WorldWideScience

Sample records for cdc42-deficient mouse liver

  1. Continuous cell injury promotes hepatic tumorigenesis in cdc42-deficient mouse liver

    DEFF Research Database (Denmark)

    van Hengel, Jolanda; D'Hooge, Petra; Hooghe, Bart;

    2008-01-01

    BACKGROUND & AIMS: The Rho small guanosine triphosphatase Cdc42 is critical for diverse cellular functions, including regulation of actin organization, cell polarity, intracellular membrane trafficking, transcription, cell-cycle progression, and cell transformation. This implies that Cdc42 might be...

  2. An update on the mouse liver proteome

    Directory of Open Access Journals (Sweden)

    Borlak Jürgen

    2009-09-01

    Full Text Available Abstract Background Decoding of the liver proteome is subject of intense research, but hampered by methodological constraints. We recently developed an improved protocol for studying rat liver proteins based on 2-DE-MALDI-TOF-MS peptide mass finger printing. This methodology was now applied to develop a mouse liver protein database. Results Liver proteins were extracted by two different lysis buffers in sequence followed by a liquid-phase IEF pre-fractionation and separation of proteins by 2 DE at two different pH ranges, notably 5-8 and 7-10. Based on 9600 in gel digests a total of 643 mouse liver proteins with high sequence coverage (> 20 peptides per protein could be identified by MALDI-TOF-MS peptide mass finger printing. Notably, 255 proteins are novel and have not been reported so far by conventional two-dimensional electrophoresis proteome mapping. Additionally, the results of the present findings for mouse liver were compared to published data of the rat proteome to compile as many proteins as possible in a rodent liver database. Conclusion Based on 2-DE MALDI-TOF-MS a significantly improved proteome map of mouse liver was obtained. We discuss some prominent members of newly identified proteins for a better understanding of liver biology.

  3. Cdc42 deficiency causes ciliary abnormalities and cystic kidneys.

    Science.gov (United States)

    Choi, Soo Young; Chacon-Heszele, Maria F; Huang, Liwei; McKenna, Sarah; Wilson, F Perry; Zuo, Xiaofeng; Lipschutz, Joshua H

    2013-09-01

    Ciliogenesis and cystogenesis require the exocyst, a conserved eight-protein trafficking complex that traffics ciliary proteins. In culture, the small GTPase Cdc42 co-localizes with the exocyst at primary cilia and interacts with the exocyst component Sec10. The role of Cdc42 in vivo, however, is not well understood. Here, knockdown of cdc42 in zebrafish produced a phenotype similar to sec10 knockdown, including tail curvature, glomerular expansion, and mitogen-activated protein kinase (MAPK) activation, suggesting that cdc42 and sec10 cooperate in ciliogenesis. In addition, cdc42 knockdown led to hydrocephalus and loss of photoreceptor cilia. Furthermore, there was a synergistic genetic interaction between zebrafish cdc42 and sec10, suggesting that cdc42 and sec10 function in the same pathway. Mice lacking Cdc42 specifically in kidney tubular epithelial cells died of renal failure within weeks of birth. Histology revealed cystogenesis in distal tubules and collecting ducts, decreased ciliogenesis in cyst cells, increased tubular cell proliferation, increased apoptosis, increased fibrosis, and led to MAPK activation, all of which are features of polycystic kidney disease, especially nephronophthisis. Taken together, these results suggest that Cdc42 localizes the exocyst to primary cilia, whereupon the exocyst targets and docks vesicles carrying ciliary proteins. Abnormalities in this pathway result in deranged ciliogenesis and polycystic kidney disease.

  4. Cdc42 deficiency causes ciliary abnormalities and cystic kidneys.

    Science.gov (United States)

    Choi, Soo Young; Chacon-Heszele, Maria F; Huang, Liwei; McKenna, Sarah; Wilson, F Perry; Zuo, Xiaofeng; Lipschutz, Joshua H

    2013-09-01

    Ciliogenesis and cystogenesis require the exocyst, a conserved eight-protein trafficking complex that traffics ciliary proteins. In culture, the small GTPase Cdc42 co-localizes with the exocyst at primary cilia and interacts with the exocyst component Sec10. The role of Cdc42 in vivo, however, is not well understood. Here, knockdown of cdc42 in zebrafish produced a phenotype similar to sec10 knockdown, including tail curvature, glomerular expansion, and mitogen-activated protein kinase (MAPK) activation, suggesting that cdc42 and sec10 cooperate in ciliogenesis. In addition, cdc42 knockdown led to hydrocephalus and loss of photoreceptor cilia. Furthermore, there was a synergistic genetic interaction between zebrafish cdc42 and sec10, suggesting that cdc42 and sec10 function in the same pathway. Mice lacking Cdc42 specifically in kidney tubular epithelial cells died of renal failure within weeks of birth. Histology revealed cystogenesis in distal tubules and collecting ducts, decreased ciliogenesis in cyst cells, increased tubular cell proliferation, increased apoptosis, increased fibrosis, and led to MAPK activation, all of which are features of polycystic kidney disease, especially nephronophthisis. Taken together, these results suggest that Cdc42 localizes the exocyst to primary cilia, whereupon the exocyst targets and docks vesicles carrying ciliary proteins. Abnormalities in this pathway result in deranged ciliogenesis and polycystic kidney disease. PMID:23766535

  5. Complete reconstitution of mouse liver with xenogeneic hepatocytes.

    OpenAIRE

    Rhim, J A; Sandgren, E P; Palmiter, R D; Brinster, R L

    1995-01-01

    We have developed a system for studying hepatocellular growth potential in which liver cells are introduced into the diseased livers of albumin-urokinase (Alb-uPA) transgenic mice. To use this system to study xenogeneic cell transplantation, rat liver cells were introduced into immunotolerant Alb-uPA transgenic mice. In regenerated recipient livers, up to 100% of hepatocellular gene expression was of rat origin, demonstrating the creation of a functional mouse liver in which parenchyma is der...

  6. Replacement of Diseased Mouse Liver by Hepatic Cell Transplantation

    Science.gov (United States)

    Rhim, Jonathan A.; Sandgren, Eric P.; Degen, Jay L.; Palmiter, Richard D.; Brinster, Ralph L.

    1994-02-01

    Adult liver has the unusual ability to fully regenerate after injury. Although regeneration is accomplished by the division of mature hepatocytes, the replicative potential of these cells is unknown. Here, the replicative capacity of adult liver cells and their medical usefulness as donor cells for transplantation were investigated by transfer of adult mouse liver cells into transgenic mice that display an endogenous defect in hepatic growth potential and function. The transplanted liver cell populations replaced up to 80 percent of the diseased recipient liver. These findings demonstrate the enormous growth potential of adult hepatocytes, indicating the feasibility of liver cell transplantation as a method to replace lost or diseased hepatic parenchyma.

  7. Proteomic analysis of regenerating mouse liver following 50% partial hepatectomy

    OpenAIRE

    Cao, Hongcui; Yu, Jiong; Xu, Wei; Jia, Xiaofei; Yang, Jinfeng; Pan, Qiaoling; Zhang, Qiyi; Sheng, Guoping; Li, Jun; Pan, Xiaoping; Wang, Yingjie; Li, Lanjuan

    2009-01-01

    Background Although 70% (or 2/3) partial hepatectomy (PH) is the most studied model for liver regeneration, the hepatic protein expression profile associated with lower volume liver resection (such as 50% PH) has not yet been reported. Therefore, the aim of this study was to determine the global protein expression profile of the regenerating mouse liver following 50% PH by differential proteomics, and thereby gaining some insights into the hepatic regeneration mechanism(s) under this milder b...

  8. Proteomic analysis of regenerating mouse liver following 50% partial hepatectomy

    Directory of Open Access Journals (Sweden)

    Pan Xiaoping

    2009-12-01

    Full Text Available Abstract Background Although 70% (or 2/3 partial hepatectomy (PH is the most studied model for liver regeneration, the hepatic protein expression profile associated with lower volume liver resection (such as 50% PH has not yet been reported. Therefore, the aim of this study was to determine the global protein expression profile of the regenerating mouse liver following 50% PH by differential proteomics, and thereby gaining some insights into the hepatic regeneration mechanism(s under this milder but clinically more relevant condition. Results Proteins from sham-operated mouse livers and livers regenerating for 24 h after 50% PH were separated by SDS-PAGE and analyzed by nanoUPLC-Q-Tof mass spectrometry. Compared to sham-operated group, there were totally 87 differentially expressed proteins (with 50 up-regulated and 37 down-regulated ones identified in the regenerating mouse livers, most of which have not been previously related to liver regeneration. Remarkably, over 25 differentially expressed proteins were located at mitochondria. Several of the mitochondria-resident proteins which play important roles in citric acid cycle, oxidative phosphorylation and ATP production were found to be down-regulated, consistent with the recently-proposed model in which the reduction of ATP content in the remnant liver gives rise to early stress signals that contribute to the onset of liver regeneration. Pathway analysis revealed a central role of c-Myc in the regulation of liver regeneration. Conclusions Our study provides novel evidence for mitochondria as a pivotal organelle that is connected to liver regeneration, and lays the foundation for further studies on key factors and pathways involved in liver regeneration following 50% PH, a condition frequently used for partial liver transplantation and conservative liver resection.

  9. Proteomic and Bioinformatics Analyses of Mouse Liver Microsomes

    Directory of Open Access Journals (Sweden)

    Fang Peng

    2012-01-01

    Full Text Available Microsomes are derived mostly from endoplasmic reticulum and are an ideal target to investigate compound metabolism, membrane-bound enzyme functions, lipid-protein interactions, and drug-drug interactions. To better understand the molecular mechanisms of the liver and its diseases, mouse liver microsomes were isolated and enriched with differential centrifugation and sucrose gradient centrifugation, and microsome membrane proteins were further extracted from isolated microsomal fractions by the carbonate method. The enriched microsome proteins were arrayed with two-dimensional gel electrophoresis (2DE and carbonate-extracted microsome membrane proteins with one-dimensional gel electrophoresis (1DE. A total of 183 2DE-arrayed proteins and 99 1DE-separated proteins were identified with tandem mass spectrometry. A total of 259 nonredundant microsomal proteins were obtained and represent the proteomic profile of mouse liver microsomes, including 62 definite microsome membrane proteins. The comprehensive bioinformatics analyses revealed the functional categories of those microsome proteins and provided clues into biological functions of the liver. The systematic analyses of the proteomic profile of mouse liver microsomes not only reveal essential, valuable information about the biological function of the liver, but they also provide important reference data to analyze liver disease-related microsome proteins for biomarker discovery and mechanism clarification of liver disease.

  10. Mouse models of liver fibrosis mimic human liver fibrosis of different etiologies.

    Science.gov (United States)

    Martínez, Allyson K; Maroni, Luca; Marzioni, Marco; Ahmed, Syed T; Milad, Mena; Ray, Debolina; Alpini, Gianfranco; Glaser, Shannon S

    2014-12-01

    The liver has the amazing capacity to repair itself after injury; however, the same processes that are involved in liver regeneration after acute injury can cause serious consequences during chronic liver injury. In an effort to repair damage, activated hepatic stellate cells trigger a cascade of events that lead to deposition and accumulation of extracellular matrix components causing the progressive replacement of the liver parenchyma by scar tissue, thus resulting in fibrosis. Although fibrosis occurs as a result of many chronic liver diseases, the molecular mechanisms involved depend on the underlying etiology. Since studying liver fibrosis in human subjects is complicated by many factors, mouse models of liver fibrosis that mimic the human conditions fill this void. This review summarizes the general mouse models of liver fibrosis and mouse models that mimic specific human disease conditions that result in liver fibrosis. Additionally, recent progress that has been made in understanding the molecular mechanisms involved in the fibrogenic processes of each of the human disease conditions is highlighted. PMID:25396098

  11. Effects of retrorsine on mouse hepatocyte proliferation after liver injury

    Institute of Scientific and Technical Information of China (English)

    Xiao-Fei Zhou; Qian Wang; Jian-Xin Chu; Ai-Lian Liu

    2006-01-01

    AIM: To study the effect of retrorsine on mouse hepatocyte proliferation.METHODS: Mice and rats were treated respectively with two injections of retrorsine (as retrosine-treated group) or saline (as non-treated group) at 2 wk intervals.They received a single injection of carbon tetrachloride (CCl4) 4 wk later. On d 0, 1, 2, 3, 4, 6, 15 after CCl4 administration, the animals were killed and their livers were excised. Hematoxylin and eosin (HE) staining and Ki-67 antibody immunohistochemical analysis of liver samples were used to evaluate the pathological changes and hepatocyte proliferation.RESULTS: In rats treated with retrorsine and CCl4, the liver displayed obvious megalocytosis, proliferation of mild bile duct, small hepatocyte-forming nodule, which were not found in liver samples from non-treated group.However, in mice treated with retrorsine combined with CCl4, the liver displayed hepatocyte degeneration and necrosis in perivenous areas. There was no obvious difference between retrorsine-treated group and nontreated group. Ki-67 immunohistochemical analysis showed that in rats treated with retrorsine, the positive hepatocytes mainly found in small hepatocyte nodules,were obviously less than those in non-treated group. The mice treated with retrorsine showed that the number of Ki-67 positive hepatocytes was very high and more than that in non-treated group.CONCLUSION: Retrorsine has no effect on mouse hepatocyte proliferation.

  12. Evaluation of strategy for analyzing mouse liver plasma membrane proteome

    Institute of Scientific and Technical Information of China (English)

    CHEN; Ping; ZHANG; LiJun; LI; XuanWen; WANG; XiE; CAO; Rui; LIU; Zhen; XIONG; JiXian; PENG; Xia; WEI; YingJuan; YING; XingFeng; WANG; XianChun; LIANG; SongPing

    2007-01-01

    Plasma membrane (PM) proteome is one of the major subproteomes present in the cell,and is very important in liver function. In the present work, C57 mouse liver PM was purified by density-gradient centrifugation. The purified PM was verified by electron microscope analysis and Western blotting. The results showed that the PM was enriched by more than 20-fold and the contamination of mitochondria was reduced by 2-fold compared with the homogenization fraction. Proteins were separated by 2DE and 1DE, trypsin-digested and submitted to ESI-Q-TOF and MALDI-TOF-TOF mass spectrometry or directly digested in solution and analyzed by LC-ESI ion trap mass spectrometry. In all, 547 non-redundant mouse liver PM proteins were identified, of which 34% contributed to plasma membrane or plasma membrane-related proteins. This study optimized and evaluated the HLPP plasma membrane proteome analysis method and made a systematic analysis on PM proteome.

  13. Cloning and characterization of a mouse liver-specific gene mfrep-1, upregulated in liver regeneration

    Institute of Scientific and Technical Information of China (English)

    JUN; YAN; HAO; YING; FEI; GU; JIN; HE; YU; LI; LI; HUI; MIN; LIU; YONG; HUA; XU

    2002-01-01

    Human fibrinogen-related protein-1/liver fibrinogen-related protein-1 (HFREP-1/LFIRE-1), a liver-specificprotein, is a member of fibrinogen superfamily that exerts various biological activities. However, the func-tion of HFREP-1/LFIRE-1 in liver remains unknown. Here we isolated its mouse ortholog gene-mousefibrinogen-related protein-1 (mfrep-1), which encoded 314 amino acids, exhibiting 80.4% similarity toHFREP-1/LFIRE-1. Northern blot analysis revealed that 1.2-kb mfrep-1 mRNA was detected selectivelyin mouse liver. To explore the function of MFREP-1, we examined the levels of mfrep-1 mRNA duringregeneration after 70% partial hepatectomy (PHx) in mice. mfrep-1 mRNA increased in the regeneratingliver and reached the first shoulder peak at 2-4 h after PHx. Cycloheximide pretreatment could suppress theinduction of mfrep-1, indicating the up-regulation of this gene need de novo protein synthesis. Its mRNAcontinued to elevate at 6 h thereafter and reached the second peak at 24 h. The enhanced expression ofmfrep-1 maintained high until 72 h and then declined slowly to the basal level. Immunohistochemistryassessment confirmed the up-regulated expression of MFREP-1 protein in parenchymal cells during liverregeneration. These data suggested that MFREP-1 might play an important role in liver regeneration andbe involved in the regulation of cell growth.

  14. Case Study: Polycystic Livers in a Transgenic Mouse Line

    Energy Technology Data Exchange (ETDEWEB)

    Lovaglio, Jamie A.; Artwohl, James E.; Ward, Christopher J.; Diekwisch, Thomas G. H.; Ito, Yoshihiro; Fortman, Jeffrey D.

    2014-04-01

    Three mice (2 male, 1 female; age, 5 to 16 mo) from a mouse line transgenic for keratin 14 (K14)-driven LacZ expression and on an outbred Crl:CD1(ICR) background, were identified as having distended abdomens and livers that were diffusely enlarged by numerous cysts (diameter, 0.1 to 2.0 cm). Histopathology revealed hepatic cysts lined by biliary type epithelium and mild chronic inflammation, and confirmed the absence of parasites. Among 21 related mice, 5 additional affected mice were identified via laparotomy. Breeding of these 5 mice (after 5 mo of age) did not result in any offspring; the K14 mice with olycystic livers failed to reproduce. Affected male mice had degenerative testicular lesions, and their sperm was immotile. Nonpolycystic K14 control male mice bred well, had no testicular lesions, and had appropriate sperm motility. Genetic analysis did not identify an association of this phenotype with the transgene or insertion site.

  15. Liver repopulation and correction of metabolic liver disease by transplanted adult mouse pancreatic cells.

    Science.gov (United States)

    Wang, X; Al-Dhalimy, M; Lagasse, E; Finegold, M; Grompe, M

    2001-02-01

    The emergence of cells with hepatocellular properties in the adult pancreas has been described in several experimental models. To determine whether adult pancreas contains cells that can give rise to therapeutically useful and biochemically normal hepatocytes, we transplanted suspensions of wild-type mouse pancreatic cells into syngeneic recipients deficient in fumarylacetoacetate hydrolase and manifesting tyrosinemia. Four of 34 (12%) mutant mice analyzed were fully rescued by donor-derived cells and had normal liver function. Ten additional mice (29%) showed histological evidence of donor-derived hepatocytes in the liver. Previous work has suggested that pancreatic liver precursors reside within or close to pancreatic ducts. We therefore performed additional transplantations using either primary cell suspensions enriched for ducts or cultured ducts. Forty-four mutant mice were transplanted with cells enriched for pancreatic duct cells, but only three of the 34 (9%) recipients analyzed displayed donor-derived hepatocytes. In addition, 28 of the fumarylacetoacetate hydrolase-deficient mice were transplanted with cultured pancreatic duct cells, but no donor-derived hepatocytes were observed. Our results demonstrate for the first time that adult mouse pancreas contains hepatocyte progenitor cells capable of significant therapeutic liver reconstitution. However, contrary to previous reports, we were unable to detect these cells within the duct compartment. PMID:11159194

  16. Genome-wide identification of estrogen receptor alpha-binding sites in mouse liver

    DEFF Research Database (Denmark)

    Gao, Hui; Fält, Susann; Sandelin, Albin;

    2007-01-01

    We report the genome-wide identification of estrogen receptor alpha (ERalpha)-binding regions in mouse liver using a combination of chromatin immunoprecipitation and tiled microarrays that cover all nonrepetitive sequences in the mouse genome. This analysis identified 5568 ERalpha-binding regions...... genes. The majority of ERalpha-binding regions lie in regions that are evolutionarily conserved between human and mouse. Motif-finding algorithms identified the estrogen response element, and variants thereof, together with binding sites for activator protein 1, basic-helix-loop-helix proteins, ETS...... signaling in mouse liver, by characterizing the first step in this signaling cascade, the binding of ERalpha to DNA in intact chromatin....

  17. A potential microRNA signature for tumorigenic conazoles in mouse liver

    Science.gov (United States)

    Triadimefon, propiconazole and myclobutanil are conazoles, an important class of agricultural fungicides. Triadimefon and propiconazole are mouse liver tumorigens, while myclobutanil is not. As part of a coordinated study to understand the molecular determinants of conazole tumor...

  18. Altered microRNA expression induced by tumorigenic conazoles in mouse liver.

    Science.gov (United States)

    Triadimefon, propiconazole, and myclobutanil are conazoles, an important class of agricultural and therapeutic fungicides. Triadimefon and propiconazole are mouse liver tumorigens, while myclobutanil is not. As part of a coordinated study to understand the molecular determinants ...

  19. A microRNA signature for tumorigenic conazoles in mouse liver.

    Science.gov (United States)

    Triadimefon, propiconazole and myclobutanil are conazoles, an important class of agricultural and therapeutic fungicides. Triadimefon and propiconazole are mouse liver tumorigens, while myclobutanil is not. As part of a coordinated study to understand the molecular determinants o...

  20. Analyzing the temporal regulation of translation efficiency in mouse liver

    Directory of Open Access Journals (Sweden)

    Peggy Janich

    2016-06-01

    Full Text Available Mammalian physiology and behavior follow daily rhythms that are orchestrated by endogenous timekeepers known as circadian clocks. Rhythms in transcription are considered the main mechanism to engender rhythmic gene expression, but important roles for posttranscriptional mechanisms have recently emerged as well (reviewed in Lim and Allada (2013 [1]. We have recently reported on the use of ribosome profiling (RPF-seq, a method based on the high-throughput sequencing of ribosome protected mRNA fragments, to explore the temporal regulation of translation efficiency (Janich et al., 2015 [2]. Through the comparison of around-the-clock RPF-seq and matching RNA-seq data we were able to identify 150 genes, involved in ribosome biogenesis, iron metabolism and other pathways, whose rhythmicity is generated entirely at the level of protein synthesis. The temporal transcriptome and translatome data sets from this study have been deposited in NCBI's Gene Expression Omnibus under the accession number GSE67305. Here we provide additional information on the experimental setup and on important optimization steps pertaining to the ribosome profiling technique in mouse liver and to data analysis.

  1. Regulatory T Cells Prevent Liver Fibrosis During HIV Type 1 Infection in a Humanized Mouse Model

    OpenAIRE

    Nunoya, Jun-ichi; Washburn, Michael L.; Kovalev, Grigoriy I; Su, Lishan

    2013-01-01

    Human immunodeficiency virus type 1 (HIV-1) disease is associated with aberrant immune activation, and coinfection with hepatitis C virus (HCV) exacerbates hepatic inflammation and fibrosis. However, the role of HIV-1 infection or host immune modulation in liver pathogenesis is not clearly defined. Here, we report that regulatory T (Treg) cells prevent liver immunopathogenesis during HIV-1 infection in a humanized mouse model. In the absence of Treg cells, HIV-1 infection induced liver fibros...

  2. Activation of farnesoid X receptor induces RECK expression in mouse liver

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Xiaomin [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032 (China); Wu, Weibin [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032 (China); Institutes of Biomedical Sciences, Fudan University, Shanghai 200032 (China); Zhu, Bo; Sun, Zhichao; Ji, Lingling; Ruan, Yuanyuan [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032 (China); Zhou, Meiling, E-mail: meilingzhou2012@gmail.com [Department of Radiology, Zhongshan Hospital of Fudan University and Shanghai Institute of Medical Imaging, Shanghai 200032 (China); Zhou, Lei, E-mail: yhchloech@gmail.com [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032 (China); Gu, Jianxin [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032 (China); Institutes of Biomedical Sciences, Fudan University, Shanghai 200032 (China)

    2014-01-03

    Highlights: •RECK is a novel transcriptional target gene of FXR in mouse liver. •The FXR response element is located within the intron 1 of RECK gene. •FXR agonist reverses the down-regulation of RECK in the liver in mouse NASH model. -- Abstract: Farnesoid X receptor (FXR) belongs to the ligand-activated nuclear receptor superfamily, and functions as a transcription factor regulating the transcription of numerous genes involved in bile acid homeostasis, lipoprotein and glucose metabolism. In the present study, we identified RECK, a membrane-anchored inhibitor of matrix metalloproteinases, as a novel target gene of FXR in mouse liver. We found that FXR agonist substantially augmented hepatic RECK mRNA and protein expression in vivo and in vitro. FXR regulated the transcription of RECK through directly binding to FXR response element located within intron 1 of the mouse RECK gene. Moreover, FXR agonist reversed the down-regulation of RECK in the livers from mice fed a methionine and choline deficient diet. In summary, our data suggest that RECK is a novel transcriptional target of FXR in mouse liver, and provide clues to better understanding the function of FXR in liver.

  3. Activation of farnesoid X receptor induces RECK expression in mouse liver

    International Nuclear Information System (INIS)

    Highlights: •RECK is a novel transcriptional target gene of FXR in mouse liver. •The FXR response element is located within the intron 1 of RECK gene. •FXR agonist reverses the down-regulation of RECK in the liver in mouse NASH model. -- Abstract: Farnesoid X receptor (FXR) belongs to the ligand-activated nuclear receptor superfamily, and functions as a transcription factor regulating the transcription of numerous genes involved in bile acid homeostasis, lipoprotein and glucose metabolism. In the present study, we identified RECK, a membrane-anchored inhibitor of matrix metalloproteinases, as a novel target gene of FXR in mouse liver. We found that FXR agonist substantially augmented hepatic RECK mRNA and protein expression in vivo and in vitro. FXR regulated the transcription of RECK through directly binding to FXR response element located within intron 1 of the mouse RECK gene. Moreover, FXR agonist reversed the down-regulation of RECK in the livers from mice fed a methionine and choline deficient diet. In summary, our data suggest that RECK is a novel transcriptional target of FXR in mouse liver, and provide clues to better understanding the function of FXR in liver

  4. Activation of farnesoid X receptor induces RECK expression in mouse liver.

    Science.gov (United States)

    Peng, Xiaomin; Wu, Weibin; Zhu, Bo; Sun, Zhichao; Ji, Lingling; Ruan, Yuanyuan; Zhou, Meiling; Zhou, Lei; Gu, Jianxin

    2014-01-01

    Farnesoid X receptor (FXR) belongs to the ligand-activated nuclear receptor superfamily, and functions as a transcription factor regulating the transcription of numerous genes involved in bile acid homeostasis, lipoprotein and glucose metabolism. In the present study, we identified RECK, a membrane-anchored inhibitor of matrix metalloproteinases, as a novel target gene of FXR in mouse liver. We found that FXR agonist substantially augmented hepatic RECK mRNA and protein expression in vivo and in vitro. FXR regulated the transcription of RECK through directly binding to FXR response element located within intron 1 of the mouse RECK gene. Moreover, FXR agonist reversed the down-regulation of RECK in the livers from mice fed a methionine and choline deficient diet. In summary, our data suggest that RECK is a novel transcriptional target of FXR in mouse liver, and provide clues to better understanding the function of FXR in liver. PMID:24291500

  5. Co-expression network analysis identifies transcriptional modules in the mouse liver.

    Science.gov (United States)

    Liu, Wei; Ye, Hua

    2014-10-01

    The mouse liver transcriptome has been extensively studied but little is known about the global hepatic gene network of the mouse under normal physiological conditions. Understanding this will help reveal the transcriptional organization of the liver and elucidate its functional complexity. Here, weighted gene co-expression network analysis (WGCNA) was carried out to explore gene co-expression networks using large-scale microarray data from normal mouse livers. A total of 7,203 genes were parsed into 16 gene modules associated with protein catabolism, RNA processing, muscle contraction, transcriptional regulation, oxidation reduction, sterol biosynthesis, translation, fatty acid metabolism, immune response and others. The modules were organized into higher order co-expression groups. Hub genes in each module were found to be critical for module function. In sum, the analyses revealed the gene modular map of the mouse liver under normal physiological condition. These results provide a systems-level framework to help understand the complexity of the mouse liver at the molecular level, and should be beneficial in annotating uncharacterized genes. PMID:24816893

  6. Evidence of oxidative injury during aging of the liver in a mouse model.

    OpenAIRE

    Colantoni, Alessandra; Idilman, Ramazan; De Maria, Nicola; Duffner, Lisa A.; VAN THIEL, DAVID H.; Witte, Pamela L.; Kovacs, Elizabeth J.

    2001-01-01

    The aim of the present study was to determine whether oxidative stress contributes to aging of the liver in a mouse model. Liver was obtained from young (3–5 months old) and aged (18–24 months old) mice. No age-induced gross changes in liver morphology were detected by light microscopy. Apoptosis was measured using the fragment end labeling of DNA for the immunohistochemical identification of the apoptotic nuclei. The total apoptotic cells represented 1% of the total cells in livers of young ...

  7. Adrenergic regulation of clock gene expression in mouse liver

    OpenAIRE

    Terazono, Hideyuki; Mutoh, Tatsushi; Yamaguchi, Shun; Kobayashi, Masaki; Akiyama, Masashi; Udo, Rhyuta; Ohdo, Shigehiro; Okamura, Hitoshi; Shibata, Shigenobu

    2003-01-01

    A main oscillator in the suprachiasmatic nucleus (SCN) conveys circadian information to the peripheral clock systems for the regulation of fundamental physiological functions. Although polysynaptic autonomic neural pathways between the SCN and the liver were observed in rats, whether activation of the sympathetic nervous system entrains clock gene expression in the liver has yet to be understood. To assess sympathetic innervation from the SCN to liver tissue, we investigated whether inj...

  8. A Transcriptomic Signature of Mouse Liver Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Adam M. Passman

    2016-01-01

    Full Text Available Liver progenitor cells (LPCs can proliferate extensively, are able to differentiate into hepatocytes and cholangiocytes, and contribute to liver regeneration. The presence of LPCs, however, often accompanies liver disease and hepatocellular carcinoma (HCC, indicating that they may be a cancer stem cell. Understanding LPC biology and establishing a sensitive, rapid, and reliable method to detect their presence in the liver will assist diagnosis and facilitate monitoring of treatment outcomes in patients with liver pathologies. A transcriptomic meta-analysis of over 400 microarrays was undertaken to compare LPC lines against datasets of muscle and embryonic stem cell lines, embryonic and developed liver (DL, and HCC. Three gene clusters distinguishing LPCs from other liver cell types were identified. Pathways overrepresented in these clusters denote the proliferative nature of LPCs and their association with HCC. Our analysis also revealed 26 novel markers, LPC markers, including Mcm2 and Ltbp3, and eight known LPC markers, including M2pk and Ncam. These markers specified the presence of LPCs in pathological liver tissue by qPCR and correlated with LPC abundance determined using immunohistochemistry. These results showcase the value of global transcript profiling to identify pathways and markers that may be used to detect LPCs in injured or diseased liver.

  9. Interleukins in chronic liver disease: lessons learned from experimental mouse models

    Directory of Open Access Journals (Sweden)

    Hammerich L

    2014-09-01

    Full Text Available Linda Hammerich, Frank Tacke Department of Medicine III, University Hospital Aachen, Aachen, Germany Abstract: Interleukins represent a class of immunomodulatory cytokines, small intercellular signaling proteins, that are critically involved in the regulation of immune responses. They are produced in large amounts by various cell types during inflammatory reactions, and the balance of cytokines determines the outcome of an immune response. Therefore, cytokines are regarded as interesting therapeutic targets for the treatment of patients with liver diseases. Mouse models provide a good tool for in vivo studies on cytokine function, as human and mouse cytokines share many homologies. Sophisticated mouse models either mimicking distinct pathological conditions or targeting cytokines and cytokine-signaling pathways in the liver or even in distinct cellular compartments have provided enormous insight into the different functions of interleukins during hepatic inflammation. Interleukins may have pro- as well as anti-inflammatory functions in chronic liver diseases, some interleukins even both, dependent on the inflammatory stimulus, the producing and the responding cell type. IL-17, for example, promotes hepatic fibrogenesis through activation of hepatic stellate cells and facilitates development of liver cancer through recruitment of myeloid-derived suppressor cells. IL-22, on the other hand, protects from development of fibrosis or steatohepatitis. IL-12 balances T-helper (Th-1 and Th2 cell responses in infectious disease models. IL-13 and IL-33, two cytokines related to Th2 cells and innate lymphoid cells, promote fibrotic responses in the liver. IL-10 is the prototypic anti-inflammatory interleukin with tissue-protective functions during chronic liver injury and fibrogenesis. Despite its critical role for inducing the acute-phase response in the liver, IL-6 signaling is protective during fibrosis progression, but promotes hepatocellular carcinoma

  10. Proteomic profiling in incubation medium of mouse, rat and human precision-cut liver slices for biomarker detection regarding acute drug-induced liver injury

    NARCIS (Netherlands)

    van Swelm, Rachel P. L.; Hadi, Mackenzie; Laarakkers, Coby M. M.; Masereeuw, Rosalinde; Groothuis, Geny M. M.; Russel, Frans G. M.

    2014-01-01

    Drug-induced liver injury is one of the leading causes of drug withdrawal from the market. In this study, we investigated the applicability of protein profiling of the incubation medium of human, mouse and rat precision-cut liver slices (PCLS) exposed to liver injury-inducing drugs for biomarker ide

  11. Survival Motor Neuron (SMN) protein is required for normal mouse liver development

    Science.gov (United States)

    Szunyogova, Eva; Zhou, Haiyan; Maxwell, Gillian K.; Powis, Rachael A.; Francesco, Muntoni; Gillingwater, Thomas H.; Parson, Simon H.

    2016-01-01

    Spinal Muscular Atrophy (SMA) is caused by mutation or deletion of the survival motor neuron 1 (SMN1) gene. Decreased levels of, cell-ubiquitous, SMN protein is associated with a range of systemic pathologies reported in severe patients. Despite high levels of SMN protein in normal liver, there is no comprehensive study of liver pathology in SMA. We describe failed liver development in response to reduced SMN levels, in a mouse model of severe SMA. The SMA liver is dark red, small and has: iron deposition; immature sinusoids congested with blood; persistent erythropoietic elements and increased immature red blood cells; increased and persistent megakaryocytes which release high levels of platelets found as clot-like accumulations in the heart. Myelopoiesis in contrast, was unaffected. Further analysis revealed significant molecular changes in SMA liver, consistent with the morphological findings. Antisense treatment from birth with PMO25, increased lifespan and ameliorated all morphological defects in liver by postnatal day 21. Defects in the liver are evident at birth, prior to motor system pathology, and impair essential liver function in SMA. Liver is a key recipient of SMA therapies, and systemically delivered antisense treatment, completely rescued liver pathology. Liver therefore, represents an important therapeutic target in SMA. PMID:27698380

  12. Mouse models in liver cancer research: A review of current literature

    Institute of Scientific and Technical Information of China (English)

    Martijn WH Leenders; Maarten W Nijkamp; Inne HM Borel Rinkes

    2008-01-01

    Primary liver cancer remains one of the most lethal malignancies worldwide. Due to differences in prevalence of etiological factors the incidence of primary liver cancer varies among the world, with a peak in EasL-Asia. As this disease is still lethal in most of the cases, research has to be done to improve our understanding of the disease, offering insights for possible treatment options. For this purpose, animal models are widely used,especially mouse models. In this review, we describe the different types of mouse models used in liver cancer research, with emphasis on genetically engineered mice used in this field. We focus on hepatocellular carcinoma (HCC), as this is by far the most common Lype of primary liver cancer, accounting for 70%-85% of cases.

  13. Malaria Liver Stage Susceptibility Locus Identified on Mouse Chromosome 17 by Congenic Mapping

    OpenAIRE

    Lígia Antunes Gonçalves; Paulo Almeida; Maria Manuel Mota; Carlos Penha-Gonçalves

    2008-01-01

    Host genetic variants are known to confer resistance to Plasmodium blood stage infection and to control malaria severity both in humans and mice. This work describes the genetic mapping of a locus for resistance to liver stage parasite in the mouse. First, we show that decreased susceptibility to the liver stage of Plasmodium berghei in the BALB/c mouse strain is attributable to intra-hepatic factors and impacts on the initial phase of blood stage infection. We used QTL mapping techniques to ...

  14. A novel method of mouse ex utero transplantation of hepatic progenitor cells into the fetal liver

    International Nuclear Information System (INIS)

    Avoiding the limitations of the adult liver niche, transplantation of hepatic stem/progenitor cells into fetal liver is desirable to analyze immature cells in a hepatic developmental environment. Here, we established a new monitor tool for cell fate of hepatic progenitor cells transplanted into the mouse fetal liver by using ex utero surgery. When embryonic day (ED) 14.5 hepatoblasts were injected into the ED14.5 fetal liver, the transplanted cells expressed albumin abundantly or α-fetoprotein weakly, and contained glycogen in the neonatal liver, indicating that transplanted hepatoblasts can proliferate and differentiate in concord with surrounding recipient parenchymal cells. The transplanted cells became mature in the liver of 6-week-old mice. Furthermore, this method was applicable to transplantation of hepatoblast-like cells derived from mouse embryonic stem cells. These data indicate that this unique technique will provide a new in vivo experimental system for studying cell fate of hepatic stem/progenitor cells and liver organogenesis.

  15. Metabolism, genomics, and DNA repair in the mouse aging liver

    DEFF Research Database (Denmark)

    Lebel, Michel; de Souza-Pinto, Nadja C; Bohr, Vilhelm A

    2011-01-01

    The liver plays a pivotal role in the metabolism of nutrients, drugs, hormones, and metabolic waste products, thereby maintaining body homeostasis. The liver undergoes substantial changes in structure and function within old age. Such changes are associated with significant impairment of many...... hepatic metabolic and detoxification activities, with implications for systemic aging and age-related disease. It has become clear, using rodent models as biological tools, that genetic instability in the form of gross DNA rearrangements or point mutations accumulate in the liver with age. DNA lesions......, such as oxidized bases or persistent breaks, increase with age and correlate well with the presence of senescent hepatocytes. The level of DNA damage and/or mutation can be affected by changes in carcinogen activation, decreased ability to repair DNA, or a combination of these factors. This paper covers some...

  16. Ectopic expression of the calcium-binding protein parvalbumin in mouse liver endothelial cells

    DEFF Research Database (Denmark)

    Castillo, M B; Berchtold, M W; Rülicke, T;

    1997-01-01

    vasoconstriction via calcium signalling, were investigated in the mouse liver perfused in situ. Vasoconstriction, thought to be mediated by the Ito cell, was not affected in the transgenic animals, whereas microvascular exchange, probed with the multiple indicator dilution technique, was markedly decreased...

  17. Protracted elimination of gold nanoparticles from mouse liver

    DEFF Research Database (Denmark)

    Sadauskas, Evaldas; Wallin, Håkan; Stoltenberg, Meredin;

    2009-01-01

    The present study aims at revealing the fate of 40-nm gold nanoparticles after intravenous injections. The gold nanoparticles were traced histochemically with light and transmission electron microscopy using autometallographic (AMG) staining, and the gold content in the liver was determined with ...

  18. 31P-NMR studies on perfused mouse liver

    International Nuclear Information System (INIS)

    From a metabolic viewpoint, the most important organ in the body is the liver. In contrast to more specialized organs such as heart and kidney which perform only one major function, the liver performs a number of major metabolic functions. Two of the most important functions are the catabolism and storage of foodstuffs (in the form of glycogen) and the control of most of the constituents of the blood (in particular, the blood glucose level). Most of these functions are localized within a single type of cell. One way that the liver is able to regulate these diverse reactions is by the control of the ATP level in the cell. Encouraged by the recent success of many groups in using 31P-NMR to provide a continuous and non-destructive monitor of ATP levels in isolated cells, skeletal muscle, and perfused organs such as heart and kidney, 31P-NMR was used to investigate ATP levels in perfused liver of mice

  19. Genetic variation in the metabolism of coumarin in mouse liver

    NARCIS (Netherlands)

    Lovell, D.P.; Iersel, van M.P.L.S.; Walters, D.G.; Price, R.J.; Lake, B.G.

    1999-01-01

    The metabolism of 50 μM [3-14C] coumarin to polar products separated by high performance liquid chromatography (HPLC) and covalently bound metabolites in liver microsomes was compared in a series of inbred strains of mice. Coumarin metabolism to total polar products was higher in female than male mi

  20. Transformation and action of extracellular NAD+ in perfused rat and mouse livers

    Institute of Scientific and Technical Information of China (English)

    Ana Carla BROETTO-BLAZON; Fabricio BRACHT; Livia BRACHT; Ana Maria KELMER-BRACHT; Adelar BRACHT

    2009-01-01

    Aim: Transformation and possible metabolic effects of extracellular NAD+ were investigated in the livers of mice (Mus mus-culus; Swiss strain) and rats (Rattus novergicus; Holtzman and Wistar strains). Methods: The livers were perfused in an open system using oxygen-saturated Krebs/Henseleit-bicarbonate buffer (pH 7.4) as the perfusion fluid. The transformation of NAD+ was monitored using high-performance liquid chromatography. Results: In the mouse liver, the single-pass metabolism of 100 μmol/L NAD+ was almost complete; ADP-ribose and nicoti-namide were the main products in the outflowing perfusate. In the livers of both Holtzman and Wistar rats, the main trans-formation products were ADP-ribose, uric acid and nicotinamide; significant amounts of inosine and AMP were also iden-tified. On a weight basis, the transformation of NAD+ was more efficient in the mouse liver. In the rat liver, 100 μmol/L NAD+ transiently inhibited gluconeogenesis and oxygen uptake. Inhibition was followed by a transient stimulation. Inhibi-tion was more pronounced in the Wistar strain and stimulation was more pronounced in the Holtzman strain. In the mouse liver, no clear effects on gluconeogenesis and oxygen uptake were found even at 500 μmol/L NAD+. Conclusion: It can be concluded that the functions of extracellular NAD+ are species-dependent and that observations in one species are strictly valid for that species. Interspecies extrapolations should thus be made very carefully. Actually, even variants of the same species can demonstrate considerably different responses.

  1. Deciphering the Developmental Dynamics of the Mouse Liver Transcriptome

    Science.gov (United States)

    Gunewardena, Sumedha S.; Yoo, Byunggil; Peng, Lai; Lu, Hong; Zhong, Xiaobo; Klaassen, Curtis D.; Cui, Julia Yue

    2015-01-01

    During development, liver undergoes a rapid transition from a hematopoietic organ to a major organ for drug metabolism and nutrient homeostasis. However, little is known on a transcriptome level of the genes and RNA-splicing variants that are differentially regulated with age, and which up-stream regulators orchestrate age-specific biological functions in liver. We used RNA-Seq to interrogate the developmental dynamics of the liver transcriptome in mice at 12 ages from late embryonic stage (2-days before birth) to maturity (60-days after birth). Among 21,889 unique NCBI RefSeq-annotated genes, 9,641 were significantly expressed in at least one age, 7,289 were differently regulated with age, and 859 had multiple (> = 2) RNA splicing-variants. Factor analysis showed that the dynamics of hepatic genes fall into six distinct groups based on their temporal expression. The average expression of cytokines, ion channels, kinases, phosphatases, transcription regulators and translation regulators decreased with age, whereas the average expression of peptidases, enzymes and transmembrane receptors increased with age. The average expression of growth factors peak between Day-3 and Day-10, and decrease thereafter. We identified critical biological functions, upstream regulators, and putative transcription modules that seem to govern age-specific gene expression. We also observed differential ontogenic expression of known splicing variants of certain genes, and 1,455 novel splicing isoform candidates. In conclusion, the hepatic ontogeny of the transcriptome ontogeny has unveiled critical networks and up-stream regulators that orchestrate age-specific biological functions in liver, and suggest that age contributes to the complexity of the alternative splicing landscape of the hepatic transcriptome. PMID:26496202

  2. Deciphering the Developmental Dynamics of the Mouse Liver Transcriptome.

    Directory of Open Access Journals (Sweden)

    Sumedha S Gunewardena

    Full Text Available During development, liver undergoes a rapid transition from a hematopoietic organ to a major organ for drug metabolism and nutrient homeostasis. However, little is known on a transcriptome level of the genes and RNA-splicing variants that are differentially regulated with age, and which up-stream regulators orchestrate age-specific biological functions in liver. We used RNA-Seq to interrogate the developmental dynamics of the liver transcriptome in mice at 12 ages from late embryonic stage (2-days before birth to maturity (60-days after birth. Among 21,889 unique NCBI RefSeq-annotated genes, 9,641 were significantly expressed in at least one age, 7,289 were differently regulated with age, and 859 had multiple (> = 2 RNA splicing-variants. Factor analysis showed that the dynamics of hepatic genes fall into six distinct groups based on their temporal expression. The average expression of cytokines, ion channels, kinases, phosphatases, transcription regulators and translation regulators decreased with age, whereas the average expression of peptidases, enzymes and transmembrane receptors increased with age. The average expression of growth factors peak between Day-3 and Day-10, and decrease thereafter. We identified critical biological functions, upstream regulators, and putative transcription modules that seem to govern age-specific gene expression. We also observed differential ontogenic expression of known splicing variants of certain genes, and 1,455 novel splicing isoform candidates. In conclusion, the hepatic ontogeny of the transcriptome ontogeny has unveiled critical networks and up-stream regulators that orchestrate age-specific biological functions in liver, and suggest that age contributes to the complexity of the alternative splicing landscape of the hepatic transcriptome.

  3. Effect of lipid composition of liposomes on their clearance from the blood stream and accumulation in the mouse liver

    Energy Technology Data Exchange (ETDEWEB)

    Burkhanov, S.A.; Torchilin, V.P.

    1987-08-01

    The authors study the effect of the phospholipid and glycolipid composition of the liposomes on their elimination time from the circulation and on their accumulation in the mouse liver. Liposomes were obtained from ovolecithin, cholesterol, and cholesteryl-/sup 14/C-oleate. It is shown that liposomes obtained from total liver phospholipids and with the addition of gangliosides from the liver can, in principle, be used for supplying physiologically active substances rapidly and efficiently to the liver cells.

  4. Detection of differentially expressed candidate genes for a fatty liver QTL on mouse chromosome 12

    OpenAIRE

    Kobayashi, Misato; Suzuki, Miyako; Ohno, Tamio; Tsuzuki, Kana; Taguchi, Chie; Tateishi, Soushi; Kawada, Teruo; Kim, Young-Il; Murai, Atsushi; Horio, Fumihiko

    2016-01-01

    Background The SMXA-5 mouse is an animal model of high-fat diet-induced fatty liver. The major QTL for fatty liver, Fl1sa on chromosome 12, was identified in a SM/J × SMXA-5 intercross. The SMXA-5 genome consists of the SM/J and A/J genomes, and the A/J allele of Fl1sa is a fatty liver-susceptibility allele. The existence of the responsible genes for fatty liver within Fl1sa was confirmed in A/J-12SM consomic mice. The aim of this study was to identify candidate genes for Fl1sa, and to invest...

  5. Expression of tissue inhibitor of matrix metalloproteinase-1 in aging of transgenic mouse liver

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Background Tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) is related to the aging of many organs, but few data are available on the change of TIMP-1 in liver aging. The purpose of this study was to investigate the expression and role of TIMP-1, matrix metalloproteinase-2 (MMP-2) and MMP-9 in the process of natural aging in the livers of normal and transgenic mice, and to detect the effects of TIMP-1 on oxidative level and anti-oxidative ability of the livers of transgenic young mice.Methods Normal and transgenic mice were divided into 3 groups according to their age: 3-month-old group (n=5), 12-month-old group (n=5) and 24-month-old group (n=5). Histopathological changes of the liver were observed after HE and Masson staining. The messenger RNA (mRNA) levels of TIMP-1, MMP-2 and MMP-9 were determined by semi-quantitative reverse transcriptional polymerase chain reaction; protein expression was measured by Western blot in the livers of normal and transgenic mice of various ages. Changes in levels of superoxide dismutase (SOD), monoamine oxidase (MAO), malondialdehyde (MDA) as well as oxidative and anti-oxidative ability were measured.Results Histologically, more fatty degeneration and collagen deposition were found in the aging livers of transgenic mice than in those of the normal mice as their age of months increased. The mRNA and protein expressions of TIMP-1 were significantly high in the oldest animals. The histopathological changes, mRNA and protein expressions of TIMP-1 increased significantly in the liver of transgenic mice as compared with normal mice. The expression of MMP-2 and MMP-9 showed a minor change in the process of aging. Liver change and collagen deposition were not observed in young mice, but the activity of SOD decreased (P<0.05), and the activity of MAO (P<0.01) and the content of MDA increased in the liver of transgenic mice (P<0.01).Conclusions The expression of TIMP-1 is significantly high in the liver of transgenic mouse in the

  6. Mutagenic activation reduces carcinogenic activity of ortho-aminoazotoluene for mouse liver.

    Science.gov (United States)

    Ovchinnikova, L P; Bogdanova, L A; Kaledin, V I

    2013-03-01

    Pentachlorophenol (aromatic amine and azo stain metabolic stimulation inhibitor) reduced the hepatocarcinogenic activity of 4-aminoazobenzene and reduced that of ortho-aminoazotoluene in suckling mice. Both 4-aminoazobenzene and ortho-aminoazotoluene exhibited mutagenic activity in Ames' test in vitro on S. typhimurium TA 98 strain with activation with liver enzymes; this mutagenic activity was similarly suppressed by adding pentachlorophenol into activation medium. Induction of xenobiotic metabolism enzymes, stimulating the mutagenic activity of ortho-aminoazotoluene, suppressed its carcinogenic effect on mouse liver. Hence, ortho-aminotoluene (the initial compound), but not its mutagenic metabolites, was the direct active hepatocarcinogen for mice.

  7. Targets of nitric oxide in a mouse model of liver inflammation by Corynebacterium parvum.

    Science.gov (United States)

    Chamulitrat, W; Jordan, S J; Mason, R P; Litton, A L; Wilson, J G; Wood, E R; Wolberg, G; Molina y Vedia, L

    1995-01-10

    Treatment of mice with Corynebacterium parvum induces chronic inflammation. This treatment followed by an injection of lipopolysaccharide (LPS) produces hepatic necrosis and death. We examined liver tissue by using electron paramagnetic resonance (EPR) spectroscopy and found that, in addition to the previously reported nonheme nitrosyl complexes, heme nitrosyl complexes were also formed. Hemoglobin nitrosyl complexes measured in the whole blood of mice treated with C. parvum were not increased after additional LPS treatment. However, this treatment significantly increased the heme nitrosyl complexes in the liver, whereas the nonheme nitrosyl complex concentration was unaffected. EPR signals from whole blood and liver tissues from mice treated with C. parvum and C. parvum + LPS were inhibited by prolonged treatment with NG-monomethyl-L-arginine (L-NMA). Nitric oxide (.NO) is known to bind to cytochrome P450 heme, and we consistently found a suppression of EPR signals attributable to ferric low-spin cytochrome P450/P420 peaks in the livers of mice treated with C. parvum and C. parvum + LPS. By performing analyses of EPR spectra obtained from hepatocytes exposed to .NO, we were able to unambiguously identify EPR signals attributable to cytochrome P420 and nonheme nitrosyl complexes in the livers of both treatments. Deconvolution of the composite in vivo EPR spectra indicated that hemoglobin nitrosyl complexes contributed weakly in the C. parvum livers, but threefold more in the C. parvum + LPS livers, suggesting that hemorrhage may have occurred. Experiments with L-NMA treatment revealed that this additional .NO production did not correlate with hepatic necrosis and onset of death. Immunoprecipitation of liver cytosols from C. parvum- and (C. parvum + LPS)-treated mice using an antibody against mouse inducible nitric oxide synthase showed that this enzyme was indeed present in the cytosolic fractions and was absent in those from control livers. Our novel detection of

  8. PATHOPHYSIOLOGIC BASIS OF LIVER DISEASE IN CYSTIC FIBROSIS EMPLOYING A ΔF508 MOUSE MODEL

    OpenAIRE

    Freudenberg, Folke; BRODERICK, ANNEMARIE L.; Yu, Bian B.; Leonard, Monika R.; Glickman, Jonathan N.; CAREY, MARTIN C.

    2008-01-01

    The molecular pathogenesis of cystic fibrosis (CF) liver disease is unknown. This study investigates its earliest pathophysiologic manifestations employing a mouse model carrying ΔF508, the commonest human CF mutation. We hypothesized that, if increased bile salt spillage into the colon occurs as in the human disease, this should lead to a hydrophobic bile salt profile and to “hyperbilirubinbilia” because of induced enterohepatic cycling of unconjugated bilirubin. Hyperbilirubinbilia may then...

  9. Effects of thyroxine on L-cysteine desulfuration in mouse liver.

    OpenAIRE

    Wróbel M; Ubuka T; Yao WB; Abe T

    2000-01-01

    The effect of exogenous thyroxine (T4) administration on the activity of rhodanese, cystathionase, and 3-mercaptopyruvate sulfurtransferase (MPST) in the mitochondrial and cytosolic fractions of mouse liver was investigated. Three groups of mice were treated for 6 consecutive days with subcutaneous injections of T4 (50 micrograms, 100 micrograms, and 250 micrograms per 100 g of body wt, respectively). The other 3 groups were given 100 micrograms of T4 per 100 g of body wt for 1, 2, or 3 days....

  10. Functional Integrity of the Chimeric (Humanized) Mouse Liver: Enzyme Zonation, Physiologic Spaces, and Hepatic Enzymes and Transporters.

    Science.gov (United States)

    Chow, Edwin C Y; Wang, Jason Z Ya; Quach, Holly P; Tang, Hui; Evans, David C; Li, Albert P; Silva, Jose; Pang, K Sandy

    2016-09-01

    Chimeric mouse liver models are useful in vivo tools for human drug metabolism studies; however, liver integrity and the microcirculation remain largely uninvestigated. Hence, we conducted liver perfusion studies to examine these attributes in FRGN [Fah(-/-), Rag2(-/-), and Il2rg(-/-), NOD strain] livers (control) and chimeric livers repopulated with mouse (mFRGN) or human (hFRGN) hepatocytes. In single-pass perfusion studies (2.5 ml/min), outflow dilution profiles of noneliminated reference indicators ((51)Cr-RBC, (125)I-albumin, (14)C-sucrose, and (3)H-water) revealed preservation of flow-limited distribution and reduced water and albumin spaces in hFRGN livers compared with FRGN livers, a view supported microscopically by tightly packed sinusoids. With prograde and retrograde perfusion of harmol (50 µM) in FRGN livers, an anterior sulfation (Sult1a1) over the posterior distribution of glucuronidation (Ugt1a1) activity was preserved, evidenced by the 42% lower sulfation-to-glucuronidation ratio (HS/HG) and 14% higher harmol extraction ratio (E) upon switching from prograde to retrograde flow. By contrast, zonation was lost in mFRGN and hFRGN livers, with HS/HG and E for both flows remaining unchanged. Remnant mouse genes persisted in hFRGN livers (10%-300% those of FRGN). When hFRGN livers were compared with human liver tissue, higher UGT1A1 and MRP2, lower MRP3, and unchanged SULT1A1 and MRP4 mRNA expression were observed. Total Sult1a1/SULT1A1 protein expression in hFRGN livers was higher than that of FRGN livers, consistent with higher harmol sulfate formation. The composite data on humanized livers suggest a loss of zonation, lack of complete liver humanization, and persistence of murine hepatocyte activities leading to higher sulfation.

  11. Effects of social isolation stress on immune response and survival time of mouse with liver cancer

    Institute of Scientific and Technical Information of China (English)

    Hui Liu; Zhun Wang

    2005-01-01

    AIM: To investigate the effects of isolation stress on mouse with liver cancer and possible associated mechanisms.METHODS: Transplantable murine hepatoma22 (H22) model was used to evaluate the effects of social isolation stress on murine liver cancer. Mice were immunized with sheep red blood cell (SRBC) and intraperitoneally inoculated with H22 cell, then divided into two groups, one reared individually as group (Ⅰ) and the other reared in groups as group (G). Titer of antibody to SRBC and interleukin 2 (IL-2) in serum was monitored. The survival time of mouse with liver cancer was observed.RESULTS: The titer of antibody to SRBC in group (G) was 1:24.5 and that in group (Ⅰ) was 1:11.2. There was a significant difference between these two groups (t = 2.60,P = 0.02). A significant difference in IL-2 concentration was observed between group (G) (39.6 ng/L) and group (Ⅰ) (47.1 ng/L, t= 2.14, P = 0.046). The survival time in group (G) (16.5 d) was markedly longer than that in group (Ⅰ) (13.2 d, t = 3.46, P = 0.002).CONCLUSION: Our study suggests that survival time of the mouse bearing H22 tumor is affected by the social isolation stress and the associated mechanism may be the immunological changes under the social isolation stress.

  12. A New Mouse Model That Spontaneously Develops Chronic Liver Inflammation and Fibrosis

    Science.gov (United States)

    Fransén-Pettersson, Nina; Duarte, Nadia; Nilsson, Julia; Lundholm, Marie; Mayans, Sofia; Larefalk, Åsa; Hannibal, Tine D.; Hansen, Lisbeth; Schmidt-Christensen, Anja; Ivars, Fredrik; Cardell, Susanna; Palmqvist, Richard; Rozell, Björn

    2016-01-01

    Here we characterize a new animal model that spontaneously develops chronic inflammation and fibrosis in multiple organs, the non-obese diabetic inflammation and fibrosis (N-IF) mouse. In the liver, the N-IF mouse displays inflammation and fibrosis particularly evident around portal tracts and central veins and accompanied with evidence of abnormal intrahepatic bile ducts. The extensive cellular infiltration consists mainly of macrophages, granulocytes, particularly eosinophils, and mast cells. This inflammatory syndrome is mediated by a transgenic population of natural killer T cells (NKT) induced in an immunodeficient NOD genetic background. The disease is transferrable to immunodeficient recipients, while polyclonal T cells from unaffected syngeneic donors can inhibit the disease phenotype. Because of the fibrotic component, early on-set, spontaneous nature and reproducibility, this novel mouse model provides a unique tool to gain further insight into the underlying mechanisms mediating transformation of chronic inflammation into fibrosis and to evaluate intervention protocols for treating conditions of fibrotic disorders. PMID:27441847

  13. Regulation of retinoid X receptor gamma expression by fed state in mouse liver

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sangkyu, E-mail: 49park@cku.ac.kr [Department of Biochemistry, College of Medicine, Catholic Kwandong University, Gangneung 210-701 (Korea, Republic of); Lee, Yoo Jeong [Division of Metabolic Disease, Center for Biomedical Sciences, National Institute of Health Korea, Osong 361-709 (Korea, Republic of); Ko, Eun Hee [Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Kim, Jae-woo [Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 120-752 (Korea, Republic of)

    2015-02-27

    Glucose metabolism is balanced by glycolysis and gluconeogenesis with precise control in the liver. The expression of genes related to glucose metabolism is regulated primarily by glucose and insulin at transcriptional level. Nuclear receptors play important roles in regulating the gene expression of glucose metabolism at transcriptional level. Some of these nuclear receptors form heterodimers with RXRs to bind to their specific regulatory elements on the target promoters. To date, three isotypes of RXRs have been identified; RXRα, RXRβ and RXRγ. However, their involvement in the interactions with other nuclear receptors in the liver remains unclear. In this study, we found RXRγ is rapidly induced after feeding in the mouse liver, indicating a potential role of RXRγ in controlling glucose or lipid metabolism in the fasting–feeding cycle. In addition, RXRγ expression was upregulated by glucose in primary hepatocytes. This implies that glucose metabolism governed by RXRγ in conjunction with other nuclear receptors. The luciferase reporter assay showed that RXRγ as well as RXRα increased SREBP-1c promoter activity in hepatocytes. These results suggest that RXRγ may play an important role in tight control of glucose metabolism in the fasting–feeding cycle. - Highlights: • Refeeding increases the RXRγ expression level in mouse liver. • RXRγ expression is induced by high glucose condition in primary hepatocytes. • RXRγ and LXRα have synergistic effect on SREBP-1c promoter activity. • RXRγ binds to LXRE(-299/-280) located within SREBP-1c promoter region and interacts with LXRα.

  14. Fulminant liver failure models with subsequent encephalopathy in the mouse

    Institute of Scientific and Technical Information of China (English)

    Ann-Marie T Baine; Tomohide Hori; Feng Chen; Lindsay B Gardner; Shinji Uemoto; Justin H Nguyen

    2011-01-01

    BACKGROUND:  A reliable model of fulminant liver failure (FLF) is urgently required in this research field. This study aimed to develop a murine FLF model. METHODS: We used three groups of male C57BL/6 mice:control, with azoxymethane treatment (AOM group), and with galactosamine and tumor necrosis factor-alpha treatment (Gal+TNF-α group). The effects of body temperature (BT) control on survival in all three groups were investigated. Using BT control, we compared the survival, histopathological findings and biochemical/coagulation profiles between the two experimental groups. The effects of hydration on international normalized ratios of prothrombin time (PT-INRs) were also checked. Dose-dependent survival curves were constructed for both experimental groups. Neurological behavior was assessed using a coma scale. RESULTS: No unexpected BT effects were seen in the control group. The AOM group, but not the Gal+TNF-α group, showed a significant difference in survival curves between those with and without BT care. Histopathological assessment showed consistent FLF findings in both experimental groups with BT care. There were significant differences between the experimental groups in aspartate aminotransferase levels and PT-INRs, and significant differences in PT-INRs between the sufficiently and insufficiently hydrated groups. There were significant differences between FLF models in the duration of each coma stage, with significant differences in stages 1 and 3 as percentages of the disease state (stages 1-4). The two FLF models with BT care showed different survival curves in the dose-dependent survival study. CONCLUSIONS: AOM provides a good FLF model, but requires a specialized environment and careful BT control. Other FLF models may also be useful, depending on the research purpose. Thoughtful attention to caregiving and close observation are indispensable for successful FLF models.

  15. Hormonal regulation of Cyp4a isoforms in mouse liver and kidney.

    Science.gov (United States)

    Zhang, Youcai; Klaassen, Curtis D

    2013-12-01

    Mouse Cyp4a subfamily, including Cyp4a10, Cyp4a12a, Cyp4a12b and Cyp4a14, demonstrate a gender- and strain-specific expression in liver and kidney. In C57BL/6 mouse liver and kidney, Cyp4a12a and 4a12b are male-predominant, whereas Cyp4a14 is female-predominant. Cyp4a10 is female-predominant in liver, but shows no gender difference in kidney. The present study was aimed to determine whether sex hormones and/or growth hormone (GH) secretion patterns are responsible for the gender-specific Cyp4a expression in C57BL/6 mice. Gonadectomized mice, GH-releasing hormone receptor-deficient little (lit/lit) mice and hypophysectomized mice were used with replacement of sex hormones or GH in male or female secretion patterns. Both androgens and male-pattern GH regulated the gender-divergent Cyp4a10, 4a12a and 4a12b in liver, whereas androgens played an exclusive role in regulating Cyp4a10 and 4a12a in kidney. In contrast, Cyp4a12b was increased by male-pattern GH but not androgens in kidney. The female-predominant Cyp4a14 in liver and kidney was due to a combined effect of male-pattern GH and androgens. In addition, estrogens played a minor role in regulation of Cyp4a isoforms through an indirect pathway. In conclusion, gender-divergent Cyp4a mRNA expression in liver is caused by male-pattern GH secretion pattern and androgens, whereas in kidney, Cyp4a mRNA expression is primarily regulated by androgens.

  16. Effect of chronic intermittent hypoxia on theophylline metabolism in mouse liver

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao-yang; ZENG Yi-ming; ZHANG Yi-xiang; WANG Wan-yu; WU Run-hua

    2013-01-01

    Background Chronic intermittent hypoxia (CIH) has been associated with abnormalities in the liver,which is the most important organ for drug metabolism.This study aimed to investigate the effect of CIH on theophylline metabolism in mouse liver.Methods Eight C57BL/6J mice were exposed to CIH for 12 weeks.Eight C57BL/6J mice were exposed to room air as a control group.Serum levels of alanine aminotransferase and aspartate aminotransferase were measured.Liver histology was observed by light and electron microscopy.Total hepatic cytochrome P450 concentration was measured.Hepatocytes were isolated and incubated with 15 mg/ml theophylline for four hours.After incubation,the theophylline concentration in the supernatant was measured and the theophylline metabolism rate was calculated.Results CIH did not affect the serum transaminase levels.Livers from mice exposed to CIH showed hepatocellular edema,and liver cells had fuzzy rough endoplasmic reticulum under the electron microscope.The theophylline metabolism rate was significantly inhibited by CIH compared with controls; (16.60±2.43)% vs.(21.58±4.52)% (P=0.02).The total liver cytochrome P450 concentration in the CIH group was significantly lower than in the control group;(0.83±0.08) vs.(1.13±0.21) mol/mg microsomal protein (P=0.004).Conclusion CIH decreases theophylline metabolism by mouse hepatocytes,which may correlate with the downregulation of cytochrome P450 expression by CIH.

  17. Liver Repopulation and Correction of Metabolic Liver Disease by Transplanted Adult Mouse Pancreatic Cells

    OpenAIRE

    Wang, Xin; Al-Dhalimy, Muhsen; Lagasse, Eric; Finegold, Milton; Grompe, Markus

    2001-01-01

    The emergence of cells with hepatocellular properties in the adult pancreas has been described in several experimental models. To determine whether adult pancreas contains cells that can give rise to therapeutically useful and biochemically normal hepatocytes, we transplanted suspensions of wild-type mouse pancreatic cells into syngeneic recipients deficient in fumarylacetoacetate hydrolase and manifesting tyrosinemia. Four of 34 (12%) mutant mice analyzed were fully rescued by donor-derived ...

  18. Liver fatty acid-binding protein binds monoacylglycerol in vitro and in mouse liver cytosol.

    Science.gov (United States)

    Lagakos, William S; Guan, Xudong; Ho, Shiu-Ying; Sawicki, Luciana Rodriguez; Corsico, Betina; Kodukula, Sarala; Murota, Kaeko; Stark, Ruth E; Storch, Judith

    2013-07-01

    Liver fatty acid-binding protein (LFABP; FABP1) is expressed both in liver and intestinal mucosa. Mice null for LFABP were recently shown to have altered metabolism of not only fatty acids but also monoacylglycerol, the two major products of dietary triacylglycerol hydrolysis (Lagakos, W. S., Gajda, A. M., Agellon, L., Binas, B., Choi, V., Mandap, B., Russnak, T., Zhou, Y. X., and Storch, J. (2011) Am. J. Physiol. Gastrointest. Liver Physiol. 300, G803-G814). Nevertheless, the binding and transport of monoacylglycerol (MG) by LFABP are uncertain, with conflicting reports in the literature as to whether this single chain amphiphile is in fact bound by LFABP. In the present studies, gel filtration chromatography of liver cytosol from LFABP(-/-) mice shows the absence of the low molecular weight peak of radiolabeled monoolein present in the fractions that contain LFABP in cytosol from wild type mice, indicating that LFABP binds sn-2 MG in vivo. Furthermore, solution-state NMR spectroscopy demonstrates two molecules of sn-2 monoolein bound in the LFABP binding pocket in positions similar to those found for oleate binding. Equilibrium binding affinities are ∼2-fold lower for MG compared with fatty acid. Finally, kinetic studies examining the transfer of a fluorescent MG analog show that the rate of transfer of MG is 7-fold faster from LFABP to phospholipid membranes than from membranes to membranes and occurs by an aqueous diffusion mechanism. These results provide strong support for monoacylglycerol as a physiological ligand for LFABP and further suggest that LFABP functions in the efficient intracellular transport of MG. PMID:23658011

  19. Liver Fatty Acid-binding Protein Binds Monoacylglycerol in Vitro and in Mouse Liver Cytosol*

    Science.gov (United States)

    Lagakos, William S.; Guan, Xudong; Ho, Shiu-Ying; Sawicki, Luciana Rodriguez; Corsico, Betina; Kodukula, Sarala; Murota, Kaeko; Stark, Ruth E.; Storch, Judith

    2013-01-01

    Liver fatty acid-binding protein (LFABP; FABP1) is expressed both in liver and intestinal mucosa. Mice null for LFABP were recently shown to have altered metabolism of not only fatty acids but also monoacylglycerol, the two major products of dietary triacylglycerol hydrolysis (Lagakos, W. S., Gajda, A. M., Agellon, L., Binas, B., Choi, V., Mandap, B., Russnak, T., Zhou, Y. X., and Storch, J. (2011) Am. J. Physiol. Gastrointest. Liver Physiol. 300, G803–G814). Nevertheless, the binding and transport of monoacylglycerol (MG) by LFABP are uncertain, with conflicting reports in the literature as to whether this single chain amphiphile is in fact bound by LFABP. In the present studies, gel filtration chromatography of liver cytosol from LFABP−/− mice shows the absence of the low molecular weight peak of radiolabeled monoolein present in the fractions that contain LFABP in cytosol from wild type mice, indicating that LFABP binds sn-2 MG in vivo. Furthermore, solution-state NMR spectroscopy demonstrates two molecules of sn-2 monoolein bound in the LFABP binding pocket in positions similar to those found for oleate binding. Equilibrium binding affinities are ∼2-fold lower for MG compared with fatty acid. Finally, kinetic studies examining the transfer of a fluorescent MG analog show that the rate of transfer of MG is 7-fold faster from LFABP to phospholipid membranes than from membranes to membranes and occurs by an aqueous diffusion mechanism. These results provide strong support for monoacylglycerol as a physiological ligand for LFABP and further suggest that LFABP functions in the efficient intracellular transport of MG. PMID:23658011

  20. Troxerutin protects the mouse liver against oxidative stress-mediated injury induced by D-galactose.

    Science.gov (United States)

    Zhang, Zi-feng; Fan, Shao-hua; Zheng, Yuan-lin; Lu, Jun; Wu, Dong-mei; Shan, Qun; Hu, Bin

    2009-09-01

    Troxerutin, a trihydroxyethylated derivative of rutin, has been well-demonstrated to exert hepatoprotective properties. In the present study, we attempted to explore whether the antioxidant and anti-inflammatory mechanisms were involved in troxerutin-mediated protection from D-gal-induced liver injury. The effects of troxerutin on liver lipid peroxidation, antioxidant enzymatic activities, and the expression of inflammatory mediator were investigated in D-gal-treated mice. The results showed that troxerutin largely attenuated the D-gal-induced TBARS content increase and also markedly renewed the activities of Cu, Zn-SOD, CAT, and GPx in the livers of D-gal-treated mice. Furthermore, troxerutin inhibited the upregulation of the expression of NF-kappaB p65, iNOS, and COX-2 induced by D-gal. D-Gal-induced tissue architecture changes and serum ALT and AST increases were effectively suppressed by troxerutin. In conclusion, these results suggested that troxerutin could protect the mouse liver from D-gal-induced injury by attenuating lipid peroxidation, renewing the activities of antioxidant enzymes and suppressing inflammatory response. This study provided novel insights into the mechanisms of troxerutin in the protection of the liver.

  1. Epigenetic regulation of developmental expression of Cyp2d genes in mouse liver

    Directory of Open Access Journals (Sweden)

    Ye Li

    2012-04-01

    Full Text Available CYP2D6 expression in liver is age-dependent. Because epigenetic mechanisms, such as DNA methylation and histone modifications, modulate age-related gene expression during development, and are highly conserved among species, the current study examined the epigenetic regulation of age-related expression of the Cyp2d genes in mouse liver. DNA methylation (DNAme, histone 3 lysine 4 dimethylation (H3K4me2, and histone 3 lysine 27 trimethylation (H3K27me3 was established by ChIP-on-chip tiling microarrays from mouse livers at prenatal, neonatal, and adult stages. Levels of DNAme, H3K4me2, and H3K27me3 were analyzed in a genomic region containing the Cyp2d clustering genes and their surrounding genes. Gradually increased expression levels of the Cyp2d9, Cyp2d10, Cyp2d22, and Cyp2d26 genes from prenatal, through neonatal, to adult are associated with gradually increased levels of H3K4me2 in the nucleosomes associated with these genes. Gene expression patterns during liver development in several Cyp2d surrounding genes, such as Srebf2, Sept3, Ndufa6, Tcf2, Nfam1, and Cyb5r3, could be also explained by changes of DNA methylation, H3K4me2, or H3K27me3 in those genes. In conclusion, the current study demonstrates that the changes of DNA methylation and histone modifications are associated with age-related expression patterns of the Cyp2d genes and their surrounding genes in liver cells during development.

  2. Evaluation of immunological escape mechanisms in a mouse model of colorectal liver metastases

    Directory of Open Access Journals (Sweden)

    Meyer Detlef

    2010-03-01

    Full Text Available Abstract Background The local and systemic activation and regulation of the immune system by malignant cells during carcinogenesis is highly complex with involvement of the innate and acquired immune system. Despite the fact that malignant cells do have antigenic properties their immunogenic effects are minor suggesting tumor induced mechanisms to circumvent cancer immunosurveillance. The aim of this study is the analysis of tumor immune escape mechanisms in a colorectal liver metastases mouse model at different points in time during tumor growth. Methods CT26.WT murine colon carcinoma cells were injected intraportally in Balb/c mice after median laparotomy using a standardized injection technique. Metastatic tumor growth in the liver was examined by standard histological procedures at defined points in time during metastatic growth. Liver tissue with metastases was additionally analyzed for cytokines, T cell markers and Fas/Fas-L expression using immunohistochemistry, immunofluorescence and RT-PCR. Comparisons were performed by analysis of variance or paired and unpaired t test when appropriate. Results Intraportal injection of colon carcinoma cells resulted in a gradual and time dependent metastatic growth. T cells of regulatory phenotype (CD4+CD25+Foxp3+ which might play a role in protumoral immune response were found to infiltrate peritumoral tissue increasingly during carcinogenesis. Expression of cytokines IL-10, TGF-β and TNF-α were increased during tumor growth whereas IFN-γ showed a decrease of the expression from day 10 on following an initial increase. Moreover, liver metastases of murine colon carcinoma show an up-regulation of FAS-L on tumor cell surface with a decreased expression of FAS from day 10 on. CD8+ T cells express FAS and show an increased rate of apoptosis at perimetastatic location. Conclusions This study describes cellular and macromolecular changes contributing to immunological escape mechanisms during metastatic

  3. Amarogentin regulates self renewal pathways to restrict liver carcinogenesis in experimental mouse model.

    Science.gov (United States)

    Sur, Subhayan; Pal, Debolina; Banerjee, Kaustav; Mandal, Suvra; Das, Ashes; Roy, Anup; Panda, Chinmay Kumar

    2016-07-01

    Amarogentin, a secoiridoid glycoside isolated from medicinal plant Swertia chirata, was found to restrict CCl4 /N-nitrosodiethyl amine (NDEA) induced mouse liver carcinogenesis by modulating G1/S cell cycle check point and inducing apoptosis. To understand its therapeutic efficacy on stem cell self renewal pathways, prevalence of CD44 positive cancer stem cell (CSC) population, expressions (mRNA/protein) of some key regulatory genes of self renewal Wnt and Hedgehog pathways along with expressions of E-cadherin and EGFR were analyzed during the liver carcinogenesis and in liver cancer cell line HepG2. It was observed that amarogentin could significantly reduce CD44 positive CSCs in both pre and post initiation stages of carcinogenesis than carcinogen control mice. In Wnt pathway, amarogentin could inhibit expressions of β-catenin, phospho β-catenin (Y-654) and activate expressions of antagonists sFRP1/2 and APC in the liver lesions. In Hedgehog pathway, decreased expressions of Gli1, sonic hedgehog ligand, and SMO along with up-regulation of PTCH1 were seen in the liver lesions due to amarogentin treatment. Moreover, amarogentin could up-regulate E-cadherin expression and down-regulate expression of EGFR in the liver lesions. Similarly, amarogentin could inhibit HepG2 cell growth along with expression and prevalence of CD44 positive CSCs. Similar to in vivo analysis, amarogentin could modulate the expressions of the key regulatory genes of the Wnt and hedgehog pathways and EGFR in HepG2 cells. Thus, our data suggests that the restriction of liver carcinogenesis by amarogentin might be due to reduction of CD44 positive CSCs and modulation of the self renewal pathways. © 2015 Wiley Periodicals, Inc. PMID:26154024

  4. Structural and metabolic changes in Atp7b-/- mouse liver and potential for new interventions in Wilson's disease.

    Science.gov (United States)

    Huster, Dominik

    2014-05-01

    Wilson's disease (WD) is caused by ATP7B mutations and results in copper accumulation and toxicity in liver and brain tissues. The specific mechanisms underlying copper toxicity are still poorly understood. Mouse models have revealed new insights into pathomechanisms of hepatic WD. Mitochondrial damage is observed in livers of WD patients and in mouse models; copper induces fragmentation of mitochondrial membrane lipids, particularly cardiolipin, with deleterious effects on both mitochondrial integrity and function. Copper accumulation also induces chronic inflammation in WD livers, which is followed by regeneration in parts of the liver and occasionally neoplastic proliferation. Gene expression studies using microarrays have aided our understanding of the molecular basis of these changes. Copper overload alters cholesterol biosynthesis in hepatocytes resulting in reduced liver and serum cholesterol. Experiments are currently underway to elucidate the link between copper and cholesterol metabolism. These findings may facilitate the development of specific therapies to ameliorate WD progression.

  5. LIGHT induces distinct signals to clear an AAV-expressed persistent antigen in the mouse liver and to induce liver inflammation.

    Directory of Open Access Journals (Sweden)

    Michael L Washburn

    Full Text Available BACKGROUND: Infection with adeno-associated virus (AAV vector with liver tropism leads to persistent expression of foreign antigens in the mouse liver, with no significant liver inflammation or pathology. This provides a model to investigate antigen persistence in the liver and strategies to modulate host immunity to reduce or clear the foreign antigen expressed from AAV vector in the liver. METHODS/PRINCIPAL FINDINGS: We showed that expressing LIGHT with an adenovirus vector (Ad in mice with established AAV in the liver led to clearance of the AAV. Ad-LIGHT enhanced CD8 effector T cells in the liver, correlated with liver inflammation. LTbetaR-Ig proteins blocked Ad-LIGHT in clearing AAV. Interestingly, in LTbetaR-null mice, Ad-LIGHT still cleared AAV but caused no significant liver inflammation. CONCLUSIONS/SIGNIFICANCE: Our data suggest that LIGHT interaction with the LTbetaR plays a critical role in liver inflammation but is not required for LIGHT-mediated AAV clearance. These findings will shed light on developing novel immuno-therapeutics in treating people chronically infected with hepato-tropic viruses.

  6. Proteomic analysis of glutathione S-transferase isoforms in mouse liver mitochondria

    Institute of Scientific and Technical Information of China (English)

    Hai-Dan Sun; Ya-Wei Ru; Dong-Juan Zhang; Song-Yue Yin; Liang Yin; Ying-Ying Xie; You-Fei Guan; Si-Qi Liu

    2012-01-01

    AIM:To survey glutathione (GSH) S-transferase (GST)isoforms in mitochondria and to reveal the isoforms' biological significance in diabetic mice.METHODS:The presence of GSTs in mouse liver mitochondria was systematically screened by two proteomic approaches,namely,GSH affinity chromatography/two dimensional electrophoresis (2DE/MALDI TOF/TOFMS) and SDS-PAGE/LC ESI MS/MS.The proteomic results were further confirmed by Western blotting using monoclonal antibodies against GSTs.To evaluate the liver mitochondrial GSTs quantitatively,calibration curves were generated by the loading amounts of individual recombinant GST protein vs the relative intensities elicited from the Western blotting.An extensive comparison of the liver mitochondrial GSTs was conducted between normal and db/db diabetic mice.Student's t test was adopted for the estimation of regression and significant difference.RESULTS:Using GSH affinity/2DF/MALDI TOF/TOF MS,three GSTs,namely,alpha3,mu1 and pi1,were identified; whereas five GSTs,alpha3,mu1,pi1,kappa1 and zeta1,were detected in mouse liver mitochondria using SDS-PAGE/LC ESI MS/MS,of these GSTs,GST kappa1 was reported as a specific mitochondrial GST.The R2 values of regression ranged between values of about 0.86 and 0.98,which were acceptable for the quantification.Based on the measurement of the GST abundances in liver mitochondria of normal and diabetic mice,the four GSTs,alpha3,kappa1,mu1 and zeta1,were found to be almost comparable between the two sets of animals,whereas,lower GST pi1 was detected in the diabetic mice compared with normal ones,the signal of Western blotting in control and db/ db diabetic mice liver mitochondria is 134.61 ± 53.84vs 99.74 ± 46.2,with P < 0.05.CONCLUSION:Our results indicate that GSTs exist widely in mitochondria and its abundances of mitochondrial GSTs might be tissue-dependent and disease-related.

  7. Contribution of Epigenetic Modifications to the Decline in Transgene Expression from Plasmid DNA in Mouse Liver

    Directory of Open Access Journals (Sweden)

    Lei Zang

    2015-08-01

    Full Text Available Short-term expression of transgenes is one of the problems frequently associated with non-viral in vivo gene transfer. To obtain experimental evidence for the design of sustainable transgene expression systems, the contribution of epigenetic modifications to the decline in transgene expression needs to be investigated. Bisulfite sequencing and reactivation by hydrodynamic injection of isotonic solution were employed to investigate methylation statues of CpG in transiently expressing plasmid, pCMV-Luc, in mouse liver after hydrodynamic delivery. The cytosines of CpGs in the promoter region of pCMV-Luc were methylated in mouse liver, but the methylation was much later than the decline in the expression. The expression from pre-methylated pCMV-Luc was insensitive to reactivation. Neither an inhibitor of DNA methylation nor an inhibitor of histone deacetylation had significant effects on transgene expression after hydrodynamic injection of pCMV-Luc. Partial hepatectomy, which reduces the transgene expression from the non-integrated vector into the genome, significantly reduced the transgene expression of human interferon γ from a long-term expressing plasmid pCpG-Huγ, suggesting that the CpG-reduced plasmid was not significantly integrated into the genomic DNA. These results indicate that the CpG-reduced plasmids achieve prolonged transgene expression without integration into the host genome, although the methylation status of CpG sequences in plasmids will not be associated with the prolonged expression.

  8. Contribution of Epigenetic Modifications to the Decline in Transgene Expression from Plasmid DNA in Mouse Liver

    Science.gov (United States)

    Zang, Lei; Nishikawa, Makiya; Ando, Mitsuru; Takahashi, Yuki; Takakura, Yoshinobu

    2015-01-01

    Short-term expression of transgenes is one of the problems frequently associated with non-viral in vivo gene transfer. To obtain experimental evidence for the design of sustainable transgene expression systems, the contribution of epigenetic modifications to the decline in transgene expression needs to be investigated. Bisulfite sequencing and reactivation by hydrodynamic injection of isotonic solution were employed to investigate methylation statues of CpG in transiently expressing plasmid, pCMV-Luc, in mouse liver after hydrodynamic delivery. The cytosines of CpGs in the promoter region of pCMV-Luc were methylated in mouse liver, but the methylation was much later than the decline in the expression. The expression from pre-methylated pCMV-Luc was insensitive to reactivation. Neither an inhibitor of DNA methylation nor an inhibitor of histone deacetylation had significant effects on transgene expression after hydrodynamic injection of pCMV-Luc. Partial hepatectomy, which reduces the transgene expression from the non-integrated vector into the genome, significantly reduced the transgene expression of human interferon γ from a long-term expressing plasmid pCpG-Huγ, suggesting that the CpG-reduced plasmid was not significantly integrated into the genomic DNA. These results indicate that the CpG-reduced plasmids achieve prolonged transgene expression without integration into the host genome, although the methylation status of CpG sequences in plasmids will not be associated with the prolonged expression. PMID:26262639

  9. The organoid-initiating cells in mouse pancreas and liver are phenotypically and functionally similar

    Directory of Open Access Journals (Sweden)

    Craig Dorrell

    2014-09-01

    Full Text Available Pancreatic Lgr5 expression has been associated with organoid-forming epithelial progenitor populations but the identity of the organoid-initiating epithelial cell subpopulation has remained elusive. Injury causes the emergence of an Lgr5+ organoid-forming epithelial progenitor population in the adult mouse liver and pancreas. Here, we define the origin of organoid-initiating cells from mouse pancreas and liver prior to Lgr5 activation. This clonogenic population was defined as MIC1-1C3+/CD133+/CD26− in both tissues and the frequency of organoid initiation within this population was approximately 5% in each case. The transcriptomes of these populations overlapped extensively and showed enrichment of epithelial progenitor-associated regulatory genes such as Sox9 and FoxJ1. Surprisingly, pancreatic organoid cells also had the capacity to generate hepatocyte-like cells upon transplantation to Fah−/− mice, indicating a differentiation capacity similar to hepatic organoids. Although spontaneous endocrine differentiation of pancreatic progenitors was not observed in culture, adenoviral delivery of fate-specifying factors Pdx1, Neurog3 and MafA induced insulin expression without glucagon or somatostatin. Pancreatic organoid cultures therefore preserve many key attributes of progenitor cells while allowing unlimited expansion, facilitating the study of fate determination.

  10. Measurement of mouse liver glutathione S-transferase activity by the integrated method

    Institute of Scientific and Technical Information of China (English)

    廖飞; 李甲初; 康格非; 曾昭淳; 左渝萍

    2003-01-01

    Objective: The integrated method was investigated to measure Vm/Km of mouse liver glutathione S-transferase (GST) activity on GSH and 7-Cl-4-nitrobenzofurazozan. Methods: Presetting concentration of one substrate twenty-fold above the others and taking maximum product absorbance Am as parameter while Km as constant, Vm/Km was obtained by nonlinear fitting of GST reaction curve to the integrated Michaelis-Menten equation ln [Am/(Am-Ai)]+Ai/(ε×Km)=(Vm/Km)×ti (1). Results: Vm/Km for GST showed slight dependence on initial substrate concentration and data range, but it was resistant to background absorbance, error in reaction origin and small deviation in presetting Km. Vm/Km was proportional to the amount of GST with upper limit higher than that by initial rate. There was close correlation between Vm/Km and initial rate of the same GST. Consistent results were obtained by this integrated method and classical initial rate method for the measurement of mouse liver GST. Conclusion: With the concentration of one substrate twenty-fold above the others, this integrated method was reliable to measure the activity of enzyme on two substrates, and substrate concentration of the lower one close to its apparent Km was able to be used.

  11. CRISPR-mediated direct mutation of cancer genes in the mouse liver

    Science.gov (United States)

    Xue, Wen; Chen, Sidi; Yin, Hao; Tammela, Tuomas; Papagiannakopoulos, Thales; Joshi, Nikhil S.; Cai, Wenxin; Yang, Gillian; Bronson, Roderick; Crowley, Denise G.; Zhang, Feng; Anderson, Daniel G.; Sharp, Phillip A.; Jacks, Tyler

    2014-01-01

    The study of cancer genes in mouse models has traditionally relied on genetically-engineered strains made via transgenesis or gene targeting in embryonic stem (ES) cells1. Here we describe a new method of cancer model generation using the CRISPR/Cas system in vivo in wild-type mice. We have used hydrodynamic injection to deliver a CRISPR plasmid DNA expressing Cas9 and single guide RNAs (sgRNAs)2–4 to the liver and directly target the tumor suppressor genes Pten5 and p536, alone and in combination. CRISPR-mediated Pten mutation led to elevated Akt phosphorylation and lipid accumulation in hepatocytes, phenocopying the effects of deletion of the gene using Cre-LoxP technology7, 8. Simultaneous targeting of Pten and p53 induced liver tumors that mimicked those caused by Cre-loxP-mediated deletion of Pten and p53. DNA sequencing of liver and tumor tissue revealed insertion or deletion (indel) mutations of the tumor suppressor genes, including bi-allelic mutations of both Pten and p53 in tumors. Furthermore, co-injection of Cas9 plasmids harboring sgRNAs targeting the β-Catenin gene (Ctnnb1) and a single-stranded DNA (ssDNA) oligonucleotide donor carrying activating point mutations led to the generation of hepatocytes with nuclear localization of β-Catenin. This study demonstrates the feasibility of direct mutation of tumor suppressor genes and oncogenes in the liver using the CRISPR/Cas system, which presents a new avenue for rapid development of liver cancer models and functional genomics. PMID:25119044

  12. CRISPR-mediated direct mutation of cancer genes in the mouse liver.

    Science.gov (United States)

    Xue, Wen; Chen, Sidi; Yin, Hao; Tammela, Tuomas; Papagiannakopoulos, Thales; Joshi, Nikhil S; Cai, Wenxin; Yang, Gillian; Bronson, Roderick; Crowley, Denise G; Zhang, Feng; Anderson, Daniel G; Sharp, Phillip A; Jacks, Tyler

    2014-10-16

    The study of cancer genes in mouse models has traditionally relied on genetically-engineered strains made via transgenesis or gene targeting in embryonic stem cells. Here we describe a new method of cancer model generation using the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins) system in vivo in wild-type mice. We used hydrodynamic injection to deliver a CRISPR plasmid DNA expressing Cas9 and single guide RNAs (sgRNAs) to the liver that directly target the tumour suppressor genes Pten (ref. 5) and p53 (also known as TP53 and Trp53) (ref. 6), alone and in combination. CRISPR-mediated Pten mutation led to elevated Akt phosphorylation and lipid accumulation in hepatocytes, phenocopying the effects of deletion of the gene using Cre-LoxP technology. Simultaneous targeting of Pten and p53 induced liver tumours that mimicked those caused by Cre-loxP-mediated deletion of Pten and p53. DNA sequencing of liver and tumour tissue revealed insertion or deletion mutations of the tumour suppressor genes, including bi-allelic mutations of both Pten and p53 in tumours. Furthermore, co-injection of Cas9 plasmids harbouring sgRNAs targeting the β-catenin gene and a single-stranded DNA oligonucleotide donor carrying activating point mutations led to the generation of hepatocytes with nuclear localization of β-catenin. This study demonstrates the feasibility of direct mutation of tumour suppressor genes and oncogenes in the liver using the CRISPR/Cas system, which presents a new avenue for rapid development of liver cancer models and functional genomics.

  13. A New Mouse Model That Spontaneously Develops Chronic Liver Inflammation and Fibrosis.

    Directory of Open Access Journals (Sweden)

    Nina Fransén-Pettersson

    Full Text Available Here we characterize a new animal model that spontaneously develops chronic inflammation and fibrosis in multiple organs, the non-obese diabetic inflammation and fibrosis (N-IF mouse. In the liver, the N-IF mouse displays inflammation and fibrosis particularly evident around portal tracts and central veins and accompanied with evidence of abnormal intrahepatic bile ducts. The extensive cellular infiltration consists mainly of macrophages, granulocytes, particularly eosinophils, and mast cells. This inflammatory syndrome is mediated by a transgenic population of natural killer T cells (NKT induced in an immunodeficient NOD genetic background. The disease is transferrable to immunodeficient recipients, while polyclonal T cells from unaffected syngeneic donors can inhibit the disease phenotype. Because of the fibrotic component, early on-set, spontaneous nature and reproducibility, this novel mouse model provides a unique tool to gain further insight into the underlying mechanisms mediating transformation of chronic inflammation into fibrosis and to evaluate intervention protocols for treating conditions of fibrotic disorders.

  14. Effects of thyroxine on L-cysteine desulfuration in mouse liver.

    Directory of Open Access Journals (Sweden)

    Wróbel M

    2000-02-01

    Full Text Available The effect of exogenous thyroxine (T4 administration on the activity of rhodanese, cystathionase, and 3-mercaptopyruvate sulfurtransferase (MPST in the mitochondrial and cytosolic fractions of mouse liver was investigated. Three groups of mice were treated for 6 consecutive days with subcutaneous injections of T4 (50 micrograms, 100 micrograms, and 250 micrograms per 100 g of body wt, respectively. The other 3 groups were given 100 micrograms of T4 per 100 g of body wt for 1, 2, or 3 days. The dose of 100 micrograms T4 per 100 g of body wt given for 6 days exerted the strongest effect on the activity of all of the investigated enzymes. In comparison to the control, rhodanese activity diminished in the mitochondrial fraction by 40% (P < 0.05, cystathionase activity diminished in the cytosolic fraction by 15% (P < 0.05, and MPST activity in the mitochondrial fraction was reduced by 34% (P < 0.05, whereas cytosolic MPST activity was unaltered. Simultaneously, in the liver homogenate, elevated levels of ATP and sulfate were observed after 6 days of T4 administration. Thus, the present results seem to suggest that in the mouse liver, after 6 days of administration of 100 micrograms T4 per 100 g of body wt, the desulfuration metabolism of L-cysteine is diminished, which is probably accompanied by an increase in oxidative L-cysteine metabolism. The dose of 100 micrograms per 100 g of body wt administered for a shorter period, and the use of a lower dosage (50 micrograms T4 per 100 g of body wt for 6 days had a stimulatory effect upon MPST activity level, and an increased level of sulfane sulfur was observed.

  15. Genetically modified mouse models for the study of nonalcoholic fatty liver disease

    Institute of Scientific and Technical Information of China (English)

    Perumal Nagarajan; M Jerald Mahesh Kumar; Ramasamy Venkatesan; Subeer S Majundar; Ramesh C Juyal

    2012-01-01

    Nonalcoholic fatty liver disease (NAFLD) is associated with obesity,insulin resistance,and type 2 diabetes.NAFLD represents a large spectrum of diseases ranging from (1) fatty liver (hepatic steatosis); (2) steatosis with inflammation and necrosis; to (3) cirrhosis.The animal models to study NAFLD/nonalcoholic steatohepatitis (NASH) are extremely useful,as there are still many events to be elucidated in the pathology of NASH.The study of the established animal models has provided many clues in the pathogenesis of steatosis and steatohepatitis,but these remain incompletely understood.The different mouse models can be classified in two large groups.The first one includes genetically modified (transgenic or knockout) mice that spontaneously develop liver disease,and the second one includes mice that acquire the disease after dietary or pharmacological manipulation.Although the molecular mechanism leading to the development of hepatic steatosis in the pathogenesis of NAFLD is complex,genetically modified animal models may be a key for the treatment of NAFLD.Ideal animal models for NASH should closely resemble the pathological characteristics observed in humans.To date,no single animal model has encompassed the full spectrum of human disease progression,but they can imitate particular characteristics of human disease.Therefore,it is important that the researchers choose the appropriate animal model.This review discusses various genetically modified animal models developed and used in research on NAFLD.

  16. Electrochemical Detection of Alkaline Phosphatase in BALB/c Mouse Fetal Liver Stromal Cells with Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    Xue Mei SUN; Dong LI; Zeng Liang BAI; Wen Rui JIN

    2004-01-01

    A method for determination of alkaline phosphatase (ALP) in BALB/c mouse fetal liver stromal cells has been described based on the catalytic reaction. After the cell extract is incubated with the substrate disodium phenyl phosphate, the reaction product phenol generated by ALP is determined by capillary electrophoresis with electrochemical detection.

  17. Differences in Liver Injury and Trophoblastic Mitochondrial Damage in Different Preeclampsia-like Mouse Models

    Institute of Scientific and Technical Information of China (English)

    Yi-Wei Han; Zi Yang; Xiao-Yan Ding; Huan Yu

    2015-01-01

    Background:Preeclampsia is a multifactorial disease during pregnancy.Dysregulated lipid metabolism may be related to some preeclampsia.We investigated the relationship between triglycerides (TGs) and liver injury in different preeclampsia-like mouse models and their potential common pathways.Methods:Preeclampsia-like models (Nw-nitro-L-arginine-methyl ester [L-NAME],lipopolysaccharide [LPS],apolipoprotein C-Ⅲ [Apo] transgnic mice + L-NAME,β2 glycoprotein Ⅰ [βGPI]) were used in four experimental groups:L-NAME (LN),LPS,Apo-LN and βGPI,respectively,and controls received saline (LN-C,LPS-C,Apo-C,βGPI-C).The first three models were established in preimplantation (PI),early-,mid-and late-gestation (EG,MG and LG).βGPI and controls were injected before implantation.Mean arterial pressure (MAP),24-hour urine protein,placental and fetal weight,serum TGs,total cholesterol (TC) and pathologic liver and trophocyte changes were assessed.Results:MAP and proteinuria were significantly increased in the experimental groups.Placenta and fetal weight in PI,EP and MP subgroups were significantly lower than LP.Serum TGs significantly increased in most groups but controls.TC was not different between experimental and control groups.Spotty hepatic cell necrosis was observed in PI,EG,MG in LN,Apo-LN and βGPI,but no morphologic changes were observed in the LPS group.Similar trophoblastic mitochondrial damage was observed in every experimental group.Conclusions:Earlier preeclampsia onset causes a higher MAP and urine protein level,and more severe placental and fetal damage.Preeclampsia-like models generated by varied means lead to different changes in lipid metabolism and associated with liver injury.Trophoblastic mitochondrial damage may be the common terminal pathway in different preeclampsia-like models.

  18. Cellular distribution of {sup 111}In-LDTPA galactose BSA in normal and asialoglycoprotein receptor-deficient mouse liver

    Energy Technology Data Exchange (ETDEWEB)

    Deal, Kim A.; Cristel, Michael E.; Welch, Michael J

    1998-05-01

    {sup 111}In-LDTPA galactose BSA (bovine serum albumin) was used to evaluate the asialoglycoprotein receptor (ASGPR) system in both normal and ASGPR-deficient mice. The radiolabeled glycoprotein had complete liver uptake in both normal and ASGPR-deficient mice. Metabolism and hepatic cell-type distribution studies were performed. The normal mouse excreted greater than 60% of the hepatic activity, while the ASGPR-deficient mouse excreted less than 40% of the hepatic activity. {sup 111}In-LDTPA galactose BSA was metabolized to {sup 111}In-LDTPA-L-lysine in both mouse types. Normal mice showed 70% of the radioactivity in the hepatocyte, whereas the homozygous ASGPR-deficient mouse had equal activity in the hepatocyte and the hepatic endothelial cell.

  19. Quantitative proteomics analysis of the liver reveals immune regulation and lipid metabolism dysregulation in a mouse model of depression.

    Science.gov (United States)

    Wu, You; Tang, Jianyong; Zhou, Chanjuan; Zhao, Libo; Chen, Jin; Zeng, Li; Rao, Chenglong; Shi, Haiyang; Liao, Li; Liang, Zihong; Yang, Yongtao; Zhou, Jian; Xie, Peng

    2016-09-15

    Major depressive disorder (MDD) is a highly prevalent and debilitating mental illness with substantial impairments in quality of life and functioning. However, the pathophysiology of major depression remains poorly understood. Combining the brain and body should provide a comprehensive understanding of the etiology of MDD. As the largest internal organ of the human body, the liver has an important function, yet no proteomic study has assessed liver protein expression in a preclinical model of depression. Using the chronic unpredictable mild stress (CUMS) mouse model of depression, differential protein expression between CUMS and control (CON) mice was examined in the liver proteome using isobaric tag for relative and absolute quantitation (iTRAQ) coupled with tandem mass spectrometry. More than 4000 proteins were identified and 66 most significantly differentiated proteins were used for further bioinformatic analysis. According to the ingenuity pathway analysis (IPA), we found that proteins related to the inflammation response, immune regulation, lipid metabolism and NFκB signaling network were altered by CUMS. Moreover, four proteins closely associated with these processes, hemopexin, haptoglobin, cytochrome P450 2A4 (CYP2A4) and bile salt sulfotransferase 1 (SULT2A1), were validated by western blotting. In conclusion, we report, for the first time, the liver protein expression profile in the CUMS mouse model of depression. Our findings provide novel insight (liver-brain axis) into the multifaceted mechanisms of major depressive disorder. PMID:27247144

  20. Overexpression of Hepatitis B Virus-binding Protein, Squamous Cell Carcinoma Antigen 1, Extends Retention of Hepatitis B Virus in Mouse Liver

    Institute of Scientific and Technical Information of China (English)

    Hong-Bin XIA; Xi-Gu CHEN

    2006-01-01

    How receptors mediate the entry of hepatitis B virus (HBV) into the target liver cells is poorly understood. Recently, human squamous cell carcinoma antigen 1 (SCCA1) has been found to mediate binding and internalization of HBV to liver-derived cell lines in vitro. In this report, we investigate if SCCA1 is able to function as an HBV receptor and mediate HBV entry into mouse liver. SCCA1 transgene under the control of Rous sarcoma virus promoter was constructed in a minicircle DNA vector that was delivered to NOD/SCID mouse liver using the hydrodynamic technique. Subsequently, HBV-positive human serum was injected intravenously. We demonstrated that approximately 30% of the mouse liver cells expressed a high level of recombined SCCA1 protein for at least 37 d. The HBV surface antigen was found to persist in mouse liver for up to 17 d. Furthermore, HBV genome also persisted in mouse liver, as determined by polymerase chain reaction, for up to 17 d, and in mouse circulation for 7 d. These results suggest that SCAA1 might serve as an HBV receptor or co-receptor and play an important role in mediating HBV entry into hepatocytes, although its role in human HBV infection remains to be determined.

  1. PD-L1 Blockade Attenuated Sepsis-Induced Liver Injury in a Mouse Cecal Ligation and Puncture Model

    OpenAIRE

    Weimin Zhu; Rui Bao; Xiaohua Fan; Tianzhu Tao; Jiali Zhu; Jiafeng Wang; Jinbao Li; Lulong Bo; Xiaoming Deng

    2013-01-01

    Liver plays a major role in hypermetabolism and produces acute phase proteins during systemic inflammatory response syndrome and it is of vital importance in host defense and bacteria clearance. Our previous studies indicated that programmed death-1 (PD-1) and its ligand programmed death ligand-1 (PD-L1) are crucial modulators of host immune responses during sepsis. Our current study was designed to investigate the role of PD-L1 in sepsis-induced liver injury by a mouse cecal ligation and pun...

  2. Renal Impairment with Sublethal Tubular Cell Injury in a Chronic Liver Disease Mouse Model.

    Directory of Open Access Journals (Sweden)

    Tokiko Ishida

    Full Text Available The pathogenesis of renal impairment in chronic liver diseases (CLDs has been primarily studied in the advanced stages of hepatic injury. Meanwhile, the pathology of renal impairment in the early phase of CLDs is poorly understood, and animal models to elucidate its mechanisms are needed. Thus, we investigated whether an existing mouse model of CLD induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC shows renal impairment in the early phase. Renal injury markers, renal histology (including immunohistochemistry for tubular injury markers and transmission electron microscopy, autophagy, and oxidative stress were studied longitudinally in DDC- and standard diet-fed BALB/c mice. Slight but significant renal dysfunction was evident in DDC-fed mice from the early phase. Meanwhile, histological examinations of the kidneys with routine light microscopy did not show definitive morphological findings, and electron microscopic analyses were required to detect limited injuries such as loss of brush border microvilli and mitochondrial deformities. Limited injuries have been recently designated as sublethal tubular cell injury. As humans with renal impairment, either with or without CLD, often show almost normal tubules, sublethal injury has been of particular interest. In this study, the injuries were associated with mitochondrial aberrations and oxidative stress, a possible mechanism for sublethal injury. Intriguingly, two defense mechanisms were associated with this injury that prevent it from progressing to apparent cell death: autophagy and single-cell extrusion with regeneration. Furthermore, the renal impairment of this model progressed to chronic kidney disease with interstitial fibrosis after long-term DDC feeding. These findings indicated that DDC induces renal impairment with sublethal tubular cell injury from the early phase, leading to chronic kidney disease. Importantly, this CLD mouse model could be useful for studying the

  3. UPTAKE OF [3H]-COLCHICINE INTO BRAIN AND LIVER OF MOUSE, RAT, AND CHICK

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Edward L.; Alberti, Marie Hebert; Flood, James F.

    1980-07-01

    The uptake of [ring A-4-{sup 3}H] colchicine and [ring C-methoxy-{sup 3}H]colchicine has been compared in mice from 1 to 24 hr after administration. Less radioactivity was found in brain after administration of ring-labeled colchicine than after administration of the methoxy-labeled colchicine. Three hr after administration of ring-labeled colchicine, 5% of the label was in liver and about 0.01% of the label was present in brain. Forty percent of the brain radioactivity was bound to tubulin as determined by vinblastine precipitation. After 3 hr, an average of 8% of the radioactivity from methoxy-labeled colchicine was found in the liver and 0.16% in brain. However, less than 5% of the activity in brain was precipitated by vinblastine, and the colchicine equivalent was comparable to that found after administration of the ring-labeled colchicine. The amount of colchicine entering mouse brain after subcutaneous injection is comparable to the minimum behaviorally effective dose when administered to the caudate. The metabolism of [ring C-methoxy-{sup 3}H] and [ring A-{sup 3}H]colchicine was also studied in rats. the general pattern was similar to mice; less radioactivity was found in brain after administration of the ring-labeled alkoloid than after administration of methoxy-labeled colchicine. Again, 40-50% of ring-labeled colchicine was precipitated by vinblastine. A much smaller percentage of the methoxy-labeled drug was precipitated by vinblastine than of the ring A-labeled colchicine. These experiments, together with behavioral experiments [7], support the hypotheses that structural alteration in synapses by recently synthesized proteins which are transported down the axons and dendrites may be an essential process for long-term memory formation.

  4. PiZ mouse liver accumulates polyubiquitin conjugates that associate with catalytically active 26S proteasomes.

    Directory of Open Access Journals (Sweden)

    Christopher J Haddock

    Full Text Available Accumulation of aggregation-prone human alpha 1 antitrypsin mutant Z (AT-Z protein in PiZ mouse liver stimulates features of liver injury typical of human alpha 1 antitrypsin type ZZ deficiency, an autosomal recessive genetic disorder. Ubiquitin-mediated proteolysis by the 26S proteasome counteracts AT-Z accumulation and plays other roles that, when inhibited, could exacerbate the injury. However, it is unknown how the conditions of AT-Z mediated liver injury affect the 26S proteasome. To address this question, we developed a rapid extraction strategy that preserves polyubiquitin conjugates in the presence of catalytically active 26S proteasomes and allows their separation from deposits of insoluble AT-Z. Compared to WT, PiZ extracts had about 4-fold more polyubiquitin conjugates with no apparent change in the levels of the 26S and 20S proteasomes, and unassembled subunits. The polyubiquitin conjugates had similar affinities to ubiquitin-binding domain of Psmd4 and co-purified with similar amounts of catalytically active 26S complexes. These data show that polyubiquitin conjugates were accumulating despite normal recruitment to catalytically active 26S proteasomes that were available in excess, and suggest that a defect at the 26S proteasome other than compromised binding to polyubiquitin chain or peptidase activity played a role in the accumulation. In support of this idea, PiZ extracts were characterized by high molecular weight, reduction-sensitive forms of selected subunits, including ATPase subunits that unfold substrates and regulate access to proteolytic core. Older WT mice acquired similar alterations, implying that they result from common aspects of oxidative stress. The changes were most pronounced on unassembled subunits, but some subunits were altered even in the 26S proteasomes co-purified with polyubiquitin conjugates. Thus, AT-Z protein aggregates indirectly impair degradation of polyubiquitinated proteins at the level of the 26S

  5. Proteome-wide identification and quantification of S-glutathionylation targets in mouse liver.

    Science.gov (United States)

    McGarry, David J; Chen, Wenzhang; Chakravarty, Probir; Lamont, Douglas L; Wolf, C Roland; Henderson, Colin J

    2015-07-01

    Protein S-glutathionylation is a reversible post-translational modification regulating sulfhydryl homeostasis. However, little is known about the proteins and pathways regulated by S-glutathionylation in whole organisms and current approaches lack the sensitivity to examine this modification under basal conditions. We now report the quantification and identification of S-glutathionylated proteins from animal tissue, using a highly sensitive methodology combining high-accuracy proteomics with tandem mass tagging to provide precise, extensive coverage of S-glutathionylated targets in mouse liver. Critically, we show significant enrichment of S-glutathionylated mitochondrial and Krebs cycle proteins, identifying that S-glutathionylation is heavily involved in energy metabolism processes in vivo. Furthermore, using mice nulled for GST Pi (GSTP) we address the potential for S-glutathionylation to be mediated enzymatically. The data demonstrate the impact of S-glutathionylation in cellular homeostasis, particularly in relation to energy regulation and is of significant interest for those wishing to examine S-glutathionylation in an animal model. PMID:25891661

  6. Trihalomethanes in liver pathology: Mitochondrial dysfunction and oxidative stress in the mouse.

    Science.gov (United States)

    Faustino-Rocha, Ana I; Rodrigues, D; da Costa, R Gil; Diniz, C; Aragão, S; Talhada, D; Botelho, M; Colaço, A; Pires, M J; Peixoto, F; Oliveira, P A

    2016-08-01

    Trihalomethanes (THMs) are disinfection byproducts found in chlorinated water, and are associated with several different kinds of cancer in human populations and experimental animal models. Metabolism of THMs proceeds through enzymes such as GSTT1 and CYP2E1 and gives rise to reactive intermediates, which form the basis for their toxic activities. The aim of this study was to assess the mitochondrial dysfunction caused by THMs at low levels, and the resulting hepatic histological and biochemical changes in the mouse. Male ICR mice were administered with two THMs: dibromochloromethane (DBCM) and bromodichloromethane (BDCM); once daily, by gavage, to a total of four administrations. Animals were sacrificed four weeks after DBCM and BDCM administrations. Blood biochemistry was performed for alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total bilirubin (TB), albumin (Alb), total protein (TP), creatinine, and urea. Animals exposed to DBCM and BDCM showed elevated ALT and TB levels (p GST)) in hepatic tissues (p < 0.05). These results add detail to the current understanding of the mechanisms underlying THM-induced toxicity, supporting the role of mitochondrial dysfunction and oxidative stress in liver toxicity caused by DBCM and BDCM. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1009-1016, 2016. PMID:25640707

  7. Binding of erythropoietin to CFU-E derived from fetal mouse liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Fukamachi, H.; Saito, T.; Tojo, A.; Kitamura, T.; Urabe, A.; Takaku, F.

    1987-09-01

    The binding of recombinant erythropoietin (EPO) to fetal mouse liver cells (FMLC) was investigated using a radioiodinated derivative which retained full biological activity. FMLC were fractionated using a preformed Percoll density gradient. Using the fractionated FMLC, the ability to form CFU-E colonies in a semisolid culture was examined, and the binding of (/sup 125/I)EPO was measured. The highest specific binding of (/sup 125/I)EPO was observed in a fraction with a density between 1.062 and 1.076 g/ml. The same fraction showed the highest ability to form CFU-E-derived colonies. After suspension culture of FMLC with EPO for 2 days, differentiated erythroid cells with higher density markedly increased. The specific binding of (/sup 125/I)EPO to these cells almost disappeared with differentiation. Scatchard analysis with cells of the CFU-E-enriched fraction showed a nonlinear curve, suggesting the existence of two classes of binding sites. One binding site was high-affinity (Kd1 = 0.41 nM), and the other low-affinity (Kd2 = 3.13 nM). These results suggest that the expression of EPO receptors on the erythroid cells is highest in CFU-E.

  8. MEK kinase 1 activity is required for definitive erythropoiesis in the mouse fetal liver

    DEFF Research Database (Denmark)

    Bonnesen, Barbara; Ørskov, Cathrine; Rasmussen, Susanne;

    2005-01-01

    KD) embryos have normal morphology but are anemic due to failure of definitive erythropoiesis. When Mekk1(DeltaKD) fetal liver cells were transferred to lethally irradiated wild-type hosts, mature red blood cells were generated from the mutant cells, suggesting that MEKK1 functions in a non-cell......Mitogen-activated protein kinase/extracellular signal to regulated kinase (MEK) kinase 1 (MEKK1) is a c-Jun N-terminal kinase (JNK) activating kinase known to be implicated in proinflammatory responses and cell motility. Using mice deficient for MEKK1 kinase activity (Mekk1(DeltaKD)) we show a role...... for MEKK1 in definitive mouse erythropoiesis. Although Mekk1(DeltaKD) mice are alive and fertile on a 129 x C57/BL6 background, the frequency of Mekk1(DeltaKD) embryos that develop past embryonic day (E) 14.5 is dramatically reduced when backcrossed into the C57/BL6 background. At E13.5, Mekk1(Delta...

  9. Trihalomethanes in liver pathology: Mitochondrial dysfunction and oxidative stress in the mouse.

    Science.gov (United States)

    Faustino-Rocha, Ana I; Rodrigues, D; da Costa, R Gil; Diniz, C; Aragão, S; Talhada, D; Botelho, M; Colaço, A; Pires, M J; Peixoto, F; Oliveira, P A

    2016-08-01

    Trihalomethanes (THMs) are disinfection byproducts found in chlorinated water, and are associated with several different kinds of cancer in human populations and experimental animal models. Metabolism of THMs proceeds through enzymes such as GSTT1 and CYP2E1 and gives rise to reactive intermediates, which form the basis for their toxic activities. The aim of this study was to assess the mitochondrial dysfunction caused by THMs at low levels, and the resulting hepatic histological and biochemical changes in the mouse. Male ICR mice were administered with two THMs: dibromochloromethane (DBCM) and bromodichloromethane (BDCM); once daily, by gavage, to a total of four administrations. Animals were sacrificed four weeks after DBCM and BDCM administrations. Blood biochemistry was performed for alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total bilirubin (TB), albumin (Alb), total protein (TP), creatinine, and urea. Animals exposed to DBCM and BDCM showed elevated ALT and TB levels (p stress (glutathione S-transferase (GST)) in hepatic tissues (p stress in liver toxicity caused by DBCM and BDCM. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1009-1016, 2016.

  10. Butachlor, a suspected carcinogen, alters growth and transformation characteristics of mouse liver cells.

    Science.gov (United States)

    Ou, Y H; Chung, P C; Chang, Y C; Ngo, F Q; Hsu, K Y; Chen, F D

    2000-12-01

    Butachlor is a widely used herbicide in Asia and South America. Previous investigations have indicated that it is a suspected carcinogen. To understand more about the biological effects of butachlor on cultured cells and the mechanism(s) of its carcinogenicity, we studied the alteration of the growth characteristics that was induced by butachlor in normal mouse liver cells (BNL CL2). This study demonstrates that butachlor decreases the population-doubling time of BNL CL2 cells, suggesting that it stimulates cell proliferation. To support this finding, a thymidine incorporation assay was conducted and a similar result that butachlor stimulates cell proliferation was elucidated. In addition, we show that butachlor increases the saturation density of the BNL CL2 cells. When combined with the tumor initiator N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), butachlor transforms cells efficiently, as demonstrated by loss of contact inhibition. These findings indicate that butachlor alters the growth characteristics of BNL CL2 cells and suggest that butachlor may induce malignant transformation through stimulation of cell proliferation, alteration of cell cycle regulation, and suppression of cell density-dependent inhibition of proliferation.

  11. Dichlorodiphenyltrichloroethane technical mixture regulates cell cycle and apoptosis genes through the activation of CAR and ERα in mouse livers

    Energy Technology Data Exchange (ETDEWEB)

    Kazantseva, Yuliya A.; Yarushkin, Andrei A. [Institute of Molecular Biology and Biophysics SB RAMS, Novosibirsk, Timakova str., 2, 630117 (Russian Federation); Pustylnyak, Vladimir O., E-mail: pustylnyak@ngs.ru [Institute of Molecular Biology and Biophysics SB RAMS, Novosibirsk, Timakova str., 2, 630117 (Russian Federation); Novosibirsk State University, Novosibirsk, Pirogova str., 2, 630090 (Russian Federation)

    2013-09-01

    Dichlorodiphenyltrichloroethane (DDT) is a widely used organochlorine pesticide and a xenoestrogen that promotes rodent hepatomegaly and tumours. A recent study has shown significant correlation between DDT serum concentration and liver cancer incidence in humans, but the underlying mechanisms remain elusive. We hypothesised that a mixture of DDT isomers could exert effects on the liver through pathways instead of classical ERs. The acute effects of a DDT mixture containing the two major isomers p,p′-DDT (85%) and o,p′-DDT (15%) on CAR and ERα receptors and their cell cycle and apoptosis target genes were studied in mouse livers. ChIP results demonstrated increased CAR and ERα recruitment to their specific target gene binding sites in response to the DDT mixture. The results of real-time RT-PCR were consistent with the ChIP data and demonstrated that the DDT was able to activate both CAR and ERα in mouse livers, leading to target gene transcriptional increases including Cyp2b10, Gadd45β, cMyc, Mdm2, Ccnd1, cFos and E2f1. Western blot analysis demonstrated increases in cell cycle progression proteins cMyc, Cyclin D1, CDK4 and E2f1 and anti-apoptosis proteins Mdm2 and Gadd45β. In addition, DDT exposure led to Rb phosphorylation. Increases in cell cycle progression and anti-apoptosis proteins were accompanied by a decrease in p53 content and its transcriptional activity. However, the DDT was unable to stimulate the β-catenin signalling pathway, which can play an important role in hepatocyte proliferation. Thus, our results indicate that DDT treatment may result in cell cycle progression and apoptosis inhibition through CAR- and ERα-mediated gene activation in mouse livers. These findings suggest that the proliferative and anti-apoptotic conditions induced by CAR and ERα activation may be important contributors to the early stages of hepatocarcinogenesis as produced by DDT in rodent livers. - Highlights: • DDT activated both CAR and ERα and their cell

  12. Therapeutic efficacy of tumor-targeting Salmonella typhimurium A1-R on human colorectal cancer liver metastasis in orthotopic nude-mouse models.

    Science.gov (United States)

    Murakami, Takashi; Hiroshima, Yukihiko; Zhao, Ming; Zhang, Yong; Chishima, Takashi; Tanaka, Kuniya; Bouvet, Michael; Endo, Itaru; Hoffman, Robert M

    2015-10-13

    Liver metastasis is the most frequent cause of death from colon and other cancers. Generally, liver metastasis is recalcitrant to treatment. The aim of this study is to determine the efficacy of tumor-targeting Salmonella typhimurium A1-R on liver metastasis in orthotopic mouse models. HT-29 human colon cancer cells expressing red fluorescent protein (RFP) were used in the present study. S. typhimurium A1-R infected HT-29 cells in a time-dependent manner, inhibiting cancer-cell proliferation in vitro. S. typhimurium A1-R promoted tumor necrosis and inhibited tumor growth in a subcutaneous tumor mouse model of HT-29-RFP. In orthotopic mouse models, S. typhimurium A1-R targeted liver metastases and significantly reduced their growth. The results of this study demonstrate the future clinical potential of S. typhimurium A1-R targeting of liver metastasis.

  13. Progressive developmental restriction, acquisition of left-right identity and cell growth behavior during lobe formation in mouse liver development.

    Science.gov (United States)

    Weiss, Mary C; Le Garrec, Jean-Francois; Coqueran, Sabrina; Strick-Marchand, Helene; Buckingham, Margaret

    2016-04-01

    To identify cell-based decisions implicated in morphogenesis of the mammalian liver, we performed clonal analysis of hepatocytes/hepatoblasts in mouse liver development, using a knock-in allele of Hnf4a/laacZ This transgene randomly undergoes a low frequency of recombination that generates a functional lacZ gene that produces β-galactosidase in tissues in which Hnf4a is expressed. Two types of β-galactosidase-positive clones were found. Most have undergone three to eight cell divisions and result from independent events (Luria-Delbrück fluctuation test); we calculate that they arose between E8.5 and E13.5. A second class was mega-clones derived from early endoderm progenitors, generating many descendants. Some originated from multi-potential founder cells, with labeled cells in the liver, pancreas and/or intestine. A few mega-clones populate only one side of the liver, indicating hepatic cell chirality. The patterns of labeled cells indicate cohesive and often oriented growth, notably in broad radial stripes, potentially implicated in the formation of liver lobes. This retrospective clonal analysis gives novel insights into clonal origins, cell behavior of progenitors and distinct properties of endoderm cells that underlie the formation and morphogenesis of the liver. PMID:26893346

  14. Progressive developmental restriction, acquisition of left-right identity and cell growth behavior during lobe formation in mouse liver development.

    Science.gov (United States)

    Weiss, Mary C; Le Garrec, Jean-Francois; Coqueran, Sabrina; Strick-Marchand, Helene; Buckingham, Margaret

    2016-04-01

    To identify cell-based decisions implicated in morphogenesis of the mammalian liver, we performed clonal analysis of hepatocytes/hepatoblasts in mouse liver development, using a knock-in allele of Hnf4a/laacZ This transgene randomly undergoes a low frequency of recombination that generates a functional lacZ gene that produces β-galactosidase in tissues in which Hnf4a is expressed. Two types of β-galactosidase-positive clones were found. Most have undergone three to eight cell divisions and result from independent events (Luria-Delbrück fluctuation test); we calculate that they arose between E8.5 and E13.5. A second class was mega-clones derived from early endoderm progenitors, generating many descendants. Some originated from multi-potential founder cells, with labeled cells in the liver, pancreas and/or intestine. A few mega-clones populate only one side of the liver, indicating hepatic cell chirality. The patterns of labeled cells indicate cohesive and often oriented growth, notably in broad radial stripes, potentially implicated in the formation of liver lobes. This retrospective clonal analysis gives novel insights into clonal origins, cell behavior of progenitors and distinct properties of endoderm cells that underlie the formation and morphogenesis of the liver.

  15. Differential migration of passenger leukocytes and rapid deletion of naive alloreactive CD8 T cells after mouse liver transplantation.

    Science.gov (United States)

    Tay, Szun S; Lu, Bo; Sierro, Fred; Benseler, Volker; McGuffog, Claire M; Bishop, G Alex; Cowan, Peter J; McCaughan, Geoffrey W; Dwyer, Karen M; Bowen, David G; Bertolino, Patrick

    2013-11-01

    Donor passenger leukocytes (PLs) from transplanted livers migrate to recipient lymphoid tissues, where they are thought to induce the deletion of donor-specific T cells and tolerance. Difficulties in tracking alloreactive T cells and PLs in rats and in performing this complex surgery in mice have limited progress in identifying the contribution of PL subsets and sites and the kinetics of T cell deletion. Here we developed a mouse liver transplant model in which PLs, recipient cells, and a reporter population of transgenic CD8 T cells specific for the graft could be easily distinguished and quantified in allografts and recipient organs by flow cytometry. All PL subsets circulated rapidly via the blood as soon as 1.5 hours after transplantation. By 24 hours, PLs were distributed differently in the lymph nodes and spleen, whereas donor natural killer and natural killer T cells remained in the liver and blood. Reporter T cells were activated in both liver and lymphoid tissues, but their numbers dramatically decreased within the first 48 hours. These results provide the first unequivocal demonstration of the differential recirculation of liver PL subsets after transplantation, and show that alloreactive CD8 T cells are deleted more rapidly than initially reported. This model will be useful for dissecting early events leading to the spontaneous acceptance of liver transplants.

  16. PD-L1 Blockade Attenuated Sepsis-Induced Liver Injury in a Mouse Cecal Ligation and Puncture Model

    Directory of Open Access Journals (Sweden)

    Weimin Zhu

    2013-01-01

    Full Text Available Liver plays a major role in hypermetabolism and produces acute phase proteins during systemic inflammatory response syndrome and it is of vital importance in host defense and bacteria clearance. Our previous studies indicated that programmed death-1 (PD-1 and its ligand programmed death ligand-1 (PD-L1 are crucial modulators of host immune responses during sepsis. Our current study was designed to investigate the role of PD-L1 in sepsis-induced liver injury by a mouse cecal ligation and puncture (CLP model. Our results indicated that there was a significant increase of PD-L1 expression in liver after CLP challenge compared to sham-operated controls, in terms of levels of mRNA transcription and immunohistochemistry. Anti-PD-L1 antibody significantly alleviated the morphology of liver injury in CLP mice. Anti-PD-L1 antibody administration decreased ALT and AST release in CLP mice, decreased the levels of tumor necrosis factor (TNF-α, interleukin (IL-6, and IL-10 mRNA in liver after sepsis challenge. Thus, anti-PD-L1 antibody might have a therapeutic potential in attenuating liver injury in sepsis.

  17. Completion of hepatitis C virus replication cycle in heterokaryons excludes dominant restrictions in human non-liver and mouse liver cell lines.

    Directory of Open Access Journals (Sweden)

    Anne Frentzen

    2011-04-01

    Full Text Available Hepatitis C virus (HCV is hepatotropic and only infects humans and chimpanzees. Consequently, an immunocompetent small animal model is lacking. The restricted tropism of HCV likely reflects specific host factor requirements. We investigated if dominant restriction factors expressed in non-liver or non-human cell lines inhibit HCV propagation thus rendering these cells non-permissive. To this end we explored if HCV completes its replication cycle in heterokaryons between human liver cell lines and non-permissive cell lines from human non-liver or mouse liver origin. Despite functional viral pattern recognition pathways and responsiveness to interferon, virus production was observed in all fused cells and was only ablated when cells were treated with exogenous interferon. These results exclude that constitutive or virus-induced expression of dominant restriction factors prevents propagation of HCV in these cell types, which has important implications for HCV tissue and species tropism. In turn, these data strongly advocate transgenic approaches of crucial human HCV cofactors to establish an immunocompetent small animal model.

  18. Silymarin attenuated hepatic steatosis through regulation of lipid metabolism and oxidative stress in a mouse model of nonalcoholic fatty liver disease (NAFLD)

    OpenAIRE

    Ni, Xunjun; Wang, Haiyan

    2016-01-01

    Silymarin, which derived from the milk thistle plant (silybum marianum), has been used for centuries as a natural remedy for diseases of the liver and biliary tract. Considering the therapeutic potential to liver disease, we tested efficacy of silymarin on hepatic steatosis with a high fat diet (HFD)-induced mouse model of non-alcoholic fatty liver disease (NAFLD), and investigated possible effects on lipid metabolic pathways. In our study, silymarin could attenuate the hepatic steatosis, whi...

  19. Gene signatures derived from a c-MET-driven liver cancer mouse model predict survival of patients with hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Irena Ivanovska

    Full Text Available Biomarkers derived from gene expression profiling data may have a high false-positive rate and must be rigorously validated using independent clinical data sets, which are not always available. Although animal model systems could provide alternative data sets to formulate hypotheses and limit the number of signatures to be tested in clinical samples, the predictive power of such an approach is not yet proven. The present study aims to analyze the molecular signatures of liver cancer in a c-MET-transgenic mouse model and investigate its prognostic relevance to human hepatocellular carcinoma (HCC. Tissue samples were obtained from tumor (TU, adjacent non-tumor (AN and distant normal (DN liver in Tet-operator regulated (TRE human c-MET transgenic mice (n = 21 as well as from a Chinese cohort of 272 HBV- and 9 HCV-associated HCC patients. Whole genome microarray expression profiling was conducted in Affymetrix gene expression chips, and prognostic significances of gene expression signatures were evaluated across the two species. Our data revealed parallels between mouse and human liver tumors, including down-regulation of metabolic pathways and up-regulation of cell cycle processes. The mouse tumors were most similar to a subset of patient samples characterized by activation of the Wnt pathway, but distinctive in the p53 pathway signals. Of potential clinical utility, we identified a set of genes that were down regulated in both mouse tumors and human HCC having significant predictive power on overall and disease-free survival, which were highly enriched for metabolic functions. In conclusions, this study provides evidence that a disease model can serve as a possible platform for generating hypotheses to be tested in human tissues and highlights an efficient method for generating biomarker signatures before extensive clinical trials have been initiated.

  20. Amelioration of radiation induced decrease in activity of catalase and superoxide dismutase in mouse liver by Punica granatum

    International Nuclear Information System (INIS)

    Ionizing radiation generates reactive oxygen species (ROS) in irradiated tissue. Cells of liver have their own defence system, the antioxidant system to deactivate ROS. Antioxidant system includes enzymatic and non-enzymatic components. Liver is rich in endogenous antioxidants and related enzymes. Catalase and Superoxide dismutase (SOD) are powerful antioxidant enzymes. In the present study Punica granatum fruit rind Ethanol extract (PGFRE) was tested against 60Co gamma radiation induced alteration in Swiss albino mouse. Healthy adult (25±2) Swiss albino mouse were selected and divided into four groups. The first group was sham irradiated. The second group was irradiated with 8 Gy 60Co gamma radiation only and served as control. The third group was administered with Ethanol extract of Punica granatum fruit rind one hour before irradiation at the dose rate of 10 mg/kg body weight orally. Animals were exposed to 8 Gy 60Co gamma radiation. Fourth group was administered with Ethanol extract of Punica granatum fruit rind at the dose rate of 10 mg/kg body weight. Mice were sacrificed at various post irradiation intervals and liver was removed, weighed and analysed biochemically for Catalase and SOD activity. Catalase and SOD activity decreased up till 7th post irradiation day in 8 Gy irradiated group than normal. In PGFRE pretreated irradiated group catalase and SOD activity were higher than the corresponding control group at all the intervals. These results indicate that PGFRE extract protects damage to the catalase and SOD activity in liver of Swiss albino mouse against lethal dose of gamma radiation. (author)

  1. Hepatic Glucagon Action Is Essential for Exercise-Induced Reversal of Mouse Fatty Liver

    OpenAIRE

    Berglund, Eric D.; Lustig, Daniel G.; Baheza, Richard A.; Hasenour, Clinton M.; Lee-Young, Robert S.; Donahue, E. Patrick; Lynes, Sara E.; Swift, Larry L.; Charron, Maureen J; Damon, Bruce M.; Wasserman, David H

    2011-01-01

    OBJECTIVE Exercise is an effective intervention to treat fatty liver. However, the mechanism(s) that underlie exercise-induced reductions in fatty liver are unclear. Here we tested the hypothesis that exercise requires hepatic glucagon action to reduce fatty liver. RESEARCH DESIGN AND METHODS C57BL/6 mice were fed high-fat diet (HFD) and assessed using magnetic resonance, biochemical, and histological techniques to establish a timeline for fatty liver development over 20 weeks. Glucagon recep...

  2. The mouse liver displays daily rhythms in the metabolism of phospholipids and in the activity of lipid synthesizing enzymes.

    Science.gov (United States)

    Gorné, Lucas D; Acosta-Rodríguez, Victoria A; Pasquaré, Susana J; Salvador, Gabriela A; Giusto, Norma M; Guido, Mario Eduardo

    2015-02-01

    The circadian system involves central and peripheral oscillators regulating temporally biochemical processes including lipid metabolism; their disruption leads to severe metabolic diseases (obesity, diabetes, etc). Here, we investigated the temporal regulation of glycerophospholipid (GPL) synthesis in mouse liver, a well-known peripheral oscillator. Mice were synchronized to a 12:12 h light-dark (LD) cycle and then released to constant darkness with food ad libitum. Livers collected at different times exhibited a daily rhythmicity in some individual GPL content with highest levels during the subjective day. The activity of GPL-synthesizing/remodeling enzymes: phosphatidate phosphohydrolase 1 (PAP-1/lipin) and lysophospholipid acyltransferases (LPLATs) also displayed significant variations, with higher levels during the subjective day and at dusk. We evaluated the temporal regulation of expression and activity of phosphatidylcholine (PC) synthesizing enzymes. PC is mainly synthesized through the Kennedy pathway with Choline Kinase (ChoK) as a key regulatory enzyme or through the phosphatidylethanolamine (PE) N-methyltransferase (PEMT) pathway. The PC/PE content ratio exhibited a daily variation with lowest levels at night, while ChoKα and PEMT mRNA expression displayed maximal levels at nocturnal phases. Our results demonstrate that mouse liver GPL metabolism oscillates rhythmically with a precise temporal control in the expression and/or activity of specific enzymes.

  3. Chinese Herbal Preparation Xuebijing Potently Inhibits Inflammasome Activation in Hepatocytes and Ameliorates Mouse Liver Ischemia-Reperfusion Injury.

    Directory of Open Access Journals (Sweden)

    Xiqiang Liu

    Full Text Available The Chinese herb preparation Xuebijing injection (XBJ has been widely used in the management of various septic disorders or inflammation-related conditions, however the molecular mechanism of its anti-inflammatory effect remains largely elusive. In the current study, we found that XBJ treatment potently ameliorated mouse hepatic ischemia-reperfusion (IR injury, manifested as decreased liver function tests (LDH, ALT, AST, improved inflammation and less hepatocyte apoptosis. Notably, XBJ markedly inhibited inflammasome activation and IL-1 production in mouse livers subjected to IRI, even in the absence of Kupffer cells, suggesting Kupffer cells are not necessary for hepatic inflammasome activation upon Redox-induced sterile inflammation. This finding led us to investigate the role of XBJ on hepatocyte apoptosis and inflammasome activation using an in vitro hydrogen peroxide (H2O2-triggered hepatocyte injury model. Our data clearly demonstrated that XBJ potently inhibited apoptosis, as well as caspase-1 cleavage and IL-1β production in a time- and dose-dependent manner in isolated hepatocytes, suggesting that in addition to its known modulatory effect on NF-κB-dependent inflammatory gene expression, it also has a direct impact on hepatocyte inflammasome activation. The current study not only deepens our understanding of how XBJ ameliorates inflammation and apoptosis, but also has immediate practical significance in many clinical situations such as partial hepatectomy, liver transplantation, etc.

  4. Transcriptomic responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD in liver: Comparison of rat and mouse

    Directory of Open Access Journals (Sweden)

    Pohjanvirta Raimo

    2008-09-01

    Full Text Available Abstract Background Mouse and rat models are mainstays in pharmacology, toxicology and drug development – but differences between strains and between species complicate data interpretation and application to human health. Dioxin-like polyhalogenated aromatic hydrocarbons represent a major class of environmentally and economically relevant toxicants. In mammals dioxin exposure leads to a broad spectrum of adverse affects, including hepatotoxicity of varying severity. Several studies have shown that dioxins extensively alter hepatic mRNA levels. Surprisingly, though, analysis of a limited portion of the transcriptome revealed that rat and mouse responses diverge greatly (Boverhof et al. Toxicol Sci 94:398–416, 2006. Results We employed oligonucleotide arrays to compare the response of 8,125 rat and mouse orthologs. We confirmed that there is limited inter-species overlap in dioxin-responsive genes. Rat-specific and mouse-specific genes are enriched for specific functional groups which differ between species, conceivably accounting for species-specificities in liver histopathology. While no evidence for the involvement of copy-number variation was found, extensive inter-species variation in the transcriptional-regulatory network was identified; Nr2f1 and Fos emerged as candidates to explain species-specific and species-independent responses, respectively. Conclusion Our results suggest that a small core of genes is responsible for mediating the similar features of dioxin hepatotoxicity in rats and mice but non-overlapping pathways are simultaneously at play to result in distinctive histopathological outcomes. The extreme divergence between mouse and rat transcriptomic responses appears to reflect divergent transcriptional-regulatory networks. Taken together, these data suggest that both rat and mouse models should be used to screen the acute hepatotoxic effects of drugs and toxic compounds.

  5. Model steatogenic compounds (amiodarone, valproic acid, and tetracycline alter lipid metabolism by different mechanisms in mouse liver slices.

    Directory of Open Access Journals (Sweden)

    Ewa Szalowska

    Full Text Available Although drug induced steatosis represents a mild type of hepatotoxicity it can progress into more severe non-alcoholic steatohepatitis. Current models used for safety assessment in drug development and chemical risk assessment do not accurately predict steatosis in humans. Therefore, new models need to be developed to screen compounds for steatogenic properties. We have studied the usefulness of mouse precision-cut liver slices (PCLS as an alternative to animal testing to gain more insight into the mechanisms involved in the steatogenesis. To this end, PCLS were incubated 24 h with the model steatogenic compounds: amiodarone (AMI, valproic acid (VA, and tetracycline (TET. Transcriptome analysis using DNA microarrays was used to identify genes and processes affected by these compounds. AMI and VA upregulated lipid metabolism, whereas processes associated with extracellular matrix remodelling and inflammation were downregulated. TET downregulated mitochondrial functions, lipid metabolism, and fibrosis. Furthermore, on the basis of the transcriptomics data it was hypothesized that all three compounds affect peroxisome proliferator activated-receptor (PPAR signaling. Application of PPAR reporter assays classified AMI and VA as PPARγ and triple PPARα/(β/δ/γ agonist, respectively, whereas TET had no effect on any of the PPARs. Some of the differentially expressed genes were considered as potential candidate biomarkers to identify PPAR agonists (i.e. AMI and VA or compounds impairing mitochondrial functions (i.e. TET. Finally, comparison of our findings with publicly available transcriptomics data showed that a number of processes altered in the mouse PCLS was also affected in mouse livers and human primary hepatocytes exposed to known PPAR agonists. Thus mouse PCLS are a valuable model to identify early mechanisms of action of compounds altering lipid metabolism.

  6. Deregulation of energy metabolism promotes antifibrotic effects in human hepatic stellate cells and prevents liver fibrosis in a mouse model.

    Science.gov (United States)

    Karthikeyan, Swathi; Potter, James J; Geschwind, Jean-Francois; Sur, Surojit; Hamilton, James P; Vogelstein, Bert; Kinzler, Kenneth W; Mezey, Esteban; Ganapathy-Kanniappan, Shanmugasundaram

    2016-01-15

    Liver fibrosis and cirrhosis result from uncontrolled secretion and accumulation of extracellular matrix (ECM) proteins by hepatic stellate cells (HSCs) that are activated by liver injury and inflammation. Despite the progress in understanding the biology liver fibrogenesis and the identification of potential targets for treating fibrosis, development of an effective therapy remains elusive. Since an uninterrupted supply of intracellular energy is critical for the activated-HSCs to maintain constant synthesis and secretion of ECM, we hypothesized that interfering with energy metabolism could affect ECM secretion. Here we report that a sublethal dose of the energy blocker, 3-bromopyruvate (3-BrPA) facilitates phenotypic alteration of activated LX-2 (a human hepatic stellate cell line), into a less-active form. This treatment-dependent reversal of activated-LX2 cells was evidenced by a reduction in α-smooth muscle actin (α-SMA) and collagen secretion, and an increase in activity of matrix metalloproteases. Mechanistically, 3-BrPA-dependent antifibrotic effects involved down-regulation of the mitochondrial metabolic enzyme, ATP5E, and up-regulation of glycolysis, as evident by elevated levels of lactate dehydrogenase, lactate production and its transporter, MCT4. Finally, the antifibrotic effects of 3-BrPA were validated in vivo in a mouse model of carbon tetrachloride-induced liver fibrosis. Results from histopathology & histochemical staining for collagen and α-SMA substantiated that 3-BrPA promotes antifibrotic effects in vivo. Taken together, our data indicate that sublethal, metronomic treatment with 3-BrPA blocks the progression of liver fibrosis suggesting its potential as a novel therapeutic for treating liver fibrosis. PMID:26525850

  7. Deregulation of energy metabolism promotes antifibrotic effects in human hepatic stellate cells and prevents liver fibrosis in a mouse model.

    Science.gov (United States)

    Karthikeyan, Swathi; Potter, James J; Geschwind, Jean-Francois; Sur, Surojit; Hamilton, James P; Vogelstein, Bert; Kinzler, Kenneth W; Mezey, Esteban; Ganapathy-Kanniappan, Shanmugasundaram

    2016-01-15

    Liver fibrosis and cirrhosis result from uncontrolled secretion and accumulation of extracellular matrix (ECM) proteins by hepatic stellate cells (HSCs) that are activated by liver injury and inflammation. Despite the progress in understanding the biology liver fibrogenesis and the identification of potential targets for treating fibrosis, development of an effective therapy remains elusive. Since an uninterrupted supply of intracellular energy is critical for the activated-HSCs to maintain constant synthesis and secretion of ECM, we hypothesized that interfering with energy metabolism could affect ECM secretion. Here we report that a sublethal dose of the energy blocker, 3-bromopyruvate (3-BrPA) facilitates phenotypic alteration of activated LX-2 (a human hepatic stellate cell line), into a less-active form. This treatment-dependent reversal of activated-LX2 cells was evidenced by a reduction in α-smooth muscle actin (α-SMA) and collagen secretion, and an increase in activity of matrix metalloproteases. Mechanistically, 3-BrPA-dependent antifibrotic effects involved down-regulation of the mitochondrial metabolic enzyme, ATP5E, and up-regulation of glycolysis, as evident by elevated levels of lactate dehydrogenase, lactate production and its transporter, MCT4. Finally, the antifibrotic effects of 3-BrPA were validated in vivo in a mouse model of carbon tetrachloride-induced liver fibrosis. Results from histopathology & histochemical staining for collagen and α-SMA substantiated that 3-BrPA promotes antifibrotic effects in vivo. Taken together, our data indicate that sublethal, metronomic treatment with 3-BrPA blocks the progression of liver fibrosis suggesting its potential as a novel therapeutic for treating liver fibrosis.

  8. The fetal mouse is a sensitive genotoxicity model that exposes lentiviral-associated mutagenesis resulting in liver oncogenesis.

    Science.gov (United States)

    Nowrouzi, Ali; Cheung, Wing T; Li, Tingting; Zhang, Xuegong; Arens, Anne; Paruzynski, Anna; Waddington, Simon N; Osejindu, Emma; Reja, Safia; von Kalle, Christof; Wang, Yoahe; Al-Allaf, Faisal; Gregory, Lisa; Themis, Matthew; Holder, Maxine; Dighe, Niraja; Ruthe, Alaine; Buckley, Suzanne Mk; Bigger, Brian; Montini, Eugenio; Thrasher, Adrian J; Andrews, Robert; Roberts, Terry P; Newbold, Robert F; Coutelle, Charles; Schmidt, Manfred; Themis, Mike

    2013-02-01

    Genotoxicity models are extremely important to assess retroviral vector biosafety before gene therapy. We have developed an in utero model that demonstrates that hepatocellular carcinoma (HCC) development is restricted to mice receiving nonprimate (np) lentiviral vectors (LV) and does not occur when a primate (p) LV is used regardless of woodchuck post-translation regulatory element (WPRE) mutations to prevent truncated X gene expression. Analysis of 839 npLV and 244 pLV integrations in the liver genomes of vector-treated mice revealed clear differences between vector insertions in gene dense regions and highly expressed genes, suggestive of vector preference for insertion or clonal outgrowth. In npLV-associated clonal tumors, 56% of insertions occurred in oncogenes or genes associated with oncogenesis or tumor suppression and surprisingly, most genes examined (11/12) had reduced expression as compared with control livers and tumors. Two examples of vector-inserted genes were the Park 7 oncogene and Uvrag tumor suppressor gene. Both these genes and their known interactive partners had differential expression profiles. Interactive partners were assigned to networks specific to liver disease and HCC via ingenuity pathway analysis. The fetal mouse model not only exposes the genotoxic potential of vectors intended for gene therapy but can also reveal genes associated with liver oncogenesis. PMID:23299800

  9. Teratogenic study of phenobarbital and levamisole on mouse fetus liver tissue using biospectroscopy.

    Science.gov (United States)

    Ashtarinezhad, Azadeh; Panahyab, Ataollah; Shaterzadeh-Oskouei, Shahrzad; Khoshniat, Hessam; Mohamadzadehasl, Baharak; Shirazi, Farshad H

    2016-09-01

    Biospectroscopic investigations have attracted attention of both the clinicians and basic sciences researchers in recent years. Scientists are discovering new areas for FTIR biospectroscopy applications in medicine. The aim of this study was to measure the possibility of FTIR-MSP application for the recognition and detection of fetus abnormalities after exposure of pregnant mouse to phenobarbital (PB) and levamisole (LEV) alone or in combination. PB is one of the most widely used antiepileptic drugs (AEDs), with sedative and hypnotic effects. When used by pregnant women, it is known to be a teratogenic agent. LEV is an antihelminthic drug with some applications in immune-deficiency as well as colon cancer therapy. Four groups of ten pregnant mice were selected for the experiments as follows: one control group received only standard diet, one group was injected with 120mg/kg of BP, one group was injected with 10mg/kg of LEV, and the last group was treated simultaneously with both BP and LEV at the above mentioned doses. Drugs administration was performed on gestation day 9 and fetuses were dissected on pregnancy day 15. Each dissected fetus was fixed, dehydrated and embedded in paraffin. Sections of liver (10μm) were prepared from control and treated groups by microtome and deparaffinized with xylene. The spectra were taken by FTIR-MSP in the region of 4000-400cm(-1). All the spectra were normalized based on amide II band (1545cm(-1)) after baseline correction of the entire spectrum, followed by classification using PCA, ANN and SVM. Both morphological and spectral changes were shown in the treated fetuses as compared to the fetuses in the control group. While cleft palate and C-R elongation were seen in PB injected fetuses, developmental retardation was mostly seen in the LEV injected group. Biospectroscopy revealed that both drugs mainly affected the cellular lipids and proteins, with LEV causing more changes in amide I and lipid regions than PB. Application of

  10. Modeling toxicodynamic effects of trichloroethylene on liver in mouse model of autoimmune hepatitis

    OpenAIRE

    Gilbert, Kathleen M.; Reisfeld, Brad; Zurlinden, Todd; Kreps, Meagan N.; Erickson, Stephen W.; Blossom, Sarah J.

    2014-01-01

    Chronic exposure to industrial solvent and water pollutant trichloroethylene (TCE) in female MRL+/+ mice generates disease similar to human autoimmune hepatitis. The current study was initiated to investigate why TCE-induced autoimmunity targeted the liver. Compared to other tissues the liver has an unusually robust capacity for repair and regeneration. This investigation examined both time-dependent and dose-dependent effects of TCE on hepatoprotective and pro-inflammatory events in liver an...

  11. Comparative Proteomic Study of Mouse Liver Exposed to Differing Gravitational Environments

    OpenAIRE

    Phinney, Brett S.; Weber, Darren M.; Fuller, Charles A.; Salemi, Michelle

    2013-01-01

    It has been shown that long term exposure to altered gravitational environments leads to altered intermediary metabolism with a concomitant reduction in body adiposity. This effect on liver protein expression has been poorly examined. Using gel/c MS/MS on extracted liver proteins we will compare protein profiles from mice flown in space compared to control mice maintained at earth's gravity on the ground. Livers were obtained from mice that were exposed for 90 days to three different living c...

  12. Speciation of iron in mouse liver during development, iron deficiency, IRP2 deletion and Inflammatory hepatitis

    Science.gov (United States)

    Chakrabarti, Mrinmoy; Cockrell, Allison L.; Park, Jinkyu; McCormick, Sean P.; Lindahl, Lora S.; Lindahl, Paul A.

    2014-01-01

    The iron content of livers from 57Fe-enriched C57BL/6 mice of different ages were investigated using Mössbauer spectroscopy, electron paramagnetic resonance (EPR), electronic absorption spectroscopy and inductively coupled plasma mass spectrometry (ICP-MS). About 80% of the Fe in an adult liver was due to blood; thus removal of blood by flushing with buffer was essential to observe endogenous liver Fe. Even after exhaustive flushing, ca. 20% of the Fe in anaerobically dissected livers was typical of deoxy-hemoglobin. The concentration of Fe in newborn livers was the highest of any developmental stage (~ 1.2 mM). Most was stored as ferritin, with little mitochondrial Fe (consisting primarily of Fe/S clusters and haems) evident. Within the first few weeks of life, about half of ferritin Fe was mobilized and exported, illustrating the importance of Fe release as well as Fe storage in liver function. Additional ferritin Fe was used to generate mitochondrial Fe centres. From ca. 4 weeks of age to the end of the mouse’s natural lifespan, the concentration of mitochondrial Fe in liver was essentially invariant. A minor contribution from nonhaem high-spin FeII was observed in most liver samples and was also invariant with age. Some portion of these species may constitute the labile iron pool. Livers from mice raised on an Fe-deficient diet were highly Fe depleted; they were devoid of ferritin and contained 1/3 as much mitochondrial Fe as found in Fe-sufficient livers. In contrast, brains of the same Fe-deficient mice retained normal levels of mitochondrial Fe. Livers from mice with inflammatory hepatitis and from IRP2(−/−) mice hyper-accumulated Fe. These livers had high ferritin levels but low levels of mitochondrial Fe. PMID:25325718

  13. Lysophosphatidic acid alters the expression profiles of angiogenic factors, cytokines, and chemokines in mouse liver sinusoidal endothelial cells.

    Directory of Open Access Journals (Sweden)

    Chia-Hung Chou

    Full Text Available Lysophosphatidic acid (LPA is a multi-function glycerophospholipid. LPA affects the proliferation of hepatocytes and stellate cells in vitro, and in a partial hepatectomy induced liver regeneration model, the circulating LPA levels and LPA receptor (LPAR expression levels in liver tissue are significantly changed. Liver sinusoidal endothelial cells (Lsecs play an important role during liver regeneration. However, the effects of LPA on Lsecs are not well known. Thus, we investigated the effects of LPA on the expression profiles of angiogenic factors, cytokines, and chemokines in Lsecs.Mouse Lsecs were isolated using CD31-coated magnetic beads. The mRNA expression levels of LPAR's and other target genes were determined by quantitative RT-PCR. The protein levels of angiogenesis factors, cytokines, and chemokines were determined using protein arrays and enzyme immunoassay (EIA. Critical LPAR related signal transduction was verified by using an appropriate chemical inhibitor.LPAR1 and LPAR3 mRNA's were expressed in mouse LPA-treated Lsecs. Treating Lsecs with a physiological level of LPA significantly enhanced the protein levels of angiogenesis related proteins (cyr61 and TIMP-1, cytokines (C5/C5a, M-CSF, and SDF-1, and chemokines (MCP-5, gp130, CCL28, and CXCL16. The LPAR1 and LPAR3 antagonist ki16425 significantly inhibited the LPA-enhanced expression of cyr61, TIMP-1, SDF-1, MCP-5, gp130, CCL28, and CXCL16, but not that of C5/C5a or M-CSF. LPA-induced C5/C5a and M-CSF expression may have been through an indirect regulation mechanism.LPA regulated the expression profiles of angiogenic factors, cytokines, and chemokines in Lsecs that was mediated via LPAR1 and LPAR3 signaling. Most of the factors that were enhanced by LPA have been found to play critical roles during liver regeneration. Thus, these results may prove useful for manipulating LPA effects on liver regeneration.

  14. Lysophosphatidic Acid Alters the Expression Profiles of Angiogenic Factors, Cytokines, and Chemokines in Mouse Liver Sinusoidal Endothelial Cells

    Science.gov (United States)

    Chou, Chia-Hung; Lai, Shou-Lun; Ho, Cheng-Maw; Lin, Wen-Hsi; Chen, Chiung-Nien; Lee, Po-Huang; Peng, Fu-Chuo; Kuo, Sung-Hsin; Wu, Szu-Yuan; Lai, Hong-Shiee

    2015-01-01

    Background and Aims Lysophosphatidic acid (LPA) is a multi-function glycerophospholipid. LPA affects the proliferation of hepatocytes and stellate cells in vitro, and in a partial hepatectomy induced liver regeneration model, the circulating LPA levels and LPA receptor (LPAR) expression levels in liver tissue are significantly changed. Liver sinusoidal endothelial cells (Lsecs) play an important role during liver regeneration. However, the effects of LPA on Lsecs are not well known. Thus, we investigated the effects of LPA on the expression profiles of angiogenic factors, cytokines, and chemokines in Lsecs. Methods Mouse Lsecs were isolated using CD31-coated magnetic beads. The mRNA expression levels of LPAR’s and other target genes were determined by quantitative RT-PCR. The protein levels of angiogenesis factors, cytokines, and chemokines were determined using protein arrays and enzyme immunoassay (EIA). Critical LPAR related signal transduction was verified by using an appropriate chemical inhibitor. Results LPAR1 and LPAR3 mRNA’s were expressed in mouse LPA-treated Lsecs. Treating Lsecs with a physiological level of LPA significantly enhanced the protein levels of angiogenesis related proteins (cyr61 and TIMP-1), cytokines (C5/C5a, M-CSF, and SDF-1), and chemokines (MCP-5, gp130, CCL28, and CXCL16). The LPAR1 and LPAR3 antagonist ki16425 significantly inhibited the LPA-enhanced expression of cyr61, TIMP-1, SDF-1, MCP-5, gp130, CCL28, and CXCL16, but not that of C5/C5a or M-CSF. LPA-induced C5/C5a and M-CSF expression may have been through an indirect regulation mechanism. Conclusion LPA regulated the expression profiles of angiogenic factors, cytokines, and chemokines in Lsecs that was mediated via LPAR1 and LPAR3 signaling. Most of the factors that were enhanced by LPA have been found to play critical roles during liver regeneration. Thus, these results may prove useful for manipulating LPA effects on liver regeneration. PMID:25822713

  15. Tolerance of Mice to Lipopolysaccharide is Correlated with Inhibition of Caspase-3-mediated Apoptosis in Mouse Liver Cells

    Institute of Scientific and Technical Information of China (English)

    Jie LUAN; Bingrong ZHOU; Hui DING; Zhongtian QI

    2007-01-01

    Bacterial endotoxin lipopolysaccharide (LPS) often results in multiple organ failure. However,pre-exposure of mice to a sublethal dose of LPS renders the animal tolerant to a lethal dose of LPS. This study was designed to determine whether pre-exposure of a small dose of LPS was able to suppress apoptosis in mice when challenged with LPS in combination with D-galactosamine, and to investigate the expression changes of the apoptosis-associated molecules. The results showed that a characteristic apoptotic DNA fragmentation existed in mouse livers of the LPS-naive group, but not in control groups; and the mice of the LPS-naive group were all dead after 2 d. However, in the LPS-tolerance groups, both the lethal rate and apoptotic DNA fragmentation were suppressed after the mice were challenged with LPS/D-galactosamine,and the protection against the lethality and apoptotic reaction could be maintained for up to 7 d. In this period, significantly lower levels of caspase-3 and its mRNA appeared in LPS-tolerant groups compared to those of the LPS-naive group (P<0.05), and the caspase-3 activities gradually recovered as the observation was prolonged. Our findings suggest that LPS tolerance could suppress apoptosis in mouse liver cells, and the expression and activity of caspase-3 could be down-regulated.

  16. Trichloroethylene-induced gene expression and DNA methylation changes in B6C3F1 mouse liver.

    Directory of Open Access Journals (Sweden)

    Yan Jiang

    Full Text Available Trichloroethylene (TCE, widely used as an organic solvent in the industry, is a common contaminant in air, soil, and water. Chronic TCE exposure induced hepatocellular carcinoma in mice, and occupational exposure in humans was suggested to be associated with liver cancer. To understand the role of non-genotoxic mechanism(s for TCE action, we examined the gene expression and DNA methylation changes in the liver of B6C3F1 mice orally administered with TCE (0, 100, 500 and 1000 mg/kg b.w. per day for 5 days. After 5 days TCE treatment at a dose level of 1000 mg/kg b.w., a total of 431 differentially expressed genes were identified in mouse liver by microarray, of which 291 were up-regulated and 140 down-regulated. The expression changed genes were involved in key signal pathways including PPAR, proliferation, apoptosis and homologous recombination. Notably, the expression level of a number of vital genes involved in the regulation of DNA methylation, such as Utrf1, Tet2, DNMT1, DNMT3a and DNMT3b, were dysregulated. Although global DNA methylation change was not detected in the liver of mice exposed to TCE, the promoter regions of Cdkn1a and Ihh were found to be hypo- and hypermethylated respectively, which correlated negatively with their mRNA expression changes. Furthermore, the gene expression and DNA methylation changes induced by TCE were dose dependent. The overall data indicate that TCE exposure leads to aberrant DNA methylation changes, which might alter the expression of genes involved in the TCE-induced liver tumorgenesis.

  17. Investigation of oncogenic cooperation in simple liver-specific transgenic mouse models using noninvasive in vivo imaging.

    Directory of Open Access Journals (Sweden)

    Hye-Lim Ju

    Full Text Available Liver cancer is a complex multistep process requiring genetic alterations in multiple proto-oncogenes and tumor suppressor genes. Although hundreds of genes are known to play roles in hepatocarcinogenesis, oncogenic collaboration among these genes is still largely unknown. Here, we report a simple methodology by which oncogenic cooperation between cancer-related genes can be efficiently investigated in the liver. We developed various non-germline transgenic mouse models using hydrodynamics-based transfection which express HrasG12V, SmoM2, and a short-hairpin RNA down-regulating p53 (shp53 individually or in combination in the liver. In this transgenic system, firefly luciferase was co-expressed with the oncogenes as a reporter, allowing tumor growth in the liver to be monitored over time without an invasive procedure. Very strong bioluminescence imaging (BLI signals were observed at 4 weeks post-hydrodynamic injection (PHI in mice co-expressing HrasG12V and shp53, while only background signals were detected in other double or single transgenic groups until 30 weeks PHI. Consistent with the BLI data, tumors were observed in the HrasG12V plus shp53 group at 4 weeks PHI, while other transgenic groups failed to exhibit a hyperplastic nodule at 30 weeks PHI. In the HrasG12V plus shp53 transgenic group, BLI signals were well-correlated with actual tumor growth in the liver, confirming the versatility of BLI-based monitoring of tumor growth in this organ. The methodology described here is expected to accelerate and facilitate in vivo studies of the hepatocarcinogenic potential of cancer-related genes by means of oncogenic cooperation.

  18. Food Additive P-80 Impacts Mouse Gut Microbiota Promoting Intestinal Inflammation, Obesity and Liver Dysfunction

    Science.gov (United States)

    Singh, Ratnesh Kumar; Wheildon, Nolan; Ishikawa, Seiichi

    2016-01-01

    The increasing prevalence of obesity has emerged as one of the most important global public health issue. The change to the human microbiome as a result of changes in the quality and quantity of food intake over the past several decades has been implicated in the development of obesity and metabolic syndrome. We administered polysorbate-80 to mice via gavage. The researchers monitor liver noninvasively using a bioluminescence imaging. For the liver dysfunction we measure the liver enzymes and PAS stain on liver, electron microscopy liver mitochondria. For the assessment of intestinal inflammation we measured fecal LCN2, LPS, MPO and flagellin by ELISA and qPCR. We use confocal microscopy to detect closet bacteria near the epithelium. 16S sequence was used for the composition of microbiota. Compared with control mice, those receiving emulsifier, showed impaired glycemic tolerance, hyperinsulinemia, altered liver enzymes, larger mitochondria and increased gall bladder size. Additionally, mice in the experimental group showed higher levels of DCA, reduced Muc2 RNA expression, reduced mucus thickness in the intestinal epithelium and increased gut permeability. Intestinal bacteria of mice receiving P-80 were found deeper in the mucus and closer to the intestinal epithelium and had increased level of bioactive LPS, flagellin and LCN2 expression. The result of the study are supportive of evidence that emulsifier agents such as polysorbate-80, may be contributing to obesity related intestinal inflammation and progression of liver dysfunction and alternation of gut microbiota.

  19. Overexpression of the cholesterol-binding protein MLN64 induces liver damage in the mouse

    Institute of Scientific and Technical Information of China (English)

    Juan Enrique Tichauer; Juan Francisco Miquel; Attilio Rigotti; Silvana Zanlungo; Mar(i)a Gabriela Morales; Ludwig Amigo; Leopoldo Galdames; Andrés Kléin; Verónica Quifio(n)es; Carla Ferrada; Alejandra Alvarez R; Marie-Christine Rio

    2007-01-01

    AIM: To examine the in vivo phenotype associated with hepatic metastatic lymph node 64 (MLN64) over-expression.METHODS: Recombinant-adenovirus-mediated MLN64 gene transfer was used to overexpress MLN64 in the livers of C57BL/6 mice. We measured the effects of MLN64 overexpression on hepatic cholesterol content, bile flow, biliary lipid secretion and apoptosis markers. For in vitro studies cultured CHO cells with transient MLN64 overexpression were utilized and apoptosis by TUNEL assay was measured.RESULTS: Livers from Ad.MLN64-infected mice exhibited early onset of liver damage and apoptosis. This response correlated with increases in liver cholesterol content and biliary bile acid concentration, and impaired bile flow. We investigated whether liver MLN64 expression could be modulated in a murine model of hepatic injury. We found increased hepatic MLN64 mRNA and protein levels in mice with chenodeoxycholic acid-induced liver damage. In addition, cultured CHO cells with transient MLN64 overexpression showed increased apoptosis.CONCLUSION: In summary, hepatic MLN64 over-expression induced damage and apoptosis in murine livers and altered cholesterol metabolism. Further studies are required to elucidate the relevance of these findings under physiologic and disease conditions.

  20. Gene expression profiling in mouse liver infected with Clonorchis sinensis metacercariae.

    Science.gov (United States)

    Kim, Dong Min; Ko, Byung-Sam; Ju, Jung-Won; Cho, Shin-Hyeong; Yang, Suk-Jin; Yeom, Young Il; Kim, Tong-Soo; Won, Yonggwan; Kim, Il-Chul

    2009-12-01

    Clonorchis sinensis, the parasite that causes clonorchiasis, is endemic in many Asian countries, and infection with the organism drives changes in the liver tissues of the host. However, information regarding the molecular events in clonorchiasis remains limited, and little is currently known about host-pathogen interactions in clonorchiasis. In this study, we assessed the gene expression profiles in mice livers via DNA microarray analysis 1, 2, 4, and 6 weeks after induced metacercariae infection. Functional clustering of the gene expression profile showed that the immunity-involved genes were induced in the livers of the mice at the early stage of metacercariae infection, whereas immune responses were reduced in the 6-week liver tissues after infection in which the metacercariae became adult flukes. Many genes involved in fatty acid metabolism, including Peci, Cyp4a10, Acat1, Ehhadh, Gcdh, and Cyp2 family were downregulated in the infected livers. On the other hand, the liver tissues infected with the parasite expressed Wnt signaling molecules such as Wnt7b, Fzd6, and Pdgfrb and cell cycle-regulating genes including cyclin-D1, Cdca3, and Bcl3. These investigations constitute an excellent starting point for increased understanding of the molecular mechanisms underlying host-pathogen interaction during the development of C. sinensis in the host liver. PMID:19902254

  1. Clinical data and characterization of the liver conditional mouse model exclude neoplasia as a non-neurological manifestation associated with Friedreich’s ataxia

    Directory of Open Access Journals (Sweden)

    Alain Martelli

    2012-11-01

    Friedreich’s ataxia (FRDA is the most common hereditary ataxia in the caucasian population and is characterized by a mixed spinocerebellar and sensory ataxia, hypertrophic cardiomyopathy and increased incidence of diabetes. FRDA is caused by impaired expression of the FXN gene coding for the mitochondrial protein frataxin. During the past ten years, the development of mouse models of FRDA has allowed better understanding of the pathophysiology of the disease. Among the mouse models of FRDA, the liver conditional mouse model pointed to a tumor suppressor activity of frataxin leading to the hypothesis that individuals with FRDA might be predisposed to cancer. In the present work, we investigated the presence and the incidence of neoplasia in the largest FRDA patient cohorts from the USA, Australia and Europe. As no predisposition to cancer could be observed in both cohorts, we revisited the phenotype of the liver conditional mouse model. Our results show that frataxin-deficient livers developed early mitochondriopathy, iron-sulfur cluster deficits and intramitochondrial dense deposits, classical hallmarks observed in frataxin-deficient tissues and cells. With age, a minority of mice developed structures similar to the ones previously associated with tumor formation. However, these peripheral structures contained dying, frataxin-deficient hepatocytes, whereas the inner liver structure was composed of a pool of frataxin-positive cells, due to inefficient Cre-mediated recombination of the Fxn gene, that contributed to regeneration of a functional liver. Together, our data demonstrate that frataxin deficiency and tumorigenesis are not associated.

  2. Bioinformatic analysis of microRNA networks following the activation of the constitutive androstane receptor (CAR) in mouse liver.

    Science.gov (United States)

    Hao, Ruixin; Su, Shengzhong; Wan, Yinan; Shen, Frank; Niu, Ben; Coslo, Denise M; Albert, Istvan; Han, Xing; Omiecinski, Curtis J

    2016-09-01

    The constitutive androstane receptor (CAR; NR1I3) is a member of the nuclear receptor superfamily that functions as a xenosensor, serving to regulate xenobiotic detoxification, lipid homeostasis and energy metabolism. CAR activation is also a key contributor to the development of chemical hepatocarcinogenesis in mice. The underlying pathways affected by CAR in these processes are complex and not fully elucidated. MicroRNAs (miRNAs) have emerged as critical modulators of gene expression and appear to impact many cellular pathways, including those involved in chemical detoxification and liver tumor development. In this study, we used deep sequencing approaches with an Illumina HiSeq platform to differentially profile microRNA expression patterns in livers from wild type C57BL/6J mice following CAR activation with the mouse CAR-specific ligand activator, 1,4-bis-[2-(3,5,-dichloropyridyloxy)] benzene (TCPOBOP). Bioinformatic analyses and pathway evaluations were performed leading to the identification of 51 miRNAs whose expression levels were significantly altered by TCPOBOP treatment, including mmu-miR-802-5p and miR-485-3p. Ingenuity Pathway Analysis of the differentially expressed microRNAs revealed altered effector pathways, including those involved in liver cell growth and proliferation. A functional network among CAR targeted genes and the affected microRNAs was constructed to illustrate how CAR modulation of microRNA expression may potentially mediate its biological role in mouse hepatocyte proliferation. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie. PMID:27080131

  3. A novel in vitro method for the metabolism studies of radiotracers using mouse liver S9 fraction

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Eun Kyoung; Choi, Yearn Seong; Kim, Dong Hyun; Lee, Sang Yoon; Choi, Yong; Lee, Kyung Han; Kim, Byung Tae [School of Medicine, Sungkyunkwan Univ., Seoul (Korea, Republic of)

    2004-08-01

    Usefulness of mouse liver S9 fraction was evaluated for the measurement of the metabolites in the in vitro metabolism study of {sup 18}F-labeled radiotracers. Mouse liver S9 fraction was isolated at an early step in the course of microsome preparation. The in vitro metabolism studies were carried out by incubating a mixture containing the radiotracer, S9 fraction and NADPH at 37.deg.C, and an aliquot of the mixture was analyzed at the indicated time points by radio-TLC. Metabolic defluorination was further confirmed by the incubation with calcium phosphate, a bone mimic. The radiotracer [{sup 18}F]1 underwent metabolic defluorination within 15 min, which was consistent with the results of the in vivo method and the in vitro method using microsome. Radiotracer [{sup 18}F]2 was metabolized to three metabolites including 4-[{sup 18}F]fluorobenzoic acid within 60 min. It is likely that the one of these metabolites at the origin of radio-TLC was identical with the one that obtained from the in vivo and in vitro (microsome) method. Compared with the in vitro method using microsome, the method using S9 fraction gave a similar pattern of the metabolites but with a different ratio, which can be explained by the presence of cytosol in the S9 fraction. These results suggest that the findings of the in vitro metabolism studies using S9 fraction can reflect the in vitro metabolism of novel radiotracers in the liver. Moreover, this method can be used as a tool to determine metabolic defluorination along with calcium phosphate absorption method.

  4. Bioinformatic analysis of microRNA networks following the activation of the constitutive androstane receptor (CAR) in mouse liver.

    Science.gov (United States)

    Hao, Ruixin; Su, Shengzhong; Wan, Yinan; Shen, Frank; Niu, Ben; Coslo, Denise M; Albert, Istvan; Han, Xing; Omiecinski, Curtis J

    2016-09-01

    The constitutive androstane receptor (CAR; NR1I3) is a member of the nuclear receptor superfamily that functions as a xenosensor, serving to regulate xenobiotic detoxification, lipid homeostasis and energy metabolism. CAR activation is also a key contributor to the development of chemical hepatocarcinogenesis in mice. The underlying pathways affected by CAR in these processes are complex and not fully elucidated. MicroRNAs (miRNAs) have emerged as critical modulators of gene expression and appear to impact many cellular pathways, including those involved in chemical detoxification and liver tumor development. In this study, we used deep sequencing approaches with an Illumina HiSeq platform to differentially profile microRNA expression patterns in livers from wild type C57BL/6J mice following CAR activation with the mouse CAR-specific ligand activator, 1,4-bis-[2-(3,5,-dichloropyridyloxy)] benzene (TCPOBOP). Bioinformatic analyses and pathway evaluations were performed leading to the identification of 51 miRNAs whose expression levels were significantly altered by TCPOBOP treatment, including mmu-miR-802-5p and miR-485-3p. Ingenuity Pathway Analysis of the differentially expressed microRNAs revealed altered effector pathways, including those involved in liver cell growth and proliferation. A functional network among CAR targeted genes and the affected microRNAs was constructed to illustrate how CAR modulation of microRNA expression may potentially mediate its biological role in mouse hepatocyte proliferation. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.

  5. Kupffer cells hasten resolution of liver immunopathology in mouse models of viral hepatitis.

    Directory of Open Access Journals (Sweden)

    Giovanni Sitia

    2011-06-01

    Full Text Available Kupffer cells (KCs are widely considered important contributors to liver injury during viral hepatitis due to their pro-inflammatory activity. Herein we utilized hepatitis B virus (HBV-replication competent transgenic mice and wild-type mice infected with a hepatotropic adenovirus to demonstrate that KCs do not directly induce hepatocellular injury nor do they affect the pathogenic potential of virus-specific CD8 T cells. Instead, KCs limit the severity of liver immunopathology. Mechanistically, our results are most compatible with the hypothesis that KCs contain liver immunopathology by removing apoptotic hepatocytes in a manner largely dependent on scavenger receptors. Apoptotic hepatocytes not readily removed by KCs become secondarily necrotic and release high-mobility group box 1 (HMGB-1 protein, promoting organ infiltration by inflammatory cells, particularly neutrophils. Overall, these results indicate that KCs resolve rather than worsen liver immunopathology.

  6. Mouse Monoclonal Antibodies for Liver Cancer Research | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute Laboratory of Molecular Biology seeks parties for collaborative research to co-develop and commercialize antibody drug/toxin conjugates as liver cancer therapy and diagnostics.

  7. Exercise-induced regulation of key factors in substrate choice and gluconeogenesis in mouse liver

    DEFF Research Database (Denmark)

    Knudsen, Jakob Grunnet; Biensø, Rasmus Sjørup; Hassing, Helle Adser;

    2015-01-01

    As the demand for hepatic glucose production increases during exercise, regulation of liver substrate choice and gluconeogenic activity becomes essential. The aim of the present study was to investigate the effect of a single exercise bout on gluconeogenic protein content and regulation of enzymes...... involved in substrate utilization in the liver. Mice were subjected to 1 h of treadmill exercise, and livers were removed immediately, 4 or 10 h after exercise. Glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxylase (PEPCK) mRNA contents in the liver increased immediately after exercise, while...... immediately after exercise and at 10 h of recovery, respectively. These findings suggest that acute changes in PEPCK and G6Pase protein contents do not contribute to the regulation of gluconeogenic enzyme activity during 1 h of non-exhaustive exercise. In addition, the observation that PDH-E1α, AMPK, and ACC...

  8. Modeling toxicodynamic effects of trichloroethylene on liver in mouse model of autoimmune hepatitis

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Kathleen M., E-mail: gilbertkathleenm@uams.edu [University of Arkansas for Medical Sciences, Arkansas Children' s Hospital Research Institute, Little Rock, AR 72202 (United States); Reisfeld, Brad, E-mail: brad.reisfeld@colostate.edu [Colorado State University, Fort Collins, CO (United States); Zurlinden, Todd J., E-mail: tjzurlin@rams.colostate.edu [Colorado State University, Fort Collins, CO (United States); Kreps, Meagan N., E-mail: MNKreps@uams.edu [University of Arkansas for Medical Sciences, Arkansas Children' s Hospital Research Institute, Little Rock, AR 72202 (United States); Erickson, Stephen W., E-mail: serickson@uams.edu [University of Arkansas for Medical Sciences, Arkansas Children' s Hospital Research Institute, Little Rock, AR 72202 (United States); Blossom, Sarah J., E-mail: blossomsarah@uams.edu [University of Arkansas for Medical Sciences, Arkansas Children' s Hospital Research Institute, Little Rock, AR 72202 (United States)

    2014-09-15

    Chronic exposure to industrial solvent and water pollutant trichloroethylene (TCE) in female MRL +/+ mice generates disease similar to human autoimmune hepatitis. The current study was initiated to investigate why TCE-induced autoimmunity targeted the liver. Compared to other tissues the liver has an unusually robust capacity for repair and regeneration. This investigation examined both time-dependent and dose-dependent effects of TCE on hepatoprotective and pro-inflammatory events in liver and macrophages from female MRL +/+ mice. After a 12-week exposure to TCE in drinking water a dose-dependent decrease in macrophage production of IL-6 at both the transcriptional and protein level was observed. A longitudinal study similarly showed that TCE inhibited macrophage IL-6 production. In terms of the liver, TCE had little effect on expression of pro-inflammatory genes (Tnfa, Saa2 or Cscl1) until the end of the 40-week exposure. Instead, TCE suppressed hepatic expression of genes involved in IL-6 signaling (Il6r, gp130, and Egr1). Linear regression analysis confirmed liver histopathology in the TCE-treated mice correlated with decreased expression of Il6r. A toxicodynamic model was developed to estimate the effects of TCE on IL-6 signaling and liver pathology under different levels of exposure and rates of repair. This study underlined the importance of longitudinal studies in mechanistic evaluations of immuntoxicants. It showed that later-occurring liver pathology caused by TCE was associated with early suppression of hepatoprotection rather than an increase in conventional pro-inflammatory events. This information was used to create a novel toxicodynamic model of IL-6-mediated TCE-induced liver inflammation. - Highlights: • We developed a toxicodynamic model to study effects of trichloroethylene on liver. • We examined protective as well as pro-inflammatory events in the liver. • Trichloroethylene inhibits IL-6 production by macrophages. • Trichloroethylene

  9. Acetylcholinesterase (AChE) inhibition aggravates fasting-induced triglyceride accumulation in the mouse liver

    OpenAIRE

    Shin-Ichi Yokota; Kaai Nakamura; Midori Ando; Hiroyasu Kamei; Fumihiko Hakuno; Shin-Ichiro Takahashi; Shigenobu Shibata

    2014-01-01

    Although fasting induces hepatic triglyceride (TG) accumulation in both rodents and humans, little is known about the underlying mechanism. Because parasympathetic nervous system activity tends to attenuate the secretion of very-low-density-lipoprotein-triglyceride (VLDL-TG) and increase TG stores in the liver, and serum cholinesterase activity is elevated in fatty liver disease, the inhibition of the parasympathetic neurotransmitter acetylcholinesterase (AChE) may have some influence on hepa...

  10. Recovery from liver disease in a Niemann-Pick type C mouse model

    OpenAIRE

    Sayre, Naomi L.; Rimkunas, Victoria M.; Graham, Mark J.; Crooke, Rosanne M.; Liscum, Laura

    2010-01-01

    Loss of function of Niemann-Pick C1 (NPC1) leads to lysosomal free cholesterol storage, resulting in the neurodegenerative disease Niemann-Pick disease type C (NPC). Significant numbers of patients with NPC also suffer from liver disease. Currently, no treatments exist that alter patient outcome, and it is unknown if recovery from tissue damage can occur even if a treatment were found. Our laboratory developed a strategy to test whether mice can recover from NPC liver disease. We used antisen...

  11. Acetylcholinesterase (AChE) inhibition aggravates fasting-induced triglyceride accumulation in the mouse liver.

    Science.gov (United States)

    Yokota, Shin-Ichi; Nakamura, Kaai; Ando, Midori; Kamei, Hiroyasu; Hakuno, Fumihiko; Takahashi, Shin-Ichiro; Shibata, Shigenobu

    2014-01-01

    Although fasting induces hepatic triglyceride (TG) accumulation in both rodents and humans, little is known about the underlying mechanism. Because parasympathetic nervous system activity tends to attenuate the secretion of very-low-density-lipoprotein-triglyceride (VLDL-TG) and increase TG stores in the liver, and serum cholinesterase activity is elevated in fatty liver disease, the inhibition of the parasympathetic neurotransmitter acetylcholinesterase (AChE) may have some influence on hepatic lipid metabolism. To assess the influence of AChE inhibition on lipid metabolism, the effect of physostigmine, an AChE inhibitor, on fasting-induced increase in liver TG was investigated in mice. In comparison with ad libitum-fed mice, 30 h fasting increased liver TG accumulation accompanied by a downregulation of sterol regulatory element-binding protein 1 (SREBP-1) and liver-fatty acid binding-protein (L-FABP). Physostigmine promoted the 30 h fasting-induced increase in liver TG levels in a dose-dependent manner, accompanied by a significant fall in plasma insulin levels, without a fall in plasma TG. Furthermore, physostigmine significantly attenuated the fasting-induced decrease of both mRNA and protein levels of SREBP-1 and L-FABP, and increased IRS-2 protein levels in the liver. The muscarinic receptor antagonist atropine blocked these effects of physostigmine on liver TG, serum insulin, and hepatic protein levels of SREBP-1 and L-FABP. These results demonstrate that AChE inhibition facilitated fasting-induced TG accumulation with up regulation of the hepatic L-FABP and SREBP-1 in mice, at least in part via the activation of muscarinic acetylcholine receptors. Our studies highlight the crucial role of parasympathetic regulation in fasting-induced TG accumulation, and may be an important source of information on the mechanism of hepatic disorders of lipid metabolism. PMID:25383314

  12. Acetylcholinesterase (AChE inhibition aggravates fasting-induced triglyceride accumulation in the mouse liver

    Directory of Open Access Journals (Sweden)

    Shin-Ichi Yokota

    2014-01-01

    Full Text Available Although fasting induces hepatic triglyceride (TG accumulation in both rodents and humans, little is known about the underlying mechanism. Because parasympathetic nervous system activity tends to attenuate the secretion of very-low-density-lipoprotein-triglyceride (VLDL-TG and increase TG stores in the liver, and serum cholinesterase activity is elevated in fatty liver disease, the inhibition of the parasympathetic neurotransmitter acetylcholinesterase (AChE may have some influence on hepatic lipid metabolism. To assess the influence of AChE inhibition on lipid metabolism, the effect of physostigmine, an AChE inhibitor, on fasting-induced increase in liver TG was investigated in mice. In comparison with ad libitum-fed mice, 30 h fasting increased liver TG accumulation accompanied by a downregulation of sterol regulatory element-binding protein 1 (SREBP-1 and liver-fatty acid binding-protein (L-FABP. Physostigmine promoted the 30 h fasting-induced increase in liver TG levels in a dose-dependent manner, accompanied by a significant fall in plasma insulin levels, without a fall in plasma TG. Furthermore, physostigmine significantly attenuated the fasting-induced decrease of both mRNA and protein levels of SREBP-1 and L-FABP, and increased IRS-2 protein levels in the liver. The muscarinic receptor antagonist atropine blocked these effects of physostigmine on liver TG, serum insulin, and hepatic protein levels of SREBP-1 and L-FABP. These results demonstrate that AChE inhibition facilitated fasting-induced TG accumulation with up regulation of the hepatic L-FABP and SREBP-1 in mice, at least in part via the activation of muscarinic acetylcholine receptors. Our studies highlight the crucial role of parasympathetic regulation in fasting-induced TG accumulation, and may be an important source of information on the mechanism of hepatic disorders of lipid metabolism.

  13. Postponing the Hypoglycemic Response to Partial Hepatectomy Delays Mouse Liver Regeneration.

    Science.gov (United States)

    Huang, Jiansheng; Schriefer, Andrew E; Cliften, Paul F; Dietzen, Dennis; Kulkarni, Sakil; Sing, Sucha; Monga, Satdarshan P S; Rudnick, David A

    2016-03-01

    All serious liver injuries alter metabolism and initiate hepatic regeneration. Recent studies using partial hepatectomy (PH) and other experimental models of liver regeneration implicate the metabolic response to hepatic insufficiency as an important source of signals that promote regeneration. Based on these considerations, the analyses reported here were undertaken to assess the impact of interrupting the hypoglycemic response to PH on liver regeneration in mice. A regimen of parenteral dextrose infusion that delays PH-induced hypoglycemia for 14 hours after surgery was identified, and the hepatic regenerative response to PH was compared between dextrose-treated and control mice. The results showed that regenerative recovery of the liver was postponed in dextrose-infused mice (versus vehicle control) by an interval of time comparable to the delay in onset of PH-induced hypoglycemia. The regulation of specific liver regeneration-promoting signals, including hepatic induction of cyclin D1 and S-phase kinase-associated protein 2 expression and suppression of peroxisome proliferator-activated receptor γ and p27 expression, was also disrupted by dextrose infusion. These data support the hypothesis that alterations in metabolism that occur in response to hepatic insufficiency promote liver regeneration, and they define specific pro- and antiregenerative molecular targets whose regenerative regulation is postponed when PH-induced hypoglycemia is delayed.

  14. Colon cancer metastasis in mouse liver is not affected by hypercoagulability due to Factor V Leiden mutation

    Science.gov (United States)

    Klerk, CPW; Smorenburg, SM; Spek, CA; Van Noorden, CJF

    2007-01-01

    Abstract Clinical trials have shown life-prolonging effects of antithrombotics in cancer patients, but the molecular mechanisms remain unknown due to the multitude of their effects. We investigated in a mouse model whether one of the targets of antithrombotic therapy, fibrin deposition, stimulates tumour development. Fibrin may provide either protection of cancer cells in the circulation against mechanical stress and the immune system, or form a matrix for tumours and/or angiogenesis in tumours to develop. Mice homozygous for Factor V Leiden (FVL), a mutation in one of the coagulation factors that facilitates fibrin formation, were used to investigate whether hypercoagulability affects tumour development in an experimental metastasis model. Liver metastases of colon cancer were induced in mice with the FVL mutation and wild-type littermates. At day 21, number and size of tumours at the liver surface, fibrin/fibrinogen distribution, vessel density and the presence of newly formed vessels in tumours were analysed. Number and size of tumours did not differ between mice with and without the FVL mutation. Fibrin/fibrinogen was found in the cytoplasm of hepatocytes and cancer cells, in blood vessels in liver and tumour tissue and diffusely distributed outside vessels in tumours, indicating leaky vessels. Vessel density and angiogenesis varied widely between tumours, but a pre-dominance for vessel-rich or vessel-poor tumours or vessel formation could not be found in either genotype. In conclusion, the FVL mutation has no effect on the development of secondary tumours of colon cancer in livers of mice. Fibrin deposition and thus inhibition of fibrin formation by anticoagulants do not seem to affect tumour development in this model. PMID:17635646

  15. Distinct anti-oncogenic effect of various microRNAs in different mouse models of liver cancer.

    Science.gov (United States)

    Tao, Junyan; Ji, Junfang; Li, Xiaolei; Ding, Ning; Wu, Heng; Liu, Yan; Wang, Xin Wei; Calvisi, Diego F; Song, Guisheng; Chen, Xin

    2015-03-30

    Deregulation of microRNAs (miRNAs) is a typical feature of human hepatocellular carcinoma (HCC). However, the in vivo relevance of miRNAs along hepatocarcinogenesis remains largely unknown. Here, we show that liver tumors induced in mice by c-Myc overexpression or AKT/Ras co-expression exhibit distinct miRNA expression profiles. Among the downregulated miRNAs, eight (miR-101, miR-107, miR-122, miR-29, miR-365, miR-375, miR-378, and miR-802) were selected and their tumor suppressor activity was determined by overexpressing each of them together with c-Myc or AKT/Ras oncogenes in mouse livers via hydrodynamic transfection. The tumor suppressor activity of these microRNAs was extremely heterogeneous in c-Myc and AKT/Ras mice: while miR-378 had no tumor suppressor activity, miR-107, mir-122, miR-29, miR-365 and miR-802 exhibited weak to moderate tumor suppressor potential. Noticeably, miR-375 showed limited antineoplastic activity against c-Myc driven tumorigenesis, whereas it strongly inhibited AKT/Ras induced hepatocarcinogenesis. Furthermore, miR-101 significantly suppressed both c-Myc and AKT/Ras liver tumor development. Altogether, the present data demonstrate that different oncogenes induce distinct miRNA patterns, whose modulation differently affects hepatocarcinogenesis depending on the driving oncogenes. Finally, our findings support a strong tumor suppressor activity of miR-101 in liver cancer models regardless of the driver oncogenes involved, thus representing a promising therapeutic target in human HCC.

  16. Generation and characterization of transgenic mice expressing tamoxifen-inducible cre-fusion protein specifically in mouse liver

    Institute of Scientific and Technical Information of China (English)

    Huan-Zhang Zhu; Jian-Quan Chen; Guo-Xiang Cheng; Jing-Lun Xue

    2003-01-01

    AIM: To establish transgenic mice expressing tamoxifeninducible Cre-ERt recombinase specifically in the liver and to provide an efficient animal model for studying gene function in the liver and creating various mouse models mimicking human diseases.METHODS: Alb-Cre-ERt transgenic mice were produced by microinjecting the construct with Cre-ERt fusion gene of DNA fragments into fertilized eggs derived from inbred C57BL/6strain. Transgenic mice were identified by using PCR and Southern blotting. Expression of Cre-ERt fusion gene was analyzed in the liver, kidney, brain and lung from F1generation transgenic mice at 8 weeks of age by reverse transcription (RT)-PCR.RESULTS: Four hundred and fourteen fertilized eggs of C57 BL/6 mice were microinjected with recombinant AlbCre-ERt DNA fragments, and 312 survival eggs injected were transferred to the oviducts of 12 pseudopregnant recipient mice, 6 of 12 recipient mice became pregnant and gave birth to 44 offsprings. Of the 44 offsprings, two males and one female carried the hybrid Cre-ERt fusion gene. Three mice were determined as founders, and were back crossed to set up F1 generations with other inbred C57BL/6 mice.Transmission of Cre-ERt fusion gene in F1 offspring followed Mendelian rules. The expression of Cre-ERt mRNA was detected only in the liver of F1 offspring from two of three founder mice.CONCLUSION: Transgenic mice expressing tamoxifeninducible Cre-ERt recombinase under control of the liverspecific promoter are preliminary established.

  17. Adeno-associated virus mediated endostatin gene therapy in combination with topoisomerase inhibitor effectively controls liver tumor in mouse model

    Institute of Scientific and Technical Information of China (English)

    Sung Yi Hong; Myun Hee Lee; Kyung Sup Kim; Hyun Cheol Jung; Jae Kyung Roh; Woo Jin Hyung; Sung Hoon Noh; Seung Ho Choi

    2004-01-01

    AIM: rAAV mediated endostatin gene therapy has been examined as a new method for treating cancer. However,a sustained and high protein delivery is required to achieve the desired therapeutic effects. We evaluated the impact of topoisomerase inhibitors in rAAV delivered endostatin gene therapy in a liver tumor model.METHODS: rAAV containing endostatin expression cassettes were transduced into hepatoma cell lines. To test whether the topoisomerase inhibitor pretreatment increased the expression of endostatin, Western blotting and ELISA were performed. The biologic activity of endostatin was confirmed by endothelial cell proliferation and tube formation assays.The anti-tumor effects of the rAAV-endostatin vector combined with a topoisomerase inhibitor, etoposide, were evaluated in a mouse liver tumor model.RESULTS: Topoisomerase inhibitors, including camptothecin and etoposide, were found to increase the endostatin expression level in vitro. The over-expressed endostatin,as a result of pretreatment with a topoisomerase inhibitor,was also biologically active. In animal experiments, the combined therapy of topoisomerase inhibitor, etoposide with the rAAV-endostatin vector had the best tumorsuppressive effect and tumor foci were barely observed in livers of the treated mice. Pretreatment with an etoposide increased the level of endostatin in the liver and serum of rAAV-endostatin treated mice. Finally, the mice treated with rAAV-endostatin in combination with etoposide showed the longest survival among the experimental models.CONCLUSION: rAAV delivered endostatin gene therapy in combination with a topoisomerase inhibitor pretreatment is an effective modality for anticancer gene therapy.

  18. Cross-activating invariant NKT cells and kupffer cells suppress cholestatic liver injury in a mouse model of biliary obstruction.

    Directory of Open Access Journals (Sweden)

    Caroline C Duwaerts

    Full Text Available Both Kupffer cells and invariant natural killer T (iNKT cells suppress neutrophil-dependent liver injury in a mouse model of biliary obstruction. We hypothesize that these roles are interdependent and require iNKT cell-Kupffer cell cross-activation. Female, wild-type and iNKT cell-deficient C57Bl/6 mice were injected with magnetic beads 3 days prior to bile duct ligation (BDL in order to facilitate subsequent Kupffer cell isolation. On day three post-BDL, the animals were euthanized and the livers dissected. Necrosis was scored; Kupffer cells were isolated and cell surface marker expression (flow cytometry, mRNA expression (qtPCR, nitric oxide (NO (. production (Griess reaction, and protein secretion (cytometric bead-array or ELISAs were determined. To address the potential role of NO (. in suppressing neutrophil accumulation, a group of WT mice received 1400W, a specific inducible nitric oxide synthase (iNOS inhibitor, prior to BDL. To clarify the mechanisms underlying Kupffer cell-iNKT cell cross-activation, WT animals were administered anti-IFN-γ or anti-lymphocyte function-associated antigen (LFA-1 antibody prior to BDL. Compared to their WT counterparts, Kupffer cells obtained from BDL iNKT cell-deficient mice expressed lower iNOS mRNA levels, produced less NO (. , and secreted more neutrophil chemoattractants. Both iNOS inhibition and IFN-γ neutralization increased neutrophil accumulation in the livers of BDL WT mice. Anti-LFA-1 pre-treatment reduced iNKT cell accumulation in these same animals. These data indicate that the LFA-1-dependent cross-activation of iNKT cells and Kupffer cells inhibits neutrophil accumulation and cholestatic liver injury.

  19. Feeding cues and injected nutrients induce acute expression of multiple clock genes in the mouse liver.

    Directory of Open Access Journals (Sweden)

    Hideaki Oike

    Full Text Available The circadian clock is closely associated with energy metabolism. The liver clock can rapidly adapt to a new feeding cycle within a few days, whereas the lung clock is gradually entrained over one week. However, the mechanism underlying tissue-specific clock resetting is not fully understood. To characterize the rapid response to feeding cues in the liver clock, we examined the effects of a single time-delayed feeding on circadian rhythms in the liver and lungs of Per2::Luc reporter knockin mice. After adapting to a night-time restricted feeding schedule, the mice were fed according to a 4, 8, or 13 h delayed schedule on the last day. The phase of the liver clock was delayed in all groups with delayed feeding, whereas the lung clock remained unaffected. We then examined the acute response of clock and metabolism-related genes in the liver using focused DNA-microarrays. Clock mutant mice were bred under constant light to attenuate the endogenous circadian rhythm, and gene expression profiles were determined during 24 h of fasting followed by 8 h of feeding. Per2 and Dec1 were significantly increased within 1 h of feeding. Real-time RT-PCR analysis revealed a similarly acute response in hepatic clock gene expression caused by feeding wild type mice after an overnight fast. In addition to Per2 and Dec1, the expression of Per1 increased, and that of Rev-erbα decreased in the liver within 1 h of feeding after fasting, whereas none of these clock genes were affected in the lung. Moreover, an intraperitoneal injection of glucose combined with amino acids, but not either alone, reproduced a similar hepatic response. Our findings show that multiple clock genes respond to nutritional cues within 1 h in the liver but not in the lung.

  20. Down-regulation of microRNA-26a promotes mouse hepatocyte proliferation during liver regeneration.

    Directory of Open Access Journals (Sweden)

    Jian Zhou

    Full Text Available BACKGROUND: Inadequate liver regeneration (LR is still an unsolved problem in major liver resection and small-for-size syndrome post-living donor liver transplantation. A number of microRNAs have been shown to play important roles in cell proliferation. Herein, we investigated the role of miR-26a as a pivotal regulator of hepatocyte proliferation in LR. METHODOLOGY/PRINCIPAL FINDINGS: Adult male C57BL/6J mice, undergoing 70% partial hepatectomy (PH, were treated with Ad5-anti-miR-26a-LUC or Ad5-miR-26a-LUC or Ad5-LUC vector via portal vein. The animals were subjected to in vivo bioluminescence imaging. Serum and liver samples were collected to test liver function, calculate liver-to-body weight ratio (LBWR, document hepatocyte proliferation (Ki-67 staining, and investigate potential targeted gene expression of miR-26a by quantitative real-time PCR and Western blot. The miR-26a level declined during LR after 70% PH. Down-regulation of miR-26a by anti-miR-26a expression led to enhanced proliferation of hepatocytes, and both LBWR and hepatocyte proliferation (Ki-67(+ cells % showed an increased tendency, while liver damage, indicated by aspartate aminotransferase (AST, alanine aminotransferase (ALT and total bilirubin (T-Bil, was reduced. Furthermore, CCND2 and CCNE2, as possible targeted genes of miR-26a, were up-regulated. In addition, miR-26a over-expression showed converse results. CONCLUSIONS/SIGNIFICANCE: MiR-26a plays crucial role in regulating the proliferative phase of LR, probably by repressing expressions of cell cycle proteins CCND2 and CCNE2. The current study reveals a novel miRNA-mediated regulation pattern during the proliferative phase of LR.

  1. Effect of bullfrog (Rana catesbeiana oil administered by gavage on the fatty acid composition and oxidative stress of mouse liver

    Directory of Open Access Journals (Sweden)

    L.P. Silva

    2004-10-01

    Full Text Available The aim of the present study was to investigate the effects of daily intragastric administration of bullfrog oil (oleic, linoleic and palmitoleic acid-rich oil, corresponding to 0.4% of body weight for four weeks, on fatty acid composition and oxidative stress (lipid peroxidation and catalase activity in mouse liver. The activities of aspartate aminotransferase (AST, alkaline phosphatase (ALP, alanine aminotransferase (ALT, and gamma-glutamyltransferase (GGT, biomarkers of tissue injury, were determined in liver homogenates and serum. The proportions of 18:2n-6, 20:4n-6, 20:5n-3, and 22:6n-3 (polyunsaturated fatty acids, from 37 to 60% in the total fatty acid content were increased in the liver of the bullfrog oil-treated group (P < 0.05 compared to control. At the same time, a significant decrease in the relative abundance of 14:0, 16:0, and 18:0 (saturated fatty acids, from 49 to 25% was observed. The hepatic content of thiobarbituric acid reactive substances (TBARS was increased from 2.3 ± 0.2 to 12.3 ± 0.3 nmol TBA-MDA/mg protein and catalase activity was increased from 840 ± 32 to 1110 ± 45 µmol reduced H2O2 min-1 mg protein-1 in the treated group. Bullfrog oil administration increased AST and ALP activities in the liver (from 234.10 ± 0.12 to 342.84 ± 0.13 and 9.38 ± 0.60 to 20.06 ± 0.27 U/g, respectively and in serum (from 95.41 ± 6.13 to 120.32 ± 3.15 and 234.75 ± 11.5 to 254.41 ± 2.73 U/l, respectively, suggesting that this treatment induced tissue damage. ALT activity was increased from 287.28 ± 0.29 to 315.98 ± 0.34 U/g in the liver but remained unchanged in serum, whereas the GGT activity was not affected by bullfrog oil treatment. Therefore, despite the interesting modulation of fatty acids by bullfrog oil, a possible therapeutic use requires care since some adverse effects were observed in liver.

  2. Chlamydia pneumoniae replicates in Kupffer cells in mouse model of liver infection

    Institute of Scientific and Technical Information of China (English)

    Antonella Marangoni; Manuela Donati; Francesca Cavrini; Rita Aldini; Silvia Accardo; Vittorio Sambri; Marco Montagnani; Roberto Cevenini

    2006-01-01

    AIM: To develop an animal model of liver infection with Chlamydia pneumoniae (C.pneumoniae) in intraperitoneally infected mice for studying the presence of chlamydiae in Kupffer cells and hepatocytes.METHODS: A total of 80 BALB/c mice were inoculated intraperitoneally with C. pneumoniae and sacrificed at various time points after infection. Chlamydiae were looked for in liver homogenates as well as in Kupffer cells and hepatocytes separated by liver perfusion with collagenase. C. pneumoniae was detected by both isolation in LLC-MK2 cells and fluorescence in situ hybridization (FISH). The releasing of TNFA-α by C. pneumoniae in vitro stimulated Kupffer cells was studied by enzymelinked immunosorbent assay.RESULTS: C. pneumoniae isolation from liver homogenates reached a plateau on d 7 after infection when 6 of 10 animals were positive, then decreased, and became negative by d 20. C. pneumoniae isolation from separated Kupffer cells reached a plateau on d 7 when 5 of 10 animals were positive, and became negative by d 20.The detection of C. pneumoniae in separated Kupffer cells by FISH, confirmed the results obtained by culture.Isolated hepatocytes were always negative. Stimulation of Kupffer cells by alive C. pneumoniae elicited high TNF-α levels.CONCLUSION: A productive infection by C. pneumoniae may take place in Kupffer cells and C. pneumoniae induces a local pro-inflammatory activity. C. pneumoniae is therefore, able to act as antigenic stimulus when localized in the liver. One could speculate that C. pneumoniae infection, involving cells of the innate immunity such as Kupffer cells, could also trigger pathological immune reactions involving the liver, as observed in human patients with primary biliary cirrhosis.

  3. Arsenite induced oxidative damage in mouse liver is associated with increased cytokeratin 18 expression

    Energy Technology Data Exchange (ETDEWEB)

    Gonsebatt, M.E. [UNAM, Ciudad Universitaria, Dept. Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Mexico (Mexico); Razo, L.M. del; Sanchez-Pena, L.C. [Seccion de Toxicologia, CINVESTAV, Mexico (Mexico); Cerbon, M.A. [Facultad de Quimica, UNAM, Departamento de Biologia, Mexico (Mexico); Zuniga, O.; Ramirez, P. [Facultad de Estudios Superiores Cuautitlan, UNAM, Laboratorio de Toxicologia Celular, Coordinacion General de Estudios de Posgrado e Investigacion, Cuautitlan Izcalli, Estado de Mexico (Mexico)

    2007-09-15

    Cytokeratins (CK) constitute a family of cytoskeletal intermediate filament proteins that are typically expressed in epithelial cells. An abnormal structure and function are effects that are clearly related to liver diseases as non-alcoholic steatohepatitis, cirrhosis and hepatocellular carcinoma. We have previously observed that sodium arsenite (SA) induced the synthesis of CK18 protein and promotes a dose-related disruption of cytoplasmic CK18 filaments in a human hepatic cell line. Both abnormal gene expression and disturbance of structural organization are toxic effects that are likely to cause liver disease by interfering with normal hepatocyte function. To investigate if a disruption in the CK18 expression pattern is associated with arsenite liver damage, we investigated CK18 mRNA and protein levels in liver slices treated with low levels of SA. Organotypic cultures were incubated with 0.01, 1 and 10 {mu}M of SA in the absence and presence of N-acetyl cysteine (NAC). Cell viability and inorganic arsenic metabolism were determined. Increased expression of CK18 was observed after exposure to SA. The addition of NAC impeded the oxidative effects of SA exposure, decreasing the production of thiobarbituric acid-reactive substances and significantly diminishing the up regulation of CK18 mRNA and protein. Liver arsenic levels correlated with increased levels of mRNA. Mice treated with intragastric single doses of 2.5 and 5 mg/kg of SA showed an increased expression of CK18. Results suggest that CK18 expression may be a sensible early biomarker of oxidative stress and damage induced by arsenite in vitro and in vivo. Then, during SA exposure, altered CK expression may compromise liver function. (orig.)

  4. Peroxisome proliferators induce mouse liver stearoyl-CoA desaturase 1 gene expression.

    OpenAIRE

    Miller, C. W.; Ntambi, J M

    1996-01-01

    Peroxisome proliferators induce stearoyl-CoA desaturase activity (EC 1.14.99.5) in liver [Kawashima, Y., Hanioka, N., Matsumura, M. & Kozuka, H. (1983) Biochim. Biophys. Acta 752, 259-264]. We analyzed the changes in stearoyl-CoA desaturase 1 (SCD1) mRNA to further define the molecular mechanism for the induction of stearoyl-CoA desaturase by peroxisome proliferators. SCD1 mRNA was analyzed from the livers of BALB/c mice that had been fed diets supplemented with clofibrate or gemfibrozil. Clo...

  5. Differential expression of microRNAs in mouse liver under aberrant energy metabolic status[S

    OpenAIRE

    Li, Shengjie; Chen, Xi; Zhang, Hongjie; Liang, Xiangying; Xiang, Yang; Yu, Chaohui; Zen, Ke; Li, Youming; Zhang, Chen-Yu

    2009-01-01

    Despite years of effort, exact pathogenesis of nonalcoholic fatty liver disease (NAFLD) remains obscure. To gain an insight into the regulatory roles of microRNAs (miRNAs) in aberrant energy metabolic status and pathogenesis of NAFLD, we analyzed the expression of miRNAs in livers of ob/ob mice, streptozotocin (STZ)-induced type 1 diabetic mice, and normal C57BL/6 mice by miRNA microarray. Compared with normal C57BL/6 mice, ob/ob mice showed upregulation of eight miRNAs and downregulation of ...

  6. Molecularly Characterised Xenograft Tumour Mouse Models: Valuable Tools for Evaluation of New Therapeutic Strategies for Secondary Liver Cancers

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available To develop and evaluate new therapeutic strategies for the treatment of human cancers, well-characterised preclinical model systems are a prerequisite. To this aim, we have established xenotransplantation mouse models and corresponding cell cultures from surgically obtained secondary human liver tumours. Established xenograft tumours were patho- and immunohistologically characterised, and expression levels of cancer-relevant genes were quantified in paired original and xenograft tumours and the derivative cell cultures applying RT-PCR-based array technology. Most of the characteristic morphological and immunohistochemical features of the original tumours were shown to be maintained. No differences were found concerning expression of genes involved in cell cycle regulation and oncogenesis. Interestingly, cytokine and matrix metalloproteinase encoding genes appeared to be expressed differentially. Thus, the established models are closely reflecting pathohistological and molecular characteristics of the selected human tumours and may therefore provide useful tools for preclinical analyses of new antitumour strategies in vivo.

  7. FULL-GENOME ANALYSIS OF ALTERNATIVE SPLICING IN MOUSE LIVER AFTER HEPATOTOXICANT EXPOSURE

    Science.gov (United States)

    Alternative splicing plays a role in determining gene function and protein diversity. We have employed whole genome exon profiling using Affymetrix Mouse Exon 1.0 ST arrays to understand the significance of alternative splicing on a genome-wide scale in response to multiple toxic...

  8. Upregulation of TNF-αand IL-6 mRNA in mouse liver induced by bacille Calmette-Guerin plus lipopolysaccharide

    Institute of Scientific and Technical Information of China (English)

    Dao-fang LIU; Wei WEI; Li-hua SONG

    2006-01-01

    Aim:To investigate the mechanism of immunological liver injury induced by bacille Calmette-Guerin (BCG) plus lipopolysaccharide (LPS).Methods:Mice were injected via the tail vein with 125 mg/kg BCG,and 12 d later,the mice were injected intravenously with different doses of LPS (125,250.or 375 μg/kg).Serum alanine aminotransferase (ALT) activity and liver pathological changes were examined.The expression of tumor necrosis factor (TNF)-α,interleukin (IL)-6,lipopolysaccharide binding protein (LBP) and CD14 mRNA,and NF-κB and IκB-α protein in mouse liver at difierent time points after BCG and LPS injection were measured using RT-PCR,immunohistochemistry and Western blotting analysis,respectively.Results:The activity of serum ALT in mice treated witll BCG and LPS was significantly increased.Different degrees of liver injury,such as inflammatory cell infiltration,spotty necrosis,piecemeal necrosis,even bridging necrosis,could be seen in liver sections from mice after BCG and LPS administration.Furthermore,the levels of TNF-α and IL-6 mRNA in mouse liver were significantly elevated after administration of BCG plus LPS (P<0.05).The levels of LBP and CD14 mRNA in mouse liver were markedly upregulated after treatment with BCG and LPS.and treatment with BCG alone led to an increase in CD14 mRNA in mouse liver.Finally.immunoreactivity for NF-κB p65 was predominantly detected in hepatocyte nuclei from mice treated with BCG plus LPS,compared with the normal group.Protein levels of IκB-α were strikingly decreased by LPS or BCG plus LPS treatment.compared with the normal group or BCG group.Conclusion:TNF-α and IL-6 mRNA were partially involved in early immunological liver injury induced by chal lenge with small doses of LPS after BCG priming.Upregulation of TNF-α and IL6 mRNA might be related to increases in LBP and CD14 mRNA expression and activation of NF-kB.Furthermore,BCG priming in immunological liver injury may occur via upregulation of CD14 mRNA expression in

  9. Role of amidation in bile acid effect on DNA synthesis by regenerating mouse liver.

    Science.gov (United States)

    Barbero, E R; Herrera, M C; Monte, M J; Serrano, M A; Marin, J J

    1995-06-01

    Effect of bile acids on DNA synthesis by the regenerating liver was investigated in mice in vivo after partial hepatectomy (PH). Radioactivity incorporation into DNA after [14C]thymidine intraperitoneal administration peaked at 48 h after PH. At this time a significant taurocholate-induced dose-dependent reduction in DNA synthesis without changes in total liver radioactivity content was found (half-maximal effect at approximately 0.1 mumol/g body wt). Effect of taurocholate (0.5 mumol/g body wt) was mimicked by chocolate, ursodeoxycholate, deoxycholate, dehydrocholate, tauroursodeoxycholate, taurochenodeoxycholate, and taurodeoxycholate. In contrast, chenodeoxycholate, glycocholate, glycochenodeoxycholate, glycoursodeoxycholate, glycodeoxycholate, 5 beta-cholestane, bromosulfophthalein, and free taurine lacked this effect. No relationship between hydrophobic-hydrophilic balance and inhibitory effect was observed. Analysis by high-performance liquid chromatography indicated that inhibition of thymidine incorporation into DNA was not accompanied by an accumulation of phosphorylated DNA precursors in the liver but rather by a parallel increase in nucleotide catabolism. Bile acid-induced modifications in DNA synthesis were observed in vivo even in the absence of changes in toxicity tests, which suggests that the inhibitory effect shared by most unconjugated and tauroconjugated bile acids but not by glycoconjugated bile acids should be accounted for by mechanisms other than nonselective liver cell injury. PMID:7611405

  10. Identification of differentially regulated antioxidant proteins by redox proteomics in irradiated mouse liver

    International Nuclear Information System (INIS)

    Since radiation treatment has been reappraised in the treatment of hepatic tumors, radiation response in liver is emerging as a new interesting area of investigation. The main issue is how to minimize radiation-induced hepatotoxicity. In this study, identification of the repertoire of the proteins was analyzed by a proteomics approach regarding cellular responses of liver tissue to ionizing radiation. C3H/HeJ mice were given 10 Gy radiation and liver tissues were analyzed by 2-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). At least twenty-eight proteins showed significant alteration following radiation. The increased proteins include cytochrome c, glutathione S transferase pi (GSTP), NADH dehydrogenase and peroxiredoxin VI (Prx VI), whereas the proteins such as peroxisomal bifunctional enzyme, phosphatidylethanolamin and ras relative protein decreased after radiation treatment. Mainly GSTP and Prx VI including thiol group seem to be implicated into radiation response in liver. Further study is warranted to elucidate their role in radiation-induced hepatotoxicity

  11. Investigation of Hepatoprotective Activity of Induced Pluripotent Stem Cells in the Mouse Model of Liver Injury

    Directory of Open Access Journals (Sweden)

    Chih-Hung Chiang

    2011-01-01

    Full Text Available To date liver transplantation is the only effective treatment for end-stage liver diseases. Considering the potential of pluripotency and differentiation into tridermal lineages, induced pluripotent stem cells (iPSCs may serve as an alternative of cell-based therapy. Herein, we investigated the effect of iPSC transplantation on thioacetamide- (TAA- induced acute/fulminant hepatic failure (AHF in mice. Firstly, we demonstrated that iPSCs had the capacity to differentiate into hepatocyte-like cells (iPSC-Heps that expressed various hepatic markers, including albumin, α-fetoprotein, and hepatocyte nuclear factor-3β, and exhibited biological functions. Intravenous transplantation of iPSCs effectively reduced the hepatic necrotic area, improved liver functions and motor activity, and rescued TAA-treated mice from lethal AHF. 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate cell labeling revealed that iPSCs potentially mobilized to the damaged liver area. Taken together, iPSCs can effectively rescue experimental AHF and represent a potentially favorable cell source of cell-based therapy.

  12. Global transcriptional response to Hfe deficiency and dietary iron overload in mouse liver and duodenum.

    Directory of Open Access Journals (Sweden)

    Alejandra Rodriguez

    Full Text Available Iron is an essential trace element whose absorption is usually tightly regulated in the duodenum. HFE-related hereditary hemochromatosis (HH is characterized by abnormally low expression of the iron-regulatory hormone, hepcidin, which results in increased iron absorption. The liver is crucial for iron homeostasis as it is the main production site of hepcidin. The aim of this study was to explore and compare the genome-wide transcriptome response to Hfe deficiency and dietary iron overload in murine liver and duodenum. Illumina arrays containing over 47,000 probes were used to study global transcriptional changes. Quantitative RT-PCR (Q-RT-PCR was used to validate the microarray results. In the liver, the expression of 151 genes was altered in Hfe(-/- mice while dietary iron overload changed the expression of 218 genes. There were 173 and 108 differentially expressed genes in the duodenum of Hfe(-/- mice and mice with dietary iron overload, respectively. There was 93.5% concordance between the results obtained by microarray analysis and Q-RT-PCR. Overexpression of genes for acute phase reactants in the liver and a strong induction of digestive enzyme genes in the duodenum were characteristic of the Hfe-deficient genotype. In contrast, dietary iron overload caused a more pronounced change of gene expression responsive to oxidative stress. In conclusion, Hfe deficiency caused a previously unrecognized increase in gene expression of hepatic acute phase proteins and duodenal digestive enzymes.

  13. Ultra Low Dose Delta 9-Tetrahydrocannabinol Protects Mouse Liver from Ischemia Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Edith Hochhauser

    2015-07-01

    Full Text Available Background/Aims: Ischemia/reperfusion (I/R injury is the main cause of both primary graft dysfunction and primary non-function of liver allografts. Cannabinoids has been reported to attenuate myocardial, cerebral and hepatic I/R oxidative injury. Delta-9-tetrahydrocannabinol (THC, a cannabinoid agonist, is the active components of marijuana. In this study we examined the role of ultralow dose THC (0.002mg/kg in the protection of livers from I/R injury. This extremely low dose of THC was previously found by us to protect the mice brain and heart from a variety of insults. Methods: C57Bl Mice were studied in in vivo model of hepatic segmental (70% ischemia for 60min followed by reperfusion for 6 hours. Results: THC administration 2h prior to the induction of hepatic I/R was associated with significant attenuated elevations of: serum liver transaminases ALT and AST, the hepatic oxidative stress (activation of the intracellular signaling CREB pathway, the acute proinflammatory response (TNF-α, IL-1α, IL-10 and c-FOS hepatic mRNA levels, and ERK signaling pathway activation. This was followed by cell death (the cleavage of the pro-apoptotic caspase 3, DNA fragmentation and TUNEL after 6 hours of reperfusion. Significantly less hepatic injury was detected in the THC treated I/R mice and fewer apoptotic hepatocytes cells were identified by morphological criteria compared with untreated mice. Conclusion: A single ultralow dose THC can reduce the apoptotic, oxidative and inflammatory injury induced by hepatic I/R injury. THC may serve as a potential target for therapeutic intervention in hepatic I/R injury during liver transplantation, liver resection and trauma.

  14. Toxicity monitoring with primary cultured hepatocytes underestimates the acetaminophen-induced inflammatory responses of the mouse liver.

    Science.gov (United States)

    Tachibana, Shinjiro; Shimomura, Akiko; Inadera, Hidekuni

    2011-01-01

    In vitro gene expression profiling with isolated hepatocytes has been used to assess the hepatotoxicity of certain chemicals because of animal welfare issues. However, whether an in vitro system can completely replace the in vivo system has yet to be elucidated in detail. Using a focused microarray established in our laboratory, we examined gene expression profiles in the mouse liver and primary cultured hepatocytes after treatment with different doses of acetaminophen, a widely used analgesic that frequently causes liver injury. The acute hepatotoxicity of acetaminophen was confirmed by showing the induction of an oxidative stress marker, heme oxygenase-1, elevated levels of serum transaminase, and histopathological findings. In vivo microarray and network analysis showed that acetaminophen treatment provoked alterations in relation to the inflammatory response, and that tumor necrosis factor-α plays a central role in related pathway alterations. By contrast, pathway analyses in in vitro isolated hepatocytes did not find such prominent changes in the inflammation-related networks compared with the in vivo situation. Thus, although in vitro gene expression profiles are useful for evaluating the direct toxicity of chemicals, indirect toxicities including inflammatory responses mediated by cell-cell interactions or secondary toxicity due to pathophysiological changes in the whole body may be overlooked. Our results indicate that the in vitro hepatotoxicity prediction system using isolated hepatocytes does not fully reflect the in vivo cellular response. An in vitro system may be appropriate, therefore, for high throughput screening to detect the direct hepatotoxicity of a test compound.

  15. CD8 T cell-mediated protection against liver-stage malaria: Lessons from a mouse model

    Directory of Open Access Journals (Sweden)

    John eHarty

    2014-06-01

    Full Text Available Malaria is a major global health problem, with severe mortality in children living is Sub-Saharan Africa, and there is currently no licensed effective vaccine. However, vaccine-induced protection from Plasmodium infection, the causative agent of malaria, was established for humans in small clinical trials and for rodents in the 1960’s. Soon after, a critical role for memory CD8 T cells in vaccine induced protection against Plasmodium liver-stage infection was established in rodent models and is assumed to apply to humans. However, these seminal early studies have led to only modest advances over the ensuing years in our understanding the basic features of memory CD8 T cells required for protection against liver-stage Plasmodium infection, an issue which has likely impeded the development of effective vaccines for humans. Given the ethical and practical limitations in gaining mechanistic insight from human vaccine and challenge studies, animal models still have an important role in dissecting the basic parameters underlying memory CD8 T cell immunity to Plasmodium. Here, we will highlight recent data from our own work in the mouse model of Plasmodium infection that identify quantitative and qualitative features of protective memory CD8 T cell responses. Finally, these lessons will be discussed in the context of recent findings from clinical trials of vaccine–induced protection in controlled human challenge models.

  16. CD8 T-cell-mediated protection against liver-stage malaria: lessons from a mouse model

    Science.gov (United States)

    Van Braeckel-Budimir, Natalija; Harty, John T.

    2014-01-01

    Malaria is a major global health problem, with severe mortality in children living in sub-Saharan Africa, and there is currently no licensed, effective vaccine. However, vaccine-induced protection from Plasmodium infection, the causative agent of malaria, was established for humans in small clinical trials and for rodents in the 1960s. Soon after, a critical role for memory CD8 T cells in vaccine-induced protection against Plasmodium liver-stage infection was established in rodent models and is assumed to apply to humans. However, these seminal early studies have led to only modest advances over the ensuing years in our understanding the basic features of memory CD8 T cells required for protection against liver-stage Plasmodium infection, an issue which has likely impeded the development of effective vaccines for humans. Given the ethical and practical limitations in gaining mechanistic insight from human vaccine and challenge studies, animal models still have an important role in dissecting the basic parameters underlying memory CD8 T-cell immunity to Plasmodium. Here, we will highlight recent data from our own work in the mouse model of Plasmodium infection that identify quantitative and qualitative features of protective memory CD8 T-cell responses. Finally, these lessons will be discussed in the context of recent findings from clinical trials of vaccine-induced protection in controlled human challenge models. PMID:24936199

  17. Postnatal liver growth and regeneration are independent of c-myc in a mouse model of conditional hepatic c-myc deletion

    Directory of Open Access Journals (Sweden)

    Sanders Jennifer A

    2012-03-01

    Full Text Available Abstract Background The transcription factor c-myc regulates genes involved in hepatocyte growth, proliferation, metabolism, and differentiation. It has also been assigned roles in liver development and regeneration. In previous studies, we made the unexpected observation that c-Myc protein levels were similar in proliferating fetal liver and quiescent adult liver with c-Myc displaying nucleolar localization in the latter. In order to investigate the functional role of c-Myc in adult liver, we have developed a hepatocyte-specific c-myc knockout mouse, c-mycfl/fl;Alb-Cre. Results Liver weight to body weight ratios were similar in control and c-myc deficient mice. Liver architecture was unaffected. Conditional c-myc deletion did not result in compensatory induction of other myc family members or in c-Myc's binding partner Max. Floxed c-myc did have a negative effect on Alb-Cre expression at 4 weeks of age. To explore this relationship further, we used the Rosa26 reporter line to assay Cre activity in the c-myc floxed mice. No significant difference in Alb-Cre activity was found between control and c-mycfl/fl mice. c-myc deficient mice were studied in a nonproliferative model of liver growth, fasting for 48 hr followed by a 24 hr refeeding period. Fasting resulted in a decrease in liver mass and liver protein, both of which recovered upon 24 h of refeeding in the c-mycfl/fl;Alb-Cre animals. There was also no effect of reducing c-myc on recovery of liver mass following 2/3 partial hepatectomy. Conclusions c-Myc appears to be dispensable for normal liver growth during the postnatal period, restoration of liver mass following partial hepatectomy and recovery from fasting.

  18. Studies of Secondary Melanoma on C57BL/6J Mouse Liver Using 1H NMR Metabolomics

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Ju; Isern, Nancy G.; Burton, Sarah D.; Hu, Jian Z.

    2013-10-31

    NMR metabolomics, consisting of solid state high resolution (hr) magic angle spinning (MAS) 1H NMR (1H hr-MAS), liquid state high resolution 1H-NMR, and principal components analysis (PCA) has been used to study secondary metastatic B16-F10 melanoma in C57BL/6J mouse liver . The melanoma group can be differentiated from its control group by PCA analysis of the absolute concentrations or by the absolute peak intensities of metabolites from either 1H hr-MAS NMR data on intact liver tissues or liquid state 1H-NMR spectra on liver tissue extracts. In particular, we found that the absolute concentrations of alanine, glutamate, creatine, creatinine, fumarate and cholesterol are elevated in the melanoma group as compared to controls, while the absolute concentrations of succinate, glycine, glucose, and the family of linear lipids including long chain fatty acids, total choline and acylglycerol are decreased. The ratio of glycerophosphocholine to phosphocholine is increased by about 1.5 fold in the melanoma group, while the absolute concentration of total choline is actually lower in melanoma mice. These results suggest the following picture in secondary melanoma metastasis: Linear lipid levels are decreased by beta oxidation in the melanoma group, which contributes to an increase in the synthesis of cholesterol, and also provides an energy source input for TCA cycle. These findings suggest a link between lipid oxidation, the TCA cycle and the hypoxia-inducible factors (HIF) signal pathway in tumor metastases. Thus this study indicates that the metabolic profile derived from NMR analysis can provide a valuable bio-signature of malignancy and cell hypoxia in metastatic melanoma.

  19. IL-12-based vaccination therapy reverses liver-induced systemic tolerance in a mouse model of hepatitis B virus carrier.

    Science.gov (United States)

    Zeng, Zhutian; Kong, Xiaohui; Li, Fenglei; Wei, Haiming; Sun, Rui; Tian, Zhigang

    2013-10-15

    Liver-induced systemic immune tolerance that occurs during chronic hepadnavirus infection is the biggest obstacle for effective viral clearance. Immunotherapeutic reversal of this tolerance is a promising strategy in the clinic but remains to be explored. In this study, using a hepatitis B virus (HBV)-carrier mouse model, we report that IL-12-based vaccination therapy can efficiently reverse systemic tolerance toward HBV. HBV-carrier mice lost responsiveness to hepatitis B surface Ag (HBsAg) vaccination, and IL-12 alone could not reverse this liver-induced immune tolerance. However, after IL-12-based vaccination therapy, the majority of treated mice became HBsAg(-) in serum; hepatitis B core Ag was also undetectable in hepatocytes. HBV clearance was dependent on HBsAg vaccine-induced anti-HBV immunity. Further results showed that IL-12-based vaccination therapy strongly enhanced hepatic HBV-specific CD8(+) T cell responses, including proliferation and IFN-γ secretion. Systemic HBV-specific CD4(+) T cell responses were also restored in HBV-carrier mice, leading to the arousal of HBsAg-specific follicular Th-germinal center B cell responses and anti-hepatitis B surface Ag Ab production. Recovery of HBsAg-specific responses also correlated with both reduced CD4(+)Foxp3(+) regulatory T cell frequency and an enhanced capacity of effector T cells to overcome inhibition by regulatory T cells. In conclusion, IL-12-based vaccination therapy may reverse liver-induced immune tolerance toward HBV by restoring systemic HBV-specific CD4(+) T cell responses, eliciting robust hepatic HBV-specific CD8(+) T cell responses, and facilitating the generation of HBsAg-specific humoral immunity; thus, this therapy may become a viable approach to treating patients with chronic hepatitis B. PMID:24048897

  20. Hepatitis C virus infection suppresses the interferon response in the liver of the human hepatocyte chimeric mouse.

    Directory of Open Access Journals (Sweden)

    Masataka Tsuge

    Full Text Available BACKGROUND AND AIMS: Recent studies indicate that hepatitis C virus (HCV can modulate the expression of various genes including those involved in interferon signaling, and up-regulation of interferon-stimulated genes by HCV was reported to be strongly associated with treatment outcome. To expand our understanding of the molecular mechanism underlying treatment resistance, we analyzed the direct effects of interferon and/or HCV infection under immunodeficient conditions using cDNA microarray analysis of human hepatocyte chimeric mice. METHODS: Human serum containing HCV genotype 1b was injected into human hepatocyte chimeric mice. IFN-α was administered 8 weeks after inoculation, and 6 hours later human hepatocytes in the mouse livers were collected for microarray analysis. RESULTS: HCV infection induced a more than 3-fold change in the expression of 181 genes, especially genes related to Organismal Injury and Abnormalities, such as fibrosis or injury of the liver (P = 5.90E-16∼3.66E-03. IFN administration induced more than 3-fold up-regulation in the expression of 152 genes. Marked induction was observed in the anti-fibrotic chemokines such as CXCL9, suggesting that IFN treatment might lead not only to HCV eradication but also prevention and repair of liver fibrosis. HCV infection appeared to suppress interferon signaling via significant reduction in interferon-induced gene expression in several genes of the IFN signaling pathway, including Mx1, STAT1, and several members of the CXCL and IFI families (P = 6.0E-12. Genes associated with Antimicrobial Response and Inflammatory Response were also significantly repressed (P = 5.22×10(-10∼1.95×10(-2. CONCLUSIONS: These results provide molecular insights into possible mechanisms used by HCV to evade innate immune responses, as well as novel therapeutic targets and a potential new indication for interferon therapy.

  1. Comparison of the Treatment Efficiency of Bone Marrow-Derived Mesenchymal Stem Cell Transplantation via Tail and Portal Veins in CCl4-Induced Mouse Liver Fibrosis.

    Science.gov (United States)

    Truong, Nhung Hai; Nguyen, Nam Hai; Le, Trinh Van; Vu, Ngoc Bich; Huynh, Nghia; Nguyen, Thanh Van; Le, Huy Minh; Phan, Ngoc Kim; Pham, Phuc Van

    2016-01-01

    Because of self-renewal, strong proliferation in vitro, abundant sources for isolation, and a high differentiation capacity, mesenchymal stem cells are suggested to be potentially therapeutic for liver fibrosis/cirrhosis. In this study, we evaluated the treatment effects of mouse bone marrow-derived mesenchymal stem cells (BM-MSCs) on mouse liver cirrhosis induced by carbon tetrachloride. Portal and tail vein transplantations were examined to evaluate the effects of different injection routes on the liver cirrhosis model at 21 days after transplantation. BM-MSCs transplantation reduced aspartate aminotransferase/alanine aminotransferase levels at 21 days after injection. Furthermore, BM-MSCs induced positive changes in serum bilirubin and albumin and downregulated expression of integrins (600- to 7000-fold), transforming growth factor, and procollagen-α1 compared with the control group. Interestingly, both injection routes ameliorated inflammation and liver cirrhosis scores. All mice in treatment groups had reduced inflammation scores and no cirrhosis. In conclusion, transplantation of BM-MSCs via tail or portal veins ameliorates liver cirrhosis in mice. Notably, there were no differences in treatment effects between tail and portal vein administrations. In consideration of safety, we suggest transfusion of bone marrow-derived mesenchymal stem cells via a peripheral vein as a potential method for liver fibrosis treatment.

  2. Comparison of the Treatment Efficiency of Bone Marrow-Derived Mesenchymal Stem Cell Transplantation via Tail and Portal Veins in CCl4-Induced Mouse Liver Fibrosis

    Directory of Open Access Journals (Sweden)

    Nhung Hai Truong

    2016-01-01

    Full Text Available Because of self-renewal, strong proliferation in vitro, abundant sources for isolation, and a high differentiation capacity, mesenchymal stem cells are suggested to be potentially therapeutic for liver fibrosis/cirrhosis. In this study, we evaluated the treatment effects of mouse bone marrow-derived mesenchymal stem cells (BM-MSCs on mouse liver cirrhosis induced by carbon tetrachloride. Portal and tail vein transplantations were examined to evaluate the effects of different injection routes on the liver cirrhosis model at 21 days after transplantation. BM-MSCs transplantation reduced aspartate aminotransferase/alanine aminotransferase levels at 21 days after injection. Furthermore, BM-MSCs induced positive changes in serum bilirubin and albumin and downregulated expression of integrins (600- to 7000-fold, transforming growth factor, and procollagen-α1 compared with the control group. Interestingly, both injection routes ameliorated inflammation and liver cirrhosis scores. All mice in treatment groups had reduced inflammation scores and no cirrhosis. In conclusion, transplantation of BM-MSCs via tail or portal veins ameliorates liver cirrhosis in mice. Notably, there were no differences in treatment effects between tail and portal vein administrations. In consideration of safety, we suggest transfusion of bone marrow-derived mesenchymal stem cells via a peripheral vein as a potential method for liver fibrosis treatment.

  3. Comparison of the Treatment Efficiency of Bone Marrow-Derived Mesenchymal Stem Cell Transplantation via Tail and Portal Veins in CCl4-Induced Mouse Liver Fibrosis.

    Science.gov (United States)

    Truong, Nhung Hai; Nguyen, Nam Hai; Le, Trinh Van; Vu, Ngoc Bich; Huynh, Nghia; Nguyen, Thanh Van; Le, Huy Minh; Phan, Ngoc Kim; Pham, Phuc Van

    2016-01-01

    Because of self-renewal, strong proliferation in vitro, abundant sources for isolation, and a high differentiation capacity, mesenchymal stem cells are suggested to be potentially therapeutic for liver fibrosis/cirrhosis. In this study, we evaluated the treatment effects of mouse bone marrow-derived mesenchymal stem cells (BM-MSCs) on mouse liver cirrhosis induced by carbon tetrachloride. Portal and tail vein transplantations were examined to evaluate the effects of different injection routes on the liver cirrhosis model at 21 days after transplantation. BM-MSCs transplantation reduced aspartate aminotransferase/alanine aminotransferase levels at 21 days after injection. Furthermore, BM-MSCs induced positive changes in serum bilirubin and albumin and downregulated expression of integrins (600- to 7000-fold), transforming growth factor, and procollagen-α1 compared with the control group. Interestingly, both injection routes ameliorated inflammation and liver cirrhosis scores. All mice in treatment groups had reduced inflammation scores and no cirrhosis. In conclusion, transplantation of BM-MSCs via tail or portal veins ameliorates liver cirrhosis in mice. Notably, there were no differences in treatment effects between tail and portal vein administrations. In consideration of safety, we suggest transfusion of bone marrow-derived mesenchymal stem cells via a peripheral vein as a potential method for liver fibrosis treatment. PMID:26839564

  4. Carbamazepine suppresses calpain-mediated autophagy impairment after ischemia/reperfusion in mouse livers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Sung, E-mail: Jae.Kim@surgery.ufl.edu; Wang, Jin-Hee, E-mail: jin-hee.wang@surgery.ufl.edu; Biel, Thomas G., E-mail: Thomas.Biel@surgery.ufl.edu; Kim, Do-Sung, E-mail: do-sung.kim@surgery.med.ufl.edu; Flores-Toro, Joseph A., E-mail: Joseph.Flores-Toro@surgery.ufl.edu; Vijayvargiya, Richa, E-mail: rvijayvargiya@ufl.edu; Zendejas, Ivan, E-mail: ivan.zendejas@surgery.ufl.edu; Behrns, Kevin E., E-mail: Kevin.Behrns@surgery.ufl.edu

    2013-12-15

    Onset of the mitochondrial permeability transition (MPT) plays a causative role in ischemia/reperfusion (I/R) injury. Current therapeutic strategies for reducing reperfusion injury remain disappointing. Autophagy is a lysosome-mediated, catabolic process that timely eliminates abnormal or damaged cellular constituents and organelles such as dysfunctional mitochondria. I/R induces calcium overloading and calpain activation, leading to degradation of key autophagy-related proteins (Atg). Carbamazepine (CBZ), an FDA-approved anticonvulsant drug, has recently been reported to increase autophagy. We investigated the effects of CBZ on hepatic I/R injury. Hepatocytes and livers from male C57BL/6 mice were subjected to simulated in vitro, as well as in vivo I/R, respectively. Cell death, intracellular calcium, calpain activity, changes in autophagy-related proteins (Atg), autophagic flux, MPT and mitochondrial membrane potential after I/R were analyzed in the presence and absence of 20 μM CBZ. CBZ significantly increased hepatocyte viability after reperfusion. Confocal microscopy revealed that CBZ prevented calcium overloading, the onset of the MPT and mitochondrial depolarization. Immunoblotting and fluorometric analysis showed that CBZ blocked calpain activation, depletion of Atg7 and Beclin-1 and loss of autophagic flux after reperfusion. Intravital multiphoton imaging of anesthetized mice demonstrated that CBZ substantially reversed autophagic defects and mitochondrial dysfunction after I/R in vivo. In conclusion, CBZ prevents calcium overloading and calpain activation, which, in turn, suppresses Atg7 and Beclin-1 depletion, defective autophagy, onset of the MPT and cell death after I/R. - Highlights: • A mechanism of carbamazepine (CBZ)-induced cytoprotection in livers is proposed. • Impaired autophagy is a key event contributing to lethal reperfusion injury. • The importance of autophagy is extended and confirmed in an in vivo model. • CBZ is a potential

  5. Chronic Intake of Japanese Sake Mediates Radiation-Induced Metabolic Alterations in Mouse Liver.

    Directory of Open Access Journals (Sweden)

    Tetsuo Nakajima

    Full Text Available Sake is a traditional Japanese alcoholic beverage that is gaining popularity worldwide. Although sake is reported to have beneficial health effects, it is not known whether chronic sake consumption modulates health risks due to radiation exposure or other factors. Here, the effects of chronic administration of sake on radiation-induced metabolic alterations in the livers of mice were evaluated. Sake (junmai-shu was administered daily to female mice (C3H/He for one month, and the mice were exposed to fractionated doses of X-rays (0.75 Gy/day for the last four days of the sake administration period. For comparative analysis, a group of mice were administered 15% (v/v ethanol in water instead of sake. Metabolites in the liver were analyzed by capillary electrophoresis-time-of-flight mass spectrometry one day following the last exposure to radiation. The metabolite profiles of mice chronically administered sake in combination with radiation showed marked changes in purine, pyrimidine, and glutathione (GSH metabolism, which were only partially altered by radiation or sake administration alone. Notably, the changes in GSH metabolism were not observed in mice treated with radiation following chronic administration of 15% ethanol in water. Changes in several metabolites, including methionine and valine, were induced by radiation alone, but were not detected in the livers of mice who received chronic administration of sake. In addition, the chronic administration of sake increased the level of serum triglycerides, although radiation exposure suppressed this increase. Taken together, the present findings suggest that chronic sake consumption promotes GSH metabolism and anti-oxidative activities in the liver, and thereby may contribute to minimizing the adverse effects associated with radiation.

  6. Vismodegib suppresses TRAIL-mediated liver injury in a mouse model of nonalcoholic steatohepatitis.

    Directory of Open Access Journals (Sweden)

    Petra Hirsova

    Full Text Available Hedgehog signaling pathway activation has been implicated in the pathogenesis of NASH. Despite this concept, hedgehog pathway inhibitors have not been explored. Thus, we examined the effect of vismodegib, a hedgehog signaling pathway inhibitor, in a diet-induced model of NASH. C57BL/6 mice were placed on 3-month chow or FFC (high saturated fats, fructose, and cholesterol diet. One week prior to sacrifice, mice were treated with vismodegib or vehicle. Mice fed the FFC diet developed significant steatosis, which was unchanged by vismodegib therapy. In contrast, vismodegib significantly attenuated FFC-induced liver injury as manifested by reduced serum ALT and hepatic TUNEL-positive cells. In line with the decreased apoptosis, vismodegib prevented FFC-induced strong upregulation of death receptor DR5 and its ligand TRAIL. In addition, FFC-fed mice, but not chow-fed animals, underwent significant liver injury and apoptosis following treatment with a DR5 agonist; however, this injury was prevented by pre-treatment with vismodegib. Consistent with a reduction in liver injury, vismodegib normalized FFC-induced markers of inflammation including mRNA for TNF-α, IL-1β, IL-6, monocyte chemotactic protein-1 and a variety of macrophage markers. Furthermore, vismodegib in FFC-fed mice abrogated indices of hepatic fibrogenesis. In conclusion, inhibition of hedgehog signaling with vismodegib appears to reduce TRAIL-mediated liver injury in a nutrient excess model of NASH, thereby attenuating hepatic inflammation and fibrosis. We speculate that hedgehog signaling inhibition may be salutary in human NASH.

  7. Global Transcriptional Response to Hfe Deficiency and Dietary Iron Overload in Mouse Liver and Duodenum

    OpenAIRE

    Alejandra Rodriguez; Tiina Luukkaala; Fleming, Robert E.; Britton, Robert S.; Bacon, Bruce R.; Seppo Parkkila

    2009-01-01

    Iron is an essential trace element whose absorption is usually tightly regulated in the duodenum. HFE-related hereditary hemochromatosis (HH) is characterized by abnormally low expression of the iron-regulatory hormone, hepcidin, which results in increased iron absorption. The liver is crucial for iron homeostasis as it is the main production site of hepcidin. The aim of this study was to explore and compare the genome-wide transcriptome response to Hfe deficiency and dietary iron overload in...

  8. Immunoregulatory activities of Dendrobium huoshanense polysaccharides in mouse intestine, spleen and liver.

    Science.gov (United States)

    Zha, Xue-Qiang; Zhao, Hong-Wei; Bansal, Vibha; Pan, Li-Hua; Wang, Zheng-Ming; Luo, Jian-Ping

    2014-03-01

    To evaluate the immunomodulating responses in intestine, spleen and liver, 50-200mg/kg of DHP was orally administrated to mice without or with methotrexate. The proliferation of marrow cells, which was performed with the addition of the supernatant of small intestinal lymphocytes isolated from the mice administrated orally with DHP, showed that the intestinal immune response was significantly enhanced in all DHP-treated groups. For the immune response in spleen, all tested doses of DHP remarkably promoted the proliferation of splenic cells and increased the secretion of interferon-γ (IFN-γ). For the immune responses in liver, DHP not only significantly stimulated the proliferation of hepatic cells and the secretion of IFN-γ at all tested doses of DHP, but also significantly elevated the secretion interleukin-4 (IL-4) at the doses of 100 and 200mg/kg. Moreover, DHP could recover methotrexate-injured small intestinal immune function (100 and 200mg/kg) and promoted cell proliferation and IFN-γ production (200mg/kg) in spleen and liver of methotrexate-treated mice. These results suggested that DHP after oral administration possessed immunomodulating effects both in small intestine immune system and in systemic immune system, which were further proved by the mRNA expression of IFN-γ and IL-4.

  9. A High Linoleic Acid Diet does not Induce Inflammation in Mouse Liver or Adipose Tissue.

    Science.gov (United States)

    Vaughan, Roger A; Garrison, Richard L; Stamatikos, Alexis D; Kang, Minsung; Cooper, Jamie A; Paton, Chad M

    2015-11-01

    Recently, the pro-inflammatory effects of linoleic acid (LNA) have been re-examined. It is now becoming clear that relatively few studies have adequately assessed the effects of LNA, independent of obesity. The purpose of this work was to compare the effects of several fat-enriched but non-obesigenic diets on inflammation to provide a more accurate assessment of LNA's ability to induce inflammation. Specifically, 8-week-old male C57Bl/6 mice were fed either saturated (SFA), monounsaturated (MUFA), LNA, or alpha-linolenic acid enriched diets (50 % Kcal from fat, 22 % wt/wt) for 4 weeks. Chow and high-fat, hyper-caloric diets were used as negative and positive controls, respectively. Expression of pro-inflammatory and pro-coagulant markers from epididymal fat, liver, and plasma were measured along with food intake and body weights. Mice fed the high SFA, MUFA, and high-fat diets exhibited increased pro-inflammatory markers in liver and adipose tissue; however, mice fed LNA for four weeks did not display significant changes in pro-inflammatory or pro-coagulant markers in epididymal fat, liver, or plasma. The present study demonstrates that LNA alone is insufficient to induce inflammation. Instead, it is more likely that hyper-caloric diets are responsible for diet-induced inflammation possibly due to adipose tissue remodeling.

  10. Effect of high-fat diet on liver and placenta fatty infiltration in early onset preeclampsia-like mouse model

    Institute of Scientific and Technical Information of China (English)

    SUN Min-na; YANG Zi; MA Rui-qiong

    2012-01-01

    Background Preeclampsia,especially early onset of preeclampsia (PE),is a common and serious disorder with high maternal and perinatal morbidity and mortality.Dietary factor is one of the most important factors which may affect the occurrence and development of the disease.The aim of this study is to investigate the effects of dietary factors on pathological changes of liver and placenta in preeclampsia-like mouse model by establishing the model at multiple stages of gestation.Methods Wild-type (WT) mice were injected subcutaneously with nitric oxide synthase (NOS) inhibitor L-arginine methyl ester (L-NAME,50 mg.kg-1.d-1) to establish PE-like model (L-NAME group) at early-,mid-,and late- pregnant periods respectively; simultaneously,the control mice were injected with normal saline (NS group).All the groups were divided into subgroups,standard chow group (SC),and high-fat diet group (HF).ApoE-/- pregnant mice served as a control group.Systolic blood pressure (SBP),urine protein,and histopathologic changes of placenta and liver in all groups were observed and statistically analyzed.Results In WT and apoE-/- L-NAME subgroups,blood pressure and urine protein were significantly higher than those in all the gestational age matched NS groups (P <0.05).Compared to other groups,remarkable liver fatty infiltration and lipid storage in placenta were found in early- and mid-L-NAME subgroups in apoE-/- mice (P <0.05),especially in the early- and mid-HF+L-NAME subgroups in apoE-/- mice (P <0.05).More lipid storage droplets both in liver and placenta were found in ApoE-/- mice than that of WT groups (P <0.05).Morphology histopathologic examination of placentas showed varying degrees of fibrinoid necrosis and villous interstitial edema in early- and mid-L-NAME both in HF and SC of apoE-/- and WT subgroups compared to NS controls (P <0.05).But there was no significant difference between HF and SC subgroups (P>0.05),and no difference between apoE-/-and WT groups (P>0

  11. RNA-Seq reveals common and unique PXR- and CAR-target gene signatures in the mouse liver transcriptome.

    Science.gov (United States)

    Cui, Julia Yue; Klaassen, Curtis D

    2016-09-01

    entire hepatic transcriptome correlated with a marked change in the expression of many DNA and histone epigenetic modifiers. In conclusion, the present study has revealed known and novel, as well as common and unique targets of PXR and CAR in mouse liver following pharmacological activation using their prototypical ligands. Results from this study will further support the role of these receptors in regulating the homeostasis of xenobiotic and intermediary metabolism in the liver, and aid in distinguishing between PXR and CAR signaling at various physiological and pathophysiological conditions. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.

  12. MiR-152 May Silence Translation of CaMK II and Induce Spontaneous Immune Tolerance in Mouse Liver Transplantation

    Science.gov (United States)

    Wang, Jingcheng; Yan, Sheng; Zhou, Lin; Xie, Haiyang; Chen, Hui; Li, Hui; Zhang, Jinhua; Zhao, Jiacong; Zheng, Shusen

    2014-01-01

    Spontaneous immune tolerance in mouse liver transplantation has always been a hotspot in transplantation-immune research. Recent studies revealed that regulatory T cells (Tregs), hepatic satellite cells and Kupffer cells play a potential role in spontaneous immune tolerance, however the precise mechanism of spontaneous immune tolerance is still undefined. By using Microarray Chips, we investigated different immune regulatory factors to decipher critical mechanisms of spontaneous tolerance after mouse liver transplantation. Allogeneic (C57BL/6-C3H) and syngeneic (C3H-C3H) liver transplantation were performed by 6-8 weeks old male C57BL/6 and C3H mice. Graft samples (N = 4 each group) were collected from 8 weeks post-operation mice. 11 differentially expressed miRNAs in allogeneic grafts (Allografts) vs. syngeneic grafts (Syngrafts) were identified using Agilent Mouse miRNA Chips. It was revealed that 185 genes were modified by the 11 miRNAs, furthermore, within the 185 target genes, 11 of them were tightly correlated with immune regulation after Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and Genbank data cross-comparison. Verified by real-time PCR and western blot, our results indicated that mRNA expression levels of IL-6 and TAB2 were respectively down regulated following miR-142-3p and miR-155 augment. In addition, increased miR-152 just silenced mRNA of CaMK II and down-regulated translation of CaMK II in tolerated liver grafts, which may play a critical role in immune regulation and spontaneous tolerance induction of mouse liver transplantation. PMID:25133393

  13. MiR-152 may silence translation of CaMK II and induce spontaneous immune tolerance in mouse liver transplantation.

    Directory of Open Access Journals (Sweden)

    Yan Wang

    Full Text Available Spontaneous immune tolerance in mouse liver transplantation has always been a hotspot in transplantation-immune research. Recent studies revealed that regulatory T cells (Tregs, hepatic satellite cells and Kupffer cells play a potential role in spontaneous immune tolerance, however the precise mechanism of spontaneous immune tolerance is still undefined. By using Microarray Chips, we investigated different immune regulatory factors to decipher critical mechanisms of spontaneous tolerance after mouse liver transplantation. Allogeneic (C57BL/6-C3H and syngeneic (C3H-C3H liver transplantation were performed by 6-8 weeks old male C57BL/6 and C3H mice. Graft samples (N = 4 each group were collected from 8 weeks post-operation mice. 11 differentially expressed miRNAs in allogeneic grafts (Allografts vs. syngeneic grafts (Syngrafts were identified using Agilent Mouse miRNA Chips. It was revealed that 185 genes were modified by the 11 miRNAs, furthermore, within the 185 target genes, 11 of them were tightly correlated with immune regulation after Gene Ontology (GO, Kyoto Encyclopedia of Genes and Genomes (KEGG analysis and Genbank data cross-comparison. Verified by real-time PCR and western blot, our results indicated that mRNA expression levels of IL-6 and TAB2 were respectively down regulated following miR-142-3p and miR-155 augment. In addition, increased miR-152 just silenced mRNA of CaMK II and down-regulated translation of CaMK II in tolerated liver grafts, which may play a critical role in immune regulation and spontaneous tolerance induction of mouse liver transplantation.

  14. Gene Expression and Gene Ontology Enrichment Analysis for H3K4me3 and H3K4me1 in Mouse Liver and Mouse Embryonic Stem Cell Using ChIP-Seq and RNA-Seq

    OpenAIRE

    Ngoc Tam L. Tran; Huang, Chun-Hsi

    2014-01-01

    Recent study has identified the cis-regulatory elements in the mouse genome as well as their genomic localizations. Recent discoveries have shown the enrichment of H3 lysine 4 trimethylation (H3K4me3) binding as an active promoter and the presence of H3 lysine 4 monomethylation (H3K4me1) outside promoter regions as a mark for an enhancer. In this work, we further identified highly expressed genes by H3K4me3 mark or by both H3K4me3 and H3K4me1 marks in mouse liver using ChIP-Seq and RNA-Seq. W...

  15. Subcellular distribution of Pu-239 in the liver of rat, mouse, Syrian and Chinese hamster

    International Nuclear Information System (INIS)

    The aim of our studies was to elucidate the biochemical mechanisms responsible for the differences in the biological half life of actinides in the liver of different mammalian species. Rats and mice were chosen as models for rapid elimination, and Syrian and Chinese hamsters as models for slow elimination. To distinguish between fixation in lysosomes and mitochondria, the lysosomes were isolated following injection of Triton WR1339 6 days after 239Pu administration. The animals were sacrificed 4 days later. In order to study the possible association with ferritin, 59Fe was also injected. Liver homogenates were subjected to differential and isopycnic centrifugation in a sucrose density gradient. The typical shift in the density of the lysosomal marker acid phosphatase from rho approximately 1.2 to rho approximately 1.1 following Triton WR1339 injection was observed in all species. It was possible therefore to separate lysosomes from other cell organelles, especially mitochondria. It was concluded that: 1) Mitochondria can virtually be excluded as binding sites in all four species; 2) Lysosomes are one important storage site in rats, mice and Syrian hamsters; 3) If 239Pu is bound to another cell constituent in addition to lysosomes in the hamster species (which is not yet proven) its density should be approximately 1.17. (H.K.)

  16. Protoporphyrinogen oxidase: high affinity tetrahydrophthalimide radioligand for the inhibitor/herbicide-binding site in mouse liver mitochondria.

    Science.gov (United States)

    Birchfield, N B; Casida, J E

    1996-01-01

    Protoporphyrinogen oxidase (protox), the last common enzyme in heme and chlorophyll biosynthesis, is the target of several classes of herbicides acting as inhibitors in both plants and mammals. N-(4-Chloro-2-fluoro-5-(propargyloxy)phenyl)-3,4,5,6-tetrahydro phthalimide (a potent protox inhibitor referred to as THP) was synthesized as a candidate radioligand ([3H]-THP) by selective catalytic reduction of 3,6-dihydrophthalic anhydride (DHPA) with tritium gas followed by condensation in 45% yield with 4-chloro-2-fluoro-5-(propargyloxy)aniline. Insertion of tritium at the 3 and 6 carbons of DHPA as well as the expected 4 and 5 carbons resulted in high specific activity [3H]THP (92 Ci/mmol). This radioligand undergoes rapid, specific, saturable, and reversible binding to the inhibitor/herbicide binding site of the protox component of cholate-solubilized mouse liver mitochondria with an apparent Kd of 0.41 nM and Bmax of 0.40 pmol/mg of protein. In the standard assay, mouse preparation (150 micrograms of protein) and [3H]THP (0.5 nM) are incubated in 500 microL of phosphate buffer at pH 7.2 for 15 min at 25 degrees C followed by addition of ammonium sulfate and filtration with glass fiber filters. The potencies of five nitrodiphenyl ethers and two other herbicides as inhibitors of [3H]THP binding correlate well with those for inhibition of protox activity (r2 = 0.97, n = 7), thus validating the binding assay as relevant to enzyme inhibition. It is also suitable to determine in vivo block as illustrated by an approximately 50% decrease in [3H]THP binding in liver mitochondria from mice treated ip with oxyfluorfen at 4 mg/kg. This is the first report of a binding assay for protox in mammals. The high affinity and specific activity of [3H]THP facilitate quantitation of protox and therefore research on a sensitive inhibition site for porphyrin biosynthesis. PMID:8902268

  17. Flow cytometric measurement of the metabolism of benzo [a] pyrene by mouse liver cells in culture

    International Nuclear Information System (INIS)

    The metabolism of benzo[a]pyrene in individual cells was monitored by flow cytometry. The measurements are based on the alterations that occur in the fluorescence emission spectrum of benzo[a]pyrene when it is converted to various metabolities. Using present instrumentation the technique could easily detect 1 x 10/sup 6/ molecules per cells of benzo [a]pyrene and 1 x 10/sup 7/ molecules per cell of the diol epoxide. The analysis of C3H IOT 1/2 mouse fibroblasts growing in culture indicated that there was heterogeneity in the conversion of the parent compound into diol epoxide derivative suggesting that some variation in sensitivity to transformation by benzo[a]pyrene may be due to differences in cellular metabolism

  18. Evaluation of viral and mammalian promoters for driving transgene expression in mouse liver

    International Nuclear Information System (INIS)

    Fifteen luciferase plasmid constructs driven by various promoters including cytomegalovirus (CMV), Rous sarcoma virus (RSV), human serum albumin (SA), α-1 antitrypsin (AAT), cytochrome P450 CYP1A2, CYP2C9, CYP2C18, CYP2D6, CYP3A4, mouse CYP2b10, human amyloid precursor protein (APP), chicken β actin (ACT), nuclear factor κ B (NFκB), and heat shock protein 70 (HS) promoters were hydrodynamically introduced into mouse hepatocytes, and the level and persistence of luciferase gene expression were examined. Eight hours post-gene transfer, the CMV and AAT promoters showed the highest activity, followed by the CYP2D6, HS, and RSV promoters which were slightly less active. The human serum albumin promoter exhibited the lowest activity among the promoters examined. The time course of gene expression showed a two-phase decline in luciferase activity with a rapid phase within First 5-7 days and a slower decline thereafter. Results from Southern and Northern blot analyses revealed a good correlation between the decline of luciferase activity and the decrease in mRNA level, suggesting promoter silencing as the possible mechanism for the observed transient luciferase gene expression. Inclusion of EBN1 and oriP sequences of Epstein-Barr virus into the plasmid extended the period of active transcription for about one week. These results provide important information concerning the role of promoters in regulating transgene expression and for the proper design of plasmids for gene expression and gene therapy

  19. Glutamate Cysteine Ligase—Modulatory Subunit Knockout Mouse Shows Normal Insulin Sensitivity but Reduced Liver Glycogen Storage

    KAUST Repository

    Lavoie, Suzie

    2016-04-21

    Glutathione (GSH) deficits have been observed in several mental or degenerative illness, and so has the metabolic syndrome. The impact of a decreased glucose metabolism on the GSH system is well-known, but the effect of decreased GSH levels on the energy metabolism is unclear. The aim of the present study was to investigate the sensitivity to insulin in the mouse knockout (KO) for the modulatory subunit of the glutamate cysteine ligase (GCLM), the rate-limiting enzyme of GSH synthesis. Compared to wildtype (WT) mice, GCLM-KO mice presented with reduced basal plasma glucose and insulin levels. During an insulin tolerance test, GCLM-KO mice showed a normal fall in glycemia, indicating normal insulin secretion. However, during the recovery phase, plasma glucose levels remained lower for longer in KO mice despite normal plasma glucagon levels. This is consistent with a normal counterregulatory hormonal response but impaired mobilization of glucose from endogenous stores. Following a resident-intruder stress, during which stress hormones mobilize glucose from hepatic glycogen stores, KO mice showed a lower hyperglycemic level despite higher plasma cortisol levels when compared to WT mice. The lower hepatic glycogen levels observed in GCLM-KO mice could explain the impaired glycogen mobilization following induced hypoglycemia. Altogether, our results indicate that reduced liver glycogen availability, as observed in GCLM-KO mice, could be at the origin of their lower basal and challenged glycemia. Further studies will be necessary to understand how a GSH deficit, typically observed in GCLM-KO mice, leads to a deficit in liver glycogen storage.

  20. In vitro metabolism of norbormide in rat, mouse and guinea pig liver preparations.

    Science.gov (United States)

    Ravindran, Shanthinie; Hopkins, Brian; Bova, Sergio; Rennison, David; Brimble, Margaret; Tingle, Malcolm

    2009-01-01

    Differences between species in response to norbormide (NRB) may arise through differential pharmacodynamic and/or pharmacokinetic properties. We hypothesise that species-selectivity is at least partly determined by differences in metabolism based on in vitro data generated in liver preparations from rats, mice and guinea pigs. HPLC separation and LC/MS identification revealed that NRB undergoes metabolism primarily to hydroxylated form that was tentatively identified in both rat and non-rat species with NADPH as the preferred cofactor. However, the metabolic profile and the rate are different between species. Gender differences are also reported in the metabolic rate in rats and we postulate that this may be responsible for different toxic sensitivities seen between sexes. Using this knowledge, we aim to develop pharmacological tool(s) for use in designing a new class of drugs that can be targeted in a tissue-selective manner. Further in vivo pharmacokinetic with receptor affinity studies are warranted. PMID:21783932

  1. A stringent dual control system overseeing transcription and activity of the Cre recombinase for the liver-specific conditional gene knock-out mouse model

    Institute of Scientific and Technical Information of China (English)

    Yu Wu; Yinghua He; Hongyu Zhang; Xinlan Dai; Xiaoyu Zhou; Jun Gu; Guan Wang; Jingde Zhu

    2008-01-01

    Liver cancer is one of the most threatening diseases in Chinese population. Just like in other tissues, tumor initiation and development in liver involve multiple steps of genetic and epigenetic alterations with several unknown details. However, unlike in other tissues, a tis- sue specific inducible Cre recombinase system that allows temporal and spatial deletion of a target DNA fragment is still not available for in vivo functional gene annotation in hepatocytes. In our pursuit to establish such a mouse model, we designed a dual inducible Cre transgene system and tested it in cultured cells. By combining a CCAAT/enhancer binding protein β (C/EBP β) promoter derived Tet-off expression system and the estrogen receptor (ER) mediated functional control, we show a desirable profile of both hepatocyte-specificity and regulability of the Cre expression in a series of critical assessments in the cell culture system, which provides confidence in continua- tion of our ongoing pursuit in mouse.

  2. MiR-152 May Silence Translation of CaMK II and Induce Spontaneous Immune Tolerance in Mouse Liver Transplantation

    OpenAIRE

    Wang, Yan; Tian, Yang; Ding, Yuan; Wang, Jingcheng; Yan, Sheng; Lin ZHOU; Xie, Haiyang; Chen, Hui; Li, Hui; Zhang, Jinhua; Zhao, Jiacong; Zheng, Shusen

    2014-01-01

    Spontaneous immune tolerance in mouse liver transplantation has always been a hotspot in transplantation-immune research. Recent studies revealed that regulatory T cells (Tregs), hepatic satellite cells and Kupffer cells play a potential role in spontaneous immune tolerance, however the precise mechanism of spontaneous immune tolerance is still undefined. By using Microarray Chips, we investigated different immune regulatory factors to decipher critical mechanisms of spontaneous tolerance aft...

  3. Dynamic, Sex-Differential STAT5 and BCL6 Binding to Sex-Biased, Growth Hormone-Regulated Genes in Adult Mouse Liver

    OpenAIRE

    Zhang, Yijing; Laz, Ekaterina V.; Waxman, David J.

    2012-01-01

    Sex-dependent pituitary growth hormone (GH) secretory patterns determine the sex-biased expression of >1,000 genes in mouse and rat liver, affecting lipid and drug metabolism, inflammation, and disease. A fundamental biological question is how robust differential expression can be achieved for hundreds of sex-biased genes simply based on the GH input signal pattern: pulsatile GH stimulation in males versus near-continuous GH exposure in females. STAT5 is an essential transcriptional mediator ...

  4. Advanced computational biology methods identify molecular switches for malignancy in an EGF mouse model of liver cancer.

    Directory of Open Access Journals (Sweden)

    Philip Stegmaier

    Full Text Available The molecular causes by which the epidermal growth factor receptor tyrosine kinase induces malignant transformation are largely unknown. To better understand EGFs' transforming capacity whole genome scans were applied to a transgenic mouse model of liver cancer and subjected to advanced methods of computational analysis to construct de novo gene regulatory networks based on a combination of sequence analysis and entrained graph-topological algorithms. Here we identified transcription factors, processes, key nodes and molecules to connect as yet unknown interacting partners at the level of protein-DNA interaction. Many of those could be confirmed by electromobility band shift assay at recognition sites of gene specific promoters and by western blotting of nuclear proteins. A novel cellular regulatory circuitry could therefore be proposed that connects cell cycle regulated genes with components of the EGF signaling pathway. Promoter analysis of differentially expressed genes suggested the majority of regulated transcription factors to display specificity to either the pre-tumor or the tumor state. Subsequent search for signal transduction key nodes upstream of the identified transcription factors and their targets suggested the insulin-like growth factor pathway to render the tumor cells independent of EGF receptor activity. Notably, expression of IGF2 in addition to many components of this pathway was highly upregulated in tumors. Together, we propose a switch in autocrine signaling to foster tumor growth that was initially triggered by EGF and demonstrate the knowledge gain form promoter analysis combined with upstream key node identification.

  5. Bisphenol S Interacts with Catalase and Induces Oxidative Stress in Mouse Liver and Renal Cells.

    Science.gov (United States)

    Zhang, Rui; Liu, Rutao; Zong, Wansong

    2016-08-31

    Bisphenol S (BPS) is present in multitudinous consumer products and detected in both food and water. It also has been a main substitute for bisphenol A (BPA) in the food-packaging industry. Yet, the toxicity of BPS is not fully understood. The present study of the toxicity of BPS was divided into two parts. First, oxidative stress, cell viability, apoptosis level, and catalase (CAT) activity in mouse hepatocytes and renal cells were investigated after BPS exposure. After 12 h of incubation with BPS, all of these parameters of hepatocytes and renal cells changed by >15% as the concentration of BPS ranged from 0.1 to 1 mM. Second, the direct interaction between BPS and CAT on the molecule level was investigated by multiple spectral methods and molecular docking investigations. BPS changed the structure and the activity of CAT through binding to the Gly 117 residue on the substrate channel of the enzyme. The main binding forces were hydrogen bond and hydrophobic force. PMID:27508457

  6. Bisphenol S Interacts with Catalase and Induces Oxidative Stress in Mouse Liver and Renal Cells.

    Science.gov (United States)

    Zhang, Rui; Liu, Rutao; Zong, Wansong

    2016-08-31

    Bisphenol S (BPS) is present in multitudinous consumer products and detected in both food and water. It also has been a main substitute for bisphenol A (BPA) in the food-packaging industry. Yet, the toxicity of BPS is not fully understood. The present study of the toxicity of BPS was divided into two parts. First, oxidative stress, cell viability, apoptosis level, and catalase (CAT) activity in mouse hepatocytes and renal cells were investigated after BPS exposure. After 12 h of incubation with BPS, all of these parameters of hepatocytes and renal cells changed by >15% as the concentration of BPS ranged from 0.1 to 1 mM. Second, the direct interaction between BPS and CAT on the molecule level was investigated by multiple spectral methods and molecular docking investigations. BPS changed the structure and the activity of CAT through binding to the Gly 117 residue on the substrate channel of the enzyme. The main binding forces were hydrogen bond and hydrophobic force.

  7. Graft versus host disease in the bone marrow, liver and thymus humanized mouse model.

    Directory of Open Access Journals (Sweden)

    Matthew B Greenblatt

    Full Text Available Mice bearing a "humanized" immune system are valuable tools to experimentally manipulate human cells in vivo and facilitate disease models not normally possible in laboratory animals. Here we describe a form of GVHD that develops in NOD/SCID mice reconstituted with human fetal bone marrow, liver and thymus (NS BLT mice. The skin, lungs, gastrointestinal tract and parotid glands are affected with progressive inflammation and sclerosis. Although all mice showed involvement of at least one organ site, the incidence of overt clinical disease was approximately 35% by 22 weeks after reconstitution. The use of hosts lacking the IL2 common gamma chain (NOD/SCID/γc(-/- delayed the onset of disease, but ultimately did not affect incidence. Genetic analysis revealed that particular donor HLA class I alleles influenced the risk for the development of GVHD. At a cellular level, GVHD is associated with the infiltration of human CD4+ T cells into the skin and a shift towards Th1 cytokine production. GVHD also induced a mixed M1/M2 polarization phenotype in a dermal murine CD11b+, MHC class II+ macrophage population. The presence of xenogenic GVHD in BLT mice both presents a major obstacle in the use of humanized mice and an opportunity to conduct preclinical studies on GVHD in a humanized model.

  8. Radiation dose to mouse liver cells from ingestion of tritiated food or water

    International Nuclear Information System (INIS)

    Tritium incorporated into tissues and DNA of mice was studied after daily ingestion of tritiated food or tritiated water. The tritiated food used was a commercial preparation mixed with brine shrimp that had been reared in tritiated sea water. After ingestion of tritiated food or water for up to 22 d, the specific activity of 3H in tissues was measured as tissue-free-water 3H, tissue-bound 3H, and DNA-bound 3H. Carbon-14 glucose was added to food and drinking water to compare the 3H intake from food with that from water. The specific activity of 3H in tissues was then corrected by the specific activity of 14C in tissues to determine the 3H incorporation from the same amount of ingested food and water. DNA-bound 3H after the ingestion of tritiated food was 4.6 times higher than that of tritiated water, while tissue-bound 3H was 2.2 times higher. The radiation dose to liver from 3H incorporated through food was twofold higher than from tritiated water, which was mainly from the high incorporation of 3H into DNA. Our results demonstrated that the dose calculation based on tissue-free-water 3H alone would under-estimate the radiation exposure of the human population exposed to tritiated food

  9. Lichen acids as uncouplers of oxidative phosphorylation of mouse-liver mitochondria.

    Science.gov (United States)

    Abo-Khatwa, A N; al-Robai, A A; al-Jawhari, D A

    1996-01-01

    Three lichen acids-namely, (+)usnic acid, vulpinic acid, and atranorin-were isolated from three lichen species (Usnea articulata, Letharia vulpina, and Parmelia tinctorum, respectively). The effects of these lichen products on mice-liver mitochondrial oxidative functions in various respiratory states and on oxidative phosphorylation were studied polarographically in vitro. The lichen acids exhibited characteristics of the 2,4-dinitrophenol (DNP), a classical uncoupler of oxidative phosphorylation. Thus, they released respiratory control and oligomycin inhibited respiration, hindered ATP synthesis, and enhanced Mg(+2)-ATPase activity. (+)Usnic acid at a concentration of 0.75 microM inhibited ADP/O ratio by 50%, caused maximal stimulation of both state-4 respiration (100%) and ATPase activity (300%). Atranorin was the only lichen acid with no significant effect on ATPase. The uncoupling effect was dose-dependent in all cases. The minimal concentrations required to cause complete uncoupling of oxidative phosphorylation were as follows: (+)usnic acid (1 microM), vulpinic acid, atranorin (5 microM) and DNP (50 microM). It was postulated that the three lichen acids induce uncoupling by acting on the inner mitochondrial membrane through their lipophilic properties and protonophoric activities. PMID:8726330

  10. Ketogenic diet delays the phase of circadian rhythms and does not affect AMP-activated protein kinase (AMPK) in mouse liver.

    Science.gov (United States)

    Genzer, Yoni; Dadon, Maayan; Burg, Chen; Chapnik, Nava; Froy, Oren

    2015-12-01

    Ketogenic diet (KD) is used for weight loss or to treat epilepsy. KD leads to liver AMP-activated protein kinase (AMPK) activation, which would be expected to inhibit gluconeogenesis. However, KD leads to increased hepatic glucose output. As AMPK and its active phosphorylated form (pAMPK) show circadian oscillation, this discrepancy could stem from wrong-time-of-day sampling. The effect of KD was tested on mouse clock gene expression, AMPK, mTOR, SIRT1 and locomotor activity for 2 months and compared to low-fat diet (LFD). KD led to 1.5-fold increased levels of blood glucose and insulin. Brain pAMPK/AMPK ratio was 40% higher under KD, whereas that in liver was not affected. KD led to 40% and 20% down-regulation of the ratio of pP70S6K/P70S6K, the downstream target of mTOR, in the brain and liver, respectively. SIRT1 levels were 40% higher in the brain, but 40% lower in the liver of KD-fed mice. Clock genes showed delayed rhythms under KD. In the brain of KD-fed mice, amplitudes of clock genes were down-regulated, whereas 6-fold up-regulation was found in the liver. The metabolic state under KD indicates reduced satiety in the brain and reduced anabolism alongside increased gluconeogenesis in the liver.

  11. Silymarin attenuated hepatic steatosis through regulation of lipid metabolism and oxidative stress in a mouse model of nonalcoholic fatty liver disease (NAFLD).

    Science.gov (United States)

    Ni, Xunjun; Wang, Haiyan

    2016-01-01

    Silymarin, which derived from the milk thistle plant (silybum marianum), has been used for centuries as a natural remedy for diseases of the liver and biliary tract. Considering the therapeutic potential to liver disease, we tested efficacy of silymarin on hepatic steatosis with a high fat diet (HFD)-induced mouse model of non-alcoholic fatty liver disease (NAFLD), and investigated possible effects on lipid metabolic pathways. In our study, silymarin could attenuate the hepatic steatosis, which was proved by both Oil Red O staining and hepatic triglyceride (TG) level determination. Furthermore, compared with INT-747, a potent and selective FXR agonist, silymarin could preserve plasmatic high-density lipoprotein cholesterol (HDL-C) to a higher level and low-density lipoprotein cholesterol (LDL-C) to a lower level, which benefited more to the circulation system. Through real-time PCR analysis, we clarified a vital protective role of silymarin in mRNA regulation of genes involved in lipid metabolism and oxidative stress. It was also shown that silymarin had no effects on body weight, food intake, and liver transaminase. Taken together, silymarin could attenuate hepatic steatosis in a mouse model of NAFLD through regulation of lipid metabolism and oxidative stress, and benefit to the circulation system. All these findings shed new light on NAFLD treatment. PMID:27158393

  12. Lipoprotein lipase expression exclusively in liver. A mouse model for metabolism in the neonatal period and during cachexia.

    OpenAIRE

    Merkel, M.; Weinstock, P H; Chajek-Shaul, T; Radner, H; B. Yin; Breslow, J L; Goldberg, I J

    1998-01-01

    Lipoprotein lipase (LPL), the rate-limiting enzyme in triglyceride hydrolysis, is normally not expressed in the liver of adult humans and animals. However, liver LPL is found in the perinatal period, and in adults it can be induced by cytokines. To study the metabolic consequences of liver LPL expression, transgenic mice producing human LPL specifically in the liver were generated and crossed onto the LPL knockout (LPL0) background. LPL expression exclusively in liver rescued LPL0 mice from n...

  13. Cyclosporin A induced toxicity in mouse liver slices is only slightly aggravated by Fxr-deficiency and co-occurs with upregulation of pro-inflammatory genes and downregulation of genes involved in mitochondrial functions

    NARCIS (Netherlands)

    Szalowska, Ewa; Pronk, T.E.; Peijnenburg, A.A.C.M.

    2015-01-01

    Background: The transcription factor farnesoid X receptor (FXR) governs bile acid and energy homeostasis, is involved in inflammation, and has protective functions in the liver. In the present study we investigated the effect of Fxr deficiency in mouse precision cut liver slices (PCLS) exposed to

  14. Metabolic studies of prostanozol with the uPA-SCID chimeric mouse model and human liver microsomes.

    Science.gov (United States)

    Geldof, Lore; Lootens, Leen; Decroix, Lieselot; Botrè, Francesco; Meuleman, Philip; Leroux-Roels, Geert; Deventer, Koen; Van Eenoo, Peter

    2016-03-01

    Anabolic androgenic steroids are prohibited by the World Anti-Doping Agency because of their adverse health and performance enhancing effects. Effective control of their misuse by detection in urine requires knowledge about their metabolism. In case of designer steroids, ethical objections limit the use of human volunteers to perform excretion studies. Therefore the suitability of alternative models needs to be investigated. In this study pooled human liver microsomes (HLM) and an uPA(+/+)-SCID chimeric mouse model were used to examine the metabolism of the designer steroid prostanozol as a reference standard. Metabolites were detected by GC-MS (full scan) and LC-MS/MS (precursor ion scan). In total twenty-four prostanozol metabolites were detected with the in vitro and in vivo metabolism studies, which could be grouped into two broad classes, those with a 17-hydroxy- and those with a 17-keto-substituent. Major first phase metabolic sites were tentatively identified as C-3'; C-4 and C-16. Moreover, 3'- and 16β-hydroxy-17-ketoprostanozol could be unequivocally identified, since authentic reference material was available, in both models. Comparison with published data from humans showed a good correlation, except for phase II metabolism. As metabolites were in contrast to the human studies predominantly present in the free fraction. Two types of metabolites ((di)hydroxylated prostanozol metabolites) that have not been described before could be confirmed in a real positive doping control sample. Hence, the results provide further evidence for the applicability of chimeric mice and HLM to perform metabolism studies of designer steroids. PMID:26774429

  15. BENZO[a]PYRENE DIOL EPOXIDE PERTURBATION OF CELL CYCLE KINETICS OF SYNCHRONIZED MOUSE LIVER EPITHELIAL CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Pearlman, A.L.; Navsky, B.N.; Bartholomew, J.C

    1980-07-01

    A cell cycle synchronization system is described for the analysis of the perturbation of cell cycle kinetics and the cycle-phase specificity of chemicals and other agents. We used the system to study the effects of ({+-})r-7, t-8-dihydroxy-t-9, 10-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BaP diol epoxide) upon the cell cycle of mouse liver epithelial cells(NMuLi). BaP diol epoxide(0.6 uM) was added to replated cultures of NMuLi cells that had been synchronized in various stages of the cell cycle by centrifugal elutriation. DNA histograms were obtained by flow cytometry as a function of time after replating. The data were analyzed by a computer modeling routine and reduced to a few graphs illustrating the 'net effects' of the BaP diol epoxide relative to controls. BaP diol epoxide slowed S-phase traversal in all samples relative to their respective control. Traversal through G{sub 2}M was also slowed by at least 50%. BaP diol epoxide had no apparent effect upon G{sub 1} traversal by cycling cells, but delayed the recruitment of quiescent G{sub 0} cells by about 2 hrs. The methods described constitute a powerful new approach for probing the cell cycle effects of a wide variety of agents. The present system appears to be extremely sensitive and capable of characterizing the action of agents on each phase of the cell cycle. The methods are automatable and would allow for the assay and possible differential characterization of mutagens and carcinogens.

  16. Asiatic acid uncouples respiration in isolated mouse liver mitochondria and induces HepG2 cells death.

    Science.gov (United States)

    Lu, Yapeng; Liu, Siyuan; Wang, Ying; Wang, Dang; Gao, Jing; Zhu, Li

    2016-09-01

    Asiatic acid, one of the triterpenoid components isolated from Centella asiatica, has received increasing attention due to a wide variety of biological activities. To date, little is known about its mechanisms of action. Here we examined the cytotoxic effect of asiatic acid on HepG2 cells and elucidated some of the underlying mechanisms. Asiatic acid induced rapid cell death, as well as mitochondrial membrane potential (MMP) dissipation, ATP depletion and cytochrome c release from mitochondria to the cytosol in HepG2 cells. In mitochondria isolated from mouse liver, asiatic acid treatment significantly stimulated the succinate-supported state 4 respiration rate, dissipated the MMP, increased Ca(2+) release from Ca(2+)-loaded mitochondria, decreased ATP content and promoted cytochrome c release, indicating the uncoupling effect of asiatic acid. Hydrogen peroxide (H2O2) produced by succinate-supported mitochondrial respiration was also significantly inhibited by asiatic acid. In addition, asiatic acid inhibited Ca(2+)-induced mitochondrial swelling but did not induce mitochondrial swelling in hyposmotic potassium acetate medium which suggested that asiatic acid may not act as a protonophoric uncoupler. Inhibition of uncoupling proteins (UCPs) or blockade of adenine nucleotide transporter (ANT) attenuated the effect of asiatic acid on MMP dissipation, Ca(2+) release, mitochondrial respiration and HepG2 cell death. When combined inhibition of UCPs and ANT, asiatic acid-mediated uncoupling effect was noticeably alleviated. These results suggested that both UCPs and ANT partially contribute to the uncoupling properties of asiatic acid. In conclusion, asiatic acid is a novel mitochondrial uncoupler and this property is potentially involved in its toxicity on HepG2 cells. PMID:27288117

  17. Lysophosphatidic Acid Alters the Expression Profiles of Angiogenic Factors, Cytokines, and Chemokines in Mouse Liver Sinusoidal Endothelial Cells

    OpenAIRE

    Chia-Hung Chou; Shou-Lun Lai; Cheng-Maw Ho; Wen-Hsi Lin; Chiung-Nien Chen; Po-Huang Lee; Fu-Chuo Peng; Sung-Hsin Kuo; Szu-Yuan Wu; Hong-Shiee Lai

    2015-01-01

    Background and Aims Lysophosphatidic acid (LPA) is a multi-function glycerophospholipid. LPA affects the proliferation of hepatocytes and stellate cells in vitro, and in a partial hepatectomy induced liver regeneration model, the circulating LPA levels and LPA receptor (LPAR) expression levels in liver tissue are significantly changed. Liver sinusoidal endothelial cells (Lsecs) play an important role during liver regeneration. However, the effects of LPA on Lsecs are not well known. Thus, we ...

  18. In vitro metabolism of [14C]methoxychlor in rat, mouse, Japanese quail and rainbow trout in precision-cut liver slices.

    Science.gov (United States)

    Ohyama, K; Maki, S; Sato, K; Kato, Y

    2004-08-01

    1. The in vitro metabolism of [14C]methoxychlor (MXC) has been studied using precision-cut liver slices from the Sprague-Dawley male rat, CD-1 male mouse, WE strain male Japanese quail and juvenile rainbow trout (Oncorhynchus mykiss). The results demonstrated integrated phase I and II metabolism of MXC and species differences in the metabolic profiles were observed. 2. In rat liver slice preparations, MXC was rapidly metabolized to bis-OH-MXC by sequential O-demethylation followed by subsequent O-glucuronidation forming bis-OH-MXC glucuronide. No mono-OH-MXC glucuronide was detected. The doubly conjugated metabolite, bis-OH-MXC 4-O-sulphate 4'-O-glucuronide, was also detected as a rat-specific metabolite. 3. Formation of mono-OH-MXC and its glucuronide was the main metabolic pathway in the mouse and Japanese quail. In contrast to the rat, only minor amounts of bis-OH-MXC glucuronide were detected. A reductively dehalogenated metabolite, dechlorinated mono-OH-MXC glucuronide, was observed only in mouse preparations. 4. In rainbow trout, comparative amounts of both mono- and bis-OH-MXC glucuronide were formed as the major metabolites. Unconjugated forms of these metabolites were detected only as minor products. 5. The different metabolic profiles of MXC observed in the four animal species are possibly due to substrate specificity of contributing CYP450 monooxgenase enzyme(s) in different animal species.

  19. Mechanisms of amiodarone and valproic acid induced liver steatosis in mouse in vivo act as a template for other hepatotoxicity models.

    Science.gov (United States)

    Vitins, Alexa P; Kienhuis, Anne S; Speksnijder, Ewoud N; Roodbergen, Marianne; Luijten, Mirjam; van der Ven, Leo T M

    2014-08-01

    Liver injury is the leading cause of drug-induced toxicity. For the evaluation of a chemical compound to induce toxicity, in this case steatosis or fatty liver, it is imperative to identify markers reflective of mechanisms and processes induced upon exposure, as these will be the earliest changes reflective of disease. Therefore, an in vivo mouse toxicogenomics study was completed to identify common pathways, nuclear receptor (NR) binding sites, and genes regulated by three known human steatosis-inducing compounds, amiodarone (AMD), valproic acid (VPA), and tetracycline (TET). Over 1, 4, and 11 days of treatment, AMD induced changes in clinical chemistry parameters and histopathology consistent with steatosis. Common processes and NR binding sites involved in lipid, retinol, and drug metabolism were found for AMD and VPA, but not for TET, which showed no response. Interestingly, the pattern of enrichment of these common pathways and NR binding sites over time was unique to each compound. Eleven biomarkers of steatosis were identified as dose responsive and time sensitive to toxicity for AMD and VPA. Finally, this in vivo mouse study was compared to an AMD rat in vivo, an AMD mouse primary hepatocyte, and a VPA human primary hepatocyte study to identify concordance for steatosis. We conclude that concordance is found on the process level independent of species, model or dose*time point. PMID:24535564

  20. Identification of the development stage—specific factors in mouse fetal liver binding to the human β—globin gene promoter

    Institute of Scientific and Technical Information of China (English)

    CHENYADI; YULONGHU; 等

    1994-01-01

    In order to elucidate the molecular mechanisms of globin gene expression during embryonic development,the nuclear extracts from mouse hematopoietic tissue at different stages of development have been prepared.By using DNase I footprinting and gel mobility shift assays,the binding of protein factors in these extracts to the human β-globin promoter was analyzed.The differences in the binding patterns of protein factors during development were observed.An erythroid-specific and stage-specific nuclear protein in the nuclear extrace from d 18 mouse fetal liver was identified,which can bind to the sequence(from-66bp to-90bp) of human β-globin promoter.We therefore speculate that the function of this cis-acting element may be similar to stage selector element(SSE) in chicken βA-promoter.

  1. Autophagy-Modulated Human Bone Marrow-Derived Mesenchymal Stem Cells Accelerate Liver Restoration in Mouse Models of Acute Liver Failure

    Science.gov (United States)

    Amiri, Fatemeh; Molaei, Sedigheh; Bahadori, Marzie; Nasiri, Fatemeh; Deyhim, Mohammad Reza; Jalili, Mohammad Ali; Nourani, Mohammad Reza; Habibi Roudkenar, Mehryar

    2016-01-01

    Background: Mesenchymal stem cells (MSCs) have been recently received increasing attention for cell-based therapy, especially in regenerative medicine. However, the low survival rate of these cells restricts their therapeutic applications. It is hypothesized that autophagy might play an important role in cellular homeostasis and survival. This study aims to investigate the regenerative potentials of autophagy-modulated MSCs for the treatment of acute liver failure (ALF) in mice. Methods: ALF was induced in mice by intraperitoneal injection of 1.5 ml/kg carbon tetrachloride. Mice were intravenously infused with MSCs, which were suppressed in their autophagy pathway. Blood and liver samples were collected at different intervals (24, 48 and 72 h) after the transplantation of MSCs. Both the liver enzymes and tissue necrosis levels were evaluated using biochemical and histopathological assessments. The survival rate of the transplanted mice was also recorded during one week. Results: Biochemical and pathological results indicated that 1.5 ml/kg carbon tetrachloride induces ALF in mice. A significant reduction of liver enzymes and necrosis score were observed in autophagy-modulated MSC-transplanted mice compared to sham (with no cell therapy) after 24 h. After 72 h, liver enzymes reached their normal levels in mice transplanted with autophagy-suppressed MSCs. Interestingly, normal histology without necrosis was also observed. Conclusion: Autophagy suppression in MSCs ameliorates their liver regeneration potentials due to paracrine effects and might be suggested as a new strategy for the improvement of cell therapy in ALF. PMID:26899739

  2. Editor's Highlight: Neonatal Activation of the Xenobiotic-Sensors PXR and CAR Results in Acute and Persistent Down-regulation of PPARα-Signaling in Mouse Liver.

    Science.gov (United States)

    Li, Cindy Yanfei; Cheng, Sunny Lihua; Bammler, Theo K; Cui, Julia Yue

    2016-10-01

    Safety concerns have emerged regarding the potential long-lasting effects due to developmental exposure to xenobiotics. The pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are critical xenobiotic-sensing nuclear receptors that are highly expressed in liver. The goal of this study was to test our hypothesis that neonatal exposure to PXR- or CAR-activators not only acutely but also persistently regulates the expression of drug-processing genes (DPGs). A single dose of the PXR-ligand PCN (75 mg/kg), CAR-ligand TCPOBOP (3 mg/kg), or vehicle (corn oil) was administered intraperitoneally to 3-day-old neonatal wild-type mice. Livers were collected 24 h post-dose or from adult mice at 60 days of age, and global gene expression of these mice was determined using Affymetrix Mouse Transcriptome Assay 1.0. In neonatal liver, PCN up-regulated 464 and down-regulated 449 genes, whereas TCPOBOP up-regulated 308 and down-regulated 112 genes. In adult liver, there were 15 persistently up-regulated and 22 persistently down-regulated genes following neonatal exposure to PCN, as well as 130 persistently up-regulated and 18 persistently down-regulated genes following neonatal exposure to TCPOBOP. Neonatal exposure to both PCN and TCPOBOP persistently down-regulated multiple Cyp4a members, which are prototypical-target genes of the lipid-sensor PPARα, and this correlated with decreased PPARα-binding to the Cyp4a gene loci. RT-qPCR, western blotting, and enzyme activity assays in livers of wild-type, PXR-null, and CAR-null mice confirmed that the persistent down-regulation of Cyp4a was PXR and CAR dependent. In conclusion, neonatal exposure to PXR- and CAR-activators both acutely and persistently regulates critical genes involved in xenobiotic and lipid metabolism in liver.

  3. N-hydroxylation of 4-aminobiphenyl by CYP2E1 produces oxidative stress in a mouse model of chemically induced liver cancer.

    Science.gov (United States)

    Wang, Shuang; Sugamori, Kim S; Tung, Aveline; McPherson, J Peter; Grant, Denis M

    2015-04-01

    4-Aminobiphenyl (ABP) is a trace component of cigarette smoke and hair dyes, a suspected human carcinogen and a potent rodent liver carcinogen. Postnatal exposure of mice to ABP results in a higher incidence of liver tumors in males than in females, paralleling the sex difference in human liver cancer incidence. A traditional model of ABP tumorigenesis involves initial CYP1A2-mediated N-hydroxylation, which eventually leads to production of mutagenic ABP-DNA adducts that initiate tumor growth. However, several studies have found no correlation between sex or CYP1A2 function and the DNA-damaging, mutagenic, or tumorigenic effects of ABP. Oxidative stress may be an important etiological factor for liver cancer, and it has also been linked to ABP exposure. The goals of this study were to identify novel enzyme(s) that contribute to ABP N-oxidation, and to investigate a potential role for oxidative stress in ABP liver tumorigenicity. Isozyme-selective inhibition experiments using liver microsomes from wild-type and genetically modified mice identified CYP2E1 as a major ABP N-hydroxylating enzyme. The N-hydroxylation of ABP by transiently expressed CYP2E1 produced oxidative stress in cultured mouse hepatoma cells. In vivo postnatal exposure of mice to a tumorigenic dose of ABP also produced oxidative stress in male wild-type mice, but not in male Cyp2e1(-/-) mice or in female mice. However, a stronger NRF2-associated antioxidant response was observed in females. Our results identify CYP2E1 as a novel ABP-N-oxidizing enzyme, and suggest that sex differences in CYP2E1-dependent oxidative stress and antioxidant responses to ABP may contribute to the observed sex difference in tumor incidence. PMID:25601990

  4. Identification of compounds from high-fat and extra virgin olive oil-supplemented diets in whole mouse liver extracts and isolated mitochondria using mass spectrometry.

    Science.gov (United States)

    dos Santos, Gustavo Aparecido; Ferreira, Mônica Siqueira; de Oliveira, Diogo Noin; de Oliveira, Vanessa; Siqueira-Santos, Edilene S; Cintra, Dennys Esper Corrêa; Castilho, Roger Frigério; Velloso, Lício Augusto; Catharino, Rodrigo Ramos

    2015-07-01

    Nonalcoholic steatohepatitis (NASH) is a fatty liver disorder that could be improved with extra virgin olive oil (EVOO) supplementation in diet. We propose the monitoring, in whole mouse liver extracts and in isolated mitochondria, of the absorption of compounds from three different diets: standard (CT), high-fat (HFD) and high-fat supplemented with EVOO (HFSO). Male mice were submitted to one of the following three diets: CT or HFD for 16 weeks or HFD for 8 weeks followed by additional 8 weeks with HFSO. Following this period, liver was extracted for histological evaluation, mitochondria isolation and mass spectrometry analyses. Diets, liver extracts and Percoll-purified mitochondria were analyzed using ESI-MS and the lipidomics approach. Morphological, histological and spectrometric results indicated a decrease in NASH severity with EVOO supplementation in comparison with animals maintained with HFD. Spectrometric data also demonstrated that some compounds presented on the diets are absorbed by the mitochondria. EVOO was shown to be a potential therapeutic alternative in food for NASH. Our results are in accordance with the proposition that the major factor that influences different responses to diets is their composition - and not only calories - especially when it comes to studies on obesity.

  5. Early stage transplantation of bone marrow cells markedly ameliorates copper metabolism and restores liver function in a mouse model of Wilson disease

    Directory of Open Access Journals (Sweden)

    Wang Chuhuai

    2011-06-01

    Full Text Available Abstract Background Recent studies have demonstrated that normal bone marrow (BM cells transplantation can correct liver injury in a mouse model of Wilson disease (WD. However, it still remains unknown when BM cells transplantation should be administered. The aim of this study was to investigate the potential impact of normal BM cells transplantation at different stages of WD to correct liver injury in toxic milk (tx mice. Methods Recipient tx mice were sublethally irradiated (5 Gy prior to transplantation. The congenic wild-type (DL BM cells labeled with CM-DiI were transplanted via caudal vein injection into tx mice at the early (2 months of age or late stage (5 months of age of WD. The same volume of saline or tx BM cells were injected as controls. The DL donor cell population, copper concentration, serum ceruloplasmin oxidase activity and aspartate aminotransferase (AST levels in the various groups were evaluated at 1, 4, 8 and 12 weeks post-transplant, respectively. Results The DL BM cells population was observed from 1 to 12 weeks and peaked by the 4th week in the recipient liver after transplantation. DL BM cells transplantation during the early stage significantly corrected copper accumulation, AST across the observed time points and serum ceruloplasmin oxidase activity through 8 to 12 weeks in tx mice compared with those treated with saline or tx BM cells (all P P P > 0.05. Conclusions Early stage transplantation of normal BM cells is better than late stage transplantation in correcting liver function and copper metabolism in a mouse model of WD.

  6. Effect of diphenyl ether herbicides and oxadiazon on porphyrin biosynthesis in mouse liver, rat primary hepatocyte culture and HepG2 cells.

    Science.gov (United States)

    Krijt, J; van Holsteijn, I; Hassing, I; Vokurka, M; Blaauboer, B J

    1993-01-01

    The effects of the herbicides fomesafen, oxyfluorfen, oxadiazon and fluazifop-butyl on porphyrin accumulation in mouse liver, rat primary hepatocyte culture and HepG2 cells were investigated. Ten days of herbicide feeding (0.25% in the diet) increased the liver porphyrins in male C57B1/6J mice from 1.4 +/- 0.6 to 4.8 +/- 2.1 (fomesafen) 16.9 +2- 2.9 (oxyfluorfen) and 25.9 +/- 3.1 (oxadiazon) nmol/g wet weight, respectively. Fluazifop-butyl had no effect on liver porphyrin metabolism. Fomesafen, oxyfluorfen and oxadiazon increased the cellular porphyrin content of rat hepatocytes after 24 h of incubation (control, 3.2 pmol/mg protein, fomesafen, oxyfluorfen and oxadiazon at 0.125 mM concentration 51.5, 54.3 and 44.0 pmol/mg protein, respectively). The porphyrin content of HepG2 cells increased from 1.6 to 18.2, 10.6 and 9.2 pmol/mg protein after 24 h incubation with the three herbicides. Fluazifop-butyl increased hepatic cytochrome P450 levels and ethoxy- and pentoxyresorufin O-dealkylase (EROD and PROD) activity, oxyfluorfen increased PROD activity. Peroxisomal palmitoyl CoA oxidation increased after fomesafen and fluazifop treatment to about 500% of control values both in mouse liver and rat hepatocytes. Both rat hepatocytes and HepG2 cells can be used as a test system for the porphyrogenic potential of photobleaching herbicides. PMID:8517781

  7. Up-regulation of nucleotide excision repair in mouse lung and liver following chronic exposure to aflatoxin B{sub 1} and its dependence on p53 genotype

    Energy Technology Data Exchange (ETDEWEB)

    Mulder, Jeanne E. [Pharmacology and Toxicology Graduate Program, Department of Biomedical and Molecular Sciences, Queen' s University Kingston, Ontario K7L 3N6 (Canada); Bondy, Genevieve S.; Mehta, Rekha [Toxicology Research Division, 2202D, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario K1A 0K9 (Canada); Massey, Thomas E., E-mail: masseyt@queensu.ca [Pharmacology and Toxicology Graduate Program, Department of Biomedical and Molecular Sciences, Queen' s University Kingston, Ontario K7L 3N6 (Canada)

    2014-03-01

    Aflatoxin B{sub 1} (AFB{sub 1}) is biotransformed in vivo into an epoxide metabolite that forms DNA adducts that may induce cancer if not repaired. p53 is a tumor suppressor gene implicated in the regulation of global nucleotide excision repair (NER). Male heterozygous p53 knockout (B6.129-Trp53{sup tm1Brd}N5, Taconic) and wild-type mice were exposed to 0, 0.2 or 1.0 ppm AFB{sub 1} for 26 weeks. NER activity was assessed with an in vitro assay, using AFB{sub 1}-epoxide adducted plasmid DNA as a substrate. For wild-type mice, repair of AFB{sub 1}–N7-Gua adducts was 124% and 96% greater in lung extracts from mice exposed to 0.2 ppm and 1.0 ppm AFB{sub 1} respectively, and 224% greater in liver extracts from mice exposed to 0.2 ppm AFB{sub 1} (p < 0.05). In heterozygous p53 knockout mice, repair of AFB{sub 1}–N7-Gua was only 45% greater in lung extracts from mice exposed to 0.2 ppm AFB{sub 1} (p < 0.05), and no effect was observed in lung extracts from mice treated with 1.0 ppm AFB{sub 1} or in liver extracts from mice treated with either AFB{sub 1} concentration. p53 genotype did not affect basal levels of repair. AFB{sub 1} exposure did not alter repair of AFB{sub 1}-derived formamidopyrimidine adducts in lung or liver extracts of either mouse genotype nor did it affect XPA or XPB protein levels. In summary, chronic exposure to AFB{sub 1} increased NER activity in wild-type mice, and this response was diminished in heterozygous p53 knockout mice, indicating that loss of one allele of p53 limits the ability of NER to be up-regulated in response to DNA damage. - Highlights: • Mice are chronically exposed to low doses of the mycotoxin aflatoxin B{sub 1} (AFB{sub 1}). • The effects of AFB{sub 1} and p53 status on nucleotide excision repair are investigated. • AFB{sub 1} increases nucleotide excision repair in wild type mouse lung and liver. • This increase is attenuated in p53 heterozygous mouse lung and liver. • Results portray the role of p53 in

  8. Humanizing π-class glutathione S-transferase regulation in a mouse model alters liver toxicity in response to acetaminophen overdose.

    Directory of Open Access Journals (Sweden)

    Matthew P Vaughn

    Full Text Available BACKGROUND: Glutathione S-transferases (GSTs metabolize drugs and xenobiotics. Yet despite high protein sequence homology, expression of π-class GSTs, the most abundant of the enzymes, varies significantly between species. In mouse liver, hepatocytes exhibit high mGstp expression, while in human liver, hepatocytes contain little or no hGSTP1 mRNA or hGSTP1 protein. π-class GSTs are known to be critical determinants of liver responses to drugs and toxins: when treated with high doses of acetaminophen, mGstp1/2+/+ mice suffer marked liver damage, while mGstp1/2-/- mice escape liver injury. METHODOLOGY/PRINCIPAL FINDINGS: To more faithfully model the contribution of π-class GSTs to human liver toxicology, we introduced hGSTP1, with its exons, introns, and flanking sequences, into the germline of mice carrying disrupted mGstp genes. In the resultant hGSTP1+mGstp1/2-/- strain, π-class GSTs were regulated differently than in wild-type mice. In the liver, enzyme expression was restricted to bile duct cells, Kupffer cells, macrophages, and endothelial cells, reminiscent of human liver, while in the prostate, enzyme production was limited to basal epithelial cells, reminiscent of human prostate. The human patterns of hGSTP1 transgene regulation were accompanied by human patterns of DNA methylation, with bisulfite genomic sequencing revealing establishment of an unmethylated CpG island sequence encompassing the gene promoter. Unlike wild-type or mGstp1/2-/- mice, when hGSTP1+mGstp1/2-/- mice were overdosed with acetaminophen, liver tissues showed limited centrilobular necrosis, suggesting that π-class GSTs may be critical determinants of toxin-induced hepatocyte injury even when not expressed by hepatocytes. CONCLUSIONS: By recapitulating human π-class GST expression, hGSTP1+mGstp1/2-/- mice may better model human drug and xenobiotic toxicology.

  9. 匹格列酮抑制小鼠肝切除术后肝脏再生%Pioglitazone inhibits mouse liver regeneration induced by partial hepatectomy

    Institute of Scientific and Technical Information of China (English)

    程张军; 杨平华; 周家华; 沈锋

    2012-01-01

    目的:探讨匹格列酮在小鼠肝切除术后肝脏再生中的作用.方法:对C57BL/6J小鼠实施2/3肝切除,建立小鼠肝再生模型.实验组小鼠按体重给予匹格列酮20 mg· kg-1·d-1口服,对照组给予安慰剂口服,在术后不同时间点收集小鼠残余肝脏和血清,计算肝脏体重比;监测术后肝功能和血糖变化;H&E染色观察肝脏形态学变化,免疫组化染色观察肝细胞增殖情况.结果:匹格列酮20 mg· kg-1·d-1对小鼠术后肝功能和血糖无明显影响.与对照组相比,匹格列酮组小鼠术后肝脏生长缓慢,肝细胞增殖受到抑制(P<0.05).结论:匹格列酮抑制小鼠肝切除术后肝脏再生.%AIM: To investigate the effects of pioglitazone on mouse liver regeneration induced by partial hepatectomy. METHODS: 2/3 partial hepatectomy was performed in C57BL/6J mice. The experimental group mice were treated with pioglitazone (20 mg · kg-1 · d-1 ) by oral ga-vage. The control group mice were treated with vehicle. Mouse serum and liver tissue harvest were performed at serials time point post operation. The liver/body weight ratio were calculated; liver histology was assessed by H&.E staining; serum transaminase and glucose were determined by biochemistry assay. Hepatocellular proliferation was eveluated by IHC staining of Ki67 and PH3. RESULTS: There were no hepatic toxic and. side effects caused by pioglitazone under the given dosage. Pioglitazone didn't impair the metabolism of serum glucose. The liver growth and hepatocyte proliferation were delayed and inhibited in pioglitazone treated mice in comparison to that in control mice(P-<0. 05). CONCLUSION: Pioglitazone inhibits liver regeneration following partial hepatectomy in mice.

  10. Effective treatment of steatosis and steatohepatitis by fibroblast growth factor 1 in mouse models of nonalcoholic fatty liver disease

    NARCIS (Netherlands)

    Liu, Weilin; Struik, Dicky; Nies, Vera J M; Jurdzinski, Angelika; Harkema, Liesbeth; de Bruin, Alain; Verkade, Henkjan J; Downes, Michael; Evans, Ronald M; van Zutphen, Tim; Jonker, Johan W

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder and is strongly associated with obesity and type 2 diabetes. Currently, there is no approved pharmacological treatment for this disease, but improvement of insulin resistance using peroxisome proliferator-activated re

  11. Genome-Wide Profiling of Liver X Receptor, Retinoid X Receptor, and Peroxisome Proliferator-Activated Receptor α in Mouse Liver Reveals Extensive Sharing of Binding Sites

    DEFF Research Database (Denmark)

    Boergesen, Michael; Pedersen, Thomas Åskov; Gross, Barbara;

    2012-01-01

    The liver X receptors (LXRs) are nuclear receptors that form permissive heterodimers with retinoid X receptor (RXR) and are important regulators of lipid metabolism in the liver. We have recently shown that RXR agonist-induced hypertriglyceridemia and hepatic steatosis in mice are dependent on LXRs...... increases the genomic binding of RXR, whereas the LXR agonist T0901317 greatly increases both LXR and RXR binding. Functional annotation of putative direct LXR target genes revealed a significant association with classical LXR-regulated pathways as well as peroxisome proliferator-activated receptor (PPAR...

  12. Acrolein, a highly toxic aldehyde generated under oxidative stress in vivo, aggravates the mouse liver damage after acetaminophen overdose.

    Science.gov (United States)

    Arai, Tomoya; Koyama, Ryo; Yuasa, Makoto; Kitamura, Daisuke; Mizuta, Ryushin

    2014-01-01

    Although acetaminophen-induced liver injury in mice has been extensively studied as a model of human acute drug-induced hepatitis, the mechanism of liver injury remains unclear. Liver injury is believed to be initiated by metabolic conversion of acetaminophen to the highly reactive intermediate N-acetyl p-benzoquinoneimine, and is aggravated by subsequent oxidative stress via reactive oxygen species (ROS), including hydrogen peroxide (H2O2) and the hydroxyl radical (•OH). In this study, we found that a highly toxic unsaturated aldehyde acrolein, a byproduct of oxidative stress, has a major role in acetaminophen-induced liver injury. Acetaminophen administration in mice resulted in liver damage and increased acrolein-protein adduct formation. However, both of them were decreased by treatment with N-acetyl-L-cysteine (NAC) or sodium 2-mercaptoethanesulfonate (MESNA), two known acrolein scavengers. The specificity of NAC and MESNA was confirmed in cell culture, because acrolein toxicity, but not H2O2 or •OH toxicity, was inhibited by NAC and MESNA. These results suggest that acrolein may be more strongly correlated with acetaminophen-induced liver injury than ROS, and that acrolein produced by acetaminophen-induced oxidative stress can spread from dying cells at the primary injury site, causing damage to the adjacent cells and aggravating liver injury.

  13. Proteinase activated receptor 1 mediated fibrosis in a mouse model of liver injury: a role for bone marrow derived macrophages.

    Directory of Open Access Journals (Sweden)

    Yiannis N Kallis

    Full Text Available Liver fibrosis results from the co-ordinated actions of myofibroblasts and macrophages, a proportion of which are of bone marrow origin. The functional effect of such bone marrow-derived cells on liver fibrosis is unclear. We examine whether changing bone marrow genotype can down-regulate the liver's fibrotic response to injury and investigate mechanisms involved. Proteinase activated receptor 1 (PAR1 is up-regulated in fibrotic liver disease in humans, and deficiency of PAR1 is associated with reduced liver fibrosis in rodent models. In this study, recipient mice received bone marrow transplantation from PAR1-deficient or wild-type donors prior to carbon tetrachloride-induced liver fibrosis. Bone marrow transplantation alone from PAR1-deficient mice was able to confer significant reductions in hepatic collagen content and activated myofibroblast expansion on wild-type recipients. This effect was associated with a decrease in hepatic scar-associated macrophages and a reduction in macrophage recruitment from the bone marrow. In vitro, PAR1 signalling on bone marrow-derived macrophages directly induced their chemotaxis but did not stimulate proliferation. These data suggest that the bone marrow can modulate the fibrotic response of the liver to recurrent injury. PAR1 signalling can contribute to this response by mechanisms that include the regulation of macrophage recruitment.

  14. Chemotactic and inflammatory responses in the liver and brain are associated with pathogenesis of Rift Valley fever virus infection in the mouse.

    Directory of Open Access Journals (Sweden)

    Kimberly K Gray

    Full Text Available Rift Valley fever virus (RVFV is a major human and animal pathogen associated with severe disease including hemorrhagic fever or encephalitis. RVFV is endemic to parts of Africa and the Arabian Peninsula, but there is significant concern regarding its introduction into non-endemic regions and the potentially devastating effect to livestock populations with concurrent infections of humans. To date, there is little detailed data directly comparing the host response to infection with wild-type or vaccine strains of RVFV and correlation with viral pathogenesis. Here we characterized clinical and systemic immune responses to infection with wild-type strain ZH501 or IND vaccine strain MP-12 in the C57BL/6 mouse. Animals infected with live-attenuated MP-12 survived productive viral infection with little evidence of clinical disease and minimal cytokine response in evaluated tissues. In contrast, ZH501 infection was lethal, caused depletion of lymphocytes and platelets and elicited a strong, systemic cytokine response which correlated with high virus titers and significant tissue pathology. Lymphopenia and platelet depletion were indicators of disease onset with indications of lymphocyte recovery correlating with increases in G-CSF production. RVFV is hepatotropic and in these studies significant clinical and histological data supported these findings; however, significant evidence of a pro-inflammatory response in the liver was not apparent. Rather, viral infection resulted in a chemokine response indicating infiltration of immunoreactive cells, such as neutrophils, which was supported by histological data. In brains of ZH501 infected mice, a significant chemokine and pro-inflammatory cytokine response was evident, but with little pathology indicating meningoencephalitis. These data suggest that RVFV pathogenesis in mice is associated with a loss of liver function due to liver necrosis and hepatitis yet the long-term course of disease for those that

  15. Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver.

    Directory of Open Access Journals (Sweden)

    Guillaume Rey

    2011-02-01

    Full Text Available The mammalian circadian clock uses interlocked negative feedback loops in which the heterodimeric basic helix-loop-helix transcription factor BMAL1/CLOCK is a master regulator. While there is prominent control of liver functions by the circadian clock, the detailed links between circadian regulators and downstream targets are poorly known. Using chromatin immunoprecipitation combined with deep sequencing we obtained a time-resolved and genome-wide map of BMAL1 binding in mouse liver, which allowed us to identify over 2,000 binding sites, with peak binding narrowly centered around Zeitgeber time 6. Annotation of BMAL1 targets confirms carbohydrate and lipid metabolism as the major output of the circadian clock in mouse liver. Moreover, transcription regulators are largely overrepresented, several of which also exhibit circadian activity. Genes of the core circadian oscillator stand out as strongly bound, often at promoter and distal sites. Genomic sequence analysis of the sites identified E-boxes and tandem E1-E2 consensus elements. Electromobility shift assays showed that E1-E2 sites are bound by a dimer of BMAL1/CLOCK heterodimers with a spacing-dependent cooperative interaction, a finding that was further validated in transactivation assays. BMAL1 target genes showed cyclic mRNA expression profiles with a phase distribution centered at Zeitgeber time 10. Importantly, sites with E1-E2 elements showed tighter phases both in binding and mRNA accumulation. Finally, analyzing the temporal profiles of BMAL1 binding, precursor mRNA and mature mRNA levels showed how transcriptional and post-transcriptional regulation contribute differentially to circadian expression phase. Together, our analysis of a dynamic protein-DNA interactome uncovered how genes of the core circadian oscillator crosstalk and drive phase-specific circadian output programs in a complex tissue.

  16. Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation.

    Science.gov (United States)

    Broutier, Laura; Andersson-Rolf, Amanda; Hindley, Christopher J; Boj, Sylvia F; Clevers, Hans; Koo, Bon-Kyoung; Huch, Meritxell

    2016-09-01

    Adult somatic tissues have proven difficult to expand in vitro, largely because of the complexity of recreating appropriate environmental signals in culture. We have overcome this problem recently and developed culture conditions for adult stem cells that allow the long-term expansion of adult primary tissues from small intestine, stomach, liver and pancreas into self-assembling 3D structures that we have termed 'organoids'. We provide a detailed protocol that describes how to grow adult mouse and human liver and pancreas organoids, from cell isolation and long-term expansion to genetic manipulation in vitro. Liver and pancreas cells grow in a gel-based extracellular matrix (ECM) and a defined medium. The cells can self-organize into organoids that self-renew in vitro while retaining their tissue-of-origin commitment, genetic stability and potential to differentiate into functional cells in vitro (hepatocytes) and in vivo (hepatocytes and endocrine cells). Genetic modification of these organoids opens up avenues for the manipulation of adult stem cells in vitro, which could facilitate the study of human biology and allow gene correction for regenerative medicine purposes. The complete protocol takes 1-4 weeks to generate self-renewing 3D organoids and to perform genetic manipulation experiments. Personnel with basic scientific training can conduct this protocol. PMID:27560176

  17. Liver metastases

    Science.gov (United States)

    Metastases to the liver; Metastatic liver cancer; Liver cancer - metastatic; Colorectal cancer - liver metastases; Colon cancer - liver metastases; Esophageal cancer - liver metastases; Lung cancer - liver metastases; Melanoma - liver ...

  18. Remarkable heterogeneity displayed by oval cells in rat and mouse models of stem cell-mediated liver regeneration

    DEFF Research Database (Denmark)

    Jelnes, Peter; Santoni-Rugiu, Eric; Rasmussen, Morten;

    2007-01-01

    the molecular phenotypes of oval cells in several of the most commonly used protocols of stem cell-mediated liver regeneration-namely, treatment with 2-acetylaminofluorene and partial (70%) hepatectomy (AAF/PHx); a choline-deficient, ethionine-supplemented (CDE) diet; a 3,5-diethoxycarbonyl-1,4-dihydro......The experimental protocols used in the investigation of stem cell-mediated liver regeneration in rodents are characterized by activation of the hepatic stem cell compartment in the canals of Hering followed by transit amplification of oval cells and their subsequent differentiation along hepatic...... remarkable phenotypic discrepancies exhibited by oval cells in stem cell-mediated liver regeneration between rats and mice and underline the importance of careful extrapolation between individual species....

  19. Cell Based Drug Delivery: Micrococcus luteus Loaded Neutrophils as Chlorhexidine Delivery Vehicles in a Mouse Model of Liver Abscesses in Cattle.

    Science.gov (United States)

    Wendel, Sebastian O; Menon, Sailesh; Alshetaiwi, Hamad; Shrestha, Tej B; Chlebanowski, Lauren; Hsu, Wei-Wen; Bossmann, Stefan H; Narayanan, Sanjeev; Troyer, Deryl L

    2015-01-01

    The recent WHO report on antibiotic resistances shows a dramatic increase of microbial resistance against antibiotics. With only a few new antibiotics in the pipeline, a different drug delivery approach is urgently needed. We have obtained evidence demonstrating the effectiveness of a cell based drug delivery system that utilizes the innate immune system as targeting carrier for antibacterial drugs. In this study we show the efficient loading of neutrophil granulocytes with chlorhexidine and the complete killing of E. coli as well as Fusobacterium necrophorum in in-vitro studies. Fusobacterium necrophorum causes hepatic abscesses in cattle fed high grain diets. We also show in a mouse model that this delivery system targets infections of F. necrophorum in the liver and reduces the bacterial burden by an order of magnitude from approximately 2•106 to 1•105.

  20. Cell Based Drug Delivery: Micrococcus luteus Loaded Neutrophils as Chlorhexidine Delivery Vehicles in a Mouse Model of Liver Abscesses in Cattle.

    Directory of Open Access Journals (Sweden)

    Sebastian O Wendel

    Full Text Available The recent WHO report on antibiotic resistances shows a dramatic increase of microbial resistance against antibiotics. With only a few new antibiotics in the pipeline, a different drug delivery approach is urgently needed. We have obtained evidence demonstrating the effectiveness of a cell based drug delivery system that utilizes the innate immune system as targeting carrier for antibacterial drugs. In this study we show the efficient loading of neutrophil granulocytes with chlorhexidine and the complete killing of E. coli as well as Fusobacterium necrophorum in in-vitro studies. Fusobacterium necrophorum causes hepatic abscesses in cattle fed high grain diets. We also show in a mouse model that this delivery system targets infections of F. necrophorum in the liver and reduces the bacterial burden by an order of magnitude from approximately 2•106 to 1•105.

  1. Targeted gene therapy and in vivo bioluminescent imaging for monitoring postsurgical recurrence and metastasis in mouse models of liver cancer.

    Science.gov (United States)

    He, Q; Yao, C L; Li, L; Xin, Z; Jing, Z K; Li, L X

    2016-01-01

    We investigated the effects of combined targeted gene therapy on recurrence and metastasis after liver cancer resection in nude mice. Twenty BALB/C mice were randomly divided into control and treatment groups with 10 mice in each group and a male/female ratio of 1:1. Luciferase gene-labeled human primary hepatic carcinoma cell line MHCC97-H was then used to prepare a carcinoma model. An optical in vivo imaging technique (OIIT) was used 10 days later to detect the distribution of tumor cells, followed by partial liver resection and gene therapy. In the treatment group, 100 mL phosphate-buffered saline (PBS) containing 1 x 1012 rAAV/AFP/IL-24 gene viral vectors was injected into liver sections and peritumoral posterior peritoneal tissues; in the control group, the same amount of PBS containing 1 x 1012 empty viral vectors was injected at the same sites. OIIT was then used to detect the in vivo tumor metastasis 21 days later. Luciferase gene-labeled human primary hepatic carcinoma cell line MHCC97-H successfully infected 20 nude mice, and OIIT showed that the two groups exhibited metastasis after local tumor resection, but there were more tumor cells in the control group (P < 0.05). rAAV/AFP/IL-24 gene therapy can inhibit recurrence after liver cancer resection. PMID:27525931

  2. Evaluation of an anti-tumor necrosis factor therapeutic in a mouse model of Niemann-Pick C liver disease.

    Directory of Open Access Journals (Sweden)

    Melanie Vincent

    Full Text Available BACKGROUND: Niemann-Pick type C (NPC disease is a lysosomal storage disease characterized by the accumulation of cholesterol and glycosphingolipids. The majority of NPC patients die in their teen years due to progressive neurodegeneration; however, half of NPC patients also suffer from cholestasis, prolonged jaundice, and hepatosplenomegaly. We previously showed that a key mediator of NPC liver disease is tumor necrosis factor (TNF α, which is involved in both proinflammatory and apoptotic signaling cascades. In this study, we tested the hypothesis that blocking TNF action with an anti-TNF monoclonal antibody (CNTO5048 will slow the progression of NPC liver disease. METHODOLOGY/PRINCIPAL FINDINGS: Treatment of wild-type C57BL/6 mice with NPC1-specific antisense oligonucleotides led to knockdown of NPC1 protein expression in the liver. This caused classical symptoms of NPC liver disease, including hepatic cholesterol accumulation, hepatomegaly, elevated serum liver enzymes, and lipid laden macrophage accumulation. In addition, there was a significant increase in the number of apoptotic cells and a proliferation of stellate cells. Concurrent treatment of NPC1 knockdown mice with anti-TNF had no effect on the primary lipid storage or accumulation of lipid-laden macrophages. However, anti-TNF treatment slightly blunted the increase in hepatic apoptosis and stellate cell activation that was seen with NPC1 knockdown. CONCLUSIONS/SIGNIFICANCE: Current therapeutic options for NPC disease are limited. Our results provide proof of principle that pharmacologically blocking the TNF-α inflammatory cascade can slightly reduce certain markers of NPC disease. Small molecule inhibitors of TNF that penetrate tissues and cross the blood-brain barrier may prove even more beneficial.

  3. In Vivo Acute on Chronic Ethanol Effects in Liver: A Mouse Model Exhibiting Exacerbated Injury, Altered Metabolic and Epigenetic Responses.

    Science.gov (United States)

    Shukla, Shivendra D; Aroor, Annayya R; Restrepo, Ricardo; Kharbanda, Kusum K; Ibdah, Jamal A

    2015-11-20

    Chronic alcoholics who also binge drink (i.e., acute on chronic) are prone to an exacerbated liver injury but its mechanism is not understood. We therefore investigated the in vivo effects of chronic and binge ethanol ingestion and compared to chronic ethanol followed by three repeat binge ethanol on the liver of male C57/BL6 mice fed ethanol in liquid diet (4%) for four weeks followed by binge ethanol (intragastric administration, 3.5 g/kg body weight, three doses, 12h apart). Chronic followed by binge ethanol exacerbated fat accumulation, necrosis, decrease in hepatic SAM and SAM:SAH ratio, increase in adenosine levels, and elevated CYP2E1 levels. Histone H3 lysine acetylation (H3AcK9), dually modified phosphoacetylated histone H3 (H3AcK9/PS10), and phosphorylated H2AX increased after binge whereas phosphorylation of histone H3 ser 10 (H3S10) and H3 ser 28 (H3S28) increased after chronic ethanol-binge. Histone H3 lysine 4 and 9 dimethylation increased with a marked dimethylation in H3K9 in chronic ethanol binge group. Trimethylated histone H3 levels did not change. Nuclear levels of histone acetyl transferase GCN5 and histone deacetylase HDAC3 were elevated whereas phospho-CREB decreased in a distinctive manner. Taken together, acute on chronic ethanol ingestion caused amplification of liver injury and elicited characteristic profiles of histone modifications, metabolic alterations, and changes in nuclear protein levels. These findings demonstrate that chronic ethanol exposure renders liver more susceptible to repeat acute/binge ethanol induced acceleration of alcoholic liver disease.

  4. MicroRNA-674-5p/5-LO axis involved in autoimmune reaction of Concanavalin A-induced acute mouse liver injury.

    Science.gov (United States)

    Su, Kunkai; Wang, Qi; Qi, Luoyang; Hua, Dasong; Tao, Jingjing; Mangan, Connor J; Lou, Yijia; Li, Lanjuan

    2016-09-01

    Autoimmune hepatitis is characterized, in part, by the pathways involving cysteinyl-leukotriene metabolites of arachidonic acid, the dynamics of which remain unclear. Here, we explored post-transcriptional regulation in the 5-lipoxygenase (5-LO) pathway of arachidonic acid in a Concanavalin A (Con A) induced mouse model. We found that Con A administration lead to 5-LO overexpression and cysteinyl-leukotriene release in early hepatic injury, which was attenuated by cyclosporin A pretreatment. Subsequent microarray and qRT-PCR analysis further showed that microRNA-674-5p (miR-674-5p) displayed a significant decrease in expression in Con A-damaged liver. Noting that miR-674-5p harbors a potential binding region for 5-LO, we further transfected hepatic cell lines with overexpressing miR-674-5p mimic and discovered a negative regulating effect of miR-674-5p on 5-LO expression in the presence of IL-6 or TNF-α. These findings suggest that miR-674-5p might be a negative regulator in 5-LO mediated autoimmune liver injury, representing a compelling avenue towards future therapeutic interventions. PMID:27313091

  5. Identification of Modulators of the Nuclear Receptor Peroxisome Proliferator-Activated Receptor α (PPARα in a Mouse Liver Gene Expression Compendium.

    Directory of Open Access Journals (Sweden)

    Keiyu Oshida

    Full Text Available The nuclear receptor family member peroxisome proliferator-activated receptor α (PPARα is activated by therapeutic hypolipidemic drugs and environmentally-relevant chemicals to regulate genes involved in lipid transport and catabolism. Chronic activation of PPARα in rodents increases liver cancer incidence, whereas suppression of PPARα activity leads to hepatocellular steatosis. Analytical approaches were developed to identify biosets (i.e., gene expression differences between two conditions in a genomic database in which PPARα activity was altered. A gene expression signature of 131 PPARα-dependent genes was built using microarray profiles from the livers of wild-type and PPARα-null mice after exposure to three structurally diverse PPARα activators (WY-14,643, fenofibrate and perfluorohexane sulfonate. A fold-change rank-based test (Running Fisher’s test (p-value ≤ 10-4 was used to evaluate the similarity between the PPARα signature and a test set of 48 and 31 biosets positive or negative, respectively for PPARα activation; the test resulted in a balanced accuracy of 98%. The signature was then used to identify factors that activate or suppress PPARα in an annotated mouse liver/primary hepatocyte gene expression compendium of ~1850 biosets. In addition to the expected activation of PPARα by fibrate drugs, di(2-ethylhexyl phthalate, and perfluorinated compounds, PPARα was activated by benzofuran, galactosamine, and TCDD and suppressed by hepatotoxins acetaminophen, lipopolysaccharide, silicon dioxide nanoparticles, and trovafloxacin. Additional factors that activate (fasting, caloric restriction or suppress (infections PPARα were also identified. This study 1 developed methods useful for future screening of environmental chemicals, 2 identified chemicals that activate or suppress PPARα, and 3 identified factors including diets and infections that modulate PPARα activity and would be hypothesized to affect chemical

  6. Glutathione transferases P1/P2 regulate the timing of signaling pathway activations and cell cycle progression during mouse liver regeneration.

    Science.gov (United States)

    Pajaud, J; Ribault, C; Ben Mosbah, I; Rauch, C; Henderson, C; Bellaud, P; Aninat, C; Loyer, P; Morel, F; Corlu, A

    2015-01-15

    Glutathione transferases (GST) are phase II enzymes catalyzing the detoxification of endogenous noxious compounds and xenobiotics. They also regulate phosphorylation activities of MAPKinases in a catalytic-independent manner. Previous studies have demonstrated the regulation of JNK-dependent pathway by GSTP1/2. Considering the crucial role of JNK in the early steps of the hepatocyte cell cycle, we sought to determine whether GSTP1/2 were essential for hepatocyte proliferation following partial hepatectomy (PH). Using a conventional double knockout mouse model for the Gstp1 and Gstp2 genes, we found that the lack of GSTP1/P2 reduced the rate of DNA replication and mitotic index during the first wave of hepatocyte proliferation. The lowered proliferation was associated with the decrease in TNFalpha and IL-6 plasma concentrations, reduced hepatic HGF expression and delayed and/or altered activation of STAT3, JNK and ERK1/2 signaling pathways. In addition, the expression and/or activation of cell cycle regulators such as Cyclin D1, CDK4, E2F1 and MCM7 was postponed demonstrating that the absence of GSTP1/2 delayed the entry into and progression through the G1 phase of the cell cycle and impaired the synchrony of proliferation in hepatocytes following PH. Furthermore, while JNK and its downstream targets c-Jun and ATF2 were activated during the early steps of the liver regeneration in wild-type animals, the constitutively active JNK found in the quiescent liver of Gstp1/2 knockout mice underwent a decrease in its activity after PH. Transient induction of antioxidant enzymes and nitric oxide synthase were also delayed or repressed during the regenerative response. Altogether our results demonstrate that GSTP1/2 are a critical regulators of hepatocyte proliferation in the initial phases of liver regeneration.

  7. In vitro metabolism of l-corydalmine, a potent analgesic drug, in human, cynomolgus monkey, beagle dog, rat and mouse liver microsomes.

    Science.gov (United States)

    Tang, Xiange; Di, Xinyu; Zhong, Zeyu; Xie, Qiushi; Chen, Yang; Wang, Fan; Ling, Zhaoli; Xu, Ping; Zhao, Kaijing; Wang, Zhongjian; Liu, Li; Liu, Xiaodong

    2016-09-01

    l-Corydalmine (l-CDL) was under development as an oral analgesic agent, exhibiting potent analgesic activity in preclinical models. The objective of this study was to compare metabolic profiles of l-CDL in liver microsomes from mouse, rat, monkey, dog and human. Six metabolites (M1-M6) were identified using LC-Q/TOF in liver microsomes from the five species. The metabolism of l-CDL included O-demethylation (M1-3) and hydroxylation (M4-6). The desmethyl metabolites were the major ones among the five species, which accounted for more than 84%. Data from chemical inhibition in human liver microsomes (HLM) and human recombinant CYP450s demonstrated that CYP2D6 exhibited strong catalytic activity towards M1 and M2 formations, while CYP2C9 and CYP2C19 also catalyzed M2 formation. Formations of M3 and hydroxyl metabolites (M4 and M5) were mainly catalyzed by CYP3A4. Further studies showed that M1 and M2 were main metabolites in HLM. The kinetics of M1 and M2 formations in HLM and recombinant CYP450s were also investigated. The results showed that M1 and M2 formations in HLM and recombinant CYP2D6 characterized biphasic kinetics, whereas sigmoid Vmax model was better used to fit M2 formation by recombinant CYP2C9 and CYP2C19. The contributions of CYP2D6 to M1 and M2 formations in HLM were estimated to be 75.3% and 50.7%, respectively. However, the contributions of CYP2C9 and CYP2C19 to M2 formation were only 5.0% and 4.1%, respectively. All these data indicated that M1 and M2 were main metabolites in HLM, and CYP2D6 was the primary enzyme responsible for their formations. PMID:27239758

  8. Maternal choline modifies fetal liver copper, gene expression, DNA methylation, and neonatal growth in the tx-j mouse model of Wilson disease

    Science.gov (United States)

    Medici, Valentina; Shibata, Noreene M; Kharbanda, Kusum K; Islam, Mohammad S; Keen, Carl L; Kim, Kyoungmi; Tillman, Brittany; French, Samuel W; Halsted, Charles H; LaSalle, Janine M

    2014-01-01

    Maternal diet can affect fetal gene expression through epigenetic mechanisms. Wilson disease (WD), which is caused by autosomal recessive mutations in ATP7B encoding a biliary copper transporter, is characterized by excessive hepatic copper accumulation, but variability in disease severity. We tested the hypothesis that gestational supply of dietary methyl groups modifies fetal DNA methylation and expression of genes involved in methionine and lipid metabolism that are impaired prior to hepatic steatosis in the toxic milk (tx-j) mouse model of WD. Female C3H control and tx-j mice were fed control (choline 8 mmol/Kg of diet) or choline-supplemented (choline 36 mmol/Kg of diet) diets for 2 weeks throughout mating and pregnancy to gestation day 17. A second group of C3H females, half of which were used to cross foster tx-j pups, received the same diet treatments that extended during lactation to 21 d postpartum. Compared with C3H, fetal tx-j livers had significantly lower copper concentrations and significantly lower transcript levels of Cyclin D1 and genes related to methionine and lipid metabolism. Maternal choline supplementation prevented the transcriptional deficits in fetal tx-j liver for multiple genes related to cell growth and metabolism. Global DNA methylation was increased by 17% in tx-j fetal livers after maternal choline treatment (P < 0.05). Maternal dietary choline rescued the lower body weight of 21 d tx-j mice. Our results suggest that WD pathogenesis is modified by maternal in utero factors, including dietary choline. PMID:24220304

  9. Inhibition of bile salt transport by drugs associated with liver injury in primary hepatocytes from human, monkey, dog, rat, and mouse.

    Science.gov (United States)

    Zhang, Jie; He, Kan; Cai, Lining; Chen, Yu-Chuan; Yang, Yifan; Shi, Qin; Woolf, Thomas F; Ge, Weigong; Guo, Lei; Borlak, Jürgen; Tong, Weida

    2016-08-01

    Interference of bile salt transport is one of the underlying mechanisms for drug-induced liver injury (DILI). We developed a novel bile salt transport activity assay involving in situ biosynthesis of bile salts from their precursors in primary human, monkey, dog, rat, and mouse hepatocytes in suspension as well as LC-MS/MS determination of extracellular bile salts transported out of hepatocytes. Glycine- and taurine-conjugated bile acids were rapidly formed in hepatocytes and effectively transported into the extracellular medium. The bile salt formation and transport activities were time‒ and bile-acid-concentration‒dependent in primary human hepatocytes. The transport activity was inhibited by the bile salt export pump (BSEP) inhibitors ketoconazole, saquinavir, cyclosporine, and troglitazone. The assay was used to test 86 drugs for their potential to inhibit bile salt transport activity in human hepatocytes, which included 35 drugs associated with severe DILI (sDILI) and 51 with non-severe DILI (non-sDILI). Approximately 60% of the sDILI drugs showed potent inhibition (with IC50 values <50 μM), but only about 20% of the non-sDILI drugs showed this strength of inhibition in primary human hepatocytes and these drugs are associated only with cholestatic and mixed hepatocellular cholestatic (mixed) injuries. The sDILI drugs, which did not show substantial inhibition of bile salt transport activity, are likely to be associated with immune-mediated liver injury. Twenty-four drugs were also tested in monkey, dog, rat and mouse hepatocytes. Species differences in potency were observed with mouse being less sensitive than other species to inhibition of bile salt transport. In summary, a novel assay has been developed using hepatocytes in suspension from human and animal species that can be used to assess the potential for drugs and/or drug-derived metabolites to inhibit bile salt transport and/or formation activity. Drugs causing sDILI, except those by immune

  10. Polyethylene glycol (PEG) linked to near infrared (NIR) dyes conjugated to chimeric anti-carcinoembryonic antigen (CEA) antibody enhances imaging of liver metastases in a nude-mouse model of human colon cancer.

    Science.gov (United States)

    Maawy, Ali A; Hiroshima, Yukihiko; Zhang, Yong; Luiken, George A; Hoffman, Robert M; Bouvet, Michael

    2014-01-01

    We report here that polyethylene glycol (PEG) linked to near infrared dyes conjugated to chimeric mouse-human anti-carcinoembryonic antigen (CEA) antibody greatly improves imaging of liver metastases in a nude mouse model of colon-cancer experimental metastases. PEGylated and non-PEGylated DyLight 650 and 750 dyes were conjugated to the chimeric anti-CEA antibody. The dyes were initially injected intravenously into nude mice without tumors. Tissue biodistribution was determined by tissue sonication and analyzing tissue dye concentration profiles over time. PEGylated dyes had significantly lower accumulation in the liver (p = 0.03 for the 650 dyes; p = 0.002 for the 750 dyes) compared to non-PEGylated dyes. In an experimental liver metastasis model of HT-29 colon cancer, PEGylated dyes conjugated to the anti-CEA antibody showed good labeling of metastatic tumors with high contrast between normal and malignant tissue which was not possible with the non-PEGylated dyes since there was so much non-specific accumulation in the liver. PEGylation of the DyLight 650 and 750 NIR dyes significantly altered tissue biodistribution, allowing brighter tissue labeling, decreased accumulation in normal organs, particularly the liver. This enabled high fidelity and high contrast imaging of liver metastases.

  11. Polyethylene glycol (PEG linked to near infrared (NIR dyes conjugated to chimeric anti-carcinoembryonic antigen (CEA antibody enhances imaging of liver metastases in a nude-mouse model of human colon cancer.

    Directory of Open Access Journals (Sweden)

    Ali A Maawy

    Full Text Available We report here that polyethylene glycol (PEG linked to near infrared dyes conjugated to chimeric mouse-human anti-carcinoembryonic antigen (CEA antibody greatly improves imaging of liver metastases in a nude mouse model of colon-cancer experimental metastases. PEGylated and non-PEGylated DyLight 650 and 750 dyes were conjugated to the chimeric anti-CEA antibody. The dyes were initially injected intravenously into nude mice without tumors. Tissue biodistribution was determined by tissue sonication and analyzing tissue dye concentration profiles over time. PEGylated dyes had significantly lower accumulation in the liver (p = 0.03 for the 650 dyes; p = 0.002 for the 750 dyes compared to non-PEGylated dyes. In an experimental liver metastasis model of HT-29 colon cancer, PEGylated dyes conjugated to the anti-CEA antibody showed good labeling of metastatic tumors with high contrast between normal and malignant tissue which was not possible with the non-PEGylated dyes since there was so much non-specific accumulation in the liver. PEGylation of the DyLight 650 and 750 NIR dyes significantly altered tissue biodistribution, allowing brighter tissue labeling, decreased accumulation in normal organs, particularly the liver. This enabled high fidelity and high contrast imaging of liver metastases.

  12. β-Adrenergic agonist and antagonist regulation of autophagy in HepG2 cells, primary mouse hepatocytes, and mouse liver.

    Directory of Open Access Journals (Sweden)

    Benjamin L Farah

    Full Text Available Autophagy recently has been shown to be involved in normal hepatic function and in pathological conditions such as non-alcoholic fatty liver disease. Adrenergic signalling also is an important regulator of hepatic metabolism and function. However, currently little is known about the potential role of adrenergic signaling on hepatic autophagy, and whether the β-adrenergic receptor itself may be a key regulator of autophagy. To address these issues, we investigated the actions of the β2-adrenergic receptor agonist, clenbuterol on hepatic autophagy. Surprisingly, we found that clenbuterol stimulated autophagy and autophagic flux in hepatoma cells, primary hepatocytes and in vivo. Similar effects also were observed with epinephrine treatment. Interestingly, propranolol caused a late block in autophagy in the absence and presence of clenbuterol, both in cell culture and in vivo. Thus, our results demonstrate that the β2-adrenergic receptor is a key regulator of hepatic autophagy, and that the β-blocker propranolol can independently induce a late block in autophagy.

  13. ChREBP, but not LXRs, is required for the induction of glucose-regulated genes in mouse liver

    Science.gov (United States)

    Denechaud, Pierre-Damien; Bossard, Pascale; Lobaccaro, Jean-Marc A.; Millatt, Lesley; Staels, Bart; Girard, Jean; Postic, Catherine

    2008-01-01

    The transcription factor carbohydrate-responsive element–binding protein (ChREBP) has emerged as a central regulator of lipid synthesis in liver because it is required for glucose-induced expression of the glycolytic enzyme liver–pyruvate kinase (L-PK) and acts in synergy with SREBP to induce lipogenic genes such as acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS). Liver X receptors (LXRs) are also important regulators of the lipogenic pathway, and the recent finding that ChREBP is a direct target of LXRs and that glucose itself can bind and activate LXRs prompted us to study the role of LXRs in the induction of glucose-regulated genes in liver. Using an LXR agonist in wild-type mice, we found that LXR stimulation did not promote ChREBP phosphorylation or nuclear localization in the absence of an increased intrahepatic glucose flux. Furthermore, the induction of ChREBP, L-PK, and ACC by glucose or high-carbohydrate diet was similar in LXRα/β knockout compared with wild-type mice, suggesting that the activation of these genes by glucose occurs by an LXR-independent mechanism. We used fluorescence resonance energy transfer analysis to demonstrate that glucose failed to promote the interaction of LXRα/β with specific cofactors. Finally, siRNA silencing of ChREBP in LXRα/β knockout hepatocytes abrogated glucose-induced expression of L-PK and ACC, further demonstrating the central role of ChREBP in glucose signaling. Taken together, our results demonstrate that glucose is required for ChREBP functional activity and that LXRs are not necessary for the induction of glucose-regulated genes in liver. PMID:18292813

  14. Septum Transversum-Derived Mesothelium Gives Rise to Hepatic Stellate Cells and Perivascular Mesenchymal Cells in Developing Mouse Liver

    OpenAIRE

    Asahina, Kinji; Zhou, Bin; William T Pu; Tsukamoto, Hidekazu

    2011-01-01

    The septum transversum mesenchyme (STM) signals to induce hepatogenesis from the foregut endoderm. Hepatic stellate cells (HSCs) are sinusoidal pericytes assumed to originate from the STM and participate in mesenchymal-epithelial interaction in embryonic and adult livers. However, the developmental origin of HSCs remains elusive due to the lack of markers for STM and HSCs. We previously identified submesothelial cells (SubMCs) beneath mesothelial cells (MCs) as a potential precursor for HSCs ...

  15. MicroRNA-155 Deficiency Attenuates Liver Steatosis and Fibrosis without Reducing Inflammation in a Mouse Model of Steatohepatitis

    OpenAIRE

    Csak, Timea; Bala, Shashi; Lippai, Dora; Kodys, Karen; Catalano, Donna; Iracheta-Vellve, Arvin; Szabo, Gyongyi

    2015-01-01

    Background & Aim MicroRNAs (miRs) regulate hepatic steatosis, inflammation and fibrosis. Fibrosis is the consequence of chronic tissue damage and inflammation. We hypothesized that deficiency of miR-155, a master regulator of inflammation, attenuates steatohepatitis and fibrosis. Methods Wild type (WT) and miR-155-deficient (KO) mice were fed methionine-choline-deficient (MCD) or -supplemented (MCS) control diet for 5 weeks. Liver injury, inflammation, steatosis and fibrosis were assessed. Re...

  16. Adenovirus-mediated over-expression of Septin4 ameliorates hepatic fibrosis in mouse livers infected with Schistosoma japonicum.

    Science.gov (United States)

    He, Xue; Bao, Jing; Chen, Jinling; Sun, Xiaolei; Wang, Jianxin; Zhu, Dandan; Song, Ke; Peng, Wenxia; Xu, Tianhua; Duan, Yinong

    2015-12-01

    Septin4 (Sept4) belongs to Septin family and may be involved in apoptosis, vesicle trafficking and other cell processes. In this study, we attempted to investigate the effect of Sept4 in hepatic fibrosis induced by Schistosoma japonicum. ICR mice infected with S. japonicum for 12weeks were treated with PBS, Ad-ctr and Ad-Sept4, respectively. All mice were killed at 2weeks after injection, and the changes in the fibrotic livers were detected via H&E staining, Sirius red staining, qRT-PCR, western blot and TUNEL analysis. In addition, pcDNA3.1-Sept4 plasmid was transfected into LX-2 cells to observe the effect of Sept4 on apoptosis of HSCs in vitro. Ad-Sept4 could ameliorate liver fibrosis, as detected by H&E staining and Sirius red staining. The number of TUNEL-positive cells was increased in the Ad-Sept4 treated group. The expression of Sept4 and cleaved-caspase-3 were all augmented, while the expression of α-SMA, Col1α1 and IL-13 were reduced in the Ad-Sept4 treated group, compared with that expressed in the Ad-ctr group. Over-expression of Sept4 in LX-2 cells could promote apoptosis of LX-2 cells in vitro. In conclusion, Ad-Sept4 can attenuate the development of liver fibrosis induced by S. japonicum through apoptosis. PMID:26190030

  17. Soybean Oil Is More Obesogenic and Diabetogenic than Coconut Oil and Fructose in Mouse: Potential Role for the Liver.

    Science.gov (United States)

    Deol, Poonamjot; Evans, Jane R; Dhahbi, Joseph; Chellappa, Karthikeyani; Han, Diana S; Spindler, Stephen; Sladek, Frances M

    2015-01-01

    The obesity epidemic in the U.S. has led to extensive research into potential contributing dietary factors, especially fat and fructose. Recently, increased consumption of soybean oil, which is rich in polyunsaturated fatty acids (PUFAs), has been proposed to play a causal role in the epidemic. Here, we designed a series of four isocaloric diets (HFD, SO-HFD, F-HFD, F-SO-HFD) to investigate the effects of saturated versus unsaturated fat, as well as fructose, on obesity and diabetes. C57/BL6 male mice fed a diet moderately high in fat from coconut oil and soybean oil (SO-HFD, 40% kcal total fat) showed statistically significant increases in weight gain, adiposity, diabetes, glucose intolerance and insulin resistance compared to mice on a diet consisting primarily of coconut oil (HFD). They also had fatty livers with hepatocyte ballooning and very large lipid droplets as well as shorter colonic crypt length. While the high fructose diet (F-HFD) did not cause as much obesity or diabetes as SO-HFD, it did cause rectal prolapse and a very fatty liver, but no balloon injury. The coconut oil diet (with or without fructose) increased spleen weight while fructose in the presence of soybean oil increased kidney weight. Metabolomics analysis of the liver showed an increased accumulation of PUFAs and their metabolites as well as γ-tocopherol, but a decrease in cholesterol in SO-HFD. Liver transcriptomics analysis revealed a global dysregulation of cytochrome P450 (Cyp) genes in SO-HFD versus HFD livers, most notably in the Cyp3a and Cyp2c families. Other genes involved in obesity (e.g., Cidec, Cd36), diabetes (Igfbp1), inflammation (Cd63), mitochondrial function (Pdk4) and cancer (H19) were also upregulated by the soybean oil diet. Taken together, our results indicate that in mice a diet high in soybean oil is more detrimental to metabolic health than a diet high in fructose or coconut oil.

  18. Soybean Oil Is More Obesogenic and Diabetogenic than Coconut Oil and Fructose in Mouse: Potential Role for the Liver.

    Directory of Open Access Journals (Sweden)

    Poonamjot Deol

    Full Text Available The obesity epidemic in the U.S. has led to extensive research into potential contributing dietary factors, especially fat and fructose. Recently, increased consumption of soybean oil, which is rich in polyunsaturated fatty acids (PUFAs, has been proposed to play a causal role in the epidemic. Here, we designed a series of four isocaloric diets (HFD, SO-HFD, F-HFD, F-SO-HFD to investigate the effects of saturated versus unsaturated fat, as well as fructose, on obesity and diabetes. C57/BL6 male mice fed a diet moderately high in fat from coconut oil and soybean oil (SO-HFD, 40% kcal total fat showed statistically significant increases in weight gain, adiposity, diabetes, glucose intolerance and insulin resistance compared to mice on a diet consisting primarily of coconut oil (HFD. They also had fatty livers with hepatocyte ballooning and very large lipid droplets as well as shorter colonic crypt length. While the high fructose diet (F-HFD did not cause as much obesity or diabetes as SO-HFD, it did cause rectal prolapse and a very fatty liver, but no balloon injury. The coconut oil diet (with or without fructose increased spleen weight while fructose in the presence of soybean oil increased kidney weight. Metabolomics analysis of the liver showed an increased accumulation of PUFAs and their metabolites as well as γ-tocopherol, but a decrease in cholesterol in SO-HFD. Liver transcriptomics analysis revealed a global dysregulation of cytochrome P450 (Cyp genes in SO-HFD versus HFD livers, most notably in the Cyp3a and Cyp2c families. Other genes involved in obesity (e.g., Cidec, Cd36, diabetes (Igfbp1, inflammation (Cd63, mitochondrial function (Pdk4 and cancer (H19 were also upregulated by the soybean oil diet. Taken together, our results indicate that in mice a diet high in soybean oil is more detrimental to metabolic health than a diet high in fructose or coconut oil.

  19. Obesity increases histone H3 lysine 9 and 18 acetylation at Tnfa and Ccl2 genes in mouse liver.

    Science.gov (United States)

    Mikula, Michal; Majewska, Aneta; Ledwon, Joanna Karolina; Dzwonek, Artur; Ostrowski, Jerzy

    2014-12-01

    Obesity contributes to the development of non-alcoholic fatty liver disease (NAFLD), which is characterized by the upregulated expression of two key inflammatory mediators: tumor necrosis factor (Tnfa) and monocyte chemotactic protein 1 (Mcp1; also known as Ccl2). However, the chromatin make-up at these genes in the liver in obese individuals has not been explored. In this study, to identify obesity-mediated epigenetic changes at Tnfa and Ccl2, we used a murine model of obesity induced by a high-fat diet (HFD) and hyperphagic (ob/ob) mice. Chromatin immunoprecipitation (ChIP) assay was used to determine the abundance of permissive histone marks, namely histone H3 lysine 9 and 18 acetylation (H3K9/K18Ac), H3 lysine 4 trimethylation (H3K4me3) and H3 lysine 36 trimethylation (H3K36me3), in conjunction with polymerase 2 RNA (Pol2) and nuclear factor (Nf)-κB recruitment in the liver. Additionally, to correlate the liver tissue-derived ChIP measurements with a robust in vitro transcriptional response at the Tnfa and Ccl2 genes, we used lipopolysaccharide (LPS) treatment to induce an inflammatory response in Hepa1-6 cells, a cell line derived from murine hepatocytes. ChIP revealed increased H3K9/K18Ac at Tnfa and Ccl2 in the obese mice, although the differences were only statistically significant for Tnfa (pgenes in the obese mice. By contrast, the acute treatment of Hepa1-6 cells with LPS significantly increased the H3K9/K18Ac marks, as well as Pol2 and Nf-κB recruitment at both genes, while the levels of H3K4me3 and H3K36me3 marks remained unaltered. These results demonstrate that increased Tnfa and Ccl2 expression in fatty liver at the chromatin level corresponds to changes in the level of histone H3 acetylation.

  20. Mouse Strain Impacts Fatty Acid Uptake and Trafficking in Liver, Heart, and Brain: A Comparison of C57BL/6 and Swiss Webster Mice.

    Science.gov (United States)

    Seeger, D R; Murphy, E J

    2016-05-01

    C57BL/6 and Swiss Webster mice are used to study lipid metabolism, although differences in fatty acid uptake between these strains have not been reported. Using a steady state kinetic model, [1-(14)C]16:0, [1-(14)C]20:4n-6, or [1-(14)C]22:6n-3 was infused into awake, adult male mice and uptake into liver, heart, and brain determined. The integrated area of [1-(14)C]20:4n-6 in plasma was significantly increased in C57BL/6 mice, but [1-(14)C]16:0 and [1-(14)C]22:6n-3 were not different between groups. In heart, uptake of [1-(14)C]20:4n-6 was increased 1.7-fold in C57BL/6 mice. However, trafficking of [1-(14)C]22:6n-3 into the organic fraction of heart was significantly decreased 33 % in C57BL/6 mice. Although there were limited differences in fatty acid tracer trafficking in liver or brain, [1-(14)C]16:0 incorporation into liver neutral lipids was decreased 18 % in C57BL/6 mice. In heart, the amount of [1-(14)C]16:0 and [1-(14)C]22:6n-3 incorporated into total phospholipids were decreased 45 and 49 %, respectively, in C57BL/6 mice. This was accounted for by a 53 and 37 % decrease in [1-(14)C]16:0 and 44 and 52 % decrease in [1-(14)C]22:6n-3 entering ethanolamine glycerophospholipids and choline glycerophospholipids, respectively. In contrast, there was a significant increase in [1-(14)C]20:4n-6 esterification into all heart phospholipids of C57BL/6 mice. Although changes in uptake were limited to heart, several significant differences were found in fatty acid trafficking into heart, liver, and brain phospholipids. In summary, our data demonstrates differences in tissue fatty acid uptake and trafficking between mouse strains is an important consideration when carrying out fatty acid metabolic studies. PMID:26797754

  1. Obesity resistant mechanisms in the Lean polygenic mouse model as indicated by liver transcriptome and expression of selected genes in skeletal muscle

    Science.gov (United States)

    2011-01-01

    Background Divergently selected Lean and Fat mouse lines represent unique models for a polygenic form of resistance and susceptibility to obesity development. Previous research on these lines focused mainly on obesity-susceptible factors in the Fat line. This study aimed to examine the molecular basis of obesity-resistant mechanisms in the Lean line by analyzing various fat depots and organs, the liver transcriptome of selected metabolic pathways, plasma and lipid homeostasis and expression of selected skeletal muscle genes. Results Expression profiling using our custom Steroltalk v2 microarray demonstrated that Lean mice exhibit a higher hepatic expression of cholesterol biosynthesis genes compared to the Fat line, although this was not reflected in elevation of total plasma or liver cholesterol. However, FPLC analysis showed that protective HDL cholesterol was elevated in Lean mice. A significant difference between the strains was also found in bile acid metabolism. Lean mice had a higher expression of Cyp8b1, a regulatory enzyme of bile acid synthesis, and the Abcb11 bile acid transporter gene responsible for export of acids to the bile. Additionally, a higher content of blood circulating bile acids was observed in Lean mice. Elevated HDL and upregulation of some bile acids synthesis and transport genes suggests enhanced reverse cholesterol transport in the Lean line - the flux of cholesterol out of the body is higher which is compensated by upregulation of endogenous cholesterol biosynthesis. Increased skeletal muscle Il6 and Dio2 mRNA levels as well as increased activity of muscle succinic acid dehydrogenase (SDH) in the Lean mice demonstrates for the first time that changes in muscle energy metabolism play important role in the Lean line phenotype determination and corroborate our previous findings of increased physical activity and thermogenesis in this line. Finally, differential expression of Abcb11 and Dio2 identifies novel strong positional candidate

  2. Obesity resistant mechanisms in the Lean polygenic mouse model as indicated by liver transcriptome and expression of selected genes in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Fievet Catherine

    2011-02-01

    Full Text Available Abstract Background Divergently selected Lean and Fat mouse lines represent unique models for a polygenic form of resistance and susceptibility to obesity development. Previous research on these lines focused mainly on obesity-susceptible factors in the Fat line. This study aimed to examine the molecular basis of obesity-resistant mechanisms in the Lean line by analyzing various fat depots and organs, the liver transcriptome of selected metabolic pathways, plasma and lipid homeostasis and expression of selected skeletal muscle genes. Results Expression profiling using our custom Steroltalk v2 microarray demonstrated that Lean mice exhibit a higher hepatic expression of cholesterol biosynthesis genes compared to the Fat line, although this was not reflected in elevation of total plasma or liver cholesterol. However, FPLC analysis showed that protective HDL cholesterol was elevated in Lean mice. A significant difference between the strains was also found in bile acid metabolism. Lean mice had a higher expression of Cyp8b1, a regulatory enzyme of bile acid synthesis, and the Abcb11 bile acid transporter gene responsible for export of acids to the bile. Additionally, a higher content of blood circulating bile acids was observed in Lean mice. Elevated HDL and upregulation of some bile acids synthesis and transport genes suggests enhanced reverse cholesterol transport in the Lean line - the flux of cholesterol out of the body is higher which is compensated by upregulation of endogenous cholesterol biosynthesis. Increased skeletal muscle Il6 and Dio2 mRNA levels as well as increased activity of muscle succinic acid dehydrogenase (SDH in the Lean mice demonstrates for the first time that changes in muscle energy metabolism play important role in the Lean line phenotype determination and corroborate our previous findings of increased physical activity and thermogenesis in this line. Finally, differential expression of Abcb11 and Dio2 identifies novel

  3. Prednisolone-induced differential gene expression in mouse liver carrying wild type or a dimerization-defective glucocorticoid receptor

    Directory of Open Access Journals (Sweden)

    Dokter Wim

    2010-06-01

    Full Text Available Abstract Background Glucocorticoids (GCs control expression of a large number of genes via binding to the GC receptor (GR. Transcription may be regulated either by binding of the GR dimer to DNA regulatory elements or by protein-protein interactions of GR monomers with other transcription factors. Although the type of regulation for a number of individual target genes is known, the relative contribution of both mechanisms to the regulation of the entire transcriptional program remains elusive. To study the importance of GR dimerization in the regulation of gene expression, we performed gene expression profiling of livers of prednisolone-treated wild type (WT and mice that have lost the ability to form GR dimers (GRdim. Results The GR target genes identified in WT mice were predominantly related to glucose metabolism, the cell cycle, apoptosis and inflammation. In GRdim mice, the level of prednisolone-induced gene expression was significantly reduced compared to WT, but not completely absent. Interestingly, for a set of genes, involved in cell cycle and apoptosis processes and strongly related to Foxo3a and p53, induction by prednisolone was completely abolished in GRdim mice. In contrast, glucose metabolism-related genes were still modestly upregulated in GRdim mice upon prednisolone treatment. Finally, we identified several novel GC-inducible genes from which Fam107a, a putative histone acetyltransferase complex interacting protein, was most strongly dependent on GR dimerization. Conclusions This study on prednisolone-induced effects in livers of WT and GRdim mice identified a number of interesting candidate genes and pathways regulated by GR dimers and sheds new light onto the complex transcriptional regulation of liver function by GCs.

  4. Distinct populations of hepatic stellate cells in the mouse liver have different capacities for retinoid and lipid storage.

    Directory of Open Access Journals (Sweden)

    Diana N D'Ambrosio

    Full Text Available Hepatic stellate cell (HSC lipid droplets are specialized organelles for the storage of retinoid, accounting for 50-60% of all retinoid present in the body. When HSCs activate, retinyl ester levels progressively decrease and the lipid droplets are lost. The objective of this study was to determine if the HSC population in a healthy, uninjured liver demonstrates heterogeneity in its capacity for retinoid and lipid storage in lipid droplets. To this end, we utilized two methods of HSC isolation, which leverage distinct properties of these cells, including their vitamin A content and collagen expression. HSCs were isolated either from wild type (WT mice in the C57BL/6 genetic background by flotation in a Nycodenz density gradient, followed by fluorescence activated cell sorting (FACS based on vitamin A autofluorescence, or from collagen-green fluorescent protein (GFP mice by FACS based on GFP expression from a GFP transgene driven by the collagen I promoter. We show that GFP-HSCs have: (i increased expression of typical markers of HSC activation; (ii decreased retinyl ester levels, accompanied by reduced expression of the enzyme needed for hepatic retinyl ester synthesis (LRAT; (iii decreased triglyceride levels; (iv increased expression of genes associated with lipid catabolism; and (v an increase in expression of the retinoid-catabolizing cytochrome, CYP2S1.Our observations suggest that the HSC population in a healthy, uninjured liver is heterogeneous. One subset of the total HSC population, which expresses early markers of HSC activation, may be "primed" and ready for rapid response to acute liver injury.

  5. Low Folate and Selenium in the Mouse Maternal Diet Alters Liver Gene Expression Patterns in the Offspring after Weaning

    Directory of Open Access Journals (Sweden)

    Matthew P.G. Barnett

    2015-05-01

    Full Text Available During pregnancy, selenium (Se and folate requirements increase, with deficiencies linked to neural tube defects (folate and DNA oxidation (Se. This study investigated the effect of a high-fat diet either supplemented with (diet H, or marginally deficient in (diet L, Se and folate. Pregnant female mice and their male offspring were assigned to one of four treatments: diet H during gestation, lactation and post-weaning; diet L during gestation, lactation and post-weaning; diet H during gestation and lactation but diet L fed to offspring post-weaning; or diet L during gestation and lactation followed by diet H fed to offspring post-weaning. Microarray and pathway analyses were performed using RNA from colon and liver of 12-week-old male offspring. Gene set enrichment analysis of liver gene expression showed that diet L affected several pathways including regulation of translation (protein biosynthesis, methyl group metabolism, and fatty acid metabolism; this effect was stronger when the diet was fed to mothers, rather than to offspring. No significant differences in individual gene expression were observed in colon but there were significant differences in cell cycle control pathways. In conclusion, a maternal low Se/folate diet during gestation and lactation has more effects on gene expression in offspring than the same diet fed to offspring post-weaning; low Se and folate in utero and during lactation thus has persistent metabolic effects in the offspring.

  6. Hepatoprotective activity of Picrorhiza kurroa Royle Ex. Benth extract against alcohol cytotoxicity in mouse liver slice culture

    Directory of Open Access Journals (Sweden)

    Sangeeta Sinha

    2011-01-01

    Full Text Available Kutki or Picrorhiza kurroa is a herbal medicinal plant belonging to Scrophulariaceae family and is found in the Himalayan region in India. This herb has been traditionally used in treating liver disorders. The antioxidant properties of P. kurroa were evaluated in vitro using different radical scavenging assays. Furthermore, liver slice culture system was used to test the antioxidant activity of this extract and ethanol was used as a hepatotoxin to generate oxidative stress. Hepatotoxicity was quantified in terms of release of intracellular marker enzymes lactate dehydrogenase, glutamate oxaloacetate transaminase and glutamate pyruvate transaminase. Oxidative stress induced by ethanol and its modulation in the presence of P. kurroa extract was tested by estimating the levels of antioxidant enzymes like catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase and glutathione-S-transferase, and of antioxidant molecules like uric acid and reduced glutathione that were quantitated along with lipid peroxidation. Our results clearly demonstrate that aqueous extract of P. kurroa with high antioxidant activity, as demonstrated using different radical scavenging assays, was effective in suppressing the deleterious effects of ethanol. Addition of P. kurroa aqueous extract along with ethanol restored the activities of antioxidant enzymes and significantly reduced lipid peroxidation.

  7. Spontaneous focal activation of invariant natural killer T (iNKT cells in mouse liver and kidney

    Directory of Open Access Journals (Sweden)

    Zeng Jia

    2010-11-01

    Full Text Available Abstract Background Invariant natural killer T (iNKT cells differ from other T cells by their hyperactive effector T-cell status, in addition to the expression of NK lineage receptors and semi-invariant T-cell receptors. It is generally agreed that the immune phenotype of iNKT cells is maintained by repeated activation in peripheral tissues although no explicit evidence for such iNKT cell activity in vivo has so far been reported. Results We used an interferon (IFN-γ-inducible cytoplasmic protein, Irga6, as a histological marker for local IFN-γ production. Irga6 was intensely expressed in small foci of liver parenchymal cells and kidney tubular epithelium. Focal Irga6 expression was unaffected by germ-free status or loss of TLR signalling and was totally dependent on IFN-γ secreted by T cells in the centres of expression foci. These were shown to be iNKT cells by diagnostic T cell receptor usage and their activity was lost in both CD1 d and Jα-deficient mice. Conclusions This is the first report that supplies direct evidence for explicit activation events of NKT cells in vivo and raises issues about the triggering mechanism and consequences for immune functions in liver and kidney.

  8. The comparison between circadian oscillators in mouse liver and pituitary gland reveals different integration of feeding and light schedules.

    Directory of Open Access Journals (Sweden)

    Isabelle M Bur

    Full Text Available The mammalian circadian system is composed of multiple peripheral clocks that are synchronized by a central pacemaker in the suprachiasmatic nuclei of the hypothalamus. This system keeps track of the external world rhythms through entrainment by various time cues, such as the light-dark cycle and the feeding schedule. Alterations of photoperiod and meal time modulate the phase coupling between central and peripheral oscillators. In this study, we used real-time quantitative PCR to assess circadian clock gene expression in the liver and pituitary gland from mice raised under various photoperiods, or under a temporal restricted feeding protocol. Our results revealed unexpected differences between both organs. Whereas the liver oscillator always tracked meal time, the pituitary circadian clockwork showed an intermediate response, in between entrainment by the light regimen and the feeding-fasting rhythm. The same composite response was also observed in the pituitary gland from adrenalectomized mice under daytime restricted feeding, suggesting that circulating glucocorticoids do not inhibit full entrainment of the pituitary clockwork by meal time. Altogether our results reveal further aspects in the complexity of phase entrainment in the circadian system, and suggest that the pituitary may host oscillators able to integrate multiple time cues.

  9. 虎尾轮根黄酮类化合物对小鼠肝脏功能影响%Effects of Flavonoids from Uraria crinita on Liver Function in Mouse

    Institute of Scientific and Technical Information of China (English)

    陈秋勇; 陈炳华; 黄志坚

    2012-01-01

    以小鼠为动物模型,在饲料中添加分离纯化虎尾轮根的黄酮类化合物,研究其对小鼠肝脏功能的影响。取体重为(20±2)g小鼠84只,随机分为6组,即:空白对照组,模型组,阳性对照组即联苯双酯组(150 mg/kg),以及虎尾轮黄酮高、中、低剂量组(450,300,150 mg/kg),连续给药21 d。以四氯化碳(CCl4)进行建模,采集小鼠血清及肝组织匀浆液进行T-AOC、ALB、TP、AST、ALT、MDA、SOD、GSH-Px等指标的检测;取小鼠肝脏进行组织切片观察。结果表明,(1)与模型组比较,虎尾轮黄酮各剂量组均能分别显著(P〈0.05)或极显著(P〈0.01)地提高小鼠SOD、T-AOC、GSH-Px、ALB、TP水平和降低AST、ALT、MDA水平;(2)各剂量组肉眼观察无明显的病理变化,对各试验组的肝脏组织显微结构进行比较,发现虎尾轮黄酮各剂量组对CCl4引起的肝损伤有不同程度的恢复,保肝护肝作用明显。可见虎尾轮黄酮对小鼠的肝损伤有显著保护作用。%The isolated and purified flavonoids from Uraria crinita were added in the diets of the mouse which were as animal models.The effects of the flavonoids on mouse liver function was studied.Eighty four mouse,weight(20±2) g,were randomly divided into 6 groups,blank control group,model group,the positive control group that bifendate group(150 mg/kg),high dose of flavonoids group(450 mg/kg),medium dose of flavonoids group(300 mg/kg) and low dose of flavonoids group(150 mg/kg).All flavonoids groups of mouse were fed with the chemical for 21 continuous days.Carbon tetrachloride(CCl4) was used in the model group,and the mouse serum and liver tissue homogenates were used to the detection of the TAOC 、ALB、TP、AST、ALT、 MDA、SOD and GSHPx. The livers of mouse were removed to produce the slice.The results showed as follows:(1) The SOD,TAOC, GSHPx, ALB and TP level in the mouse treated with the all flavonoids group were significantly(P0.05) or

  10. Analysis of the heat shock response in mouse liver reveals transcriptional dependence on the nuclear receptor peroxisome proliferator-activated receptor α (PPARα

    Directory of Open Access Journals (Sweden)

    Jonnalagadda Sudhakar

    2010-01-01

    Full Text Available Abstract Background The nuclear receptor peroxisome proliferator-activated receptor alpha (PPARα regulates responses to chemical or physical stress in part by altering expression of genes involved in proteome maintenance. Many of these genes are also transcriptionally regulated by heat shock (HS through activation by HS factor-1 (HSF1. We hypothesized that there are interactions on a genetic level between PPARα and the HS response mediated by HSF1. Results Wild-type and PPARα-null mice were exposed to HS, the PPARα agonist WY-14,643 (WY, or both; gene and protein expression was examined in the livers of the mice 4 or 24 hrs after HS. Gene expression profiling identified a number of Hsp family members that were altered similarly in both mouse strains. However, most of the targets of HS did not overlap between strains. A subset of genes was shown by microarray and RT-PCR to be regulated by HS in a PPARα-dependent manner. HS also down-regulated a large set of mitochondrial genes specifically in PPARα-null mice that are known targets of PPARγ co-activator-1 (PGC-1 family members. Pretreatment of PPARα-null mice with WY increased expression of PGC-1β and target genes and prevented the down-regulation of the mitochondrial genes by HS. A comparison of HS genes regulated in our dataset with those identified in wild-type and HSF1-null mouse embryonic fibroblasts indicated that although many HS genes are regulated independently of both PPARα and HSF1, a number require both factors for HS responsiveness. Conclusions These findings demonstrate that the PPARα genotype has a dramatic effect on the transcriptional targets of HS and support an expanded role for PPARα in the regulation of proteome maintenance genes after exposure to diverse forms of environmental stress including HS.

  11. The roles of tumor necrosis factor-alpha in colon tight junction protein expression and intestinal mucosa structure in a mouse model of acute liver failure

    Directory of Open Access Journals (Sweden)

    Lv Sa

    2009-09-01

    Full Text Available Abstract Background Spontaneous bacterial peritonitis (SBP is a common clinical disease and one of the most severe complications of acute liver failure (ALF. Although the mechanism responsible for SBP is unclear, cytokines play an important role. The aim of this study was to investigate the effects of tumor necrosis factor-alpha (TNF-α on the structure of the intestinal mucosa and the expression of tight junction (Zona Occludens 1; ZO-1 protein in a mouse model of ALF. Methods We induced ALF using D-galactosamine/lipopolysaccharide (GalN/LPS or GalN/TNF-α and assessed the results using transmission electron microscopy, immunohistochemistry, Western blotting, ELISA and real-time quantitative PCR. The effects of administration of anti-TNF-α IgG antibody or anti-TNF-α R1 antibody before administration of GalN/LPS or GalN/TNF-α, respectively, on TNF-α were also assessed. Results Morphological abnormalities in the intestinal mucosa of ALF mice were positively correlated with serum TNF-α level. Electron microscopic analysis revealed tight junction (TJ disruptions, epithelial cell swelling, and atrophy of intestinal villi. Gut bacteria invaded the body at sites where TJ disruptions occurred. Expression of ZO-1 mRNA was significantly decreased in both ALF models, as was the level of ZO-1 protein. Prophylactic treatment with either anti-TNF-α IgG antibody or anti-tumor necrosis factor-a receptor1 (anti-TNF-α R1 antibody prevented changes in intestinal tissue ultrastructure and ZO-1 expression. Conclusion TNF-α affects the structure of the intestinal mucosa, decreases expression of ZO-1, and affects the morphology of the colon in a mouse model of ALF. It also may participate in the pathophysiological mechanism of SBP complicated to ALF.

  12. Flow cytometric measurement of the metabolism of benzo[a]pyrene by mouse liver cells in culture

    International Nuclear Information System (INIS)

    The metabolism of benzo[a]pyrene in individual cells was monitored by flow cytometry. The measurements are based on the alterations that occur in the fluorescence emission spectrum of benzo[a]pyrene when it is converted to various metabolites. Using present instrumentation the technique could easily detect 1x106 molecules per cells of benzo[a]pyrene and 1x107 molecules per cell of the diol epoxide. The analysis of C3H IOT 1/2 mouse fibroblasts growing in culture indicated that there was heterogeneity in the conversion of the parent compound into diol epoxide derivatives suggesting that some variation in sensitivity to transformation by benzo[a]pyrene may be due to differences in cellular metabolism. The technique allows sensitive detection of metabolites in viable cells, and provides a new approach to the study of factors that influence both metabolism and transformation. (orig.)

  13. Seeking genes responsible for developmental origins of health and disease from the fetal mouse liver following maternal food restriction.

    Science.gov (United States)

    Ogawa, Tetsuo; Shibato, Junko; Rakwal, Randeep; Saito, Tomomi; Tamura, Gaku; Kuwagata, Makiko; Shioda, Seiji

    2014-11-01

    Low birthweight resulting from a non-optimal fetal environment is correlated epidemiologically to a higher risk of adult diseases, and which has also been demonstrated using animal models for maternal undernutrition. In this study, we subjected pregnant mice to 50% food restriction (FR), and profiled gene expression and promoter DNA methylation genome-wide using the fetal livers. The fact that effect of food restriction is opposite between before and after birth encouraged us to hunt for genes that are expressed oppositely to adult calorie restriction (CR) using the maternal livers. Among oppositely regulated genes, we identified trib1 (tribbles homolog 1). Using genetically modified mice, trib1 has been shown to have a demonstrable contribution to a risk of hypertriglyceridaemia and insulin resistance. Our data showed that the trib1 expression and its promoter DNA methylation could be affected physiologically (by maternal nutrition), and therefore might be a strong candidate gene for developmental origins of adult diseases. Furthermore, lepr (leptin receptor) gene was downregulated by maternal FR, indicating its potential role in induction of obesity and diabetes. Gene expression as well as promoter DNA methylation profiling revealed that glucocorticoid receptor target genes were regulated by maternal FR. This supports previous studies that suggest an important role of fetal glucocorticoid exposure in the mechanism of developmental origins of diseases. Our transcriptomics profiling data also suggested that maternal FR impaired development of the immune system. An inventory of candidate genes responsible for developmental origins of health and disease is presented and discussed in this study. PMID:24754856

  14. MicroRNA-155 Deficiency Attenuates Liver Steatosis and Fibrosis without Reducing Inflammation in a Mouse Model of Steatohepatitis.

    Directory of Open Access Journals (Sweden)

    Timea Csak

    Full Text Available MicroRNAs (miRs regulate hepatic steatosis, inflammation and fibrosis. Fibrosis is the consequence of chronic tissue damage and inflammation. We hypothesized that deficiency of miR-155, a master regulator of inflammation, attenuates steatohepatitis and fibrosis.Wild type (WT and miR-155-deficient (KO mice were fed methionine-choline-deficient (MCD or -supplemented (MCS control diet for 5 weeks. Liver injury, inflammation, steatosis and fibrosis were assessed.MCD diet resulted in steatohepatitis and increased miR-155 expression in total liver, hepatocytes and Kupffer cells. Steatosis and expression of genes involved in fatty acid metabolism were attenuated in miR-155 KO mice after MCD feeding. In contrast, miR-155 deficiency failed to attenuate inflammatory cell infiltration, nuclear factor κ beta (NF-κB activation and enhanced the expression of the pro-inflammatory cytokines tumor necrosis factor alpha (TNFα and monocyte chemoattractant protein-1 (MCP1 in MCD diet-fed mice. We found a significant attenuation of apoptosis (cleaved caspase-3 and reduction in collagen and α smooth muscle actin (αSMA levels in miR-155 KO mice compared to WTs on MCD diet. In addition, we found attenuation of platelet derived growth factor (PDGF, a pro-fibrotic cytokine; SMAD family member 3 (Smad3, a protein involved in transforming growth factor-β (TGFβ signal transduction and vimentin, a mesenchymal marker and indirect indicator of epithelial-to-mesenchymal transition (EMT in miR-155 KO mice. Nuclear binding of CCAAT enhancer binding protein β (C/EBPβ a miR-155 target involved in EMT was significantly increased in miR-155 KO compared to WT mice.Our novel data demonstrate that miR-155 deficiency can reduce steatosis and fibrosis without decreasing inflammation in steatohepatitis.

  15. Activation of the sonic hedgehog signaling pathway occurs in the CD133 positive cells of mouse liver cancer Hepa 1–6 cells

    Directory of Open Access Journals (Sweden)

    Jeng KS

    2013-08-01

    Full Text Available Kuo-Shyang Jeng,1 I-Shyan Sheen,2 Wen-Juei Jeng,2 Ming-Che Yu,3 Hsin-I Hsiau,3 Fang-Yu Chang,3 Hsin-Hua Tsai31Department of Surgery, Far Eastern Memorial Hospital, Taipei, 2Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University, 3Department of Medical Research, Far Eastern Memorial Hospital, Taipei, Taiwan, Republic of ChinaBackground: The important role of cancer stem cells in carcinogenesis has been emphasized in research. CD133+ cells have been mentioned as liver cancer stem cells in hepatocellular carcinoma (HCC. Some researchers have proposed that the sonic hedgehog (Shh pathway contributes to hepatocarcinogenesis and that the pathway activation occurs mainly in cancer stem cells. We investigated whether the activation of the Shh pathway occurs in CD133+ cells from liver cancer.Materials and methods: We used magnetic sorting to isolate CD133+ cells from mouse cancer Hepa 1–6 cells. To examine the clonogenicity, cell culture and soft agar colony formation assay were performed between CD133+ and CD133- cells. To study the activation of the Shh pathway, we examined the mRNA expressions of Shh, patched homolog 1 (Ptch-1, glioma-associated oncogene homolog 1 (Gli-1, and smoothened homolog (Smoh by real-time polymerase chain reaction of both CD133+ and CD133- cells.Results: The number (mean ± standard deviation of colonies of CD133+ cells and CD133- cells was 1,031.0 ± 104.7 and 119.7 ± 17.6 respectively. This difference was statistically significant (P < 0.001. Their clonogenicity was 13.7% ± 1.4% and 1.6% ± 0.2% respectively with a statistically significant difference found (P < 0.001. CD133+ cells and CD133– cells were found to have statistically significant differences in Shh mRNA and Smoh mRNA (P = 0.005 and P = 0.043 respectively.Conclusion: CD133+ Hepa 1–6 cells have a significantly higher colony proliferation and clonogenicity. The Shh pathway is activated in these

  16. Effect of commonly used organic solvents on aldehyde oxidase-mediated vanillin, phthalazine and methotrexate oxidation in human, rat and mouse liver subcellular fractions.

    Science.gov (United States)

    Behera, Dayanidhi; Pattem, Rambabu; Gudi, Girish

    2014-08-01

    1. Aldehyde oxidase (AOX) is a cytosolic molybdoflavoprotein enzyme widely distributed across many tissues. In this study, we report the effect of commonly used organic solvents such as dimethyl sulfoxide (DMSO), acetonitrile (ACN), methanol and ethanol on AOX activity in human, rat and mouse liver S9 fractions using vanillin, phthalazine and methotrexate as probe substrates. 2. Methanol was found to be the most potent solvent in inhibiting vanillic acid and 1-phthalazinone formation in comparison to DMSO, ACN and ethanol across the species tested, except 7-hydroxy methotrexate. 3. Treatment with these solvents at approximate IC50 (% v/v) concentrations showed significant reduction in Clint and Vmax of the probe substrates and also resulted in different effects on Km across the species. 4. Marked differences in the activity and affinity towards AOX were observed with different probe substrates with methotrexate showing least activity and affinity as compared to vanillin and phthalazine. 5. Overall, AOX activity seemed to be more resilient to the presence of organic solvents at higher concentrations in human and rodent species. These results suggest that low concentrations of organic solvents are acceptable for in vitro incubations involving AOX-mediated metabolism.

  17. Grape Seed Procyanidins and Cholestyramine Differentially Alter Bile Acid and Cholesterol Homeostatic Gene Expression in Mouse Intestine and Liver.

    Directory of Open Access Journals (Sweden)

    Rebecca M Heidker

    Full Text Available Bile acid (BA sequestrants, lipid-lowering agents, may be prescribed as a monotherapy or combination therapy to reduce the risk of coronary artery disease. Over 33% of adults in the United States use complementary and alternative medicine strategies, and we recently reported that grape seed procyanidin extract (GSPE reduces enterohepatic BA recirculation as a means to reduce serum triglyceride (TG levels. The current study was therefore designed to assess the effects on BA, cholesterol and TG homeostatic gene expression following co-administration with GSPE and the BA sequestrant, cholestyramine (CHY. Eight-week old male C57BL/6 mice were treated for 4 weeks with either a control or 2% CHY-supplemented diet, after which, they were administered vehicle or GSPE for 14 hours. Liver and intestines were harvested and gene expression was analyzed. BA, cholesterol, non-esterified fatty acid and TG levels were also analyzed in serum and feces. Results reveal that GSPE treatment alone, and co-administration with CHY, regulates BA, cholesterol and TG metabolism differently than CHY administration alone. Notably, GSPE decreased intestinal apical sodium-dependent bile acid transporter (Asbt gene expression, while CHY significantly induced expression. Administration with GSPE or CHY robustly induced hepatic BA biosynthetic gene expression, especially cholesterol 7α-hydroxylase (Cyp7a1, compared to control, while co-administration further enhanced expression. Treatment with CHY induced both intestinal and hepatic cholesterologenic gene expression, while co-administration with GSPE attenuated the CHY-induced increase in the liver but not intestine. CHY also induced hepatic lipogenic gene expression, which was attenuated by co-administration with GSPE. Consequently, a 25% decrease in serum TG levels was observed in the CHY+GSPE group, compared to the CHY group. Collectively, this study presents novel evidence demonstrating that GSPE provides additive and

  18. Grape Seed Procyanidins and Cholestyramine Differentially Alter Bile Acid and Cholesterol Homeostatic Gene Expression in Mouse Intestine and Liver.

    Science.gov (United States)

    Heidker, Rebecca M; Caiozzi, Gianella C; Ricketts, Marie-Louise

    2016-01-01

    Bile acid (BA) sequestrants, lipid-lowering agents, may be prescribed as a monotherapy or combination therapy to reduce the risk of coronary artery disease. Over 33% of adults in the United States use complementary and alternative medicine strategies, and we recently reported that grape seed procyanidin extract (GSPE) reduces enterohepatic BA recirculation as a means to reduce serum triglyceride (TG) levels. The current study was therefore designed to assess the effects on BA, cholesterol and TG homeostatic gene expression following co-administration with GSPE and the BA sequestrant, cholestyramine (CHY). Eight-week old male C57BL/6 mice were treated for 4 weeks with either a control or 2% CHY-supplemented diet, after which, they were administered vehicle or GSPE for 14 hours. Liver and intestines were harvested and gene expression was analyzed. BA, cholesterol, non-esterified fatty acid and TG levels were also analyzed in serum and feces. Results reveal that GSPE treatment alone, and co-administration with CHY, regulates BA, cholesterol and TG metabolism differently than CHY administration alone. Notably, GSPE decreased intestinal apical sodium-dependent bile acid transporter (Asbt) gene expression, while CHY significantly induced expression. Administration with GSPE or CHY robustly induced hepatic BA biosynthetic gene expression, especially cholesterol 7α-hydroxylase (Cyp7a1), compared to control, while co-administration further enhanced expression. Treatment with CHY induced both intestinal and hepatic cholesterologenic gene expression, while co-administration with GSPE attenuated the CHY-induced increase in the liver but not intestine. CHY also induced hepatic lipogenic gene expression, which was attenuated by co-administration with GSPE. Consequently, a 25% decrease in serum TG levels was observed in the CHY+GSPE group, compared to the CHY group. Collectively, this study presents novel evidence demonstrating that GSPE provides additive and complementary

  19. Transient suppression of hepatocellular replication in the mouse liver following transduction with recombinant adeno-associated virus.

    Science.gov (United States)

    Dane, A P; Cunningham, S C; Kok, C Y; Logan, G J; Alexander, I E

    2015-11-01

    Recombinant vectors based on adeno-associated virus (AAV) are proving to be powerful tools for genetic manipulation of the liver, for both discovery and therapeutic purposes. The system can be used to deliver transgene cassettes for expression or, alternatively, DNA templates for genome editing via homologous recombination. The replicative state of target cells is known to influence the efficiency of these processes and knowledge of the host-vector interactions involved is required for optimally effective vector deployment. Here we show, for the first time in vivo, that in addition to the known effects of hepatocellular replication on AAV-mediated gene transfer, the vector itself exerts a potent, albeit transient suppressive effect on cell cycle progression that is relieved on a time course that correlates with the known rate of clearance of input single-stranded vector DNA. This finding requires further mechanistic investigation, delineates an excellent model system for such studies and further deepens our insight into the complexity of interactions between AAV vectors and the cell cycle in a clinically promising target tissue.

  20. Lack of liver X receptors leads to cell proliferation in a model of mouse dorsal prostate epithelial cell.

    Directory of Open Access Journals (Sweden)

    Julie Dufour

    Full Text Available Recent studies underline the implication of Liver X Receptors (LXRs in several prostate diseases such as benign prostatic hyperplasia (BPH and prostate cancer. In order to understand the molecular mechanisms involved, we derived epithelial cells from dorsal prostate (MPECs of wild type (WT or Lxrαβ-/- mice. In the WT MPECs, our results show that LXR activation reduces proliferation and correlates with the modification of the AKT-survival pathway. Moreover, LXRs regulate lipid homeostasis with the regulation of Abca1, Abcg1 and Idol, and, in a lesser extent, Srebp1, Fas and Acc. Conversely cells derived from Lxrαβ-/- mice show a higher basal phosphorylation and consequently activation of the survival/proliferation transduction pathways AKT and MAPK. Altogether, our data point out that the cell model we developed allows deciphering the molecular mechanisms inducing the cell cycle arrest. Besides, we show that activated LXRs regulate AKT and MAPK transduction pathways and demonstrate that LXRs could be good pharmacological targets in prostate disease such as cancer.

  1. Effects of CXCR4 siRNA/dextran-spermine nanoparticles on CXCR4 expression and serum LDH levels in a mouse model of colorectal cancer metastasis to the liver

    International Nuclear Information System (INIS)

    Liver metastasis is the main cause of mortality related to colorectal cancer. CXCR4 is necessary for the outgrowth of colon cancer micrometastases. In oncology, it has been demonstrated that several human tumors release lactate dehydrogenase (LDH) into the circulation. CXCR4 gene expression and serum LDH levels are often increased in patients with colorectal cancer. Despite technological advances in cancer therapy, five-year overall survival is still around 50%. Therefore, better treatment needs to be developed. RNA interference (RNAi) is a modern and powerful tool for inhibition of gene expression. However, the rate-limiting step in this technology is effective delivery of RNAi agents. We have investigated a novel strategy of CXCR4 siRNA therapy and its effect on serum LDH levels in a BALB/C mouse model of colorectal cancer metastasis to the liver. Hepatic metastasis was established by injecting a CT26.WT mouse colon carcinoma cell line via the tail vein. Our results demonstrated that CXCR4 siRNA/ dextran-spermine nanoparticles achieved high silencing efficiency with low toxicity. Favorable localization of the nanoparticles was confirmed with CXCR4 gene expression in the liver, that was correlated with serum LDH levels. More research will be needed to determine the effect of CXCR4 silencing on serum LDH levels, which may be a useful marker for predicting liver metastasis in colorectal cancer

  2. Effect of graded Nrf2 activation on phase-I and -II drug metabolizing enzymes and transporters in mouse liver.

    Directory of Open Access Journals (Sweden)

    Kai Connie Wu

    Full Text Available Nuclear factor erythroid 2-related factor 2 (Nrf2 is a transcription factor that induces a battery of cytoprotective genes in response to oxidative/electrophilic stress. Kelch-like ECH associating protein 1 (Keap1 sequesters Nrf2 in the cytosol. The purpose of this study was to investigate the role of Nrf2 in regulating the mRNA of genes encoding drug metabolizing enzymes and xenobiotic transporters. Microarray analysis was performed in livers of Nrf2-null, wild-type, Keap1-knockdown mice with increased Nrf2 activation, and Keap1-hepatocyte knockout mice with maximum Nrf2 activation. In general, Nrf2 did not have a marked effect on uptake transporters, but the mRNAs of organic anion transporting polypeptide 1a1, sodium taurocholate cotransporting polypeptide, and organic anion transporter 2 were decreased with Nrf2 activation. The effect of Nrf2 on cytochrome P450 (Cyp genes was minimal, with only Cyp2a5, Cyp2c50, Cyp2c54, and Cyp2g1 increased, and Cyp2u1 decreased with enhanced Nrf2 activation. However, Nrf2 increased mRNA of many other phase-I enzymes, such as aldo-keto reductases, carbonyl reductases, and aldehyde dehydrogenase 1. Many genes involved in phase-II drug metabolism were induced by Nrf2, including glutathione S-transferases, UDP- glucuronosyltransferases, and UDP-glucuronic acid synthesis enzymes. Efflux transporters, such as multidrug resistance-associated proteins, breast cancer resistant protein, as well as ATP-binding cassette g5 and g8 were induced by Nrf2. In conclusion, Nrf2 markedly alters hepatic mRNA of a large number of drug metabolizing enzymes and xenobiotic transporters, and thus Nrf2 plays a central role in xenobiotic metabolism and detoxification.

  3. EGFR is dispensable for c-Met-mediated proliferation and survival activities in mouse adult liver oval cells.

    Science.gov (United States)

    Martínez-Palacián, A; del Castillo, G; Herrera, B; Fernández, M; Roncero, C; Fabregat, I; Sánchez, A

    2012-02-01

    Liver progenitor cells rise as potential critical players in hepatic regeneration but also carcinogenesis. It is therefore mandatory to define the signals controlling their activation and expansion. Recently, by using a novel in vitro model of oval cell lines expressing a mutant tyrosine kinase-inactive form of c-Met we demonstrated that autocrine c-Met signalling plays an essential role in promoting oval cell survival. Here, we investigated the significance of the epidermal growth factor receptor (EGFR) signalling in oval cell proliferation and survival, as well as a potential functional crosstalk between the c-Met and the EGFR pathways. We found an autocrine activation of the EGFR-triggered pathway in Met(flx/flx) and Met(-/-) oval cells as judged by constitutive expression of the EGFR ligands, transforming growth factor-alpha (TGF-α) and heparin-binding EGF like growth factor (HB-EGF), and activation of EGFR. On the other hand, treatment with AG1478, a specific inhibitor of EGFR, effectively blocked endogenous and EGF-induced proliferation, while increased serum withdrawal and transforming growth factor-beta (TGF-β)-induced apoptosis. These results suggest that constitutively activated EGFR might promote oval cell proliferation and survival. We found that hepatocyte growth factor (HGF) does not transactivate EGFR nor EGF transactivates c-Met. Furthermore, treatment with AG1478 or EGFR gene silencing did not interfere with HGF-mediated activation of target signals, such as protein kinase B (AKT/PKB), and extracellular signal-regulated kinases 1/2 (ERK 1/2), nor did it have any effect on HGF-induced proliferative and antiapoptotic activities in Met(flx/flx) cells, showing that HGF does not require EGFR activation to mediate such responses. EGF induced proliferation and survival equally in Met(flx/flx) and Met(-/-) oval cells, proving that EGFR signalling does not depend on c-Met tyrosine kinase activity. Together, our results provide strong evidence that in

  4. 高效氯氰菊酯对小鼠肝细胞的氧化损伤%Oxidative damages of beta-cypermethrin on mouse liver cells

    Institute of Scientific and Technical Information of China (English)

    马萍; 秦龙娟; 张亚然; 杜娟; 尤会会; 杨旭

    2012-01-01

    This study was aimed at identifying the oxidative stress effects of beta-cypermethrin on organisms. Mice were orally administrated with betacypermethrin for seven days at the concentration of 10, 20 and 40 mg· kg- 1 , respectively. The contents of ROS, GSH, and MDA in the liver homogenate and DPC coefficients in the liver cells were measured to indicate the oxidative damages. The experimental results showed that the contents of ROS, MDA and DPC coefficients increased gradually while GSH content decreased with the increasing exposure dose. All the biomarkers were in the exposure doseresponse manner. When exposure dose was over 20 mg·kg-1 , ROS content and DPC coefficient were significantly higher than the control group (p 〈 0.05) ; in the higher dose groups ( I〉 40 rag·kg - 1) , GSH and MDA contents indicated significant differences compared with the control group (p 〈 0. 05), and DPC coefficient had extremely significant differences (p 〈 0.01 ). These experimental results demonstrated that beta-cypermethrin can increase the oxidative stress and DNA-protein crosslinks in mouse liver at high doses.%为了探讨高效氯氰菊酯对生物体的氧化损伤,以昆明小鼠为受试体,高效氯氰菊酯按10、和40mg·kg20-13个剂量水平,灌胃染毒小鼠7d,并以肝匀浆测定活性氧自由基(ROS)、还原型谷胱甘肽(GSH)、丙二醛(MDA)含量,以肝细胞测定DNA-蛋白质交联(DPC)系数.实验结果表明,随着高效氯氰菊酯染毒剂量的升高,ROS和MDA含量及DPC系数逐渐上升,GSH含量逐渐降低,各指标呈一定的剂量-效应关系.染毒剂量≥20mg·kg-1时,处理组的ROS含量和DPC系数与对照组有显著差异(p〈0.05);染毒剂量≥40mg·kg-1时,GSH和MDA含量与对照组有显著差异(p〈0.05),DPC系数有极显著差异(p〈0.01).说明较高剂量的高效氯氰菊酯可造成小鼠肝脏的氧化损伤和DNA-蛋白质交联作用增强.

  5. Liver Transplant

    Science.gov (United States)

    ... Home > Your Liver > Liver Disease Information > Liver Transplant Liver Transplant Explore this section to learn more about liver ... harmful substances from your blood. What is a liver transplant? A liver transplant is the process of replacing ...

  6. Effects of different fixative for HE staining on mouse liver paraffin sections%不同固定液对小鼠肝脏石蜡切片HE染色的影响

    Institute of Scientific and Technical Information of China (English)

    熊飞

    2013-01-01

    目的:比较经不同固定液处理的小鼠肝脏石蜡切片H E染色效果,优化实验方法。方法用3种不同固定液(10%中性福尔马林、4%多聚甲醛、A F固定液)处理小鼠肝脏组织,经常规脱水、透明、浸蜡、包埋、切片,H E染色,观察比较染色效果。结果10%福尔马林、4%多聚甲醛固定的肝组织结构完整、清晰,细胞界限清楚,染色鲜艳;A F固定液固定的肝组织结构不完整,界限不清,胞浆中出现大量空泡。结论10%中性福尔马林和4%多聚甲醛是制作小鼠肝脏石蜡切片HE染色标本的理想固定液。%Purpose: To compare of mouse liver paraffin section and HE staining effect treatment with different fixative, optimization of experimental method. Methods: Mouse livers were immersed in three different fixatives (10% buffered formalin, 4% polyformaldehyde, and AF fluid) respectively. The tissue were dehydrated, transparentized and immersed in paraffin as routine procedure. The paraffin embedded liver tissue were sectioned and stained with Hematoxylin and Eosin, liver sections were compared under the light microscope. Results: The tissues fixed with 10% buffered formalin and 4% polyformaldehyde showed complete and clear structure, and the hepatocytes wel stained. The structure of liver tissues fixed with AF fluid was not complete, il-defined, and with large vacuoles in cytoplasm.Conclusion: 10% buffered formalin and 4% polyformaldehyde fixative is the most effective fixative for mouse liver HE staining.

  7. Alterations of epigenetic signatures in hepatocyte nuclear factor 4α deficient mouse liver determined by improved ChIP-qPCR and (h)MeDIP-qPCR assays.

    Science.gov (United States)

    Zhang, Qinghao; Lei, Xiaohong; Lu, Hong

    2014-01-01

    Hepatocyte nuclear factor 4α (HNF4α) is a liver-enriched transcription factor essential for liver development and function. In hepatocytes, HNF4α regulates a large number of genes important for nutrient/xenobiotic metabolism and cell differentiation and proliferation. Currently, little is known about the epigenetic mechanism of gene regulation by HNF4α. In this study, the global and specific alterations at the selected gene loci of representative histone modifications and DNA methylations were investigated in Hnf4a-deficient female mouse livers using the improved MeDIP-, hMeDIP- and ChIP-qPCR assay. Hnf4a deficiency significantly increased hepatic total IPed DNA fragments for histone H3 lysine-4 dimethylation (H3K4me2), H3K4me3, H3K9me2, H3K27me3 and H3K4 acetylation, but not for H3K9me3, 5-methylcytosine,or 5-hydroxymethylcytosine. At specific gene loci, the relative enrichments of histone and DNA modifications were changed to different degree in Hnf4a-deficient mouse liver. Among the epigenetic signatures investigated, changes in H3K4me3 correlated the best with mRNA expression. Additionally, Hnf4a-deficient livers had increased mRNA expression of histone H1.2 and H3.3 as well as epigenetic modifiers Dnmt1, Tet3, Setd7, Kmt2c, Ehmt2, and Ezh2. In conclusion, the present study provides convenient improved (h)MeDIP- and ChIP-qPCR assays for epigenetic study. Hnf4a deficiency in young-adult mouse liver markedly alters histone methylation and acetylation, with fewer effects on DNA methylation and 5-hydroxymethylation. The underlying mechanism may be the induction of epigenetic enzymes responsible for the addition/removal of the epigenetic signatures, and/or the loss of HNF4α per se as a key coordinator for epigenetic modifiers.

  8. Monitoring Cyp2b10 mRNA expression at cessation of 2-year carcinogenesis bioassay in mouse liver provides evidence for a carcinogenic mechanism devoid of human relevance: The dalcetrapib experience

    Energy Technology Data Exchange (ETDEWEB)

    Hoflack, J-C.; Mueller, L., E-mail: Lutz.Mueller@roche.com; Fowler, S.; Braendli-Baiocco, A.; Flint, N.; Kuhlmann, O.; Singer, T.; Roth, A.

    2012-03-15

    Introduction: Dalcetrapib is a cholesteryl ester transfer protein (CETP) modulator in clinical assessment for cardiovascular outcome benefits. In compliance with regulatory requirements, dalcetrapib was evaluated in rodent 2-year carcinogenesis bioassays. In the mouse bioassay, male mice demonstrated increased liver weight and statistically increased incidences of hepatocellular adenoma/carcinoma. Hepatic cytochrome p450 (Cyp) 2b10 mRNA induction and increased Cyp2b10 enzyme activity signify activation of hepatic nuclear receptor constitutive androstane receptor (CAR), a widely established promoter of rodent-specific hepatic tumors. We therefore monitored hepatic Cyp2b10 mRNA and its enzyme activity in a subset of dalcetrapib-treated male mice from the bioassay. Methods: Liver samples were obtained from ∼ 1/3 of male mice from each dose group including vehicle-controls (mean and earliest study day of death 678 and 459 respectively). Quantitative real time PCR (qRT-PCR) was performed to determine Cyp2b10 mRNA expression and Cyp1a-, Cyp2b10- and Cyp3a-selective activities were monitored. Results: Cyp2b10 mRNA was strongly induced by dalcetrapib with an expected wide inter-individual variation (5–1421-fold). Group average fold-induction versus vehicle-controls showed a dose-related increase from 48-fold (250 mg/kg/day) to 160-fold (750 mg/kg/day), which declined slightly at 2000 mg/kg/day (97-fold). Cyp enzyme activities showed approximate doubling of total Cyp P450 content per milligram protein and a 9-fold increase in Cyp2b10-selective pentoxyresorufin O-dealkylase activity (750 mg/kg/day). Discussion: These data from hepatic Cyp2b10 monitoring are strongly suggestive of CAR activation by dalcetrapib, a mechanism devoid of relevance towards hepatocarcinogenesis in humans; results show feasibility of Cyp2b10 as a surrogate marker for this mechanism at cessation of a carcinogenesis bioassay. -- Highlights: ► Liver tumors were induced in male mice by dalcetrapib

  9. Immunohistochemical examination of effects of kefir, koumiss and commercial probiotic capsules on platelet derived growth factor-c and platelet derived growth factor receptor-alpha expression in mouse liver and kidney.

    Science.gov (United States)

    Bakir, B; Sari, E K; Aydin, B D; Yildiz, S E

    2015-04-01

    We investigated using immunohistochemistry the effects of kefir, koumiss and commercial probiotic capsules on the expression of platelet derived growth factor-c (PDGF-C) and platelet derived growth factor receptor-alpha (PDGFR-α) in mouse liver and kidney. Mice were assigned to four groups: group 1 was given commercial probiotic capsules, group 2 was given kefir, group 3 was given koumiss and group 4 was untreated. After oral administration for 15 days, body weights were recorded and liver and kidney tissue samples were obtained. Hematoxylin and eosin staining was used to examine histology. PDGF-C and PDGFR-α in liver and kidney were localized using the streptavidin-biotin peroxidase complex method (ABC). We found that the weights of the mice in the kefir, koumiss and commercial probiotic capsules groups increased compared to the control group. No differences in liver and kidney histology were observed in any of the experimental groups. Kefir, koumiss and the commercial probiotic preparation increased PDGF-C and PDGFR-α expression.

  10. Integration of Genome-Wide Computation DRE Search, AhR ChIP-chip and Gene Expression Analyses of TCDD-Elicited Responses in the Mouse Liver

    Directory of Open Access Journals (Sweden)

    Matthews Jason

    2011-07-01

    Full Text Available Abstract Background The aryl hydrocarbon receptor (AhR is a ligand-activated transcription factor (TF that mediates responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD. Integration of TCDD-induced genome-wide AhR enrichment, differential gene expression and computational dioxin response element (DRE analyses further elucidate the hepatic AhR regulatory network. Results Global ChIP-chip and gene expression analyses were performed on hepatic tissue from immature ovariectomized mice orally gavaged with 30 μg/kg TCDD. ChIP-chip analysis identified 14,446 and 974 AhR enriched regions (1% false discovery rate at 2 and 24 hrs, respectively. Enrichment density was greatest in the proximal promoter, and more specifically, within ± 1.5 kb of a transcriptional start site (TSS. AhR enrichment also occurred distal to a TSS (e.g. intergenic DNA and 3' UTR, extending the potential gene expression regulatory roles of the AhR. Although TF binding site analyses identified over-represented DRE sequences within enriched regions, approximately 50% of all AhR enriched regions lacked a DRE core (5'-GCGTG-3'. Microarray analysis identified 1,896 number of TCDD-responsive genes (|fold change| ≥ 1.5, P1(t > 0.999. Integrating this gene expression data with our ChIP-chip and DRE analyses only identified 625 differentially expressed genes that involved an AhR interaction at a DRE. Functional annotation analysis of differentially regulated genes associated with AhR enrichment identified overrepresented processes related to fatty acid and lipid metabolism and transport, and xenobiotic metabolism, which are consistent with TCDD-elicited steatosis in the mouse liver. Conclusions Details of the AhR regulatory network have been expanded to include AhR-DNA interactions within intragenic and intergenic genomic regions. Moreover, the AhR can interact with DNA independent of a DRE core suggesting there are alternative mechanisms of AhR-mediated gene regulation.

  11. Evaluation of Aroclor 1260 exposure in a mouse model of diet-induced obesity and non-alcoholic fatty liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Wahlang, Banrida [Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202 (United States); Song, Ming [Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202 (United States); Beier, Juliane I. [Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202 (United States); Cameron Falkner, K. [Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202 (United States); Al-Eryani, Laila [Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202 (United States); Clair, Heather B.; Prough, Russell A. [Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40202 (United States); Osborne, Tanasa S.; Malarkey, David E. [Cellular and Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (United States); Christopher States, J. [Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202 (United States); Cave, Matthew C., E-mail: matt.cave@louisville.edu [Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202 (United States); Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202 (United States); The Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206 (United States)

    2014-09-15

    Polychlorinated biphenyls (PCBs) are persistent organic pollutants associated with non-alcoholic fatty liver disease (NAFLD) in epidemiologic studies. The purpose of this study was to evaluate the hepatic effects of a PCB mixture, Aroclor 1260, whose composition mimics human bioaccumulation patterns, in a mouse model of diet-induced obesity (DIO). Male C57Bl/6J mice were fed control diet or 42% high fat diet (HFD) and exposed to Aroclor 1260 (20 mg/kg or 200 mg/kg in corn oil) for 12 weeks. A glucose tolerance test was performed; plasma/tissues were obtained at necropsy for measurements of adipocytokine levels, histology, and gene expression. Aroclor 1260 exposure was associated with decreased body fat in HFD-fed mice but had no effect on blood glucose/lipid levels. Paradoxically, Aroclor 1260 + HFD co-exposed mice demonstrated increased hepatic inflammatory foci at both doses while the degree of steatosis did not change. Serum cytokines, ALT levels and hepatic expression of IL-6 and TNFα were increased only at 20 mg/kg, suggesting an inhibition of pro-inflammatory cytokine production at the 200 mg/kg exposure. Aroclor 1260 induced hepatic expression of cytochrome P450s including Cyp3a11 (Pregnane-Xenobiotic Receptor target) and Cyp2b10 (constitutive androstane receptor target) but Cyp2b10 inducibility was diminished with HFD-feeding. Cyp1a2 (aryl hydrocarbon Receptor target) was induced only at 200 mg/kg. In summary, Aroclor 1260 worsened hepatic and systemic inflammation in DIO. The results indicated a bimodal response of PCB-diet interactions in the context of inflammation which could potentially be explained by xenobiotic receptor activation. Thus, PCB exposure may be a relevant “second hit” in the transformation of steatosis to steatohepatitis. - Highlights: • Aroclor 1260 exposure decreased adiposity in mice fed with high fat diet • Aroclor 1260 exposure induced steatohepatitis in diet-induced obese mice • Aroclor 1260 (20 and 200 mg/kg) induced

  12. Evaluation of Aroclor 1260 exposure in a mouse model of diet-induced obesity and non-alcoholic fatty liver disease

    International Nuclear Information System (INIS)

    Polychlorinated biphenyls (PCBs) are persistent organic pollutants associated with non-alcoholic fatty liver disease (NAFLD) in epidemiologic studies. The purpose of this study was to evaluate the hepatic effects of a PCB mixture, Aroclor 1260, whose composition mimics human bioaccumulation patterns, in a mouse model of diet-induced obesity (DIO). Male C57Bl/6J mice were fed control diet or 42% high fat diet (HFD) and exposed to Aroclor 1260 (20 mg/kg or 200 mg/kg in corn oil) for 12 weeks. A glucose tolerance test was performed; plasma/tissues were obtained at necropsy for measurements of adipocytokine levels, histology, and gene expression. Aroclor 1260 exposure was associated with decreased body fat in HFD-fed mice but had no effect on blood glucose/lipid levels. Paradoxically, Aroclor 1260 + HFD co-exposed mice demonstrated increased hepatic inflammatory foci at both doses while the degree of steatosis did not change. Serum cytokines, ALT levels and hepatic expression of IL-6 and TNFα were increased only at 20 mg/kg, suggesting an inhibition of pro-inflammatory cytokine production at the 200 mg/kg exposure. Aroclor 1260 induced hepatic expression of cytochrome P450s including Cyp3a11 (Pregnane-Xenobiotic Receptor target) and Cyp2b10 (constitutive androstane receptor target) but Cyp2b10 inducibility was diminished with HFD-feeding. Cyp1a2 (aryl hydrocarbon Receptor target) was induced only at 200 mg/kg. In summary, Aroclor 1260 worsened hepatic and systemic inflammation in DIO. The results indicated a bimodal response of PCB-diet interactions in the context of inflammation which could potentially be explained by xenobiotic receptor activation. Thus, PCB exposure may be a relevant “second hit” in the transformation of steatosis to steatohepatitis. - Highlights: • Aroclor 1260 exposure decreased adiposity in mice fed with high fat diet • Aroclor 1260 exposure induced steatohepatitis in diet-induced obese mice • Aroclor 1260 (20 and 200 mg/kg) induced

  13. Tumor necrosis factor-α promotes cholestasis-induced liver fibrosis in the mouse through tissue inhibitor of metalloproteinase-1 production in hepatic stellate cells.

    Directory of Open Access Journals (Sweden)

    Yosuke Osawa

    Full Text Available Tumor necrosis factor (TNF-α, which is a mediator of hepatotoxicity, has been implicated in liver fibrosis. However, the roles of TNF-α on hepatic stellate cell (HSC activation and liver fibrosis are complicated and remain controversial. To explore this issue, the role of TNF-α in cholestasis-induced liver fibrosis was examined by comparing between TNF-α(-/- mice and TNF-α(+/+ mice after bile duct ligation (BDL. Serum TNF-α levels in mice were increased by common BDL combined with cystic duct ligation (CBDL+CDL. TNF-α deficiency reduced liver fibrosis without affecting liver injury, inflammatory cell infiltration, and liver regeneration after CBDL+CDL. Increased expression levels of collagen α1(I mRNA, transforming growth factor (TGF-β mRNA, and α-smooth muscle actin (αSMA protein by CBDL+CDL in the livers of TNF-α(-/- mice were comparable to those in TNF-α(+/+ mice. Exogenous administration of TNF-α decreased collagen α1(I mRNA expression in isolated rat HSCs. These results suggest that the reduced fibrosis in TNF-α(-/- mice is regulated in post-transcriptional level. Tissue inhibitor of metalloproteinase (TIMP-1 plays a crucial role in the pathogenesis of liver fibrosis. TIMP-1 expression in HSCs in the liver was increased by CBDL+CDL, and the induction was lower in TNF-α(-/- mice than in TNF-α(+/+ mice. Fibrosis in the lobe of TIMP-1(-/- mice with partial BDL was also reduced. These findings indicate that TNF-α produced by cholestasis can promote liver fibrosis via TIMP-1 production from HSCs. Thus, targeting TNF-α and TIMP-1 may become a new therapeutic strategy for treating liver fibrosis in cholestatic liver injury.

  14. Mechanisms of amiodarone and valproic acid induced liver steatosis in mouse in vivo act as a template for other hepatotoxicity models

    NARCIS (Netherlands)

    Vitins, A.P.; Kienhuis, A.S.; Speksnijder, E.N.; Roodbergen, M.; Luijten, M.; Ven, van der L.T.M.

    2014-01-01

    Liver injury is the leading cause of drug-induced toxicity. For the evaluation of a chemical compound to induce toxicity, in this case steatosis or fatty liver, it is imperative to identify markers reflective of mechanisms and processes induced upon exposure, as these will be the earliest changes re

  15. Adjuvant treatment with tumor-targeting Salmonella typhimurium A1-R reduces recurrence and increases survival after liver metastasis resection in an orthotopic nude mouse model.

    Science.gov (United States)

    Murakami, Takashi; Hiroshima, Yukihiko; Zhao, Ming; Zhang, Yong; Chishima, Takashi; Tanaka, Kuniya; Bouvet, Michael; Endo, Itaru; Hoffman, Robert M

    2015-12-01

    Colon cancer liver metastasis is often the lethal aspect of this disease. Well-isolated metastases are candidates for surgical resection, but recurrence is common. Better adjuvant treatment is therefore needed to reduce or prevent recurrence. In the present study, HT-29 human colon cancer cells expressing red fluorescent protein (RFP) were used to establish liver metastases in nude mice. Mice with a single liver metastasis were randomized into bright-light surgery (BLS) or the combination of BLS and adjuvant treatment with tumor-targeting S. typhimurium A1-R. Residual tumor fluorescence after BLS was clearly visualized at high magnification by fluorescence imaging. Adjuvant treatment with S. typhimurium A1-R was highly effective to increase survival and disease-free survival after BLS of liver metastasis. The results suggest the future clinical potential of adjuvant S. typhimurium A1-R treatment after liver metastasis resection.

  16. 小鼠肝脏磷酸化蛋白质组鉴定及磷酸化修饰激酶的分析%Mouse liver phosphoproteome methodology optimization and kinase analysis

    Institute of Scientific and Technical Information of China (English)

    林丛; 任亮亮; 姜颖; 贺福初

    2015-01-01

    Objective To analyze the construction of mouse liver phosphoproteome and phosphorylated kinases to provide useful information for integrating mouse kinase phosphorylation regulatory networks.Methods A new method was established to identify phosphoproteome from the mouse liver.First of all, liver protein was digested with trypsin before the resulting peptides were subjected to a two-step phosphopeptide enrichment and separation procedure consisting of TiO2 chro-maphy enrichment combined with high pHHPLC separation.Samples were injected onto aNanolC-Ultra-2Dplus system cou-pled to an AB-Sciex 5600 Triple TOF mass spectrometer instrument.Then data analysis was performed to provide information of new identified phosphorylation sites of kinase.Results and Conclusion Using our efficient and high-throughput platform, we reported the identification of 5386 phosophorylation sites and 4553 phosphopeptides from 1533 proteins of the mouse liver.126 new phosphorylation sites were identified from 116 kinases, which provides valuable infor-mation for phosphorylation networks in the mouse liver.%目的:构建小鼠肝脏磷酸化蛋白质组并对磷酸化激酶进行分析,为完善小鼠激酶磷酸化调控网络提供有价值的信息。方法对正常小鼠肝组织总蛋白提取液进行FASP酶切,用TiO2富集磷酸化肽段,为降低样本的复杂度,对富集到的磷酸化肽段进行反相色谱分离后,质谱鉴定样本中的磷酸化蛋白质组,对鉴定到的磷酸化修饰的激酶进行分析,提供新鉴定到磷酸化修饰位点的信息。结果与结论成功构建了高效的鉴定小鼠肝磷酸化蛋白质组的方法,共鉴定到1533个磷酸化蛋白质,从中确认5386个磷酸化位点和4553个磷酸化肽段,其中包含116磷酸化修饰的激酶,并于发生磷酸化修饰的激酶中成功鉴定到126个新的磷酸化修饰位点,为完善小鼠肝磷酸化信号调控网络提供了有价值的信息。

  17. TLR4 mediates LPS-induced HO-1 expression in mouse liver: Role of TNF-α and IL-1β

    Institute of Scientific and Technical Information of China (English)

    Yong Song; Yi Shi; Li-Hua Ao; Alden H; Harken; Xian-Zhong Meng

    2003-01-01

    AIM: Heme oxygenase (HO)-1 catalyzes the conversion of heme to biliverdin, iron and carbon monoxide. HO-1 is induced by many stimuli including heme, Hb, heat stress,lipopolysaccharide (LPS) and cytokines. Previous studies demonstrated that LPS induced HO-1 gene activation and HO-1 expression in liver. However, the mechanisms of LPSinduced HO-1 expression in liver remain unknown. The effect of toil-like receptor-4 (TLR4) on LPS-induced liver HO-1expression and the role of TNF-α and IL-1β in this condition were determined.METHODS: HO-1 expression was determined by immunofluorescent staining and immunoblotting. Double immunofluorescent staining was performed to determine the cell type of HO-1 expression in liver.RESULTS: A low dose of LPS significantly increased HO-1expression in the liver which was localized in Kupffer cells only. Furthermore, HO-1 expression was enhanced by three doses of LPS. HO-1 expression was significantly inhibited in the liver of TLR4 mutant mice. While the liver HO-1expression in TNF KO mice was much lower than that in C57 mice following the same LPS treatment, IL-1β KO had a slight influence on liver HO-1 expression following LPS treatment.CONCLUSION: The present results confirm that macrophages are the major source of HO-1 in the liver induced by LPS.This study demonstrates that TLR4 plays a dominant role in mediating HO-1 expression following LPS. LPS-induced HO-1 expression is mainly mediated by endogenous TNF-α, but only partially by endogenous IL-1β.

  18. Effects of CXCR4 siRNA/dextran-spermine nanoparticles on CXCR4 expression and serum LDH levels in a mouse model of colorectal cancer metastasis to the liver

    Directory of Open Access Journals (Sweden)

    Abedini F

    2011-09-01

    Full Text Available Fatemeh Abedini1, Maznah Ismail1,4, Hossein Hosseinkhani2, Tengku Azmi Tengku Ibrahim1,3, Abdul Rahman Omar1,3, Pei Pei Chong4, Mohd Hair Bejo3, Abraham J Domb51Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Selangor Darul Ehsan, Malaysia; 2Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan; 3Faculty of Veterinary Medicine, 4Faculty of Medicine and Health Science, Universiti Putra Malaysia, Selangor Darul Ehsan, Malaysia; 5Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Hebrew University-Hadassah Medical School, Jerusalem, IsraelAbstract: Liver metastasis is the main cause of mortality related to colorectal cancer. CXCR4 is necessary for the outgrowth of colon cancer micrometastases. In oncology, it has been demonstrated that several human tumors release lactate dehydrogenase (LDH into the circulation. CXCR4 gene expression and serum LDH levels are often increased in patients with colorectal cancer. Despite technological advances in cancer therapy, five-year overall survival is still around 50%. Therefore, better treatment needs to be developed. RNA interference (RNAi is a modern and powerful tool for inhibition of gene expression. However, the rate-limiting step in this technology is effective delivery of RNAi agents. We have investigated a novel strategy of CXCR4 siRNA therapy and its effect on serum LDH levels in a BALB/C mouse model of colorectal cancer metastasis to the liver. Hepatic metastasis was established by injecting a CT26.WT mouse colon carcinoma cell line via the tail vein. Our results demonstrated that CXCR4 siRNA/dextran-spermine nanoparticles achieved high silencing efficiency with low toxicity. Favorable localization of the nanoparticles was confirmed with CXCR4 gene expression in the liver, that was correlated with serum LDH levels. More research will be needed to determine the effect of CXCR4

  19. CD8+ T cells from a novel T cell receptor transgenic mouse induce liver-stage immunity that can be boosted by blood-stage infection in rodent malaria.

    Directory of Open Access Journals (Sweden)

    Lei Shong Lau

    2014-05-01

    Full Text Available To follow the fate of CD8+ T cells responsive to Plasmodium berghei ANKA (PbA infection, we generated an MHC I-restricted TCR transgenic mouse line against this pathogen. T cells from this line, termed PbT-I T cells, were able to respond to blood-stage infection by PbA and two other rodent malaria species, P. yoelii XNL and P. chabaudi AS. These PbT-I T cells were also able to respond to sporozoites and to protect mice from liver-stage infection. Examination of the requirements for priming after intravenous administration of irradiated sporozoites, an effective vaccination approach, showed that the spleen rather than the liver was the main site of priming and that responses depended on CD8α+ dendritic cells. Importantly, sequential exposure to irradiated sporozoites followed two days later by blood-stage infection led to augmented PbT-I T cell expansion. These findings indicate that PbT-I T cells are a highly versatile tool for studying multiple stages and species of rodent malaria and suggest that cross-stage reactive CD8+ T cells may be utilized in liver-stage vaccine design to enable boosting by blood-stage infections.

  20. Hydrodynamic Gene Delivery of Interleukin-22 Protects the Mouse Liver from Concanavalin A-, Carbon Tetrachloride-, and Fas Ligand-Induced Injury via Activation of STAT3

    Institute of Scientific and Technical Information of China (English)

    HongnaPan; FengHong; SvetlanaRadaeva; BinGao

    2004-01-01

    Interleukin-22 (IL-22) is a recently identified T cell-derived cytokine whose biological significance remains obscure. Previously, we have shown that IL-22 plays a protective role in T cell-mediated hepatitis induced by Concanavalin A (Con A), acting as a survival factor for hepatocytes. In the present paper, we demonstrate that hydrodynamic gene delivery of IL-22 cDNA driven either by a liver-specific albumin promoter or a human cytomegalovirus (CMV) promoter results in IL-22 protein expression, STAT3 activation, and expression of several anti-apoptotic proteins, including Bcl-xL, Bcl-2, and Mcl-1 in the liver. Immunohistochemical analysis reveals that IL-22 protein expression is mainly detected in the cytoplasm of hepatocytes. Overexpression of IL-22 by hydrodynamic gene delivery significantly protects against liver injury, necrosis, and apoptosis induced by administration of Con A, carbon tetrachloride (CCl4), or the Fas agonist Jo-2 mAb. Western blot analyses show that overexpression of IL-22 significantly enhances activation of STAT3 and expression of Bcl-xL, Bcl-2, and Mcl-1 proteins in liver injury induced by Con A. In conclusion, hydrodynamic gene delivery of IL-22 protects against liver injury induced by a variety of toxins, suggesting the therapeutic potential of IL-22 in treating human liver disease. Cellular & Molecular Immunology. 2004;1(1):43-49.

  1. Saturated and Unsaturated Dietary Fats Differentially Modulate Ethanol-Induced Changes in Gut Microbiome and Metabolome in a Mouse Model of Alcoholic Liver Disease.

    Science.gov (United States)

    Kirpich, Irina A; Petrosino, Joseph; Ajami, Nadim; Feng, Wenke; Wang, Yuhua; Liu, Yanlong; Beier, Juliane I; Barve, Shirish S; Yin, Xinmin; Wei, Xiaoli; Zhang, Xiang; McClain, Craig J

    2016-04-01

    Alcoholic liver disease (ALD) ranks among major causes of morbidity and mortality. Diet and crosstalk between the gut and liver are important determinants of ALD. We evaluated the effects of different types of dietary fat and ethanol on the gut microbiota composition and metabolic activity and the effect of these changes on liver injury in ALD. Compared with ethanol and a saturated fat diet (medium chain triglycerides enriched), an unsaturated fat diet (corn oil enriched) exacerbated ethanol-induced endotoxemia, liver steatosis, and injury. Major alterations in gut microbiota, including a reduction in Bacteroidetes and an increase in Proteobacteria and Actinobacteria, were seen in animals fed an unsaturated fat diet and ethanol but not a saturated fat diet and ethanol. Compared with a saturated fat diet and ethanol, an unsaturated fat diet and ethanol caused major fecal metabolomic changes. Moreover, a decrease in certain fecal amino acids was noted in both alcohol-fed groups. These data support an important role of dietary lipids in ALD pathogenesis and provide insight into mechanisms of ALD development. A diet enriched in unsaturated fats enhanced alcohol-induced liver injury and caused major fecal metagenomic and metabolomic changes that may play an etiologic role in observed liver injury. Dietary lipids can potentially serve as inexpensive interventions for the prevention and treatment of ALD.

  2. Hydrodynamic Gene Delivery of Interleukin-22 Protects the Mouse Liver from Concanavalin A-, Carbon Tetrachloride-, and Fas Ligand-Induced Injury via Activation of STAT3

    Institute of Scientific and Technical Information of China (English)

    Hongna Pan; Feng Hong; Svetlana Radaeva; Bin Gao

    2004-01-01

    Interleukin-22 (IL-22) is a recently identified T cell-derived cytokine whose biological significance remains obscure. Previously, we have shown that IL-22 plays a protective role in T cell-mediated hepatitis induced by Concanavalin A (Con A), acting as a survival factor for hepatocytes. In the present paper, we demonstrate that hydrodynamic gene delivery of IL-22 cDNA driven either by a liver-specific albumin promoter or a human cytomegalovirus (CMV) promoter results in IL-22 protein expression, STAT3 activation, and expression of several anti-apoptotic proteins, including Bcl-xL, Bcl-2, and Mcl-1 in the liver. Immunohistochemical analysis reveals that IL-22 protein expression is mainly detected in the cytoplasm of hepatocytes. Overexpression of IL-22 by hydrodynamic gene delivery significantly protects against liver injury, necrosis, and apoptosis induced by administration of Con A, carbon tetrachloride (CCl4), or the Fas agonist Jo-2 mAb. Western blot analyses show that overexpression of IL-22 significantly enhances activation of STAT3 and expression of Bcl-xL, Bcl-2,and Mcl-1 proteins in liver injury induced by Con A. In conclusion, hydrodynamic gene delivery of IL-22 protects against liver injury induced by a variety of toxins, suggesting the therapeutic potential of IL-22 in treating human liver disease. Cellular & Molecular Immunology. 2004;1(1):43-49.

  3. Saturated and Unsaturated Dietary Fats Differentially Modulate Ethanol-Induced Changes in Gut Microbiome and Metabolome in a Mouse Model of Alcoholic Liver Disease.

    Science.gov (United States)

    Kirpich, Irina A; Petrosino, Joseph; Ajami, Nadim; Feng, Wenke; Wang, Yuhua; Liu, Yanlong; Beier, Juliane I; Barve, Shirish S; Yin, Xinmin; Wei, Xiaoli; Zhang, Xiang; McClain, Craig J

    2016-04-01

    Alcoholic liver disease (ALD) ranks among major causes of morbidity and mortality. Diet and crosstalk between the gut and liver are important determinants of ALD. We evaluated the effects of different types of dietary fat and ethanol on the gut microbiota composition and metabolic activity and the effect of these changes on liver injury in ALD. Compared with ethanol and a saturated fat diet (medium chain triglycerides enriched), an unsaturated fat diet (corn oil enriched) exacerbated ethanol-induced endotoxemia, liver steatosis, and injury. Major alterations in gut microbiota, including a reduction in Bacteroidetes and an increase in Proteobacteria and Actinobacteria, were seen in animals fed an unsaturated fat diet and ethanol but not a saturated fat diet and ethanol. Compared with a saturated fat diet and ethanol, an unsaturated fat diet and ethanol caused major fecal metabolomic changes. Moreover, a decrease in certain fecal amino acids was noted in both alcohol-fed groups. These data support an important role of dietary lipids in ALD pathogenesis and provide insight into mechanisms of ALD development. A diet enriched in unsaturated fats enhanced alcohol-induced liver injury and caused major fecal metagenomic and metabolomic changes that may play an etiologic role in observed liver injury. Dietary lipids can potentially serve as inexpensive interventions for the prevention and treatment of ALD. PMID:27012191

  4. Cross-species comparison of biological themes and underlying genes on a global gene expression scale in a mouse model of colorectal liver metastasis and in clinical specimens

    Directory of Open Access Journals (Sweden)

    Schirmacher Peter

    2008-09-01

    Full Text Available Abstract Background Invasion-related genes over-expressed by tumor cells as well as by reacting host cells represent promising drug targets for anti-cancer therapy. Such candidate genes need to be validated in appropriate animal models. Results This study examined the suitability of a murine model (CT26/Balb/C of colorectal liver metastasis to represent clinical liver metastasis specimens using a global gene expression approach. Cross-species similarity was examined between pure liver, liver invasion, tumor invasion and pure tumor compartments through overlap of up-regulated genes and gene ontology (GO-based biological themes on the level of single GO-terms and of condensed GO-term families. Three out of four GO-term families were conserved in a compartment-specific way between the species: secondary metabolism (liver, invasion (invasion front, and immune response (invasion front and liver. Among the individual GO-terms over-represented in the invasion compartments in both species were "extracellular matrix", "cell motility", "cell adhesion" and "antigen presentation" indicating that typical invasion related processes are operating in both species. This was reflected on the single gene level as well, as cross-species overlap of potential target genes over-expressed in the combined invasion front compartments reached up to 36.5%. Generally, histopathology and gene expression correlated well as the highest single gene overlap was found to be 44% in syn-compartmental comparisons (liver versus liver whereas cross-compartmental overlaps were much lower (e.g. liver versus tumor: 9.7%. However, single gene overlap was surprisingly high in some cross-compartmental comparisons (e.g. human liver invasion compartment and murine tumor invasion compartment: 9.0% despite little histolopathologic similarity indicating that invasion relevant genes are not necessarily confined to histologically defined compartments. Conclusion In summary, cross

  5. Matrine Inhibits Infiltration of the Inflammatory Gr1hi Monocyte Subset in Injured Mouse Liver through Inhibition of Monocyte Chemoattractant Protein-1

    Directory of Open Access Journals (Sweden)

    Duo Shi

    2013-01-01

    Full Text Available Matrine (Mat is a major alkaloid extracted from Sophora flavescens Ait, an herb which is used in the traditional Chinese medicine for treatment of inflammation, cancer, and other diseases. The present study examined the impact of Mat on the CCl4-induced hepatic infiltration of Gr1hi monocytes to explore the possible mechanisms underlying its anti-inflammatory and antifibrotic effects. The results indicated that Mat protected mice from acute liver injury induced by single intraperitoneal injection of CCl4 and attenuated liver fibrosis induced by repeated CCl4 injection. Meanwhile, the infiltrations of Gr1hi monocytes in both acute and chronic injured livers were all inhibited, and the enhanced hepatic expression of MCP-1 was suppressed. Cellular experiments demonstrated that Mat directly inhibited MCP-1 production in both nonparenchymal cells and hepatic stellate cells derived from CCl4-injured livers. Transwell chemotaxis assays showed that Mat significantly inhibited the chemotactic activity of MCP-1. These results suggest that the anti-inflammatory and antifibrotic effects of Mat could be contributed, at least in part, to its prevention of Gr1hi monocyte infiltration into the injured livers and inhibition of MCP-1 production and activity. These findings extend our understanding of the mechanisms underlying the anti-inflammatory and antifibrotic effects of Mat.

  6. 5-Cholesten-3β,25-Diol 3-Sulfate Decreases Lipid Accumulation in Diet-Induced Nonalcoholic Fatty Liver Disease Mouse Model

    OpenAIRE

    Xu, Leyuan; Kim, Jin Koung; Bai, Qianming; Zhang, Xin; Kakiyama, Genta; Min, Hae-Ki; Arun J Sanyal; Pandak, William M.; Ren, Shunlin

    2013-01-01

    Sterol regulatory element-binding protein-1c (SREBP-1c) increases lipogenesis at the transcriptional level, and its expression is upregulated by liver X receptor α (LXRα). The LXRα/SREBP-1c signaling may play a crucial role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). We previously reported that a cholesterol metabolite, 5-cholesten-3β,25-diol 3-sulfate (25HC3S), inhibits the LXRα signaling and reduces lipogenesis by decreasing SREBP-1c expression in primary hepatocytes. T...

  7. Transcriptomic signatures of peroxisome proliferator-activated receptor alpha (PPARalpha) in different mouse liver models identify novel aspects of its biology

    NARCIS (Netherlands)

    Szalowska, E.; Tesfay, H.A.; Hijum, S.A.F.T. van; Kersten, S.

    2014-01-01

    BACKGROUND: The peroxisome proliferator-activated receptor alpha (PPARalpha) is a ligand-activated transcription factor that regulates lipid catabolism and inflammation and is hepatocarcinogenic in rodents. It is presumed that the functions of PPARalpha in liver depend on cross-talk between parenchy

  8. Effects of Perfluorooctanoic Acid on Metabolic Profiles in Brain and Liver of Mouse Revealed by a High-throughput Targeted Metabolomics Approach

    Science.gov (United States)

    Yu, Nanyang; Wei, Si; Li, Meiying; Yang, Jingping; Li, Kan; Jin, Ling; Xie, Yuwei; Giesy, John P.; Zhang, Xiaowei; Yu, Hongxia

    2016-04-01

    Perfluorooctanoic acid (PFOA), a perfluoroalkyl acid, can result in hepatotoxicity and neurobehavioral effects in animals. The metabolome, which serves as a connection among transcriptome, proteome and toxic effects, provides pathway-based insights into effects of PFOA. Since understanding of changes in the metabolic profile during hepatotoxicity and neurotoxicity were still incomplete, a high-throughput targeted metabolomics approach (278 metabolites) was used to investigate effects of exposure to PFOA for 28 d on brain and liver of male Balb/c mice. Results of multivariate statistical analysis indicated that PFOA caused alterations in metabolic pathways in exposed individuals. Pathway analysis suggested that PFOA affected metabolism of amino acids, lipids, carbohydrates and energetics. Ten and 18 metabolites were identified as potential unique biomarkers of exposure to PFOA in brain and liver, respectively. In brain, PFOA affected concentrations of neurotransmitters, including serotonin, dopamine, norepinephrine, and glutamate in brain, which provides novel insights into mechanisms of PFOA-induced neurobehavioral effects. In liver, profiles of lipids revealed involvement of β-oxidation and biosynthesis of saturated and unsaturated fatty acids in PFOA-induced hepatotoxicity, while alterations in metabolism of arachidonic acid suggesting potential of PFOA to cause inflammation response in liver. These results provide insight into the mechanism and biomarkers for PFOA-induced effects.

  9. Transcriptomic signatures of peroxisome proliferator-activated receptor a (PPARa) in different mouse liver models identify novel aspects of its biology

    NARCIS (Netherlands)

    Szalowska, E.; Tesfay, H.A.; Hijum, van S.A.F.T.; Kersten, A.H.

    2014-01-01

    Background The peroxisome proliferator-activated receptor alpha (PPARa) is a ligand-activated transcription factor that regulates lipid catabolism and inflammation and is hepatocarcinogenic in rodents. It is presumed that the functions of PPARa in liver depend on cross-talk between parenchymal (hepa

  10. Increased placental fatty acid transporter 6 and binding protein 3 expression and fetal liver lipid accumulation in a mouse model of obesity in pregnancy.

    Science.gov (United States)

    Díaz, Paula; Harris, Jessica; Rosario, Fredrick J; Powell, Theresa L; Jansson, Thomas

    2015-12-15

    Obesity in pregnancy is associated with increased fetal growth and adiposity, which, in part, is determined by transplacental nutrient supply. Trophoblast uptake and intracellular trafficking of lipids are dependent on placental fatty acid transport proteins (FATP), translocase (FAT/CD36), and fatty acid binding proteins (FABP). We hypothesized that maternal obesity in mice leads to increased placental expression of FAT/CD36, FATPs, and FABPs, and lipid accumulation in the fetal liver. C57/BL6J female mice were fed either a control (C; n = 10) or an obesogenic (OB; n = 10) high-fat, high-sugar diet before mating and throughout pregnancy. At E18.5, placentas and fetal livers were collected. Trophoblast plasma membranes (TPM) were isolated from placental homogenates. Expression of FAT/CD36 and FATP (TPM) and FABP (homogenates) was determined by immunoblotting. Gene expression was assessed by RT-quantitative PCR. Sections of fetal livers were stained for Oil Red O, and lipid droplets were quantified. TPM protein expression of FAT/CD36, FATP 2, and FATP 4 was comparable between C and OB groups. Conversely, TPM FATP 6 expression was increased by 35% in OB compared with C placentas without changes in mRNA expression. FABPs 1, 3-5 and PPARγ were expressed in homogenates, and FABP 3 expression increased 27% in OB compared with C placentas; however, no changes were observed in mRNA expression. Lipid droplet accumulation was 10-fold higher in the livers of fetuses from OB compared with C group. We propose that increased lipid transport capacity in obese mice promotes transplacental fatty acid transport and contributes to excess lipid accumulation in the fetal liver.

  11. Gankyrin expression during mouse embryogenesis

    Institute of Scientific and Technical Information of China (English)

    秦建民; 刘淑琴; 曾锦章; 李慎菁; 付晓勇; 邱秀华; 吴孟超; 王红阳

    2004-01-01

    Objective: To observe the gene expression of Gankyrin during mouse embryogenesis and reveal the gene biological significance during organs and tissues formation. Methods: The expressions of Gankyrin mRNA in various organs and tissues were detected by in situ hybridization at indicated times during embryogenesis. Results: The expression of Gankyrin mRNA in mouse day 12.5 embryo was mainly in midbrain, interbrain and endbrain; in mouse day 14.5 embryo mainly in midbrain, aorta, liver, gonad, cranium and rib; in mouse day 16.5 embryo mainly in cranium, rib and vertebra;and in mouse day 18.5 embryo mainly in cranium, rib and intestinal mucosa. Conclusion: Gankyrin gene probably participates in the development of the neural tissues (such as midbrain, interbrain and endbrain etc. ), aorta, liver and gonad, intestinal mucosa and bone tissues, which may be closely associated with the function of the organs and tissues.

  12. In vivo MRS assessment of altered fatty acyl unsaturation in liver tumor formation of a TGFα/c-myc transgenic mouse model*

    OpenAIRE

    Griffitts, J.; Tesiram, Y.; Reid, G. E.; Saunders, D; Floyd, R A; Towner, R. A.

    2009-01-01

    Current detection methods (computed tomography, ultrasound, and MRI) for hepatocarcinogenesis in humans rely on visual confirmation of neoplastic formations. A more effective early detection method is needed. Using in vivo magnetic resonance spectroscopy (MRS), we show that alterations in the integral ratios of the bis-allyl to vinyl hydrogen protons in unsaturated lipid fatty acyl groups correlate with the development of neoplastic formations in vivo in a TGFα/c-myc mouse hepatocellular carc...

  13. Galectin-3 Ablation Enhances Liver Steatosis, but Attenuates Inflammation and IL-33-Dependent Fibrosis in Obesogenic Mouse Model of Nonalcoholic Steatohepatitis.

    Science.gov (United States)

    Jeftic, Ilija; Jovicic, Nemanja; Pantic, Jelena; Arsenijevic, Nebojsa; Lukic, Miodrag L; Pejnovic, Nada

    2015-01-01

    The importance of Galectin-3 (Gal-3) in obesity-associated liver pathology is incompletely defined. To dissect the role of Gal-3 in fibrotic nonalcoholic steatohepatitis (NASH), Gal-3-deficient (LGALS3(-/-)) and wild-type (LGALS3(+/+)) C57Bl/6 mice were placed on an obesogenic high fat diet (HFD, 60% kcal fat) or standard chow diet for 12 and 24 wks. Compared to WT mice, HFD-fed LGALS3(-/-) mice developed, in addition to increased visceral adiposity and diabetes, marked liver steatosis, which was accompanied with higher expression of hepatic PPAR-γ, Cd36, Abca-1 and FAS. However, as opposed to LGALS3(-/-) mice, hepatocellular damage, inflammation and fibrosis were more extensive in WT mice which had an elevated number of mature myeloid dendritic cells, proinflammatory CD11b(+)Ly6C(hi) monocytes/macrophages in liver, peripheral blood and bone marrow, and increased hepatic CCL2, F4/80, CD11c, TLR4, CD14, NLRP3 inflammasome, IL-1β and NADPH-oxidase enzymes mRNA expression. Thus, obesity-driven greater steatosis was uncoupled with attenuated fibrotic NASH in Gal-3-deficient mice. HFD-fed WT mice had a higher number of hepatocytes that strongly expressed IL-33 and hepatic CD11b(+)IL-13(+) cells, increased levels of IL-33 and IL-13 and up-regulated IL-33, ST2 and IL-13 mRNA in liver compared with LGALS3(-/-) mice. IL-33 failed to induce ST2 upregulation and IL-13 production by LGALS3(-/-) peritoneal macrophages in vitro. Administration of IL-33 in vivo enhanced liver fibrosis in HFD-fed mice in both genotypes, albeit to a significantly lower extent in LGALS3(-/-) mice, which was associated with less numerous hepatic IL-13-expressing CD11b(+) cells. The present study provides evidence of a novel role for Gal-3 in regulating IL-33-dependent liver fibrosis. PMID:26018806

  14. 3,4,5-Trimethoxyphenylacetaldehyde, an intermediate metabolite of mescaline, is a substrate for microsomal aldehyde oxygenase in the mouse liver.

    Science.gov (United States)

    Watanabe, K; Kayano, Y; Matsunaga, T; Yamamoto, I; Yoshimura, H

    1995-05-01

    3,4,5-Trimethoxyphenylacetaldehyde, an intermediate metabolite of mescaline, was oxidized to 3,4,5-trimethoxyphenylacetic acid by mouse hepatic microsomes. The reaction was NADPH-dependent, and inhibited by SKF 525-A, metyrapone and disulfiram. A P450 isozyme in mouse hepatic microsomes, P450 MUT-2 (CYP2C29), catalyzed the reaction (0.96 nmol/min/nmol P450) in which NADPH and NADPH-cytochrome c reductase were essential for the catalytic activity. The reaction was confirmed to be an oxygenation since molecular oxygen was incorporated into the carboxylic acid metabolite formed under oxygen-18 gas by GC-MS analysis. By addition of antibody against CYP2C29 to the microsomes (3.2 mg/mg microsomal protein) the MALDO activity was inhibited by 35% of the control value with preimmune serum, suggesting that CYP2C29 or an immunologically-related isozyme(s) plays a major role in the NADPH-dependent oxidation of 3,4,5-trimethoxyphenylacetaldehyde to 3,4,5-trimethoxyphenylacetic acid by mouse hepatic microsomes. Pharmacological experiments on mescaline and its deaminated metabolites using mice indicated that the metabolites were much less active or were inactive in cataleptogenic effect and pentobarbital-induced sleep prolongation as compared with the parent compound.

  15. Progression of Liver Disease

    Science.gov (United States)

    ... Browse Related Terms Progression of Liver Disease , Family History of Liver Disease , Liver Wellness , Liver Failure , Liver Biopsy Home > Your Liver > Liver Disease Information > The Progression ...

  16. 小鼠肝脏磷酸化蛋白质组的二维液相色谱分离%Two dimensional liquid phase chromatographic fractionation of phosphoproteome of mouse liver

    Institute of Scientific and Technical Information of China (English)

    黎永明; 陈腾祥; 杨丽萍; 刘亚伟; 姜勇

    2005-01-01

    Objective To fractionate phosphoproteome of mouse liver by two-dimensional (2D) liquid phase chromatography fractionation. Methods Phosphoproteins were extracted from lysates of normal mice livers by phosphate metal affinity chromatography (PMAC) resin. The phosphoproteins were exchanged by start buffer and separated by chromatofocusing in the first dimension. Then the fractions between pH 8.5 and pH 4.0 were separated by non-porous silica (NPS) reverse-phase high performance liquid chromatography (RP-HPLC). Finally, the UV maps were converted into gel-like maps by ProteoVue software. Results Phosphoproteins of mouse liver were successfully extracted and fractionated by two dimensional liquid phase chromatographic fractionation after concentration and desalt. Then pI/UV map of mouse liver phosphoproteome was successfully set-up. There are 16 fractions between pH 8.5 and pH 4.0 after chromatofocusing in the first dimension and the UV maps of each fraction were converted into pI/UV gel-like maps. Conclusions Combination of technique of phosphoproteins enrichment and 2-D liquid phase chromatographic fractionation is an effective approach to research phosphoproteome and the key base for further identification and investigation of phosphoproteins.%目的利用二维液相色谱法分离小鼠肝脏磷酸化蛋白质组.方法取正常小鼠肝脏,裂解肝脏后利用磷酸盐金属亲和层析(PMAC)树脂提取磷酸化蛋白.将磷酸化蛋白用初始缓冲液置换后,进行一维色谱聚焦分离,再将一维收集的pH值在8.5至4.0之间的组分分别进行二维无孔硅胶反相高效液相色谱(RP-HPLC)分离.最后利用ProteoVue软件将二维UV图转换成胶图进行分析.结果成功提取了小鼠肝脏磷酸化蛋白,并在浓缩除盐后通过二维液相色谱分离成功建立小鼠肝脏磷酸化蛋白质组pI/UV图谱.其中,一维色谱聚焦分离pH值在8.5至4.0之间共收集16个组分,每个组分的二维UV图转换成p

  17. Retinoic acid enhances expression of neural specific genes in Sca-1+ cells of mouse fetal liver through activating protein kinase C

    Institute of Scientific and Technical Information of China (English)

    Gexiu Liu; Yuan Zhang; Dongmei He

    2006-01-01

    BACKGROUND: Interstitial stem cell is characterized by multiple differentiations,and retinoic acid (RA) can induce differentiation of stromal cells into nerve tissue cells in fetal liver of mice, so, its signal transduction pathway should be discussed to trigger differentiation.OBJECTIVE: To study the effect of RA on expression of neural specific gene and its signal transduction in fetal liver of mice.DESIGN: Paired controlled study on the basis of cell.SETTING: Institute of Hematology, Medical College of Jinan University.MATERIALS: The experiment was completed in the Institute of Hematology, Medical College of Jinan University from April to December 2005. C57BL/6 mice, of clean grade, aged 8-10 weeks, weighting 20-35 g,10 females and 4 males, were selected in this study.METHODS: Sca-1+ cells in fetal liver were prepared with MACS kit and cultured with DMEM + 10% fetal bovine serum (FBS). On the fourth day, it was added with or without protein kinase C (PKC) inhibitor chelerythrine chloride (3 μmol/L) and 5×10-7 mol/L RA for 24 hours, and then incubated in serum-free medium for 5 days. Expressions of genes were assayed by Western blotting and semi-quantitative RT-PCR.MAIN OUTCOME MEASURES: Expression of neural specific gene NF-L, NF-H, BF-1 and TH.RESULTS: Expression of neural specific gene NF-L, NF-H, BF-1 and TH was significantly increased after treatment with RA and they were increased 5.06, 5.15, 4.63 and 3.33 times, respectively. However, chelerythrine chloride could inhibit expression of neural specific gene NF-L, NF-H, BF-1 and TH induced by RA.CONCLUSION: RA can promote the expression of neural specific genes in Sca-1+ cells of fetal liver, and its pathway may be related to PKC.

  18. Gas Chromatography/Mass Spectrometry-Based Metabolomic Profiling Reveals Alterations in Mouse Plasma and Liver in Response to Fava Beans.

    Science.gov (United States)

    Xiao, Man; Du, Guankui; Zhong, Guobing; Yan, Dongjing; Zeng, Huazong; Cai, Wangwei

    2016-01-01

    Favism is a life-threatening hemolytic anemia resulting from the intake of fava beans by susceptible individuals with low erythrocytic glucose 6-phosphate dehydrogenase (G6PD) activity. However, little is known about the metabolomic changes in plasma and liver after the intake of fava beans in G6PD normal and deficient states. In this study, gas chromatography/mass spectrometry was used to analyze the plasma and liver metabolic alterations underlying the effects of fava beans in C3H- and G6PD-deficient (G6PDx) mice, and to find potential biomarkers and metabolic changes associated with favism. Our results showed that fava beans induced oxidative stress in both C3H and G6PDx mice. Significantly, metabolomic differences were observed in plasma and liver between the control and fava bean treated groups of both C3H and G6PDx mice. The levels of 7 and 21 metabolites in plasma showed significant differences between C3H-control (C3H-C)- and C3H fava beans-treated (C3H-FB) mice, and G6PDx-control (G6PDx-C)- and G6PDx fava beans-treated (G6PDx-FB) mice, respectively. Similarly, the levels of 7 and 25 metabolites in the liver showed significant differences between C3H and C3H-FB, and G6PDx and G6PDx-FB, respectively. The levels of oleic acid, linoleic acid, and creatinine were significantly increased in the plasma of both C3H-FB and G6PDx-FB mice. In the liver, more metabolic alterations were observed in G6PDx-FB mice than in C3H-FB mice, and were involved in a sugar, fatty acids, amino acids, cholesterol biosynthesis, the urea cycle, and the nucleotide metabolic pathway. These findings suggest that oleic acid, linoleic acid, and creatinine may be potential biomarkers of the response to fava beans in C3H and G6PDx mice and therefore that oleic acid and linoleic acid may be involved in oxidative stress induced by fava beans. This study demonstrates that G6PD activity in mice can affect their metabolic pathways in response to fava beans.

  19. Distinct roles of Cdc42 in thymopoiesis and effector and memory T cell differentiation.

    Directory of Open Access Journals (Sweden)

    Fukun Guo

    Full Text Available Cdc42 of the Rho GTPase family has been implicated in cell actin organization, proliferation, survival, and migration but its physiological role is likely cell-type specific. By a T cell-specific deletion of Cdc42 in mouse, we have recently shown that Cdc42 maintains naïve T cell homeostasis through promoting cell survival and suppressing T cell activation. Here we have further investigated the involvement of Cdc42 in multiple stages of T cell differentiation. We found that in Cdc42(-/- thymus, positive selection of CD4(+CD8(+ double-positive thymocytes was defective, CD4(+ and CD8(+ single-positive thymocytes were impaired in migration and showed an increase in cell apoptosis triggered by anti-CD3/-CD28 antibodies, and thymocytes were hyporesponsive to anti-CD3/-CD28-induced cell proliferation and hyperresponsive to anti-CD3/-CD28-stimulated MAP kinase activation. At the periphery, Cdc42-deficient naive T cells displayed an impaired actin polymerization and TCR clustering during the formation of mature immunological synapse, and showed an enhanced differentiation to Th1 and CD8(+ effector and memory cells in vitro and in vivo. Finally, Cdc42(-/- mice exhibited exacerbated liver damage in an induced autoimmune disease model. Collectively, these data establish that Cdc42 is critically involved in thymopoiesis and plays a restrictive role in effector and memory T cell differentiation and autoimmunity.

  20. Metabolism of styrene to styrene oxide and vinylphenols in cytochrome P450 2F2- and P450 2E1-knockout mouse liver and lung microsomes

    OpenAIRE

    Shen, Shuijie; Li, Lei; Ding, Xinxin; Zheng, Jiang

    2013-01-01

    Pulmonary toxicity of styrene is initiated by cytochromes P450-dependent metabolic activation. P450 2E1 and P450 2F2 are considered to be two main cytochrome P450 (CYP) enzymes responsible for styrene metabolism in mice. The objective of the current study was to determine the correlation between the formation of styrene metabolites (i.e. styrene oxide and 4-vinylphenol) and pulmonary toxicity of styrene, using Cyp2e1- and Cyp2f2-null mouse models. Dramatic decrease in the formation of styrene...

  1. In vivo (1)H MRS and (31)P MRSI of the response to cyclocreatine in transgenic mouse liver expressing creatine kinase.

    Science.gov (United States)

    Cui, Min-Hui; Jayalakshmi, Kamaiah; Liu, Laibin; Guha, Chandan; Branch, Craig A

    2015-12-01

    Hepatocyte transplantation has been explored as a therapeutic alternative to liver transplantation, but a means to monitor the success of the procedure is lacking. Published findings support the use of in vivo (31)P MRSI of creatine kinase (CK)-expressing hepatocytes to monitor proliferation of implanted hepatocytes. Phosphocreatine tissue level depends upon creatine (Cr) input to the CK enzyme reaction, but Cr measurement by (1)H MRS suffers from low signal-to-noise ratio (SNR). We examine the possibility of using the Cr analog cyclocreatine (CCr, a substrate for CK), which is quickly phosphorylated to phosphocyclocreatine (PCCr), as a higher SNR alternative to Cr. (1)H MRS and (31)P MRSI were employed to measure the effect of incremental supplementation of CCr upon PCCr, γ-ATP, pH and Pi /ATP in the liver of transgenic mice expressing the BB isoform of CK (CKBB) in hepatocytes. Water supplementation with 0.1% CCr led to a peak total PCCr level of 17.15 ± 1.07 mmol/kg wet weight by 6 weeks, while adding 1.0% CCr led to a stable PCCr liver level of 18.12 ± 3.91 mmol/kg by the fourth day of feeding. PCCr was positively correlated with CCr, and ATP concentration and pH declined with increasing PCCr. Feeding with 1% CCr in water induced an apparent saturated level of PCCr, suggesting that CCr quantization may not be necessary for quantifying expression of CK in mice. These findings support the possibility of using (31)P MRS to noninvasively monitor hepatocyte transplant success with CK-expressing hepatocytes. PMID:26451872

  2. Metabolic phenotype and adipose and liver features in a high-fat Western diet-induced mouse model of obesity-linked NAFLD.

    Science.gov (United States)

    Luo, Yuwen; Burrington, Christine M; Graff, Emily C; Zhang, Jian; Judd, Robert L; Suksaranjit, Promporn; Kaewpoowat, Quanhathai; Davenport, Samantha K; O'Neill, Ann Marie; Greene, Michael W

    2016-03-15

    nonalcoholic fatty liver disease (NAFLD), an obesity and insulin resistance associated clinical condition - ranges from simple steatosis to nonalcoholic steatohepatitis. To model the human condition, a high-fat Western diet that includes liquid sugar consumption has been used in mice. Even though liver pathophysiology has been well characterized in the model, little is known about the metabolic phenotype (e.g., energy expenditure, activity, or food intake). Furthermore, whether the consumption of liquid sugar exacerbates the development of glucose intolerance, insulin resistance, and adipose tissue dysfunction in the model is currently in question. In our study, a high-fat Western diet (HFWD) with liquid sugar [fructose and sucrose (F/S)] induced acute hyperphagia above that observed in HFWD-fed mice, yet without changes in energy expenditure. Liquid sugar (F/S) exacerbated HFWD-induced glucose intolerance and insulin resistance and impaired the storage capacity of epididymal white adipose tissue (eWAT). Hepatic TG, plasma alanine aminotransferase, and normalized liver weight were significantly increased only in HFWD+F/S-fed mice. HFWD+F/S also resulted in increased hepatic fibrosis and elevated collagen 1a2, collagen 3a1, and TGFβ gene expression. Furthermore, HWFD+F/S-fed mice developed more profound eWAT inflammation characterized by adipocyte hypertrophy, macrophage infiltration, a dramatic increase in crown-like structures, and upregulated proinflammatory gene expression. An early hypoxia response in the eWAT led to reduced vascularization and increased fibrosis gene expression in the HFWD+F/S-fed mice. Our results demonstrate that sugary water consumption induces acute hyperphagia, limits adipose tissue expansion, and exacerbates glucose intolerance and insulin resistance, which are associated with NAFLD progression.

  3. In vivo (1)H MRS and (31)P MRSI of the response to cyclocreatine in transgenic mouse liver expressing creatine kinase.

    Science.gov (United States)

    Cui, Min-Hui; Jayalakshmi, Kamaiah; Liu, Laibin; Guha, Chandan; Branch, Craig A

    2015-12-01

    Hepatocyte transplantation has been explored as a therapeutic alternative to liver transplantation, but a means to monitor the success of the procedure is lacking. Published findings support the use of in vivo (31)P MRSI of creatine kinase (CK)-expressing hepatocytes to monitor proliferation of implanted hepatocytes. Phosphocreatine tissue level depends upon creatine (Cr) input to the CK enzyme reaction, but Cr measurement by (1)H MRS suffers from low signal-to-noise ratio (SNR). We examine the possibility of using the Cr analog cyclocreatine (CCr, a substrate for CK), which is quickly phosphorylated to phosphocyclocreatine (PCCr), as a higher SNR alternative to Cr. (1)H MRS and (31)P MRSI were employed to measure the effect of incremental supplementation of CCr upon PCCr, γ-ATP, pH and Pi /ATP in the liver of transgenic mice expressing the BB isoform of CK (CKBB) in hepatocytes. Water supplementation with 0.1% CCr led to a peak total PCCr level of 17.15 ± 1.07 mmol/kg wet weight by 6 weeks, while adding 1.0% CCr led to a stable PCCr liver level of 18.12 ± 3.91 mmol/kg by the fourth day of feeding. PCCr was positively correlated with CCr, and ATP concentration and pH declined with increasing PCCr. Feeding with 1% CCr in water induced an apparent saturated level of PCCr, suggesting that CCr quantization may not be necessary for quantifying expression of CK in mice. These findings support the possibility of using (31)P MRS to noninvasively monitor hepatocyte transplant success with CK-expressing hepatocytes.

  4. The roles of co-chaperone CCRP/DNAJC7 in Cyp2b10 gene activation and steatosis development in mouse livers.

    Directory of Open Access Journals (Sweden)

    Marumi Ohno

    Full Text Available Cytoplasmic constitutive active/androstane receptor (CAR retention protein (CCRP and also known as DNAJC7 is a co-chaperone previously characterized to retain nuclear receptor CAR in the cytoplasm of HepG2 cells. Here we have produced CCRP knockout (KO mice and demonstrated that CCRP regulates CAR at multiple steps in activation of the cytochrome (Cyp 2b10 gene in liver: nuclear accumulation, RNA polymerase II recruitment and epigenetic modifications. Phenobarbital treatment greatly increased nuclear CAR accumulation in the livers of KO males as compared to those of wild type (WT males. Despite this accumulation, phenobarbital-induced activation of the Cyp2b10 gene was significantly attenuated. In ChIP assays, a CAR/retinoid X receptor-α (RXRα heterodimer binding to the Cyp2b10 promoter was already increased before phenobarbital treatment and further pronounced after treatment. However, RNA polymerase II was barely recruited to the promoter even after phenobarbital treatment. Histone H3K27 on the Cyp2b10 promoter was de-methylated only after phenobarbital treatment in WT but was fully de-methylated before treatment in KO males. Thus, CCRP confers phenobarbital-induced de-methylation capability to the promoter as well as the phenobarbital responsiveness of recruiting RNA polymerase II, but is not responsible for the binding between CAR and its cognate sequence, phenobarbital responsive element module. In addition, KO males developed steatotic livers and increased serum levels of total cholesterol and high density lipoprotein in response to fasting. CCRP appears to be involved in various hepatic regulations far beyond CAR-mediated drug metabolism.

  5. Absence of effects of dietary wheat bran on the activities of some key enzymes of carbohydrate and lipid metabolism in mouse liver and adipose tissue.

    Science.gov (United States)

    Stanley, J C; Lambadarios, J A; Newsholme, E A

    1986-03-01

    1. The effects of a 100 g/kg dietary substitution of wheat bran on the body-weight gain, food consumption and faecal dry weight of mice given a high-sucrose diet and on the activities of some key enzymes of carbohydrate and lipid metabolism in liver and adipose tissue were studied. 2. Wheat bran had no effect on body-weight gain, food consumption or faecal dry weight. 3. Wheat bran had no effect on the activities of hepatic glucose-6-phosphate dehydrogenase (EC 1.1.1.49), 6-phosphogluconate dehydrogenase (EC 1.1.1.44), malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+) (EC 1.1.1.40), ATP-citrate (pro-3S)-lyase (EC 4.1.3.8), pyruvate kinase (EC 2.7.1.40) and fructose-1,6-bisphosphatase (EC 3.1.3.11). The activity of hepatic 6-phosphofructokinase (EC 2.7.1.11) increased but only when expressed on a body-weight basis. 4. Wheat bran had no effect on the activities of adipose tissue glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+), ATP-citrate (pro-3S)-lyase, hexokinase (EC 2.7.1.1), 6-phosphofructokinase and pyruvate kinase. 5. These results suggest that unlike guar gum and bagasse, wheat bran does not change the flux through some pathways of lipogenesis in liver and adipose tissue when mice are given high-sucrose diets.

  6. Molecular nature of mutations induced in aging process and X-irradiation in spleen, liver and brain of LacZ-Transgenic mouse

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Tetsuya; Ikehata, Hironobu; Nakamura, Shingo; Saito, Yusuke [Tohoku Univ., Sendai (Japan). Graduate School of Medicine

    2000-07-01

    Mutation is believed to be one of the important factors in radiation-induced carcinogenesis as well as in aging. The study of mutation, however, has long been limited to cultured cells and blood cells. Thus little is known about various tissues in a body. The absence of information on molecular nature of mutations which appear in tissues makes it difficult to understand mechanisms responsible for long-term effects of radiation. The problem, however, has been overcome lately by a development of transgenic mice which are made suitable for mutation assay by introduction of E. coli gene into mouse genome. In the present study, we have used one of these transgenic mice named Muta{sup TM} and examined molecular nature of mutants accumulated in aging process and those induced by high dose of radiation. (author)

  7. Analysis of the biological response of mouse liver (Mus musculus) exposed to As2O3 based on integrated -omics approaches.

    Science.gov (United States)

    García-Sevillano, M A; García-Barrera, T; Navarro, F; Gómez-Ariza, J L

    2013-12-01

    Organic and inorganic mass spectrometries were used to investigate the biochemical response of mice (Mus musculus) to inorganic arsenic exposure using liver as the target organ. The toxicological effects of trivalent inorganic arsenic after oral administration (3 mg kg(-1) body weight and per day) were investigated over a period of 7 days using metallomics, metabonomics and redox proteomics approaches. Size-exclusion chromatography (SEC) with ICP-MS detection was combined with anion exchange chromatography (AEC) to characterize the biological response of the exposed mice. On the other hand, direct infusion mass spectrometry (DI-ESI-QTOF-MS) of polar and lipophilic extracts using positive and negative modes of acquisition (ESI+/ESI-) provided information about time-dependent changes in endogenous metabolites identified by Partial Least Square-Discriminant Analysis (PLS-DA). Finally, the study has been complemented with the evaluation of up/down-regulation of enzymes related to oxidative stress such as superoxide dismutase (SOD), glutathione reductase (GR), catalase (CAT) and peroxidases in connection with metal toxicity issues. The results show that the inorganic arsenic methylation in the liver may reach the saturation point upon chronic exposure to the element. On the other hand, SEC-ICP-MS coupling provided information about metal containing-proteins and metabolites related to arsenic exposure (metallomics) which has been correlated with the changes in the global metabolism (metabonomics), also considering their consequences on the redox status of protein and protein expression (redox proteomics). Our study shows that arsenic causes biochemical pathway alterations, such as energy metabolism (e.g. glycolysis, Krebs cycle), amino acid metabolism, choline metabolism and degradation of membrane phospholipids (apoptosis). This work illustrates the high reliability of the integrated use of organic mass spectrometry for the metabonomic study of biochemical effects

  8. MTT法检测大豆异黄酮对癌细胞的生长抑制作用%The Effect of Soy Isoflavone on Mouse Erythroleukemia Cell Line and Rat Liver Cancer Cell Line By MTT

    Institute of Scientific and Technical Information of China (English)

    徐春华

    2012-01-01

    本文选择小鼠红白血病细胞系CML-K562和大鼠肝癌细胞系CBRH-7919作为大豆异黄酮的作用对象,通过MTT法检测大豆异黄酮对CML-K562和CBRH-7919的抑制作用.结果显示,大豆异黄酮对小鼠红白血病细胞系CML-K562和大鼠肝癌CBRH-7919细胞生长均有抑制作用,其抑制率达到50%时,所需要的用量即IC50分别为15.36 mg/L和16.58 mg/L.%Mouse erythroleukemia cell line CML-K562 and Rat liver cancer cell line CBRH-7919 were chosen as the targets of soy isoflavone to study its suppression effects.That detected the efficacity of the soy isoflavone and the inhibition rate cell growth by MTT and cell ectogenesis.It was proved that soy isoflavone could greatly inhibit the growth and proliferation of MEL cell CML-K562(IC50 is 15.36mg/L) and Rat Liver Cancer Cell CBRH-7919(IC50 is 16.58mg/L) by use of MTT.It proved that the soy isoflavone could inhibit the growth of the two cancer cells,and the dose was related with the effectiveness.

  9. Challenge pools of hepatitis C virus genotypes 1-6 prototype strains: replication fitness and pathogenicity in chimpanzees and human liver-chimeric mouse models

    DEFF Research Database (Denmark)

    Bukh, Jens; Meuleman, Philip; Tellier, Raymond;

    2010-01-01

    Chimpanzees represent the only animal model for studies of the natural history of hepatitis C virus (HCV). To generate virus stocks of important HCV variants, we infected chimpanzees with HCV strains of genotypes 1-6 and determined the infectivity titer of acute-phase plasma pools in additional...... animals. The courses of first- and second-passage infections were similar, with early appearance of viremia, HCV RNA titers of >10(4.7) IU/mL, and development of acute hepatitis; the chronicity rate was 56%. The challenge pools had titers of 10(3)-10(5) chimpanzee infectious doses/mL. Human liver......-chimeric mice developed high-titer infections after inoculation with the challenge viruses of genotypes 1-6. Inoculation studies with different doses of the genotype 1b pool suggested that a relatively high virus dose is required to consistently infect chimeric mice. The challenge pools represent a unique...

  10. Selenium Nanoparticle-Enriched Lactobacillus Brevis Causes More Efficient Immune Responses In Vivo And Reduces The Liver Metastasis In Metastatic Form Of Mouse Breast Cancer

    Directory of Open Access Journals (Sweden)

    Mohammad Esfandyar

    2013-04-01

    Full Text Available Background and the purpose of the study:Selenium enriched Lactobacillus has been reported as an immunostimulatory agent which can be used to increase the life span of cancer bearing animals. Lactic acid bacteria can reduce selenium ions to elemental selenium nanoparticles (SeNPs and deposit them in intracellular spaces. In this strategy two known immunostimulators, lactic acid bacteria (LAB and SeNPs, are concomitantly administered for enhancing of immune responses in cancer bearing mice.Methods:Forty five female inbred BALB/c mice were divided into three groups of tests and control, each containing 15 mice. Test mice were orally administered with SeNP-enriched Lactobacillus brevis or Lactobacillus brevis alone for 3 weeks before tumor induction. After that the administration was followed in three cycles of seven days on/three days off. Control group received phosphate buffer saline (PBS at same condition. During the study the tumor growth was monitored using caliper method. At the end of study the spleen cell culture was carried out for both NK cytotoxicity assay and cytokines measurement. Delayed type hypersensitivity (DTH responses were also assayed after 72h of tumor antigen recall. Serum lactate dehydrogenase (LDH and alkaline phosphatase (ALP levels were measured, the livers of mice were removed and prepared for histopathological analysis.Results:High level of IFN-γ and IL-17 besides the significant raised in NK cytotoxicity and DTH responses were observed in SeNP-enriched L. brevis administered mice and the extended life span and decrease in the tumor metastasis to liver were also recorded in this group compared to the control mice or L.brevis alone administered mice.Conclusion:Our results suggested that the better prognosis could be achieved by oral administration of SeNP-enriched L. brevis in highly metastatic breast cancer mice model.

  11. CHIP−/−-Mouse Liver: Adiponectin-AMPK-FOXO-Activation Overrides CYP2E1-Elicited JNK1-Activation, Delaying Onset of NASH: Therapeutic Implications

    Science.gov (United States)

    Kim, Sung-Mi; Grenert, James P.; Patterson, Cam; Correia, Maria Almira

    2016-01-01

    Genetic ablation of C-terminus of Hsc70-interacting protein (CHIP) E3 ubiquitin-ligase impairs hepatic cytochrome P450 CYP2E1 degradation. Consequent CYP2E1 gain of function accelerates reactive O2 species (ROS) production, triggering oxidative/proteotoxic stress associated with sustained activation of c-Jun NH2-terminal kinase (JNK)-signaling cascades, pro-inflammatory effectors/cytokines, insulin resistance, progressive hepatocellular ballooning and microvesicular steatosis. Despite this, little evidence of nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH) was found in CHIP−/−-mice over the first 8–9-months of life. We herein document that this lack of tissue injury is largely due to the concurrent up-regulation and/or activation of the adiponectin-5′-AMP-activated protein kinase (AMPK)-forkhead box O (FOXO)-signaling axis stemming from at the least three synergistic features: Up-regulated expression of adipose tissue adiponectin and its hepatic adipoR1/adipoR2 receptors, stabilization of hepatic AMPKα1-isoform, identified herein for the first time as a CHIP-ubiquitination substrate (unlike its AMPKα2-isoform), as well as nuclear stabilization of FOXOs, well-known CHIP-ubiquitination targets. Such beneficial predominance of the adiponectin-AMPK-FOXO-signaling axis over the sustained JNK-elevation and injurious insulin resistance in CHIP−/−-livers apparently counteracts/delays rapid progression of the hepatic microvesicular steatosis to the characteristic macrovesicular steatosis observed in clinical NASH and/or rodent NASH-models. PMID:27406999

  12. [In vivo toxicity, and glutathione, ascorbic acid and copper level changes induced in mouse liver and kidney by copper(II) gluconate, a nutrient supplement].

    Science.gov (United States)

    Hojo, Y; Hashimoto, I; Miyamoto, Y; Kawazoe, S; Mizutani, T

    2000-03-01

    While copper(II) gluconate (CuGL) is generally used as a nutrient supplement for infant foods and as an oral deodorant, little information is available regarding a toxic effect of CuGL on mammals. In this article, we examined in vivo induction of toxicity and change of level of glutathione and ascorbic acid, major biological antioxidants, lipid peroxide and copper (Cu) in liver and kidney 4 h after single intraperitoneal administration of CuGL at 0.05 and 0.10 mmol/kg to mice. Serum glutamic pyruvic transaminase (SGPT) activity, an indicator of hepatotoxicity, significantly increased compared to control in proportion to doses of CuGL. Hepatic level of glutathione measured as nonprotein sulfhydryl was not proportional to CuGL doses, but enhanced after dosing of 0.05 mmol/kg and lowered by 0.10 mmol/kg. Like SGPT activity, serum urea nitrogen (SUN) concentration, an indicator of nephrotoxicity, significantly increased in proportion to doses of CuGL. Renal glutathione level was not different from control after dosing of 0.05 mmol/kg and lowered by 0.10 mmol/kg. In both organs, relative organ weight and lipid peroxide level were not affected by the treatment with CuGL; ascorbic acid level was elevated after dosing of 0.05 mmol/kg and was not different from control after treatment with 0.10 mmol/kg; like SGPT activity and SUN concentration, Cu level significantly increased in proportion to doses of CuGL. These results suggest that in the liver and kidney after the treatment with CuGL Cu accumulated may induce toxicity, leading to level changes of glutathione and ascorbic acid and to no induction of oxidative damage.

  13. Transplantable liver production plan: "Yamaton"--liver project, Japan.

    Science.gov (United States)

    Hata, Toshiyuki; Uemoto, Shinji; Kobayashi, Eiji

    2013-10-01

    Organ grafts developed in the xenogeneic pig scaffold are expected to resolve most issues of donor safety and ethical concerns about living-donor liver transplantation in Japan. We have been working on so-called "Yamaton" projects to develop transplantable organs using genetically engineered pigs. Our goal is to produce chimeric livers with human parenchyma in such pigs. The Yamaton-Liver project demonstrated the proof of concept by showing that rat-mouse chimeric livers could develop in mice and be successfully transplanted into syngeneic or allogeneic rats. Under conventional immunosuppression, the transplanted livers showed long-term function and protection against rejection. Because chimeric liver grafts have xenogeneic components, additional strategies, such as humanization of pig genes, induction of hematopoietic chimeras in donors, and replacement of pig endothelial cells with human ones, might be required in clinical use. Our projects still need to overcome various hurdles but can bring huge benefits to patients in the future. PMID:23896578

  14. Liver Panel

    Science.gov (United States)

    ... liver damage. Alpha-feto protein (AFP) – associated with regeneration or proliferation of liver cell Autoimmune antibodies (e. ... the body – such as in the skeletal muscles, pancreas, or heart. It may also indicate early liver ...

  15. Liver biopsy

    Science.gov (United States)

    Biopsy - liver; Percutaneous biopsy ... the biopsy needle to be inserted into the liver. This is often done by using ultrasound. The ... the chance of damage to the lung or liver. The needle is removed quickly. Pressure will be ...

  16. Liver Diseases

    Science.gov (United States)

    ... remove poisons. There are many kinds of liver diseases. Viruses cause some of them, like hepatitis A, ... the skin, can be one sign of liver disease. Cancer can affect the liver. You could also ...

  17. Immunologic analyses of mouse cystathionase in normal and leukemic cells

    International Nuclear Information System (INIS)

    Rabbit antisera have been raised against mouse liver cystathionase and shown to possess enzyme neutralizing activity. Agar gel double immunodiffusion analyses demonstrated that both mouse liver cystathionase and rat liver cystathionase react with the antisera, the latter enzyme being completely cross-reactive with the former. Following radioiodination of the purified rat liver enzyme, a double antibody radioimmunoassay was developed in which greater than 90% of the labeled protein could be specifically precipitated with the anti-mouse cystathionase antibodies. In this test the purified rat liver and mouse liver enzymes were virtually indistinguishable, generating superimposable competition displacement curves on a protein mass basis. These results indicate that both enzymes are immunologically identical, thus validating the use of the rat in lieu of the murine liver enzyme as radiolabeled tracer in an assay for mouse cystathionase. In addition, competition radioimmunoassays demonstrated that the immunological reactivities of both the purified rat liver and mouse liver enzymes were equally heat sensitive. The sensitivity of the assay was determined to be 1 ng of enzyme protein/0.22 mL of assay mixture, and the assay could be used to detect the presence of enzyme protein in tissue homogenates of single mouse organs. Mouse or rat cross-reactivity with human liver cystathionase was incomplete; but, with the exception of heart and spleen, parallel radioimmunoassay competition displacement curves were obtained for cystathionase from different mouse organs including thymus. Extracts of 7-, 9-, and 10-month-old spontaneous AKR mouse thymomas were tested in the radioimmunoassay along with extracts of age-matched thymuses which were grossly tumor free. A reaction of nonidentity was observed for all of the tumor extracts while a reaction identical with that of the pure liver enzyme was found with all of the normal thymus extracts

  18. The effect of propylene glycol on the P450-dependent metabolism of acetaminophen and other chemicals in subcellular fractions of mouse liver

    Energy Technology Data Exchange (ETDEWEB)

    Snawder, J.E.; Benson, R.W.; Leakey, J.E.A.; Roberts, D.W. (National Center for Toxicological Research, Jefferson, AR (United States))

    1993-01-01

    Propylene glycol (PG) decreases the hepatotoxicity of acetominophen (APAP). To elucidate the mechanism for this response, the authors measured the effect of PG on the in vitro metabolism of APAP by subcellular liver fractions from 6-10 week-old male B6C3F1 mice. The fractions were assayed for their ability to bioactivate APAP to N-acetyl-p-benzoquinone imine, which was trapped as APAP-glutathione conjugates or APAP-protein adducts, and for dimethyl-nitrosamine-N-demethylase (DMN), 4-nitrophenol hydroxylase (4-NPOH), and phenacetin-O-deethylase (PAD) activities. Activity in the crude mitochondrial-rich (10,000 [times] g pellet) fraction was low and PG had no effect. PG inhibited DMN and 4-NPOH, indicators of IIE1-dependent activity, and the formation of APAP-glutathione conjugates and APAP-protein adducts in both heavy (15,000 [times] g pellet) and light (100,000 [times] g pellet) microsomes. PAD, a measure of IA2-dependent activity, was not inhibited. These data demonstrate that PG selectively inhibits IIE1 activity, including the bioactivation of APAP, and implicates this as the mechanism for PG-mediated protection of APAP hepatotoxicity in mice. 27 refs., 1 fig., 1 tab.

  19. Thyroid hormone-regulated gene expression in juvenile mouse liver: identification of thyroid response elements using microarray profiling and in silico analyses

    Directory of Open Access Journals (Sweden)

    Paquette Martin A

    2011-12-01

    Full Text Available Abstract Background Disruption of thyroid hormone signalling can alter growth, development and energy metabolism. Thyroid hormones exert their effects through interactions with thyroid receptors that directly bind thyroid response elements and can alter transcriptional activity of target genes. The effects of short-term thyroid hormone perturbation on hepatic mRNA transcription in juvenile mice were evaluated, with the goal of identifying genes containing active thyroid response elements. Thyroid hormone disruption was induced from postnatal day 12 to 15 by adding goitrogens to dams' drinking water (hypothyroid. A subgroup of thyroid hormone-disrupted pups received intraperitoneal injections of replacement thyroid hormones four hours prior to sacrifice (replacement. An additional group received only thyroid hormones four hours prior to sacrifice (hyperthyroid. Hepatic mRNA was extracted and hybridized to Agilent mouse microarrays. Results Transcriptional profiling enabled the identification of 28 genes that appeared to be under direct thyroid hormone-regulation. The regulatory regions of the genome adjacent to these genes were examined for half-site sequences that resemble known thyroid response elements. A bioinformatics search identified 33 thyroid response elements in the promoter regions of 13 different genes thought to be directly regulated by thyroid hormones. Thyroid response elements found in the promoter regions of Tor1a, 2310003H01Rik, Hect3d and Slc25a45 were further validated by confirming that the thyroid receptor is associated with these sequences in vivo and that it can bind directly to these sequences in vitro. Three different arrangements of thyroid response elements were identified. Some of these thyroid response elements were located far up-stream (> 7 kb of the transcription start site of the regulated gene. Conclusions Transcriptional profiling of thyroid hormone disrupted animals coupled with a novel bioinformatics search

  20. N-acetylcysteine attenuates ischemia-reperfusion-induced apoptosis and autophagy in mouse liver via regulation of the ROS/JNK/Bcl-2 pathway.

    Directory of Open Access Journals (Sweden)

    Chengfen Wang

    Full Text Available BACKGROUND: Hepatic ischemia-reperfusion injury (HIRI remains a pivotal clinical problem after hemorrhagic shock, transplantation, and some types of toxic hepatic injury. Apoptosis and autophagy play important roles in cell death during HIRI. It is also known that N-acetylcysteine (NAC has significant pharmacologic effects on HIRI including elimination of reactive oxygen species (ROS and attenuation of hepatic apoptosis. However, the effects of NAC on HIRI-induced autophagy have not been reported. In this study, we evaluated the effects of NAC on autophagy and apoptosis in HIRI, and explored the possible mechanism involved. METHODS: A mouse model of segmental (70% hepatic warm ischemia was adopted to determine hepatic injury. NAC (150 mg/kg, a hepatoprotection agent, was administered before surgery. We hypothesized that the mechanism of NAC may involve the ROS/JNK/Bcl-2 pathway. We evaluated the expression of JNK, P-JNK, Bcl-2, Beclin 1 and LC3 by western blotting and immunohistochemical staining. Autophagosomes were evaluated by transmission electron microscopy (TEM. RESULTS: We found that ALT, AST and pathological changes were significantly improved in the NAC group. Western blotting analysis showed that the expression levels of Beclin 1 and LC3 were significantly decreased in NAC-treated mice. In addition, JNK, p-JNK, Bax, TNF-α, NF-κB, IL2, IL6 and levels were also decreased in NAC-treated mice. CONCLUSION: NAC can prevent HIRI-induced autophagy and apoptosis by influencing the JNK signal pathway. The mechanism is likely to involve attenuation of JNK and p-JNK via scavenged ROS, an indirect increase in Bcl-2 level, and finally an alteration in the balance of Beclin 1 and Bcl-2.

  1. Human endostatin gene transfer,either naked or with liposome,has the same inhibitory effect on growth of mouse liver tumor cells in vivo

    Institute of Scientific and Technical Information of China (English)

    Chun-Hong Ma; Wen-Sheng Sun; Yan Zhang; Xiao-Yan Wang; Li-Fen Gao; Hua Liu; Chun Guo; Su-Xia Liu; Ying-Lin Cao; Li-Ning Zhang

    2004-01-01

    AIM: To explore a safe and efficient strategy of tumor therapy using anti-angiogenetic agents.METHODS: Endostatin gene with a signal sequence of human IgG γ chain was amplified by PCR and cloned into pVAX1 plasmid which was the only vector authorized by FDA in clinical trial to construct a recombinant plasmid named as pVAX-sEN. The recombinant plasmid was detected with EcoRI/KpnI and DNA sequencing. BALB/c mice bearing hepatocarcinoma cell line H22 were treated with naked pVAX-sEN or liposome-DNA complex in which the dose of DNA and the ratio of DNA and liposome were different from each other. To compare the efficiency of gene transfection, expression of endostatin at the treated tumor site was assayed with ELISA. To investigate the effect of pVAX1-sEN on hepatocellular carcinoma, pVAX-sEN either naked or in liposome-DNA complex was injected into BALB/c mice bearing H22, then the diameter of tumors was measured, microvessel density was detected by immunohistochemistry, endostatin expression in vivo was assayed at different time points.RESULTS: DNA sequencing showed the endostatin gene with the signal peptide was correctly cloned. In situ gene expression assay indicated that both the ratio of DNA and liposome and the dose of DNA could affect the gene transfection efficiency. Interestingly, naked pVAX-sEN had a similar in situ endostatin expression to pVAX-sEN with liposome. Animal experiments showed that pVAX-sEN together with pVAX-sEN-liposome complex could efficiently suppress the growth of mouse hepatoma cells.CONCLUSION: Naked endostatin plasmid intratumoral injection can get a similar gene transfection efficiency to liposome-DNA complex when used in situ.

  2. Effect of diet on expression of genes involved in lipid metabolism, oxidative stress, and inflammation in mouse liver-insights into mechanisms of hepatic steatosis.

    Science.gov (United States)

    Renaud, Helen J; Cui, Julia Y; Lu, Hong; Klaassen, Curtis D

    2014-01-01

    Nutritional intake is a fundamental determinant of health. Many studies have correlated excess caloric intake, as well as a high ratio of n-6:n-3 fatty acids, with detrimental health outcomes, such as the metabolic syndrome. In contrast, low-calorie diets have beneficial health effects. Despite these associations, our understanding of the causal relationship between diet and health remains largely elusive. The present study examined the molecular changes elicited by nine diets with varying fat, sugar, cholesterol, omega-3 fatty acids, omega-6 fatty acids, and calories in C57BL/6 male mice. Microarray analyses were conducted on liver samples from three mice per diet and detected 20,449 genes of which 3,734 were responsive to changes in dietary components. Principal component analysis showed that diet restriction correlated the least with the other diets and also affected more genes than any other diet. Interestingly, Gene Set Enrichment Analysis (GSEA) identified gene sets involved in glutathione metabolism, immune response, fatty acid metabolism, cholesterol metabolism, ABC transporters, and oxidative phosphorylation as being highly responsive to changes in diet composition. On the gene level, this study reveals novel findings such as the induction of the drug efflux pump Abcb1a (p-glycoprotein) by diet restriction and an atherogenic diet, as well as the suppression of the rate limiting step of bile acid synthesis, Cyp7a1, by a high fructose diet. This study provides considerable insight into the molecular changes incurred by a variety of diets and furthers our understanding of the causal relationships between diet and health.

  3. Effect of diet on expression of genes involved in lipid metabolism, oxidative stress, and inflammation in mouse liver-insights into mechanisms of hepatic steatosis.

    Directory of Open Access Journals (Sweden)

    Helen J Renaud

    Full Text Available Nutritional intake is a fundamental determinant of health. Many studies have correlated excess caloric intake, as well as a high ratio of n-6:n-3 fatty acids, with detrimental health outcomes, such as the metabolic syndrome. In contrast, low-calorie diets have beneficial health effects. Despite these associations, our understanding of the causal relationship between diet and health remains largely elusive. The present study examined the molecular changes elicited by nine diets with varying fat, sugar, cholesterol, omega-3 fatty acids, omega-6 fatty acids, and calories in C57BL/6 male mice. Microarray analyses were conducted on liver samples from three mice per diet and detected 20,449 genes of which 3,734 were responsive to changes in dietary components. Principal component analysis showed that diet restriction correlated the least with the other diets and also affected more genes than any other diet. Interestingly, Gene Set Enrichment Analysis (GSEA identified gene sets involved in glutathione metabolism, immune response, fatty acid metabolism, cholesterol metabolism, ABC transporters, and oxidative phosphorylation as being highly responsive to changes in diet composition. On the gene level, this study reveals novel findings such as the induction of the drug efflux pump Abcb1a (p-glycoprotein by diet restriction and an atherogenic diet, as well as the suppression of the rate limiting step of bile acid synthesis, Cyp7a1, by a high fructose diet. This study provides considerable insight into the molecular changes incurred by a variety of diets and furthers our understanding of the causal relationships between diet and health.

  4. Genome-wide quantitative analysis of histone H3 lysine 4 trimethylation in wild house mouse liver: environmental change causes epigenetic plasticity.

    Directory of Open Access Journals (Sweden)

    Angelika G Börsch-Haubold

    Full Text Available In mammals, exposure to toxic or disease-causing environments can change epigenetic marks that are inherited independently of the intrauterine environment. Such inheritance of molecular phenotypes may be adaptive. However, studies demonstrating molecular evidence for epigenetic inheritance have so far relied on extreme treatments, and are confined to inbred animals. We therefore investigated whether epigenomic changes could be detected after a non-drastic change in the environment of an outbred organism. We kept two populations of wild-caught house mice (Mus musculus domesticus for several generations in semi-natural enclosures on either standard diet and light cycle, or on an energy-enriched diet with longer daylight to simulate summer. As epigenetic marker for active chromatin we quantified genome-wide histone-3 lysine-4 trimethylation (H3K4me3 from liver samples by chromatin immunoprecipitation and high-throughput sequencing as well as by quantitative polymerase chain reaction. The treatment caused a significant increase of H3K4me3 at metabolic genes such as lipid and cholesterol regulators, monooxygenases, and a bile acid transporter. In addition, genes involved in immune processes, cell cycle, and transcription and translation processes were also differently marked. When we transferred young mice of both populations to cages and bred them under standard conditions, most of the H3K4me3 differences were lost. The few loci with stable H3K4me3 changes did not cluster in metabolic functional categories. This is, to our knowledge, the first quantitative study of an epigenetic marker in an outbred mammalian organism. We demonstrate genome-wide epigenetic plasticity in response to a realistic environmental stimulus. In contrast to disease models, the bulk of the epigenomic changes we observed were not heritable.

  5. Liver regeneration.

    Science.gov (United States)

    Mao, Shennen A; Glorioso, Jaime M; Nyberg, Scott L

    2014-04-01

    The liver is unique in its ability to regenerate in response to injury. A number of evolutionary safeguards have allowed the liver to continue to perform its complex functions despite significant injury. Increased understanding of the regenerative process has significant benefit in the treatment of liver failure. Furthermore, understanding of liver regeneration may shed light on the development of cancer within the cirrhotic liver. This review provides an overview of the models of study currently used in liver regeneration, the molecular basis of liver regeneration, and the role of liver progenitor cells in regeneration of the liver. Specific focus is placed on clinical applications of current knowledge in liver regeneration, including small-for-size liver transplant. Furthermore, cutting-edge topics in liver regeneration, including in vivo animal models for xenogeneic human hepatocyte expansion and the use of decellularized liver matrices as a 3-dimensional scaffold for liver repopulation, are proposed. Unfortunately, despite 50 years of intense study, many gaps remain in the scientific understanding of liver regeneration.

  6. Effects of alcohol quality on mouse weight in alcoholic liver model%酒精肝造模过程中的酒质对体重变化的影响

    Institute of Scientific and Technical Information of China (English)

    王晓琳; 陈小兰; 胡先福; 南清振; 陈楚弟

    2014-01-01

    Objective To study the effects of alcohol quality on mouse weight in alcoholic liver model. Method Mice were fed with industrial alcohol for 2 months, or two kinds of liquor for 45 days. Mice weight change and liver tissue pathology were examined. Results After 2-month industrial alcohol feeding, body weight of the mice was decreased by 97.4%compared with the control mice, indicating that the industrial al-cohol was not suitable for the study. Mice were further fed with two kinds of liquor with different quality for 45 days. The body weight was decreased by 20.4%and 19.1%for poorer quality liquor and higher quality liquor respectively. We thus fed mice with two kinds of liquor in every 5 days or every 10 days for a total of 85 days. It was observed that the body weight was decreased much less in mice fed with higher quality liquor compared with the mice fed with poorer quality wine in both experimental designs. No change was observed in liver tis-sue pathology between the mice fed with different alcohols. Conclusion Liquor quality is important for the chronic alcoholic study.%目的:研究小鼠酒精性肝病造模过程中的不同酒质的作用。方法小鼠慢性喂养工业酒精2个月,或喂养食用酒A或食用酒B 40 d。检查小鼠空腹体重及病理组织学的变化。结果工业酒精慢性喂养2个月后,体重比对照组显著下降,说明工业酒精作为慢性酒精喂养模型的不适用问题。于是,我们进一步使用食用酒A,食用酒B分别慢性酒精喂养40 d后,体重仍然下降约20%。于是比较两种使用食用酒间隔5 d或10 d的慢性喂养85 d情况下(含酒精为40 d),食用酒B的体重降低有明显改善。三种酒喂养情况下,组织学均未见显著性差异。结论从体重的变化看,酒精质量对此模型具有重要的意义。

  7. Liver transplant

    Science.gov (United States)

    ... transplant - series References Keefe EB. Hepatic failure and liver transplantation. In: Goldman L, Schafer AI, eds. Goldman's Cecil ... Elsevier; 2011:chap 157. Martin P, Rosen HR. Liver transplantation. In: Feldman M, Friedman LS, Brandt LJ, eds. ...

  8. Detection of two growth hormone receptor mRNAs and primary translation products in the mouse

    OpenAIRE

    Smith, W.C.; Linzer, D I; Talamantes, F

    1989-01-01

    Two mouse growth hormone-receptor primary translation products of Mr 95,900 and 31,800 were identified from in vitro-translated late pregnant mouse liver mRNA. RNA isolated from mouse liver was translated in a rabbit reticulocyte lysate system containing [35S]methionine, and the growth hormone receptor primary translation products were identified by immunoprecipitation with anti-mouse growth hormone receptor antiserum followed by sodium dodecyl sulfate/PAGE and fluorography. Detectable amount...

  9. Identification of Plants That Inhibit Lipid Droplet Formation in Liver Cells: Rubus suavissimus Leaf Extract Protects Mice from High-Fat Diet-Induced Fatty Liver by Directly Affecting Liver Cells

    Science.gov (United States)

    Takahashi, Tomohiro; Sugawara, Wataru; Takiguchi, Yuya; Takizawa, Kento; Nakabayashi, Ami; Nakamura, Mitsuo; Nagano-Ito, Michiyo; Ichikawa, Shinichi

    2016-01-01

    Fatty liver disease is a condition in which abnormally large numbers of lipid droplets accumulate in liver cells. Fatty liver disease induces inflammation under conditions of oxidative stress and may result in cancer. To identify plants that protect against fatty liver disease, we examined the inhibitory effects of plant extracts on lipid droplet formation in mouse hepatoma cells. A screen of 98 water extracts of plants revealed 4 extracts with inhibitory effects. One of these extracts, Rubus suavissimus S. Lee (Tien-cha or Chinese sweet tea) leaf extract, which showed strong inhibitory effects, was tested in a mouse fatty liver model. In these mouse experiments, intake of the plant extract significantly protected mice against fatty liver disease without affecting body weight gain. Our results suggest that RSE directly affects liver cells and protects them from fatty liver disease.

  10. Identification of Plants That Inhibit Lipid Droplet Formation in Liver Cells: Rubus suavissimus Leaf Extract Protects Mice from High-Fat Diet-Induced Fatty Liver by Directly Affecting Liver Cells

    Science.gov (United States)

    Takahashi, Tomohiro; Sugawara, Wataru; Takiguchi, Yuya; Takizawa, Kento; Nakabayashi, Ami; Nakamura, Mitsuo; Nagano-Ito, Michiyo; Ichikawa, Shinichi

    2016-01-01

    Fatty liver disease is a condition in which abnormally large numbers of lipid droplets accumulate in liver cells. Fatty liver disease induces inflammation under conditions of oxidative stress and may result in cancer. To identify plants that protect against fatty liver disease, we examined the inhibitory effects of plant extracts on lipid droplet formation in mouse hepatoma cells. A screen of 98 water extracts of plants revealed 4 extracts with inhibitory effects. One of these extracts, Rubus suavissimus S. Lee (Tien-cha or Chinese sweet tea) leaf extract, which showed strong inhibitory effects, was tested in a mouse fatty liver model. In these mouse experiments, intake of the plant extract significantly protected mice against fatty liver disease without affecting body weight gain. Our results suggest that RSE directly affects liver cells and protects them from fatty liver disease. PMID:27429636

  11. Mouse adhalin

    DEFF Research Database (Denmark)

    Liu, L; Vachon, P H; Kuang, W;

    1997-01-01

    analyze the biological roles of adhalin, we cloned the mouse adhalin cDNA, raised peptide-specific antibodies to its cytoplasmic domain, and examined its expression and localization in vivo and in vitro. The mouse adhalin sequence was 80% identical to that of human, rabbit, and hamster. Adhalin was...... specifically expressed in striated muscle cells and their immediate precursors, and absent in many other cell types. Adhalin expression in embryonic mouse muscle was coincident with primary myogenesis. Its expression was found to be up-regulated at mRNA and protein levels during myogenic differentiation in...

  12. Primary monolayer culture of adult mouse hepatocytes

    International Nuclear Information System (INIS)

    Primary monolayer cultures of adult mouse hepatocytes isolated by collagenase perfusion of the liver in situ were exposed to 2 hepatotropic viruses, an avian influenza A virus adapted to grow in mouse liver in vivo and a herpes simplex type I virus. Influenza virus infection led to lysis of individual hepatocytes and total monolayer destruction within 18 to 120 hours after infection according to the virus dose used. Virus replication was evidenced by assaying hepatocyte supernates for hemagglutinin and infectivity, immunofluorescent staining and by electron microscopy. Herpes virus infection resulted in polykaryocyte formation followed by nuclear pycnosis and cell lysis. Virus replication was assayed by titration of supernate infectivity. (auth.)

  13. Dual Farnesoid X Receptor/TGR5 Agonist INT-767 Reduces Liver Injury in the Mdr2−/− (Abcb4−/−) Mouse Cholangiopathy Model by Promoting Biliary HCO3− Output

    OpenAIRE

    Baghdasaryan, Anna; Claudel, Thierry; Gumhold, Judith; Silbert, Dagmar; Adorini, Luciano; Roda, Aldo; Vecchiotti, Stefania; Gonzalez, Frank J.; Schoonjans, Kristina; Strazzabosco, Mario; Fickert, Peter; Trauner, Michael

    2011-01-01

    Chronic cholangiopathies have limited therapeutic options and represent an important indication for liver transplantation. The nuclear farnesoid X receptor (FXR) and the membrane G protein-coupled receptor, TGR5, regulate bile acid (BA) homeostasis and inflammation. Therefore, we hypothesized that activation of FXR and/or TGR5 could ameliorate liver injury in Mdr2−/− (Abcb4−/−) mice, a model of chronic cholangiopathy. Hepatic inflammation, fibrosis, as well as bile secretion and key genes of ...

  14. Liver spots

    Science.gov (United States)

    Sun-induced skin changes - liver spots; Senile or solar lentigines; Skin spots - aging; Age spots ... your skin by using skin bleaching lotions or creams. Most bleaching lotions use hydroquinone. This medicine is ...

  15. Liver Facts

    Science.gov (United States)

    ... idiopapathic) Liver tumors Biliary atresia Was this information helpful? E-mail us with feedback or questions. Reference ... or other discrepancies. Share this: Was this information helpful? Related topics Find transplant centers specializing in certain ...

  16. Effects of Xiaochaihu Decoction on Damage of Gut-liver-brain in CCl4/Ethanol Induced Mouse Hepatocellular Carcinoma%小柴胡汤对四氯化碳/乙醇诱发小鼠肝癌肠-肝-脑损伤的影响

    Institute of Scientific and Technical Information of China (English)

    胡小剑; 刘晓秋

    2012-01-01

    Objective; To investigate the effects of Xiaochaihu Decoction on damage of gut-liver-brain in CCl4/ethanol-induced mouse hepatocellular carcinoma. Method; Hepatocellular carcinoma group ( HCC ) were induced by subcutaneous injection with 25% CC14 olive oil solution (5 mL 'kg twice per week) and allowed free access to a 8% ethanol solution as drinking fluid for 4 weeks, and allowed free access to 0. 5% CQ4-8% ethanol solution as drinking fluid for 20 weeks; in HCC combined with liver depression and spleen deficiency ( LDSD) group (HCC-LDSD group) , on the basis of HCC modelling, the mice were stimulated with the factor of LDSD, squeezing tails (30 min -d-1 ) , solitary breeding and intermittent fasting for 4 weeks, solitary breeding and intermittent fasting for 20 weeks; Xiaochaihu decoction (XCHD) treated group was administered by gavage for 8 weeks after 4 weeks of the HCC-LDSD modelling. The mortality rates and HCC incidence rates were calculated, weight and clinical signs were monitored daily. The degree of tissue injuries in the gut and liver were studied using a scoring system, and brain weights were measured. Result: The mortality rate in HCC-LDSD group was higher than that in the HCC group, after treatment with XCHD, the mortality rate decreased significantly. In death mouse of HCC group, significantly more injuries in small intestine, cecum, liver and fecal loading in the cecum, with the increased in brain weights, the most in HCC-LDSD group, after treatment with XCHD, all of which were improved. HCC incidence rate in the HCC-LDSD group was higher than that in the HCC group, after treatment with XCHD, the HCC incidence rate decreased significantly. In survival mouse of HCC group, significantly more injuries in small intestine, cecum, liver ( mainly hyperplasia) , with slight decreased in brain weights, the most in HCC-LDSD group, after treatment with XCHD, all of which were improved. Correlative analysis showed that there was a positive or negative

  17. Liver function

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008308 Study on transplantation of induced bone marrow mesenchymal stem cells via a series of the treatment of chronic liver injury. SUN Yan(孙艳), et al. Dept Gastroenterol, 1st Hosp, Jilin Univ, Changchun 130021. Chin J Dig 2008;28(3):171-174.Objective To investigate the efficacy of transplantation of induced bone marrow mesenchymal stem cells(MSCs)via a series of treatment of chronic liver injury.Methods MSCs were isolated and expanded by density

  18. Chimeric mice with a humanized liver as an animal model of troglitazone-induced liver injury.

    Science.gov (United States)

    Kakuni, Masakazu; Morita, Mayu; Matsuo, Kentaro; Katoh, Yumiko; Nakajima, Miki; Tateno, Chise; Yokoi, Tsuyoshi

    2012-10-01

    Troglitazone (Tro) is a thiazolidinedione antidiabetic drug that was withdrawn from the market due to its association with idiosyncratic severe liver injury. Tro has never induced liver injury in experimental animals in vivo. It was assumed that the species differences between human and experimental animals in the pharmaco- or toxicokinetics of Tro might be associated with these observations. In this study, we investigated whether a chimeric mouse with a humanized liver that we previously established, whose replacement index with human hepatocytes is up to 92% can reproduce Tro-induced liver injury. When the chimeric mice were orally administered Tro for 14 or 23 days (1000mg/kg/day), serum alanine aminotransferase (ALT) was significantly increased by 2.1- and 3.6-fold, respectively. Co-administration of l-buthionine sulfoximine (10mM in drinking water), an inhibitor of glutathione (GSH) synthesis, unexpectedly prevented the Tro-dependent increase of ALT, which suggests that the GSH scavenging pathway will not be involved in Tro-induced liver injury. To elucidate the mechanism of the onset of liver injury, hepatic GSH content, the level of oxidative stress markers and phase I and phase II drug metabolizing enzymes were determined. However, these factors were not associated with Tro-induced liver injury. An immune-mediated reaction may be associated with Tro-induced liver toxicity in vivo, because the chimeric mouse is derived from an immunodeficient SCID mouse. In conclusion, we successfully reproduced Tro-induced liver injury using chimeric mice with a humanized liver, which provides a new animal model for studying idiosyncratic drug-induced liver injury.

  19. Liver Biopsy in Liver Transplant Recipients

    OpenAIRE

    Van Ha, Thuong G.

    2004-01-01

    Liver biopsy has been used in the assessment of the nature and course of liver diseases and to monitor treatments. In nontransplanted patients, liver biopsies have been well described. Less has been written on the biopsies of transplanted livers. In the liver transplant population, liver biopsy remains the “gold standard” for the diagnosis of rejection. The transplanted liver has additional considerations that can make biopsy less routine and more challenging.

  20. The “Privileged” Liver and Hepatic Tolerogenicity

    OpenAIRE

    Starzl, Thomas E.

    2001-01-01

    The mechanism underlying the immunological advantage of hepatic allografts relative to other organs is incompletely understood. We used molecular probes for the repetitive units on the Y chromosome, to identify an increasing number of male liver venous endothelial cells in needle biopsy samples of men who received female donor liver grafts. We have also shown repopulation of liver endothelium by bone marrow derived cells in a male to female mouse bone marrow transplant model. We conclude that...

  1. Impact of CD4+ CD25+ Regulatory T Cells in Maintenance of Spontaneous Immunotolerance in Mouse Liver Transplantation%CD4+CD25+调节性T细胞在维持小鼠肝脏移植自发性免疫耐受状态中的作用

    Institute of Scientific and Technical Information of China (English)

    姜晓峰; 王学范; 崔哲铭; 朱磊; 郭大伟; 孙文郁; 林琳; 唐裕福; 梁健

    2011-01-01

    目的 探讨CD4+CD25+调节性T细胞在维持小鼠肝脏移植免疫耐受状态中的作用.方法 进行小鼠原位肝脏移植,诱导出移植免疫耐受后,向受体注射抗CD25抗体(PC61)以去除CD4+CD25+T细胞,检测受体内CD4+CD25+T细胞数量及叉状头/翅膀状螺旋转录因子(Foxp3)的表达以确定CD4+CD25+T细胞完全被清除,同时观察受体生存时间.结果 与同种同系小鼠肝脏移植结果 相似,同种异系肝脏移植小鼠的生存时间亦均超过70 d.移植免疫耐受诱导后,PC61不同注射方案均能完全去除受体小鼠肝脏、脾脏及血液中的CD4+CD25+T细胞,且移植肝脏中Foxp3 mRNA的表达也明显降低,表明完全去除了CD4+CD25+调节性T细胞,但肝脏移植动物生存时间并未受到影响.结论 CD4+CD25+调节性T细胞对于小鼠肝脏移植自发性免疫耐受的维持并非必需.%Objective To approach the role of CD4+ CD25+ regulatory T cells in the maintenance of immunotolerance in mouse liver allograft. Methods The mouse orthotopic liver transplantation was performed. After the liver transplantation immunotolerance induction, anti-CD25 monoclonal antibody (PC61) was injected into the recipients with a delayed timing to remove the CD4+ CD25+ T cells. The percentage of CD4+ CD25+ T cells and the expression of fork-head/winged helix transcription factor (Foxp3) in the recipients were examined. Furthermore, the survival time of the recipient was observed. Results C3H/HeJ recipients receiving DBA/2 hepatic allografts survived over 70 d as in the syngeneic liver transplantation (C3H/HeJ recipients receiving C3H/HeJ hepatic grafts).With various protocols of the delayed PC61 treatment, the CD4+ CD25+ T cell was completely disappeared as observed. However, the removal of CD4+ CD25+ regulatory T cells after the induction of transplantation immunotolerance did not affect the survival of hepatic allografts. Conclusion CD4+ CD25+ regulatory T cells are not essential for the

  2. Mouse models for methylmalonic aciduria.

    Directory of Open Access Journals (Sweden)

    Heidi L Peters

    Full Text Available Methylmalonic aciduria (MMA is a disorder of organic acid metabolism resulting from a functional defect of methylmalonyl-CoA mutase (MCM. MMA is associated with significant morbidity and mortality, thus therapies are necessary to help improve quality of life and prevent renal and neurological complications. Transgenic mice carrying an intact human MCM locus have been produced. Four separate transgenic lines were established and characterised as carrying two, four, five or six copies of the transgene in a single integration site. Transgenic mice from the 2-copy line were crossed with heterozygous knockout MCM mice to generate mice hemizygous for the human transgene on a homozygous knockout background. Partial rescue of the uniform neonatal lethality seen in homozygous knockout mice was observed. These rescued mice were significantly smaller than control littermates (mice with mouse MCM gene. Biochemically, these partial rescue mice exhibited elevated methylmalonic acid levels in urine, plasma, kidney, liver and brain tissue. Acylcarnitine analysis of blood spots revealed elevated propionylcarnitine levels. Analysis of mRNA expression confirms the human transgene is expressed at higher levels than observed for the wild type, with highest expression in the kidney followed closely by brain and liver. Partial rescue mouse fibroblast cultures had only 20% of the wild type MCM enzyme activity. It is anticipated that this humanised partial rescue mouse model of MMA will enable evaluation of long-term pathophysiological effects of elevated methylmalonic acid levels and be a valuable model for the investigation of therapeutic strategies, such as cell transplantation.

  3. The City Mouse and the Country Mouse

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Once two mice (老鼠) were good friends. One lived in the city, the other lived in the country (乡村). After many years, the city mouse came to see the country mouse. The country mouse took him to his house in a field. He gave him the nicest food that he could find. The city mouse said,

  4. Liver transplantation

    OpenAIRE

    Rodríguez-Perálvarez, M; De La Mata, M; Burroughs, A K

    2014-01-01

    Purpose of review: Long-term survival of liver transplant recipients is threatened by increased rates of de-novo malignancy and recurrence of hepatocellular carcinoma (HCC), both events tightly related to immunosuppression. Recent findings: There is accumulating evidence linking increased exposure to immunosuppressants and carcinogenesis, particularly concerning calcineurin inhibitors (CNIs), azathioprine and antilymphocyte agents. A recent study including 219 HCC transplanted patients sh...

  5. Liver disease - resources

    Science.gov (United States)

    Resources - liver disease ... The following organizations are good resources for information on liver disease : American Liver Foundation -- www.liverfoundation.org Children's Liver Association for Support Services -- www.classkids.org Hepatitis ...

  6. Liver cancer - hepatocellular carcinoma

    Science.gov (United States)

    Primary liver cell carcinoma; Tumor - liver; Cancer - liver; Hepatoma ... Hepatocellular carcinoma accounts for most liver cancers. This type of cancer occurs more often in men than women. It is usually diagnosed in people age 50 or older. ...

  7. Liver cirrhosis and fatty liver

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008075 Effect of Jiangzhi granules on expression of leptin receptor mRNA, P-JAK2 and P-STAT3 in rats with non-alcoholic fatty liver disease. MA Zansong(马赞颂), et al. Dept Gastroenterol, Instit Spleen and Stomach Dis, Longhua Hosp. Shanghai TCM Univ, Shanghai 200032.World Chin J Digestol 2007;15(32):3360-3366. Objective To study the effect of Jiangzhi granules on non-alcoholic fatty liver disease in rats, and on the expression of

  8. Liver cirrhosis and fatty liver

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008447 Identification of gene expression patterns in a rat model of nonalcoholic fatty liver disease. ZHANG Xuequn(张雪群), et al. Dept Gastroenterol, 1st Hosp, Med Coll, Zhejiang Univ, Hangzhou 310003. Chin J Dig 2008;28(5):323-327. Objective To compare and analyze gene expression patterns in a rat model of nonalcoholic fatty liver disease (NAFLD). Methods Twelve male Sprague-Dawley rats were randomly given either general diet (control group) or a high-fat diet (model group) for 4 weeks.

  9. Liver cirrhosis and fatty liver

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008310 Expression of αVβ3 integrin and platelet-endothelial cell adhesion molecule-1 in progressive liver fibrosis: experiment with rats. SONG Zhengji(宋正已), et al. Dept Gastroenterol, Zhongshan Hosp, Fudan Univ, Shanghai 200032. Natl Med J China 2008;88(16):1121-1125.Objective To investigate the expression ofαVβ3 integrin and platelet endothelial cell adhesion molecule-1(CD31)in progressive liver fibrosis of rats.Methods Sixty-four SD rats were randomly divided into 4 equal groups:TAA group,undergoing peritoneal injection of

  10. Immunologic analyses of mouse cystathionase in normal and leukemic cells. [Rats, rabbits, /sup 125/I tracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Bikel, I.; Faibes, D.; Uren, J.R.; Livingston, D.M.

    1978-11-28

    Rabbit antisera have been raised against mouse liver cystathionase and shown to possess enzyme neutralizing activity. Agar gel double immunodiffusion analyses demonstrated that both mouse liver cystathionase and rat liver cystathionase react with the antisera, the latter enzyme being completely cross-reactive with the former. Following radioiodination of the purified rat liver enzyme, a double antibody radioimmunoassay was developed in which greater than 90% of the labeled protein could be specifically precipitated with the anti-mouse cystathionase antibodies. In this test the purified rat liver and mouse liver enzymes were virtually indistinguishable, generating superimposable competition displacement curves on a protein mass basis. These results indicate that both enzymes are immunologically identical, thus validating the use of the rat in lieu of the murine liver enzyme as radiolabeled tracer in an assay for mouse cystathionase. In addition, competition radioimmunoassays demonstrated that the immunological reactivities of both the purified rat liver and mouse liver enzymes were equally heat sensitive. The sensitivity of the assay was determined to be 1 ng of enzyme protein/0.22 mL of assay mixture, and the assay could be used to detect the presence of enzyme protein in tissue homogenates of single mouse organs. Mouse or rat cross-reactivity with human liver cystathionase was incomplete; but, with the exception of heart and spleen, parallel radioimmunoassay competition displacement curves were obtained for cystathionase from different mouse organs including thymus. Extracts of 7-, 9-, and 10-month-old spontaneous AKR mouse thymomas were tested in the radioimmunoassay along with extracts of age-matched thymuses which were grossly tumor free. A reaction of nonidentity was observed for all of the tumor extracts while a reaction identical with that of the pure liver enzyme was found with all of the normal thymus extracts.

  11. Coordinated Regulation of Dimethylarginine Dimethylaminohydrolase-1 and Cationic Amino Acid Transporter-1 by Farnesoid X Receptor in Mouse Liver and Kidney and Its Implication in the Control of Blood Levels of Asymmetric Dimethylarginine

    OpenAIRE

    Li, Jiang; Wilson, Annette; Gao, Xiang; Kuruba, Ramalinga; Liu, Youhua; Poloyac, Samuel; Pitt, Bruce; Xie, Wen; Li, Song

    2009-01-01

    Asymmetric dimethylarginine (ADMA) is a potent endogenous inhibitor of endothelial nitric-oxide synthase (eNOS), and increased plasma concentrations of ADMA have been regarded as a risk factor for a number of cardiovascular diseases. Circulating ADMA is largely taken up by liver and kidney via system y+ carriers of the cationic amino acid (CAT) family and subsequently metabolized by dimethylarginine dimethylaminohydrolases (DDAHs). As such, agents targeted at enhancing ADMA metabolism may pro...

  12. Dammar resin, a non-mutagen, induces [corrected] oxidative stress and metabolic enzymes in the liver of gpt delta transgenic mouse which is different from a mutagen, 2-amino-3-methylimidazo[4,5-f]quinoline.

    Science.gov (United States)

    Xie, Xiao-Li; Wei, Min; Kakehashi, Anna; Yamano, Shotaro; Okabe, Kyoko; Tajiri, Masaki; Wanibuchi, Hideki

    2012-10-01

    Dammar resin has long been used in foods as either a clouding or a glazing agent. In a recent study, 2% Dammar resin showed significant hepatocarcinogenicity in a rat 2-year bioassay. Therefore, for an accurate estimate of human risk, it is necessary to understand whether Dammar resin induces liver genotoxicity and the underlying mechanisms of its hepatocarcinogenicity. Modifying effects of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), a typical genotoxic carcinogen produced during cooking of protein-rich foods, was also studied in the present study. Exposure of gpt delta mice to Dammar resin at a dose of 2% for 12 weeks did not induce any obvious mutagenicity in the liver. However, the index of cell proliferation, the level of 8-OHdG, and bax, bcl-2, p53, cyp1a2, cyp2e1, gpx1 and gstm2 gene expression were all significantly increased when compared with the control group. In the IQ treatment group, at a dose of 300ppm, mutagenicity was readily detected, the index of cell proliferation increased, and p53, cyp2e1 and gpx1 gene expression was down-regulated in the liver. Down-regulation of p53, P450s, and gpx1 in the livers of IQ treated mice are consistent with its genotoxic mechanism of carcinogenicity observed in a 675-day study. In contrast, our results using gpt delta mice suggest that Dammar resin is not genotoxic. Instead, the Dammar resin-induced hepatocarcinogenicity seen in our previous 2-year study with rats may have been mediated by non-genotoxic mechanisms, including increased P450 enzyme activity, increased oxidative stress, altered gene expression, and promotion of cell proliferation.

  13. Induction by phenobarbital of aniline-p-hydroxylase in mouse liver under the influence of X-irradiation and 2,4,6-triethyleneimino-1,3,5-triazine

    International Nuclear Information System (INIS)

    The phenobarbital-induced activity of aniline-p-hydroxylase in livers of mice was enhanced additionally when the animals were X-irradiated 4-16 hours before the administration of the inducer. The same effect could be demonstrated after repeated irradiation with low doses. 2,4,6-triethyleneimino-1,3,5-triazine (tretamine) inhibited the induction of aniline-p-hydroxylase only when administered in extremely high doses. Lower doses resulted in 'superinduciton'. (orig.)

  14. Liver cirrhosis and fatty liver

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    970345 An experimental and clinical study on α1-adrenergic receptor of liver plasma membranes in cir-rhosis with portal hypertension. ZHANG Youcheng(张有成), et al. Dept Surg, People’s Hosp, Beijing MedUniv, Beijing, 100044 Chin J Dig 1996; 16(6): 332-335.

  15. Liver function

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    930536 Applied anatomy for interhepatic porto-caval shunt.DU Xiangke(杠湘珂),et al.DeptRadiol,Beijing People’s Hosp,Beijing Med U-niv,Beijing,100044.Chin J Radiol 1993;27(3):148—151.The results of measurement of the anatormicalrelationship of hepatic and portal vein in 70 hu-man liver specimens were reported including theirdistance and overlapping areas.The resultsdemonstrated that,when the catheter enteredthe posterior segment of IVC in the liver andthen passed into the left,middle or right branch-es of hepatic vein for an average of 4—5cm,thesegmental branches of portal vein would be over-lapped.The authors suggested that the catheter

  16. Oxidative Stress and Oval Cell Accumulation in Mice and Humans with Alcoholic and Nonalcoholic Fatty Liver Disease

    OpenAIRE

    Roskams, Tania; Yang, Shi Qi; Koteish, Aymen; Durnez, Anne; DeVos, Rita; Huang, Xiawen; Achten, Ruth; Verslype, Chris; Diehl, Anna Mae

    2003-01-01

    In animals, the combination of oxidative liver damage and inhibited hepatocyte proliferation increases the numbers of hepatic progenitors (oval cells). We studied different murine models of fatty liver disease and patients with nonalcoholic fatty liver disease or alcoholic liver disease to determine whether oval cells increase in fatty livers and to clarify the mechanisms for this response. To varying degrees, all mouse models exhibit excessive hepatic mitochondrial production of H2O2, a know...

  17. Engineering liver

    OpenAIRE

    Griffith, Linda G.; Wells, Alan; Stolz, Donna Beer

    2013-01-01

    Interest in “engineering liver” arises from multiple communities: therapeutic replacement; mechanistic models of human processes; and drug safety and efficacy studies. An explosion of micro- and nano-fabrication, biomaterials, microfluidic, and other technologies potentially afford unprecedented opportunity to create microphysiological models of human liver, but engineering design principles for how to deploy these tools effectively towards specific applications, including how to define the e...

  18. Delayed liver regeneration after partial hepatectomy in adiponectin knockout mice

    International Nuclear Information System (INIS)

    We previously demonstrated that adiponectin has anti-fibrogenic and anti-inflammatory effects in the liver of mouse models of various liver diseases. However, its role in liver regeneration remains unclear. The aim of this study was to determine the role of adiponectin in liver regeneration. We assessed liver regeneration after partial hepatectomy in wild-type (WT) and adiponectin knockout (KO) mice. We analyzed DNA replication and various signaling pathways involved in cell proliferation and metabolism. Adiponectin KO mice exhibited delayed DNA replication and increased lipid accumulation in the regenerating liver. The expression levels of peroxisome proliferator-activated receptor (PPAR) α and carnitine palmitoyltransferase-1 (CPT-1), a key enzyme in mitochondrial fatty acid oxidation, were decreased in adiponectin KO mice, suggesting possible contribution of altered fat metabolism to these phenomena. Collectively, the present results highlight a new role for adiponectin in the process of liver regeneration.

  19. FAK deletion accelerates liver regeneration after two-thirds partial hepatectomy

    Science.gov (United States)

    Shang, Na; Arteaga, Maribel; Chitsike, Lennox; Wang, Fang; Viswakarma, Navin; Breslin, Peter; Qiu, Wei

    2016-01-01

    Understanding the molecular mechanisms of liver regeneration is essential to improve the survival rate of patients after surgical resection of large amounts of liver tissue. Focal adhesion kinase (FAK) regulates different cellular functions, including cell survival, proliferation and cell migration. The role of FAK in liver regeneration remains unknown. In this study, we found that Fak is activated and induced during liver regeneration after two-thirds partial hepatectomy (PHx). We used mice with liver-specific deletion of Fak and investigated the role of Fak in liver regeneration in 2/3 PHx model (removal of 2/3 of the liver). We found that specific deletion of Fak accelerates liver regeneration. Fak deletion enhances hepatocyte proliferation prior to day 3 post-PHx but attenuates hepatocyte proliferation 3 days after PHx. Moreover, we demonstrated that the deletion of Fak in liver transiently increases EGFR activation by regulating the TNFα/HB-EGF axis during liver regeneration. Furthermore, we found more apoptosis in Fak-deficient mouse livers compared to WT mouse livers after PHx. Conclusion: Our data suggest that Fak is involved in the process of liver regeneration, and inhibition of FAK may be a promising strategy to accelerate liver regeneration in recipients after liver transplantation. PMID:27677358

  20. Transcriptional ontogeny of the developing liver

    Directory of Open Access Journals (Sweden)

    Lee Janice S

    2012-01-01

    Full Text Available Abstract Background During embryogenesis the liver is derived from endodermal cells lining the digestive tract. These endodermal progenitor cells contribute to forming the parenchyma of a number of organs including the liver and pancreas. Early in organogenesis the fetal liver is populated by hematopoietic stem cells, the source for a number of blood cells including nucleated erythrocytes. A comprehensive analysis of the transcriptional changes that occur during the early stages of development to adulthood in the liver was carried out. Results We characterized gene expression changes in the developing mouse liver at gestational days (GD 11.5, 12.5, 13.5, 14.5, 16.5, and 19 and in the neonate (postnatal day (PND 7 and 32 compared to that in the adult liver (PND67 using full-genome microarrays. The fetal liver, and to a lesser extent the neonatal liver, exhibited dramatic differences in gene expression compared to adults. Canonical pathway analysis of the fetal liver signature demonstrated increases in functions important in cell replication and DNA fidelity whereas most metabolic pathways of intermediary metabolism were under expressed. Comparison of the dataset to a number of previously published microarray datasets revealed 1 a striking similarity between the fetal liver and that of the pancreas in both mice and humans, 2 a nucleated erythrocyte signature in the fetus and 3 under expression of most xenobiotic metabolism genes throughout development, with the exception of a number of transporters associated with either hematopoietic cells or cell proliferation in hepatocytes. Conclusions Overall, these findings reveal the complexity of gene expression changes during liver development and maturation, and provide a foundation to predict responses to chemical and drug exposure as a function of early life-stages.

  1. Liver cirrhosis and fatty liver

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    930137 Effects of selective and non-selectiveβ-adrenoreceptor blockers on portal hemody-namics in patients with liver cirrhosis.HUANGTianwei(黄天卫),et al.1st Affili Hosp,DalianMed Coll.Chin J Digest 1992;12(3):145-147.Effects of selective(atenolol)and non-selec-tive(propranolol)β-adrenoreceptor blockerson portal hemodynamics in patients with livercirrhosis were measured by pulsed Doppler du-

  2. Liver in systemic disease

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Potential causes of abnormal liver function tests include viral hepatitis, alcohol intake, nonalcoholic fatty liver disease, autoimmune liver diseases, hereditary diseases, hepatobiliary malignancies or infection, gallstones and drug-induced liver injury. Moreover, the liver may be involved in systemic diseases that mainly affect other organs. Therefore, in patients without etiology of liver injury by screening serology and diagnostic imaging, but who have systemic diseases, the abnormal liver function test results might be caused by the systemic disease. In most of these patients, the systemic disease should be treated primarily. However, some patients with systemic disease and severe liver injury or fulminant hepatic failure require intensive treatments of the liver.

  3. Isolation of liver aldehyde oxidase containing fractions from different animals and determination of kinetic parameters for benzaldehyde

    Directory of Open Access Journals (Sweden)

    Kadam R

    2008-01-01

    Full Text Available Aldehyde oxidase activity containing fractions from rabbit, guinea pig, rat and mouse livers were obtained by heat treatment and ammonium sulfate precipitation. Aldehyde oxidase activity was observed in rabbit and guinea pig livers, while aldehyde oxidase activity was absent in rat and mouse liver fractions. Enzyme kinetic parameters, K m and V max , were determined for the oxidation of benzaldehyde to benzoic acid by rabbit and guinea pig liver fractions, by spectrophotometric method, with potassium ferricyanide as the electron acceptor. The K m values obtained for both animal liver fractions were in the range of 10.3-19.1 µM.

  4. Adiponectin and its receptors in rodent models of fatty liver disease and liver cirrhosis

    Institute of Scientific and Technical Information of China (English)

    Markus Neumeier; Jürgen Sch(o)lmerich; Christa Buechler; Claus Hellerbrand; Erwin G(a)bele; Roland Buettner; Cornelius Bollheimer; Johanna Weigert; Andreas Sch(a)ffler; Thomas S Weiss; Monika Lichtenauer

    2006-01-01

    AIM: To determine circulating and hepatic adiponectin in rodents with fatty liver disease or liver cirrhosis and investigate expression of the adiponectin receptors AdipoR1 on the mRNA and protein level and AdipoR2 on the mRNA level.METHODS: Fat fed rats were used as a model for fatty liver disease and bile duct ligation in mice to investigate cirrhotic liver. Expression of AdipoR1 and AdipoR2 mRNA was determined by real time RT-PCR. AdipoR1 protein was analysed by immunoblot. Adiponectin was measured by ELISA.RESULTS: Systemic adiponectin is reduced in fat fed rats but is elevated in mice after bile duct ligation (BDL). Hepatic adiponectin protein is lower in steatotic liver but not in the liver of BDL-mice when compared to controls. Adiponectin mRNA was not detected in human liver samples or primary human hepatocytes nor in rat liver but recombinant adiponectin is taken up by isolated hepatocytes in-vitro. AdipoR1 mRNA and AdipoR1 protein levels are similar in the liver tissue of control and fat fed animals whereas AdipoR2 mRNA is induced. AdipoR2 mRNA and AdipoR1 mRNA and protein is suppressed in the liver of BDL-mice.CONCLUSION: Our studies show reduced circulating adiponectin in a rat model of fatty liver disease whereas circulating adiponectin is elevated in a mouse model of cirrhosis and similar findings have been described in humans. Diminished hepatic expression of adiponectin receptors was only found in liver cirrhosis.

  5. Protocols for staining of bile canalicular and sinusoidal networks of human, mouse and pig livers, three-dimensional reconstruction and quantification of tissue microarchitecture by image processing and analysis.

    Science.gov (United States)

    Hammad, Seddik; Hoehme, Stefan; Friebel, Adrian; von Recklinghausen, Iris; Othman, Amnah; Begher-Tibbe, Brigitte; Reif, Raymond; Godoy, Patricio; Johann, Tim; Vartak, Amruta; Golka, Klaus; Bucur, Petru O; Vibert, Eric; Marchan, Rosemarie; Christ, Bruno; Dooley, Steven; Meyer, Christoph; Ilkavets, Iryna; Dahmen, Uta; Dirsch, Olaf; Böttger, Jan; Gebhardt, Rolf; Drasdo, Dirk; Hengstler, Jan G

    2014-05-01

    Histological alterations often constitute a fingerprint of toxicity and diseases. The extent to which these alterations are cause or consequence of compromised organ function, and the underlying mechanisms involved is a matter of intensive research. In particular, liver disease is often associated with altered tissue microarchitecture, which in turn may compromise perfusion and functionality. Research in this field requires the development and orchestration of new techniques into standardized processing pipelines that can be used to reproducibly quantify tissue architecture. Major bottlenecks include the lack of robust staining, and adequate reconstruction and quantification techniques. To bridge this gap, we established protocols employing specific antibody combinations for immunostaining, confocal imaging, three-dimensional reconstruction of approximately 100-μm-thick tissue blocks and quantification of key architectural features. We describe a standard procedure termed 'liver architectural staining' for the simultaneous visualization of bile canaliculi, sinusoidal endothelial cells, glutamine synthetase (GS) for the identification of central veins, and DAPI as a nuclear marker. Additionally, we present a second standard procedure entitled 'S-phase staining', where S-phase-positive and S-phase-negative nuclei (stained with BrdU and DAPI, respectively), sinusoidal endothelial cells and GS are stained. The techniques include three-dimensional reconstruction of the sinusoidal and bile canalicular networks from the same tissue block, and robust capture of position, size and shape of individual hepatocytes, as well as entire lobules from the same tissue specimen. In addition to the protocols, we have also established image analysis software that allows relational and hierarchical quantifications of different liver substructures (e.g. cells and vascular branches) and events (e.g. cell proliferation and death). Typical results acquired for routinely quantified

  6. Pyogenic liver abscess

    Science.gov (United States)

    Liver abscess; Bacterial liver abscess ... There are many potential causes of liver abscesses, including: Abdominal infection, such as appendicitis , diverticulitis , or a perforated bowel Infection in the blood Infection of the bile draining tubes ...

  7. Endoderm Generates Endothelial Cells during Liver Development

    Directory of Open Access Journals (Sweden)

    Orit Goldman

    2014-10-01

    Full Text Available Organogenesis requires expansion of the embryonic vascular plexus that migrates into developing organs through a process called angiogenesis. Mesodermal progenitors are thought to derive endothelial cells (ECs that contribute to both embryonic vasculogenesis and the subsequent organ angiogenesis. Here, we demonstrate that during development of the liver, which is an endoderm derivative, a subset of ECs is generated from FOXA2+ endoderm-derived fetal hepatoblast progenitor cells expressing KDR (VEGFR2/FLK-1. Using human and mouse embryonic stem cell models, we demonstrate that KDR+FOXA2+ endoderm cells developing in hepatic differentiation cultures generate functional ECs. This introduces the concept that ECs originate not exclusively from mesoderm but also from endoderm, supported in Foxa2 lineage-tracing mouse embryos by the identification of FOXA2+ cell-derived CD31+ ECs that integrate the vascular network of developing fetal livers.

  8. Liver function

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    930136 Epidermal growth factor for enhanc-ing DNA synthesis of hepatocytes and its pro-tecting effect on animals with liver injury.HUANG Huili(黄慧俐),et al.Dept Infect Dis,Southwest Hosp,3rd Milit Med Univ,Chongqing,630038.Natl Med J China 1992;72(10):604-607.Epidermal growth factor(EGF)was purifiedchromatographically from mice submaxillaryglands,and its activity and electrophoretic pure-ness were identified.The effect of EGF,glucagon-insulin(G-Ins)and EGF-glueagon-insulin mixture(EGF-G-Ins)onstimulation of DNA synthesis in primary cul-tures of rat hepatocytes and their protective ef-

  9. Amebic liver abscess

    Science.gov (United States)

    ... liver in response to an intestinal parasite called Entamoeba histolytica . ... Amebic liver abscess is caused by Entamoeba histolytica. This ... dysentery. After an infection has occurred, the parasite may ...

  10. Liver regeneration in nonalcoholic fatty liver disease

    OpenAIRE

    Aldo Lagomarsino

    2012-01-01

    Steatosis is the accumulation of fat in hepatocytes, which may be the result of liver regeneration or pathological processes such as alcoholic and nonalcoholic fatty liver disease. Despite its importance, in both cases the exact mechanism that prevails in fatty liver regeneration is poorly understood. Previous studies have shown that patients with fatty liver express dispar regeneration, possibly due to the accumulation of reactive oxygen species generated by inflammatory processes caused by ...

  11. Identification and cloning of a novel isoform of mouse secretory leukocyte protease inhibitor, mSLPI-beta, overexpressed in murine leukemias and a highly liver metastatic tumor, IMC-HA1 cells.

    Science.gov (United States)

    Morita, M; Arakawa, H; Nishimura, S

    1999-01-01

    Several genes showing transcriptional alteration in a highly liver metastatic murine carcinoma cell line, IMC-HA1, were identified by mRNA differential display system. Among them, a gene identical to mSLPI was isolated as mSLPI-alpha and -beta. They were produced through an alternative splicing. Their full-length cDNA sequences were determined, and their expression in various murine tumors and normal tissues was analysed. The deduced translation product of mSLPI-alpha showed 59% identity to hSLPI. Although mSLPI-beta had the same 103-amino-acid sequence from the carboxyl terminus, the amino terminus showed hydrophilicity opposite mSLPI-alpha or hSLPI. The mSLPI-alpha was expressed ubiquitously in various tumor cell lines. Interestingly, however, mSLPI-beta expression was only observed in P388 and L1210 leukemias and IMC-HA1 cells, and in lower amounts in three normal tissues (thymus, lung and spleen), suggesting that mSLPI, and in particular the unusual splicing product, mSLPI-beta, plays a specific role in these cells, including malignant processes of tumor cells.

  12. 半乳糖抗小鼠CD3单抗作为肝癌术后 免疫治疗载体的研究%The feasibility research of galactosyl-anti-mouse CD3 monoclonal antibody being used as carrier of immunotherapy after surgical operation of liver cancer

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To probe into the feasibility of galactosyl-anti-mouse CD3 monoclonal antibody (Gal-Ant-CD3 McAb) being used as carrier of immunotherapy after surgical operation of liver cancer. Methods Gal-Ant-CD3 McAb was prepared by the covalent coupling of anti-mouse CD3 monoclonal antibody (Ant-CD3 McAb) with a bifunctional reagent, 2-imino-2-methoxyethyl-1-thiogalactose. After Gal-Ant-CD3 McAb and Ant-CD3 McAb were labelled with 131 I or 125 I, the data of biodistribution in mice, and of imaging in rabbit were obtained. After tumour infiltrating lymphocytes (TIL) and Gal-Ant-CD3 McAb were coupled into Gal-Ant-CD3 McAb-TIL, its livertaxis and cytotoxic activity against autologous cancer cells were measured in vitro. Results Gal-Ant-CD3 McAb had remarkable livertaxis and its uptake in per gram liver was (59.0±2.1)% that was more than two-fold higher than that of Ant-CD3 McAb. Gal-Ant-CD3 McAb-TIL had an obvious livertaxis and cytotoxic activity against autologous cancer cells in vitro. Conclusion Gal-Ant-CD3 McAb can be used as the carrier of immunotherapy after surgical operation of liver cancer.%目的 探讨利用放射性核素示踪技术研究半乳糖抗小鼠CD3单克隆抗体(Gal-Ant-CD3 McAb)作为原发性肝癌(PLC)术后免疫治疗载体的可行性。方法 以半乳糖(Gal)为原料,制得2-亚氨基-2-甲氧乙基-1-硫代-β-D-半乳糖苷(IME),与抗小鼠CD3单克隆抗体(Ant-CD3 McAb)共价偶联制得Gal-Ant-CD3 McAb,再用131I或125I标记Gal-Ant-CD3 McAb和Ant-CD3 McAb,通过小鼠体内分布实验和家兔显像实验,对比研究两者肝化差异;将Gal-Ant-CD3 McAb与肿瘤浸润淋巴细胞(TIL)联接制得Gal-Ant-CD3 McAb-TIL,研究其体外趋肝性和杀伤自体肿瘤细胞作用。结果 Gal-Ant-CD3 McAb具有明显的趋肝性,每克肝组织最大摄取率为注入量的(59.0±2.1)%,是Ant-CD3 McAb的2倍以上;Gal-Ant-CD3 McAb-TIL在体外有良好的趋肝性,且杀伤自体肿瘤细胞的作

  13. Liver cirrhosis and fatty liver

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    930537 Preliminary report on portal hyperten-tion in liver cirrhosis treated by transjugular in-trahepatic portosystemic stent shunt(analysis of8 cases).XU Ke(徐克),et al.Dept Radiol,lst Hosp,China Med Univ,Shenyang,110001.Chin J Radiol 1993;25(5):294—297.Transjugular intrahepatic portosystemic stentshunt(TIPPS)was performed in 8 cases of livercirrhosis with portal hypertention.Moderate orsevere hemorrhage from gastroesophageal variceshad happened in all patients for 2~5 times beforTIPSS.The average pressure of portal veindropped from 3.80±0.50kPa to 2.58±0.26kPa.The diameter of the shunt established be-tween portal and hepatic veins was 10~12mm.Gastrointestinal bleeding and ascites were effec-

  14. Alcohol-Related Liver Disease

    Science.gov (United States)

    ... to run events. Please support us. Donate | Volunteer Alcohol-Related Liver Disease Discussion on Inspire Support Community ... Liver > Liver Disease Information > Alcohol-Related Liver Disease Alcohol-Related Liver Disease Explore this section to learn ...

  15. Liver Disease and Pulmonary Hypertension

    Science.gov (United States)

    Liver Disease Pulmonary & PH Hypertension Did you know that if you have liver disease, you are at risk for pulmonary ... to the liver without cirrhosis. How does liver disease relate to pulmonary hypertension? Liver disease can cause what is known ...

  16. Alcoholic Liver Disease and Liver Transplantation.

    Science.gov (United States)

    Gallegos-Orozco, Juan F; Charlton, Michael R

    2016-08-01

    Excessive alcohol use is a common health care problem worldwide and is associated with significant morbidity and mortality. Alcoholic liver disease represents the second most frequent indication for liver transplantation in North America and Europe. The pretransplant evaluation of patients with alcoholic liver disease should aim at identifying those at high risk for posttransplant relapse of alcohol use disorder, as return to excessive drinking can be deleterious to graft and patient survival. Carefully selected patients with alcoholic liver disease, including those with severe alcoholic hepatitis, will have similar short-term and long-term outcomes when compared with other indications for liver transplantation. PMID:27373614

  17. Flow cytometric analysis of mitotic cycle perturbation by chemical carcinogens in cultured epithelial cells. [Effects of benzo(a)pyrene-diol-epoxide on mitotic cycle of cultural mouse liver epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Pearlman, A.L.

    1978-08-01

    A system for kinetic analysis of mitotic cycle perturbation by various agents was developed and applied to the study of the mitotic cycle effects and dependency of the chemical carcinogen benzo(a)pyrene-diolepoxide, DE, upon a mouse lever epithelial cell line, NMuLi. The study suggests that the targets of DE action are not confined to DNA alone but may include cytoplasmic structures as well. DE was found to affect cells located in virtually every phase of the mitotic cycle, with cells that were actively synthesizing DNA showing the strongest response. However, the resulting perturbations were not confined to S-phase alone. DE slowed traversal through S-phase by about 40% regardless of the cycle phase of the cells exposed to it, and slowed traversal through G/sub 2/M by about 50%. When added to G/sub 1/ cells, DE delayed recruitment of apparently quiescent (G/sub 0/) cells by 2 hours, and reduced the synchrony of the cohort of cells recruited into active proliferation. The kinetic analysis system consists of four elements: tissue culture methods for propagating and harvesting cell populations; an elutriation centrifugation system for bulk synchronization of cells in various phases of the mitotic cycle; a flow cytometer (FCM), coupled with appropriate staining protocols, to enable rapid analysis of the DNA distribution of any given cell population; and data reduction and analysis methods for extracting information from the DNA histograms produced by the FCM. The elements of the system are discussed. A mathematical analysis of DNA histograms obtained by FCM is presented. The analysis leads to the detailed implementation of a new modeling approach. The new modeling approach is applied to the estimation of cell cycle kinetic parameters from time series of DNA histograms, and methods for the reduction and interpretation of such series are suggested.

  18. 含人AGM区、胎肝及骨髓基质细胞培养体系程序化诱导小鼠胚胎干细胞向造血干细胞的分化%Effects of sequential inductive systems with feeder cells from human aorta-gonad-mesonephros region, fetal liver and bone marrow on the differentiation of mouse embryonic stem cells into hematopoietic stem cells

    Institute of Scientific and Technical Information of China (English)

    蔡耘; 张绪超; 陈惠芹; 黄绍良

    2011-01-01

    背景:前期已分别制备人主动脉-性腺-中肾区基质细胞系及胎肝基质细胞系,发现前者可促进小鼠胚胎干细胞定向分化为造血干细胞.目的:模拟胚胎发育过程中永久造血发育的时空顺序,探讨人主动脉-性腺-中肾(AGM)区、胎肝(FL)及骨髓(BM)基质细胞对小鼠胚胎干细胞体外诱导分化为造血干细胞的支持作用,以寻求更佳的诱导条件.方法:将小鼠E14 胚胎干细胞诱导为拟胚体(EB),并利用Transwell 非接触共培养体系依次在人主动脉-性腺-中肾区、胎肝及骨髓基质细胞饲养层上进一步诱导分化,按不同诱导阶段分为拟胚体对照、EB/AGM、EB/AGM+FL 和EB/AGM+FL+BM共4 组.共培养6 d 后分别收获各组拟胚体来源细胞,以流式细胞仪检测Sca-1+c-Kit+细胞含量,进行各系造血细胞集落形成单位分析并观察细胞形态.结果与结论:①EB/AGM+FL 组和EB/AGM+FL+BM 组收获细胞涂片均发现原始造血细胞.②拟胚体来源细胞经AGM 区基质细胞诱导后Sca-1+c-Kit+ 细胞明显升高(P < 0.05).③拟胚体对照组造血细胞集落形成单位低于其他各组(P < 0.05),而EB/AGM+FL、EB/AGM+FL+BM组造血细胞集落形成单位计数亦较EB/AGM组明显增高.提示AGM+FL 和AGM+FL+骨髓基质细胞微环境对原始造血干细胞的扩增效应均明显高于单纯主动脉-性腺-中肾饲养层.%BACKGROUND: Previous studies have prepared human aorta-gonad-mesonephros (AGM) region stromal cell line and fetal liver stromal cell line, and found that AGM can promote directional differentiation of mouse embryonic stem cells (ESCs) into hemopoietic stem cells (HSCs).OBJECTIVE: To simulate the spatial and temporal hematopoietic microenvironment changes in embryonic development,investigate the supportive effects of sequential inductive systems with feeder cells from human AGM region and fetal liver and bone marrow on the differentiation of mouse ESCs into HSCs, and design more effective

  19. Cod Liver Oil

    Science.gov (United States)

    Cod liver oil can be obtained from eating fresh cod liver or by taking supplements. Cod liver oil is used for high cholesterol, high triglycerides, ... ear infections (otitis media). Some people put cod liver oil on their skin to speed wound healing. ...

  20. The Influence of Liver Resection on Intrahepatic Tumor Growth.

    Science.gov (United States)

    Brandt, Hannes H; Nißler, Valérie; Croner, Roland S

    2016-01-01

    The high incidence of tumor recurrence after resection of metastatic liver lesions remains an unsolved problem. Small tumor cell deposits, which are not detectable by routine clinical imaging, may be stimulated by hepatic regeneration factors after liver resection. It is not entirely clear, however, which factors are crucial for tumor recurrence. The presented mouse model may be useful to explore the mechanisms that play a role in the development of recurrent malignant lesions after liver resection. The model combines the easy-to-perform and reproducible techniques of defined amounts of liver tissue removal and tumor induction (by injection) in mice. The animals were treated with either a single laparotomy, a 30% liver resection, or a 70% liver resection. All animals subsequently received a tumor cell injection into the remaining liver tissue. After two weeks of observation, the livers and tumors were evaluated for size and weight and examined by immunohistochemistry. After a 70% liver resection, the tumor volume and weight were significantly increased compared to a laparotomy alone (p number of variables like the length of postoperative observation, the cell line used for injection or the timing of injection and liver resection offer multiple angles when exploring a specific question in the context of post-hepatectomy metastases. The limitations of this procedure are the authorization to perform the procedure on animals, access to an appropriate animal testing facility and acquisition of certain equipment. PMID:27166736

  1. Tolerance Induction in Liver

    OpenAIRE

    M.H Karimi; Geramizadeh, B; Malek-Hosseini, S. A.

    2015-01-01

    Liver is an exclusive anatomical and immunological organ that displays a considerable tolerance effect. Liver allograft acceptance is shown to occur spontaneously within different species. Although in human transplant patients tolerance is rarely seen, the severity level and cellular mechanisms of transplant rejection vary. Non-paranchymal liver cells, including Kupffer cells, liver sinusoidal endothelial cells, hepatic stellate cells, and resident dendritic cells may participate in liver tol...

  2. Liver resection in liver transplant recipients

    Institute of Scientific and Technical Information of China (English)

    Gabriele Marangoni; Walid Faraj; Harsheet Sethi; Mohamed Rela; Paolo Muiesan; Nigel Heaton

    2008-01-01

    BACKGROUND: Liver resection after liver transplantation is a relatively uncommon procedure. Indications for liver resection include hepatic artery thrombosis (HAT), non-anastomotic biliary stricture (ischemic biliary lesions), liver abscess, liver trauma and recurrence of hepatocellular carcinoma (HCC). Organ shortage and lower survival after re-transplantation have encouraged us to make attempts at graft salvage. METHODS: Eleven resections at a mean of 59 months after liver transplantation were made over 18 years. Indications for liver resection included HCC recurrence in 4 patients, ischemic cholangiopathy, segmental HAT, sepsis and infected hematoma in 2 each, and ischemic segmentⅣafter split liver transplantation in 1. RESULTS: There was no perioperative mortality. Morbidity included one re-laparotomy for small bowel perforation, one bile leak treated conservatively, one right subphrenic collection, one wound infection and 5 episodes of Gram-negative sepsis. One patient underwent re-transplantation 4 months after resection for chronic rejection. There were 3 deaths, two from HCC recurrence and one from post-transplant lymphoproliferative disorder. The overall mean follow-up after resection was 48 months. CONCLUSIONS: Liver resection in liver transplant recipients is safe, and has good outcome in selected patients and avoids re-transplantation in the majority of patients. Recipients with recurrent HCC in graft may beneift from resection, but cure is uncommon.

  3. Long-term culture of genome-stable bipotent stem cells from adult human liver

    NARCIS (Netherlands)

    Huch, Meritxell; Gehart, Helmuth; van Boxtel, Ruben; Hamer, Karien; Blokzijl, Francis; Verstegen, Monique M A; Ellis, Ewa; van Wenum, Martien; Fuchs, Sabine A; de Ligt, Joep; van de Wetering, Marc; Sasaki, Nobuo; Boers, Susanne J; Kemperman, Hans; de Jonge, Jeroen; Ijzermans, Jan N M; Nieuwenhuis, Edward E S; Hoekstra, Ruurdtje; Strom, Stephen; Vries, Robert R G; van der Laan, Luc J W; Cuppen, Edwin; Clevers, Hans

    2015-01-01

    Despite the enormous replication potential of the human liver, there are currently no culture systems available that sustain hepatocyte replication and/or function in vitro. We have shown previously that single mouse Lgr5+ liver stem cells can be expanded as epithelial organoids in vitro and can be

  4. Gaze beats mouse

    DEFF Research Database (Denmark)

    Mateo, Julio C.; San Agustin, Javier; Hansen, John Paulin

    2008-01-01

    pointing was faster than mouse pointing, while maintaining a similar error rate. EMG and mouse-button selection had a comparable performance. From analyses of completion time, throughput and error rates, we concluded that the combination of gaze and facial EMG holds potential for outperforming the mouse....

  5. 浊点萃取-石墨炉原子吸收光谱法同时测定生物样品中痕量铅和镉%Simultaneous determination of trace amount of lead and cadmium in mouse liver after cloud point extraction by GFAAS

    Institute of Scientific and Technical Information of China (English)

    王梅; 杨冰仪; 刘秋芳; 邹志辉

    2013-01-01

    提出了石墨炉原子吸收光谱法同时测定小鼠肝中痕量Pb和Cd的方法.以8-羟基喹啉为络合剂,在pH9.0时,用Triton X-100浊点萃取富集样品中的Pb和Cd.用NH4 H2PO4作为基体改进剂测定Pb和Cd,Pb和Cd的检出限(3s/k)分别为0.103 μg/L和0.0136 μg/L,相对标准差(n=6)分别为1.4%,0.73%.对于10 mL样品溶液的富集倍数分别为7.1,9.3.利用该法分别测定了小鼠肝中的Pb和Cd的含量,加标回收率分别为96.4%~97.1%和101.3%~103.2%.%A new method for simultaneous determination of trace amounts of lead and cadmium in mouse liver by GFAAS was proposed in this paper. Trace of Pb2 + and Cd2 + was extracted from the sample solution in the form of coordination complex with dithizone at pH 9. 0 by cloud point extraction with Triton X-100 as a non-ionic surfactant. NH4H2PO4 was used as a matrix modifier. Detection limits for Pb and Cd were 0. 103 and 0.0136 μg/L, respectively. The relative standard deviations (RSD) for six replicate determinations of Pb and Cd were 1. 4% and 0. 73% , with enhancement factors of 7. 1 (Pb) and 9. 3 (Cd) in 10 mL sample solution. The proposed method was successfully applied to the determination of lead and cadmium in the mouse live with the recoveries of 96. 4% -97. 1% , and 101. 3% - 103. 2% , respectively.

  6. 核转录因子 NF-E2相关因子基因缺失对高脂饲粮诱导非酒精性脂肪肝模型小鼠肝脏的影响%Effects of Nuclear Factor Erythroid 2-Like 2 Deficiency on the Liver of High Fat Diet Induced Nonalcoholic Fatty Liver Disease Mouse Model

    Institute of Scientific and Technical Information of China (English)

    崔一喆; 王秋菊; 张秀英; 王春花; 李广亮; 齐悦

    2015-01-01

    本试验旨在研究敲除核转录因子NF⁃E2相关因子( Nrf2)对高脂饲粮诱导小鼠肝脏氧化应激的影响。选择雄性野生型( WT)和Nrf2基因敲除( KO) ICR小鼠各20只,分别随机分成2组,每组各10只。1组WT和1组KO小鼠饲喂普通饲粮,为对照组,另2组饲喂高脂饲粮,为高脂组。试验期8周。结果显示,1)与对照组相比,WT和KO高脂组小鼠血清总胆固醇( TC)、低密度脂蛋白( LDL)含量和谷丙转氨酶( ALT)、谷草转氨酶( AST)活性极显著升高( P<0.01),碱性磷酸酶(ALP)活性显著或极显著升高(P<0.05或P<0.01),总蛋白(TP)含量极显著降低( P<0.01),但甘油三酯( TG)和高密度脂蛋白( HDL)含量变化不显著( P>0.05)。2) WT高脂组小鼠肝脏表现出小泡性脂肪变性, KO高脂组小鼠肝脏表现出严重的大泡性脂肪变性和温和的小泡性脂肪变性。3)与对照组相比,WT和KO高脂组小鼠肝脏中谷胱甘肽( GSH)含量和超氧化物歧化酶( SOD)活性显著或极显著降低( P<0.05或P<0.01),而过氧化物酶( POD)活性和丙二醛( MDA)含量显著或极显著升高( P<0.05或P<0.01)。与WT小鼠相比,KO高脂组小鼠肝脏中MDA含量增加49%,但GSH含量及SOD、POD活性变化不显著( P>0.05)。与WT对照组小鼠相比,KO高脂组小鼠肝脏中SOD、POD活性和MDA含量显著或极显著升高( P<0.05或P<0.01),而GSH含量极显著降低( P<0.01)。由此可见,高脂诱导Nrf2基因缺失小鼠发生较严重的脂肪变性,同时高脂饲粮诱导的非酒精性脂肪肝模型小鼠肝脏发生氧化应激。%This experiment was conducted to study the effect of nuclear factor erythroid 2⁃like 2 ( Nrf2) disrup⁃tion on the development of oxidative stress of the mouse liver induced by high fat diet. Twenty male wild

  7. Dysregulation of bile acid homeostasis in parenteral nutrition mouse model.

    Science.gov (United States)

    Zhan, Le; Yang, Ill; Kong, Bo; Shen, Jianliang; Gorczyca, Ludwik; Memon, Naureen; Buckley, Brian T; Guo, Grace L

    2016-01-15

    Long-term parenteral nutrition (PN) administration can lead to PN-associated liver diseases (PNALD). Although multiple risk factors have been identified for PNALD, to date, the roles of bile acids (BAs) and the pathways involved in BA homeostasis in the development and progression of PNALD are still unclear. We have established a mouse PN model with IV infusion of PN solution containing soybean oil-based lipid emulsion (SOLE). Our results showed that PN altered the expression of genes involved in a variety of liver functions at the mRNA levels. PN increased liver gene expression of Cyp7a1 and markedly decreased that of Cyp8b1, Cyp7b1, Bsep, and Shp. CYP7A1 and CYP8B1 are important for synthesizing the total amount of BAs and regulating the hydrophobicity of BAs, respectively. Consistently, both the levels and the percentages of primary BAs as well as total non-12α-OH BAs increased significantly in the serum of PN mice compared with saline controls, whereas liver BA profiles were largely similar. The expression of several key liver-X receptor-α (LXRα) target genes involved in lipid synthesis was also increased in PN mouse livers. Retinoid acid-related orphan receptor-α (RORα) has been shown to induce the expression of Cyp8b1 and Cyp7b1, as well as to suppress LXRα function. Western blot showed significantly reduced nuclear migration of RORα protein in PN mouse livers. This study shows that continuous PN infusion with SOLE in mice leads to dysregulation of BA homeostasis. Alterations of liver RORα signaling in PN mice may be one of the mechanisms implicated in the pathogenesis of PNALD. PMID:26564717

  8. Activated farnesoid X receptor attenuates apoptosis and liver injury in autoimmune hepatitis

    OpenAIRE

    LIAN, FAN; Wang, Yu; Xiao, Youjun; WU, XIWEN; Xu, Hanshi; Liang, Liuqin; Yang, Xiuyan

    2015-01-01

    Autoimmune hepatitis (AIH) is a chronic inflammatory liver disease associated with interface hepatitis, the presence of autoantibodies, regulatory T-cell dysfunction and raised plasma liver enzyme levels. The present study assessed the hepatoprotective and antiapoptotic role of farnesoid X receptor (FXR) in AIH. A mouse model of AIH was induced by treatment with concanavalin A (ConA). The FXR agonist, chenodeoxycholic acid (CDCA), was administered to mice exhibiting ConA-induced liver injury ...

  9. Chemical and Hormonal Effects on STAT5b-Dependent Sexual Dimorphism of the Liver Transcriptome.

    Directory of Open Access Journals (Sweden)

    Keiyu Oshida

    Full Text Available The growth hormone (GH-activated transcription factor signal transducer and activator of transcription 5b (STAT5b is a key regulator of sexually dimorphic gene expression in the liver. Suppression of hepatic STAT5b signaling is associated with lipid metabolic dysfunction leading to steatosis and liver cancer. In the companion publication, a STAT5b biomarker gene set was identified and used in a rank-based test to predict both increases and decreases in liver STAT5b activation status/function with high (≥ 97% accuracy. Here, this computational approach was used to identify chemicals and hormones that activate (masculinize or suppress (feminize STAT5b function in a large, annotated mouse liver and primary hepatocyte gene expression compendium. Exposure to dihydrotestosterone and thyroid hormone caused liver masculinization, whereas glucocorticoids, fibroblast growth factor 15, and angiotensin II caused liver feminization. In mouse models of diabetes and obesity, liver feminization was consistently observed and was at least partially reversed by leptin or resveratrol exposure. Chemical-induced feminization of male mouse liver gene expression profiles was a relatively frequent phenomenon: of 156 gene expression biosets from chemically-treated male mice, 29% showed feminization of liver STAT5b function, while <1% showed masculinization. Most (93% of the biosets that exhibited feminization of male liver were also associated with activation of one or more xenobiotic-responsive receptors, most commonly constitutive activated receptor (CAR or peroxisome proliferator-activated receptor alpha (PPARα. Feminization was consistently associated with increased expression of peroxisome proliferator-activated receptor gamma (Pparg but not other lipogenic transcription factors linked to steatosis. GH-activated STAT5b signaling in mouse liver is thus commonly altered by diverse chemicals, and provides a linkage between chemical exposure and dysregulated gene

  10. Biomarkers for liver fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Jon M.; Burnum-Johnson, Kristin E.; Baker, Erin M.; Smith, Richard D.; Gritsenko, Marina A.; Orton, Daniel

    2015-09-15

    Methods and systems for diagnosing or prognosing liver fibrosis in a subject are provided. In some examples, such methods and systems can include detecting liver fibrosis-related molecules in a sample obtained from the subject, comparing expression of the molecules in the sample to controls representing expression values expected in a subject who does not have liver fibrosis or who has non-progressing fibrosis, and diagnosing or prognosing liver fibrosis in the subject when differential expression of the molecules between the sample and the controls is detected. Kits for the diagnosis or prognosis of liver fibrosis in a subject are also provided which include reagents for detecting liver fibrosis related molecules.

  11. In vivo liver regeneration potential of human induced pluripotent stem cells from diverse origins.

    Science.gov (United States)

    Liu, Hua; Kim, Yonghak; Sharkis, Saul; Marchionni, Luigi; Jang, Yoon-Young

    2011-05-11

    Human induced pluripotent stem cells (iPSCs) are a potential source of hepatocytes for liver transplantation to treat end-stage liver disease. In vitro differentiation of human iPSCs into hepatic cells has been achieved using a multistage differentiation protocol, but whether these cells are functional and capable of engrafting and regenerating diseased liver tissue is not clear. We show that human iPSC-derived hepatic cells at various differentiation stages can engraft the liver in a mouse transplantation model. Using the same differentiation and transplantation protocols, we also assessed the ability of human iPSCs derived from each of the three developmental germ layer tissues (that is, ectoderm, mesoderm, and endoderm) to regenerate mouse liver. These iPSC lines, with similar but distinct global DNA methylation patterns, differentiated into multistage hepatic cells with an efficiency similar to that of human embryonic stem cells. Human hepatic cells at various differentiation stages derived from iPSC lines of different origins successfully repopulated the liver tissue of mice with liver cirrhosis. They also secreted human-specific liver proteins into mouse blood at concentrations comparable to that of proteins secreted by human primary hepatocytes. Our results demonstrate the engraftment and liver regenerative capabilities of human iPSC-derived multistage hepatic cells in vivo and suggest that human iPSCs of distinct origins and regardless of their parental epigenetic memory can efficiently differentiate along the hepatic lineage.

  12. Potential role of Hedgehog pathway in liver response to radiation.

    Directory of Open Access Journals (Sweden)

    Sihyung Wang

    Full Text Available Radiation-induced fibrosis constitutes a major problem that is commonly observed in the patients undergoing radiotherapy; therefore, understanding its pathophysiological mechanism is important. The Hedgehog (Hh pathway induces the proliferation of progenitors and myofibroblastic hepatic stellate cells (MF-HSCs and promotes the epithelial-to-mesenchymal transition (EMT, thereby regulating the repair response in the damaged liver. We examined the response of normal liver to radiation injury. Male mice were sacrificed at 6 weeks and 10 weeks after exposure to a single dose of 6 Gy and the livers were collected for biochemical analysis. Irradiated (IR and control mice were compared for progenitors, fibrosis, Hh pathway, and EMT at 6 and 10 weeks post irradiation. Fatty hepatocytes were observed and the expressions of Hh ligand, Indian Hh. were greater in the livers at 6 weeks, whereas expression of another Hh ligand, Sonic Hh, increased at 10 weeks post irradiation. Both Smoothened, Hh receptor, and Gli2, Hh-target gene, were up-regulated at 6 and 10 weeks after irradiation. Accumulation of progenitors (CD44, Pan-cytokeratin, and Sox9 was significant in IR livers at 6 and 10 weeks. RNA analysis showed enhanced expression of the EMT-stimulating factor, tgf-β, in the IR livers at 6 weeks and the upregulation of mesenchymal markers (α-SMA, collagen, N-cadherin, and s100a4, but down-regulation of EMT inhibitors, in IR mouse livers at 6 and 10 weeks. Increased fibrosis was observed in IR mouse livers at 10 weeks. Treatment of mice with Hh inhibitor, GDC-0449, suppressed Hh activity and block the proliferation of hepatic progenitor and expression of EMT-stimulating genes in irradiated mice. Therefore, those results demonstrated that the Hh pathway increased in response to liver injury by radiation and promoted a compensatory proliferation of MF-HSCs and progenitors, thereby regulating liver remodeling.

  13. Bioartificial liver: current status.

    Science.gov (United States)

    Pless, G; Sauer, I M

    2005-11-01

    Liver failure remains a life-threatening syndrome. With the growing disparity between the number of suitable donor organs and the number of patients awaiting transplantation, efforts have been made to optimize the allocation of organs, to find alternatives to cadaveric liver transplantation, and to develop extracorporeal methods to support or replace the function of the failing organ. An extracorporeal liver support system has to provide the main functions of the liver: detoxification, synthesis, and regulation. The understanding that the critical issue of the clinical syndrome in liver failure is the accumulation of toxins not cleared by the failing liver led to the development of artificial filtration and adsorption devices (artificial liver support). Based on this hypothesis, the removal of lipophilic, albumin-bound substances, such as bilirubin, bile acids, metabolites of aromatic amino acids, medium-chain fatty acids, and cytokines, should be beneficial to the clinical course of a patient in liver failure. Artificial detoxification devices currently under clinical evaluation include the Molecular Adsorbent Recirculating System (MARS), Single-Pass Albumin Dialysis (SPAD), and the Prometheus system. The complex tasks of regulation and synthesis remain to be addressed by the use of liver cells (bioartificial liver support). The Extracorporeal Liver Assist Device (ELAD), HepatAssist, Modular Extracorporeal Liver Support system (MELS), and the Amsterdam Medical Center Bioartificial Liver (AMC-BAL) are bioartificial systems. This article gives a brief overview on these artificial and bioartificial devices and discusses remaining obstacles.

  14. Liver disease in pregnancy

    Institute of Scientific and Technical Information of China (English)

    Noel M Lee; Carla W Brady

    2009-01-01

    Liver diseases in pregnancy may be categorized into liver disorders that occur only in the setting of pregnancy and liver diseases that occur coincidentally with pregnancy. Hyperemesis gravidarum, preeclampsia/eclampsia, syndrome of hemolysis, elevated liver tests and low platelets (HELLP), acute fatty liver of pregnancy, and intrahepatic cholestasis of pregnancy are pregnancy-specific disorders that may cause elevations in liver tests and hepatic dysfunction. Chronic liver diseases, including cholestatic liver disease, autoimmune hepatitis, Wilson disease, and viral hepatitis may also be seen in pregnancy. Management of liver disease in pregnancy requires collaboration between obstetricians and gastroenterologists/hepatologists. Treatment of pregnancy-specific liver disorders usually involves delivery of the fetus and supportive care, whereas management of chronic liver disease in pregnancy is directed toward optimizing control of the liver disorder. Cirrhosis in the setting of pregnancy is less commonly observed but offers unique challenges for patients and practitioners. This article reviews the epidemiology, pathophysiology, diagnosis, and management of liver diseases seen in pregnancy.

  15. Protective effect of crocin on liver toxicity induced by morphine.

    Science.gov (United States)

    Salahshoor, Mohammad Reza; Khashiadeh, Mojtaba; Roshankhah, Shiva; Kakabaraei, Seyran; Jalili, Cyrus

    2016-01-01

    Crocin, a bioactive molecule of saffron can be purely isolated from the saffron extract. It has different pharmacological effects such as antioxidant and anticancer activities. Morphine is an opioid analgesic drug. It is mainly metabolized in liver and causes devastating effects. It can increase the generation of free radicals. This study was designed to evaluate the protective role of crocin against morphine-induced toxicity in the mouse liver. In this study, various doses of crocin (12.5, 25 and 50 mg/kg) and crocin plus morphine were administered interaperitoneally once daily to 48 male mice for 20 consecutive days. These mice were randomly assigned to 8 groups of 6 each. The liver weight and histology, aspartate amino transferase, alanine aminotransferase, alkaline phosphatase (ALP) and serum nitric oxide levels were studied. The results indicated that morphine administration significantly decreased liver weight and increased the mean diameter of hepatocyte, central hepatic vein diameters, liver enzyme levels, and blood serum nitric oxide level compared to saline group (P<0.05). However, crocin administration significantly boosted liver weight and decreased the mean diameter of hepatocyte, central hepatic vein, liver enzymes and nitric oxide levels in all groups compared to the group received morphine alone (P<0.05). It seems that crocin administration could protect the liver damage induced by morphine. The antioxidant effect of crocin may be a major reason for its positive impact on liver parameters. PMID:27168751

  16. Pyrroloquinoline-quinone suppresses liver fibrogenesis in mice.

    Directory of Open Access Journals (Sweden)

    Dongwei Jia

    Full Text Available Liver fibrosis represents the consequences of a sustained wound healing response to chronic liver injuries, and its progression toward cirrhosis is the major cause of liver-related morbidity and mortality worldwide. However, anti-fibrotic treatment remains an unconquered area for drug development. Accumulating evidence indicate that oxidative stress plays a critical role in liver fibrogenesis. In this study, we found that PQQ, a natural anti-oxidant present in a wide variety of human foods, exerted potent anti-fibrotic and ROS-scavenging activity in Balb/C mouse models of liver fibrosis. The antioxidant activity of PQQ was involved in the modulation of multiple steps during liver fibrogenesis, including chronic liver injury, hepatic inflammation, as well as activation of hepatic stellate cells and production of extracellular matrix. PQQ also suppressed the up-regulation of RACK1 in activated HSCs in vivo and in vitro. Our data suggest that PQQ suppresses oxidative stress and liver fibrogenesis in mice, and provide rationale for the clinical application of PQQ in the prevention and treatment of liver fibrosis.

  17. 葛根散等3首解酒方对急性酒精性肝损伤小鼠肝细胞凋亡的影响%Effect of three anti-inebriation recipes on hepatocyte apoptosis in acute alcoholic liver injury mouse

    Institute of Scientific and Technical Information of China (English)

    俞琦; 王平; 王文佳; 田维毅; 杨柱

    2011-01-01

    Objective: To compare the interventional effects of three anti-inebriation recipes on apoptosis in acute alcoholic liver injury mouse, and study the mechanism of three recipes on alcoholism. Methods: Mice were randomly divided into normal control group, model control group, each drug group in high dosage, middle dosage, and low dosage. After the models of acute alcoholic liver injury mice were established, every drug group was treated with Chinese herb decoction by intragastric gavage, and control groups were administered with distilled water instead of drugs. Then detect the pathological changes, hepatocyte apoptosis index, and the expression of Bcl-2 and Bax in hepatic tissue. Results: The liver steatosis score, hepatocyte apoptosis index, and the expression of Bax in model control group mice were significantly elevated and the expression of Bcl-2 was significantly declined compared with those in normal control group (P<0.01). In a certain dose, Pueraria Powder and Gehua Jiecheng Decoction could significantly reduce the liver steatosis score, hepatocyte apoptosis index, and the expression of Bax and elevate the expression of Bcl-2 compared with model control group (P<0.01). Gypsum Soup could significantly reduce the liver steatosis score (P<0.01), but could not affect hepatocyte apoptosis index and the expression of Bcl-2 and Bax.There were conspicuous differences compared with Pueraria Powder (P<0.05). Conclusion: Pueraria Powder and Gehua Jiecheng Decoction could reduce liver cell degeneration and necrosis and hepatocyte apoptosis. It may be relevant to their anti-inebriation mechanisms.%目的:比较葛根散等3首方剂对急性酒精性肝损伤小鼠肝细胞凋亡的干预效果,探讨3首方剂防治酒伤的部分作用机制.方法:将小鼠随机分为正常对照组、模型对照组、各给药大、中、小剂量组,制备急性酒精性肝损伤模型,给药组以中药水煎剂灌胃,对照组代以蒸馏水,检测肝组织病理学改变

  18. Tests for Liver Cancer

    Science.gov (United States)

    ... has come back after treatment Alpha-fetoprotein blood (AFP) test AFP is normally present at high levels in the ... liver disease, liver cancer, or other cancers. If AFP levels are very high in someone with a ...

  19. Alcoholic liver disease

    Science.gov (United States)

    Liver disease due to alcohol; Cirrhosis or hepatitis - alcoholic; Laennec's cirrhosis ... Alcoholic liver disease occurs after years of heavy drinking. Over time, scarring and cirrhosis can occur. Cirrhosis is the ...

  20. Antioxidants in liver health

    Institute of Scientific and Technical Information of China (English)

    Sael; Casas-Grajales; Pablo; Muriel

    2015-01-01

    Liver diseases are a worldwide medical problem because the liver is the principal detoxifying organ and maintains metabolic homeostasis. The liver metabolizes various compounds that produce free radicals(FR).However, antioxidants scavenge FR and maintain the oxidative/antioxidative balance in the liver. When the liver oxidative/antioxidative balance is disrupted, the state is termed oxidative stress. Oxidative stress leadsto deleterious processes in the liver and produces liver diseases. Therefore, restoring antioxidants is essential to maintain homeostasis. One method of restoring antioxidants is to consume natural compounds with antioxidant capacity. The objective of this review is to provide information pertaining to various antioxidants found in food that have demonstrated utility in improving liver diseases.

  1. Diet and Your Liver

    Science.gov (United States)

    ... the scarring and hardening of the liver. Diet Recommendations: • Limit salt and foods that contain a lot of salt • Talk to your doctor about how much protein to have in your diet Fatty Liver Disease ...

  2. C/EBP maintains chromatin accessibility in liver and facilitates glucocorticoid receptor recruitment to steroid response elements

    DEFF Research Database (Denmark)

    Grøntved, Lars; John, Sam; Baek, Songjoon;

    2013-01-01

    Mechanisms regulating transcription factor interaction with chromatin in intact mammalian tissues are poorly understood. Exploiting an adrenalectomized mouse model with depleted endogenous glucocorticoids, we monitor changes of the chromatin landscape in intact liver tissue following glucocortico...

  3. Alcohol and liver, 2010

    Institute of Scientific and Technical Information of China (English)

    Natalia; A; Osna

    2010-01-01

    Liver is known as an organ that is primarily affected by alcohol. Alcoholic liver disease (ALD) is the cause of an increased morbidity and mortality worldwide. Progression of ALD is driven by "second hits". These second hits include the complex of nutritional, pharmacological, genetic and viral factors, which aggravate liver pathology. However, in addition to liver failure, ethanol causes damage to other organs and systems. These extrahepatic manifestations are regulated via the similar hepatitis mechanisms...

  4. Percutaneous liver biopsy.

    Science.gov (United States)

    Rustagi, Tarun; Newton, Eric; Kar, Premashish

    2010-01-01

    Percutaneous liver biopsy has been performed for more than 120 years, and remains an important diagnostic procedure for the management of hepatobiliary disorders. Modern biochemical, immunologic, and radiographic techniques have facilitated the diagnosis and management of liver diseases but have not made liver biopsy obsolete. This comprehensive review article will discuss the history of development of percutaneous liver biopsy, its indications, contraindications, complications and the various aspects of the biopsy procedure in detail.

  5. Liver angioscintigraphy: clinical applications.

    Science.gov (United States)

    Dragoteanu, Mircea; Cotul, Sabin O; Pîgleşan, Cecilia; Tamaş, Stefan

    2004-03-01

    Liver angioscintigraphy (LAS) is a radio-isotope method for the investigation of liver perfusion and its alteration in various hepatic diseases. It measures the arterial and portal venous fractions of total liver blood flow. The percentage of liver blood flow supplied by hepatic artery is estimated mathematically by the hepatic perfusion index (HPI), normally between 25 % and 40 %. The decrease of portal blood flow in liver cirrhosis is compensated ("buffer" mechanisms) by increased arterial supply, with higher HPI value. For a patient with chronic liver disease, HPI over 50% suggests arterialization of hepatic perfusion, guiding the diagnose to liver cirrhosis. Splenic curve is completing the diagnostic information of the hepatic curve. Corroborated with per rectal scintigraphy and liver SPECT, LAS offers a good hemodynamic staging of chronic inflammatory liver diseases. Malignant tumors (primitive or metastases) increase the arterial supply of the liver and decrease the portal flow, HPI being over 50% (currently 65 % - 90 %). Benign tumors do not change portal/arterial liver blood flow ratio. SPECT or non-scintigraphic morphological investigations increase the diagnostic value of LAS for primitive liver tumors. Liver cancer occurring on cirrhosis is a limitative factor for LAS. Hepatic metastases increase the arterial perfusion (and HPI value) very quickly, before their size allows morphologic imaging diagnosis. LAS is therefore an early method to diagnose liver metastases being especially used in colorectal cancer. Other clinical applications of LAS are: follow up of liver toxicity of drugs, evaluation of portal vein permeability, post surgery follow up of the liver tumor patients. PMID:15054528

  6. Iron and Liver Diseases

    OpenAIRE

    Fargion, Silvia; Mattioli, Michela; Fracanzani, Anna Ludovica; Fiorelli, Gemino

    2000-01-01

    A mild to moderate iron excess is found in patients with liver diseases apparently unrelated to genetic hemochromatosis. Iron appears to affect the natural history of hepatitis C virus-related chronic liver diseases, alcoholic liver disease and nonalcoholic steatohepatitis by leading to a more severe fibrosis and thus aiding the evolution to cirrhosis.Ahigher frequency of mutations of the HFE gene, the gene responsible for hereditary hemochromatosis, is found in patients with liver diseases a...

  7. MedlinePlus: Liver Transplantation

    Science.gov (United States)

    ... End-Stage Liver Disease (PELD) (United Network for Organ Sharing) - PDF Specifics Living Donor Liver Transplantation (American Society of Transplantation) - PDF Images Liver transplant - slideshow Available in Spanish Statistics and Research U.S. Hospitals with Liver Transplant Centers ( ...

  8. About the Operation: Liver Transplant

    Science.gov (United States)

    ... There are two very different surgical approaches to liver transplantation: the orthotopic and the heterotopic approach, both of ... liver to the intestines. Heterotopic Approach . In heterotopic liver transplantation, the recipient's liver is left in place and ...

  9. Cell Therapies for Liver Diseases

    Science.gov (United States)

    Yu, Yue; Fisher, James E.; Lillegard, Joseph B.; Rodysill, Brian; Amiot, Bruce; Nyberg, Scott L.

    2011-01-01

    Cell therapies, which include bioartificial liver support and hepatocyte transplantation, have emerged as potential treatments for a variety of liver diseases. Acute liver failure (ALF), acute-on-chronic liver failure, and inherited metabolic liver diseases are examples of liver diseases that have been successfully treated with cell therapies at centers around the world. Cell therapies also have the potential for wide application in other liver diseases, including non-inherited liver diseases and liver cancer, and in improving the success of liver transplantation. Here we briefly summarize current concepts of cell therapy for liver diseases. PMID:22140063

  10. Alcohol and liver

    Institute of Scientific and Technical Information of China (English)

    Natalia Osna

    2009-01-01

    @@ Liver is a primary site of ethanol metabolism, which makes this organ susceptible to alcohol-induced damage.Alcoholic liver disease (ALD) has many manifestations and complicated pathogenesis. In this Topic Highlight, we included the key reviews that characterize new findings about the mechanisms of ALD development and might be of strong interest for clinicians and researchers involved in liver alcohol studies.

  11. LIVER AND BILIARY SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    9.1 Liver Function2007108 Blood pressure changes post liver transplantation in 206 recipients. LIU Hai(刘海),et al. 1st People′s Hosp, Shanghai Jiaotong Univ, Shanghai 200080. Chin J Cardiol 2006;34(10):902-904. Objective To study the blood pressure (BP)changes in the liver transplant recipients.

  12. LIVER AND BILIARY SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    11.1 Liver cirrhosis and fatty liver2003230 The relevance of fatty liver and insulin resistance. LIU Jun(刘军), et al. Dept Endocrinol, Zhong-shan Hosp, Fudan Univ, Shanghai 200032, Shanghai Med J 2003; 16(1): 14-17

  13. LIVER AND BILIARY SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    9.1 Liver cirrhosis and fatty liver2003335 The effects of weight reduction in reversing fatty liver changes in overweight and obese patients.ZHU Huijuan(朱惠娟), et al.Dept Endocrinol, PUMC Hosp,CAMS & PUMC, Beijing 100730. Chin J Intern Med 2003:42(2):98-102.Objective:To study the effects of weight loss on non-

  14. Imaging in liver transplantation

    Institute of Scientific and Technical Information of China (English)

    Settimo Caruso; Roberto Miraglia; Luigi Maruzzelli; Salvatore Gruttadauria; Angelo Luca; Bruno Gridelli

    2009-01-01

    The aim of this study was to illustrate the role of noninvasive imaging tools such as ultrasonography, multidetector row computed tomography, and magnetic resonance imaging in the evaluation of pediatric and adult liver recipients and potential liver donors, and in the detection of potential complications arising from liver transplantation.

  15. Acute liver failure and liver transplantation.

    Science.gov (United States)

    Akamatsu, Nobuhisa; Sugawara, Yasuhiko; Kokudo, Norihiro

    2013-08-01

    Acute liver failure (ALF) is defined by the presence of coagulopathy (International Normalized Ratio ≥ 1.5) and hepatic encephalopathy due to severe liver damage in patients without pre-existing liver disease. Although the mortality due to ALF without liver transplantation is over 80%, the survival rates of patients have considerably improved with the advent of liver transplantation, up to 60% to 90% in the last two decades. Recent large studies in Western countries reported 1, 5, and 10-year patient survival rates after liver transplantation for ALF of approximately 80%, 70%, and 65%, respectively. Living donor liver transplantation (LDLT), which has mainly evolved in Asian countries where organ availability from deceased donors is extremely scarce, has also improved the survival rate of ALF patients in these regions. According to recent reports, the overall survival rate of adult ALF patients who underwent LDLT ranges from 60% to 90%. Although there is still controversy regarding the graft type, optimal graft volume, and ethical issues, LDLT has become an established treatment option for ALF in areas where the use of deceased donor organs is severely restricted. PMID:25343108

  16. Mouse cell culture - Methods and protocols

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2010-12-01

    Full Text Available The mouse is, out of any doubt, the experimental animal par excellence for many many colleagues within the scientific community, notably for those working in mammalian biology (in a broad sense, from basic genetic to modeling human diseases, starting at least from 1664 Robert Hooke experiments on air’s propertyn. Not surprising then that mouse cell cultures is a well established field of research itself and that there are several handbooks devoted to this discipline. Here, Andrew Ward and David Tosh provide a necessary update of the protocols currently needed. In fact, nearly half of the book is devoted to stem cells culture protocols, mainly embryonic, from a list of several organs (kidney, lung, oesophagus and intestine, pancreas and liver to mention some........

  17. Liver and gastrointestinal tract

    International Nuclear Information System (INIS)

    Liver is often a site of a variety of diseases. A palpable liver during a routine clinical examination is an important finding and requires further investigations. The availability of non-invasive liver imaging procedures using nuclear, ultrasound, CT (and now MRI) techniques have immensely enhanced diagnostic accuracy in liver diseases. In this Chapter, a detailed description of routinely practised nuclear medicine procedures related to liver is given. Brief reference is also made to other imaging techniques, particularly ultrasonography, only for the purposes of comparison. Most of the information is based on our own clinical experience of past 30 years

  18. Replacing the computer mouse

    OpenAIRE

    Dernoncourt, Franck

    2014-01-01

    In a few months the computer mouse will be half-a-century-old. It is known to have many drawbacks, the main ones being: loss of productivity due to constant switching between keyboard and mouse, and health issues such as RSI. Like the keyboard, it is an unnatural human-computer interface. However the vast majority of computer users still use computer mice nowadays. In this article, we explore computer mouse alternatives. Our research shows that moving the mouse cursor can be done efficiently ...

  19. An encyclopedia of mouse DNA elements (Mouse ENCODE)

    OpenAIRE

    Stamatoyannopoulos, John A; Guig?? Serra, Roderic; Djebali, Sarah; Lagarde, Julien; Adams, Leslie B.

    2012-01-01

    To complement the human Encyclopedia of DNA Elements (ENCODE) project and to enable a broad range of mouse genomics efforts, the Mouse ENCODE Consortium is applying the same experimental pipelines developed for human ENCODE to annotate the mouse genome.

  20. An encyclopedia of mouse DNA elements (Mouse ENCODE).

    Science.gov (United States)

    Stamatoyannopoulos, John A; Snyder, Michael; Hardison, Ross; Ren, Bing; Gingeras, Thomas; Gilbert, David M; Groudine, Mark; Bender, Michael; Kaul, Rajinder; Canfield, Theresa; Giste, Erica; Johnson, Audra; Zhang, Mia; Balasundaram, Gayathri; Byron, Rachel; Roach, Vaughan; Sabo, Peter J; Sandstrom, Richard; Stehling, A Sandra; Thurman, Robert E; Weissman, Sherman M; Cayting, Philip; Hariharan, Manoj; Lian, Jin; Cheng, Yong; Landt, Stephen G; Ma, Zhihai; Wold, Barbara J; Dekker, Job; Crawford, Gregory E; Keller, Cheryl A; Wu, Weisheng; Morrissey, Christopher; Kumar, Swathi A; Mishra, Tejaswini; Jain, Deepti; Byrska-Bishop, Marta; Blankenberg, Daniel; Lajoie, Bryan R; Jain, Gaurav; Sanyal, Amartya; Chen, Kaun-Bei; Denas, Olgert; Taylor, James; Blobel, Gerd A; Weiss, Mitchell J; Pimkin, Max; Deng, Wulan; Marinov, Georgi K; Williams, Brian A; Fisher-Aylor, Katherine I; Desalvo, Gilberto; Kiralusha, Anthony; Trout, Diane; Amrhein, Henry; Mortazavi, Ali; Edsall, Lee; McCleary, David; Kuan, Samantha; Shen, Yin; Yue, Feng; Ye, Zhen; Davis, Carrie A; Zaleski, Chris; Jha, Sonali; Xue, Chenghai; Dobin, Alex; Lin, Wei; Fastuca, Meagan; Wang, Huaien; Guigo, Roderic; Djebali, Sarah; Lagarde, Julien; Ryba, Tyrone; Sasaki, Takayo; Malladi, Venkat S; Cline, Melissa S; Kirkup, Vanessa M; Learned, Katrina; Rosenbloom, Kate R; Kent, W James; Feingold, Elise A; Good, Peter J; Pazin, Michael; Lowdon, Rebecca F; Adams, Leslie B

    2012-08-13

    To complement the human Encyclopedia of DNA Elements (ENCODE) project and to enable a broad range of mouse genomics efforts, the Mouse ENCODE Consortium is applying the same experimental pipelines developed for human ENCODE to annotate the mouse genome.

  1. Laminin and Fibronectin in Cell Adhesion: Enhanced Adhesion of Cells from Regenerating Liver to Laminin

    Science.gov (United States)

    Carlsson, Roland; Engvall, Eva; Freeman, Aaron; Ruoslahti, Erkki

    1981-04-01

    Laminin, a basement membrane glycoprotein isolated from cultures of mouse endodermal cells and rat yolk sac carcinoma cells, promoted the attachment of liver cells obtained from regenerating mouse liver. Cells from normal mouse liver attached readily to dishes coated with fibronectin but attached poorly to surfaces coated with laminin. Both proteins efficiently promoted the attachment of cells from livers undergoing regeneration. After regeneration, the attachment to laminin returned to the low levels found in animals not subjected to partial hepatectomy but attachment to fibronectin remained high. Immunofluorescent staining of sections of normal liver with antilaminin revealed the presence of laminin in or adjacent to the walls of the bile ducts and blood vessels. After induction of regeneration by partial hepatectomy, increased amounts of laminin appeared in the sinusoidal areas. After carbon tetrachloride poisoning, staining for laminin was especially pronounced in the necrotic and postnecrotic areas around the central veins. This additional expression of laminin was transient. It reached a maximum around 5-6 days after the injury and then gradually disappeared. These findings show that laminin is an adhesive protein. The increase of laminin in regenerating liver and the adhesiveness of cells from such livers to laminin suggest a role for laminin in the maintenance of a proper tissue organization during liver regeneration.

  2. The Role of Iron and Iron Overload in Chronic Liver Disease

    Science.gov (United States)

    Milic, Sandra; Mikolasevic, Ivana; Orlic, Lidija; Devcic, Edita; Starcevic-Cizmarevic, Nada; Stimac, Davor; Kapovic, Miljenko; Ristic, Smiljana

    2016-01-01

    The liver plays a major role in iron homeostasis; thus, in patients with chronic liver disease, iron regulation may be disturbed. Higher iron levels are present not only in patients with hereditary hemochromatosis, but also in those with alcoholic liver disease, nonalcoholic fatty liver disease, and hepatitis C viral infection. Chronic liver disease decreases the synthetic functions of the liver, including the production of hepcidin, a key protein in iron metabolism. Lower levels of hepcidin result in iron overload, which leads to iron deposits in the liver and higher levels of non-transferrin-bound iron in the bloodstream. Iron combined with reactive oxygen species leads to an increase in hydroxyl radicals, which are responsible for phospholipid peroxidation, oxidation of amino acid side chains, DNA strain breaks, and protein fragmentation. Iron-induced cellular damage may be prevented by regulating the production of hepcidin or by administering hepcidin agonists. Both of these methods have yielded successful results in mouse models. PMID:27332079

  3. The Role of Iron and Iron Overload in Chronic Liver Disease.

    Science.gov (United States)

    Milic, Sandra; Mikolasevic, Ivana; Orlic, Lidija; Devcic, Edita; Starcevic-Cizmarevic, Nada; Stimac, Davor; Kapovic, Miljenko; Ristic, Smiljana

    2016-01-01

    The liver plays a major role in iron homeostasis; thus, in patients with chronic liver disease, iron regulation may be disturbed. Higher iron levels are present not only in patients with hereditary hemochromatosis, but also in those with alcoholic liver disease, nonalcoholic fatty liver disease, and hepatitis C viral infection. Chronic liver disease decreases the synthetic functions of the liver, including the production of hepcidin, a key protein in iron metabolism. Lower levels of hepcidin result in iron overload, which leads to iron deposits in the liver and higher levels of non-transferrin-bound iron in the bloodstream. Iron combined with reactive oxygen species leads to an increase in hydroxyl radicals, which are responsible for phospholipid peroxidation, oxidation of amino acid side chains, DNA strain breaks, and protein fragmentation. Iron-induced cellular damage may be prevented by regulating the production of hepcidin or by administering hepcidin agonists. Both of these methods have yielded successful results in mouse models. PMID:27332079

  4. Reconstruction of liver organoid using a bioreactor

    Institute of Scientific and Technical Information of China (English)

    Masaya Saito; Tomokazu Matsuura; Takahiro Masaki; Haruka Maehashi; Keiko Shimizu; Yoshiaki Hataba; Tohru Iwahori; Tetsuro Suzuki; Filip Braet

    2006-01-01

    AIM: To develop the effective technology for reconstruction of a liver organ in vitro using a bio-artificial liver.METHODS: We previously reported that a radial-flow bioreactor (RFB) could provide a three-dimensional highdensity culture system. We presently reconstructed the liver organoid using a functional human hepatocellular carcinoma cell line (FLC-5) as hepatocytes together with mouse immortalized sinusoidal endothelial cell (SEC) line M1 and mouse immortalized hepatic stellate cell (HSC) line A7 as non parenchymal cells in the RFB. Two x 107 FLC-5 cells were incubated in the RFB. After 5 d, 2 x 107 A7 cells were added in a similar manner followed by another addition of 107 M1 cells 5 d later. After three days of perfusion, some cellulose beads with the adherent cells were harvested. The last incubation period included perfusion with 200 nmol/L swinholide A for 2 h and then the remaining cellulose beads along with adherent cells were harvested from the RFB. The cell morphology was observed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). To assess hepatocyte function, we compared mRNA expression for urea cycle enzymes as well as albumin synthesis by FLC-5 in monolayer cultures compared to those of single-type cultures and cocultures in the RFB.RESULTS: By transmission electron microscopy, FLC-5,M1, and A7 were arranged in relation to the perfusion side in a liver-like organization. Structures resembling bile canaliculi were seen between FCL-5 cells. Scanning electron microscopy demonstrated fenestrae on SEC surfaces. The number of vesiculo-vacuolar organelles (WO) and fenestrae increased when we introduced the actin-binding agent swinholide-A in the RFB for 2h. With respect to liver function, urea was found in the medium,and expression of mRNAs encoding arginosuccinate synthetase and arginase increased when the three cell types were cocultured in the RFB. However, albumin synthesis decreased.CONCLUSION: Co-culture in the RFB

  5. Suppression of Graft Regeneration, Not Ischemia/Reperfusion Injury, Is the Primary Cause of Small-for-Size Syndrome after Partial Liver Transplantation in Mice

    OpenAIRE

    Ning Pan; Xiangwei Lv; Rui Liang; Liming Wang; Qinlong Liu

    2014-01-01

    BACKGROUND: Ischemia/reperfusion injury (IRI) is commonly considered to play a crucial role in the pathogenesis of small-for-size syndrome (SFSS) after liver transplantation. Rapid regeneration is also considered essential for the survival of SFS grafts. METHODS: Mouse models of full-size orthotopic liver transplantation, 50% partial liver transplantation and 30% partial liver transplantation were established. Survival rate and serum alanine aminotransferase were observed. IRI was assessed by...

  6. 应用超高分辨质谱成像技术研究脂类分子在小鼠肝组织中的分布%Imaging and Identification of Phospholipids in Mouse Liver Tissue by Matrix Assisted Laser Desorption Ionization-Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Imaging

    Institute of Scientific and Technical Information of China (English)

    刘辉; 陈国强; 王艳英; 李智立

    2011-01-01

    Matrix assisted laser desorption ionization-Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR MS)-based mass spectrometric imaging (MSI) was applied to profile and identify phospholipid molecules in mouse liver tissues, which were cut into tissue sections (7 μm)on a cryostat at -20 ℃ and covered with 7 g/L of alpha-cyano-4-hydroxycinnamicacid (CHCA) as matrix in 50% methanol/0. 2 trifluoroacetic acid solution. 13 phospholipid compounds, which are classified as 5 different species, phosphatidic acid (PA), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG) and phosphatidylserine (PS), were accurately identified. Their molecular weights are between 700 and 900 Da. The present results indicate that MALDIFTICR MS-based MSI is a powerful tool to explore the distribution of disease-related molecules and drug metabolites in tissues.%利用基质辅助激光解吸电离-傅里叶变换离子回旋共振质谱仪对磷脂类分子在小鼠肝组织中的分布进行了研究,建立了质谱成像技术检测小鼠肝组织中磷脂类分子分布的分析方法.以7 g/Lα腈基-4-羟基肉桂酸的50%甲醇溶液(含0.2%三氟乙酸)作为基质,采用正离子采集模式,准确鉴定了5类13种磷脂类分子,其分子量主要分布在700~900 Da之间,且观察到它们在组织内分布呈现不均匀性.本研究表明,以超高分辨和超高精度的质谱仪开展组织成像研究,不仅可以探究脂类分子在组织中的分布,而且可以直接准确鉴定相关分子,真正实现分子水平上的组织成像.

  7. Circulating extracellular vesicles with specific proteome and liver microRNAs are potential biomarkers for liver injury in experimental fatty liver disease.

    Directory of Open Access Journals (Sweden)

    Davide Povero

    Full Text Available BACKGROUND & AIM: Nonalcoholic fatty liver disease (NAFLD is the most common chronic liver disease in both adult and children. Currently there are no reliable methods to determine disease severity, monitor disease progression, or efficacy of therapy, other than an invasive liver biopsy. DESIGN: Choline Deficient L-Amino Acid (CDAA and high fat diets were used as physiologically relevant mouse models of NAFLD. Circulating extracellular vesicles were isolated, fully characterized by proteomics and molecular analyses and compared to control groups. Liver-related microRNAs were isolated from purified extracellular vesicles and liver specimens. RESULTS: We observed statistically significant differences in the level of extracellular vesicles (EVs in liver and blood between two control groups and NAFLD animals. Time-course studies showed that EV levels increase early during disease development and reflect changes in liver histolopathology. EV levels correlated with hepatocyte cell death (r2 = 0.64, p<0.05, fibrosis (r2 = 0.66, p<0.05 and pathological angiogenesis (r2 = 0.71, p<0.05. Extensive characterization of blood EVs identified both microparticles (MPs and exosomes (EXO present in blood of NAFLD animals. Proteomic analysis of blood EVs detected various differentially expressed proteins in NAFLD versus control animals. Moreover, unsupervised hierarchical clustering identified a signature that allowed for discrimination between NAFLD and controls. Finally, the liver appears to be an important source of circulating EVs in NAFLD animals as evidenced by the enrichment in blood with miR-122 and 192--two microRNAs previously described in chronic liver diseases, coupled with a corresponding decrease in expression of these microRNAs in the liver. CONCLUSIONS: These findings suggest a potential for using specific circulating EVs as sensitive and specific biomarkers for the noninvasive diagnosis and monitoring of NAFLD.

  8. The MOUSE Squad

    Science.gov (United States)

    Borja, Rhea R.

    2004-01-01

    This article presents a New York city after-school program started by MOUSE (Making Opportunities for Upgrading Schools and Education), a national nonprofit group that teaches students how to fix computers, and equips them with the communication and problem-solving skills to help them in the working world. The MOUSE program is part of a trend…

  9. Establishment of animal model of dual liver transplantation in rat.

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    Full Text Available The animal model of the whole-size and reduced-size liver transplantation in both rat and mouse has been successfully established. Because of the difficulties and complexities in microsurgical technology, the animal model of dual liver transplantation was still not established for twelve years since the first human dual liver transplantation has been made a success. There is an essential need to establish this animal model to lay a basic foundation for clinical practice. To study the physiological and histopathological changes of dual liver transplantation, "Y" type vein from the cross part between vena cava and two iliac of donor and "Y' type prosthesis were employed to recanalize portal vein and the bile duct between dual liver grafts and recipient. The dual right upper lobes about 45-50% of the recipient liver volume were taken as donor, one was orthotopically implanted at its original position, the other was rotated 180° sagitally and heterotopically positioned in the left upper quadrant. Microcirculation parameters, liver function, immunohistochemistry and survival were analyzed to evaluate the function of dual liver grafts. No significant difference in the hepatic microcirculatory flow was found between two grafts in the first 90 minutes after reperfusion. Light and electronic microscope showed the liver architecture was maintained without obvious features of cellular destruction and the continuity of the endothelium was preserved. Only 3 heterotopically positioned graft appeared patchy desquamation of endothelial cell, mitochondrial swelling and hepatocytes cytoplasmic vacuolization. Immunohistochemistry revealed there is no difference in hepatocyte activity and the ability of endothelia to contract and relax after reperfusion between dual grafts. Dual grafts made a rapid amelioration of liver function after reperfusion. 7 rats survived more than 7 days with survival rate of 58.3.%. Using "Y" type vein and bile duct prosthesis, we

  10. Application of functional genomics to the chimeric mouse model of HCV infection: optimization of microarray protocols and genomics analysis

    Directory of Open Access Journals (Sweden)

    Smith Maria W

    2006-05-01

    Full Text Available Abstract Background Many model systems of human viral disease involve human-mouse chimeric tissue. One such system is the recently developed SCID-beige/Alb-uPA mouse model of hepatitis C virus (HCV infection which involves a human-mouse chimeric liver. The use of functional genomics to study HCV infection in these chimeric tissues is complicated by the potential cross-hybridization of mouse mRNA on human oligonucleotide microarrays. To identify genes affected by mouse liver mRNA hybridization, mRNA from identical human liver samples labeled with either Cy3 or Cy5 was compared in the presence and absence of known amounts of mouse liver mRNA labeled in only one dye. Results The results indicate that hybridization of mouse mRNA to the corresponding human gene probe on Agilent Human 22 K oligonucleotide microarray does occur. The number of genes affected by such cross-hybridization was subsequently reduced to approximately 300 genes both by increasing the hybridization temperature and using liver samples which contain at least 80% human tissue. In addition, Real Time quantitative RT-PCR using human specific probes was shown to be a valid method to verify the expression level in human cells of known cross-hybridizing genes. Conclusion The identification of genes affected by cross-hybridization of mouse liver RNA on human oligonucleotide microarrays makes it feasible to use functional genomics approaches to study the chimeric SCID-beige/Alb-uPA mouse model of HCV infection. This approach used to study cross-species hybridization on oligonucleotide microarrays can be adapted to other chimeric systems of viral disease to facilitate selective analysis of human gene expression.

  11. Mouse genome database 2016.

    Science.gov (United States)

    Bult, Carol J; Eppig, Janan T; Blake, Judith A; Kadin, James A; Richardson, Joel E

    2016-01-01

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data.

  12. Treatment of Decompensated Alcoholic Liver Disease

    Directory of Open Access Journals (Sweden)

    John Menachery

    2011-01-01

    Full Text Available Alcoholic liver disease (ALD is a spectrum ranging from simple hepatic steatosis to alcoholic hepatitis and cirrhosis. Patients with severe alcoholic hepatitis can have clinical presentation almost similar to those with decompensated cirrhosis. Scoring with models like Maddrey discriminant function, a model for end-stage liver disease, Glasgow alcoholic hepatitis score, and Lille model are helpful in prognosticating patients with ALD. One of the first therapeutic goals in ALD is to induce alcohol withdrawal with psychotherapy or drugs. Most studies have shown that nutritional therapy improves liver function and histology in patients with ALD. The rationale for using glucocorticoids is to block cytotoxic and inflammatory pathways in patients with severe alcoholic hepatitis. Pentoxifylline, a tumor necrosis factor alpha (TNFα suppressor, and infliximab, an anti-TNFα mouse/human chimeric antibody, has been extensively studied in patients with alcoholic hepatitis. Liver transplantation remains the definitive therapy for decompensated cirrhosis/alcoholic hepatitis despite the issues of recidivism, poor compliance with postoperative care, and being a self-inflicted disease.

  13. The transcriptomic signature of fasting murine liver

    Directory of Open Access Journals (Sweden)

    Gilhuijs-Pederson Lisa A

    2008-11-01

    Full Text Available Abstract Background The contribution of individual organs to the whole-body adaptive response to fasting has not been established. Hence, gene-expression profiling, pathway, network and gene-set enrichment analysis and immunohistochemistry were carried out on mouse liver after 0, 12, 24 and 72 hours of fasting. Results Liver wet weight had declined ~44, ~5, ~11 and ~10% per day after 12, 24, 48 and 72 hours of fasting, respectively. Liver structure and metabolic zonation were preserved. Supervised hierarchical clustering showed separation between the fed, 12–24 h-fasted and 72 h-fasted conditions. Expression profiling and pathway analysis revealed that genes involved in amino-acid, lipid, carbohydrate and energy metabolism responded most significantly to fasting, that the response peaked at 24 hours, and had largely abated by 72 hours. The strong induction of the urea cycle, in combination with increased expression of enzymes of the tricarboxylic-acid cycle and oxidative phosphorylation, indicated a strong stimulation of amino-acid oxidation peaking at 24 hours. At this time point, fatty-acid oxidation and ketone-body formation were also induced. The induction of genes involved in the unfolded-protein response underscored the cell stress due to enhanced energy metabolism. The continuous high expression of enzymes of the urea cycle, malate-aspartate shuttle, and the gluconeogenic enzyme Pepck and the re-appearance of glycogen in the pericentral hepatocytes indicate that amino-acid oxidation yields to glucose and glycogen synthesis during prolonged fasting. Conclusion The changes in liver gene expression during fasting indicate that, in the mouse, energy production predominates during early fasting and that glucose production and glycogen synthesis become predominant during prolonged fasting.

  14. [Liver and sport].

    Science.gov (United States)

    Watelet, J

    2008-11-01

    The liver is a vital organ and plays a central role in energy exchange, protein synthesis as well as the elimination of waste products from the body. Acute and chronic injury may disturb a variety of liver functions to different degrees. Over the last three decades, the effects of physical activity and competitive sport on the liver have been described by various investigators. These include viral hepatitis and drug-induced liver disorders. Herein, we review acute and chronic liver diseases potentially caused by sport. Team physicians, trainers and others, responsible for the health of athletes, should be familiar with the risk factors, clinical features, and consequences of liver diseases that occur in sports.

  15. Liver transplantation in India.

    Science.gov (United States)

    Narasimhan, Gomathy; Kota, Venugopal; Rela, Mohamed

    2016-07-01

    Liver transplantation as an established form of treatment for end-stage liver disease has gained acceptance in India over the last 10 years. Liver transplantation in India has unique features that have contributed to the growth of both deceased donor and living donor transplantations of which living donor currently dominates the picture. Living donor contributes to 80% and deceased donor to 20% of the liver transplants currently performed in India. The majority of these transplants are performed within the private sector with public sector hospitals lagging behind significantly. This article gives an overview of the evolution of liver transplantation in India and the potential future challenges. Liver Transplantation 22 1019-1024 2016 AASLD. PMID:27082718

  16. Robotic liver surgery.

    Science.gov (United States)

    Leung, Universe; Fong, Yuman

    2014-10-01

    Robotic surgery is an evolving technology that has been successfully applied to a number of surgical specialties, but its use in liver surgery has so far been limited. In this review article we discuss the challenges of minimally invasive liver surgery, the pros and cons of robotics, the evolution of medical robots, and the potentials in applying this technology to liver surgery. The current data in the literature are also presented. PMID:25392840

  17. MANAGEMENT OF LIVER TRAUMA

    OpenAIRE

    Dova Subba; Mallapraggada Rama Chandra; Erabatti

    2016-01-01

    AIM To estimate the incidence of Liver Trauma injuries and grade their severity of injury. To assess the factors responsible for morbidity and mortality after Liver Trauma. To study the postoperative complications and the management of Liver Trauma. MATERIALS AND METHODS The present prospective study was conducted on 100 patients who were admitted to Department of General Surgery for treatment who were managed operatively or non-operatively for abdominal trauma and h...

  18. Fatty liver in children

    OpenAIRE

    Rafeey, Mandana; Mortazavi, Fakhrossadat; Mogaddasi, Nafiseh; Robabeh, Ghergherehchi; Ghaffari, Shamsi; Hasani, Alka

    2009-01-01

    Aims: The aim of this study is to investigate the clinical and laboratory characteristics of nonalcoholic fatty liver disease (NAFLD) in a referral center of pediatrics in the northwest of Iran. Methods: In this cross-sectional study all subjects aged between six months to 15 years that were referred to the sonography unit, were investigated for fatty liver from March 2005 to August 2006. Patients with fatty liver change underwent detailed clinical and laboratory evaluation. Results: From 150...

  19. Endovascular management in liver transplantation

    Institute of Scientific and Technical Information of China (English)

    Kyu-Bo Sung

    2006-01-01

    @@ Liver transplantation was developed for the treatment of hepatic failure, and the first human liver transplantation was done in 1963. From the 1990 s,liver transplantation was generally accepted as a treatment modality for both end-stage liver disease and selected liver malignancies. Initially, liver transplantation was started with deceased donor whole-size liver transplantation (whole-size LT) as in other organ transplantation, but there is now a shortage of deceased liver donors has occurred. As a solution, deceased donor split liver transplantation (split LT) began in 1989 and living donor liver transplantation (LDLT) in the early 1990 s. Current liver transplantation techniques include whole-size LT, reduced-size liver transplantation (reduced-size LT), split LT and single or dual LDLT. Two donors give a part of their livers to one adult recipient simultaneously in dual LDLT.

  20. Liver transplant - series (image)

    Science.gov (United States)

    ... depending on the degree of illness. After liver transplantation, patients must take immunosuppressive medications for the rest of their lives to prevent immune rejection of the transplanted organ.

  1. IRF-1 promotes liver transplant ischemia/reperfusion injury via hepatocyte IL-15/IL-15Rα production

    OpenAIRE

    Yokota, Shinichiro; Yoshida, Osamu; Dou, Lei; Spadaro, Anthony V.; Isse, Kumiko; Ross, Mark A.; Stolz, Donna B.; Kimura, Shoko; Du, Qiang; DEMETRIS, ANTHONY J.; Thomson, Angus W.; Geller, David A.

    2015-01-01

    Ischemia and reperfusion (I/R) injury following liver transplantation (LTx) is an important problem that significantly impacts clinical outcomes. Interferon regulatory factor-1 (IRF-1) is a nuclear transcription factor that plays a critical role in liver injury. Our objective was to determine the immunomodulatory role of IRF-1 during I/R injury following allogeneic LTx. IRF-1 was induced in liver grafts immediately after reperfusion in both human and mouse LTx. IRF-1 contributed significantly...

  2. Mass spectrometry analysis of hepcidin peptides in experimental mouse models.

    Directory of Open Access Journals (Sweden)

    Harold Tjalsma

    Full Text Available The mouse is a valuable model for unravelling the role of hepcidin in iron homeostasis, however, such studies still report hepcidin mRNA levels as a surrogate marker for bioactive hepcidin in its pivotal function to block ferroportin-mediated iron transport. Here, we aimed to assess bioactive mouse Hepcidin-1 (Hep-1 and its paralogue Hepcidin-2 (Hep-2 at the peptide level. To this purpose, Fourier transform ion cyclotron resonance (FTICR and tandem-MS was used for hepcidin identification, after which a time-of-flight (TOF MS-based methodology was exploited to routinely determine Hep-1 and -2 levels in mouse serum and urine. This method was biologically validated by hepcidin assessment in: i 3 mouse strains (C57Bl/6; DBA/2 and BABL/c upon stimulation with intravenous iron and LPS, ii homozygous Hfe knock out, homozygous transferrin receptor 2 (Y245X mutated mice and double affected mice, and iii mice treated with a sublethal hepatotoxic dose of paracetamol. The results showed that detection of Hep-1 was restricted to serum, whereas Hep-2 and its presumed isoforms were predominantly present in urine. Elevations in serum Hep-1 and urine Hep-2 upon intravenous iron or LPS were only moderate and varied considerably between mouse strains. Serum Hep-1 was decreased in all three hemochromatosis models, being lowest in the double affected mice. Serum Hep-1 levels correlated with liver hepcidin-1 gene expression, while acute liver damage by paracetamol depleted Hep-1 from serum. Furthermore, serum Hep-1 appeared to be an excellent indicator of splenic iron accumulation. In conclusion, Hep-1 and Hep-2 peptide responses in experimental mouse agree with the known biology of hepcidin mRNA regulators, and their measurement can now be implemented in experimental mouse models to provide novel insights in post-transcriptional regulation, hepcidin function, and kinetics.

  3. C57BL/6 and A/J Mice Have Different Inflammatory Response and Liver Lipid Profile in Experimental Alcoholic Liver Disease

    Directory of Open Access Journals (Sweden)

    Lorena Bavia

    2015-01-01

    Full Text Available Alcoholic liver disease (ALD is an important worldwide public health issue characterized by liver steatosis, inflammation, necrosis, and apoptosis of hepatocytes with eventual development of fibrosis and cirrhosis. Comparison of murine models with different inflammatory responses for ALD is important for an evaluation of the importance of genetic background in the interpretation of ethanol-induced phenotypes. Here, we investigated the role of inflammation and genetic background for the establishment of ALD using two different mouse strains: C57BL/6 (B6 and A/J. B6 and A/J mice were treated with a high fat diet containing ethanol (HFDE and compared to the controls for 10 weeks. Hepatomegaly and steatohepatitis were similar in B6 and A/J mice, but only A/J mice were resistant to weight gain. On the other hand, HFDE-fed B6 accumulated more triglycerides (TG and cholesterol and presented more intense cellular infiltrate in the liver when compared to HFDM-fed mice. Liver inflammatory environment was distinct in these two mouse strains. While HFDE-fed B6 produced more liver IL-12, A/J mice increased the TNF-α production. We concluded that mouse genetic background could dictate the intensity of the HFDE-induced liver injury.

  4. Liver transplantation in polycystic liver disease

    DEFF Research Database (Denmark)

    Krohn, Paul S; Hillingsø, Jens; Kirkegaard, Preben

    2008-01-01

    OBJECTIVE: Polycystic liver disease (PLD) is a rare, hereditary, benign disorder. Hepatic failure is uncommon and symptoms are caused by mass effects leading to abdominal distension and pain. Liver transplantation (LTX) offers fully curative treatment, but there is still some controversy about...... whether it is a relevant modality considering the absence of liver failure, relative organ shortage, perioperative risks and lifelong immunosuppression. The purpose of this study was to review our experience of LTX for PLD and to compare the survival with the overall survival of patients who underwent LTX....../kidney transplantation. One patient had undergone kidney transplantation 10 years earlier. RESULTS: Median follow-up was 55 months. One patient who underwent combined transplantation died after 5.4 months because of multiorgan failure after re-LTX, and one patient, with well-functioning grafts, died of lymphoma after 7...

  5. Liver transplantation for polycystic liver and massive hepatomegaly

    OpenAIRE

    Gruttadauria, Salvatore; Di Francesco, Fabrizio; Gridelli, Bruno

    2010-01-01

    Liver tumor and other benign liver diseases such as polycystic liver disease can cause massive hepatomegaly and may represent an indication for liver transplantation (LT) in some instances. In this setting, LT can be extremely difficult and challenging due to its decreased mobility and access to vascular supply. Benefit from either a right or a left partial liver resection during the transplant procedure has been advocated to safely accomplish the hepatectomy of the native liver. Although we ...

  6. CITED1 Expression in Liver Development and Hepatoblastoma

    Directory of Open Access Journals (Sweden)

    Andrew J. Murphy

    2012-12-01

    Full Text Available Hepatoblastoma, the most common pediatric liver cancer, consists of epithelial mixed embryonal/fetal (EMEF and pure fetal histologic subtypes, with the latter exhibiting a more favorable prognosis. Few embryonal histology markers that yield insight into the biologic basis for this prognostic discrepancy exist. CBP/P-300 interacting transactivator 1 (CITED1, a transcriptional co-activator, is expressed in the self-renewing nephron progenitor population of the developing kidney and broadly in its malignant analog, Wilms tumor (WT. In this current study, CITED1 expression is detected in mouse embryonic liver initially on post-coitum day 10.5 (e10.5, begins to taper by e14.5, and is undetectable in e18.5 and adult livers. CITED1 expression is detected in regenerating murine hepatocytes following liver injury by partial hepatectomy and 3,5-diethoxycarbonyl-1,4-dihydrocollidine. Importantly, while CITED1 is undetectable in normal human adult livers, 36 of 41 (87.8% hepatoblastoma specimens express CITED1, where it is enriched in EMEF specimens compared to specimens of pure fetal histology. CITED1 overexpression in Hep293TT human hepatoblastoma cells induces cellular proliferation and upregulates the Wnt inhibitors Kringle containing transmembrane protein 1 (KREMEN1 and CXXC finger protein 4 (CXXC4. CITED1 mRNA expression correlates with expression of CXXC4 and KREMEN1 in clinical hepatoblastoma specimens. These data show that CITED1 is expressed during a defined time course of liver development and is no longer expressed in the adult liver but is upregulated in regenerating hepatocytes following liver injury. Moreover, as in WT, this embryonic marker is reexpressed in hepatoblastoma and correlates with embryonal histology. These findings identify CITED1 as a novel marker of hepatic progenitor cells that is re-expressed following liver injury and in embryonic liver tumors.

  7. Role of garlicin, vitamin C and vitamin B6 in preventing and treating non-alcoholic fatty liver disease in mouse%大蒜素联合维生素C、维生素B6对小鼠非酒精性脂肪性肝病的防治作用

    Institute of Scientific and Technical Information of China (English)

    杨豪俊; 吕凌; 王学浩

    2014-01-01

    防组和治疗组明显增强。预防组、治疗组、对照组小鼠肝组织iNOS mRNA含量分别为(3.6±0.5)×10-4,(3.3±0.5)×10-4,(7.5±0.3)×10-4,预防组和治疗组明显低于对照组(LSD-t=13.273,13.976;P<0.05)。对照组小鼠肝脏表现为明显脂肪肝,预防组和治疗组脂肪肝程度较轻。预防组和治疗组小鼠肝组织中的活化Kupffer细胞数量较对照组明显减少。结论大蒜素联合维生素C、维生素B6可有效防治小鼠NAFLD,其机制可能与减轻脂质过氧化损伤、增加肝脏抗氧化能力、抑制Kupffer细胞活性及降低血清FFA水平有关。%Objective To study the role of garlicin, vitamin C and vitamin B6 and the mechanism in preventing and treating non-alcoholic fatty liver disease (NAFLD) in mouse. Methods Eighteen C57BL/6 mice were randomly divided into 3 groups according to the random number table:preventing group, treating group and control group with 6 mice in each group. In preventing group, the mice were fed with high fatty diet and were infused intragastrically with garlicin (0.02 mg/g), vitamin C (0.50 mg/g) and vitamin B6 (0.02 mg/g) by weight everyday at the same time for 4 weeks. In treating group, the mice were infused intragastrically with the above drugs for 1 week after 4 weeks of feeding with high fatty diet. In control group, the mice were fed with high fatty diet and were infused intragastrically with equivalent normal saline at the same time for 4 weeks. After processing, the levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), free fatty acids (FFA), levels of superoxide dismutase (SOD), malondialdehyde (MDA), expression of inducible nitric oxide synthase (iNOS), content of messenger ribonucleic acid (mRNA) of iNOS, pathological changes and inifltration of Kupffer cells of liver tissues in 3 groups were observed. The differences of measurement data in 3 groups were compared using one-way analysis of variance and

  8. About the Operation: Liver Transplant

    Science.gov (United States)

    ... Heart/Lung Kidney Pancreas Kidney/Pancreas Liver Intestine Liver Transplant There are two very different surgical approaches to liver transplantation: the orthotopic and the heterotopic approach, both of ...

  9. Prolactin and liver disease

    NARCIS (Netherlands)

    A.G.C. Bauer (Alexander)

    1982-01-01

    textabstractCirrhosis of the liver is associated with profound endocrinological disturbances. Until recently it was thought that these disturbances were caused mainly by ineffective elimination of hormones by the diseased liver. It is now known that the pathogenesis of disturbed hormonal function in

  10. Living Donor Liver Transplantation

    Science.gov (United States)

    ... What are Some Benefits of a Living-donor Liver Transplant? In the U.S., more than 17,500 patients ... 1,700 patients die each year while waiting. Liver transplants are given to patients on the basis of ...

  11. Liver (Hepatocellular) Cancer Prevention

    Science.gov (United States)

    ... This may lead to liver cancer. Blood banks test all donated blood for hepatitis B, which greatly lowers the risk of getting the ... This may lead to liver cancer. Blood banks test all donated blood for hepatitis C, which ... infected with hepatitis B. It is caused by hepatitis D virus (HDV) ...

  12. Acute liver failure

    DEFF Research Database (Denmark)

    Bernal, William; Lee, William M; Wendon, Julia;

    2015-01-01

    Over the last three decades acute liver failure (ALF) has been transformed from a rare and poorly understood condition with a near universally fatal outcome, to one with a well characterized phenotype and disease course. Complex critical care protocols are now applied and emergency liver...

  13. Liver and Biliary System

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    2011220 Value of liver biopsy in diagnosis of chronic hepatitis B. YANG Fang(杨方) ,et al. 2nd Ward, Shenyang 6th People’s Hosp,Shenyang 110006. Chin J Infect Dis 2011; 29(2):99-103. Objective To explore the value of liver biopsy in diagnosis of the severity of chronic hepatitis

  14. Liver and Biliary System

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    9.1.Liver cirrhosis and fatty liver2005376 The role of ribosomal S6 kinase in thepathogenesis of rat hepatic fibrosis.YANG Miaofang(杨妙芳),et al.Dept Gastroenterol,Changzheng Hosp,2nd Milit Med Univ,Shanghai 200003.Chin J Dig 2005;25(2):98-100.

  15. LIVER AND BILIARGY SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    8.1 Liver cirrhosis and fatty liver2004100 The clinical feature and prognosis of Aero-monas septicaemia in hepatic cirrhosis: a report of 50 cases. QU Fen (曲芬), et al. Clin Centre, 302nd Hosp PLA, Beijing 100039. Chin J Intern Med 2003; 42 (12): 840 - 846Objective: Aeromonas septicaemia complicating cirrhosis

  16. Mouse Phenome Database (MPD)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Mouse Phenome Database (MPD) has characterizations of hundreds of strains of laboratory mice to facilitate translational discoveries and to assist in selection...

  17. Mouse Genome Informatics (MGI)

    Data.gov (United States)

    U.S. Department of Health & Human Services — MGI is the international database resource for the laboratory mouse, providing integrated genetic, genomic, and biological data to facilitate the study of human...

  18. Complement C5 controls liver lipid profile, promotes liver homeostasis and inflammation in C57BL/6 genetic background.

    Science.gov (United States)

    Bavia, Lorena; de Castro, Íris Arantes; Cogliati, Bruno; Dettoni, Juliano Bertollo; Alves, Venancio Avancini Ferreira; Isaac, Lourdes

    2016-07-01

    Innate immunity contributes effectively to the development of alcoholic liver disease (ALD). In special, the activation of the complement system is involved in the pathogenesis of this disease. Here we investigated the contribution of complement C5 protein to the establishment and maintenance of ALD. Eight- to ten-week-old B6C5(+) and B6C5(-) male mice were fed with high fat diet (HFD) only or the same diet containing equicaloric supplements of ethanol (HFDE) or maltodextrin (HFDM) for 10 weeks. Serum parameters of liver function as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (AP), albumin, glucose, triglycerides (TG) and cholesterol were evaluated. Liver tissue samples were collected for histopathological analysis, lipid extraction (TG and cholesterol), cytokines (TNF-α, IL-6, IL-1β, IL-10, IL-12, IL-17, IFN-γ, TGF-β) measurement and NO production. We observed that B6C5(-) mice HFDE-fed accumulated more liver cholesterol and TG, increased liver IL-17 and IL-10 levels and reduced liver TGF-β levels when compared to HFD-fed mice. We also observed that serum AST, AP and albumin were increased in B6C5(-) mice. Liver IL-1β, IL-6, IL-12 and IFN-γ were decreased in B6C5(-) mice independently of diet. We conclude that C5 acts in the control of serum TG and cholesterol, liver cholesterol deposition, liver homeostasis and C5 promotes a pro-inflammatory liver environment in our mouse model of ALD. PMID:26896155

  19. Liver cancer oncogenomics

    DEFF Research Database (Denmark)

    Marquardt, Jens U; Andersen, Jesper B

    2015-01-01

    Primary liver cancers are among the most rapidly evolving malignant tumors worldwide. An underlying chronic inflammatory liver disease, which precedes liver cancer development for several decades and frequently creates a pro-oncogenic microenvironment, impairs progress in therapeutic approaches....... Molecular heterogeneity of liver cancer is potentiated by a crosstalk between epithelial tumor and stromal cells that complicate translational efforts to unravel molecular mechanisms of hepatocarcinogenesis with a drugable intend. Next-generation sequencing has greatly advanced our understanding of cancer...... development. With regards to liver cancer, the unprecedented coverage of next-generation sequencing has created a detailed map of genetic alterations and identified key somatic changes such as CTNNB1 and TP53 as well as several previously unrecognized recurrent disease-causing alterations that could...

  20. Cotranscriptional splicing efficiency differs dramatically between Drosophila and mouse

    OpenAIRE

    Khodor, Yevgenia L.; Menet, Jerome S; Tolan, Michael; Rosbash, Michael

    2012-01-01

    Spliceosome assembly and/or splicing of a nascent transcript may be crucial for proper isoform expression and gene regulation in higher eukaryotes. It has been shown that cotranscriptional splicing occurs efficiently in Drosophila, but there are not comparable genome-wide nascent splicing data from mammals. To provide this comparison, the authors analyzed a recently generated, high-throughput sequencing data set of mouse liver nascent RNA. Cotranscriptional splicing is approximately twofold l...

  1. Impaired secretion of very low density lipoprotein-triglycerides by apolipoprotein E- deficient mouse hepatocytes.

    OpenAIRE

    Kuipers, F; M. C. De Jong; Lin, Y.; Eck, M; Havinga, R.; Bloks, V; Verkade , H.J.; Hofker, M H; Moshage, H; Berkel, T J; Vonk, R J; Havekes, L M

    1997-01-01

    To explore mechanisms underlying triglyceride (TG) accumulation in livers of chow-fed apo E-deficient mice (Kuipers, F., J.M. van Ree, M.H. Hofker, H. Wolters, G. In't Veld, R.J. Vonk, H.M.G. Princen, and L.M. Havekes. 1996. Hepatology. 24:241-247), we investigated the effects of apo E deficiency on secretion of VLDL-associated TG (a) in vivo in mice, (b) in isolated perfused mouse livers, and (c) in cultured mouse hepatocytes. (a) Hepatic VLDL-TG production rate in vivo, determined after Tri...

  2. UPF2 is a critical regulator of liver development, function and regeneration

    DEFF Research Database (Denmark)

    Thoren, Lina A; Nørgaard, Gitte A; Weischenfeldt, Joachim;

    2010-01-01

    regulatory potential of the NMD pathway in mammals will require the functional assessment of NMD in different tissues. METHODOLOGY/PRINCIPAL FINDINGS: Here we use mouse genetics to address the role of UPF2, a core NMD component, in the development, function and regeneration of the liver. We find that loss...... of NMD during fetal liver development is incompatible with postnatal life due to failure of terminal differentiation. Moreover, deletion of Upf2 in the adult liver results in hepatosteatosis and disruption of liver homeostasis. Finally, NMD was found to be absolutely required for liver regeneration....... CONCLUSION/SIGNIFICANCE: Collectively, our data demonstrate the critical role of the NMD pathway in liver development, function and regeneration and highlights the importance of NMD for mammalian biology....

  3. Liver biopsy in liver patients with coagulopathy

    DEFF Research Database (Denmark)

    Ott, P.; Gronbaek, H.; Clausen, M.R.;

    2008-01-01

    The risk of severe bleeding after liver biopsy is estimated to be 1:12,000 in patients with near normal coagulation (INR 60 billion /l). Beyond these limits, the risk is higher, but still uncertain. The Danish guidelines require INR > 1.5, platelet count

  4. Core promoter recognition complex changes accompany liver development

    OpenAIRE

    D’Alessio, Joseph A.; Ng, Raymond; Willenbring, Holger; Tjian, Robert

    2011-01-01

    Recent studies of several key developmental transitions have brought into question the long held view of the basal transcriptional apparatus as ubiquitous and invariant. In an effort to better understand the role of core promoter recognition and coactivator complex switching in cellular differentiation, we have examined changes in transcription factor IID (TFIID) and cofactor required for Sp1 activation/Mediator during mouse liver development. Here we show that the differentiation of fetal li...

  5. Proteoglycans in liver cancer

    Science.gov (United States)

    Baghy, Kornélia; Tátrai, Péter; Regős, Eszter; Kovalszky, Ilona

    2016-01-01

    Proteoglycans are a group of molecules that contain at least one glycosaminoglycan chain, such as a heparan, dermatan, chondroitin, or keratan sulfate, covalently attached to the protein core. These molecules are categorized based on their structure, localization, and function, and can be found in the extracellular matrix, on the cell surface, and in the cytoplasm. Cell-surface heparan sulfate proteoglycans, such as syndecans, are the primary type present in healthy liver tissue. However, deterioration of the liver results in overproduction of other proteoglycan types. The purpose of this article is to provide a current summary of the most relevant data implicating proteoglycans in the development and progression of human and experimental liver cancer. A review of our work and other studies in the literature indicate that deterioration of liver function is accompanied by an increase in the amount of chondroitin sulfate proteoglycans. The alteration of proteoglycan composition interferes with the physiologic function of the liver on several levels. This article details and discusses the roles of syndecan-1, glypicans, agrin, perlecan, collagen XVIII/endostatin, endocan, serglycin, decorin, biglycan, asporin, fibromodulin, lumican, and versican in liver function. Specifically, glypicans, agrin, and versican play significant roles in the development of liver cancer. Conversely, the presence of decorin could potentially provide protective effects. PMID:26755884

  6. Rat liver insulin receptor

    International Nuclear Information System (INIS)

    Using insulin affinity chromatography, the authors have isolated highly purified insulin receptor from rat liver. When evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions, the rat liver receptor contained the M/sub r/ 125,000 α-subunit, the M/sub r/ 90,000 β-subunit, and varying proportions of the M/sub r/ 45,000 β'-subunit. The specific insulin binding of the purified receptor was 25-30 μg of 125I-insulin/mg of protein, and the receptor underwent insulin-dependent autophosphorylation. Rat liver and human placental receptors differ from each other in several functional aspects: (1) the adsorption-desorption behavior from four insulin affinity columns indicated that the rat liver receptor binds less firmly to immobilized ligands; (2) the 125I-insulin binding affinity of the rat liver receptor is lower than that of the placental receptor; (3) partial reduction of the rat liver receptor with dithiothreitol increases its insulin binding affinity whereas the binding affinity of the placental receptor is unchanged; (4) at optimal insulin concentration, rat liver receptor autophosphorylation is stimulated 25-50-fold whereas the placental receptor is stimulated only 4-6-fold. Conversion of the β-subunit to β' by proteolysis is a major problem that occurs during exposure of the receptor to the pH 5.0 buffer used to elute the insulin affinity column. Proteolytic destruction and the accompanying loss of insulin-dependent autophosphorylation can be substantially reduced by proteolysis inhibitors. In summary, rat liver and human placental receptors differ functionally in both α- and β-subunits. Insulin binding to the α-subunit of the purified rat liver receptor communicates a signal that activates the β-subunit; however, major proteolytic destruction of the β-subunit does not affect insulin binding to the α-subunit

  7. Mycotoxin-containing diet causes oxidative stress in the mouse.

    Directory of Open Access Journals (Sweden)

    Yan-Jun Hou

    Full Text Available Mycotoxins which mainly consist of Aflatoxin (AF, Zearalenone (ZEN and Deoxynivalenol (DON are commonly found in many food commodities. Although each component has been shown to cause liver toxicity and oxidative stress in several species, there is no evidence regarding the effect of naturally contained multiple mycotoxins on tissue toxicity and oxidative stress in vivo. In the present study, mycotoxins-contaminated maize (AF 597 µg/kg, ZEN 729 µg/kg, DON 3.1 mg/kg maize was incorporated into the diet at three different doses (0, 5 and 20% to feed the mice, and blood and tissue samples were collected to examine the oxidative stress related indexes. The results showed that the indexes of liver, kidney and spleen were all increased and the liver and kidney morphologies changed in the mycotoxin-treated mice. Also, the treatment resulted in the elevated glutathione peroxidase (GPx activity and malondialdehyde (MDA level in the serum and liver, indicating the presence of the oxidative stress. Moreover, the decrease of catalase (CAT activity in the serum, liver and kidney as well as superoxide dismutase (SOD activity in the liver and kidney tissue further confirmed the occurrence of oxidative stress. In conclusion, our data indicate that the naturally contained mycotoxins are toxic in vivo and able to induce the oxidant stress in the mouse.

  8. Functional pitch of a liver: fatty liver disease diagnosis with photoacoustic spectrum analysis

    Science.gov (United States)

    Xu, Guan; Meng, Zhuoxian; Lin, Jiandie; Carson, Paul; Wang, Xueding

    2014-03-01

    To provide more information for classification and assessment of biological tissues, photoacoustic spectrum analysis (PASA) moves beyond the quantification of the intensities of the photoacoustic (PA) signals by the use of the frequency-domain power distribution, namely power spectrum, of broadband PA signals. The method of PASA quantifies the linear-fit to the power spectrum of the PA signals from a biological tissue with 3 parameters, including intercept, midband-fit and slope. Intercept and midband-fit reflect the total optical absorption of the tissues whereas slope reflects the heterogeneity of the tissue structure. Taking advantage of the optical absorption contrasts contributed by lipid and blood at 1200 and 532 nm, respectively and the heterogeneous tissue microstructure in fatty liver due to the lipid infiltration, we investigate the capability of PASA in identifying histological changes of fatty livers in mouse model. 6 and 9 pairs of normal and fatty liver tissues from rat models were examined by ex vivo experiment with a conventional rotational PA measurement system. One pair of rat models with normal and fatty livers was examined non-invasively and in situ with our recently developed ultrasound and PA parallel imaging system. The results support our hypotheses that the spectrum analysis of PA signals can provide quantitative measures of the differences between the normal and fatty liver tissues and that part of the PA power spectrum can suffice for characterization of microstructures in biological tissues. Experimental results also indicate that the vibrational absorption peak of lipid at 1200nm could facilitate fatty liver diagnosis.

  9. IL-4 mediates dicloxacillin-induced liver injury in mice.

    Science.gov (United States)

    Higuchi, Satonori; Kobayashi, Masanori; Yoshikawa, Yukitaka; Tsuneyama, Koichi; Fukami, Tatsuki; Nakajima, Miki; Yokoi, Tsuyoshi

    2011-02-01

    Drug-induced liver injury (DILI) is a major problem in drug development and clinical drug therapy. In most cases, the mechanisms are still unknown. It is difficult to predict DILI in humans due to the lack of experimental animal models. Dicloxacillin, penicillinase-sensitive penicillin, rarely causes cholestatic or mixed liver injury, and there is some evidence for immunoallergic idiosyncratic reaction in human. In this study, we investigated the mechanisms of dicloxacillin-induced liver injury. Plasma ALT and total-bilirubin (T-Bil) levels were significantly increased in dicloxacillin-administered (600 mg/kg, i.p.) mice. Dicloxacillin administration induced Th2 (helper T cells)-mediated factors and increased the plasma interleukin (IL)-4 level. Neutralization of IL-4 suppressed the hepatotoxicity of dicloxacillin, and recombinant mouse IL-4 administration (0.5 or 2.0 μg/mouse, i.p.) exacerbated it. Chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTh2) is a cognate receptor for prostaglandin (PG) D(2), and is suggested to be involved in Th2-dependent allergic inflammation. We investigated the effect of 13,14-Dihydro-15-keto-PGD(2) (DK-PGD(2); 10 μg/mouse, i.p.) administration on dicloxacillin-induced liver injury. DK-PGD(2)/dicloxacillin coadministration resulted in a significant increase of alanine aminotransferases and a remarkable increase of macrophage inflammatory protein 2 expression. In conclusion, to the best of our knowledge, this is the first report to demonstrate that dicloxacillin-induced liver injury is mediated by a Th2-type immune reaction and exacerbated by DK-PGD(2). PMID:21094227

  10. Imaging of liver cancer

    Institute of Scientific and Technical Information of China (English)

    Ben Ariff; Claire R Lloyd; Sameer Khan; Mohamed Shariff; Andrew V Thillainayagam; Devinder S Bansi; Shahid A Khan; Simon D Taylor-Robinson; Adrian KP Lim

    2009-01-01

    Improvements in imaging technology allow exploitation of the dual blood supply of the liver to aid in the identi-fication and characterisation of both malignant and benign liver lesions. Imaging techniques available include contrast enhanced ultrasound, computed tomography and magnetic resonance imaging. This review discusses the application of several imaging techniques in the diagnosis and staging of both hepatocellular carcinoma and cholangiocarcinoma and outlines certain characteristics of benign liver lesions. The advantages of each imaging technique are highlighted, while underscoring the potential pitfalls and limitations of each imaging modality.

  11. [Cysts of the liver

    DEFF Research Database (Denmark)

    Hillingso, J.G.; Kirkegaard, P.

    2008-01-01

    Cysts of the liver are discovered in connection with a scope of diseases ranging from simple, infectious, or parasitic to neoplastic cysts. Symptoms, paraclinical, radiological and diagnostic characteristics are described with emphasis on ruling out malignancy. The treatment options from ultrasound...... guided drainage to resections and liver transplantation are discussed. It is concluded that up to 25% of cysts must be treated surgically, because recurrence after percutaneous or laparoscopic treatment is between 5% and 71%, and only resection or liver transplantation are curative Udgivelsesdato: 2008/4/14...

  12. Do We Know What Causes Liver Cancer?

    Science.gov (United States)

    ... TOPICS Document Topics GO » SEE A LIST » Liver cancer risk factors Do we know what causes liver cancer? Can liver cancer be prevented? Previous Topic Liver cancer risk factors Next Topic Can liver cancer be prevented? Do ...

  13. Circadian rhythms of fetal liver transcription persist in the absence of canonical circadian clock gene expression rhythms in vivo.

    Directory of Open Access Journals (Sweden)

    Chengwei Li

    Full Text Available The cellular circadian clock and systemic cues drive rhythmicity in the transcriptome of adult peripheral tissues. However, the oscillating status of the circadian clocks in fetal tissues, and their response to maternal cues, are less clear. Most clock genes do not cycle in fetal livers from mice and rats, although tissue level rhythms rapidly emerge when fetal mouse liver explants are cultured in vitro. Thus, in the fetal mouse liver, the circadian clock does not oscillate at the cellular level (but is induced to oscillate in culture. To gain a comprehensive overview of the clock status in the fetal liver during late gestation, we performed microarray analyses on fetal liver tissues. In the fetal liver we did not observe circadian rhythms of clock gene expression or many other transcripts known to be rhythmically expressed in the adult liver. Nevertheless, JTK_CYCLE analysis identified some transcripts in the fetal liver that were rhythmically expressed, albeit at low amplitudes. Upon data filtering by coefficient of variation, the expression levels for transcripts related to pancreatic exocrine enzymes and zymogen secretion were found to undergo synchronized daily fluctuations at high amplitudes. These results suggest that maternal cues influence the fetal liver, despite the fact that we did not detect circadian rhythms of canonical clock gene expression in the fetal liver. These results raise important questions on the role of the circadian clock, or lack thereof, during ontogeny.

  14. CYP1A1 and CYP1A2 expression: Comparing 'humanized' mouse lines and wild-type mice; comparing human and mouse hepatoma-derived cell lines

    International Nuclear Information System (INIS)

    Human and rodent cytochrome P450 (CYP) enzymes sometimes exhibit striking species-specific differences in substrate preference and rate of metabolism. Human risk assessment of CYP substrates might therefore best be evaluated in the intact mouse by replacing mouse Cyp genes with human CYP orthologs; however, how 'human-like' can human gene expression be expected in mouse tissues? Previously a bacterial-artificial-chromosome-transgenic mouse, carrying the human CYP1A1CYP1A2 locus and lacking the mouse Cyp1a1 and Cyp1a2 orthologs, was shown to express robustly human dioxin-inducible CYP1A1 and basal versus inducible CYP1A2 (mRNAs, proteins, enzyme activities) in each of nine mouse tissues examined. Chimeric mice carrying humanized liver have also been generated, by transplanting human hepatocytes into a urokinase-type plasminogen activator(+/+)severe-combined-immunodeficiency (uPA/SCID) line with most of its mouse hepatocytes ablated. Herein we compare basal and dioxin-induced CYP1A mRNA copy numbers, protein levels, and four enzymes (benzo[a]pyrene hydroxylase, ethoxyresorufin O-deethylase, acetanilide 4-hydroxylase, methoxyresorufin O-demethylase) in liver of these two humanized mouse lines versus wild-type mice; we also compare these same parameters in mouse Hepa-1c1c7 and human HepG2 hepatoma-derived established cell lines. Most strikingly, mouse liver CYP1A1-specific enzyme activities are between 38- and 170-fold higher than human CYP1A1-specific enzyme activities (per unit of mRNA), whereas mouse versus human CYP1A2 enzyme activities (per unit of mRNA) are within 2.5-fold of one another. Moreover, both the mouse and human hepatoma cell lines exhibit striking differences in CYP1A mRNA levels and enzyme activities. These findings are relevant to risk assessment involving human CYP1A1 and CYP1A2 substrates, when administered to mice as environmental toxicants or drugs.

  15. Living donor liver transplantation for patients with alcoholic liver disease

    OpenAIRE

    Park, Yo-Han; Hwang, Shin; Ahn, Chul-Soo; Kim, Ki-Hun; Moon, Deok-Bog; Ha, Tae-Yong; Song, Gi-Won; Jung, Dong-Hwan; Park, Gil-Chun; Namgoong, Jung-Man; Park, Hyung-Woo; Park, Chun-Soo; Kang, Sung-Hwa; Jung, Bo-Hyeon; Lee, Sung-Gyu

    2013-01-01

    Backgrounds/Aims Since most transplantation studies for alcoholic liver disease (ALD) were performed on deceased donor liver transplantation, little was known following living donor liver transplantation (LDLT). Methods The clinical outcome of 18 ALD patients who underwent LDLT from Febraury 1997 to December 2004 in a large-volume liver transplantation center was assessed retrospectively. Results The model for end-stage liver disease score was 23±11, and mean pretransplant abstinence period w...

  16. Autoimmune liver diseases

    Institute of Scientific and Technical Information of China (English)

    Pietro Invernizzi; Ian R Mackay

    2008-01-01

    The liver was one of the earliest recognized sites among autoimmune diseases yet autoimmune hepatitis,primary biliary cirrhosis,primary sclerosing cholangitis,and their overlap forms,are still problematic in diagnosis and causation.The contributions herein comprise 'pairs of articles' on clinical characteristics,and concepts of etiopathogenesis,for each of the above diseases,together with childhood autoimmune liver disease,overlaps,interpretations of diagnostic serology,and liver transplantation.This issue is timely,since we are witnessing an ever increasing applicability of immunology to a wide variety of chronic diseases,hepatic and non-hepatic,in both developed and developing countries.The 11 invited expert review articles capture the changing features over recent years of the autoimmune liver diseases,the underlying immunomolecular mechanisms of development,the potent albeit still unexplained genetic influences,the expanding repertoire of immunoserological diagnostic markers,and the increasingly effective therapeutic possibilities.

  17. Living Related Liver Transplantation

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Living Related Liver Transplantation (LRLT)is a new strategy, which offers the option of a lifesaving procedure to patients suffering from end - stage liver disease, and the experience indicates that the results are better than cadaveric liver transplantation. It promises to decrease the waiting time for liver transplantation significantly and to reduce the number of patients dying on the waiting list. The selection of a suitable donor and the techniques of operation are of paramount importance for LRLT to minimize the risk for the recipient and the donor, and achieve better outcome for patient. 1 -year recipient survival rate of LRLT is over 90% and 5 -year recipient survival rate of LRLT is about 80%. LRLT has been becoming standard and normal operation in many western transplant centers.

  18. Pediatric liver transplantation

    Institute of Scientific and Technical Information of China (English)

    Marco Spada; Silvia Riva; Giuseppe Maggiore; Davide Cintorino; Bruno Gridelli

    2009-01-01

    In previous decades, pediatric liver transplantation has become a state-of-the-art operation with excellent success and limited mortality. Graft and patient survival have continued to improve as a result of improvements in medical, surgical and anesthetic management, organ availability, immunosuppression, and identification and treatment of postoperative complications. The utilization of split-liver grafts and living-related donors has provided more organs for pediatric patients. Newer immunosuppression regimens, including induction therapy, have had a significant impact on graft and patient survival. Future developments of pediatric liver transplantation will deal with long-term followup, with prevention of immunosuppression-related complications and promotion of as normal growth as possible. This review describes the state-of-the-art in pediatric liver transplantation.

  19. Research Areas: Liver Disease

    Science.gov (United States)

    ... 900 drugs and supplements.​​ Recent discoveries from NIDDK research include: New medication shows promise against liver fibrosis ... linked to biliary atresia in newborn animals Support Research NIDDK invests in basic, clinical and translational research ...

  20. [Nutrition and liver failure].

    Science.gov (United States)

    Plauth, M

    2013-06-01

    In the critically ill liver patient, nutrition support is not very different from that given for other illnesses. In hyperacute liver failure, nutrition support is of less importance than in the other subtypes of acute liver failure that take a more protracted course. Nasoenteral tube feeding using a polymeric standard formula should be the first-line approach, while parenteral nutrition giving glucose, fat, amino acids, vitamins, and trace elements is initiated when enteral nutrition is insufficient or impracticable. In chronic liver disease, notably cirrhosis, there is frequently protein malnutrition indicating a poor prognosis and requiring immediate initiation of nutrition support. Enteral nutrition ensuring an adequate provision of energy and protein should be preferred. Particular care should be taken to avoid refeeding syndrome and to treat vitamin and trace element deficiency.

  1. Antioxidant supplements for liver diseases

    DEFF Research Database (Denmark)

    Bjelakovic, Goran; Gluud, Lise Lotte; Nikolova, Dimitrinka;

    2011-01-01

    Several liver diseases have been associated with oxidative stress. Accordingly, antioxidants have been suggested as potential therapeutics for various liver diseases. The evidence supporting these suggestions is equivocal.......Several liver diseases have been associated with oxidative stress. Accordingly, antioxidants have been suggested as potential therapeutics for various liver diseases. The evidence supporting these suggestions is equivocal....

  2. Liver and Biliary System

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008546 Effects of gene-transfected bone marrow-derived liver stem cell transplantation on accumulation of extracellular matrix in rats with liver fibrosis.SUN Chao(孙超),et al.Dept Gastroenterol,Xinhua Hosp,Shanghai Jiaotong Univ,Shanghai 200092.Natl Med J China 2008;88(38):2685-2689. Objective To explore the effects of urokinase-type plasminogen activator(uPA)gene modified bone marrow-derived stem cell(BDLSC)

  3. Liver Cancer Stem Cells

    OpenAIRE

    Sameh Mikhail; Aiwu Ruth He

    2011-01-01

    Hepatocellular carcinoma is the most common primary malignancy of the liver in adults. It is also the fifth most common solid cancer worldwide and the third leading cause of cancer-related death. Recent research supports that liver cancer is a disease of adult stem cells. From the models of experimental hepatocarcinogenesis, there may be at least three distinct cell lineages with progenitor properties susceptible to neoplastic transformation. Identification of specific cell surface markers fo...

  4. Acute liver failure

    DEFF Research Database (Denmark)

    Larsen, Fin Stolze; Bjerring, Peter Nissen

    2011-01-01

    Acute liver failure (ALF) results in a multitude of serious complications that often lead to multi-organ failure. This brief review focuses on the pathophysiological processes in ALF and how to manage these.......Acute liver failure (ALF) results in a multitude of serious complications that often lead to multi-organ failure. This brief review focuses on the pathophysiological processes in ALF and how to manage these....

  5. Fatty liver in children

    OpenAIRE

    Rafeey, Mandana; Mogaddasi,; Hasani, Alka; Ghaffari, Shamsi

    2009-01-01

    Mandana Rafeey1, Fakhrossadat Mortazavi2, Nafiseh Mogaddasi2, Ghergherehchi Robabeh2, Shamsi Ghaffari2, Alka Hasani31Liver and gastrointestinal Research Center; 2Tabriz University (Medical Science) Tabriz, Iran; 3Research Center of Infectious Diseases and Tropical MedicineAims: The aim of this study is to investigate the clinical and laboratory characteristics of nonalcoholic fatty liver disease (NAFLD) in a referral center of pediatrics in the northwest of Iran.Methods: In this cross-section...

  6. Antifibrinolytics in liver surgery

    OpenAIRE

    Jalpa Makwana; Saloni Paranjape; Jyotsna Goswami

    2010-01-01

    Hyperfibrinolysis, a known complication of liver surgery and orthotopic liver transplantation (OLT), plays a significant role in blood loss. This fact justifies the use of antifibrinolytic drugs during these procedures. Two groups of drug namely lysine analogues [epsilon aminocaproic acid (EACA) and tranexamic acid (TA)] and serine-protease-inhibitors (aprotinin) are frequently used for this purpose. But uniform data or guidelines on the type of antifibrinolytic drugs to be used, their indica...

  7. Mouse bladder wall injection.

    Science.gov (United States)

    Fu, Chi-Ling; Apelo, Charity A; Torres, Baldemar; Thai, Kim H; Hsieh, Michael H

    2011-07-12

    Mouse bladder wall injection is a useful technique to orthotopically study bladder phenomena, including stem cell, smooth muscle, and cancer biology. Before starting injections, the surgical area must be cleaned with soap and water and antiseptic solution. Surgical equipment must be sterilized before use and between each animal. Each mouse is placed under inhaled isoflurane anesthesia (2-5% for induction, 1-3% for maintenance) and its bladder exposed by making a midline abdominal incision with scissors. If the bladder is full, it is partially decompressed by gentle squeezing between two fingers. The cell suspension of interest is intramurally injected into the wall of the bladder dome using a 29 or 30 gauge needle and 1 cc or smaller syringe. The wound is then closed using wound clips and the mouse allowed to recover on a warming pad. Bladder wall injection is a delicate microsurgical technique that can be mastered with practice.

  8. Photoacoustic molecular imaging for in vivo liver iron quantitation

    Science.gov (United States)

    Maccarinelli, Federica; Carmona, Fernando; Regoni, Maria; Arosio, Paolo

    2016-05-01

    A recent study showed that ferritin is a suitable endogenous contrast agent for photoacoustic molecular imaging in cultured mammalian cells. We have therefore tested whether this imaging technique can be used for in vivo quantification of iron in mouse livers. To verify this hypothesis, we used multispectral optoacoustic tomography (MSOT) to image albino CD1 mice before and after experimental iron loading. Postmortem assays showed that the iron treatment caused a 15-fold increase in liver iron and a 40-fold increase in liver ferritin levels, while in vivo longitudinal analysis using MSOT revealed just a 1.6-fold increase in the ferritin/iron photoacoustic signal in the same animals. We conclude that MSOT can monitor changes in ferritin/iron levels in vivo, but its sensitivity is much lower than that of ex vivo iron assays.

  9. Manipulation of Mouse Embryonic Stem Cells for Knockout Mouse Production

    OpenAIRE

    Limaye, Advait; Hall, Bradford; Kulkarni, Ashok B.

    2009-01-01

    The establishment of mouse embryonic stem (ES) cell liness has allowed for the generation of the knockout mouse. ES cells that are genetically altered in culture can then be manipulated to derive a whole mouse containing the desired mutation. To successfully generate a knockout mouse, however, the ES cells must be carefully cultivated in a pluripotent state throughout the gene targeting experiment. This unit describes detailed step-by-step protocols, reagents, equipment, and strategies needed...

  10. Liver disease and malnutrition.

    Science.gov (United States)

    Purnak, Tugrul; Yilmaz, Yusuf

    2013-08-01

    Patients with hepatic disorders are exceptionally vulnerable to developing malnutrition because of the key role played by the liver in regulating the nutritional state and the energy balance. Moreover, the presence of chronic liver disorders could reduce the appetite and thus influence the nutrient intake. Poor nutritional status has been shown in various patient groups with hepatic disorders, and particularly in patients with alcoholic cirrhosis who are at high nutritional risk. It is well established that malnourished patients with liver diseases generally have a higher risk of developing adverse clinical outcomes and increased healthcare costs. Nutrition screening with the Subjective Global Assessment and anthropometric measurements are an important first step in the early identification of malnutrition and initiates the whole nutrition care process. It is therefore important for appropriate nutrition policies and protocols to be implemented so that all patients with chronic liver diseases are monitored closely from a nutritional standpoint. Early and evidence-based nutritional interventions are eagerly needed to minimize the nutritional decline associated with chronic liver disorders and ultimately improve the prognosis of such patients. This review includes a comprehensive analysis of methods to identify malnutrition in patients with chronic liver diseases as well as the extent and impact of the malnutrition problem in selected patient populations.

  11. Liver transplantation in Ireland.

    Science.gov (United States)

    Iqbal, Masood; Elrayah, Elgaily A; Traynor, Oscar; McCormick, P Aiden

    2016-07-01

    The Irish National Liver Transplant program commenced in 1993 in St. Vincent's University Hospital in Dublin. It is an adult-only program and is the only liver transplant program in Ireland. Pediatric recipients are referred to King's College Hospital in the United Kingdom. To date, almost 1000 adult liver transplants have been performed. Current 1-year patient survival is 93%, and 5-year survival is 79%. The program is fully funded by the government health service. There is a close collaboration with the United Kingdom Organ Donation and Transplant Directorate, and there is an arrangement for organ sharing for super-urgent transplants. Traditionally, organ donation rates have been high in Ireland. However, demand for liver transplant has increased over the past 20 years, and waiting lists are now lengthening. Deceased cardiac death donation is now being considered, but there are no plans for living related donor liver transplant. Donor coordinators have recently been appointed to the major hospitals in Ireland, and it is hoped that this initiative will lead to an increase in organ donation rates. Liver Transplantation 22 1014-1018 2016 AASLD. PMID:27065358

  12. Split liver transplantation.

    Science.gov (United States)

    Yersiz, H; Cameron, A M; Carmody, I; Zimmerman, M A; Kelly, B S; Ghobrial, R M; Farmer, D G; Busuttil, R W

    2006-03-01

    Seventy-five thousand Americans develop organ failure each year. Fifteen percent of those on the list for transplantation die while waiting. Several possible mechanisms to expand the organ pool are being pursued including the use of extended criteria donors, living donation, and split deceased donor transplants. Cadaveric organ splitting results from improved understanding of the surgical anatomy of the liver derived from Couinaud. Early efforts focused on reduced-liver transplantation (RLT) reported by both Bismuth and Broelsch in the mid-1980s. These techniques were soon modified to create both a left lateral segment graft appropriate for a pediatric recipient and a right trisegment for an appropriately sized adult. Techniques of split liver transplantation (SLT) were also modified to create living donor liver transplantation. Pichlmayr and Bismuth reported successful split liver transplantation in 1989 and Emond reported a larger series of nine split procedures in 1990. Broelsch and Busuttil described a technical modification in which the split was performed in situ at the donor institution with surgical division completed in the heart beating cadaveric donor. In situ splitting reduces cold ischemia, simplifies identification of biliary and vascular structures, and reduces reperfusion hemorrhage. However, in situ splits require specialized skills, prolonged operating room time, and increased logistical coordination at the donor institution. At UCLA over 120 in situ splits have been performed and this technique is the default when an optimal donor is available. Split liver transplantation now accounts for 10% of adult transplantations at UCLA and 40% of pediatric transplantations.

  13. Hormone-responsive expression of an endogenous proviral gene of mouse mammary tumor virus after molecular cloning and gene transfer into cultured cells.

    OpenAIRE

    Hynes, N E; Kennedy, N; Rahmsdorf, U.; Groner, B.

    1981-01-01

    A recombinant lambda phage containing mouse mammary tumor virus (MMTV) proviral DNA was isolated from a gene library constructed from GR mouse liver DNA. Restriction enzyme analyses reveal that the cloned molecule contains a copy of one of the GR endogenous MMTV proviruses flanked on both sides by 2--3 kb of mouse genomic DNA. In this report we have examined the expression of the cloned MMTV provirus after cotransfection with the herpes thymidine kinase (TK; ATP:thymidine 5'-phosphotransferas...

  14. Burn mouse models

    DEFF Research Database (Denmark)

    Calum, Henrik; Høiby, Niels; Moser, Claus

    2014-01-01

    Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third-degree b......Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third...

  15. Percutaneous Cryoablation for Liver Cancer

    OpenAIRE

    Niu, Li-Zhi; Li, Jia-Liang; Xu, Ke-Cheng

    2014-01-01

    Based on the primary tumor site, liver cancer can be divided into two categories: (1) primary liver cancer and (2) metastatic cancer to the liver from a distant primary site. Guided cryoablation via many imaging methods induces iceball formation and tumor necrosisand is an attractive option for treating unresectable hepatocellular carcinoma (HCC) and metastatic liver cancer. There are several advantages to using cryoablation for the treatment of liver cancer: it can be performed percutaneousl...

  16. The Liver in Critical Illness.

    Science.gov (United States)

    Damm, Tessa W; Kramer, David J

    2016-07-01

    Caring for critically ill patients with acute and/or chronic liver dysfunction poses a unique challenge. Proper resuscitation and early consideration for transfer to liver transplant centers have resulted in improved outcomes. Liver support devices and cellular models have not yet shown mortality benefit, but they hold promise in the critical care of patients with liver disease. This article reviews pertinent anatomic and physiologic considerations of the liver in critical illness, followed by a selective review of associated organ dysfunction. PMID:27339681

  17. Excellent survival after liver transplantation for isolated polycystic liver disease : an European Liver Transplant Registry study

    NARCIS (Netherlands)

    van Keimpema, Loes; Nevens, Frederik; Adam, Rene; Porte, Robert J.; Fikatas, Panagiotis; Becker, Thomas; Kirkegaard, Preben; Metselaar, Herold J.; Drenth, Joost P. H.

    2011-01-01

    Patients with end-stage isolated polycystic liver disease (PCLD) suffer from incapacitating symptoms because of very large liver volumes. Liver transplantation (LT) is the only curative option. This study assesses the feasibility of LT in PCLD. We used the European Liver Transplant Registry (ELTR) d

  18. Excellent survival after liver transplantation for isolated polycystic liver disease: an European Liver Transplant Registry study

    DEFF Research Database (Denmark)

    van Keimpema, Loes; Nevens, Frederik; Adam, René;

    2011-01-01

    Patients with end-stage isolated polycystic liver disease (PCLD) suffer from incapacitating symptoms because of very large liver volumes. Liver transplantation (LT) is the only curative option. This study assesses the feasibility of LT in PCLD. We used the European Liver Transplant Registry (ELTR...

  19. Excellent survival after liver transplantation for isolated polycystic liver disease: an European Liver Transplant Registry study

    NARCIS (Netherlands)

    Keimpema, L. van; Nevens, F.; Adam, R.; Porte, R.J.; Fikatas, P.; Becker, T.; Kirkegaard, P.; Metselaar, H.J.; Drenth, J.P.H.

    2011-01-01

    Patients with end-stage isolated polycystic liver disease (PCLD) suffer from incapacitating symptoms because of very large liver volumes. Liver transplantation (LT) is the only curative option. This study assesses the feasibility of LT in PCLD. We used the European Liver Transplant Registry (ELTR) d

  20. Cold Preservation of Human Adult Hepatocytes for Liver Cell Therapy.

    Science.gov (United States)

    Duret, Cedric; Moreno, Daniel; Balasiddaiah, Anangi; Roux, Solene; Briolotti, Phillipe; Raulet, Edith; Herrero, Astrid; Ramet, Helene; Biron-Andreani, Christine; Gerbal-Chaloin, Sabine; Ramos, Jeanne; Navarro, Francis; Hardwigsen, Jean; Maurel, Patrick; Aldabe, Rafael; Daujat-Chavanieu, Martine

    2015-01-01

    Hepatocyte transplantation is a promising alternative therapy for the treatment of hepatic failure, hepatocellular deficiency, and genetic metabolic disorders. Hypothermic preservation of isolated human hepatocytes is potentially a simple and convenient strategy to provide on-demand hepatocytes in sufficient quantity and of the quality required for biotherapy. In this study, first we assessed how cold storage in three clinically safe preservative solutions (UW, HTS-FRS, and IGL-1) affects the viability and in vitro functionality of human hepatocytes. Then we evaluated whether such cold-preserved human hepatocytes could engraft and repopulate damaged livers in a mouse model of liver failure. Human hepatocytes showed comparable viabilities after cold preservation in the three solutions. The ability of fresh and cold-stored hepatocytes to attach to a collagen substratum and to synthesize and secrete albumin, coagulation factor VII, and urea in the medium after 3 days in culture was also equally preserved. Cold-stored hepatocytes were then transplanted in the spleen of immunodeficient mice previously infected with adenoviruses containing a thymidine kinase construct and treated with a single dose of ganciclovir to induce liver injury. Engraftment and liver repopulation were monitored over time by measuring the blood level of human albumin and by assessing the expression of specific human hepatic mRNAs and proteins in the recipient livers by RT-PCR and immunohistochemistry, respectively. Our findings show that cold-stored human hepatocytes in IGL-1 and HTS-FRS preservative solutions can survive, engraft, and proliferate in a damaged mouse liver. These results demonstrate the usefulness of human hepatocyte hypothermic preservation for cell transplantation. PMID:25622096