数亦较EB/AGM组明显增高.提示AGM+FL 和AGM+FL+骨髓基质细胞微环境对原始造血干细胞的扩增效应均明显高于单纯主动脉-性腺-中肾饲养层.%BACKGROUND: Previous studies have prepared human aorta-gonad-mesonephros (AGM) region stromal cell line and fetal liver stromal cell line, and found that AGM can promote directional differentiation of mouse embryonic stem cells (ESCs) into hemopoietic stem cells (HSCs).OBJECTIVE: To simulate the spatial and temporal hematopoietic microenvironment changes in embryonic development,investigate the supportive effects of sequential inductive systems with feeder cells from human AGM region and fetal liver and bone marrow on the differentiation of mouse ESCs into HSCs, and design more effective

  17. PPARalpha regulates the production of serum Vanin-1 by liver.

    Science.gov (United States)

    Rommelaere, Samuel; Millet, Virginie; Gensollen, Thomas; Bourges, Christophe; Eeckhoute, Jérôme; Hennuyer, Nathalie; Baugé, Eric; Chasson, Lionel; Cacciatore, Ivana; Staels, Bart; Pitari, Giuseppina; Galland, Franck; Naquet, Philippe

    2013-11-15

    The membrane-bound Vanin-1 pantetheinase regulates tissue adaptation to stress. We investigated Vnn1 expression and its regulation in liver. Vnn1 is expressed by centrolobular hepatocytes. Using novel tools, we identify a soluble form of Vnn1 in mouse and human serum and show the contribution of a cysteine to its catalytic activity. We show that liver contributes to Vanin-1 secretion in serum and that PPARalpha is a limiting factor in serum Vnn1 production. Functional PPRE sites are identified in the Vnn1 promoter. These results indicate that serum Vnn1 might be a reliable reporter of PPARalpha activity in liver. PMID:24140347

  18. Immunotherapy of metastatic and autochthonous liver cancer with IL-15/IL-15Rα fusion protein

    OpenAIRE

    Cheng, Liang; Du, Xuexiang; Su, Lishan; Wang, Shengdian

    2014-01-01

    Liver cancer has a poor prognosis. Our recent study demonstrates that hyper-IL-15, composed of IL-15 and the sushi domain of IL-15 receptor α chain, provides an effective therapy against well-established metastatic and autochthonous liver cancers in mouse models by triggering activation and expansion of hepatic CD8+ T cells.

  19. 浊点萃取-石墨炉原子吸收光谱法同时测定生物样品中痕量铅和镉%Simultaneous determination of trace amount of lead and cadmium in mouse liver after cloud point extraction by GFAAS

    Institute of Scientific and Technical Information of China (English)

    王梅; 杨冰仪; 刘秋芳; 邹志辉

    2013-01-01

    提出了石墨炉原子吸收光谱法同时测定小鼠肝中痕量Pb和Cd的方法.以8-羟基喹啉为络合剂,在pH9.0时,用Triton X-100浊点萃取富集样品中的Pb和Cd.用NH4 H2PO4作为基体改进剂测定Pb和Cd,Pb和Cd的检出限(3s/k)分别为0.103 μg/L和0.0136 μg/L,相对标准差(n=6)分别为1.4%,0.73%.对于10 mL样品溶液的富集倍数分别为7.1,9.3.利用该法分别测定了小鼠肝中的Pb和Cd的含量,加标回收率分别为96.4%~97.1%和101.3%~103.2%.%A new method for simultaneous determination of trace amounts of lead and cadmium in mouse liver by GFAAS was proposed in this paper. Trace of Pb2 + and Cd2 + was extracted from the sample solution in the form of coordination complex with dithizone at pH 9. 0 by cloud point extraction with Triton X-100 as a non-ionic surfactant. NH4H2PO4 was used as a matrix modifier. Detection limits for Pb and Cd were 0. 103 and 0.0136 μg/L, respectively. The relative standard deviations (RSD) for six replicate determinations of Pb and Cd were 1. 4% and 0. 73% , with enhancement factors of 7. 1 (Pb) and 9. 3 (Cd) in 10 mL sample solution. The proposed method was successfully applied to the determination of lead and cadmium in the mouse live with the recoveries of 96. 4% -97. 1% , and 101. 3% - 103. 2% , respectively.

  20. Activated farnesoid X receptor attenuates apoptosis and liver injury in autoimmune hepatitis

    OpenAIRE

    LIAN, FAN; Wang, Yu; Xiao, Youjun; WU, XIWEN; Xu, Hanshi; Liang, Liuqin; Yang, Xiuyan

    2015-01-01

    Autoimmune hepatitis (AIH) is a chronic inflammatory liver disease associated with interface hepatitis, the presence of autoantibodies, regulatory T-cell dysfunction and raised plasma liver enzyme levels. The present study assessed the hepatoprotective and antiapoptotic role of farnesoid X receptor (FXR) in AIH. A mouse model of AIH was induced by treatment with concanavalin A (ConA). The FXR agonist, chenodeoxycholic acid (CDCA), was administered to mice exhibiting ConA-induced liver injury ...

  1. Chemical and Hormonal Effects on STAT5b-Dependent Sexual Dimorphism of the Liver Transcriptome.

    Directory of Open Access Journals (Sweden)

    Keiyu Oshida

    Full Text Available The growth hormone (GH-activated transcription factor signal transducer and activator of transcription 5b (STAT5b is a key regulator of sexually dimorphic gene expression in the liver. Suppression of hepatic STAT5b signaling is associated with lipid metabolic dysfunction leading to steatosis and liver cancer. In the companion publication, a STAT5b biomarker gene set was identified and used in a rank-based test to predict both increases and decreases in liver STAT5b activation status/function with high (≥ 97% accuracy. Here, this computational approach was used to identify chemicals and hormones that activate (masculinize or suppress (feminize STAT5b function in a large, annotated mouse liver and primary hepatocyte gene expression compendium. Exposure to dihydrotestosterone and thyroid hormone caused liver masculinization, whereas glucocorticoids, fibroblast growth factor 15, and angiotensin II caused liver feminization. In mouse models of diabetes and obesity, liver feminization was consistently observed and was at least partially reversed by leptin or resveratrol exposure. Chemical-induced feminization of male mouse liver gene expression profiles was a relatively frequent phenomenon: of 156 gene expression biosets from chemically-treated male mice, 29% showed feminization of liver STAT5b function, while <1% showed masculinization. Most (93% of the biosets that exhibited feminization of male liver were also associated with activation of one or more xenobiotic-responsive receptors, most commonly constitutive activated receptor (CAR or peroxisome proliferator-activated receptor alpha (PPARα. Feminization was consistently associated with increased expression of peroxisome proliferator-activated receptor gamma (Pparg but not other lipogenic transcription factors linked to steatosis. GH-activated STAT5b signaling in mouse liver is thus commonly altered by diverse chemicals, and provides a linkage between chemical exposure and dysregulated gene

  2. Biomarkers for liver fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Jon M.; Burnum-Johnson, Kristin E.; Baker, Erin M.; Smith, Richard D.; Gritsenko, Marina A.; Orton, Daniel

    2015-09-15

    Methods and systems for diagnosing or prognosing liver fibrosis in a subject are provided. In some examples, such methods and systems can include detecting liver fibrosis-related molecules in a sample obtained from the subject, comparing expression of the molecules in the sample to controls representing expression values expected in a subject who does not have liver fibrosis or who has non-progressing fibrosis, and diagnosing or prognosing liver fibrosis in the subject when differential expression of the molecules between the sample and the controls is detected. Kits for the diagnosis or prognosis of liver fibrosis in a subject are also provided which include reagents for detecting liver fibrosis related molecules.

  3. Potential role of Hedgehog pathway in liver response to radiation.

    Directory of Open Access Journals (Sweden)

    Sihyung Wang

    Full Text Available Radiation-induced fibrosis constitutes a major problem that is commonly observed in the patients undergoing radiotherapy; therefore, understanding its pathophysiological mechanism is important. The Hedgehog (Hh pathway induces the proliferation of progenitors and myofibroblastic hepatic stellate cells (MF-HSCs and promotes the epithelial-to-mesenchymal transition (EMT, thereby regulating the repair response in the damaged liver. We examined the response of normal liver to radiation injury. Male mice were sacrificed at 6 weeks and 10 weeks after exposure to a single dose of 6 Gy and the livers were collected for biochemical analysis. Irradiated (IR and control mice were compared for progenitors, fibrosis, Hh pathway, and EMT at 6 and 10 weeks post irradiation. Fatty hepatocytes were observed and the expressions of Hh ligand, Indian Hh. were greater in the livers at 6 weeks, whereas expression of another Hh ligand, Sonic Hh, increased at 10 weeks post irradiation. Both Smoothened, Hh receptor, and Gli2, Hh-target gene, were up-regulated at 6 and 10 weeks after irradiation. Accumulation of progenitors (CD44, Pan-cytokeratin, and Sox9 was significant in IR livers at 6 and 10 weeks. RNA analysis showed enhanced expression of the EMT-stimulating factor, tgf-β, in the IR livers at 6 weeks and the upregulation of mesenchymal markers (α-SMA, collagen, N-cadherin, and s100a4, but down-regulation of EMT inhibitors, in IR mouse livers at 6 and 10 weeks. Increased fibrosis was observed in IR mouse livers at 10 weeks. Treatment of mice with Hh inhibitor, GDC-0449, suppressed Hh activity and block the proliferation of hepatic progenitor and expression of EMT-stimulating genes in irradiated mice. Therefore, those results demonstrated that the Hh pathway increased in response to liver injury by radiation and promoted a compensatory proliferation of MF-HSCs and progenitors, thereby regulating liver remodeling.

  4. Dysregulation of bile acid homeostasis in parenteral nutrition mouse model.

    Science.gov (United States)

    Zhan, Le; Yang, Ill; Kong, Bo; Shen, Jianliang; Gorczyca, Ludwik; Memon, Naureen; Buckley, Brian T; Guo, Grace L

    2016-01-15

    Long-term parenteral nutrition (PN) administration can lead to PN-associated liver diseases (PNALD). Although multiple risk factors have been identified for PNALD, to date, the roles of bile acids (BAs) and the pathways involved in BA homeostasis in the development and progression of PNALD are still unclear. We have established a mouse PN model with IV infusion of PN solution containing soybean oil-based lipid emulsion (SOLE). Our results showed that PN altered the expression of genes involved in a variety of liver functions at the mRNA levels. PN increased liver gene expression of Cyp7a1 and markedly decreased that of Cyp8b1, Cyp7b1, Bsep, and Shp. CYP7A1 and CYP8B1 are important for synthesizing the total amount of BAs and regulating the hydrophobicity of BAs, respectively. Consistently, both the levels and the percentages of primary BAs as well as total non-12α-OH BAs increased significantly in the serum of PN mice compared with saline controls, whereas liver BA profiles were largely similar. The expression of several key liver-X receptor-α (LXRα) target genes involved in lipid synthesis was also increased in PN mouse livers. Retinoid acid-related orphan receptor-α (RORα) has been shown to induce the expression of Cyp8b1 and Cyp7b1, as well as to suppress LXRα function. Western blot showed significantly reduced nuclear migration of RORα protein in PN mouse livers. This study shows that continuous PN infusion with SOLE in mice leads to dysregulation of BA homeostasis. Alterations of liver RORα signaling in PN mice may be one of the mechanisms implicated in the pathogenesis of PNALD. PMID:26564717

  5. Pyrroloquinoline-quinone suppresses liver fibrogenesis in mice.

    Directory of Open Access Journals (Sweden)

    Dongwei Jia

    Full Text Available Liver fibrosis represents the consequences of a sustained wound healing response to chronic liver injuries, and its progression toward cirrhosis is the major cause of liver-related morbidity and mortality worldwide. However, anti-fibrotic treatment remains an unconquered area for drug development. Accumulating evidence indicate that oxidative stress plays a critical role in liver fibrogenesis. In this study, we found that PQQ, a natural anti-oxidant present in a wide variety of human foods, exerted potent anti-fibrotic and ROS-scavenging activity in Balb/C mouse models of liver fibrosis. The antioxidant activity of PQQ was involved in the modulation of multiple steps during liver fibrogenesis, including chronic liver injury, hepatic inflammation, as well as activation of hepatic stellate cells and production of extracellular matrix. PQQ also suppressed the up-regulation of RACK1 in activated HSCs in vivo and in vitro. Our data suggest that PQQ suppresses oxidative stress and liver fibrogenesis in mice, and provide rationale for the clinical application of PQQ in the prevention and treatment of liver fibrosis.

  6. Protective effect of crocin on liver toxicity induced by morphine

    Science.gov (United States)

    Salahshoor, Mohammad Reza; khashiadeh, Mojtaba; Roshankhah, Shiva; Kakabaraei, Seyran; Jalili, Cyrus

    2016-01-01

    Crocin, a bioactive molecule of saffron can be purely isolated from the saffron extract. It has different pharmacological effects such as antioxidant and anticancer activities. Morphine is an opioid analgesic drug. It is mainly metabolized in liver and causes devastating effects. It can increase the generation of free radicals. This study was designed to evaluate the protective role of crocin against morphine-induced toxicity in the mouse liver. In this study, various doses of crocin (12.5, 25 and 50 mg/kg) and crocin plus morphine were administered interaperitoneally once daily to 48 male mice for 20 consecutive days. These mice were randomly assigned to 8 groups of 6 each. The liver weight and histology, aspartate amino transferase, alanine aminotransferase, alkaline phosphatase (ALP) and serum nitric oxide levels were studied. The results indicated that morphine administration significantly decreased liver weight and increased the mean diameter of hepatocyte, central hepatic vein diameters, liver enzyme levels, and blood serum nitric oxide level compared to saline group (P<0.05). However, crocin administration significantly boosted liver weight and decreased the mean diameter of hepatocyte, central hepatic vein, liver enzymes and nitric oxide levels in all groups compared to the group received morphine alone (P<0.05). It seems that crocin administration could protect the liver damage induced by morphine. The antioxidant effect of crocin may be a major reason for its positive impact on liver parameters. PMID:27168751

  7. Protective effect of crocin on liver toxicity induced by morphine.

    Science.gov (United States)

    Salahshoor, Mohammad Reza; Khashiadeh, Mojtaba; Roshankhah, Shiva; Kakabaraei, Seyran; Jalili, Cyrus

    2016-01-01

    Crocin, a bioactive molecule of saffron can be purely isolated from the saffron extract. It has different pharmacological effects such as antioxidant and anticancer activities. Morphine is an opioid analgesic drug. It is mainly metabolized in liver and causes devastating effects. It can increase the generation of free radicals. This study was designed to evaluate the protective role of crocin against morphine-induced toxicity in the mouse liver. In this study, various doses of crocin (12.5, 25 and 50 mg/kg) and crocin plus morphine were administered interaperitoneally once daily to 48 male mice for 20 consecutive days. These mice were randomly assigned to 8 groups of 6 each. The liver weight and histology, aspartate amino transferase, alanine aminotransferase, alkaline phosphatase (ALP) and serum nitric oxide levels were studied. The results indicated that morphine administration significantly decreased liver weight and increased the mean diameter of hepatocyte, central hepatic vein diameters, liver enzyme levels, and blood serum nitric oxide level compared to saline group (P<0.05). However, crocin administration significantly boosted liver weight and decreased the mean diameter of hepatocyte, central hepatic vein, liver enzymes and nitric oxide levels in all groups compared to the group received morphine alone (P<0.05). It seems that crocin administration could protect the liver damage induced by morphine. The antioxidant effect of crocin may be a major reason for its positive impact on liver parameters. PMID:27168751

  8. Antioxidants in liver health

    Institute of Scientific and Technical Information of China (English)

    Sael; Casas-Grajales; Pablo; Muriel

    2015-01-01

    Liver diseases are a worldwide medical problem because the liver is the principal detoxifying organ and maintains metabolic homeostasis. The liver metabolizes various compounds that produce free radicals(FR).However, antioxidants scavenge FR and maintain the oxidative/antioxidative balance in the liver. When the liver oxidative/antioxidative balance is disrupted, the state is termed oxidative stress. Oxidative stress leadsto deleterious processes in the liver and produces liver diseases. Therefore, restoring antioxidants is essential to maintain homeostasis. One method of restoring antioxidants is to consume natural compounds with antioxidant capacity. The objective of this review is to provide information pertaining to various antioxidants found in food that have demonstrated utility in improving liver diseases.

  9. Diet and Your Liver

    Science.gov (United States)

    ... the scarring and hardening of the liver. Diet Recommendations: • Limit salt and foods that contain a lot of salt • Talk to your doctor about how much protein to have in your diet Fatty Liver Disease ...

  10. Autoimmune liver disease panel

    Science.gov (United States)

    Liver disease test panel - autoimmune ... Autoimmune disorders are a possible cause of liver disease. The most common of these diseases are autoimmune hepatitis and primary biliary cirrhosis. This group of tests helps your health care provider ...

  11. Alcoholic liver disease

    Science.gov (United States)

    Liver disease due to alcohol; Cirrhosis or hepatitis - alcoholic; Laennec's cirrhosis ... Alcoholic liver disease occurs after years of heavy drinking. Over time, scarring and cirrhosis can occur. Cirrhosis is the ...

  12. Amebic liver abscess

    Science.gov (United States)

    ... liver in response to an intestinal parasite called Entamoeba histolytica . ... Amebic liver abscess is caused by Entamoeba histolytica. This ... dysentery. After an infection has occurred, the parasite may be ...

  13. Tests for Liver Cancer

    Science.gov (United States)

    ... has come back after treatment Alpha-fetoprotein blood (AFP) test AFP is normally present at high levels in the ... liver disease, liver cancer, or other cancers. If AFP levels are very high in someone with a ...

  14. Liver transplantation in polycystic liver disease

    DEFF Research Database (Denmark)

    Krohn, Paul S; Hillingsø, Jens; Kirkegaard, Preben

    2008-01-01

    OBJECTIVE: Polycystic liver disease (PLD) is a rare, hereditary, benign disorder. Hepatic failure is uncommon and symptoms are caused by mass effects leading to abdominal distension and pain. Liver transplantation (LTX) offers fully curative treatment, but there is still some controversy about...... whether it is a relevant modality considering the absence of liver failure, relative organ shortage, perioperative risks and lifelong immunosuppression. The purpose of this study was to review our experience of LTX for PLD and to compare the survival with the overall survival of patients who underwent LTX...... from 1992 to 2005. MATERIAL AND METHODS: A retrospective study of the journals of 440 patients, who underwent 506 LTXs between 1992 and 2005, showed that 14 patients underwent LTX for PLD. All patients had normal liver function. Three were receiving haemodialysis and thus underwent combined liver...

  15. Liver angioscintigraphy: clinical applications.

    Science.gov (United States)

    Dragoteanu, Mircea; Cotul, Sabin O; Pîgleşan, Cecilia; Tamaş, Stefan

    2004-03-01

    Liver angioscintigraphy (LAS) is a radio-isotope method for the investigation of liver perfusion and its alteration in various hepatic diseases. It measures the arterial and portal venous fractions of total liver blood flow. The percentage of liver blood flow supplied by hepatic artery is estimated mathematically by the hepatic perfusion index (HPI), normally between 25 % and 40 %. The decrease of portal blood flow in liver cirrhosis is compensated ("buffer" mechanisms) by increased arterial supply, with higher HPI value. For a patient with chronic liver disease, HPI over 50% suggests arterialization of hepatic perfusion, guiding the diagnose to liver cirrhosis. Splenic curve is completing the diagnostic information of the hepatic curve. Corroborated with per rectal scintigraphy and liver SPECT, LAS offers a good hemodynamic staging of chronic inflammatory liver diseases. Malignant tumors (primitive or metastases) increase the arterial supply of the liver and decrease the portal flow, HPI being over 50% (currently 65 % - 90 %). Benign tumors do not change portal/arterial liver blood flow ratio. SPECT or non-scintigraphic morphological investigations increase the diagnostic value of LAS for primitive liver tumors. Liver cancer occurring on cirrhosis is a limitative factor for LAS. Hepatic metastases increase the arterial perfusion (and HPI value) very quickly, before their size allows morphologic imaging diagnosis. LAS is therefore an early method to diagnose liver metastases being especially used in colorectal cancer. Other clinical applications of LAS are: follow up of liver toxicity of drugs, evaluation of portal vein permeability, post surgery follow up of the liver tumor patients. PMID:15054528

  16. Alcohol and liver, 2010

    Institute of Scientific and Technical Information of China (English)

    Natalia; A; Osna

    2010-01-01

    Liver is known as an organ that is primarily affected by alcohol. Alcoholic liver disease (ALD) is the cause of an increased morbidity and mortality worldwide. Progression of ALD is driven by "second hits". These second hits include the complex of nutritional, pharmacological, genetic and viral factors, which aggravate liver pathology. However, in addition to liver failure, ethanol causes damage to other organs and systems. These extrahepatic manifestations are regulated via the similar hepatitis mechanisms...

  17. Iron and Liver Diseases

    OpenAIRE

    Fargion, Silvia; Mattioli, Michela; Fracanzani, Anna Ludovica; Fiorelli, Gemino

    2000-01-01

    A mild to moderate iron excess is found in patients with liver diseases apparently unrelated to genetic hemochromatosis. Iron appears to affect the natural history of hepatitis C virus-related chronic liver diseases, alcoholic liver disease and nonalcoholic steatohepatitis by leading to a more severe fibrosis and thus aiding the evolution to cirrhosis.Ahigher frequency of mutations of the HFE gene, the gene responsible for hereditary hemochromatosis, is found in patients with liver diseases a...

  18. About the Operation: Liver Transplant

    Science.gov (United States)

    ... There are two very different surgical approaches to liver transplantation: the orthotopic and the heterotopic approach, both of ... liver to the intestines. Heterotopic Approach . In heterotopic liver transplantation, the recipient's liver is left in place and ...

  19. MedlinePlus: Liver Transplantation

    Science.gov (United States)

    ... End-Stage Liver Disease (PELD) (United Network for Organ Sharing) - PDF Specifics Living Donor Liver Transplantation (American Society of Transplantation) - PDF Images Liver transplant - slideshow Available in Spanish Statistics and Research U.S. Hospitals with Liver Transplant Centers ( ...

  20. Cell Therapies for Liver Diseases

    Science.gov (United States)

    Yu, Yue; Fisher, James E.; Lillegard, Joseph B.; Rodysill, Brian; Amiot, Bruce; Nyberg, Scott L.

    2011-01-01

    Cell therapies, which include bioartificial liver support and hepatocyte transplantation, have emerged as potential treatments for a variety of liver diseases. Acute liver failure (ALF), acute-on-chronic liver failure, and inherited metabolic liver diseases are examples of liver diseases that have been successfully treated with cell therapies at centers around the world. Cell therapies also have the potential for wide application in other liver diseases, including non-inherited liver diseases and liver cancer, and in improving the success of liver transplantation. Here we briefly summarize current concepts of cell therapy for liver diseases. PMID:22140063

  1. LIVER AND BILIARY SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    9.1 Liver cirrhosis and fatty liver2003335 The effects of weight reduction in reversing fatty liver changes in overweight and obese patients.ZHU Huijuan(朱惠娟), et al.Dept Endocrinol, PUMC Hosp,CAMS & PUMC, Beijing 100730. Chin J Intern Med 2003:42(2):98-102.Objective:To study the effects of weight loss on non-

  2. LIVER AND BILIARY SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    9.1 Liver Function2007108 Blood pressure changes post liver transplantation in 206 recipients. LIU Hai(刘海),et al. 1st People′s Hosp, Shanghai Jiaotong Univ, Shanghai 200080. Chin J Cardiol 2006;34(10):902-904. Objective To study the blood pressure (BP)changes in the liver transplant recipients.

  3. Alcohol and liver

    Institute of Scientific and Technical Information of China (English)

    Natalia Osna

    2009-01-01

    @@ Liver is a primary site of ethanol metabolism, which makes this organ susceptible to alcohol-induced damage.Alcoholic liver disease (ALD) has many manifestations and complicated pathogenesis. In this Topic Highlight, we included the key reviews that characterize new findings about the mechanisms of ALD development and might be of strong interest for clinicians and researchers involved in liver alcohol studies.

  4. Cloning and characterization of a cDNA coding for mouse placental alkaline phosphatase

    International Nuclear Information System (INIS)

    Mouse alkaline phosphatase was partially purified from placenta. Data obtained by immunoblotting analysis suggested that the primary structure of this enzyme has a much greater homology to that of human and bovine liver ALPs than to the human placental isozyme. Therefore, a full-length cDNA encoding human liver-type ALP was used as a probe to isolate the mouse placental ALP cDNA. The cloned mouse cDNA is 2459 base pairs long and is composed of an open reading frame encoding a 524-amino acid polypeptide that contains a putative signal peptide of 17 amino acids. Homology at the amino acid level of the mouse placental ALP is 90% to the human liver isozyme but only 55% to the human placental counterpart. RNA blot hybridization results indicate that the mouse placental ALP is encoded by a gene identical to the gene expressed in mouse liver, kidney, and teratocarcinoma stem cells. This gene is therefore evolutionarily highly conserved in mouse and human

  5. Gaze beats mouse

    DEFF Research Database (Denmark)

    Mateo, Julio C.; San Agustin, Javier; Hansen, John Paulin

    2008-01-01

    Facial EMG for selection is fast, easy and, combined with gaze pointing, it can provide completely hands-free interaction. In this pilot study, 5 participants performed a simple point-and-select task using mouse or gaze for pointing and a mouse button or a facial-EMG switch for selection. Gaze...... pointing was faster than mouse pointing, while maintaining a similar error rate. EMG and mouse-button selection had a comparable performance. From analyses of completion time, throughput and error rates, we concluded that the combination of gaze and facial EMG holds potential for outperforming the mouse....

  6. Cell Therapies for Liver Diseases

    OpenAIRE

    Yu, Yue; Fisher, James E.; Lillegard, Joseph B.; Rodysill, Brian; Amiot, Bruce; Nyberg, Scott L.

    2012-01-01

    Cell therapies, which include bioartificial liver support and hepatocyte transplantation, have emerged as potential treatments for a variety of liver diseases. Acute liver failure (ALF), acute-on-chronic liver failure, and inherited metabolic liver diseases are examples of liver diseases that have been successfully treated with cell therapies at centers around the world. Cell therapies also have the potential for wide application in other liver diseases, including non-inherited liver diseases...

  7. GENE EXPRESSION PROFILING IN THE LIVER OF CD-1 MICE TO CHARACTERIZE THE HEPATOTOXICITY OF TRIAZOLE FUNGICIDES

    Science.gov (United States)

    Four triazole fungicides used in agricultural or pharmaceutical applications were examined for hepatotoxic effects in mouse liver. Besides organ weight, histopathology, and cytochrome P450 (CYP) enzyme induction, DNA microarrays were used to generate gene expression profiles and ...

  8. Acute liver failure and liver transplantation.

    Science.gov (United States)

    Akamatsu, Nobuhisa; Sugawara, Yasuhiko; Kokudo, Norihiro

    2013-08-01

    Acute liver failure (ALF) is defined by the presence of coagulopathy (International Normalized Ratio ≥ 1.5) and hepatic encephalopathy due to severe liver damage in patients without pre-existing liver disease. Although the mortality due to ALF without liver transplantation is over 80%, the survival rates of patients have considerably improved with the advent of liver transplantation, up to 60% to 90% in the last two decades. Recent large studies in Western countries reported 1, 5, and 10-year patient survival rates after liver transplantation for ALF of approximately 80%, 70%, and 65%, respectively. Living donor liver transplantation (LDLT), which has mainly evolved in Asian countries where organ availability from deceased donors is extremely scarce, has also improved the survival rate of ALF patients in these regions. According to recent reports, the overall survival rate of adult ALF patients who underwent LDLT ranges from 60% to 90%. Although there is still controversy regarding the graft type, optimal graft volume, and ethical issues, LDLT has become an established treatment option for ALF in areas where the use of deceased donor organs is severely restricted. PMID:25343108

  9. Liver and gastrointestinal tract

    International Nuclear Information System (INIS)

    Liver is often a site of a variety of diseases. A palpable liver during a routine clinical examination is an important finding and requires further investigations. The availability of non-invasive liver imaging procedures using nuclear, ultrasound, CT (and now MRI) techniques have immensely enhanced diagnostic accuracy in liver diseases. In this Chapter, a detailed description of routinely practised nuclear medicine procedures related to liver is given. Brief reference is also made to other imaging techniques, particularly ultrasonography, only for the purposes of comparison. Most of the information is based on our own clinical experience of past 30 years

  10. The Role of Iron and Iron Overload in Chronic Liver Disease

    Science.gov (United States)

    Milic, Sandra; Mikolasevic, Ivana; Orlic, Lidija; Devcic, Edita; Starcevic-Cizmarevic, Nada; Stimac, Davor; Kapovic, Miljenko; Ristic, Smiljana

    2016-01-01

    The liver plays a major role in iron homeostasis; thus, in patients with chronic liver disease, iron regulation may be disturbed. Higher iron levels are present not only in patients with hereditary hemochromatosis, but also in those with alcoholic liver disease, nonalcoholic fatty liver disease, and hepatitis C viral infection. Chronic liver disease decreases the synthetic functions of the liver, including the production of hepcidin, a key protein in iron metabolism. Lower levels of hepcidin result in iron overload, which leads to iron deposits in the liver and higher levels of non-transferrin-bound iron in the bloodstream. Iron combined with reactive oxygen species leads to an increase in hydroxyl radicals, which are responsible for phospholipid peroxidation, oxidation of amino acid side chains, DNA strain breaks, and protein fragmentation. Iron-induced cellular damage may be prevented by regulating the production of hepcidin or by administering hepcidin agonists. Both of these methods have yielded successful results in mouse models. PMID:27332079

  11. The Role of Iron and Iron Overload in Chronic Liver Disease.

    Science.gov (United States)

    Milic, Sandra; Mikolasevic, Ivana; Orlic, Lidija; Devcic, Edita; Starcevic-Cizmarevic, Nada; Stimac, Davor; Kapovic, Miljenko; Ristic, Smiljana

    2016-01-01

    The liver plays a major role in iron homeostasis; thus, in patients with chronic liver disease, iron regulation may be disturbed. Higher iron levels are present not only in patients with hereditary hemochromatosis, but also in those with alcoholic liver disease, nonalcoholic fatty liver disease, and hepatitis C viral infection. Chronic liver disease decreases the synthetic functions of the liver, including the production of hepcidin, a key protein in iron metabolism. Lower levels of hepcidin result in iron overload, which leads to iron deposits in the liver and higher levels of non-transferrin-bound iron in the bloodstream. Iron combined with reactive oxygen species leads to an increase in hydroxyl radicals, which are responsible for phospholipid peroxidation, oxidation of amino acid side chains, DNA strain breaks, and protein fragmentation. Iron-induced cellular damage may be prevented by regulating the production of hepcidin or by administering hepcidin agonists. Both of these methods have yielded successful results in mouse models. PMID:27332079

  12. Mouse cell culture - Methods and protocols

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2010-12-01

    Full Text Available The mouse is, out of any doubt, the experimental animal par excellence for many many colleagues within the scientific community, notably for those working in mammalian biology (in a broad sense, from basic genetic to modeling human diseases, starting at least from 1664 Robert Hooke experiments on air’s propertyn. Not surprising then that mouse cell cultures is a well established field of research itself and that there are several handbooks devoted to this discipline. Here, Andrew Ward and David Tosh provide a necessary update of the protocols currently needed. In fact, nearly half of the book is devoted to stem cells culture protocols, mainly embryonic, from a list of several organs (kidney, lung, oesophagus and intestine, pancreas and liver to mention some........

  13. Circulating extracellular vesicles with specific proteome and liver microRNAs are potential biomarkers for liver injury in experimental fatty liver disease.

    Directory of Open Access Journals (Sweden)

    Davide Povero

    Full Text Available BACKGROUND & AIM: Nonalcoholic fatty liver disease (NAFLD is the most common chronic liver disease in both adult and children. Currently there are no reliable methods to determine disease severity, monitor disease progression, or efficacy of therapy, other than an invasive liver biopsy. DESIGN: Choline Deficient L-Amino Acid (CDAA and high fat diets were used as physiologically relevant mouse models of NAFLD. Circulating extracellular vesicles were isolated, fully characterized by proteomics and molecular analyses and compared to control groups. Liver-related microRNAs were isolated from purified extracellular vesicles and liver specimens. RESULTS: We observed statistically significant differences in the level of extracellular vesicles (EVs in liver and blood between two control groups and NAFLD animals. Time-course studies showed that EV levels increase early during disease development and reflect changes in liver histolopathology. EV levels correlated with hepatocyte cell death (r2 = 0.64, p<0.05, fibrosis (r2 = 0.66, p<0.05 and pathological angiogenesis (r2 = 0.71, p<0.05. Extensive characterization of blood EVs identified both microparticles (MPs and exosomes (EXO present in blood of NAFLD animals. Proteomic analysis of blood EVs detected various differentially expressed proteins in NAFLD versus control animals. Moreover, unsupervised hierarchical clustering identified a signature that allowed for discrimination between NAFLD and controls. Finally, the liver appears to be an important source of circulating EVs in NAFLD animals as evidenced by the enrichment in blood with miR-122 and 192--two microRNAs previously described in chronic liver diseases, coupled with a corresponding decrease in expression of these microRNAs in the liver. CONCLUSIONS: These findings suggest a potential for using specific circulating EVs as sensitive and specific biomarkers for the noninvasive diagnosis and monitoring of NAFLD.

  14. Suppression of Graft Regeneration, Not Ischemia/Reperfusion Injury, Is the Primary Cause of Small-for-Size Syndrome after Partial Liver Transplantation in Mice

    OpenAIRE

    Ning Pan; Xiangwei Lv; Rui Liang; Liming Wang; Qinlong Liu

    2014-01-01

    BACKGROUND: Ischemia/reperfusion injury (IRI) is commonly considered to play a crucial role in the pathogenesis of small-for-size syndrome (SFSS) after liver transplantation. Rapid regeneration is also considered essential for the survival of SFS grafts. METHODS: Mouse models of full-size orthotopic liver transplantation, 50% partial liver transplantation and 30% partial liver transplantation were established. Survival rate and serum alanine aminotransferase were observed. IRI was assessed by...

  15. Establishment of animal model of dual liver transplantation in rat.

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    Full Text Available The animal model of the whole-size and reduced-size liver transplantation in both rat and mouse has been successfully established. Because of the difficulties and complexities in microsurgical technology, the animal model of dual liver transplantation was still not established for twelve years since the first human dual liver transplantation has been made a success. There is an essential need to establish this animal model to lay a basic foundation for clinical practice. To study the physiological and histopathological changes of dual liver transplantation, "Y" type vein from the cross part between vena cava and two iliac of donor and "Y' type prosthesis were employed to recanalize portal vein and the bile duct between dual liver grafts and recipient. The dual right upper lobes about 45-50% of the recipient liver volume were taken as donor, one was orthotopically implanted at its original position, the other was rotated 180° sagitally and heterotopically positioned in the left upper quadrant. Microcirculation parameters, liver function, immunohistochemistry and survival were analyzed to evaluate the function of dual liver grafts. No significant difference in the hepatic microcirculatory flow was found between two grafts in the first 90 minutes after reperfusion. Light and electronic microscope showed the liver architecture was maintained without obvious features of cellular destruction and the continuity of the endothelium was preserved. Only 3 heterotopically positioned graft appeared patchy desquamation of endothelial cell, mitochondrial swelling and hepatocytes cytoplasmic vacuolization. Immunohistochemistry revealed there is no difference in hepatocyte activity and the ability of endothelia to contract and relax after reperfusion between dual grafts. Dual grafts made a rapid amelioration of liver function after reperfusion. 7 rats survived more than 7 days with survival rate of 58.3.%. Using "Y" type vein and bile duct prosthesis, we

  16. A proteomic approach for the identification of vascular markers of liver metastasis.

    Science.gov (United States)

    Borgia, Beatrice; Roesli, Christoph; Fugmann, Tim; Schliemann, Christoph; Cesca, Marta; Neri, Dario; Giavazzi, Raffaella

    2010-01-01

    Vascular proteins expressed at liver metastasis sites could serve as prognostic markers or as targets for pharmacodelivery applications. We employed a proteomic approach to define such proteins in three syngeneic mouse models of liver metastasis. Vascular structures were biotinylated in vivo by a terminal perfusion technique, followed by mass spectrometric analysis of accessible biotinylated proteins. In this manner, we identified 12 proteins for which expression was selectively associated with liver metastasis, confirming this association by tissue immunofluorescence or in vivo localization with radiolabeled antibodies. In summary, our findings identify vascular proteins that may have prognostic or drug-targeting use in addressing liver metastases, a common issue in many advanced cancers. PMID:19996283

  17. An encyclopedia of mouse DNA elements (Mouse ENCODE)

    OpenAIRE

    Stamatoyannopoulos, John A; Guig?? Serra, Roderic; Djebali, Sarah; Lagarde, Julien; Adams, Leslie B.

    2012-01-01

    To complement the human Encyclopedia of DNA Elements (ENCODE) project and to enable a broad range of mouse genomics efforts, the Mouse ENCODE Consortium is applying the same experimental pipelines developed for human ENCODE to annotate the mouse genome.

  18. Treatment of Decompensated Alcoholic Liver Disease

    Directory of Open Access Journals (Sweden)

    John Menachery

    2011-01-01

    Full Text Available Alcoholic liver disease (ALD is a spectrum ranging from simple hepatic steatosis to alcoholic hepatitis and cirrhosis. Patients with severe alcoholic hepatitis can have clinical presentation almost similar to those with decompensated cirrhosis. Scoring with models like Maddrey discriminant function, a model for end-stage liver disease, Glasgow alcoholic hepatitis score, and Lille model are helpful in prognosticating patients with ALD. One of the first therapeutic goals in ALD is to induce alcohol withdrawal with psychotherapy or drugs. Most studies have shown that nutritional therapy improves liver function and histology in patients with ALD. The rationale for using glucocorticoids is to block cytotoxic and inflammatory pathways in patients with severe alcoholic hepatitis. Pentoxifylline, a tumor necrosis factor alpha (TNFα suppressor, and infliximab, an anti-TNFα mouse/human chimeric antibody, has been extensively studied in patients with alcoholic hepatitis. Liver transplantation remains the definitive therapy for decompensated cirrhosis/alcoholic hepatitis despite the issues of recidivism, poor compliance with postoperative care, and being a self-inflicted disease.

  19. Liver transplantation in India.

    Science.gov (United States)

    Narasimhan, Gomathy; Kota, Venugopal; Rela, Mohamed

    2016-07-01

    Liver transplantation as an established form of treatment for end-stage liver disease has gained acceptance in India over the last 10 years. Liver transplantation in India has unique features that have contributed to the growth of both deceased donor and living donor transplantations of which living donor currently dominates the picture. Living donor contributes to 80% and deceased donor to 20% of the liver transplants currently performed in India. The majority of these transplants are performed within the private sector with public sector hospitals lagging behind significantly. This article gives an overview of the evolution of liver transplantation in India and the potential future challenges. Liver Transplantation 22 1019-1024 2016 AASLD. PMID:27082718

  20. 应用超高分辨质谱成像技术研究脂类分子在小鼠肝组织中的分布%Imaging and Identification of Phospholipids in Mouse Liver Tissue by Matrix Assisted Laser Desorption Ionization-Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Imaging

    Institute of Scientific and Technical Information of China (English)

    刘辉; 陈国强; 王艳英; 李智立

    2011-01-01

    Matrix assisted laser desorption ionization-Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR MS)-based mass spectrometric imaging (MSI) was applied to profile and identify phospholipid molecules in mouse liver tissues, which were cut into tissue sections (7 μm)on a cryostat at -20 ℃ and covered with 7 g/L of alpha-cyano-4-hydroxycinnamicacid (CHCA) as matrix in 50% methanol/0. 2 trifluoroacetic acid solution. 13 phospholipid compounds, which are classified as 5 different species, phosphatidic acid (PA), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG) and phosphatidylserine (PS), were accurately identified. Their molecular weights are between 700 and 900 Da. The present results indicate that MALDIFTICR MS-based MSI is a powerful tool to explore the distribution of disease-related molecules and drug metabolites in tissues.%利用基质辅助激光解吸电离-傅里叶变换离子回旋共振质谱仪对磷脂类分子在小鼠肝组织中的分布进行了研究,建立了质谱成像技术检测小鼠肝组织中磷脂类分子分布的分析方法.以7 g/Lα腈基-4-羟基肉桂酸的50%甲醇溶液(含0.2%三氟乙酸)作为基质,采用正离子采集模式,准确鉴定了5类13种磷脂类分子,其分子量主要分布在700~900 Da之间,且观察到它们在组织内分布呈现不均匀性.本研究表明,以超高分辨和超高精度的质谱仪开展组织成像研究,不仅可以探究脂类分子在组织中的分布,而且可以直接准确鉴定相关分子,真正实现分子水平上的组织成像.

  1. Alcoholic liver disease: Treatment

    OpenAIRE

    Suk, Ki Tae; Kim, Moon Young; Baik, Soon Koo

    2014-01-01

    The excess consumption of alcohol is associated with alcoholic liver diseases (ALD). ALD is a major healthcare problem, personal and social burden, and significant reason for economic loss worldwide. The ALD spectrum includes alcoholic fatty liver, alcoholic hepatitis, cirrhosis, and the development of hepatocellular carcinoma. The diagnosis of ALD is based on a combination of clinical features, including a history of significant alcohol intake, evidence of liver disease, and laboratory findi...

  2. Cinnamamides, Novel Liver X Receptor Antagonists that Inhibit Ligand-Induced Lipogenesis and Fatty Liver.

    Science.gov (United States)

    Sim, Woo-Cheol; Kim, Dong Gwang; Lee, Kyeong Jin; Choi, You-Jin; Choi, Yeon Jae; Shin, Kye Jung; Jun, Dae Won; Park, So-Jung; Park, Hyun-Ju; Kim, Jiwon; Oh, Won Keun; Lee, Byung-Hoon

    2015-12-01

    Liver X receptor (LXR) is a member of the nuclear receptor superfamily, and it regulates various biologic processes, including de novo lipogenesis, cholesterol metabolism, and inflammation. Selective inhibition of LXR may aid the treatment of nonalcoholic fatty liver diseases. In the present study, we evaluated the effects of three cinnamamide derivatives on ligand-induced LXRα activation and explored whether these derivatives could attenuate steatosis in mice. N-(4-trifluoromethylphenyl) 3,4-dimethoxycinnamamide (TFCA) decreased the luciferase activity in LXRE-tk-Luc-transfected cells and also suppressed ligand-induced lipid accumulation and expression of the lipogenic genes in murine hepatocytes. Furthermore, it significantly attenuated hepatic neutral lipid accumulation in a ligand-induced fatty liver mouse system. Modeling study indicated that TFCA inhibited activation of the LXRα ligand-binding domain by hydrogen bonding to Arg305 in the H5 region of that domain. It regulated the transcriptional control exerted by LXRα by influencing coregulator exchange; this process involves dissociation of the thyroid hormone receptor-associated proteins (TRAP)/DRIP coactivator and recruitment of the nuclear receptor corepressor. These results show that TFCA has the potential to attenuate ligand-induced lipogenesis and fatty liver by selectively inhibiting LXRα in the liver. PMID:26384859

  3. Endovascular management in liver transplantation

    Institute of Scientific and Technical Information of China (English)

    Kyu-Bo Sung

    2006-01-01

    @@ Liver transplantation was developed for the treatment of hepatic failure, and the first human liver transplantation was done in 1963. From the 1990 s,liver transplantation was generally accepted as a treatment modality for both end-stage liver disease and selected liver malignancies. Initially, liver transplantation was started with deceased donor whole-size liver transplantation (whole-size LT) as in other organ transplantation, but there is now a shortage of deceased liver donors has occurred. As a solution, deceased donor split liver transplantation (split LT) began in 1989 and living donor liver transplantation (LDLT) in the early 1990 s. Current liver transplantation techniques include whole-size LT, reduced-size liver transplantation (reduced-size LT), split LT and single or dual LDLT. Two donors give a part of their livers to one adult recipient simultaneously in dual LDLT.

  4. Spaceflight Effects on Cytochrome P450 Content in Mouse Liver.

    Directory of Open Access Journals (Sweden)

    Natalia Moskaleva

    Full Text Available Hard conditions of long-term manned spaceflight can affect functions of many biological systems including a system of drug metabolism. The cytochrome P450 (CYP superfamily plays a key role in the drug metabolism. In this study we examined the hepatic content of some P450 isoforms in mice exposed to 30 days of space flight and microgravity. The CYP content was established by the mass-spectrometric method of selected reaction monitoring (SRM. Significant changes in the CYP2C29, CYP2E1 and CYP1A2 contents were detected in mice of the flight group compared to the ground control group. Within seven days after landing and corresponding recovery period changes in the content of CYP2C29 and CYP1A2 returned to the control level, while the CYP2E1 level remained elevated. The induction of enzyme observed in the mice in the conditions of the spaceflight could lead to an accelerated biotransformation and change in efficiency of pharmacological agents, metabolizing by corresponding CYP isoforms. Such possibility of an individual pharmacological response to medication during long-term spaceflights and early period of postflight adaptation should be taken into account in space medicine.

  5. Application of functional genomics to the chimeric mouse model of HCV infection: optimization of microarray protocols and genomics analysis

    Directory of Open Access Journals (Sweden)

    Smith Maria W

    2006-05-01

    Full Text Available Abstract Background Many model systems of human viral disease involve human-mouse chimeric tissue. One such system is the recently developed SCID-beige/Alb-uPA mouse model of hepatitis C virus (HCV infection which involves a human-mouse chimeric liver. The use of functional genomics to study HCV infection in these chimeric tissues is complicated by the potential cross-hybridization of mouse mRNA on human oligonucleotide microarrays. To identify genes affected by mouse liver mRNA hybridization, mRNA from identical human liver samples labeled with either Cy3 or Cy5 was compared in the presence and absence of known amounts of mouse liver mRNA labeled in only one dye. Results The results indicate that hybridization of mouse mRNA to the corresponding human gene probe on Agilent Human 22 K oligonucleotide microarray does occur. The number of genes affected by such cross-hybridization was subsequently reduced to approximately 300 genes both by increasing the hybridization temperature and using liver samples which contain at least 80% human tissue. In addition, Real Time quantitative RT-PCR using human specific probes was shown to be a valid method to verify the expression level in human cells of known cross-hybridizing genes. Conclusion The identification of genes affected by cross-hybridization of mouse liver RNA on human oligonucleotide microarrays makes it feasible to use functional genomics approaches to study the chimeric SCID-beige/Alb-uPA mouse model of HCV infection. This approach used to study cross-species hybridization on oligonucleotide microarrays can be adapted to other chimeric systems of viral disease to facilitate selective analysis of human gene expression.

  6. IRF-1 promotes liver transplant ischemia/reperfusion injury via hepatocyte IL-15/IL-15Rα production

    OpenAIRE

    Yokota, Shinichiro; Yoshida, Osamu; Dou, Lei; Spadaro, Anthony V.; Isse, Kumiko; Ross, Mark A.; Stolz, Donna B.; Kimura, Shoko; Du, Qiang; DEMETRIS, ANTHONY J.; Thomson, Angus W.; Geller, David A.

    2015-01-01

    Ischemia and reperfusion (I/R) injury following liver transplantation (LTx) is an important problem that significantly impacts clinical outcomes. Interferon regulatory factor-1 (IRF-1) is a nuclear transcription factor that plays a critical role in liver injury. Our objective was to determine the immunomodulatory role of IRF-1 during I/R injury following allogeneic LTx. IRF-1 was induced in liver grafts immediately after reperfusion in both human and mouse LTx. IRF-1 contributed significantly...

  7. Protective Effect of Astaxanthin on Liver Fibrosis through Modulation of TGF-β1 Expression and Autophagy

    OpenAIRE

    Shen, Miao; CHEN, KAN; Lu, Jie; Cheng, Ping; Ling XU; Dai, Weiqi; Wang, Fan; He, Lei; Yan ZHANG; Chengfen, Wang; Li, Jingjing; Yang, Jing; Zhu, Rong; Zhang, Huawei; Zheng, Yuanyuan

    2014-01-01

    Liver fibrosis is a common pathway leading to cirrhosis and a worldwide clinical issue. Astaxanthin is a red carotenoid pigment with antioxidant, anticancer, and anti-inflammatory properties. The aim of this study was to investigate the effect of astaxanthin on liver fibrosis and its potential protective mechanisms. Liver fibrosis was induced in a mouse model using CCL4 (intraperitoneal injection, three times a week for 8 weeks), and astaxanthin was administered everyday at three doses (20, 4...

  8. Liver transplantation for polycystic liver and massive hepatomegaly

    OpenAIRE

    Gruttadauria, Salvatore; Di Francesco, Fabrizio; Gridelli, Bruno

    2010-01-01

    Liver tumor and other benign liver diseases such as polycystic liver disease can cause massive hepatomegaly and may represent an indication for liver transplantation (LT) in some instances. In this setting, LT can be extremely difficult and challenging due to its decreased mobility and access to vascular supply. Benefit from either a right or a left partial liver resection during the transplant procedure has been advocated to safely accomplish the hepatectomy of the native liver. Although we ...

  9. CITED1 Expression in Liver Development and Hepatoblastoma

    Directory of Open Access Journals (Sweden)

    Andrew J. Murphy

    2012-12-01

    Full Text Available Hepatoblastoma, the most common pediatric liver cancer, consists of epithelial mixed embryonal/fetal (EMEF and pure fetal histologic subtypes, with the latter exhibiting a more favorable prognosis. Few embryonal histology markers that yield insight into the biologic basis for this prognostic discrepancy exist. CBP/P-300 interacting transactivator 1 (CITED1, a transcriptional co-activator, is expressed in the self-renewing nephron progenitor population of the developing kidney and broadly in its malignant analog, Wilms tumor (WT. In this current study, CITED1 expression is detected in mouse embryonic liver initially on post-coitum day 10.5 (e10.5, begins to taper by e14.5, and is undetectable in e18.5 and adult livers. CITED1 expression is detected in regenerating murine hepatocytes following liver injury by partial hepatectomy and 3,5-diethoxycarbonyl-1,4-dihydrocollidine. Importantly, while CITED1 is undetectable in normal human adult livers, 36 of 41 (87.8% hepatoblastoma specimens express CITED1, where it is enriched in EMEF specimens compared to specimens of pure fetal histology. CITED1 overexpression in Hep293TT human hepatoblastoma cells induces cellular proliferation and upregulates the Wnt inhibitors Kringle containing transmembrane protein 1 (KREMEN1 and CXXC finger protein 4 (CXXC4. CITED1 mRNA expression correlates with expression of CXXC4 and KREMEN1 in clinical hepatoblastoma specimens. These data show that CITED1 is expressed during a defined time course of liver development and is no longer expressed in the adult liver but is upregulated in regenerating hepatocytes following liver injury. Moreover, as in WT, this embryonic marker is reexpressed in hepatoblastoma and correlates with embryonal histology. These findings identify CITED1 as a novel marker of hepatic progenitor cells that is re-expressed following liver injury and in embryonic liver tumors.

  10. Liver Disease and Adult Vaccination

    Science.gov (United States)

    ... and click "GO" or visit Healthmap Vaccine Finder . Liver Disease and Adult Vaccination Recommend on Facebook Tweet ... critical for people with health conditions such as liver disease. If you have chronic liver disease, talk ...

  11. About the Operation: Liver Transplant

    Science.gov (United States)

    ... Heart/Lung Kidney Pancreas Kidney/Pancreas Liver Intestine Liver Transplant There are two very different surgical approaches to liver transplantation: the orthotopic and the heterotopic approach, both of ...

  12. Liver and Biliary System

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    9.1.Liver cirrhosis and fatty liver2005376 The role of ribosomal S6 kinase in thepathogenesis of rat hepatic fibrosis.YANG Miaofang(杨妙芳),et al.Dept Gastroenterol,Changzheng Hosp,2nd Milit Med Univ,Shanghai 200003.Chin J Dig 2005;25(2):98-100.

  13. Liver (Hepatocellular) Cancer Prevention

    Science.gov (United States)

    ... This may lead to liver cancer. Blood banks test all donated blood for hepatitis B, which greatly lowers the risk of getting the ... This may lead to liver cancer. Blood banks test all donated blood for hepatitis C, which ... infected with hepatitis B. It is caused by hepatitis D virus (HDV) ...

  14. Liver and Biliary System

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    2011220 Value of liver biopsy in diagnosis of chronic hepatitis B. YANG Fang(杨方) ,et al. 2nd Ward, Shenyang 6th People’s Hosp,Shenyang 110006. Chin J Infect Dis 2011; 29(2):99-103. Objective To explore the value of liver biopsy in diagnosis of the severity of chronic hepatitis

  15. Living Donor Liver Transplantation

    Science.gov (United States)

    ... What are Some Benefits of a Living-donor Liver Transplant? In the U.S., more than 17,500 patients ... 1,700 patients die each year while waiting. Liver transplants are given to patients on the basis of ...

  16. Liver transplant - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100090.htm Liver transplant - series To use the sharing features on this ... A.M. Editorial team. Related MedlinePlus Health Topics Liver Transplantation A.D.A.M., Inc. is accredited by ...

  17. Liver cancer oncogenomics

    DEFF Research Database (Denmark)

    Marquardt, Jens U; Andersen, Jesper B

    2015-01-01

    Primary liver cancers are among the most rapidly evolving malignant tumors worldwide. An underlying chronic inflammatory liver disease, which precedes liver cancer development for several decades and frequently creates a pro-oncogenic microenvironment, impairs progress in therapeutic approaches....... Molecular heterogeneity of liver cancer is potentiated by a crosstalk between epithelial tumor and stromal cells that complicate translational efforts to unravel molecular mechanisms of hepatocarcinogenesis with a drugable intend. Next-generation sequencing has greatly advanced our understanding of cancer...... development. With regards to liver cancer, the unprecedented coverage of next-generation sequencing has created a detailed map of genetic alterations and identified key somatic changes such as CTNNB1 and TP53 as well as several previously unrecognized recurrent disease-causing alterations that could...

  18. Complement C5 controls liver lipid profile, promotes liver homeostasis and inflammation in C57BL/6 genetic background.

    Science.gov (United States)

    Bavia, Lorena; de Castro, Íris Arantes; Cogliati, Bruno; Dettoni, Juliano Bertollo; Alves, Venancio Avancini Ferreira; Isaac, Lourdes

    2016-07-01

    Innate immunity contributes effectively to the development of alcoholic liver disease (ALD). In special, the activation of the complement system is involved in the pathogenesis of this disease. Here we investigated the contribution of complement C5 protein to the establishment and maintenance of ALD. Eight- to ten-week-old B6C5(+) and B6C5(-) male mice were fed with high fat diet (HFD) only or the same diet containing equicaloric supplements of ethanol (HFDE) or maltodextrin (HFDM) for 10 weeks. Serum parameters of liver function as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (AP), albumin, glucose, triglycerides (TG) and cholesterol were evaluated. Liver tissue samples were collected for histopathological analysis, lipid extraction (TG and cholesterol), cytokines (TNF-α, IL-6, IL-1β, IL-10, IL-12, IL-17, IFN-γ, TGF-β) measurement and NO production. We observed that B6C5(-) mice HFDE-fed accumulated more liver cholesterol and TG, increased liver IL-17 and IL-10 levels and reduced liver TGF-β levels when compared to HFD-fed mice. We also observed that serum AST, AP and albumin were increased in B6C5(-) mice. Liver IL-1β, IL-6, IL-12 and IFN-γ were decreased in B6C5(-) mice independently of diet. We conclude that C5 acts in the control of serum TG and cholesterol, liver cholesterol deposition, liver homeostasis and C5 promotes a pro-inflammatory liver environment in our mouse model of ALD. PMID:26896155

  19. Mass spectrometry analysis of hepcidin peptides in experimental mouse models.

    Directory of Open Access Journals (Sweden)

    Harold Tjalsma

    Full Text Available The mouse is a valuable model for unravelling the role of hepcidin in iron homeostasis, however, such studies still report hepcidin mRNA levels as a surrogate marker for bioactive hepcidin in its pivotal function to block ferroportin-mediated iron transport. Here, we aimed to assess bioactive mouse Hepcidin-1 (Hep-1 and its paralogue Hepcidin-2 (Hep-2 at the peptide level. To this purpose, Fourier transform ion cyclotron resonance (FTICR and tandem-MS was used for hepcidin identification, after which a time-of-flight (TOF MS-based methodology was exploited to routinely determine Hep-1 and -2 levels in mouse serum and urine. This method was biologically validated by hepcidin assessment in: i 3 mouse strains (C57Bl/6; DBA/2 and BABL/c upon stimulation with intravenous iron and LPS, ii homozygous Hfe knock out, homozygous transferrin receptor 2 (Y245X mutated mice and double affected mice, and iii mice treated with a sublethal hepatotoxic dose of paracetamol. The results showed that detection of Hep-1 was restricted to serum, whereas Hep-2 and its presumed isoforms were predominantly present in urine. Elevations in serum Hep-1 and urine Hep-2 upon intravenous iron or LPS were only moderate and varied considerably between mouse strains. Serum Hep-1 was decreased in all three hemochromatosis models, being lowest in the double affected mice. Serum Hep-1 levels correlated with liver hepcidin-1 gene expression, while acute liver damage by paracetamol depleted Hep-1 from serum. Furthermore, serum Hep-1 appeared to be an excellent indicator of splenic iron accumulation. In conclusion, Hep-1 and Hep-2 peptide responses in experimental mouse agree with the known biology of hepcidin mRNA regulators, and their measurement can now be implemented in experimental mouse models to provide novel insights in post-transcriptional regulation, hepcidin function, and kinetics.

  20. Antioxidant supplements for liver diseases

    DEFF Research Database (Denmark)

    Bjelakovic, Goran; Gluud, Lise Lotte; Nikolova, Dimitrinka;

    2011-01-01

    Several liver diseases have been associated with oxidative stress. Accordingly, antioxidants have been suggested as potential therapeutics for various liver diseases. The evidence supporting these suggestions is equivocal....

  1. Proteoglycans in liver cancer.

    Science.gov (United States)

    Baghy, Kornélia; Tátrai, Péter; Regős, Eszter; Kovalszky, Ilona

    2016-01-01

    Proteoglycans are a group of molecules that contain at least one glycosaminoglycan chain, such as a heparan, dermatan, chondroitin, or keratan sulfate, covalently attached to the protein core. These molecules are categorized based on their structure, localization, and function, and can be found in the extracellular matrix, on the cell surface, and in the cytoplasm. Cell-surface heparan sulfate proteoglycans, such as syndecans, are the primary type present in healthy liver tissue. However, deterioration of the liver results in overproduction of other proteoglycan types. The purpose of this article is to provide a current summary of the most relevant data implicating proteoglycans in the development and progression of human and experimental liver cancer. A review of our work and other studies in the literature indicate that deterioration of liver function is accompanied by an increase in the amount of chondroitin sulfate proteoglycans. The alteration of proteoglycan composition interferes with the physiologic function of the liver on several levels. This article details and discusses the roles of syndecan-1, glypicans, agrin, perlecan, collagen XVIII/endostatin, endocan, serglycin, decorin, biglycan, asporin, fibromodulin, lumican, and versican in liver function. Specifically, glypicans, agrin, and versican play significant roles in the development of liver cancer. Conversely, the presence of decorin could potentially provide protective effects. PMID:26755884

  2. Rat liver insulin receptor

    International Nuclear Information System (INIS)

    Using insulin affinity chromatography, the authors have isolated highly purified insulin receptor from rat liver. When evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions, the rat liver receptor contained the M/sub r/ 125,000 α-subunit, the M/sub r/ 90,000 β-subunit, and varying proportions of the M/sub r/ 45,000 β'-subunit. The specific insulin binding of the purified receptor was 25-30 μg of 125I-insulin/mg of protein, and the receptor underwent insulin-dependent autophosphorylation. Rat liver and human placental receptors differ from each other in several functional aspects: (1) the adsorption-desorption behavior from four insulin affinity columns indicated that the rat liver receptor binds less firmly to immobilized ligands; (2) the 125I-insulin binding affinity of the rat liver receptor is lower than that of the placental receptor; (3) partial reduction of the rat liver receptor with dithiothreitol increases its insulin binding affinity whereas the binding affinity of the placental receptor is unchanged; (4) at optimal insulin concentration, rat liver receptor autophosphorylation is stimulated 25-50-fold whereas the placental receptor is stimulated only 4-6-fold. Conversion of the β-subunit to β' by proteolysis is a major problem that occurs during exposure of the receptor to the pH 5.0 buffer used to elute the insulin affinity column. Proteolytic destruction and the accompanying loss of insulin-dependent autophosphorylation can be substantially reduced by proteolysis inhibitors. In summary, rat liver and human placental receptors differ functionally in both α- and β-subunits. Insulin binding to the α-subunit of the purified rat liver receptor communicates a signal that activates the β-subunit; however, major proteolytic destruction of the β-subunit does not affect insulin binding to the α-subunit

  3. Impaired secretion of very low density lipoprotein-triglycerides by apolipoprotein E- deficient mouse hepatocytes.

    OpenAIRE

    Kuipers, F; M. C. De Jong; Lin, Y.; Eck, M; Havinga, R.; Bloks, V; Verkade , H.J.; Hofker, M H; Moshage, H; Berkel, T J; Vonk, R J; Havekes, L M

    1997-01-01

    To explore mechanisms underlying triglyceride (TG) accumulation in livers of chow-fed apo E-deficient mice (Kuipers, F., J.M. van Ree, M.H. Hofker, H. Wolters, G. In't Veld, R.J. Vonk, H.M.G. Princen, and L.M. Havekes. 1996. Hepatology. 24:241-247), we investigated the effects of apo E deficiency on secretion of VLDL-associated TG (a) in vivo in mice, (b) in isolated perfused mouse livers, and (c) in cultured mouse hepatocytes. (a) Hepatic VLDL-TG production rate in vivo, determined after Tri...

  4. Estrogen and liver X receptors in human disease

    OpenAIRE

    Nilsson, Maria

    2006-01-01

    The nuclear hormone receptors (NRs) are a class of transcription factors that has attracted great interest due to their important roles in animal physiology and metabolism. Studies of knockout (KO) mouse models have indicated several pathophysiological conditions in which the NRs are involved. Four NRs, the estrogen receptors (ERs) á and â, and liver X receptors (LXRs) á and â, are studied in this thesis. The ERs have been implicated in several human diseases such as breast ...

  5. The mouse lymph node as an ectopic transplantation site for multiple tissues

    OpenAIRE

    Komori, Junji; Boone, Lindsey; DeWard, Aaron; Hoppo, Toshitaka; Lagasse, Eric

    2012-01-01

    Cell-based therapy has been viewed as a promising alternative to organ transplantation, but cell transplantation aimed at organ repair is not always possible. Here, we show that the mouse lymph node can support the engraftment and growth of healthy cells from multiple tissues. Direct injection of hepatocytes into a single mouse lymph node generated enough ectopic liver mass to rescue survival of mice with lethal metabolic disease. Furthermore, thymuses transplanted into a lymph node of athymi...

  6. Cotranscriptional splicing efficiency differs dramatically between Drosophila and mouse

    OpenAIRE

    Khodor, Yevgenia L.; Menet, Jerome S; Tolan, Michael; Rosbash, Michael

    2012-01-01

    Spliceosome assembly and/or splicing of a nascent transcript may be crucial for proper isoform expression and gene regulation in higher eukaryotes. It has been shown that cotranscriptional splicing occurs efficiently in Drosophila, but there are not comparable genome-wide nascent splicing data from mammals. To provide this comparison, the authors analyzed a recently generated, high-throughput sequencing data set of mouse liver nascent RNA. Cotranscriptional splicing is approximately twofold l...

  7. Endowascular surgery of liver

    International Nuclear Information System (INIS)

    The well-known variants and above all new valid methods of endovascular surgery in treating chronic hepatitis, cirrhosis and liver tumors are described. The results of the observation of patients in the surgical clinic of the Central Research Institute of Roentgenology and Radiology which has the greatest in the USSR experience in the field of endovascular surgery of the liver are summarized. Special attention is given to the role and positive results of a catheter technique in the treatment of advanced stages of the disease as well as extensive liver resection and its conservation for trasplantation

  8. [Cysts of the liver

    DEFF Research Database (Denmark)

    Hillingso, J.G.; Kirkegaard, P.

    2008-01-01

    guided drainage to resections and liver transplantation are discussed. It is concluded that up to 25% of cysts must be treated surgically, because recurrence after percutaneous or laparoscopic treatment is between 5% and 71%, and only resection or liver transplantation are curative Udgivelsesdato: 2008/4/14......Cysts of the liver are discovered in connection with a scope of diseases ranging from simple, infectious, or parasitic to neoplastic cysts. Symptoms, paraclinical, radiological and diagnostic characteristics are described with emphasis on ruling out malignancy. The treatment options from ultrasound...

  9. Imaging of liver cancer

    Institute of Scientific and Technical Information of China (English)

    Ben Ariff; Claire R Lloyd; Sameer Khan; Mohamed Shariff; Andrew V Thillainayagam; Devinder S Bansi; Shahid A Khan; Simon D Taylor-Robinson; Adrian KP Lim

    2009-01-01

    Improvements in imaging technology allow exploitation of the dual blood supply of the liver to aid in the identi-fication and characterisation of both malignant and benign liver lesions. Imaging techniques available include contrast enhanced ultrasound, computed tomography and magnetic resonance imaging. This review discusses the application of several imaging techniques in the diagnosis and staging of both hepatocellular carcinoma and cholangiocarcinoma and outlines certain characteristics of benign liver lesions. The advantages of each imaging technique are highlighted, while underscoring the potential pitfalls and limitations of each imaging modality.

  10. Do We Know What Causes Liver Cancer?

    Science.gov (United States)

    ... TOPICS Document Topics GO » SEE A LIST » Liver cancer risk factors Do we know what causes liver cancer? Can liver cancer be prevented? Previous Topic Liver cancer risk factors Next Topic Can liver cancer be prevented? Do ...

  11. 25 Ways to Love Your Liver

    Science.gov (United States)

    ... run events. Please support us. Donate | Volunteer For Liver Health Information Call 1-800-GO-LIVER (1- ... Love Your Liver 25 Ways to Love Your Liver The American Liver Foundation has put together this ...

  12. Mouse Phenome Database (MPD)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Mouse Phenome Database (MPD) has characterizations of hundreds of strains of laboratory mice to facilitate translational discoveries and to assist in selection...

  13. Mouse Genome Informatics (MGI)

    Data.gov (United States)

    U.S. Department of Health & Human Services — MGI is the international database resource for the laboratory mouse, providing integrated genetic, genomic, and biological data to facilitate the study of human...

  14. IL-4 mediates dicloxacillin-induced liver injury in mice.

    Science.gov (United States)

    Higuchi, Satonori; Kobayashi, Masanori; Yoshikawa, Yukitaka; Tsuneyama, Koichi; Fukami, Tatsuki; Nakajima, Miki; Yokoi, Tsuyoshi

    2011-02-01

    Drug-induced liver injury (DILI) is a major problem in drug development and clinical drug therapy. In most cases, the mechanisms are still unknown. It is difficult to predict DILI in humans due to the lack of experimental animal models. Dicloxacillin, penicillinase-sensitive penicillin, rarely causes cholestatic or mixed liver injury, and there is some evidence for immunoallergic idiosyncratic reaction in human. In this study, we investigated the mechanisms of dicloxacillin-induced liver injury. Plasma ALT and total-bilirubin (T-Bil) levels were significantly increased in dicloxacillin-administered (600 mg/kg, i.p.) mice. Dicloxacillin administration induced Th2 (helper T cells)-mediated factors and increased the plasma interleukin (IL)-4 level. Neutralization of IL-4 suppressed the hepatotoxicity of dicloxacillin, and recombinant mouse IL-4 administration (0.5 or 2.0 μg/mouse, i.p.) exacerbated it. Chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTh2) is a cognate receptor for prostaglandin (PG) D(2), and is suggested to be involved in Th2-dependent allergic inflammation. We investigated the effect of 13,14-Dihydro-15-keto-PGD(2) (DK-PGD(2); 10 μg/mouse, i.p.) administration on dicloxacillin-induced liver injury. DK-PGD(2)/dicloxacillin coadministration resulted in a significant increase of alanine aminotransferases and a remarkable increase of macrophage inflammatory protein 2 expression. In conclusion, to the best of our knowledge, this is the first report to demonstrate that dicloxacillin-induced liver injury is mediated by a Th2-type immune reaction and exacerbated by DK-PGD(2). PMID:21094227

  15. Living donor liver transplantation for patients with alcoholic liver disease

    OpenAIRE

    Park, Yo-Han; Hwang, Shin; Ahn, Chul-Soo; Kim, Ki-Hun; Moon, Deok-Bog; Ha, Tae-Yong; Song, Gi-Won; Jung, Dong-Hwan; Park, Gil-Chun; Namgoong, Jung-Man; Park, Hyung-Woo; Park, Chun-Soo; Kang, Sung-Hwa; Jung, Bo-Hyeon; Lee, Sung-Gyu

    2013-01-01

    Backgrounds/Aims Since most transplantation studies for alcoholic liver disease (ALD) were performed on deceased donor liver transplantation, little was known following living donor liver transplantation (LDLT). Methods The clinical outcome of 18 ALD patients who underwent LDLT from Febraury 1997 to December 2004 in a large-volume liver transplantation center was assessed retrospectively. Results The model for end-stage liver disease score was 23±11, and mean pretransplant abstinence period w...

  16. Nonalcoholic fatty liver disease

    DEFF Research Database (Denmark)

    Patrick-Melin, A J; Kalinski, M I; Kelly, K R;

    2009-01-01

    Nonalcoholic fatty liver disease (NAFLD) is a rapidly emerging chronic liver disease and is reported to affect up to 70-80% of overweight and obese individuals. NAFLD represents a spectrum of liver diseases that range from simple hepatic steatosis, to a more severe and treatment resistant stage...... that features steatosis plus inflammation, termed nonalcoholic steatohepatitis (NASH), which may in turn progress to hepatic fibrosis, cirrhosis, and sub-acute liver failure. Thus, NAFLD and its subsequent complications create a significant health burden, and currently there is no effective treatment strategy...... the potential role of exercise in treating and preventing NAFLD. Regular exercise can reverse insulin resistance, suppress low-grade systemic inflammation, and attenuate inflammatory markers associated with NAFLD. Thus, exercise has the potential to become an effective treatment and prevention modality...

  17. Hepatic (Liver) Function Panel

    Science.gov (United States)

    ... help diagnose viral infections (such as hepatitis or mononucleosis) or to monitor medications that can cause liver- ... For Kids For Parents MORE ON THIS TOPIC Mononucleosis Hepatitis Blood Test: Alanine Aminotransferase (ALT, or SGPT) ...

  18. Pediatric liver transplantation

    Institute of Scientific and Technical Information of China (English)

    Marco Spada; Silvia Riva; Giuseppe Maggiore; Davide Cintorino; Bruno Gridelli

    2009-01-01

    In previous decades, pediatric liver transplantation has become a state-of-the-art operation with excellent success and limited mortality. Graft and patient survival have continued to improve as a result of improvements in medical, surgical and anesthetic management, organ availability, immunosuppression, and identification and treatment of postoperative complications. The utilization of split-liver grafts and living-related donors has provided more organs for pediatric patients. Newer immunosuppression regimens, including induction therapy, have had a significant impact on graft and patient survival. Future developments of pediatric liver transplantation will deal with long-term followup, with prevention of immunosuppression-related complications and promotion of as normal growth as possible. This review describes the state-of-the-art in pediatric liver transplantation.

  19. Autoimmune liver diseases

    Institute of Scientific and Technical Information of China (English)

    Pietro Invernizzi; Ian R Mackay

    2008-01-01

    The liver was one of the earliest recognized sites among autoimmune diseases yet autoimmune hepatitis,primary biliary cirrhosis,primary sclerosing cholangitis,and their overlap forms,are still problematic in diagnosis and causation.The contributions herein comprise 'pairs of articles' on clinical characteristics,and concepts of etiopathogenesis,for each of the above diseases,together with childhood autoimmune liver disease,overlaps,interpretations of diagnostic serology,and liver transplantation.This issue is timely,since we are witnessing an ever increasing applicability of immunology to a wide variety of chronic diseases,hepatic and non-hepatic,in both developed and developing countries.The 11 invited expert review articles capture the changing features over recent years of the autoimmune liver diseases,the underlying immunomolecular mechanisms of development,the potent albeit still unexplained genetic influences,the expanding repertoire of immunoserological diagnostic markers,and the increasingly effective therapeutic possibilities.

  20. Living Related Liver Transplantation

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Living Related Liver Transplantation (LRLT)is a new strategy, which offers the option of a lifesaving procedure to patients suffering from end - stage liver disease, and the experience indicates that the results are better than cadaveric liver transplantation. It promises to decrease the waiting time for liver transplantation significantly and to reduce the number of patients dying on the waiting list. The selection of a suitable donor and the techniques of operation are of paramount importance for LRLT to minimize the risk for the recipient and the donor, and achieve better outcome for patient. 1 -year recipient survival rate of LRLT is over 90% and 5 -year recipient survival rate of LRLT is about 80%. LRLT has been becoming standard and normal operation in many western transplant centers.

  1. Research Areas: Liver Disease

    Science.gov (United States)

    ... 900 drugs and supplements.​​ Recent discoveries from NIDDK research include: New medication shows promise against liver fibrosis ... linked to biliary atresia in newborn animals Support Research NIDDK invests in basic, clinical and translational research ...

  2. Research Areas: Liver Disease

    Science.gov (United States)

    ... 900 drugs and supplements.​​ Recent discoveries from NIDDK research include: Allergy drug inhibits hepatitis C in mice ... Liver Regeneration Breakthrough Using Mature Human Cells Support Research NIDDK invests in basic, clinical and translational research ...

  3. American Liver Foundation

    Science.gov (United States)

    ... Media Helpful Links Register Today To Be An Organ Donor At ORGANIZE! ORGANIZE is a non-profit that ... kin. Click here to register to be an organ donor! Run Disney With Us! Join the Liver Life ...

  4. Liver and Biliary System

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008546 Effects of gene-transfected bone marrow-derived liver stem cell transplantation on accumulation of extracellular matrix in rats with liver fibrosis.SUN Chao(孙超),et al.Dept Gastroenterol,Xinhua Hosp,Shanghai Jiaotong Univ,Shanghai 200092.Natl Med J China 2008;88(38):2685-2689. Objective To explore the effects of urokinase-type plasminogen activator(uPA)gene modified bone marrow-derived stem cell(BDLSC)

  5. Liver Cancer Stem Cells

    OpenAIRE

    Sameh Mikhail; Aiwu Ruth He

    2011-01-01

    Hepatocellular carcinoma is the most common primary malignancy of the liver in adults. It is also the fifth most common solid cancer worldwide and the third leading cause of cancer-related death. Recent research supports that liver cancer is a disease of adult stem cells. From the models of experimental hepatocarcinogenesis, there may be at least three distinct cell lineages with progenitor properties susceptible to neoplastic transformation. Identification of specific cell surface markers fo...

  6. Acute liver failure

    DEFF Research Database (Denmark)

    Larsen, Fin Stolze; Bjerring, Peter Nissen

    2011-01-01

    Acute liver failure (ALF) results in a multitude of serious complications that often lead to multi-organ failure. This brief review focuses on the pathophysiological processes in ALF and how to manage these.......Acute liver failure (ALF) results in a multitude of serious complications that often lead to multi-organ failure. This brief review focuses on the pathophysiological processes in ALF and how to manage these....

  7. Antifibrinolytics in liver surgery

    OpenAIRE

    Jalpa Makwana; Saloni Paranjape; Jyotsna Goswami

    2010-01-01

    Hyperfibrinolysis, a known complication of liver surgery and orthotopic liver transplantation (OLT), plays a significant role in blood loss. This fact justifies the use of antifibrinolytic drugs during these procedures. Two groups of drug namely lysine analogues [epsilon aminocaproic acid (EACA) and tranexamic acid (TA)] and serine-protease-inhibitors (aprotinin) are frequently used for this purpose. But uniform data or guidelines on the type of antifibrinolytic drugs to be used, their indica...

  8. Mycotoxin-containing diet causes oxidative stress in the mouse.

    Directory of Open Access Journals (Sweden)

    Yan-Jun Hou

    Full Text Available Mycotoxins which mainly consist of Aflatoxin (AF, Zearalenone (ZEN and Deoxynivalenol (DON are commonly found in many food commodities. Although each component has been shown to cause liver toxicity and oxidative stress in several species, there is no evidence regarding the effect of naturally contained multiple mycotoxins on tissue toxicity and oxidative stress in vivo. In the present study, mycotoxins-contaminated maize (AF 597 µg/kg, ZEN 729 µg/kg, DON 3.1 mg/kg maize was incorporated into the diet at three different doses (0, 5 and 20% to feed the mice, and blood and tissue samples were collected to examine the oxidative stress related indexes. The results showed that the indexes of liver, kidney and spleen were all increased and the liver and kidney morphologies changed in the mycotoxin-treated mice. Also, the treatment resulted in the elevated glutathione peroxidase (GPx activity and malondialdehyde (MDA level in the serum and liver, indicating the presence of the oxidative stress. Moreover, the decrease of catalase (CAT activity in the serum, liver and kidney as well as superoxide dismutase (SOD activity in the liver and kidney tissue further confirmed the occurrence of oxidative stress. In conclusion, our data indicate that the naturally contained mycotoxins are toxic in vivo and able to induce the oxidant stress in the mouse.

  9. Liver transplantation in Ireland.

    Science.gov (United States)

    Iqbal, Masood; Elrayah, Elgaily A; Traynor, Oscar; McCormick, P Aiden

    2016-07-01

    The Irish National Liver Transplant program commenced in 1993 in St. Vincent's University Hospital in Dublin. It is an adult-only program and is the only liver transplant program in Ireland. Pediatric recipients are referred to King's College Hospital in the United Kingdom. To date, almost 1000 adult liver transplants have been performed. Current 1-year patient survival is 93%, and 5-year survival is 79%. The program is fully funded by the government health service. There is a close collaboration with the United Kingdom Organ Donation and Transplant Directorate, and there is an arrangement for organ sharing for super-urgent transplants. Traditionally, organ donation rates have been high in Ireland. However, demand for liver transplant has increased over the past 20 years, and waiting lists are now lengthening. Deceased cardiac death donation is now being considered, but there are no plans for living related donor liver transplant. Donor coordinators have recently been appointed to the major hospitals in Ireland, and it is hoped that this initiative will lead to an increase in organ donation rates. Liver Transplantation 22 1014-1018 2016 AASLD. PMID:27065358

  10. Photoacoustic molecular imaging for in vivo liver iron quantitation

    Science.gov (United States)

    Maccarinelli, Federica; Carmona, Fernando; Regoni, Maria; Arosio, Paolo

    2016-05-01

    A recent study showed that ferritin is a suitable endogenous contrast agent for photoacoustic molecular imaging in cultured mammalian cells. We have therefore tested whether this imaging technique can be used for in vivo quantification of iron in mouse livers. To verify this hypothesis, we used multispectral optoacoustic tomography (MSOT) to image albino CD1 mice before and after experimental iron loading. Postmortem assays showed that the iron treatment caused a 15-fold increase in liver iron and a 40-fold increase in liver ferritin levels, while in vivo longitudinal analysis using MSOT revealed just a 1.6-fold increase in the ferritin/iron photoacoustic signal in the same animals. We conclude that MSOT can monitor changes in ferritin/iron levels in vivo, but its sensitivity is much lower than that of ex vivo iron assays.

  11. The Liver in Critical Illness.

    Science.gov (United States)

    Damm, Tessa W; Kramer, David J

    2016-07-01

    Caring for critically ill patients with acute and/or chronic liver dysfunction poses a unique challenge. Proper resuscitation and early consideration for transfer to liver transplant centers have resulted in improved outcomes. Liver support devices and cellular models have not yet shown mortality benefit, but they hold promise in the critical care of patients with liver disease. This article reviews pertinent anatomic and physiologic considerations of the liver in critical illness, followed by a selective review of associated organ dysfunction. PMID:27339681

  12. Percutaneous Cryoablation for Liver Cancer

    OpenAIRE

    Niu, Li-Zhi; Li, Jia-Liang; Xu, Ke-Cheng

    2014-01-01

    Based on the primary tumor site, liver cancer can be divided into two categories: (1) primary liver cancer and (2) metastatic cancer to the liver from a distant primary site. Guided cryoablation via many imaging methods induces iceball formation and tumor necrosisand is an attractive option for treating unresectable hepatocellular carcinoma (HCC) and metastatic liver cancer. There are several advantages to using cryoablation for the treatment of liver cancer: it can be performed percutaneousl...

  13. Mice with humanized liver endothelium

    OpenAIRE

    Oude Elferink, R.P.J.; Seppen, J.; Filali, el, E.

    2014-01-01

    The only curative treatment option for a large proportion of patients suffering from a liver disorder is liver transplantation. The use of ex vivo genetically modified autologous liver cells instead of whole liver transplantation could overcome the problem of donor scarcity. Even though clinical trials have shown that transplantation of liver cells is feasible, long-term outcome is disappointing due to poor translation of animal studies to humans amongst others. In the present thesis, we soug...

  14. Autoimmune liver disease, autoimmunity and liver transplantation.

    Science.gov (United States)

    Carbone, Marco; Neuberger, James M

    2014-01-01

    Primary biliary cirrhosis (PBC), primary sclerosing cholangitis (PSC) and autoimmune hepatitis (AIH) represent the three major autoimmune liver diseases (AILD). PBC, PSC, and AIH are all complex disorders in that they result from the effects of multiple genes in combination with as yet unidentified environmental factors. Recent genome-wide association studies have identified numerous risk loci for PBC and PSC that host genes involved in innate or acquired immune responses. These loci may provide a clue as to the immune-based pathogenesis of AILD. Moreover, many significant risk loci for PBC and PSC are also risk loci for other autoimmune disorders, such type I diabetes, multiple sclerosis and rheumatoid arthritis, suggesting a shared genetic basis and possibly similar molecular pathways for diverse autoimmune conditions. There is no curative treatment for all three disorders, and a significant number of patients eventually progress to end-stage liver disease requiring liver transplantation (LT). LT in this context has a favourable overall outcome with current patient and graft survival exceeding 80% at 5years. Indications are as for other chronic liver disease although recent data suggest that while lethargy improves after transplantation, the effect is modest and variable so lethargy alone is not an indication. In contrast, pruritus rapidly responds. Cholangiocarcinoma, except under rigorous selection criteria, excludes LT because of the high risk of recurrence. All three conditions may recur after transplantation and are associated with a greater risk of both acute cellular and chronic ductopenic rejection. It is possible that a crosstalk between alloimmune and autoimmune response perpetuate each other. An immunological response toward self- or allo-antigens is well recognised after LT in patients transplanted for non-autoimmune indications and sometimes termed "de novo autoimmune hepatitis". Whether this is part of the spectrum of rejection or an autoimmune

  15. CYP1A1 and CYP1A2 expression: Comparing 'humanized' mouse lines and wild-type mice; comparing human and mouse hepatoma-derived cell lines

    International Nuclear Information System (INIS)

    Human and rodent cytochrome P450 (CYP) enzymes sometimes exhibit striking species-specific differences in substrate preference and rate of metabolism. Human risk assessment of CYP substrates might therefore best be evaluated in the intact mouse by replacing mouse Cyp genes with human CYP orthologs; however, how 'human-like' can human gene expression be expected in mouse tissues? Previously a bacterial-artificial-chromosome-transgenic mouse, carrying the human CYP1A1CYP1A2 locus and lacking the mouse Cyp1a1 and Cyp1a2 orthologs, was shown to express robustly human dioxin-inducible CYP1A1 and basal versus inducible CYP1A2 (mRNAs, proteins, enzyme activities) in each of nine mouse tissues examined. Chimeric mice carrying humanized liver have also been generated, by transplanting human hepatocytes into a urokinase-type plasminogen activator(+/+)severe-combined-immunodeficiency (uPA/SCID) line with most of its mouse hepatocytes ablated. Herein we compare basal and dioxin-induced CYP1A mRNA copy numbers, protein levels, and four enzymes (benzo[a]pyrene hydroxylase, ethoxyresorufin O-deethylase, acetanilide 4-hydroxylase, methoxyresorufin O-demethylase) in liver of these two humanized mouse lines versus wild-type mice; we also compare these same parameters in mouse Hepa-1c1c7 and human HepG2 hepatoma-derived established cell lines. Most strikingly, mouse liver CYP1A1-specific enzyme activities are between 38- and 170-fold higher than human CYP1A1-specific enzyme activities (per unit of mRNA), whereas mouse versus human CYP1A2 enzyme activities (per unit of mRNA) are within 2.5-fold of one another. Moreover, both the mouse and human hepatoma cell lines exhibit striking differences in CYP1A mRNA levels and enzyme activities. These findings are relevant to risk assessment involving human CYP1A1 and CYP1A2 substrates, when administered to mice as environmental toxicants or drugs.

  16. Themes of liver transplantation.

    Science.gov (United States)

    Starzl, Thomas E; Fung, John J

    2010-06-01

    Liver transplantation was the product of five interlocking themes. These began in 1958-1959 with canine studies of then theoretical hepatotrophic molecules in portal venous blood (Theme I) and with the contemporaneous parallel development of liver and multivisceral transplant models (Theme II). Further Theme I investigations showed that insulin was the principal, although not the only, portal hepatotrophic factor. In addition to resolving long-standing controversies about the pathophysiology of portacaval shunt, the hepatotrophic studies blazed new trails in the regulation of liver size, function, and regeneration. They also targeted inborn metabolic errors (e.g., familial hyperlipoproteinemia) whose palliation by portal diversion presaged definitive correction with liver replacement. Clinical use of the Theme II transplant models depended on multiple drug immunosuppression (Theme III, Immunology), guided by an empirical algorithm of pattern recognition and therapeutic response. Successful liver replacement was first accomplished in 1967 with azathioprine, prednisone, and antilymphoid globulin. With this regimen, the world's longest surviving liver recipient is now 40 years postoperative. Incremental improvements in survival outcome occurred (Theme IV) when azathioprine was replaced by cyclosporine (1979), which was replaced in turn by tacrolimus (1989). However, the biologic meaning of alloengraftment remained enigmatic until multilineage donor leukocyte microchimerism was discovered in 1992 in long-surviving organ recipients. Seminal mechanisms were then identified (clonal exhaustion-deletion and immune ignorance) that linked organ engraftment and the acquired tolerance of bone marrow transplantation and eventually clarified the relationship of transplantation immunology to the immunology of infections, neoplasms, and autoimmune disorders. With this insight, better strategies of immunosuppression have evolved. As liver and other kinds of organ transplantation

  17. Liver transplantation for polycystic liver and massive hepatomegaly

    Institute of Scientific and Technical Information of China (English)

    Salvatore; Gruttadauria; Fabrizio; di; Francesco; Bruno; Gridelli

    2010-01-01

    Liver tumor and other benign liver diseases such as polycystic liver disease can cause massive hepatomegaly and may represent an indication for liver transplantation(LT)in some instances.In this setting,LT can be extremely difficult and challenging due to its decreased mobility and access to vascular supply.Benefit from either a right or a left partial liver resection during the transplant procedure has been advocated to safely accomplish the hepatectomy of the native liver.Although we believe that partial ...

  18. Hormone-responsive expression of an endogenous proviral gene of mouse mammary tumor virus after molecular cloning and gene transfer into cultured cells.

    OpenAIRE

    Hynes, N E; Kennedy, N; Rahmsdorf, U.; Groner, B.

    1981-01-01

    A recombinant lambda phage containing mouse mammary tumor virus (MMTV) proviral DNA was isolated from a gene library constructed from GR mouse liver DNA. Restriction enzyme analyses reveal that the cloned molecule contains a copy of one of the GR endogenous MMTV proviruses flanked on both sides by 2--3 kb of mouse genomic DNA. In this report we have examined the expression of the cloned MMTV provirus after cotransfection with the herpes thymidine kinase (TK; ATP:thymidine 5'-phosphotransferas...

  19. Imaging in pediatric liver transplantation.

    Science.gov (United States)

    Monti, L; Soglia, G; Tomà, P

    2016-05-01

    Liver transplantation has become an established curative treatment in adult patients with acute or chronic end-stage liver diseases. In pediatric cases the number of cadaveric donor livers is not sufficient and to overcome the shortage of appropriate-sized whole liver grafts, technical variants of liver transplantation have been practiced. Reduced-size cadaveric and split cadaveric allografts have become an important therapeutic option, expanding the availability of size-appropriate organs for pediatric recipients with terminal liver disease. The number of pediatric deaths awaiting liver transplantation has been reduced by the introduction of living-related liver transplantation, developed to overcome the shortage of suitable grafts for children. It is important for radiologists to know that children have distinct imaging of liver transplantation that distinguish them from adults. A multidisciplinary pediatric liver transplantation team should be skilled in pediatric conditions and in associated processes, risks and complications. Radiologists should know the common pediatric liver diseases that lead to liver transplantation, the anastomotic techniques and the expected postoperative imaging findings. The aim of this study is to illustrate the role of non-invasive imaging such us ultrasonography, color Doppler ultrasonography, multidetector computed tomography and magnetic resonance imaging in the evaluation of pediatric liver transplantation and in potential liver donors. PMID:26909515

  20. Imaging of Herpes Simplex Virus Type 1 Thymidine Kinase Gene Expression with Radiolabeled 5-(2-iodovinyl)-2'-deoxyuridine (IVDU) in Liver by Hydrodynamic-based Procedure

    International Nuclear Information System (INIS)

    Hydrodynamic-based procedure is a simple and effective gene delivery method to lead a high gene expression in liver tissue. Non-invasive imaging reporter gene system has been used widely with herpes simplex virus type 1 thymidine kinase (HSV1-tk) and its various substrates. In the present study, we investigated to image the expression of HSV1-tk gene with 5-(2-iodovinyl)-2'-deoxyuridine (IVDU) in mouse liver by the hydrodynamicbased procedure. HSV1-tk or enhanced green fluorescence protein (EGFP) encoded plasmid DNA was transferred into the mouse liver by hydrodynamic injection. At 24 h post-injection, RT-PCR, biodistribution, fluorescence imaging, nuclear imaging and digital wholebody autoradiography (DWBA) were performed to confirm transferred gene expression. In RT-PCR assay using mRNA from the mouse liver, specific bands of HSV1-tk and EGFP gene were observed in HSV1-tk and EGFP expressing plasmid injected mouse, respectively. Higher uptake of radiolabeled IVDU was exhibited in liver of HSV1-tk gene transferred mouse by biodistribution study. In fluorescence imaging, the liver showed specific fluorescence signal in EGFP gene transferred mouse. Gamma-camera image and DWBA results showed that radiolabeled IVDU was accumulated in the liver of HSV1-tk gene transferred mouse. In this study, hydrodynamic-based procedure was effective in liver-specific gene delivery and it could be quantified with molecular imaging methods. Therefore, co-expression of HSV1-tk reporter gene and target gene by hydrodynamic-based procedure is expected to be a useful method for the evaluation of the target gene expression level with radiolabeled IVDU

  1. Orthotopic liver transplantation

    International Nuclear Information System (INIS)

    Liver transplantation is a life-saving therapeutic option in many patients with end-stage liver disease. Experience with MR imaging of the liver allograft is limited, however. This paper reports twenty-one patients who had undergone liver transplantation studied with MR imaging. A perivascular collar surrounding the portal vein was demonstrated in all 21 patients. In 17 of them, the collar was also observed around peripheral portal branches. The collar had low signal intensity (SI) on T1-weighted and high SI on multiecho images. Perihilar fluid collections that were connected to the perivascular collar were demonstrated in four patients. Laboratory analysis of the aspirated fluid demonstrated liver lymph in three patients. The perivascular collar appears to be related to impaired lymph drainage from surgical interruption of lymphatic vessels. In contrast to recent CT reports, however, a perivascular collar around peripheral portal venous branches does not appear to be a sign specific for rejection, since only two of the 17 patients with a peripheral perivascular collar had rejection at the time of MR imaging. The authors conclude that perivascular collar is a normal finding in hepatic transplants. It should not be mistaken for dilated bile ducts. A perivascular collar around peripheral portal branches does not correlate to rejection

  2. in Human Liver Diseases

    Directory of Open Access Journals (Sweden)

    Minoru Fujimoto

    2010-01-01

    Full Text Available Toll-like receptor (TLR signaling pathways are strictly coordinated by several mechanisms to regulate adequate innate immune responses. Recent lines of evidence indicate that the suppressor of cytokine signaling (SOCS family proteins, originally identified as negative-feedback regulators in cytokine signaling, are involved in the regulation of TLR-mediated immune responses. SOCS1, a member of SOCS family, is strongly induced upon TLR stimulation. Cells lacking SOCS1 are hyperresponsive to TLR stimulation. Thus, SOCS1 is an important regulator for both cytokine and TLR-induced responses. As an immune organ, the liver contains various types of immune cells such as T cells, NK cells, NKT cells, and Kupffer cells and is continuously challenged with gut-derived bacterial and dietary antigens. SOCS1 may be implicated in pathophysiology of the liver. The studies using SOCS1-deficient mice revealed that endogenous SOCS1 is critical for the prevention of liver diseases such as hepatitis, cirrhosis, and cancers. Recent studies on humans suggest that SOCS1 is involved in the development of various liver disorders in humans. Thus, SOCS1 and other SOCS proteins are potential targets for the therapy of human liver diseases.

  3. Exosomes in liver pathology.

    Science.gov (United States)

    Sato, Keisaku; Meng, Fanyin; Glaser, Shannon; Alpini, Gianfranco

    2016-07-01

    Exosomes are small (∼100nm) membrane-bound extracellular vesicles released by various types of cells into biological fluids. They contain proteins, mRNAs and miRNAs as cargo. Different cell types can take up exosomes by endocytosis and the cargo contained within them can be transferred horizontally to these recipient cells. Exosomal proteins and miRNAs can be functional and regulate physiological cell events modifying the microenvironment in target cells, a key event of liver pathology. Exosome-mediated cell-cell communication can alter tumor growth, cell migration, antiviral infection and hepatocyte regeneration, indicating that exosomes have great potential for development as diagnostic or therapeutic tools. Analyses of circulating total or exosomal miRNAs have identified a large number of candidate miRNAs that are regulated in liver diseases, and the diagnostic testing using single or multiple miRNAs shows good sensitivity and specificity. Some candidate miRNAs have been identified to play an important role in various liver disorders. This review summarizes recent findings on the role of extracellular vesicles in liver diseases and their diagnostic and therapeutic potential, mainly focusing on exosomes but also includes microvesicles in liver pathology. PMID:26988731

  4. Liver biopsy in liver patients with coagulopathy

    DEFF Research Database (Denmark)

    Ott, P.; Gronbaek, H.; Clausen, M.R.;

    2008-01-01

    The risk of severe bleeding after liver biopsy is estimated to be 1:12,000 in patients with near normal coagulation (INR < 1,5 and platelet count > 60 billion /l). Beyond these limits, the risk is higher, but still uncertain. The Danish guidelines require INR > 1.5, platelet count < 40 billion /l...... and normal APTT. In some instances the risk of not knowing the histology is so high that a biopsy is considered even with a more disturbed coagulation. Vitamin K, freshly frozen plasma and recombinant activated factor VII may reduce the risk of bleeding in specific situations, but no firm...

  5. Burn mouse models

    DEFF Research Database (Denmark)

    Calum, Henrik; Høiby, Niels; Moser, Claus

    2014-01-01

    Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third-degree b......Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third...... with infected burn wound compared with the burn wound only group. The burn mouse model resembles the clinical situation and provides an opportunity to examine or develop new strategies like new antibiotics and immune therapy, in handling burn wound victims much....

  6. The nuclear bile acid receptor FXR controls the liver derived tumor suppressor histidine-rich glycoprotein.

    Science.gov (United States)

    Deuschle, Ulrich; Birkel, Manfred; Hambruch, Eva; Hornberger, Martin; Kinzel, Olaf; Perović-Ottstadt, Sanja; Schulz, Andreas; Hahn, Ulrike; Burnet, Michael; Kremoser, Claus

    2015-06-01

    The nuclear bile acid receptor Farnesoid X receptor (FXR) is strongly expressed in liver and intestine, controls bile acid and lipid homeostasis and exerts tumor-protective functions in liver and intestine. Histidine-rich glycoprotein (HRG) is an abundant plasma protein produced by the liver with the proposed function as a pattern recognition molecule involved in the clearance of immune complexes, necrotic cells and pathogens, the modulation of angiogenesis, the normalization of deranged endothelial vessel structure in tumors and tumor suppression. FXR recognition sequences were identified within a human HRG promoter fragment that mediated FXR/FXR-agonist dependent reporter gene activity in vitro. We show that HRG is a novel transcriptional target gene of FXR in human hepatoma cells, human upcyte® primary hepatocytes and 3D human liver microtissues in vitro and in mouse liver in vivo. Prolonged administration of the potent nonsteroidal FXR agonist PX20606 increases HRG levels in mouse plasma. Finally, daily oral administration of this FXR agonist for seven days resulted in a significant increase of HRG levels in the plasma of healthy human male volunteers during a clinical Phase I safety study. HRG might serve as a surrogate marker indicative of liver-specific FXR activation in future human clinical studies. Furthermore, potent FXR agonists might be beneficial in serious health conditions where HRG is reduced, for example, in hepatocellular carcinoma but also other solid cancers, liver failure, sepsis and pre-eclampsia. PMID:25363753

  7. Manipulation of Mouse Embryonic Stem Cells for Knockout Mouse Production

    OpenAIRE

    Limaye, Advait; Hall, Bradford; Kulkarni, Ashok B.

    2009-01-01

    The establishment of mouse embryonic stem (ES) cell liness has allowed for the generation of the knockout mouse. ES cells that are genetically altered in culture can then be manipulated to derive a whole mouse containing the desired mutation. To successfully generate a knockout mouse, however, the ES cells must be carefully cultivated in a pluripotent state throughout the gene targeting experiment. This unit describes detailed step-by-step protocols, reagents, equipment, and strategies needed...

  8. Interleukin-6 mediates angiotensinogen gene expression during liver regeneration.

    Directory of Open Access Journals (Sweden)

    Hong-Shiee Lai

    Full Text Available BACKGROUND: Angiotensinogen is the precursor of angiotensin II, which is associated with ischemia-reperfusion injury. Angiotensin II reduces liver regeneration after hepatectomy and causes dysfunction and failure of reduced-size liver transplants. However, the regulation of angiotensinogen during liver regeneration is still unclear. AIMS: To investigate the regulation of angiotensinogen during liver regeneration for preventing angiotensin II-related ischemia-reperfusion injury during liver regeneration. METHODS: A mouse in vitro partial hepatectomy animal model was used to evaluate the expression of interleukin-6 (IL-6 and angiotensinogen during liver regeneration. Serum IL-6 and angiotensinogen were detected by enzyme immunoassay (EIA. Angiotensinogen mRNA was detected by RT-PCR. Tissue levels of angiotensinogen protein were detected by Western blot analysis. Primary cultures of mouse hepatocytes were used to investigate IL-6-induced angiotensinogen. Chemical inhibitors were used to perturb signal transduction pathways. Synthetic double-stranded oligodeoxynucleotides (ODNs were used as 'decoy' cis-elements to investigate transcription. Ki 67 staining and quantification were used to verify liver regeneration. RESULTS: In the in vivo model, the levels of serum IL-6 and angiotensinogen correlated. In the in vitro model, IL-6 transcriptionally regulated angiotensinogen expression. Additionally, IL-6 mediated angiotensinogen expression through the Janus kinase (JAK/signal transducer and activator of transcription 3 (STAT3 and JAK/p38 signaling. Decoy ODN analyses revealed that STAT3 and nuclear factor-kB (NF-kB also played critical roles in the transcriptional regulation of angiotensinogen by IL-6. IL-6-mediated signaling, JAK2, STAT3 and p38 inhibitors reduced angiotensinogen expression in the partially hepatectomized mice. CONCLUSION: During liver regeneration, IL-6-enhanced angiotensinogen expression is dependent on the JAK/STAT3 and JAK/p38/NF

  9. Ethanolic Extract of Acanthopanax koreanum Nakai Alleviates Alcoholic Liver Damage Combined with a High-Fat Diet in C57BL/6J Mice

    OpenAIRE

    Haein Kim; Minyoung Park; Jae-Ho Shin; Oran Kwon

    2016-01-01

    Alcoholic and nonalcoholic liver steatosis have an indistinguishable spectrum of histological features and liver enzyme elevations. In this study, we investigated the potential of the ethanolic extract of Acanthopanax koreanum Nakai (AK) to protect against experimental alcoholic liver disease in a mouse model that couples diet and daily ethanol bolus gavage. Fifty-six C57BL/6J mice were randomly divided into seven groups: normal control (NC), alcohol control (AC), alcohol/HFD control (AH), lo...

  10. Liver transplantation in Germany.

    Science.gov (United States)

    Tacke, Frank; Kroy, Daniela C; Barreiros, Ana Paula; Neumann, Ulf P

    2016-08-01

    Liver transplantation (LT) is a well-accepted procedure for end-stage liver disease in Germany. In 2015, 1489 patients were admitted to the waiting list (including 1308 new admissions), with the leading etiologies being fibrosis and cirrhosis (n = 349), alcoholic liver disease (n = 302), and hepatobiliary malignancies (n = 220). Organ allocation in Germany is regulated within the Eurotransplant system based on urgency as expressed by the Model for End-Stage Liver Disease score. In 2015, only 894 LTs (n = 48 from living donors) were performed at 23 German transplant centers, reflecting a shortage of organs. Several factors may contribute to the low number of organ donations. The German transplant legislation only accepts donation after brain death (not cardiac death), whereas advances in neurosurgery and a more frequently requested "palliative care" approach render fewer patients suitable as potential donors. The legislation further requires the active consent of the donor or first-degree relatives before donation. Ongoing debates within the German transplant field address the optimal management of patients with alcoholic liver cirrhosis, hepatocellular carcinoma (HCC), and cholangiocarcinoma and measures to increase living donor transplantations. As a result of irregularities at mainly 4 German transplant centers that were exposed in 2012, guiding principles updated by the German authorities have since implemented strict rules (including internal and external auditing, the 8-eyes principle, mandatory repeated testing for alcohol consumption) to prohibit any manipulations in organ allocation. In conclusion, we will summarize important aspects on the management of LT in Germany, discuss legal and organizational aspects, and highlight challenges mainly related to the relative lack of organ donations, increasing numbers of extended criteria donors, and the peculiarities of the recipient patients. Liver Transplantation 22 1136-1142 2016 AASLD. PMID:27082951

  11. Rex3 (reduced in expression 3) as a new tumor marker in mouse hepatocarcinogenesis

    International Nuclear Information System (INIS)

    In a previous microarray expression analysis, Rex3, a gene formerly not linked to tumor formation, was found to be highly overexpressed in both Ctnnb1-(β-Catenin) and Ha-ras-mutated mouse liver tumors. Subsequent analyses by in situ hybridization and real-time PCR confirmed a general liver tumor-specific overexpression of the gene (up to 400-fold). To investigate the role of Rex3 in liver tumors, hepatoma cells were transfected with FLAG- and Myc-tagged Rex3 expression vectors. Rex3 was shown to be exclusively localized to the cytoplasm, as determined by fluorescence microscopy and Western blotting. However, forced overexpression of Rex3 did not significantly affect proliferation or stress-induced apoptosis of transfected mouse hepatoma cells. Rex3 mRNA was determined in primary hepatocytes in culture by real-time PCR. In primary mouse hepatocytes, expression of Rex3 increased while cells dedifferentiated in culture. This effect was abolished when hepatocytes were maintained in a differentiated state. Furthermore, expression of Rex3 decreased in mouse liver with age of mice and the expression profile was highly correlated to that of the tumor markers α-fetoprotein and H19. The findings suggest a role of Rex3 as a marker for hepatocyte differentiation/dedifferentiation processes and tumor formation

  12. Atlas of liver imaging

    International Nuclear Information System (INIS)

    This atlas is an outcome of an IAEA co-ordinated research programme. In addition to Japan, nine other Asian countries participated in the project and 293 liver scintigrams (116 from Japanese institutions and 177 from seven Asian countries) were evaluated by physicians from the participating Asian countries. The computer analysis of the scan findings of the individual physicians was carried out and individual scores have been separately tabulated for: (a) scan abnormality; (b) space occupying lesions; (c) cirrhosis and (d) diffuse liver diseases like hepatitis. Refs, figs and tabs

  13. Colorectal liver metastases.

    OpenAIRE

    Burke, D; Allen-Mersh, T G

    1996-01-01

    Each year in the UK, between 12-14,000 people develop liver metastases from colorectal cancer. These metastases will contribute to the death of the patient in about 80% of cases. Treatments aimed at these tumours are best administered when the tumour is small. Current investigative methods allow tumours as small as 0.5 mm to be detected, and should be offered to all colorectal cancer patients at risk of developing liver metastases. Surgery remains the only curative treatment for these tumours...

  14. Neoplasms of the liver

    International Nuclear Information System (INIS)

    Primary Liver Cancer is perhaps the most prevalent malignancy in the world, particularly in South East Asia and Africa. After the discovery of hepatitis B virus as a cause of chronic liver disease often terminating cirrhosis and hepatocellular carcinoma, and, more recently, the integration of viral DNA into host chromosomal DNA, the progress made in this field has been remarkable. This book contains 35 chapters and covers all topical aspects, such as oncogenes, epidemiology, carcinogenic role of hepatitis viruses, histopathology, new imaging techniques and new treatment modalities that include ultrasound-guided intratumor injections of ethanol and targeting chemotherapy

  15. Acute liver failure

    DEFF Research Database (Denmark)

    Bernal, William; Lee, William M; Wendon, Julia;

    2015-01-01

    Over the last three decades acute liver failure (ALF) has been transformed from a rare and poorly understood condition with a near universally fatal outcome, to one with a well characterized phenotype and disease course. Complex critical care protocols are now applied and emergency liver...... transplantation (ELT) is an established treatment option. These improvements in care are such that the majority of patients may now be expected to survive (Fig. 1). Key features of the condition have changed dramatically over time, with a remarkable fall in the incidence of cerebral edema and intracranial...

  16. Role of histone deacetylases(HDACs) in progression and reversal of liver fibrosis.

    Science.gov (United States)

    Li, Xing; Wu, Xiao-Qin; Xu, Tao; Li, Xiao-Feng; Yang, Yang; Li, Wan-Xia; Huang, Cheng; Meng, Xiao-Ming; Li, Jun

    2016-09-01

    Liver fibrosis refers to a reversible wound healing process response to chronic liver injuries. Activation of hepatic stellate cells (HSCs) is closely correlated with the development of liver fibrosis. Histone deacetylases(HDACs) determine the acetylation levels of core histones to modulate expression of genes. To demonstrate the link between HDACs and liver fibrosis, CCl4-induced mouse liver fibrosis model and its spontaneous reversal model were established. Results of the current study demonstrated that deregulation of liver HDACs may involved in the development of liver fibrosis. Among 11 HDACs tested in our study (Class I, II, and IV HDACs), expression of HDAC2 was maximally increased in CCl4-induced fibrotic livers but decreased after spontaneous recovery. Moreover, expression of HDAC2 was elevated in human liver fibrotic tissues. In this regard, the potential role of HDAC2 in liver fibrosis was further evaluated. Our results showed that administration of HSC-T6 cells with transforming growth factor-beta1 (TGF-β1) resulted in an increase of HDAC2 protein expression in dose- and time-dependent manners. Moreover, HDAC2 deficiency inhibited HSC-T6 cell proliferation and activation induced by TGF-β1. More importantly, the present study showed HDAC2 may regulate HSCs activation by suppressing expression of Smad7, which is a negative modulator in HSCs activation and liver fibrosis. Collectively, these observations revealed that HDAC2 may play a pivotal role in HSCs activation and liver fibrosis while deregulation of HDACs may serve as a novel mechanism underlying liver fibrosis. PMID:27396813

  17. Changes in the renin angiotensin system during the development of colorectal cancer liver metastases

    International Nuclear Information System (INIS)

    Blockade of the renin angiotensin system (RAS) via angiotensin I converting enzyme (ACE) inhibition reduces growth of colorectal cancer (CRC) liver metastases in a mouse model. In this work we defined the expression of the various components of the RAS in both tumor and liver during the progression of this disease. Immunohistochemistry and quantitative RT-PCR was used to examine RAS expression in a mouse CRC liver metastases model. CRC metastases and liver tissue was assessed separately at key stages of CRC liver metastases development in untreated (control) mice and in mice treated with the ACE inhibitor captopril (750 mg/kg/day). Non-tumor induced (sham) mice indicated the effect of tumors on normal liver RAS. The statistical significance of multiple comparisons was determined using one-way analysis of variance followed by Bonferroni adjustment with SAS/STAT software. Reduced volume of CRC liver metastases with captopril treatment was evident. Local RAS of CRC metastases differed from the surrounding liver, with lower angiotensin II type 1 receptor (AT1R) expression but increased ANG-(1-7) receptor (MasR) compared to the liver. The AT1R localised to cancer and stromal infiltrating cells, while other RAS receptors were detected in cancer cells only. Tumor induction led to an initial increase in AT1R and ACE expression while captopril treatment significantly increased ACE expression in the final stages of tumor growth. Conversely, captopril treatment decreased expression of AT1R and angiotensinogen. These results demonstrate significant changes in RAS expression in the tumor-bearing captopril treated liver and in CRC metastases. The data suggests the existence of a tumor-specific RAS that can be independently targeted by RAS blockade

  18. Differential metabolism of 4-hydroxynonenal in liver, lung and brain of mice and rats

    International Nuclear Information System (INIS)

    The lipid peroxidation end-product 4-hydroxynonenal (4-HNE) is generated in tissues during oxidative stress. As a reactive aldehyde, it forms Michael adducts with nucleophiles, a process that disrupts cellular functioning. Liver, lung and brain are highly sensitive to xenobiotic-induced oxidative stress and readily generate 4-HNE. In the present studies, we compared 4-HNE metabolism in these tissues, a process that protects against tissue injury. 4-HNE was degraded slowly in total homogenates and S9 fractions of mouse liver, lung and brain. In liver, but not lung or brain, NAD(P)+ and NAD(P)H markedly stimulated 4-HNE metabolism. Similar results were observed in rat S9 fractions from these tissues. In liver, lung and brain S9 fractions, 4-HNE formed protein adducts. When NADH was used to stimulate 4-HNE metabolism, the formation of protein adducts was suppressed in liver, but not lung or brain. In both mouse and rat tissues, 4-HNE was also metabolized by glutathione S-transferases. The greatest activity was noted in livers of mice and in lungs of rats; relatively low glutathione S-transferase activity was detected in brain. In mouse hepatocytes, 4-HNE was rapidly taken up and metabolized. Simultaneously, 4-HNE-protein adducts were formed, suggesting that 4-HNE metabolism in intact cells does not prevent protein modifications. These data demonstrate that, in contrast to liver, lung and brain have a limited capacity to metabolize 4-HNE. The persistence of 4-HNE in these tissues may increase the likelihood of tissue injury during oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a highly reactive aldehyde. • Rodent liver, but not lung or brain, is efficient in degrading 4-hydroxynonenal. • 4-hydroxynonenal persists in tissues with low metabolism, causing tissue damage

  19. Differential metabolism of 4-hydroxynonenal in liver, lung and brain of mice and rats

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ruijin; Dragomir, Ana-Cristina; Mishin, Vladimir [Pharmacology and Toxicology, Rutgers University-Ernest Mario School of Pharmacy, Piscataway, NJ (United States); Richardson, Jason R. [Environmental and Occupational Medicine, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ (United States); Heck, Diane E. [Environmental Science, School of Health Sciences and Practice, New York Medical College, Valhalla, NY (United States); Laskin, Debra L. [Pharmacology and Toxicology, Rutgers University-Ernest Mario School of Pharmacy, Piscataway, NJ (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.edu [Environmental and Occupational Medicine, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ (United States)

    2014-08-15

    The lipid peroxidation end-product 4-hydroxynonenal (4-HNE) is generated in tissues during oxidative stress. As a reactive aldehyde, it forms Michael adducts with nucleophiles, a process that disrupts cellular functioning. Liver, lung and brain are highly sensitive to xenobiotic-induced oxidative stress and readily generate 4-HNE. In the present studies, we compared 4-HNE metabolism in these tissues, a process that protects against tissue injury. 4-HNE was degraded slowly in total homogenates and S9 fractions of mouse liver, lung and brain. In liver, but not lung or brain, NAD(P)+ and NAD(P)H markedly stimulated 4-HNE metabolism. Similar results were observed in rat S9 fractions from these tissues. In liver, lung and brain S9 fractions, 4-HNE formed protein adducts. When NADH was used to stimulate 4-HNE metabolism, the formation of protein adducts was suppressed in liver, but not lung or brain. In both mouse and rat tissues, 4-HNE was also metabolized by glutathione S-transferases. The greatest activity was noted in livers of mice and in lungs of rats; relatively low glutathione S-transferase activity was detected in brain. In mouse hepatocytes, 4-HNE was rapidly taken up and metabolized. Simultaneously, 4-HNE-protein adducts were formed, suggesting that 4-HNE metabolism in intact cells does not prevent protein modifications. These data demonstrate that, in contrast to liver, lung and brain have a limited capacity to metabolize 4-HNE. The persistence of 4-HNE in these tissues may increase the likelihood of tissue injury during oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a highly reactive aldehyde. • Rodent liver, but not lung or brain, is efficient in degrading 4-hydroxynonenal. • 4-hydroxynonenal persists in tissues with low metabolism, causing tissue damage.

  20. Human mesenchymal stem cells towards non-alcoholic steatohepatitis in an immunodeficient mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Sandra, E-mail: sandra.pelz@medizin.uni-leipzig.de [Applied Molecular Hepatology Laboratory, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstraße 21, D-04103 Leipzig (Germany); Borkham-Kamphorst, Erawan, E-mail: ekamphorst@ukaachen.de [Institute of Clinical Chemistry and Pathobiochemistry, RWTH University Hospital Aachen, Pauwelsstraße 30, D-52074 Aachen (Germany); Stock, Peggy, E-mail: peggy.stock@medizin.uni-leipzig.de [Applied Molecular Hepatology Laboratory, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstraße 21, D-04103 Leipzig (Germany); Brückner, Sandra, E-mail: sandra.brueckner@medizin.uni-leipzig.de [Applied Molecular Hepatology Laboratory, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstraße 21, D-04103 Leipzig (Germany); Dollinger, Matthias, E-mail: matthias.dollinger@uniklinik-ulm.de [Department for Internal Medicine I, University Hospital Ulm, Albert-Einstein-Allee 23, D-89081 Ulm (Germany); Weiskirchen, Ralf, E-mail: rweiskirchen@ukaachen.de [Institute of Clinical Chemistry and Pathobiochemistry, RWTH University Hospital Aachen, Pauwelsstraße 30, D-52074 Aachen (Germany); Christ, Bruno, E-mail: bruno.christ@medizin.uni-leipzig.de [Applied Molecular Hepatology Laboratory, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstraße 21, D-04103 Leipzig (Germany); Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Leipzig (Germany)

    2014-08-15

    Non-alcoholic steatohepatitis (NASH) is a frequent clinical picture characterised by hepatic inflammation, lipid accumulation and fibrosis. When untreated, NASH bears a high risk of developing liver cirrhosis and consecutive hepatocellular carcinoma requiring liver transplantation in its end-stage. However, donor organ scarcity has prompted the search for alternatives, of which hepatocyte or stem cell-derived hepatocyte transplantation are regarded auspicious options of treatment. Mesenchymal stem cells (MSC) are able to differentiate into hepatocyte-like cells and thus may represent an alternative cell source to primary hepatocytes. In addition these cells feature anti-inflammatory and pro-regenerative characteristics, which might favour liver recovery from NASH. The aim of this study was to investigate the potential benefit of hepatocyte-like cells derived from human bone marrow MSC in a mouse model of diet-induced NASH. Seven days post-transplant, human hepatocyte-like cells were found in the mouse liver parenchyma. Triglyceride depositions were lowered in the liver but restored to normal in the blood. Hepatic inflammation was attenuated as verified by decreased expression of the acute phase protein serum amyloid A, inflammation-associated markers (e.g. lipocalin 2), as well as the pro-inflammatory cytokine TNFα. Moreover, the proliferation of host hepatocytes that indicate the regenerative capacity in livers receiving cell transplants was enhanced. Transplantation of MSC-derived human hepatocyte-like cells corrects NASH in mice by restoring triglyceride depositions, reducing inflammation and augmenting the regenerative capacity of the liver. - Highlights: • First time to show NASH in an immune-deficient mouse model. • Human MSC attenuate NASH and improve lipid homeostasis. • MSC act anti-fibrotic and augment liver regeneration by stimulation of proliferation. • Pre-clinical assessment of human MSC for stem cell-based therapy of NASH.