WorldWideScience

Sample records for cdc42 regulates bone

  1. Cdc42 regulates cofilin during the establishment of neuronal polarity

    DEFF Research Database (Denmark)

    Garvalov, Boyan K; Flynn, Kevin C; Neukirchen, Dorothee;

    2007-01-01

    The establishment of polarity is an essential process in early neuronal development. Although a number of molecules controlling neuronal polarity have been identified, genetic evidence about their physiological roles in this process is mostly lacking. We analyzed the consequences of loss of Cdc42......, a central regulator of polarity in multiple systems, on the polarization of mammalian neurons. Genetic ablation of Cdc42 in the brain led to multiple abnormalities, including striking defects in the formation of axonal tracts. Neurons from the Cdc42 null animals sprouted neurites but had a strongly...... suppressed ability to form axons both in vivo and in culture. This was accompanied by disrupted cytoskeletal organization, enlargement of the growth cones, and inhibition of filopodial dynamics. Axon formation in the knock-out neurons was rescued by manipulation of the actin cytoskeleton, indicating that the...

  2. miR-330 regulates the proliferation of colorectal cancer cells by targeting Cdc42

    International Nuclear Information System (INIS)

    Highlights: ► miR-330 was inversely correlated with Cdc42 in colorectal cancer cells. ► Elevated miR-330 suppressed cell proliferation in vivo and in vitro. ► Elevated miR-330 mimicked the effect of Cdc42 knockdown. ► Restoration of Cdc42 could partially attenuate the effects of miR-330. -- Abstract: MicroRNAs are small non-coding RNA molecules that play important roles in the multistep process of colorectal carcinoma (CRC) development. However, the miRNA–mRNA regulatory network is far from being fully understood. The objective of this study was to investigate the expression and the biological roles of miR-330 in colorectal cancer cells. Cdc42, one of the best characterized members of the Rho GTPase family, was found to be up-regulated in several types of human tumors including CRC and has been implicated in cancer initiation and progression. In the present study, we identified miR-330, as a potential regulator of Cdc42, was found to be inversely correlated with Cdc42 expression in colorectal cancer cell lines. Ectopic expression of miR-330 down-regulated Cdc42 expression at both protein and mRNA level, mimicked the effect of Cdc42 knockdown in inhibiting proliferation, inducing G1 cell cycle arrest and apoptosis of the colorectal cancer cells, whereas restoration of Cdc42 could partially attenuate the effects of miR-330. In addition, elevated expression of miR-330 could suppress the immediate downstream effectors of Cdc42 and inhibit the growth of colorectal cancer cells in vivo. To sum up, our results establish a role of miR-330 in negatively regulating Cdc42 expression and colorectal cancer cell proliferation. They suggest that manipulating the expression level of Cdc42 by miR-330 has the potential to influence colorectal cancer progression

  3. Rac1 and Cdc42 GTPases regulate shear stress-driven β-catenin signaling in osteoblasts

    International Nuclear Information System (INIS)

    Highlights: •Shear stress increased TCF/LEF activity and stimulated β-catenin nuclear localization. •Rac1, Cdc42, and RhoA displayed distinct dynamic activity patterns under flow. •Rac1 and Cdc42, but not RhoA, regulate shear stress-driven TCF/LEF activation. •Cytoskeleton did not significantly affect shear stress-induced TCF/LEF activation. -- Abstract: Beta-catenin-dependent TCF/LEF (T-cell factor/lymphocyte enhancing factor) is known to be mechanosensitive and an important regulator for promoting bone formation. However, the functional connection between TCF/LEF activity and Rho family GTPases is not well understood in osteoblasts. Herein we investigated the molecular mechanisms underlying oscillatory shear stress-induced TCF/LEF activity in MC3T3-E1 osteoblast cells using live cell imaging. We employed fluorescence resonance energy transfer (FRET)-based and green fluorescent protein (GFP)-based biosensors, which allowed us to monitor signal transduction in living cells in real time. Oscillatory (1 Hz) shear stress (10 dynes/cm2) increased TCF/LEF activity and stimulated translocation of β-catenin to the nucleus with the distinct activity patterns of Rac1 and Cdc42. The shear stress-induced TCF/LEF activity was blocked by the inhibition of Rac1 and Cdc42 with their dominant negative mutants or selective drugs, but not by a dominant negative mutant of RhoA. In contrast, constitutively active Rac1 and Cdc42 mutants caused a significant enhancement of TCF/LEF activity. Moreover, activation of Rac1 and Cdc42 increased the basal level of TCF/LEF activity, while their inhibition decreased the basal level. Interestingly, disruption of cytoskeletal structures or inhibition of myosin activity did not significantly affect shear stress-induced TCF/LEF activity. Although Rac1 is reported to be involved in β-catenin in cancer cells, the involvement of Cdc42 in β-catenin signaling in osteoblasts has not been identified. Our findings in this study demonstrate that

  4. Rac1 and Cdc42 GTPases regulate shear stress-driven β-catenin signaling in osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Qiaoqiao; Cho, Eunhye [Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202 (United States); Yokota, Hiroki [Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202 (United States); Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Na, Sungsoo, E-mail: sungna@iupui.edu [Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202 (United States)

    2013-04-19

    Highlights: •Shear stress increased TCF/LEF activity and stimulated β-catenin nuclear localization. •Rac1, Cdc42, and RhoA displayed distinct dynamic activity patterns under flow. •Rac1 and Cdc42, but not RhoA, regulate shear stress-driven TCF/LEF activation. •Cytoskeleton did not significantly affect shear stress-induced TCF/LEF activation. -- Abstract: Beta-catenin-dependent TCF/LEF (T-cell factor/lymphocyte enhancing factor) is known to be mechanosensitive and an important regulator for promoting bone formation. However, the functional connection between TCF/LEF activity and Rho family GTPases is not well understood in osteoblasts. Herein we investigated the molecular mechanisms underlying oscillatory shear stress-induced TCF/LEF activity in MC3T3-E1 osteoblast cells using live cell imaging. We employed fluorescence resonance energy transfer (FRET)-based and green fluorescent protein (GFP)-based biosensors, which allowed us to monitor signal transduction in living cells in real time. Oscillatory (1 Hz) shear stress (10 dynes/cm{sup 2}) increased TCF/LEF activity and stimulated translocation of β-catenin to the nucleus with the distinct activity patterns of Rac1 and Cdc42. The shear stress-induced TCF/LEF activity was blocked by the inhibition of Rac1 and Cdc42 with their dominant negative mutants or selective drugs, but not by a dominant negative mutant of RhoA. In contrast, constitutively active Rac1 and Cdc42 mutants caused a significant enhancement of TCF/LEF activity. Moreover, activation of Rac1 and Cdc42 increased the basal level of TCF/LEF activity, while their inhibition decreased the basal level. Interestingly, disruption of cytoskeletal structures or inhibition of myosin activity did not significantly affect shear stress-induced TCF/LEF activity. Although Rac1 is reported to be involved in β-catenin in cancer cells, the involvement of Cdc42 in β-catenin signaling in osteoblasts has not been identified. Our findings in this study demonstrate

  5. Roles of Aspergillus nidulans Cdc42/Rho GTPase regulators in hyphal morphogenesis and development.

    Science.gov (United States)

    Si, Haoyu; Rittenour, William R; Harris, Steven D

    2016-01-01

    The Rho-related family of GTPases are pivotal regulators of morphogenetic processes in diverse eukaryotic organisms. In the filamentous fungi two related members of this family, Cdc42 and Rac1, perform particularly important roles in the establishment and maintenance of hyphal polarity. The activity of these GTPases is tightly controlled by two sets of regulators: guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Despite the importance of Cdc42 and Rac1 in polarized hyphal growth, the morphogenetic functions of their cognate GEFs and GAPs have not been widely characterized in filamentous fungi outside the Saccharomycotina. Here we present a functional analysis of the Aspergillus nidulans homologs of the yeast GEF Cdc24 and the yeast GAP Rga1. We show that Cdc24 is required for the establishment of hyphal polarity and localizes to hyphal tips. We also show that Rga1 is necessary for the suppression of branching in developing conidiophores. During asexual development Rga1 appears to act primarily via Cdc42 and in doing so serves as a critical determinant of conidiophore architecture. Our results provide new insight into the roles of Cdc42 during development in A nidulans. PMID:26932184

  6. CDC-42 and RAC-1 regulate opposite chemotropisms in Neurospora crassa.

    Science.gov (United States)

    Lichius, Alexander; Goryachev, Andrew B; Fricker, Mark D; Obara, Boguslaw; Castro-Longoria, Ernestina; Read, Nick D

    2014-05-01

    Cell polarization and fusion are crucial developmental processes that occur in response to intracellular and extracellular signals. Asexual spores (conidia) of the mold Neurospora crassa differentiate two types of polarized cell protrusions, germ tubes and conidial anastomosis tubes (CATs), which exhibit negative and positive chemotropism, respectively. We provide the first evidence that shared and separate functions of the Rho-type GTPases CDC-42 and RAC-1 regulate these opposite chemotropisms. We demonstrate that RAC-1 is essential for CAT formation and cell fusion, whereas CDC-42 is necessary and sufficient for normal germ tube development. Cdc42-Rac-interactive-binding (CRIB) reporters were constructed to exclusively label locally activated GTP-bound GTPases. Time course analyses showed that repositioning of these activated GTPase clusters within germ tube and CAT tip apices controls directional growth in the absence of a tip-localized vesicle supply center (Spitzenkörper). We propose a model in which the local assembly of a plasma-membrane-associated GTPase-PAK-MAPK signaling platform regulates chemoattractant perception and secretion in order to synchronize oscillatory cell-cell communication and directional CAT tip growth. PMID:24790223

  7. The Rho GTPase Cdc42 regulates hair cell planar polarity and cellular patterning in the developing cochlea

    Directory of Open Access Journals (Sweden)

    Anna Kirjavainen

    2015-03-01

    Full Text Available Hair cells of the organ of Corti (OC of the cochlea exhibit distinct planar polarity, both at the tissue and cellular level. Planar polarity at tissue level is manifested as uniform orientation of the hair cell stereociliary bundles. Hair cell intrinsic polarity is defined as structural hair bundle asymmetry; positioning of the kinocilium/basal body complex at the vertex of the V-shaped bundle. Consistent with strong apical polarity, the hair cell apex displays prominent actin and microtubule cytoskeletons. The Rho GTPase Cdc42 regulates cytoskeletal dynamics and polarization of various cell types, and, thus, serves as a candidate regulator of hair cell polarity. We have here induced Cdc42 inactivation in the late-embryonic OC. We show the role of Cdc42 in the establishment of planar polarity of hair cells and in cellular patterning. Abnormal planar polarity was displayed as disturbances in hair bundle orientation and morphology and in kinocilium/basal body positioning. These defects were accompanied by a disorganized cell-surface microtubule network. Atypical protein kinase C (aPKC, a putative Cdc42 effector, colocalized with Cdc42 at the hair cell apex, and aPKC expression was altered upon Cdc42 depletion. Our data suggest that Cdc42 together with aPKC is part of the machinery establishing hair cell planar polarity and that Cdc42 acts on polarity through the cell-surface microtubule network. The data also suggest that defects in apical polarization are influenced by disturbed cellular patterning in the OC. In addition, our data demonstrates that Cdc42 is required for stereociliogenesis in the immature cochlea.

  8. NRP1 Regulates CDC42 Activation to Promote Filopodia Formation in Endothelial Tip Cells

    Directory of Open Access Journals (Sweden)

    Alessandro Fantin

    2015-06-01

    Full Text Available Sprouting blood vessels are led by filopodia-studded endothelial tip cells that respond to angiogenic signals. Mosaic lineage tracing previously revealed that NRP1 is essential for tip cell function, although its mechanistic role in tip cells remains poorly defined. Here, we show that NRP1 is dispensable for genetic tip cell identity. Instead, we find that NRP1 is essential to form the filopodial bursts that distinguish tip cells morphologically from neighboring stalk cells, because it enables the extracellular matrix (ECM-induced activation of CDC42, a key regulator of filopodia formation. Accordingly, NRP1 knockdown and pharmacological CDC42 inhibition similarly impaired filopodia formation in vitro and in developing zebrafish in vivo. During mouse retinal angiogenesis, CDC42 inhibition impaired tip cell and vascular network formation, causing defects that resembled those due to loss of ECM-induced, but not VEGF-induced, NRP1 signaling. We conclude that NRP1 enables ECM-induced filopodia formation for tip cell function during sprouting angiogenesis.

  9. The Rho-GTPase cdc42 regulates neural progenitor fate at the apical surface

    DEFF Research Database (Denmark)

    Cappello, Silvia; Attardo, Alessio; Wu, Xunwei; Iwasato, Takuji; Itohara, Shigeyoshi; Wilsch-Bräuninger, Michaela; Eilken, Hanna M; Rieger, Michael A; Schroeder, Timm T; Huttner, Wieland B; Brakebusch, Cord; Götz, Magdalena

    2006-01-01

    fundamental difference between these progenitors. Here we show that the conditional deletion of the small Rho-GTPase cdc42 at different stages of neurogenesis in mouse telencephalon results in an immediate increase in basal mitoses. Whereas cdc42-deficient progenitors have normal cell cycle length...

  10. Rho GTPase protein Cdc42 is critical for postnatal cartilage development.

    Science.gov (United States)

    Nagahama, Ryo; Yamada, Atsushi; Tanaka, Junichi; Aizawa, Ryo; Suzuki, Dai; Kassai, Hidetoshi; Yamamoto, Matsuo; Mishima, Kenji; Aiba, Atsu; Maki, Koutaro; Kamijo, Ryutaro

    2016-02-19

    Cdc42, a small Rho GTPase family member, has been shown to regulate multiple cellular functions in vitro, including actin cytoskeletal reorganization, cell migration, proliferation, and gene expression. However, its tissue-specific roles in vivo remain largely unknown, especially in postnatal cartilage development, as cartilage-specific Cdc42 inactivated mice die within a few days after birth. In this study, we investigated the physiological functions of Cdc42 during cartilage development after birth using tamoxifen-induced cartilage-specific inactivated Cdc42 conditional knockout (Cdc42 (fl/fl); Col2-CreERT) mice, which were generated by crossing Cdc42 flox mice (Cdc42 (fl/fl)) with tamoxifen-induced type II collagen (Col2) Cre transgenic mice using a Cre/loxP system. The gross morphology of the Cdc42 cKO mice was shorter limbs and body, as well as reduced body weight as compared with the controls. In addition, severe defects were found in growth plate chondrocytes of the long bones, characterized by a shorter proliferating zone (PZ), wider hypertrophic zone (HZ), and loss of columnar organization of proliferating chondrocytes, resulting in delayed endochondral bone formation associated with abnormal bone growth. Our findings demonstrate the importance of Cdc42 for cartilage development during both embryonic and postnatal stages. PMID:26820532

  11. Proper Regulation of Cdc42 Activity is Required for Tight Actin Concentration at the Equator during Cytokinesis in Adherent Mammalian Cells

    Science.gov (United States)

    Zhu, Xiaodong; Wang, Junxia; Moriguchi, Kazuki; Liow, Lu Ting; Ahmed, Sohail; Kaverina, Irina; Murata-Hori, Maki

    2012-01-01

    Cytokinesis in mammalian cells requires actin assembly at the equatorial region. Although functions of RhoA in this process have been well established, additional mechanisms are likely involved. We have examined if Cdc42 is involved in actin assembly during cytokinesis. Depletion of Cdc42 had no apparent effects on the duration of cytokinesis, while overexpression of constitutively active Cdc42 (CACdc42) caused cytokinesis failure in normal rat kidney epithelial cells. Cells depleted of Cdc42 displayed abnormal cell morphology and caused a failure of tight accumulation of actin and RhoA at the equator. In contrast, in cells overexpressing CACdc42, actin formed abnormal bundles and RhoA was largely eliminated from the equator. Our results suggest that accurate regulation of Cdc42 activity is crucial for proper equatorial actin assembly and RhoA localization during cytokinesis. Notably, our observations also suggest that tight actin concentration is not essential for cytokinesis in adherent mammalian cells. PMID:21763307

  12. Essential and distinct roles for cdc42 and rac1 in the regulation of Schwann cell biology during peripheral nervous system development

    OpenAIRE

    Benninger, Yves; Thurnherr, Tina; Pereira, Jorge A.; Krause, Sven; Wu, Xunwei; Chrostek-Grashoff, Anna; Herzog, Dominik; Nave, Klaus-Armin; Franklin, Robin J. M.; Meijer, Dies; Brakebusch, Cord; Suter, Ueli; Relvas, João B.

    2007-01-01

    During peripheral nervous system (PNS) myelination, Schwann cells must interpret extracellular cues to sense their environment and regulate their intrinsic developmental program accordingly. The pathways and mechanisms involved in this process are only partially understood. We use tissue-specific conditional gene targeting to show that members of the Rho GTPases, cdc42 and rac1, have different and essential roles in axon sorting by Schwann cells. Our results indicate that although cdc42 is re...

  13. Defective tubulin organization and proplatelet formation in murine megakaryocytes lacking Rac1 and Cdc42

    DEFF Research Database (Denmark)

    Pleines, Irina; Dütting, Sebastian; Cherpokova, Deya; Eckly, Anita; Meyer, Imke; Morowski, Martina; Krohne, Georg; Schulze, Harald; Gachet, Christian; Debili, Najet; Brakebusch, Cord Herbert; Nieswandt, Bernhard

    2013-01-01

    and tubulin cytoskeleton. Rho GTPases, such as RhoA, Rac1, and Cdc42, are important regulators of cytoskeletal rearrangements in platelets; however, the specific roles of these proteins during platelet production have not been established. Using conditional knockout mice, we show here that Rac1 and...... Cdc42 possess redundant functions in platelet production and function. In contrast to a single-deficiency of either protein, a double-deficiency of Rac1 and Cdc42 in MKs resulted in macrothrombocytopenia, abnormal platelet morphology, and impaired platelet function. Double-deficient bone marrow MKs...... matured normally in vivo but displayed highly abnormal morphology and uncontrolled fragmentation. Consistently, a lack of Rac1/Cdc42 virtually abrogated proplatelet formation in vitro. Strikingly, this phenotype was associated with severely defective tubulin organization, whereas actin assembly and...

  14. The role of CDC42 in cancer%CDC42与癌症

    Institute of Scientific and Technical Information of China (English)

    徐永茹; 徐平; 徐锋; 李湘萍

    2016-01-01

    Cell division cycle 42 (CDC42)is a member of Rho guanosine triphosphatase (GTPase) family,which plays an important role in cell proliferation , cell migration and cell transformation .The activity of CDC42 can be regulated by guanine nucleotide exchange factors (GEFs),GTPase activating proteins (GAPs) and guanine nucleotide-dissociation inhib-itors (GDIs).Recently,CDC42 has been reported as abnormally expressed in many human cancers ,suggesting that CDC42 performs complex functions in tumorigenesis .Therefore,this paper aims to shed light on the functions of CDC 42 in cancers in terms of the alteration of CDC42 activity,CDC42 regulators,as well as its effectors.%细胞分裂周期蛋白42(cell division cycle 42,CDC42)是Rho蛋白鸟苷三磷酸酶(guanosine triphosphatase, GTPase)家族成员之一,在细胞增殖、迁移、转化等过程发挥重要作用。与大多数GTPase一样,CDC42的活性受到鸟嘌呤核苷酸转换因子( guanine nucleotide exchange factors , GEF )、GTP 酶激活蛋白( GTPase activating proteins , GAP)和鸟苷酸解离抑制因子( guanine nucleotide-dissociation inhibitors ,GDI)的调控。目前研究表明,CDC42在大多数人癌症组织中表达异常,对癌症的发生发展具有复杂而重要的调控作用。该文就CDC42自身活性变化、CDC42调节因子的变化及其下游效应因子的变化在癌症中的作用进行综述,旨在深入理解CDC42在人类癌症中的作用机制。

  15. 骨髓间充质干细胞移植对慢性脑缺血大鼠海马区Cdc42表达及认知功能的影响%Transplantation of bone marrow mesenchymal stem cells increasing Cdc42 protein expression in the hippocampus and improving cognitive function of rats with chronic cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    于晓云; 张博爱; 李俊敏; 刘宇; 李晓晓; 崔璨; 崔红卫

    2013-01-01

    Objective To explore the effects of bone marrow mesenchymal stem cells transplantation on cognitive function and expression of cell division cycle 42 GTP-binding protein in hippocampus of chronic cerebral hypoperfusion rats. Methods 72 SD rats were randomly divided into sham, 2VO model (permanent ligation of bilateral common carotid artery) and experimental groups (2VO model + bone marrow mesenchymal stem cells transplantation). Rats in every group were subdivided into 8, 10 and 12 weeks subsets. Morris water maze was used to select rats of modeled successfully and space memory ability. Expression of Cdc42 protein in hippocampus was measured by Western blotting and immunohistochemistry. Results Expression of Cdc42 in hippocampus was reduced, escape latency was extended with time extending in experimental and model groups (P < 0. 05). Compared with model group, the expression of Cdc42 in the hippocampus tissue was increased and escape latency was shortened ( P < 0. 05 ) in experimental group. Conclusions Transplantation of bone marrow mesenchymal stem cells can improve cognitive function of chronic cerebral hypoperfusion rats, which maybe due to increased expression of Cdc42 protein.%目的 观察骨髓间充质干细胞移植后慢性脑缺血大鼠海马区表达Cdc42表达的变化,探讨其对慢性脑缺血大鼠认知功能的影响.方法 SD大鼠72只,随机分为假手术组、永久性双侧颈总动脉结扎(2VO)模型组、实验组(2VO模型+干细胞移植),每组分8、10、12w3个时间点,每个时间点8只,用Morris水迷宫筛选出造模成功的大鼠并检测大鼠的空间记忆能力,用Western印迹和免疫组化检测大鼠海马区Cdc42的表达.结果 实验组和模型组大鼠海马区Cdc42的表达随时间延长逐渐降低(P<0.05),其逃避潜伏期逐渐延长(P<0.05);较之2VO模型组,同一时间点实验组Cdc42表达明显增高(P<0.05),逃避潜伏期显著缩短(P<0.05).结论 骨髓间充质干细胞移植可显

  16. Continuous cell injury promotes hepatic tumorigenesis in cdc42-deficient mouse liver

    DEFF Research Database (Denmark)

    van Hengel, Jolanda; D'Hooge, Petra; Hooghe, Bart;

    2008-01-01

    BACKGROUND & AIMS: The Rho small guanosine triphosphatase Cdc42 is critical for diverse cellular functions, including regulation of actin organization, cell polarity, intracellular membrane trafficking, transcription, cell-cycle progression, and cell transformation. This implies that Cdc42 might be...

  17. miR-124-regulated RhoG reduces neuronal process complexity via ELMO/Dock180/Rac1 and Cdc42 signalling

    Science.gov (United States)

    Franke, Kristin; Otto, Wolfgang; Johannes, Sascha; Baumgart, Jan; Nitsch, Robert; Schumacher, Stefan

    2012-01-01

    The small GTPase RhoG plays a central role in actin remodelling during diverse biological processes such as neurite outgrowth, cell migration, phagocytosis of apoptotic cells, and the invasion of pathogenic bacteria. Although it is known that RhoG stimulates neurite outgrowth in the rat pheochromocytoma PC12 cell line, neither the physiological function nor the regulation of this GTPase in neuronal differentiation is clear. Here, we identify RhoG as an inhibitor of neuronal process complexity, which is regulated by the microRNA miR-124. We find that RhoG inhibits dendritic branching in hippocampal neurons in vitro and in vivo. RhoG also inhibits axonal branching, acting via an ELMO/Dock180/Rac1 signalling pathway. However, RhoG inhibits dendritic branching dependent on the small GTPase Cdc42. Finally, we show that the expression of RhoG in neurons is suppressed by the CNS-specific microRNA miR-124 and connect the regulation of RhoG expression by miR-124 to the stimulation of neuronal process complexity. Thus, RhoG emerges as a cellular conductor of Rac1 and Cdc42 activity, in turn regulated by miR-124 to control axonal and dendritic branching. PMID:22588079

  18. Cdc42 overexpression induces hyperbranching in the developing mammary gland by enhancing cell migration

    OpenAIRE

    Bray, Kristi; Gillette, Melissa; Young, Jeanette; Loughran, Elizabeth; Hwang, Melissa; Sears, James Cooper; Vargo-Gogola, Tracy

    2013-01-01

    Introduction The Rho GTPase Cdc42 is overexpressed and hyperactivated in breast tumors compared to normal breast tissue. Cdc42 regulates key processes that are critical for mammary gland morphogenesis and become disrupted during the development, progression, and metastasis of breast cancer. However, the contribution of Cdc42 to normal and neoplastic mammary gland development in vivo remains poorly understood. We were therefore interested in investigating the effects of Cdc42 overexpression on...

  19. Cdc42 is critical for cartilage development during endochondral ossification.

    Science.gov (United States)

    Suzuki, Wataru; Yamada, Atsushi; Aizawa, Ryo; Suzuki, Dai; Kassai, Hidetoshi; Harada, Takeshi; Nakayama, Mutsuko; Nagahama, Ryo; Maki, Koutaro; Takeda, Shu; Yamamoto, Matsuo; Aiba, Atsu; Baba, Kazuyoshi; Kamijo, Ryutaro

    2015-01-01

    Cdc42 is a widely expressed protein that belongs to the family of Rho GTPases and controls a broad variety of signal transduction pathways in a variety of cell types. To investigate the physiological functions of Cdc42 during cartilage development, we generated chondrocyte-specific inactivated Cdc42 mutant mice (Cdc42(fl/fl); Col2-Cre). The gross morphology of mutant neonates showed shorter limbs and body as compared with the control mice (Cdc42(fl/fl)). Skeletal preparations stained with alcian blue and alizarin red also revealed that the body and the long bone length of the mutants were shorter than those of the control mice. Furthermore, severe defects were found in growth plate chondrocytes in the femur sections of mutant mice, characterized by a reduced proliferating zone height, wider hypertrophic zone, and loss of columnar organization in proliferating chondrocytes. The expression levels of chondrocyte marker genes, such as Col2, Col10, and Mmp13, in mutant mice were decreased as compared with the control mice. Mineralization of trabecular bones in the femur sections was also decreased in the mutants as compared with control mice, whereas osteoid volume was increased. Together these results suggested that chondrocyte proliferation and differentiation in growth plates in the present mutant mice were not normally organized, which contributed to abnormal bone formation. We concluded that Cdc42 is essential for cartilage development during endochondral bone formation. PMID:25343271

  20. Cdc42 promotes host defenses against fatal infection

    DEFF Research Database (Denmark)

    Lee, Keunwook; Boyd, Kelli L; Parekh, Diptiben V;

    2013-01-01

    The small Rho GTPase, Cdc42, regulates key signaling pathways required for multiple cell functions including maintenance of shape, polarity, proliferation, invasion, migration, differentiation and morphogenesis. As the role of Cdc42-dependent signaling in fibroblasts in vivo is unknown, we...... attempted to specifically delete it in these cells by crossing the Cdc42(fl/fl) mouse with a FSP-1 cre mouse, which is thought to mediate recombination exclusively in fibroblasts. Surprisingly, the FSP-1cre;Cdc42(fl/fl) mice died at 3 weeks of age due to overwhelming suppurative upper airway infections that...... were associated with neutrophilia and lymphopenia. Even though major aberrations in lymphoid tissue development were present in the mice, the principal cause of death was severe migration and killing abnormalities of the neutrophil population resulting in an inability to control infection. We also...

  1. Opposing Roles for Actin in Cdc42p PolarizationD⃞

    OpenAIRE

    Irazoqui, Javier E.; Howell, Audrey S.; Theesfeld, Chandra L.; Lew, Daniel J.

    2005-01-01

    In animal and fungal cells, the monomeric GTPase Cdc42p is a key regulator of cell polarity that itself exhibits a polarized distribution in asymmetric cells. Previous work showed that in budding yeast, Cdc42p polarization is unaffected by depolymerization of the actin cytoskeleton (Ayscough et al., J. Cell Biol. 137, 399–416, 1997). Surprisingly, we now report that unlike complete actin depolymerization, partial actin depolymerization leads to the dispersal of Cdc42p from the polarization si...

  2. Functional characterization and cellular dynamics of the CDC-42 - RAC - CDC-24 module in Neurospora crassa.

    Directory of Open Access Journals (Sweden)

    Cynthia L Araujo-Palomares

    Full Text Available Rho-type GTPases are key regulators that control eukaryotic cell polarity, but their role in fungal morphogenesis is only beginning to emerge. In this study, we investigate the role of the CDC-42 - RAC - CDC-24 module in Neurospora crassa. rac and cdc-42 deletion mutants are viable, but generate highly compact colonies with severe morphological defects. Double mutants carrying conditional and loss of function alleles of rac and cdc-42 are lethal, indicating that both GTPases share at least one common essential function. The defects of the GTPase mutants are phenocopied by deletion and conditional alleles of the guanine exchange factor (GEF cdc-24, and in vitro GDP-GTP exchange assays identify CDC-24 as specific GEF for both CDC-42 and RAC. In vivo confocal microscopy shows that this module is organized as membrane-associated cap that covers the hyphal apex. However, the specific localization patterns of the three proteins are distinct, indicating different functions of RAC and CDC-42 within the hyphal tip. CDC-42 localized as confined apical membrane-associated crescent, while RAC labeled a membrane-associated ring excluding the region labeled by CDC42. The GEF CDC-24 occupied a strategic position, localizing as broad apical membrane-associated crescent and in the apical cytosol excluding the Spitzenkörper. RAC and CDC-42 also display distinct localization patterns during branch initiation and germ tube formation, with CDC-42 accumulating at the plasma membrane before RAC. Together with the distinct cellular defects of rac and cdc-42 mutants, these localizations suggest that CDC-42 is more important for polarity establishment, while the primary function of RAC may be maintaining polarity. In summary, this study identifies CDC-24 as essential regulator for RAC and CDC-42 that have common and distinct functions during polarity establishment and maintenance of cell polarity in N. crassa.

  3. GIT2 represses Crk- and Rac1-regulated cell spreading and Cdc42-mediated focal adhesion turnover

    OpenAIRE

    Frank, Scott R.; Adelstein, Molly R; Hansen, Steen H.

    2006-01-01

    G protein-coupled receptor kinase interactors (GITs) regulate focal adhesion (FA) turnover, cell spreading, and motility through direct interaction with paxillin and the Rac-exchange factor Pak-interacting exchange factor β (βPIX). However, it is not clear whether GITs function to activate or repress motility or if the predominant GIT forms, GIT1 and GIT2, serve distinct or redundant roles. Here we demonstrate an obligatory role for endogenous GIT2 in repression of lamellipodial extension and...

  4. The small GTPase Cdc42 modulates the number of exocytosis-competent dense-core vesicles in PC12 cells

    International Nuclear Information System (INIS)

    Highlights: ► Regulation of exocytosis by Rho GTPase Cdc42. ► Cdc42 increases the number of fusion events from newly recruited vesicles. ► Cdc42 increases the number of exocytosis-competent dense-core vesicles. -- Abstract: Although the small GTPase Rho family Cdc42 has been shown to facilitate exocytosis through increasing the amount of hormones released, the precise mechanisms regulating the quantity of hormones released on exocytosis are not well understood. Here we show by live cell imaging analysis under TIRF microscope and immunocytochemical analysis under confocal microscope that Cdc42 modulated the number of fusion events and the number of dense-core vesicles produced in the cells. Overexpression of a wild-type or constitutively-active form of Cdc42 strongly facilitated high-KCl-induced exocytosis from the newly recruited plasma membrane vesicles in PC12 cells. By contrast, a dominant-negative form of Cdc42 inhibited exocytosis from both the newly recruited and previously docked plasma membrane vesicles. The number of intracellular dense-core vesicles was increased by the overexpression of both a wild-type and constitutively-active form of Cdc42. Consistently, activation of Cdc42 by overexpression of Tuba, a Golgi-associated guanine nucleotide exchange factor for Cdc42 increased the number of intracellular dense-core vesicles, whereas inhibition of Cdc42 by overexpression of the Cdc42/Rac interactive binding domain of neuronal Wiskott–Aldrich syndrome protein decreased the number of them. These findings suggest that Cdc42 facilitates exocytosis by modulating both the number of exocytosis-competent dense-core vesicles and the production of dense-core vesicles in PC12 cells.

  5. Hepatocyte-specific deletion of Cdc42 results in delayed liver regeneration after partial hepatectomy in mice

    DEFF Research Database (Denmark)

    Yuan, Haixin; Zhang, Hong; Wu, Xunwei;

    2009-01-01

    Cdc42, a member of the Rho guanosine triphosphatase (GTPase) family, plays important roles in the regulation of the cytoskeleton, cell proliferation, cell polarity, and cellular transport, but little is known about its specific function in mammalian liver. We investigated the function of Cdc42 in...... regeneration, which may result from impaired cytoskeletal organization and intracellular trafficking in hepatocytes. Conclusion: Our results revealed important roles of Cdc42 in the regulation of proliferative signaling during liver regeneration....

  6. Essential roles of Cdc42 and MAPK in cadmium-induced apoptosis in Litopenaeus vannamei

    International Nuclear Information System (INIS)

    Highlights: • Cd2+ induces Cdc42 and MAPKs pathway related gene of Litopenaeus vannamei up-regulation. • Reduction of THC, increase of ROS production and apoptotic cell rate were observed when the shrimps exposure to Cd2+. • DsRNA-suppression of LvCdc42 and MAPKs during Cd2+ stress reduces the ROS production and apoptosis. • We conclude that LvCdc42 and MAPKs play key roles in Cd2+ stress responses of shrimps. - Abstract: Cadmium, one of the most toxic heavy metals in aquatic environments, has severe effects on marine invertebrates and fishes. The MAPK signaling pathway plays a vital role in stress responses of animals. The mitogen-activated protein kinase (MAPK) signaling pathway plays a vital role in animals’ stress responses, including mediation of apoptosis induced by the Rho GTPase Cdc42. However, there is limited knowledge about its function in shrimps, although disorders exacerbated by environmental stresses (including heavy metal pollution) have caused serious mortality in commercially cultured shrimps. Thus, we probed roles of Cdc42 in Litopenaeus vannamei shrimps (LvCdc42) during cadmium exposure by inhibiting its expression using dsRNA-mediated RNA interference. The treatment successfully reduced expression levels of MAPKs (including p38, JNK, and ERK). Cadmium exposure induced significant increases in expression levels of LvCdc42 and MAPKs, accompanied by reductions in total hemocyte counts (THC) and increases in apoptotic hemocyte ratios and ROS production. However, all of these responses were much weaker in LvCdc42-suppressed shrimps, in which mortality rates were higher than in controls. Our results suggest that the MAPK pathway plays a vital role in shrimps’ responses to Cd2+. They also indicate that LvCdc42 in shrimps participates in its regulation, and thus plays key roles in ROS production, regulation of apoptosis and associated stress responses

  7. Essential roles of Cdc42 and MAPK in cadmium-induced apoptosis in Litopenaeus vannamei

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Ting; Wang, Wei-Na, E-mail: weina63@aliyun.com; Gu, Mei-Mei; Xie, Chen-Ying; Xiao, Yu-Chao; Liu, Yuan; Wang, Lei

    2015-06-15

    Highlights: • Cd{sup 2+} induces Cdc42 and MAPKs pathway related gene of Litopenaeus vannamei up-regulation. • Reduction of THC, increase of ROS production and apoptotic cell rate were observed when the shrimps exposure to Cd{sup 2+}. • DsRNA-suppression of LvCdc42 and MAPKs during Cd{sup 2+} stress reduces the ROS production and apoptosis. • We conclude that LvCdc42 and MAPKs play key roles in Cd{sup 2+} stress responses of shrimps. - Abstract: Cadmium, one of the most toxic heavy metals in aquatic environments, has severe effects on marine invertebrates and fishes. The MAPK signaling pathway plays a vital role in stress responses of animals. The mitogen-activated protein kinase (MAPK) signaling pathway plays a vital role in animals’ stress responses, including mediation of apoptosis induced by the Rho GTPase Cdc42. However, there is limited knowledge about its function in shrimps, although disorders exacerbated by environmental stresses (including heavy metal pollution) have caused serious mortality in commercially cultured shrimps. Thus, we probed roles of Cdc42 in Litopenaeus vannamei shrimps (LvCdc42) during cadmium exposure by inhibiting its expression using dsRNA-mediated RNA interference. The treatment successfully reduced expression levels of MAPKs (including p38, JNK, and ERK). Cadmium exposure induced significant increases in expression levels of LvCdc42 and MAPKs, accompanied by reductions in total hemocyte counts (THC) and increases in apoptotic hemocyte ratios and ROS production. However, all of these responses were much weaker in LvCdc42-suppressed shrimps, in which mortality rates were higher than in controls. Our results suggest that the MAPK pathway plays a vital role in shrimps’ responses to Cd{sup 2+}. They also indicate that LvCdc42 in shrimps participates in its regulation, and thus plays key roles in ROS production, regulation of apoptosis and associated stress responses.

  8. The small G-proteins Rac1 and Cdc42 are essential for myoblast fusion in the mouse

    DEFF Research Database (Denmark)

    Vasyutina, Elena; Martarelli, Benedetta; Brakebusch, Cord; Wende, Hagen; Birchmeier, Carmen

    2009-01-01

    Rac1 and Cdc42 are small G-proteins that regulate actin dynamics and affect plasma membrane protrusion and vesicle traffic. We used conditional mutagenesis in mice to demonstrate that Rac1 and Cdc42 are essential for myoblast fusion in vivo and in vitro. The deficit in fusion of Rac1 or Cdc42...... genetic analysis demonstrates thus that the function of Rac in myoblast fusion is evolutionarily conserved from insects to mammals and that Cdc42, a molecule hitherto not implicated in myoblast fusion, is essential for the fusion of murine myoblasts....

  9. An Essential Role for Cdc42 in the Functioning of the Adult Mammary Gland.

    Science.gov (United States)

    Druso, Joseph E; Endo, Makoto; Lin, Miao-Chong Joy; Peng, Xu; Antonyak, Marc A; Meller, Stephanie; Cerione, Richard A

    2016-04-22

    The Rho family small GTPase Cdc42 has been implicated in a wide range of cellular functions including the establishment of cell polarity and the remodeling of the actin cytoskeletal architecture, resulting in the tight regulation of cell growth and survival during developmental processes. The complete knock-out of Cdc42 in the mouse is embryonic-lethal, and its targeted deletion in various tissues has been shown to disrupt tissue homeostasis. Thus far, in most studies, the targeted deletion of Cdc42 occurred during embryogenesis. Here, we have used a conditional gene deletion strategy in mice to probe the specific role of Cdc42 during adult mammary gland function. Cdc42 conditional-knock-out females were unable to adequately nourish their pups, due to a disorganized epithelial compartment within their mammary glands. A closer examination showed that their mammary epithelial cells were not able to maintain functional alveolar lumens, due to an inability to establish normal apical/basal epithelial polarity, as well as proper cell-cell contacts. Loss of these essential epithelial characteristics led to a premature sloughing off of the Cdc42-null epithelial cells. Overall our findings demonstrate that Cdc42 plays essential roles in mammary gland function post pregnancy, where it helps to establish proper epithelial cell polarity and tissue homeostasis during lactation. PMID:26912661

  10. Opposing Roles for Actin in Cdc42p PolarizationD⃞

    Science.gov (United States)

    Irazoqui, Javier E.; Howell, Audrey S.; Theesfeld, Chandra L.; Lew, Daniel J.

    2005-01-01

    In animal and fungal cells, the monomeric GTPase Cdc42p is a key regulator of cell polarity that itself exhibits a polarized distribution in asymmetric cells. Previous work showed that in budding yeast, Cdc42p polarization is unaffected by depolymerization of the actin cytoskeleton (Ayscough et al., J. Cell Biol. 137, 399–416, 1997). Surprisingly, we now report that unlike complete actin depolymerization, partial actin depolymerization leads to the dispersal of Cdc42p from the polarization site in unbudded cells. We provide evidence that dispersal is due to endocytosis associated with cortical actin patches and that actin cables are required to counteract the dispersal and maintain Cdc42p polarity. Thus, although Cdc42p is initially polarized in an actin-independent manner, maintaining that polarity may involve a reinforcing feedback between Cdc42p and polarized actin cables to counteract the dispersing effects of actin-dependent endocytosis. In addition, we report that once a bud has formed, polarized Cdc42p becomes more resistant to dispersal, revealing an unexpected difference between unbudded and budded cells in the organization of the polarization site. PMID:15616194

  11. Cdc42-mediated tubulogenesis controls cell specification

    DEFF Research Database (Denmark)

    Kesavan, Gokul; Sand, Fredrik Wolfhagen; Greiner, Thomas Uwe;

    2009-01-01

    Understanding how cells polarize and coordinate tubulogenesis during organ formation is a central question in biology. Tubulogenesis often coincides with cell-lineage specification during organ development. Hence, an elementary question is whether these two processes are independently controlled...... later for maintaining apical cell polarity. Finally, we show that Cdc42 controls cell specification non-cell-autonomously by providing the correct microenvironment for proper control of cell-fate choices of multipotent progenitors. For a video summary of this article, see the PaperFlick file with the......, or whether proper cell specification depends on formation of tubes. To address these fundamental questions, we have studied the functional role of Cdc42 in pancreatic tubulogenesis. We present evidence that Cdc42 is essential for tube formation, specifically for initiating microlumen formation and...

  12. CdGAP/ARHGAP31, a Cdc42/Rac1 GTPase regulator, is critical for vascular development and VEGF-mediated angiogenesis.

    Science.gov (United States)

    Caron, Christine; DeGeer, Jonathan; Fournier, Patrick; Duquette, Philippe M; Luangrath, Vilayphone; Ishii, Hidetaka; Karimzadeh, Fereshteh; Lamarche-Vane, Nathalie; Royal, Isabelle

    2016-01-01

    Mutations in the CdGAP/ARHGAP31 gene, which encodes a GTPase-activating protein for Rac1 and Cdc42, have been reported causative in the Adams-Oliver developmental syndrome often associated with vascular defects. However, despite its abundant expression in endothelial cells, CdGAP function in the vasculature remains unknown. Here, we show that vascular development is impaired in CdGAP-deficient mouse embryos at E15.5. This is associated with superficial vessel defects and subcutaneous edema, resulting in 44% embryonic/perinatal lethality. VEGF-driven angiogenesis is defective in CdGAP(-/-) mice, showing reduced capillary sprouting from aortic ring explants. Similarly, VEGF-dependent endothelial cell migration and capillary formation are inhibited upon CdGAP knockdown. Mechanistically, CdGAP associates with VEGF receptor-2 and controls VEGF-dependent signaling. Consequently, CdGAP depletion results in impaired VEGF-mediated Rac1 activation and reduced phosphorylation of critical intracellular mediators including Gab1, Akt, PLCγ and SHP2. These findings are the first to demonstrate the importance of CdGAP in embryonic vascular development and VEGF-induced signaling, and highlight CdGAP as a potential therapeutic target to treat pathological angiogenesis and vascular dysfunction. PMID:27270835

  13. Thyroid bud morphogenesis requires CDC42- and SHROOM3-dependent apical constriction

    Science.gov (United States)

    Loebel, David A. F.; Plageman, Timothy F.; Tang, Theresa L.; Jones, Vanessa J.; Muccioli, Maria; Tam, Patrick P. L.

    2016-01-01

    ABSTRACT Early development of the gut endoderm and its subsequent remodeling for the formation of organ buds are accompanied by changes to epithelial cell shape and polarity. Members of the Rho-related family of small GTPases and their interacting proteins play multiple roles in regulating epithelial morphogenesis. In this study we examined the role of Cdc42 in foregut development and organ bud formation. Ablation of Cdc42 in post-gastrulation mouse embryos resulted in a loss of apical-basal cell polarity and columnar epithelial morphology in the ventral pharyngeal endoderm, in conjunction with a loss of apical localization of the known CDC42 effector protein PARD6B. Cell viability but not proliferation in the foregut endoderm was impaired. Outgrowth of the liver, lung and thyroid buds was severely curtailed in Cdc42-deficient embryos. In particular, the thyroid bud epithelium did not display the apical constriction that normally occurs concurrently with the outgrowth of the bud into the underlying mesenchyme. SHROOM3, a protein that interacts with Rho GTPases and promotes apical constriction, was strongly expressed in the thyroid bud and its sub-cellular localization was disrupted in Cdc42-deficient embryos. In Shroom3 gene trap mutant embryos, the thyroid bud epithelium showed no apical constriction, while the bud continued to grow and protruded into the foregut lumen. Our findings indicate that Cdc42 is required for epithelial polarity and organization in the endoderm and for apical constriction in the thyroid bud. It is possible that the function of CDC42 is partly mediated by SHROOM3. PMID:26772200

  14. FLIM FRET Visualization of Cdc42 Activation by Netrin-1 in Embryonic Spinal Commissural Neuron Growth Cones

    Science.gov (United States)

    Rappaz, Benjamin; Lai Wing Sun, Karen; Correia, James P.; Wiseman, Paul W.; Kennedy, Timothy E.

    2016-01-01

    Netrin-1 is an essential extracellular chemoattractant that signals through its receptor DCC to guide commissural axon extension in the embryonic spinal cord. DCC directs the organization of F-actin in growth cones by activating an intracellular protein complex that includes the Rho GTPase Cdc42, a critical regulator of cell polarity and directional migration. To address the spatial distribution of signaling events downstream of netrin-1, we expressed the FRET biosensor Raichu-Cdc42 in cultured embryonic rat spinal commissural neurons. Using FLIM-FRET imaging we detected rapid activation of Cdc42 in neuronal growth cones following application of netrin-1. Investigating the signaling mechanisms that control Cdc42 activation by netrin-1, we demonstrate that netrin-1 rapidly enriches DCC at the leading edge of commissural neuron growth cones and that netrin-1 induced activation of Cdc42 in the growth cone is blocked by inhibiting src family kinase signaling. These findings reveal the activation of Cdc42 in embryonic spinal commissural axon growth cones and support the conclusion that src family kinase activation downstream of DCC is required for Cdc42 activation by netrin-1. PMID:27482713

  15. Podocyte-specific loss of cdc42 leads to congenital nephropathy

    DEFF Research Database (Denmark)

    Scott, Rizaldy P; Hawley, Steve P; Ruston, Julie; Du, Jianmei; Brakebusch, Cord; Jones, Nina; Pawson, Tony

    2012-01-01

    Rho family GTPases are molecular switches best known for their pivotal role in dynamic regulation of the actin cytoskeleton. The prototypic members of this family are Cdc42, Rac1, and RhoA; these GTPases contribute to the breakdown of glomerular filtration and the resultant proteinuria, but their...... functions in normal podocyte physiology remain poorly understood. Here, mice lacking Cdc42 in podocytes developed congenital nephropathy and died as a result of renal failure within 2 weeks after birth. In contrast, mice lacking Rac1 or RhoA in podocytes were overtly normal and lived to adulthood. Kidneys...... from Cdc42-mutant mice exhibited protein-filled microcysts with hallmarks of collapsing glomerulopathy, as well as extensive effacement of podocyte foot processes with abnormal junctional complexes. Furthermore, we observed aberrant expression of several podocyte markers and cell polarity proteins in...

  16. Essential and distinct roles for cdc42 and rac1 in the regulation of Schwann cell biology during peripheral nervous system development

    DEFF Research Database (Denmark)

    Benninger, Yves; Thurnherr, Tina; Pereira, Jorge A;

    2007-01-01

    During peripheral nervous system (PNS) myelination, Schwann cells must interpret extracellular cues to sense their environment and regulate their intrinsic developmental program accordingly. The pathways and mechanisms involved in this process are only partially understood. We use tissue...

  17. Cdc42 and noncanonical Wnt signal transduction pathways cooperate to promote cell polarity

    OpenAIRE

    Schlessinger, Karni; McManus, Edward J.; Hall, Alan

    2007-01-01

    Scratch-induced disruption of cultured monolayers induces polarity in front row cells that can be visualized by spatially localized polymerization of actin at the front of the cell and reorientation of the centrosome/Golgi to face the leading edge. We previously reported that centrosomal reorientation and microtubule polarization depend on a Cdc42-regulated signal transduction pathway involving activation of the Par6/aPKC complex followed by inhibition of GSK-3β and accumulation of the adenom...

  18. Prominin-2 expression increases protrusions, decreases caveolae and inhibits Cdc42 dependent fluid phase endocytosis

    International Nuclear Information System (INIS)

    localize to lipid rafts and recruit cholesterol into protrusions and away from caveolae, leading to increased phosphorylation of caveolin-1, which inhibits Cdc42-dependent endocytosis. This study provides a new insight for the role for prominins in the regulation of PM lipid organization

  19. Prominin-2 expression increases protrusions, decreases caveolae and inhibits Cdc42 dependent fluid phase endocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Raman Deep, E-mail: Takhter.Ramandeep@mayo.edu; Schroeder, Andreas S.; Scheffer, Luana; Holicky, Eileen L.; Wheatley, Christine L.; Marks, David L., E-mail: Marks.david@mayo.edu; Pagano, Richard E.

    2013-05-10

    localize to lipid rafts and recruit cholesterol into protrusions and away from caveolae, leading to increased phosphorylation of caveolin-1, which inhibits Cdc42-dependent endocytosis. This study provides a new insight for the role for prominins in the regulation of PM lipid organization.

  20. P-cadherin promotes collective cell migration via a Cdc42-mediated increase in mechanical forces

    Science.gov (United States)

    Plutoni, Cédric; Bazellieres, Elsa; Le Borgne-Rochet, Maïlys; Comunale, Franck; Brugues, Agusti; Séveno, Martial; Planchon, Damien; Thuault, Sylvie; Morin, Nathalie; Bodin, Stéphane; Trepat, Xavier

    2016-01-01

    Collective cell migration (CCM) is essential for organism development, wound healing, and metastatic transition, the primary cause of cancer-related death, and it involves cell–cell adhesion molecules of the cadherin family. Increased P-cadherin expression levels are correlated with tumor aggressiveness in carcinoma and aggressive sarcoma; however, how P-cadherin promotes tumor malignancy remains unknown. Here, using integrated cell biology and biophysical approaches, we determined that P-cadherin specifically induces polarization and CCM through an increase in the strength and anisotropy of mechanical forces. We show that this mechanical regulation is mediated by the P-cadherin/β-PIX/Cdc42 axis; P-cadherin specifically activates Cdc42 through β-PIX, which is specifically recruited at cell–cell contacts upon CCM. This mechanism of cell polarization and migration is absent in cells expressing E- or R-cadherin. Thus, we identify a specific role of P-cadherin through β-PIX–mediated Cdc42 activation in the regulation of cell polarity and force anisotropy that drives CCM. PMID:26783302

  1. Structure and Expression of Several Putative Cdc42-Interacting Proteins in Magnaporthe grisea

    Institute of Scientific and Technical Information of China (English)

    ZHENG Wu; CHEN Ji-sheng; ZHENG Shi-qin; LU Guo-dong; WANG Zong-hua

    2006-01-01

    MgCdc42 (Cdc42 in Magnaporthe grisea), with high homology to ScCdc42 (Cdc42 in Saccharomyces cerevisiae), has been demonstrated to involve in the morphogenesis and infection process. To further understand the signaling network,the putative MgCdc42-interacting proteins were analyzed. ScCdc42-interacting protein sequences were first used to BLAST against the M. grisea genome database to retrieve their corresponding analogs. Subsequently, conserved domains of these proteins were compared and expression patterns of their encoding genes in different MgCdc42 mutation states were analyzed by semiquantitative RT-PCR. All retrieved analogs of ScCdc42-interacting proteins from the M.grisea database have conserved domains as those in S. cerevisiae. Expression of their encoding genes increased in MgCdc42CA mutant and decreased in MgCdc42KO mutant. However, MgBem1, Chm1, and MgGic1 in MgCdc42DN mutant had the same expression level as that in the wild type, although MgBem4, MgBoi2, MgCdc24, MgGic2, MgRga1,and Mst20 had decreased expression level, as expected. Overall, it is concluded that there may exist a similar Cdc42 signal pathway in M. grisea as in S. cerevisiae and MgCdc42 plays a key role in the pathway.

  2. Divergent functions of the Rho GTPases Rac1 and Cdc42 in podocyte injury

    DEFF Research Database (Denmark)

    Blattner, Simone M; Hodgin, Jeffrey B; Nishio, Masashi;

    2013-01-01

    the regulation of actin cytoskeleton dynamics. Here, we employed podocyte-specific Cre-lox technology and found that mice with deletion of Rac1 display normal podocyte morphology without glomerular dysfunction well into adulthood. Using the protamine sulfate model of acute podocyte injury, podocyte...... steady state. However, Rac1 has either beneficial or deleterious effects depending on the context of podocyte impairment. Thus, our study highlights the divergent roles of Rac1 and Cdc42 function in podocyte maintenance and injury.Kidney International advance online publication, 15 May 2013; doi:10...

  3. FMNL2 drives actin-based protrusion and migration downstream of Cdc42

    DEFF Research Database (Denmark)

    Block, Jennifer; Breitsprecher, Dennis; Kühn, Sonja;

    2012-01-01

    -guanosine triphosphatase Cdc42. Abolition of myristoylation or Cdc42 binding interferes with proper FMNL2 activation, constituting an essential prerequisite for subcellular targeting. In vitro, C-terminal FMNL2 drives elongation rather than nucleation of actin filaments in the presence of profilin. In addition, filament...... establish that the FMNL subfamily member FMNL2 is a novel elongation factor of actin filaments that constitutes the first Cdc42 effector promoting cell migration and actin polymerization at the tips of lamellipodia....

  4. Septin ring assembly involves cycles of GTP loading and hydrolysis by Cdc42p

    OpenAIRE

    Gladfelter, Amy S.; Bose, Indrani; Zyla, Trevin R.; Bardes, Elaine S.G.; Lew, Daniel J.

    2002-01-01

    At the beginning of the budding yeast cell cycle, the GTPase Cdc42p promotes the assembly of a ring of septins at the site of future bud emergence. Here, we present an analysis of cdc42 mutants that display specific defects in septin organization, which identifies an important role for GTP hydrolysis by Cdc42p in the assembly of the septin ring. The mutants show defects in basal or stimulated GTP hydrolysis, and the septin misorganization is suppressed by overexpression of a Cdc42p GTPase-act...

  5. Cdc42 and Rac1 activity is reduced in human pheochromocytoma and correlates with FARP1 and ARHGEF1 expression.

    Science.gov (United States)

    Croisé, Pauline; Houy, Sébastien; Gand, Mathieu; Lanoix, Joël; Calco, Valérie; Tóth, Petra; Brunaud, Laurent; Lomazzi, Sandra; Paramithiotis, Eustache; Chelsky, Daniel; Ory, Stéphane; Gasman, Stéphane

    2016-04-01

    Among small GTPases from the Rho family, Cdc42, RAC, and Rho are well known to mediate a large variety of cellular processes linked with cancer biology through their ability to cycle between an inactive (GDP-bound) and an active (GTP-bound) state. Guanine nucleotide exchange factors (GEFs) stimulate the exchange of GDP for GTP to generate the activated form, whereas the GTPase-activating proteins (GAPs) catalyze GTP hydrolysis, leading to the inactivated form. Modulation of Rho GTPase activity following altered expression of RHO-GEFs and/or RHO-GAPs has already been reported in various human tumors. However, nothing is known about the Rho GTPase activity or the expression of their regulators in human pheochromocytomas, a neuroendocrine tumor (NET) arising from chromaffin cells of the adrenal medulla. In this study, we demonstrate, through an ELISA-based activity assay, that Rac1 and Cdc42 activities decrease in human pheochromocytomas (PCCs) compared with the matched adjacent non-tumor tissue. Furthermore, through quantitative mass spectrometry (MS) approaches, we show that the expression of two RHO-GEF proteins, namely ARHGEF1 and FARP1, is significantly reduced in tumors compared with matched non-tumor tissue, whereas ARHGAP36 expression is increased. Moreover, siRNA-based knockdown of ARHGEF1 and FARP1 in PC12 cells leads to a significant inhibition of Rac1 and Cdc42 activities, respectively. Finally, a principal component analysis (PCA) of our dataset was able to discriminate PCC from non-tumor tissue and indicates a close correlation between Cdc42/Rac1 activity and FARP1/ARHGEF1 expression. Altogether, our findings reveal for the first time the importance of modulation of Rho GTPase activities and expression of their regulators in human PCCs. PMID:26911374

  6. Involvement of the Cdc42 pathway in CFTR post-translational turnover and in its plasma membrane stability in airway epithelial cells.

    Directory of Open Access Journals (Sweden)

    Romain Ferru-Clément

    Full Text Available Cystic fibrosis transmembrane conductance regulator (CFTR is a chloride channel that is expressed on the apical plasma membrane (PM of epithelial cells. The most common deleterious allele encodes a trafficking-defective mutant protein undergoing endoplasmic reticulum-associated degradation (ERAD and presenting lower PM stability. In this study, we investigated the involvement of the Cdc42 pathway in CFTR turnover and trafficking in a human bronchiolar epithelial cell line (CFBE41o- expressing wild-type CFTR. Cdc42 is a small GTPase of the Rho family that fulfils numerous cell functions, one of which is endocytosis and recycling process via actin cytoskeleton remodelling. When we treated cells with chemical inhibitors such as ML141 against Cdc42 and wiskostatin against the downstream effector N-WASP, we observed that CFTR channel activity was inhibited, in correlation with a decrease in CFTR amount at the cell surface and an increase in dynamin-dependent CFTR endocytosis. Anchoring of CFTR to the cortical cytoskeleton was then presumably impaired by actin disorganization. When we performed siRNA-mediated depletion of Cdc42, actin polymerization was not impacted, but we observed actin-independent consequences upon CFTR. Total and PM CFTR amounts were increased, resulting in greater activation of CFTR. Pulse-chase experiments showed that while CFTR degradation was slowed, CFTR maturation through the Golgi apparatus remained unaffected. In addition, we observed increased stability of CFTR in PM and reduction of its endocytosis. This study highlights the involvement of the Cdc42 pathway at several levels of CFTR biogenesis and trafficking: (i Cdc42 is implicated in the first steps of CFTR biosynthesis and processing; (ii it contributes to the stability of CFTR in PM via its anchoring to cortical actin; (iii it promotes CFTR endocytosis and presumably its sorting toward lysosomal degradation.

  7. Inter-kingdom Signaling by the Legionella Quorum Sensing Molecule LAI-1 Modulates Cell Migration through an IQGAP1-Cdc42-ARHGEF9-Dependent Pathway

    Science.gov (United States)

    Simon, Sylvia; Schell, Ursula; Heuer, Natalie; Hager, Dominik; Albers, Michael F.; Matthias, Jan; Fahrnbauer, Felix; Trauner, Dirk; Eichinger, Ludwig; Hedberg, Christian; Hilbi, Hubert

    2015-01-01

    Small molecule signaling promotes the communication between bacteria as well as between bacteria and eukaryotes. The opportunistic pathogenic bacterium Legionella pneumophila employs LAI-1 (3-hydroxypentadecane-4-one) for bacterial cell-cell communication. LAI-1 is produced and detected by the Lqs (Legionella quorum sensing) system, which regulates a variety of processes including natural competence for DNA uptake and pathogen-host cell interactions. In this study, we analyze the role of LAI-1 in inter-kingdom signaling. L. pneumophila lacking the autoinducer synthase LqsA no longer impeded the migration of infected cells, and the defect was complemented by plasmid-borne lqsA. Synthetic LAI-1 dose-dependently inhibited cell migration, without affecting bacterial uptake or cytotoxicity. The forward migration index but not the velocity of LAI-1-treated cells was reduced, and the cell cytoskeleton appeared destabilized. LAI-1-dependent inhibition of cell migration involved the scaffold protein IQGAP1, the small GTPase Cdc42 as well as the Cdc42-specific guanine nucleotide exchange factor ARHGEF9, but not other modulators of Cdc42, or RhoA, Rac1 or Ran GTPase. Upon treatment with LAI-1, Cdc42 was inactivated and IQGAP1 redistributed to the cell cortex regardless of whether Cdc42 was present or not. Furthermore, LAI-1 reversed the inhibition of cell migration by L. pneumophila, suggesting that the compound and the bacteria antagonistically target host signaling pathway(s). Collectively, the results indicate that the L. pneumophila quorum sensing compound LAI-1 modulates migration of eukaryotic cells through a signaling pathway involving IQGAP1, Cdc42 and ARHGEF9. PMID:26633832

  8. Cdc42 expression in keratinocytes is required for the maintenance of the basement membrane in skin

    DEFF Research Database (Denmark)

    Wu, Xunwei; Quondamatteo, Fabio; Brakebusch, Cord

    2006-01-01

    , structure and number of hemidesomosomes were not significantly changed in the Cdc42 mutant skin compared with the control mice and no blister formation was observed in mutant skin. These data indicate that Cdc42 in keratinocytes is important for maintenance of the basement membrane of skin....

  9. Multiple alterations of platelet functions dominated by increased secretion in mice lacking Cdc42 in platelets

    DEFF Research Database (Denmark)

    Pleines, Irina; Eckly, Anita; Elvers, Margitta; Hagedorn, Ina; Eliautou, Sandra; Bender, Markus; Wu, Xunwei; Lanza, Francois; Gachet, Christian; Brakebusch, Cord; Nieswandt, Bernhard

    2010-01-01

    (ADP)/adenosine triphosphate (ATP) content, increased aggregation at low agonist concentrations, and enhanced aggregate formation on collagen under flow. In vivo, lack of Cdc42 resulted in faster occlusion of ferric chloride-injured arterioles. The life span of Cdc42-deficient platelets was markedly...

  10. Cdc42 Controls Vascular Network Assembly Through Protein Kinase C{iota} During Embryonic Vasculogenesis

    DEFF Research Database (Denmark)

    Qi, Yanmei; Liu, Jie; Wu, Xunwei; Brakebusch, Cord; Leitges, Michael; Han, Yaling; Corbett, Siobhan A; Lowry, Stephen F; Graham, Alan M; Li, Shaohua

    2011-01-01

    The goal of this study was to determine the role of Cdc42 in embryonic vasculogenesis and the underlying mechanisms.......The goal of this study was to determine the role of Cdc42 in embryonic vasculogenesis and the underlying mechanisms....

  11. Glucose-stimulated Cdc42 Signaling Is Essential for the Second Phase of Insulin Secretion*

    OpenAIRE

    Wang, Zhanxiang; Oh, Eunjin; Thurmond, Debbie C.

    2007-01-01

    The small Rho family GTPases Cdc42 and Rac1 have each been shown to function in insulin exocytosis and are presumed to function in actin remodeling and insulin granule mobilization. However, whether either GTPase is required for the mobilization phase of insulin release (second phase) and are linked in a common signaling pathway has remained unknown. Here we demonstrate that small interfering RNA-mediated depletion of Cdc42 from isolated islets results in the selective loss of second-phase in...

  12. Dynamics of Cdc42 network embodies a Turing-type mechanism of yeast cell polarity.

    Science.gov (United States)

    Goryachev, Andrew B; Pokhilko, Alexandra V

    2008-04-30

    Complex biochemical networks can be understood by identifying their principal regulatory motifs and mode of action. We model the early phase of budding yeast cellular polarization and show that the biochemical processes in the presumptive bud site comprise a Turing-type mechanism. The roles of the prototypical activator and substrate are played by GTPase Cdc42 in its active and inactive states, respectively. We demonstrate that the nucleotide cycling of Cdc42 converts cellular energy into a stable cluster of activated Cdc42. This energy drives a continuous membrane-cytoplasmic exchange of the cluster components to counteract diffusive spread of the cluster. This exchange explains why only one bud forms per cell cycle, because the winner-takes-all competition of candidate sites inevitably selects a single site. PMID:18381072

  13. Cdc42 is not essential for filopodium formation, directed migration, cell polarization, and mitosis in fibroblastoid cells

    DEFF Research Database (Denmark)

    Czuchra, Aleksandra; Wu, Xunwei; Meyer, Hannelore;

    2005-01-01

    of Cdc42 did not affect filopodium or lamellipodium formation and had no significant influence on the speed of directed migration nor on mitosis. Cdc42-deficient cells displayed a more elongated cell shape and had a reduced area. Furthermore, directionality during migration and reorientation of the...

  14. Cdc42-dependent structural development of auditory supporting cells is required for wound healing at adulthood

    DEFF Research Database (Denmark)

    Anttonen, Tommi; Kirjavainen, Anna; Belevich, Ilya;

    2012-01-01

    of a basolateral membrane protein in the apical domain were observed. These defects and changes in aPKCλ/ι expression suggested that apical polarization is impaired. Following a lesion at adulthood, supporting cells with Cdc42 loss-induced maturational defects collapsed and failed to remodel F...

  15. Cdc42 controls progenitor cell differentiation and beta-catenin turnover in skin

    DEFF Research Database (Denmark)

    Wu, Xunwei; Quondamatteo, Fabio; Lefever, Tine;

    2006-01-01

    Differentiation of skin stem cells into hair follicles (HFs) requires the inhibition of beta-catenin degradation, which is controlled by a complex containing axin and the protein kinase GSK3beta. Using conditional gene targeting in mice, we show now that the small GTPase Cdc42 is crucial for...

  16. The Tea4-PP1 landmark promotes local growth by dual Cdc42 GEF recruitment and GAP exclusion.

    OpenAIRE

    Kokkoris K.; Gallo Castro D.; Martin S.G.

    2014-01-01

    Cell polarization relies on small GTPases, such as Cdc42, which can break symmetry through self-organizing principles, and landmarks that define the axis of polarity. In fission yeast, microtubules deliver the Tea1-Tea4 complex to mark cell poles for growth, but how this complex activates Cdc42 is unknown. Here, we show that ectopic targeting of Tea4 to cell sides promotes the local activation of Cdc42 and cell growth. This activity requires that Tea4 binds the type I phosphatase (PP1) cataly...

  17. Genetic deletion of cdc42 reveals a crucial role for astrocyte recruitment to the injury site in vitro and in vivo

    DEFF Research Database (Denmark)

    Robel, Stefanie; Bardehle, Sophia; Lepier, Alexandra; Brakebusch, Cord; Götz, Magdalena

    2011-01-01

    signals, the small RhoGTPase Cdc42, selectively in mouse astrocytes in vitro and in vivo. We used an in vitro scratch assay as a minimal wounding model and found that astrocytes lacking Cdc42 (Cdc42Δ) were still able to form protrusions, although in a nonoriented way. Consequently, they failed to migrate...... in a directed manner toward the scratch. When animals were injured in vivo through a stab wound, Cdc42Δ astrocytes developed protrusions properly oriented toward the lesion, but the number of astrocytes recruited to the lesion site was significantly reduced. Surprisingly, however, lesions in Cdc42Δ...

  18. Cdc42 and PI(4,5)P2-induced actin assembly in Xenopus egg extracts.

    Science.gov (United States)

    Lebensohn, Andres M; Ma, Le; Ho, Hsin-Yi Henry; Kirschner, Marc W

    2006-01-01

    Xenopus egg cytoplasmic extracts have been used to study a variety of complex cellular processes. Given their amenability to biochemical manipulation and physiological balance of regulatory proteins, these extracts are an ideal system to dissect signal transduction pathways leading to actin assembly. We have developed methods to study Cdc42 and PI(4,5)P2-induced actin assembly in Xenopus egg extracts. In this chapter, we describe detailed procedures to prepare Xenopus egg extracts, Cdc42, and PI(4,5)P2 for use in actin assembly experiments. We also describe a fluorometric pyrene actin assay for quantitative kinetic analysis of actin polymerization and a microscopic rhodamine actin assay for quick measurement of actin rearrangements in extracts. Finally we provide a protocol for immunodepletion of proteins and discuss the use of immunodepletion and rescue experiments for functional analysis of components in the extracts. PMID:16472657

  19. Cdc42/N-WASP signaling links actin dynamics to pancreatic beta cell delamination and differentiation

    DEFF Research Database (Denmark)

    Kesavan, Gokul; Lieven, Oliver; Mamidi, Anant;

    2014-01-01

    Delamination plays a pivotal role during normal development and cancer. Previous work has demonstrated that delamination and epithelial cell movement within the plane of an epithelium are associated with a change in cellular phenotype. However, how this positional change is linked to differentiat......Delamination plays a pivotal role during normal development and cancer. Previous work has demonstrated that delamination and epithelial cell movement within the plane of an epithelium are associated with a change in cellular phenotype. However, how this positional change is linked to...... differentiation remains unknown. Using the developing mouse pancreas as a model system, we show that β cell delamination and differentiation are two independent events, which are controlled by Cdc42/N-WASP signaling. Specifically, we show that expression of constitutively active Cdc42 in β cells inhibits β cell...

  20. Activated Cdc42-associated kinase Ack1 promotes prostate cancer progression via androgen receptor tyrosine phosphorylation

    OpenAIRE

    Mahajan, Nupam P.; Liu, Yuanbo; Majumder, Samarpan; Warren, Maria R.; Parker, Carol E.; Mohler, James L.; Earp, H. Shelton; Whang, Young E.

    2007-01-01

    Activation of the androgen receptor (AR) may play a role in androgen-independent progression of prostate cancer. Multiple mechanisms of AR activation, including stimulation by tyrosine kinases, have been postulated. We and others have recently shown involvement of activated Cdc42-associated tyrosine kinase Ack1 in advanced human prostate cancer. Here we provide the molecular basis for interplay between Ack1 and AR in prostate cancer cells. Activated Ack1 promoted androgen-independent growth o...

  1. GRP75 upregulates clathrin-independent endocytosis through actin cytoskeleton reorganization mediated by the concurrent activation of Cdc42 and RhoA.

    Science.gov (United States)

    Chen, Hang; Gao, Zhihui; He, Changzheng; Xiang, Rong; van Kuppevelt, Toin H; Belting, Mattias; Zhang, Sihe

    2016-05-01

    Therapeutic macromolecules are internalized into the cell by either clathrin-mediated endocytosis (CME) or clathrin-independent endocytosis (CIE). Although some chaperone proteins play an essential role in CME (e.g. Hsc70 in clathrin uncoating), relatively few of these proteins are functionally involved in CIE. We previously revealed a role for the mitochondrial chaperone protein GRP75 in heparan sulfate proteoglycan (HSPG)-mediated, membrane raft-associated macromolecule endocytosis. However, the mechanism underlying this process remains unclear. In this study, using a mitochondrial signal peptide-directed protein trafficking expression strategy, we demonstrate that wild-type GRP75 expression enhanced the uptakes of HSPG and CIE marker cholera toxin B subunit but impaired the uptake of CME marker transferrin. The endocytosis regulation function of GRP75 is largely mediated by its subcellular location in mitochondria and is essentially determined by its ATPase domain. Interestingly, the mitochondrial expression of GRP75 or its ATPase domain significantly stimulates increases in both RhoA and Cdc42 activation, remarkably induces stress fibers and enhances filopodia formation, which collectively results in the promotion of CIE, but the inhibition of CME. Furthermore, silencing of Cdc42 or RhoA impaired the ability of GRP75 overexpression to increase CIE. Therefore, these results suggest that endocytosis vesicle enrichment of GRP75 by mitochondria trafficking upregulates CIE through an actin cytoskeleton reorganization mechanism mediated by the concurrent activation of Cdc42 and RhoA. This finding provides novel insight into organelle-derived chaperone signaling and the regulation of different endocytosis pathways in cells. PMID:27090015

  2. GIT1 promotes lung cancer cell metastasis through modulating Rac1/Cdc42 activity and is associated with poor prognosis

    OpenAIRE

    Chang, Jeng-Shou; Su, Chia-Yi; Yu, Wen-Hsuan; Lee, Wei-Jiunn; Liu, Yu-Peng; Lai, Tsung-Ching; Jan, Yi-Hua; Yang, Yi-Fang; Shen, Chia-Ning; Shew, Jin-Yuh; Lu, Jean; Yang, Chih-Jen; Huang, Ming-Shyan; Lu, Pei-Jung; Lin, Yuan-Feng

    2015-01-01

    G-protein-coupled receptor kinase interacting protein 1 (GIT1) is participated in cell movement activation, which is a fundamental process during tissue development and cancer progression. GIT1/PIX forming a functional protein complex that contributes to Rac1/Cdc42 activation, resulting in increasing cell mobility. Although the importance of Rac1/Cdc42 activation is well documented in cancer aggressiveness, the clinical importance of GIT1 remains largely unknown. Here, we investigated the cli...

  3. Systems-wide Analysis of K-Ras, Cdc42, and PAK4 Signaling by Quantitative Phosphoproteomics*

    OpenAIRE

    Gnad, Florian; Young, Amy; Zhou, Wei; Lyle, Karen; Ong, Christy C.; Matthew P. Stokes; Silva, Jeffrey C.; Belvin, Marcia; Friedman, Lori S.; Koeppen, Hartmut; Minden, Audrey; Hoeflich, Klaus P.

    2013-01-01

    Although K-Ras, Cdc42, and PAK4 signaling are commonly deregulated in cancer, only a few studies have sought to comprehensively examine the spectrum of phosphorylation-mediated signaling downstream of each of these key signaling nodes. In this study, we completed a label-free quantitative analysis of oncogenic K-Ras, activated Cdc42, and PAK4-mediated phosphorylation signaling, and report relative quantitation of 2152 phosphorylated peptides on 1062 proteins. We define the overlap in phosphop...

  4. MicroRNA-132 Interact with p250GAP/Cdc42 Pathway in the Hippocampal Neuronal Culture Model of Acquired Epilepsy and Associated with Epileptogenesis Process.

    Science.gov (United States)

    Yuan, Jinxian; Huang, Hao; Zhou, Xin; Liu, Xi; Ou, Shu; Xu, Tao; Li, Ruohan; Ma, Limin; Chen, Yangmei

    2016-01-01

    Increasing evidence suggests that epilepsy is the result of synaptic reorganization and pathological excitatory loop formation in the central nervous system; however, the mechanisms that regulate this process are not well understood. We proposed that microRNA-132 (miR-132) and p250GAP might play important roles in this process by activating the downstream Rho GTPase family. We tested this hypothesis using a magnesium-free medium-induced epileptic model of cultured hippocampal neurons. We investigated whether miR-132 regulates GTPase activity through p250GAP and found that Cdc42 was significantly activated in our experimental model. Silencing miR-132 inhibited the electrical excitability level of cultured epileptic neurons, whereas silencing p250GAP had an opposite effect. In addition, we verified the effect of miR-132 in vivo and found that silencing miR-132 inhibited the aberrant formation of dendritic spines and chronic spontaneous seizure in a lithium-pilocarpine-induced epileptic mouse model. Finally, we confirmed that silencing miR-132 has a neuroprotective effect on cultured epileptic neurons; however, this effect did not occur through the p250GAP pathway. Generally, silencing miR-132 may suppress spontaneous seizure activity through the miR-132/p250GAP/Cdc42 pathway by regulating the morphology and electrophysiology of dendritic spines; therefore, miR-132 may serve as a potential target for the development of antiepileptic drugs. PMID:27579184

  5. MicroRNA-132 Interact with p250GAP/Cdc42 Pathway in the Hippocampal Neuronal Culture Model of Acquired Epilepsy and Associated with Epileptogenesis Process

    Science.gov (United States)

    Huang, Hao; Zhou, Xin; Liu, Xi; Xu, Tao; Ma, Limin

    2016-01-01

    Increasing evidence suggests that epilepsy is the result of synaptic reorganization and pathological excitatory loop formation in the central nervous system; however, the mechanisms that regulate this process are not well understood. We proposed that microRNA-132 (miR-132) and p250GAP might play important roles in this process by activating the downstream Rho GTPase family. We tested this hypothesis using a magnesium-free medium-induced epileptic model of cultured hippocampal neurons. We investigated whether miR-132 regulates GTPase activity through p250GAP and found that Cdc42 was significantly activated in our experimental model. Silencing miR-132 inhibited the electrical excitability level of cultured epileptic neurons, whereas silencing p250GAP had an opposite effect. In addition, we verified the effect of miR-132 in vivo and found that silencing miR-132 inhibited the aberrant formation of dendritic spines and chronic spontaneous seizure in a lithium-pilocarpine-induced epileptic mouse model. Finally, we confirmed that silencing miR-132 has a neuroprotective effect on cultured epileptic neurons; however, this effect did not occur through the p250GAP pathway. Generally, silencing miR-132 may suppress spontaneous seizure activity through the miR-132/p250GAP/Cdc42 pathway by regulating the morphology and electrophysiology of dendritic spines; therefore, miR-132 may serve as a potential target for the development of antiepileptic drugs.

  6. Biochemical analysis of the interactions of IQGAP1 C-terminal domain with CDC42

    Institute of Scientific and Technical Information of China (English)

    Sarah; F; Elliott; George; Allen; David; J; Timson

    2012-01-01

    AIM:To understand the interaction of human IQGAP1 and CDC42,especially the effects of phosphorylation and a cancer-associated mutation. METHODS:Recombinant CDC42 and a novel C-termi- nal fragment of IQGAP1 were expressed in,and puri- fied from,Escherichia coli.Site directed mutagenesis was used to create coding sequences for three phos- phomimicking variants(S1441E,S1443D and S1441E/ S1443D)and to recapitulate a cancer-associated mu- tation(M1231I).These variant proteins were also ex- pressed and purified.Protein-protein crosslinking using 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide was used to investigate interactions between the C-terminal fragment and CDC42.These interactions were quanti- fied using surface plasmon resonance measurements.Molecular modelling was employed to make predictions about changes to the structure and flexibility of the protein which occur in the cancer-associated variant. RESULTS:The novel,C-terminal region of human IQGAP1 (residues 877-1558)is soluble following expression and purification.It is also capable of binding to CDC42,as judged by crosslinking experiments.Interaction appears to be strongest in the presence of added GTP.The three phosphomimicking mutants had different affini- ties for CDC42.S1441E had an approximately 200-fold reduction in affinity compared to wild type.This was caused largely by a dramatic reduction in the associa- tion rate constant.In contrast,both S1443D and the double variant S1441E/S1443D had similar affinities to the wild type.The cancer-associated variant,M1231I, also had a similar affinity to wild type.However,in the case of this variant,both the association and dis- sociation rate constants were reduced approximately 10-fold.Molecular modelling of the M1231I variant, based on the published crystal structure of part of the C-terminal region,revealed no gross structural changes compared to wild type(root mean square deviation of 0.564over 5556 equivalent atoms).However,pre- dictions of the

  7. Specific deletion of Cdc42 does not affect meiotic spindle organization/migration and homologous chromosome segregation but disrupts polarity establishment and cytokinesis in mouse oocytes

    DEFF Research Database (Denmark)

    Wang, Zhen-Bo; Jiang, Zong-Zhe; Zhang, Qing-Hua;

    2013-01-01

    female infertility in mice. Cdc42 deletion has little effect on meiotic spindle organization and migration to the cortex but inhibits polar body emission, although homologous chromosome segregation occurs. The failure of cytokinesis is due to the loss of polarized Arp2/3 accumulation and actin cap...... polarized actin cap and oocyte polarity, and it determines asymmetric divisions resulting in two polar bodies. Here we investigate the functions of Cdc42 in oocyte meiotic maturation by oocyte-specific deletion of Cdc42 through Cre-loxP conditional knockout technology. We find that Cdc42 deletion causes...

  8. Cdc42 and phosphoinositide 3-kinase drive Rac-mediated actin polymerization downstream of c-Met in distinct and common pathways

    DEFF Research Database (Denmark)

    Bosse, Tanja; Ehinger, Julia; Czuchra, Aleksandra;

    2007-01-01

    Activation of c-Met, the hepatocyte growth factor (HGF)/scatter factor receptor induces reorganization of the actin cytoskeleton, which drives epithelial cell scattering and motility and is exploited by pathogenic Listeria monocytogenes to invade nonepithelial cells. However, the precise...... required the simultaneous inactivation of both Cdc42 and PI3-kinase signaling. Moreover, Cdc42 activation was fully independent of PI3-kinase activity, whereas the latter partly depended on Cdc42. Finally, Cdc42 function did not require its interaction with the actin nucleation-promoting factor N...

  9. Stage-specific functions of the small Rho GTPases Cdc42 and Rac1 for adult hippocampal neurogenesis

    DEFF Research Database (Denmark)

    Vadodaria, Krishna C; Brakebusch, Cord; Suter, Ueli;

    2013-01-01

    The molecular mechanisms underlying the generation, maturation, and integration of new granule cells generated throughout life in the mammalian hippocampus remain poorly understood. Small Rho GTPases, such as Cdc42 and Rac1, have been implicated previously in neural stem/progenitor cell (NSPC......) proliferation and neuronal maturation during embryonic development. Here we used conditional genetic deletion and virus-based loss-of-function approaches to identify temporally distinct functions for Cdc42 and Rac1 in adult hippocampal neurogenesis. We found that Cdc42 is involved in mouse NSPC proliferation......, initial dendritic development, and dendritic spine maturation. In contrast, Rac1 is dispensable for early steps of neuronal development but is important for late steps of dendritic growth and spine maturation. These results establish cell-autonomous and stage-specific functions for the small Rho GTPases...

  10. Cdc42 and k-Ras Control Endothelial Tubulogenesis through Apical Membrane and Cytoskeletal Polarization: Novel Stimulatory Roles for GTPase Effectors, the Small GTPases, Rac2 and Rap1b, and Inhibitory Influence of Arhgap31 and Rasa1.

    Directory of Open Access Journals (Sweden)

    Pieter R Norden

    Full Text Available A critical and understudied property of endothelial cells is their ability to form lumens and tube networks. Although considerable information has been obtained concerning these issues, including the role of Cdc42 and Rac1 and their effectors such as Pak2, Pak4, Par6b, and co-regulators such as integrins, MT1-MMP and Par3; many key questions remain that are necessary to elucidate molecular and signaling requirements for this fundamental process. In this work, we identify new small GTPase regulators of EC tubulogenesis including k-Ras, Rac2 and Rap1b that act in conjunction with Cdc42 as well as the key downstream effectors, IQGAP1, MRCKβ, beta-Pix, GIT1, and Rasip1 (which can assemble into multiprotein complexes with key regulators including α2β1 integrin and MT1-MMP. In addition, we identify the negative regulators, Arhgap31 (by inactivating Cdc42 and Rac and Rasa1 (by inactivating k-Ras and the positive regulator, Arhgap29 (by inactivating RhoA which play a major functional role during the EC tubulogenic process. Human EC siRNA suppression or mouse knockout of Rasip1 leads to identical phenotypes where ECs form extensive cord networks, but cannot generate lumens or tubes. Essential roles for these molecules during EC tubulogenesis include; i establishment of asymmetric EC cytoskeletal polarization (subapical distribution of acetylated tubulin and basal membrane distribution of F-actin; and ii directed membrane trafficking of pinocytic vacuoles or other intracellular vesicles along acetylated tubulin tracks to the developing apical membrane surface. Cdc42 co-localizes subapically with acetylated tubulin, while Rac1 and k-Ras strongly label vacuole/ vesicle membranes which accumulate and fuse together in a polarized, perinuclear manner. We observe polarized apical membrane and subapical accumulation of key GTPases and effectors regulating EC lumen formation including Cdc42, Rac1, Rac2, k-Ras, Rap1b, activated c-Raf and Rasip1 to control EC

  11. Cdc42 is crucial for the maturation of primordial cell junctions in keratinocytes independent of Rac1

    DEFF Research Database (Denmark)

    Du, Dan; Pedersen, Esben; Wang, Zhipeng;

    2008-01-01

    -deficient immortalized and primary keratinocytes form only punctate primordial cell contacts in vitro, which cannot mature into belt-like junctions. This defect was independent of enhanced degradation of beta-catenin, but correlated to an impaired activation and localization of aPKCzeta in the Cdc42-null...

  12. Cdc42 and Rab8a are critical for intestinal stem cell division, survival, and differentiation in mice

    DEFF Research Database (Denmark)

    Sakamori, Ryotaro; Das, Soumyashree; Yu, Shiyan; Feng, Shanshan; Stypulkowski, Ewa; Guan, Yinzheng; Douard, Veronique; Tang, Waixing; Ferraris, Ronaldo P; Harada, Akihiro; Brakebusch, Cord; Guo, Wei; Gao, Nan

    2012-01-01

    reminiscent of human microvillus inclusion disease (MVID), a devastating congenital intestinal disorder that results in severe nutrient deprivation. Further analysis revealed that Cdc42-deficient stem cells had cell division defects, reduced capacity for clonal expansion and differentiation into Paneth cells...

  13. Cdc42 Effector Protein 2 (XCEP2 is required for normal gastrulation and contributes to cellular adhesion in Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Nelson Richard W

    2004-10-01

    Full Text Available Abstract Background Rho GTPases and their downstream effector proteins regulate a diverse array of cellular processes during embryonic development, including reorganization of cytoskeletal architecture, cell adhesion, and transcription. Changes in the activation state of Rho GTPases are converted into changes in cellular behavior by a diversity of effector proteins, which are activated in response to changes in the GTP binding state of Rho GTPases. In this study we characterize the expression and function of one such effector, XCEP2, that is present during gastrulation stages in Xenopus laevis. Results In a search for genes whose expression is regulated during early stages of embryonic development in Xenopus laevis, a gene encoding a Rho GTPase effector protein (Xenopus Cdc42 effector protein 2, or XCEP2 was isolated, and found to be highly homologous, but not identical, to a Xenopus sequence previously submitted to the Genbank database. These two gene sequences are likely pseudoalleles. XCEP2 mRNA is expressed at constant levels until mid- to late- gastrula stages, and then strongly down-regulated at late gastrula/early neurula stages. Injection of antisense morpholino oligonucleotides directed at one or both pseudoalleles resulted in a significant delay in blastopore closure and interfered with normal embryonic elongation, suggesting a role for XCEP2 in regulating gastrulation movements. The morpholino antisense effect could be rescued by co-injection with a morpholino-insensitive version of the XCEP2 mRNA. Antisense morpholino oligonucleotides were found to have no effect on mesodermal induction, suggesting that the observed effects were due to changes in the behavior of involuting cells, rather than alterations in their identity. XCEP2 antisense morpholino oligonucleotides were also observed to cause complete disaggregation of cells composing animal cap explants, suggesting a specific role of XCEP2 in maintenance or regulation of cell

  14. Rif-mDia1 Interaction Is Involved in Filopodium Formation Independent of Cdc42 and Rac Effectors

    OpenAIRE

    Goh, Wah Ing; Sudhaharan, Thankiah; Lim, Kim Buay; Sem, Kai Ping; Lau, Chew Ling; Ahmed, Sohail

    2011-01-01

    Filopodia are cellular protrusions important for axon guidance, embryonic development, and wound healing. The Rho GTPase Cdc42 is the best studied inducer of filopodium formation, and several of its effectors and their interacting partners have been linked to the process. These include IRSp53, N-WASP, Mena, and Eps8. The Rho GTPase, Rif, also drives filopodium formation. The signaling pathway by which Rif induces filopodia is poorly understood, with mDia2 being the only protein implicated to ...

  15. The signaling pathway of Campylobacter jejuni-induced Cdc42 activation: Role of fibronectin, integrin beta1, tyrosine kinases and guanine exchange factor Vav2

    LENUS (Irish Health Repository)

    Krause-Gruszczynska, Malgorzata

    2011-12-28

    Abstract Background Host cell invasion by the foodborne pathogen Campylobacter jejuni is considered as one of the primary reasons of gut tissue damage, however, mechanisms and key factors involved in this process are widely unclear. It was reported that small Rho GTPases, including Cdc42, are activated and play a role during invasion, but the involved signaling cascades remained unknown. Here we utilised knockout cell lines derived from fibronectin-\\/-, integrin-beta1-\\/-, focal adhesion kinase (FAK)-\\/- and Src\\/Yes\\/Fyn-\\/- deficient mice, and wild-type control cells, to investigate C. jejuni-induced mechanisms leading to Cdc42 activation and bacterial uptake. Results Using high-resolution scanning electron microscopy, GTPase pulldowns, G-Lisa and gentamicin protection assays we found that each studied host factor is necessary for induction of Cdc42-GTP and efficient invasion. Interestingly, filopodia formation and associated membrane dynamics linked to invasion were only seen during infection of wild-type but not in knockout cells. Infection of cells stably expressing integrin-beta1 variants with well-known defects in fibronectin fibril formation or FAK signaling also exhibited severe deficiencies in Cdc42 activation and bacterial invasion. We further demonstrated that infection of wild-type cells induces increasing amounts of phosphorylated FAK and growth factor receptors (EGFR and PDGFR) during the course of infection, correlating with accumulating Cdc42-GTP levels and C. jejuni invasion over time. In studies using pharmacological inhibitors, silencing RNA (siRNA) and dominant-negative expression constructs, EGFR, PDGFR and PI3-kinase appeared to represent other crucial components upstream of Cdc42 and invasion. siRNA and the use of Vav1\\/2-\\/- knockout cells further showed that the guanine exchange factor Vav2 is required for Cdc42 activation and maximal bacterial invasion. Overexpression of certain mutant constructs indicated that Vav2 is a linker

  16. Vasoactive intestinal peptide-induced neurite remodeling in human neuroblastoma SH-SY5Y cells implicates the Cdc42 GTPase and is independent of Ras-ERK pathway

    International Nuclear Information System (INIS)

    Vasoactive intestinal peptide (VIP) is known to regulate proliferation or differentiation in normal and tumoral cells. SH-SY5Y is a differentiated cell subclone derived from the SK-N-SH human neuroblastoma cell line and possess all the components for an autocrine action of VIP. In the present study, we investigated the morphological changes and intracellular signaling pathways occurring upon VIP treatment of SH-SY5Y cells. VIP induced an early remodeling of cell projections: a branched neurite network spread out and prominent varicosities developed along neurites. Although activated by VIP, the Ras/ERK pathway was not required for the remodeling process. In contrast, pull-down experiments revealed a strong Cdc42 activation by VIP while expression of a dominant-negative Cdc42 prevented the VIP-induced neurite changes, suggesting an important role for this small GTPase in the process. These data provide the first evidence for a regulation of the activity of Rho family GTPases by VIP and bring new insights in the signaling pathways implicated in neurite remodeling process induced by VIP in neuroblastoma cells

  17. A comprehensive genome-wide analysis of melanoma Breslow thickness identifies interaction between CDC42 and SCIN genetic variants.

    Science.gov (United States)

    Vaysse, Amaury; Fang, Shenying; Brossard, Myriam; Wei, Qingyi; Chen, Wei V; Mohamdi, Hamida; Vincent-Fetita, Lynda; Margaritte-Jeannin, Patricia; Lavielle, Nolwenn; Maubec, Eve; Lathrop, Mark; Avril, Marie-Françoise; Amos, Christopher I; Lee, Jeffrey E; Demenais, Florence

    2016-11-01

    Breslow thickness (BT) is a major prognostic factor of cutaneous melanoma (CM), the most fatal skin cancer. The genetic component of BT has only been explored by candidate gene studies with inconsistent results. Our objective was to uncover the genetic factors underlying BT using an hypothesis-free genome-wide approach. Our analysis strategy integrated a genome-wide association study (GWAS) of single nucleotide polymorphisms (SNPs) for BT followed by pathway analysis of GWAS outcomes using the gene-set enrichment analysis (GSEA) method and epistasis analysis within BT-associated pathways. This strategy was applied to two large CM datasets with Hapmap3-imputed SNP data: the French MELARISK study for discovery (966 cases) and the MD Anderson Cancer Center study (1,546 cases) for replication. While no marginal effect of individual SNPs was revealed through GWAS, three pathways, defined by gene ontology (GO) categories were significantly enriched in genes associated with BT (false discovery rate ≤5% in both studies): hormone activity, cytokine activity and myeloid cell differentiation. Epistasis analysis, within each significant GO, identified a statistically significant interaction between CDC42 and SCIN SNPs (pmeta-int =2.2 × 10(-6) , which met the overall multiple-testing corrected threshold of 2.5 × 10(-6) ). These two SNPs (and proxies) are strongly associated with CDC42 and SCIN gene expression levels and map to regulatory elements in skin cells. This interaction has important biological relevance since CDC42 and SCIN proteins have opposite effects in actin cytoskeleton organization and dynamics, a key mechanism underlying melanoma cell migration and invasion. PMID:27347659

  18. Integrin α PAT-2/CDC-42 signaling is required for muscle-mediated clearance of apoptotic cells in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Hsiao-Han Hsieh

    Full Text Available Clearance of apoptotic cells by engulfment plays an important role in the homeostasis and development of multicellular organisms. Despite the fact that the recognition of apoptotic cells by engulfment receptors is critical in inducing the engulfment process, the molecular mechanisms are still poorly understood. Here, we characterize a novel cell corpse engulfment pathway mediated by the integrin α subunit PAT-2 in Caenorhabditis elegans and show that it specifically functions in muscle-mediated engulfment during embryogenesis. Inactivation of pat-2 results in a defect in apoptotic cell internalization. The PAT-2 extracellular region binds to the surface of apoptotic cells in vivo, and the intracellular region may mediate signaling for engulfment. We identify essential roles of small GTPase CDC-42 and its activator UIG-1, a guanine-nucleotide exchange factor, in PAT-2-mediated cell corpse removal. PAT-2 and CDC-42 both function in muscle cells for apoptotic cell removal and are co-localized in growing muscle pseudopods around apoptotic cells. Our data suggest that PAT-2 functions through UIG-1 for CDC-42 activation, which in turn leads to cytoskeletal rearrangement and apoptotic cell internalization by muscle cells. Moreover, in contrast to PAT-2, the other integrin α subunit INA-1 and the engulfment receptor CED-1, which signal through the conserved signaling molecules CED-5 (DOCK180/CED-12 (ELMO or CED-6 (GULP respectively, preferentially act in epithelial cells to mediate cell corpse removal during mid-embryogenesis. Our results show that different engulfing cells utilize distinct repertoires of receptors for engulfment at the whole organism level.

  19. Caveolin-1 and CDC42 mediated endocytosis of silica-coated iron oxide nanoparticles in HeLa cells

    Directory of Open Access Journals (Sweden)

    Nils Bohmer

    2015-01-01

    Full Text Available Nanomedicine is a rapidly growing field in nanotechnology, which has great potential in the development of new therapies for numerous diseases. For example iron oxide nanoparticles are in clinical use already in the thermotherapy of brain cancer. Although it has been shown, that tumor cells take up these particles in vitro, little is known about the internalization routes. Understanding of the underlying uptake mechanisms would be very useful for faster and precise development of nanoparticles for clinical applications. This study aims at the identification of key proteins, which are crucial for the active uptake of iron oxide nanoparticles by HeLa cells (human cervical cancer as a model cell line. Cells were transfected with specific siRNAs against Caveolin-1, Dynamin 2, Flotillin-1, Clathrin, PIP5Kα and CDC42. Knockdown of Caveolin-1 reduces endocytosis of superparamagnetic iron oxide nanoparticles (SPIONs and silica-coated iron oxide nanoparticles (SCIONs between 23 and 41%, depending on the surface characteristics of the nanoparticles and the experimental design. Knockdown of CDC42 showed a 46% decrease of the internalization of PEGylated SPIONs within 24 h incubation time. Knockdown of Dynamin 2, Flotillin-1, Clathrin and PIP5Kα caused no or only minor effects. Hence endocytosis in HeLa cells of iron oxide nanoparticles, used in this study, is mainly mediated by Caveolin-1 and CDC42. It is shown here for the first time, which proteins of the endocytotic pathway mediate the endocytosis of silica-coated iron oxide nanoparticles in HeLa cells in vitro. In future studies more experiments should be carried out with different cell lines and other well-defined nanoparticle species to elucidate possible general principles.

  20. RNAi screen of Salmonella invasion shows role of COPI in membrane targeting of cholesterol and Cdc42

    OpenAIRE

    Misselwitz, Benjamin; Dilling, Sabrina; Vonaesch, Pascale; Sacher, Raphael; Snijder, Berend; Schlumberger, Markus; Rout, Samuel; Stark, Manuel; Mering, Christian von; Pelkmans, Lucas; Hardt, Wolf-Dietrich

    2011-01-01

    Pathogens are not only a menace to public health, but they also provide excellent tools for probing host cell function. Thus, studying infection mechanisms has fueled progress in cell biology (Ridley et al, 1992; Welch et al, 1997). In the presented study, we have performed an RNAi screen to identify host cell genes required for Salmonella host cell invasion. This screen identified proteins known to contribute to Salmonella-induced actin rearrangements (e.g., Cdc42 and the Arp2/3 complex; rev...

  1. Mum, this bud’s for you: where do you want it? Roles for Cdc42 in controlling bud site selection in Saccharomyces cerevisiae

    OpenAIRE

    Nelson, W. James

    2003-01-01

    The generation of asymmetric cell shapes is a recurring theme in biology. In budding yeast, one form of cell asymmetry occurs for division and is generated by anisotropic growth of the mother cell to form a daughter cell bud. Previous genetic studies uncovered key roles for the small GTPase Cdc42 in organizing the actin cytoskeleton and vesicle delivery to the site of bud growth,(1,2) but a recent paper has also raised questions about how control of Cdc42 activity is integrated into a propose...

  2. [Regulation of bone homeostasis by glucose].

    Science.gov (United States)

    Fukasawa, Kazuya; Hinoi, Eiichi

    2016-08-01

    Synthesis of type Ⅰ collagen, a major component of the bone matrix, precedes the expression of Runt-related transcription factor 2(Runx2), a master regulator in osteoblast differentiation. Thus, a direct link between osteoblast differentiation and bone formation is seemingly absent, and how these are maintained in a coordinated matter remains unclear. It was recently demonstrated that osteoblasts depend on glucose, which glucose transporter type 1(GLUT1)takes up as an energy source, and it was found that glucose uptake promotes osteoblast differentiation and bone formation via AMP-activated protein kinase. It was also shown that Runx2 upregulates GLUT1 expression, and this Runx2-GLUT1 feedforward regulation integrates and coordinates osteoblast differentiation and bone formation throughout life. These previous findings revealed that the energy metabolism balance in osteoblasts integrates the differentiation and function of osteoblasts, and re-emphasized the importance of crosstalk between bone and sugar metabolism. PMID:27461500

  3. 慢性脑缺血大鼠海马区Cdc42表达及其与认知功能障碍的相关性%Expression Cdc42 protein in hippocampus of chronic cerebral ischemia rat and the relationship with cognitive impairment

    Institute of Scientific and Technical Information of China (English)

    李星; 张博爱; 姬亚杰; 刘荣丽; 贾贺; 张小敏; 刘宇

    2012-01-01

    目的 研究慢性脑缺血大鼠海马组织中细胞分裂周期蛋白42(Cdc42)表达的变化,探讨其在慢性脑缺血所致认知功能障碍中可能发挥的作用.方法 大鼠40只,随机分为假手术组、持久性双侧颈总动脉结扎(2VO)8、10、12w组,每组各10只.应用Morris水迷宫检测大鼠学习记忆能力,用免疫组织化学及Western印迹两种方法检测各组大鼠海马区Cdc42的表达.结果 Morris水迷宫显示手术组大鼠较假手术组大鼠逃避潜伏期明显延长(P<0.05);免疫组化及Western印迹均显示手术组大鼠海马区Cdc42表达明显低于假手术组(P<0.05).结论 Cdc42表达量的降低可能参与了慢性脑缺血所致认知功能障碍的形成.%Objective To investigate the expression of cell division cycle 42 GTP-binding protein (Cdc42) in hippocampus of chronic cerebral hypoperfusion rats model and explore the relationship between Cdc42 protein and cognitive impairment Methods 40 rats were equally divided into sham and 2-VO model groups (permanent ligation of bilateral common carotid arteries for 8, 10 and 12 weeks,respectively). The brains were taken at week 8,10 and 12 after the establishment of models for measuring the expression of Cdc42 protein using Western blotting and immunohistochemistry, cognitive function including learning and memory capacity in rats was evaluated by Morris water maze at the same time after cerebral ischemia. Results In the Morris water maze, the latency of model rats obviously extended compared to that of control rats (P < 0. 05), immunohistochemistry and Western blot all found that the expression of Cdc42 on hippocampal areas in the model rats was significantly decreased than that in control rats (P < 0. 05). Conclusions Low expression of Cdc42 in the hippocampus may play an important role in cognitive dysfunction induced by chronic cerebral ischemia.

  4. Bone tissue as a systemic endocrine regulator.

    Science.gov (United States)

    Zofkova, I

    2015-01-01

    Bone is a target tissue for hormones, such as the sex steroids, parathormon, vitamin D, calcitonin, glucocorticoids, and thyroid hormones. In the last decade, other "non-classic" hormones that modulate the bone tissue have been identified. While incretins (GIP and GLP-1) inhibit bone remodeling, angiotensin acts to promote remodeling. Bone morphogenetic protein (BMP) has also been found to have anabolic effects on the skeleton by activating bone formation during embryonic development, as well as in the postnatal period of life. Bone has also been identified as an endocrine tissue that produces a number of hormones, that bind to and modulate extra-skeletal receptors. Osteocalcin occupies a central position in this context. It can increase insulin secretion, insulin sensitivity and regulate metabolism of fatty acids. Moreover, osteocalcin also influences phosphate metabolism via osteocyte-derived FGF23 (which targets the kidneys and parathyroid glands to control phosphate reabsorption and metabolism of vitamin D). Finally, osteocalcin stimulates testosterone synthesis in Leydig cells and thus may play some role in male fertility. Further studies are necessary to confirm clinically important roles for skeletal tissue in systemic regulations. PMID:25470522

  5. Gene 33/Mig-6, a Transcriptionally Inducible Adapter Protein That Binds GTP-Cdc42 and Activates SAPK/JNK*

    Science.gov (United States)

    Makkinje, Anthony; Quinn, Deborah A.; Chen, Ang; Cadilla, Carmen L.; Force, Thomas; Bonventre, Joseph V.; Kyriakis, John M.

    2013-01-01

    Chronic stresses, including the mechanical strain caused by hypertension or excess pulmonary ventilation pressure, lead to important clinical consequences, including hypertrophy and acute respiratory distress syndrome. Pathologic hypertrophy contributes to decreased organ function and, ultimately, organ failure; and cardiac and diabetic renal hypertrophy are major causes of morbidity and morality in the developed world. Likewise, acute respiratory distress syndrome is a serious potential side effect of mechanical pulmonary ventilation. Whereas the deleterious effects of chronic stress are well established, the molecular mechanisms by which these stresses affect cell function are still poorly characterized. gene 33 (also called mitogen-inducible gene-6, mig-6) is an immediate early gene that is transcriptionally induced by a divergent array of extra-cellular stimuli. The physiologic function of Gene 33 is unknown. Here we show that gene 33 mRNA levels increase sharply in response to a set of commonly occurring chronic stress stimuli: mechanical strain, vasoactive peptides, and diabetic nephropathy. Induction of gene 33 requires the stress-activated protein kinases (SAPKs)/c-Jun NH2-terminal kinases. This expression pattern suggests that gene 33 is a potential marker for diabetic nephropathy and other pathologic responses to persistent sublethal stress. The structure of Gene 33 indicates an adapter protein capable of binding monomeric GTPases of the Rho subfamily. Consistent with this, Gene 33 interacts in vivo and, in a GTP-dependent manner, in vitro with Cdc42Hs; and transient expression of Gene 33 results in the selective activation of the SAPKs. These results imply a reciprocal, positive feedback relationship between Gene 33 expression and SAPK activation. Expression of Gene 33 at sufficient levels may enable a compensatory reprogramming of cellular function in response to chronic stress, which may have pathophysiological consequences. PMID:10749885

  6. Cross-species analyses identify the BNIP-2 and Cdc42GAP homology (BCH domain as a distinct functional subclass of the CRAL_TRIO/Sec14 superfamily.

    Directory of Open Access Journals (Sweden)

    Anjali Bansal Gupta

    Full Text Available The CRAL_TRIO protein domain, which is unique to the Sec14 protein superfamily, binds to a diverse set of small lipophilic ligands. Similar domains are found in a range of different proteins including neurofibromatosis type-1, a Ras GTPase-activating Protein (RasGAP and Rho guanine nucleotide exchange factors (RhoGEFs. Proteins containing this structural protein domain exhibit a low sequence similarity and ligand specificity while maintaining an overall characteristic three-dimensional structure. We have previously demonstrated that the BNIP-2 and Cdc42GAP Homology (BCH protein domain, which shares a low sequence homology with the CRAL_TRIO domain, can serve as a regulatory scaffold that binds to Rho, RhoGEFs and RhoGAPs to control various cell signalling processes. In this work, we investigate 175 BCH domain-containing proteins from a wide range of different organisms. A phylogenetic analysis with ~100 CRAL_TRIO and similar domains from eight representative species indicates a clear distinction of BCH-containing proteins as a novel subclass within the CRAL_TRIO/Sec14 superfamily. BCH-containing proteins contain a hallmark sequence motif R(R/Kh(R/K(R/KNL(R/KxhhhhHPs ('h' is large and hydrophobic residue and 's' is small and weekly polar residue and can be further subdivided into three unique subtypes associated with BNIP-2-N, macro- and RhoGAP-type protein domains. A previously unknown group of genes encoding 'BCH-only' domains is also identified in plants and arthropod species. Based on an analysis of their gene-structure and their protein domain context we hypothesize that BCH domain-containing genes evolved through gene duplication, intron insertions and domain swapping events. Furthermore, we explore the point of divergence between BCH and CRAL-TRIO proteins in relation to their ability to bind small GTPases, GAPs and GEFs and lipid ligands. Our study suggests a need for a more extensive analysis of previously uncharacterized BCH, 'BCH

  7. Filamin A regulates monocyte migration through Rho small GTPases during osteoclastogenesis.

    Science.gov (United States)

    Leung, Roland; Wang, Yongqiang; Cuddy, Karl; Sun, Chunxiang; Magalhaes, Joyce; Grynpas, Marc; Glogauer, Michael

    2010-05-01

    Osteoclastogenesis (OCG) results from the fusion of monocytes after stimulation with macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-kappaB ligand (RANKL). Migration of monocytes into close proximity precedes critical fusion events that are required for osteoclast formation. Cellular migration requires leading-edge actin cytoskeleton assembly that drives cellular locomotion. Filamin A (FLNa) cross-links F-actin filaments in the leading edge of migrating cells and also has been shown to regulate signal transduction during cell migration. However, little is known about the possible role of FLNa in osteoclastogenesis. Our objective in this study was to investigate the role of FLNa in osteoclastogenesis. Bone marrow monocytes isolated from the tibiae and femora of wild type (WT) and Flna-null mice were cultured for 6 days with M-CSF and RANKL, and osteoclasts were identified by tartrate-resistant acid phosphatase (TRACP) staining. The Flna-null mouse skeletal phenotype was characterized using dual-energy X-ray absorptiometry (DXA) to analyze the skeleton, as well as tests on blood chemistry. Osteoclast levels in vivo were quantified by counting of TRACP-stained histologic sections of distal femora. To elucidate the mechanisms by which Flna regulates osteoclastogenesis, migration, actin polymerization, and activation of Rho GTPases, Rac1, Cdc42, and RhoA were assessed in monocytes during in vitro OCG. Deficiencies in migration were rescued using constitutively active Rac1 and Cdc42 TAT fusion proteins. The RANKL signaling pathway was evaluated for activation by monitoring nuclear translocation of NF kappaB and c-jun and expression of key osteoclast genes using quantitative real-time polymerase chain reaction (qRT-PCR). Our results show that Flna-null monocytes formed fewer osteoclasts in vitro, and those that were formed were smaller with fewer nuclei. Decreased OCG was reflected in vivo in TRACP-stained histologic bone sections. Flna

  8. FGF signalling regulates bone growth through autophagy.

    Science.gov (United States)

    Cinque, Laura; Forrester, Alison; Bartolomeo, Rosa; Svelto, Maria; Venditti, Rossella; Montefusco, Sandro; Polishchuk, Elena; Nusco, Edoardo; Rossi, Antonio; Medina, Diego L; Polishchuk, Roman; De Matteis, Maria Antonietta; Settembre, Carmine

    2015-12-10

    Skeletal growth relies on both biosynthetic and catabolic processes. While the role of the former is clearly established, how the latter contributes to growth-promoting pathways is less understood. Macroautophagy, hereafter referred to as autophagy, is a catabolic process that plays a fundamental part in tissue homeostasis. We investigated the role of autophagy during bone growth, which is mediated by chondrocyte rate of proliferation, hypertrophic differentiation and extracellular matrix (ECM) deposition in growth plates. Here we show that autophagy is induced in growth-plate chondrocytes during post-natal development and regulates the secretion of type II collagen (Col2), the major component of cartilage ECM. Mice lacking the autophagy related gene 7 (Atg7) in chondrocytes experience endoplasmic reticulum storage of type II procollagen (PC2) and defective formation of the Col2 fibrillary network in the ECM. Surprisingly, post-natal induction of chondrocyte autophagy is mediated by the growth factor FGF18 through FGFR4 and JNK-dependent activation of the autophagy initiation complex VPS34-beclin-1. Autophagy is completely suppressed in growth plates from Fgf18(-/-) embryos, while Fgf18(+/-) heterozygous and Fgfr4(-/-) mice fail to induce autophagy during post-natal development and show decreased Col2 levels in the growth plate. Strikingly, the Fgf18(+/-) and Fgfr4(-/-) phenotypes can be rescued in vivo by pharmacological activation of autophagy, pointing to autophagy as a novel effector of FGF signalling in bone. These data demonstrate that autophagy is a developmentally regulated process necessary for bone growth, and identify FGF signalling as a crucial regulator of autophagy in chondrocytes. PMID:26595272

  9. Cdc42 and the Actin-Related Protein/Neural Wiskott-Aldrich Syndrome Protein Network Mediate Cellular Invasion by Cryptosporidium parvum

    OpenAIRE

    Chen, Xian-Ming; Huang, Bing Q.; Splinter, Patrick L.; Orth, James D.; Billadeau, Daniel D.; McNiven, Mark A.; LaRusso, Nicholas F

    2004-01-01

    Cryptosporidium parvum invasion of epithelial cells involves host cell membrane alterations which require a remodeling of the host cell actin cytoskeleton. In addition, an actin plaque, possibly associated with the dense-band region, forms within the host cytoplasm at the host-parasite interface. Here we show that Cdc42 and RhoA, but not Rac1, members of the Rho family of GTPases, are recruited to the host-parasite interface in an in vitro model of human biliary cryptosporidiosis. Interesting...

  10. The Rho GTPase Cdc42 regulates hair cell planar polarity and cellular patterning in the developing cochlea

    OpenAIRE

    Anna Kirjavainen; Maarja Laos; Tommi Anttonen; Ulla Pirvola

    2015-01-01

    Hair cells of the organ of Corti (OC) of the cochlea exhibit distinct planar polarity, both at the tissue and cellular level. Planar polarity at tissue level is manifested as uniform orientation of the hair cell stereociliary bundles. Hair cell intrinsic polarity is defined as structural hair bundle asymmetry; positioning of the kinocilium/basal body complex at the vertex of the V-shaped bundle. Consistent with strong apical polarity, the hair cell apex displays prominent actin and microtubul...

  11. Role of Cannabinoids in the Regulation of Bone Remodelling

    Directory of Open Access Journals (Sweden)

    Aymen I Idris

    2012-11-01

    Full Text Available The endocannabinoid system plays a key role in regulating a variety of physiological processes such as appetite control and energy balance, pain perception, and immune responses. Recent studies have implicated the endocannabinoid system in the regulation of bone cell activity and bone remodelling. These studies showed that endogenous cannabinoid ligands, cannabinoid receptors and the enzymes responsible for ligand synthesis and breakdown all play important roles in bone mass and in the regulation of bone disease. These findings suggest that the endocannabinoid pathway could be of value as a therapeutic target for the prevention and treatment of bone diseases. Here, we review the role of the skeletal endocannabinoid system in the regulation of bone remodelling in health and disease.

  12. Leptin regulates bone formation via the sympathetic nervous system

    Science.gov (United States)

    Takeda, Shu; Elefteriou, Florent; Levasseur, Regis; Liu, Xiuyun; Zhao, Liping; Parker, Keith L.; Armstrong, Dawna; Ducy, Patricia; Karsenty, Gerard

    2002-01-01

    We previously showed that leptin inhibits bone formation by an undefined mechanism. Here, we show that hypothalamic leptin-dependent antiosteogenic and anorexigenic networks differ, and that the peripheral mediators of leptin antiosteogenic function appear to be neuronal. Neuropeptides mediating leptin anorexigenic function do not affect bone formation. Leptin deficiency results in low sympathetic tone, and genetic or pharmacological ablation of adrenergic signaling leads to a leptin-resistant high bone mass. beta-adrenergic receptors on osteoblasts regulate their proliferation, and a beta-adrenergic agonist decreases bone mass in leptin-deficient and wild-type mice while a beta-adrenergic antagonist increases bone mass in wild-type and ovariectomized mice. None of these manipulations affects body weight. This study demonstrates a leptin-dependent neuronal regulation of bone formation with potential therapeutic implications for osteoporosis.

  13. Bone Cell Autophagy Is Regulated by Environmental Factors

    OpenAIRE

    Zahm, Adam M.; Bohensky, Jolene; Adams, Christopher S.; Shapiro, Irving M.; Srinivas, Vickram

    2011-01-01

    The goal of this investigation was to ascertain whether bone cells undergo autophagy and to determine if this process is regulated by environmental factors. We showed that osteocytes in both murine and human cortical bone display a punctuate distribution of microtubule-associated protein light chain 3, indicative of autophagy. In addition, we noted a basal level of autophagy in preosteocyte-like murine long bone-derived osteocytic (MLO)-A5 cells. Autophagy was upregulated following nutrient d...

  14. Circadian Clock Regulates Bone Resorption in Mice.

    Science.gov (United States)

    Xu, Cheng; Ochi, Hiroki; Fukuda, Toru; Sato, Shingo; Sunamura, Satoko; Takarada, Takeshi; Hinoi, Eiichi; Okawa, Atsushi; Takeda, Shu

    2016-07-01

    The circadian clock controls many behavioral and physiological processes beyond daily rhythms. Circadian dysfunction increases the risk of cancer, obesity, and cardiovascular and metabolic diseases. Although clinical studies have shown that bone resorption is controlled by circadian rhythm, as indicated by diurnal variations in bone resorption, the molecular mechanism of circadian clock-dependent bone resorption remains unknown. To clarify the role of circadian rhythm in bone resorption, aryl hydrocarbon receptor nuclear translocator-like (Bmal1), a prototype circadian gene, was knocked out specifically in osteoclasts. Osteoclast-specific Bmal1-knockout mice showed a high bone mass phenotype due to reduced osteoclast differentiation. A cell-based assay revealed that BMAL1 upregulated nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 1 (Nfatc1) transcription through its binding to an E-box element located on the Nfatc1 promoter in cooperation with circadian locomotor output cycles kaput (CLOCK), a heterodimer partner of BMAL1. Moreover, steroid receptor coactivator (SRC) family members were shown to interact with and upregulate BMAL1:CLOCK transcriptional activity. Collectively, these data suggest that bone resorption is controlled by osteoclastic BMAL1 through interactions with the SRC family and binding to the Nfatc1 promoter. © 2016 American Society for Bone and Mineral Research. PMID:26841172

  15. Calcineurin/NFAT signaling in osteoblasts regulates bone mass.

    Science.gov (United States)

    Winslow, Monte M; Pan, Minggui; Starbuck, Michael; Gallo, Elena M; Deng, Lei; Karsenty, Gerard; Crabtree, Gerald R

    2006-06-01

    Development and repair of the vertebrate skeleton requires the precise coordination of bone-forming osteoblasts and bone-resorbing osteoclasts. In diseases such as osteoporosis, bone resorption dominates over bone formation, suggesting a failure to harmonize osteoclast and osteoblast function. Here, we show that mice expressing a constitutively nuclear NFATc1 variant (NFATc1(nuc)) in osteoblasts develop high bone mass. NFATc1(nuc) mice have massive osteoblast overgrowth, enhanced osteoblast proliferation, and coordinated changes in the expression of Wnt signaling components. In contrast, viable NFATc1-deficient mice have defects in skull bone formation in addition to impaired osteoclast development. NFATc1(nuc) mice have increased osteoclastogenesis despite normal levels of RANKL and OPG, indicating that an additional NFAT-regulated mechanism influences osteoclastogenesis in vivo. Calcineurin/NFATc signaling in osteoblasts controls the expression of chemoattractants that attract monocytic osteoclast precursors, thereby coupling bone formation and bone resorption. Our results indicate that NFATc1 regulates bone mass by functioning in both osteoblasts and osteoclasts. PMID:16740479

  16. Histamine in regulation of bone remodeling processes

    Directory of Open Access Journals (Sweden)

    Marek Wiercigroch

    2013-08-01

    Full Text Available Bone remodeling is under autocrine, paracrine, endocrine and central nervous system control. One of the potential endogenous factors affecting bone remodeling is histamine, an endogenous amine which acts as a mediator of allergic reactions and neuromediator, and induces production of gastric acid. Histamine H1 receptor antagonists are widely used in the treatment of allergic conditions, H2 receptor antagonists in peptic ulcer disease, and betahistine (an H3 receptor antagonist and H1 receptor agonist is used in the treatment of Ménière’s disease.Excess histamine release in mastocytosis and allergic diseases may lead to development of osteoporosis. Clinical and population-based studies on the effects of histamine receptor antagonists on the skeletal system have not delivered unequivocal results.Expression of mRNA of histamine receptors has been discovered in bone cells (osteoblasts and osteoclasts. Histamine synthesis has been demonstrated in osteoclast precursors. Histamine increases bone resorption both by direct effects on osteoclast precursors and osteoclasts, and indirectly, by increasing the expression of RANKL in osteoblasts. In in vivo studies, H1 and H2 receptor antagonists exerted protective effects on the bone tissue, although not in all experimental models. In the present article, in vitro and in vivo studies conducted so far, concerning the effects of histamine and drugs modifying its activity on the skeletal system, have been reviewed.

  17. [Histamine in regulation of bone remodeling processes].

    Science.gov (United States)

    Wiercigroch, Marek; Folwarczna, Joanna

    2013-01-01

    Bone remodeling is under autocrine, paracrine, endocrine and central nervous system control. One of the potential endogenous factors affecting bone remodeling is histamine, an endogenous amine which acts as a mediator of allergic reactions and neuromediator, and induces production of gastric acid. Histamine H₁ receptor antagonists are widely used in the treatment of allergic conditions, H₂ receptor antagonists in peptic ulcer disease, and betahistine (an H₃ receptor antagonist and H₁ receptor agonist) is used in the treatment of Ménière's disease. Excess histamine release in mastocytosis and allergic diseases may lead to development of osteoporosis. Clinical and population-based studies on the effects of histamine receptor antagonists on the skeletal system have not delivered unequivocal results. Expression of mRNA of histamine receptors has been discovered in bone cells (osteoblasts and osteoclasts). Histamine synthesis has been demonstrated in osteoclast precursors. Histamine increases bone resorption both by direct effects on osteoclast precursors and osteoclasts, and indirectly, by increasing the expression of RANKL in osteoblasts. In in vivo studies, H₁ and H₂ receptor antagonists exerted protective effects on the bone tissue, although not in all experimental models. In the present article, in vitro and in vivo studies conducted so far, concerning the effects of histamine and drugs modifying its activity on the skeletal system, have been reviewed. PMID:24018454

  18. Distinct bone marrow blood vessels differentially regulate haematopoiesis.

    Science.gov (United States)

    Itkin, Tomer; Gur-Cohen, Shiri; Spencer, Joel A; Schajnovitz, Amir; Ramasamy, Saravana K; Kusumbe, Anjali P; Ledergor, Guy; Jung, Yookyung; Milo, Idan; Poulos, Michael G; Kalinkovich, Alexander; Ludin, Aya; Kollet, Orit; Shakhar, Guy; Butler, Jason M; Rafii, Shahin; Adams, Ralf H; Scadden, David T; Lin, Charles P; Lapidot, Tsvee

    2016-04-21

    Bone marrow endothelial cells (BMECs) form a network of blood vessels that regulate both leukocyte trafficking and haematopoietic stem and progenitor cell (HSPC) maintenance. However, it is not clear how BMECs balance these dual roles, and whether these events occur at the same vascular site. We found that mammalian bone marrow stem cell maintenance and leukocyte trafficking are regulated by distinct blood vessel types with different permeability properties. Less permeable arterial blood vessels maintain haematopoietic stem cells in a low reactive oxygen species (ROS) state, whereas the more permeable sinusoids promote HSPC activation and are the exclusive site for immature and mature leukocyte trafficking to and from the bone marrow. A functional consequence of high permeability of blood vessels is that exposure to blood plasma increases bone marrow HSPC ROS levels, augmenting their migration and differentiation, while compromising their long-term repopulation and survival. These findings may have relevance for clinical haematopoietic stem cell transplantation and mobilization protocols. PMID:27074509

  19. Bone Regulates Glucose Metabolism as an Endocrine Organ through Osteocalcin

    OpenAIRE

    2015-01-01

    Skeleton was considered as a dynamic connective tissue, which was essential for mobility, calcium homeostasis, and hematopoietic niche. However more and more evidences indicate that skeleton works not only as a structural scaffold but also as an endocrine organ, which regulates several metabolic processes. Besides osteoprotegerin (OPG), sclerostin (SOST), and Dickopf (DKK) which play essential roles in bone formation, modelling, remodelling, and homeostasis, bone can also secret hormones, suc...

  20. TRANSCRIPTIONAL REGULATION OF BONE MARROW THROMBOPOIETIN BY PLATELET PROTEINS

    OpenAIRE

    McIntosh, Bryan; Kaushansky, Kenneth

    2008-01-01

    Platelet production is regulated primarily by the cytokine thrombopoietin (TPO). Although TPO is expressed in several different tissues, only in the bone marrow has the level of expression been reported to increase in response to reduced numbers of platelets. In these studies we demonstrate that platelet granule proteins are able to transcriptionally repress TPO mRNA expression in a marrow stromal cell line as well as in primary bone marrow stromal cell cultures. Like TPO mRNA, secretion of T...

  1. Functions of vasopressin and oxytocin in bone mass regulation.

    Science.gov (United States)

    Sun, Li; Tamma, Roberto; Yuen, Tony; Colaianni, Graziana; Ji, Yaoting; Cuscito, Concetta; Bailey, Jack; Dhawan, Samarth; Lu, Ping; Calvano, Cosima D; Zhu, Ling-Ling; Zambonin, Carlo G; Di Benedetto, Adriana; Stachnik, Agnes; Liu, Peng; Grano, Maria; Colucci, Silvia; Davies, Terry F; New, Maria I; Zallone, Alberta; Zaidi, Mone

    2016-01-01

    Prior studies show that oxytocin (Oxt) and vasopressin (Avp) have opposing actions on the skeleton exerted through high-affinity G protein-coupled receptors. We explored whether Avp and Oxtr can share their receptors in the regulation of bone formation by osteoblasts. We show that the Avp receptor 1α (Avpr1α) and the Oxt receptor (Oxtr) have opposing effects on bone mass: Oxtr(-/-) mice have osteopenia, and Avpr1α(-/-) mice display a high bone mass phenotype. More notably, this high bone mass phenotype is reversed by the deletion of Oxtr in Oxtr(-/-):Avpr1α(-/-) double-mutant mice. However, although Oxtr is not indispensable for Avp action in inhibiting osteoblastogenesis and gene expression, Avp-stimulated gene expression is inhibited when the Oxtr is deleted in Avpr1α(-/-) cells. In contrast, Oxt does not interact with Avprs in vivo in a model of lactation-induced bone loss in which Oxt levels are high. Immunofluorescence microscopy of isolated nucleoplasts and Western blotting and MALDI-TOF of nuclear extracts show that Avp triggers Avpr1α localization to the nucleus. Finally, a specific Avpr2 inhibitor, tolvaptan, does not affect bone formation or bone mass, suggesting that Avpr2, which primarily functions in the kidney, does not have a significant role in bone remodeling. PMID:26699482

  2. Estrogen regulates the rate of bone turnover but bone balance in ovariectomized rats is modulated by prevailing mechanical strain

    Science.gov (United States)

    Westerlind, K. C.; Wronski, T. J.; Ritman, E. L.; Luo, Z. P.; An, K. N.; Bell, N. H.; Turner, R. T.

    1997-01-01

    Estrogen deficiency induced bone loss is associated with increased bone turnover in rats and humans. The respective roles of increased bone turnover and altered balance between bone formation and bone resorption in mediating estrogen deficiency-induced cancellous bone loss was investigated in ovariectomized rats. Ovariectomy resulted in increased bone turnover in the distal femur. However, cancellous bone was preferentially lost in the metaphysis, a site that normally experiences low strain energy. No bone loss was observed in the epiphysis, a site experiencing higher strain energy. The role of mechanical strain in maintaining bone balance was investigated by altering the strain history. Mechanical strain was increased and decreased in long bones of ovariectomized rats by treadmill exercise and functional unloading, respectively. Functional unloading was achieved during orbital spaceflight and following unilateral sciatic neurotomy. Increasing mechanical loading reduced bone loss in the metaphysis. In contrast, decreasing loading accentuated bone loss in the metaphysis and resulted in bone loss in the epiphysis. Finally, administration of estrogen to ovariectomized rats reduced bone loss in the unloaded and prevented loss in the loaded limb following unilateral sciatic neurotomy in part by reducing indices of bone turnover. These results suggest that estrogen regulates the rate of bone turnover, but the overall balance between bone formation and bone resorption is influenced by prevailing levels of mechanical strain.

  3. Epigenetic Regulation of Bone Remodeling and Its Impacts in Osteoporosis.

    Science.gov (United States)

    Ghayor, Chafik; Weber, Franz E

    2016-01-01

    Epigenetics describes mechanisms which control gene expression and cellular processes without changing the DNA sequence. The main mechanisms in epigenetics are DNA methylation in CpG-rich promoters, histone modifications and non-coding RNAs (ncRNAs). DNA methylation modifies the function of the DNA and correlates with gene silencing. Histone modifications including acetylation/deacetylation and phosphorylation act in diverse biological processes such as transcriptional activation/inactivation and DNA repair. Non-coding RNAs play a large part in epigenetic regulation of gene expression in addition to their roles at the transcriptional and post-transcriptional level. Osteoporosis is the most common skeletal disorder, characterized by compromised bone strength and bone micro-architectural deterioration that predisposes the bones to an increased risk of fracture. It is most often caused by an increase in bone resorption that is not sufficiently compensated by a corresponding increase in bone formation. Nowadays it is well accepted that osteoporosis is a multifactorial disorder and there are genetic risk factors for osteoporosis and bone fractures. Here we review emerging evidence that epigenetics contributes to the machinery that can alter DNA structure, gene expression, and cellular differentiation during physiological and pathological bone remodeling. PMID:27598138

  4. Peripheral cannabinoid receptor, CB2, regulates bone mass

    Science.gov (United States)

    Ofek, Orr; Karsak, Meliha; Leclerc, Nathalie; Fogel, Meirav; Frenkel, Baruch; Wright, Karen; Tam, Joseph; Attar-Namdar, Malka; Kram, Vardit; Shohami, Esther; Mechoulam, Raphael; Zimmer, Andreas; Bab, Itai

    2006-01-01

    The endogenous cannabinoids bind to and activate two G protein-coupled receptors, the predominantly central cannabinoid receptor type 1 (CB1) and peripheral cannabinoid receptor type 2 (CB2). Whereas CB1 mediates the cannabinoid psychotropic, analgesic, and orectic effects, CB2 has been implicated recently in the regulation of liver fibrosis and atherosclerosis. Here we show that CB2-deficient mice have a markedly accelerated age-related trabecular bone loss and cortical expansion, although cortical thickness remains unaltered. These changes are reminiscent of human osteoporosis and may result from differential regulation of trabecular and cortical bone remodeling. The CB2–/– phenotype is also characterized by increased activity of trabecular osteoblasts (bone-forming cells), increased osteoclast (the bone-resorbing cell) number, and a markedly decreased number of diaphyseal osteoblast precursors. CB2 is expressed in osteoblasts, osteocytes, and osteoclasts. A CB2-specific agonist that does not have any psychotropic effects enhances endocortical osteoblast number and activity and restrains trabecular osteoclastogenesis, apparently by inhibiting proliferation of osteoclast precursors and receptor activator of NF-κB ligand expression in bone marrow-derived osteoblasts/stromal cells. The same agonist attenuates ovariectomy-induced bone loss and markedly stimulates cortical thickness through the respective suppression of osteoclast number and stimulation of endocortical bone formation. These results demonstrate that the endocannabinoid system is essential for the maintenance of normal bone mass by osteoblastic and osteoclastic CB2 signaling. Hence, CB2 offers a molecular target for the diagnosis and treatment of osteoporosis, the most prevalent degenerative disease in developed countries. PMID:16407142

  5. Characterization of small GTPase Cdc42 from the ectomycorrhizal fungus Suillus bovinus and Agrobacterium tumefaciens-mediated transformation of fungi

    OpenAIRE

    Hanif, Mubashir

    2004-01-01

    Ectomycorrhizal formation between the host tree, Pinus sylvestris and fungal symbiont, Suillus bovinus was investigated at the molecular level by isolating genes regulating the organization of the actin cytoskeleton in the fungal partner S. bovinus. An Agrobacterium tumefaciens mediated transformation (ATMT) system was developed for the ectomycorrhizal fungi in order to assign specific functions to the cloned molecules. The developed ATMT system was also used to transform a plant pathogenic f...

  6. Transcriptional regulation of bone sialoprotein gene expression by Osx.

    Science.gov (United States)

    Yang, Ya; Huang, Yehong; Zhang, Li; Zhang, Chi

    2016-08-01

    Osteoporosis is the most common metabolic bone disease characterized by decreased bone mass, decreased bone strength, and increased risk of fracture. It is due to unbalance between bone formation and bone resorption. Bone formation is a complex process which involves the differentiation of mesenchymal stem cells to osteoblasts. Osteoblasts produce a characteristic extracellular collagenous matrix that subsequently becomes mineralized. Osterix (Osx) is an osteoblast-specific transcription factor required for osteoblast differentiation. Bone sialoprotein (Bsp) is a member of the SIBLING gene family. Expression of Bsp correlates with the differentiation of osteoblasts and the onset of mineralization. Our preliminary data showed that Bsp was abolished in Osx-null mice; however, the detailed mechanism of Osx regulation on Bsp is not fully understood. In this study, regulation of Bsp expression by Osx was further characterized. It was shown that overexpression of Osx led to Bsp upregulation. Inhibition of Osx by small interfering RNA resulted in Bsp downregulation in osteoblast. Transfection assay demonstrated that Osx was able to activate Bsp promoter reporter in a dose-dependent manner. To define minimal region of Bsp promoter activated by Osx, a series of deletion mutants of Bsp promoter were generated, and the minimal region was narrowed down to the proximal 100 bp. Point-mutagenesis studies showed that one GC-rich site was required for Bsp promoter activation by Osx. ChIP assays demonstrated that endogenous Osx associated with native Bsp promoter in primary osteoblasts. Our observations provide evidence that Osx targets Bsp expression directly. PMID:27261434

  7. Erk1 positively regulates osteoclast differentiation and bone resorptive activity.

    Directory of Open Access Journals (Sweden)

    Yongzheng He

    Full Text Available The extracellular signal-regulated kinases (ERK1 and 2 are widely-expressed and they modulate proliferation, survival, differentiation, and protein synthesis in multiple cell lineages. Altered ERK1/2 signaling is found in several genetic diseases with skeletal phenotypes, including Noonan syndrome, Neurofibromatosis type 1, and Cardio-facio-cutaneous syndrome, suggesting that MEK-ERK signals regulate human skeletal development. Here, we examine the consequence of Erk1 and Erk2 disruption in multiple functions of osteoclasts, specialized macrophage/monocyte lineage-derived cells that resorb bone. We demonstrate that Erk1 positively regulates osteoclast development and bone resorptive activity, as genetic disruption of Erk1 reduced osteoclast progenitor cell numbers, compromised pit formation, and diminished M-CSF-mediated adhesion and migration. Moreover, WT mice reconstituted long-term with Erk1(-/- bone marrow mononuclear cells (BMMNCs demonstrated increased bone mineral density as compared to recipients transplanted with WT and Erk2(-/- BMMNCs, implicating marrow autonomous, Erk1-dependent osteoclast function. These data demonstrate Erk1 plays an important role in osteoclast functions while providing rationale for the development of Erk1-specific inhibitors for experimental investigation and/or therapeutic modulation of aberrant osteoclast function.

  8. Bone Regulates Glucose Metabolism as an Endocrine Organ through Osteocalcin

    Directory of Open Access Journals (Sweden)

    Jin Shao

    2015-01-01

    Full Text Available Skeleton was considered as a dynamic connective tissue, which was essential for mobility, calcium homeostasis, and hematopoietic niche. However more and more evidences indicate that skeleton works not only as a structural scaffold but also as an endocrine organ, which regulates several metabolic processes. Besides osteoprotegerin (OPG, sclerostin (SOST, and Dickopf (DKK which play essential roles in bone formation, modelling, remodelling, and homeostasis, bone can also secret hormones, such as osteocalcin (OCN, which promotes proliferation of β cells, insulin secretion, and insulin sensitivity. Additionally OCN can also regulate the fat cells and male gonad endocrine activity and be regulated by insulin and the neural system. In summary, skeleton has endocrine function via OCN and plays an important role in energy metabolism, especially in glucose metabolism.

  9. Final Report: Bone Mass Inheritance: A Project to Identify the Genetic Regulation of Bone Mass; FINAL

    International Nuclear Information System (INIS)

    This project was designed to find human chromosomal locations that contain genes regulating peak bone density. It is part of a whole genome search for those loci,each responsible for at least 15% of the variation in the peak adult bone density. We accomplished this with a sib pair design, combined with simultaneous examination of extended kindreds. This project gave partial support of the recruitment which has now been completed. The project will extend into 2003. During the remainder of the project, a whole genome scan will be performed from the entire cohort of 2226 persons who have DNA archived, followed by linkage analysis. This project will meet the scientific objective leading eventually to expanded options for treating the condition that leads to bone thinning osteoporosis, and potential fractures in aging populations

  10. AMP-activated protein kinase (AMPK) activation regulates in vitro bone formation and bone mass.

    Science.gov (United States)

    Shah, M; Kola, B; Bataveljic, A; Arnett, T R; Viollet, B; Saxon, L; Korbonits, M; Chenu, C

    2010-08-01

    Adenosine 5'-monophosphate-activated protein kinase (AMPK), a regulator of energy homeostasis, has a central role in mediating the appetite-modulating and metabolic effects of many hormones and antidiabetic drugs metformin and glitazones. The objective of this study was to determine if AMPK can be activated in osteoblasts by known AMPK modulators and if AMPK activity is involved in osteoblast function in vitro and regulation of bone mass in vivo. ROS 17/2.8 rat osteoblast-like cells were cultured in the presence of AMPK activators (AICAR and metformin), AMPK inhibitor (compound C), the gastric peptide hormone ghrelin and the beta-adrenergic blocker propranolol. AMPK activity was measured in cell lysates by a functional kinase assay and AMPK protein phosphorylation was studied by Western Blotting using an antibody recognizing AMPK Thr-172 residue. We demonstrated that treatment of ROS 17/2.8 cells with AICAR and metformin stimulates Thr-172 phosphorylation of AMPK and dose-dependently increases its activity. In contrast, treatment of ROS 17/2.8 cells with compound C inhibited AMPK phosphorylation. Ghrelin and propranolol dose-dependently increased AMPK phosphorylation and activity. Cell proliferation and alkaline phosphatase activity were not affected by metformin treatment while AICAR significantly inhibited ROS 17/2.8 cell proliferation and alkaline phosphatase activity at high concentrations. To study the effect of AMPK activation on bone formation in vitro, primary osteoblasts obtained from rat calvaria were cultured for 14-17days in the presence of AICAR, metformin and compound C. Formation of 'trabecular-shaped' bone nodules was evaluated following alizarin red staining. We demonstrated that both AICAR and metformin dose-dependently increase trabecular bone nodule formation, while compound C inhibits bone formation. When primary osteoblasts were co-treated with AICAR and compound C, compound C suppressed the stimulatory effect of AICAR on bone nodule formation

  11. Bone marrow-derived cell regulation of skeletal muscle regeneration

    OpenAIRE

    Sun, Dongxu; Martinez, Carlo O.; OCHOA, OSCAR; Ruiz-Willhite, Lourdes; Bonilla, Jose R.; Centonze, Victoria E.; Waite, Lindsay L.; Joel E. Michalek; McManus, Linda M.; Shireman, Paula K.

    2009-01-01

    Limb regeneration requires the coordination of multiple stem cell populations to recapitulate the process of tissue formation. Therefore, bone marrow (BM) -derived cell regulation of skeletal muscle regeneration was examined in mice lacking the CC chemokine receptor 2 (CCR2). Myofiber size, numbers of myogenic progenitor cells (MPCs), and recruitment of BM-derived cells and macrophages were assessed after cardiotoxin-induced injury of chimeric mice produced by transplanting BM from wild-type ...

  12. DLK1 is a novel regulator of bone mass that mediates estrogen deficiency-induced bone loss in mice

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Ditzel, Nicholas; Mahmood, Amer;

    2011-01-01

    Delta-like 1/fetal antigen 1 (DLK1/FA-1) is a transmembrane protein belonging to the Notch/Delta family that acts as a membrane-associated or a soluble protein to regulate regeneration of a number of adult tissues. Here we examined the role of DLK1/FA-1 in bone biology using osteoblast-specific Dlk...... the bone marrow by activated T cells. Interestingly, Dlk1(-/-) mice were significantly protected from ovx-induced bone loss compared with wild-type mice. Thus we identified Dlk1 as a novel regulator of bone mass that functions to inhibit bone formation and to stimulate bone resorption. Increasing DLK1...... production by T cells under estrogen deficiency suggests its possible use as a therapeutic target for preventing postmenopausal bone loss....

  13. AMP-activated protein kinase (AMPK) activation regulates in vitro bone formation and bone mass

    OpenAIRE

    Shah, M; Kola, B; Bataveljic, A.; Arnett, T. R.; Viollet, B.; Saxon, L.; Korbonits, M.; C. Chenu

    2010-01-01

    Adenosine 5′-monophosphate-activated protein kinase (AMPK), a regulator of energy homeostasis, has a central role in mediating the appetite-modulating and metabolic effects of many hormones and antidiabetic drugs metformin and glitazones. The objective of this study was to determine if AMPK can be activated in osteoblasts by known AMPK modulators and if AMPK activity is involved in osteoblast function in vitro and regulation of bone mass in vivo. ROS 17/2.8 rat osteoblast-like cells were cult...

  14. LEPTIN REGULATION OF BONE RESORPTION BY THE SYMPATHETIC NERVOUS SYSTEM AND CART

    Science.gov (United States)

    Bone remodelling, the mechanism by which vertebrates regulate bone mass, comprises two phases, namely resorption by osteoclasts and formation by osteoblasts; osteoblasts are multifunctional cells also controlling osteoclast differentiation. Sympathetic signalling via beta2-adrenergic receptors (Adrb...

  15. The Impact of Immune System in Regulating Bone Metastasis Formation by Osteotropic Tumors

    Directory of Open Access Journals (Sweden)

    Lucia D’Amico

    2015-01-01

    Full Text Available Bone metastases are frequent and debilitating consequence for many tumors, such as breast, lung, prostate, and kidney cancer. Many studies report the importance of the immune system in the pathogenesis of bone metastasis. Indeed, bone and immune system are strictly linked to each other because bone regulates the hematopoietic stem cells from which all cells of the immune system derive, and many immunoregulatory cytokines influence the fate of bone cells. Furthermore, both cytokines and factors produced by immune and bone cells promote the growth of tumor cells in bone, contributing to supporting the vicious cycle of bone metastasis. This review summarizes the current knowledge on the interactions among bone, immune, and tumor cells aiming to provide an overview of the osteoimmunology field in bone metastasis from solid tumors.

  16. Regulation of Bone Morphogenetic Protein Signaling by ADP-ribosylation.

    Science.gov (United States)

    Watanabe, Yukihide; Papoutsoglou, Panagiotis; Maturi, Varun; Tsubakihara, Yutaro; Hottiger, Michael O; Heldin, Carl-Henrik; Moustakas, Aristidis

    2016-06-10

    We previously established a mechanism of negative regulation of transforming growth factor β signaling mediated by the nuclear ADP-ribosylating enzyme poly-(ADP-ribose) polymerase 1 (PARP1) and the deribosylating enzyme poly-(ADP-ribose) glycohydrolase (PARG), which dynamically regulate ADP-ribosylation of Smad3 and Smad4, two central signaling proteins of the pathway. Here we demonstrate that the bone morphogenetic protein (BMP) pathway can also be regulated by the opposing actions of PARP1 and PARG. PARG positively contributes to BMP signaling and forms physical complexes with Smad5 and Smad4. The positive role PARG plays during BMP signaling can be neutralized by PARP1, as demonstrated by experiments where PARG and PARP1 are simultaneously silenced. In contrast to PARG, ectopic expression of PARP1 suppresses BMP signaling, whereas silencing of endogenous PARP1 enhances signaling and BMP-induced differentiation. The two major Smad proteins of the BMP pathway, Smad1 and Smad5, interact with PARP1 and can be ADP-ribosylated in vitro, whereas PARG causes deribosylation. The overall outcome of this mode of regulation of BMP signal transduction provides a fine-tuning mechanism based on the two major enzymes that control cellular ADP-ribosylation. PMID:27129221

  17. The turnover of mineralized growth plate cartilage into bone may be regulated by osteocytes.

    Science.gov (United States)

    Cox, Lieke G E; van Rietbergen, B; van Donkelaar, C C; Ito, K

    2011-06-01

    During endochondral ossification, growth plate cartilage is replaced with bone. Mineralized cartilage matrix is resorbed by osteoclasts, and new bone tissue is formed by osteoblasts. As mineralized cartilage does not contain any cells, it is unclear how this process is regulated. We hypothesize that, in analogy with bone remodeling, osteoclast and osteoblast activity are regulated by osteocytes, in response to mechanical loading. Since the cartilage does not contain osteocytes, this means that cartilage turnover during endochondral ossification would be regulated by the adjacent bone tissue. We investigated this hypothesis with an established computational bone adaptation model. In this model, osteocytes stimulate osteoblastic bone formation in response to the mechanical bone tissue loading. Osteoclasts resorb bone near randomly occurring microcracks that are assumed to block osteocyte signals. We used finite element modeling to evaluate our hypothesis in a 2D-domain representing part of the growth plate and adjacent bone. Cartilage was added at a constant physiological rate to simulate growth. Simulations showed that osteocyte signals from neighboring bone were sufficient for successful cartilage turnover, since equilibrium between cartilage remodeling and growth was obtained. Furthermore, there was good agreement between simulated bone structures and rat tibia histology, and the development of the trabecular architecture resembled that of infant long bones. Additionally, prohibiting osteoclast invasion resulted in thickened mineralized cartilage, similar to observations in a knock-out mouse model. We therefore conclude that it is well possible that osteocytes regulate the turnover of mineralized growth plate cartilage. PMID:21546025

  18. Cytokines and growth factors which regulate bone cell function

    Science.gov (United States)

    Seino, Yoshiki

    Everybody knows that growth factors are most important in making bone. Hormones enhance bone formation from a long distance. Growth factors promote bone formation as an autocrine or paracrine factor in nearby bone. BMP-2 through BMP-8 are in the TGF-β family. BMP makes bone by enchondral ossification. In bone, IGF-II is most abundant, second, TGF-β, and third IGF-I. TGF-β enhances bone formation mainly by intramembranous ossification in vivo. TGF-β affects both cell proliferation and differentiation, however, TGF-β mainly enhances bone formation by intramembranous ossification. Interestingly, TGF-β is increased by estrogen(E 2), androgen, vitamin D, TGF-β and FGF. IGF-I and IGF-II also enhance bone formation. At present it remains unclear why IGF-I is more active in bone formation than IGF-II, although IGF-II is more abundant in bone compared to IGF-I. However, if only type I receptor signal transduction promotes bone formation, the strong activity of IGF-I in bone formation is understandable. GH, PTH and E 2 promotes IGF-I production. Recent data suggest that hormones containing vitamin D or E 2 enhance bone formation through growth factors. Therefore, growth factors are the key to clarifying the mechanism of bone formation.

  19. Bone marrow-derived cell regulation of skeletal muscle regeneration.

    Science.gov (United States)

    Sun, Dongxu; Martinez, Carlo O; Ochoa, Oscar; Ruiz-Willhite, Lourdes; Bonilla, Jose R; Centonze, Victoria E; Waite, Lindsay L; Michalek, Joel E; McManus, Linda M; Shireman, Paula K

    2009-02-01

    Limb regeneration requires the coordination of multiple stem cell populations to recapitulate the process of tissue formation. Therefore, bone marrow (BM) -derived cell regulation of skeletal muscle regeneration was examined in mice lacking the CC chemokine receptor 2 (CCR2). Myofiber size, numbers of myogenic progenitor cells (MPCs), and recruitment of BM-derived cells and macrophages were assessed after cardiotoxin-induced injury of chimeric mice produced by transplanting BM from wild-type (WT) or CCR2(-/-) mice into irradiated WT or CCR2(-/-) host mice. Regardless of the host genotype, muscle regeneration and recruitment of BM-derived cells and macrophages were similar in mice replenished with WT BM, whereas BM-derived cells and macrophage accumulation were decreased and muscle regeneration was impaired in all animals receiving CCR2(-/-) BM. Furthermore, numbers of MPCs (CD34(+)/Sca-1(-)/CD45(-) cells) were significantly increased in mice receiving CCR2(-/-) BM despite the decreased size of regenerated myofibers. Thus, the expression of CCR2 on BM-derived cells regulated macrophage recruitment into injured muscle, numbers of MPC, and the extent of regenerated myofiber size, all of which were independent of CCR2 expression on host-derived cells. Future studies in regenerative medicine must include consideration of the role of BM-derived cells, possibly macrophages, in CCR2-dependent events that regulate effective skeletal muscle regeneration. PMID:18827026

  20. Labisia pumila regulates bone-related genes expressions in postmenopausal osteoporosis model

    OpenAIRE

    Fathilah, Siti Noor; Mohamed, Norazlina; Muhammad, Norliza; Mohamed, Isa Naina; Soelaiman, Ima Nirwana; Shuid, Ahmad Nazrun

    2013-01-01

    Background Labisia Pumila var. alata (LPva) has shown potential as an alternative to estrogen replacement therapy (ERT) in prevention of estrogen-deficient osteoporosis. In earlier studies using postmenopausal model, LPva was able to reverse the ovariectomy-induced changes in biochemical markers, bone calcium, bone histomorphometric parameters and biomechanical strength. The mechanism behind these protective effects is unclear but LPva may have regulated factors that regulate bone remodeling....

  1. Surface microcracks signal osteoblasts to regulate alignment and bone formation

    OpenAIRE

    Shu, Yutian; Melissa J. Baumann; Case, Eldon D.; Irwin, Regina K.; Meyer, Sarah E.; Pearson, Craig S.; McCabe, Laura R.

    2014-01-01

    Microcracks are present in bone and can result from fatigue damage due to repeated, cyclically applied stresses. From a mechanical point, microcracks can dissipate strain energy at the advancing tip of a crack to improve overall bone toughness. Physiologically, microcracks are thought to trigger bone remodeling. Here, we examine the effect of microcracks specifically on osteoblasts, which are bone-forming cells, by comparing cell responses on microcracked versus non-microcracked hydroxyapatit...

  2. FSH and TSH in the Regulation of Bone Mass: The Pituitary/Immune/Bone Axis

    OpenAIRE

    Graziana Colaianni; Concetta Cuscito; Silvia Colucci

    2013-01-01

    Recent evidences have highlighted that the pituitary hormones have profound effects on bone, so that the pituitary-bone axis is now becoming an important issue in the skeletal biology. Here, we discuss the topical evidence about the dysfunction of the pituitary-bone axis that leads to osteoporotic bone loss. We will explore the context of FSH and TSH hormones arguing their direct or indirect role in bone loss. In addition, we will focus on the knowledge that both FSH and TSH have influence on...

  3. Genetic regulation of bone metabolism in the chicken: similarities and differences to Mammalian systems.

    Directory of Open Access Journals (Sweden)

    Martin Johnsson

    2015-05-01

    Full Text Available Birds have a unique bone physiology, due to the demands placed on them through egg production. In particular their medullary bone serves as a source of calcium for eggshell production during lay and undergoes continuous and rapid remodelling. We take advantage of the fact that bone traits have diverged massively during chicken domestication to map the genetic basis of bone metabolism in the chicken. We performed a quantitative trait locus (QTL and expression QTL (eQTL mapping study in an advanced intercross based on Red Junglefowl (the wild progenitor of the modern domestic chicken and White Leghorn chickens. We measured femoral bone traits in 456 chickens by peripheral computerised tomography and femoral gene expression in a subset of 125 females from the cross with microarrays. This resulted in 25 loci for female bone traits, 26 loci for male bone traits and 6318 local eQTL loci. We then overlapped bone and gene expression loci, before checking for an association between gene expression and trait values to identify candidate quantitative trait genes for bone traits. A handful of our candidates have been previously associated with bone traits in mice, but our results also implicate unexpected and largely unknown genes in bone metabolism. In summary, by utilising the unique bone metabolism of an avian species, we have identified a number of candidate genes affecting bone allocation and metabolism. These findings can have ramifications not only for the understanding of bone metabolism genetics in general, but could also be used as a potential model for osteoporosis as well as revealing new aspects of vertebrate bone regulation or features that distinguish avian and mammalian bone.

  4. Parathyroid Hormone-Related Protein, Its Regulation of Cartilage and Bone Development, and Role in Treating Bone Diseases.

    Science.gov (United States)

    Martin, T John

    2016-07-01

    Although parathyroid hormone-related protein (PTHrP) was discovered as a cancer-derived hormone, it has been revealed as an important paracrine/autocrine regulator in many tissues, where its effects are context dependent. Thus its location and action in the vasculature explained decades-long observations that injection of PTH into animals rapidly lowered blood pressure by producing vasodilatation. Its roles have been specified in development and maturity in cartilage and bone as a crucial regulator of endochondral bone formation and bone remodeling, respectively. Although it shares actions with parathyroid hormone (PTH) through the use of their common receptor, PTHR1, PTHrP has other actions mediated by regions within the molecule beyond the amino-terminal sequence that resembles PTH, including the ability to promote placental transfer of calcium from mother to fetus. A striking feature of the physiology of PTHrP is that it possesses structural features that equip it to be transported in and out of the nucleus, and makes use of a specific nuclear import mechanism to do so. Evidence from mouse genetic experiments shows that PTHrP generated locally in bone is essential for normal bone remodeling. Whereas the main physiological function of PTH is the hormonal regulation of calcium metabolism, locally generated PTHrP is the important physiological mediator of bone remodeling postnatally. Thus the use of intermittent injection of PTH as an anabolic therapy for bone appears to be a pharmacological application of the physiological function of PTHrP. There is much current interest in the possibility of developing PTHrP analogs that might enhance the therapeutic anabolic effects. PMID:27142453

  5. The love hormone Oxytocin regulates the loss and gain of the Fat-Bone relationship.

    Directory of Open Access Journals (Sweden)

    Graziana eColaianni

    2015-05-01

    Full Text Available The involvement of Oxytocin (OT in bone metabolism is an interesting area of research that recently achieved remarkable results. Moreover, several lines of evidence have largely demonstrated that OT also participates in the regulation of energy metabolism. Hence, it has recently been determined that the posterior pituitary hormone OT directly regulates bone mass: mice lacking OT or OT receptor (OTR display severe osteopenia, caused by impaired bone formation. OT administration normalizes ovariectomy-induced osteopenia, bone marrow adiposity, body weight and intra-abdominal fat depots in mice. This effect is mediated through inhibition of adipocyte precursor differentiation and reduction of adipocyte size. The exquisite role of OT in regulating the bone-fat connection adds another milestone to the biological evidence supporting the existence of a tight relationship between the adipose tissue and the skeleton.

  6. Sprouty2 regulates endochondral bone formation by modulation of RTK and BMP signaling.

    Science.gov (United States)

    Joo, Adriane; Long, Roger; Cheng, Zhiqiang; Alexander, Courtney; Chang, Wenhan; Klein, Ophir D

    2016-07-01

    Skeletal development is regulated by the coordinated activity of signaling molecules that are both produced locally by cartilage and bone cells and also circulate systemically. During embryonic development and postnatal bone remodeling, receptor tyrosine kinase (RTK) superfamily members play critical roles in the proliferation, survival, and differentiation of chondrocytes, osteoblasts, osteoclasts, and other bone cells. Recently, several molecules that regulate RTK signaling have been identified, including the four members of the Sprouty (Spry) family (Spry1-4). We report that Spry2 plays an important role in regulation of endochondral bone formation. Mice in which the Spry2 gene has been deleted have defective chondrogenesis and endochondral bone formation, with a postnatal decrease in skeletal size and trabecular bone mass. In these constitutive Spry2 mutants, both chondrocytes and osteoblasts undergo increased cell proliferation and impaired terminal differentiation. Tissue-specific Spry2 deletion by either osteoblast- (Col1-Cre) or chondrocyte- (Col2-Cre) specific drivers led to decreased relative bone mass, demonstrating the critical role of Spry2 in both cell types. Molecular analyses of signaling pathways in Spry2(-/-) mice revealed an unexpected upregulation of BMP signaling and decrease in RTK signaling. These results identify Spry2 as a critical regulator of endochondral bone formation that modulates signaling in both osteoblast and chondrocyte lineages. PMID:27130872

  7. Direct comparison of regulators of calcification between bone and vessels in humans.

    Science.gov (United States)

    Schweighofer, N; Aigelsreiter, A; Trummer, O; Graf-Rechberger, M; Hacker, N; Kniepeiss, D; Wagner, D; Stiegler, P; Trummer, C; Pieber, T; Obermayer-Pietsch, B; Müller, H

    2016-07-01

    Calcification is not only physiologically present in bone but is a main pathophysiological process in vasculature, favouring cardiovascular diseases. Our aim was to investigate changes in the expression of calcification regulators during vascular calcification in bone and vasculature. Levels of gene expression of osteoprotegerin (OPG), receptor activator of NF-κB ligand (RANKL), osteopontin (OPN), matrix gla protein (MGP), bone sialoprotein (BSP), SMAD6, and runt-related transcription factor 2 (RUNX2) were determined in bone, aorta, and external iliac artery tissue samples of transplant donors. Histological stages of atherosclerosis (AS) in vessels are defined as "no changes", "intima thickening", or "intima calcification". Patients' bone samples were subgrouped accordingly. We demonstrate that in vessels BSP and OPN expression significantly increased during intima thickening and decreased during intima calcification, whereas the expression of regulators of calcification did not significantly change in bone during intima thickening and intima calcification. At the stage of intima thickening, MGP, OPG, and SMAD6 expression and at stage of intima calcification only MGP expression was lower in bone than in vessel. The expression of BSP and RANKL was regulated in opposite ways in bone and vessels, whereas the expression of MGP, OC, RUNX2, and OPN was regulated in a tissue-specific manner. Our study is the first direct comparison of gene expression changes during AS progression in bone and vessels. Our results indicate that changes in the expression of regulators of calcification in the vessel wall as well as in bone occur early in the calcification process, even prior to deposition of calcium/phosphate precipitation. PMID:27108945

  8. Bone morphogenetic protein-2: a potential regulator in scleral remodeling

    OpenAIRE

    Hu, Jianmin; Cui, Dongmei; Yang, Xiao; Wang, Shaowei; Hu, Shoulong; Li, Chuanxu; Zeng, Junwen

    2008-01-01

    Purpose Bone morphogenetic protein 2 (BMP-2) is a member of the main subgroup of bone morphogenetic proteins within the transforming growth factor-β superfamily. BMP-2 is involved in numerous cellular functions including development, cell proliferation, apoptosis, and extracellular matrix synthesis. We examined BMP-2 expression in human scleral fibroblasts (HSF) and assessed the effects of recombinant human BMP-2 (rhBMP-2) on HSF proliferation, matrix metalloproteinase-2 (MMP-2), and tissue i...

  9. Surface microcracks signal osteoblasts to regulate alignment and bone formation.

    Science.gov (United States)

    Shu, Yutian; Baumann, Melissa J; Case, Eldon D; Irwin, Regina K; Meyer, Sarah E; Pearson, Craig S; McCabe, Laura R

    2014-11-01

    Microcracks are present in bone and can result from fatigue damage due to repeated, cyclically applied stresses. From a mechanical point, microcracks can dissipate strain energy at the advancing tip of a crack to improve overall bone toughness. Physiologically, microcracks are thought to trigger bone remodeling. Here, we examine the effect of microcracks specifically on osteoblasts, which are bone-forming cells, by comparing cell responses on microcracked versus non-microcracked hydroxyapatite (HA) specimens. Osteoblast attachment was found to be greater on microcracked HA specimens (pmicrocracks on HA. Cells also displayed a preferential attachment that was 75 to 90 μm away from the microcrack indent. After 21 days of culture, osteoblast maturation was notably enhanced on the HA with microcracks, as indicated by increased alkaline phosphatase activity and gene expression. Furthermore, examination of bone deposition by confocal laser scanning microscopy indicated preferential mineralization at microcrack indentation sites. Dissolution studies indicate that the microcracks increase calcium release, which could contribute to osteoblast responses. Our findings suggest that microcracks signal osteoblast attachment and bone formation/healing. PMID:25280696

  10. New insights into the physiology of bone regulation: the role of neurohormones.

    Science.gov (United States)

    Zofková, I; Matucha, P

    2014-01-01

    Bone metabolism is regulated by interaction between two skeletal cells - osteoclasts and osteoblasts. Function of these cells is controlled by a number of humoral factors, including neurohormones, which ensure equilibrium between bone resorption and bone formation. Influence of neurohormones on bone metabolism is often bimodal and depends on the tissue, in which the hormone is expressed. While hypothalamic beta-1 and beta-2-adrenergic systems stimulate bone formation, beta-2 receptors in bone tissue activate osteoclatogenesis and increases bone resorption. Chronic stimulation of peripheral beta-2 receptors is known to quicken bone loss and alter the mechanical quality of the skeleton. This is supported by the observation of a low incidence of hip fractures in patients treated with betablockers. A bimodal osteo-tropic effect has also been observed with serotonin. While serotonin synthetized in brain has osteo-anabolic effects, serotonin released from the duodenum inhibits osteoblast activity and decreases bone formation. On the other hand, both cannabinoid systems (CB1 receptors in the brain and CB2 in bone tissue) are unambiguously osteo-protective, especially with regard to the aging skeleton. Positive (protective) effects on bone have also been shown by some hypophyseal hormones, such as thyrotropin (which inhibits bone resorption) and adrenocorticotropic hormone and oxytocin, both of which stimulate bone formation. Low oxytocin levels have been shown to potentiate bone loss induced by hypoestrinism in postmenopausal women, as well as in girls with mental anorexia. In addition to reviewing neurohormones with anabolic effects, this article also reviews neurohormones with unambiguously catabolic effects on the skeleton, such as neuropeptide Y and neuromedin U. An important aim of research in this field is the synthesis of new molecules that can stimulate osteo-anabolic or inhibiting osteo-catabolic processes. PMID:24702491

  11. Tissue damage negatively regulates LPS-induced macrophage necroptosis.

    Science.gov (United States)

    Li, Z; Scott, M J; Fan, E K; Li, Y; Liu, J; Xiao, G; Li, S; Billiar, T R; Wilson, M A; Jiang, Y; Fan, J

    2016-09-01

    Infection is a common clinical complication following tissue damage resulting from surgery and severe trauma. Studies have suggested that cell pre-activation by antecedent trauma/tissue damage profoundly impacts the response of innate immune cells to a secondary infectious stimulus. Cell necroptosis, a form of regulated inflammatory cell death, is one of the mechanisms that control cell release of inflammatory mediators from important innate immune executive cells such as macrophages (Mφ), which critically regulate the progress of inflammation. In this study, we investigated the mechanism and role of trauma/tissue damage in the regulation of LPS-induced Mφ necroptosis using a mouse model simulating long-bone fracture. We demonstrate that LPS acting through Toll-like receptor (TLR) 4 promotes Mφ necroptosis. However, necroptosis is ameliorated by high-mobility group box 1 (HMGB1) release from damaged tissue. We show that HMGB1 acting through cell surface receptor for advanced glycation end products (RAGE) upregulates caveolin-1 expression, which in turn induces caveolae-mediated TLR4 internalization and desensitization to decrease Mφ necroptosis. We further show that RAGE-MyD88 activation of Cdc42 and subsequent activation of transcription factor Sp1 serves as a mechanism underlying caveolin-1 transcriptional upregulation. These results reveal a previous unidentified protective role of damage-associated molecular pattern (DAMP) molecules in restricting inflammation in response to exogenous pathogen-associated molecular pattern molecules. PMID:26943325

  12. [Regulation of bone metabolism in osteoporosis : novel drugs for osteoporosis in development].

    Science.gov (United States)

    Jakob, F; Genest, F; Baron, G; Stumpf, U; Rudert, M; Seefried, L

    2015-11-01

    Bone is continuously regenerated and remodeled as an adaptation to mechanical load. Bone mass and fracture resistance are maintained by a balanced equilibrium between bone formation and bone resorption. Regeneration and response to mechanical load are, however, impaired in osteoporosis and during aging. Bone resorption is enhanced by chronic inflammation while bone formation is altered by rising levels of inhibitors in the aging organism. Core molecular principles of the regulation of bone metabolism in health and disease have been characterized and developed as therapeutic targets. The receptor activator of nuclear factor kappaB ligand (RANKL) and osteoclast-derived protease cathepsin K are important regulators and effectors of osteoclast differentiation and bone resorption. Bone formation is stimulated by bone morphogenetic proteins (BMP) and via the parathyroid hormone receptor and the Wnt signaling pathway. The principles of osteoclast inhibition using bisphosphonates have now been known for almost three decades. Based on more recent knowledge RANKL and cathepsin K have been developed as new therapeutic targets to inhibit bone resorption. While denosumab, a RANKL antibody, has already been introduced into routine treatment strategies, the cathepsin K antagonist odanacatib is currently in the licensing process. Bone formation can also be stimulated by local administration of BMPs, by systemic treatment with the parathyroid hormone fragment teriparatide and by using antibodies targeting the Wnt inhibitor sclerostin. The latter are presently being tested in phase III clinical studies. In the near future a panel of traditional and novel treatment strategies will be available that will enable us to meet the individual clinical needs during aging and for the treatment of osteoporosis. PMID:26471379

  13. Chronic central administration of Ghrelin increases bone mass through a mechanism independent of appetite regulation.

    Directory of Open Access Journals (Sweden)

    Hyung Jin Choi

    Full Text Available Leptin plays a critical role in the central regulation of bone mass. Ghrelin counteracts leptin. In this study, we investigated the effect of chronic intracerebroventricular administration of ghrelin on bone mass in Sprague-Dawley rats (1.5 μg/day for 21 days. Rats were divided into control, ghrelin ad libitum-fed (ghrelin ad lib-fed, and ghrelin pair-fed groups. Ghrelin intracerebroventricular infusion significantly increased body weight in ghrelin ad lib-fed rats but not in ghrelin pair-fed rats, as compared with control rats. Chronic intracerebroventricular ghrelin infusion significantly increased bone mass in the ghrelin pair-fed group compared with control as indicated by increased bone volume percentage, trabecular thickness, trabecular number and volumetric bone mineral density in tibia trabecular bone. There was no significant difference in trabecular bone mass between the control group and the ghrelin ad-lib fed group. Chronic intracerebroventricular ghrelin infusion significantly increased the mineral apposition rate in the ghrelin pair-fed group as compared with control. In conclusion, chronic central administration of ghrelin increases bone mass through a mechanism that is independent of body weight, suggesting that ghrelin may have a bone anabolic effect through the central nervous system.

  14. Exercise and Regulation of Bone and Collagen Tissue Biology

    DEFF Research Database (Denmark)

    Kjær, Michael; Jørgensen, Niklas Rye; Heinemeier, Katja Maria;

    2015-01-01

    The musculoskeletal system and its connective tissue include the intramuscular connective tissue, the myotendinous junction, the tendon, the joints with their cartilage and ligaments, and the bone; they all together play a crucial role in maintaining the architecture of the skeletal muscle...

  15. Exosome: A Novel Approach to Stimulate Bone Regeneration through Regulation of Osteogenesis and Angiogenesis

    Science.gov (United States)

    Qin, Yunhao; Sun, Ruixin; Wu, Chuanlong; Wang, Lian; Zhang, Changqing

    2016-01-01

    The clinical need for effective bone regeneration therapy remains in huge demands. However, the current “gold standard” treatments of autologous and allogeneic bone grafts may result in various complications. Furthermore, safety considerations of biomaterials and cell-based treatment require further clarification. Therefore, developing new therapies with stronger osteogenic potential and a lower incidence of complications is worthwhile. Recently, exosomes, small vesicles of endocytic origin, have attracted attention in bone regeneration field. The vesicles travel between cells and deliver functional cargoes, such as proteins and RNAs, thereby regulating targeted cells differentiation, commitment, function, and proliferation. Much evidence has demonstrated the important roles of exosomes in osteogenesis both in vitro and in vivo. In this review, we summarize the properties, origins and biogenesis of exosomes, and the recent reports using exosomes to regulate osteogenesis and promote bone regeneration. PMID:27213355

  16. Exosome: A Novel Approach to Stimulate Bone Regeneration through Regulation of Osteogenesis and Angiogenesis.

    Science.gov (United States)

    Qin, Yunhao; Sun, Ruixin; Wu, Chuanlong; Wang, Lian; Zhang, Changqing

    2016-01-01

    The clinical need for effective bone regeneration therapy remains in huge demands. However, the current "gold standard" treatments of autologous and allogeneic bone grafts may result in various complications. Furthermore, safety considerations of biomaterials and cell-based treatment require further clarification. Therefore, developing new therapies with stronger osteogenic potential and a lower incidence of complications is worthwhile. Recently, exosomes, small vesicles of endocytic origin, have attracted attention in bone regeneration field. The vesicles travel between cells and deliver functional cargoes, such as proteins and RNAs, thereby regulating targeted cells differentiation, commitment, function, and proliferation. Much evidence has demonstrated the important roles of exosomes in osteogenesis both in vitro and in vivo. In this review, we summarize the properties, origins and biogenesis of exosomes, and the recent reports using exosomes to regulate osteogenesis and promote bone regeneration. PMID:27213355

  17. Regulation of Hematopoietic Stem Cells by Bone Marrow Stromal Cells

    OpenAIRE

    Anthony, Bryan; Link, Daniel C.

    2013-01-01

    Hematopoietic stem cells (HSCs) reside in specialized microenvironments (niches) in the bone marrow. The stem cell niche is thought to provide signals that support key HSC properties, including self-renewal capacity and long-term multilineage repopulation ability. The stromal cells that comprise the stem cell niche and the signals that they generate that support HSC function are the subjects of intense investigation. Here we review the complex and diverse stromal cell populations that reside ...

  18. Ciliary neurotrophic factor has intrinsic and extrinsic roles in regulating B cell differentiation and bone structure.

    OpenAIRE

    Maria Askmyr; White, Kirby E; Tanja Jovic; King, Hannah A.; Quach, Julie M.; Maluenda, Ana C.; Baker, Emma K; Smeets, Monique F.; Walkley, Carl R.; Purton, Louise E.

    2015-01-01

    The gp130 receptor and its binding partners play a central role in cytokine signalling. Ciliary neurotrophic factor (CNTF) is one of the cytokines that signals through the gp130 receptor complex. CNTF has previously been shown to be a negative regulator of trabecular bone remodelling and important for motor neuron development. Since haematopoietic cell maintenance and differentiation is dependent on the bone marrow (BM) microenvironment, where cells of the osteoblastic lineage are important r...

  19. Post-translational Regulation of Runx2 in Bone and Cartilage

    OpenAIRE

    Jonason, J.H.; Xiao, G.; Zhang, M; Xing, L; Chen, D

    2009-01-01

    The Runx2 gene product is essential for mammalian bone development. In humans, Runx2 haploinsufficiency results in cleidocranial dysplasia, a skeletal disorder characterized by bone and dental abnormalities. At the molecular level, Runx2 acts as a transcription factor for genes expressed in hypertrophic chondrocytes and osteoblasts. Runx2 gene expression and protein function are regulated on multiple levels, including transcription, translation, and post-translational modification. Furthermor...

  20. Yap1 Regulates Multiple Steps of Chondrocyte Differentiation during Skeletal Development and Bone Repair.

    Science.gov (United States)

    Deng, Yujie; Wu, Ailing; Li, Pikshan; Li, Gang; Qin, Ling; Song, Hai; Mak, Kinglun Kingston

    2016-03-01

    Hippo signaling controls organ size and tissue regeneration in many organs, but its roles in chondrocyte differentiation and bone repair remain elusive. Here, we demonstrate that Yap1, an effector of Hippo pathway inhibits skeletal development, postnatal growth, and bone repair. We show that Yap1 regulates chondrocyte differentiation at multiple steps in which it promotes early chondrocyte proliferation but inhibits subsequent chondrocyte maturation both in vitro and in vivo. Mechanistically, we find that Yap1 requires Teads binding for direct regulation of Sox6 expression to promote chondrocyte proliferation. In contrast, Yap1 inhibits chondrocyte maturation by suppression of Col10a1 expression through interaction with Runx2. In addition, Yap1 also governs the initiation of fracture repair by inhibition of cartilaginous callus tissue formation. Taken together, our work provides insights into the mechanism by which Yap1 regulates endochondral ossification, which may help the development of therapeutic treatment for bone regeneration. PMID:26923596

  1. Yap1 Regulates Multiple Steps of Chondrocyte Differentiation during Skeletal Development and Bone Repair

    Directory of Open Access Journals (Sweden)

    Yujie Deng

    2016-03-01

    Full Text Available Hippo signaling controls organ size and tissue regeneration in many organs, but its roles in chondrocyte differentiation and bone repair remain elusive. Here, we demonstrate that Yap1, an effector of Hippo pathway inhibits skeletal development, postnatal growth, and bone repair. We show that Yap1 regulates chondrocyte differentiation at multiple steps in which it promotes early chondrocyte proliferation but inhibits subsequent chondrocyte maturation both in vitro and in vivo. Mechanistically, we find that Yap1 requires Teads binding for direct regulation of Sox6 expression to promote chondrocyte proliferation. In contrast, Yap1 inhibits chondrocyte maturation by suppression of Col10a1 expression through interaction with Runx2. In addition, Yap1 also governs the initiation of fracture repair by inhibition of cartilaginous callus tissue formation. Taken together, our work provides insights into the mechanism by which Yap1 regulates endochondral ossification, which may help the development of therapeutic treatment for bone regeneration.

  2. Ciliary neurotrophic factor has intrinsic and extrinsic roles in regulating B cell differentiation and bone structure.

    Science.gov (United States)

    Askmyr, Maria; White, Kirby E; Jovic, Tanja; King, Hannah A; Quach, Julie M; Maluenda, Ana C; Baker, Emma K; Smeets, Monique F; Walkley, Carl R; Purton, Louise E

    2015-01-01

    The gp130 receptor and its binding partners play a central role in cytokine signalling. Ciliary neurotrophic factor (CNTF) is one of the cytokines that signals through the gp130 receptor complex. CNTF has previously been shown to be a negative regulator of trabecular bone remodelling and important for motor neuron development. Since haematopoietic cell maintenance and differentiation is dependent on the bone marrow (BM) microenvironment, where cells of the osteoblastic lineage are important regulators, we hypothesised that CNTF may also have important roles in regulating haematopoiesis. Analysis of haematopoietic parameters in male and female Cntf(-/-) mice at 12 and 24 weeks of age revealed altered B lymphopoiesis. Strikingly, the B lymphocyte phenotype differed based on sex, age and also the BM microenvironment in which the B cells develop. When BM cells from wildtype mice were transplanted into Cntf(-/-) mice, there were minimal effects on B lymphopoiesis or bone parameters. However, when Cntf(-/-) BM cells were transplanted into a wildtype BM microenvironment, there were changes in both haematopoiesis and bone parameters. Our data reveal that haematopoietic cell-derived CNTF has roles in regulating BM B cell lymphopoiesis and both trabecular and cortical bone, the latter in a sex-dependent manner. PMID:26487326

  3. Mechanical stimulation orchestrates the osteogenic differentiation of human bone marrow stromal cells by regulating HDAC1.

    Science.gov (United States)

    Wang, J; Wang, C D; Zhang, N; Tong, W X; Zhang, Y F; Shan, S Z; Zhang, X L; Li, Q F

    2016-01-01

    Mechanical stimulation and histone deacetylases (HDACs) have essential roles in regulating the osteogenic differentiation of bone marrow stromal cells (BMSCs) and bone formation. However, little is known regarding what regulates HDAC expression and therefore the osteogenic differentiation of BMSCs during osteogenesis. In this study, we investigated whether mechanical loading regulates HDAC expression directly and examined the role of HDACs in mechanical loading-triggered osteogenic differentiation and bone formation. We first studied the microarrays of samples from patients with osteoporosis and found that the NOTCH pathway and skeletal development gene sets were downregulated in the BMSCs of patients with osteoporosis. Then we demonstrated that mechanical stimuli can regulate osteogenesis and bone formation both in vivo and in vitro. NOTCH signaling was upregulated during cyclic mechanical stretch (CMS)-induced osteogenic differentiation, whereas HDAC1 protein expression was downregulated. The perturbation of HDAC1 expression also had a significant effect on matrix mineralization and JAG1-mediated Notch signaling, suggesting that HDAC1 acts as an endogenous attenuator of Notch signaling in the mechanotransduction of BMSCs. Chromatin immunoprecipitation (ChIP) assay results suggest that HDAC1 modulates the CMS-induced histone H3 acetylation level at the JAG1 promoter. More importantly, we found an inhibitory role of Hdac1 in regulating bone formation in response to hindlimb unloading in mice, and pretreatment with an HDAC1 inhibitor partly rescued the osteoporosis caused by mechanical unloading. Our results demonstrate, for the first time, that mechanical stimulation orchestrates genes expression involved in the osteogenic differentiation of BMSCs via the direct regulation of HDAC1, and the therapeutic inhibition of HDAC1 may be an efficient strategy for enhancing bone formation under mechanical stimulation. PMID:27171263

  4. Down-regulation of mTOR leads to up-regulation of osteoprotegerin in bone marrow cells

    International Nuclear Information System (INIS)

    Osteoprotegerin (OPG)/osteoclastogenesis inhibitory factor regulates bone mass by inhibiting osteoclastic bone resorption. mTOR, which is the mammalian target of rapamycin, is a kinase and central regulator of cell growth, proliferation, and survival. By using Rapamycin, we studied whether mTOR pathway is associated with OPG protein production in the mouse bone marrow-derived stromal cell line ST2. Rapamycin markedly increased the level of soluble OPG in ST2 cells. This antibiotic treatment resulted in the suppression of phosphorylation of mTOR. Rapamycin had no effects on the proliferation, differentiation, or apoptosis of the cells. Treatment with bone morphogenetic protein-4, which can induce OPG protein in ST2 cells, also resulted in a decrease in the density of the phospho-mTOR-band, suggesting that the suppression of the phospho-mTOR pathway is necessary for OPG production in ST2 cells. Thus, suitable suppression of mTOR phosphorylation is a necessary requirement for OPG production in bone marrow stromal cells.

  5. Gene 33/Mig-6, a transcriptionally inducible adapter protein that binds GTP-Cdc42 and activates SAPK/JNK. A potential marker transcript for chronic pathologic conditions, such as diabetic nephropathy. Possible role in the response to persistent stress.

    Science.gov (United States)

    Makkinje, A; Quinn, D A; Chen, A; Cadilla, C L; Force, T; Bonventre, J V; Kyriakis, J M

    2000-06-01

    Chronic stresses, including the mechanical strain caused by hypertension or excess pulmonary ventilation pressure, lead to important clinical consequences, including hypertrophy and acute respiratory distress syndrome. Pathologic hypertrophy contributes to decreased organ function and, ultimately, organ failure; and cardiac and diabetic renal hypertrophy are major causes of morbidity and morality in the developed world. Likewise, acute respiratory distress syndrome is a serious potential side effect of mechanical pulmonary ventilation. Whereas the deleterious effects of chronic stress are well established, the molecular mechanisms by which these stresses affect cell function are still poorly characterized. gene 33 (also called mitogen-inducible gene-6, mig-6) is an immediate early gene that is transcriptionally induced by a divergent array of extracellular stimuli. The physiologic function of Gene 33 is unknown. Here we show that gene 33 mRNA levels increase sharply in response to a set of commonly occurring chronic stress stimuli: mechanical strain, vasoactive peptides, and diabetic nephropathy. Induction of gene 33 requires the stress-activated protein kinases (SAPKs)/c-Jun NH(2)-terminal kinases. This expression pattern suggests that gene 33 is a potential marker for diabetic nephropathy and other pathologic responses to persistent sublethal stress. The structure of Gene 33 indicates an adapter protein capable of binding monomeric GTPases of the Rho subfamily. Consistent with this, Gene 33 interacts in vivo and, in a GTP-dependent manner, in vitro with Cdc42Hs; and transient expression of Gene 33 results in the selective activation of the SAPKs. These results imply a reciprocal, positive feedback relationship between Gene 33 expression and SAPK activation. Expression of Gene 33 at sufficient levels may enable a compensatory reprogramming of cellular function in response to chronic stress, which may have pathophysiological consequences. PMID:10749885

  6. Calcium Regulation and Bone Mineral Metabolism in Elderly Patients with Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Vickram Tejwani

    2013-05-01

    Full Text Available The elderly chronic kidney disease (CKD population is growing. Both aging and CKD can disrupt calcium (Ca2+ homeostasis and cause alterations of multiple Ca2+-regulatory mechanisms, including parathyroid hormone, vitamin D, fibroblast growth factor-23/Klotho, calcium-sensing receptor and Ca2+-phosphate product. These alterations can be deleterious to bone mineral metabolism and soft tissue health, leading to metabolic bone disease and vascular calcification and aging, termed CKD-mineral and bone disorder (MBD. CKD-MBD is associated with morbid clinical outcomes, including fracture, cardiovascular events and all-cause mortality. In this paper, we comprehensively review Ca2+ regulation and bone mineral metabolism, with a special emphasis on elderly CKD patients. We also present the current treatment-guidelines and management options for CKD-MBD.

  7. CD13/APN regulates endothelial invasion and filopodia formation

    OpenAIRE

    Petrovic, Nenad; Schacke, Wolfgang; Gahagan, J. Reed; O'Conor, Catherine A.; Winnicka, Beata; Conway, Rebecca E.; Mina-Osorio, Paola; Shapiro, Linda H.

    2007-01-01

    CD13/aminopeptidase N is a transmembrane peptidase that is induced in the vasculature of solid tumors and is a potent angiogenic regulator. Here, we demonstrate that CD13 controls endothelial cell invasion in response to the serum peptide bradykinin by facilitating signal transduction at the level of the plasma membrane. Inhibition of CD13 abrogates bradykinin B2 receptor internalization, leading to the attenuation of downstream events such as bradykinin-induced activation of Cdc42 and filopo...

  8. Bone

    International Nuclear Information System (INIS)

    Bone scanning provides information on the extent of primary bone tumors, on possible metastatic disease, on the presence of osteomyelitis prior to observation of roentgenographic changes so that earlier therapy is possible, on the presence of collagen diseases, on the presence of fractures not disclosed by x-ray films, and on the evaluation of aseptic necrosis. However, the total effect and contribution of bone scanning to the diagnosis, treatment, and ultimate prognosis of pediatric skeletal diseases is, as yet, unknown. (auth)

  9. Bone morphogenetic protein-2: a potential regulator in scleral remodeling

    Science.gov (United States)

    Hu, Jianmin; Cui, Dongmei; Yang, Xiao; Wang, Shaowei; Hu, Shoulong; Li, Chuanxu

    2008-01-01

    Purpose Bone morphogenetic protein 2 (BMP-2) is a member of the main subgroup of bone morphogenetic proteins within the transforming growth factor-β superfamily. BMP-2 is involved in numerous cellular functions including development, cell proliferation, apoptosis, and extracellular matrix synthesis. We examined BMP-2 expression in human scleral fibroblasts (HSF) and assessed the effects of recombinant human BMP-2 (rhBMP-2) on HSF proliferation, matrix metalloproteinase-2 (MMP-2), and tissue inhibitor of metalloproteinase-2 (TIMP-2). Methods We used confocal fluorescence microscopy (CFM) to study BMP-2 distribution in HSF cells and frozen human scleral sections. The influence of rhBMP-2 on cell proliferation at different concentrations (0 ng/ml, 1 ng/ml, 10 ng/ml, and 100 ng/ml) was evaluated by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The effects of rhBMP-2 on the cell cycle were investigated with flow cytometric analysis. Reverse transcription polymerase chain reaction (RT–PCR) and enzyme-linked immunosorbent assay (ELISA) were used to examine MMP-2 and TIMP-2 mRNAs and secreted proteins in HSF that were incubated with rhBMP-2. Results BMP-2 protein expression from human sclera was confirmed by CFM. Cell proliferation was significantly increased with 100 ng/ml rhBMP-2 in a time-dependent manner (p<0.05). The HSF cell cycle moved to the S and S+G2M phases after rhBMP-2 stimulation at 100 ng/ml compared to normal cells (p<0.05). TIMP-2 mRNA levels were significantly increased in HSF incubated for 24 h with 100 ng/ml rhBMP-2 (p<0.01). A 48 h incubation with 10 ng/ml or 100 ng/ml rhBMP-2 resulted in significantly increased TIMP-2 mRNA and protein expression and significantly decreased MMP-2 mRNA expression (p<0.01) while MMP-2 protein expression significantly decreased at 100 ng/ml rhBMP-2 (p<0.01). Conclusions Human sclera fibroblasts expressed BMP-2, which promoted cell proliferation, and elicited changes in MMP-2 and TIMP-2

  10. NFAT Signaling in Osteoblasts Regulates the Hematopoietic Niche in the Bone Microenvironment

    Directory of Open Access Journals (Sweden)

    Cheryl L. Sesler

    2013-01-01

    Full Text Available Osteoblasts support hematopoietic cell development, including B lymphopoiesis. We have previously shown that the nuclear factor of activated T cells (NFAT negatively regulates osteoblast differentiation and bone formation. Interestingly, in smooth muscle, NFAT has been shown to regulate the expression of vascular cellular adhesion molecule-1 (VCAM-1, a mediator of cell adhesion and signaling during leukocyte development. To examine whether NFAT signaling in osteoblasts regulates hematopoietic development in vivo, we generated a mouse model expressing dominant-negative NFAT driven by the 2.3 kb fragment of the collagen-αI promoter to disrupt NFAT activity in osteoblasts (dnNFATOB. Bone histomorphometry showed that dnNFATOB mice have significant increases in bone volume (44% and mineral apposition rate (131% and decreased trabecular thickness (18%. In the bone microenvironment, dnNFATOB mice displayed a significant increase (87% in Lineage−cKit+Sca-1+ (LSK cells and significant decreases in B220+CD19−IgM− pre-pro-B cells (41% and B220+CD19+IgM+ immature B cells (40%. Concurrent with these findings, LSK cell differentiation into B220+ cells was inhibited when cocultured on differentiated primary osteoblasts harvested from dnNFATOB mice. Gene expression and protein levels of VCAM-1 in osteoblasts decreased in dnNFATOB mice compared to controls. These data suggest that osteoblast-specific NFAT activity mediates early B lymphopoiesis, possibly by regulating VCAM-1 expression on osteoblasts.

  11. [Epigenetic Regulation by Androgen Receptor and Possible Function in Bone Metabolism].

    Science.gov (United States)

    Imai, Yuuki

    2016-07-01

    Epigenetic regulation underlying AR(Androgen receptor)mediated transcription is important component to understand pathophysiology of osteoporosis in men. In this commentary, it is reported recent findings related to epigenetic landscape governed by AR and its cofactors including lysine-specific demethylase 1 (LSD1), and possible implication for bone metabolism. PMID:27346313

  12. The influence of bone surface availability in bone remodelling - A mathematical model including coupled geometrical and biomechanical regulations of bone cells

    OpenAIRE

    Pivonka, Peter; Buenzli, Pascal R.; Scheiner, Stefan; Hellmich, Christian; Dunstan, Colin R.

    2012-01-01

    Bone is a biomaterial undergoing continuous renewal. The renewal process is known as bone remodelling and is operated by bone-resorbing cells (osteoclasts) and bone-forming cells (osteoblasts). Both biochemical and biomechanical regulatory mechanisms have been identified in the interaction between osteoclasts and osteoblasts. Here we focus on an additional and poorly understood potential regulatory mechanism of bone cells, that involves the morphology of the microstructure of bone. Bone cells...

  13. Collagen phagocytosis is regulated by the guanine nucleotide exchange factor Vav2

    OpenAIRE

    Arora, P. D.; Marignani, P A; McCulloch, C. A.

    2008-01-01

    Collagen phagocytosis is a crucial α2β1-integrin-dependent process that mediates extracellular matrix remodeling by fibroblasts. We showed previously that after initial contact with collagen, activated Rac1 accelerates collagen phagocytosis but the Rac guanine nucleotide exchange factors (GEFs) that regulate Rac are not defined. We examined here the GEFs that regulate collagen phagocytosis in mouse fibroblasts. Collagen binding enhanced Rac1 activity (5–20 min) but not Cdc42 or RhoA activity....

  14. CCL20/CCR6 Signaling Regulates Bone Mass Accrual in Mice.

    Science.gov (United States)

    Doucet, Michele; Jayaraman, Swaathi; Swenson, Emily; Tusing, Brittany; Weber, Kristy L; Kominsky, Scott L

    2016-07-01

    CCL20 is a member of the macrophage inflammatory protein family and is reported to signal monogamously through the receptor CCR6. Although studies have identified the genomic locations of both Ccl20 and Ccr6 as regions important for bone quality, the role of CCL20/CCR6 signaling in regulating bone mass is unknown. By micro-computed tomography (μCT) and histomorphometric analysis, we show that global loss of Ccr6 in mice significantly decreases trabecular bone mass coincident with reduced osteoblast numbers. Notably, CCL20 and CCR6 were co-expressed in osteoblast progenitors and levels increased during osteoblast differentiation, indicating the potential of CCL20/CCR6 signaling to influence osteoblasts through both autocrine and paracrine actions. With respect to autocrine effects, CCR6 was found to act as a functional G protein-coupled receptor in osteoblasts and although its loss did not appear to affect the number or proliferation rate of osteoblast progenitors, differentiation was significantly inhibited as evidenced by delays in osteoblast marker gene expression, alkaline phosphatase activity, and mineralization. In addition, CCL20 promoted osteoblast survival concordant with activation of the PI3K-AKT pathway. Beyond these potential autocrine effects, osteoblast-derived CCL20 stimulated the recruitment of macrophages and T cells, known facilitators of osteoblast differentiation and survival. Finally, we generated mice harboring a global deletion of Ccl20 and found that Ccl20(-/-) mice exhibit a reduction in bone mass similar to that observed in Ccr6(-/-) mice, confirming that this phenomenon is regulated by CCL20 rather than alternate CCR6 ligands. Collectively, these data indicate that CCL20/CCR6 signaling may play an important role in regulating bone mass accrual, potentially by modulating osteoblast maturation, survival, and the recruitment of osteoblast-supporting cells. © 2016 American Society for Bone and Mineral Research. PMID:26890063

  15. Regulation of osteoclast homeostasis and inflammatory bone loss by MFG-E81

    OpenAIRE

    Abe, T.; Shin, J.; Hosur, K.; Udey, M C; Chavakis, T.; Hajishengallis, G

    2014-01-01

    The glycoprotein milk fat globule-EGF factor 8 (MFG-E8) is expressed in several tissues and mediates diverse homeostatic functions. However, whether MFG-E8 plays a role in bone homeostasis has not been established. Here we show for the first time that osteoclasts express and are regulated by MFG-E8. Bone marrow-derived osteoclast precursors (OCPs) from MFG-E8–deficient (Mfge8−/−) mice underwent increased RANKL-induced osteoclastogenesis leading to enhanced resorption pit formation as compared...

  16. A novel role for RhoA GTPase in the regulation of airway smooth muscle contraction.

    Science.gov (United States)

    Zhang, Wenwu; Huang, Youliang; Wu, Yidi; Gunst, Susan J

    2015-02-01

    Recent studies have demonstrated a novel molecular mechanism for the regulation of airway smooth muscle (ASM) contraction by RhoA GTPase. In ASM tissues, both myosin light chain (MLC) phosphorylation and actin polymerization are required for active tension generation. RhoA inactivation dramatically suppresses agonist-induced tension development and completely inhibits agonist-induced actin polymerization, but only slightly reduces MLC phosphorylation. The inhibition of MLC phosphatase does not reverse the effects of RhoA inactivation on contraction or actin polymerization. Thus, RhoA regulates ASM contraction through its effects on actin polymerization rather than MLC phosphorylation. Contractile stimulation of ASM induces the recruitment and assembly of paxillin, vinculin, and focal adhesion kinase (FAK) into membrane adhesion complexes (adhesomes) that regulate actin polymerization by catalyzing the activation of cdc42 GTPase by the G-protein-coupled receptor kinase-interacting target (GIT) - p21-activated kinase (PAK) - PAK-interacting exchange factor (PIX) complex. Cdc42 is a necessary and specific activator of the actin filament nucleation activator, N-WASp. The recruitment and activation of paxillin, vinculin, and FAK is prevented by RhoA inactivation, thus preventing cdc42 and N-WASp activation. We conclude that RhoA regulates ASM contraction by catalyzing the assembly and activation of membrane adhesome signaling modules that regulate actin polymerization, and that the RhoA-mediated assembly of adhesome complexes is a fundamental step in the signal transduction process in response to a contractile agonist. PMID:25531582

  17. Coupling Hydroxyapatite Nanocrystals with Lactoferrin as a Promising Strategy to Fine Regulate Bone Homeostasis.

    Directory of Open Access Journals (Sweden)

    Monica Montesi

    Full Text Available Lactoferrin (LF is an interesting glycoprotein in the field of bone biology for its regulatory effect on cells involved in bone remodeling, that results compromised in several pathological conditions, as osteoporosis. In a previous study we observed that the coupling of LF and biomimetic hydroxyapatite nanocrystals (HA, a material well-known for its bioactivity and osteoconductive properties, leads to a combined effect in the induction of osteogenic differentiation of mesenchymal stem cells. On the basis of this evidence, the present study is an extension of our previous work aiming to investigate the synergistic effect of the coupling of HA and LF on bone homeostasis. Biomimetic HA nanocrystals were synthesized and functionalized with LF (HA-LF and then pre-osteoblasts (MC3T3-E1 and monocyte/macrophage cells lines (RAW 264.7, using as osteoclastogenesis in vitro model, were cultured separately or in co-culture in presence of HA-LF. The results clearly revealed that HA and LF act in synergism in the regulation of the bone homeostasis, working as anabolic factor for osteoblasts differentiation and bone matrix deposition, and as inhibitor of the osteoclast formation and activity.

  18. Mechanically stimulated bone cells secrete paracrine factors that regulate osteoprogenitor recruitment, proliferation, and differentiation.

    Science.gov (United States)

    Brady, Robert T; O'Brien, Fergal J; Hoey, David A

    2015-03-27

    Bone formation requires the recruitment, proliferation and osteogenic differentiation of mesenchymal progenitors. A potent stimulus driving this process is mechanical loading, yet the signalling mechanisms underpinning this are incompletely understood. The objective of this study was to investigate the role of the mechanically-stimulated osteocyte and osteoblast secretome in coordinating progenitor contributions to bone formation. Initially osteocytes (MLO-Y4) and osteoblasts (MC3T3) were mechanically stimulated for 24 hrs and secreted factors within the conditioned media were collected and used to evaluate mesenchymal stem cell (MSC) and osteoblast recruitment, proliferation and osteogenesis. Paracrine factors secreted by mechanically stimulated osteocytes significantly enhanced MSC migration, proliferation and osteogenesis and furthermore significantly increased osteoblast migration and proliferation when compared to factors secreted by statically cultured osteocytes. Secondly, paracrine factors secreted by mechanically stimulated osteoblasts significantly enhanced MSC migration but surprisingly, in contrast to the osteocyte secretome, inhibited MSC proliferation when compared to factors secreted by statically cultured osteoblasts. A similar trend was observed in osteoblasts. This study provides new information on mechanically driven signalling mechanisms in bone and highlights a contrasting secretome between cells at different stages in the bone lineage, furthering our understanding of loading-induced bone formation and indirect biophysical regulation of osteoprogenitors. PMID:25721667

  19. Mechanically stimulated bone cells secrete paracrine factors that regulate osteoprogenitor recruitment, proliferation, and differentiation

    International Nuclear Information System (INIS)

    Bone formation requires the recruitment, proliferation and osteogenic differentiation of mesenchymal progenitors. A potent stimulus driving this process is mechanical loading, yet the signalling mechanisms underpinning this are incompletely understood. The objective of this study was to investigate the role of the mechanically-stimulated osteocyte and osteoblast secretome in coordinating progenitor contributions to bone formation. Initially osteocytes (MLO-Y4) and osteoblasts (MC3T3) were mechanically stimulated for 24hrs and secreted factors within the conditioned media were collected and used to evaluate mesenchymal stem cell (MSC) and osteoblast recruitment, proliferation and osteogenesis. Paracrine factors secreted by mechanically stimulated osteocytes significantly enhanced MSC migration, proliferation and osteogenesis and furthermore significantly increased osteoblast migration and proliferation when compared to factors secreted by statically cultured osteocytes. Secondly, paracrine factors secreted by mechanically stimulated osteoblasts significantly enhanced MSC migration but surprisingly, in contrast to the osteocyte secretome, inhibited MSC proliferation when compared to factors secreted by statically cultured osteoblasts. A similar trend was observed in osteoblasts. This study provides new information on mechanically driven signalling mechanisms in bone and highlights a contrasting secretome between cells at different stages in the bone lineage, furthering our understanding of loading-induced bone formation and indirect biophysical regulation of osteoprogenitors. - Highlights: • Physically stimulated osteocytes secrete factors that regulate osteoprogenitors. • These factors enhance recruitment, proliferation and osteogenic differentiation. • Physically stimulated osteoblasts secrete factors that also regulate progenitors. • These factors enhance recruitment but inhibit proliferation of osteoprogenitors. • This study highlights a contrasting

  20. Mechanically stimulated bone cells secrete paracrine factors that regulate osteoprogenitor recruitment, proliferation, and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Robert T. [Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland (Ireland); Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin (Ireland); Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin & Royal College of Surgeons in Ireland (Ireland); Dept. of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick (Ireland); O' Brien, Fergal J. [Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland (Ireland); Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin (Ireland); Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin & Royal College of Surgeons in Ireland (Ireland); Hoey, David A., E-mail: david.hoey@ul.ie [Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin (Ireland); Dept. of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick (Ireland); The Centre for Applied Biomedical Engineering Research, University of Limerick (Ireland); Materials & Surface Science Institute, University of Limerick (Ireland)

    2015-03-27

    Bone formation requires the recruitment, proliferation and osteogenic differentiation of mesenchymal progenitors. A potent stimulus driving this process is mechanical loading, yet the signalling mechanisms underpinning this are incompletely understood. The objective of this study was to investigate the role of the mechanically-stimulated osteocyte and osteoblast secretome in coordinating progenitor contributions to bone formation. Initially osteocytes (MLO-Y4) and osteoblasts (MC3T3) were mechanically stimulated for 24hrs and secreted factors within the conditioned media were collected and used to evaluate mesenchymal stem cell (MSC) and osteoblast recruitment, proliferation and osteogenesis. Paracrine factors secreted by mechanically stimulated osteocytes significantly enhanced MSC migration, proliferation and osteogenesis and furthermore significantly increased osteoblast migration and proliferation when compared to factors secreted by statically cultured osteocytes. Secondly, paracrine factors secreted by mechanically stimulated osteoblasts significantly enhanced MSC migration but surprisingly, in contrast to the osteocyte secretome, inhibited MSC proliferation when compared to factors secreted by statically cultured osteoblasts. A similar trend was observed in osteoblasts. This study provides new information on mechanically driven signalling mechanisms in bone and highlights a contrasting secretome between cells at different stages in the bone lineage, furthering our understanding of loading-induced bone formation and indirect biophysical regulation of osteoprogenitors. - Highlights: • Physically stimulated osteocytes secrete factors that regulate osteoprogenitors. • These factors enhance recruitment, proliferation and osteogenic differentiation. • Physically stimulated osteoblasts secrete factors that also regulate progenitors. • These factors enhance recruitment but inhibit proliferation of osteoprogenitors. • This study highlights a contrasting

  1. Thrombospondin-1 regulates bone homeostasis through effects on bone matrix integrity and nitric oxide signaling in osteoclasts

    OpenAIRE

    Sarah R Amend; Uluckan, Ozge; Hurchla, Michelle; Leib, Daniel; Novack, Deborah Veis; Silva, Matthew; Frazier, William; Weilbaecher, Katherine N.

    2015-01-01

    Thrombospondin-1 (TSP1), an endogenous antiangiogenic, is a widely expressed secreted ligand with roles in migration, adhesion and proliferation and is a target for new therapeutics. While TSP1 is present in the bone matrix and several TSP1 receptors play roles in bone biology, the role of TSP1 in bone remodeling has not been fully elucidated. Bone turnover is characterized by coordinated activity of bone-forming osteoblasts (OB) and bone-resorbing osteoclasts (OC). TSP1−/− mice had increased...

  2. Pyk2 Regulates Megakaryocyte-Induced Increases in Osteoblast Number and Bone Formation

    OpenAIRE

    Cheng, Ying-Hua; Hooker, R. Adam; NGUYEN, Khanh; Gerard-O’Riley, Rita; Waning, David L.; Chitteti, Brahmananda R; Meijome, Tomas E.; Chua, Hui Lin; Plett, Artur P.; Orschell, Christie M.; Srour, Edward F.; Mayo, Lindsey D.; Pavalko, Fredrick M; Bruzzaniti, Angela; Kacena, Melissa A.

    2013-01-01

    Pre-clinical and clinical evidence from megakaryocyte (MK) related diseases suggest that MKs play a significant role in maintaining bone homeostasis. Findings from our laboratories reveal that MKs significantly increase osteoblast (OB) number through direct MK-OB contact and the activation of integrins. We therefore examined the role of Pyk2, a tyrosine kinase known to be regulated downstream of integrins, in the MK-mediated enhancement of OBs. When OBs were co-cultured with MKs, total Pyk2 l...

  3. TNF-α Regulates the Effects of Irradiation in the Mouse Bone Marrow Microenvironment

    OpenAIRE

    Cachaço, Ana Sofia; Carvalho, Tânia; Santos, Ana Cristina; Igreja, Cátia; Fragoso, Rita; Osório, Catarina; Ferreira, Manuela; Serpa, Jacinta; Correia, Sofia; Pinto-do-Ó, Perpétua; Dias, Sérgio

    2010-01-01

    Background Secondary bone marrow (BM) myelodysplastic syndromes (MDS) are increasingly common, as a result of radio or chemotherapy administered to a majority of cancer patients. Patients with secondary MDS have increased BM cell apoptosis, which results in BM dysfunction (cytopenias), and an increased risk of developing fatal acute leukemias. In the present study we asked whether TNF-α, known to regulate cell apoptosis, could modulate the onset of secondary MDS. Principal Findings We show th...

  4. Pyk2 regulates megakaryocyte-induced increases in osteoblast number and bone formation.

    Science.gov (United States)

    Cheng, Ying-Hua; Hooker, R Adam; Nguyen, Khanh; Gerard-O'Riley, Rita; Waning, David L; Chitteti, Brahmananda R; Meijome, Tomas E; Chua, Hui Lin; Plett, Artur P; Orschell, Christie M; Srour, Edward F; Mayo, Lindsey D; Pavalko, Fredrick M; Bruzzaniti, Angela; Kacena, Melissa A

    2013-06-01

    Preclinical and clinical evidence from megakaryocyte (MK)-related diseases suggests that MKs play a significant role in maintaining bone homeostasis. Findings from our laboratories reveal that MKs significantly increase osteoblast (OB) number through direct MK-OB contact and the activation of integrins. We, therefore, examined the role of Pyk2, a tyrosine kinase known to be regulated downstream of integrins, in the MK-mediated enhancement of OBs. When OBs were co-cultured with MKs, total Pyk2 levels in OBs were significantly enhanced primarily because of increased Pyk2 gene transcription. Additionally, p53 and Mdm2 were both decreased in OBs upon MK stimulation, which would be permissive of cell cycle entry. We then demonstrated that OB number was markedly reduced when Pyk2-/- OBs, as opposed to wild-type (WT) OBs, were co-cultured with MKs. We also determined that MKs inhibit OB differentiation in the presence and absence of Pyk2 expression. Finally, given that MK-replete spleen cells from GATA-1-deficient mice can robustly stimulate OB proliferation and bone formation in WT mice, we adoptively transferred spleen cells from these mice into Pyk2-/- recipient mice. Importantly, GATA-1-deficient spleen cells failed to stimulate an increase in bone formation in Pyk2-/- mice, suggesting in vivo the important role of Pyk2 in the MK-induced increase in bone volume. Further understanding of the signaling pathways involved in the MK-mediated enhancement of OB number and bone formation will facilitate the development of novel anabolic therapies to treat bone loss diseases. PMID:23362087

  5. Up-regulation of bone marrow stromal protein 2 (BST2) in breast cancer with bone metastasis

    OpenAIRE

    Zheng Xin; Li Zhen; Cao Jie; Cai Dongqing; Yao Yao; Li Wanglin; Yuan Ziqiang

    2009-01-01

    Abstract Background Bone metastases are frequent complications of breast cancer. Recent literature implicates multiple chemokines in the formation of bone metastases in breast cancer. However, the molecular mechanism of metastatic bone disease in breast cancer remains unknown. We have recently made the novel observation of the BST2 protein expression in human breast cancer cell lines. The purpose of our present study is to investigate the expression and the role of BST2 in bone metastatic bre...

  6. Improved workability of injectable calcium sulfate bone cement by regulation of self-setting properties

    International Nuclear Information System (INIS)

    Calcium sulfate hemihydrate (CSH) powder as an injectable bone cement was prepared by hydrothermal synthesis of calcium sulfate dihydrate (CSD). The prepared materials showed X-ray diffraction peaks corresponding to the CSH structure without any secondary phases, implying complete conversion from CSD phase to CSH phase. Thermogravimetric (TG) analyses showed the crystal water content of CSH was about 6.0% (wt.), which is near to the theoretic crystal water value of CSH. From scanning electron microscopy (SEM) micrographs, sheet crystal structure of CSD was observed to transform into rod-like crystal structure of CSH. Most interesting and important of all, CSD as setting accelerator was also introduced into CSH powder to regulate self-setting properties of injectable CSH paste, and thus the self-setting time of CSH paste can be regulated from near 30 min to less than 5 min by adding various amounts of setting accelerator. Because CSD is not only the reactant of preparing CSH but also the final solidified product of CSH, the setting accelerator has no significant effect on the other properties of materials, such as mechanical properties. In vitro biocompatibility and in vivo histology studies have demonstrated that the materials have good biocompatibility and good efficacy in bone regeneration. All these will further improve the workability of CSH in clinic applications. Highlights: ► Calcium sulfate hemihydrate (CSH) can be an injectable bone cement. ► CSH was produced by hydrothermal synthesis of calcium sulfate dihydrate (CSD). ► CSD was introduced into CSH powder to regulate self-setting properties of CSH. ► Setting accelerator has no significant effect on the other properties of materials. ► Injectable CSH has good biocompatibility and good efficacy in bone regeneration

  7. Improved workability of injectable calcium sulfate bone cement by regulation of self-setting properties

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zonggang, E-mail: chenzg@sdu.edu.cn [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Liu, Huanye [Department of Orthodontics, School of Stomatology, China Medical University, Shenyang 110001 (China); Liu, Xi [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Lian, Xiaojie [College of Mechanics, Taiyuan University of Technology, Taiyuan 030024 (China); Guo, Zhongwu [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Jiang, Hong-Jiang [Wendeng Hospital of Traditional Chinese Orthopedics and Traumatology, Shandong 264400 (China); Cui, Fu-Zhai, E-mail: cuifz@mail.tsinghua.edu.cn [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2013-04-01

    Calcium sulfate hemihydrate (CSH) powder as an injectable bone cement was prepared by hydrothermal synthesis of calcium sulfate dihydrate (CSD). The prepared materials showed X-ray diffraction peaks corresponding to the CSH structure without any secondary phases, implying complete conversion from CSD phase to CSH phase. Thermogravimetric (TG) analyses showed the crystal water content of CSH was about 6.0% (wt.), which is near to the theoretic crystal water value of CSH. From scanning electron microscopy (SEM) micrographs, sheet crystal structure of CSD was observed to transform into rod-like crystal structure of CSH. Most interesting and important of all, CSD as setting accelerator was also introduced into CSH powder to regulate self-setting properties of injectable CSH paste, and thus the self-setting time of CSH paste can be regulated from near 30 min to less than 5 min by adding various amounts of setting accelerator. Because CSD is not only the reactant of preparing CSH but also the final solidified product of CSH, the setting accelerator has no significant effect on the other properties of materials, such as mechanical properties. In vitro biocompatibility and in vivo histology studies have demonstrated that the materials have good biocompatibility and good efficacy in bone regeneration. All these will further improve the workability of CSH in clinic applications. Highlights: ► Calcium sulfate hemihydrate (CSH) can be an injectable bone cement. ► CSH was produced by hydrothermal synthesis of calcium sulfate dihydrate (CSD). ► CSD was introduced into CSH powder to regulate self-setting properties of CSH. ► Setting accelerator has no significant effect on the other properties of materials. ► Injectable CSH has good biocompatibility and good efficacy in bone regeneration.

  8. Reduced bone density and major hormones regulating calcium metabolism in anorexia nervosa.

    Science.gov (United States)

    Kiriike, N; Iketani, T; Nakanishi, S; Nagata, T; Inoue, K; Okuno, M; Ochi, H; Kawakita, Y

    1992-11-01

    Bone density of lumbar vertebrae (L2 to L4) and the whole body in 29 patients with anorexia nervosa were measured by dual photon absorptiometry, and the results were compared with those of 10 age-matched normal controls. The patients had significantly lower bone mineral density (BMD) in L3 and L2-4 than controls. However, there was no difference in whole-body BMD. L3 and L2-4 BMD was positively correlated with body weight and was negatively correlated with duration of illness and amenorrhea. Patients who had been more active 6 months before the time of the study had significantly higher L3 BMD than the less active patients. Most patients had an abnormally low serum estrogen level, whereas the mean serum levels of thyroid hormone (T3, T4), cortisol, calcitonin, parathyroid hormone and vitamin D were within the normal range. No correlation was found between L3 or L2-4 BMD and the levels of these hormones. These results suggest that severe weight loss, low physical activity, longer duration of amenorrhea and deficiency of estrogen contribute to bone loss in patients with anorexia nervosa, whereas calcium-regulating hormones such as parathyroid hormone, calcitonin and vitamin D are unlikely to be a primary contributor to bone loss. PMID:1485525

  9. cAMP-response-element-binding protein positively regulates breast cancer metastasis and subsequent bone destruction

    Energy Technology Data Exchange (ETDEWEB)

    Son, Jieun; Lee, Jong-Ho; Kim, Ha-Neui; Ha, Hyunil, E-mail: hyunil74@hotmail.com; Lee, Zang Hee, E-mail: zang1959@snu.ac.kr

    2010-07-23

    Research highlights: {yields} CREB is highly expressed in advanced breast cancer cells. {yields} Tumor-related factors such as TGF-{beta} further elevate CREB expression. {yields} CREB upregulation stimulates metastatic potential of breast cancer cells. {yields} CREB signaling is required for breast cancer-induced bone destruction. -- Abstract: cAMP-response-element-binding protein (CREB) signaling has been reported to be associated with cancer development and poor clinical outcome in various types of cancer. However, it remains to be elucidated whether CREB is involved in breast cancer development and osteotropism. Here, we found that metastatic MDA-MB-231 breast cancer cells exhibited higher CREB expression than did non-metastatic MCF-7 cells and that CREB expression was further increased by several soluble factors linked to cancer progression, such as IL-1, IGF-1, and TGF-{beta}. Using wild-type CREB and a dominant-negative form (K-CREB), we found that CREB signaling positively regulated the proliferation, migration, and invasion of MDA-MB-231 cells. In addition, K-CREB prevented MDA-MB-231 cell-induced osteolytic lesions in a mouse model of cancer metastasis. Furthermore, CREB signaling in cancer cells regulated the gene expression of PTHrP, MMPs, and OPG, which are closely involved in cancer metastasis and bone destruction. These results indicate that breast cancer cells acquire CREB overexpression during their development and that this CREB upregulation plays an important role in multiple steps of breast cancer bone metastasis.

  10. Up-regulation of bone marrow stromal protein 2 (BST2 in breast cancer with bone metastasis

    Directory of Open Access Journals (Sweden)

    Zheng Xin

    2009-04-01

    Full Text Available Abstract Background Bone metastases are frequent complications of breast cancer. Recent literature implicates multiple chemokines in the formation of bone metastases in breast cancer. However, the molecular mechanism of metastatic bone disease in breast cancer remains unknown. We have recently made the novel observation of the BST2 protein expression in human breast cancer cell lines. The purpose of our present study is to investigate the expression and the role of BST2 in bone metastatic breast cancer. Methods cDNA microarray analysis was used to compare the BST2 gene expression between a metastatic to bone human breast cancer cell line (MDA-231BO and a primary human breast cancer cell line (MDA-231. The BST2 expression in one bone metastatic breast cancer and seven non-bone metastatic breast cancer cell lines were also determined using real-time RT-PCR and Western blot assays. We then employed tissue array to further study the BST2 expression in human breast cancer using array slides containing 20 independent breast cancer tumors that formed metastatic bone lesions, 30 non-metastasis-forming breast cancer tumors, and 8 normal breast tissues. In order to test the feasibility of utilizing BST2 as a serum marker for the presence of bone metastasis in breast cancer, we had measured the BST2 expression levels in human serums by using ELISA on 43 breast cancer patients with bone metastasis, 43 breast cancer patients without bone metastasis, and 14 normal healthy controls. The relationship between cell migration and proliferation and BST2 expression was also studied in a human breast recombinant model system using migration and FACS analysis. Results The microarray demonstrated over expression of the BST2 gene in the bone metastatic breast cancer cell line (MDA-231BO compared to the primary human breast cancer cell line (MDA-231. The expression of the BST2 gene was significantly increased in the bone metastatic breast cancer cell lines and tumor

  11. Up-regulation of bone marrow stromal protein 2 (BST2) in breast cancer with bone metastasis

    International Nuclear Information System (INIS)

    Bone metastases are frequent complications of breast cancer. Recent literature implicates multiple chemokines in the formation of bone metastases in breast cancer. However, the molecular mechanism of metastatic bone disease in breast cancer remains unknown. We have recently made the novel observation of the BST2 protein expression in human breast cancer cell lines. The purpose of our present study is to investigate the expression and the role of BST2 in bone metastatic breast cancer. cDNA microarray analysis was used to compare the BST2 gene expression between a metastatic to bone human breast cancer cell line (MDA-231BO) and a primary human breast cancer cell line (MDA-231). The BST2 expression in one bone metastatic breast cancer and seven non-bone metastatic breast cancer cell lines were also determined using real-time RT-PCR and Western blot assays. We then employed tissue array to further study the BST2 expression in human breast cancer using array slides containing 20 independent breast cancer tumors that formed metastatic bone lesions, 30 non-metastasis-forming breast cancer tumors, and 8 normal breast tissues. In order to test the feasibility of utilizing BST2 as a serum marker for the presence of bone metastasis in breast cancer, we had measured the BST2 expression levels in human serums by using ELISA on 43 breast cancer patients with bone metastasis, 43 breast cancer patients without bone metastasis, and 14 normal healthy controls. The relationship between cell migration and proliferation and BST2 expression was also studied in a human breast recombinant model system using migration and FACS analysis. The microarray demonstrated over expression of the BST2 gene in the bone metastatic breast cancer cell line (MDA-231BO) compared to the primary human breast cancer cell line (MDA-231). The expression of the BST2 gene was significantly increased in the bone metastatic breast cancer cell lines and tumor tissues compared to non-bone metastatic breast cancer

  12. Urokinase plasminogen activator receptor affects bone homeostasis by regulating osteoblast and osteoclast function

    DEFF Research Database (Denmark)

    Furlan, Federico; Galbiati, Clara; Jørgensen, Niklas R;

    2007-01-01

    reorganization in mature osteoclasts. INTRODUCTION: Urokinase receptor (uPAR) is actively involved in the regulation of important cell functions, such as proliferation, adhesion, and migration. It was previously shown that the major players in bone remodeling, osteoblasts and osteoclasts, express uPAR and...... to mechanical tests. UPAR KO calvaria osteoblasts were characterized by proliferation assays, RT-PCR for important proteins secreted during differentiation, and immunoblot for activator protein 1 (AP-1) family members. In vitro osteoclast formation was tested with uPAR KO bone marrow monocytes in the...... osteoblasts showed a proliferative advantage with no difference in apoptosis, higher matrix mineralization, and earlier appearance of alkaline phosphatase (ALP). Surface RANKL expression at different stages of differentiation was not altered. AP-1 components, such as JunB and Fra-1, were upregulated in u...

  13. Periosteal PTHrP Regulates Cortical Bone Remodeling During Fracture Healing.

    Science.gov (United States)

    Wang, Meina; Nasiri, Ali R; Broadus, Arthur E; Tommasini, Steven M

    2015-12-01

    Parathyroid hormone-related protein (PTHrP) is widely expressed in the fibrous outer layer of the periosteum (PO), and the PTH/PTHrP type I receptor (PTHR1) is expressed in the inner PO cambial layer. The cambial layer gives rise to the PO osteoblasts (OBs) and osteoclasts (OCs) that model/remodel the cortical bone surface during development as well as during fracture healing. PTHrP has been implicated in the regulation of PO modeling during development, but nothing is known as regards a role of PTHrP in this location during fracture healing. We propose that PTHrP in the fibrous layer of the PO may be a key regulatory factor in remodeling bone formation during fracture repair. We first assessed whether PTHrP expression in the fibrous PO is associated with PO osteoblast induction in the subjacent cambial PO using a tibial fracture model in PTHrP-lacZ mice. Our results revealed that both PTHrP expression and osteoblast induction in PO were induced 3 days post-fracture. We then investigated a potential functional role of PO PTHrP during fracture repair by performing tibial fracture surgery in 10-week-old CD1 control and PTHrP conditional knockout (PTHrP cKO) mice that lack PO PTHrP. We found that callus size and formation as well as woven bone mineralization in PTHrP cKO mice were impaired compared to that in CD1 mice. Concordant with these findings, functional enzyme staining revealed impaired OB formation and OC activity in the cKO mice. We conclude that deleting PO PTHrP impairs cartilaginous callus formation, maturation and ossification as well as remodeling during fracture healing. These data are the initial genetic evidence suggesting that PO PTHrP may induce osteoblastic activity and regulate fracture healing on the cortical bone surface. PMID:26164475

  14. Sclerostin regulates release of bone mineral by osteocytes by induction of carbonic anhydrase 2.

    Science.gov (United States)

    Kogawa, Masakazu; Wijenayaka, Asiri R; Ormsby, Renee T; Thomas, Gethin P; Anderson, Paul H; Bonewald, Lynda F; Findlay, David M; Atkins, Gerald J

    2013-12-01

    The osteocyte product sclerostin is emerging as an important paracrine regulator of bone mass. It has recently been shown that osteocyte production of receptor activator of NF-κB ligand (RANKL) is important in osteoclastic bone resorption, and we reported that exogenous treatment of osteocytes with sclerostin can increase RANKL-mediated osteoclast activity. There is good evidence that osteocytes can themselves liberate mineral from bone in a process known as osteocytic osteolysis. In the current study, we investigated sclerostin-stimulated mineral dissolution by human primary osteocyte-like cells (hOCy) and mouse MLO-Y4 cells. We found that sclerostin upregulated osteocyte expression of carbonic anhydrase 2 (CA2/Car2), cathepsin K (CTSK/Ctsk), and tartrate-resistant acid phosphatase (ACP5/Acp5). Because acidification of the extracellular matrix is a critical step in the release of mineral from bone, we further examined the regulation by sclerostin of CA2. Sclerostin stimulated CA2 mRNA and protein expression in hOCy and in MLO-Y4 cells. Sclerostin induced a decrease in intracellular pH (pHi) in both cell types as well as a decrease in extracellular pH (pHo) and the release of calcium ions from mineralized substrate. These effects were reversed in the co-presence of the carbonic anhydrase inhibitor, acetozolamide. Car2-siRNA knockdown in MLO-Y4 cells significantly inhibited the ability of sclerostin to both reduce the pHo and release calcium from a mineralized substrate. Knockdown in MLO-Y4 cells of each of the putative sclerostin receptors, Lrp4, Lrp5 and Lrp6, using siRNA, inhibited the sclerostin induction of Car2, Catk and Acp5 mRNA, as well as pHo and calcium release. Consistent with this activity of sclerostin resulting in osteocytic osteolysis, human trabecular bone samples treated ex vivo with recombinant human sclerostin for 7 days exhibited an increased osteocyte lacunar area, an effect that was reversed by the co-addition of acetozolamide. These findings

  15. Mechanobiological regulation of bone remodeling -- Theoretical development of a coupled systems biology-micromechanical approach

    OpenAIRE

    Scheiner, Stefan; Pivonka, Peter; Hellmich, Christian; Smith, David W.

    2012-01-01

    Bone remodeling involves the coordinated removal of bone by osteoclasts and addition of bone by osteoblasts, a process that is modulated by the prevailing mechanical environment. In this paper a fully coupled model of bone remodeling is developed, based on coupling a bone cell population model with a micromechanical homogenization scheme of bone stiffness. While the former model considers biochemical regulatory mechanisms between bone cells such as the RANK-RANKL-OPG pathway and action of TGF...

  16. Cyp26b1 within the growth plate regulates bone growth in juvenile mice

    International Nuclear Information System (INIS)

    Highlights: • Retinoic acid and Cyp26b1 were oppositely localized in growth plate cartilage. • Cyp26b1 deletion in chondrocytes decreased bone growth in juvenile mice. • Cyp26b1 deletion reduced chondrocyte proliferation and growth plate height. • Vitamin A-depletion partially reversed growth plate abnormalities caused by Cyp26b1 deficiency. • Cyp26b1 regulates bone growth by controlling chondrocyte proliferation. - Abstract: Retinoic acid (RA) is an active metabolite of vitamin A and plays important roles in embryonic development. CYP26 enzymes degrade RA and have specific expression patterns that produce a RA gradient, which regulates the patterning of various structures in the embryo. However, it has not been addressed whether a RA gradient also exists and functions in organs after birth. We found localized RA activities in the diaphyseal portion of the growth plate cartilage were associated with the specific expression of Cyp26b1 in the epiphyseal portion in juvenile mice. To disturb the distribution of RA, we generated mice lacking Cyp26b1 specifically in chondrocytes (Cyp26b1Δchon cKO). These mice showed reduced skeletal growth in the juvenile stage. Additionally, their growth plate cartilage showed decreased proliferation rates of proliferative chondrocytes, which was associated with a reduced height in the zone of proliferative chondrocytes, and closed focally by four weeks of age, while wild-type mouse growth plates never closed. Feeding the Cyp26b1 cKO mice a vitamin A-deficient diet partially reversed these abnormalities of the growth plate cartilage. These results collectively suggest that Cyp26b1 in the growth plate regulates the proliferation rates of chondrocytes and is responsible for the normal function of the growth plate and growing bones in juvenile mice, probably by limiting the RA distribution in the growth plate proliferating zone

  17. Cyp26b1 within the growth plate regulates bone growth in juvenile mice

    Energy Technology Data Exchange (ETDEWEB)

    Minegishi, Yoshiki [Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Department of Plastic and Reconstructive Surgery, University of Fukui Hospital, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193 (Japan); Department of Plastic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Sakai, Yasuo [Department of Plastic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Department of Plastic Surgery, Bellland General Hospital, 500-3 Higashiyama Naka-ku, Sakai, Osaka 599-8247 (Japan); Yahara, Yasuhito [Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Akiyama, Haruhiko [Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagito, Gifu 501-1194 (Japan); Yoshikawa, Hideki [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Hosokawa, Ko [Department of Plastic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Tsumaki, Noriyuki, E-mail: ntsumaki@cira.kyoto-u.ac.jp [Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Japan Science and Technology Agency, CREST, Tokyo 102-0075 (Japan)

    2014-11-07

    Highlights: • Retinoic acid and Cyp26b1 were oppositely localized in growth plate cartilage. • Cyp26b1 deletion in chondrocytes decreased bone growth in juvenile mice. • Cyp26b1 deletion reduced chondrocyte proliferation and growth plate height. • Vitamin A-depletion partially reversed growth plate abnormalities caused by Cyp26b1 deficiency. • Cyp26b1 regulates bone growth by controlling chondrocyte proliferation. - Abstract: Retinoic acid (RA) is an active metabolite of vitamin A and plays important roles in embryonic development. CYP26 enzymes degrade RA and have specific expression patterns that produce a RA gradient, which regulates the patterning of various structures in the embryo. However, it has not been addressed whether a RA gradient also exists and functions in organs after birth. We found localized RA activities in the diaphyseal portion of the growth plate cartilage were associated with the specific expression of Cyp26b1 in the epiphyseal portion in juvenile mice. To disturb the distribution of RA, we generated mice lacking Cyp26b1 specifically in chondrocytes (Cyp26b1{sup Δchon} cKO). These mice showed reduced skeletal growth in the juvenile stage. Additionally, their growth plate cartilage showed decreased proliferation rates of proliferative chondrocytes, which was associated with a reduced height in the zone of proliferative chondrocytes, and closed focally by four weeks of age, while wild-type mouse growth plates never closed. Feeding the Cyp26b1 cKO mice a vitamin A-deficient diet partially reversed these abnormalities of the growth plate cartilage. These results collectively suggest that Cyp26b1 in the growth plate regulates the proliferation rates of chondrocytes and is responsible for the normal function of the growth plate and growing bones in juvenile mice, probably by limiting the RA distribution in the growth plate proliferating zone.

  18. Tetraspanin CD82 regulates bone marrow homing of acute myeloid leukemia by modulating the molecular organization of N-cadherin

    Science.gov (United States)

    Marjon, Kristopher D.; Termini, Christina M.; Karlen, Karin L.; Saito-Reis, Chelsea; Soria, Cesar E.; Lidke, Keith A.; Gillette, Jennifer M.

    2016-01-01

    Communication between acute myeloid leukemia (AML) and the bone marrow microenvironment is known to control disease progression. Therefore, regulation of AML cell trafficking and adhesion to the bone marrow is of significant interest. In this study, we demonstrate that differential expression of the membrane scaffold CD82 modulates the bone marrow homing of AML cells. By combining mutational analysis and super-resolution imaging, we identify membrane protein clustering by CD82 as a regulator of AML cell adhesion and bone marrow homing. Cluster analysis of super-resolution data indicates that N-linked glycosylation and palmitoylation of CD82 are both critical modifications that control the microdomain organization of CD82 as well as the nanoscale clustering of associated adhesion protein, N-cadherin. We demonstrate that inhibition of CD82 glycosylation increases the molecular packing of N-cadherin and promotes the bone marrow homing of AML cells. In contrast, we find that inhibition of CD82 palmitoylation disrupts the formation and organization of N-cadherin clusters and significantly diminishes bone marrow trafficking of AML. Taken together, these data establish a mechanism where the membrane organization of CD82, through specific post-translational modifications, regulates N-cadherin clustering and membrane density, which impacts the in vivo trafficking of AML cells. As such, these observations provide an alternative model for targeting AML where modulation of protein organization within the membrane may be an effective treatment therapy to disrupt the bone marrow homing potential of AML cells. PMID:26592446

  19. Wnt-mediated reciprocal regulation between cartilage and bone development during endochondral ossification.

    Science.gov (United States)

    Lu, Cheng; Wan, Yong; Cao, Jingjing; Zhu, Xuming; Yu, Jian; Zhou, Rujiang; Yao, Yiyun; Zhang, Lingling; Zhao, Haixia; Li, Hanjun; Zhao, Jianzhi; He, Lin; Ma, Gang; Yang, Xiao; Yao, Zhengju; Guo, Xizhi

    2013-04-01

    The role of Wnt signaling is extensively studied in skeletal development and postnatal bone remodeling, mostly based on the genetic approaches of β-catenin manipulation. However, given their independent function, a requirement for β-catenin is not the same as that for Wnt. Here, we investigated the effect of Wnt proteins in both tissues through generating cartilage- or bone-specific Wls null mice, respectively. Depletion of Wls by Col2-Cre, which would block Wnt secretion in the chondrocytes and perichondrium, delayed chondrocyte hypertrophy in the growth plate and impaired perichondrial osteogenesis. Loss of Wls in chondrocytes also disturbed the proliferating chondrocyte morphology and division orientation, which was similar to the defect observed in Wnt5a null mice. On the other hand, inactivation of Wls in osteoblasts by Col1-Cre resulted in a shorter hypertrophic zone and an increase of TRAP positive cell number in the chondro-osseous junction of growth plate, coupled with a decrease in bone mass. Taken together, our studies reveal that Wnt proteins not only modulate differentiation and cellular communication within populations of chondrocytes, but also mediate the cross regulation between the chondrocytes and osteoblasts in growth plate. PMID:23274346

  20. A potential kidney-bone axis involved in the rapid minute-to-minute regulation of plasma Ca2+

    DEFF Research Database (Denmark)

    Nordholm, Anders; Mace, Maria L; Gravesen, Eva; Olgaard, Klaus; Lewin, Ewa

    2015-01-01

    BACKGROUND: Understanding the regulation of mineral homeostasis and function of the skeleton as buffer for Calcium and Phosphate has regained new interest with introduction of the syndrome "Chronic Kidney Disease-Mineral and Bone Disorder"(CKD-MBD). The very rapid minute-to-minute regulation of p...

  1. The Rho-GEF Kalirin regulates bone mass and the function of osteoblasts and osteoclasts

    OpenAIRE

    Huang, Su; Pierre P. Eleniste; Wayakanon, Kornchanok; Mandela, Prashant; Eipper, Betty A.; Mains, Richard E.; Allen, Matthew R; Bruzzaniti, Angela

    2013-01-01

    Bone homeostasis is maintained by the balance between bone resorption by osteoclasts and bone formation by osteoblasts. Dysregulation in the activity of the bone cells can lead to osteoporosis, a disease characterized by low bone mass and an increase in bone fragility and risk of fracture. Kalirin is a novel GTP-exchange factor protein that has been shown to play a role in cytoskeletal remodeling and dendritic spine formation in neurons. We examined Kalirin expression in skeletal tissue and f...

  2. In vitro study of the osteocytes response to hypoxia and their regulation of bone homeostasis

    OpenAIRE

    Montesi, Monica

    2014-01-01

    Bone remodelling is a fundamental mechanism for removing and replacing bone during adaptation of the skeleton to mechanical loads. Skeletal unloading leads to severe hypoxia (1%O2) in the bone microenvironment resulting in imbalanced bone remodelling that favours bone resorption. Hypoxia, in vivo, is a physiological condition for osteocytes, 5% O2 is more likely physiological for osteocytes than 20% O2, as osteocytes are embedded deep inside the mineralized bone matrix. Osteocytes are thought...

  3. Regulation of bone destruction in rheumatoid arthritis through RANKL-RANK pathways

    OpenAIRE

    2013-01-01

    Recent studies have demonstrated that osteoclasts, the primary cells responsible for bone resorption, are mainly involved in bone and joint destruction in rheumatoid arthritis (RA) patients. Recent progress in bone cell biology has revealed the molecular mechanism of osteoclast differentiation and bone resorption by mature osteoclasts. We highlight here the potential role of the receptor activator of nuclear factor κB ligand (RANKL)-RANK pathways in bone destruction in RA and review recent cl...

  4. Genetic Interactions among Regulators of Septin Organization

    Science.gov (United States)

    Gladfelter, Amy S.; Zyla, Trevin R.; Lew, Daniel J.

    2004-01-01

    Septins form a cortical scaffold at the yeast mother-bud neck that restricts the diffusion of cortical proteins between the mother and bud and serves as a signaling center that is important for governing various cell functions. After cell cycle commitment in late G1, septins are assembled into a narrow ring at the future bud site, which spreads to form a mature septin hourglass immediately after bud emergence. Although several septin regulators have been identified, it is unclear how they cooperate to assemble the septin scaffold. We have examined septin localization in isogenic strains containing single or multiple mutations in eight septin organization genes (CDC42, RGA1, RGA2, BEM3, CLA4, GIN4, NAP1, and ELM1). Our results suggest that these regulators act largely in parallel to promote either the initial assembly of the septin ring (CDC42, RGA1, RGA2, BEM3, and CLA4) or the conversion of the ring to a stable hourglass structure at the neck (GIN4, NAP1, and ELM1). Aberrant septin localization patterns in mutant strains could be divided into apparently discrete categories, but individual strains displayed heterogeneous defects, and there was no clear-cut correspondence between the specific mutations and specific categories of defect. These findings suggest that when they are deprived of their normal regulators, septin scaffolds collapse into a limited repertoire of aberrant states in which the nature of the mutant regulators influences the probability of a given aberrant state. PMID:15302817

  5. Osteocalcin regulates murine and human fertility through a pancreas-bone-testis axis

    Science.gov (United States)

    Oury, Franck; Ferron, Mathieu; Huizhen, Wang; Confavreux, Cyrille; Xu, Lin; Lacombe, Julie; Srinivas, Prashanth; Chamouni, Alexandre; Lugani, Francesca; Lejeune, Herve; Kumar, T. Rajendra; Plotton, Ingrid; Karsenty, Gerard

    2013-01-01

    The osteoblast-derived hormone osteocalcin promotes testosterone biosynthesis in the mouse testis by binding to GPRC6A in Leydig cells. Interestingly, Osteocalcin-deficient mice exhibit increased levels of luteinizing hormone (LH), a pituitary hormone that regulates sex steroid synthesis in the testes. These observations raise the question of whether LH regulates osteocalcin’s reproductive effects. Additionally, there is growing evidence that osteocalcin levels are a reliable marker of insulin secretion and sensitivity and circulating levels of testosterone in humans, but the endocrine function of osteocalcin is unclear. Using mouse models, we found that osteocalcin and LH act in 2 parallel pathways and that osteocalcin-stimulated testosterone synthesis is positively regulated by bone resorption and insulin signaling in osteoblasts. To determine the importance of osteocalcin in humans, we analyzed a cohort of patients with primary testicular failure and identified 2 individuals harboring the same heterozygous missense variant in one of the transmembrane domains of GPRC6A, which prevented the receptor from localizing to the cell membrane. This study uncovers the existence of a second endocrine axis that is necessary for optimal male fertility in the mouse and suggests that osteocalcin modulates reproductive function in humans. PMID:23728177

  6. Mouse genome-wide association and systems genetics identify Asxl2 as a regulator of bone mineral density and osteoclastogenesis.

    Directory of Open Access Journals (Sweden)

    Charles R Farber

    2011-04-01

    Full Text Available Significant advances have been made in the discovery of genes affecting bone mineral density (BMD; however, our understanding of its genetic basis remains incomplete. In the current study, genome-wide association (GWA and co-expression network analysis were used in the recently described Hybrid Mouse Diversity Panel (HMDP to identify and functionally characterize novel BMD genes. In the HMDP, a GWA of total body, spinal, and femoral BMD revealed four significant associations (-log10P>5.39 affecting at least one BMD trait on chromosomes (Chrs. 7, 11, 12, and 17. The associations implicated a total of 163 genes with each association harboring between 14 and 112 genes. This list was reduced to 26 functional candidates by identifying those genes that were regulated by local eQTL in bone or harbored potentially functional non-synonymous (NS SNPs. This analysis revealed that the most significant BMD SNP on Chr. 12 was a NS SNP in the additional sex combs like-2 (Asxl2 gene that was predicted to be functional. The involvement of Asxl2 in the regulation of bone mass was confirmed by the observation that Asxl2 knockout mice had reduced BMD. To begin to unravel the mechanism through which Asxl2 influenced BMD, a gene co-expression network was created using cortical bone gene expression microarray data from the HMDP strains. Asxl2 was identified as a member of a co-expression module enriched for genes involved in the differentiation of myeloid cells. In bone, osteoclasts are bone-resorbing cells of myeloid origin, suggesting that Asxl2 may play a role in osteoclast differentiation. In agreement, the knockdown of Asxl2 in bone marrow macrophages impaired their ability to form osteoclasts. This study identifies a new regulator of BMD and osteoclastogenesis and highlights the power of GWA and systems genetics in the mouse for dissecting complex genetic traits.

  7. Role of NADPH oxidases and reactive oxygen species in regulation of bone turnover and the skeletal toxicity of alcohol

    Science.gov (United States)

    Recent studies with genetically modified mice and dietary antioxidants have suggested an important role for superoxide derived from NADPH oxidase (NOX) enzymes and other reactive oxygen species (ROS) such as hydrogen peroxide in regulation of normal bone turnover during development and also in the r...

  8. GATA2 regulates differentiation of bone marrow-derived mesenchymal stem cells

    OpenAIRE

    Kamata, Mayumi; Okitsu, Yoko; Fujiwara, Tohru; Kanehira, Masahiko; Nakajima, Shinji; Takahashi, Taro; Inoue, Ai; Fukuhara, Noriko; Onishi, Yasushi; Ishizawa, Kenichi; Shimizu, Ritsuko; Yamamoto, Masayuki; Harigae, Hideo

    2014-01-01

    The bone marrow microenvironment comprises multiple cell niches derived from bone marrow mesenchymal stem cells. However, the molecular mechanism of bone marrow mesenchymal stem cell differentiation is poorly understood. The transcription factor GATA2 is indispensable for hematopoietic stem cell function as well as other hematopoietic lineages, suggesting that it may maintain bone marrow mesenchymal stem cells in an immature state and also contribute to their differentiation. To explore this ...

  9. Lipid metabolism disorders and bone dysfunction-interrelated and mutually regulated (Review)

    OpenAIRE

    Tian, Li; Yu, Xijie

    2015-01-01

    The association between lipid and bone metabolism has become an increasing focus of interest in recent years, and accumulating evidence has shown that atherosclerosis (AS) and osteoporosis (OP), a disorder of bone metabolism, frequently co-exist. Fat and bone are known to share a common progenitor cell: Multipotent mesenchymal stem cells (MSC) in the bone marrow (BM), which are able to differentiate into various cell phenotypes, including osteoblasts, adipocytes and chondrocytes. Laboratory-b...

  10. Class I PI-3-Kinase Signaling Is Critical for Bone Formation Through Regulation of SMAD1 Activity in Osteoblasts.

    Science.gov (United States)

    Gámez, Beatriz; Rodríguez-Carballo, Edgardo; Graupera, Mariona; Rosa, José Luis; Ventura, Francesc

    2016-08-01

    Bone formation and homeostasis is carried out by osteoblasts, whose differentiation and activity are regulated by osteogenic signaling networks. A central mediator of these inputs is the lipid kinase phosphatidylinositol 3-kinase (PI3K). However, at present, there are no data on the specific role of distinct class IA PI3K isoforms in bone biology. Here, we performed osteoblast-specific deletion in mice to show that both p110α and p110β isoforms are required for survival and differentiation and function of osteoblasts and thereby control bone formation and postnatal homeostasis. Impaired osteogenesis arises from increased GSK3 activity and a depletion of SMAD1 protein levels in PI3K-deficient osteoblasts. Accordingly, pharmacological inhibition of GSK3 activity or ectopic expression of SMAD1 or SMAD5 normalizes bone morphogenetic protein (BMP) transduction and osteoblast differentiation. Together, these results identify the PI3K-GSK3-SMAD1 axis as a central node integrating multiple signaling networks that govern bone formation and homeostasis. © 2016 American Society for Bone and Mineral Research. PMID:26896753

  11. The Rho-GEF Kalirin regulates bone mass and the function of osteoblasts and osteoclasts.

    Science.gov (United States)

    Huang, Su; Eleniste, Pierre P; Wayakanon, Kornchanok; Mandela, Prashant; Eipper, Betty A; Mains, Richard E; Allen, Matthew R; Bruzzaniti, Angela

    2014-03-01

    Bone homeostasis is maintained by the balance between bone resorption by osteoclasts and bone formation by osteoblasts. Dysregulation in the activity of the bone cells can lead to osteoporosis, a disease characterized by low bone mass and an increase in bone fragility and risk of fracture. Kalirin is a novel GTP-exchange factor protein that has been shown to play a role in cytoskeletal remodeling and dendritic spine formation in neurons. We examined Kalirin expression in skeletal tissue and found that it was expressed in osteoclasts and osteoblasts. Furthermore, micro-CT analyses of the distal femur of global Kalirin knockout (Kal-KO) mice revealed significantly reduced trabecular and cortical bone parameters in Kal-KO mice, compared to WT mice, with significantly reduced bone mass in 8, 14 and 36week-old female Kal-KO mice. Male mice also exhibited a decrease in bone parameters but not to the level seen in female mice. Histomorphometric analyses also revealed decreased bone formation rate in 14week-old female Kal-KO mice, as well as decreased osteoblast number/bone surface and increased osteoclast surface/bone surface. Consistent with our in vivo findings, the bone resorbing activity and differentiation of Kal-KO osteoclasts was increased in vitro. Although alkaline phosphatase activity by Kal-KO osteoblasts was increased in vitro, Kal-KO osteoblasts showed decreased mineralizing activity, as well as decreased secretion of OPG, which was inversely correlated with ERK activity. Taken together, our findings suggest that deletion of Kalirin directly affects osteoclast and osteoblast activity, leading to decreased OPG secretion by osteoblasts which is likely to alter the RANKL/OPG ratio and promote osteoclastogenesis. Therefore, Kalirin may play a role in paracrine and/or endocrine signaling events that control skeletal bone remodeling and the maintenance of bone mass. PMID:24380811

  12. Bone morphogenetic protein-2 is a negative regulator of hepatocyte proliferation downregulated in the regenerating liver

    Institute of Scientific and Technical Information of China (English)

    Cui-Ping Xu; Wen-Min Ji; Gijs R van den Brink; Maikel P Peppelenbosch

    2006-01-01

    AIM: To characterize the expression and dynamic changes of bone morphogenetic protein (BMP)-2 in hepatocytes in the regenerating liver in rats after partial hepatectomy (PH), and examine the effects of BMP-2 on proliferation of human Huh7 hepatoma cells.METHODS: Fifty-four adult male Wistar rats were randomly divided into three groups: A normal control (NC) group, a partial hepatectomized (PH) group and a sham operated (SO) group. To study the effect of liver regeneration on BMP-2 expression, rats were sacrificed before and at different time points after PH or the sham intervention (6, 12, 24 and 48 h). For each time point, six rats were used in parallel. Expression and distribution of BMP-2 protein were determined in regenerating liver tissue by Western blot analysis and immunohistochemistry. Effects of BMP-2 on cell proliferation of human Huh7 hepatoma cell line were assessed using an MTT assay.RESULTS: In the normal liver strong BMP-2 expression was observed around the central and portal veins. The expression of BMP-2 decreased rapidly as measured by both immunohistochemistry and Western blot analysis.This decrease was at a maximum of 3.22 fold after 12 h and returned to normal levels at 48 h after PH. No significant changes in BMP-2 immunoreactivity were observed in the SO group. BMP-2 inhibited serum induced Huh7 cell proliferation.CONCLUSION: BMP-2 is expressed in normal adult rat liver and negatively regulates hepatocyte proliferation.The observed down regulation of BMP-2 following partial hepatectomy suggests that such down regulation may be necessary for hepatocyte proliferation.

  13. Identification of microRNAs regulating the developmental pathways of bone marrow derived mast cells.

    Directory of Open Access Journals (Sweden)

    Yang Xiang

    Full Text Available BACKGROUND: MicroRNAs (miRNAs play important roles in leukocyte differentiation, although those utilised for specific programs and key functions remain incompletely characterised. As a global approach to gain insights into the potential regulatory role of miRNA in mast cell differentiation we characterised expression in BM cultures from the initiation of differentiation. In cultures enriched in differentiating mast cells we characterised miRNA expression and identified miRNA targeting the mRNA of putative factors involved in differentiation pathways and cellular identity. Detailed pathway analysis identified a unique miRNA network that is intimately linked to the mast cell differentiation program. METHODOLOGY/PRINCIPAL FINDINGS: We identified 86 unique miRNAs with expression patterns that were up- or down- regulated at 5-fold or more during bone marrow derived mast cells (BMMC development. By employing TargetScan and MeSH databases, we identified 524 transcripts involved in 30 canonical pathways as potentially regulated by these specific 86 miRNAs. Furthermore, by applying miRanda and IPA analyses, we predict that 7 specific miRNAs of this group are directly associated with the expression of c-Kit and FcεRIα and likewise, that 18 miRNAs promote expression of Mitf, GATA1 and c/EBPα three core transcription factors that direct mast cell differentiation. Furthermore, we have identified 11 miRNAs that may regulate the expression of STATs-3, -5a/b, GATA2 and GATA3 during differentiation, along with 13 miRNAs that target transcripts encoding Ndst2, mMCP4 and mMCP6 and thus may regulate biosynthesis of mast cell secretory mediators. CONCLUSIONS/SIGNIFICANCE: This investigation characterises changes in miRNA expression in whole BM cultures during the differentiation of mast cells and predicts functional links between miRNAs and their target mRNAs for the regulation of development. This information provides an important resource for further

  14. New insights into tryptophan and its metabolites in the regulation of bone metabolism.

    Science.gov (United States)

    Michalowska, M; Znorko, B; Kaminski, T; Oksztulska-Kolanek, E; Pawlak, D

    2015-12-01

    Osteoporosis, a debilitating disease caused by an imbalance between the action of osteoblasts and osteoclasts, is becoming an increasing problem in today's aging population. Although many advances in this field have addressed certain aspects of disease progression and pain management, new approaches to treatment are required. This review focuses on the influence of tryptophan, its metabolites and their influence on bone remodeling. Tryptophan is a precursor to serotonin, melatonin, kynurenines and niacin. Changes of tryptophan levels were noticed in bone metabolic diseases. Moreover, some works indicate that tryptophan plays a role in osteoblastic differentiation. Serotonin can exert different effects on bones, which depend on site of serotonin synthesis. Gut-derived serotonin inhibits bone formation, whereas brain-derived serotonin enhances bone formation and decreases bone resorption. Melatonin, increased differentiation of human mesenchymal stem cells into the osteoblastic cell lineage. Results of melatonin action on bone are anabolic and antiresorptive. Activation of the second tryptophan metabolic pathway, the kynurenine pathway, is associated with osteoblastogenesis and can be implicated in the occurrence of bone diseases. Oxidation products like kynurenine stopped proliferation of bone marrow mesenchymal stem cells. This may result in inhibition of osteoblastic proliferation and differentiation. Kynurenic acid acts as an antagonist at glutamate receptors, which are expressed on osteoclasts. Quinolinic acid activates N-methyl-D-aspartate receptors. 3-hydroxyanthranilic acid exhibits pro-oxidant and antioxidant activity. Decreased concentration of 3-hydroxyanthranilic acid can be one of the causes of osteoporosis. 3-hydroxykynurenine reduced the viability of osteoblast-like cells. Picolinic acid exerted osteogenic effect in vitro. Kynurenine derivatives exert various effects on bones. Discovery of the exact mechanism of action of tryptophan metabolites on

  15. Jagged1 expression by osteoblast-lineage cells regulates trabecular bone mass and periosteal expansion in mice.

    Science.gov (United States)

    Youngstrom, D W; Dishowitz, M I; Bales, C B; Carr, E; Mutyaba, P L; Kozloff, K M; Shitaye, H; Hankenson, K D; Loomes, K M

    2016-10-01

    Loss-of-function mutations in the Notch ligand, Jagged1 (Jag1), result in multi-system developmental pathologies associated with Alagille syndrome (ALGS). ALGS patients present with skeletal manifestations including hemi-vertebrae, reduced bone mass, increased fracture incidence and poor bone healing. However, it is not known whether the increased fracture risk is due to altered bone homeostasis (primary) or nutritional malabsorption due to chronic liver disease (secondary). To determine the significance of Jag1 loss in bone, we characterized the skeletal phenotype of two Jag1-floxed conditional knockout mouse models: Prx1-Cre;Jag1(f/f) to target osteoprogenitor cells and their progeny, and Col2.3-Cre;Jag1(f/f) to target mid-stage osteoblasts and their progeny. Knockout phenotypes were compared to wild-type (WT) controls using quantitative micro-computed tomography, gene expression profiling and mechanical testing. Expression of Jag1 and the Notch target genes Hes1 and Hey1 was downregulated in all Jag1 knockout mice. Osteoblast differentiation genes were downregulated in whole bone of both groups, but unchanged in Prx1-Cre;Jag1(f/f) cortical bone. Both knockout lines exhibited changes in femoral trabecular morphology including decreased bone volume fraction and increased trabecular spacing, with males presenting a more severe trabecular osteopenic phenotype. Prx1-Cre;Jag1(f/f) mice showed an increase in marrow mesenchymal progenitor cell number and, counterintuitively, developed increased cortical thickness resulting from periosteal expansion, translating to greater mechanical stiffness and strength. Similar alterations in femoral morphology were observed in mice with canonical Notch signaling disrupted using Prx1-Cre-regulatable dominant-negative mastermind like-protein (dnMAML). Taken together, we report that 1) Jag1 negatively regulates the marrow osteochondral progenitor pool, 2) Jag1 is required for normal trabecular bone formation and 3) Notch signaling

  16. Interleukin-2 critically regulates bone marrow erythropoiesis and prevents anemia development.

    Science.gov (United States)

    Chopra, Martin; Langenhorst, Daniela; Beilhack, Andreas; Serfling, Edgar; Patra, Amiya K

    2015-12-01

    Mice deficient in IL-2 signaling develop severe anemia indicating a defect in erythropoiesis. However, why deficiency in IL-2, an essential growth factor for lymphocytes, or in IL-2 signaling components should result in defective erythropoiesis is unclear. Here, we have analyzed the mechanism of IL-2 signaling deficiency induced anemia in mice and show that IL-2 plays an indispensable role in bone marrow (BM) erythropoiesis via maintenance of regulatory T (Treg) cells. In absence of IL-2 signaling, IFN-γ produced by the activated T cells suppressed klf1 expression, resulting in an early block in erythrocyte differentiation. Anemia, in IL-2 or IL-2 signaling deficient mice always developed prior to the manifestation of other autoimmune complications such as colitis, suggesting that anemia in these mice might be a contributing factor in inducing other pathological complications in later stages. Our study shows, how essential cytokines of lymphoid cells could exert critical influence on the development of erythrocytes and thus expanding our understanding of the complex regulation of hematopoiesis in the BM. Besides, our findings might facilitate the use of IL-2 and anti-IFN-γ as a clinical remedy against anemia that arise in cancer patients following radiotherapy or chemotherapy, a context which simulates the situation of IL-2 deficiency. PMID:26404745

  17. MicroRNAs Regulate Osteogenesis and Chondrogenesis of Mouse Bone Marrow Stromal Cells

    Science.gov (United States)

    Suomi, Salla; Taipaleenmäki, Hanna; Seppänen, Anne; Ripatti, Tommi; Väänänen, Kalervo; Hentunen, Teuvo; Säämänen, Anna-Marja; Laitala-Leinonen, Tiina

    2008-01-01

    MicroRNAs (miRNAs) are non-coding RNAs that bind to target mRNA leading to translational arrest or mRNA degradation. To study miRNA-mediated regulation of osteogenesis and chondrogenesis, we compared the expression of 35 miRNAs in osteoblasts and chondroblasts derived from mouse marrow stromal cells (MSCs). Differentiation of MSCs resulted in up- or downregulation of several miRNAs, with miR-199a expression being over 10-fold higher in chondroblasts than in undifferentiated MSCs. In addition, miR-124a was strongly upregulated during chondrogenesis while the expression of miR-96 was substantially suppressed. A systems biological analysis of the potential miRNA target genes and their interaction networks was combined with promoter analysis. These studies link the differentially expressed miRNAs to collagen synthesis and hypoxia, key pathways related to bone and cartilage physiology. The global regulatory networks described here suggest for the first time how miRNAs and transcription factors are capable of fine-tuning the osteogenic and chondrogenic differentiation of mouse MSCs. PMID:19787082

  18. MicroRNAs Regulate Osteogenesis and Chondrogenesis of Mouse Bone Marrow Stromal Cells

    Directory of Open Access Journals (Sweden)

    Salla Suomi

    2008-01-01

    Full Text Available MicroRNAs (miRNAs are non-coding RNAs that bind to target mRNA leading to translational arrest or mRNA degradation. To study miRNA-mediated regulation of osteogenesis and chondrogenesis, we compared the expression of 35 miRNAs in osteoblasts and chondroblasts derived from mouse marrow stromal cells (MSCs. Differentiation of MSCs resulted in up- or downregulation of several miRNAs, with miR-199a expression being over 10-fold higher in chondroblasts than in undifferentiated MSCs. In addition, miR-124a was strongly upregulated during chondrogenesis while the expression of miR-96 was substantially suppressed. A systems biological analysis of the potential miRNA target genes and their interaction networks was combined with promoter analysis. These studies link the differentially expressed miRNAs to collagen synthesis and hypoxia, key pathways related to bone and cartilage physiology. The global regulatory networks described here suggest for the first time how miRNAs and transcription factors are capable of fi ne-tuning the osteogenic and chondrogenic differentiation of mouse MSCs.

  19. Regulation of oligodendrocyte progenitor cell maturation by PPARδ: effects on bone morphogenetic proteins

    Directory of Open Access Journals (Sweden)

    Jill C Richardson

    2010-01-01

    Full Text Available In EAE (experimental autoimmune encephalomyelitis, agonists of PPARs (peroxisome proliferator-activated receptors provide clinical benefit and reduce damage. In contrast with PPARγ, agonists of PPARδ are more effective when given at later stages of EAE and increase myelin gene expression, suggesting effects on OL (oligodendrocyte maturation. In the present study we examined effects of the PPARδ agonist GW0742 on OPCs (OL progenitor cells, and tested whether the effects involve modulation of BMPs (bone morphogenetic proteins. We show that effects of GW0742 are mediated through PPARδ since no amelioration of EAE clinical scores was observed in PPARδ-null mice. In OPCs derived from E13 mice (where E is embryonic day, GW0742, but not the PPARγ agonist pioglitazone, increased the number of myelin-producing OLs. This was due to activation of PPARδ since process formation was reduced in PPARδ-null compared with wild-type OPCs. In both OPCs and enriched astrocyte cultures, GW0742 increased noggin protein expression; however, noggin mRNA was only increased in astrocytes. In contrast, GW0742 reduced BMP2 and BMP4 mRNA levels in OPCs, with lesser effects in astrocytes. These findings demonstrate that PPARδ plays a role in OPC maturation, mediated, in part, by regulation of BMP and BMP antagonists.

  20. Intracellular glutathione status regulates mouse bone marrow monocyte-derived macrophage differentiation and phagocytic activity

    International Nuclear Information System (INIS)

    Although a redox shift can regulate the development of cells, including proliferation, differentiation, and survival, the role of the glutathione (GSH) redox status in macrophage differentiation remains unclear. In order to elucidate the role of a redox shift, macrophage-like cells were differentiated from the bone marrow-derived monocytes that were treated with a macrophage colony stimulating factor (M-CSF or CSF-1) for 3 days. The macrophagic cells were characterized by a time-dependent increase in three major symptoms: the number of phagocytic cells, the number of adherent cells, and the mRNA expression of c-fms, a M-CSF receptor that is one of the macrophage-specific markers and mediates development signals. Upon M-CSF-driven macrophage differentiation, the GSH/GSSG ratio was significantly lower on day 1 than that observed on day 0 but was constant on days 1-3. To assess the effect of the GSH-depleted and -repleted status on the differentiation and phagocytosis of the macrophages, GSH depletion by BSO, a specific inhibitor of the de novo GSH synthesis, inhibited the formation of the adherent macrophagic cells by the down-regulation of c-fms, but did not affect the phagocytic activity of the macrophages. To the contrary, GSH repletion by the addition of NAC, which is a GSH precursor, or reduced GSH in media had no effect on macrophage differentiation, and led to a decrease in the phagocytic activity. Furthermore, we observed that there is checkpoint that is capable of releasing from the inhibition of the formation of the adherent macrophagic cells according to GSH depletion by BSO. Summarizing, these results indicate that the intracellular GSH status plays an important role in the differentiation and phagocytosis of macrophages

  1. Development of the Fetal Bone Marrow Niche and Regulation of HSC Quiescence and Homing Ability by Emerging Osteolineage Cells

    Directory of Open Access Journals (Sweden)

    Süleyman Coşkun

    2014-10-01

    Full Text Available Hematopoietic stem cells (HSCs reside within a specialized niche where interactions with vasculature, osteoblasts, and stromal components regulate their self-renewal and differentiation. Little is known about bone marrow niche formation or the role of its cellular components in HSC development; therefore, we established the timing of murine fetal long bone vascularization and ossification relative to the onset of HSC activity. Adult-repopulating HSCs emerged at embryonic day 16.5 (E16.5, coincident with marrow vascularization, and were contained within the c-Kit+Sca-1+Lin− (KSL population. We used Osterix-null (Osx−/− mice that form vascularized marrow but lack osteolineage cells to dissect the role(s of these cellular components in HSC development. Osx−/− fetal bone marrow cells formed multilineage colonies in vitro but were hyperproliferative and failed to home to and/or engraft transplant recipients. Thus, in developing bone marrow, the vasculature can sustain multilineage progenitors, but interactions with osteolineage cells are needed to regulate long-term HSC proliferation and potential.

  2. Dlk1/FA1 is a novel endocrine regulator of bone and fat mass and its serum level is modulated by growth hormone

    DEFF Research Database (Denmark)

    Abdallah, Basem; Ding, Ming; Jensen, Charlotte H;

    2007-01-01

    Fat and bone metabolism are two linked processes regulated by several hormonal factors. Fetal antigen 1 (FA1) is the soluble form of dlk1 (delta-like 1), which is a member of the Notch-Delta family. We previously identified FA1 as a negative regulator of bone marrow mesenchymal stem cell...... differentiation. Here, we studied the effects of circulating FA1 on fat and bone mass in vivo by generating mice expressing high serum levels of FA1 (FA1 mice) using the hydrodynamic-based gene transfer procedure. We found that increased serum FA1 levels led to a significant reduction in total body weight, fat...... level was reduced by 40% during GH treatment. In conclusion, our data identify the FA1 as a novel endocrine factor regulating bone mass and fat mass in vivo, and its serum levels are regulated by GH. FA1 thus provides a novel class of developmental molecules that regulate physiological functions of the...

  3. The p27 Pathway Modulates the Regulation of Skeletal Growth and Osteoblastic Bone Formation by Parathyroid Hormone-Related Peptide.

    Science.gov (United States)

    Zhu, Min; Zhang, Jing; Dong, Zhan; Zhang, Ying; Wang, Rong; Karaplis, Andrew; Goltzman, David; Miao, Dengshun

    2015-11-01

    Parathyroid hormone-related peptide (PTHrP) 1-84 knock-in mice (Pthrp KI) develop skeletal growth retardation and defective osteoblastic bone formation. To further examine the mechanisms underlying this phenotype, microarray analyses of differential gene expression profiles were performed in long bone extracts from Pthrp KI mice and their wild-type (WT) littermates. We found that the expression levels of p27, p16, and p53 were significantly upregulated in Pthrp KI mice relative to WT littermates. To determine whether p27 was involved in the regulation by PTHrP of skeletal growth and development in vivo, we generated compound mutant mice, which were homozygous for both p27 deletion and the Pthrp KI mutation (p27(-/-) Pthrp KI). We then compared p27(-/-) Pthrp KI mice with p27(-/-), Pthrp KI, and WT littermates. Deletion of p27 in Pthrp KI mice resulted in a longer lifespan, increased body weight, and improvement in skeletal growth. At 2 weeks of age, skeletal parameters, including length of long bones, size of epiphyses, numbers of proliferating cell nuclear antigen (PCNA)-positive chondrocytes, bone mineral density, trabecular bone volume, osteoblast numbers, and alkaline phosphatase (ALP)-, type I collagen-, and osteocalcin-positive bone areas were increased in p27(-/-) mice and reduced in both Pthrp KI and p27(-/-) Pthrp KI mice compared with WT mice; however, these parameters were increased in p27(-/-) Pthrp KI mice compared with Pthrp KI mice. As well, protein expression levels of PTHR, IGF-1, and Bmi-1, and the numbers of total colony-forming unit fibroblastic (CFU-f) and ALP-positive CFU-f were similarly increased in p27(-/-) Pthrp KI mice compared with Pthrp KI mice. Our results demonstrate that deletion of p27 in Pthrp KI mice can partially rescue defects in skeletal growth and osteoblastic bone formation by enhancing endochondral bone formation and osteogenesis. These studies, therefore, indicate that the p27 pathway may function downstream in the action

  4. Bone: from a reservoir of minerals to a regulator of energy metabolism

    OpenAIRE

    Confavreux, Cyrille B.

    2011-01-01

    Besides locomotion, organ protection, and calcium–phosphorus homeostasis, the three classical functions of the skeleton, bone remodeling affects energy metabolism through uncarboxylated osteocalcin, a recently discovered hormone secreted by osteoblasts. This review traces how energy metabolism affects osteoblasts through the central control of bone mass involving leptin, serotoninergic neurons, the hypothalamus, and the sympathetic nervous system. Next, the role of osteocalcin (insulin secret...

  5. Dioscin inhibits osteoclast differentiation and bone resorption though down-regulating the Akt signaling cascades

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Xinhua; Zhai, Zanjing; Liu, Xuqiang; Li, Haowei [Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Ouyang, Zhengxiao [Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Department of Orthopaedics, Hunan Provincial Tumor Hospital and Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha (China); Wu, Chuanlong [Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Liu, Guangwang [Department of Orthopaedic Surgery, The Central Hospital of Xuzhou, Affiliated Hospital of Medical Collage of Southeast University, Xuzhou (China); Fan, Qiming; Tang, Tingting [Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Qin, An, E-mail: dr.qinan@gmail.com [Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Dai, Kerong, E-mail: krdai@163.com [Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China)

    2014-01-10

    Highlights: •A natural-derived compound, dioscin, suppresses osteoclast formation and bone resorption. •Dioscin inhibits osteolytic bone loss in vivo. •Dioscin impairs the Akt signaling cascades pathways during osteoclastogenesis. •Dioscin have therapeutic value in treating osteoclast-related diseases. -- Abstract: Bone resorption is the unique function of osteoclasts (OCs) and is critical for both bone homeostasis and pathologic bone diseases including osteoporosis, rheumatoid arthritis and tumor bone metastasis. Thus, searching for natural compounds that may suppress osteoclast formation and/or function is promising for the treatment of osteoclast-related diseases. In this study, we for the first time demonstrated that dioscin suppressed RANKL-mediated osteoclast differentiation and bone resorption in vitro in a dose-dependent manner. The suppressive effect of dioscin is supported by the reduced expression of osteoclast-specific markers. Further molecular analysis revealed that dioscin abrogated AKT phosphorylation, which subsequently impaired RANKL-induced nuclear factor-kappaB (NF-κB) signaling pathway and inhibited NFATc1 transcriptional activity. Moreover, in vivo studies further verified the bone protection activity of dioscin in osteolytic animal model. Together our data demonstrate that dioscin suppressed RANKL-induced osteoclast formation and function through Akt signaling cascades. Therefore, dioscin is a potential natural agent for the treatment of osteoclast-related diseases.

  6. Dioscin inhibits osteoclast differentiation and bone resorption though down-regulating the Akt signaling cascades

    International Nuclear Information System (INIS)

    Highlights: •A natural-derived compound, dioscin, suppresses osteoclast formation and bone resorption. •Dioscin inhibits osteolytic bone loss in vivo. •Dioscin impairs the Akt signaling cascades pathways during osteoclastogenesis. •Dioscin have therapeutic value in treating osteoclast-related diseases. -- Abstract: Bone resorption is the unique function of osteoclasts (OCs) and is critical for both bone homeostasis and pathologic bone diseases including osteoporosis, rheumatoid arthritis and tumor bone metastasis. Thus, searching for natural compounds that may suppress osteoclast formation and/or function is promising for the treatment of osteoclast-related diseases. In this study, we for the first time demonstrated that dioscin suppressed RANKL-mediated osteoclast differentiation and bone resorption in vitro in a dose-dependent manner. The suppressive effect of dioscin is supported by the reduced expression of osteoclast-specific markers. Further molecular analysis revealed that dioscin abrogated AKT phosphorylation, which subsequently impaired RANKL-induced nuclear factor-kappaB (NF-κB) signaling pathway and inhibited NFATc1 transcriptional activity. Moreover, in vivo studies further verified the bone protection activity of dioscin in osteolytic animal model. Together our data demonstrate that dioscin suppressed RANKL-induced osteoclast formation and function through Akt signaling cascades. Therefore, dioscin is a potential natural agent for the treatment of osteoclast-related diseases

  7. Assessment of cystic fibrosis transmembrane conductance regulator (CFTR) activity in CFTR-null mice after bone marrow transplantation

    OpenAIRE

    Bruscia, Emanuela M.; Price, Joanna E.; Cheng, Ee-chun; Weiner, Scott; Caputo, Christina; Ferreira, Elisa C.; Egan, Marie E.; Krause, Diane S.

    2006-01-01

    Several studies have demonstrated that bone marrow (BM)-derived cells give rise to rare epithelial cells in the gastrointestinal (GI) and respiratory tracts after BM transplantation into myeloablated recipients. We investigate whether, after transplantation of cystic fibrosis transmembrane conductance regulator (CFTR)-positive BM-derived cells, BM-derived GI and airway epithelial cells can provide CFTR activity in the GI tract and nasal epithelium of recipient cystic fibrosis mice. CFTR−/− mi...

  8. Bone Morphogenetic Protein-2-Induced Signaling and Osteogenesis Is Regulated by Cell Shape, RhoA/ROCK, and Cytoskeletal Tension

    OpenAIRE

    Wang, Yang-Kao; Yu, Xiang; Cohen, Daniel M.; Wozniak, Michele A.; Yang, Michael T.; Gao, Lin; Eyckmans, Jeroen; Chen, Christopher S.

    2011-01-01

    Osteogenic differentiation of human mesenchymal stem cells (hMSCs) is classically thought to be mediated by different cytokines such as the bone morphogenetic proteins (BMPs). Here, we report that cell adhesion to extracellular matrix (ECM), and its effects on cell shape and cytoskeletal mechanics, regulates BMP-induced signaling and osteogenic differentiation of hMSCs. Using micropatterned substrates to progressively restrict cell spreading and flattening against ECM, we demonstrated that BM...

  9. IGF-1 Regulates Vertebral Bone Aging Through Sex-Specific and Time-Dependent Mechanisms.

    Science.gov (United States)

    Ashpole, Nicole M; Herron, Jacquelyn C; Mitschelen, Matthew C; Farley, Julie A; Logan, Sreemathi; Yan, Han; Ungvari, Zoltan; Hodges, Erik L; Csiszar, Anna; Ikeno, Yuji; Humphrey, Mary Beth; Sonntag, William E

    2016-02-01

    Advanced aging is associated with increased risk of bone fracture, especially within the vertebrae, which exhibit significant reductions in trabecular bone structure. Aging is also associated with a reduction in circulating levels of insulin-like growth factor (IGF-1). Studies have suggested that the reduction in IGF-1 compromises healthspan, whereas others report that loss of IGF-1 is beneficial because it increases healthspan and lifespan. To date, the effect of decreases in circulating IGF-1 on vertebral bone aging has not been thoroughly investigated. Here, we delineate the consequences of a loss of circulating IGF-1 on vertebral bone aging in male and female Igf(f/f) mice. IGF-1 was reduced at multiple specific time points during the mouse lifespan: early in postnatal development (crossing albumin-cyclic recombinase [Cre] mice with Igf(f/f) mice); and in early adulthood and in late adulthood using hepatic-specific viral vectors (AAV8-TBG-Cre). Vertebrae bone structure was analyzed at 27 months of age using micro-computed tomography (μCT) and quantitative bone histomorphometry. Consistent with previous studies, both male and female mice exhibited age-related reductions in vertebral bone structure. In male mice, reduction of circulating IGF-1 induced at any age did not diminish vertebral bone loss. Interestingly, early-life loss of IGF-1 in females resulted in a 67% increase in vertebral bone volume fraction, as well as increased connectivity density and increased trabecular number. The maintenance of bone structure in the early-life IGF-1-deficient females was associated with increased osteoblast surface and an increased ratio of osteoprotegerin/receptor-activator of NF-κB-ligand (RANKL) levels in circulation. Within 3 months of a loss of IGF-1, there was a 2.2-fold increase in insulin receptor expression within the vertebral bones of our female mice, suggesting that local signaling may compensate for the loss of circulating IGF-1. Together, these data

  10. LIVER AND BONE MARROW STEM/PROGENITOR CELLS AS REGULATORS OF REPARATIVE REGENERATION OF DAMAGED LIVER

    Directory of Open Access Journals (Sweden)

    А. V. Lundup

    2010-01-01

    Full Text Available In this review the modern information about effectiveness of liver insufficiency treatment by stem/ progenitor cells of liver (oval cells and bone marrow (hemopoietic cells and mesenchymal cells was presented. It is shown that medical action of these cells is referred on normalization of liver cell interaction and reorganization of processes of a reparative regeneration in damaged liver. It is believed that application of mesenchymal stromal cells from an autological bone marrow is the most perspective strategy. However, for definitive judgement about regenerative possibilities of the autological bone marrow cells it is necessary to carry out large-scale double blind clinical researches. 

  11. Regulation of Sclerostin Expression in Multiple Myeloma by Dkk-1: A Potential Therapeutic Strategy for Myeloma Bone Disease.

    Science.gov (United States)

    Eda, Homare; Santo, Loredana; Wein, Marc N; Hu, Dorothy Z; Cirstea, Diana D; Nemani, Neeharika; Tai, Yu-Tzu; Raines, Sarah E; Kuhstoss, Stuart Allen; Munshi, Nikhil C; Kronenberg, Henry M; Raje, Noopur S

    2016-06-01

    Sclerostin is a potent inhibitor of osteoblastogenesis. Interestingly, newly diagnosed multiple myeloma (MM) patients have high levels of circulating sclerostin that correlate with disease stage and fractures. However, the source and impact of sclerostin in MM remains to be defined. Our goal was to determine the role of sclerostin in the biology of MM and its bone microenvironment as well as investigate the effect of targeting sclerostin with a neutralizing antibody (scl-Ab) in MM bone disease. Here we confirm increased sclerostin levels in MM compared with precursor disease states like monoclonal gammopathy of undetermined significance (MGUS) and smoldering MM. Furthermore, we found that a humanized MM xenograft mouse model bearing human MM cells (NOD-SCID.CB17 male mice injected intravenously with 2.5 million of MM1.S-Luc-GFP cells) demonstrated significantly higher concentrations of mouse-derived sclerostin, suggesting a microenvironmental source of sclerostin. Associated with the increased sclerostin levels, activated β-catenin expression levels were lower than normal in MM mouse bone marrow. Importantly, a high-affinity grade scl-Ab reversed osteolytic bone disease in this animal model. Because scl-Ab did not demonstrate significant in vitro anti-MM activity, we combined it with the proteasome inhibitor carfilzomib. Our data demonstrated that this combination therapy significantly inhibited tumor burden and improved bone disease in our in vivo MM mouse model. In agreement with our in vivo data, sclerostin expression was noted in marrow stromal cells and osteoblasts of MM patient bone marrow samples. Moreover, MM cells stimulated sclerostin expression in immature osteoblasts while inhibiting osteoblast differentiation in vitro. This was in part regulated by Dkk-1 secreted by MM cells and is a potential mechanism contributing to the osteoblast dysfunction noted in MM. Our data confirm the role of sclerostin as a potential therapeutic target in MM bone disease

  12. Vitamin B12–dependent taurine synthesis regulates growth and bone mass

    OpenAIRE

    Roman-Garcia, Pablo; Quiros-Gonzalez, Isabel; Mottram, Lynda; Lieben, Liesbet; Sharan, Kunal; Wangwiwatsin, Arporn; Tubio, Jose; Lewis, Kirsty; Wilkinson, Debbie; Santhanam, Balaji; Sarper, Nazan; Clare, Simon; Vassiliou, George S; Velagapudi, Vidya R.; Dougan, Gordon

    2014-01-01

    Both maternal and offspring-derived factors contribute to lifelong growth and bone mass accrual, although the specific role of maternal deficiencies in the growth and bone mass of offspring is poorly understood. In the present study, we have shown that vitamin B12 (B12) deficiency in a murine genetic model results in severe postweaning growth retardation and osteoporosis, and the severity and time of onset of this phenotype in the offspring depends on the maternal genotype. Using integrated p...

  13. Exosome: A Novel Approach to Stimulate Bone Regeneration through Regulation of Osteogenesis and Angiogenesis

    OpenAIRE

    Yunhao Qin; Ruixin Sun; Chuanlong Wu; Lian Wang; Changqing Zhang

    2016-01-01

    The clinical need for effective bone regeneration therapy remains in huge demands. However, the current “gold standard” treatments of autologous and allogeneic bone grafts may result in various complications. Furthermore, safety considerations of biomaterials and cell-based treatment require further clarification. Therefore, developing new therapies with stronger osteogenic potential and a lower incidence of complications is worthwhile. Recently, exosomes, small vesicles of endocytic origin, ...

  14. Dioscin inhibits osteoclast differentiation and bone resorption though down-regulating the Akt signaling cascades.

    Science.gov (United States)

    Qu, Xinhua; Zhai, Zanjing; Liu, Xuqiang; Li, Haowei; Ouyang, Zhengxiao; Wu, Chuanlong; Liu, Guangwang; Fan, Qiming; Tang, Tingting; Qin, An; Dai, Kerong

    2014-01-10

    Bone resorption is the unique function of osteoclasts (OCs) and is critical for both bone homeostasis and pathologic bone diseases including osteoporosis, rheumatoid arthritis and tumor bone metastasis. Thus, searching for natural compounds that may suppress osteoclast formation and/or function is promising for the treatment of osteoclast-related diseases. In this study, we for the first time demonstrated that dioscin suppressed RANKL-mediated osteoclast differentiation and bone resorption in vitro in a dose-dependent manner. The suppressive effect of dioscin is supported by the reduced expression of osteoclast-specific markers. Further molecular analysis revealed that dioscin abrogated AKT phosphorylation, which subsequently impaired RANKL-induced nuclear factor-kappaB (NF-κB) signaling pathway and inhibited NFATc1 transcriptional activity. Moreover, in vivo studies further verified the bone protection activity of dioscin in osteolytic animal model. Together our data demonstrate that dioscin suppressed RANKL-induced osteoclast formation and function through Akt signaling cascades. Therefore, dioscin is a potential natural agent for the treatment of osteoclast-related diseases. PMID:24333429

  15. Pleiotrophin Regulates the Retention and Self-Renewal of Hematopoietic Stem Cells in the Bone Marrow Vascular Niche

    Directory of Open Access Journals (Sweden)

    Heather A. Himburg

    2012-10-01

    Full Text Available The mechanisms through which the bone marrow (BM microenvironment regulates hematopoietic stem cell (HSC fate remain incompletely understood. We examined the role of the heparin-binding growth factor pleiotrophin (PTN in regulating HSC function in the niche. PTN−/− mice displayed significantly decreased BM HSC content and impaired hematopoietic regeneration following myelosuppression. Conversely, mice lacking protein tyrosine phosphatase receptor zeta, which is inactivated by PTN, displayed significantly increased BM HSC content. Transplant studies revealed that PTN action was not HSC autonomous, but rather was mediated by the BM microenvironment. Interestingly, PTN was differentially expressed and secreted by BM sinusoidal endothelial cells within the vascular niche. Furthermore, systemic administration of anti-PTN antibody in mice substantially impaired both the homing of hematopoietic progenitor cells to the niche and the retention of BM HSCs in the niche. PTN is a secreted component of the BM vascular niche that regulates HSC self-renewal and retention in vivo.

  16. RAS and RHO Families of GTPases Directly Regulate Distinct Phosphoinositide 3-Kinase Isoforms

    OpenAIRE

    Fritsch, Ralph; de Krijger, Inge; Fritsch, Kornelia; George, Roger; Reason, Beth; Kumar, Madhu S.; Diefenbacher, Markus; Stamp, Gordon; Downward, Julian

    2013-01-01

    Summary RAS proteins are important direct activators of p110α, p110γ, and p110δ type I phosphoinositide 3-kinases (PI3Ks), interacting via an amino-terminal RAS-binding domain (RBD). Here, we investigate the regulation of the ubiquitous p110β isoform of PI3K, implicated in G-protein-coupled receptor (GPCR) signaling, PTEN-loss-driven cancers, and thrombocyte function. Unexpectedly, RAS is unable to interact with p110β, but instead RAC1 and CDC42 from the RHO subfamily of small GTPases bind an...

  17. GPCR kinase 2 interacting protein 1 (GIT1) regulates osteoclast function and bone mass

    OpenAIRE

    Menon, Prashanthi; Yin, Guoyong; Smolock, Elaine M.; Zuscik, Michael J.; Yan, Chen; Berk, Bradford C.

    2010-01-01

    G-protein coupled receptor (GPCR) kinase 2 interacting protein-1 (GIT1) is a scaffold protein expressed in various cell types including neurons, endothelial and vascular smooth muscle cells. The GIT1 knockout (KO) mouse has a pulmonary phenotype due to impaired endothelial function. Because GIT1 is tyrosine phosphorylated by Src kinase, we anticipated that GIT1 KO should have a bone phenotype similar to Src KO. Microcomputed tomography of the long bones revealed that GIT1 KO mice have a 2.3-f...

  18. 5-Azacytidine-induced protein 2 (AZI2) regulates bone mass by fine-tuning osteoclast survival.

    Science.gov (United States)

    Maruyama, Kenta; Fukasaka, Masahiro; Uematsu, Satoshi; Takeuchi, Osamu; Kondo, Takeshi; Saitoh, Tatsuya; Martino, Mikaël M; Akira, Shizuo

    2015-04-10

    5-Azacytidine-induced protein 2 (AZI2) is a TNF receptor (TNFR)-associated factor family member-associated NF-κB activator-binding kinase 1-binding protein that regulates the production of IFNs. A previous in vitro study showed that AZI2 is involved in dendritic cell differentiation. However, the roles of AZI2 in immunity and its pleiotropic functions are unknown in vivo. Here we report that AZI2 knock-out mice exhibit normal dendritic cell differentiation in vivo. However, we found that adult AZI2 knock-out mice have severe osteoporosis due to increased osteoclast longevity. We revealed that the higher longevity of AZI2-deficient osteoclasts is due to an augmented activation of proto-oncogene tyrosine-protein kinase Src (c-Src), which is a critical player in osteoclast survival. We found that AZI2 inhibits c-Src activity by regulating the activation of heat shock protein 90 (Hsp90), a chaperone involved in c-Src dephosphorylation. Furthermore, we demonstrated that AZI2 indirectly inhibits c-Src by interacting with the Hsp90 co-chaperone Cdc37. Strikingly, administration of a c-Src inhibitor markedly prevented bone loss in AZI2 knock-out mice. Together, these findings indicate that AZI2 regulates bone mass by fine-tuning osteoclast survival. PMID:25691576

  19. 5-Azacytidine-induced Protein 2 (AZI2) Regulates Bone Mass by Fine-tuning Osteoclast Survival*

    Science.gov (United States)

    Maruyama, Kenta; Fukasaka, Masahiro; Uematsu, Satoshi; Takeuchi, Osamu; Kondo, Takeshi; Saitoh, Tatsuya; Martino, Mikaël M.; Akira, Shizuo

    2015-01-01

    5-Azacytidine-induced protein 2 (AZI2) is a TNF receptor (TNFR)-associated factor family member-associated NF-κB activator-binding kinase 1-binding protein that regulates the production of IFNs. A previous in vitro study showed that AZI2 is involved in dendritic cell differentiation. However, the roles of AZI2 in immunity and its pleiotropic functions are unknown in vivo. Here we report that AZI2 knock-out mice exhibit normal dendritic cell differentiation in vivo. However, we found that adult AZI2 knock-out mice have severe osteoporosis due to increased osteoclast longevity. We revealed that the higher longevity of AZI2-deficient osteoclasts is due to an augmented activation of proto-oncogene tyrosine-protein kinase Src (c-Src), which is a critical player in osteoclast survival. We found that AZI2 inhibits c-Src activity by regulating the activation of heat shock protein 90 (Hsp90), a chaperone involved in c-Src dephosphorylation. Furthermore, we demonstrated that AZI2 indirectly inhibits c-Src by interacting with the Hsp90 co-chaperone Cdc37. Strikingly, administration of a c-Src inhibitor markedly prevented bone loss in AZI2 knock-out mice. Together, these findings indicate that AZI2 regulates bone mass by fine-tuning osteoclast survival. PMID:25691576

  20. Bone morphogenetic protein-2 is a negative regulator of hepatocyte proliferation downregulated in the regenerating liver

    NARCIS (Netherlands)

    Xu, Cui-Ping; Ji, Wen-Min; van den Brink, Gijs R.; Peppelenbosch, Maikel P.

    2006-01-01

    AIM: To characterize the expression and dynamic changes of bone morphogenetic protein (BMP)-2 in hepatocytes in the regenerating liver in rats after partial hepatectomy (PH), and examine the effects of BMP-2 on proliferation of human Huh7 hepatoma cells. METHODS: Fifty-four adult male Wistar rats we

  1. Urokinase plasminogen activator receptor affects bone homeostasis by regulating osteoblast and osteoclast function

    DEFF Research Database (Denmark)

    Furlan, Federico; Galbiati, Clara; Jørgensen, Niklas R;

    2007-01-01

    The uPAR and its ligand uPA are expressed by both osteoblasts and osteoclasts. Their function in bone remodeling is unknown. We report that uPAR-lacking mice display increased BMD, increased osteogenic potential of osteoblasts, decreased osteoclasts formation, and altered cytoskeletal reorganizat...

  2. ROS/redox signaling regulates bone turnover in an age-specific manner in female mice

    Science.gov (United States)

    In bone, oxidant signaling through NADPH oxidase (NOX)-derived reactive oxygen species (ROS) superoxide and/or hydrogen peroxide appears to be an important stimulus for osteoclast differentiation and activity. ROS signaling has been suggested to increase RANKL mRNA and protein expression, thus enha...

  3. ARTD1 regulates osteoclastogenesis and bone homeostasis by dampening NF-κB-dependent transcription of IL-1β.

    Science.gov (United States)

    Robaszkiewicz, Agnieszka; Qu, Chao; Wisnik, Ewelina; Ploszaj, Tomasz; Mirsaidi, Ali; Kunze, Friedrich A; Richards, Peter J; Cinelli, Paolo; Mbalaviele, Gabriel; Hottiger, Michael O

    2016-01-01

    While ADP-ribosyltransferase diphtheria toxin-like 1 (ARTD1, formerly PARP1) and its enzymatic activity have been shown to be important for reprogramming and differentiation of cells, such as during adipogenesis, their role and mechanism in regulating osteoclastogenesis and bone homeostasis are largely unknown. Here, in cell culture-based RANKL-induced osteoclastogenesis models, we show that silencing of ARTD1 or inhibition of its enzymatic activity enhances osteoclast differentiation and function. As a consequence of ARTD1 silencing or inhibition, the recruitment of p65/RelA to the IL-1β promoter, which is associated with transcriptionally active histone marks, IL-1β expression and inflammasome-dependent secretion of IL-1β are enhanced. This subsequently promotes sustained induction of the transcription factor Nfatc1/A and osteoclastogenesis in an autocrine manner via the IL-1 receptor. In vivo, Artd1-deficient mice display significantly decreased bone mass as a consequence of increased osteoclast differentiation. Accordingly, the expression of osteoclast markers is enhanced in mutant compared to wild-type mice. Together, these results indicate that ARTD1 controls osteoclast development and bone remodelling via its enzymatic activity by modulating the epigenetic marks surrounding the IL-1β promoter and expression of IL-1β and subsequently also Nfatc1/A. PMID:26883084

  4. Osteoclast cytosolic calcium, regulated by voltage-gated calcium channels and extracellular calcium, controls podosome assembly and bone resorption

    Science.gov (United States)

    Miyauchi, A.; Hruska, K. A.; Greenfield, E. M.; Duncan, R.; Alvarez, J.; Barattolo, R.; Colucci, S.; Zambonin-Zallone, A.; Teitelbaum, S. L.; Teti, A.

    1990-01-01

    The mechanisms of Ca2+ entry and their effects on cell function were investigated in cultured chicken osteoclasts and putative osteoclasts produced by fusion of mononuclear cell precursors. Voltage-gated Ca2+ channels (VGCC) were detected by the effects of membrane depolarization with K+, BAY K 8644, and dihydropyridine antagonists. K+ produced dose-dependent increases of cytosolic calcium ([Ca2+]i) in osteoclasts on glass coverslips. Half-maximal effects were achieved at 70 mM K+. The effects of K+ were completely inhibited by dihydropyridine derivative Ca2+ channel blocking agents. BAY K 8644 (5 X 10(-6) M), a VGCC agonist, stimulated Ca2+ entry which was inhibited by nicardipine. VGCCs were inactivated by the attachment of osteoclasts to bone, indicating a rapid phenotypic change in Ca2+ entry mechanisms associated with adhesion of osteoclasts to their resorption substrate. Increasing extracellular Ca2+ ([Ca2+]e) induced Ca2+ release from intracellular stores and Ca2+ influx. The Ca2+ release was blocked by dantrolene (10(-5) M), and the influx by La3+. The effects of [Ca2+]e on [Ca2+]i suggests the presence of a Ca2+ receptor on the osteoclast cell membrane that could be coupled to mechanisms regulating cell function. Expression of the [Ca2+]e effect on [Ca2+]i was similar in the presence or absence of bone matrix substrate. Each of the mechanisms producing increases in [Ca2+]i, (membrane depolarization, BAY K 8644, and [Ca2+]e) reduced expression of the osteoclast-specific adhesion structure, the podosome. The decrease in podosome expression was mirrored by a 50% decrease in bone resorptive activity. Thus, stimulated increases of osteoclast [Ca2+]i lead to cytoskeletal changes affecting cell adhesion and decreasing bone resorptive activity.

  5. Phosphate Interacts With PTHrP to Regulate Endochondral Bone Formation

    OpenAIRE

    Liu, Eva S.; Zalutskaya, Alena; Chae, Byongsoo Timothy; Zhu, Eric D.; Gori, Francesca; Demay, Marie B.

    2014-01-01

    Phosphate and parathyroid hormone related peptide (PTHrP) are required for normal growth plate maturation. Hypophosphatemia impairs hypertrophic chondrocyte apoptosis leading to rachitic expansion of the growth plate; however, the effect of phosphate restriction on chondrocyte differentiation during endochondral bone formation has not been examined. Investigations were, therefore, undertaken to address whether phosphate restriction alters the maturation of embryonic d15.5 murine metatarsal el...

  6. Regulation of DMT1 on Bone Microstructure in Type 2 Diabetes

    OpenAIRE

    Zhang, Wei-Lin; Meng, Hong-Zheng; Yang, Mao-Wei

    2015-01-01

    Diabetic osteoporosis is gradually attracted people's attention. However, the process of bone microstructure changes in diabetic patients, and the exact mechanism of osteoblast iron overload are unclear. Therefore, the present study aimed to explore the function of DMT1 in the pathological process of diabetic osteoporosis. We build the type two diabetes osteoporosis models with SD rats and Belgrade rats, respectively. Difference expression of DMT1 was detected by using the method of immunohis...

  7. Bone Marrow-Derived Endothelial Progenitors Expressing Delta-Like 4 (Dll4) Regulate Tumor Angiogenesis

    OpenAIRE

    Real, Carla; Remédio, Leonor; Caiado, Francisco; Igreja, Cátia; Borges, Cristina; Trindade, Alexandre; Pinto-do-Ó, Perpétua; Yagita, Hideo; Duarte, Antonio; Dias, Sérgio

    2011-01-01

    Neo-blood vessel growth (angiogenesis), which may involve the activation of pre-existing endothelial cells (EC) and/or the recruitment of bone marrow-derived vascular precursor cells (BM-VPC), is essential for tumor growth. Molecularly, besides the well established roles for Vascular endothelial growth factor (VEGF), recent findings show the Notch signalling pathway, in particular the ligand Delta-like 4 (Dll4), is also essential for adequate tumor angiogenesis; Dll4 inhibition results in imp...

  8. Regulation of Gene Expression and Inhibition of Experimental Prostate Cancer Bone Metastasis by Dietary Genistein

    OpenAIRE

    Yiwei Li; Mingxin Che; Sunita Bhagat; Kerrie-Lynn Ellis; Omer Kucuk; Doerge, Daniel R.; Judith Abrams; Cher, Michael L.; Sarkar, Fazlul H

    2004-01-01

    Prostate cancer frequently metastasizes to the bone, and the treatment outcome for metastatic prostate cancer has been disappointing so far. Dietary genistein, derived primarily from soy product, has been proposed to be partly responsible for the low rate of prostate cancer in Asians. Our previous studies have shown that genistein elicits pleiotropic effects on prostate cancer cells, but there are no studies documenting comprehensive gene expression profiles and antitumor effects of dietary g...

  9. Regulation of Gene Expression and Inhibition of Experimental Prostate Cancer Bone Metastasis by Dietary Genistein1

    OpenAIRE

    Li, Yiwei; Che, Mingxin; Bhagat, Sunita; Ellis, Kerrie-Lynn; KUCUK, Omer; Doerge, Daniel R.; Abrams, Judith; Cher, Michael L.; Sarkar, Fazlul H

    2004-01-01

    Prostate cancer frequently metastasizes to the bone, and the treatment outcome for metastatic prostate cancer has been disappointing so far. Dietary genistein, derived primarily from soy product, has been proposed to be partly responsible for the low rate of prostate cancer in Asians. Our previous studies have shown that genistein elicits pleiotropic effects on prostate cancer cells, but there are no studies documenting comprehensive gene expression profiles and antitumor effects of dietary g...

  10. Tinospora cordifolia inhibits autoimmune arthritis by regulating key immune mediators of inflammation and bone damage.

    Science.gov (United States)

    Sannegowda, K M; Venkatesha, S H; Moudgil, K D

    2015-12-01

    Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation of the joints leading to tissue damage. Despite the availability of potent drugs including the biologics, many patients fail to respond to them, whereas others suffer adverse effects following long-term use of these drugs. Accordingly, the use of natural herbal products by RA patients has been increasing over the years. However, limited information about the mechanism of action of these natural products is a major shortcoming that prevents the widespread acceptance of herbal therapy by professionals and patients alike. In this study, we demonstrated the anti-arthritic activity of Tinospora cordifolia extract (TCE) using the rat adjuvant-induced arthritis model of human RA and elaborated the immune mechanisms underlying this effect. TCE treatment suppressed arthritic inflammation and bone and cartilage damage. The anti-inflammatory effect of TCE was mediated via reduction of the pro-inflammatory cytokines such as: IL-1β, TNF-α, IL-6, and IL-17; the frequency of IL-17-producing T cells; and the production of chemokines such as RANTES. Furthermore, TCE treatment limited bone damage by shifting the balance of mediators of bone remodeling (e.g., receptor activator of nuclear factor-kB ligand [RANKL] and MMP-9) in favor of anti-osteoclastic activity. Our results suggest that TCE and its bioactive components should be evaluated for their utility as therapeutic adjuncts to conventional drugs against RA. PMID:26467057

  11. ROLE OF MACROPHAGES IN REGULATION OF HEMATOPOIETIC STEM CELL MIGRATION IN BONE MARROW PERIPHERAL BLOOD SYSTEM

    Directory of Open Access Journals (Sweden)

    B. G. Yushkov

    2010-01-01

    Full Text Available Mechanisms by which HSCs mobilize into damaged organs are currently under scrutiny.Macrophage role in these processes is investigated. In this study, we performed a flow cytometry analysis ofCD117+CD38+ and CD117+CD90low HSCs quantity in murine peripheral blood and bone marrow after liverand kidney injury under stimulation of phagocyte mononuclear system by injection of tamerit. This study havedemonstrated increased levels of CD117+CD38+ HSCs in bone marrow after partial hepatectomy, along withtheir migration to peripheral blood in response to tamerit injection. We also demonstrated that peripheralblood CD117+CD38+ HSCs levels were elevated after kidney injury. After partial hepatectomy, nochangesof CD117+CD90low HSCs quantity in investigated tissues were detected. We observed increased number ofCD117+CD90low HSCs in murine blood following kidney injury. Thus, we observed different influence ofmacrophage stimulation on the quantity of CD117+CD38+ and CD117+CD90low cells. These data suggestthat HSCs mobilization from the bone marrow to peripheral blood depends, at least in part, on phagocytemononuclear system, and that macrophage stimulation is important for proliferation and migration of variousHSCs populations following liver and kidney injury.

  12. Regulation of bone formation by baicalein via the mTORC1 pathway

    Directory of Open Access Journals (Sweden)

    Li SF

    2015-09-01

    Full Text Available Sheng-fa Li,1,2,* Jia-jun Tang,1,2,* Jian Chen,1–3,* Pei Zhang,4,* Ting Wang,5 Tian-yu Chen,1,2 Bo Yan,1,2 Bin Huang,1,2 Liang Wang,1,2 Min-jun Huang,1,2 Zhong-min Zhang,1,2 Da-di Jin1,21Academy of Orthopedics of Guangdong Province, Guangzhou, People’s Republic of China; 2Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China; 3Three Gorges Central Hospital of Chongqing, Chongqing, People’s Republic of China; 4School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China; 5Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China*These authors contributed equally to this workAbstract: Osteoporosis is a systemic skeletal disease that is characterized by low bone density and microarchitectural deterioration of bone tissue. The increasing prevalence of osteoporosis has attracted much attention. In this study, MC3T3-E1 pre-osteoblasts were treated with the natural compound, baicalein (0.1 µmol/L, 1 µmol/L, 10 µmol/L, to stimulate differentiation over a 14-day period. In addition, a canonical ovariectomized (OVX mouse model was used to investigate the effect of 3-month baicalein treatment (10 mg/kg per day in preventing postmenopausal osteoporosis. In vitro, we found that baicalein induced activation of alkaline phosphatase, stimulated the mammalian target of rapamycin complex 1 (mTORC1 signaling pathway, and induced expression of osteoblast differentiation markers, ie, osteocalcin, osterix, collagen Iα1, and runt-related transcription factor 2 (RUNX2, in osteoblasts. In vivo, several bone parameters, including trabecular thickness, trabecular bone mineral density, and trabecular number, in the distal femoral metaphysis were significantly increased in OVX mice treated intragastrically with baicalein for 3 months

  13. Myeloid derived suppressor cells regulate growth of multiple myeloma by inhibiting T cells in bone marrow

    OpenAIRE

    Ramachandran, Indu; Martner, Anna; Pisklakova, Alexandra; Condamine, Thomas; Chase, Tess; Vogl, Thomas; Roth, Johannes; Gabrilovich, Dmitry; Nefedova, Yulia

    2013-01-01

    Myeloid-derived suppressor cells (MDSC) are one of the major factors limiting immune response in cancer. However, their role in bone marrow (BM), the site of primary localization of multiple myeloma (MM), is poorly understood. In this study we found a significant accumulation of CD11b+CD14−CD33+ immune suppressive MDSC in BM of patients with newly diagnosed MM. To assess the possible role of MDSC in MM, we used immune competent mouse models. Immune suppressive MDSC accumulated in BM of mice a...

  14. Developmentally regulated monocyte recruitment and bone resorption are modulated by functional deletion of the monocytic chemoattractant protein-1 gene.

    Science.gov (United States)

    Graves, D T; Alsulaimani, F; Ding, Y; Marks, S C

    2002-08-01

    Tooth eruption involves the movement of a tooth from its site of development within the alveolar bone to its functional position in the oral cavity. Because this process is dependent upon monocytes and formation of osteoclasts, it represents an excellent model for examination of these processes under developmental regulation. We investigated the functional role of monocyte chemoattractant protein-1 (MCP-1) in monocyte recruitment and its impact on bone resorption by examining each parameter in MCP-1(-/-) mice as compared with wild-type controls during tooth eruption. The peak number of monocytes occurred on day 5 in the MCP-1(-/-) mice and on day 9 in the wild-type mice. The peak number of osteoclasts followed the same pattern, occurring sooner in the MCP-1(-/-) (day 5) than in wild-type mice (day 9). Consistent with this, MCP-1(-/-) mice had an accelerated rate of tooth eruption in the early phase when the teeth first entered the oral cavity as compared with the wild-type mice. However, there was accelerated eruption in the wild-type group in the later phase of tooth eruption. When examined at the molecular level, inducible nitric oxide synthase (iNOS) and interleukin-11 and -6 were expressed at considerably higher levels in the experimental group with accelerated tooth eruption. This is the first report identifying these factors as potential modulators of bone resorption that can accelerate the rate of tooth eruption. We conclude that, at early timepoints, monocyte recruitment occurs by MCP-1-independent mechanisms. However, at a later timepoint, MCP-1 may play a contributory role in the recruitment of monocytic cells, allowing the wild-type animals to catch up. PMID:12151080

  15. Dlk1/FA1 Is a Novel Endocrine Regulator of Bone and Fat Mass and Its Serum Level Is Modulated By Growth Hormone

    DEFF Research Database (Denmark)

    Abdallah, B.M.; Ding, M.; Jensen, C.H.;

    2007-01-01

    Fat and bone metabolism are two linked processes regulated by several hormonal factors. FA1 (fetal antigen 1) is the soluble form of dlk1 (delta like 1), which is a member of the Notch-Delta family. We have previously identified FA1 as a negative regulator of bone marrow mesenchymal stem cell...... differentiation. Here, we studied the effects of circulating FA1 on fat and bone mass in vivo by generating mice expressing high serum levels of FA1 (FA1-mice) using the hydrodynamic-based gene transfer procedure (HGTP). We found that increased serum FA1 levels led to a significant reduction in total body weight......, fat mass and bone mass in a dose-dependent manner. Reduced bone mass in FA1-mice was associated with the inhibition of mineral apposition rate and bone formation rates by 58% and 72% respectively. Since FA1 is co-localized with growth hormone (GH) in the pituitary gland, we explored the possible...

  16. Liver-derived IGF-I regulates cortical bone mass but is dispensable for the osteogenic response to mechanical loading in female mice.

    Science.gov (United States)

    Svensson, Johan; Windahl, Sara H; Saxon, Leanne; Sjögren, Klara; Koskela, Antti; Tuukkanen, Juha; Ohlsson, Claes

    2016-07-01

    Low circulating IGF-I is associated with increased fracture risk. Conditional depletion of IGF-I produced in osteoblasts or osteocytes inhibits the bone anabolic effect of mechanical loading. Here, we determined the role of endocrine IGF-I for the osteogenic response to mechanical loading in young adult and old female mice with adult, liver-specific IGF-I inactivation (LI-IGF-I(-/-) mice, serum IGF-I reduced by ≈70%) and control mice. The right tibia was subjected to short periods of axial cyclic compressive loading three times/wk for 2 wk, and measurements were performed using microcomputed tomography and mechanical testing by three-point bending. In the nonloaded left tibia, the LI-IGF-I(-/-) mice had lower cortical bone area and increased cortical porosity, resulting in reduced bone mechanical strength compared with the controls. Mechanical loading induced a similar response in LI-IGF-I(-/-) and control mice in terms of cortical bone area and trabecular bone volume fraction. In fact, mechanical loading produced a more marked increase in cortical bone mechanical strength, which was associated with a less marked increase in cortical porosity, in the LI-IGF-I(-/-) mice compared with the control mice. In conclusion, liver-derived IGF-I regulates cortical bone mass, cortical porosity, and mechanical strength under normal (nonloaded) conditions. However, despite an ∼70% reduction in circulating IGF-I, the osteogenic response to mechanical loading was not attenuated in the LI-IGF-I(-/-) mice. PMID:27221117

  17. Bone morphogenetic proteins regulate osteoprotegerin and its ligands in human vascular smooth muscle cells

    DEFF Research Database (Denmark)

    Knudsen, Kirsten Quyen Nguyen; Olesen, Ping; Ledet, Thomas;

    2007-01-01

    ) and TNF-related apoptosis-inducing ligand (TRAIL) in HVSMC. All three growth factors decreased OPG protein production significantly; these results were paralleled by reduced OPG mRNA expression. TRAIL mRNA levels were also decreased. RANKL mRNA expression declined when treated with TGF-beta1 but were......The bone-related protein osteoprotegerin (OPG) may be involved in the development of vascular calcifications, especially in diabetes, where it has been found in increased amounts in the arterial wall. Experimental studies suggest that members of the TGF-superfamily are involved in the...... transformation of human vascular smooth muscle cells (HVSMC) to osteoblast-like cells. In this study, we evaluated the effect of BMP-2, BMP-7 and transforming growth factor beta (TGF-beta1) on the secretion and mRNA expression of OPG and its ligands receptor activator of nuclear factor-kappabeta ligand (RANKL...

  18. Staphylococcal enterotoxin A regulates bone marrow granulocyte trafficking during pulmonary inflammatory disease in mice

    Energy Technology Data Exchange (ETDEWEB)

    Takeshita, W.M.; Gushiken, V.O.; Ferreira-Duarte, A.P.; Pinheiro-Torres, A.S.; Roncalho-Buck, I.A. [Department of Biology and Physiology, Faculty of Medicine of Jundiai (FMJ), Jundiai, SP (Brazil); Squebola-Cola, D.M.; Mello, G.C.; Anhê, G.F.; Antunes, E. [Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP (Brazil); DeSouza, I.A., E-mail: ivanidesouza@uol.com.br [Department of Biology and Physiology, Faculty of Medicine of Jundiai (FMJ), Jundiai, SP (Brazil)

    2015-09-15

    Pulmonary neutrophil infiltration produced by Staphylococcal enterotoxin A (SEA) airway exposure is accompanied by marked granulocyte accumulation in bone marrow (BM). Therefore, the aim of this study was to investigate the mechanisms of BM cell accumulation, and trafficking to circulating blood and lung tissue after SEA airway exposure. Male BALB/C mice were intranasally exposed to SEA (1 μg), and at 4, 12 and 24 h thereafter, BM, circulating blood, bronchoalveolar lavage (BAL) fluid and lung tissue were collected. Adhesion of BM granulocytes and flow cytometry for MAC-1, LFA1-α and VLA-4 and cytokine and/or chemokine levels were assayed after SEA-airway exposure. Prior exposure to SEA promoted a marked PMN influx to BAL and lung tissue, which was accompanied by increased counts of immature and/or mature neutrophils and eosinophils in BM, along with blood neutrophilia. Airway exposure to SEA enhanced BM neutrophil MAC-1 expression, and adhesion to VCAM-1 and/or ICAM-1-coated plates. Elevated levels of GM-CSF, G-CSF, INF-γ, TNF-α, KC/CXCL-1 and SDF-1α were detected in BM after SEA exposure. SEA exposure increased production of eosinopoietic cytokines (eotaxin and IL-5) and BM eosinophil VLA-4 expression, but it failed to affect eosinophil adhesion to VCAM-1 and ICAM-1. In conclusion, BM neutrophil accumulation after SEA exposure takes place by integrated action of cytokines and/or chemokines, enhancing the adhesive responses of BM neutrophils and its trafficking to lung tissues, leading to acute lung injury. BM eosinophil accumulation in SEA-induced acute lung injury may occur via increased eosinopoietic cytokines and VLA-4 expression. - Highlights: • Airway exposure to SEA causes acute lung inflammation. • SEA induces accumulation of bone marrow (BM) in immature and mature neutrophils. • SEA increases BM granulocyte or BM PMN adhesion to ICAM-1 and VCAM-1, and MAC-1 expression. • SEA induces BM elevations of CXCL-1, INF-γ, TNF-α, GM-CSF, G-CSF and

  19. Staphylococcal enterotoxin A regulates bone marrow granulocyte trafficking during pulmonary inflammatory disease in mice

    International Nuclear Information System (INIS)

    Pulmonary neutrophil infiltration produced by Staphylococcal enterotoxin A (SEA) airway exposure is accompanied by marked granulocyte accumulation in bone marrow (BM). Therefore, the aim of this study was to investigate the mechanisms of BM cell accumulation, and trafficking to circulating blood and lung tissue after SEA airway exposure. Male BALB/C mice were intranasally exposed to SEA (1 μg), and at 4, 12 and 24 h thereafter, BM, circulating blood, bronchoalveolar lavage (BAL) fluid and lung tissue were collected. Adhesion of BM granulocytes and flow cytometry for MAC-1, LFA1-α and VLA-4 and cytokine and/or chemokine levels were assayed after SEA-airway exposure. Prior exposure to SEA promoted a marked PMN influx to BAL and lung tissue, which was accompanied by increased counts of immature and/or mature neutrophils and eosinophils in BM, along with blood neutrophilia. Airway exposure to SEA enhanced BM neutrophil MAC-1 expression, and adhesion to VCAM-1 and/or ICAM-1-coated plates. Elevated levels of GM-CSF, G-CSF, INF-γ, TNF-α, KC/CXCL-1 and SDF-1α were detected in BM after SEA exposure. SEA exposure increased production of eosinopoietic cytokines (eotaxin and IL-5) and BM eosinophil VLA-4 expression, but it failed to affect eosinophil adhesion to VCAM-1 and ICAM-1. In conclusion, BM neutrophil accumulation after SEA exposure takes place by integrated action of cytokines and/or chemokines, enhancing the adhesive responses of BM neutrophils and its trafficking to lung tissues, leading to acute lung injury. BM eosinophil accumulation in SEA-induced acute lung injury may occur via increased eosinopoietic cytokines and VLA-4 expression. - Highlights: • Airway exposure to SEA causes acute lung inflammation. • SEA induces accumulation of bone marrow (BM) in immature and mature neutrophils. • SEA increases BM granulocyte or BM PMN adhesion to ICAM-1 and VCAM-1, and MAC-1 expression. • SEA induces BM elevations of CXCL-1, INF-γ, TNF-α, GM-CSF, G-CSF and

  20. Prdm5 Regulates Collagen Gene Transcription by Association with RNA Polymerase II in Developing Bone

    DEFF Research Database (Denmark)

    Galli, Giorgio Giacomo; Honnens de Lichtenberg, Kristian; Carrara, Matteo;

    2012-01-01

    PRDM family members are transcriptional regulators involved in tissue specific differentiation. PRDM5 has been reported to predominantly repress transcription, but a characterization of its molecular functions in a relevant biological context is lacking. We demonstrate here that Prdm5 is highly e...... transcriptional program necessary to the proper assembly of osteoblastic extracellular matrix....

  1. 9-Demethoxy-medicarpin promotes peak bone mass achievement and has bone conserving effect in ovariectomized mice: Positively regulates osteoblast functions and suppresses osteoclastogenesis.

    Science.gov (United States)

    Goel, Atul; Raghuvanshi, Ashutosh; Kumar, Amit; Gautam, Abnish; Srivastava, Kamini; Kureel, Jyoti; Singh, Divya

    2015-08-15

    We report a new bone anabolic and anti-catabolic pterocarpan 9-demethoxy-medicarpin (DMM) for the management of postmenopausal osteoporosis. DMM promoted osteoblast functions via activation of P38MAPK/BMP-2 pathway and suppressed osteoclastogenesis in bone marrow cells (BMCs). In calvarial osteoblasts, DMM blocked nuclear factor kappaB (NFκB) signaling and inhibited the mRNA levels of pro-inflammatory cytokines. DMM treatment led to increased OPG (osteoprotegrin) and decreased transcript levels of TRAP (tartarate resistant acid phosphatase), RANK (receptor activator of NFκB) and RANKL (RANK ligand) in osteoblast-osteoclast co-cultures. Immature female SD rats administered with DMM exhibited increased bone mineral density, bone biomechanical strength, new bone formation and cortical bone parameters. Ovx mice administered with DMM led to significant restoration of trabecular microarchitecture and had reduced formation of osteoclasts and increased formation of osteoprogenitor cells in BMCs. DMM exhibited no uterine estrogenicity. Overall, these results demonstrate the therapeutic potential of DMM for the management of postmenopausal osteoporosis. PMID:25957087

  2. CRIF1 interacting with CDK2 regulates bone marrow microenvironment-induced G0/G1 arrest of leukemia cells.

    Directory of Open Access Journals (Sweden)

    Qian Ran

    Full Text Available BACKGROUND: To assess the level of CR6-interacting factor 1 (CRIF1, a cell cycle negative regulator, in patients with leukemia and investigate the role of CRIF1 in regulating leukemia cell cycle. METHODS: We compared the CRIF1 level in bone marrow (BM samples from healthy and acute myeloid leukemia (AML, iron deficiency anemia (IDA and AML-complete remission (AML-CR subjects. We also manipulated CRIF1 level in the Jurkat cells using lentivirus-mediated overexpression or siRNA-mediated depletion. Co-culture with the BM stromal cells (BMSCs was used to induce leukemia cell cycle arrest and mimic the BM microenvironment. RESULTS: We found significant decreases of CRIF1 mRNA and protein in the AML group. CRIF1 overexpression increased the proportion of Jurkat cells arrested in G0/G1, while depletion of endogenous CRIF1 decreased cell cycle arrest. Depletion of CRIF1 reversed BMSCs induced cell cycle arrest in leukemia cells. Co-immunoprecipitation showed a specific binding of CDK2 to CRIF1 in Jurkat cells during cell cycle arrest. Co-localization of two proteins in both nucleus and cytoplasm was also observed with immunofluorescent staining. CONCLUSION: CRIF1 may play a regulatory role in the BM microenvironment-induced leukemia cell cycle arrest possibly through interacting with CDK2 and acting as a cyclin-dependent kinase inhibitor.

  3. Regulation of lean mass, bone mass, and exercise tolerance by the central melanocortin system.

    Directory of Open Access Journals (Sweden)

    Theodore P Braun

    Full Text Available Signaling via the type 4-melanocortin receptor (MC4R is an important determinant of body weight in mice and humans, where loss of function mutations lead to significant obesity. Humans with mutations in the MC4R experience an increase in lean mass. However, the simultaneous accrual of fat mass in such individuals may contribute to this effect via mechanical loading. We therefore examined the relationship of fat mass and lean mass in mice lacking the type-4 melanocortin receptor (MC4RKO. We demonstrate that MC4RKO mice display increased lean body mass. Further, this is not dependent on changes in adipose mass, as MC4RKO mice possess more lean body mass than diet-induced obese (DIO wild type mice with equivalent fat mass. To examine potential sources of the increased lean mass in MC4RKO mice, bone mass and strength were examined in MC4RKO mice. Both parameters increase with age in MC4RKO mice, which likely contributes to increases in lean body mass. We functionally characterized the increased lean mass in MC4RKO mice by examining their capacity for treadmill running. MC4R deficiency results in a decrease in exercise performance. No changes in the ratio of oxidative to glycolytic fibers were seen, however MC4RKO mice demonstrate a significantly reduced heart rate, which may underlie their impaired exercise performance. The reduced exercise capacity we report in the MC4RKO mouse has potential clinical ramifications, as efforts to control body weight in humans with melanocortin deficiency may be ineffective due to poor tolerance for physical activity.

  4. Up-regulation of brain-derived neurotrophic factor in the dorsal root ganglion of the rat bone cancer pain model

    Directory of Open Access Journals (Sweden)

    Tomotsuka N

    2014-07-01

    Full Text Available Naoto Tomotsuka,1 Ryuji Kaku,1 Norihiko Obata,1 Yoshikazu Matsuoka,1 Hirotaka Kanzaki,2 Arata Taniguchi,1 Noriko Muto,1 Hiroki Omiya,1 Yoshitaro Itano,1 Tadasu Sato,3 Hiroyuki Ichikawa,3 Satoshi Mizobuchi,1 Hiroshi Morimatsu1 1Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; 2Department of Pharmacy, Okayama University Hospital, Okayama, Japan; 3Department of Oral and Craniofacial Anatomy, Tohoku University Graduate School of Dentistry, Sendai, Japan Abstract: Metastatic bone cancer causes severe pain, but current treatments often provide insufficient pain relief. One of the reasons is that mechanisms underlying bone cancer pain are not solved completely. Our previous studies have shown that brain-derived neurotrophic factor (BDNF, known as a member of the neurotrophic family, is an important molecule in the pathological pain state in some pain models. We hypothesized that expression changes of BDNF may be one of the factors related to bone cancer pain; in this study, we investigated changes of BDNF expression in dorsal root ganglia in a rat bone cancer pain model. As we expected, BDNF mRNA (messenger ribonucleic acid and protein were significantly increased in L3 dorsal root ganglia after intra-tibial inoculation of MRMT-1 rat breast cancer cells. Among the eleven splice-variants of BDNF mRNA, exon 1–9 variant increased predominantly. Interestingly, the up-regulation of BDNF is localized in small neurons (mostly nociceptive neurons but not in medium or large neurons (non-nociceptive neurons. Further, expression of nerve growth factor (NGF, which is known as a specific promoter of BDNF exon 1–9 variant, was significantly increased in tibial bone marrow. Our findings suggest that BDNF is a key molecule in bone cancer pain, and NGF-BDNF cascade possibly develops bone cancer pain. Keywords: BDNF, bone cancer pain, chronic pain, nerve growth

  5. Cytoskeletal Regulation by AUTS2 in Neuronal Migration and Neuritogenesis

    Directory of Open Access Journals (Sweden)

    Kei Hori

    2014-12-01

    Full Text Available Mutations in the Autism susceptibility candidate 2 gene (AUTS2, whose protein is believed to act in neuronal cell nuclei, have been associated with multiple psychiatric illnesses, including autism spectrum disorders, intellectual disability, and schizophrenia. Here we show that cytoplasmic AUTS2 is involved in the regulation of the cytoskeleton and neural development. Immunohistochemistry and fractionation studies show that AUTS2 localizes not only in nuclei, but also in the cytoplasm, including in the growth cones in the developing brain. AUTS2 activates Rac1 to induce lamellipodia but downregulates Cdc42 to suppress filopodia. Our loss-of-function and rescue experiments show that a cytoplasmic AUTS2-Rac1 pathway is involved in cortical neuronal migration and neuritogenesis in the developing brain. These findings suggest that cytoplasmic AUTS2 acts as a regulator of Rho family GTPases to contribute to brain development and give insight into the pathology of human psychiatric disorders with AUTS2 mutations.

  6. MicroRNAs Regulate Osteogenesis and Chondrogenesis of Mouse Bone Marrow Stromal Cells

    OpenAIRE

    Salla Suomi; Hanna Taipaleenmäki; Anne Seppänen; Tommi Ripatti; Kalervo Väänänen; Teuvo Hentunen; Anna-Marja Säämänen; Tiina Laitala-Leinonen

    2008-01-01

    MicroRNAs (miRNAs) are non-coding RNAs that bind to target mRNA leading to translational arrest or mRNA degradation. To study miRNA-mediated regulation of osteogenesis and chondrogenesis, we compared the expression of 35 miRNAs in osteoblasts and chondroblasts derived from mouse marrow stromal cells (MSCs). Differentiation of MSCs resulted in up- or downregulation of several miRNAs, with miR-199a expression being over 10-fold higher in chondroblasts than in undifferentiated MSCs. In addition,...

  7. Function and Regulation of Bone Morphogenetic Protein 7 (BMP7) in Cerebral Cortex Development

    OpenAIRE

    Ortega Cano, Juan Alberto

    2011-01-01

    [eng] Brain derived neurotrophic factor (BDNF) is a chemokine which levels are regulated by neuronal activity and could act as a sensor in front of distinct physiologic stimulus, activating the transcription of specific group of genes. In this work we show that BDNF induces the expression of BMP7 in neurons through TrkB receptor and MAPK/ERK pathways, an induction mechanism that is mediated in part by the release of the transcriptional repression exerted by p53 family proteins. BMP member...

  8. Grit, a GTPase-Activating Protein for the Rho Family, Regulates Neurite Extension through Association with the TrkA Receptor and N-Shc and CrkL/Crk Adapter Molecules

    OpenAIRE

    Nakamura, Takeshi; Komiya, Misako; Sone, Kiyoaki; Hirose, Eiji; Gotoh, Noriko; Morii, Hiroshi; Ohta, Yasutaka; Mori, Nozomu

    2002-01-01

    Neurotrophins are key regulators of the fate and shape of neuronal cells and act as guidance cues for growth cones by remodeling the actin cytoskeleton. Actin dynamics is controlled by Rho GTPases. We identified a novel Rho GTPase-activating protein (Grit) for Rho/Rac/Cdc42 small GTPases. Grit was abundant in neuronal cells and directly interacted with TrkA, a high-affinity receptor for nerve growth factor (NGF). Another pool of Grit was recruited to the activated receptor tyrosine kinase thr...

  9. Regulacin de la mineralizacin sea por factores inorgnicos y peptdicos Regulation of Bone Mineralization by inorganic and peptide factors

    Directory of Open Access Journals (Sweden)

    A.L Negri

    2011-10-01

    osteoctico perilacunar.Orthotopic mineralization begins with the production of matrix vesicles that are produced by polarized budding of the surface of condrocytes, osteoblasts and odontoblasts. It occurs in two steps: The first one is the formation of hydroxiapatite crystals within the matrix vesicles, followed by the propagation of the hydroxiapatite crystals through the membrane vesicle into the extra cellular matrix. In the regulation of orthotopic mineralization, apart from tissue-specific cells, a great number of enzymes, inorganic and peptide factors participate, that have complex interactions among them. Inorganic pyrophosphate (PPi antagonizes the ability of phosphate (Pi to crystallize with calcium and to form hydroxiapatite, thus suppressing its propagation. For the normal mineralization to continue, an adjusted balance of the extra cellular Pi and PPi levels is needed. Three molecules have been identified that have a central role in the regulation of extra cellular PPi levels: tissue non-specific alkaline phosphatase (TNAP, which hydrolyzes PPi, the nucleotide pyrophosphatase phosphodiesterase 1 (NPP1, which generates PPi from triphosphate nucleosides, and the multiple-steps transmembrane protein ANK which transfers PPi from the intracellular to the extracellular compartment. There are, in turn, two SIBLING proteins called DMP1 and MEPE that regulate mineralization. The expression of DMP1 by the osteocyte is dramatically induced in response to mechanical loading increasing bone mineralization. MEPE protein contains a protease resistant motif called ASARM, which is believed to be the candidate for the mineralization inhibitor (minhibin. Osteopontin is another mineralization inhibitor in its phosphorilated form and its secretion is markedly reduced in knockout mice for NPP1. Present data seem to support the hypothesis that these molecules could be the translators of bone strain and participate in the regulation of mineralization of the perilacunar osteocytic space.

  10. Dexamethasone Regulates EphA5, a Potential Inhibitory Factor with Osteogenic Capability of Human Bone Marrow Stromal Cells

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Yamada

    2016-01-01

    Full Text Available We previously demonstrated the importance of quality management procedures for the handling of human bone marrow stromal cells (hBMSCs and provided evidence for the existence of osteogenic inhibitor molecules in BMSCs. One candidate inhibitor is the ephrin type-A receptor 5 (EphA5, which is expressed in hBMSCs and upregulated during long-term culture. In this study, forced expression of EphA5 diminished the expression of osteoblast phenotypic markers. Downregulation of endogenous EphA5 by dexamethasone treatment promoted osteoblast marker expression. EphA5 could be involved in the normal growth regulation of BMSCs and could be a potential marker for replicative senescence. Although Eph forward signaling stimulated by ephrin-B-Fc promoted the expression of ALP mRNA in BMSCs, exogenous addition of EphA5-Fc did not affect the ALP level. The mechanism underlying the silencing of EphA5 in early cultures remains unclear. EphA5 promoter was barely methylated in hBMSCs while histone deacetylation could partially suppress EphA5 expression in early-passage cultures. In repeatedly passaged cultures, the upregulation of EphA5 independent of methylation could competitively inhibit osteogenic signal transduction pathways such as EphB forward signaling. Elucidation of the potential inhibitory function of EphA5 in hBMSCs may provide an alternative approach for lineage differentiation in cell therapy strategies and regenerative medicine.

  11. The cellular prion protein negatively regulates phagocytosis and cytokine expression in murine bone marrow-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Min Wang

    Full Text Available The cellular prion protein (PrP(C is a glycosylphosphatidylinositol (GPI-anchored glycoprotein on the cell surface. Previous studies have demonstrated contradictory roles for PrP(C in connection with the phagocytic ability of macrophages. In the present work, we investigated the function of PrP(C in phagocytosis and cytokine expression in bone marrow-derived macrophages infected with Escherichia coli. E. coli infection induced an increase in the PRNP mRNA level. Knockout of PrP(C promoted bacterial uptake; upregulated Rab5, Rab7, and Eea1 mRNA expression; and increased the recruitment of lysosomal-associated membrane protein-2 to phagosomes, suggesting enhanced microbicidal activity. Remarkably, knockout of PrP(C suppressed the proliferation of internalized bacteria and increased the expression of cytokines such as interleukin-1β. Collectively, our data reveal an important role of PrP(C as a negative regulator for phagocytosis, phagosome maturation, cytokine expression, and macrophage microbicidal activity.

  12. Fibroblast Growth Factor 2 Regulates High Mobility Group A2 Expression in Human Bone Marrow-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Kalomoiris, Stefanos; Cicchetto, Andrew C; Lakatos, Kinga; Nolta, Jan A; Fierro, Fernando A

    2016-09-01

    Mesenchymal stem cells (MSCs) are an excellent source for numerous cellular therapies due to their simple isolation, low immunogenicity, multipotent differentiation potential and regenerative secretion profile. However, over-expanded MSCs show decreased therapeutic efficacy. This shortcoming may be circumvented by identifying methods that promote self-renewal of MSCs in culture. HMGA2 is a DNA-binding protein that regulates self-renewal in multiple types of stem cells through chromatin remodeling, but its impact on human bone marrow-derived MSCs is not known. Using an isolation method to obtain pure MSCs within 9 days in culture, we show that expression of HMGA2 quickly decreases during early expansion of MSCs, while let-7 microRNAs (which repress HMGA2) are simultaneously increased. Remarkably, we demonstrate that FGF-2, a growth factor commonly used to promote self-renewal in MSCs, rapidly induces HMGA2 expression in a time- and concentration-dependent manner. The signaling pathway involves FGF-2 receptor 1 (FGFR1) and ERK1/2, but acts independent from let-7. By silencing HMGA2 using shRNAs, we demonstrate that HMGA2 is necessary for MSC proliferation. However, we also show that over-expression of HMGA2 does not increase cell proliferation, but rather abrogates the mitogenic effect of FGF-2, possibly through inhibition of FGFR1. In addition, using different methods to assess in vitro differentiation, we show that modulation of HMGA2 inhibits adipogenesis, but does not affect osteogenesis of MSCs. Altogether, our results show that HMGA2 expression is associated with highly proliferating MSCs, is tightly regulated by FGF-2, and is involved in both proliferation and adipogenesis of MSCs. J. Cell. Biochem. 117: 2128-2137, 2016. © 2016 Wiley Periodicals, Inc. PMID:26888666

  13. Nmp4/CIZ suppresses the response of bone to anabolic parathyroid hormone by regulating both osteoblasts and osteoclasts

    OpenAIRE

    Childress, Paul; PHILIP, BINU K.; Robling, Alexander G.; Bruzzaniti, Angela; Kacena, Melissa A.; Bivi, Nicoletta; Lilian I Plotkin; Heller, Aaron; Bidwell, Joseph P.

    2011-01-01

    How parathyroid hormone (PTH) increases bone mass is unclear but understanding this phenomenon is significant to the improvement of osteoporosis therapy. Nmp4/CIZ is a nucleocytoplasmic shuttling transcriptional repressor that suppresses PTH-induced osteoblast gene expression and hormone-stimulated gains in murine femoral trabecular bone. To further characterize Nmp4/CIZ suppression of hormone-mediated bone growth we treated 10 wk-old Nmp4-knockout (KO) and wild-type (WT) mice with intermitte...

  14. Bone tumor

    Science.gov (United States)

    Tumor - bone; Bone cancer; Primary bone tumor; Secondary bone tumor ... The cause of bone tumors is unknown. They often occur in areas of the bone that grow rapidly. Possible causes include: Genetic defects ...

  15. Bone Grafts

    Science.gov (United States)

    A bone graft transplants bone tissue. Surgeons use bone grafts to repair and rebuild diseased bones in your hips, knees, spine, and sometimes other bones and joints. Grafts can also repair bone loss caused by some ...

  16. Interrelationships between densitometric, geometric, and mechanical properties of rat femora: inferences concerning mechanical regulation of bone modeling.

    Science.gov (United States)

    Ferretti, J L; Capozza, R F; Mondelo, N; Zanchetta, J R

    1993-11-01

    A compensation for differences in bone material quality by bone geometric properties in femora from two different strains of rats was previously shown by us. A feedback mechanism controlling the mechanical properties of the integrated bones was then proposed, in accordance with Frost's mechanostat theory. Evidence of such a system is now offered by the finding of a negative correlation between the modeling-dependent cross-sectional architecture (moment of inertia) and the mineral-dependent stiffness (elastic modulus) of bone material in the femoral diaphyses of 45 normal Wistar rats of different sexes, ages, and sizes. The strength and stiffness of the integrated diaphyses were found to depend on both cross-sectional inertia and body weight, not on bone mineral density. These findings are interpreted as supporting the hypothesis that the architectural efficiency of diaphyseal cross-sectional design resulting from the spatial orientation of bone modeling during growth is optimized as a function of the body weight-dependent bone strain history, within the constraints imposed by bone stiffness. Results suggest a modulating role of biomass, related to the system set point determination, and explain the usually observed lack of a direct correlation between mineral density and strength or stiffness of long bones in studies of geometrically inhomogeneous populations. PMID:8266830

  17. Bone marrow mononuclear cells up-regulate toll-like receptor expression and produce inflammatory mediators in response to cigarette smoke extract.

    Directory of Open Access Journals (Sweden)

    Junmin Zhou

    Full Text Available Several reports link cigarette smoking with leukemia. However, the effects of cigarette smoke extract (CSE on bone marrow hematopoiesis remain unknown. The objective of this study was to elucidate the direct effects of cigarette smoke on human bone marrow hematopoiesis and characterize the inflammatory process known to result from cigarette smoking. Bone marrow mononuclear cells (BMCs from healthy individuals when exposed to CSE had significantly diminished CFU-E, BFU-E and CFU-GM. We found increased nuclear translocation of the NF-κB p65 subunit and, independently, enhanced activation of AKT and ERK1/2. Exposure of BMCs to CSE induced IL-8 and TGF-β1 production, which was dependent on NF-κB and ERK1/2, but not on AKT. CSE treatment had no effect on the release of TNF-α, IL-10, or VEGF. Finally, CSE also had a significant induction of TLR2, TLR3 and TLR4, out of which, the up-regulation of TLR2 and TLR3 was found to be dependent on ERK1/2 and NF-κB activation, but not AKT. These results indicate that CSE profoundly inhibits the growth of erythroid and granulocyte-macrophage progenitors in the bone marrow. Further, CSE modulates NF-κB- and ERK1/2-dependent responses, suggesting that cigarette smoking may impair bone marrow hematopoiesis in vivo as well as induce inflammation, two processes that proceed malignant transformation.

  18. Bone morphogenic protein-2 regulates the myogenic differentiation of PMVECs in CBDL rat serum-induced pulmonary microvascular remodeling

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang; Chen, Lin; Zeng, Jing; Cui, Jian; Ning, Jiao-nin [Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038 (China); Wang, Guan-song [Institute of Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037 (China); Belguise, Karine; Wang, Xiaobo [Université P. Sabatier Toulouse III and CNRS, LBCMCP, 31062 Toulouse Cedex 9 (France); Qian, Gui-sheng [Institute of Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037 (China); Lu, Kai-zhi [Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038 (China); Yi, Bin, E-mail: yibin1974@163.com [Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038 (China)

    2015-08-01

    Hepatopulmonary syndrome (HPS) is characterized by an arterial oxygenation defect induced by intrapulmonary vasodilation (IPVD) that increases morbidity and mortality. In our previous study, it was determined that both the proliferation and the myogenic differentiation of pulmonary microvascular endothelial cells (PMVECs) play a key role in the development of IPVD. However, the molecular mechanism underlying the relationship between IPVD and the myogenic differentiation of PMVECs remains unknown. Additionally, it has been shown that bone morphogenic protein-2 (BMP2), via the control of protein expression, may regulate cell differentiation including cardiomyocyte differentiation, neuronal differentiation and odontoblastic differentiation. In this study, we observed that common bile duct ligation (CBDL)-rat serum induced the upregulation of the expression of several myogenic proteins (SM-α-actin, calponin, SM-MHC) and enhanced the expression levels of BMP2 mRNA and protein in PMVECs. We also observed that both the expression levels of Smad1/5 and the activation of phosphorylated Smad1/5 were significantly elevated in PMVECs following exposure to CBDL-rat serum, which was accompanied by the down-regulation of Smurf1. The blockage of the BMP2/Smad signaling pathway with Noggin inhibited the myogenic differentiation of PMVECs, a process that was associated with relatively low expression levels of both SM-α-actin and calponin in the setting of CBDL-rat serum exposure, although SM-MHC expression was not affected. These findings suggested that the BMP2/Smad signaling pathway is involved in the myogenic differentiation of the PMVECs. In conclusion, our data highlight the pivotal role of BMP2 in the CBDL-rat serum-induced myogenic differentiation of PMVECs via the activation of both Smad1 and Smad5 and the down-regulation of Smurf1, which may represent a potential therapy for HPS-induced pulmonary vascular remodeling. - Highlights: • CBDL-rat serum promotes the myogenic

  19. Bone morphogenic protein-2 regulates the myogenic differentiation of PMVECs in CBDL rat serum-induced pulmonary microvascular remodeling

    International Nuclear Information System (INIS)

    Hepatopulmonary syndrome (HPS) is characterized by an arterial oxygenation defect induced by intrapulmonary vasodilation (IPVD) that increases morbidity and mortality. In our previous study, it was determined that both the proliferation and the myogenic differentiation of pulmonary microvascular endothelial cells (PMVECs) play a key role in the development of IPVD. However, the molecular mechanism underlying the relationship between IPVD and the myogenic differentiation of PMVECs remains unknown. Additionally, it has been shown that bone morphogenic protein-2 (BMP2), via the control of protein expression, may regulate cell differentiation including cardiomyocyte differentiation, neuronal differentiation and odontoblastic differentiation. In this study, we observed that common bile duct ligation (CBDL)-rat serum induced the upregulation of the expression of several myogenic proteins (SM-α-actin, calponin, SM-MHC) and enhanced the expression levels of BMP2 mRNA and protein in PMVECs. We also observed that both the expression levels of Smad1/5 and the activation of phosphorylated Smad1/5 were significantly elevated in PMVECs following exposure to CBDL-rat serum, which was accompanied by the down-regulation of Smurf1. The blockage of the BMP2/Smad signaling pathway with Noggin inhibited the myogenic differentiation of PMVECs, a process that was associated with relatively low expression levels of both SM-α-actin and calponin in the setting of CBDL-rat serum exposure, although SM-MHC expression was not affected. These findings suggested that the BMP2/Smad signaling pathway is involved in the myogenic differentiation of the PMVECs. In conclusion, our data highlight the pivotal role of BMP2 in the CBDL-rat serum-induced myogenic differentiation of PMVECs via the activation of both Smad1 and Smad5 and the down-regulation of Smurf1, which may represent a potential therapy for HPS-induced pulmonary vascular remodeling. - Highlights: • CBDL-rat serum promotes the myogenic

  20. Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo

    OpenAIRE

    Yunhao Qin; Lian Wang; Zhengliang Gao; Genyin Chen; Changqing Zhang

    2016-01-01

    Emerging evidence suggests that extracellular vesicles (EVs) are secreted by diverse tissues and play important roles in cell-cell communication, organ interactions and tissue homeostasis. Studies have reported the use of EVs to stimulate tissue regeneration, such as hepatic cell regeneration, and to treat diseases, such as pulmonary hypertension. However, little is known about the osteogenic effect of EVs. In this study, we explore the role of bone marrow stromal cell-derived EVs in the regu...

  1. Hyperbaric oxygen promotes osteogenic differentiation of bone marrow stromal cells by regulating Wnt3a/β-catenin signaling—An in vitro and in vivo study

    Directory of Open Access Journals (Sweden)

    Song-Shu Lin

    2014-01-01

    Full Text Available We hypothesized that the effect of hyperbaric oxygen (HBO on bone formation is increased via osteogenic differentiation of bone marrow stromal cells (BMSCs, which is regulated by Wnt3a/β-catenin signaling. Our in vitro data showed that HBO increased cell proliferation, Wnt3a production, LRP6 phosphorylation, and cyclin D1 expression in osteogenically differentiated BMSCs. The mRNA and protein levels of Wnt3a, β-catenin, and Runx2 were upregulated while those of GSK-3β were downregulated after HBO treatment. The relative density ratio (phospho-protein/protein of Akt and GSK-3β was both up-regulated while that of β-catenin was down-regulated after HBO treatment. We next investigated whether HBO affects the accumulation of β-catenin. Our Western blot analysis showed increased levels of translocated β-catenin that stimulated the expression of target genes after HBO treatment. HBO increased TCF-dependent transcription, Runx2 promoter/Luc gene activity, and the expression of osteogenic markers of BMSCs, such as alkaline phosphatase activity, type I collagen, osteocalcin, calcium, and the intensity of Alizarin Red staining. HBO dose dependently increased the bone morphogenetic protein (BMP2 and osterix production. We further demonstrated that HBO increased the expression of vacuolar-ATPases, which stimulated Wnt3a secretion from BMSCs. Finally, we showed that the beneficial effects of HBO on bone formation were related to Wnt3a/β-catenin signaling in a rabbit model by histology, mechanical testing, and immunohistochemical assays. Accordingly, we concluded that HBO increased the osteogenic differentiation of BMSCs by regulating Wnt3a secretion and signaling.

  2. Nmp4/CIZ suppresses the response of bone to anabolic parathyroid hormone by regulating both osteoblasts and osteoclasts.

    Science.gov (United States)

    Childress, Paul; Philip, Binu K; Robling, Alexander G; Bruzzaniti, Angela; Kacena, Melissa A; Bivi, Nicoletta; Plotkin, Lilian I; Heller, Aaron; Bidwell, Joseph P

    2011-07-01

    How parathyroid hormone (PTH) increases bone mass is unclear, but understanding this phenomenon is significant to the improvement of osteoporosis therapy. Nmp4/CIZ is a nucleocytoplasmic shuttling transcriptional repressor that suppresses PTH-induced osteoblast gene expression and hormone-stimulated gains in murine femoral trabecular bone. To further characterize Nmp4/CIZ suppression of hormone-mediated bone growth, we treated 10-week-old Nmp4-knockout (KO) and wild-type (WT) mice with intermittent human PTH(1-34) at 30 μg/kg daily or vehicle, 7 days/week, for 2, 3, or 7 weeks. Null mice treated with hormone (7 weeks) gained more vertebral and tibial cancellous bone than WT animals, paralleling the exaggerated response in the femur. Interestingly, Nmp4/CIZ suppression of this hormone-stimulated bone formation was not apparent during the first 2 weeks of treatment. Consistent with the null mice enhanced PTH-stimulated addition of trabecular bone, these animals exhibited an augmented hormone-induced increase in serum osteocalcin 3 weeks into treatment. Unexpectedly, the Nmp4-KO mice displayed an osteoclast phenotype. Serum C-terminal telopeptide, a marker for bone resorption, was elevated in the null mice, irrespective of treatment. Nmp4-KO bone marrow cultures produced more osteoclasts, which exhibited elevated resorbing activity, compared to WT cultures. The expression of several genes critical to the development of both osteoblasts and osteoclasts was elevated in Nmp4-KO mice at 2 weeks, but not 3 weeks, of hormone exposure. We propose that Nmp4/CIZ dampens PTH-induced improvement of trabecular bone throughout the skeleton by transiently suppressing hormone-stimulated increases in the expression of proteins key to the required enhanced activity and number of both osteoblasts and osteoclasts. PMID:21607813

  3. Formaldehyde up-regulates TRPV1 through MAPK and PI3K signaling pathways in a rat model of bone cancer pain

    Institute of Scientific and Technical Information of China (English)

    Ying Han; Yah Li; Xing Xiao; Jia Liu; Xiang-Ling Meng; Feng-YuLiu; Guo-Gang Xing; You Wan

    2012-01-01

    Objective Our previous study showed that tumor tissue-derived formaldehyde at low concentrations plays an impoaant role in bone cancer pain through activating transient receptor potential vanilloid subfamily member 1 (TRPV1).The present study further explored whether this tumor tissue-derived endogenous formaldehyde regulates TRPV1 expression in a rat model of bone cancer pain,and if so,what the possible signal pathways are during the development of this type of pain.Methods A rat model of bone cancer pain was established by injecting living MRMT-1 tumor cells into the tibia.The formaldehyde levels were determined by high performance liquid chromatography,and the expression of TRPV1 was examined with Western blot and RT-PCR.In primary cultured dorsal root ganglion (DRG) neurons,the expression of TRPV1 was assessed after treatment with 100 μmol/L formaldehyde with or without pre-addition of PD98059 [an inhibitor for extracellular signal-regulated kinase],SB203580 (a p38 inhibitor),SP600125 [an inhibitor for c-Jun Nterminal kinase],BIM [a protein kinase C (PKC) inhibitor] or LY294002 [a phosphatidylinositol 3-kinase (PI3K) inhibitor].Results In the rat model of bone cancer pain,formaldehyde concentration increased in blood plasma,bone marrow and the spinal cord.TRPV1 protein expression was also increased in the DRG.In primary cultured DRG neurons,100μmol/L formaldehyde significantly increased the TRPV1 expression level.Pre-incubation with PD98059,SB203580,SP600125 or LY294002,but not BIM,inhibited the formaldehyde-induced increase of TRPV1 expression.Conclusion Formaldehyde at a very low concentration up-regulates TRPV1 expression through mitogen-activated protein kinase and PI3K,but not PKC,signaling pathways.These results further support our previous finding that TRPV1 in peripheral afferents plays a role in bone cancer pain.

  4. Bone Biopsy

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Bone Biopsy Bone biopsy uses a needle and imaging guidance ... limitations of Bone Biopsy? What is a Bone Biopsy? A bone biopsy is an image-guided procedure ...

  5. Hypoxia induced E-cadherin involving regulators of Hippo pathway due to HIF-1α stabilization/nuclear translocation in bone metastasis from breast carcinoma

    International Nuclear Information System (INIS)

    The present study deals with the molecular mechanisms involved in the regulation of E-cadherin expression under hypoxia, because the adjustment of the amount of E-cadherin due to physical stimuli of the microenvironment might influence the colonization of metastasis to skeleton. We analyzed the effect of 1% oxygen tension, that is similar to that encountered in the bone marrow by metastatic cells spreading from breast carcinoma. The purpose was to evaluate the hypoxia-orchestrated control of E-cadherin transactivation via hypoxia inducible factor-1 (HIF-1) and peroxisome proliferator activated receptor-γ (PPARγ), and the involvement of Hippo pathway members, as regulators of transcription factors. To give a translational significance to the study, we took into consideration human pair-matched ductal breast carcinoma and bone metastasis: E-cadherin and Wwox were expressed in bone metastasis but not in breast carcinoma, while HIF-1α and TAZ seemed localized principally in nuclei of metastasis and were found in all cell compartments of breast carcinoma. A close examination of the regulatory mechanisms underlying E-cadherin expression in bone metastasis was done in 1833 clone derived from MDA-MB231 cells. Hypoxia induced E-cadherin only in 1833 clone, but not in parental cells, through HIF-1 and PPARγ activities, while Wwox decreased. Since Wwox was highly expressed in bone metastasis, the effect of ectopic Wwox was evaluated, and we showed E-cadherin transactivation and enhanced invasiveness in WWOX transfected 1833 cells. Also, hypoxia was additive with ectopic Wwox remarkably enhancing HIF-1α nuclear shuttle and accumulation due to the lengthening of the half-life of HIF-1α protein; under this experimental condition HIF-1α appeared as a slower migrated band compared with control, in agreement with the phosphorylation state. The in vitro data strongly supported the almost exclusive presence of HIF-1α in nuclei of human-bone metastasis. Thus, we identified

  6. Hypoxia induced E-cadherin involving regulators of Hippo pathway due to HIF-1α stabilization/nuclear translocation in bone metastasis from breast carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Maroni, Paola [Istituto Ortopedico Galeazzi, IRCCS, Milano (Italy); Matteucci, Emanuela [Dipartiimento di Scienze Biomediche per la Salute, Molecular Pathology Laboratory, Università degli Studi di Milano, Milano (Italy); Drago, Lorenzo; Banfi, Giuseppe [Istituto Ortopedico Galeazzi, IRCCS, Milano (Italy); Dipartiimento di Scienze Biomediche per la Salute, Molecular Pathology Laboratory, Università degli Studi di Milano, Milano (Italy); Bendinelli, Paola [Dipartiimento di Scienze Biomediche per la Salute, Molecular Pathology Laboratory, Università degli Studi di Milano, Milano (Italy); Desiderio, Maria Alfonsina, E-mail: a.desiderio@unimi.it [Dipartiimento di Scienze Biomediche per la Salute, Molecular Pathology Laboratory, Università degli Studi di Milano, Milano (Italy)

    2015-01-15

    The present study deals with the molecular mechanisms involved in the regulation of E-cadherin expression under hypoxia, because the adjustment of the amount of E-cadherin due to physical stimuli of the microenvironment might influence the colonization of metastasis to skeleton. We analyzed the effect of 1% oxygen tension, that is similar to that encountered in the bone marrow by metastatic cells spreading from breast carcinoma. The purpose was to evaluate the hypoxia-orchestrated control of E-cadherin transactivation via hypoxia inducible factor-1 (HIF-1) and peroxisome proliferator activated receptor-γ (PPARγ), and the involvement of Hippo pathway members, as regulators of transcription factors. To give a translational significance to the study, we took into consideration human pair-matched ductal breast carcinoma and bone metastasis: E-cadherin and Wwox were expressed in bone metastasis but not in breast carcinoma, while HIF-1α and TAZ seemed localized principally in nuclei of metastasis and were found in all cell compartments of breast carcinoma. A close examination of the regulatory mechanisms underlying E-cadherin expression in bone metastasis was done in 1833 clone derived from MDA-MB231 cells. Hypoxia induced E-cadherin only in 1833 clone, but not in parental cells, through HIF-1 and PPARγ activities, while Wwox decreased. Since Wwox was highly expressed in bone metastasis, the effect of ectopic Wwox was evaluated, and we showed E-cadherin transactivation and enhanced invasiveness in WWOX transfected 1833 cells. Also, hypoxia was additive with ectopic Wwox remarkably enhancing HIF-1α nuclear shuttle and accumulation due to the lengthening of the half-life of HIF-1α protein; under this experimental condition HIF-1α appeared as a slower migrated band compared with control, in agreement with the phosphorylation state. The in vitro data strongly supported the almost exclusive presence of HIF-1α in nuclei of human-bone metastasis. Thus, we identified

  7. Mechanical microenvironments and protein expression associated with formation of different skeletal tissues during bone healing.

    Science.gov (United States)

    Miller, Gregory J; Gerstenfeld, Louis C; Morgan, Elise F

    2015-11-01

    Uncovering the mechanisms of the sensitivity of bone healing to mechanical factors is critical for understanding the basic biology and mechanobiology of the skeleton, as well as for enhancing clinical treatment of bone injuries. This study refined an experimental method of measuring the strain microenvironment at the site of a bone injury during bone healing. This method used a rat model in which a well-controlled bending motion was applied to an osteotomy to induce the formation of pseudarthrosis that is composed of a range of skeletal tissues, including woven bone, cartilage, fibrocartilage, fibrous tissue, and clot tissue. The goal of this study was to identify both the features of the strain microenvironment associated with formation of these different tissues and the expression of proteins frequently implicated in sensing and transducing mechanical cues. By pairing the strain measurements with histological analyses that identified the regions in which each tissue type formed, we found that formation of the different tissue types occurs in distinct strain microenvironments and that the type of tissue formed is correlated most strongly to the local magnitudes of extensional and shear strains. Weaker correlations were found for dilatation. Immunohistochemical analyses of focal adhesion kinase and rho family proteins RhoA and CDC42 revealed differences within the cartilaginous tissues in the calluses from the pseudarthrosis model as compared to fracture calluses undergoing normal endochondral bone repair. These findings suggest the involvement of these proteins in the way by which mechanical stimuli modulate the process of cartilage formation during bone healing. PMID:25822264

  8. Bone morphogenetic protein-2 functions as a negative regulator in the differentiation of myoblasts, but not as an inducer for the formations of cartilage and bone in mouse embryonic tongue

    Directory of Open Access Journals (Sweden)

    Suzuki Erika

    2011-07-01

    Full Text Available Abstract Background In vitro studies using the myogenic cell line C2C12 demonstrate that bone morphogenetic protein-2 (BMP-2 converts the developmental pathway of C2C12 from a myogenic cell lineage to an osteoblastic cell lineage. Further, in vivo studies using null mutation mice demonstrate that BMPs inhibit the specification of the developmental fate of myogenic progenitor cells. However, the roles of BMPs in the phases of differentiation and maturation in skeletal muscles have yet to be determined. The present study attempts to define the function of BMP-2 in the final stage of differentiation of mouse tongue myoblast. Results Recombinant BMP-2 inhibited the expressions of markers for the differentiation of skeletal muscle cells, such as myogenin, muscle creatine kinase (MCK, and fast myosin heavy chain (fMyHC, whereas BMP-2 siRNA stimulated such markers. Neither the recombinant BMP-2 nor BMP-2 siRNA altered the expressions of markers for the formation of cartilage and bone, such as osteocalcin, alkaline phosphatase (ALP, collagen II, and collagen X. Further, no formation of cartilage and bone was observed in the recombinant BMP-2-treated tongues based on Alizarin red and Alcian blue stainings. Neither recombinant BMP-2 nor BMP-2 siRNA affected the expression of inhibitor of DNA binding/differentiation 1 (Id1. The ratios of chondrogenic and osteogenic markers relative to glyceraldehyde-3-phosphate dehydrogenase (GAPDH, a house keeping gene were approximately 1000-fold lower than those of myogenic markers in the cultured tongue. Conclusions BMP-2 functions as a negative regulator for the final differentiation of tongue myoblasts, but not as an inducer for the formation of cartilage and bone in cultured tongue, probably because the genes related to myogenesis are in an activation mode, while the genes related to chondrogenesis and osteogenesis are in a silencing mode.

  9. Fibroblast growth factor 2 inhibits up-regulation of bone morphogenic proteins and their receptors during osteoblastic differentiation of human mesenchymal stem cells

    International Nuclear Information System (INIS)

    Highlights: ► FGF modulates BMPs pathway in HMSCs by down-regulating BMP/BMPR expression. ► This effect is mediated by ERK and JNK MAPKs pathways. ► Crosstalk between FGF and BMPs must be taken into account in skeletal bioengineering. ► It must also be considered in the use of recombinant BMPs in orthopedic and spine surgeries. -- Abstract: Understanding the interactions between growth factors and bone morphogenic proteins (BMPs) signaling remains a crucial issue to optimize the use of human mesenchymal stem cells (HMSCs) and BMPs in therapeutic perspectives and bone tissue engineering. BMPs are potent inducers of osteoblastic differentiation. They exert their actions via BMP receptors (BMPR), including BMPR1A, BMPR1B and BMPR2. Fibroblast growth factor 2 (FGF2) is expressed by cells of the osteoblastic lineage, increases their proliferation and is secreted during the healing process of fractures or in surgery bone sites. We hypothesized that FGF2 might influence HMSC osteoblastic differentiation by modulating expressions of BMPs and their receptors. BMP2, BMP4, BMPR1A and mainly BMPR1B expressions were up-regulated during this differentiation. FGF2 inhibited HMSCs osteoblastic differentiation and the up-regulation of BMPs and BMPR. This effect was prevented by inhibiting the ERK or JNK mitogen-activated protein kinases which are known to be activated by FGF2. These data provide a mechanism explaining the inhibitory effect of FGF2 on osteoblastic differentiation of HMSCs. These crosstalks between growth and osteogenic factors should be considered in the use of recombinant BMPs in therapeutic purpose of fracture repair or skeletal bioengineering.

  10. Fibroblast growth factor 2 inhibits up-regulation of bone morphogenic proteins and their receptors during osteoblastic differentiation of human mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Biver, Emmanuel, E-mail: ebiver@yahoo.fr [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France); Department of Rheumatology, Lille University Hospital, Roger Salengro Hospital, 59037 Lille cedex (France); Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva 14 (Switzerland); Soubrier, Anne-Sophie [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France); Department of Rheumatology, Lille University Hospital, Roger Salengro Hospital, 59037 Lille cedex (France); Thouverey, Cyril [Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva 14 (Switzerland); Cortet, Bernard [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France); Department of Rheumatology, Lille University Hospital, Roger Salengro Hospital, 59037 Lille cedex (France); Broux, Odile [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France); Caverzasio, Joseph [Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva 14 (Switzerland); Hardouin, Pierre [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer FGF modulates BMPs pathway in HMSCs by down-regulating BMP/BMPR expression. Black-Right-Pointing-Pointer This effect is mediated by ERK and JNK MAPKs pathways. Black-Right-Pointing-Pointer Crosstalk between FGF and BMPs must be taken into account in skeletal bioengineering. Black-Right-Pointing-Pointer It must also be considered in the use of recombinant BMPs in orthopedic and spine surgeries. -- Abstract: Understanding the interactions between growth factors and bone morphogenic proteins (BMPs) signaling remains a crucial issue to optimize the use of human mesenchymal stem cells (HMSCs) and BMPs in therapeutic perspectives and bone tissue engineering. BMPs are potent inducers of osteoblastic differentiation. They exert their actions via BMP receptors (BMPR), including BMPR1A, BMPR1B and BMPR2. Fibroblast growth factor 2 (FGF2) is expressed by cells of the osteoblastic lineage, increases their proliferation and is secreted during the healing process of fractures or in surgery bone sites. We hypothesized that FGF2 might influence HMSC osteoblastic differentiation by modulating expressions of BMPs and their receptors. BMP2, BMP4, BMPR1A and mainly BMPR1B expressions were up-regulated during this differentiation. FGF2 inhibited HMSCs osteoblastic differentiation and the up-regulation of BMPs and BMPR. This effect was prevented by inhibiting the ERK or JNK mitogen-activated protein kinases which are known to be activated by FGF2. These data provide a mechanism explaining the inhibitory effect of FGF2 on osteoblastic differentiation of HMSCs. These crosstalks between growth and osteogenic factors should be considered in the use of recombinant BMPs in therapeutic purpose of fracture repair or skeletal bioengineering.

  11. A bioceramic with enhanced osteogenic properties to regulate the function of osteoblastic and osteocalastic cells for bone tissue regeneration.

    Science.gov (United States)

    Roohani-Esfahani, Seyed-Iman; No, Young Jung; Lu, Zufu; Ng, Pei Ying; Chen, Yongjuan; Shi, Jeffrey; Pavlos, Nathan J; Zreiqat, Hala

    2016-01-01

    Bioceramics for regenerative medicine applications should have the ability to promote adhesion, proliferation and differentiation of osteoblast and osteoclast cells. Osteogenic properties of the material are essential for rapid bone regeneration and new bone formation. The aim of this study was to develop a silicate-based ceramic, gehlenite (GLN, Ca2Al2SiO7), and characterise its physiochemical, biocompatibility and osteogenic properties. A pure GLN powder was synthesised by a facile reactive sintering method and compacted to disc-shaped specimens. The sintering behaviour and degradation of the GLN discs in various buffer solutions were fully characterised. The cytotoxicity of GLN was evaluated by direct and indirect methods. In the indirect method, primary human osteoblast cells (HOBs) were exposed to diluted extracts (100, 50, 25, 12.5 and 6.25 mg ml(-1)) of fine GLN particles in culture medium. The results showed that the extracts did not cause any cytotoxic effect on the HOBs with the number of cells increasing significantly from day 1 to day 7. GLN-supported HOB attachment and proliferation, and significantly enhanced osteogenic gene expression levels (Runx2, osteocalcin, osteopontin and bone sialoprotein) were compared with biphasic calcium phosphate groups (BCP, a mixture of hydroxyapatite (60wt.%) and β-tricalcium phosphate(40wt.%)). We also demonstrated that in addition to supporting HOB attachment and proliferation, GLN promoted the formation of tartrate-acid resistance phosphatase (TRAP) positive multinucleated osteoclastic cells (OCs) derived from mouse bone marrow cells. Results also demonstrated the ability of GLN to support the polarisation of OCs, a prerequisite for their functional resorptive activity which is mainly influenced by the composition and degradability of biomaterials. Overall, the developed GLN is a prospective candidate to be used in bone regeneration applications due its effective osteogenic properties and biocompatibility. PMID

  12. Bone Grafts

    Science.gov (United States)

    ... repair and rebuild diseased bones in your hips, knees, spine, and sometimes other bones and joints. Grafts can also repair bone loss caused by some types of fractures or cancers. Once your body accepts the bone ...

  13. Controlled spatial and conformational display of immobilised bone morphogenetic protein-2 and osteopontin signalling motifs regulates osteoblast adhesion and differentiation in vitro

    Directory of Open Access Journals (Sweden)

    McCaskie Andrew W

    2010-05-01

    Full Text Available Abstract Background The interfacial molecular mechanisms that regulate mammalian cell growth and differentiation have important implications for biotechnology (production of cells and cell products and medicine (tissue engineering, prosthetic implants, cancer and developmental biology. We demonstrate here that engineered protein motifs can be robustly displayed to mammalian cells in vitro in a highly controlled manner using a soluble protein scaffold designed to self assemble on a gold surface. Results A protein was engineered to contain a C-terminal cysteine that would allow chemisorption to gold, followed by 12 amino acids that form a water soluble coil that could switch to a hydrophobic helix in the presence of alkane thiols. Bioactive motifs from either bone morphogenetic protein-2 or osteopontin were added to this scaffold protein and when assembled on a gold surface assessed for their ability to influence cell function. Data demonstrate that osteoblast adhesion and short-term responsiveness to bone morphogenetic protein-2 is dependent on the surface density of a cell adhesive motif derived from osteopontin. Furthermore an immobilised cell interaction motif from bone morphogenetic protein supported bone formation in vitro over 28 days (in the complete absence of other osteogenic supplements. In addition, two-dimensional patterning of this ligand using a soft lithography approach resulted in the spatial control of osteogenesis. Conclusion These data describe an approach that allows the influence of immobilised protein ligands on cell behaviour to be dissected at the molecular level. This approach presents a durable surface that allows both short (hours or days and long term (weeks effects on cell activity to be assessed. This widely applicable approach can provide mechanistic insight into the contribution of immobilised ligands in the control of cell activity.

  14. The TAL1/SCL Transcription Factor Regulates Cell Cycle Progression and Proliferation in Differentiating Murine Bone Marrow Monocyte Precursors▿

    OpenAIRE

    Dey, Soumyadeep; Curtis, David J.; Jane, Stephen M.; Brandt, Stephen J.

    2010-01-01

    Monocytopoiesis involves the stepwise differentiation in the bone marrow (BM) of common myeloid precursors (CMPs) to monocytes. The basic helix-loop-helix transcription factor TAL1/SCL plays a critical role in other hematopoietic lineages, and while it had been reported to be expressed by BM-derived macrophages, its role in monocytopoiesis had not been elucidated. Using cell explant models of monocyte/macrophage (MM) differentiation, one originating with CMPs and the other from more committed...

  15. Metformin revisited: Does this regulator of AMP-activated protein kinase secondarily affect bone metabolism and prevent diabetic osteopathy

    OpenAIRE

    McCarthy, Antonio Desmond; Cortizo, Ana María; Sedlinsky, Claudia

    2016-01-01

    Patients with long-term type 1 and type 2 diabetes mellitus (DM) can develop skeletal complications or “diabetic osteopathy”. These include osteopenia, osteoporosis and an increased incidence of low-stress fractures. In this context, it is important to evaluate whether current anti-diabetic treatments can secondarily affect bone metabolism. Adenosine monophosphate-activated protein kinase (AMPK) modulates multiple metabolic pathways and acts as a sensor of the cellular energy status; recent e...

  16. Pak4 Is Required during Epithelial Polarity Remodeling through Regulating AJ Stability and Bazooka Retention at the ZA

    Science.gov (United States)

    Walther, Rhian F.; Nunes de Almeida, Francisca; Vlassaks, Evi; Burden, Jemima J.; Pichaud, Franck

    2016-01-01

    Summary The ability of epithelial cells to assemble into sheets relies on their zonula adherens (ZA), a circumferential belt of adherens junction (AJ) material, which can be remodeled during development to shape organs. Here, we show that during ZA remodeling in a model neuroepithelial cell, the Cdc42 effector P21-activated kinase 4 (Pak4/Mbt) regulates AJ morphogenesis and stability through β-catenin (β-cat/Arm) phosphorylation. We find that β-catenin phosphorylation by Mbt, and associated AJ morphogenesis, is needed for the retention of the apical determinant Par3/Bazooka at the remodeling ZA. Importantly, this retention mechanism functions together with Par1-dependent lateral exclusion of Par3/Bazooka to regulate apical membrane differentiation. Our results reveal an important functional link between Pak4, AJ material morphogenesis, and polarity remodeling during organogenesis downstream of Par3. PMID:27052178

  17. Using calcium silicate to regulate the physicochemical and biological properties when using β-tricalcium phosphate as bone cement

    International Nuclear Information System (INIS)

    β-Tricalcium phosphate (β-TCP) is an osteoconductive material. For this research we have combined it with a low degradation calcium silicate (CS) to enhance its bioactive and osteostimulative properties. To check its effectiveness, a series of β-TCP/CS composites with different ratios were prepared to make new bioactive and biodegradable biocomposites for bone repair. Regarding the formation of bone-like apatite, the diametral tensile strength as well as the ion release and weight loss of composites were compared both before and after immersions in simulated body fluid (SBF). In addition, we also examined the behavior of human dental pulp cells (hDPCs) cultured on β-TCP/CS composites. The results show that the apatite deposition ability of the β-TCP/CS composites improves as the CS content is increased. For composites with more than a 60% CS content, the samples become completely covered by a dense bone-like apatite layer. At the end of the immersion period, weight losses of 24%, 32%, 34%, 38%, 41%, and 45% were observed for the composites containing 0%, 20%, 40%, 80%, 80% and 100% β-TCP cements, respectively. In addition, the antibacterial activity of CS/β-TCP composite improves as the CS-content is increased. In vitro cell experiments show that the CS-rich composites promote human dental pulp cell (hDPC) proliferation and differentiation. However, when the CS quantity in the composite is less than 60%, the quantity of cells and osteogenesis protein of hDPCs is stimulated by Si released from the β-TCP/CS composites. The degradation of β-TCP and the osteogenesis of CS give strong reason to believe that these calcium-based composite cements will prove to be effective bone repair materials. - Highlights: • CS improved the physicochemical properties and osteogenic activity of β-TCP. • Higher CS in the composite, the shorter setting time and the higher DTS was found. • With a CS more than 40%, the osteogenesis and angiogenesis proteins were promoted by

  18. Using calcium silicate to regulate the physicochemical and biological properties when using β-tricalcium phosphate as bone cement

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Chia-Tze; Huang, Tsui-Hsien [School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Chen, Yi-Jyun [School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Dental Department, Taichung Hospital, Ministry of Health and Welfare, Taichung City, Taiwan (China); Hung, Chi-Jr [School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Lin, Chi-Chang, E-mail: chichang31@gmail.com [Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan (China); Shie, Ming-You, E-mail: eviltacasi@gmail.com [Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan (China)

    2014-10-01

    β-Tricalcium phosphate (β-TCP) is an osteoconductive material. For this research we have combined it with a low degradation calcium silicate (CS) to enhance its bioactive and osteostimulative properties. To check its effectiveness, a series of β-TCP/CS composites with different ratios were prepared to make new bioactive and biodegradable biocomposites for bone repair. Regarding the formation of bone-like apatite, the diametral tensile strength as well as the ion release and weight loss of composites were compared both before and after immersions in simulated body fluid (SBF). In addition, we also examined the behavior of human dental pulp cells (hDPCs) cultured on β-TCP/CS composites. The results show that the apatite deposition ability of the β-TCP/CS composites improves as the CS content is increased. For composites with more than a 60% CS content, the samples become completely covered by a dense bone-like apatite layer. At the end of the immersion period, weight losses of 24%, 32%, 34%, 38%, 41%, and 45% were observed for the composites containing 0%, 20%, 40%, 80%, 80% and 100% β-TCP cements, respectively. In addition, the antibacterial activity of CS/β-TCP composite improves as the CS-content is increased. In vitro cell experiments show that the CS-rich composites promote human dental pulp cell (hDPC) proliferation and differentiation. However, when the CS quantity in the composite is less than 60%, the quantity of cells and osteogenesis protein of hDPCs is stimulated by Si released from the β-TCP/CS composites. The degradation of β-TCP and the osteogenesis of CS give strong reason to believe that these calcium-based composite cements will prove to be effective bone repair materials. - Highlights: • CS improved the physicochemical properties and osteogenic activity of β-TCP. • Higher CS in the composite, the shorter setting time and the higher DTS was found. • With a CS more than 40%, the osteogenesis and angiogenesis proteins were promoted by

  19. [Inflammation and bone : Osteoimmunological aspects].

    Science.gov (United States)

    Frommer, K W; Neumann, E; Lange, U

    2016-06-01

    Microscopic fractures (so-called microcracks) or traumatic macrofractures require bone, as the basic scaffold of the human body, to have a high regenerative capability. In order to be able to provide this regenerative capability, bone is in a constant process of remodeling. This finely tuned homeostasis of bone formation and degradation can become disrupted, which leads to osteoporosis or other bone disorders. It has been shown that the immune system is substantially involved in the regulation of bone homeostasis and that chronic inflammation in particular can disturb this balance; therefore, this article reviews the osteoimmunological aspects contributing to osteoporosis and other diseases associated with bone degradation. PMID:27250491

  20. MicroRNA regulation of stem cell differentiation and diseases of the bone and adipose tissue: Perspectives on miRNA biogenesis and cellular transcriptome.

    Science.gov (United States)

    Martin, E C; Qureshi, A T; Dasa, V; Freitas, M A; Gimble, J M; Davis, T A

    2016-05-01

    MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression through targeting and suppression of mRNAs. miRNAs have been under investigation for the past twenty years and there is a large breadth of information on miRNAs in diseases such as cancer and immunology. Only more recently have miRNAs shown promise as a mechanism for intervention with respect to diseases of the bone and adipose tissue. In mesenchymal stem cell (MSC) differentiation, alterations in miRNA expression patterns can differentially promote an osteogenic, adipogenic, or myogenic phenotype. This manuscript reviews the current literature with respect to miRNAs in the context of MSC function with a particular focus on novel avenues for the examination of miRNA associated with bone and adipose tissue biology and disease. Specifically we highlight the need for a greater depth of investigation on MSCs with respect to miRNA biogenesis, processing, strand selection, and heterogeneity. We discuss how these mechanisms facilitate both altered miRNA expression and function. PMID:25726914

  1. Bone Cancer

    Science.gov (United States)

    Cancer that starts in a bone is uncommon. Cancer that has spread to the bone from another ... more common. There are three types of bone cancer: Osteosarcoma - occurs most often between ages 10 and ...

  2. Bone Cancer

    Science.gov (United States)

    Cancer that starts in a bone is uncommon. Cancer that has spread to the bone from another part of the body is more common. There are three types of bone cancer: Osteosarcoma - occurs most often between ages 10 ...

  3. Bone Diseases

    Science.gov (United States)

    Your bones help you move, give you shape and support your body. They are living tissues that rebuild constantly ... childhood and your teens, your body adds new bone faster than it removes old bone. After about ...

  4. Wnt Signaling in Bone

    Science.gov (United States)

    Kubota, Takuo; Michigami, Toshimi; Ozono, Keiichi

    2010-01-01

    Wnt signaling is involved not only in embryonic development but also in maintenance of homeostasis in postnatal tissues. Multiple lines of evidence have increased understanding of the roles of Wnt signaling in bone since mutations in the LRP5 gene were identified in human bone diseases. Canonical Wnt signaling promotes mesenchymal progenitor cells to differentiate into osteoblasts. The canonical Wnt/β-catenin pathway possibly through Lrp6, a co-receptor for Wnts as well as Lrp5, in osteoblasts regulates bone resorption by increasing the OPG/RANKL ratio. However, endogenous inhibitors of Wnt signaling including sclerostin block bone formation. Regulation of sclerostin appears to be one of the mechanisms of PTH anabolic actions on bone. Since sclerostin is almost exclusively expressed in osteocytes, inhibition of sclerostin is the most promising design. Surprisingly, Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum, but not by directly promoting bone formation. Pharmacological intervention may be considered in many components of the canonical Wnt signaling pathway, although adverse effects and tumorigenicity to other tissues are important. More studies will be needed to fully understand how the Wnt signaling pathway actually influences bone metabolism and to assure the safety of new interventions. PMID:23926379

  5. Rho GTPases and regulation of cell migration and polarization in human corneal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Aihua Hou

    Full Text Available PURPOSE: Epithelial cell migration is required for regeneration of tissues and can be defective in a number of ocular surface diseases. This study aimed to determine the expression pattern of Rho family small G-proteins in human corneal epithelial cells to test their requirement in directional cell migration. METHODS: Rho family small G-protein expression was assessed by reverse transcription-polymerase chain reaction. Dominant-inhibitory constructs encoding Rho proteins or Rho protein targeting small interfering RNA were transfected into human corneal epithelial large T antigen cells, and wound closure rate were evaluated by scratch wounding assay, and a complementary non-traumatic cell migration assay. Immunofluorescence staining was performed to study cell polarization and to assess Cdc42 downstream effector. RESULTS: Cdc42, Chp, Rac1, RhoA, TC10 and TCL were expressed in human corneal epithelial cells. Among them, Cdc42 and TCL were found to significantly affect cell migration in monolayer scratch assays. These results were confirmed through the use of validated siRNAs directed to Cdc42 and TCL. Scramble siRNA transfected cells had high percentage of polarized cells than Cdc42 or TCL siRNA transfected cells at the wound edge. We showed that the Cdc42-specific effector p21-activated kinase 4 localized predominantly to cell-cell junctions in cell monolayers, but failed to translocate to the leading edge in Cdc42 siRNA transfected cells after monolayer wounding. CONCLUSION: Rho proteins expressed in cultured human corneal epithelial cells, and Cdc42, TCL facilitate two-dimensional cell migration in-vitro. Although silencing of Cdc42 and TCL did not noticeably affect the appearance of cell adhesions at the leading edge, the slower migration of these cells indicates both GTP-binding proteins play important roles in promoting cell movement of human corneal epithelial cells.

  6. Human osteoblast-like cells respond to mechanical strain with increased bone matrix protein production independent of hormonal regulation

    Science.gov (United States)

    Harter, L. V.; Hruska, K. A.; Duncan, R. L.

    1995-01-01

    Exposure of osteosarcoma cell lines to chronic intermittent strain increases the activity of mechano-sensitive cation (SA-cat) channels. The impact of mechano-transduction on osteoblast function has not been well studied. We analyzed the expression and production of bone matrix proteins in human osteoblast-like osteosarcoma cells, OHS-4, in response to chronic intermittent mechanical strain. The OHS-4 cells exhibit type I collagen production, 1,25-Dihydroxyvitamin D-inducible osteocalcin, and mineralization of the extracellular matrix. The matrix protein message level was determined from total RNA isolated from cells exposed to 1-4 days of chronic intermittent strain. Northern analysis for type I collagen indicated that strain increased collagen message after 48 h. Immunofluorescent labeling of type I collagen demonstrated that secretion was also enhanced with mechanical strain. Osteopontin message levels were increased several-fold by the application of mechanical load in the absence of vitamin D, and the two stimuli together produced an additive effect. Osteocalcin secretion was also increased with cyclic strain. Osteocalcin levels were not detectable in vitamin D-untreated control cells. However, after 4 days of induced load, significant levels of osteocalcin were observed in the medium. With vitamin D present, osteocalcin levels were 4 times higher in the medium of strained cells compared to nonstrained controls. We conclude that mechanical strain of osteoblast-like cells is sufficient to increase the transcription and secretion of matrix proteins via mechano-transduction without hormonal induction.

  7. Caveolin-1 regulates chemokine receptor 5-mediated contribution of bone marrow-derived cells to dermal fibrosis.

    Science.gov (United States)

    Lee, Rebecca; Perry, Beth; Heywood, Jonathan; Reese, Charles; Bonner, Michael; Hatfield, Corey M; Silver, Richard M; Visconti, Richard P; Hoffman, Stanley; Tourkina, Elena

    2014-01-01

    In fibrotic diseases caveolin-1 underexpression in fibroblasts results in collagen overexpression and in monocytes leads to hypermigration. These profibrotic behaviors are blocked by the caveolin-1 scaffolding domain peptide (CSD) which compensates for caveolin-1 deficiency. Monocytes and fibroblasts are related in that monocytes are the progenitors of fibrocytes (CD45+/Collagen I+ cells) that, in turn, are the progenitors of many fibroblasts in fibrotic tissues. In an additional anti-fibrotic activity, CSD blocks monocyte differentiation into fibrocytes. We studied a mouse fibrosis model (Pump Model) involving systemic bleomycin delivery that closely models scleroderma (SSc) in several ways, the most important of which for this study is that fibrosis is observed in the lungs, skin, and internal organs. We show here that dermal thickness is increased 2-fold in the Pump Model and that this effect is almost completely blocked by CSD (p 80% thinner. This effect is also blocked by CSD (p Fibrocytes and other leukocytes expressing CCR5 and its ligands were present at high levels in the fibrotic dermis of SSc patients and Pump Model mice while CSD blocked their accumulation in mouse dermis. Migration toward CCR5 ligands of SSc monocytes and Pump Model bone marrow cells was 3-fold greater than cells from control subjects. This enhanced migration was almost completely blocked by CSD. These results suggest that low monocyte caveolin-1 promotes fibrosis by enhancing the recruitment of fibrocytes and their progenitors into affected tissue. PMID:24966836

  8. Vitamin K2 supplementation improves hip bone geometry and bone strength indices in postmenopausal women

    OpenAIRE

    Knapen, M. H. J.; Schurgers, L.J.; Vermeer, C

    2007-01-01

    Summary Vitamin K mediates the synthesis of proteins regulating bone metabolism. We have tested whether high vitamin K2 intake promotes bone mineral density and bone strength. Results showed that K2 improved BMC and femoral neck width, but not DXA-BMD. Hence high vitamin K2 intake may contribute to preventing postmenopausal bone loss. Introduction Vitamin K is involved in the synthesis of several proteins in bone. The importance of K vitamins for optimal bone health has been suggested by popu...

  9. Therapeutic inhibition of cathepsin K—reducing bone resorption while maintaining bone formation

    OpenAIRE

    Duong, Le T.

    2012-01-01

    Osteoporosis is a disease of high bone remodeling with an imbalance of bone resorption over bone formation, resulting in decreased bone mineral density and deterioration of bone microarchitecture. From the emerging understandings of the molecular and cellular regulators of bone remodeling, potential new targets for therapeutic intervention for this disease have been identified. Cathepsin K (CatK), a cysteine protease produced by osteoclasts, is the primary enzyme mediating the degradation of ...

  10. The Preventive Effect of Biochanin A on Bone Loss in Ovariectomized Rats: Involvement in Regulation of Growth and Activity of Osteoblasts and Osteoclasts

    OpenAIRE

    Shu-Jem Su; Yao-Tsung Yeh; Huey-Wen Shyu

    2013-01-01

    Biochanin A (BCA) is a major isoflavone abundant in red clover (Trifolium pretense). The protective effect of BCA on bone loss in an ovariectomized (OVX) animal model has never been clarified. The objective of this study was to investigate the biological effects of BCA on bone loss in OVX rats in vivo and on the development of osteoblasts and osteoclasts in vitro. Ovariectomy resulted in a marked increase in body weight and a decrease in femoral bone mineral density and trabecular bone volume...

  11. Elements regulation during cartilage and bone deformity - potential clinical index in early diagnosis, monitoring and prognosis in children of kashin - beck disease

    International Nuclear Information System (INIS)

    Background: Kashin-Beck Disease (KBD) is a chronic deforming osteoarthritis starting in early childhood and affecting the cartilage metabolism and endochondral ossification. Selenium (Se) deficiency has been postulated as the major environmental etiological factor for KBD by many studies. Other minerals such as the Manganese (Mn) and calcium (Ca) which don't have uniform distribution in environment are also important elements involved in bone and cartilage formation but their regulation in KBD has been rarely reported. The study was done to investigate the role of Mn and Ca in addition to Se in KBD. Method: In this study, the Se, Mn and Calevels were investigated in children from different groups (KBD group, Healthy group from KBD endemic areas (inner control group), Healthy group (outer control group) from Non KBD areas and KBD group with selenium supplementation). The contents of Mn, S and Ca in serum and hair were analyzed by inductively coupled plasma mass spectrometry. Results: The increased Mn levels of. serum and hair in KBD children were observed compared with normal groups. The Mn and Ca have similar trends in different groups but Se and Mn displayed reversed trends. Conclusions: The Mn and Ca contributed to KBD pathogenesis combined with se in regulation of growth and development. The relative ratio of Mn to Se can be a potential clinical index in early diagnosis, monitoring and prognosis of KBD in children. (author)

  12. Dioxin-induced up-regulation of the active form of vitamin D is the main cause for its inhibitory action on osteoblast activities, leading to developmental bone toxicity

    International Nuclear Information System (INIS)

    Dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD) is known to cause bone toxicity, particularly during animal development, although its action mechanism to cause this toxicity has yet to be elucidated. Mouse pups were exposed to TCDD via dam's milk that were administered orally with 15 μg TCDD/kg b.w. on postnatal day 1. Here we report that TCDD causes up-regulation of vitamin D 1α-hydroxylase in kidney, resulting in a 2-fold increase in the active form of vitamin D, 1,25-dihydroxyvitamin D3, in serum. This action of TCDD is not caused by changes in parathyroid hormone, a decrease in vitamin D degrading enzyme, vitamin D 24-hydroxylase, or alterations in serum Ca2+ concentration. Vitamin D is known to affect bone mineralization. Our data clearly show that TCDD-exposed mice exhibit a marked decrease in osteocalcin and collagen type 1 as well as alkaline phosphatase gene expression in tibia by postnatal day 21, which is accompanied with a mineralization defect in the tibia, lowered activity of osteoblastic bone formation, and an increase in fibroblastic growth factor-23, a sign of increased vitamin D effect. Despite these significant effects of TCDD on osteoblast activities, none of the markers of osteoclast activities was found to be affected. Histomorphometry confirmed that osteoblastic activity, but not bone resorption activity, was altered by TCDD. A prominent lesion commonly observed in these TCDD-treated mice was impaired bone mineralization that is characterized by an increased volume and thickness of osteoids lining both the endosteum of the cortical bone and trabeculae. Together, these data suggest that the impaired mineralization resulting from reduction of the osteoblastic activity, which is caused by TCDD-induced up-regulation of vitamin D, is responsible for its bone developmental toxicity.

  13. Atherogenic Cytokines Regulate VEGF-A-Induced Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells into Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Izuagie Attairu Ikhapoh

    2015-01-01

    Full Text Available Coronary artery stenting or angioplasty procedures frequently result in long-term endothelial dysfunction or loss and complications including arterial thrombosis and myocardial infarction. Stem cell-based therapies have been proposed to support endothelial regeneration. Mesenchymal stem cells (MSCs differentiate into endothelial cells (ECs in the presence of VEGF-A in vitro. Application of VEGF-A and MSC-derived ECs at the interventional site is a complex clinical challenge. In this study, we examined the effect of atherogenic cytokines (IL-6, TNFα, and Ang II on EC differentiation and function. MSCs (CD44+, CD73+, CD90+, CD14−, and CD45− were isolated from the bone marrow of Yucatan microswine. Naïve MSCs cultured in differentiation media containing VEGF-A (50 ng/mL demonstrated increased expression of EC-specific markers (vWF, PECAM-1, and VE-cadherin, VEGFR-2 and Sox18, and enhanced endothelial tube formation. IL-6 or TNFα caused a dose-dependent attenuation of EC marker expression in VEGF-A-stimulated MSCs. In contrast, Ang II enhanced EC marker expression in VEGF-A-stimulated MSCs. Addition of Ang II to VEGF-A and IL-6 or TNFα was sufficient to rescue the EC phenotype. Thus, Ang II promotes but IL-6 and TNFα inhibit VEGF-A-induced differentiation of MSCs into ECs. These findings have important clinical implications for therapies intended to increase cardiac vascularity and reendothelialize coronary arteries following intervention.

  14. Caveolin-1 Regulates Chemokine Receptor 5-Mediated Contribution of Bone Marrow-Derived Cells to Dermal Fibrosis

    Directory of Open Access Journals (Sweden)

    ElenaTourkina

    2014-06-01

    Full Text Available In fibrotic diseases caveolin-1 underexpression in fibroblasts results in collagen overexpression and in monocytes leads to hypermigration. These profibrotic behaviors are blocked by the caveolin-1 scaffolding domain peptide (CSD which compensates for caveolin-1 deficiency. Monocytes and fibroblasts are related in that monocytes are the progenitors of fibrocytes (CD45+/Collagen I+ cells that, in turn, are the progenitors of many fibroblasts in fibrotic tissues. In an additional anti-fibrotic activity, CSD blocks monocyte differentiation into fibrocytes. We studied a mouse fibrosis model (Pump Model involving systemic bleomycin delivery that closely models scleroderma (SSc in several ways, the most important of which for this study is that fibrosis is observed in the lungs, skin, and internal organs. We show here that dermal thickness is increased 2-fold in the Pump Model and that this effect is almost completely blocked by CSD (p 80 % thinner. This effect is also blocked by CSD (p < 0.001. Even in mice receiving vehicle instead of bleomycin, CSD increases the thickness of the fat layer. To study the mechanisms of action of bleomycin and CSD, we examined the accumulation of the chemokine receptor CCR5 and its ligands MIP1α and MIP1β in fibrotic tissue and their roles in monocyte migration. Fibrocytes and other leukocytes expressing CCR5 and its ligands were present at high levels in the fibrotic dermis of SSc patients and Pump Model mice while CSD blocked their accumulation in mouse dermis. Migration toward CCR5 ligands of SSc monocytes and Pump Model bone marrow cells was 3-fold greater than cells from control subjects. This enhanced migration was almost completely blocked by CSD. These results suggest that low monocyte caveolin-1 promotes fibrosis by enhancing the recruitment of fibrocytes and their progenitors into affected tissue.

  15. Fibronectin- and collagen-mimetic ligands regulate bone marrow stromal cell chondrogenesis in three-dimensional hydrogels

    Directory of Open Access Journals (Sweden)

    JT Connelly

    2011-09-01

    Full Text Available Modification of tissue engineering scaffolds with bioactive molecules is a potential strategy for modulating cell behavior and guiding tissue regeneration. While adhesion to RGD peptides has been shown to inhibit in vitro chondrogenesis, the effects of extracellular matrix (ECM-mimetic ligands with complex secondary and tertiary structures are unknown. This study aimed to determine whether collagen- and fibronectin-mimetic ligands would retain biologic functionality in three-dimensional (3D hydrogels, whether different ECM-mimetic ligands differentially influence in vitro chondrogenesis, and if effects of ligands on differentiation depend on soluble biochemical stimuli. A linear RGD peptide, a recombinant fibronectin fragment containing the seven to ten Type III repeats (FnIII7-10 and a triple helical, collagen mimetic peptide with the GFOGER motif were covalently coupled to agarose gels using the sulfo-SANPAH crosslinker, and bone marrow stromal cells (BMSCs were cultured within the 3D hydrogels. The ligands retained biologic functionality within the agarose gels and promoted density-dependent BMSC spreading. Interactions with all adhesive ligands inhibited stimulation by chondrogenic factors of collagen Type II and aggrecan mRNA levels and deposition of sulfated glycosaminoglycans. In medium containing fetal bovine serum, interactions with the GFOGER peptide enhanced mRNA expression of the osteogenic gene osteocalcin whereas FnIII7-10 inhibited osteocalcin expression. In conclusion, modification of agarose hydrogels with ECM-mimetic ligands can influence the differentiation of BMSCs in a manner that depends strongly on the presence and nature of soluble biochemical stimuli.

  16. Autophagy regulates the apoptosis of bone marrow-derived mesenchymal stem cells under hypoxic condition via AMP-activated protein kinase/mammalian target of rapamycin pathway.

    Science.gov (United States)

    Zhang, Zheng; Yang, Ming; Wang, Yabin; Wang, Le; Jin, Zhitao; Ding, Liping; Zhang, Lijuan; Zhang, Lina; Jiang, Wei; Gao, Guojie; Yang, Junke; Lu, Bingwei; Cao, Feng; Hu, Taohong

    2016-06-01

    Bone marrow-derived mesenchymal stem cells (BM-MSCs) have been demonstrated as an ideal autologous stem cells source for cell-based therapy for myocardial infarction (MI). However, poor viability of donor stem cells after transplantation limits their therapeutic efficiency, whereas the underlying mechanism is still poorly understood. Autophagy, a highly conserved process of cellular degradation, is required for maintaining homeostasis and normal function. Here, we investigated the potential role of autophagy on apoptosis in BM-MSCs induced by hypoxic injury. BM-MSCs, isolated from male C57BL/6 mice, were subjected to hypoxia and serum deprivation (H/SD) injury for 6, 12, and 24 h, respectively. The autophagy state was regulated by 3-methyladenine (3MA) and rapamycin administration. Furthermore, compound C was administrated to inhibit AMPK. The apoptosis induced by H/SD was determined by TUNEL assays. Meanwhile, autophagy was measured by GFP-LC3 plasmids transfection and transmission electron microscope. Moreover, protein expressions were evaluated by Western blot assay. In the present study, we found that hypoxic stress increased autophagy and apoptosis in BM-MSCs time dependently. Meanwhile, hypoxia increased the activity of AMPK/mTOR signal pathway. Moreover, increased apoptosis in BM-MSCs under hypoxia was abolished by 3-MA, whereas was aggravated by rapamycin. Furthermore, the increased autophagy and apoptosis in BM-MSCs induced by hypoxia were abolished by AMPK inhibitor compound C. These data provide evidence that hypoxia induced AMPK/mTOR signal pathway activation which regulated the apoptosis and autophagy in BM-MSCs. Furthermore, the apoptosis of BM-MSCs under hypoxic condition was regulated by autophagy via AMPK/mTOR pathway. PMID:27005844

  17. Bone Densitometry (Bone Density Scan)

    Science.gov (United States)

    ... of DXA Bone Densitometry? What is a Bone Density Scan (DXA)? Bone density scanning, also called dual-energy x-ray absorptiometry ( ... is today's established standard for measuring bone mineral density (BMD). An x-ray (radiograph) is a noninvasive ...

  18. Myeloma bone disease: Pathophysiology and management

    OpenAIRE

    Silbermann, Rebecca; Roodman, G. David

    2013-01-01

    Multiple myeloma bone disease is marked by severe dysfunction of both bone formation and resorption and serves as a model for understanding the regulation of osteoblasts (OBL) and osteoclasts (OCL) in cancer. Myeloma bone lesions are purely osteolytic and are associated with severe and debilitating bone pain, pathologic fractures, hypercalcemia, and spinal cord compression, as well as increased mortality. Interactions within the bone marrow microenvironment in myeloma are responsible for the ...

  19. Low Bone Density

    Science.gov (United States)

    ... Density Exam/Testing › Low Bone Density Low Bone Density Low bone density is when your bone density ... people with normal bone density. Detecting Low Bone Density A bone density test will determine whether you ...

  20. Heat shock factor 1 contributes to ischemia-induced angiogenesis by regulating the mobilization and recruitment of bone marrow stem/progenitor cells.

    Directory of Open Access Journals (Sweden)

    Masayuki Kubo

    Full Text Available Bone marrow (BM-derived stem/progenitor cells play an important role in ischemia-induced angiogenesis in cardiovascular diseases. Heat shock factor 1 (HSF1 is known to be induced in response to hypoxia and ischemia. We examined whether HSF1 contributes to ischemia-induced angiogenesis through the mobilization and recruitment of BM-derived stem/progenitor cells using HSF1-knockout (KO mice. After the induction of ischemia, blood flow and microvessel density in the ischemic hindlimb were significantly lower in the HSF1-KO mice than in the wild-type (WT mice. The mobilization of BM-derived Sca-1- and c-kit-positive cells in peripheral blood after ischemia was significantly lower in the HSF1-KO mice than in the WT mice. BM stem/progenitor cells from HSF1-KO mice showed a significant decrease in their recruitment to ischemic tissue and in migration, adhesion, and survival when compared with WT mice. Blood flow recovery in the ischemic hindlimb significantly decreased in WT mice receiving BM reconstitution with donor cells from HSF1-KO mice. Conversely, blood flow recovery in the ischemic hindlimb significantly increased in HSF1-KO mice receiving BM reconstitution with donor cells from WT mice. These findings suggest that HSF1 contributes to ischemia-induced angiogenesis by regulating the mobilization and recruitment of BM-derived stem/progenitor cells.

  1. Extrapancreatic roles of glimepiride on osteoblasts from rat manibular bone in vitro: Regulation of cytodifferentiation through PI3-kinases/Akt signalling pathway.

    Science.gov (United States)

    Ma, Pan; Xiong, Wei; Liu, Hongchen; Ma, Junli; Gu, Bin; Wu, Xia

    2011-04-01

    Glimepiride, a third-generation sulfonylurea, has also been reported to have extrapancreatic functions including activation of PI3-kinase (PI3K) and Akt in rat adipocytes, skeletal muscle and endothelial cells. It is tempting to speculate that glimepiride would improve bone-implant contact in diabetic patients by mediating the activity of GLUT1 and 3 via the PI3K/Akt pathway. In this study, we investigated the effects of glimepiride on rat mandible osteoblasts cultured under two different levels of glucose. Cell proliferation was determined by the MTT assay. The supernatant was used to measure alkaline phosphatase (ALP) activity. Glucose uptake was determined by measuring the rate of 2-deoxy-d-glucose (2-DG) uptake. Western blotting was performed used to determine collagen I and PI3K/Akt expression. RT-PCR was performed used to determine osteocalcin (OCN) mRNA expression. We found that hyperglycemia down-regulated proliferation, ALP activity, OCN mRNA and GLUT3 protein expression in rat osteoblasts, and upregulated collagen I and GLUT1 protein expressions. Glimepiride enhanced the proliferation, ALP activity and OCN mRNA levels, and upregulated collagen I and GLUT1 and 3 protein expressions of rat osteoblasts at two different glucose concentrations. This study also provides the first evidence that glimepiride stimulates the phosphorylation of PI3K/Akt in osteoblasts and ameliorated the damage caused by high concentrations of glucose through the PI3K/Akt pathway. PMID:21055727

  2. Effect of low radiation doses on the metabolism of bone marrow cells and their particular role in the regulation of protective processes

    International Nuclear Information System (INIS)

    The study described here investigates into the acute effects of low doses of radioactivity on cellular metabolism in the bone marrow of the mouse as well as into potential effects from repeated exposure. Particular attention was given to the detoxification of radicals by the intracellular regulation system for enzyme activities. The results show that the elevated radical concentrations caused by intracellular accumulation of energy in the exposed animals led to a transient stimulation of the organism's own systems of radical detoxification and a simultaneous rise of the glutathione level. This was associated with an increase of lipid peroxidation which, in turn, temporarily acted to promote the delivery of potassium to the cells and to increase the activity of membrane-bound acetyl cholinesterase. At the intracellular level, the glutathione increase had as a result that thymidine kinase was inhibited for as long as this elevation lasted. The transient stimulation of the intracellular detoxification of radicals, which reached a maximum at 4 hours after acute radiation, led to resistance against any further energy accumulating in the cells. The described reaction of the radical detoxification system and the resultant radiation resistance point to the fact that the cellular response to stored energy varies according to pretreatments. This finding challenges previous theories that cellular radiation effects increase in proportion to the received dose of loosely ionising rays. (orig./MG)

  3. Vasohibin-1 Expression Is Regulated by Transforming Growth Factor-β/Bone Morphogenic Protein Signaling Pathway Between Tumor-Associated Macrophages and Pancreatic Cancer Cells

    Science.gov (United States)

    Seppänen, Hanna; Kauttu, Tuuli; Vainionpää, Sanna; Ye, Yingjiang; Mustonen, Harri

    2013-01-01

    Vasohibin-1 has been detected in endothelial cells as an intrinsic angiogenesis inhibitor. Both tumor-associated macrophages (TAMs) and transforming growth factor-β (TGF-β)/bone morphogenic protein (BMP) signaling have been reported to promote angiogenesis in cancer. However, whether vasohibin-1 expression is regulated by TGF-β/BMP signaling between TAMs and cancer cells remains unclear. The expression of TGF-β1, TGF-β2, BMP-4, and BMP-7 in TAMs and the expression of vasohibin-1, vascular endothelial growth factor-A (VEGF-A), and VEGF-C in two pancreatic cancer cell lines (a nonmetastatic cell line Panc-1 and a distant metastatic cell line HPAF-II) were measured by real-time reverse transcription-polymerase chain reaction (RT-PCR). The TGF-β receptor 1 and BMP receptor 1 were inhibited by the inhibitor SB-431542 and LDN193189, respectively. Thereafter, vasohibin-1, VEGF-A, and VEGF-C expression was detected by real-time RT-PCR. We found that the expression of TGF-β1, TGF-β2, BMP-4, and BMP-7 was upregulated in TAMs cocultured with pancreatic cancer cells. Vasohibin-1, VEGF-A, and VEGF-C mRNA expression in pancreatic cancer cells was upregulated by TAMs. Vasohibin-1 expression in pancreatic cancer cells cocultured with TAMs was upregulated significantly when TGF-β receptors or BMP receptors were inhibited, but VEGF-C expression was downregulated. Therefore, Vasohibin-1 expression is regulated by the TGF-β/BMP signaling between TAMs and pancreatic cancer cells. These results might shed a new light on the antiangiogenesis therapy in the pancreatic cancer. PMID:23651239

  4. BCR and its mutants, the reciprocal t(9;22)-associated ABL/BCR fusion proteins, differentially regulate the cytoskeleton and cell motility

    International Nuclear Information System (INIS)

    The reciprocal (9;22) translocation fuses the bcr (breakpoint cluster region) gene on chromosome 22 to the abl (Abelson-leukemia-virus) gene on chromosome 9. Depending on the breakpoint on chromosome 22 (the Philadelphia chromosome – Ph+) the derivative 9+ encodes either the p40(ABL/BCR) fusion transcript, detectable in about 65% patients suffering from chronic myeloid leukemia, or the p96(ABL/BCR) fusion transcript, detectable in 100% of Ph+ acute lymphatic leukemia patients. The ABL/BCRs are N-terminally truncated BCR mutants. The fact that BCR contains Rho-GEF and Rac-GAP functions strongly suggest an important role in cytoskeleton modeling by regulating the activity of Rho-like GTPases, such as Rho, Rac and cdc42. We, therefore, compared the function of the ABL/BCR proteins with that of wild-type BCR. We investigated the effects of BCR and ABL/BCRs i.) on the activation status of Rho, Rac and cdc42 in GTPase-activation assays; ii.) on the actin cytoskeleton by direct immunofluorescence; and iii) on cell motility by studying migration into a three-dimensional stroma spheroid model, adhesion on an endothelial cell layer under shear stress in a flow chamber model, and chemotaxis and endothelial transmigration in a transwell model with an SDF-1α gradient. Here we show that both ABL/BCRs lost fundamental functional features of BCR regarding the regulation of small Rho-like GTPases with negative consequences on cell motility, in particular on the capacity to adhere to endothelial cells. Our data presented here describe for the first time an analysis of the biological function of the reciprocal t(9;22) ABL/BCR fusion proteins in comparison to their physiological counterpart BCR

  5. BCR and its mutants, the reciprocal t(9;22-associated ABL/BCR fusion proteins, differentially regulate the cytoskeleton and cell motility

    Directory of Open Access Journals (Sweden)

    Puccetti Elena

    2006-11-01

    Full Text Available Abstract Background The reciprocal (9;22 translocation fuses the bcr (breakpoint cluster region gene on chromosome 22 to the abl (Abelson-leukemia-virus gene on chromosome 9. Depending on the breakpoint on chromosome 22 (the Philadelphia chromosome – Ph+ the derivative 9+ encodes either the p40(ABL/BCR fusion transcript, detectable in about 65% patients suffering from chronic myeloid leukemia, or the p96(ABL/BCR fusion transcript, detectable in 100% of Ph+ acute lymphatic leukemia patients. The ABL/BCRs are N-terminally truncated BCR mutants. The fact that BCR contains Rho-GEF and Rac-GAP functions strongly suggest an important role in cytoskeleton modeling by regulating the activity of Rho-like GTPases, such as Rho, Rac and cdc42. We, therefore, compared the function of the ABL/BCR proteins with that of wild-type BCR. Methods We investigated the effects of BCR and ABL/BCRs i. on the activation status of Rho, Rac and cdc42 in GTPase-activation assays; ii. on the actin cytoskeleton by direct immunofluorescence; and iii on cell motility by studying migration into a three-dimensional stroma spheroid model, adhesion on an endothelial cell layer under shear stress in a flow chamber model, and chemotaxis and endothelial transmigration in a transwell model with an SDF-1α gradient. Results Here we show that both ABL/BCRs lost fundamental functional features of BCR regarding the regulation of small Rho-like GTPases with negative consequences on cell motility, in particular on the capacity to adhere to endothelial cells. Conclusion Our data presented here describe for the first time an analysis of the biological function of the reciprocal t(9;22 ABL/BCR fusion proteins in comparison to their physiological counterpart BCR.

  6. Bone tumor

    Science.gov (United States)

    ... physical exam. Tests that may be done include: Alkaline phosphatase blood level Bone biopsy Bone scan Chest x- ... also affect the results of the following tests: Alkaline phosphatase isoenzyme Blood calcium level Parathyroid hormone Blood phosphorus ...

  7. Where did bone come from?

    OpenAIRE

    Obradovic Wagner, Darja; Aspenberg, Per

    2011-01-01

    Bone is specific to vertebrates, and originated as mineralization around the basal membrane of the throat or skin, giving rise to tooth-like structures and protective shields in animals with a soft cartilage-like endoskeleton. A combination of fossil anatomy and genetic information from modern species has improved our understanding of the evolution of bone. Thus, even in man, there are still similarities in the molecular regulation of skin append-ages and bone. This article gives a brief over...

  8. Inhibition of fetal bone development through epigenetic down- regulation of HoxA10 in obese rats fed high fat diet

    Science.gov (United States)

    Epidemiological studies show that maternal obesity during intrauterine and early postnatal life increases the risk of low bone mass and fracture later in life. Here, we show that bone development is inhibited in GED 18.5 embryos from rat dams made obese by feeding a high fat diet (HFD). Moreover, fe...

  9. Immunoregulation of bone remodelling

    Science.gov (United States)

    Singh, Ajai; Mehdi, Abbass A; Srivastava, Rajeshwer N; Verma, Nar Singh

    2012-01-01

    Remodeling, a continuous physiological process maintains the strength of the bones, which maintains a delicate balance between bone formation and resorption process. This review gives an insight to the complex interaction and correlation between the bone remodeling and the corresponding changes in host immunological environment and also summarises the most recent developments occuring in the understanding of this complex field. T cells, both directly and indirectly increase the expression of receptor activator of nuclear factor kB ligand (RANKL); a vital step in the activation of osteoclasts, thus positively regulates the osteoclastogenesis. Though various cytokines, chemikines, transcription factors and co-stimulatory molecules are shared by both skeletal and immune systems, but researches are being conducted to establish and analyse their role and / or control on this complex but vital process. The understanding of this part of research may open new horizons in the management of inflammatory and autoimmune diseases, resulting into bone loss and that of osteoporosis also. PMID:22837895

  10. Loss of bone marrow adrenergic beta 1 and 2 receptors modifies transcriptional networks, reduces circulating inflammatory factors, and regulates blood pressure.

    Science.gov (United States)

    Ahmari, Niousha; Schmidt, Jordan T; Krane, Gregory A; Malphurs, Wendi; Cunningham, Bruce E; Owen, Jennifer L; Martyniuk, Christopher J; Zubcevic, Jasenka

    2016-07-01

    Hypertension (HTN) is a prevalent condition with complex etiology and pathophysiology. Evidence exists of significant communication between the nervous system and the immune system (IS), and there appears to be a direct role for inflammatory bone marrow (BM) cells in the pathophysiology of hypertension. However, the molecular and neural mechanisms underlying this interaction have not been characterized. Here, we transplanted whole BM cells from the beta 1 and 2 adrenergic receptor (AdrB1(tm1Bkk)AdrB2(tm1Bkk)/J) knockout (KO) mice into near lethally irradiated C57BL/6J mice to generate a BM AdrB1.B2 KO chimera. This allowed us to evaluate the role of the BM beta 1 and beta 2 adrenergic receptors in mediating BM IS homeostasis and regulating blood pressure (BP) in an otherwise intact physiological setting. Fluorescence-activated cell sorting demonstrated that a decrease in systolic and mean BP in the AdrB1.B2 KO chimera is associated with a decrease in circulating inflammatory T cells, macrophage/monocytes, and neutrophils. Transcriptomics in the BM identified 7,419 differentially expressed transcripts between the C57 and AdrB1.B2 KO chimera. Pathway analysis revealed differentially expressed transcripts related to several cell processes in the BM of C57 compared with AdrB1.B2 KO chimera, including processes related to immunity (e.g., T-cell activation, T-cell recruitment, cytokine production, leukocyte migration and function), the cardiovascular system (e.g., blood vessel development, peripheral nerve blood flow), and the brain (e.g., central nervous system development, neurite development) among others. This study generates new insight into the molecular events that underlie the interaction between the sympathetic drive and IS in modulation of BP. PMID:27235450

  11. Osthole-mediated cell differentiation through bone morphogenetic protein-2/p38 and extracellular signal-regulated kinase 1/2 pathway in human osteoblast cells.

    Science.gov (United States)

    Kuo, Po-Lin; Hsu, Ya-Ling; Chang, Cheng-Hsiung; Chang, Jiunn-Kae

    2005-09-01

    The survival of osteoblast cells is one of the determinants of the development of osteoporosis in patients. Osthole (7-methoxy-8-isopentenoxycoumarin) is a coumarin derivative present in many medicinal plants. By means of alkaline phosphatase (ALP) activity, osteocalcin, osteopontin, and type I collagen, enzyme-linked immunosorbent assay, we have shown that osthole exhibits a significant induction of differentiation in two human osteoblast-like cell lines, MG-63 and hFOB. Induction of differentiation by osthole was associated with increased bone morphogenetic protein (BMP)-2 production and the activations of SMAD1/5/8 and p38 and extracellular signal-regulated kinase (ERK) 1/2 kinases. Addition of purified BMP-2 protein did not increase the up-regulation of ALP activity and osteocalcin by osthole, whereas the BMP-2 antagonist noggin blocked both osthole and BMP-2-mediated ALP activity enhancement, indicating that BMP-2 production is required in osthole-mediated osteoblast maturation. Pretreatment of osteoblast cells with noggin abrogated p38 activation but only partially decreased ERK1/2 activation, suggesting that BMP-2 signaling is required in p38 activation and is partially involved in ERK1/2 activation in osthole-treated osteoblast cells. Cotreatment of p38 inhibitor SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole] or p38 small interfering RNA (siRNA) expression inhibited osthole-mediated activation of ALP but only slightly affected osteocalcin production. In contrast, the production of osteocalcin induced by osthole was inhibited by the mitogen-activated protein kinase kinase inhibitor PD98059 (2'-amino-3'-methoxyflavone) or by expression of an ERK2 siRNA. These data suggest that BMP-2/p38 pathway links to the early phase, whereas ERK1/2 pathway is associated with the later phase in osthole-mediated differentiation of osteoblast cells. In this study, we demonstrate that osthole is a promising agent for treating osteoporosis

  12. Human Osteoblast Differentiation and Bone Formation: Growth Factors, Hormones and Regulatory Networks

    OpenAIRE

    Eijken, Marco

    2007-01-01

    textabstractOsteoporosis is the most common bone disease and is characterized by low bone mass, micro architectural deterioration and decreased bone quality resulting in increased risk of fractures. Osteoblasts, the bone forming cells, play a crucial role in the regulation of bone mass and bone quality. Osteoblasts are of mesenchymal origin and undergo a complex differentiation process regulated by many endocrine and autocrine factors. In order to develop novel bone anabolic drugs, more knowl...

  13. Androgen and bone mass in men

    Institute of Scientific and Technical Information of China (English)

    AnnieW.C.Kung

    2003-01-01

    Androgens have multiple actions on the skeleton throughout life. Androgens promote skeletal growth and accumulation of minerals during puberty and adolescence and stimulate osteoblast but suppress osteoclast function,activity and lifespan through complex mechanisms. Also androgens increase periosteal bone apposition, resulting in larger bone size and thicker cortical bone in men. There is convincing evidence to show that aromatization to estrogens was an important pathway for mediating the action of testosterone on bone physiology. Estrogen is probably the dominant sex steroid regulating bone resorption in men, but both testosterone and estrogen are important in maintaining bone formation. ( Asian J Androl 2003 Jun; 5: 148-154)

  14. Bone metabolism during pregnancy.

    Science.gov (United States)

    Salles, Jean Pierre

    2016-06-01

    During pregnancy, mineral concentrations, of calcium and phosphorus in particular, are maintained at a high level in fetal blood so that the developing skeleton may accrete adequate mineral content. The placenta actively transports minerals for this purpose. Maternal intestinal absorption increases in order to meet the fetal demand for calcium, which is only partly dependent on calcitriol. Mineral regulation is essentially dependent on parathyroid hormone (PTH) and PTH-related protein (PTHrP). The calcium-sensing receptor (CaSR) regulates PTH and PTHrP production. If calcium intake is insufficient, the maternal skeleton will undergo resorption due to PTHrP. After birth, a switch from fetal to neonatal homeostasis occurs through increase in PTH and calcitriol, and developmental adaptation of the kidneys and intestines with bone turnover contributing additional mineral to the circulation. Calcium absorption becomes progressively active and dependent on calcitriol. The postnatal skeleton can transiently present with osteoposis but adequate mineral diet usually allows full restoration. Cases of primary osteoporosis must be identified. Loss of trabecular mineral content occurs during lactation in order to provide calcium to the newborn. This programmed bone loss is dependent on a "brain-breast-bone" circuit. The physiological bone resorption during reproduction does not normally cause fractures or persistent osteoporosis. Women who experience fracture are likely to have other causes of bone loss. PMID:27157104

  15. BIOMECHANICAL ANALYSIS OF HUMAN FEMUR BONE

    OpenAIRE

    RAJI NARELIYA,; VEERENDRA KUMAR

    2011-01-01

    Biomechanics is the theory of how tissues, cells, muscles, bones, organs and the motion of them and how their form and function are regulated by basic mechanical properties. A finite element model of bones with accurate geometry and material properties retrieved from CT scan data are being widely used to make realistic investigations on the mechanical behavior of bone structures. The aim of this study is to create a model of real proximal human femur bone for evaluating the finite element ana...

  16. Mechanical Signaling for Bone Modeling and Remodeling

    OpenAIRE

    Robling, Alexander G.; Turner, Charles H.

    2009-01-01

    Proper development of the skeleton in utero and during growth requires mechanical stimulation. Loading results in adaptive changes in bone that strengthen bone structure. Bone’s adaptive response is regulated by the ability of resident bone cells to perceive and translate mechanical energy into a cascade of structural and biochemical changes within the cells — a process known as mechanotransduction. Mechanotransduction pathways are among the most anabolic in bone, and consequently, there is g...

  17. Bone morphogenetic proteins: Periodontal regeneration

    Directory of Open Access Journals (Sweden)

    Subramaniam M Rao

    2013-01-01

    Full Text Available Periodontitis is an infectious inflammatory disease that results in attachment loss and bone loss. Regeneration of the periodontal tissues entails de novo formation of cementum, periodontal ligament, and alveolar bone. Several different approaches are currently being explored to achieve complete, reliable, and reproducible regeneration of periodontal tissues. The therapeutic management of new bone formation is one of the key issues in successful periodontal regeneration. Bone morphogenetic proteins form a unique group of proteins within the transforming growth factor superfamily of genes and have a vital role in the regulation in the bone induction and maintenance. The activity of bone morphogenetic proteins was first identified in the 1960s, but the proteins responsible for bone induction were unknown until the purification and cloning of human bone morphogenetic proteins in the 1980s, because of their osteoinductive potential. Bone morphogenetic proteins have gained a lot of interest as therapeutic agents for treating periodontal defects. A systematic search for data related to the use of bone morphogenetic proteins for the regeneration of periodontal defects was performed to recognize studies on animals and human (PUBMED, MEDLINE, COCHRANE, and Google search. All the studies included showed noticeable regeneration of periodontal tissues with the use of BMP.

  18. [Bone diseases].

    Science.gov (United States)

    Uebelhart, Brigitte; Rizzoli, René

    2016-01-13

    Calcium intake shows a small impact on bone mineral density and fracture risk. Denosumab is a more potent inhibitor of bone resorption than zoledronate. Abaloparatide, PTHrP analog, increases bone mineral density and decreases fracture incidence. Teriparatide could be delivered via a transdermic device. Romosozumab and odanacatib improve calculated bone strength. Sequential or combined treatments with denosumab and teriparatide could be of interest, but not denosumab followed by teriparatide. Fibrous dysplasia, Paget disease and hypophosphatasia are updated, as well as atypical femoral fracture and osteonecrosis of the jaw. PMID:26946704

  19. Osteoclasts secrete non-bone derived signals that induce bone formation

    DEFF Research Database (Denmark)

    Karsdal, Morten A; Neutzsky-Wulff, Anita V; Dziegiel, Morten Hanefeld;

    2008-01-01

    Bone turnover is a highly regulated process, where bone resorption in the normal healthy individual always is followed by bone formation in a manner referred to as coupling. Patients with osteopetrosis caused by defective acidification of the resorption lacuna have severely decreased resorption, in...... face of normal or even increased bone formation. This suggests that osteoclasts, not their resorptive activity, are important for sustaining bone formation. To investigate whether osteoclasts mediate control of bone formation by production of bone anabolic signals, we collected conditioned media (CM......) from human osteoclasts cultured on either bone or plastic, and tested their effects on bone nodule formation by osteoblasts. Both types of CM were shown to dose-dependently induce bone nodule formation, whereas non-conditioned osteoclast culture medium had no effects. These data show that osteoclasts...

  20. Crosstalk between cartilage and bone: when bone cytokines matter.

    Science.gov (United States)

    Funck-Brentano, Thomas; Cohen-Solal, Martine

    2011-04-01

    The cartilage damage which characterizes osteoarthritis is often accompanied by bone lesions. Joint integrity results from the balance in the physiological interactions between bone and cartilage. Several local factors regulate the physiological remodeling of cartilage, the disequilibrium of these leading to a higher cartilage catabolism. Several cytokines secreted by bone cells can induce chondrocyte differentiation, which suggests their role in the dialogue between both cells. Accumulative in vivo evidence shows that increased bone resorption occurs at an early stage in the development of osteoarthritis and that blocking bone-resorbing cytokines prevents cartilage damage, confirming the role of bone factors in the crosstalk of both tissues. Recently, molecules of the Wnt pathway have emerged as key regulators of bone and cartilage. Activation of Wnt/βcatenin induces an imbalance in cartilage homeostasis, and agonists/antagonists of Wnt are potential candidates for this interaction. This review will summarize what is known about the contribution of bone cytokines to the physiological remodeling of cartilage and in the pathophysiology of osteoarthritis. PMID:21596615

  1. Paradoxical signaling regulates structural plasticity in dendritic spines.

    Science.gov (United States)

    Rangamani, Padmini; Levy, Michael G; Khan, Shahid; Oster, George

    2016-09-01

    Transient spine enlargement (3- to 5-min timescale) is an important event associated with the structural plasticity of dendritic spines. Many of the molecular mechanisms associated with transient spine enlargement have been identified experimentally. Here, we use a systems biology approach to construct a mathematical model of biochemical signaling and actin-mediated transient spine expansion in response to calcium influx caused by NMDA receptor activation. We have identified that a key feature of this signaling network is the paradoxical signaling loop. Paradoxical components act bifunctionally in signaling networks, and their role is to control both the activation and the inhibition of a desired response function (protein activity or spine volume). Using ordinary differential equation (ODE)-based modeling, we show that the dynamics of different regulators of transient spine expansion, including calmodulin-dependent protein kinase II (CaMKII), RhoA, and Cdc42, and the spine volume can be described using paradoxical signaling loops. Our model is able to capture the experimentally observed dynamics of transient spine volume. Furthermore, we show that actin remodeling events provide a robustness to spine volume dynamics. We also generate experimentally testable predictions about the role of different components and parameters of the network on spine dynamics. PMID:27551076

  2. Talking Bones.

    Science.gov (United States)

    Johnson, Jaclyn; Kassing, Sharon

    2002-01-01

    Describes cooperation with the Saint Louis Zoo to provide opportunities for elementary school students to learn about bones, how animals move, what they eat, and how much they grow. Uses biofacts which include bones, skulls, and other parts to make the laboratory a hands-on experience for students. (YDS)

  3. Bone Markers

    Science.gov (United States)

    ... bone turnover: C-telopeptide (C-terminal telopeptide of type 1 collagen (CTx)) – a marker for bone resorption. It is ... resorption include: N-telopeptide (N-terminal telopeptide of type 1 collagen (NTx)) – a peptide fragment from the amino terminal ...

  4. Paxillin kinase linker (PKL) regulates Vav2 signaling during cell spreading and migration

    Science.gov (United States)

    Jones, Matthew C.; Machida, Kazuya; Mayer, Bruce J.; Turner, Christopher E.

    2013-01-01

    The Rho family of GTPases plays an important role in coordinating dynamic changes in the cell migration machinery after integrin engagement with the extracellular matrix. Rho GTPases are activated by guanine nucleotide exchange factors (GEFs) and negatively regulated by GTPase-activating proteins (GAPs). However, the mechanisms by which GEFs and GAPs are spatially and temporally regulated are poorly understood. Here the activity of the proto-oncogene Vav2, a GEF for Rac1, RhoA, and Cdc42, is shown to be regulated by a phosphorylation-dependent interaction with the ArfGAP PKL (GIT2). PKL is required for Vav2 activation downstream of integrin engagement and epidermal growth factor (EGF) stimulation. In turn, Vav2 regulates the subsequent redistribution of PKL and the Rac1 GEF β-PIX to focal adhesions after EGF stimulation, suggesting a feedforward signaling loop that coordinates PKL-dependent Vav2 activation and PKL localization. Of interest, Vav2 is required for the efficient localization of PKL and β-PIX to the leading edge of migrating cells, and knockdown of Vav2 results in a decrease in directional persistence and polarization in migrating cells, suggesting a coordination between PKL/Vav2 signaling and PKL/β-PIX signaling during cell migration. PMID:23615439

  5. Regulating Rac in the Nervous System: Molecular Function and Disease Implication of Rac GEFs and GAPs

    Directory of Open Access Journals (Sweden)

    Yanyang Bai

    2015-01-01

    Full Text Available Rho family GTPases, including RhoA, Rac1, and Cdc42 as the most studied members, are master regulators of actin cytoskeletal organization. Rho GTPases control various aspects of the nervous system and are associated with a number of neuropsychiatric and neurodegenerative diseases. The activity of Rho GTPases is controlled by two families of regulators, guanine nucleotide exchange factors (GEFs as the activators and GTPase-activating proteins (GAPs as the inhibitors. Through coordinated regulation by GEFs and GAPs, Rho GTPases act as converging signaling molecules that convey different upstream signals in the nervous system. So far, more than 70 members of either GEFs or GAPs of Rho GTPases have been identified in mammals, but only a small subset of them have well-known functions. Thus, characterization of important GEFs and GAPs in the nervous system is crucial for the understanding of spatiotemporal dynamics of Rho GTPase activity in different neuronal functions. In this review, we summarize the current understanding of GEFs and GAPs for Rac1, with emphasis on the molecular function and disease implication of these regulators in the nervous system.

  6. Cdc42p and Fus2p act together late in yeast cell fusion

    OpenAIRE

    Ydenberg, Casey A.; Stein, Richard A; Rose, Mark D.

    2012-01-01

    Cell fusion is the key event of fertilization that gives rise to the diploid zygote and is a nearly universal aspect of eukaryotic biology. In the yeast Saccharomyces cerevisiae, several mutants have been identified that are defective for cell fusion, and yet the molecular mechanism of this process remains obscure. One obstacle has been that genetic screens have mainly focused on mating-specific factors, whereas the process likely involves housekeeping proteins as well. Here we implicate Cdc4...

  7. Cdc42-dependent leading edge coordination is essential for interstitial dendritic cell migration

    DEFF Research Database (Denmark)

    Lammermann, Tim; Renkawitz, Jorg; Wu, Xunwei; Hirsch, Karin; Brakebusch, Cord; Sixt, Michael

    2009-01-01

    Mature dendritic cells (DCs) moving from the skin to the lymph node are a prototypic example of rapidly migrating amoeboid leukocytes. Interstitial DC migration is directionally guided by chemokines, but independent of specific adhesive interactions with the tissue as well as pericellular...

  8. Rho-family GTPase Cdc42 controls migration of Langerhans cells in vivo

    DEFF Research Database (Denmark)

    Luckashenak, Nancy; Wähe, Anna; Breit, Katharina;

    2013-01-01

    Epidermal Langerhans cells (LCs) of the skin represent the prototype migratory dendritic cell (DC) subtype. In the skin, they take up Ag, migrate to the draining lymph nodes, and contribute to Ag transport and immunity. Different depletion models for LCs have revealed contrasting roles and contri...

  9. Bone densitometry

    DEFF Research Database (Denmark)

    Ravn, Pernille; Alexandersen, P; Møllgaard, A

    1999-01-01

    The bisphosphonates have been introduced as alternatives to hormone replacement therapy (HRT) for the treatment and prevention of postmenopausal osteoporosis. The expected increasing application in at clinical practice demands cost-effective and easily handled methods to monitor the effect on bone....... The weak response at the distal forearm during antiresorptive treatment has restricted the use of bone densitometry at this region. We describe a new model for bone densitometry at the distal forearm, by which the response obtained is comparable to the response in other regions where bone densitometry...... is much more expensive and technically complicated. By computerized iteration of single X-ray absorptiometry forearm scans we defined a region with 65% trabecular bone. The region was analyzed in randomized, double-masked, placebo- controlled trials: a 2-year trial with alendronate (n = 69), a 1-year...

  10. Vascular homeostasis regulators, Edn1 and Agpt2, are upregulated as a protective effect of heat-treated zinc yeast in irradiated murine bone marrow

    International Nuclear Information System (INIS)

    The purpose of this study was to elucidate the mechanism underlying the in vivo radioprotection activity by Zn-containing, heat-treated Saccharomyces cerevisiae yeast (Zn-yeast). Zn-yeast suspension was administered into C3H/He mice immediately after whole body irradiation (WBI) at 7.5 Gy. Bone marrow was extracted from the mice 6 hours after irradiation and analyzed on a microarray. Expression changes in the candidate responsive genes differentially expressed in treated mice were re-examined by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The bone marrow was also examined pathologically at 6 h, 3, 7, and 14 days postirradiation. Thirty-six genes, including Edn1 and Agpt2, were identified as candidate responsive genes in irradiated mouse bone marrow treated with Zn-yeast by showing a greater than three-fold change compared with control (no irradiation and no Zn-yeast) mice. The expressions of Cdkn1a, Bax, and Ccng, which are well known as radioresponsive genes, were upregulated in WBI mice and Zn-yeast treated WBI mice. Pathological examination showed the newly formed microvessels lined with endothelial cells, and small round hematopoietic cells around vessels in bone marrow matrix of mice administered with Zn-yeast after WBI, while whole-body irradiated mice developed fatty bone marrow within 2 weeks after irradiation. This study identified a possible mechanism for the postirradiation protection conferred by Zn-yeast. The protective effect of Zn-yeast against WBI is related to maintaining the bone marrow microenvironment, including targeting endothelial cells and cytokine release. (author)

  11. Parallel mechanisms suppress cochlear bone remodeling to protect hearing.

    Science.gov (United States)

    Jáuregui, Emmanuel J; Akil, Omar; Acevedo, Claire; Hall-Glenn, Faith; Tsai, Betty S; Bale, Hrishikesh A; Liebenberg, Ellen; Humphrey, Mary Beth; Ritchie, Robert O; Lustig, Lawrence R; Alliston, Tamara

    2016-08-01

    Bone remodeling, a combination of bone resorption and formation, requires precise regulation of cellular and molecular signaling to maintain proper bone quality. Whereas osteoblasts deposit and osteoclasts resorb bone matrix, osteocytes both dynamically resorb and replace perilacunar bone matrix. Osteocytes secrete proteases like matrix metalloproteinase-13 (MMP13) to maintain the material quality of bone matrix through perilacunar remodeling (PLR). Deregulated bone remodeling impairs bone quality and can compromise hearing since the auditory transduction mechanism is within bone. Understanding the mechanisms regulating cochlear bone provides unique ways to assess bone quality independent of other aspects that contribute to bone mechanical behavior. Cochlear bone is singular in its regulation of remodeling by expressing high levels of osteoprotegerin. Since cochlear bone expresses a key PLR enzyme, MMP13, we examined whether cochlear bone relies on, or is protected from, osteocyte-mediated PLR to maintain hearing and bone quality using a mouse model lacking MMP13 (MMP13(-/-)). We investigated the canalicular network, collagen organization, lacunar volume via micro-computed tomography, and dynamic histomorphometry. Despite finding defects in these hallmarks of PLR in MMP13(-/-) long bones, cochlear bone revealed no differences in these markers, nor hearing loss as measured by auditory brainstem response (ABR) or distortion product oto-acoustic emissions (DPOAEs), between wild type and MMP13(-/-) mice. Dynamic histomorphometry revealed abundant PLR by tibial osteocytes, but near absence in cochlear bone. Cochlear suppression of PLR corresponds to repression of several key PLR genes in the cochlea relative to long bones. These data suggest that cochlear bone uniquely maintains bone quality and hearing independent of MMP13-mediated osteocytic PLR. Furthermore, the cochlea employs parallel mechanisms to inhibit remodeling by osteoclasts and osteoblasts, and by

  12. Anorexia nervosa, obesity and bone metabolism.

    Science.gov (United States)

    Misra, Madhusmita; Klibanski, Anne

    2013-09-01

    Anorexia nervosa and obesity are conditions at the extreme ends of the nutritional spectrum, associated with marked reductions versus increases respectively in body fat content. Both conditions are also associated with an increased risk for fractures. In anorexia nervosa, body composition and hormones secreted or regulated by body fat content are important determinants of low bone density, impaired bone structure and reduced bone strength. In addition, anorexia nervosa is characterized by increases in marrow adiposity and decreases in cold activated brown adipose tissue, both of which are related to low bone density. In obese individuals, greater visceral adiposity is associated with greater marrow fat, lower bone density and impaired bone structure. In this review, we discuss bone metabolism in anorexia nervosa and obesity in relation to adipose tissue distribution and hormones secreted or regulated by body fat content. PMID:24079076

  13. Anorexia Nervosa, Obesity and Bone Metabolism

    Science.gov (United States)

    Misra, Madhusmita; Klibanski, Anne

    2014-01-01

    Anorexia nervosa and obesity are conditions at the extreme ends of the nutritional spectrum, associated with marked reductions versus increases respectively in body fat content. Both conditions are also associated with an increased risk for fractures. In anorexia nervosa, body composition and hormones secreted or regulated by body fat content are important determinants of low bone density, impaired bone structure and reduced bone strength. In addition, anorexia nervosa is characterized by increases in marrow adiposity and decreases in cold activated brown adipose tissue, both of which are related to low bone density. In obese individuals, greater visceral adiposity is associated with greater marrow fat, lower bone density and impaired bone structure. In this review, we discuss bone metabolism in anorexia nervosa and obesity in relation to adipose tissue distribution and hormones secreted or regulated by body fat content. PMID:24079076

  14. Biological effects of 2-oxoglutarate with particular emphasis on the regulation of protein, mineral and lipid absorption/metabolism, muscle performance, kidney function, bone formation and cancerogenesis, all viewed from a healthy ageing perspective state of the art

    DEFF Research Database (Denmark)

    Harrison, Adrian Paul; Pierzynowski, S.G.

    of the Krebs cycle intermediate - alphaketoglutaric acid (AKG) in protecting elderly body systems from failing and degradation. The topics of paramount importance include impaied bone structure and strength, amino acid and mineral absorption, muscle performance, as well as highlighting the role of...... Krebs cycle intermediates in the debilitating changes that occur with end-stage renal failure and the regulation of the lipid metabolism. Finally, focus will be given to the role of 2-oxoglutarate as a potent protective factor in connection with the development of malignant cells in the body....

  15. Decorin is down-regulated in multiple myeloma and MGUS bone marrow plasma and inhibits HGF-induced myeloma plasma cell viability and migration

    DEFF Research Database (Denmark)

    Kristensen, Ida Bruun; Pedersen, Lise Mariager; Rø, Torstein Baade;

    2013-01-01

    pathway in multiple myeloma (MM). METHODS: Decorin levels in paired peripheral blood and bone marrow plasma samples from healthy volunteers (HV) (n=23), and patients with monoclonal gammopathy of undetermined significance (MGUS) (n=41) and MM (n=19) were determined by ELISA. Further, the ability of...

  16. The clock genes Period 2 and Cryptochrome 2 differentially balance bone formation

    NARCIS (Netherlands)

    E. Maronde (Erik); A.F. Schilling (Arndt); S. Seitz (Sebastian); T. Schinke (Thorsten); I. Schmutz (Isabelle); G.T.J. van der Horst (Gijsbertus); M. Amling (Michael); U. Albrecht (Urs)

    2010-01-01

    textabstractBackground: Clock genes and their protein products regulate circadian rhythms in mammals but have also been implicated in various physiological processes, including bone formation. Osteoblasts build new mineralized bone whereas osteoclasts degrade it thereby balancing bone formation. To

  17. RAS and RHO families of GTPases directly regulate distinct phosphoinositide 3-kinase isoforms.

    Science.gov (United States)

    Fritsch, Ralph; de Krijger, Inge; Fritsch, Kornelia; George, Roger; Reason, Beth; Kumar, Madhu S; Diefenbacher, Markus; Stamp, Gordon; Downward, Julian

    2013-05-23

    RAS proteins are important direct activators of p110α, p110γ, and p110δ type I phosphoinositide 3-kinases (PI3Ks), interacting via an amino-terminal RAS-binding domain (RBD). Here, we investigate the regulation of the ubiquitous p110β isoform of PI3K, implicated in G-protein-coupled receptor (GPCR) signaling, PTEN-loss-driven cancers, and thrombocyte function. Unexpectedly, RAS is unable to interact with p110β, but instead RAC1 and CDC42 from the RHO subfamily of small GTPases bind and activate p110β via its RBD. In fibroblasts, GPCRs couple to PI3K through Dock180/Elmo1-mediated RAC activation and subsequent interaction with p110β. Cells from mice carrying mutations in the p110β RBD show reduced PI3K activity and defective chemotaxis, and these mice are resistant to experimental lung fibrosis. These findings revise our understanding of the regulation of type I PI3K by showing that both RAS and RHO family GTPases directly regulate distinct ubiquitous PI3K isoforms and that RAC activates p110β downstream of GPCRs. PMID:23706742

  18. Paradoxical Response to Mechanical Unloading in Bone Loss, Microarchitecture, and Bone Turnover Markers

    OpenAIRE

    Sun, Xiaodi; Kaiyun YANG; Wang, Chune; Cao, Sensen; Merritt, Mackenzie; Hu, Yingwei; Xu, Xin

    2015-01-01

    Background: Sclerostin, encoded by the SOST gene, has been implicated in the response to mechanical loading in bone. Some studies demonstrated that unloading leads to up-regulated SOST expression, which may induce bone loss. Purpose: Most reported studies regarding the changes caused by mechanical unloading were only based on a single site. Considering that the longitudinal bone growth leads to cells of different age with different sensitivity to unloading, we hypothesized that bone turnover ...

  19. From bone to breast and back - the bone cytokine RANKL and breast cancer

    OpenAIRE

    Hofbauer, Lorenz C; Rachner, Tilman D; Hamann, Christine

    2011-01-01

    Receptor activator of nuclear factor-κB ligand (RANKL) plays a pivotal role in regulating bone homeostasis. Osteoporosis and malignant bone disease secondary to breast cancer are characterized by enhanced RANKL production and increased bone turnover. Thus, denosumab, a monoclonal antibody to RANKL, has been developed and is now approved for various bone loss conditions. Recent results indicate that RANKL may also promote the development and osseous migration of breast cancer.

  20. Bone Tumor

    Science.gov (United States)

    ... the knee in either the femur (thigh) or tibia (shinbone). Other common locations include the hip and ... bone that is weakened by a tumor to fracture, or break. This may be severely painful. Occasionally, ...

  1. Your Bones

    Science.gov (United States)

    ... a fall! If you play sports like football, soccer, lacrosse, or ice hockey, always wear all the ... to strengthen your bones is through exercise like running, jumping, dancing, and playing sports. Take these steps ...

  2. Multiple quantitative trait loci for cortical and trabecular bone regulation map to mid-distal mouse chromosome 4 that shares linkage homology to human chromosome 1p36.

    Science.gov (United States)

    Beamer, Wesley G; Shultz, Kathryn L; Coombs, Harold F; Horton, Lindsay G; Donahue, Leah Rae; Rosen, Clifford J

    2012-01-01

    The mid-distal region of mouse chromosome 4 (Chr 4) is homologous with human Chr 1p36. Previously, we reported that mouse Chr 4 carries a quantitative trait locus (QTL) with strong regulatory effect on volumetric bone mineral density (vBMD). The intent of this study is to utilize nested congenic strains to decompose the genetic complexity of this gene-rich region. Adult females and males from 18 nested congenic strains carrying discrete C3H sequences were phenotyped for femoral mineral and volume by pQCT and for trabecular bone volume (BV), tissue volume (TV), trabecular number (Trab.no), and trabecular thickness (Trab.thk) by MicroCT 40. Our data show that the mouse Chr 4 region consists of at least 10 regulatory QTL regions that affected either or both pQCT and MicroCT 40 phenotypes. The pQCT phenotypes were typically similar between sexes, whereas the MicroCT 40 phenotypes were divergent. Individual congenic strains contained one to seven QTL regions. These regions conferred large positive or negative effects in some congenic strains, depending on the particular bone phenotype. The QTL regions II to X are syntenic with human 1p36, containing from 1 to 102 known genes. We identified 13 candidate genes that can be linked to bone within these regions. Six of these genes were linked to osteoblasts, three linked to osteoclasts, and two linked to skeletal development. Three of these genes have been identified in Genome Wide Association Studies (GWAS) linked to 1p36. In region III, there is only one gene, Lck, which conferred negative pQCT and MicroCT 40 phenotypes in both sexes. This gene is important to development and functioning of T cells, has been associated with osteoclast activity, and represents a novel bone regulatory gene that merits further experimental evaluation. In summary, congenic strains are powerful tools for identifying regulatory regions that influence bone biology and offer models for testing hypotheses about gene-gene and gene

  3. Skeleton and Glucose Metabolism: A Bone-Pancreas Loop

    OpenAIRE

    2015-01-01

    Bone has been considered a structure essential for mobility, calcium homeostasis, and hematopoietic function. Recent advances in bone biology have highlighted the importance of skeleton as an endocrine organ which regulates some metabolic pathways, in particular, insulin signaling and glucose tolerance. This review will point out the role of bone as an endocrine “gland” and, specifically, of bone-specific proteins, as the osteocalcin (Ocn), and proteins involved in bone remodeling, as osteopr...

  4. Molecular regulation of osteoclast activity.

    Science.gov (United States)

    Bruzzaniti, Angela; Baron, Roland

    2006-06-01

    Osteoclasts are multinucleated cells derived from hematopoietic precursors that are primarily responsible for the degradation of mineralized bone during bone development, homeostasis and repair. In various skeletal disorders such as osteoporosis, hypercalcemia of malignancy, tumor metastases and Paget's disease, bone resorption by osteoclasts exceeds bone formation by osteoblasts leading to decreased bone mass, skeletal fragility and bone fracture. The overall rate of osteoclastic bone resorption is regulated either at the level of differentiation of osteoclasts from their monocytic/macrophage precursor pool or through the regulation of key functional proteins whose specific activities in the mature osteoclast control its attachment, migration and resorption. Thus, reducing osteoclast numbers and/or decreasing the bone resorbing activity of osteoclasts are two common therapeutic approaches for the treatment of hyper-resorptive skeletal diseases. In this review, several of the key functional players involved in the regulation of osteoclast activity will be discussed. PMID:16951988

  5. Bone densitometer

    International Nuclear Information System (INIS)

    In an x-ray bone densitometer, special calibration techniques are employed to accommodate variations. In one aspect, a bone-like calibration material is interposed and the system determines the calibration data from rays passing only through flesh. In another aspect, a rotating device carries the calibration material through the beam. The specific densitometer shown uses an x-ray tube operated at two different voltages to generate a pencil beam, the energy levels of the x-ray photons being a function of the voltage applied. An integrating detector is timed to integrate the detected signal of the patient-attenuated beam over each pulse, the signals are converted to digital values and a digital computer converts the set of values produced by the raster scan into a representation of the bone density of the patient. Multiple reference detectors with differing absorbers are used by the system to continuously correct for variation in voltage and current of the x-ray tube. Calibration is accomplished by the digital computer on the basis of passing the pencil beam through known bone-representing substance as the densitometer scans portions of the patient having bone and adjacent portions having only flesh. A set of detected signals affected by the calibration substance in regions having only flesh is compared by the computer with a set of detected signals unaffected by the calibration material

  6. Ornithine decarboxylase and extracellular polyamines regulate microvascular sprouting and actin cytoskeleton dynamics in endothelial cells

    International Nuclear Information System (INIS)

    The polyamines are essential for cancer cell proliferation during tumorigenesis. Targeted inhibition of ornithine decarboxylase (ODC), i.e. a key enzyme of polyamine biosynthesis, by α-difluoromethylornithine (DFMO) has shown anti-neoplastic activity in various experimental models. This activity has mainly been attributed to the anti-proliferative effect of DFMO in cancer cells. Here, we provide evidence that unperturbed ODC activity is a requirement for proper microvessel sprouting ex vivo as well as the migration of primary human endothelial cells. DFMO-mediated ODC inhibition was reversed by extracellular polyamine supplementation, showing that anti-angiogenic effects of DFMO were specifically related to polyamine levels. ODC inhibition was associated with an abnormal morphology of the actin cytoskeleton during cell spreading and migration. Moreover, our data suggest that de-regulated actin cytoskeleton dynamics in DFMO treated endothelial cells may be related to constitutive activation of the small GTPase CDC42, i.e. a well-known regulator of cell motility and actin cytoskeleton remodeling. These insights into the potential role of polyamines in angiogenesis should stimulate further studies testing the combined anti-tumor effect of polyamine inhibition and established anti-angiogenic therapies in vivo.

  7. The p38/MK2/Hsp25 pathway is required for BMP-2-induced cell migration.

    Directory of Open Access Journals (Sweden)

    Cristina Gamell

    Full Text Available BACKGROUND: Bone morphogenetic proteins (BMPs have been shown to participate in the patterning and specification of several tissues and organs during development and to regulate cell growth, differentiation and migration in different cell types. BMP-mediated cell migration requires activation of the small GTPase Cdc42 and LIMK1 activities. In our earlier report we showed that activation of LIMK1 also requires the activation of PAKs through Cdc42 and PI3K. However, the requirement of additional signaling is not clearly known. METHODOLOGY/PRINCIPAL FINDINGS: Activation of p38 MAPK has been shown to be relevant for a number of BMP-2's physiological effects. We report here that BMP-2 regulation of cell migration and actin cytoskeleton remodelling are dependent on p38 activity. BMP-2 treatment of mesenchymal cells results in activation of the p38/MK2/Hsp25 signaling pathway downstream from the BMP receptors. Moreover, chemical inhibition of p38 signaling or genetic ablation of either p38α or MK2 blocks the ability to activate the downstream effectors of the pathway and abolishes BMP-2-induction of cell migration. These signaling effects on p38/MK2/Hsp25 do not require the activity of either Cdc42 or PAK, whereas p38/MK2 activities do not significantly modify the BMP-2-dependent activation of LIMK1, measured by either kinase activity or with an antibody raised against phospho-threonine 508 at its activation loop. Finally, phosphorylated Hsp25 colocalizes with the BMP receptor complexes in lamellipodia and overexpression of a phosphorylation mutant form of Hsp25 is able to abolish the migration of cells in response to BMP-2. CONCLUSIONS: These results indicate that Cdc42/PAK/LIMK1 and p38/MK2/Hsp25 pathways, acting in parallel and modulating specific actin regulatory proteins, play a critical role in integrating responses during BMP-induced actin reorganization and cell migration.

  8. Bone lesion biopsy

    Science.gov (United States)

    Bone biopsy; Biopsy - bone ... needle is gently pushed and twisted into the bone. Once the sample is obtained, the needle is ... sample is sent to a lab for examination. Bone biopsy may also be done under general anesthesia ...

  9. What Is Bone?

    Science.gov (United States)

    ... by your browser. Home Bone Basics What Is Bone? Publication available in: PDF (57 KB) Related Resources ... Men, and Osteoporosis Osteoporosis Prevention For Your Information Bone Remodeling Throughout life, bone is constantly renewed through ...

  10. Calcium and bones

    Science.gov (United States)

    Bone strength and calcium ... calcium (as well as phosphorus) to make healthy bones. Bones are the main storage site of calcium in ... your body does not absorb enough calcium, your bones can get weak or will not grow properly. ...

  11. Facts about Broken Bones

    Science.gov (United States)

    ... White House Lunch Recipes The Facts About Broken Bones KidsHealth > For Kids > The Facts About Broken Bones ... through the skin . continue What Happens When a Bone Breaks? It hurts to break a bone! It's ...

  12. Bone biopsy (image)

    Science.gov (United States)

    A bone biopsy is performed by making a small incision into the skin. A biopsy needle retrieves a sample of bone and it ... examination. The most common reasons for bone lesion biopsy are to distinguish between benign and malignant bone ...

  13. Bone lesion biopsy

    Science.gov (United States)

    Bone biopsy; Biopsy - bone ... is sent to a lab for examination. Bone biopsy may also be done under general anesthesia to ... remove the bone can be done if the biopsy exam shows that there is an abnormal growth ...

  14. Common endocrine control of body weight, reproduction, and bone mass

    Science.gov (United States)

    Takeda, Shu; Elefteriou, Florent; Karsenty, Gerard

    2003-01-01

    Bone mass is maintained constant between puberty and menopause by the balance between osteoblast and osteoclast activity. The existence of a hormonal control of osteoblast activity has been speculated for years by analogy to osteoclast biology. Through the search for such humoral signal(s) regulating bone formation, leptin has been identified as a strong inhibitor of bone formation. Furthermore, intracerebroventricular infusion of leptin has shown that the effect of this adipocyte-derived hormone on bone is mediated via a brain relay. Subsequent studies have led to the identification of hypothalamic groups of neurons involved in leptin's antiosteogenic function. In addition, those neurons or neuronal pathways are distinct from neurons responsible for the regulation of energy metabolism. Finally, the peripheral mediator of leptin's antiosteogenic function has been identified as the sympathetic nervous system. Sympathomimetics administered to mice decreased bone formation and bone mass. Conversely, beta-blockers increased bone formation and bone mass and blunted the bone loss induced by ovariectomy.

  15. Immune checkpoint regulator PD-L1 expression on tumor cells by contacting CD11b positive bone marrow derived stromal cells

    OpenAIRE

    Noh, Hyangsoon; Hu, Jiemiao; Wang, Xiaohong; Xia, Xueqing; Satelli, Arun; Li, Shulin

    2015-01-01

    Background Expression of programmed cell death ligand 1 (PD-L1) is an important process by which tumor cells suppress antitumor immunity in the tumor microenvironment. Bone marrow (BM)–derived immune cells are an important component of the tumor microenvironment. However, the link between PD-L1 induction on tumor cells and communication with BM cells is unknown. Results This study demonstrates that BM cells have a direct effect in inducing PD-L1 expression on tumor cells, which contributes to...

  16. Microtubule nucleation in mouse bone marrow-derived mast cells is regulated by the concerted action of GIT1/βPIX proteins and calcium

    Czech Academy of Sciences Publication Activity Database

    Sulimenko, Vadym; Hájková, Zuzana; Černohorská, Markéta; Sulimenko, Tetyana; Sládková, Vladimíra; Dráberová, Lubica; Vinopal, Stanislav; Dráberová, Eduarda; Dráber, Pavel

    2015-01-01

    Roč. 194, č. 9 (2015), s. 4099-4111. ISSN 0022-1767 R&D Projects: GA ČR GAP302/12/1673; GA ČR GPP302/11/P709; GA ČR(CZ) GA14-09807S; GA ČR GA15-22194S; GA MŠk(CZ) LD13015; GA MŠk LH12050; GA MZd NT14467 Institutional support: RVO:68378050 Keywords : Bone Marrow-Derived Mast Cells * Microtubule Nucleation * GIT1/beta PIX Proteins * Calcium Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.922, year: 2014

  17. Toll-Like Receptor 3 and Suppressor of Cytokine Signaling Proteins Regulate CXCR4 and CXCR7 Expression in Bone Marrow-Derived Human Multipotent Stromal Cells

    OpenAIRE

    Tomchuck, Suzanne L.; Henkle, Sarah L.; Coffelt, Seth B.; Betancourt, Aline M.

    2012-01-01

    Background The use of bone marrow-derived human multipotent stromal cells (hMSC) in cell-based therapies has dramatically increased in recent years, as researchers have exploited the ability of these cells to migrate to sites of tissue injury, inflammation, and tumors. Our group established that hMSC respond to “danger” signals – by-products of damaged, infected or inflamed tissues – via activation of Toll-like receptors (TLRs). However, little is known regarding downstream signaling mediated...

  18. Regulation of physicochemical properties, osteogenesis activity, and fibroblast growth factor-2 release ability of β-tricalcium phosphate for bone cement by calcium silicate

    Energy Technology Data Exchange (ETDEWEB)

    Su, Ching-Chuan [Antai Medical Care Cooperation Antai Tian-Sheng Memorial Hospital, Pingtung, Taiwan (China); Kao, Chia-Tze; Hung, Chi-Jr [School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Chen, Yi-Jyun [School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Dental Department, Taichung Hospital, Ministry of Health and Welfare, Taichung City, Taiwan (China); Huang, Tsui-Hsien, E-mail: thh@csmu.edu.tw [School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Shie, Ming-You, E-mail: eviltacasi@gmail.com [Institute of Oral Science, Chung Shan Medical University, Taichung, Taiwan (China)

    2014-04-01

    β-Tricalcium phosphate (β-TCP) is an osteoconductive material. For this research we have combined it with a low degradation calcium silicate (CS) to enhance its bioactive and osteostimulative properties. To check its effectiveness, a series of β-TCP/CS composites with different ratios were prepared to make new bioactive and biodegradable biocomposites for bone repair. Formation of bone-like apatite, the diametral tensile strength, and weight loss of composites were considered before and after immersion in simulated body fluid (SBF). In addition, we also examined the effects of fibroblast growth factor-2 (FGF-2) released from β-TCP/CS composites and in vitro human dental pulp cell (hDPC) and studied its behavior. The results showed that the apatite deposition ability of the β-TCP/CS composites was enhanced as the CS content was increased. For composites with more than 50% CS contents, the samples were completely covered by a dense bone-like apatite layer. At the end of the immersion point, weight losses of 19%, 24%, 33%, 42%, and 51% were observed for the composites containing 0%, 30%, 50%, 70% and 100% β-TCP cements, respectively. In vitro cell experiments show that the CS-rich composites promote human dental pulp cell (hDPC) proliferation and differentiation. However, when the CS quantity in the composite is less than 70%, the amount of cells and osteogenesis protein of hDPCs was stimulated by FGF-2 released from β-TCP/CS composites. The combination of FGF-2 in degradation of β-TCP and osteogenesis of CS gives a strong reason to believe that these calcium-based composite cements may prove to be promising bone repair materials. - Highlights: • CS improved physicochemical properties and osteogenic activity of β-TCP. • The higher the CS in the cement, the shorter the setting time and the higher the DTS. • The cell behavior was stimulated by FGF-2 released from composite containing 50% CS. • β-TCP/CS composite with FGF-2 has optimal properties for

  19. Regulation of physicochemical properties, osteogenesis activity, and fibroblast growth factor-2 release ability of β-tricalcium phosphate for bone cement by calcium silicate

    International Nuclear Information System (INIS)

    β-Tricalcium phosphate (β-TCP) is an osteoconductive material. For this research we have combined it with a low degradation calcium silicate (CS) to enhance its bioactive and osteostimulative properties. To check its effectiveness, a series of β-TCP/CS composites with different ratios were prepared to make new bioactive and biodegradable biocomposites for bone repair. Formation of bone-like apatite, the diametral tensile strength, and weight loss of composites were considered before and after immersion in simulated body fluid (SBF). In addition, we also examined the effects of fibroblast growth factor-2 (FGF-2) released from β-TCP/CS composites and in vitro human dental pulp cell (hDPC) and studied its behavior. The results showed that the apatite deposition ability of the β-TCP/CS composites was enhanced as the CS content was increased. For composites with more than 50% CS contents, the samples were completely covered by a dense bone-like apatite layer. At the end of the immersion point, weight losses of 19%, 24%, 33%, 42%, and 51% were observed for the composites containing 0%, 30%, 50%, 70% and 100% β-TCP cements, respectively. In vitro cell experiments show that the CS-rich composites promote human dental pulp cell (hDPC) proliferation and differentiation. However, when the CS quantity in the composite is less than 70%, the amount of cells and osteogenesis protein of hDPCs was stimulated by FGF-2 released from β-TCP/CS composites. The combination of FGF-2 in degradation of β-TCP and osteogenesis of CS gives a strong reason to believe that these calcium-based composite cements may prove to be promising bone repair materials. - Highlights: • CS improved physicochemical properties and osteogenic activity of β-TCP. • The higher the CS in the cement, the shorter the setting time and the higher the DTS. • The cell behavior was stimulated by FGF-2 released from composite containing 50% CS. • β-TCP/CS composite with FGF-2 has optimal properties for

  20. IGF-I Signaling in Osterix-Expressing Cells Regulates Secondary Ossification Center Formation, Growth Plate Maturation, and Metaphyseal Formation During Postnatal Bone Development.

    Science.gov (United States)

    Wang, Yongmei; Menendez, Alicia; Fong, Chak; ElAlieh, Hashem Z; Kubota, Takuo; Long, Roger; Bikle, Daniel D

    2015-12-01

    To investigate the role of IGF-I signaling in osterix (OSX)-expressing cells in the skeleton, we generated IGF-I receptor (IGF-IR) knockout mice ((OSX)IGF-IRKO) (floxed-IGF-IR mice × OSX promoter-driven GFP-labeled cre-recombinase [(OSX)GFPcre]), and monitored postnatal bone development. At day 2 after birth (P2), (OSX)GFP-cre was highly expressed in the osteoblasts in the bone surface of the metaphysis and in the prehypertrophic chondrocytes (PHCs) and inner layer of perichondral cells (IPCs). From P7, (OSX)GFP-cre was highly expressed in PHCs, IPCs, cartilage canals (CCs), and osteoblasts (OBs) in the epiphyseal secondary ossification center (SOC), but was only slightly expressed in the OBs in the metaphysis. Compared with the control mice, the IPC proliferation was decreased in the (OSX)IGF-IRKOs. In these mice, fewer IPCs invaded into the cartilage, resulting in delayed formation of the CC and SOC. Immunohistochemistry indicated a reduction of vessel number and lower expression of VEGF and ephrin B2 in the IPCs and SOC of (OSX)IGF-IRKOs. Quantitative real-time PCR revealed that the mRNA levels of the matrix degradation markers, MMP-9, 13 and 14, were decreased in the (OSX)IGF-IRKOs compared with the controls. The (OSX)IGF-IRKO also showed irregular morphology of the growth plate and less trabecular bone in the tibia and femur from P7 to 7 weeks, accompanied by decreased chondrocyte proliferation, altered chondrocyte differentiation, and decreased osteoblast differentiation. Our data indicate that during postnatal bone development, IGF-I signaling in OSX-expressing IPCs promotes IPC proliferation and cartilage matrix degradation and increases ephrin B2 production to stimulate vascular endothelial growth factor (VEGF) expression and vascularization. These processes are required for normal CC formation in the establishment of the SOC. Moreover, IGF-I signaling in the OSX-expressing PHC is required for growth plate maturation and osteoblast differentiation in

  1. Osteocyte: the unrecognized side of bone tissue.

    OpenAIRE

    Rochefort, Gaël,; Pallu, Stéphane; Benhamou, Claude-Laurent

    2010-01-01

    INTRODUCTION: Osteocytes represent 95% of all bone cells. These cells are old osteoblasts that occupy the lacunar space and are surrounded by the bone matrix. They possess cytoplasmic dendrites that form a canalicular network for communication between osteocytes and the bone surface. They express some biomarkers (osteopontin, beta3 integrin, CD44, dentin matrix protein 1, sclerostin, phosphate-regulating gene with homologies to endopeptidases on the X chromosome, matrix extracellular phosphog...

  2. Anorexia Nervosa, Obesity and Bone Metabolism

    OpenAIRE

    Misra, Madhusmita; Klibanski, Anne

    2013-01-01

    Anorexia nervosa and obesity are conditions at the extreme ends of the nutritional spectrum, associated with marked reductions versus increases respectively in body fat content. Both conditions are also associated with an increased risk for fractures. In anorexia nervosa, body composition and hormones secreted or regulated by body fat content are important determinants of low bone density, impaired bone structure and reduced bone strength. In addition, anorexia nervosa is characterized by inc...

  3. Bone Marrow Adipose Tissue: A New Player in Cancer Metastasis to Bone

    Science.gov (United States)

    Morris, Emma V.; Edwards, Claire M.

    2016-01-01

    The bone marrow is a favored site for a number of cancers, including the hematological malignancy multiple myeloma, and metastasis of breast and prostate cancer. This specialized microenvironment is highly supportive, not only for tumor growth and survival but also for the development of an associated destructive cancer-induced bone disease. The interactions between tumor cells, osteoclasts and osteoblasts are well documented. By contrast, despite occupying a significant proportion of the bone marrow, the importance of bone marrow adipose tissue is only just emerging. The ability of bone marrow adipocytes to regulate skeletal biology and hematopoiesis, combined with their metabolic activity, endocrine functions, and proximity to tumor cells means that they are ideally placed to impact both tumor growth and bone disease. This review discusses the recent advances in our understanding of how marrow adipose tissue contributes to bone metastasis and cancer-induced bone disease.

  4. Osteoclasts prefer aged bone

    DEFF Research Database (Denmark)

    Henriksen, K; Leeming, Diana Julie; Byrjalsen, I;

    2007-01-01

    We investigated whether the age of the bones endogenously exerts control over the bone resorption ability of the osteoclasts, and found that osteoclasts preferentially develop and resorb bone on aged bone. These findings indicate that the bone matrix itself plays a role in targeted remodeling of...... aged bones....

  5. Down-regulated E-cadherin expression is associated with poor five-year overall survival in bone and soft tissue sarcoma: results of a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Ning Wang

    Full Text Available To conduct a meta-analysis to evaluate the prognostic role of E-cadherin expression in bone and soft tissue sarcomas.The PubMed, EMBASE, and Web of Science databases were searched using terms related to E-cadherin, sarcoma, and prognosis for all articles published in English before March 2014. Pooled effect was calculated from the available data to evaluate the association between negative E-cadherin expression and 5-year overall survival and tumor clinicopathological features in sarcoma patients. Pooled odds ratios (OR and risk ratios (RR with 95% confidence intervals (CI were calculated using a fixed-effects model.Eight studies met the selection criteria and reported on 812 subjects. A total of 496 subjects showed positive E-cadherin expression (59.9%. Negative E-cadherin expression in bone and soft tissue sarcomas was correlated with lower 5-year overall survival (OR = 3.831; 95% CI: 2.246-6.534, and was associated with higher clinical stage (RR = 1.446; 95% CI: 1.030-2.028 and with male sex (RR = 0.678; 95% CI: 0.493-0.933.In the E-cadherin negative group, 5-year overall survival was significantly worse than in the E-cadherin positive group. However, further studies are required to confirm these results.

  6. The PPARgamma-selective ligand BRL-49653 differentially regulates the fate choices of rat calvaria versus rat bone marrow stromal cell populations

    Directory of Open Access Journals (Sweden)

    Yoshiko Yuji

    2008-07-01

    Full Text Available Abstract Background Osteoblasts and adipocytes are derived from a common mesenchymal progenitor and an inverse relationship between expression of the two lineages is seen with certain experimental manipulations and in certain diseases, i.e., osteoporosis, but the cellular pathway(s and developmental stages underlying the inverse relationship is still under active investigation. To determine which precursor mesenchymal cell types can differentiate into adipocytes, we compared the effects of BRL-49653 (BRL, a selective ligand for peroxisome proliferators-activated receptor (PPARγ, a master transcription factor of adipogenesis, on osteo/adipogeneis in two different osteoblast culture models: the rat bone marrow (RBM versus the fetal rat calvaria (RC cell system. Results BRL increased the number of adipocytes and corresponding marker expression, such as lipoprotein lipase, fatty acid-binding protein (aP2, and adipsin, in both culture models, but affected osteoblastogenesis only in RBM cultures, where a reciprocal decrease in bone nodule formation and osteoblast markers, e.g., osteopontin, alkaline phosphatase (ALP, bone sialoprotein, and osteocalcin was seen, and not in RC cell cultures. Even though adipocytes were histologically undetectable in RC cultures not treated with BRL, RC cells expressed PPAR and CCAAT/enhancer binding protein (C/EBP mRNAs throughout osteoblast development and their expression was increased by BRL. Some single cell-derived BRL-treated osteogenic RC colonies were stained not only with ALP/von Kossa but also with oil red O and co-expressed the mature adipocyte marker adipsin and the mature osteoblast marker OCN, as well as PPAR and C/EBP mRNAs. Conclusion The data show that there are clear differences in the capacity of BRL to alter the fate choices of precursor cells in stromal (RBM versus calvarial (RC cell populations and that recruitment of adipocytes can occur from multiple precursor cell pools (committed preadipocyte

  7. Expression of human bone-related proteins in the hematopoietic microenvironment.

    OpenAIRE

    Long, M W; Williams, J.L.; Mann, K G

    1990-01-01

    Given the intimate relationship between bone and bone marrow, we hypothesized that the human bone marrow may function as a source (or reservoir) of bone-forming progenitor cells. We observed a population of cells within the bone marrow which produce bone-specific or bone-related proteins. The production of these proteins was developmentally regulated in human long-term bone marrow cell cultures; the bone protein-producing cells (BPPC) are observed under serum-free, short-term culture conditio...

  8. Osteoblasts in Bone Physiology—Mini Review

    Directory of Open Access Journals (Sweden)

    Orit Rosenberg

    2012-04-01

    Full Text Available Bone structural integrity and shape are maintained by removal of old matrix by osteoclasts and in-situ synthesis of new bone by osteoblasts. These cells comprise the basic multicellular unit (BMU. Bone mass maintenance is determined by the net anabolic activity of the BMU, when the matrix elaboration of the osteoblasts equals or exceeds the bone resorption by the osteoclasts. The normal function of the BMU causes a continuous remodeling process of the bone, with deposition of bony matrix (osteoid along the vectors of the generated force by gravity and attached muscle activity. The osteoblasts are derived from mesenchymal stem cells (MSCs. Circulating hormones and locally produced cytokines and growth factors modulate the replication and differentiation of osteoclast and osteoblast progenitors. The appropriate number of the osteoblasts in the BMU is determined by the differentiation of the precursor bone-marrow stem cells into mature osteoblasts, their proliferation with subsequent maturation into metabolically active osteocytes, and osteoblast degradation by apoptosis. Thus, the two crucial points to target when planning to control the osteoblast population are the processes of cell proliferation and apoptosis, which are regulated by cellular hedgehog and Wnt pathways that involve humoral and mechanical stimulations. Osteoblasts regulate both bone matrix synthesis and mineralization directly by their own synthetic activities, and bone resorption indirectly by its paracrinic effects on osteoclasts. The overall synthetic and regulatory activities of osteoblasts govern bone tissue integrity and shape.

  9. Biofunctionalization of a titanium surface with a nano-sawtooth structure regulates the behavior of rat bone marrow mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Zhang WJ

    2012-08-01

    Full Text Available Wenjie Zhang,1,2 Zihui Li,3 Yan Liu,1,2 Dongxia Ye,4 Jinhua Li,3 Lianyi Xu,1,2 Bin Wei,1 Xiuli Zhang,2 Xuanyong Liu,3,* Xinquan Jiang,1,2,* 1Department of Prosthodontics, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 2Oral Bioengineering Laboratory, Shanghai Research Institute of Stomatology, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, 3State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 4Shanghai Research Institute of Stomatology, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China*Joint principal authors of this workBackground: The topography of an implant surface can serve as a powerful signaling cue for attached cells and can enhance the quality of osseointegration. A series of improved implant surfaces functionalized with nanoscale structures have been fabricated using various methods. Methods: In this study, using an H2O2 process, we fabricated two size-controllable sawtooth-like nanostructures with different dimensions on a titanium surface. The effects of the two nano-sawtooth structures on rat bone marrow mesenchymal stem cells (BMMSCs were evaluated without the addition of osteoinductive chemical factors.Results: These new surface modifications did not adversely affect cell viability, and rat BMMSCs demonstrated a greater increase in proliferation ability on the surfaces of the nano-sawtooth structures than on a control plate. Furthermore, upregulated expression of osteogenic-related genes and proteins indicated that the nano-sawtooth structures promote osteoblastic differentiation of rat BMMSCs. Importantly, the large nano-sawtooth structure resulted in the greatest cell responses, including increased adhesion, proliferation

  10. Ox-LDL Promotes Migration and Adhesion of Bone Marrow-Derived Mesenchymal Stem Cells via Regulation of MCP-1 Expression

    Directory of Open Access Journals (Sweden)

    Fenxi Zhang

    2013-01-01

    Full Text Available Bone marrow-derived mesenchymal stem cells (bmMSCs are the most important cell source for stem cell transplant therapy. The migration capacity of MSCs is one of the determinants of the efficiency of MSC-based transplant therapy. Our recent study has shown that low concentrations of oxidized low-density lipoprotein (ox-LDL can stimulate proliferation of bmMSCs. In this study, we investigated the effects of ox-LDL on bmMSC migration and adhesion, as well as the related mechanisms. Our results show that transmigration rates of bmMSCs and cell-cell adhesion between bmMSCs and monocytes are significantly increased by treatments with ox-LDL in a dose- and time-dependent manner. Expressions of ICAM-1, PECAM-1, and VCAM-1 as well as the levels of intracellular Ca2+ are also markedly increased by ox-LDL in a dose-dependent manner. Cytoskeleton analysis shows that ox-LDL treatment benefits to spreading of bmMSCs and organization of F-actin fibers after being plated for 6 hours. More interestingly, treatments with ox-LDL also markedly increase expressions of LOX-1, MCP-1, and TGF-β; however, LOX-1 antibody and MCP-1 shRNA markedly inhibit ox-LDL-induced migration and adhesion of bmMSCs, which suggests that ox-LDL-induced bmMSC migration and adhesion are dependent on LOX-1 activation and MCP-1 expression.

  11. Tooth dentin defects reflect genetic disorders affecting bone mineralization

    OpenAIRE

    Vital, S. Opsahl; Gaucher, C.; Bardet, C; Rowe, P.S.; George, A.; Linglart, A.; Chaussain, C.

    2012-01-01

    Several genetic disorders affecting bone mineralization may manifest during dentin mineralization. Dentin and bone are similar in several aspects, especially pertaining to the composition of the extracellular matrix (ECM) which is secreted by well-differentiated odontoblasts and osteoblasts, respectively. However, unlike bone, dentin is not remodelled and is not involved in the regulation of calcium and phosphate metabolism. In contrast to bone, teeth are accessible tissues with the shedding ...

  12. MicroRNAs in the control of metastatic bone disease

    OpenAIRE

    Browne, Gillian; Taipaleenmäki, Hanna; Stein, Gary S.; Stein, Janet L.; Lian, Jane B.

    2014-01-01

    Bone metastasis is a common and devastating complication of late stage breast and prostate cancer. Complex interactions between tumor cells, bone cells and a milieu of components in their microenvironment contribute to the osteolytic, osteoblastic or mixed lesions present in patients with metastasis to bone. In the last decade, miRNAs have emerged as key players in cancer progression yet the importance of miRNAs in regulating cancer metastasis to bone is now being appreciated. Here, we emphas...

  13. The temporal response of bone to unloading

    Science.gov (United States)

    Globus, R. K.; Bikle, D. D.; Morey-Holton, E.

    1984-01-01

    Rats were suspended by their tails with the forelimbs bearing the weight load to simulate the weightlessness of space flight. Growth in bone mass ceased by 1 week in the hindlimbs and lumbar vertebrae in growing rats, while growth in the forelimbs and cervical vertebrae remained unaffected. The effects of selective skeletal unloading on bone formation during 2 weeks of suspension was investigated using radio iostope incorporation (with Ca-45 and H-3 proline) and histomorphometry (with tetracycline labeling). The results of these studies were confirmed by histomorphometric measurements of bone formation using triple tetracycline labeling. This model of simulated weightlessness results in an initial inhibition of bone formation in the unloaded bones. This temporary cessation of bone formation is followed in the accretion of bone mass, which then resumes at a normal rate by 14 days, despite continued skeletal unloading. This cycle of inhibition and resumption of bone formation has profound implication for understanding bone dynamics durng space flight, immobilization, or bed rest and offers an opportunity to study the hormonal and mechanical factors that regulate bone formation.

  14. Poly(Dopamine-Assisted Immobilization of Xu Duan on 3D Printed Poly(Lactic Acid Scaffolds to Up-Regulate Osteogenic and Angiogenic Markers of Bone Marrow Stem Cells

    Directory of Open Access Journals (Sweden)

    Chia-Hung Yeh

    2015-07-01

    Full Text Available Three-dimensional printing is a versatile technique to generate large quantities of a wide variety of shapes and sizes of polymer. The aim of this study is to develop functionalized 3D printed poly(lactic acid (PLA scaffolds and use a mussel-inspired surface coating and Xu Duan (XD immobilization to regulate cell adhesion, proliferation and differentiation of human bone-marrow mesenchymal stem cells (hBMSCs. We prepared PLA scaffolds and coated with polydopamine (PDA. The chemical composition and surface properties of PLA/PDA/XD were characterized by XPS. PLA/PDA/XD controlled hBMSCs’ responses in several ways. Firstly, adhesion and proliferation of hBMSCs cultured on PLA/PDA/XD were significantly enhanced relative to those on PLA. In addition, the focal adhesion kinase (FAK expression of cells was increased and promoted cell attachment depended on the XD content. In osteogenesis assay, the osteogenesis markers of hBMSCs cultured on PLA/PDA/XD were significantly higher than seen in those cultured on a pure PLA/PDA scaffolds. Moreover, hBMSCs cultured on PLA/PDA/XD showed up-regulation of the ang-1 and vWF proteins associated with angiogenic differentiation. Our results demonstrate that the bio-inspired coating synthetic PLA polymer can be used as a simple technique to render the surfaces of synthetic scaffolds active, thus enabling them to direct the specific responses of hBMSCs.

  15. Genetic control of bone mass.

    Science.gov (United States)

    Boudin, Eveline; Fijalkowski, Igor; Hendrickx, Gretl; Van Hul, Wim

    2016-09-01

    Bone mineral density (BMD) is a quantitative traits used as a surrogate phenotype for the diagnosis of osteoporosis, a common metabolic disorder characterized by increased fracture risk as a result of a decreased bone mass and deterioration of the microarchitecture of the bone. Normal variation in BMD is determined by both environmental and genetic factors. According to heritability studies, 50-85% of the variance in BMD is controlled by genetic factors which are mostly polygenic. In contrast to the complex etiology of osteoporosis, there are disorders with deviating BMD values caused by one mutation with a large impact. These mutations can result in monogenic bone disorders with either an extreme high (sclerosteosis, Van Buchem disease, osteopetrosis, high bone mass phenotype) or low BMD (osteogenesis imperfecta, juvenile osteoporosis, primary osteoporosis). Identification of the disease causing genes, increased the knowledge on the regulation of BMD and highlighted important signaling pathways and novel therapeutic targets such as sclerostin, RANKL and cathepsin K. Genetic variation in genes involved in these pathways are often also involved in the regulation of normal variation in BMD and osteoporosis susceptibility. In the last decades, identification of genetic factors regulating BMD has proven to be a challenge. Several approaches have been tested such as linkage studies and candidate and genome wide association studies. Although, throughout the years, technological developments made it possible to study increasing numbers of genetic variants in populations with increasing sample sizes at the same time, only a small fraction of the genetic impact can yet be explained. In order to elucidate the missing heritability, the focus shifted to studying the role of rare variants, copy number variations and epigenetic influences. This review summarizes the genetic cause of different monogenic bone disorders with deviating BMD and the knowledge on genetic factors

  16. Effect of indomethacin on regulation of juxta-articular bone blood-flow during joint tamponade. An experimental study in puppies

    DEFF Research Database (Denmark)

    Ewald, Henrik Lykke; Holm, I E; Bülow, J;

    1989-01-01

    ) and regional blood flow (RBF) measurements in the distal femoral epiphysis (DFE), aspects of vascular control mechanisms in the distal femoral epiphysis were investigated during knee joint tamponade (50% of mean arterial pressure) before and after administration of indomethacin 7.5 mg/kg. Six dogs aged 3......-4 months were investigated in fentanyl anaesthesia. Knee joint tamponade resulted in a significant increase in IOP and calculated venous resistance in the DFE, while no significant changes in regional blood-flow or arterial resistance were encountered. Administration of indomethacin did not affect...... this reaction. The results suggests that indomethacin 7.5 mg/kg does not influence the regulation of epiphyseal blood-flow during elevation of joint pressure indicating that prostaglandins play only a minor or no role in this regulation....

  17. miR-346 regulates osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by targeting the Wnt/β-catenin pathway.

    Directory of Open Access Journals (Sweden)

    Qing Wang

    Full Text Available Osteogenic differentiation of human mesenchymal stem cells (hMSCs is regulated by multiple transcription factors and signaling molecules. However, the molecular mechanisms underlying this process remain to be fully elucidated. MicroRNAs (miRNAs act as key regulators in various biological processes by mediating mRNA degradation or translational inhibition of target genes. In this study, we report that miR-346 plays critical roles in regulating osteogenic differentiation of hBMSCs. The expression of endogenous miR-346 was increased during osteogenic differentiation of hBMSCs. Overexpression of miR-346 significantly promoted osteogenic differentiation, whereas miR-346 depletion suppressed this process. Further studies confirmed that miR-346 directly targeted the 3'-UTR of the glycogen synthase kinase-3β (GSK-3β gene so as to suppress the expression of GSK-3β protein. Similar to miR-346 overexpression, GSK-3β depletion promoted osteogenic differentiation, whereas GSK-3β overexpression reversed the promotional effect of miR-346. We further found that miR-346 overexpression activated the Wnt/β-catenin pathway and increased the expression of several downstream genes including CyclinD1, c-Myc, TCF-1 and LEF-1. Depletion of β-catenin almost completely blocked the positive role of miR-346 on osteogenic differentiation. Taken together, our data indicate that miR-346 positively regulates hBMSC osteogenic differentiation by targeting GSK-3β and activating the Wnt/β-catenin pathway.

  18. Bone marrow biopsy

    Science.gov (United States)

    Biopsy - bone marrow ... A bone marrow biopsy may be done in the health care provider's office or in a hospital. The sample may be taken from the pelvic or breast bone. Sometimes, other areas are used. Marrow is removed ...

  19. Bone marrow aspiration

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003658.htm Bone marrow aspiration To use the sharing features on this page, please enable JavaScript. Bone marrow is the soft tissue inside bones that helps ...

  20. Anorexia Nervosa and Bone

    OpenAIRE

    Misra, Madhusmita; Klibanski, Anne

    2014-01-01

    Anorexia nervosa (AN) is a condition of severe low weight that is associated with low bone mass, impaired bone structure and reduced bone strength, all of which contribute to increased fracture risk., Adolescents with AN have decreased rates of bone accrual compared with normal-weight controls, raising addition concerns of suboptimal peak bone mass and future bone health in this age group. Changes in lean mass and compartmental fat depots, hormonal alterations secondary to nutritional factors...

  1. The Hedgehog signalling pathway in bone formation

    Institute of Scientific and Technical Information of China (English)

    Jing Yang; Philipp Andre; Ling Ye; Ying-Zi Yang

    2015-01-01

    The Hedgehog (Hh) signalling pathway plays many important roles in development, homeostasis and tumorigenesis. The critical function of Hh signalling in bone formation has been identified in the past two decades. Here, we review the evolutionarily conserved Hh signalling mechanisms with an emphasis on the functions of the Hh signalling pathway in bone development, homeostasis and diseases. In the early stages of embryonic limb development, Sonic Hedgehog (Shh) acts as a major morphogen in patterning the limb buds. Indian Hedgehog (Ihh) has an essential function in endochondral ossification and induces osteoblast differentiation in the perichondrium. Hh signalling is also involved intramembrane ossification. Interactions between Hh and Wnt signalling regulate cartilage development, endochondral bone formation and synovial joint formation. Hh also plays an important role in bone homeostasis, and reducing Hh signalling protects against age-related bone loss. Disruption of Hh signalling regulation leads to multiple bone diseases, such as progressive osseous heteroplasia. Therefore, understanding the signalling mechanisms and functions of Hh signalling in bone development, homeostasis and diseases will provide important insights into bone disease prevention, diagnoses and therapeutics.

  2. Bone strength: more than just bone density.

    Science.gov (United States)

    Ott, Susan M

    2016-01-01

    The following bone density measurements have limited utility in determining bone strength because they do not include bone quality: microarchitecture, mineralization, ability to repair damage, collagen structure, crystal size, or marrow composition. Patients with kidney disease have poor bone quality. Newman et al. now describe beneficial effects with raloxifene in an animal model of progressive kidney disease. These biomechanical measurements will be important in the development of medications to decrease fractures in patients. PMID:26759040

  3. Fibrillin microfibrils in bone physiology.

    Science.gov (United States)

    Smaldone, Silvia; Ramirez, Francesco

    2016-01-01

    The severe skeletal abnormalities associated with Marfan syndrome (MFS) and congenital contractural arachnodactyly (CCA) underscore the notion that fibrillin assemblies (microfibrils and elastic fibers) play a critical role in bone formation and function in spite of representing a low abundance component of skeletal matrices. Studies of MFS and CCA mice have correlated the skeletal phenotypes of these mutant animals with distinct pathophysiological mechanisms that reflect the contextual contribution of fibrillin-1 and -2 scaffolds to TGFβ and BMP signaling during bone patterning, growth and metabolism. Illustrative examples include the unique role of fibrillin-2 in regulating BMP-dependent limb patterning and the distinct impact of the two fibrillin proteins on the commitment and differentiation of marrow mesenchymal stem cells. Collectively, these findings have important implication for our understanding of the pathophysiological mechanisms that drive age- and injury-related processes of bone degeneration. PMID:26408953

  4. Bone development

    DEFF Research Database (Denmark)

    Tatara, M.R.; Tygesen, Malin Plumhoff; Sawa-Wojtanowicz, B.;

    2007-01-01

    The objective of this study was to determine the long-term effect of alpha-ketoglutarate (AKG) administration during early neonatal life on skeletal development and function, with emphasis on bone exposed to regular stress and used to serve for systemic changes monitoring, the rib. Shropshire ram...... at 146 days of life and five left and right ribs (fourth to eighth) were removed for analysis. The influence of AKG on skeletal system development was evaluated in relation to both geometrical and mechanical properties, as well as quantitative computed tomography (QCT). No significant differences between...... has a long-term effect on skeletal development when given early in neonatal life, and that changes in rib properties serve to improve chest mechanics and functioning in young animals. Moreover, neonatal administration of AKG may be considered as an effective factor enhancing proper development...

  5. Molecular Control of Vascular Tube Morphogenesis and Stabilization: Regulation by Extracellular Matrix, Matrix Metalloproteinases, and Endothelial Cell-Pericyte Interactions

    Science.gov (United States)

    Davis, George E.; Stratman, Amber N.; Sacharidou, Anastasia

    Recent studies have revealed a critical role for both extracellular matrices and matrix metalloproteinases in the molecular control of vascular morphogenesis and stabilization in three-dimensional (3D) tissue environments. Key interactions involve endothelial cells (ECs) and pericytes, which coassemble to affect vessel formation, remodeling, and stabilization events during development and postnatal life. EC-pericyte interactions control extracellular matrix remodeling events including vascular basement membrane matrix assembly, a necessary step for endothelial tube maturation and stabilization. ECs form tube networks in 3D extracellular matrices in a manner dependent on integrins, membrane-type metalloproteinases, and the Rho GTPases, Cdc42 and Rac1. Recent work has defined an EC lumen signaling complex of proteins composed of these proteins that controls 3D matrix-specific signaling events required for these processes. The EC tube formation process results in the creation of a network of proteolytically generated vascular guidance tunnels. These tunnels are physical matrix spaces that regulate vascular tube remodeling and represent matrix conduits into which pericytes are recruited to allow dynamic cell-cell interactions with ECs. These dynamic EC-pericyte interactions induce vascular basement membrane matrix deposition, leading to vessel maturation and stabilization.

  6. Exercise, lifestyle, and your bones

    Science.gov (United States)

    Osteoporosis - exercise; Low bone density - exercise ... Osteoporosis is a disease that causes bones to become brittle and more likely to fracture (break). With osteoporosis, the bones lose density. Bone density is the amount of bone ...

  7. Dried plum's unique capacity to reverse bone loss and alter bone metabolism in postmenopausal osteoporosis model.

    Directory of Open Access Journals (Sweden)

    Elizabeth Rendina

    Full Text Available Interest in dried plum has increased over the past decade due to its promise in restoring bone and preventing bone loss in animal models of osteoporosis. This study compared the effects of dried plum on bone to other dried fruits and further explored the potential mechanisms of action through which dried plum may exert its osteoprotective effects. Adult osteopenic ovariectomized (OVX C57BL/6 mice were fed either a control diet or a diet supplemented with 25% (w/w dried plum, apple, apricot, grape or mango for 8 weeks. Whole body and spine bone mineral density improved in mice consuming the dried plum, apricot and grape diets compared to the OVX control mice, but dried plum was the only fruit to have an anabolic effect on trabecular bone in the vertebra and prevent bone loss in the tibia. Restoration of biomechanical properties occurred in conjunction with the changes in trabecular bone in the spine. Compared to other dried fruits in this study, dried plum was unique in its ability to down-regulate osteoclast differentiation coincident with up-regulating osteoblast and glutathione (GPx activity. These alterations in bone metabolism and antioxidant status compared to other dried fruits provide insight into dried plum's unique effects on bone.

  8. Bone grafting: An overview

    Directory of Open Access Journals (Sweden)

    D. O. Joshi

    2010-08-01

    Full Text Available Bone grafting is the process by which bone is transferred from a source (donor to site (recipient. Due to trauma from accidents by speedy vehicles, falling down from height or gunshot injury particularly in human being, acquired or developmental diseases like rickets, congenital defects like abnormal bone development, wearing out because of age and overuse; lead to bone loss and to replace the loss we need the bone grafting. Osteogenesis, osteoinduction, osteoconduction, mechanical supports are the four basic mechanisms of bone graft. Bone graft can be harvested from the iliac crest, proximal tibia, proximal humerus, proximal femur, ribs and sternum. An ideal bone graft material is biologically inert, source of osteogenic, act as a mechanical support, readily available, easily adaptable in terms of size, shape, length and replaced by the host bone. Except blood, bone is grafted with greater frequency. Bone graft indicated for variety of orthopedic abnormalities, comminuted fractures, delayed unions, non-unions, arthrodesis and osteomyelitis. Bone graft can be harvested from the iliac crest, proximal tibia, proximal humerus, proximal femur, ribs and sternum. By adopting different procedure of graft preservation its antigenicity can be minimized. The concept of bone banking for obtaining bone grafts and implants is very useful for clinical application. Absolute stability require for successful incorporation. Ideal bone graft must possess osteogenic, osteoinductive and osteocon-ductive properties. Cancellous bone graft is superior to cortical bone graft. Usually autologous cancellous bone graft are used as fresh grafts where as allografts are employed as an alloimplant. None of the available type of bone grafts possesses all these properties therefore, a single type of graft cannot be recomm-ended for all types of orthopedic abnormalities. Bone grafts and implants can be selected as per clinical problems, the equipments available and preference of

  9. Differentiation of Bone Marrow Mesenchymal Stem Cells to Cardiomyocyte-Like Cells Is Regulated by the Combined Low Dose Treatment of Transforming Growth Factor-β1 and 5-Azacytidine

    Science.gov (United States)

    Shi, Shutian; Wu, Xingxin; Wang, Xiao; Hao, Wen; Miao, Huangtai; Zhen, Lei; Nie, Shaoping

    2016-01-01

    Bone marrow mesenchymal stem cells (BMMSCs) are used in cardiac tissue engineering for the regeneration of diseased hearts. We examined the differentiation of rat BMMSCs into cardiomyocyte-like cells when induced with a combined low dose treatment of transforming growth factor-β1 (TGF-β1) and 5-azacytidine (5-AZA). Results showed that cell proliferation in the combined low dose treatment group of TGF-β1 and 5-AZA was increased compared with the TGF-β1 group or the 5-AZA group. The cell apoptosis was relieved by combined TGF-β1 and 5-AZA treatment compared to 5-AZA treatment alone. The number of cells positive for myosin heavy chain, connexin-43, α-actin, and troponin I in the combined treatment group was higher than those observed in the TGF-β1 group or the 5-AZA group. Moreover, the combined low dose treatment group of TGF-β1 and 5-AZA reveals the strongest expression of troponin I, α-actin, and phosphorylated extracellular signal-regulated protein kinases 1 and 2 (p-ErK1/2) among the treatment groups. These results suggest that the combined low dose treatment of TGF-β1 and 5-AZA can improve the differentiation potential of rat BMMSCs into cardiomyocyte-like cells and alleviate cell damage effects in vitro. The mechanism that is involved in influencing differentiation may be associated with p-ErK1/2. PMID:26697074

  10. Differentiation of Bone Marrow Mesenchymal Stem Cells to Cardiomyocyte-Like Cells Is Regulated by the Combined Low Dose Treatment of Transforming Growth Factor-β1 and 5-Azacytidine.

    Science.gov (United States)

    Shi, Shutian; Wu, Xingxin; Wang, Xiao; Hao, Wen; Miao, Huangtai; Zhen, Lei; Nie, Shaoping

    2016-01-01

    Bone marrow mesenchymal stem cells (BMMSCs) are used in cardiac tissue engineering for the regeneration of diseased hearts. We examined the differentiation of rat BMMSCs into cardiomyocyte-like cells when induced with a combined low dose treatment of transforming growth factor-β1 (TGF-β1) and 5-azacytidine (5-AZA). Results showed that cell proliferation in the combined low dose treatment group of TGF-β1 and 5-AZA was increased compared with the TGF-β1 group or the 5-AZA group. The cell apoptosis was relieved by combined TGF-β1 and 5-AZA treatment compared to 5-AZA treatment alone. The number of cells positive for myosin heavy chain, connexin-43, α-actin, and troponin I in the combined treatment group was higher than those observed in the TGF-β1 group or the 5-AZA group. Moreover, the combined low dose treatment group of TGF-β1 and 5-AZA reveals the strongest expression of troponin I, α-actin, and phosphorylated extracellular signal-regulated protein kinases 1 and 2 (p-ErK1/2) among the treatment groups. These results suggest that the combined low dose treatment of TGF-β1 and 5-AZA can improve the differentiation potential of rat BMMSCs into cardiomyocyte-like cells and alleviate cell damage effects in vitro. The mechanism that is involved in influencing differentiation may be associated with p-ErK1/2. PMID:26697074

  11. Differentiation of Bone Marrow Mesenchymal Stem Cells to Cardiomyocyte-Like Cells Is Regulated by the Combined Low Dose Treatment of Transforming Growth Factor-β1 and 5-Azacytidine

    Directory of Open Access Journals (Sweden)

    Shutian Shi

    2016-01-01

    Full Text Available Bone marrow mesenchymal stem cells (BMMSCs are used in cardiac tissue engineering for the regeneration of diseased hearts. We examined the differentiation of rat BMMSCs into cardiomyocyte-like cells when induced with a combined low dose treatment of transforming growth factor-β1 (TGF-β1 and 5-azacytidine (5-AZA. Results showed that cell proliferation in the combined low dose treatment group of TGF-β1 and 5-AZA was increased compared with the TGF-β1 group or the 5-AZA group. The cell apoptosis was relieved by combined TGF-β1 and 5-AZA treatment compared to 5-AZA treatment alone. The number of cells positive for myosin heavy chain, connexin-43, α-actin, and troponin I in the combined treatment group was higher than those observed in the TGF-β1 group or the 5-AZA group. Moreover, the combined low dose treatment group of TGF-β1 and 5-AZA reveals the strongest expression of troponin I, α-actin, and phosphorylated extracellular signal-regulated protein kinases 1 and 2 (p-ErK1/2 among the treatment groups. These results suggest that the combined low dose treatment of TGF-β1 and 5-AZA can improve the differentiation potential of rat BMMSCs into cardiomyocyte-like cells and alleviate cell damage effects in vitro. The mechanism that is involved in influencing differentiation may be associated with p-ErK1/2.

  12. Bone scan in rheumatology

    International Nuclear Information System (INIS)

    In this chapter a revision is made concerning different uses of bone scan in rheumatic diseases. These include reflex sympathetic dystrophy, osteomyelitis, spondyloarthropaties, metabolic bone diseases, avascular bone necrosis and bone injuries due to sports. There is as well some comments concerning pediatric pathology and orthopedics. (authors). 19 refs., 9 figs

  13. Bone Marrow Diseases

    Science.gov (United States)

    Bone marrow is the spongy tissue inside some of your bones, such as your hip and thigh bones. It contains stem cells. The stem cells can ... the platelets that help with blood clotting. With bone marrow disease, there are problems with the stem ...

  14. Bone Marrow Transplantation

    Science.gov (United States)

    Bone marrow is the spongy tissue inside some of your bones, such as your hip and thigh bones. It contains immature cells, called stem cells. The ... platelets, which help the blood to clot. A bone marrow transplant is a procedure that replaces a ...

  15. Bone grafts in dentistry

    OpenAIRE

    Prasanna Kumar; Belliappa Vinitha; Ghousia Fathima

    2013-01-01

    Bone grafts are used as a filler and scaffold to facilitate bone formation and promote wound healing. These grafts are bioresorbable and have no antigen-antibody reaction. These bone grafts act as a mineral reservoir which induces new bone formation.

  16. Bone grafts in dentistry

    Directory of Open Access Journals (Sweden)

    Prasanna Kumar

    2013-01-01

    Full Text Available Bone grafts are used as a filler and scaffold to facilitate bone formation and promote wound healing. These grafts are bioresorbable and have no antigen-antibody reaction. These bone grafts act as a mineral reservoir which induces new bone formation.

  17. Alveolar bone loss: mechanisms, potential therapeutic targets, and interventions.

    Science.gov (United States)

    Intini, G; Katsuragi, Y; Kirkwood, K L; Yang, S

    2014-05-01

    This article reviews recent research into mechanisms underlying bone resorption and highlights avenues of investigation that may generate new therapies to combat alveolar bone loss in periodontitis. Several proteins, signaling pathways, stem cells, and dietary supplements are discussed as they relate to periodontal bone loss and regeneration. RGS12 is a crucial protein that mediates osteoclastogenesis and bone destruction, and a potential therapeutic target. RGS12 likely regulates osteoclast differentiation through regulating calcium influx to control the calcium oscillation-NFATc1 pathway. A working model for RGS10 and RGS12 in the regulation of Ca(2+) oscillations during osteoclast differentiation is proposed. Initiation of inflammation depends on host cell-microbe interactions, including the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Oral p38 inhibitors reduced lipopolysaccharide (LPS)-induced bone destruction in a rat periodontitis model but showed unsatisfactory safety profiles. The p38 substrate MK2 is a more specific therapeutic target with potentially superior tolerability. Furthermore, MKP-1 shows anti-inflammatory activity, reducing inflammatory cytokine biosynthesis and bone resorption. Multipotent skeletal stem cell (SSC) populations exist within the bone marrow and periosteum of long bones. These bone-marrow-derived SSCs and periosteum-derived SSCs have shown therapeutic potential in several applications, including bone and periodontal regeneration. The existence of craniofacial bone-specific SSCs is suggested based on existing studies. The effects of calcium, vitamin D, and soy isoflavone supplementation on alveolar and skeletal bone loss in post-menopausal women were investigated. Supplementation resulted in stabilization of forearm bone mass density and a reduced rate of alveolar bone loss over 1 yr, compared with placebo. Periodontal attachment levels were also well-maintained and alveolar bone loss suppressed during 24 wk of

  18. Fibroblast growth factor 23 and bone mineralisation

    Institute of Scientific and Technical Information of China (English)

    Yu-Chen Guo; Quan Yuan

    2015-01-01

    Fibroblast growth factor 23 (FGF23) is a hormone that is mainly secreted by osteocytes and osteoblasts in bone. The critical role of FGF23 in mineral ion homeostasis was first identified in human genetic and acquired rachitic diseases and has been further characterised in animal models. Recent studies have revealed that the levels of FGF23 increase significantly at the very early stages of chronic kidney disease (CKD) and may play a critical role in mineral ion disorders and bone metabolism in these patients. Our recent publications have also shown that FGF23 and its cofactor, Klotho, may play an independent role in directly regulating bone mineralisation instead of producing a systematic effect. In this review, we will discuss the new role of FGF23 in bone mineralisation and the pathophysiology of CKD-related bone disorders.

  19. Long-term changes in the hormonal regulation of the bone tissue formation and resorption in participants of Chernobyl accident clean-up with high radiation exposure doses. Communication 2

    International Nuclear Information System (INIS)

    Systemic hormonal shifts, which can influence the processes of formation and resorption of the bone tissue both in the direction of osteopenic syndrome and normal bone mineral density are present in the participants of Chernobyl accident clean-up with a high exposure doses at long terms of the accident. Increased aging of the bone tissue in the participants of the clean-up vs the male population of Ukraine was revealed. The state of bone mineral density does not depend of the absorbed dose, age, and the concentration of the studied hormones

  20. BONE IN OSTEOPETROSIS

    Directory of Open Access Journals (Sweden)

    Ramkumar

    2014-04-01

    Full Text Available Osteopetrosis, a generalized developmental bone disease due to genetic disturbances, characterized by failure of bone re sorption and continuous bone formation making the bone hard, dense and brittle. Bones of intramembranous ossification and enchondrial ossification are affected genetically and symmetrically. During the process of disease the excess bone formation obliterates the cranial foramina and presses the optic, auditory and facial nerves resulting in defective vision, impaired hearing and facial paralysis. The bone formation in osteopetrosis affects bone marrow function leading to severe anemia and deficient of blood cells. The bone devoid of blood supply due to compression of blood vessels by excess formation of bone are prone to osteomyelitic changes with suppuration and pathological fracture if exposed to infection. Though the condition is chronic progressive, it produces changes leading to fatal condition, it should be studied thoroughly by everyone and hence this article presents a classical case of osteopetrosis with detailed description and discussion for the benefit of readers

  1. Anorexia nervosa and bone.

    Science.gov (United States)

    Misra, Madhusmita; Klibanski, Anne

    2014-06-01

    Anorexia nervosa (AN) is a condition of severe low weight that is associated with low bone mass, impaired bone structure, and reduced bone strength, all of which contribute to increased fracture risk. Adolescents with AN have decreased rates of bone accrual compared with normal-weight controls, raising additional concerns of suboptimal peak bone mass and future bone health in this age group. Changes in lean mass and compartmental fat depots, and hormonal alterations secondary to nutritional factors contribute to impaired bone metabolism in AN. The best strategy to improve bone density is to regain weight and menstrual function. Oral estrogen-progesterone combinations are not effective in increasing bone density in adults or adolescents with AN, and transdermal testosterone replacement is not effective in increasing bone density in adult women with AN. However, physiological estrogen replacement as transdermal estradiol with cyclic progesterone does increase bone accrual rates in adolescents with AN to approximate that in normal-weight controls, leading to a maintenance of bone density Z-scores. A recent study has shown that risedronate increases bone density at the spine and hip in adult women with AN. However, bisphosphonates should be used with great caution in women of reproductive age, given their long half-life and potential for teratogenicity, and should be considered only in patients with low bone density and clinically significant fractures when non-pharmacological therapies for weight gain are ineffective. Further studies are necessary to determine the best therapeutic strategies for low bone density in AN. PMID:24898127

  2. Anorexia Nervosa and Bone

    Science.gov (United States)

    Misra, Madhusmita; Klibanski, Anne

    2014-01-01

    Anorexia nervosa (AN) is a condition of severe low weight that is associated with low bone mass, impaired bone structure and reduced bone strength, all of which contribute to increased fracture risk., Adolescents with AN have decreased rates of bone accrual compared with normal-weight controls, raising addition concerns of suboptimal peak bone mass and future bone health in this age group. Changes in lean mass and compartmental fat depots, hormonal alterations secondary to nutritional factors contribute to impaired bone metabolism in AN. The best strategy to improve bone density is to regain weight and menstrual function. Oral estrogen-progesterone combinations are not effective in increasing bone density in adults or adolescents with AN, and transdermal testosterone replacement is not effective in increasing bone density in adult women with AN. However, physiologic estrogen replacement as transdermal estradiol with cyclic progesterone does increase bone accrual rates in adolescents with AN to approximate that in normal-weight controls, leading to a maintenance of bone density Z-scores. A recent study has shown that risedronate increases bone density at the spine and hip in adult women with AN. However, bisphosphonates should be used with great caution in women of reproductive age given their long half-life and potential for teratogenicity, and should be considered only in patients with low bone density and clinically significant fractures when non-pharmacological therapies for weight gain are ineffective. Further studies are necessary to determine the best therapeutic strategies for low bone density in AN. PMID:24898127

  3. Negative regulation of caspase 3-cleaved PAK2 activity by protein phosphatase 1

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The p21-activated kinase 2 (PAK2) is activated by binding of small G proteins, Cdc42 and Rac, or through proteolytic cleavage by caspases or caspase-like proteases. Activation by both small G protein and caspase requires autophosphorylation at Thr-402 of PAK2. Although activation of PAK2 has been investigated for nearly a decade, the mechanism of PAK2 downregulation is unclear. In this study, we have applied the kinetic theory of substrate reaction during modification of enzyme activity to study the regulation mechanism of PAK2 activity by the catalytic subunit of protein phosphatase 1 (PP1α). On the basis of the kinetic equation of the substrate reaction during the reversible phosphorylation of PAK2, all microscopic kinetic constants for the free enzyme and enzyme-substrate(s) complexes have been determined. The results indicate that (1) PP1α can act directly on phosphorylated Thr-402 in the activation loop of PAK2 and down-regulate its kinase activity; (2) binding of the exogenous protein/peptide substrates at the active site of PAK2 decreases both the rates of PAK2 autoactivation and inactivation. The present method provides a novel approach for studying reversible phosphorylation reactions. The advantage of this method is not only its usefulness in study of substrate effects on enzyme modification but also its convenience in study of modification reaction directly involved in regulation of enzyme activity. This initial study should provide a foundation for future structural and mechanistic work of protein kinases and phosphatases.

  4. Negative regulation of caspase 3-cleaved PAK2 activity by protein phosphatase 1

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The p21-activated kinase 2 (PAK2) is activated by binding of small G proteins, Cdc42 and Rac, or through proteolytic cleavage by caspases or caspase-like proteases. Activation by both small G protein and caspase requires autophosphorylation at Thr-402 of PAK2. Although activation of PAK2 has been investigated for nearly a decade, the mechanism of PAK2 downregulation is unclear. In this study, we have applied the kinetic theory of substrate reaction during modification of enzyme activity to study the regulation mechanism of PAK2 activity by the catalytic subunit of protein phosphatase 1 (PP1α). On the basis of the kinetic equation of the substrate reaction during the reversible phosphorylation of PAK2, all microscopic kinetic constants for the free enzyme and enzyme-substrate(s) complexes have been determined. The results indicate that (1) PP1α can act directly on phosphorylated Thr-402 in the acti-vation loop of PAK2 and down-regulate its kinase activity; (2) binding of the exogenous protein/peptide substrates at the active site of PAK2 decreases both the rates of PAK2 autoactivation and inactivation. The present method provides a novel approach for studying reversible phosphorylation reactions. The advantage of this method is not only its usefulness in study of substrate effects on enzyme modifica-tion but also its convenience in study of modification reaction directly involved in regulation of enzyme activity. This initial study should provide a foundation for future structural and mechanistic work of protein kinases and phosphatases.

  5. Osteobiology: newest bone organ topics and the platelet-rich plasma treatment.

    OpenAIRE

    Ananias García Cardona; Gérgory Alfonso García; Ómar Ramón Mejía; Mario Vittorino Mejía; Dianney Clavijo Grimaldi; Ciro Alfonso Casadiego Torrado

    2007-01-01

    The bone is a dynamic tissue taht provides mechanical support, physical protection, storage site for minerals, and enables genesis movement. The bone biology (osteobiology) is regulated by the balance betqeen osteoblastic formation and osteoclatic resorption. the skeletal bone homeostasis is influenced by components of the bone marrow organ, neuroendocrine system and hemato-inmmune system. The purpose of this review is to describe the biodynamic of the bone organ, and actual terapeutics with ...

  6. Prognostic Indicators of Changes in Bone Density Measures in Adolescent Girls with Anorexia Nervosa-II

    OpenAIRE

    Misra, Madhusmita; Prabhakaran, Rajani; Miller, Karen K.; Goldstein, Mark A.; Mickley, Diane; Clauss, Laura; Lockhart, Patrice; Cord, Jennalee; Herzog, David B.; Katzman, Debra K.; Klibanski, Anne

    2007-01-01

    Introduction: Adolescents with anorexia nervosa (AN) have low bone mineral density (BMD). Baseline predictors of temporal BMD changes (ΔBMD) in AN, including 1) gastrointestinal peptides regulating food intake and appetite that have been related to bone metabolism and 2) bone turnover markers, have not been well characterized. We hypothesized that baseline levels of nutritionally regulated hormones and of bone turnover markers would predict ΔBMD overall.

  7. [Microdestruction of the bone].

    Science.gov (United States)

    Iankovskiĭ, V É

    2014-01-01

    The objective of the present study was the detection of microcracks in the compact bone tissue surrounding the fracture and in deformed bone undergoing subcritical loading. The portions of deformed bone tissue and terminal fragments of broken bones were obtained in the form of blocks longitudinally sawcut from the regions of primary and secondary bone rupture. A total of 300 such blocks were available for the examination. All portions of the deformed bone tissue and terminal fragments of broken bones showed up microcracks commensurate with the bone structures. They were actually hardened traces of deformation that preceded the fracture and reflected the volume of the destroyed bone tissue; moreover, in certain cases they allowed to identify the kind of the object that exerted the external action (either a blow or slow bending). PMID:25269164

  8. Extracellular superoxide dismutase regulates the expression of small gtpase regulatory proteins GEFs, GAPs, and GDI.

    Directory of Open Access Journals (Sweden)

    Mikko O Laukkanen

    Full Text Available Extracellular superoxide dismutase (SOD3, which catalyzes the dismutation of superoxide anions to hydrogen peroxide at the cell membranes, regulates the cellular growth in a dose-dependent manner. This enzyme induces primary cell proliferation and immortalization at low expression levels whereas it activates cancer barrier signaling through the p53-p21 pathway at high expression levels, causing growth arrest, senescence, and apoptosis. Because previous reports suggested that the SOD3-induced reduction in the rates of cellular growth and migration also occurred in the absence of functional p53 signaling, in the current study we investigated the SOD3-induced growth-suppressive mechanisms in anaplastic thyroid cancer cells. Based on our data, the robust over-expression of SOD3 increased the level of phosphorylation of the EGFR, ERBB2, RYK, ALK, FLT3, and EPHA10 receptor tyrosine kinases with the consequent downstream activation of the SRC, FYN, YES, HCK, and LYN kinases. However, pull-down experiments focusing on the small GTPase RAS, RAC, CDC42, and RHO revealed a reduced level of growth and migration signal transduction, such as the lack of stimulation of the mitogen pathway, in the SOD3 over-expressing cells, which was confirmed by MEK1/2 and ERK1/2 Western blotting analysis. Interestingly, the mRNA expression analyses indicated that SOD3 regulated the expression of guanine nucleotide-exchange factors (RHO GEF16, RAL GEF RGL1, GTPase-activating proteins (ARFGAP ADAP2, RAS GAP RASAL1, RGS4, and a Rho guanine nucleotide-disassociation inhibitor (RHO GDI 2 in a dose dependent manner, thus controlling signaling through the small G protein GTPases. Therefore, our current data may suggest the occurrence of dose-dependent SOD3-driven control of the GTP loading of small G proteins indicating a novel growth regulatory mechanism of this enzyme.

  9. Extracellular superoxide dismutase regulates the expression of small gtpase regulatory proteins GEFs, GAPs, and GDI.

    Science.gov (United States)

    Laukkanen, Mikko O; Cammarota, Francesca; Esposito, Tiziana; Salvatore, Marco; Castellone, Maria D

    2015-01-01

    Extracellular superoxide dismutase (SOD3), which catalyzes the dismutation of superoxide anions to hydrogen peroxide at the cell membranes, regulates the cellular growth in a dose-dependent manner. This enzyme induces primary cell proliferation and immortalization at low expression levels whereas it activates cancer barrier signaling through the p53-p21 pathway at high expression levels, causing growth arrest, senescence, and apoptosis. Because previous reports suggested that the SOD3-induced reduction in the rates of cellular growth and migration also occurred in the absence of functional p53 signaling, in the current study we investigated the SOD3-induced growth-suppressive mechanisms in anaplastic thyroid cancer cells. Based on our data, the robust over-expression of SOD3 increased the level of phosphorylation of the EGFR, ERBB2, RYK, ALK, FLT3, and EPHA10 receptor tyrosine kinases with the consequent downstream activation of the SRC, FYN, YES, HCK, and LYN kinases. However, pull-down experiments focusing on the small GTPase RAS, RAC, CDC42, and RHO revealed a reduced level of growth and migration signal transduction, such as the lack of stimulation of the mitogen pathway, in the SOD3 over-expressing cells, which was confirmed by MEK1/2 and ERK1/2 Western blotting analysis. Interestingly, the mRNA expression analyses indicated that SOD3 regulated the expression of guanine nucleotide-exchange factors (RHO GEF16, RAL GEF RGL1), GTPase-activating proteins (ARFGAP ADAP2, RAS GAP RASAL1, RGS4), and a Rho guanine nucleotide-disassociation inhibitor (RHO GDI 2) in a dose dependent manner, thus controlling signaling through the small G protein GTPases. Therefore, our current data may suggest the occurrence of dose-dependent SOD3-driven control of the GTP loading of small G proteins indicating a novel growth regulatory mechanism of this enzyme. PMID:25751262

  10. Pleiotropic activity of lysophosphatidic acid in bone metastasis.

    Science.gov (United States)

    Peyruchaud, Olivier; Leblanc, Raphael; David, Marion

    2013-01-01

    Bone is a common metastatic site for solid cancers. Bone homeostasis is tightly regulated by intimate cross-talks between osteoblast (bone forming cells) and osteoclasts (bone resorbing cells). Once in the bone microenvironment, metastatic cells do not alter bone directly but instead perturb the physiological balance of the bone remodeling process controlled by bone cells. Tumor cells produce growth factors and cytokines stimulating either osteoclast activity leading to osteolytic lesions or osteoblast function resulting in osteoblastic metastases. Growth factors, released from the resorbed bone matrix or throughout osteoblastic bone formation, sustain tumor growth. Therefore, bone metastases are the sites of vicious cycles wherein tumor growth and bone metabolism sustain each other. Lysophosphatidic acid (LPA) promotes the growth of primary tumors and metastatic dissemination of cancer cells. We have shown that by acting on cancer cells via the contribution of blood platelets and the LPA-producing enzyme Autotaxin (ATX), LPA promotes the progression of osteolytic bone metastases in animal models. In the light of recent reports it would appear that the role of LPA in the context of bone metastases is complex involving multiple sources of lipid combined with direct and indirect effects on target cells. This review will present our current knowledge on the LPA/ATX axis involvement in osteolytic and osteoblastic skeletal metastases and will discuss the potential activity of LPA upstream and downstream metastasis seeding of cancer cells to bone as well as its implication in cancer induced bone pain. This article is part of a Special Issue entitled Advances in Lysophospholipid Research. PMID:22710393

  11. How Is Bone Cancer Diagnosed?

    Science.gov (United States)

    ... with bone cancer. Accurate diagnosis of a bone tumor often depends on combining information about its location (what bone is affected and even which part of the bone is involved), appearance on x-rays, and appearance under a microscope. ...

  12. Bone marrow (stem cell) donation

    Science.gov (United States)

    ... lymphoma , and myeloma can be treated with a bone marrow transplant . This is now often called a stem cell ... are two types of bone marrow donation: Autologous bone marrow transplant is when people donate their own bone marrow. " ...

  13. Bone Graft Alternatives

    Science.gov (United States)

    ... cadavers. The types of allograft bone used for spine surgery include fresh frozen and lyophilized (freeze dried). The ... the most common uses of bone grafts in spine surgery is during spinal fusion. The use of autogenous ...

  14. Bone Loss in IBD

    Science.gov (United States)

    ... DENSITY? Although bone seems as hard as a rock, it’s actually living tissue. Throughout your life, old ... available Bone Loss (.pdf) File: 290 KB 733 Third Avenue, Suite 510, New York, NY 10017 | 800- ...

  15. Bone mineral density test

    Science.gov (United States)

    ... Paula FJA, Black DM, Rosen CJ. Osteoporosis and bone biology.In: Melmed S, Polonsky KS, Larsen PR, Kronenberg HM, eds. Williams Textbook of Endocrinology . 13th ed. Philadelphia, ... Bone-density testing interval and transition to osteoporosis in ...

  16. Bone mineral density test

    Science.gov (United States)

    BMD test; Bone density test; Bone densitometry; DEXA scan; DXA; Dual-energy x-ray absorptiometry; p-DEXA; Osteoporosis-BMD ... need to undress. This scan is the best test to predict your risk of fractures. Peripheral DEXA ( ...

  17. Smoking and Bone Health

    Science.gov (United States)

    ... It has been called a childhood disease with old age consequences because building healthy bones in youth helps ... stronger. Weight-bearing exercise that forces you to work against gravity is the best exercise for bone. ...

  18. Cla4p, a Saccharomyces cerevisiae Cdc42p-activated kinase involved in cytokinesis, is activated at mitosis.

    OpenAIRE

    Benton, B K; Tinkelenberg, A; Gonzalez, I.; Cross, F R

    1997-01-01

    Yeasts have three functionally redundant G1 cyclins required for cell cycle progression through G1. Mutations in GIN4 and CLA4 were isolated in a screen for mutants that are inviable with deletions in the G1 cyclins CLN1 and CLN2. cln1 cln2 cla4 and cln1 cln2 gin4 cells arrest with a cytokinesis defect; this defect was efficiently rescued by CLN1 or CLN2 expression. GIN4 encodes a protein with strong homology to the Snflp serine/threonine kinase. Cla4p is homologous to mammalian p21-activated...

  19. Dominant-Negative Rho, Rac, and Cdc42 Facilitate the Invasion Process of Vibrio parahaemolyticus into Caco-2 Cells

    OpenAIRE

    Akeda, Yukihiro; Kodama, Toshio; Kashimoto, Takashige; Cantarelli, Vlademir; Horiguchi, Yasuhiko; Nagayama, Kenichi; Iida, Tetsuya; Honda, Takeshi

    2002-01-01

    To clarify the invasive process of Vibrio parahaemolyticus, an invasion assay was performed using cells expressing dominant negative small GTPases of the Rho family. This assay showed that the dominant negative host phenotype facilitates bacterial invasion, suggesting that the mechanism of V. parahaemolyticus invasion differs from that reported for other invasive bacteria.

  20. Bone regeneration in dentistry

    OpenAIRE

    Tonelli, Paolo; Duvina, Marco; Barbato, Luigi; Biondi, Eleonora; Nuti, Niccolò; Brancato, Leila; Rose, Giovanna Delle

    2011-01-01

    The edentulism of the jaws and the periodontal disease represent conditions that frequently leads to disruption of the alveolar bone. The loss of the tooth and of its bone of support lead to the creation of crestal defects or situation of maxillary atrophy. The restoration of a functional condition involves the use of endosseous implants who require adequate bone volume, to deal with the masticatory load. In such situations the bone need to be regenerated, taking advantage of the biological p...

  1. Eating disorders and bone.

    Science.gov (United States)

    Tomlinson, Dale; Morgan, Sarah L

    2013-01-01

    Low bone mineral density (BMD) is a frequent and often-overlooked consequence of eating disorders, in particular anorexia nervosa and eating disorders associated with the female athlete triad. The causes of low BMD are multifactorial and include low peak bone mass accrual, accelerated bone resorption, and changes in bone microarchitecture. Early diagnosis and interventions focused on nutritional rehabilitation and weight gain reduce the risk of further BMD deficits and fractures. PMID:24094471

  2. Bone densitometry and osteoporosis

    International Nuclear Information System (INIS)

    The purpose of this book is to provide a perspective on the current status of bone densitometry and its relevance to osteoporosis diagnosis and management. Therefore, this book will give the reader an introduction to the nature of osteoporosis, its pathophysiology and epidemiology, and the clinical consequences of performing bone densitometry. Aside from standard bone densitometry, newer technologies such as quantitative ultrasound techniques, magnetic resonance imaging and bone structure analysis are discussed in the context of diagnosing osteoporosis. (orig.)

  3. BONE MECHANOTRANSDUCTION: A REVIEW

    OpenAIRE

    Reis, Joana; Capela e Silva, Fernando; Queiroga, Cristina; Lucena, Sónia; Potes, José

    2011-01-01

    This review focus on the bone physiology and mechanotransduction elements and mechanisms. Bone biology and architecture is deeply related to the mechanical environment. Orthopaedic implants cause profound changes in the biomechanics and electrophysiology of the skeleton. In the context of biomedical engineering, a deep reflexion on bone physiology and electromechanics is needed. Strategic development of new biomaterials and devices that respect and promote continuity with bone str...

  4. Effects of obesity on bone metabolism

    Directory of Open Access Journals (Sweden)

    Cao Jay J

    2011-06-01

    Full Text Available Abstract Obesity is traditionally viewed to be beneficial to bone health because of well-established positive effect of mechanical loading conferred by body weight on bone formation, despite being a risk factor for many other chronic health disorders. Although body mass has a positive effect on bone formation, whether the mass derived from an obesity condition or excessive fat accumulation is beneficial to bone remains controversial. The underline pathophysiological relationship between obesity and bone is complex and continues to be an active research area. Recent data from epidemiological and animal studies strongly support that fat accumulation is detrimental to bone mass. To our knowledge, obesity possibly affects bone metabolism through several mechanisms. Because both adipocytes and osteoblasts are derived from a common multipotential mesenchymal stem cell, obesity may increase adipocyte differentiation and fat accumulation while decrease osteoblast differentiation and bone formation. Obesity is associated with chronic inflammation. The increased circulating and tissue proinflammatory cytokines in obesity may promote osteoclast activity and bone resorption through modifying the receptor activator of NF-κB (RANK/RANK ligand/osteoprotegerin pathway. Furthermore, the excessive secretion of leptin and/or decreased production of adiponectin by adipocytes in obesity may either directly affect bone formation or indirectly affect bone resorption through up-regulated proinflammatory cytokine production. Finally, high-fat intake may interfere with intestinal calcium absorption and therefore decrease calcium availability for bone formation. Unraveling the relationship between fat and bone metabolism at molecular level may help us to develop therapeutic agents to prevent or treat both obesity and osteoporosis. Obesity, defined as having a body mass index ≥ 30 kg/m2, is a condition in which excessive body fat accumulates to a degree that adversely

  5. Bone cysts: unicameral and aneurysmal bone cyst.

    Science.gov (United States)

    Mascard, E; Gomez-Brouchet, A; Lambot, K

    2015-02-01

    Simple and aneurysmal bone cysts are benign lytic bone lesions, usually encountered in children and adolescents. Simple bone cyst is a cystic, fluid-filled lesion, which may be unicameral (UBC) or partially separated. UBC can involve all bones, but usually the long bone metaphysis and otherwise primarily the proximal humerus and proximal femur. The classic aneurysmal bone cyst (ABC) is an expansive and hemorrhagic tumor, usually showing characteristic translocation. About 30% of ABCs are secondary, without translocation; they occur in reaction to another, usually benign, bone lesion. ABCs are metaphyseal, excentric, bulging, fluid-filled and multicameral, and may develop in all bones of the skeleton. On MRI, the fluid level is evocative. It is mandatory to distinguish ABC from UBC, as prognosis and treatment are different. UBCs resolve spontaneously between adolescence and adulthood; the main concern is the risk of pathologic fracture. Treatment in non-threatening forms consists in intracystic injection of methylprednisolone. When there is a risk of fracture, especially of the femoral neck, surgery with curettage, filling with bone substitute or graft and osteosynthesis may be required. ABCs are potentially more aggressive, with a risk of bone destruction. Diagnosis must systematically be confirmed by biopsy, identifying soft-tissue parts, as telangiectatic sarcoma can mimic ABC. Intra-lesional sclerotherapy with alcohol is an effective treatment. In spinal ABC and in aggressive lesions with a risk of fracture, surgical treatment should be preferred, possibly after preoperative embolization. The risk of malignant transformation is very low, except in case of radiation therapy. PMID:25579825

  6. Menopause and Bone Loss

    Science.gov (United States)

    Fact Sheet & Menopause Bone Loss How are bone loss and menopause related? Throughout life your body keeps a balance between the loss ... The sooner you take steps to prevent bone loss, the lower your risk of osteoporosis later in life. If you are skipping menstrual periods, have had ...

  7. What's a Funny Bone?

    Science.gov (United States)

    ... Help White House Lunch Recipes What's a Funny Bone? KidsHealth > For Kids > What's a Funny Bone? Print A A A Text Size Have you ... prickly kind of dull pain? That's your funny bone! It doesn't really hurt as much as ...

  8. Assessment of bone mineral status in children with Marfan syndrome

    Science.gov (United States)

    Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder with skeletal involvement. It is caused by mutations in fibrillin1 (FBN1) gene resulting in activation of TGF-ßeta, which developmentally regulates bone mass and matrix properties. There is no consensus regarding bone minerali...

  9. Enzymatic maceration of bone

    DEFF Research Database (Denmark)

    Uhre, Marie-Louise; Eriksen, Anne Marie; Simonsen, Kim Pilkjær;

    2015-01-01

    afterwards macerated by one of the two methods. DNA extraction was performed to see the effect of the macerations on DNA preservation. Furthermore, the bone pieces were examined in a stereomicroscope to assess for any bone damage. The results demonstrated that both methods removed all flesh/soft tissue from...... the bones. The DNA analysis showed that DNA was preserved on all the pieces of bones which were examined. Finally, the investigation suggests that enzyme maceration could be gentler on the bones, as the edges appeared less frayed. The enzyme maceration was also a quicker method; it took three hours...

  10. Tin in Human Bones

    OpenAIRE

    Jambor, Jaroslav; Smreka, Vâclav

    1993-01-01

    TIN IN HUMAN BONES. The tin content in the bones of 149 skeletons from the 1st - 5th centuries A.D., and of 11 individuals of the recent population was determined. The bone samples were carbonized and analyzed through emission spectroscopy with a.c. excitation. The tin content in bones of recent populations not exposed to extra tin supply is about one order of magnitude higher than is the case with the bones od some populations that lived at the beginning of our era. The distribut...

  11. Bone stress injuries

    International Nuclear Information System (INIS)

    Bone stress injuries are due to cyclical overuse of the bone. They are relatively common in athletes and military recruits but also among otherwise healthy people who have recently started new or intensive physical activity. Diagnosis of bone stress injuries is based on the patient's history of increased physical activity and on imaging findings. The general symptom of a bone stress injury is stress-related pain. Bone stress injuries are difficult to diagnose based only on a clinical examination because the clinical symptoms may vary depending on the phase of the pathophysiological spectrum in the bone stress injury. Imaging studies are needed to ensure an early and exact diagnosis, because if the diagnosis is not delayed most bone stress injuries heal well without complications

  12. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of health claims related to sodium and potassium salts of citric acid and maintenance of normal bone (ID 330) pursuant to Article 13(1) of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    Following a request from the European Commission, the Panel on Dietetic Products, Nutrition and Allergies was asked to provide a scientific opinion on a list of health claims pursuant to Article 13 of Regulation (EC) No 1924/2006. This opinion addresses the scientific substantiation of health...... claims in relation to sodium and potassium salts of citric acid and maintenance of normal bone. The scientific substantiation is based on the information provided by the Member States in the consolidated list of Article 13 health claims and references that EFSA has received from Member States or directly...... weighing the evidence, the Panel took into account that the results from the two human intervention studies provided which investigated the effects of potassium citrate on bone mineral density in post-menopausal women are conflicting, and that the adequately powered intervention study of longer duration...

  13. The role of P2X receptors in bone biology

    DEFF Research Database (Denmark)

    Jørgensen, N R; Syberg, S; Ellegaard, M

    2015-01-01

    receptors regulate bone metabolism and especially for the P2X7 receptor an impressive amount of evidence has now documented its expression in osteoblasts, osteoclasts, and osteocytes as well as important functional roles in proliferation, differentiation, and function of the cells of bone. Key evidence has...... come from studies on murine knockout models and from pharmacologic studies on cells and animals. More recently, the role of P2X receptors in human bone diseases has been documented. Loss-of-functions polymorphisms in the P2X7 receptorare associated with bone loss and increased fracture risk. Very...

  14. Explanation of diagnostic criteria for external radiation bone injury

    International Nuclear Information System (INIS)

    National occupational health standard-Diagnostic Criteria for External Radiation Bone Injuries has been approved and issued by the Ministry of Health. Based on the extensive research of literature, systematic study of the relevant laws and regulations, this standard was enacted according to its making principles. It is mainly used for diagnosis of bone injury induced by radiation accident, and it also can serve as a guide to diagnose bone injury induced by medical radiation. To implement this standard, and to diagnose and treat the external radiation bone injuries patient correctly and promptly, the contents of this standard were interpreted in this article. (authors)

  15. Wnt16 Is Associated with Age-Related Bone Loss and Estrogen Withdrawal in Murine Bone.

    Science.gov (United States)

    Todd, Henry; Galea, Gabriel L; Meakin, Lee B; Delisser, Peter J; Lanyon, Lance E; Windahl, Sara H; Price, Joanna S

    2015-01-01

    Genome Wide Association Studies suggest that Wnt16 is an important contributor to the mechanisms controlling bone mineral density, cortical thickness, bone strength and ultimately fracture risk. Wnt16 acts on osteoblasts and osteoclasts and, in cortical bone, is predominantly derived from osteoblasts. This led us to hypothesize that low bone mass would be associated with low levels of Wnt16 expression and that Wnt16 expression would be increased by anabolic factors, including mechanical loading. We therefore investigated Wnt16 expression in the context of ageing, mechanical loading and unloading, estrogen deficiency and replacement, and estrogen receptor α (ERα) depletion. Quantitative real time PCR showed that Wnt16 mRNA expression was lower in cortical bone and marrow of aged compared to young female mice. Neither increased nor decreased (by disuse) mechanical loading altered Wnt16 expression in young female mice, although Wnt16 expression was decreased following ovariectomy. Both 17β-estradiol and the Selective Estrogen Receptor Modulator Tamoxifen increased Wnt16 expression relative to ovariectomy. Wnt16 and ERβ expression were increased in female ERα-/- mice when compared to Wild Type. We also addressed potential effects of gender on Wnt16 expression and while the expression was lower in the cortical bone of aged males as in females, it was higher in male bone marrow of aged mice compared to young. In the kidney, which we used as a non-bone reference tissue, Wnt16 expression was unaffected by age in either males or females. In summary, age, and its associated bone loss, is associated with low levels of Wnt16 expression whereas bone loss associated with disuse has no effect on Wnt16 expression. In the artificially loaded mouse tibia we observed no loading-related up-regulation of Wnt16 expression but provide evidence that its expression is influenced by estrogen receptor signaling. These findings suggest that while Wnt16 is not an obligatory contributor to

  16. Wnt16 Is Associated with Age-Related Bone Loss and Estrogen Withdrawal in Murine Bone.

    Directory of Open Access Journals (Sweden)

    Henry Todd

    Full Text Available Genome Wide Association Studies suggest that Wnt16 is an important contributor to the mechanisms controlling bone mineral density, cortical thickness, bone strength and ultimately fracture risk. Wnt16 acts on osteoblasts and osteoclasts and, in cortical bone, is predominantly derived from osteoblasts. This led us to hypothesize that low bone mass would be associated with low levels of Wnt16 expression and that Wnt16 expression would be increased by anabolic factors, including mechanical loading. We therefore investigated Wnt16 expression in the context of ageing, mechanical loading and unloading, estrogen deficiency and replacement, and estrogen receptor α (ERα depletion. Quantitative real time PCR showed that Wnt16 mRNA expression was lower in cortical bone and marrow of aged compared to young female mice. Neither increased nor decreased (by disuse mechanical loading altered Wnt16 expression in young female mice, although Wnt16 expression was decreased following ovariectomy. Both 17β-estradiol and the Selective Estrogen Receptor Modulator Tamoxifen increased Wnt16 expression relative to ovariectomy. Wnt16 and ERβ expression were increased in female ERα-/- mice when compared to Wild Type. We also addressed potential effects of gender on Wnt16 expression and while the expression was lower in the cortical bone of aged males as in females, it was higher in male bone marrow of aged mice compared to young. In the kidney, which we used as a non-bone reference tissue, Wnt16 expression was unaffected by age in either males or females. In summary, age, and its associated bone loss, is associated with low levels of Wnt16 expression whereas bone loss associated with disuse has no effect on Wnt16 expression. In the artificially loaded mouse tibia we observed no loading-related up-regulation of Wnt16 expression but provide evidence that its expression is influenced by estrogen receptor signaling. These findings suggest that while Wnt16 is not an

  17. Estrogen receptor-α expression in neuronal cells affects bone mass

    OpenAIRE

    Ohlsson, Claes; Engdahl, Cecilia; Börjesson, Anna E; Sara H Windahl; Studer, Erik; Westberg, Lars; Eriksson, Elias; Koskela, Antti; Tuukkanen, Juha; Krust, Andree; Chambon, Pierre; Carlsten, Hans; Lagerquist, Marie K

    2012-01-01

    It has generally been assumed that bone mass is controlled by endocrine mechanisms and the local bone environment. Recent findings demonstrate that central pathways are involved in the regulation of bone mass. Estrogen is involved in the regulation of bone homeostasis and the CNS is also a target for estrogen actions. The aim of this study was to investigate in vivo the role of central estrogen receptor-α (ERα) expression for bone mass. Nestin-Cre mice were crossed with ERαflox mice to genera...

  18. The Neuroendocrine Basis of Anorexia Nervosa and Its Impact on Bone Metabolism

    Science.gov (United States)

    Misra, Madhusmita; Klibanski, Anne

    2011-01-01

    Anorexia nervosa (AN) is a condition of profound undernutrition associated with alterations in various neuroendocrine axes, many of which contribute to a marked impairment in bone accrual and low bone mineral density. This review focuses on changes in the hypothalamo-pituitary-gonadal axis, the growth hormone insulin-like growth factor-1 axis, and the hypothalamo-pituitary-adrenal axis in AN, as well as alterations in various appetite-regulating hormones. In addition, the review discusses low bone mineral density and altered bone microarchitecture in AN, the pathophysiology underlying impaired bone metabolism, and possible therapeutic strategies to optimize bone health. PMID:21228564

  19. The neuroendocrine basis of anorexia nervosa and its impact on bone metabolism.

    Science.gov (United States)

    Misra, Madhusmita; Klibanski, Anne

    2011-01-01

    Anorexia nervosa (AN) is a condition of profound undernutrition associated with alterations in various neuroendocrine axes, many of which contribute to a marked impairment in bone accrual and low bone mineral density. This review focuses on changes in the hypothalamo-pituitary-gonadal axis, the growth hormone insulin-like growth factor-1 axis, and the hypothalamo-pituitary-adrenal axis in AN, as well as alterations in various appetite-regulating hormones. In addition, the review discusses low bone mineral density and altered bone microarchitecture in AN, the pathophysiology underlying impaired bone metabolism, and possible therapeutic strategies to optimize bone health. PMID:21228564

  20. Age-related guanine nucleotide exchange factor, mouse Zizimin2, induces filopodia in bone marrow-derived dendritic cells

    OpenAIRE

    Sakabe Isamu; Asai Azusa; Iijima Junko; Maruyama Mitsuo

    2012-01-01

    Abstract Background We recently isolated and identified Zizimin2 as a functional factor that is highly expressed in murine splenic germinal center B cells after immunization with T-cell-dependent antigen. Zizimin2 was revealed to be a new family member of Dock (dedicator of cytokinesis), Dock11, which is the guanine nucleotide exchange factor for Cdc42, a low-molecular-weight GTPase. However, the molecular function of Zizimin2 in acquired immunity has not been elucidated. Results In this stud...

  1. Activation, Immune Polarization, and Graft-versus-Leukemia Activity of Donor T-cells are Regulated by Specific Subsets of Donor Bone Marrow Antigen-Presenting Cells in Allogeneic Hematopoietic Stem Cell Transplantation1

    OpenAIRE

    Li, Jian-Ming; Southerland, Lauren T.; Lu, Ying; Darlak, Kataryna A.; Giver, Cynthia R.; McMillin, Douglas W.; Harris, Wayne A.C.; Jaye, David L.; Waller, Edmund K.

    2009-01-01

    We investigated the roles of specific subsets of donor APCs purified from bone marrow in donor T cell activation and graft-vs-leukemia (GvL) activity in murine models of hemopoietic stem cell transplantation. Lineage−CD11c+ APC precursors were separated from donor bone marrow based on expression of CD11b. Transplanting lineage−CD11c+CD11b− APC (CD11b− APC) in combination with c-kit+Sca-1+lineage− hemopoietic stem cells (HSC) and congenic donor T cells led to increased donor CD4+ and CD8+ T ce...

  2. The Multifaceted Osteoclast; Far and Beyond Bone Resorption.

    Science.gov (United States)

    Drissi, Hicham; Sanjay, Archana

    2016-08-01

    The accepted function of the bone resorbing cell, osteoclast, has been linked to bone remodeling and pathological osteolysis. Emerging evidence points to novel functions of osteoclasts in controlling bone formation and angiogenesis. Thus, while the concept of a "clastokine" with the potential to regulate osteogenesis during remodeling did not come as a surprise, new evidence provided unique insight into the mechanisms underlying osteoclastic control of bone formation. The question still remains as to whether osteoclast precursors or a unique trap positive mononuclear cell, can govern any aspect of bone formation. The novel paradigm eloquently proposed by leaders in the field brings together the concept of clastokines and osteoclast precursor-mediated bone formation, potentially though enhanced angiogenesis. These fascinating advances in osteoclast biology have motivated this short review, in which we discuss these new roles of osteoclasts. J. Cell. Biochem. 117: 1753-1756, 2016. © 2016 Wiley Periodicals, Inc. PMID:27019318

  3. Bone tumors: Nursing care

    International Nuclear Information System (INIS)

    Bone tumors represent approximately 5% of childhood malignancies. osteosarcoma is the primary malignant bone tumor, accounting for 60% of cancer with peak incidence in the 2nd decade of life. Ewing's sarcoma is the second most common bone cancer with peak at a slightly younger age. This presentation discusses similarities and differences in the diagnosis and treatment of these two malignancies. Diagnostic procedures include plain radiographs, CT and MRI of the primary site, plain x-ray and CT of the chest, bone scan, and biopsy of the primary tumor. For patients diagnosed with Ewing's sarcoma, a bone marrow aspirate and biopsy will also be required. Our current approach to the treatment of bone tumors includes preoperative combination chemotherapy and en bloc surgical removal of the tumor followed by postoperative chemotherapy. In the case of Ewing's sarcoma, radiation therapy may be employed in addition to surgery, if margins are questionable of instead of surgery, if the tumor is not resectable

  4. Biophotonics and Bone Biology

    Science.gov (United States)

    Zimmerli, Gregory; Fischer, David; Asipauskas, Marius; Chauhan, Chirag; Compitello, Nicole; Burke, Jamie; Tate, Melissa Knothe

    2004-01-01

    One of the more-serious side effects of extended space flight is an accelerated bone loss [Bioastronautics Critical Path Roadmap, http://research.hq.nasa.gov/code_u/bcpr/index.cfm]. Rates of bone loss are highest in the weight-bearing bones of the hip and spine regions, and the average rate of bone loss as measured by bone mineral density measurements is around 1.2% per month for persons in a microgravity environment. It shows that an extrapolation of the microgravity induced bone loss rates to longer time scales, such as a 2.5 year round-trip to Mars (6 months out at 0 g, 1.5 year stay on Mars at 0.38 g, 6 months back at 0 g), could severely compromise the skeletal system of such a person.

  5. Isolation of osteocytes from human trabecular bone.

    Science.gov (United States)

    Prideaux, Matthew; Schutz, Christine; Wijenayaka, Asiri R; Findlay, David M; Campbell, David G; Solomon, Lucian B; Atkins, Gerald J

    2016-07-01

    Osteocytes are essential regulators of bone homeostasis. However, they are difficult to study due to their location within the bone mineralised matrix. Although several techniques have been published for the isolation of osteocytes from mouse bone, no such technique has been described for human osteocytes. We have therefore developed a protocol for the isolation of osteocytes from human trabecular bone samples acquired during surgery. The cells were digested from the bone matrix by sequential collagenase and ethylenediaminetetraacetic acid (EDTA) digestions and the cells from later digests displayed characteristic dendritic osteocyte morphology when cultured ex vivo. Furthermore, the cells expressed characteristic osteocyte marker genes, such as E11, dentin matrix protein 1 (DMP1), SOST, matrix extracellular phosphoglycoprotein (MEPE) and phosphate regulating endopeptidase homologue, X-linked (PHEX). In addition, genes associated with osteocyte perilacunar remodelling, including matrix metallopeptidase-13 (MMP13), cathepsin K (CTSK) and carbonic anhydrase 2 (CAR2) were expressed. The cells also responded to parathyroid hormone (PTH) by downregulating SOST mRNA expression and to 1α,25-dihydroxyvitamin D3 (1,25D) by upregulating fibroblast growth factor 23 (FGF23) mRNA expression. Therefore, the cells behave in a similar manner to osteocytes in vivo. These cells represent an important tool in enhancing current knowledge in human osteocyte biology. PMID:27109824

  6. Nanocomposites and bone regeneration

    Science.gov (United States)

    James, Roshan; Deng, Meng; Laurencin, Cato T.; Kumbar, Sangamesh G.

    2011-12-01

    This manuscript focuses on bone repair/regeneration using tissue engineering strategies, and highlights nanobiotechnology developments leading to novel nanocomposite systems. About 6.5 million fractures occur annually in USA, and about 550,000 of these individual cases required the application of a bone graft. Autogenous and allogenous bone have been most widely used for bone graft based therapies; however, there are significant problems such as donor shortage and risk of infection. Alternatives using synthetic and natural biomaterials have been developed, and some are commercially available for clinical applications requiring bone grafts. However, it remains a great challenge to design an ideal synthetic graft that very closely mimics the bone tissue structurally, and can modulate the desired function in osteoblast and progenitor cell populations. Nanobiomaterials, specifically nanocomposites composed of hydroxyapatite (HA) and/or collagen are extremely promising graft substitutes. The biocomposites can be fabricated to mimic the material composition of native bone tissue, and additionally, when using nano-HA (reduced grain size), one mimics the structural arrangement of native bone. A good understanding of bone biology and structure is critical to development of bone mimicking graft substitutes. HA and collagen exhibit excellent osteoconductive properties which can further modulate the regenerative/healing process following fracture injury. Combining with other polymeric biomaterials will reinforce the mechanical properties thus making the novel nano-HA based composites comparable to human bone. We report on recent studies using nanocomposites that have been fabricated as particles and nanofibers for regeneration of segmental bone defects. The research in nanocomposites, highlight a pivotal role in the future development of an ideal orthopaedic implant device, however further significant advancements are necessary to achieve clinical use.

  7. Bone fractures after menopause

    OpenAIRE

    Barlow, David H.; Bouchard, Philippe; Brandi, Maria Luisa; Evers, J.L.H.; Glasier, A.; Negri, Eva; Papapoulos, Socrates E; Ralston, Stuart H; Rizzoli, Rene; Baird, D T; Collins, J.; G. Benagiano; P.G. Crosignani; La Vecchia, C.; Volpe, A

    2010-01-01

    Every year 30% of individuals above age 65 fall, and falls are the principal cause of bone fractures. To reduce fracture incidence requires both prevention of falls and maintenance of bone strength.PubMed searches were performed, for studies of the epidemiology of fractures, bone physiology, endocrine effects, osteoporosis measurement, genetics, prevention and effectiveness. Topic summaries were presented to the Workshop Group and omissions or disagreements were resolved by discussion.Ageing ...

  8. Bone Regeneration in Odontostomatology

    OpenAIRE

    Tonelli, P; Duvina, M.; Brancato, L.; Delle Rose, G.; Biondi, E.; Civitelli, V.

    2010-01-01

    Maxillary edentulism, together with periodontal disease, is the condition that most frequently induces disruption of alveolar bone tissue. Indeed, the stimulus of the periodontal ligament is lost and the local bone tissue becomes subject to resorption processes that, in the six months following the loss of the tooth, result in alveolar defects or more extensive maxillary atrophy. In both cases, loss of vestibular cortical bone is followed by reduction in the vertical dimension of the alveolar...

  9. Percutaneous Bone Tumor Management

    OpenAIRE

    Gangi, Afshin; Buy, Xavier

    2010-01-01

    Interventional radiology plays a major role in the management of bone tumors. Many different percutaneous techniques are available. Some aim to treat pain and consolidate a pathological bone (cementoplasty); others aim to ablate tumor or reduce its volume (sclerotherapy, thermal ablation). In this article, image-guided techniques of primary and secondary bone tumors with vertebroplasty, ethanol injection, radiofrequency ablation, laser photocoagulation, cryoablation, and radiofrequency ioniza...

  10. The ROP2-RIC7 pathway negatively regulates light-induced stomatal opening by inhibiting exocyst subunit Exo70B1 in Arabidopsis.

    Science.gov (United States)

    Hong, Daewoong; Jeon, Byeong Wook; Kim, Soo Young; Hwang, Jae-Ung; Lee, Youngsook

    2016-01-01

    Stomata are the tiny valves on the plant surface that mediate gas exchange between the plant and its environment. Stomatal opening needs to be tightly regulated to facilitate CO2 uptake and prevent excess water loss. Plant Rho-type (ROP) GTPase 2 (ROP2) is a molecular component of the system that negatively regulates light-induced stomatal opening. Previously, ROP-interactive Cdc42- and Rac-interactive binding motif-containing protein 7 (RIC7) was suggested to function downstream of ROP2. However, the underlying molecular mechanism remains unknown. To understand the mechanism by which RIC7 regulates light-induced stomatal opening, we analyzed the stomatal responses of ric7 mutant Arabidopsis plants and identified the target protein of RIC7 using a yeast two-hybrid screen. Light-induced stomatal opening was promoted by ric7 knockout, whereas it was inhibited by RIC7 overexpression, indicating that RIC7 negatively regulates stomatal opening in Arabidopsis. RIC7 interacted with exocyst subunit Exo70 family protein B1 (Exo70B1), a component of the vesicle trafficking machinery. RIC7 and Exo70B1 localized to the plasma membrane region under light or constitutively active ROP2 conditions. The knockout mutant of Exo70B1 and ric7/exo70b1 exhibited retarded light-induced stomatal opening. Our results suggest that ROP2 and RIC7 suppress excess stomatal opening by inhibiting Exo70B1, which most likely participates in the vesicle trafficking required for light-induced stomatal opening. PMID:26451971

  11. Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model

    OpenAIRE

    Britton, Robert A.; Irwin, Regina; Quach, Darin; Schaefer, Laura; Zhang, Jing; Lee, Taehyung; Parameswaran, Narayanan; McCabe, Laura R.

    2014-01-01

    Estrogen deficiency is a major risk factor for osteoporosis that is associated with bone inflammation and resorption. Half of women over the age of 50 will experience an osteoporosis related fracture in their lifetime, thus novel therapies are needed to combat post-menopausal bone loss. Recent studies suggest an important role for gut-bone signaling pathways and the microbiota in regulating bone health. Given that the bacterium Lactobacillus reuteri ATCC PTA 6475 (L. reuteri) secretes benefic...

  12. Sonic Hedgehog-activated engineered blood vessels enhance bone tissue formation

    OpenAIRE

    N C Rivron; Raiss, C.C.; Liu, J.; Nandakumar, A.; Sticht, C; Gretz, N; Truckenmuller, R.K.; Rouwkema, J.; Blitterswijk, van, W.J.

    2012-01-01

    Large bone defects naturally regenerate via a highly vascularized tissue which progressively remodels into cartilage and bone. Current approaches in bone tissue engineering are restricted by delayed vascularization and fail to recapitulate this stepwise differentiation toward bone tissue. Here, we use the morphogen Sonic Hedgehog (Shh) to induce the in vitro organization of an endothelial capillary network in an artificial tissue. We show that endogenous Hedgehog activity regulates angiogenic...

  13. Physiology and molecular characterization of metabolism related mouse models for bone disease

    OpenAIRE

    Chi, Shen

    2015-01-01

    Bone disorders are commonly associated with various metabolic diseases. Two ENU- induced mutant mouse lines were analyzed to explore the relationship between bone and metabolic phenotypes. SATB2 was proven to regulate bone development. In addition, a previously unknown role of the gene in energy metabolism was uncovered. Only a minor influence on bone homeostasis and energy metabolism could be attributed to the T720A mutation of DLL1.

  14. Dermal bone in early tetrapods: a palaeophysiological hypothesis of adaptation for terrestrial acidosis

    OpenAIRE

    Janis, Christine M.; Devlin, Kelly; Warren, Daniel E.; Witzmann, Florian

    2012-01-01

    The dermal bone sculpture of early, basal tetrapods of the Permo-Carboniferous is unlike the bone surface of any living vertebrate, and its function has long been obscure. Drawing from physiological studies of extant tetrapods, where dermal bone or other calcified tissues aid in regulating acid–base balance relating to hypercapnia (excess blood carbon dioxide) and/or lactate acidosis, we propose a similar function for these sculptured dermal bones in early tetrapods. Unlike the condition in m...

  15. Imaging of Bone Marrow.

    Science.gov (United States)

    Lin, Sopo; Ouyang, Tao; Kanekar, Sangam

    2016-08-01

    Bone marrow is the essential for function of hematopoiesis, which is vital for the normal functioning of the body. Bone marrow disorders or dysfunctions may be evaluated by blood workup, peripheral smears, marrow biopsy, plain radiographs, computed tomography (CT), MRI and nuclear medicine scan. It is important to distinguish normal spinal marrow from pathology to avoid missing a pathology or misinterpreting normal changes, either of which may result in further testing and increased health care costs. This article focuses on the diffuse bone marrow pathologies, because the majority of the bone marrow pathologies related to hematologic disorders are diffuse. PMID:27444005

  16. Biophotonics and Bone Biology

    Science.gov (United States)

    Zimmerli, Gregory; Fischer, David; Asipauskas, Marius; Chauhan, Chirag; Compitello, Nicole; Burke, Jamie; Tate, Melissa Knothe

    2004-01-01

    One of the more serious side effects of extended space flight is an accelerated bone loss. Rates of bone loss are highest in the weight-bearing bones of the hip and spine regions, and the average rate of bone loss as measured by bone mineral density measurements is around 1.2% per month for persons in a microgravity environment. It is well known that bone remodeling responds to mechanical forces. We are developing two-photon microscopy techniques to study bone tissue and bone cell cultures to better understand the fundamental response mechanism in bone remodeling. Osteoblast and osteoclast cell cultures are being studied, and the goal is to use molecular biology techniques in conjunction with Fluorescence Lifetime Imaging Microscopy (FLIM) to study the physiology of in-vitro cell cultures in response to various stimuli, such as fluid flow induced shear stress and mechanical stress. We have constructed a two-photon fluorescence microscope for these studies, and are currently incorporating FLIM detection. Current progress will be reviewed. This work is supported by the NASA John Glenn Biomedical Engineering Consortium.

  17. Bone marrow fat.

    Science.gov (United States)

    Hardouin, Pierre; Pansini, Vittorio; Cortet, Bernard

    2014-07-01

    Bone marrow fat (BMF) results from an accumulation of fat cells within the bone marrow. Fat is not a simple filling tissue but is now considered as an actor within bone microenvironment. BMF is not comparable to other fat depots, as in subcutaneous or visceral tissues. Recent studies on bone marrow adipocytes have shown that they do not appear only as storage cells, but also as cells secreting adipokines, like leptin and adiponectin. Moreover bone marrow adipocytes share the same precursor with osteoblasts, the mesenchymal stem cell. It is now well established that high BMF is associated with weak bone mass in osteoporosis, especially during aging and anorexia nervosa. But numerous questions remain discussed: what is the precise phenotype of bone marrow adipocytes? What is the real function of BMF, and how does bone marrow adipocyte act on its environment? Is the increase of BMF during osteoporosis responsible for bone loss? Is BMF involved in other diseases? How to measure BMF in humans? A better understanding of BMF could allow to obtain new diagnostic tools for osteoporosis management, and could open major therapeutic perspectives. PMID:24703396

  18. Extraskeletal and intraskeletal new bone formation induced by demineralized bone matrix combined with bone marrow cells

    International Nuclear Information System (INIS)

    Dilutions of fresh autogenous bone marrow cells in combination with allogeneic demineralized cortical bone matrix were tested extraskeletally in rats using roentgenographic, histologic, and 45Ca techniques. Suspensions of bone marrow cells (especially diluted 1:2 with culture media) combined with demineralized cortical bone seemed to induce significantly more new bone than did demineralized bone, bone marrow, or composite grafts with whole bone marrow, respectively. In a short-term spinal fusion experiment, demineralized cortical bone combined with fresh bone marrow produced new bone and bridged the interspace between the spinous processes faster than other transplantation procedures. The induction of undifferentiated host cells by demineralized bone matrix is further complemented by addition of autogenous, especially slightly diluted, bone marrow cells

  19. Postirradiation bone marrow damage in chickens

    International Nuclear Information System (INIS)

    The frequency of bone marrow damage induced by the continuous gamma irradiation was studied. Effect of dose rate and level of cumulated doses of radiation was evaluated in clinical and hematological examinations and bone marrow damage was determined by chromosome aberrations in anaphase. The regulative ability of hematopoiesis of many cytokines are discussed. Positive regulators are inducers of cell proliferation, and negative regulators are inducers of apoptosis /programmed cell death/. Birds corresponding with similarities in thymus-T and bursal-B cells appear to be an interesting model for studying the possible participation of apoptosis in radiation disease. Our recent experimental studies continue to progress in this direction. (author) 17 refs.; 3 figs.; 2 tabs

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... diagnosis of bone cancer . locate foreign objects in soft tissues around or in bones. top of page How ... Dense bone absorbs much of the radiation while soft tissue, such as muscle, fat and organs, allow more ...

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... is commonly used to diagnose fractured bones or joint dislocation. Bone x-rays are the fastest and ... to view and assess bone fractures, injuries and joint abnormalities. This exam requires little to no special ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of bone cancer . locate foreign objects in soft tissues around or in bones. top of page How ... bone absorbs much of the radiation while soft tissue, such as muscle, fat and organs, allow more ...

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... or in bones. top of page How should I prepare? Most bone x-rays require no special ... to 10 minutes. top of page What will I experience during and after the procedure? A bone ...

  4. Bone marrow (stem cell) donation

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000839.htm Bone marrow (stem cell) donation To use the sharing ... stem cells from a donor's blood. Types of Bone Marrow Donation There are two types of bone ...

  5. Bone Marrow Aspiration and Biopsy

    Science.gov (United States)

    ... Global Sites Search Help? Bone Marrow Aspiration and Biopsy Share this page: Was this page helpful? Also ... Examination Formal name: Bone Marrow Aspiration; Bone Marrow Biopsy Related tests: Complete Blood Count ; WBC Differential ; Reticulocyte ...

  6. Exercise for Your Bone Health

    Science.gov (United States)

    ... supported by your browser. Home Bone Basics Lifestyle Exercise for Your Bone Health Publication available in: PDF ( ... A Complete Osteoporosis Program For Your Information Why Exercise? Like muscle, bone is living tissue that responds ...

  7. New Insights into the Molecular Basis of Kidney Governing Bone Theory

    Institute of Scientific and Technical Information of China (English)

    Dong-feng Zhao; Yong-jian Zhao; Cheng-long Wang; Yan-ping Yang; Yong-jun Wang

    2015-01-01

    Kidney governing bone theory plays an important role in treating bone metabolic disease such as osteoporosis, and many tonifying kidney prescriptions/herbs are widely used in Traditional Chinese Medicine (TCM). However, the exact biological basis of kidney governing bone theory in the context of new advances in biology is still not fully established. In this paper, the content of kidney governing bone theory in biology has been fully demonstrated from different aspects. We first propose that bone and kidney mutually affect each other in pathology and physiology, particularly through homeostasis of calcium, phosphorus and fibroblast growth factor-23(FGF-23). Next, we identify that tonifying kidney prescriptions/herbs exert bone protective effects, thus treating osteoporosis by regulating bone formation and bone resorption. Furthermore, the exact molecular mechanisms of tonifying kidney prescriptions, herbs and their effective components in treating osteoporosis have been systematically reviewed. Finally, we come into the conclusion that kidney regulating bone mineral homeostasis, bone protective effects of tonifying kidney herbs and regulatory effects on bone homeostasis are all the manifestations of kidney governing bone theory. Therefore, the new insights into kidney governing bone theory in biology will promote the development of clinical practices, and drugs discovery in treating osteoporosis.

  8. Probiotics protect mice from ovariectomy-induced cortical bone loss.

    Directory of Open Access Journals (Sweden)

    Claes Ohlsson

    Full Text Available The gut microbiota (GM modulates the hosts metabolism and immune system. Probiotic bacteria are defined as live microorganisms which when administered in adequate amounts confer a health benefit on the host and can alter the composition of the GM. Germ-free mice have increased bone mass associated with reduced bone resorption indicating that the GM also regulates bone mass. Ovariectomy (ovx results in bone loss associated with altered immune status. The purpose of this study was to determine if probiotic treatment protects mice from ovx-induced bone loss. Mice were treated with either a single Lactobacillus (L strain, L. paracasei DSM13434 (L. para or a mixture of three strains, L. paracasei DSM13434, L. plantarum DSM 15312 and DSM 15313 (L. mix given in the drinking water during 6 weeks, starting two weeks before ovx. Both the L. para and the L. mix treatment protected mice from ovx-induced cortical bone loss and bone resorption. Cortical bone mineral content was higher in both L. para and L. mix treated ovx mice compared to vehicle (veh treated ovx mice. Serum levels of the resorption marker C-terminal telopeptides and the urinary fractional excretion of calcium were increased by ovx in the veh treated but not in the L. para or the L. mix treated mice. Probiotic treatment reduced the expression of the two inflammatory cytokines, TNFα and IL-1β, and increased the expression of OPG, a potent inhibitor of osteoclastogenesis, in cortical bone of ovx mice. In addition, ovx decreased the frequency of regulatory T cells in bone marrow of veh treated but not probiotic treated mice. In conclusion, treatment with L. para or the L. mix prevents ovx-induced cortical bone loss. Our findings indicate that these probiotic treatments alter the immune status in bone resulting in attenuated bone resorption in ovx mice.

  9. The role of versican G3 domain in regulating breast cancer cell motility including effects on osteoblast cell growth and differentiation in vitro – evaluation towards understanding breast cancer cell bone metastasis

    Directory of Open Access Journals (Sweden)

    Du William

    2012-08-01

    Full Text Available Abstract Background Versican is detected in the interstitial tissues at the invasive margins of breast carcinoma, is predictive of relapse, and negatively impacts overall survival rates. The versican G3 domain is important in breast cancer cell growth, migration and bone metastasis. However, mechanistic studies evaluating versican G3 enhanced breast cancer bone metastasis are limited. Methods A versican G3 construct was exogenously expressed in the 66c14 and the MC3T3-E1 cell line. Cells were observed through light microscopy and viability analyzed by Coulter Counter or determined with colorimetric proliferation assays. The Annexin V-FITC apoptosis detection kit was used to detect apoptotic activity. Modified Chemotactic Boyden chamber migration invasion assays were applied to observe tumor migration and invasion to bone stromal cells and MC3T3-E1 cells. Alkaline phosphatase (ALP staining and ALP ELISA assays were performed to observe ALP activity in MC3T3-E1 cells. Results In the four mouse breast cancer cell lines 67NR, 66c14, 4T07, and 4T1, 4T1 cells expressed higher levels of versican, and showed higher migration and invasion ability to MC3T3-E1 cells and primary bone stromal cells. 4T1 conditioned medium (CM inhibited MC3T3-E1 cell growth, and even lead to apoptosis. Only 4T1 CM prevented MC3T3-E1 cell differentiation, noted by inhibition of alkaline phosphatase (ALP activity. We exogenously expressed a versican G3 construct in a cell line that expresses low versican levels (66c14, and observed that the G3-expressing 66c14 cells showed enhanced cell migration and invasion to bone stromal and MC3T3-E1 cells. This observation was prevented by selective EGFR inhibitor AG1478, selective MEK inhibitor PD 98059, and selective AKT inhibitor Triciribine, but not by selective JNK inhibitor SP 600125. Versican G3 enhanced breast cancer cell invasion to bone stromal cells or osteoblast cells appears to occur through enhancing EGFR/ERK or AKT signaling

  10. Bone marrow transplantation

    International Nuclear Information System (INIS)

    Peculiarities of clinico-hematologic pattern in patients with acute leukosis when ionizing radiation is used as prepration regime for hystocompatible bone marrow transplantation are listed. Chemico-radiopreparation of patients with acute leukosis is described, different techniques of bone marrow transplantation are presented, secondary signs of the disease are shown

  11. The normal bone scan

    International Nuclear Information System (INIS)

    This paper discusses applications of the bone scan. It is the most frequently performed nuclear medicine investigation, the commonest indication being the detection of occult metastases, for which purpose the entire skeleton should be imaged. For other purposes it is often adequate to examine only part of the skeleton. The amount of isotope taken up at any site depends primarily on the local rate of bone turnover rather than on bone mass. The scintigraphic appearance therefore does not necessarily correlate with the radiographic one; however, as there is a relationship between the rate at which bone is replaced and the quantity of bone which is present at any point, the two appearances are not entirely unrelated. Recognition of abnormality is based on a detailed knowledge of normal scintigraphic appearances

  12. Bone markers and osteoporosis therapy

    Directory of Open Access Journals (Sweden)

    Francisco Bandeira

    2014-07-01

    Full Text Available Several factors are involved in determining bone quality including bone density, bone turnover, the extent of trabecular bone connectivity, cortical porosity and geometry. Metabolically active and in a continuous process of remodeling, approximately 20% of bone tissue is renewed annually. Bone turn over markers (BTM are frequently used in clinical trials and to provide valid information about the effectiveness of osteoporosis treatment, reflecting the state of bone metabolism and its response to treatment, although they are not useful alone to estimate bone loss. In this review the behavior of BTM from different clinical trials or different osteoporotic drugs will be addressed.

  13. Protocadherin-7 induces bone metastasis of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ai-Min [Department of Orthopedics, The 5th Central Hospital of Tianjin, Tianjin (China); Tian, Ai-Xian [Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Zhang, Rui-Xue [Department of Clinical Laboratory Diagnosis, Tianjin Medical University, Tianjin (China); Ge, Jie [Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Sun, Xuan [Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Cao, Xu-Chen, E-mail: caoxuch@126.com [Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China)

    2013-07-05

    Highlights: •PCDH7 is overexpression in high bone metastatic MDA-MB-231 cells. •PCDH7 is up-regulation in bone metastatic breast cancer tissues. •Suppression of PCDH7 inhibits cell proliferation, migration, and invasion in vitro. •PCDH7 induces breast cancer bone metastasis in vivo. -- Abstract: Breast cancer had a propensity to metastasize to bone, resulting in serious skeletal complications associated with poor outcome. Previous study showed that Protocadherin-7 (PCDH7) play an important role in brain metastatic breast cancer, however, the role of PCDH7 in bone metastatic breast cancer has never been explored. In the present study, we found that PCDH7 expression was up-regulation in bone metastatic breast cancer tissues by real-time PCR and immunohistochemistry assays. Furthermore, suppression of PCDH7 inhibits breast cancer cell proliferation, migration, and invasion in vitro by MTT, scratch, and transwell assays. Most importantly, overexpression of PCDH7 promotes breast cancer cell proliferation and invasion in vitro, and formation of bone metastasis in vivo. These data provide an important insight into the role of PCDH7 in bone metastasis of breast cancer.

  14. Protocadherin-7 induces bone metastasis of breast cancer

    International Nuclear Information System (INIS)

    Highlights: •PCDH7 is overexpression in high bone metastatic MDA-MB-231 cells. •PCDH7 is up-regulation in bone metastatic breast cancer tissues. •Suppression of PCDH7 inhibits cell proliferation, migration, and invasion in vitro. •PCDH7 induces breast cancer bone metastasis in vivo. -- Abstract: Breast cancer had a propensity to metastasize to bone, resulting in serious skeletal complications associated with poor outcome. Previous study showed that Protocadherin-7 (PCDH7) play an important role in brain metastatic breast cancer, however, the role of PCDH7 in bone metastatic breast cancer has never been explored. In the present study, we found that PCDH7 expression was up-regulation in bone metastatic breast cancer tissues by real-time PCR and immunohistochemistry assays. Furthermore, suppression of PCDH7 inhibits breast cancer cell proliferation, migration, and invasion in vitro by MTT, scratch, and transwell assays. Most importantly, overexpression of PCDH7 promotes breast cancer cell proliferation and invasion in vitro, and formation of bone metastasis in vivo. These data provide an important insight into the role of PCDH7 in bone metastasis of breast cancer

  15. Bone scanning in osteoporosis

    International Nuclear Information System (INIS)

    This paper reports on bone scanning in osteoporosis a diagnosis of osteoporosis most often follows fracture, and clearly this should be confirmed by x-ray. The bone scan therefore does not have an important role to play in the initial diagnosis of osteoporosis. While the exact mechanism by which the 99mTc-labeled diphosphonates localize in the skeleton is not fully understood, it is believed that they adsorb onto bone surfaces most probably via the calcium of hydroxyapatite crystals. Because the major factors that affect adsorption are osteoblastic activity and to a lesser extent skeletal vascularity, it is apparent that a bone scan image presents a functional display of skeletal metabolic activity. However, osteoporosis is a disorder in which gradual change in bone mass may occur over many years and, in keeping with this minor imbalance in skeletal metabolism, the bone scan appearances are usually normal. However, the scan images may appear of poor quality because of relatively low bone uptake of tracer with, on occasion, a washed-out pattern of activity in the axial and appendicular bone. It has been suggested that such a pattern occurs in severe or end-stage osteoporosis caused by markedly reduced osteoblastic activity. If kyphosis is observed on the bone scan or if there appears to be loss of spinal height with proximity of ribs to each other or increased closeness of rib cage to pelvis, then appearances suggest vertebral collapse and would be in keeping with a diagnosis of osteoporosis. Such evidence is, however, indirect and in practice a bone scan is an extremely unreliable means of diagnosing osteoporosis

  16. Bone changes in tuberous sclerosis mimicking metastases

    Energy Technology Data Exchange (ETDEWEB)

    Pui, M.H.; Kong Hwai Loong; Choo Hui Fen [National University Hospital (Singapore). Depts. of Diagnostic Radiology and Oncology

    1996-02-01

    Sclerotic and lytic bone changes of tuberous sclerosis (TS) can mimic bone metastases. A case is reported of a patient with concomitant sclerotic bone metastases from bronchogenic carcinoma and TS bone changes, diagnosed by bone scintigraphy and magnetic resonance imaging. The increased bone uptake and abnormal magnetic resonance signal allowed distinction of TS bone lesions from bone metastases. 6 refs., 4 figs.

  17. Bone changes in tuberous sclerosis mimicking metastases

    International Nuclear Information System (INIS)

    Sclerotic and lytic bone changes of tuberous sclerosis (TS) can mimic bone metastases. A case is reported of a patient with concomitant sclerotic bone metastases from bronchogenic carcinoma and TS bone changes, diagnosed by bone scintigraphy and magnetic resonance imaging. The increased bone uptake and abnormal magnetic resonance signal allowed distinction of TS bone lesions from bone metastases. 6 refs., 4 figs

  18. Impact of bone marrow on respiratory disease.

    Science.gov (United States)

    Rankin, Sara M

    2008-06-01

    The bone marrow is not only a site of haematopoiesis but also serves as an important reservoir for mature granulocytes and stem cells, including haematopoietic stem cells, mesenchymal stem cells and fibrocytes. In respiratory diseases, such as asthma and idiopathic pulmonary fibrosis these cells are mobilised from the bone marrow in response to blood-borne mediators and subsequently recruited to the lungs. Although the granulocytes contribute to the inflammatory reaction, stem cells may promote tissue repair or remodelling. Understanding the factors and molecular mechanisms that regulate the mobilisation of granulocytes and stem cells from the bone marrow may lead to the identification of novel therapeutic targets for the treatment of a wide range of respiratory disorders. PMID:18372214

  19. Exosomes derived from atorvastatin-modified bone marrow dendritic cells ameliorate experimental autoimmune myasthenia gravis by up-regulated levels of IDO/Treg and partly dependent on FasL/Fas pathway

    OpenAIRE

    Li, Xiao-Li; Li, Heng; Zhang, Min; Xu, Hua; Yue, Long-Tao; Zhang, Xin-Xin; Wang, Shan; Wang, Cong-Cong; Li, Yan-Bin; Dou, Ying-Chun; Duan, Rui-Sheng

    2016-01-01

    Background Previously, we have demonstrated that spleen-derived dendritic cells (DCs) modified with atorvastatin suppressed immune responses of experimental autoimmune myasthenia gravis (EAMG). However, the effects of exosomes derived from atorvastatin-modified bone marrow DCs (BMDCs) (statin-Dex) on EAMG are still unknown. Methods Immunophenotypical characterization of exosomes from atorvastatin- and dimethylsulfoxide (DMSO)-modified BMDCs was performed by electron microscopy, flow cytometry...

  20. Targeting bone remodeling by isoflavone and 3,3'-diindolylmethane in the context of prostate cancer bone metastasis.

    Directory of Open Access Journals (Sweden)

    Yiwei Li

    Full Text Available Prostate cancer (PCa bone metastases have long been believed to be osteoblastic because of bone remodeling leading to the formation of new bone. However, recent studies have shown increased osteolytic activity in the beginning stages of PCa bone metastases, suggesting that targeting both osteolytic and osteoblastic mediators would likely inhibit bone remodeling and PCa bone metastasis. In this study, we found that PCa cells could stimulate differentiation of osteoclasts and osteoblasts through the up-regulation of RANKL, RUNX2 and osteopontin, promoting bone remodeling. Interestingly, we found that formulated isoflavone and 3,3'-diindolylmethane (BR-DIM were able to inhibit the differentiation of osteoclasts and osteoblasts through the inhibition of cell signal transduction in RANKL, osteoblastic, and PCa cell signaling. Moreover, we found that isoflavone and BR-DIM down-regulated the expression of miR-92a, which is known to be associated with RANKL signaling, EMT and cancer progression. By pathway and network analysis, we also observed the regulatory effects of isoflavone and BR-DIM on multiple signaling pathways such as AR/PSA, NKX3-1/Akt/p27, MITF, etc. Therefore, isoflavone and BR-DIM with their multi-targeted effects could be useful for the prevention of PCa progression, especially by attenuating bone metastasis mechanisms.

  1. Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner

    International Nuclear Information System (INIS)

    Additive manufacturing by laser sintering is able to produce high resolution metal constructs for orthopedic and dental implants. In this study, we used a human trabecular bone template to design and manufacture Ti-6Al-4V constructs with varying porosity via laser sintering. Characterization of constructs revealed interconnected porosities ranging from 15–70% with compressive moduli of 2579–3693 MPa. These constructs with macro porosity were further surface-treated to create a desirable multi-scale micro-/nano-roughness, which has been shown to enhance the osseointegration process. Osteoblasts (MG63 cells) exhibited high viability when grown on the constructs. Proliferation (DNA) and alkaline phosphatase specific activity, an early differentiation marker, decreased as porosity increased, while osteocalcin, a late differentiation marker, as well as osteoprotegerin, vascular endothelial growth factor and bone morphogenetic proteins 2 and 4 increased with increasing porosity. Three-dimensional (3D) constructs with the highest porosity and surface modification supported the greatest osteoblast differentiation and local factor production. These results indicate that additively manufactured 3D porous constructs mimicking human trabecular bone and produced with additional surface treatment can be customized for increased osteoblast response. Increased factors for osteoblast maturation and differentiation on high porosity constructs suggest the enhanced performance of these surfaces for increasing osseointegration in vivo. (paper)

  2. What Is a Bone Marrow Transplant?

    Science.gov (United States)

    ... this page Print this page What is a bone marrow transplant? A bone marrow or cord blood transplant is ... with healthy bone marrow. Tweet What is a bone marrow transplant How a bone marrow transplant works Transplant process ...

  3. Recent advances in bone regeneration using adult stemcells

    Institute of Scientific and Technical Information of China (English)

    Hadar Zigdon-Giladi; Utai Rudich; Gal Michaeli Geller; Ayelet Evron

    2015-01-01

    Bone is a highly vascularized tissue reliant on theclose spatial and temporal association between bloodvessels and bone cells. Therefore, cells that participatein vasculogenesis and osteogenesis play a pivotalrole in bone formation during prenatal and postnatalperiods. Nevertheless, spontaneous healing of bonefracture is occasionally impaired due to insufficientblood and cellular supply to the site of injury. In thesecases, bone regeneration process is interrupted, whichmight result in delayed union or even nonunion ofthe fracture. Nonunion fracture is difficult to treatand have a high financial impact. In the last decade,numerous technological advancements in bone tissueengineering and cell-therapy opened new horizon inthe field of bone regeneration. This review starts withpresentation of the biological processes involved inbone development, bone remodeling, fracture healingprocess and the microenvironment at bone healingsites. Then, we discuss the rationale for using adultstem cells and listed the characteristics of the availablecells for bone regeneration. The mechanism of actionand epigenetic regulations for osteogenic differentiationare also described. Finally, we review the literature fortranslational and clinical trials that investigated the useof adult stem cells (mesenchymal stem cells, endothelialprogenitor cells and CD34+ blood progenitors) for boneregeneration.

  4. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone

    Science.gov (United States)

    Ramasamy, Saravana K.; Kusumbe, Anjali P.; Wang, Lin; Adams, Ralf H.

    2014-03-01

    Blood vessel growth in the skeletal system and osteogenesis seem to be coupled, suggesting the existence of molecular crosstalk between endothelial and osteoblastic cells. Understanding the nature of the mechanisms linking angiogenesis and bone formation should be of great relevance for improved fracture healing or prevention of bone mass loss. Here we show that vascular growth in bone involves a specialized, tissue-specific form of angiogenesis. Notch signalling promotes endothelial cell proliferation and vessel growth in postnatal long bone, which is the opposite of the well-established function of Notch and its ligand Dll4 in the endothelium of other organs and tumours. Endothelial-cell-specific and inducible genetic disruption of Notch signalling in mice not only impaired bone vessel morphology and growth, but also led to reduced osteogenesis, shortening of long bones, chondrocyte defects, loss of trabeculae and decreased bone mass. On the basis of a series of genetic experiments, we conclude that skeletal defects in these mutants involved defective angiocrine release of Noggin from endothelial cells, which is positively regulated by Notch. Administration of recombinant Noggin, a secreted antagonist of bone morphogenetic proteins, restored bone growth and mineralization, chondrocyte maturation, the formation of trabeculae and osteoprogenitor numbers in endothelial-cell-specific Notch pathway mutants. These findings establish a molecular framework coupling angiogenesis, angiocrine signals and osteogenesis, which may prove significant for the development of future therapeutic applications.

  5. Dual 4- and 5-phosphatase activities regulate SopB-dependent phosphoinositide dynamics to promote bacterial entry.

    Science.gov (United States)

    Piscatelli, Heather L; Li, Menghan; Zhou, Daoguo

    2016-05-01

    Salmonella are able to invade non-phagocytic cells such as intestinal epithelial cells by modulating the host actin cytoskeleton to produce membrane ruffles. Two type III effector proteins SopB and SopE play key roles to this modulation. SopE is a known guanine nucleotide exchange factor (GEF) capable of activating Rac1 and CDC42. SopB is a phosphatidylinositol 4-phosphatase and 5-phosphatase promoting membrane ruffles and invasion of Salmonella through undefined mechanisms. Previous studies have demonstrated that the 4-phosphatase activity of SopB is required for PtdIns-3-phosphate (PtdIns(3)P) accumulation and SopB-mediated invasion. We show here that both the 4-phosphatase as well as the 5-phosphatase activities of SopB are essential in ruffle formation and subsequent invasion. We found that the 5-phosphatase activity of SopB is likely responsible for generating PtdIns-3,4-bisphosphate (PtdIns(3,4)P2 ) and subsequent recruitment of sorting nexin 9 (SNX9), an actin modulating protein. Intriguingly, the 4-phosphatase activity is responsible for the dephosphorylation of PtdIns(3,4)P2 into PtdIns(3)P. Alone, neither activity is sufficient for ruffling but when acting in conjunction with one another, the 4-phosphatase and 5-phosphatase activities led to SNX9-mediated ruffling and Salmonella invasion. This work reveals the unique ability of bacterial effector protein SopB to utilize both its 4- and 5-phosphatase activities to regulate phosphoinositide dynamics to promote bacterial entry. PMID:26537021

  6. Dynamin Binding Protein (Tuba) Deficiency Inhibits Ciliogenesis and Nephrogenesis in Vitro and in Vivo.

    Science.gov (United States)

    Baek, Jeong-In; Kwon, Sang-Ho; Zuo, Xiaofeng; Choi, Soo Young; Kim, Seok-Hyung; Lipschutz, Joshua H

    2016-04-15

    Dysfunction of renal primary cilia leads to polycystic kidney disease. We previously showed that the exocyst, a protein trafficking complex, is essential for ciliogenesis and regulated by multiple Rho and Rab family GTPases, such as Cdc42. Cdc42 deficiency resulted in a disruption of renal ciliogenesis and a polycystic kidney disease phenotype in zebrafish and mice. Here we investigate the role of Dynamin binding protein (also known as Tuba), a Cdc42-specific guanine nucleotide exchange factor, in ciliogenesis and nephrogenesis using Tuba knockdown Madin-Darby canine kidney cells and tuba knockdown in zebrafish. Tuba depletion resulted in an absence of cilia, with impaired apical polarization and inhibition of hepatocyte growth factor-induced tubulogenesis in Tuba knockdown Madin-Darby canine kidney cell cysts cultured in a collagen gel. In zebrafish, tuba was expressed in multiple ciliated organs, and, accordingly, tuba start and splice site morphants showed various ciliary mutant phenotypes in these organs. Co-injection of tuba and cdc42 morpholinos at low doses, which alone had no effect, resulted in genetic synergy and led to abnormal kidney development with highly disorganized pronephric duct cilia. Morpholinos targeting two other guanine nucleotide exchange factors not known to be in the Cdc42/ciliogenesis pathway and a scrambled control morpholino showed no phenotypic effect. Given the molecular nature of Cdc42 and Tuba, our data strongly suggest that tuba and cdc42 act in the same ciliogenesis pathway. Our study demonstrates that Tuba deficiency causes an abnormal renal ciliary and morphogenetic phenotype. Tuba most likely plays a critical role in ciliogenesis and nephrogenesis by regulating Cdc42 activity. PMID:26895965

  7. The myokine irisin increases cortical bone mass

    Science.gov (United States)

    Colaianni, Graziana; Cuscito, Concetta; Mongelli, Teresa; Pignataro, Paolo; Buccoliero, Cinzia; Liu, Peng; Lu, Ping; Sartini, Loris; Di Comite, Mariasevera; Mori, Giorgio; Di Benedetto, Adriana; Brunetti, Giacomina; Yuen, Tony; Sun, Li; Reseland, Janne E.; Colucci, Silvia; New, Maria I.; Zaidi, Mone; Cinti, Saverio; Grano, Maria

    2015-01-01

    It is unclear how physical activity stimulates new bone synthesis. We explored whether irisin, a newly discovered myokine released upon physical activity, displays anabolic actions on the skeleton. Young male mice were injected with vehicle or recombinant irisin (r-irisin) at a low cumulative weekly dose of 100 µg kg−1. We observed significant increases in cortical bone mass and strength, notably in cortical tissue mineral density, periosteal circumference, polar moment of inertia, and bending strength. This anabolic action was mediated primarily through the stimulation of bone formation, but with parallel notable reductions in osteoclast numbers. The trabecular compartment of the same bones was spared, as were vertebrae from the same mice. Higher irisin doses (3,500 µg kg−1 per week) cause browning of adipose tissue; this was not seen with low-dose r-irisin. Expectedly, low-dose r-irisin modulated the skeletal genes, Opn and Sost, but not Ucp1 or Pparγ expression in white adipose tissue. In bone marrow stromal cell cultures, r-irisin rapidly phosphorylated Erk, and up-regulated Atf4, Runx2, Osx, Lrp5, β-catenin, Alp, and Col1a1; this is consistent with a direct receptor-mediated action to stimulate osteogenesis. We also noted that, although the irisin precursor Fndc5 was expressed abundantly in skeletal muscle, other sites, such as bone and brain, also expressed Fndc5, albeit at low levels. Furthermore, muscle fibers from r-irisin–injected mice displayed enhanced Fndc5 positivity, and irisin induced Fdnc5 mRNA expression in cultured myoblasts. Our data therefore highlight a previously unknown action of the myokine irisin, which may be the molecular entity responsible for muscle–bone connectivity. PMID:26374841

  8. High bone turnover in Irish professional jockeys.

    LENUS (Irish Health Repository)

    Waldron-Lynch, F

    2012-02-01

    SUMMARY: Professional jockeys are routinely exposed to high impact trauma and sustain fractures frequently. We found that jockeys restrict their caloric intake in order to maintain regulation weights, and that bone turnover is high. There are significant health and safety implications for the racing industry. INTRODUCTION: Professional jockeys routinely sustain fractures from high impact falls. Jockeys maintain a low percentage body fat and a low body mass index (BMI) to achieve low weight targets in order to race. We evaluated dietary habits and bone metabolism in jockeys. METHODS: Bone mineral density (BMD) was measured in 27 male jockeys of the 144 jockeys licensed in Ireland. Fourteen (52%) had BMD T score below -1.0, of whom 12 consented to clinical review, nutritional survey, endocrine studies, and bone turnover markers (BTM). BTM were compared to age- and sex-matched controls (n = 16). RESULTS: BMI was 20.6 +\\/- 1.7 kg\\/m(2); previous fracture frequency was 3.2 +\\/- 2.0 per rider. All had normal endocrine axes. The jockeys\\' diet as determined by a 7-day dietary recall was deficient in energy, calcium, and vitamin D intake. Compared with the control group, the jockey group had evidence of increased bone turnover. CONCLUSIONS: A substantial proportion of the professional jockeys in Ireland have low-normal BMD, low BMI, and high bone turnover that may result from weight and dietary restrictions. These factors seem to have a deleterious effect on their bone health and predispose the jockeys to a high fracture risk that should be remediated.

  9. Cell Fate and Differentiation of Bone Marrow Mesenchymal Stem Cells

    Science.gov (United States)

    Jimi, Eijiro

    2016-01-01

    Osteoblasts and bone marrow adipocytes originate from bone marrow mesenchymal stem cells (BMMSCs) and there appears to be a reciprocal relationship between adipogenesis and osteoblastogenesis. Alterations in the balance between adipogenesis and osteoblastogenesis in BMMSCs wherein adipogenesis is increased relative to osteoblastogenesis are associated with decreased bone quality and quantity. Several proteins have been reported to regulate this reciprocal relationship but the exact nature of the signals regulating the balance between osteoblast and adipocyte formation within the bone marrow space remains to be determined. In this review, we focus on the role of Transducin-Like Enhancer of Split 3 (TLE3), which was recently reported to regulate the balance between osteoblast and adipocyte formation from BMMSCs. We also discuss evidence implicating canonical Wnt signalling, which plays important roles in both adipogenesis and osteoblastogenesis, in regulating TLE3 expression. Currently, there is demand for new effective therapies that target the stimulation of osteoblast differentiation to enhance bone formation. We speculate that reducing TLE3 expression or activity in BMMSCs could be a useful approach towards increasing osteoblast numbers and reducing adipogenesis in the bone marrow environment. PMID:27298623

  10. Pathogenetic differentiation of the bone superscan using bone marrow scintigraphy

    International Nuclear Information System (INIS)

    The case of a 54-year old patient suffering from a prostatic carcinoma is presented. At the time of diagnosis multiple bone metastases were detected by bone scintigraphy. An initial improvement was observed following antiandrogenic therapy. After three years the patient presented with increasing bone pain, which was most prominent in the knee joints. A 'superscan' was found in bone scintigraphy with an unusually high uptake in the peripheral skeleton. Bone marrow scintigraphy showed a nearly complete metastatic displacement of central bone marrow and a peripheral marrow extension as explanation for the bone scan findings. (orig.)

  11. Effects of radiations on bone marrow

    International Nuclear Information System (INIS)

    After total body irradiation for kidney transplant, the initial decrease of circulating blood cells is more rapid, the nadir is reached sooner and the regeneration occurs earlier when the doses are higher than a few hundred rads. The LD 50 in man seems to be higher than 450 rads. The in vivo and in vitro assays of hemopoietic stem cells have greatly increasedd the understanding of acute and late effects. Multipotential stem cells are very radiosensitive, furthermore the differentiation of the surviving stem cells is accelerated after irradiation. This results in a severe depletion of the stem cell compartment. When this stem cell number falls below a critical value, the stem cell no longer differentiates till the completion of the regeneration of the stem cell compartment. Stem cell proliferation is regulated by inhibitors and stimulators. Release of stimulators by irradiated bone marrow has been demonstrated. Severe sequellae are observed after irradiation of animal and human bone marrow. They seem to be due either to the damage of the stromal cell or to the stem cell population. In patients, four compensating mechanisms are observed after a regional bone marrow irradiation: stimulation of non irradiated bone marrow, extension of hemopoietic areas, regeneration of irradiated bone marrow when the irradiated volume is large and increase in the amplification factor resulting in an increase in the output of mature cells for one stem cell input. Assay of progenitor cells provides useful information and a reduction in their number is still observed many years after a large regional irradiation

  12. Macrophages: Their Emerging Roles in Bone.

    Science.gov (United States)

    Sinder, Benjamin P; Pettit, Allison R; McCauley, Laurie K

    2015-12-01

    Macrophages are present in nearly all tissues and are critical for development, homeostasis, and regeneration. Resident tissue macrophages of bone, termed osteal macrophages, are recently classified myeloid cells that are distinct from osteoclasts. Osteal macrophages are located immediately adjacent to osteoblasts, regulate bone formation, and play diverse roles in skeletal homeostasis. Genetic or pharmacological modulation of macrophages in vivo results in significant bone phenotypes, and these phenotypes depend on which macrophage subsets are altered. Macrophages are also key mediators of osseous wound healing and fracture repair, with distinct roles at various stages of the repair process. A central function of macrophages is their phagocytic ability. Each day, billions of cells die in the body and efferocytosis (phagocytosis of apoptotic cells) is a critical process in both clearing dead cells and recruitment of replacement progenitor cells to maintain homeostasis. Recent data suggest a role for efferocytosis in bone biology and these new mechanisms are outlined. Finally, although macrophages have an established role in primary tumors, emerging evidence suggests that macrophages in bone support cancers which preferentially metastasize to the skeleton. Collectively, this developing area of osteoimmunology raises new questions and promises to provide novel insights into pathophysiologic conditions as well as therapeutic and regenerative approaches vital for skeletal health. PMID:26531055

  13. Bone cancer risk

    International Nuclear Information System (INIS)

    In view of the considerable disparity in published values of the risk for bone cancers from ionising radiation, the article 'An analysis of bone and head sinus cancers in radium dial painters using a two-mutation carcinogenesis model' by Leenhouts and Brugmans in the June 2000 issue of this Journal deserves further comment and consideration. The letter concludes that radiological protection and risk estimation has acquired an extra dimension, and it is clear that the risk of bone cancer from exposure to ionising radiation needs further review. Letter-to-the-editor

  14. Periodontal bone lesions

    International Nuclear Information System (INIS)

    In the course of life the periodontum is subject to changes which may be physiological or pathological. Intraoral radiographs give insight into the hard structures of the dentomaxillar region and provides information on lesions in the bone of the periodontum in that they show radiopacities and radiolucencies caused by such lesions. In this thesis the relation is investigated between the true shape and dimensions of periodontal bone lesions and their radiographic images. A method is developed and tested of making standardized and reproducible radiographs suitable for longitudinal studies of periodontal lesions. Also the possibility is demonstrated of an objective and reproducible interpretation of radiographic characteristics of periodontal bone lesions. (Auth.)

  15. Enzymatic maceration of bone

    DEFF Research Database (Denmark)

    Uhre, Marie-Louise; Eriksen, Anne Marie; Simonsen, Kim Pilkjær;

    2015-01-01

    This proof of concept study investigates the removal of soft tissue from human ribs with the use of two common methods: boiling with a laundry detergent and using enzymes. Six individuals were autopsied, and one rib from each individual was removed for testing. Each rib was cut into pieces and...... the bones. The DNA analysis showed that DNA was preserved on all the pieces of bones which were examined. Finally, the investigation suggests that enzyme maceration could be gentler on the bones, as the edges appeared less frayed. The enzyme maceration was also a quicker method; it took three hours...

  16. Why date old bones?

    International Nuclear Information System (INIS)

    The methods for pretreatment and purification of bone have not been accorded the same standard protocols that are applied to other sample materials. Many users lack confidence in bone dates, with some justification, and it is not clear how to proceed. With the advent of AMS dating, it is becoming easy to date very small amounts of highly purified samples such as single amino acids from bone collagen. This note serves a warning that there are dangers in the uncritical application of powerful separation and measurement techniques to uncharacterized material. (orig.)

  17. Bone scintigraphy for horses

    International Nuclear Information System (INIS)

    Scintigraphy (bone scan) is being used approximately since 1980 in the horse under general anaesthesia. With the construction of custom-made overhead gantries for gamma-cameras scintigraphy found widespread entry in big equine referral hospitals for bone-scanning of the standing horse. Indications for the use of a bone scan in the horse are inflammatory alterations in the locomotor apparatus. It is primarily used for diagnosis of lameness of unknown origin, suspect of stress fracture or hairline fracture and for horses with bad riding comfort with suspected painful lesions in the spine. (orig.)

  18. Energy expenditure and bone formation share a common sensitivity to AP-1 transcription in the hypothalamus

    DEFF Research Database (Denmark)

    Rowe, Glenn C; Vialou, Vincent; Sato, Kazusa; Saito, Hiroaki; Yin, Min; Green, Thomas A; Lotinun, Sutada; Kveiborg, Marie; Horne, William C; Nestler, Eric J; Baron, Roland

    2012-01-01

    The regulation of bone and fat homeostasis and its relationship to energy expenditure has recently been the focus of increased attention due to its potential relevance to osteoporosis, obesity and diabetes. Although central effectors within the hypothalamus have been shown to contribute to the......-antagonistic properties, have increased energy expenditure and bone mass. Since these mice express ¿FosB in bone, fat and hypothalamus, we sought to determine 1) whether overexpression of ¿FosB within the hypothalamus was sufficient to regulate energy expenditure and whether it would also regulate bone mass, and 2......) whether these effects were due to antagonism to AP1. Our results show that stereotactic injection of an adeno-associated virus vector to restrict overexpression of ¿FosB to the ventral hypothalamus of wildtype mice induced a profound increase in both energy expenditure and bone formation and bone mass...

  19. Bioinformatics analysis of breast cancer bone metastasis related gene-CXCR4

    Institute of Scientific and Technical Information of China (English)

    Heng-Wei Zhang; Xian-Fu Sun; Ya-Ning He; Jun-Tao Li; Xu-Hui Guo; Hui Liu

    2013-01-01

    Objective: To analyze breast cancer bone metastasis related gene-CXCR4. Methods: This research screened breast cancer bone metastasis related genes by high-flux gene chip. Results:It was found that the expressions of 396 genes were different including 165 up-regulations and 231 down-regulations. The expression of chemokine receptor CXCR4 was obviously up-regulated in the tissue with breast cancer bone metastasis. Compared with the tissue without bone metastasis, there was significant difference, which indicated that CXCR4 played a vital role in breast cancer bone metastasis. Conclusions: The bioinformatics analysis of CXCR4 can provide a certain basis for the occurrence and diagnosis of breast cancer bone metastasis, target gene therapy and evaluation of prognosis.

  20. Vibration therapy: clinical applications in bone

    Science.gov (United States)

    Thompson, William R.; Yen, Sherwin S.; Rubin, Janet

    2015-01-01

    Purpose of review The musculoskeletal system is largely regulated through dynamic physical activity and is compromised by cessation of physical loading. There is a need to recreate the anabolic effects of loading on the musculoskeletal system, especially in frail individuals who cannot exercise. Vibration therapy is designed to be a nonpharmacological analogue of physical activity, with an intention to promote bone and muscle strength. Recent findings Animal and human studies suggest that high-frequency, low-magnitude vibration therapy improves bone strength by increasing bone formation and decreasing bone resorption. There is also evidence that vibration therapy is useful in treating sarcopenia, which confounds skeletal fragility and fall risk in aging. Enhancement of skeletal and muscle strength involves regulating the differentiation of mesenchymal stem cells to build these tissues; mesenchymal stem cell lineage allocation is positively promoted by vibration signals. Summary Vibration therapy may be useful as a primary treatment as well as an adjunct to both physical and pharmacological treatments, but future studies must pay close attention to compliance and dosing patterns, and importantly, the vibration signal, be it low-intensity vibration (1g) marketed as a training exercise. PMID:25354044