WorldWideScience

Sample records for cd81 gene defect

  1. MGMT, GATA6, CD81, DR4, and CASP8 gene promoter methylation in glioblastoma

    Directory of Open Access Journals (Sweden)

    Skiriute Daina

    2012-06-01

    Full Text Available Abstract Background Methylation of promoter region is the major mechanism affecting gene expression in tumors. Recent methylome studies of brain tumors revealed a list of new epigenetically modified genes. Our aim was to study promoter methylation of newly identified epigenetically silenced genes together with already known epigenetic markers and evaluate its separate and concomitant role in glioblastoma genesis and patient outcome. Methods The methylation status of MGMT, CD81, GATA6, DR4, and CASP8 in 76 patients with primary glioblastomas was investigated. Methylation-specific PCR reaction was performed using bisulfite treated DNA. Evaluating glioblastoma patient survival time after operation, patient data and gene methylation effect on survival was estimated using survival analysis. Results The overwhelming majority (97.3% of tumors were methylated in at least one of five genes tested. In glioblastoma specimens gene methylation was observed as follows: MGMT in 51.3%, GATA6 in 68.4%, CD81 in 46.1%, DR4 in 41.3% and CASP8 in 56.8% of tumors. Methylation of MGMT was associated with younger patient age (p CASP8 with older (p MGMT methylation was significantly more frequent event in patient group who survived longer than 36 months after operation (p CASP8 was more frequent in patients who survived shorter than 36 months (p MGMT, GATA6 and CASP8 as independent predictors for glioblastoma patient outcome (p MGMT and GATA6 were independent predictors for patient survival in younger patients’ group, while there were no significant associations observed in older patients’ group when adjusted for therapy. Conclusions High methylation frequency of tested genes shows heterogeneity of glioblastoma epigenome and the importance of MGMT, GATA6 and CASP8 genes methylation in glioblastoma patient outcome.

  2. Active RNA replication of hepatitis C virus downregulates CD81 expression.

    Science.gov (United States)

    Ke, Po-Yuan; Chen, Steve S-L

    2013-01-01

    So far how hepatitis C virus (HCV) replication modulates subsequent virus growth and propagation still remains largely unknown. Here we determine the impact of HCV replication status on the consequential virus growth by comparing normal and high levels of HCV RNA expression. We first engineered a full-length, HCV genotype 2a JFH1 genome containing a blasticidin-resistant cassette inserted at amino acid residue of 420 in nonstructural (NS) protein 5A, which allowed selection of human hepatoma Huh7 cells stably-expressing HCV. Short-term establishment of HCV stable cells attained a highly-replicating status, judged by higher expressions of viral RNA and protein as well as higher titer of viral infectivity as opposed to cells harboring the same genome without selection. Interestingly, maintenance of highly-replicating HCV stable cells led to decreased susceptibility to HCV pseudotyped particle (HCVpp) infection and downregulated cell surface level of CD81, a critical HCV entry (co)receptor. The decreased CD81 cell surface expression occurred through reduced total expression and cytoplasmic retention of CD81 within an endoplasmic reticulum -associated compartment. Moreover, productive viral RNA replication in cells harboring a JFH1 subgenomic replicon containing a similar blasticidin resistance gene cassette in NS5A and in cells robustly replicating full-length infectious genome also reduced permissiveness to HCVpp infection through decreasing the surface expression of CD81. The downregulation of CD81 surface level in HCV RNA highly-replicating cells thus interfered with reinfection and led to attenuated viral amplification. These findings together indicate that the HCV RNA replication status plays a crucial determinant in HCV growth by modulating the expression and intracellular localization of CD81.

  3. Active RNA replication of hepatitis C virus downregulates CD81 expression.

    Directory of Open Access Journals (Sweden)

    Po-Yuan Ke

    Full Text Available So far how hepatitis C virus (HCV replication modulates subsequent virus growth and propagation still remains largely unknown. Here we determine the impact of HCV replication status on the consequential virus growth by comparing normal and high levels of HCV RNA expression. We first engineered a full-length, HCV genotype 2a JFH1 genome containing a blasticidin-resistant cassette inserted at amino acid residue of 420 in nonstructural (NS protein 5A, which allowed selection of human hepatoma Huh7 cells stably-expressing HCV. Short-term establishment of HCV stable cells attained a highly-replicating status, judged by higher expressions of viral RNA and protein as well as higher titer of viral infectivity as opposed to cells harboring the same genome without selection. Interestingly, maintenance of highly-replicating HCV stable cells led to decreased susceptibility to HCV pseudotyped particle (HCVpp infection and downregulated cell surface level of CD81, a critical HCV entry (coreceptor. The decreased CD81 cell surface expression occurred through reduced total expression and cytoplasmic retention of CD81 within an endoplasmic reticulum -associated compartment. Moreover, productive viral RNA replication in cells harboring a JFH1 subgenomic replicon containing a similar blasticidin resistance gene cassette in NS5A and in cells robustly replicating full-length infectious genome also reduced permissiveness to HCVpp infection through decreasing the surface expression of CD81. The downregulation of CD81 surface level in HCV RNA highly-replicating cells thus interfered with reinfection and led to attenuated viral amplification. These findings together indicate that the HCV RNA replication status plays a crucial determinant in HCV growth by modulating the expression and intracellular localization of CD81.

  4. Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation

    International Nuclear Information System (INIS)

    Hazawa, Masaharu; Tomiyama, Kenichi; Saotome-Nakamura, Ai; Obara, Chizuka; Yasuda, Takeshi; Gotoh, Takaya; Tanaka, Izumi; Yakumaru, Haruko; Ishihara, Hiroshi; Tajima, Katsushi

    2014-01-01

    Highlights: • Radiation increases cellular uptake of exosomes. • Radiation induces colocalization of CD29 and CD81. • Exosomes selectively bind the CD29/CD81 complex. • Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation. - Abstract: Exosomes mediate intercellular communication, and mesenchymal stem cells (MSC) or their secreted exosomes affect a number of pathophysiologic states. Clinical applications of MSC and exosomes are increasingly anticipated. Radiation therapy is the main therapeutic tool for a number of various conditions. The cellular uptake mechanisms of exosomes and the effects of radiation on exosome–cell interactions are crucial, but they are not well understood. Here we examined the basic mechanisms and effects of radiation on exosome uptake processes in MSC. Radiation increased the cellular uptake of exosomes. Radiation markedly enhanced the initial cellular attachment to exosomes and induced the colocalization of integrin CD29 and tetraspanin CD81 on the cell surface without affecting their expression levels. Exosomes dominantly bound to the CD29/CD81 complex. Knockdown of CD29 completely inhibited the radiation-induced uptake, and additional or single knockdown of CD81 inhibited basal uptake as well as the increase in radiation-induced uptake. We also examined possible exosome uptake processes affected by radiation. Radiation-induced changes did not involve dynamin2, reactive oxygen species, or their evoked p38 mitogen-activated protein kinase-dependent endocytic or pinocytic pathways. Radiation increased the cellular uptake of exosomes through CD29/CD81 complex formation. These findings provide essential basic insights for potential therapeutic applications of exosomes or MSC in combination with radiation

  5. Effect of intermixing at CdS/CdTe interface on defect properties

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji-Sang, E-mail: jspark@anl.gov; Yang, Ji-Hui; Barnes, Teresa [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Wei, Su-Huai, E-mail: suhuaiwei@csrc.ac.cn [Beijing Computational Science Research Center, Beijing 100094 (China)

    2016-07-25

    We investigated the stability and electronic properties of defects in CdTe{sub 1−x}S{sub x} that can be formed at the CdS/CdTe interface. As the anions mix at the interface, the defect properties are significantly affected, especially those defects centered at cation sites like Cd vacancy, V{sub Cd}, and Te on Cd antisite, Te{sub Cd}, because the environment surrounding the defect sites can have different configurations. We show that at a given composition, the transition energy levels of V{sub Cd} and Te{sub Cd} become close to the valence band maximum when the defect has more S atoms in their local environment, thus improving the device performance. Such beneficial role is also found at the grain boundaries when the Te atom is replaced by S in the Te-Te wrong bonds, reducing the energy of the grain boundary level. On the other hand, the transition levels with respect to the valence band edge of CdTe{sub 1−x}S{sub x} increases with the S concentration as the valence band edge decreases with the S concentration, resulting in the reduced p-type doping efficiency.

  6. Small molecule inhibition of hepatitis C virus E2 binding to CD81

    International Nuclear Information System (INIS)

    Van Compernolle, Scott E.; Wiznycia, Alexander V.; Rush, Jeremy R.; Dhanasekaran, Muthu; Baures, Paul W.; Todd, Scott C.

    2003-01-01

    The hepatitis C virus (HCV) is a causal agent of chronic liver infection, cirrhosis, and hepatocellular carcinoma infecting more than 170 million people. CD81 is a receptor for HCV envelope glycoprotein E2. Although the binding of HCV-E2 with CD81 is well documented the role of this interaction in the viral life cycle remains unclear. Host specificity and mutagenesis studies suggest that the helix D region of CD81 mediates binding to HCV-E2. Structural analysis of CD81 has enabled the synthesis of small molecules designed to mimic the space and hydrophobic features of the solvent-exposed face on helix D. Utilizing a novel bis-imidazole scaffold a series of over 100 compounds has been synthesized. Seven related, imidazole-based compounds were identified that inhibit binding of HCV-E2 to CD81. The inhibitory compounds have no short-term effect on cellular expression of CD81 or other tetraspanins, do not disrupt CD81 associations with other cell surface proteins, and bind reversibly to HCV-E2. These results provide an important proof of concept that CD81-based mimics can disrupt binding of HCV-E2 to CD81

  7. A Role for CD81 and Hepatitis C Virus in Hepatoma Mobility

    Directory of Open Access Journals (Sweden)

    Claire L. Brimacombe

    2014-03-01

    Full Text Available Tetraspanins are a family of small proteins that interact with themselves, host transmembrane and cytosolic proteins to form tetraspanin enriched microdomains (TEMs that regulate important cellular functions. Several tetraspanin family members are linked to tumorigenesis. Hepatocellular carcinoma (HCC is an increasing global health burden, in part due to the increasing prevalence of hepatitis C virus (HCV associated HCC. The tetraspanin CD81 is an essential receptor for HCV, however, its role in hepatoma biology is uncertain. We demonstrate that antibody engagement of CD81 promotes hepatoma spread, which is limited by HCV infection, in an actin-dependent manner and identify an essential role for the C-terminal interaction with Ezrin-Radixin-Moesin (ERM proteins in this process. We show enhanced hepatoma migration and invasion following expression of CD81 and a reduction in invasive potential upon CD81 silencing. In addition, we reveal poorly differentiated HCC express significantly higher levels of CD81 compared to adjacent non-tumor tissue. In summary, these data support a role for CD81 in regulating hepatoma mobility and propose CD81 as a tumour promoter.

  8. Role of CD81 and CD58 in minimal residual disease detection in pediatric B lymphoblastic leukemia.

    Science.gov (United States)

    Tsitsikov, E; Harris, M H; Silverman, L B; Sallan, S E; Weinberg, O K

    2018-06-01

    Minimal residual disease (MRD) in B lymphoblastic leukemia has been demonstrated to be a powerful predictor of clinical outcome in numerous studies in both children and adults. In this study, we evaluated 86 pediatric patients with both diagnostic and remission flow cytometry studies and compared expression of CD81, CD58, CD19, CD34, CD20, and CD38 in the detection of MRD. We evaluated 86 patients with B lymphoblastic leukemia who had both diagnostic studies and remission studies for the presence of MRD using multicolor flow cytometry. We established our detection limit for identifying abnormal lymphoblasts using serial dilutions. We also compared flow cytometry findings with molecular MRD detection in a subset of patients. We found that we can resolve differences between hematogones and lymphoblasts in 85 of 86 cases using a combination of CD45, CD19, CD34, CD10, CD20, CD38, CD58, and CD81. Our detection limit using flow cytometry is 0.002% for detecting a population of abnormal B lymphoblasts. Comparison with MRD assessment by molecular methods showed a high concordance rate with flow cytometry findings. Our study highlights importance of using multiple markers to detect MRD in B lymphoblastic leukemia. Our findings indicate that including both CD58 and CD81 markers in addition to CD19, CD34, CD20, CD38, and CD10 are helpful in MRD detection by flow cytometry. © 2018 John Wiley & Sons Ltd.

  9. Magnetic Resonance Imaging of Atherosclerosis Using CD81-Targeted Microparticles of Iron Oxide in Mice

    Directory of Open Access Journals (Sweden)

    Fei Yan

    2015-01-01

    Full Text Available The goal of this study is to investigate the feasibility of using CD81- (Cluster of Differentiation 81 protein- targeted microparticles of iron oxide (CD81-MPIO for magnetic resonance imaging (MRI of the murine atherosclerosis. CD81-MPIO and IgG- (Immunoglobulin G- MPIO were prepared by covalently conjugating, respectively, with anti-CD81 monoclonal and IgG antibodies to the surface of the tosyl activated MPIO. The relevant binding capability of the MPIO was examined by incubating them with murine bEnd.3 cells stimulated with phenazine methosulfate (PMS and its effect in shortening T2 relaxation time was also examined. MRI in apolipoprotein E-deficient mice was studied in vivo. Our results show that CD81-MPIO, but not IgG-MPIO, can bind to the PMS-stimulated bEnd.3 cells. The T2 relaxation time was significantly shortened for stimulated bEnd.3 cells when compared with IgG-MPIO. In vivo MRI in apolipoprotein E-deficient mice showed highly conspicuous areas of low signal after CD81-MPIO injection. Quantitative analysis of the area of CD81-MPIO contrast effects showed 8.96- and 6.98-fold increase in comparison with IgG-MPIO or plain MPIO, respectively (P<0.01. Histological assay confirmed the expression of CD81 and CD81-MPIO binding onto atherosclerotic lesions. In conclusion, CD81-MPIO allows molecular assessment of murine atherosclerotic lesions by magnetic resonance imaging.

  10. Reassignment of oxygen-related defects in CdTe and CdSe

    Energy Technology Data Exchange (ETDEWEB)

    Bastin, Dirk

    2015-05-22

    This thesis reassigns the O{sub Te}-V{sub Cd} complex in CdTe and the O{sub Se}-V{sub Cd} complex in CdSe to a sulfur-dioxygen complex SO{sub 2}*, and the O{sub Cd} defect in CdSe to a V{sub Cd}H{sub 2} complex using Fourier transformed infrared absorption spectroscopy. The publications of the previous complexes were investigated by theoreticians who performed first-principle calculations of theses complexes. The theoreticians ruled out the assignments and proposed alternative defects, instead. The discrepancy between the experimentally obtained and theoretically proposed defects was the motivation of this work. Two local vibrational modes located at 1096.8 (ν{sub 1}) and 1108.3 cm{sup -1} (ν{sub 2}) previously assigned to an O{sub Te}-V{sub Cd} complex are detected in CdTe single crystals doped with CdSO{sub 4} powder. Five weaker additional absorption lines accompanying ν{sub 1} and ν{sub 2} could be detected. The relative intensities of the absorption lines match a sulfur-dioxygen complex SO{sub 2}* having two configurations labeled ν{sub 1} and ν{sub 2}. A binding energy difference of 0.5±0.1 meV between the two configurations and an energy barrier of 53±4 meV separating the two configurations are determined. Uniaxial stress applied to the crystal leads to a splitting of the absorption lines which corresponds to an orthorhombic and monoclinic symmetry for ν{sub 1} and ν{sub 2}, respectively. In virgin and oxygen-doped CdSe single crystals, three local vibrational modes located at 1094.1 (γ{sub 1}), 1107.5 (γ{sub 2}), and 1126.3 cm{sup -1} (γ{sub 3}) previously attributed to an O{sub Se}-V{sub Cd} complex could be observed. The signals are accompanied by five weaker additional absorption features in their vicinity. The additional absorption lines are identified as isotope satellites of a sulfur-dioxygen complex SO{sub 2}* having three configurations γ{sub 1}, γ{sub 2}, and γ{sub 3}. IR absorption measurements with uniaxial stress applied to the

  11. Engagement of CD81 induces ezrin tyrosine phosphorylation and its cellular redistribution with filamentous actin

    Energy Technology Data Exchange (ETDEWEB)

    Coffey, Greg P.; Rajapaksa, Ranjani; Liu, Raymond; Sharpe, Orr; Kuo, Chiung-Chi; Wald Krauss, Sharon; Sagi, Yael; Davis, R. Eric; Staudt, Louis M.; Sharman, Jeff P.; Robinson, William H.; Levy, Shoshana

    2009-06-09

    CD81 is a tetraspanin family member involved in diverse cellular interactions in the immune and nervous systems and in cell fusion events. However, the mechanism of action of CD81 and of other tetraspanins has not been defined. We reasoned that identifying signaling molecules downstream of CD81 would provide mechanistic clues. We engaged CD81 on the surface of Blymphocytes and identified the induced tyrosine-phosphorylated proteins by mass spectrometry. This analysis showed that the most prominent tyrosine phosphorylated protein was ezrin, an actin binding protein and a member of the ezrin-radixin-moesin family. We also found that CD81 engagement induces spleen tyrosine kinase (Syk) and that Syk was involved in tyrosine phosphorylation of ezrin. Ezrin colocalized with CD81 and F-actin upon stimulation and this association was disrupted when Syk activation was blocked. Taken together, these studies suggest a model in which CD81 interfaces between the plasma membrane and the cytoskeleton by activating Syk, mobilizing ezrin, and recruiting F-actin to facilitate cytoskeletal reorganization and cell signaling. This may be a mechanism explaining the pleiotropic effects induced in response to stimulating cells by anti-CD81 antibodies or by the hepatitis C virus, which uses this molecule as its key receptor.

  12. CD and defect improvement challenges for immersion processes

    Science.gov (United States)

    Ehara, Keisuke; Ema, Tatsuhiko; Yamasaki, Toshinari; Nakagawa, Seiji; Ishitani, Seiji; Morita, Akihiko; Kim, Jeonghun; Kanaoka, Masashi; Yasuda, Shuichi; Asai, Masaya

    2009-03-01

    The intention of this study is to develop an immersion lithography process using advanced track solutions to achieve world class critical dimension (CD) and defectivity performance in a state of the art manufacturing facility. This study looks at three important topics for immersion lithography: defectivity, CD control, and wafer backside contamination. The topic of defectivity is addressed through optimization of coat, develop, and rinse processes as well as implementation of soak steps and bevel cleaning as part of a comprehensive defect solution. Develop and rinse processing techniques are especially important in the effort to achieve a zero defect solution. Improved CD control is achieved using a biased hot plate (BHP) equipped with an electrostatic chuck. This electrostatic chuck BHP (eBHP) is not only able to operate at a very uniform temperature, but it also allows the user to bias the post exposure bake (PEB) temperature profile to compensate for systematic within-wafer (WiW) CD non-uniformities. Optimized CD results, pre and post etch, are presented for production wafers. Wafer backside particles can cause focus spots on an individual wafer or migrate to the exposure tool's wafer stage and cause problems for a multitude of wafers. A basic evaluation of the cleaning efficiency of a backside scrubber unit located on the track was performed as a precursor to a future study examining the impact of wafer backside condition on scanner focus errors as well as defectivity in an immersion scanner.

  13. Proton irradiation induced defects in Cd and Zn doped InP

    International Nuclear Information System (INIS)

    Rybicki, G.C.; Williams, W.S.

    1993-01-01

    Proton irradiation induced defects in Zn and Cd doped InP have been studied by deep level transient spectroscopy, (DLTS). After 2 MeV proton irradiation the defects H4 and H5 were observed in lightly Zn doped InP, while the defects H3 and H5 were observed in more heavily Zn and Cd doped InP. The defect properties were not affected by the substitution of Cd for Zn, but the introduction rate of H5 was lower in Cd doped InP. The annealing rate of defects was also higher in Cd doped InP. The use of Cd doped InP may thus result in an InP solar cell with even greater radiation resistance

  14. CD81 Receptor Regions outside the Large Extracellular Loop Determine Hepatitis C Virus Entry into Hepatoma Cells

    Directory of Open Access Journals (Sweden)

    Pia Banse

    2018-04-01

    Full Text Available Hepatitis C virus (HCV enters human hepatocytes using four essential entry factors, one of which is human CD81 (hCD81. The tetraspanin hCD81 contains a large extracellular loop (LEL, which interacts with the E2 glycoprotein of HCV. The role of the non-LEL regions of hCD81 (intracellular tails, four transmembrane domains, small extracellular loop and intracellular loop is poorly understood. Here, we studied the contribution of these domains to HCV susceptibility of hepatoma cells by generating chimeras of related tetraspanins with the hCD81 LEL. Our results show that non-LEL regions in addition to the LEL determine susceptibility of cells to HCV. While closely related tetraspanins (X. tropicalis CD81 and D. rerio CD81 functionally complement hCD81 non-LEL regions, distantly related tetraspanins (C. elegans TSP9 amd D. melanogaster TSP96F do not and tetraspanins with intermediate homology (hCD9 show an intermediate phenotype. Tetraspanin homology and susceptibility to HCV correlate positively. For some chimeras, infectivity correlates with surface expression. In contrast, the hCD9 chimera is fully surface expressed, binds HCV E2 glycoprotein but is impaired in HCV receptor function. We demonstrate that a cholesterol-coordinating glutamate residue in CD81, which hCD9 lacks, promotes HCV infection. This work highlights the hCD81 non-LEL regions as additional HCV susceptibility-determining factors.

  15. Reassignment of oxygen-related defects in CdTe and CdSe

    International Nuclear Information System (INIS)

    Bastin, Dirk

    2015-01-01

    This thesis reassigns the O_T_e-V_C_d complex in CdTe and the O_S_e-V_C_d complex in CdSe to a sulfur-dioxygen complex SO_2*, and the O_C_d defect in CdSe to a V_C_dH_2 complex using Fourier transformed infrared absorption spectroscopy. The publications of the previous complexes were investigated by theoreticians who performed first-principle calculations of theses complexes. The theoreticians ruled out the assignments and proposed alternative defects, instead. The discrepancy between the experimentally obtained and theoretically proposed defects was the motivation of this work. Two local vibrational modes located at 1096.8 (ν_1) and 1108.3 cm"-"1 (ν_2) previously assigned to an O_T_e-V_C_d complex are detected in CdTe single crystals doped with CdSO_4 powder. Five weaker additional absorption lines accompanying ν_1 and ν_2 could be detected. The relative intensities of the absorption lines match a sulfur-dioxygen complex SO_2* having two configurations labeled ν_1 and ν_2. A binding energy difference of 0.5±0.1 meV between the two configurations and an energy barrier of 53±4 meV separating the two configurations are determined. Uniaxial stress applied to the crystal leads to a splitting of the absorption lines which corresponds to an orthorhombic and monoclinic symmetry for ν_1 and ν_2, respectively. In virgin and oxygen-doped CdSe single crystals, three local vibrational modes located at 1094.1 (γ_1), 1107.5 (γ_2), and 1126.3 cm"-"1 (γ_3) previously attributed to an O_S_e-V_C_d complex could be observed. The signals are accompanied by five weaker additional absorption features in their vicinity. The additional absorption lines are identified as isotope satellites of a sulfur-dioxygen complex SO_2* having three configurations γ_1, γ_2, and γ_3. IR absorption measurements with uniaxial stress applied to the CdSe crystal yield a monoclinic C_1_h symmetry for γ_1 and γ_2. The SO_2* complex is stable up to 600 C. This thesis assigns the ν-lines in

  16. In and Cd as defect traps in titanium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Schell, Juliana, E-mail: juliana.schell@cern.ch [European Organization for Nuclear Research (CERN) (Switzerland); Lupascu, Doru C. [University of Duisburg-Essen, Institute for Materials Science and Center for Nanointegration, Duisburg-Essen (CENIDE) (Germany); Martins Correia, João Guilherme [European Organization for Nuclear Research (CERN) (Switzerland); Carbonari, Artur Wilson [Universidade de São Paulo, Instituto de Pesquisas Energéticas e Nucleares (Brazil); Deicher, Manfred [Universität des Saarlandes, Experimentalphysik (Germany); Barbosa, Marcelo Baptista [Instituto de Física dos Materiais da Universidade do Porto (Portugal); Mansano, Ronaldo Domingues [Universidade de São Paulo, Escola Politécnica (Brazil); Johnston, Karl [European Organization for Nuclear Research (CERN) (Switzerland); Ribeiro, Ibere S. [Universidade de São Paulo, Instituto de Pesquisas Energéticas e Nucleares (Brazil); Collaboration: ISOLDE Collaboration, ISOLDE (European Organization for Nuclear Research (CERN) (Switzerland)

    2017-11-15

    We present a study of TiO{sub 2} single crystals from the point of view of the dopant atom that simultaneously behaves as the probing element. We used gamma-gamma time dependent perturbed angular correlations working with selected tracer elements ({sup 111}In/ {sup 111}Cd, {sup 111m}Cd/ {sup 111}Cd) together to investigate the different behavior of Cd and In dopants, particularly their interaction with point defects in the TiO{sub 2} lattice. Results show that the hyperfine interactions observed at {sup 111}Cd from {sup 111}In or {sup 111m}Cd decay are quite different. {sup 111}In/ {sup 111}Cd results show a single site fraction characterized by a quadrupole frequency with asymmetry parameter similar to those observed for the same probe nuclei in bulk TiO{sub 2} oxides. Results for {sup 111m}Cd/ {sup 111}Cd reveal two site fractions, one characterized by the same hyperfine parameters to those measured in bulk TiO{sub 2} and another fraction characterized by a quadrupole frequency and asymmetry parameters with higher values, as observed in thin TiO{sub 2} films and correlated with point defects. The results are discussed emphasizing the differences for Cd and In as defect traps on TiO{sub 2}.

  17. Hepatitis C virus protects human B lymphocytes from Fas-mediated apoptosis via E2-CD81 engagement.

    Directory of Open Access Journals (Sweden)

    Zhihui Chen

    2011-04-01

    Full Text Available HCV infection is often associated with B-cell regulatory control disturbance and delayed appearance of neutralizing antibodies. CD81 is a cellular receptor for HCV and can bind to HCV envelope protein 2 (E2. CD81 also participates to form a B cell costimulatory complex. To investigate whether HCV influences B cell activation and immune function through E2 -CD81 engagement, here, human Burkitt's lymphoma cell line Raji cells and primary human B lymphocytes (PHB were treated with HCV E2 protein and cell culture produced HCV particles (HCVcc, and then the related cell phenotypes were assayed. The results showed that both E2 and HCVcc triggered phosphorylation of IκBα, enhanced the expression of anti-apoptosis Bcl-2 family proteins, and protected Raji cells and PHB cells from Fas-mediated death. In addition, both E2 protein and HCVcc increased the expression of costimulatory molecules CD80, CD86 and CD81 itself, and decreased the expression of complement receptor CD21. The effects were dependent on E2-CD81 interaction on the cell surface, since CD81-silenced Raji cells did not respond to both treatments; and an E2 mutant that lose the CD81 binding activity, could not trigger the responses of both Raji cells and PHB cells. The effects were not associated with HCV replication in cells, for HCV pseudoparticle (HCVpp and HCVcc failed to infect Raji cells. Hence, E2-CD81 engagement may contribute to HCV-associated B cell lymphoproliferative disorders and insufficient neutralizing antibody production.

  18. Targeting CD81 to Prevent Metastases in Breast Cancer

    Science.gov (United States)

    2015-10-01

    height) and/or by bioluminescence using the in vivo optical imaging system ( IVIS 100, Xenogen). Mice were sacrificed when s.c. tumor size reached 2...Hong IK, Byun HJ, Lee J, Jin YJ, Wang SJ, Jeoung DI, et al. The tetraspanin CD81 protein increases melanoma cell motility by up-regulating

  19. Characterization of point defects in CdTe by positron annihilation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Elsharkawy, M. R. M. [Carnegie Laboratory of Physics, SUPA, School of Science and Engineering, University of Dundee, Dundee DD1 4HN (United Kingdom); Physics Department, Faculty of Science, Minia University, P.O. Box 61519, Minia (Egypt); Kanda, G. S.; Keeble, D. J., E-mail: d.j.keeble@dundee.ac.uk [Carnegie Laboratory of Physics, SUPA, School of Science and Engineering, University of Dundee, Dundee DD1 4HN (United Kingdom); Abdel-Hady, E. E. [Physics Department, Faculty of Science, Minia University, P.O. Box 61519, Minia (Egypt)

    2016-06-13

    Positron lifetime measurements on CdTe 0.15% Zn-doped by weight are presented, trapping to monovacancy defects is observed. At low temperatures, localization at shallow binding energy positron traps dominates. To aid defect identification density functional theory, calculated positron lifetimes and momentum distributions are obtained using relaxed geometry configurations of the monovacancy defects and the Te antisite. These calculations provide evidence that combined positron lifetime and coincidence Doppler spectroscopy measurements have the capability to identify neutral or negative charge states of the monovacancies, the Te antisite, A-centers, and divacancy defects in CdTe.

  20. On the interplay of point defects and Cd in non-polar ZnCdO films

    International Nuclear Information System (INIS)

    Zubiaga, A.; Reurings, F.; Tuomisto, F.; Plazaola, F.; García, J. A.; Kuznetsov, A. Yu.; Egger, W.; Zúñiga-Pérez, J.; Muñoz-Sanjosé, V.

    2013-01-01

    Non-polar ZnCdO films, grown over m- and r-sapphire with a Cd concentration ranging between 0.8% and 5%, have been studied by means of slow positron annihilation spectroscopy (PAS) combined with chemical depth profiling by secondary ion mass spectroscopy and Rutherford back-scattering. Vacancy clusters and Zn vacancies with concentrations up to 10 17 cm −3 and 10 18 cm −3 , respectively, have been measured inside the films. Secondary ion mass spectroscopy results show that most Cd stays inside the ZnCdO film but the diffused atoms can penetrate up to 1.3 μm inside the ZnO buffer. PAS results give an insight to the structure of the meta-stable ZnCdO above the thermodynamical solubility limit of 2%. A correlation between the concentration of vacancy clusters and Cd has been measured. The concentration of Zn vacancies is one order of magnitude larger than in as-grown non-polar ZnO films and the vacancy cluster are, at least partly, created by the aggregation of smaller Zn vacancy related defects. The Zn vacancy related defects and the vacancy clusters accumulate around the Cd atoms as a way to release the strain induced by the substitutional Cd Zn in the ZnO crystal.

  1. On the interplay of point defects and Cd in non-polar ZnCdO films

    Energy Technology Data Exchange (ETDEWEB)

    Zubiaga, A.; Reurings, F.; Tuomisto, F. [Department of Applied Physics, Aalto University, P.O. Box 11100, 00076 Aalto, Espoo (Finland); Plazaola, F. [Elektrizitatea eta Elektronika/Fisika Aplikatua II Sailak, Euskal Herriko Unibertsitatea, Posta Kutxatila 644, 48080 Bilbao (Spain); Garcia, J. A. [Fisika Aplikatua II Saila, Euskal Herriko Unibertsitatea, Posta Kutxatila 644, 48080 Bilbao (Spain); Kuznetsov, A. Yu. [Department of Physics, University of Oslo, P.O. Box 1048 Blindern, NO-0316 Oslo (Norway); Egger, W. [Inst. fuer Angewandte Physik und Messtechnik, Univ. der Bundeswehr Muenchen, 87755 Neubiberg (Germany); Zuniga-Perez, J. [CRHEA CNRS, F-06560 Valbonne (France); Munoz-Sanjose, V. [Dept. de Fisica Aplicada i Electromagnetisme, c/ Doctor Moliner 50, E-46100 Burjassot (Valencia) (Spain)

    2013-01-14

    Non-polar ZnCdO films, grown over m- and r-sapphire with a Cd concentration ranging between 0.8% and 5%, have been studied by means of slow positron annihilation spectroscopy (PAS) combined with chemical depth profiling by secondary ion mass spectroscopy and Rutherford back-scattering. Vacancy clusters and Zn vacancies with concentrations up to 10{sup 17} cm{sup -3} and 10{sup 18} cm{sup -3}, respectively, have been measured inside the films. Secondary ion mass spectroscopy results show that most Cd stays inside the ZnCdO film but the diffused atoms can penetrate up to 1.3 {mu}m inside the ZnO buffer. PAS results give an insight to the structure of the meta-stable ZnCdO above the thermodynamical solubility limit of 2%. A correlation between the concentration of vacancy clusters and Cd has been measured. The concentration of Zn vacancies is one order of magnitude larger than in as-grown non-polar ZnO films and the vacancy cluster are, at least partly, created by the aggregation of smaller Zn vacancy related defects. The Zn vacancy related defects and the vacancy clusters accumulate around the Cd atoms as a way to release the strain induced by the substitutional Cd{sub Zn} in the ZnO crystal.

  2. On the interplay of point defects and Cd in non-polar ZnCdO films

    Science.gov (United States)

    Zubiaga, A.; Reurings, F.; Tuomisto, F.; Plazaola, F.; García, J. A.; Kuznetsov, A. Yu.; Egger, W.; Zúñiga-Pérez, J.; Muñoz-Sanjosé, V.

    2013-01-01

    Non-polar ZnCdO films, grown over m- and r-sapphire with a Cd concentration ranging between 0.8% and 5%, have been studied by means of slow positron annihilation spectroscopy (PAS) combined with chemical depth profiling by secondary ion mass spectroscopy and Rutherford back-scattering. Vacancy clusters and Zn vacancies with concentrations up to 1017 cm-3 and 1018 cm-3, respectively, have been measured inside the films. Secondary ion mass spectroscopy results show that most Cd stays inside the ZnCdO film but the diffused atoms can penetrate up to 1.3 μm inside the ZnO buffer. PAS results give an insight to the structure of the meta-stable ZnCdO above the thermodynamical solubility limit of 2%. A correlation between the concentration of vacancy clusters and Cd has been measured. The concentration of Zn vacancies is one order of magnitude larger than in as-grown non-polar ZnO films and the vacancy cluster are, at least partly, created by the aggregation of smaller Zn vacancy related defects. The Zn vacancy related defects and the vacancy clusters accumulate around the Cd atoms as a way to release the strain induced by the substitutional CdZn in the ZnO crystal.

  3. Intrinsic and extrinsic contributors to defective CD8+ T cell responses with aging.

    Science.gov (United States)

    Jergović, Mladen; Smithey, Megan J; Nikolich-Žugich, Janko

    2018-05-01

    Aging has a profound effect on the immune system, and both innate and adaptive arms of the immune system show functional decline with age. In response to infection with intracellular microorganisms, old animals mobilize decreased numbers of antigen-specific CD8+ T cells with reduced production of effector molecules and impaired cytolytic activity. However, the CD8+ T cell-intrinsic contribution to, and molecular mechanisms behind, these defects remain unclear. In this review we will discuss the mechanistic contributions of age related changes in the CD8+ T cell pool and the relative roles of intrinsic functional defects in aged CD8+ T cells vs. defects in the aged environment initiating the CD8+ T cell response. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Fanconi anemia genes are highly expressed in primitive CD34+ hematopoietic cells

    Directory of Open Access Journals (Sweden)

    Brodeur Isabelle

    2003-06-01

    Full Text Available Abstract Background Fanconi anemia (FA is a complex recessive genetic disease characterized by progressive bone marrow failure (BM and a predisposition to cancer. We have previously shown using the Fancc mouse model that the progressive BM failure results from a hematopoietic stem cell defect suggesting that function of the FA genes may reside in primitive hematopoietic stem cells. Methods Since genes involved in stem cell differentiation and/or maintenance are usually regulated at the transcription level, we used a semiquantitative RT-PCR method to evaluate FA gene transcript levels in purified hematopoietic stem cells. Results We show that most FA genes are highly expressed in primitive CD34-positive and negative cells compared to lower levels in more differentiated cells. However, in CD34- stem cells the Fancc gene was found to be expressed at low levels while Fancg was undetectable in this population. Furthermore, Fancg expression is significantly decreased in Fancc -/- stem cells as compared to wild-type cells while the cancer susceptibility genes Brca1 and Fancd1/Brac2 are upregulated in Fancc-/- hematopoietic cells. Conclusions These results suggest that FA genes are regulated at the mRNA level, that increased Fancc expression in LTS-CD34+ cells correlates with a role at the CD34+ differentiation stage and that lack of Fancc affects the expression of other FA gene, more specifically Fancg and Fancd1/Brca2, through an unknown mechanism.

  5. Surface modification effects on defect-related photoluminescence in colloidal CdS quantum dots.

    Science.gov (United States)

    Lee, TaeGi; Shimura, Kunio; Kim, DaeGwi

    2018-05-03

    We investigated the effects of surface modification on the defect-related photoluminescence (PL) band in colloidal CdS quantum dots (QDs). A size-selective photoetching process and a surface modification technique with a Cd(OH)2 layer enabled the preparation of size-controlled CdS QDs with high PL efficiency. The Stokes shift of the defect-related PL band before and after the surface modification was ∼1.0 eV and ∼0.63 eV, respectively. This difference in the Stokes shifts suggests that the origin of the defect-related PL band was changed by the surface modification. Analysis by X-ray photoelectron spectroscopy revealed that the surface of the CdS QDs before and after the surface modification was S rich and Cd rich, respectively. These results suggest that Cd-vacancy acceptors and S-vacancy donors affect PL processes in CdS QDs before and after the surface modification, respectively.

  6. Release and intercellular transfer of cell surface CD81 via microparticles

    Czech Academy of Sciences Publication Activity Database

    Fritsching, B.; Schwer, B.; Kartenbeck, J.; Pedal, A.; Hořejší, Václav; Ott, M.

    2002-01-01

    Roč. 169, č. 10 (2002), s. 5531-5537 ISSN 0022-1767 R&D Projects: GA MŠk LN00A026 Keywords : CD81 * microparticles * hepatitis C Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.014, year: 2002

  7. Defect creation rates in CdTe irradiated by electrons

    International Nuclear Information System (INIS)

    Caillot, M.

    1978-01-01

    Up to now, the defect creation rates in CdTe irradiated by electrons were unknown. They have been calculated for different electron kinetic energies. As the samples studied are thick, the energy loss when the electrons penetrate the material has been taken into account. The cross-sections of Cd and Te displacements vs the depth of electron penetration were determined for different electron kinetic energies, and the defect creation rates obtained for each sublattice. These creation rates have been compared with those deduced from experiments and it was found that the experimental creation rates were lower than the calculated ones. This discrepancy can be explained in terms of creation of neutral Frenkel pairs. (Auth.)

  8. Barrier controlled carrier trapping of extended defects in CdZnTe detector

    International Nuclear Information System (INIS)

    Guo, Rongrong; Jie, Wanqi; Xu, Yadong; Yu, Hui; Zha, Gangqiang; Wang, Tao; Ren, Jie

    2015-01-01

    Transient current techniques using alpha particle source were utilized to study the influence of extended defects on the electron drift time and the detector performance of CdZnTe crystals. Different from the case of trapping through isolated point defect, a barrier controlled trapping model was used to explain the mechanism of carrier trapping at the extended defects. The effect of extended defects on the photoconductance was studied by laser beam induced transient current (LBIC) measurement. The results demonstrate that the Schottky-type depletion space charge region is induced at the vicinity of the extended defects, which further distorts the internal electric field distribution and affects the carrier trajectory in CdZnTe crystals. The relationship between the electron drift time and detector performance has been established. - Highlights: • The barrier controlled trapping model was developed around extended defects. • Electron mobility and E-field distribution were distorted by space charge depletion region. • Extended defects act as a recombination-activated region. • The relationships between extended defects and detector performance were established

  9. Lattice defects in semiconducting Hg/1-x/Cd/x/Te alloys. III - Defect structure of undoped Hg0.6Cd0.4Te

    Science.gov (United States)

    Vydyanath, H. R.; Donovan, J. D.; Nelson, D. A.

    1981-01-01

    Hall effect measurements were carried out on undoped Hg0.6Cd0.4Te crystals quenched to room temperature subsequent to equilibration at temperatures varying from 450 to 720 C under various partial pressures of Hg. The variation of the hole concentration as a function of the partial pressure of Hg indicates that the native acceptor defects are doubly ionized. Native donor defects are found to be negligible in concentration and the p-type to n-type conversion is shown to be due to residual donors and not due to native donor defects. Thermodynamic constant for the incorporation of the doubly ionized native acceptor defect has been established.

  10. Impaired CD40L signaling is a cause of defective IL-12 and TNF-alpha production in Sézary syndrome: circumvention by hexameric soluble CD40L.

    Science.gov (United States)

    French, Lars E; Huard, Bertrand; Wysocka, Maria; Shane, Ryan; Contassot, Emmanuel; Arrighi, Jean-François; Piguet, Vincent; Calderara, Silvio; Rook, Alain H

    2005-01-01

    Sézary syndrome (SzS) is an advanced form of cutaneous T-cell lymphoma characterized by peripheral blood involvement, impaired cell-mediated immunity, and T-helper 1 (TH1) cytokine production. To understand the mechanism of these defects, we studied the expression and function of CD40L in peripheral blood mononuclear cells (PBMCs) of patients with SzS. We found that PBMCs of patients with SzS have a defect in interleukin-12 (IL-12) and tumor necrosis factor-alpha (TNF-alpha) production upon anti-CD3 stimulation and that tumor CD4+ T lymphocytes have a specific defect in CD40L induction after anti-CD3 ligation in vitro. This defect may explain the poor IL-12 production, because IL-12 production by anti-CD3-stimulated PBMCs was dependent on CD40L in healthy donors. The observed defect in tumor cell CD40L expression appears to be due to inappropriate T-cell signaling upon CD3 ligation, because expression of other T-cell activation antigens such as CD25, and to a lesser extent CD69, are also impaired on tumor cells. Importantly however, the inability of SzS PBMCs to appropriately produce IL-12 and TNF-alpha could be restored by recombinant hexameric CD40L. Taken together, our results demonstrate that impaired IL-12 and TNF-alpha production in SzS is associated with defective CD4+ T lymphocyte CD40L induction and indicate that CD40L may have therapeutic potential in SzS.

  11. Lineage determination of CD7+ CD5- CD2- and CD7+ CD5+ CD2- lymphoblasts: studies on phenotype, genotype, and gene expression of myeloperoxidase, CD3 epsilon, and CD3 delta.

    Science.gov (United States)

    Yoneda, N; Tatsumi, E; Teshigawara, K; Nagata, S; Nagano, T; Kishimoto, Y; Kimura, T; Yasunaga, K; Yamaguchi, N

    1994-04-01

    The gene expression of myeloperoxidase (MPO), CD3 epsilon, and CD3 delta molecules, the gene rearrangement of T-cell receptor (TCR) delta, gamma, and beta and immunoglobulin heavy (IgH) chain, and the expression of cell-surface antigens were investigated in seven cases of CD7+ CD5- CD2- and four cases of CD7+ CD5+ CD2- acute lymphoblastic leukemia or lymphoblastic lymphoma (ALL/LBL) blasts, which were negative for cytochemical myeloperoxidase (cyMPO). More mature T-lineage blasts were also investigated in a comparative manner. In conclusion, the CD7+ CD5- CD2- blasts included four categories: undifferentiated blasts without lineage commitment, T-lineage blasts, T-/myeloid lineage blasts, and cyMPO-negative myeloblasts. The CD7+ CD5+ CD2- blasts included two categories; T-lineage and T-/myeloid lineage blasts. The 11 cases were of the germ-line gene (G) for TCR beta and IgH. Four cases were G for TCR delta and TCR gamma. The others were of the monoclonally rearranged gene (R) for TCR delta and G for TCR gamma or R for both TCR delta and TCR gamma. The expression or in vitro induction of CD13 and/or CD33 antigens correlated with the immaturity of these neoplastic T cells, since it was observed in all 11 CD7+ CD5- CD2- and CD7+ CD5+ CD2-, and some CD7+ CD5+ CD2+ (CD3- CD4- CD8-) cases, but not in CD3 +/- CD4+ CD8+ or CD3+ CD4+ CD8- cases. CD3 epsilon mRNA, but not CD3 delta mRNA, was detected in two CD7+ CD5- CD2- cases, while mRNA of neither of the two CD3 molecules was detected in the other tested CD7+ CD5- CD2- cases. In contrast, mRNA of both CD3 epsilon and CD3 delta were detected in all CD7+ CD5+ CD2- cases, indicating that CD7+ CD5- CD2- blasts at least belong to T-lineage. The blasts of two CD7+ CD5- CD2- cases with entire germ-line genes and without mRNA of the three molecules (MPO, CD3 epsilon, and CD3 delta) were regarded as being at an undifferentiated stage prior to their commitment to either T- or myeloid-lineage. The co-expression of the genes of MPO

  12. Human natural killer cell maturation defect supports in vivo CD56(bright to CD56(dim lineage development.

    Directory of Open Access Journals (Sweden)

    Carolina Inés Domaica

    Full Text Available Two populations of human natural killer (NK cells can be identified in peripheral blood. The majority are CD3(-CD56(dim cells while the minority exhibits a CD3(-CD56(bright phenotype. In vitro evidence indicates that CD56(bright cells are precursors of CD56(dim cells, but in vivo evidence is lacking. Here, we studied NK cells from a patient that suffered from a melanoma and opportunistic fungal infection during childhood. The patient exhibited a stable phenotype characterized by a reduction in the frequency of peripheral blood CD3(-CD56(dim NK cells, accompanied by an overt increase in the frequency and absolute number of CD3(-CD56(bright cells. These NK cells exhibited similar expression of perforin, CD57 and CD158, the major activating receptors CD16, NKp46, NKG2D, DNAM-1, and 2B4, as well as the inhibitory receptor CD94/NKG2A, on both CD56(bright and CD56(dim NK cells as healthy controls. Also, both NK cell subpopulations produced IFN-γ upon stimulation with cytokines, and CD3(-CD56(dim NK cells degranulated in response to cytokines or K562 cells. However, upon stimulation with cytokines, a substantial fraction of CD56(dim cells failed to up-regulate CD57 and CD158, showed a reduction in the percentage of CD16(+ cells, and CD56(bright cells did not down-regulate CD62L, suggesting that CD56(dim cells could not acquire a terminally differentiated phenotype and that CD56(bright cells exhibit a maturation defect that might result in a potential altered migration pattern. These observations, support the notion that NK cells of this patient display a maturation/activation defect that precludes the generation of mature NK cells at a normal rate accompanied by CD56(dim NK cells that cannot completely acquire a terminally differentiated phenotype. Thus, our results provide evidence that support the concept that in vivo CD56(bright NK cells differentiate into CD56(dim NK cells, and contribute to further understand human NK cell ontogeny.

  13. Point Defect Properties of Cd(Zn)Te and TlBr for Room-Temperature Gamma Radiation Detectors

    Science.gov (United States)

    Lordi, Vincenzo

    2013-03-01

    The effects of various crystal defects in CdTe, Cd1-xZnxTe (CZT), and TlBr are critical for their performance as room-temperature gamma radiation detectors. We use predictive first principles theoretical methods to provide fundamental, atomic scale understanding of the defect properties of these materials to enable design of optimal growth and processing conditions, such as doping, annealing, and stoichiometry. Several recent cases will be reviewed, including (i) accurate calculations of the thermodynamic and electronic properties of native point defects and point defect complexes in CdTe and CZT; (ii) the effects of Zn alloying on the native point defect properties of CZT; (iii) point defect diffusion and binding related to Te clustering in Cd(Zn)Te; (iv) the profound effect of native point defects--principally vacancies--on the intrinsic material properties of TlBr, particularly electronic and ionic conductivity; (v) tailored doping of TlBr to independently control the electronic and ionic conductivity; and (vi) the effects of metal impurities on the electronic properties and device performance of TlBr detectors. Prepared by LLNL under Contract DE-AC52-07NA27344 with support from the National Nuclear Security Administration Office of Nonproliferation and Verification Research and Development NA-22.

  14. Impact of extended defects on recombination in CdTe heterostructures grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Zaunbrecher, Katherine N. [Department of Physics, Colorado State University, Fort Collins, Colorado 80523 (United States); National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Kuciauskas, Darius; Dippo, Pat; Barnes, Teresa M. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Swartz, Craig H.; Edirisooriya, Madhavie; Ogedengbe, Olanrewaju S.; Sohal, Sandeep; Hancock, Bobby L.; LeBlanc, Elizabeth G.; Jayathilaka, Pathiraja A. R. D.; Myers, Thomas H. [Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, Texas 78666 (United States)

    2016-08-29

    Heterostructures with CdTe and CdTe{sub 1-x}Se{sub x} (x ∼ 0.01) absorbers between two wider-band-gap Cd{sub 1-x}Mg{sub x}Te barriers (x ∼ 0.25–0.3) were grown by molecular beam epitaxy to study carrier generation and recombination in bulk materials with passivated interfaces. Using a combination of confocal photoluminescence (PL), time-resolved PL, and low-temperature PL emission spectroscopy, two extended defect types were identified and the impact of these defects on charge-carrier recombination was analyzed. The dominant defects identified by confocal PL were dislocations in samples grown on (211)B CdTe substrates and crystallographic twinning-related defects in samples on (100)-oriented InSb substrates. Low-temperature PL shows that twin-related defects have a zero-phonon energy of 1.460 eV and a Huang-Rhys factor of 1.50, while dislocation-dominated samples have a 1.473-eV zero-phonon energy and a Huang-Rhys factor of 1.22. The charge carrier diffusion length near both types of defects is ∼6 μm, suggesting that recombination is limited by diffusion dynamics. For heterostructures with a low concentration of extended defects, the bulk lifetime was determined to be 2.2 μs with an interface recombination velocity of 160 cm/s and an estimated radiative lifetime of 91 μs.

  15. Defect formation energy for charge states of CdMnTe

    International Nuclear Information System (INIS)

    Mehrabova, M.A.; Orujov, H.S.; Hasanli, R.N.

    2014-01-01

    Full text : Cd 1 -xMn x Te semimagnetic semiconductors are promising materials for X-ray and gamma-detectors, solar cells, optic insulators and etc. For obtaining high-sensitive and radiation-resistant materials, as well as creation of devices based on them it is necessary to know the mechanism of defect formation in semimagnetic conductors. Defects in semiconductors not only influence on electrical and optic properties of these materials, but also display their interesting physical properties

  16. TEM assessment of defects in (CdHg)Te heterostructures

    International Nuclear Information System (INIS)

    Lawson-Jack, S.G.; Jones, I.P.; Williams, D.J.; Astles, M.G.

    1991-01-01

    This paper reports on transmission electron microscopy used to assess the defect contents of the various layers and interfaces in (CdHg)Te heterostructures. Examination of cross sectional specimens of these materials suggests that the density of misfit dislocations at the interfaces is related to the layer thicknesses, and that the high density of dislocations which are generated at the GaAs/CdTe interface are effectively prevented from penetrating into the CdHgTe epilayer by a 3 μm thick buffer layer. The majority of the dislocations in the layers were found to have a Burgers vector b = a/2 left-angle 110 right-angle and either lie approximately parallel or inclined at an angle of ∼ 60 degrees to the interfactial plane

  17. Analysis of the reptile CD1 genes: evolutionary implications.

    Science.gov (United States)

    Yang, Zhi; Wang, Chunyan; Wang, Tao; Bai, Jianhui; Zhao, Yu; Liu, Xuhan; Ma, Qingwei; Wu, Xiaobing; Guo, Ying; Zhao, Yaofeng; Ren, Liming

    2015-06-01

    CD1, as the third family of antigen-presenting molecules, is previously only found in mammals and chickens, which suggests that the chicken and mammalian CD1 shared a common ancestral gene emerging at least 310 million years ago. Here, we describe CD1 genes in the green anole lizard and Crocodylia, demonstrating that CD1 is ubiquitous in mammals, birds, and reptiles. Although the reptilian CD1 protein structures are predicted to be similar to human CD1d and chicken CD1.1, CD1 isotypes are not found to be orthologous between mammals, birds, and reptiles according to phylogenetic analyses, suggesting an independent diversification of CD1 isotypes during the speciation of mammals, birds, and reptiles. In the green anole lizard, although the single CD1 locus and MHC I gene are located on the same chromosome, there is an approximately 10-Mb-long sequence in between, and interestingly, several genes flanking the CD1 locus belong to the MHC paralogous region on human chromosome 19. The CD1 genes in Crocodylia are located in two loci, respectively linked to the MHC region and MHC paralogous region (corresponding to the MHC paralogous region on chromosome 19). These results provide new insights for studying the origin and evolution of CD1.

  18. Study of impurity-defect interaction by perturbed angular correlations: 111Cd in silver

    International Nuclear Information System (INIS)

    Sage, Francoise.

    1975-01-01

    The quadrupole interaction of 111 Cd nuclei following the decay of 111 In implanted by the 109 Ag(α,2n) 111 In reaction into a cubic Ag lattice was measured using the time-differential perturbed-angular correlation technique. A non vanishing quadrupole interaction corresponding to a distribution of electric field gradients was observed, due to the interaction between the 111 Cd impurity and the defects created during the recoil of 111 In nuclei. For low temperature (77 K) irradiations, it has been shown that i) the angular correlation pattern depends on the intensity of α beam current, due to the interaction between defect cascades at high α beam intensity; and ii) it also depends on the annealing of the irradiated sample at different temperatures; the change in the defect configuration around the impurities is then due to the mobility of the various defects [fr

  19. A novel monoclonal anti-CD81 antibody produced by genetic immunization efficiently inhibits Hepatitis C virus cell-cell transmission.

    Directory of Open Access Journals (Sweden)

    Isabel Fofana

    Full Text Available Hepatitis C virus (HCV infection is a challenge to prevent and treat because of the rapid development of drug resistance and escape. Viral entry is required for initiation, spread, and maintenance of infection, making it an attractive target for antiviral strategies.Using genetic immunization, we produced four monoclonal antibodies (mAbs against the HCV host entry factor CD81. The effects of antibodies on inhibition of HCV infection and dissemination were analyzed in HCV permissive human liver cell lines.The anti-CD81 mAbs efficiently inhibited infection by HCV of different genotypes as well as a HCV escape variant selected during liver transplantation and re-infecting the liver graft. Kinetic studies indicated that anti-CD81 mAbs target a post-binding step during HCV entry. In addition to inhibiting cell-free HCV infection, one antibody was also able to block neutralizing antibody-resistant HCV cell-cell transmission and viral dissemination without displaying any detectable toxicity.A novel anti-CD81 mAb generated by genetic immunization efficiently blocks HCV spread and dissemination. This antibody will be useful to further unravel the role of virus-host interactions during HCV entry and cell-cell transmission. Furthermore, this antibody may be of interest for the development of antivirals for prevention and treatment of HCV infection.

  20. Influence of defects and nanoscale strain on the photovoltaic properties of CdS/CdSe nanocomposite co-sensitized ZnO nanowire solar cells

    International Nuclear Information System (INIS)

    Jung, Kyungeun; Lee, Jeongwon; Kim, Young-Min; Kim, Joosun; Kim, Choong-Un; Lee, Man-Jong

    2016-01-01

    Highlights: • CdSe/CdS nanocomposites were coated on ZnO nanowires using solution processes. • In situ CdSe/CdS co-sensitizers resulted in a 3-fold increase in efficiency. • Nano-strain analyses at interfaces and CdS layers were performed. • Drastic decrease of nano-strain in CdSe/CdS was observed. • Relaxed nano-strain was attributed to the increase of efficiency. - Abstract: This paper reports the mechanism of the power conversion efficiency (PCE) improvement in the ZnO nanowires (NW) based solar cells by using CdS/CdSe nanocomposite sensitizers instead of a single CdS quantum-dot (QD) sensitization layer. Two cells with the different type of the sensitization layers were essentially consists of the high-density ZnO nanowire (NW) and a sensitization layer of either CdS-QD or CdS/CdSe nanocomposite, which were produced by an in-situ sequential assembly process of both ionic layer absorption and reaction (SILAR) and chemical bath deposition (CBD). Measurement on the PCE revealed that the cell with CdS/CdSe nanocomposite showed a three-fold increase in PCE compared to the one with a CdS-QD layer. While such improvement in PCE appeared to be consistent with the step-wise band alignment mechanism suggested for the type-II heterojunction of CdSe/CdS/ZnO structures, our microstructural analysis of the cell structure yielded results strongly indicating that the reduction of both interface defects and misfit strain in the CdS lattices plays an additional role on the PCE improvement. Analyses on the interface and the CdS crystallinity using high-resolution electron microscopy (HRTEM) combined with the geometric phase analysis (GPA) revealed that the addition of CdSe effectively reduced the lattice strain in the CdS without introducing misfit dislocations at CdS/CdSe interface, probably owing to Se anion diffusion (or exchange) to the defective SILAR CdS layer during the CBD process. Although an entire enhancement in PCE by the addition of CdSe layer seen in our

  1. High precision measurement of the hyperfine fields of substitutional and defect associated Cd in single crystalline hcp cobalt

    CERN Document Server

    Correia, J G; Melo, A A; Soares, J C

    1996-01-01

    The hyperfine fields of Cd in single crystalline hcp Co were measured after simultaneous implantation of 111mCd and 111In. High statistics measurements could be done separately for each parent isotope combining the e--g and g-g PAC techniques. The hyperfine coupling constants wL(CdCo)=422.8(1) Mrad/s and w0(CdCo)=6.14(11) Mrad/s are determined for Cd probes in undisturbed substitutional sites. Several defect associated sites in the hcp Co lattice are clearly seen in the data. Most of the radiation damage created by the ion implantation anneals out at temperatures below 503 K, with only one dominating component surviving at this temperature. This defect is assigned as a probe atom in an interstitial site, surrounded by a vacancy tetrahedron. The corresponding magnetic field and electric field gradient are collinear with the c-axis of the Co lattice, and the respective coupling constants are wL(defect)= 216.7(2) Mrad/s and w0(defect)= 45.3(6) Mrad/s.

  2. Tunable zinc interstitial related defects in ZnMgO and ZnCdO films

    International Nuclear Information System (INIS)

    Li, Wanjun; Qin, Guoping; Fang, Liang; Ye, Lijuan; Wu, Fang; Ruan, Haibo; Zhang, Hong; Kong, Chunyang; Zhang, Ping

    2015-01-01

    We report tunable band gap of ZnO thin films grown on quartz substrates by radio frequency magnetron sputtering. The zinc interstitial (Zn i ) defects in ZnO films were investigated by X-ray diffraction, Raman scattering, Auger spectra, first-principle calculations, and Hall measurement. Undoped ZnO film exhibits an anomalous Raman mode at 275 cm −1 . We first report that 275 cm −1 mode also can be observed in ZnO films alloyed with Mg and Cd, whose Raman intensities, interestingly, decrease and increase with increasing Mg and Cd alloying content, respectively. Combined with the previous investigations, it is deduced that 275 cm −1 mode is attributed to Zn i related defects, which is demonstrated by our further experiment and theoretical calculation. Consequently, the concentration of Zn i related defects in ZnO can be tuned by alloying Mg and Cd impurity, which gives rise to different conductivity in ZnO films. These investigations help to further understand the controversial origin of the additional Raman mode at 275 cm −1 and also the natural n-type conductivity in ZnO

  3. Tunable zinc interstitial related defects in ZnMgO and ZnCdO films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wanjun; Qin, Guoping [State Key Laboratory of Mechanical Transmission, College of Physics, Chongqing University, Chongqing 401331 (China); Key Laboratory of Optoelectronic Functional Materials of Chongqing, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, Chongqing 401331 (China); Fang, Liang, E-mail: lfang@cqu.edu.cn, E-mail: kchy@163.com; Ye, Lijuan; Wu, Fang [State Key Laboratory of Mechanical Transmission, College of Physics, Chongqing University, Chongqing 401331 (China); Ruan, Haibo [Research Center for Materials Interdisciplinary Sciences, Chongqing University of Arts and Sciences, Chongqing 402160 (China); Zhang, Hong; Kong, Chunyang, E-mail: lfang@cqu.edu.cn, E-mail: kchy@163.com; Zhang, Ping [Key Laboratory of Optoelectronic Functional Materials of Chongqing, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, Chongqing 401331 (China)

    2015-04-14

    We report tunable band gap of ZnO thin films grown on quartz substrates by radio frequency magnetron sputtering. The zinc interstitial (Zn{sub i}) defects in ZnO films were investigated by X-ray diffraction, Raman scattering, Auger spectra, first-principle calculations, and Hall measurement. Undoped ZnO film exhibits an anomalous Raman mode at 275 cm{sup −1}. We first report that 275 cm{sup −1} mode also can be observed in ZnO films alloyed with Mg and Cd, whose Raman intensities, interestingly, decrease and increase with increasing Mg and Cd alloying content, respectively. Combined with the previous investigations, it is deduced that 275 cm{sup −1} mode is attributed to Zn{sub i} related defects, which is demonstrated by our further experiment and theoretical calculation. Consequently, the concentration of Zn{sub i} related defects in ZnO can be tuned by alloying Mg and Cd impurity, which gives rise to different conductivity in ZnO films. These investigations help to further understand the controversial origin of the additional Raman mode at 275 cm{sup −1} and also the natural n-type conductivity in ZnO.

  4. Study of Te Inclusion and Related Point Defects in THM-Growth CdMnTe Crystal

    Science.gov (United States)

    Mao, Yifei; Zhang, Jijun; Min, Jiahua; Liang, Xiaoyan; Huang, Jian; Tang, Ke; Ling, Liwen; Li, Ming; Zhang, Ying; Wang, Linjun

    2018-02-01

    This study establishes a model for describing the interaction between Te inclusions, dislocations and point defects in CdMnTe crystals. The role of the complex environment surrounding the formation of Te inclusions was analyzed. Images of Te inclusions captured by scanning electron microscope and infrared microscope were used to observe the morphology of Te inclusions. The morphology of Te inclusions is discussed in light of crystallography, from the crystal growth temperature at 900°C to the melting temperature of Te inclusions using the traveling heater method. The dislocation nets around Te inclusions were calculated by counting lattice mismatches between the Te inclusions and the bulk CdMnTe at 470°C. The point defects of Te antisites were found to be gathered around Te inclusions, with dislocation climb during the cooling phase of crystal growth from 470°C to room temperature. The Te inclusions, dislocation nets and surrounding point defects are considered to be an entirety for evaluating the effect of Te inclusions on CdMnTe detector performance, and an effective mobility-lifetime product (μτ) was obtained.

  5. Studies on the deep-level defects in CdZnTe crystals grown by travelling heater method

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Boru; Jie, Wanqi; Wang, Tao; Xu, Lingyan; Yang, Fan; Yin, Liying; Fu, Xu [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an (China); Key Laboratory of Radiation Detection Materials and Devices, Ministry of Industry and Information Technology, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi' an, Shaanxi (China); Nan, Ruihua [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an (China); Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials and Chemical Engineering, Xi' an Technological University, Xi' an (China)

    2017-05-15

    The variation of deep level defects along the axis of CZT:In ingots grown by Travelling Heater Method was investigated by the means of thermally stimulated current (TSC) spectra. Models for the reaction among different defects In, Te{sub i}, and V{sub Cd} were used to analyze the variation of deep level defects along the growth direction. It was found that the density of In dopant-related defects is lower in the tip, but those of Te antisites and Te interstitials are higher in the tip. The density of cadmium vacancy exhibits an initial increase followed by a decrease from the tip to tail of the ingot. In PL spectra, the intensities of (D{sub 0}, X), (DAP) and D{sub complex} peaks obviously increase from the tip to the tail, due to the increase of the density of In dopant-related defects (IN{sup +}{sub CD}), Cd vacancies, and impurities. The low concentration of net free holes was found by Hall measurements, and high resistivity with p-type conduction was demonstrated from I-V analysis. The mobility for electrons was found to increase significantly from 634 ± 26 cm{sup 2} V{sup -1} s{sup -1} in the tip to 860 ± 10 cm{sup 2} V{sup -1} s{sup -1} in the tail, due to the decrease of the deep level defect densities. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Psoriasis associated with idiopathic CD4+ T-cell lymphopenia: a regulatory T-cell defect?

    Science.gov (United States)

    Baroudjian, B; Viguier, M; Battistella, M; Beneton, N; Pagès, C; Gener, G; Bégon, E; Bachelez, H

    2014-07-01

    Idiopathic CD4(+) lymphocytopenia (ICL) is a rare immunodeficiency syndrome of unknown origin for which the increased risks of opportunistic infections and of malignancies have been well established; however, skin dysimmune diseases, including psoriasis, have been scarcely reported up to now. We report herein the severe course of psoriasis in four patients with ICL, and show evidence for a defect in the skin recruitment of regulatory CD4(+) FoxP3(+) T cells. These data raise the apparent paradigm of the occurrence of a severe immunomediated disease together with a profound T-cell defect, a model that might also apply to other immune deficiencies associated with psoriasis. © 2014 British Association of Dermatologists.

  7. Screening for GPR101 defects in pediatric pituitary corticotropinomas.

    OpenAIRE

    Trivellin, Giampaolo(*); Correa, Ricardo R.(*); Batsis, Maria; Faucz, Fabio R.; Chittiboina, Prashant; Bjelobaba, Ivana; Larco, Darwin O.; Quezado, Martha; Daly, Adrian; Stojilkovic, Stanko S.; Wu, T. John; Beckers, Albert; Lodish, Maya; Stratakis, Constantine A.

    2016-01-01

    Cushing disease (CD) in children is caused by adrenocorticotropic hormone (ACTH)-secreting pituitary adenomas. Germline or somatic mutations in genes such as MEN1, CDKIs, AIP, and USP8 have been identified in pediatric CD, but the genetic defects in a significant percentage of cases are still unknown. We investigated the orphan G protein-coupled receptor GPR101, a gene known to be involved in somatotropinomas, for its possible involvement in corticotropinomas. We performed GPR101 sequencing, ...

  8. Study of association of CD40-CD154 gene polymorphisms with disease susceptibility and cardiovascular risk in Spanish rheumatoid arthritis patients.

    Directory of Open Access Journals (Sweden)

    Mercedes García-Bermúdez

    Full Text Available Rheumatoid arthritis (RA is a chronic inflammatory disease associated with increased cardiovascular (CV mortality. Since CD40-CD154 binding has direct consequences on inflammation process initiation, we aimed to replicate previous findings related to disease susceptibility in Spanish RA population. Furthermore, as the major complication in RA disease patients is the development of CV events due to accelerated atherosclerosis, and elevated levels of CD40L/CD154 are present in patients with acute myocardial infarction, we assessed the potential association of CD40 and CD154/CD40L gene variants with CV risk in Spanish RA patients.One thousand five hundred and seventy-five patients fulfilling the 1987 ACR classification criteria for RA and 1600 matched controls were genotyped for the CD40 rs1883832, rs4810485 and rs1535045 and CD154 rs3092952 and rs3092920 gene polymorphisms, using predesigned TaqMan single nucleotide polymorphism genotyping assays. Afterwards, we investigated the influence of CD40-CD154 gene variants in the development of CV events. Also, in a subgroup of 273 patients without history of CV events, we assessed the influence of these polymorphisms in the risk of subclinical atherosclerosis determined by carotid ultrasonography.Nominally significant differences in the allele frequencies for the rs1883832 CD40 gene polymorphism between RA patients and controls were found (p=0.038. Although we did not observe a significant association of CD40-CD154 gene variants with the development of CV events, an ANCOVA model adjusted for sex, age at the time of the ultrasonography assessment, follow-up time, traditional CV risk factors and anti-cyclic citrullinated peptide antibodies disclosed a significant association (p=0.0047 between CD40 rs1535045 polymorphism and carotid intima media thickness, a surrogate marker of atherosclerosis.Data from our pilot study indicate a potential association of rs1883832 CD40 gene polymorphism with susceptibility

  9. Identification of a type of defects in CdTe crystals by the piezo spectroscopic method

    International Nuclear Information System (INIS)

    Tarbajev, M.Yi.

    1999-01-01

    The dependence of line shifts and the photoluminescence line intensity of bound exciton complexes on the direction of elastic deformation are studied for CdTe crystals at 4.2 K. On the basis of the found differences in piezo optic behavior of excitons bound to neutral donors and acceptors, the method of identification of a type of defects in CdTe crystals is proposed

  10. Extended defects in MBE-grown CdTe-based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wichrowska, Karolina; Wosinski, Tadeusz; Kret, Slawomir; Chusnutdinow, Sergij; Karczewski, Grzegorz [Institute of Physics, Polish Academy of Sciences, Warsaw (Poland); Rawski, Michal [Analytical Laboratory, Maria Curie-Sklodowska University, Lublin (Poland); Yastrubchak, Oksana [Institute of Physics, Maria Curie-Sklodowska University, Lublin (Poland)

    2015-08-15

    Extended defects in the p -ZnTe/n -CdTe heterojunctions grown by the molecular-beam epitaxy technique on two different substrates, GaAs and CdTe, have been investigated by deep-level transient spectroscopy (DLTS) and transmission electron microscopy (TEM). Four hole traps, called H1 to H4, and one electron trap, called E3, have been revealed in the DLTS spectra measured for the heterojunctions grown on the GaAs substrates. The H1, H3, H4 and E3 traps have been attributed to the electronic states of dislocations on the ground of their logarithmic capture kinetics. The DLTS peaks associated with the H1 and E3 traps were not observed in the DLTS spectra measured for the heterojunction grown on the CdTe substrate. They are most likely associated with threading dislocations generated at the mismatched interface with the GaAs substrate. Cross-sectional TEM images point out that they are dislocations of the 60 -type. In both the types of heterojunctions the H4 trap was observed only under forward-bias filling pulse, suggesting that this trap is associated with the CdTe/ZnTe interface. In addition, TEM images revealed also the presence of intrinsic and extrinsic stacking faults in the CdTe layers, which may considerably affect their electronic properties. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Prognostic values of soluble CD30 and CD30 gene polymorphisms in heart transplantation.

    Science.gov (United States)

    Frisaldi, Elisa; Conca, Raffaele; Magistroni, Paola; Fasano, Maria Edvige; Mazzola, Gina; Patanè, Francesco; Zingarelli, Edoardo; Dall'omo, Anna M; Brusco, Alfredo; Amoroso, Antonio

    2006-04-27

    Pretransplant soluble CD30 (sCD30) is a predictor of kidney graft outcome. Its status as a predictor of heart transplant (HT) outcome has not been established. We have studied this question by assessing sCD30 levels and the number of (CCAT)n repeats of the microsatellite in the CD30 promoter region, which is able alone to repress gene transcription, in the sera of 83 HT patients and 77 of their donors. sCD30 was non-significantly increased in the patients, whereas there were no differences in the CD30 microsatellite allele frequencies. A negative correlation between the number of (CCAT)n and sCD30 levels was evident in the donors. Patients with pretransplant sCD30sCD30 levels are predictive of HT outcome.

  12. Lattice defects in semiconducting Hg/1-x/Cd/x/Te alloys. I - Defect structure of undoped and copper doped Hg/0.8/Cd/0.2/Te. II - Defect structure of indium-doped Hg/0.8/Cd/0.2/Te

    Science.gov (United States)

    Vydyanath, H. R.

    1981-01-01

    Hall effect and mobility measurements were conducted on undoped Hg(0.8)Cd(0.2)Te crystals which were quenched to room temperature after being subjected to equilibration at temperatures ranging from 400 to 655 C in various Hg atmospheres. The variation of the hole concentration in the cooled crystals at 77 K as a function of Hg's partial pressure at the equilibration temperature, together with a comparison of the hole mobility in the undoped samples with that in copper-doped ones, yields a defect model for the undoped crystals according to which they are intrinsic at the equilibration temperatures and the native acceptor defects are doubly ionized. In the second part of this paper, the effects of indium doping are considered. The concentration of electrons obtained in the cooled crystals was found to be lower than the intrinsic carrier concentration at the equilibration temperatures. A defect model is proposed according to which most of the indium is incorporated as In2Te3(s) dissolved in the crystal, with only a small fraction of indium acting as single donors occupying Hg lattice sites.

  13. The gene expression profile of CD11c+ CD8α- dendritic cells in the pre-diabetic pancreas of the NOD mouse.

    Directory of Open Access Journals (Sweden)

    Wouter Beumer

    Full Text Available Two major dendritic cell (DC subsets have been described in the pancreas of mice: The CD11c+ CD8α- DCs (strong CD4+ T cell proliferation inducers and the CD8α+ CD103+ DCs (T cell apoptosis inducers. Here we analyzed the larger subset of CD11c+ CD8α- DCs isolated from the pancreas of pre-diabetic NOD mice for genome-wide gene expression (validated by Q-PCR to elucidate abnormalities in underlying gene expression networks. CD11c+ CD8α- DCs were isolated from 5 week old NOD and control C57BL/6 pancreas. The steady state pancreatic NOD CD11c+ CD8α- DCs showed a reduced expression of several gene networks important for the prime functions of these cells, i.e. for cell renewal, immune tolerance induction, migration and for the provision of growth factors including those for beta cell regeneration. A functional in vivo BrdU incorporation test showed the reduced proliferation of steady state pancreatic DC. The reduced expression of tolerance induction genes (CD200R, CCR5 and CD24 was supported on the protein level by flow cytometry. Also previously published functional tests on maturation, immune stimulation and migration confirm the molecular deficits of NOD steady state DC. Despite these deficiencies NOD pancreas CD11c+ CD8α- DCs showed a hyperreactivity to LPS, which resulted in an enhanced pro-inflammatory state characterized by a gene profile of an enhanced expression of a number of classical inflammatory cytokines. The enhanced up-regulation of inflammatory genes was supported by the in vitro cytokine production profile of the DCs. In conclusion, our data show that NOD pancreatic CD11c+ CD8α- DCs show various deficiencies in steady state, while hyperreactive when encountering a danger signal such as LPS.

  14. Defect characterization of CdTe thin films using a slow positron beam

    International Nuclear Information System (INIS)

    Neretina, S.; Grebennikov, D.; Mascher, P.; Hughes, R.A.; Weber, M.; Lynn, K.G.; Simpson, P.J.; Preston, J.S.

    2007-01-01

    Cadmium Telluride (CdTe) is the most well established II-VI compound largely due to its use as a photonic material. Existing applications, as well as those under consideration, are demanding increasingly stringent control of the material properties. The deposition of high quality thin films is of the utmost importance to such applications. In this regard, we present a report detailing the role of lattice mismatch in determining the film quality. Thin films were deposited on a wide variety of substrate materials using the pulsed laser deposition technique. Common to all substrates was the strong tendency towards the preferential alignment of CdTe's (111) planes parallel to the substrate's surface. X-ray diffraction analysis, however, revealed that the crystalline quality varied dramatically depending upon the substrate used with the best results yielding a single crystal film. This tendency also manifested itself in the surface morphology with higher structural perfection yielding smoother surfaces. Slow positron beam techniques revealed a strong correlation between the defect concentration and the degree of structural perfection. Simulations of the data using the POSTRAP 5 program were used to calculate the defect concentration in relative (atom -1 ) and absolute units and to determine the diffusion lengths of the positrons in the film. All of these characterization techniques point towards lattice mismatch as being the dominant mechanism in determining the quality of CdTe films. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Qualification of a new defect revealing etch for CdTe using cathodoluminescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Watson, C.C.R.; Durose, K. (Dept. of Physics, Univ. of Durham (United Kingdom)); Banister, A.J. (Dept. of Chemistry, Univ. of Durham (United Kingdom)); O' Keefe, E.; Bains, S.K. (Philips Infrared Defence Components, Southampton (United Kingdom))

    1993-01-30

    The action of a new defect revealing etch comprising a saturated FeCl[sub 3] solution has been investigated. The etch was found suitable for use on (111)A, (anti 1anti 1anti 1)B and other surface orientations of CdTe, and (111)A and (anti 1anti 1anti 1)B surfaces of Cd[sub 0.96]Zn[sub 0.04] Te. Direct correlations with cathodoluminescence and infra-red microscopy have shown the etch to successfully reveal twin boundaries, precipitates and dislocations. A background etch rate of approximately 2 [mu]m min[sup -1] has been measured. (orig.).

  16. Surface defect assisted broad spectra emission from CdSe quantum dots for white LED application

    Science.gov (United States)

    Samuel, Boni; Mathew, S.; Anand, V. R.; Correya, Adrine Antony; Nampoori, V. P. N.; Mujeeb, A.

    2018-02-01

    This paper reports, broadband photoluminescence from CdSe quantum dots (QDs) under the excitation of 403 nm using fluorimeter and 403 nm CW laser excitation. The broad spectrum obtained from the colloidal quantum dots was ranges from 450 nm to 800 nm. The broadness of the spectra was attributed to the merging of band edge and defect driven emissions from the QDs. Six different sizes of particles were prepared via kinetic growth method by using CdO and elemental Se as sources of Cd and Se respectively. The particle sizes were measured from TEM images. The size dependent effect on broad emission was also studied and the defect state emission was found to be predominant in very small QDs. The defect driven emission was also observed to be redshifted, similar to the band edge emission, due to quantum confinement effect. The emission corresponding to different laser power was also studied and a linear relation was obtained. In order to study the colour characteristics of the emission, CIE chromaticity coordinate, CRI and CCT of the prepared samples were measured. It is observed that, these values were tunable by the addition of suitable intensity of blue light from the excitation source to yield white light of various colour temperatures. The broad photoluminescence spectrum of the QDs, were compared with that of a commercially available white LED. It was found that the prepared QDs are good alternatives for the phosphor in phosphor converted white LEDs, to provide good spectral tunability.

  17. FoxP3+CD4+CD25+ T cells with regulatory properties can be cultured from colonic mucosa of patients with Crohn's disease

    Science.gov (United States)

    Kelsen, J; Agnholt, J; Hoffmann, H J; Rømer, J L; Hvas, C L; Dahlerup, J F

    2005-01-01

    CD4+CD25+ regulatory T cells (Tregs) are involved in the maintenance of peripheral tolerance and ensure a balanced immune response competent of fighting pathogens and at the same time recognizing commensals as harmless. This feature is lost in Crohn's disease (CD). The forkhead/winged helix transcription factor FoxP3 is a master gene for Treg function and defects in the FoxP3 gene lead to a clinical picture similar to inflammatory bowel disease (IBD). Murine colitis can be cured by adoptive transfer of Tregs and ex vivo-generated gut-specific Tregs represent an attractive option for therapy in CD. Thus, defective Tregs could contribute to the development of CD. We cultured biopsies of colonic mucosa in the presence of high concentrations of interleukin (IL)-2 and IL-4 to overcome the anergic nature of naturally occurring CD4+CD25+ Tregs in the mucosa. We investigated the expression of FoxP3 and regulatory potential of gut-derived CD4+CD25+ T cells cultured from patients with CD and healthy individuals. The FoxP3 expression was analysed by reverse transcriptase polymerase chain reaction (RT-PCR), and the suppressive effect of FoxP3+CD4+CD25+ T cells on proliferation and cytokine production of autologous CD4+ T cells was assessed by flow cytometry. Cultured gut-derived T cells with CD4+CD25+ phenotype expressed FoxP3 and were able as the freshly isolated Tregs from peripheral blood to suppress proliferation and cytokine production of autologous CD4+ T cells. Thus, we demonstrate that FoxP3+CD4+CD25+ T cells with regulatory properties can be propagated in vitro from inflamed mucosa of CD patients, which may be of interest in adoptive immunotherapy. PMID:16045746

  18. Quantitative gene expression profiling of CD45+ and CD45- skeletal muscle-derived side population cells

    DEFF Research Database (Denmark)

    Ditte Caroline Andersen, Ditte Caroline; Kristiansen, Gitte Qvist; Jensen, Line

    2012-01-01

    The skeletal muscle-derived side population (mSP) which highly excludes Hoechst 33342 is composed of CD45(+) and CD45(-) subpopulations; yet, rareness of mSP cells in general has complicated extensive quantitative analysis of gene expression profiles in primarily isolated mSP cells. Here, we desc...... a satellite cell subpopulation) remain in the mSPCD45(-) fraction, and we show that these cells express high levels of many of the known myogenic precursor/stem cell related markers, including Pax7 and Myf5.......The skeletal muscle-derived side population (mSP) which highly excludes Hoechst 33342 is composed of CD45(+) and CD45(-) subpopulations; yet, rareness of mSP cells in general has complicated extensive quantitative analysis of gene expression profiles in primarily isolated mSP cells. Here, we...... describe the isolation of adult mouse normal skeletal muscle residing SPCD45(+) and SPCD45(-) cells from a parent mononuclear muscle-derived cell (MDC) population. Relative quantitative real time PCR (RT-PCR) of 64 genes revealed that mSPCD45(-) compared with mSPCD45(+) was enriched for cells expressing...

  19. [Toxic effect of trichloroethylene on liver cells with CYP3A4 gene defect].

    Science.gov (United States)

    Liao, R Y; Liu, S

    2016-06-20

    To investigate the toxic effect of trichloroethylene on liver cells with CYP3A4 gene defect. The normal human liver cells (L02 cells) and liver cells with CYP3A4 gene defect were exposed to trichloroethylene at different doses (0.0, 0.4, 0.8, 1.6, 3.2, and 6.4 mmol/L). CCK8 assay and RT-qPCR were used to measure cell viability and changes in the expression of apoptosis genes and oncogenes. After being exposed to trichloroethylene at doses of 1.6, 3.2, and 6.4 mmol/L, the liver cells with CYP3A4 gene defect showed significantly higher cell viability than L02 cells (0.91±0.06/0.89±0.05/0.85±0.07 vs 0.80±0.04/0.73±0.06/0.67±0.07, Ptrichloroethylene groups showed significant increases in the expression of the apoptosis genes caspase-3, caspase-8, and caspase-9 (PTrichloroethylene exposure has a less effect on the expression of apoptosis genes and oncogenes in liver cells with CYP3A4 gene defect than in normal human liver cells, suggesting that CYP3A4 gene defect reduces the inductive effect of trichloroethylene on apoptosis genes and oncogenes.

  20. HLA Class II Defects in Burkitt Lymphoma: Bryostatin-1-Induced 17 kDa Protein Restores CD4+ T-Cell Recognition

    Directory of Open Access Journals (Sweden)

    Azim Hossain

    2011-01-01

    Full Text Available While the defects in HLA class I-mediated Ag presentation by Burkitt lymphoma (BL have been well documented, CD4+ T-cells are also poorly stimulated by HLA class II Ag presentation, and the reasons underlying this defect(s have not yet been fully resolved. Here, we show that BL cells are deficient in their ability to optimally stimulate CD4+ T cells via the HLA class II pathway. The observed defect was not associated with low levels of BL-expressed costimulatory molecules, as addition of external co-stimulation failed to result in BL-mediated CD4+ T-cell activation. We further demonstrate that BL cells express the components of the class II pathway, and the defect was not caused by faulty Ag/class II interaction, because antigenic peptides bound with measurable affinity to BL-associated class II molecules. Treatment of BL with broystatin-1, a potent modulator of protein kinase C, led to significant improvement of functional class II Ag presentation in BL. The restoration of immune recognition appeared to be linked with an increased expression of a 17 kDa peptidylprolyl-like protein. These results demonstrate the presence of a specific defect in HLA class II-mediated Ag presentation in BL and reveal that treatment with bryostatin-1 could lead to enhanced immunogenicity.

  1. Genome-wide expression profiling analysis to identify key genes in the anti-HIV mechanism of CD4+ and CD8+ T cells.

    Science.gov (United States)

    Gao, Lijie; Wang, Yunqi; Li, Yi; Dong, Ya; Yang, Aimin; Zhang, Jie; Li, Fengying; Zhang, Rongqiang

    2018-07-01

    Comprehensive bioinformatics analyses were performed to explore the key biomarkers in response to HIV infection of CD4 + and CD8 + T cells. The numbers of CD4 + and CD8 + T cells of HIV infected individuals were analyzed and the GEO database (GSE6740) was screened for differentially expressed genes (DEGs) in HIV infected CD4 + and CD8 + T cells. Gene Ontology enrichment, KEGG pathway analyses, and protein-protein interaction (PPI) network were performed to identify the key pathway and core proteins in anti-HIV virus process of CD4 + and CD8 + T cells. Finally, we analyzed the expressions of key proteins in HIV-infected T cells (GSE6740 dataset) and peripheral blood mononuclear cells(PBMCs) (GSE511 dataset). 1) CD4 + T cells counts and ratio of CD4 + /CD8 + T cells decreased while CD8 + T cells counts increased in HIV positive individuals; 2) 517 DEGs were found in HIV infected CD4 + and CD8 + T cells at acute and chronic stage with the criterial of P-value T cells. The main biological processes of the DEGs were response to virus and defense response to virus. At chronic stage, ISG15 protein, in conjunction with IFN-1 pathway might play key roles in anti-HIV responses of CD4 + T cells; and 4) The expression of ISG15 increased in both T cells and PBMCs after HIV infection. Gene expression profile of CD4 + and CD8 + T cells changed significantly in HIV infection, in which ISG15 gene may play a central role in activating the natural antiviral process of immune cells. © 2018 Wiley Periodicals, Inc.

  2. A Sequence in the loop domain of hepatitis C virus E2 protein identified in silico as crucial for the selective binding to human CD81.

    Directory of Open Access Journals (Sweden)

    Chun-Chun Chang

    Full Text Available Hepatitis C virus (HCV is a species-specific pathogenic virus that infects only humans and chimpanzees. Previous studies have indicated that interactions between the HCV E2 protein and CD81 on host cells are required for HCV infection. To determine the crucial factors for species-specific interactions at the molecular level, this study employed in silico molecular docking involving molecular dynamic simulations of the binding of HCV E2 onto human and rat CD81s. In vitro experiments including surface plasmon resonance measurements and cellular binding assays were applied for simple validations of the in silico results. The in silico studies identified two binding regions on the HCV E2 loop domain, namely E2-site1 and E2-site2, as being crucial for the interactions with CD81s, with the E2-site2 as the determinant factor for human-specific binding. Free energy calculations indicated that the E2/CD81 binding process might follow a two-step model involving (i the electrostatic interaction-driven initial binding of human-specific E2-site2, followed by (ii changes in the E2 orientation to facilitate the hydrophobic and van der Waals interaction-driven binding of E2-site1. The sequence of the human-specific, stronger-binding E2-site2 could serve as a candidate template for the future development of HCV-inhibiting peptide drugs.

  3. Correlation of point defects in CdZnTe with charge transport:application to room-temperature x-ray and gamma-ray. Final Technical Report

    International Nuclear Information System (INIS)

    Giles, Nancy C.

    2003-01-01

    The primary goal of this project has been to characterize and identify point defects in CdZnTe. There are two experimental focus areas: (1) photoluminescence and EPR. Results are compared with radiation detector performance. Applications requiring room-temperature x-ray and gamma-ray detectors are rapidly increasing and now include nuclear medicine, space sciences, national security, environmental remediation, nonproliferation inspections, etc. To meet these needs, a new generation of detectors based on single crystals of cadmium zinc telluride (Cd 1-x Zn x Te) is being developed. This semiconductor material possesses many desirable detector properties, such as constituent atoms with high atomic number (Z), a sufficiently large band gap to minimize leakage currents at room temperature, and high intrinsic mobility-lifetime (p) products for electrons and holes. However, despite the tremendous promise of this material, problems clearly exist. CdZnTe crystals are difficult to grow in large sizes and with ultra-high purity. There is a need to further lower the leakage currents in detector-grade material and also to increase the efficiency of charge collection. In general, all aspects of carrier trapping in this material must be understood and minimized. Point defects are a primary reason CdZnTe crystals have not yet reached their expected levels of performance. Thus, a better understanding of the role of point defects and the larger microstructure defects on the transport of electrons and holes will lead to improved detector-grade CdZnTe. The primary goal of this project has been to characterize and identify point defects (e.g., impurities, vacancies, vacancy-impurity complexes, etc.) in CdZnTe and determine the mechanisms by which these defects influence the carrier μτ products. Special attention is given to the role of shallow donors, shallow acceptors, and deeper acceptors. There are two experimental focus areas in the project: (1) liquid-helium photoluminescence

  4. Cholesteryl ester hydroperoxides increase macrophage CD36 gene expression via PPARα

    International Nuclear Information System (INIS)

    Jedidi, Iness; Couturier, Martine; Therond, Patrice; Gardes-Albert, Monique; Legrand, Alain; Barouki, Robert; Bonnefont-Rousselot, Dominique; Aggerbeck, Martine

    2006-01-01

    The uptake of oxidized LDL by macrophages is a key event in the development of atherosclerosis. The scavenger receptor CD36 is one major receptor that internalizes oxidized LDL. In differentiated human macrophages, we compared the regulation of CD36 expression by copper-oxidized LDL or their products. Only oxidized derivatives of cholesteryl ester (CEOOH) increased the amount of CD36 mRNA (2.5-fold). Both oxidized LDL and CEOOH treatment increased two to fourfold the transcription of promoters containing peroxisome-proliferator-activated-receptor responsive elements (PPRE) in the presence of PPARα or γ. Electrophoretic-mobility-shift-assays with nuclear extracts prepared from macrophages treated by either oxidized LDL or CEOOH showed increased binding of PPARα to the CD36 gene promoter PPRE. In conclusion, CEOOH present in oxidized LDL increase CD36 gene expression in a pathway involving PPARα

  5. DNA microarray revealed and RNAi plants confirmed key genes conferring low Cd accumulation in barley grains

    DEFF Research Database (Denmark)

    Sun, Hongyan; Chen, Zhong-Hua; Chen, Fei

    2015-01-01

    Background Understanding the mechanism of low Cd accumulation in crops is crucial for sustainable safe food production in Cd-contaminated soils. Results Confocal microscopy, atomic absorption spectrometry, gas exchange and chlorophyll fluorescence analyses revealed a distinct difference in Cd...... with a substantial difference between the two genotypes. Cd stress led to higher expression of genes involved in transport, carbohydrate metabolism and signal transduction in the low-grain-Cd-accumulating genotype. Novel transporter genes such as zinc transporter genes were identified as being associated with low Cd...... accumulation. Quantitative RT-PCR confirmed our microarray data. Furthermore, suppression of the zinc transporter genes HvZIP3 and HvZIP8 by RNAi silencing showed increased Cd accumulation and reduced Zn and Mn concentrations in barley grains. Thus, HvZIP3 and HvZIP8 could be candidate genes related to low...

  6. Sequence-specific interaction between the disintegrin domain of mouse ADAM 3 and murine eggs: role of beta1 integrin-associated proteins CD9, CD81, and CD98.

    Science.gov (United States)

    Takahashi, Y; Bigler, D; Ito, Y; White, J M

    2001-04-01

    ADAM 3 is a sperm surface glycoprotein that has been implicated in sperm-egg adhesion. Because little is known about the adhesive activity of ADAMs, we investigated the interaction of ADAM 3 disintegrin domains, made in bacteria and in insect cells, with murine eggs. Both recombinant proteins inhibited sperm-egg binding and fusion with potencies similar to that which we recently reported for the ADAM 2 disintegrin domain. Alanine scanning mutagenesis revealed a critical importance for the glutamine at position 7 of the disintegrin loop. Fluorescent beads coated with the ADAM 3 disintegrin domain bound to the egg surface. Bead binding was inhibited by an authentic, but not by a scrambled, peptide analog of the disintegrin loop. Bead binding was also inhibited by the function-blocking anti-alpha6 monoclonal antibody (mAb) GoH3, but not by a nonfunction blocking anti-alpha6 mAb, or by mAbs against either the alphav or beta3 integrin subunits. We also present evidence that in addition to the tetraspanin CD9, two other beta1-integrin-associated proteins, the tetraspanin CD81 as well as the single pass transmembrane protein CD98 are expressed on murine eggs. Antibodies to CD9 and CD98 inhibited in vitro fertilization and binding of the ADAM 3 disintegrin domain. Our findings are discussed in terms of the involvement of multiple sperm ADAMs and multiple egg beta1 integrin-associated proteins in sperm-egg binding and fusion. We propose that an egg surface "tetraspan web" facilitates fertilization and that it may do so by fostering ADAM-integrin interactions.

  7. Sequence-Specific Interaction between the Disintegrin Domain of Mouse ADAM 3 and Murine Eggs: Role of β1 Integrin-associated Proteins CD9, CD81, and CD98

    Science.gov (United States)

    Takahashi, Yuji; Bigler, Dora; Ito, Yasuhiko; White, Judith M.

    2001-01-01

    ADAM 3 is a sperm surface glycoprotein that has been implicated in sperm-egg adhesion. Because little is known about the adhesive activity of ADAMs, we investigated the interaction of ADAM 3 disintegrin domains, made in bacteria and in insect cells, with murine eggs. Both recombinant proteins inhibited sperm-egg binding and fusion with potencies similar to that which we recently reported for the ADAM 2 disintegrin domain. Alanine scanning mutagenesis revealed a critical importance for the glutamine at position 7 of the disintegrin loop. Fluorescent beads coated with the ADAM 3 disintegrin domain bound to the egg surface. Bead binding was inhibited by an authentic, but not by a scrambled, peptide analog of the disintegrin loop. Bead binding was also inhibited by the function-blocking anti-α6 monoclonal antibody (mAb) GoH3, but not by a nonfunction blocking anti-α6 mAb, or by mAbs against either the αv or β3 integrin subunits. We also present evidence that in addition to the tetraspanin CD9, two other β1-integrin-associated proteins, the tetraspanin CD81 as well as the single pass transmembrane protein CD98 are expressed on murine eggs. Antibodies to CD9 and CD98 inhibited in vitro fertilization and binding of the ADAM 3 disintegrin domain. Our findings are discussed in terms of the involvement of multiple sperm ADAMs and multiple egg β1 integrin-associated proteins in sperm-egg binding and fusion. We propose that an egg surface “tetraspan web” facilitates fertilization and that it may do so by fostering ADAM–integrin interactions. PMID:11294888

  8. Ribosomal protein gene knockdown causes developmental defects in zebrafish.

    Directory of Open Access Journals (Sweden)

    Tamayo Uechi

    Full Text Available The ribosomal proteins (RPs form the majority of cellular proteins and are mandatory for cellular growth. RP genes have been linked, either directly or indirectly, to various diseases in humans. Mutations in RP genes are also associated with tissue-specific phenotypes, suggesting a possible role in organ development during early embryogenesis. However, it is not yet known how mutations in a particular RP gene result in specific cellular changes, or how RP genes might contribute to human diseases. The development of animal models with defects in RP genes will be essential for studying these questions. In this study, we knocked down 21 RP genes in zebrafish by using morpholino antisense oligos to inhibit their translation. Of these 21, knockdown of 19 RPs resulted in the development of morphants with obvious deformities. Although mutations in RP genes, like other housekeeping genes, would be expected to result in nonspecific developmental defects with widespread phenotypes, we found that knockdown of some RP genes resulted in phenotypes specific to each gene, with varying degrees of abnormality in the brain, body trunk, eyes, and ears at about 25 hours post fertilization. We focused further on the organogenesis of the brain. Each knocked-down gene that affected the morphogenesis of the brain produced a different pattern of abnormality. Among the 7 RP genes whose knockdown produced severe brain phenotypes, 3 human orthologs are located within chromosomal regions that have been linked to brain-associated diseases, suggesting a possible involvement of RP genes in brain or neurological diseases. The RP gene knockdown system developed in this study could be a powerful tool for studying the roles of ribosomes in human diseases.

  9. Site-directed mutagenesis of HIV-1 vpu gene demonstrates two clusters of replication-defective mutants with distinct ability to down-modulate cell surface CD4 and tetherin

    Directory of Open Access Journals (Sweden)

    Masako Nomaguchi

    2010-11-01

    Full Text Available HIV-1 Vpu acts positively on viral infectivity by mediating CD4 degradation in endoplasmic reticulum and enhances virion release by counteracting a virion release restriction factor, tetherin. In order to define the impact of Vpu activity on HIV-1 replication, we have generated a series of site-specific proviral vpu mutants. Of fifteen mutants examined, seven exhibited a replication-defect similar to that of a vpu-deletion mutant in a lymphocyte cell line H9. These mutations clustered in narrow regions within transmembrane domain (TMD and cytoplasmic domain (CTD. Replication-defective mutants displayed the reduced ability to enhance virion release from a monolayer cell line HEp2 without exception. Upon transfection with Vpu expression vectors, neither TMD mutants nor CTD mutants blocked CD4 expression at the cell surface in another monolayer cell line MAGI. While TMD mutants were unable to down-modulate cell surface tetherin in HEp2 cells, CTD mutants did quite efficiently. Confocal microscopy analysis revealed the difference of intracellular localization between TMD and CTD mutants. In total, replication capability of HIV-1 carrying vpu mutations correlates well with the ability of Vpu to enhance virion release and to impede the cell surface expression of CD4 but not with the ability to down-modulate cell surface tetherin. Our results here suggest that efficient viral replication requires not only down-regulation of cell surface tetherin but also its degradation.

  10. Functional analysis of human hematopoietic stem cell gene expression using zebrafish.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available Although several reports have characterized the hematopoietic stem cell (HSC transcriptome, the roles of HSC-specific genes in hematopoiesis remain elusive. To identify candidate regulators of HSC fate decisions, we compared the transcriptome of human umbilical cord blood and bone marrow (CD34+(CD33-(CD38-Rho(lo(c-kit+ cells, enriched for hematopoietic stem/progenitor cells with (CD34+(CD33-(CD38-Rho(hi cells, enriched in committed progenitors. We identified 277 differentially expressed transcripts conserved in these ontogenically distinct cell sources. We next performed a morpholino antisense oligonucleotide (MO-based functional screen in zebrafish to determine the hematopoietic function of 61 genes that had no previously known function in HSC biology and for which a likely zebrafish ortholog could be identified. MO knock down of 14/61 (23% of the differentially expressed transcripts resulted in hematopoietic defects in developing zebrafish embryos, as demonstrated by altered levels of circulating blood cells at 30 and 48 h postfertilization and subsequently confirmed by quantitative RT-PCR for erythroid-specific hbae1 and myeloid-specific lcp1 transcripts. Recapitulating the knockdown phenotype using a second MO of independent sequence, absence of the phenotype using a mismatched MO sequence, and rescue of the phenotype by cDNA-based overexpression of the targeted transcript for zebrafish spry4 confirmed the specificity of MO targeting in this system. Further characterization of the spry4-deficient zebrafish embryos demonstrated that hematopoietic defects were not due to more widespread defects in the mesodermal development, and therefore represented primary defects in HSC specification, proliferation, and/or differentiation. Overall, this high-throughput screen for the functional validation of differentially expressed genes using a zebrafish model of hematopoiesis represents a major step toward obtaining meaningful information from global

  11. Biomolecule-assisted synthesis of defect-mediated Cd1-xZnxS/MoS2/graphene hollow spheres for highly efficient hydrogen evolution.

    Science.gov (United States)

    Du, Ruifeng; Zhang, Yihe; Li, Baoying; Yu, Xuelian; Liu, Huijuan; An, Xiaoqiang; Qu, Jiuhui

    2016-06-28

    Moderate efficiency and the utilization of noble metal cocatalysts are the key factors that restrict the large-scale application of photocatalytic hydrogen production. To develop more efficient photocatalysts based on earth abundant elements, either a new material strategy or a fundamental understanding of the semiconductor/cocatalyst interfaces is highly desirable. In this paper, we studied the feasibility of in situ formation of defect-rich cocatalysts on graphene-based photocatalysts. A facile biomolecule-assisted strategy was used to self-assmble Cd1-xZnxS/MoS2/graphene hollow spheres. The defect-mediated cocatalyst and synergetic charge transfer around heterostructured interfaces exhibit a significant impact on the visible-light-driven photocatalytic activity of multicomponent solid solutions. With engineered interfacial defects, Cd0.8Zn0.2S/MoS2/graphene hollow spheres exhibited a 63-fold improved H2 production rate, which was even 2 and 3.8 times higher than those of CdS/MoS2/graphene hollow spheres and Cd0.8Zn0.2S/Pt. Therefore, our research provides a promising approach for the rational design of high-efficiency and low-cost photocatalysts for solar fuel production.

  12. Screening of Cd tolerant genotypes and isolation of metallothionein genes in alfalfa (Medicago sativa L.)

    International Nuclear Information System (INIS)

    Wang Xiaojuan; Song, Yu; Ma Yanhua; Zhuo Renying; Jin Liang

    2011-01-01

    In order to evaluate Cd tolerance in wide-ranging sources of alfalfa (Medicago sativa) and to identify Cd tolerant genotypes which may potentially be useful for restoring Cd-contaminated environments, thirty-six accessions of alfalfa were screened under hydroponic culture. Our results showed that the relative root growth rate varied from 0.48 to 1.0, which indicated that different alfalfa accessions had various responses to Cd stress. The candidate fragments derived from differentially expressed metallothionein (MT) genes were cloned from leaves of two Cd tolerant genotypes, YE and LZ. DNA sequence and the deduced protein sequence showed that MsMT2a and MsMT2b had high similarity to those in leguminous plants. DDRT-PCR analysis showed that MsMT2a expressed in both YE and LZ plants under control and Cd stress treatment, but MsMT2b only expressed under Cd stress treatment. This suggested that MsMT2a was universally expressed in leaves of alfalfa but expression of MsMT2b was Cadmium (Cd) inducible. - Highlights: → Evaluate Cd tolerance in wide sources of alfalfa accessions. → Identify Cd-hyperaccumulators potentially useful for restoring Cd-contaminated environments. → Cloned differentially expressed metallothionein (MT) genes. → Characteristics and deduced protein sequence of MsMT2a and MsMT2b were analyzed. → MsMT2a might be a universally gene of alfalfa but MsMT2b might be an inductive gene. - Two Cd tolerant alfalfa genotypes were screened and their metallothionein genes were cloned which showed that MsMT2a was universally expressed but MsMT2b was Cd inducible expression.

  13. Screening of Cd tolerant genotypes and isolation of metallothionein genes in alfalfa (Medicago sativa L.)

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiaojuan, E-mail: xiaojuanwang@lzu.edu.cn [School of Pastoral Agriculture Science and Technology, Lanzhou University, P.O. Box 61, Lanzhou 730020 (China); Song, Yu [School of Pastoral Agriculture Science and Technology, Lanzhou University, P.O. Box 61, Lanzhou 730020 (China); Environment Management College of China, Qinhuangdao 066004 (China); Ma Yanhua [Hebei Normal University of Science and Technology, Qinhuangdao 066004 (China); Zhuo Renying [Key Lab of Tree Genomics, Research Institute of Subtropical of Forest, Chinese Academy of Forest, Fuyang 311400 (China); Jin Liang [School of Pastoral Agriculture Science and Technology, Lanzhou University, P.O. Box 61, Lanzhou 730020 (China)

    2011-12-15

    In order to evaluate Cd tolerance in wide-ranging sources of alfalfa (Medicago sativa) and to identify Cd tolerant genotypes which may potentially be useful for restoring Cd-contaminated environments, thirty-six accessions of alfalfa were screened under hydroponic culture. Our results showed that the relative root growth rate varied from 0.48 to 1.0, which indicated that different alfalfa accessions had various responses to Cd stress. The candidate fragments derived from differentially expressed metallothionein (MT) genes were cloned from leaves of two Cd tolerant genotypes, YE and LZ. DNA sequence and the deduced protein sequence showed that MsMT2a and MsMT2b had high similarity to those in leguminous plants. DDRT-PCR analysis showed that MsMT2a expressed in both YE and LZ plants under control and Cd stress treatment, but MsMT2b only expressed under Cd stress treatment. This suggested that MsMT2a was universally expressed in leaves of alfalfa but expression of MsMT2b was Cadmium (Cd) inducible. - Highlights: > Evaluate Cd tolerance in wide sources of alfalfa accessions. > Identify Cd-hyperaccumulators potentially useful for restoring Cd-contaminated environments. > Cloned differentially expressed metallothionein (MT) genes. > Characteristics and deduced protein sequence of MsMT2a and MsMT2b were analyzed. > MsMT2a might be a universally gene of alfalfa but MsMT2b might be an inductive gene. - Two Cd tolerant alfalfa genotypes were screened and their metallothionein genes were cloned which showed that MsMT2a was universally expressed but MsMT2b was Cd inducible expression.

  14. Differential expression of granulopoiesis related genes in neutrophil subsets distinguished by membrane expression of CD177

    DEFF Research Database (Denmark)

    Hu, Nan; Mora-Jensen, Helena; Theilgaard-Mønch, Kim

    2014-01-01

    OBJECTIVE: Differential gene expression in CD177+ and CD177- neutrophils was investigated, in order to detect possible differences in neutrophil function which could be related to the pathogenesis of ANCA-associated Vasculitides (AAV). METHODS: Neutrophils were isolated from healthy controls (HC......) with high, negative or bimodal CD177 expression, and sorted into CD177+ and CD177- subpopulations. Total RNA was screened for expression of 24,000 probes with Illumina Ref-8 Beadchips. Genes showing differential expression between CD177+ and CD177- subsets in microarray analysis were re-assessed using...... quantitative-PCR. CD177 expression on neutrophil precursors in bone marrow was analyzed using quantitative PCR and flowcytometry. RESULTS: The proportion of CD177+ cells increased during neutrophil maturation in bone marrow. Fold change analysis of gene expression profile of sorted CD177+ and CD177...

  15. Research Update: Point defects in CdTexSe1−x crystals grown from a Te-rich solution for applications in detecting radiation

    International Nuclear Information System (INIS)

    Gul, R.; Roy, U. N.; Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; Hossain, A.; Yang, G.; James, R. B.; Lee, W.; Cui, Y.; Burger, A.

    2015-01-01

    We investigated cadmium telluride selenide (CdTeSe) crystals, newly grown by the Traveling Heater Method (THM), for the presence and abundance of point defects. Current Deep Level Transient spectroscopy (I-DLTS) was used to determine the energies of the traps, their capture cross sections, and densities. The bias across the detectors was varied from 1 to 30 V. Four types of point defects were identified, ranging from 10 meV to 0.35 eV. Two dominant traps at energies of 0.18 eV and 0.14 eV were studied in depth. Cd vacancies are found at lower concentrations than other point defects present in the material

  16. Dynamics of photoexcited carrier relaxation and recombination in CdTe/CdS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Levi, D.H.; Fluegel, B.D.; Ahrenkiel, R.K. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    Efficiency-limiting defects in photovoltaic devices are readily probed by time-resolved spectroscopy. This paper presents the first direct optical measurements of the relaxation and recombination pathways of photoexcited carriers in the CdS window layer of CdTe/CdS polycrystalline thin films. Femtosecond time-resolved pump/probe measurements indicate the possible existence of a two-phase CdS/CdSTe layer, rather than a continuously graded alloy layer at the CdTe/CdS interface. Complementary time-resolved photoluminescence (PL) measurements show that the photoexcited carriers are rapidly captured by deep-level defects. The temporal and density-dependent properties of the photoluminescence prove that the large Stokes shift of the PL relative to the band edge is due to strong phonon coupling to deep-level defects in CdS. The authors suggest that modifications in the CdS processing may enhance carrier collection efficiency in the blue spectral region.

  17. Occurrence of nodular lymphocyte-predominant hodgkin lymphoma in hermansky-pudlak type 2 syndrome is associated to natural killer and natural killer T cell defects.

    Directory of Open Access Journals (Sweden)

    Luisa Lorenzi

    Full Text Available Hermansky Pudlak type 2 syndrome (HPS2 is a rare autosomal recessive primary immune deficiency caused by mutations on β3A gene (AP3B1 gene. The defect results in the impairment of the adaptor protein 3 (AP-3 complex, responsible for protein sorting to secretory lysosomes leading to oculo-cutaneous albinism, bleeding disorders and immunodeficiency. We have studied peripheral blood and lymph node biopsies from two siblings affected by HPS2. Lymph node histology showed a nodular lymphocyte predominance type Hodgkin lymphoma (NLPHL in both HPS2 siblings. By immunohistochemistry, CD8 T-cells from HPS2 NLPHL contained an increased amount of perforin (Prf + suggesting a defect in the release of this granules-associated protein. By analyzing peripheral blood immune cells we found a significant reduction of circulating NKT cells and of CD56(brightCD16(- Natural Killer (NK cells subset. Functionally, NK cells were defective in their cytotoxic activity against tumor cell lines including Hodgkin Lymphoma as well as in IFN-γ production. This defect was associated with increased baseline level of CD107a and CD63 at the surface level of unstimulated and IL-2-activated NK cells. In summary, these results suggest that a combined and profound defect of innate and adaptive effector cells might explain the susceptibility to infections and lymphoma in these HPS2 patients.

  18. Early Infantile Leigh-like Gene Defects Have a Poor Prognosis: Report and Review

    Directory of Open Access Journals (Sweden)

    Majid Alfadhel

    2017-10-01

    Full Text Available Solute carrier family 19 (thiamine transporter, member 3 ( SCL19A3 gene defect produces an autosomal recessive neurodegenerative disorder associated with different phenotypes and acronyms. One of the common presentations is early infantile lethal Leigh-like syndrome. We report a case of early infantile Leigh-like SLC19A3 gene defects of patients who died at 4 months of age with no response to a high dose of biotin and thiamine. In addition, we report a novel mutation that was not reported previously. Finally, we review the literature regarding early infantile Leigh-like SLC19A3 gene defects and compare the literature with our patient.

  19. Gene expression profile altered by orthodontic tooth movement during healing of surgical alveolar defect.

    Science.gov (United States)

    Choi, Eun-Kyung; Lee, Jae-Hyung; Baek, Seung-Hak; Kim, Su-Jung

    2017-06-01

    We explored the gene expression profile altered by orthodontic tooth movement (OTM) during the healing of surgical alveolar defects in beagles. An OTM-related healing model was established where a maxillary second premolar was protracted into the critical-sized defect for 6 weeks (group DT6). As controls, natural healing models without OTM were set at 2 weeks (group D2) and at 6 weeks (group D6) after surgery. Total RNAs were extracted from dissected tissue blocks containing the regenerated defects and additionally from sound alveolar bone as a baseline (group C). mRNA profiling was performed using microarray analysis. Functional annotations of gene clusters based on differentially expressed genes among groups indicated that the gene expression profile of group DT6 had a stronger similarity to that of group D2 than to group D6. The genes participating in high woven-bone fraction in group DT6 could be identified as TNFSF11, MMP13, SPP1, and DMP1, which were verified by quantitative real-time polymerase chain reactions. We investigated at the gene level that OTM can affect the healing state of surgical defects serving as favorable matrices for OTM with defect regeneration. It would be a basis on selecting putative genes to be therapeutically applied for tissue-friendly accelerated orthodontics in the future. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  20. Cell-extrinsic defective lymphocyte development in Lmna(-/- mice.

    Directory of Open Access Journals (Sweden)

    J Scott Hale

    2010-04-01

    Full Text Available Mutations in the LMNA gene, which encodes all A-type lamins, result in a variety of human diseases termed laminopathies. Lmna(-/- mice appear normal at birth but become runted as early as 2 weeks of age and develop multiple tissue defects that mimic some aspects of human laminopathies. Lmna(-/- mice also display smaller spleens and thymuses. In this study, we investigated whether altered lymphoid organ sizes are correlated with specific defects in lymphocyte development.Lmna(-/- mice displayed severe age-dependent defects in T and B cell development which coincided with runting. Lmna(-/- bone marrow reconstituted normal T and B cell development in irradiated wild-type recipients, driving generation of functional and self-MHC restricted CD4(+ and CD8(+ T cells. Transplantation of Lmna(-/- neonatal thymus lobes into syngeneic wild-type recipients resulted in good engraftment of thymic tissue and normal thymocyte development.Collectively, these data demonstrate that the severe defects in lymphocyte development that characterize Lmna(-/- mice do not result directly from the loss of A-type lamin function in lymphocytes or thymic stroma. Instead, the immune defects in Lmna(-/- mice likely reflect indirect damage, perhaps resulting from prolonged stress due to the striated muscle dystrophies that occur in these mice.

  1. Defects in CdSe thin films, induced by high energy electron irradiation

    International Nuclear Information System (INIS)

    Ion, L.; Antohe, S.; Tutuc, D.; Antohe, V.A.; Tazlaoanu, C.

    2004-01-01

    Defects induced in CdSe thin films by high energy electron irradiation are investigated by means of thermally stimulated currents (TSC) spectroscopy. Films were obtained by vacuum deposition from a single source and irradiated with a 5 x 10 13 electrons/cm 2 s -1 beam of 6-MeV energy. It was found that electrical properties of the films are controlled by a deep donor state, located at 0.38 eV below the bottom edge of the conduction band. Parameters of the traps responsible for the recorded TSC peaks were determined. (authors)

  2. Pulmonary ventilation studies of asthmatic children with Kr-81m

    International Nuclear Information System (INIS)

    Uchiyama, Guio; Hotta, Toshiko; Arimizu, Noboru; Sugimoto, Kazuo.

    1979-01-01

    Krypton-81 m gas was eluted from the 81 Rb-sup(81m)Kr generator by using compressed air or oxygen as an eluting agent. The continuous inhalation of mixed gas of sup(81m)Kr and air or oxygen with the use of a scintillation camera produced a pulmonary image of which density was proportional to regional ventilation. Because of short half life of sup(81m)Kr (13 seconds), exhaled gas was not necessary to be trapped by the charcoal filter, and the several pulmonary views of a patient could readily be available in a short period of time. The great advantage of sup(81m)Kr generator was found in use for the studies of small children who were not usually cooperative to medical examination. Thirty seven patients with bronchial asthma of any state were so far studied. Their ages ranged from 3 to 15 years old. Studies revealed the definite ventilation defects in scans of patients with asthmatic attack. Re-scans right after the use of bronchodilators showed marked improvement of the ventilation defects. Exercise-induced asthma (EIA) was easily identified by the sup(81m)Kr ventilation study. After premedications for EIA with disodium cromoglicate, the next exercises produced less or no ventilation defects, and the preventive effect could be individually examined. The sup(81m)Kr ventilation study was also used for estimating the patient's sensitivity to provokative substances of bronchial asthma. House dust was continuously inhaled with sup(81m)Kr gas by patients. The threshold dose of house dust of disclosing ventilation defects in scans was definitely less than that of provokating the symptom of asthmatic attack. The sensitive sup(81m)Kr ventilation study could be another provokative test which induces no clinical symptoms. (author)

  3. Pulmonary ventilation studies of asthmatic children with Kr-81m

    Energy Technology Data Exchange (ETDEWEB)

    Uchiyama, G; Hotta, T; Arimizu, N [Chiba Univ. (Japan). School of Medicine; Sugimoto, K

    1979-05-01

    Krypton-81 m gas was eluted from the /sup 81/Rb-sup(81m)Kr generator by using compressed air or oxygen as an eluting agent. The continuous inhalation of mixed gas of sup(81m)Kr and air or oxygen with the use of a scintillation camera produced a pulmonary image of which density was proportional to regional ventilation. Because of short half life of sup(81m)Kr (13 seconds), exhaled gas was not necessary to be trapped by the charcoal filter, and the several pulmonary views of a patient could readily be available in a short period of time. The great advantage of sup(81m)Kr generator was found in use for the studies of small children who were not usually cooperative to medical examination. Thirty seven patients with bronchial asthma of any state were so far studied. Their ages ranged from 3 to 15 years old. Studies revealed the definite ventilation defects in scans of patients with asthmatic attack. Re-scans right after the use of bronchodilators showed marked improvement of the ventilation defects. Exercise-induced asthma (EIA) was easily identified by the sup(81m)Kr ventilation study. After premedications for EIA with disodium cromoglicate, the next exercises produced less or no ventilation defects, and the preventive effect could be individually examined. The sup(81m)Kr ventilation study was also used for estimating the patient's sensitivity to provokative substances of bronchial asthma. House dust was continuously inhaled with sup(81m)Kr gas by patients. The threshold dose of house dust of disclosing ventilation defects in scans was definitely less than that of provokating the symptom of asthmatic attack. The sensitive sup(81m)Kr ventilation study could be another provokative test which induces no clinical symptoms. (author).

  4. Cre-/IoxP-Mediated Recombination between the SIL and SCL Genes Leads to a Block in T-Cell Development at the CD4-CD8- to CD4+CD8+ Transition

    Directory of Open Access Journals (Sweden)

    Yue Cheng

    2007-04-01

    Full Text Available In the most common form of stem cell leukemia (SCL gene rearrangement, an interstitial deletion of 82 kb brings SCL under the control of regulatory elements that normally govern expression of the ubiquitously expressed SCL interrupting locus (SIL gene, which is located directly upstream of SCL. To investigate the effect of this fusion in a mouse model, a bacterial artificial chromosome (BAC clone containing both human SIL and SCL genes was isolated, and IoxP sites were inserted into intron 1 of both the SIL and SCL genes, corresponding to the sites at which recombination occurs in human T-cell acute lymphocytic leukemia patients. This BAC clone was used to generate transgenic SILIoxloxSCL mice. These transgenic mice were subsequently bred to Lck-Cre mice that express the Cre recombinase specifically in the thymus. The BAC transgene was recombined between the two IoxP sites in over 50% of the thymocytes from SILIoxloxSCL/Cre double-transgenic mice, bringing the SCL gene under the direct control of SIL regulatory elements. Aberrant SCL gene expression in the thymus was verified by reverse transcription- polymerase chain reaction. Using FACS analysis, we found that mice carrying both SILIoxloxSCL and Cre transgenes have increased CD4-/CD8- thymocytes compared with transgenenegative mice. In the spleen, these transgenic mice show a marked reduction in the number of mature CD4+ or CD8+ cells. These results demonstrate that conditional activation of SCL under control of SIL regulatory elements can impair normal T-cell development.

  5. MRP-1/CD9 gene transduction regulates the actin cytoskeleton through the downregulation of WAVE2.

    Science.gov (United States)

    Huang, C-L; Ueno, M; Liu, D; Masuya, D; Nakano, J; Yokomise, H; Nakagawa, T; Miyake, M

    2006-10-19

    Motility-related protein-1 (MRP-1/CD9) is involved in cell motility. We studied the change in the actin cytoskeleton, and the expression of actin-related protein (Arp) 2 and Arp3 and the Wiskott-Aldrich syndrome protein (WASP) family according to MRP-1/CD9 gene transduction into HT1080 cells. The frequency of cells with lamellipodia was significantly lower in MRP-1/CD9-transfected HT1080 cells than in control HT1080 cells (PMRP-1/CD9 gene transduction affected the subcellular localization of Arp2 and Arp3 proteins. Furthermore, MRP-1/CD9 gene transduction induced a downregulation of WAVE2 expression (PMRP-1/CD9 monoclonal antibody inhibited downregulation of WAVE2 in MRP-1/CD9-transfected HT1080 cells (PMRP-1/CD9 gene transduction. Furthermore, downregulation of WAVE2 by transfection of WAVE2-specific small interfering RNA (siRNA) mimicked the morphological effects of MRP-1/CD9 gene transduction and suppressed cell motility. However, transfection of each siRNA for Wnt1, Wnt2b1 or Wnt5a did not affect WAVE2 expression. Transfection of WAVE2-specific siRNA also did not affect expressions of these Wnts. These results indicate that MRP-1/CD9 regulates the actin cytoskeleton by downregulating of the WAVE2, through the Wnt-independent signal pathway.

  6. Syndromes and Disorders Associated with Omphalocele (III: Single Gene Disorders, Neural Tube Defects, Diaphragmatic Defects and Others

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chen

    2007-06-01

    Full Text Available Omphalocele can be associated with single gene disorders, neural tube defects, diaphragmatic defects, fetal valproate syndrome, and syndromes of unknown etiology. This article provides a comprehensive review of omphalocele-related disorders: otopalatodigital syndrome type II; Melnick–Needles syndrome; Rieger syndrome; neural tube defects; Meckel syndrome; Shprintzen–Goldberg omphalocele syndrome; lethal omphalocele-cleft palate syndrome; cerebro-costo-mandibular syndrome; fetal valproate syndrome; Marshall–Smith syndrome; fibrochondrogenesis; hydrolethalus syndrome; Fryns syndrome; omphalocele, diaphragmatic defects, radial anomalies and various internal malformations; diaphragmatic defects, limb deficiencies and ossification defects of skull; Donnai–Barrow syndrome; CHARGE syndrome; Goltz syndrome; Carpenter syndrome; Toriello–Carey syndrome; familial omphalocele; Cornelia de Lange syndrome; C syndrome; Elejalde syndrome; Malpuech syndrome; cervical ribs, Sprengel anomaly, anal atresia and urethral obstruction; hydrocephalus with associated malformations; Kennerknecht syndrome; lymphedema, atrial septal defect and facial changes; and craniosynostosis- mental retardation syndrome of Lin and Gettig. Perinatal identification of omphalocele should alert one to the possibility of omphalocele-related disorders and familial inheritance and prompt a thorough genetic counseling for these disorders.

  7. The CD8 and CD4 T-cell response against Kaposi's sarcoma-associated herpesvirus is skewed towards early and late lytic antigens.

    Directory of Open Access Journals (Sweden)

    Rebecca C Robey

    Full Text Available Kaposi's sarcoma-associated herpesvirus (KSHV is causally related to Kaposi's sarcoma (KS, the most common malignancy in untreated individuals with HIV/AIDS. The adaptive T-cell immune response against KSHV has not been fully characterized. To achieve a better understanding of the antigenic repertoire of the CD8 and CD4 T-cell responses against KSHV, we constructed a library of lentiviral expression vectors each coding for one of 31 individual KSHV open reading frames (ORFs. We used these to transduce monocyte-derived dendritic cells (moDCs isolated from 14 KSHV-seropositive (12 HIV-positive and 7 KSHV-seronegative (4 HIV-positive individuals. moDCs were transduced with up to 3 KSHV ORFs simultaneously (ORFs grouped according to their expression during the viral life cycle. Transduced moDCs naturally process the KSHV genes and present the resulting antigens in the context of MHC class I and II. Transduced moDCs were cultured with purified autologous T cells and the CD8 and CD4 T-cell proliferative responses to each KSHV ORF (or group was assessed using a CFSE dye-based assay. Two pools of early lytic KSHV genes ([ORF8/ORF49/ORF61] and [ORF59/ORF65/K4.1] were frequently-recognized targets of both CD8 and CD4 T cells from KSHV seropositive individuals. One pool of late lytic KSHV genes ([ORF28/ORF36/ORF37] was a frequently-recognized CD8 target and another pool of late genes ([ORF33/K1/K8.1] was a frequently-recognized CD4 target. We report that both the CD8 and CD4 T-cell responses against KSHV are skewed towards genes expressed in the early and late phases of the viral lytic cycle, and identify some previously unknown targets of these responses. This knowledge will be important to future immunological investigations into KSHV and may eventually lead to the development of better immunotherapies for KSHV-related diseases.

  8. Linkage mapping of a dominant male sterility gene Ms-cd1 in Brassica oleracea

    NARCIS (Netherlands)

    Wang, X.; Lou, P.; Bonnema, A.B.; Yang, Boujun; He, H.; Zhang, Y.; Fang, Z.

    2005-01-01

    The dominant male sterility gene Ms-cd1 (c, cabbage; d, dominant) was identified as a spontaneous mutation in the spring cabbage line 79-399-3. The Ms-cd1 gene is successfully applied in hybrid seed production of several Brassica oleracea cultivars in China. Amplified fragment length polymorphism

  9. Congenital Hypothyroidism Caused by a PAX8 Gene Mutation Manifested as Sodium/Iodide Symporter Gene Defect

    Directory of Open Access Journals (Sweden)

    Wakako Jo

    2010-01-01

    Full Text Available Loss-of-function mutations of the PAX8 gene are considered to mainly cause congenital hypothyroidism (CH due to thyroid hypoplasia. However, some patients with PAX8 mutation have demonstrated a normal-sized thyroid gland. Here we report a CH patient caused by a PAX8 mutation, which manifested as iodide transport defect (ITD. Hypothyroidism was detected by neonatal screening and L-thyroxine replacement was started immediately. Although 123I scintigraphy at 5 years of age showed that the thyroid gland was in the normal position and of small size, his iodide trapping was low. The ratio of the saliva/plasma radioactive iodide was low. He did not have goiter; however laboratory findings suggested that he had partial ITD. Gene analyses showed that the sodium/iodide symporter (NIS gene was normal; instead, a mutation in the PAX8 gene causing R31H substitution was identified. The present report demonstrates that individuals with defective PAX8 can have partial ITD, and thus genetic analysis is useful for differential diagnosis.

  10. Molecular characterization and expression profiling of cd-responsive genes in triticum durum

    OpenAIRE

    Cebeci, Özge; Cebeci, Ozge

    2006-01-01

    Cadmium (Cd) is a toxic heavy metal which has detrimental effects both in plants and human. There is a lack of knowledge on the molecular mechanisms of Cd toxicity in crop plants. The objective of this study was to identify and clone expressed Cd-responsive genes from two Triticum durum cvs. Balcah-85 and Balcah-2000 using mRNA differential display technique. We identified 10 cDNA clones whose level of expression significantly changed upon Cd exposure and thus isolated for further characteriz...

  11. Regulation and Gene Expression Profiling of NKG2D Positive Human Cytomegalovirus-Primed CD4+ T-Cells

    Science.gov (United States)

    Jensen, Helle; Folkersen, Lasse; Skov, Søren

    2012-01-01

    NKG2D is a stimulatory receptor expressed by natural killer (NK) cells, CD8+ T-cells, and γδ T-cells. NKG2D expression is normally absent from CD4+ T-cells, however recently a subset of NKG2D+ CD4+ T-cells has been found, which is specific for human cytomegalovirus (HCMV). This particular subset of HCMV-specific NKG2D+ CD4+ T-cells possesses effector-like functions, thus resembling the subsets of NKG2D+ CD4+ T-cells found in other chronic inflammations. However, the precise mechanism leading to NKG2D expression on HCMV-specific CD4+ T-cells is currently not known. In this study we used genome-wide analysis of individual genes and gene set enrichment analysis (GSEA) to investigate the gene expression profile of NKG2D+ CD4+ T-cells, generated from HCMV-primed CD4+ T-cells. We show that the HCMV-primed NKG2D+ CD4+ T-cells possess a higher differentiated phenotype than the NKG2D– CD4+ T-cells, both at the gene expression profile and cytokine profile. The ability to express NKG2D at the cell surface was primarily determined by the activation or differentiation status of the CD4+ T-cells and not by the antigen presenting cells. We observed a correlation between CD94 and NKG2D expression in the CD4+ T-cells following HCMV stimulation. However, knock-down of CD94 did not affect NKG2D cell surface expression or signaling. In addition, we show that NKG2D is recycled at the cell surface of activated CD4+ T-cells, whereas it is produced de novo in resting CD4+ T-cells. These findings provide novel information about the gene expression profile of HCMV-primed NKG2D+ CD4+ T-cells, as well as the mechanisms regulating NKG2D cell surface expression. PMID:22870231

  12. Regulation and gene expression profiling of NKG2D positive human cytomegalovirus-primed CD4+ T-cells.

    Directory of Open Access Journals (Sweden)

    Helle Jensen

    Full Text Available NKG2D is a stimulatory receptor expressed by natural killer (NK cells, CD8(+ T-cells, and γδ T-cells. NKG2D expression is normally absent from CD4(+ T-cells, however recently a subset of NKG2D(+ CD4(+ T-cells has been found, which is specific for human cytomegalovirus (HCMV. This particular subset of HCMV-specific NKG2D(+ CD4(+ T-cells possesses effector-like functions, thus resembling the subsets of NKG2D(+ CD4(+ T-cells found in other chronic inflammations. However, the precise mechanism leading to NKG2D expression on HCMV-specific CD4(+ T-cells is currently not known. In this study we used genome-wide analysis of individual genes and gene set enrichment analysis (GSEA to investigate the gene expression profile of NKG2D(+ CD4(+ T-cells, generated from HCMV-primed CD4(+ T-cells. We show that the HCMV-primed NKG2D(+ CD4(+ T-cells possess a higher differentiated phenotype than the NKG2D(- CD4(+ T-cells, both at the gene expression profile and cytokine profile. The ability to express NKG2D at the cell surface was primarily determined by the activation or differentiation status of the CD4(+ T-cells and not by the antigen presenting cells. We observed a correlation between CD94 and NKG2D expression in the CD4(+ T-cells following HCMV stimulation. However, knock-down of CD94 did not affect NKG2D cell surface expression or signaling. In addition, we show that NKG2D is recycled at the cell surface of activated CD4(+ T-cells, whereas it is produced de novo in resting CD4(+ T-cells. These findings provide novel information about the gene expression profile of HCMV-primed NKG2D(+ CD4(+ T-cells, as well as the mechanisms regulating NKG2D cell surface expression.

  13. Feedback regulation of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 via ATM/Chk2 pathway contributes to the resistance of MCF-7 breast cancer cells to cisplatin.

    Science.gov (United States)

    Lv, Juan; Qian, Ying; Ni, Xiaoyan; Xu, Xiuping; Dong, Xuejun

    2017-03-01

    The methyl methanesulfonate and ultraviolet-sensitive gene clone 81 protein is a structure-specific nuclease that plays important roles in DNA replication and repair. Knockdown of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 has been found to sensitize cancer cells to chemotherapy. However, the underlying molecular mechanism is not well understood. We found that methyl methanesulfonate and ultraviolet-sensitive gene clone 81 was upregulated and the ATM/Chk2 pathway was activated at the same time when MCF-7 cells were treated with cisplatin. By using lentivirus targeting methyl methanesulfonate and ultraviolet-sensitive gene clone 81 gene, we showed that knockdown of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 enhanced cell apoptosis and inhibited cell proliferation in MCF-7 cells under cisplatin treatment. Abrogation of ATM/Chk2 pathway inhibited cell viability in MCF-7 cells in response to cisplatin. Importantly, we revealed that ATM/Chk2 was required for the upregulation of methyl methanesulfonate and ultraviolet-sensitive gene clone 81, and knockdown of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 resulted in inactivation of ATM/Chk2 pathway in response to cisplatin. Meanwhile, knockdown of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 activated the p53/Bcl-2 pathway in response to cisplatin. These data suggest that the ATM/Chk2 may promote the repair of DNA damage caused by cisplatin by sustaining methyl methanesulfonate and ultraviolet-sensitive gene clone 81, and the double-strand breaks generated by methyl methanesulfonate and ultraviolet-sensitive gene clone 81 may activate the ATM/Chk2 pathway in turn, which provide a novel mechanism of how methyl methanesulfonate and ultraviolet-sensitive gene clone 81 modulates DNA damage response and repair.

  14. Altered expression of the TCR signaling related genes CD3 and FcεRIγ in patients with aplastic anemia

    Directory of Open Access Journals (Sweden)

    Li Bo

    2012-03-01

    Full Text Available Abstract Background Aplastic anemia (AA is characterized by pancytopenia and bone marrow hypoplasia, which results from immune-mediated hematopoiesis suppression. Understanding the pathophysiology of the immune system, particularly T cells immunity, has led to improved AA treatment over the past decades. However, primary and secondary failure after immunosuppressive therapy is frequent. Thus, knowledge of the immune mechanisms leading to AA is crucial to fundamentally understand the disease. Findings To elucidate the T cell receptor (TCR signal transduction features in AA, the expression levels of CD3γ, δ, ε and ζ chain and FcεRIγ genes, which are involved in TCR signal transduction, and the negative correlation of the expression levels between the CD3ζ and FcεRIγ genes in T cells from peripheral blood mononuclear cells (PBMCs were analyzed. Real-time RT-PCR using the SYBR Green method was used to detect the expression level of these genes in PBMCs from 18 patients with AA and 14 healthy individuals. The β2microglobulin gene (β2M was used as an endogenous reference. The expression levels of the CD3γ, CD3δ, CD3ε and CDgenes in patients with AA were significantly increased compared to a healthy control group, whereas the FcεRIγ gene expression level was significantly decreased in patients with AA in comparison with the healthy control group. Moreover, the negative correlation of the expression levels between the CD3ζ and FcεRIγ genes was lost. Conclusions To our knowledge, this is the first report of the CD3γ, CD3δ, CD3ε, CD3ζ and FcεRIγ gene expression in patients with AA. The abnormally expressed TCR signaling related genes may relate to T cells dysfunction in AA.

  15. Molecular mapping of MS-cd 1 gene in Chinese kale | Zhang ...

    African Journals Online (AJOL)

    A dominant male sterility (DGMS) line 79-399-3 was developed from spontaneous mutation in Brassica oleracea var. capitata and has been widely used in the production of hybrid cultivar in China. In this line, male sterility is controlled by a dominant gene Ms-cd1. In the present study, primary mapping of Ms-cd1 was ...

  16. Selective regain of egfr gene copies in CD44+/CD24-/low breast cancer cellular model MDA-MB-468

    International Nuclear Information System (INIS)

    Agelopoulos, Konstantin; Buerger, Horst; Brandt, Burkhard; Greve, Burkhard; Schmidt, Hartmut; Pospisil, Heike; Kurtz, Stefan; Bartkowiak, Kai; Andreas, Antje; Wieczorek, Marek; Korsching, Eberhard

    2010-01-01

    Increased transcription of oncogenes like the epidermal growth factor receptor (EGFR) is frequently caused by amplification of the whole gene or at least of regulatory sequences. Aim of this study was to pinpoint mechanistic parameters occurring during egfr copy number gains leading to a stable EGFR overexpression and high sensitivity to extracellular signalling. A deeper understanding of those marker events might improve early diagnosis of cancer in suspect lesions, early detection of cancer progression and the prediction of egfr targeted therapies. The basal-like/stemness type breast cancer cell line subpopulation MDA-MB-468 CD44 high /CD24 -/low , carrying high egfr amplifications, was chosen as a model system in this study. Subclones of the heterogeneous cell line expressing low and high EGF receptor densities were isolated by cell sorting. Genomic profiling was carried out for these by means of SNP array profiling, qPCR and FISH. Cell cycle analysis was performed using the BrdU quenching technique. Low and high EGFR expressing MDA-MB-468 CD44 + /CD24 -/low subpopulations separated by cell sorting showed intermediate and high copy numbers of egfr, respectively. However, during cell culture an increase solely for egfr gene copy numbers in the intermediate subpopulation occurred. This shift was based on the formation of new cells which regained egfr gene copies. By two parametric cell cycle analysis clonal effects mediated through growth advantage of cells bearing higher egfr gene copy numbers could most likely be excluded for being the driving force. Subsequently, the detection of a fragile site distal to the egfr gene, sustaining uncapped telomere-less chromosomal ends, the ladder-like structure of the intrachromosomal egfr amplification and a broader range of egfr copy numbers support the assumption that dynamic chromosomal rearrangements, like breakage-fusion-bridge-cycles other than proliferation drive the gain of egfr copies. Progressive genome modulation

  17. Blue ghosts: a new method for isolating amber mutants defective in essential genes of Escherichia coli

    DEFF Research Database (Denmark)

    Brown, S; Brickman, E R; Beckwith, J

    1981-01-01

    We describe a technique which permits an easy screening for amber mutants defective in essential genes of Escherichia coli. Using this approach, we have isolated three amber mutants defective in the rho gene. An extension of the technique allows the detection of ochre mutants and transposon inser...

  18. CD133-targeted Gene Transfer Into Long-term Repopulating Hematopoietic Stem Cells

    NARCIS (Netherlands)

    Brendel, Christian; Goebel, Benjamin; Daniela, Abriss; Brugman, Martijn; Kneissl, Sabrina; Schwaeble, Joachim; Kaufmann, Kerstin B.; Mueller-Kuller, Uta; Kunkel, Hana; Chen-Wichmann, Linping; Abel, Tobias; Serve, Hubert; Bystrykh, Leonid; Buchholz, Christian J.; Grez, Manuel

    Gene therapy for hematological disorders relies on the genetic modification of CD34(+) cells, a heterogeneous cell population containing about 0.01% long-term repopulating cells. Here, we show that the lentiviral vector CD133-LV, which uses a surface marker on human primitive hematopoietic stem

  19. Effect of the value of bond energy on the defect formation in the samples of CdTe - HqTe system under the influence of irradiation

    International Nuclear Information System (INIS)

    Kramchenko, O.A.; Pashkovskij, N.V.

    1984-01-01

    The bonds break energy in solid solutions of the CdTe-HgTe system is calculated. The correctness of the statement that bonds strength in a chemical compound, particularly for the CdTe-HgTe system with decreases with the increase of atomic number. It is shown that in the process of transition from CdTe binary compound to solid solutions of the CdTe-HgTe system a part of Cd atoms is substituted by Hg atoms, which causes relative decrease of the number Cd-Te bonds. At the same time increased is the number of Cd-Te bonds which during irradiation break more probably than the Cd-Te bonds forming however only Frenkel close vapours annihilating during irradiation. During the experiment these defects lead to temperature region washout in which properties reconstruction at isochronous annealing begins. The beginning of annealing is shifted towards higher temperatures which has been observed in the course of investigation. X decrease for the Cdsub(x)Hgsub(1-x)Te solid solution increases the annealing temperature of radiation defects The results of theoretical calculations coincide with the experimental data and permit to confirm that the properties changes arising during irradiation of matters with weak chemical bonds can be conserved only at very low temperatures

  20. CD150 is a member of a family of genes that encode glycoproteins on the surface of hematopoietic cells.

    Science.gov (United States)

    Wang, N; Morra, M; Wu, C; Gullo, C; Howie, D; Coyle, T; Engel, P; Terhorst, C

    2001-07-01

    Human CD150 (SLAM) is a glycoprotein expressed on the surface of T, B, natural killer, and dendritic cells. The extracellular domain of CD150 is the receptor for measles virus and CD150 acts as a co-activator on T and B cells. We characterized the mouse and human CD150 genes, each of which comprises seven exons spanning approximately 32 kb. Mouse CD150 mRNA was detected in T cells and in most thymocyte subsets, except CD4-8- cells. Surprisingly, the CD4-8- thymocytes of CD3gammadeltanull mice, but not of Ragnull or severe combined immunodeficiency mice, expressed CD150. Whereas high levels of CD150 were found in Th1 cells, only small amounts were detectable in Th2 cells. CD150 expression was up-regulated upon in vitro activation of mouse T cells by anti-CD3. The complete mouse CD150 gene is highly homologous to its human orthologue in terms of nucleotide sequences and intron/exon organization. The human genomic sequences indicate that all isoforms detected so far have arisen from alternative splicing events. As judged by fluorescence in situ hybridization, mouse CD150 mapped to Chromosome (Chr) 1, band 1H2.2-2.3, and human CD150 was found on Chr 1q22. Human and mouse CD150 share sequence homologies with six other genes, five of which - CD84, CD229 (Ly-9), CD244 (2B4), CD48, and 19A - are localized in a 250-kb segment in close proximity to the human gene. Their location and their sequence similarities strongly suggest that the CD150 family of cell surface receptors arose via successive duplications of a common ancestral gene.

  1. Variation in the defect structure of p-CdTe single crystals at the passage of the laser shock wave

    International Nuclear Information System (INIS)

    Baidullaeva, A.; Vlasenko, A.I.; Gorkovenko, B.L.; Lomovtsev, A.V.; Mozol', P.E.

    2000-01-01

    Variations in the minority-carrier lifetime, photoluminescence spectra, dark current and photocurrent temperature dependences of high-resistivity p-CdTe crystals under the action of the laser shock wave are investigated. It is shown that the variations in the aforementioned characteristics during the passage of the shock wave are defined by the generation of the nonequilibrium carriers from deep centers, and, after that, the variations are defined by the formation of intrinsic defects and their subsequent interaction with the defects existing in the initial crystals

  2. Molecular pathways of early CD105-positive erythroid cells as compared with CD34-positive common precursor cells by flow cytometric cell-sorting and gene expression profiling

    International Nuclear Information System (INIS)

    Machherndl-Spandl, S; Suessner, S; Danzer, M; Proell, J; Gabriel, C; Lauf, J; Sylie, R; Klein, H-U; Béné, M C; Weltermann, A; Bettelheim, P

    2013-01-01

    Special attention has recently been drawn to the molecular network of different genes that are responsible for the development of erythroid cells. The aim of the present study was to establish in detail the immunophenotype of early erythroid cells and to compare the gene expression profile of freshly isolated early erythroid precursors with that of the CD34-positive (CD34 + ) compartment. Multiparameter flow cytometric analyses of human bone marrow mononuclear cell fractions (n=20) defined three distinct early erythroid stages. The gene expression profile of sorted early erythroid cells was analyzed by Affymetrix array technology. For 4524 genes, a differential regulation was found in CD105-positive erythroid cells as compared with the CD34 + progenitor compartment (2362 upregulated genes). A highly significant difference was observed in the expression level of genes involved in transcription, heme synthesis, iron and mitochondrial metabolism and transforming growth factor-β signaling. A comparison with recently published data showed over 1000 genes that as yet have not been reported to be upregulated in the early erythroid lineage. The gene expression level within distinct pathways could be illustrated directly by applying the Ingenuity software program. The results of gene expression analyses can be seen at the Gene Expression Omnibus repository

  3. Spontaneous loss and alteration of antigen receptor expression in mature CD4+ T cells

    International Nuclear Information System (INIS)

    Kyoizumi, Seishi; Akiyama, Mitoshi; Hirai, Yuko; Kusunoki; Yoichiro; Tanabe, Kazumi; Umeki, Shigeko; Nakamura, Nori; Yamakido, Michio; Hamamoto, Kazuko.

    1990-04-01

    The T-cell receptor CD3 (TCR/CD3) complex plays a central role in antigen recognition and activation of mature T cells, and therefore abnormalities in the expression of the complex should induce unresponsiveness of T cells to antigen stimulus. Using flow cytometry, we detected and enumerated variant cells with loss or alteration of surface TCR/CD3 expression among human mature CD4 + T cells. The presence of variant CD4 + T cells was demonstrated by isolating and cloning them from peripheral blood, and their abnormalities can be accounted for by alterations in TCR expression such as defects of protein expression and partial protein deletion. The variant frequency in peripheral blood increased with aging in normal donors and was highly elevated in patients with ataxia telangiectasia, an autosomal recessive inherited disease with defective DNA repair and variable T-cell immunodeficiency. These findings suggest that such alterations in TCR expression are induced by somatic mutagenesis of TCR genes and can be important factors related to age-dependent and genetic disease-associated T-cell dysfunction. (author)

  4. Fine Mapping and Functional Analysis of the Multiple Sclerosis Risk Gene CD6

    Science.gov (United States)

    Swaminathan, Bhairavi; Cuapio, Angélica; Alloza, Iraide; Matesanz, Fuencisla; Alcina, Antonio; García-Barcina, Maria; Fedetz, Maria; Fernández, Óscar; Lucas, Miguel; Órpez, Teresa; Pinto-Medel, Mª Jesus; Otaegui, David; Olascoaga, Javier; Urcelay, Elena; Ortiz, Miguel A.; Arroyo, Rafael; Oksenberg, Jorge R.; Antigüedad, Alfredo; Tolosa, Eva; Vandenbroeck, Koen

    2013-01-01

    CD6 has recently been identified and validated as risk gene for multiple sclerosis (MS), based on the association of a single nucleotide polymorphism (SNP), rs17824933, located in intron 1. CD6 is a cell surface scavenger receptor involved in T-cell activation and proliferation, as well as in thymocyte differentiation. In this study, we performed a haptag SNP screen of the CD6 gene locus using a total of thirteen tagging SNPs, of which three were non-synonymous SNPs, and replicated the recently reported GWAS SNP rs650258 in a Spanish-Basque collection of 814 controls and 823 cases. Validation of the six most strongly associated SNPs was performed in an independent collection of 2265 MS patients and 2600 healthy controls. We identified association of haplotypes composed of two non-synonymous SNPs [rs11230563 (R225W) and rs2074225 (A257V)] in the 2nd SRCR domain with susceptibility to MS (P max(T) permutation = 1×10−4). The effect of these haplotypes on CD6 surface expression and cytokine secretion was also tested. The analysis showed significantly different CD6 expression patterns in the distinct cell subsets, i.e. – CD4+ naïve cells, P = 0.0001; CD8+ naïve cells, P<0.0001; CD4+ and CD8+ central memory cells, P = 0.01 and 0.05, respectively; and natural killer T (NKT) cells, P = 0.02; with the protective haplotype (RA) showing higher expression of CD6. However, no significant changes were observed in natural killer (NK) cells, effector memory and terminally differentiated effector memory T cells. Our findings reveal that this new MS-associated CD6 risk haplotype significantly modifies expression of CD6 on CD4+ and CD8+ T cells. PMID:23638056

  5. Quantitative gene expression profiling of CD45(+) and CD45(-) skeletal muscle-derived side population cells

    DEFF Research Database (Denmark)

    Andersen, Ditte Caroline; Kristiansen, Gitte Qvistgaard; Jensen, Line

    2011-01-01

    transcripts associated with endothelial cells, Notch signaling and myogenic precursors. By comparing the mRNA signatures of mSPs with those of adipose tissue-derived SP populations, a common endothelial component seemed to reside in both muscle and fat-derived SPCD45(-) entities. However, each SP subset......The skeletal muscle-derived side population (mSP) which highly excludes Hoechst 33342 is composed of CD45(+) and CD45(-) subpopulations; yet, rareness of mSP cells in general has complicated extensive quantitative analysis of gene expression profiles in primarily isolated mSP cells. Here, we...... describe the isolation of adult mouse normal skeletal muscle residing SPCD45(+) and SPCD45(-) cells from a parent mononuclear muscle-derived cell (MDC) population. Relative quantitative real time PCR (RT-PCR) of 64 genes revealed that mSPCD45(-) compared with mSPCD45(+) was enriched for cells expressing...

  6. Imaging Expression of Cytosine Deaminase-Herpes Virus Thymidine Kinase Fusion Gene (CD/TK Expression with [124I]FIAU and PET

    Directory of Open Access Journals (Sweden)

    Trevor Hackman

    2002-01-01

    Full Text Available Double prodrug activation gene therapy using the Escherichia coli cytosine deaminase (CDherpes simplex virus type 1 thymidine kinase (HSV1-tk fusion gene (CD/TK with 5-fluorocytosine (5FC, ganciclovir (GCV, and radiotherapy is currently under evaluation for treatment of different tumors. We assessed the efficacy of noninvasive imaging with [124I]FIAU (2′-fluoro-2′-deoxy-1-β-d-arabinofuranosyl-5-iodo-uracil and positron emission tomography (PET for monitoring expression of the CD/TK fusion gene. Walker-256 tumor cells were transduced with a retroviral vector bearing the CD/TK gene (W256CD/TK cells. The activity of HSV1-TK and CD subunits of the CD/TK gene product was assessed in different single cell-derived clones of W256CD/TK cells using the FIAU radiotracer accumulation assay in cells and a CD enzyme assay in cell homogenates, respectively. A linear relationship was observed between the levels of CD and HSV1-tk subunit expression in corresponding clones in vitro over a wide range of CD/TK expression levels. Several clones of W256CD/TK cells with significantly different levels of CD/TK expression were selected and used to produce multiple subcutaneous tumors in rats. PET imaging of HSV1-TK subunit activity with [124I]FIAU was performed on these animals and demonstrated that different levels of CD/TK expression in subcutaneous W256CD/TK tumors can be imaged quantitatively. CD expression in subcutaneous tumor sample homogenates was measured using a CD enzyme assay. A comparison of CD and HSV1-TK subunit enzymatic activity of the CD/TK fusion protein in vivo showed a significant correlation. Knowing this relationship, the parametric images of CD subunit activity were generated. Imaging with [124I]FIAU and PET could provide pre- and posttreatment assessments of CD/TK-based double prodrug activation in clinical gene therapy trials.

  7. Blue-shift in photoluminescence of ion-milled HgCdTe films and relaxation of defects induced by the milling

    International Nuclear Information System (INIS)

    Pociask, M.; Izhnin, I.I.; Mynbaev, K.D.; Izhnin, A.I.; Dvoretsky, S.A.; Mikhailov, N.N.; Sidorov, Yu.G.; Varavin, V.S.

    2010-01-01

    Simultaneous measurements of electrical conductivity, the Hall coefficient, and photoluminescence (PL) spectra of ion-milled Hg 1 - x Cd x Te films (x ∼ 0.30 and 0.38) were performed during post-milling ageing of the films at 293 K. In the course of the PL study, a 'relaxation' of the blue-shift of the PL band of ion-milled Hg 0.70 Cd 0.30 Te was observed. The relaxation was caused by the decrease of the electron concentration due to gradual disintegration of defects induced by the milling. It is shown that while ion milling substantially changes the electrical properties of Hg 1 - x Cd x Te, its PL spectrum in the long-term is affected insignificantly.

  8. CD4+ CD25+ cells in type 1 diabetic patients with other autoimmune manifestations

    Directory of Open Access Journals (Sweden)

    Dalia S. Abd Elaziz

    2014-11-01

    Full Text Available The existence of multiple autoimmune disorders in diabetics may indicate underlying primary defects of immune regulation. The study aims at estimation of defects of CD4+ CD25+high cells among diabetic children with multiple autoimmune manifestations, and identification of disease characteristics in those children. Twenty-two cases with type 1 diabetes associated with other autoimmune diseases were recruited from the Diabetic Endocrine and Metabolic Pediatric Unit (DEMPU, Cairo University along with twenty-one normal subjects matched for age and sex as a control group. Their anthropometric measurements, diabetic profiles and glycemic control were recorded. Laboratory investigations included complete blood picture, glycosylated hemoglobin, antithyroid antibodies, celiac antibody panel and inflammatory bowel disease markers when indicated. Flow cytometric analysis of T-cell subpopulation was performed using anti-CD3, anti-CD4, anti-CD8, anti-CD25 monoclonal antibodies. Three cases revealed a proportion of CD4+ CD25+high below 0.1% and one case had zero counts. However, this observation did not mount to a significant statistical difference between the case and control groups neither in percentage nor absolute numbers. Significant statistical differences were observed between the case and the control groups regarding their height, weight centiles, as well as hemoglobin percentage, white cell counts and the absolute lymphocytic counts. We concluded that, derangements of CD4+ CD25+high cells may exist among diabetic children with multiple autoimmune manifestations indicating defects of immune controllers.

  9. Alzheimer's disease risk gene CD33 inhibits microglial uptake of amyloid beta.

    Science.gov (United States)

    Griciuc, Ana; Serrano-Pozo, Alberto; Parrado, Antonio R; Lesinski, Andrea N; Asselin, Caroline N; Mullin, Kristina; Hooli, Basavaraj; Choi, Se Hoon; Hyman, Bradley T; Tanzi, Rudolph E

    2013-05-22

    The transmembrane protein CD33 is a sialic acid-binding immunoglobulin-like lectin that regulates innate immunity but has no known functions in the brain. We have previously shown that the CD33 gene is a risk factor for Alzheimer's disease (AD). Here, we observed increased expression of CD33 in microglial cells in AD brain. The minor allele of the CD33 SNP rs3865444, which confers protection against AD, was associated with reductions in both CD33 expression and insoluble amyloid beta 42 (Aβ42) levels in AD brain. Furthermore, the numbers of CD33-immunoreactive microglia were positively correlated with insoluble Aβ42 levels and plaque burden in AD brain. CD33 inhibited uptake and clearance of Aβ42 in microglial cell cultures. Finally, brain levels of insoluble Aβ42 as well as amyloid plaque burden were markedly reduced in APP(Swe)/PS1(ΔE9)/CD33(-/-) mice. Therefore, CD33 inactivation mitigates Aβ pathology and CD33 inhibition could represent a novel therapy for AD. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Approaches to diagnose DNA mismatch repair gene defects in cancer

    DEFF Research Database (Denmark)

    Peña-Diaz, Javier; Rasmussen, Lene Juel

    2016-01-01

    development was first observed in colorectal cancer patients that carried inactivating germline mutations in MMR genes and the disease was named as hereditary non-polyposis colorectal cancer (HNPCC). Currently, a growing list of cancers is found to be MMR defective and HNPCC has been renamed Lynch syndrome...

  11. CD177: A member of the Ly-6 gene superfamily involved with neutrophil proliferation and polycythemia vera

    Directory of Open Access Journals (Sweden)

    Bettinotti Maria

    2004-03-01

    Full Text Available Abstract Genes in the Leukocyte Antigen 6 (Ly-6 superfamily encode glycosyl-phosphatidylinositol (GPI anchored glycoproteins (gp with conserved domains of 70 to 100 amino acids and 8 to 10 cysteine residues. Murine Ly-6 genes encode important lymphocyte and hematopoietic stem cell antigens. Recently, a new member of the human Ly-6 gene superfamily has been described, CD177. CD177 is polymorphic and has at least two alleles, PRV-1 and NB1. CD177 was first described as PRV-1, a gene that is overexpressed in neutrophils from approximately 95% of patients with polycythemia vera and from about half of patients with essential thrombocythemia. CD177 encodes NB1 gp, a 58–64 kD GPI gp that is expressed by neutrophils and neutrophil precursors. NB1 gp carries Human Neutrophil Antigen (HNA-2a. Investigators working to identify the gene encoding NB1 gp called the CD177 allele they described NB1. NB1 gp is unusual in that neutrophils from some healthy people lack the NB1 gp completely and in most people NB1 gp is expressed by a subpopulation of neutrophils. The function of NB1 gp and the role of CD177 in the pathogenesis and clinical course of polycythemia vera and essential thrombocythemia are not yet known. However, measuring neutrophil CD177 mRNA levels has become an important marker for diagnosing the myeloproliferative disorders polycythemia vera and essential thrombocythemia.

  12. CD90 (Thy-1)-positive selection enhances osteogenic capacity of human adipose-derived stromal cells.

    Science.gov (United States)

    Chung, Michael T; Liu, Chunjun; Hyun, Jeong S; Lo, David D; Montoro, Daniel T; Hasegawa, Masakazu; Li, Shuli; Sorkin, Michael; Rennert, Robert; Keeney, Michael; Yang, Fan; Quarto, Natalina; Longaker, Michael T; Wan, Derrick C

    2013-04-01

    Stem cell-based bone tissue engineering with adipose-derived stromal cells (ASCs) has shown great promise for revolutionizing treatment of large bone deficits. However, there is still a lack of consensus on cell surface markers identifying osteoprogenitors. Fluorescence-activated cell sorting has identified a subpopulation of CD105(low) cells with enhanced osteogenic differentiation. The purpose of the present study was to compare the ability of CD90 (Thy-1) to identify osteoprogenitors relative to CD(105). Unsorted cells, CD90(+), CD90(-), CD105(high), and CD105(low) cells were treated with an osteogenic differentiation medium. For evaluation of in vitro osteogenesis, alkaline phosphatase (ALP) staining and alizarin red staining were performed at 7 days and 14 days, respectively. RNA was harvested after 7 and 14 days of differentiation, and osteogenic gene expression was examined by quantitative real-time polymerase chain reaction. For evaluation of in vivo osteogenesis, critical-sized (4-mm) calvarial defects in nude mice were treated with the hydroxyapatite-poly(lactic-co-glycolic acid) scaffold seeded with the above-mentioned subpopulations. Healing was followed using micro-CT scans for 8 weeks. Calvaria were harvested at 8 weeks postoperatively, and sections were stained with Movat's Pentachrome. Transcriptional analysis revealed that the CD90(+) subpopulation was enriched for a more osteogenic subtype relative to the CD105(low) subpopulation. Staining at day 7 for ALP was greatest in the CD90(+) cells, followed by the CD105(low) cells. Staining at day 14 for alizarin red demonstrated the greatest amount of mineralized extracellular matrix in the CD90(+) cells, again followed by the CD105(low) cells. Quantification of in vivo healing at 2, 4, 6, and 8weeks postoperatively demonstrated increased bone formation in defects treated with CD90(+) ASCs relative to all other groups. On Movat's Pentachrome-stained sections, defects treated with CD90(+) cells showed the

  13. Deregulation of calcium fluxes in HTLV-I infected CD4-positive T-cells plays a major role in malignant transformation.

    Science.gov (United States)

    Akl, Haidar; Badran, Bassam; El Zein, Nabil; Dobirta, Gratiela; Burny, Arsene; Martiat, Philippe

    2009-01-01

    The CD4+ T-cell malignancy induced by human T-cell leukemia virus type 1 (HTLV-I) infection and termed; Adult T-cell Leukemia lymphoma (ATLL), is caused by defects in the mechanisms underlying cell proliferation and cell death. In the CD4+ T-cells, calcium ions are central for both phenomena. ATLL is associated with a marked hypercalcemia in many patients. The consequence of a defect in the Ca2+ signaling pathway for lymphocyte activation is characterized by an impaired NFAT activation and transcription of cytokines, chemokines and many other NFAT target genes whose transcription is essential for productive immune defense. Fresh ATLL cells lack the TCR/CD3 and CD7 molecules on their surface. Whereas CD7 is a calcium transporter, reduction in calcium influx in response to T-cell activation was reported as a functional consequence of TCR/CD3 expression deficiency. Understanding these changes and identifying the molecular players involved might provide further insights on how to improve ATLL treatment.

  14. Conditional deletion of CD98hc inhibits osteoclast development

    Directory of Open Access Journals (Sweden)

    Hideki Tsumura

    2016-03-01

    Full Text Available The CD98 heavy chain (CD98hc regulates virus-induced cell fusion and monocyte fusion, and is involved in amino acid transportation. Here, we examined the role that CD98hc plays in the formation of osteoclasts using CD98hcflox/floxLysM-cre peritoneal macrophages (CD98hc-defect macrophages. Peritoneal macrophages were stimulated with co-cultured with osteoblasts in the presence of 1,25(OH2 vitamin D3, and thereafter stained with tartrate-resistant acid phosphatase staining solution. The multinucleated osteoclast formation was severely impaired in the peritoneal macrophages isolated from the CD98hc-defect mice compared with those from wild-type mice. CD98hc mediates integrin signaling and amino acid transport through the CD98 light chain (CD98lc. In integrin signaling, suppression of the M-CSF-RANKL-induced phosphorylation of ERK, Akt, JNK and p130Cas were observed at the triggering phase in the CD98h-defect peritoneal macrophages. Moreover, we showed that the general control non-derepressible (GCN pathway, which was activated by amino acid starvation, was induced by the CD98hc-defect peritoneal macrophages stimulated with RANKL. These results indicate that CD98 plays two important roles in osteoclast formation through integrin signaling and amino acid transport.

  15. Implications of gluten exposure period, CD clinical forms, and HLA typing in the association between celiac disease and dental enamel defects in children. A case-control study.

    Science.gov (United States)

    Majorana, Alessandra; Bardellini, Elena; Ravelli, Alberto; Plebani, Alessandro; Polimeni, Antonella; Campus, Guglielmo

    2010-03-01

    The association between coeliac disease (CD) and dental enamel defects (DED) is well known. The aim of this study was to investigate the prevalence of DED in children with CD and to specifically find the association of DED and gluten exposure period, CD clinical forms, HLA class II haplotype. This study was designed as a matched case-control study: 250 children were enrolled (125 coeliac children - 79 female and 46 male, 7.2 +/- 2.8 years and 125 healthy children). Data about age at CD diagnosis, CD clinical form, and HLA haplotype were recorded. Dental enamel defects were detected in 58 coeliac subjects (46.4%) against seven (5.6%) controls (P < 0.005). We found an association between DED and gluten exposure period, as among CD subjects the mean age at CD diagnosis was significantly (P = 0.0004) higher in the group with DED (3.41 +/- 1.27) than without DED (1.26 +/- 0.7). DED resulted more frequent (100%) in atypical and silent CD forms than in the typical one (30.93%). The presence of HLA DR 52-53 and DQ7antigens significantly increased the risk of DED (P = 0.0017) in coeliac children. Our results confirmed a possible correlation between HLA antigens and DED.

  16. Probing Defects in a Small Pixellated CdTe Sensor Using an Inclined Mono Energetic X-Ray Micro Beam

    Science.gov (United States)

    Fröjdh, Erik; Fröjdh, C.; Gimenez, E. N.; Krapohl, D.; Maneuski, D.; Norlin, B.; O'Shea, V.; Wilhelm, H.; Tartoni, N.; Thungström, G.; Zain, R. M.

    2013-08-01

    High quantum efficiency is important in X-ray imaging applications. This means using high-Z sensor materials. Unfortunately many of these materials suffer from defects that cause non-ideal charge transport. In order to increase the understanding of these defects, we have mapped the 3D response of a number of defects in two 1 mm thick CdTe sensors with different pixel sizes (55 μm and 110 μm) using a monoenergetic microbeam at 79 keV. The sensors were bump bonded to Timepix read out chips. Data was collected in photon counting as well as time-over-threshold mode. The time-over-threshold mode is a very powerful tool to investigate charge transport properties and fluorescence in pixellated detectors since the signal from the charge that each photon deposits in each pixel can be analyzed. Results show distorted electrical field around the defects, indications of excess leakage current and large differences in behavior between electron collection and hole collection mode. The experiments were carried out on the Extreme Conditions Beamline I15 at Diamond Light Source.

  17. Gamma-ray mutagenesis studies in a new human-hamster hybrid, A(L)CD59(+/-), which has two human chromosomes 11 but is hemizygous for the CD59 gene

    Science.gov (United States)

    Kraemer, S. M.; Vannais, D. B.; Kronenberg, A.; Ueno, A.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)

    2001-01-01

    Kraemer, S. M., Vannais, D. B., Kronenberg, A., Ueno, A. and Waldren, C. A. Gamma-Ray Mutagenesis Studies in a New Human-Hamster Hybrid, A(L)CD59(+/-), which has Two Human Chromosomes 11 but is Hemizygous for the CD59 Gene. Radiat. Res. 156, 10-19 (2001).We have developed a human-CHO hybrid cell line, named A(L)CD59(+/-), which has two copies of human chromosome 11 but is hemizygous for the CD59 gene and the CD59 cell surface antigen that it encodes. Our previous studies used the A(L) and A(L)C hybrids that respectively contain one or two sets of CHO chromosomes plus a single copy of human chromosome 11. The CD59 gene at 11p13.5 and the CD59 antigen encoded by it are the principal markers used in our mutagenesis studies. The hybrid A(L)CD59(+/-) contains two copies of human chromosome 11, only one of which carries the CD59 gene. The incidence of CD59 (-) mutants (formerly called S1(-)) induced by (137)Cs gamma rays is about fivefold greater in A(L)CD59(+/-) cells than in A(L) cells. Evidence is presented that this increase in mutant yield is due to the increased induction of certain classes of large chromosomal mutations that are lethal to A(L) cells but are tolerated in the A(L)CD59(+/-) hybrid. In addition, significantly more of the CD59 (-) mutants induced by (137)Cs gamma rays in A(L)CD59(+/-) cells display chromosomal instability than in A(L) cells. On the other hand, the yield of gamma-ray-induced CD59 (-) mutants in A(L)CD59(+/-) cells is half that of the A(L)C hybrid, which also tolerates very large mutations but has only one copy of human chromosome 11. We interpret the difference in mutability as evidence that repair processes involving the homologous chromosomes 11 play a role in determining mutant yields. The A(L)CD59(+/-) hybrid provides a useful new tool for quantifying mutagenesis and shedding light on mechanisms of genetic instability and mutagenesis.

  18. Identification and characterization of a silencer regulatory element in the 3'-flanking region of the murine CD46 gene.

    Science.gov (United States)

    Nomura, M; Tsujimura, A; Begum, N A; Matsumoto, M; Wabiko, H; Toyoshima, K; Seya, T

    2000-01-01

    The murine membrane cofactor protein (CD46) gene is expressed exclusively in testis, in contrast to human CD46, which is expressed ubiquitously. To elucidate the mechanism of differential CD46 gene expression among species, we cloned entire murine CD46 genomic DNA and possible regulatory regions were placed in the flanking region of the luciferase reporter gene. The reporter gene assay revealed a silencing activity not in the promoter, but in the 3'-flanking region of the gene and the silencer-like element was identified within a 0.2-kb region between 0.6 and 0.8 kb downstream of the stop codon. This silencer-like element was highly similar to that of the pig MHC class-I gene. The introduction of a mutation into this putative silencer element of murine CD46 resulted in an abrogation of the silencing effect. Electrophoretic mobility-shift assay indicated the presence of the binding molecule(s) for this silencer sequence in murine cell lines and tissues. A size difference of the protein-silencer-element complex was observed depending upon the solubilizers used for preparation of the nuclear extracts. A mutated silencer sequence failed to interact with the binding molecules. The level of the binding factor was lower in the testicular germ cells compared with other organs. Thus the silencer element and its binding factor may play a role in transcriptional regulation of murine CD46 gene expression. These results imply that the effects of the CD46 silencer element encompass the innate immune and reproductive systems, and in mice may determine the testicular germ-cell-dominant expression of CD46. PMID:11023821

  19. The MRC1/CD68 ratio is positively associated with adipose tissue lipogenesis and with muscle mitochondrial gene expression in humans.

    Directory of Open Access Journals (Sweden)

    José María Moreno-Navarrete

    Full Text Available BACKGROUND: Alternative macrophages (M2 express the cluster differentiation (CD 206 (MCR1 at high levels. Decreased M2 in adipose tissue is known to be associated with obesity and inflammation-related metabolic disturbances. Here we aimed to investigate MCR1 relative to CD68 (total macrophages gene expression in association with adipogenic and mitochondrial genes, which were measured in human visceral [VWAT, n = 147] and subcutaneous adipose tissue [SWAT, n = 76] and in rectus abdominis muscle (n = 23. The effects of surgery-induced weight loss were also longitudinally evaluated (n = 6. RESULTS: MCR1 and CD68 gene expression levels were similar in VWAT and SWAT. A higher proportion of CD206 relative to total CD68 was present in subjects with less body fat and lower fasting glucose concentrations. The ratio MCR1/CD68was positively associated with IRS1gene expression and with the expression of lipogenic genes such as ACACA, FASN and THRSP, even after adjusting for BMI. The ratio MCR1/CD68 in SWAT increased significantly after the surgery-induced weight loss (+44.7%; p = 0.005 in parallel to the expression of adipogenic genes. In addition, SWAT MCR1/CD68ratio was significantly associated with muscle mitochondrial gene expression (PPARGC1A, TFAM and MT-CO3. AT CD206 was confirmed by immunohistochemistry to be specific of macrophages, especially abundant in crown-like structures. CONCLUSION: A decreased ratio MCR1/CD68 is linked to adipose tissue and muscle mitochondrial dysfunction at least at the level of expression of adipogenic and mitochondrial genes.

  20. Close linkage of the mouse and human CD3 γ- and δ-chain genes suggests that their transcription is controlled by common regulatory elements

    International Nuclear Information System (INIS)

    Saito, H.; Koyama, T.; Georgopoulos, K.; Clevers, H.; Haser, W.G.; LeBien, T.; Tonegawa, S.; Terhorst, C.

    1987-01-01

    Antigen receptors on the T-cell surface are noncovalently associated with at least four invariant polypeptide chains, CD3-γ, -δ, -epsilon, and -zeta. The mouse CD3-γ gene, consisting of seven exons, was found to be highly homologous to the CD3-γ described earlier. Both the high level of sequence homology and the exon/intron organization indicate that the CD3-γ and -δ genes arose by gene duplication. Surprisingly, murine and human genomic DNA clones could be isolated that contained elements of both the CD3-γ and CD3-δ genes. In fact, the putative transcription start site of the mouse CD3-γ gene is less than 1.4 kilobases from the transcription initiation site of the mouse CD3-δ gene. Common elements that regulate the divergent transcription of the two genes are therefore proposed to be located in the intervening 1.4-kilobase DNA segment. This might contribute to the coordinate expression of the CD3-γ and -δ genes during intrathymic maturation of T lymphocytes

  1. Efficient intranuclear gene delivery by CdSe aqueous quantum dots electrostatically-coated with polyethyleneimine

    International Nuclear Information System (INIS)

    Au, Giang H T; Shih, Wan Y; Shih, Wei-Heng

    2015-01-01

    Quantum dots (QDs) are semiconducting nanoparticles with photoluminescence properties that do not photobleach. Due to these advantages, using QDs for non-viral gene delivery has the additional benefit of being able to track the delivery of the genes in real time as it happens. We investigate the efficacy of mercaptopropionic acid (MPA)-capped CdSe aqueous quantum dots (AQDs) electrostatically complexed with branched polyethyleneimine (PEI) both as a non-viral gene delivery vector and as a fluorescent probe for tracking the delivery of genes into nuclei. The MPA-capped CdSe AQDs that were completely synthesized in water were the model AQDs. A nominal MPA:Cd:Se = 4:3:1 was chosen for optimal photoluminescence and zeta potential. The gene delivery study was carried out in vitro using a human colon cancer cell line, HT29 (ATCC). The model gene was a plasmid DNA (pDNA) that can express red fluorescent protein (RFP). Positively charged branched PEI was employed to provide a proton buffer to the AQDs to allow for endosomal escape. It is shown that by using a PEI-AQD complex with a PEI/AQD molar ratio of 300 and a nominal pDNA/PEI-AQD ratio of 6, we can achieve 75 ± 2.6% RFP expression efficiency with cell vitality remaining at 78 ± 4% of the control. (paper)

  2. CD133+ cells contribute to radioresistance via altered regulation of DNA repair genes in human lung cancer cells

    International Nuclear Information System (INIS)

    Desai, Amar; Webb, Bryan; Gerson, Stanton L.

    2014-01-01

    Background: Radioresistance in human tumors has been linked in part to a subset of cells termed cancer stem cells (CSCs). The prominin 1 (CD133) cell surface protein is proposed to be a marker enriching for CSCs. We explore the importance of DNA repair in contributing to radioresistance in CD133+ lung cancer cells. Materials and methods: A549 and H1299 lung cancer cell lines were used. Sorted CD133+ cells were exposed to either single 4 Gy or 8 Gy doses and clonogenic survival measured. ϒ-H2AX immunofluorescence and quantitative real time PCR was performed on sorted CD133+ cells both in the absence of IR and after two single 4 Gy doses. Lentiviral shRNA was used to silence repair genes. Results: A549 but not H1299 cells expand their CD133+ population after single 4 Gy exposure, and isolated A549 CD133+ cells demonstrate IR resistance. This resistance corresponded with enhanced repair of DNA double strand breaks (DSBs) and upregulated expression of DSB repair genes in A549 cells. Prior IR exposure of two single 4 Gy doses resulted in acquired DNA repair upregulation and improved repair proficiency in both A549 and H1299. Finally Exo1 and Rad51 silencing in A549 cells abrogated the CD133+ IR expansion phenotype and induced IR sensitivity in sorted CD133+ cells. Conclusions: CD133 identifies a population of cells within specific tumor types containing altered expression of DNA repair genes that are inducible upon exposure to chemotherapy. This altered gene expression contributes to enhanced DSB resolution and the radioresistance phenotype of these cells. We also identify DNA repair genes which may serve as promising therapeutic targets to confer radiosensitivity to CSCs

  3. Alzheimer’s Disease Risk Gene CD33 Inhibits Microglial Uptake of Amyloid Beta

    Science.gov (United States)

    Griciuc, Ana; Serrano-Pozo, Alberto; Parrado, Antonio R.; Lesinski, Andrea N.; Asselin, Caroline N.; Mullin, Kristina; Hooli, Basavaraj; Choi, Se Hoon; Hyman, Bradley T.; Tanzi, Rudolph E.

    2013-01-01

    SUMMARY The transmembrane protein CD33 is a sialic acid-binding immunoglobulin-like lectin that regulates innate immunity but has no known functions in the brain. We have previously shown that the CD33 gene is a risk factor for Alzheimer’s disease (AD). Here, we observed increased expression of CD33 in microglial cells in AD brain. The minor allele of the CD33 SNP rs3865444, which confers protection against AD, was associated with reductions in both CD33 expression and insoluble amyloid beta 42 (Aβ42) levels in AD brain. Furthermore, the numbers of CD33-immunoreactive microglia were positively correlated with insoluble Aβ42 levels and plaque burden in AD brain. CD33 inhibited uptake and clearance of Aβ42 in microglial cell cultures. Finally, brain levels of insoluble Aβ42 as well as amyloid plaque burden were markedly reduced in APPSwe/PS1ΔE9/CD33−/− mice. Therefore, CD33 inactivation mitigates Aβ pathology and CD33 inhibition could represent a novel therapy for AD. PMID:23623698

  4. Clinical evaluation of Kr-81m inhalation study through a dead space

    International Nuclear Information System (INIS)

    Kurosawa, Hiromi; Matsubayashi, Satsuki; Ishii, Yasuko; Ishida, Hirohide; Hirasawa, Yukinori; Mori, Yutaka; Shimada, Takao; Kawakami, Kenji

    1990-01-01

    A new inhalation technique of 81m Kr gas was applied to evaluate the pathophysiological abnormality of ventilation. 81m Kr gas (370 MBq) was continuously supplied into a mouth piece directly (without dead space), V E , or through a dead space of 500 ml, V L , in 110 subjects with various lung diseases. Subjects were divided in four groups by a combination of distribution patterns of 81m Kr gas obtained by these two inhalation techniques. Group 1: No ventilatory defect in both techniques. Group 2: Defects larger in V E than V L . Group 3: Defects larger in V L than V E . Group 4: no remarkable difference in defects in both techniques. Cases of group 1 were normal in pulmonary function test and chest X-ray. Finding of group 2 reflects early airway closure. This group consisted of cases in remission of bronchial asthma, small air way disease and pulmonary congestion. In group 3, restrictive disease and obstructive disease, especially emphysema, were included. Patients with severe obstructive disease and organized change of pulmonary parenchyma were belonged in group 4. In ventilation study with 81m Kr gas, a combined study of inhalation technique through a dead space and by direct infusion may be useful to evaluate a pathophysiological change of various pulmonary diseases. (author)

  5. CD146/MCAM defines functionality of human bone marrow stromal stem cell populations

    DEFF Research Database (Denmark)

    Harkness, Linda; Zaher, Walid; Ditzel, Nicholas

    2016-01-01

    BACKGROUND: Identification of surface markers for prospective isolation of functionally homogenous populations of human skeletal (stromal, mesenchymal) stem cells (hMSCs) is highly relevant for cell therapy protocols. Thus, we examined the possible use of CD146 to subtype a heterogeneous hMSC...... population. METHODS: Using flow cytometry and cell sorting, we isolated two distinct hMSC-CD146(+) and hMSC-CD146(-) cell populations from the telomerized human bone marrow-derived stromal cell line (hMSC-TERT). Cells were examined for differences in their size, shape and texture by using high...... and adipocytes on the basis of gene expression and protein production of lineage-specific markers. In vivo, hMSC-CD146(+) and hMSC-CD146(-) cells formed bone and bone marrow organ when implanted subcutaneously in immune-deficient mice. Bone was enriched in hMSC-CD146(-) cells (12.6 % versus 8.1 %) and bone...

  6. CD47 regulates renal tubular epithelial cell self-renewal and proliferation following renal ischemia reperfusion.

    Science.gov (United States)

    Rogers, Natasha M; Zhang, Zheng J; Wang, Jiao-Jing; Thomson, Angus W; Isenberg, Jeffrey S

    2016-08-01

    Defects in renal tubular epithelial cell repair contribute to renal ischemia reperfusion injury, cause acute kidney damage, and promote chronic renal disease. The matricellular protein thrombospondin-1 and its receptor CD47 are involved in experimental renal ischemia reperfusion injury, although the role of this interaction in renal recovery is unknown. We found upregulation of self-renewal genes (transcription factors Oct4, Sox2, Klf4 and cMyc) in the kidney of CD47(-/-) mice after ischemia reperfusion injury. Wild-type animals had minimal self-renewal gene expression, both before and after injury. Suggestive of cell autonomy, CD47(-/-) renal tubular epithelial cells were found to increase expression of the self-renewal genes. This correlated with enhanced proliferative capacity compared with cells from wild-type mice. Exogenous thrombospondin-1 inhibited self-renewal gene expression in renal tubular epithelial cells from wild-type but not CD47(-/-) mice, and this was associated with decreased proliferation. Treatment of renal tubular epithelial cells with a CD47 blocking antibody or CD47-targeting small interfering RNA increased expression of some self-renewal transcription factors and promoted cell proliferation. In a syngeneic kidney transplant model, treatment with a CD47 blocking antibody increased self-renewal transcription factor expression, decreased tissue damage, and improved renal function compared with that in control mice. Thus, thrombospondin-1 via CD47 inhibits renal tubular epithelial cell recovery after ischemia reperfusion injury through inhibition of proliferation/self-renewal. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  7. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma

    Directory of Open Access Journals (Sweden)

    Lu Lizhi

    2006-12-01

    Full Text Available Abstract Background Recently, a small population of cancer stem cells in adult and pediatric brain tumors has been identified. Some evidence has suggested that CD133 is a marker for a subset of leukemia and glioblastoma cancer stem cells. Especially, CD133 positive cells isolated from human glioblastoma may initiate tumors and represent novel targets for therapeutics. The gene expression and the drug resistance property of CD133 positive cancer stem cells, however, are still unknown. Results In this study, by FACS analysis we determined the percentage of CD133 positive cells in three primary cultured cell lines established from glioblastoma patients 10.2%, 69.7% and 27.5%, respectively. We also determined the average mRNA levels of markers associated with neural precursors. For example, CD90, CD44, CXCR4, Nestin, Msi1 and MELK mRNA on CD133 positive cells increased to 15.6, 5.7, 337.8, 21.4, 84 and 1351 times, respectively, compared to autologous CD133 negative cells derived from cell line No. 66. Additionally, CD133 positive cells express higher levels of BCRP1 and MGMT mRNA, as well as higher mRNA levels of genes that inhibit apoptosis. Furthermore, CD133 positive cells were significantly resistant to chemotherapeutic agents including temozolomide, carboplatin, paclitaxel (Taxol and etoposide (VP16 compared to autologous CD133 negative cells. Finally, CD133 expression was significantly higher in recurrent GBM tissue obtained from five patients as compared to their respective newly diagnosed tumors. Conclusion Our study for the first time provided evidence that CD133 positive cancer stem cells display strong capability on tumor's resistance to chemotherapy. This resistance is probably contributed by the CD133 positive cell with higher expression of on BCRP1 and MGMT, as well as the anti-apoptosis protein and inhibitors of apoptosis protein families. Future treatment should target this small population of CD133 positive cancer stem cells in

  8. Feasibility of 81Br(nu,e-)81Kr solar neutrino experiment

    International Nuclear Information System (INIS)

    Hurst, G.S.; Allman, S.L.; Chen, C.H.; Kramer, S.D.; Thomson, J.O.; Cleveland, B.

    1985-05-01

    Several ingenious solutions have been offered for the solar neutrino problem - a defect in the solar model, the appearance of a new type of neutrino physics, the sun is no longer burning, etc. The range of these proffered solutions stresses the need for a new experiment to study the sun. The modern pulsed laser now makes possible a new solar neutrino test which examines an independent neutrino source in the sun. A recently proposed experiment would use the reaction 81 Br(nu,e - ) 81 Kr to measure the flux of 7 Be neutrinos from the sun. When 7 Be decays by electron capture to make 7 Li, a neutrino is emitted at 0.862 MeV and the flux of these on the earth is about 4 x 10 9 cm -2 s -1 , according to the standard model. Therefore, an experiment based on 81 Br(nu,e - ) 81 Kr which is sensitive to these lower energy neutrinos would be of fundamental importance. To first order, the chlorine experiment detects the 8 B neutrinos while bromine detects the much more abundant 7 Be neutrino source. In practice, the proposed bromine experiment would be very similar to the chlorine radiochemical experiment, except that 81 Kr with a half-life of 2 x 10 5 years cannot be counted by decay methods. With an experiment of about the same volume as the chlorine experiment (380 m 3 ) filled with CH 2 Br 2 , the model predicts about 2 atoms of 81 Kr per day. The bromine experiment depends entirely on the RIS method, implemented with pulsed lasers, for its success. 10 refs., 3 figs

  9. First-principles-based analysis of the influence of Cu on CdTe electronic properties

    International Nuclear Information System (INIS)

    Krasikov, D.; Knizhnik, A.; Potapkin, B.; Selezneva, S.; Sommerer, T.

    2013-01-01

    The maximum voltage of CdTe solar cells is limited by low majority carrier concentration and doping difficulty. Copper that enters from the back contact can form both donors and acceptors in CdTe. It is empirically known that the free carrier concentration is several orders lower than the total Cu concentration. Simplified thermodynamic models of defect compensation after Cu introduction can be found in literature. We present a first-principles-based analysis of kinetics of defect formation upon Cu introduction, and show that Cu i is mobile at room temperature. Calculations of properties of Cu i –V Cd and Cu i –Cu Cd complexes show that the neutral Cu i –Cu Cd complex is mobile at elevated temperatures, while formation of the V Cd –Cu i complex is unlikely because it transforms into the Cu Cd defect. - Highlights: ► First-principles calculations of copper defects in CdTe are performed. ► Formation of Cd vacancy + Cu interstitial(Cu i ) complex is unlikely. ► Cu i defect is mobile at room temperature. ► Cu i + Cu on Cd-site (Cu Cd ) complex is mobile at elevated temperature. ► Cu Cd defect forms by kicking-out of the regular lattice Cd by Cu i

  10. [Cloning of human CD45 gene and its expression in Hela cells].

    Science.gov (United States)

    Li, Jie; Xu, Tianyu; Wu, Lulin; Zhang, Liyun; Lu, Xiao; Zuo, Daming; Chen, Zhengliang

    2015-11-01

    To clone human CD45 gene PTPRC and establish Hela cells overexpressing recombinant human CD45 protein. The intact cDNA encoding human CD45 amplified using RT-PCR from the total RNA extracted from peripheral blood mononuclear cells (PBMCs) of a healthy donor was cloned into pMD-18T vector. The CD45 cDNA fragment amplified from the pMD-18T-CD45 by PCR was inserted to the coding region of the PcDNA3.1-3xflag vector, and the resultant recombinant expression vector PcDNA3.1-3xflag-CD45 was transfected into Hela cells. The expression of CD45 in Hela cells was detected by flow cytometry and Western blotting, and the phosphastase activity of CD45 was quantified using an alkaline phosphatase assay kit. The cDNA fragment of about 3 900 bp was amplified from human PBMCs and cloned into pMD-18T vector. The recombinant expression vector PcDNA3.1-3xflag-CD45 was constructed, whose restriction maps and sequence were consistent with those expected. The expression of CD45 in transfected Hela cells was detected by flow cytometry and Western blotting, and the expressed recombinant CD45 protein in Hela cells showed a phosphastase activity. The cDNA of human CD45 was successfully cloned and effectively expressed in Hela cells, which provides a basis for further exploration of the functions of CD45.

  11. A viral long terminal repeat expressed in CD4+CD8+ precursors is downregulated in mature peripheral CD4-CD8+ or CD4+CD8- T cells.

    OpenAIRE

    Paquette, Y; Doyon, L; Laperrière, A; Hanna, Z; Ball, J; Sekaly, R P; Jolicoeur, P

    1992-01-01

    The long terminal repeat from a thymotropic mouse mammary tumor virus variant, DMBA-LV, was used to drive the expression of two reporter genes, murine c-myc and human CD4, in transgenic mice. Expression was observed specifically in thymic immature cells. Expression of c-myc in these cells induced oligoclonal CD4+ CD8+ T-cell thymomas. Expression of human CD4 was restricted to thymic progenitor CD4- CD8- and CD4+ CD8+ T cells and was shut off in mature CD4+ CD8- and CD4- CD8+ T cells, known to...

  12. CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications

    International Nuclear Information System (INIS)

    Szeles, Csaba

    2004-01-01

    Good detection efficiency and high energy-resolution make Cadmium Zinc Telluride (CdZnTe) and Cadmium Telluride (CdTe) detectors attractive in many room temperature X-ray and gamma-ray detection applications such as medical and industrial imaging, industrial gauging and non-destructive testing, security and monitoring, nuclear safeguards and non-proliferation, and astrophysics. Advancement of the crystal growth and device fabrication technologies and the reduction of bulk, interface and surface defects in the devices are crucial for the widespread practical deployment of Cd 1-x Zn x Te-based detector technology. Here we review the effects of bulk, interface and surface defects on charge transport, charge transport uniformity and device performance and the progress in the crystal growth and device fabrication technologies aiming at reducing the concentration of harmful defects and improving Cd 1-x Zn x Te detector performance. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Gene-Gene Interactions in the Folate Metabolic Pathway and the Risk of Conotruncal Heart Defects

    Directory of Open Access Journals (Sweden)

    Philip J. Lupo

    2010-01-01

    Full Text Available Conotruncal and related heart defects (CTRD are common, complex malformations. Although there are few established risk factors, there is evidence that genetic variation in the folate metabolic pathway influences CTRD risk. This study was undertaken to assess the association between inherited (i.e., case and maternal gene-gene interactions in this pathway and the risk of CTRD. Case-parent triads (n=727, ascertained from the Children's Hospital of Philadelphia, were genotyped for ten functional variants of nine folate metabolic genes. Analyses of inherited genotypes were consistent with the previously reported association between MTHFR A1298C and CTRD (adjusted P=.02, but provided no evidence that CTRD was associated with inherited gene-gene interactions. Analyses of the maternal genotypes provided evidence of a MTHFR C677T/CBS 844ins68 interaction and CTRD risk (unadjusted P=.02. This association is consistent with the effects of this genotype combination on folate-homocysteine biochemistry but remains to be confirmed in independent study populations.

  14. Gene expression analysis of embryonic stem cells expressing VE-cadherin (CD144 during endothelial differentiation

    Directory of Open Access Journals (Sweden)

    Libermann Towia

    2008-05-01

    Full Text Available Abstract Background Endothelial differentiation occurs during normal vascular development in the developing embryo. This process is recapitulated in the adult when endothelial progenitor cells are generated in the bone marrow and can contribute to vascular repair or angiogenesis at sites of vascular injury or ischemia. The molecular mechanisms of endothelial differentiation remain incompletely understood. Novel approaches are needed to identify the factors that regulate endothelial differentiation. Methods Mouse embryonic stem (ES cells were used to further define the molecular mechanisms of endothelial differentiation. By flow cytometry a population of VEGF-R2 positive cells was identified as early as 2.5 days after differentiation of ES cells, and a subset of VEGF-R2+ cells, that were CD41 positive at 3.5 days. A separate population of VEGF-R2+ stem cells expressing the endothelial-specific marker CD144 (VE-cadherin was also identified at this same time point. Channels lined by VE-cadherin positive cells developed within the embryoid bodies (EBs formed by differentiating ES cells. VE-cadherin and CD41 expressing cells differentiate in close proximity to each other within the EBs, supporting the concept of a common origin for cells of hematopoietic and endothelial lineages. Results Microarray analysis of >45,000 transcripts was performed on RNA obtained from cells expressing VEGF-R2+, CD41+, and CD144+ and VEGF-R2-, CD41-, and CD144-. All microarray experiments were performed in duplicate using RNA obtained from independent experiments, for each subset of cells. Expression profiling confirmed the role of several genes involved in hematopoiesis, and identified several putative genes involved in endothelial differentiation. Conclusion The isolation of CD144+ cells during ES cell differentiation from embryoid bodies provides an excellent model system and method for identifying genes that are expressed during endothelial differentiation and that

  15. Defects and properties of cadmium oxide based transparent conductors

    International Nuclear Information System (INIS)

    Yu, Kin Man; Detert, D. M.; Dubon, O. D.; Chen, Guibin; Zhu, Wei; Liu, Chaoping; Grankowska, S.; Hsu, L.; Walukiewicz, Wladek

    2016-01-01

    Transparent conductors play an increasingly important role in a number of semiconductor technologies. This paper reports on the defects and properties of Cadmium Oxide, a transparent conducting oxide which can be potentially used for full spectrum photovoltaics. We carried out a systematic investigation on the effects of defects in CdO thin films undoped and intentionally doped with In and Ga under different deposition and annealing conditions. We found that at low growth temperatures (<200 °C), sputter deposition tends to trap both oxygen vacancies and compensating defects in the CdO film resulting in materials with high electron concentration of ∼2 × 10 20 /cm 3 and mobility in the range of 40–100 cm 2 /V s. Thermal annealing experiments in different ambients revealed that the dominating defects in sputtered CdO films are oxygen vacancies. Oxygen rich CdO films grown by sputtering with increasing O 2 partial pressure in the sputter gas mixture results in films with resistivity from ∼4 × 10 −4 to >1 Ω cm due to incorporation of excess O in the form of O-related acceptor defects, likely to be O interstitials. Intentional doping with In and Ga donors leads to an increase of both the electron concentration and the mobility. With proper doping CdO films with electron concentration of more than 10 21  cm −3 and electron mobility higher than 120 cm 2 /V s can be achieved. Thermal annealing of doped CdO films in N 2 ambient can further improve the electrical properties by removing native acceptors and improving film crystallinity. Furthermore, the unique doping behavior and electrical properties of CdO were explored via simulations based on the amphoteric defect model. A comparison of the calculations and experimental results show that the formation energy of native donors and acceptors at the Fermi stabilization energy is ∼1 eV and that the mobility of sputtered deposited CdO is limited by a background acceptor concentration of

  16. Defects and properties of cadmium oxide based transparent conductors

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Kin Man, E-mail: kinmanyu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Kowloon (Hong Kong); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Detert, D. M.; Dubon, O. D. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Materials Science and Engineering, University of California, Berkeley, California 94720 (United States); Chen, Guibin [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Physics Department and Jiangsu Key Laboratory for Chemistry of Low Dimensional Materials, Huaiyin Normal University, Jiangsu 223300 (China); Zhu, Wei [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Physics and The Center for Physical Experiments, University of Science and Technology of China, Hefei, Anhui 230026 (China); Liu, Chaoping [Department of Physics and Materials Science, City University of Hong Kong, Kowloon (Hong Kong); Grankowska, S. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Institute of Experimental Physics (IEP UW), Warsaw University, Warsaw (Poland); Hsu, L. [Department of Postsecondary Teaching and Learning, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Walukiewicz, Wladek [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2016-05-14

    Transparent conductors play an increasingly important role in a number of semiconductor technologies. This paper reports on the defects and properties of Cadmium Oxide, a transparent conducting oxide which can be potentially used for full spectrum photovoltaics. We carried out a systematic investigation on the effects of defects in CdO thin films undoped and intentionally doped with In and Ga under different deposition and annealing conditions. We found that at low growth temperatures (<200 °C), sputter deposition tends to trap both oxygen vacancies and compensating defects in the CdO film resulting in materials with high electron concentration of ∼2 × 10{sup 20}/cm{sup 3} and mobility in the range of 40–100 cm{sup 2}/V s. Thermal annealing experiments in different ambients revealed that the dominating defects in sputtered CdO films are oxygen vacancies. Oxygen rich CdO films grown by sputtering with increasing O{sub 2} partial pressure in the sputter gas mixture results in films with resistivity from ∼4 × 10{sup −4} to >1 Ω cm due to incorporation of excess O in the form of O-related acceptor defects, likely to be O interstitials. Intentional doping with In and Ga donors leads to an increase of both the electron concentration and the mobility. With proper doping CdO films with electron concentration of more than 10{sup 21 }cm{sup −3} and electron mobility higher than 120 cm{sup 2}/V s can be achieved. Thermal annealing of doped CdO films in N{sub 2} ambient can further improve the electrical properties by removing native acceptors and improving film crystallinity. Furthermore, the unique doping behavior and electrical properties of CdO were explored via simulations based on the amphoteric defect model. A comparison of the calculations and experimental results show that the formation energy of native donors and acceptors at the Fermi stabilization energy is ∼1 eV and that the mobility of sputtered deposited CdO is limited

  17. Therapeutic gene editing in CD34+ hematopoietic progenitors from Fanconi anemia patients.

    Science.gov (United States)

    Diez, Begoña; Genovese, Pietro; Roman-Rodriguez, Francisco J; Alvarez, Lara; Schiroli, Giulia; Ugalde, Laura; Rodriguez-Perales, Sandra; Sevilla, Julian; Diaz de Heredia, Cristina; Holmes, Michael C; Lombardo, Angelo; Naldini, Luigi; Bueren, Juan Antonio; Rio, Paula

    2017-11-01

    Gene targeting constitutes a new step in the development of gene therapy for inherited diseases. Although previous studies have shown the feasibility of editing fibroblasts from Fanconi anemia (FA) patients, here we aimed at conducting therapeutic gene editing in clinically relevant cells, such as hematopoietic stem cells (HSCs). In our first experiments, we showed that zinc finger nuclease (ZFN)-mediated insertion of a non-therapeutic EGFP-reporter donor in the AAVS1 "safe harbor" locus of FA-A lymphoblastic cell lines (LCLs), indicating that FANCA is not essential for the editing of human cells. When the same approach was conducted with therapeutic FANCA donors, an efficient phenotypic correction of FA-A LCLs was obtained. Using primary cord blood CD34 + cells from healthy donors, gene targeting was confirmed not only in in vitro cultured cells, but also in hematopoietic precursors responsible for the repopulation of primary and secondary immunodeficient mice. Moreover, when similar experiments were conducted with mobilized peripheral blood CD34 + cells from FA-A patients, we could demonstrate for the first time that gene targeting in primary hematopoietic precursors from FA patients is feasible and compatible with the phenotypic correction of these clinically relevant cells. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  18. Contribution of Nrf2 to Atherogenic Phenotype Switching of Coronary Arterial Smooth Muscle Cells Lacking CD38 Gene

    Directory of Open Access Journals (Sweden)

    Ming Xu

    2015-08-01

    Full Text Available Background/Aims: Recent studies have indicated that CD38 gene deficiency results in dedifferentiation or transdifferentiation of arterial smooth muscle cells upon atherogenic stimulations. However, the molecular mechanisms mediating this vascular smooth muscle (SMC phenotypic switching remain unknown. Methods & Results: In the present study, we first characterized the phenotypic change in the primary cultures of coronary arterial myocytes (CAMs from CD38-/- mice. It was shown that CD38 deficiency decreased the expression of contractile marker calponin, SM22α and α-SMA but increased the expression of SMC dedifferentiation marker, vimentin, which was accompanied by enhanced cell proliferation. This phenotypic change in CD38-/- CAMs was enhanced by 7-ketocholesterol (7-Ket, an atherogenic stimulus. We further found that the CD38 deficiency decreased the expression and activity of nuclear factor E2-related factor 2 (Nrf2, a basic leucine zipper (bZIP transcription factor sensitive to redox regulation. Similar to CD38 deletion, Nrf2 gene silencing increased CAM dedifferentiation upon 7-Ket stimulation. In contrast, the overexpression of Nrf2 gene abolished 7-Ket-induced dedifferentiation in CD38-/- CAMs. Given the sensitivity of Nrf2 to oxidative stress, we determined the role of redox signaling in the regulation of Nrf2 expression and activity associated with CD38 effect in CAM phenotype changes. It was demonstrated that in CD38-/- CAMs, 7-Ket failed to stimulate the production of O2-., while in CD38+/+ CAMs 7-Ket induced marked O2-. production and enhancement of Nrf2 activity, which was substantially attenuated by NOX4 gene silencing. Finally, we demonstrated that 7-Ket-induced and NOX4-dependent O2-. production was inhibited by 8-Br-cADPR, an antagonist of cADPR or NED-19, an antagonist of NAADP as product of CD38 ADP-ribosylcyclase, which significantly inhibited the level of cytosolic Ca2+ and the activation of Nrf2 under 7-Ket. Conclusion

  19. Strain release in metastable CdSe/CdS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Ke; Beane, Gary; Kelley, David F., E-mail: dfkelley@ucmerced.edu

    2016-06-01

    Highlights: • We have synthesized CdSe/CdS core/shell quantum dots in the “stable” and “metastable” regimes. • Annealing of metastable particles causes lattice strain release, producing hole-trapping defects. • Electron microscopy imaging is relatively insensitive to defects that result in rapid radiationless decay. - Abstract: It has recently been shown (J. Phys. Chem. Lett., 2015, 6, 1559) that high quantum yields (QYs) in zincblende CdSe/CdS quantum dots can be achieved when the lattice strain energy density is in the stable (0–0.59 eV/nm{sup 2}) or metastable (0.59–0.85 eV/nm{sup 2}) regime. Annealing of metastable particles causes a dramatic reduction in the observed QY and a red shift of the absorbance and photoluminescence. In this work we demonstrate that the decline in QY upon annealing is due to the formation of hole traps. These traps, while dramatically affecting the observed QY, produce no significant changes in either morphology or crystallinity as determined by high resolution transmission electron microscopy (HRTEM).

  20. Alterations in the adenosine metabolism and CD39/CD73 adenosinergic machinery cause loss of Treg cell function and autoimmunity in ADA-deficient SCID.

    Science.gov (United States)

    Sauer, Aisha V; Brigida, Immacolata; Carriglio, Nicola; Hernandez, Raisa Jofra; Scaramuzza, Samantha; Clavenna, Daniela; Sanvito, Francesca; Poliani, Pietro L; Gagliani, Nicola; Carlucci, Filippo; Tabucchi, Antonella; Roncarolo, Maria Grazia; Traggiai, Elisabetta; Villa, Anna; Aiuti, Alessandro

    2012-02-09

    Adenosine acts as anti-inflammatory mediator on the immune system and has been described in regulatory T cell (Treg)-mediated suppression. In the absence of adenosine deaminase (ADA), adenosine and other purine metabolites accumulate, leading to severe immunodeficiency with recurrent infections (ADA-SCID). Particularly ADA-deficient patients with late-onset forms and after enzyme replacement therapy (PEG-ADA) are known to manifest immune dysregulation. Herein we provide evidence that alterations in the purine metabolism interfere with Treg function, thereby contributing to autoimmune manifestations in ADA deficiency. Tregs isolated from PEG-ADA-treated patients are reduced in number and show decreased suppressive activity, whereas they are corrected after gene therapy. Untreated murine ADA(-/-) Tregs show alterations in the plasma membrane CD39/CD73 ectonucleotidase machinery and limited suppressive activity via extracellular adenosine. PEG-ADA-treated mice developed multiple autoantibodies and hypothyroidism in contrast to mice treated with bone marrow transplantation or gene therapy. Tregs isolated from PEG-ADA-treated mice lacked suppressive activity, suggesting that this treatment interferes with Treg functionality. The alterations in the CD39/CD73 adenosinergic machinery and loss of function in ADA-deficient Tregs provide new insights into a predisposition to autoimmunity and the underlying mechanisms causing defective peripheral tolerance in ADA-SCID.

  1. Structural defects and variations in the HIV-1 nef gene from rapid, slow and non-progressor children.

    Science.gov (United States)

    Casartelli, Nicoletta; Di Matteo, Gigliola; Argentini, Claudio; Cancrini, Caterina; Bernardi, Stefania; Castelli, Guido; Scarlatti, Gabriella; Plebani, Anna; Rossi, Paolo; Doria, Margherita

    2003-06-13

    Evaluation of sequence evolution as well as structural defects and mutations of the human immunodeficiency virus-type 1 (HIV-1) nef gene in relation to disease progression in infected children. We examined a large number of nef alleles sequentially derived from perinatally HIV-1-infected children with different rates of disease progression: six non-progressors (NPs), four rapid progressors (RPs), and three slow progressors (SPs). Nef alleles (182 total) were isolated from patients' peripheral blood mononuclear cells (PBMCs), sequenced and analysed for their evolutionary pattern, frequency of mutations and occurrence of amino acid variations associated with different stages of disease. The evolution rate of the nef gene apparently correlated with CD4+ decline in all progression groups. Evidence for rapid viral turnover and positive selection for changes were found only in two SPs and two RPs respectively. In NPs, a higher proportion of disrupted sequences and mutations at various functional motifs were observed. Furthermore, NP-derived Nef proteins were often changed at residues localized in the folded core domain at cytotoxic T lymphocytes (CTL) epitopes (E(105), K(106), E(110), Y(132), K(164), and R(200)), while other residues outside the core domain are more often changed in RPs (A(43)) and SPs (N(173) and Y(214)). Our results suggest a link between nef gene functions and the progression rate in HIV-1-infected children. Moreover, non-progressor-associated variations in the core domain of Nef, together with the genetic analysis, suggest that nef gene evolution is shaped by an effective immune system in these patients.

  2. Peripheral neuropathy predicts nuclear gene defect in patients with mitochondrial ophthalmoplegia.

    Science.gov (United States)

    Horga, Alejandro; Pitceathly, Robert D S; Blake, Julian C; Woodward, Catherine E; Zapater, Pedro; Fratter, Carl; Mudanohwo, Ese E; Plant, Gordon T; Houlden, Henry; Sweeney, Mary G; Hanna, Michael G; Reilly, Mary M

    2014-12-01

    Progressive external ophthalmoplegia is a common clinical feature in mitochondrial disease caused by nuclear DNA defects and single, large-scale mitochondrial DNA deletions and is less frequently associated with point mutations of mitochondrial DNA. Peripheral neuropathy is also a frequent manifestation of mitochondrial disease, although its prevalence and characteristics varies considerably among the different syndromes and genetic aetiologies. Based on clinical observations, we systematically investigated whether the presence of peripheral neuropathy could predict the underlying genetic defect in patients with progressive external ophthalmoplegia. We analysed detailed demographic, clinical and neurophysiological data from 116 patients with genetically-defined mitochondrial disease and progressive external ophthalmoplegia. Seventy-eight patients (67%) had a single mitochondrial DNA deletion, 12 (10%) had a point mutation of mitochondrial DNA and 26 (22%) had mutations in either POLG, C10orf2 or RRM2B, or had multiple mitochondrial DNA deletions in muscle without an identified nuclear gene defect. Seventy-seven patients had neurophysiological studies; of these, 16 patients (21%) had a large-fibre peripheral neuropathy. The prevalence of peripheral neuropathy was significantly lower in patients with a single mitochondrial DNA deletion (2%) as compared to those with a point mutation of mitochondrial DNA or with a nuclear DNA defect (44% and 52%, respectively; Pperipheral neuropathy as the only independent predictor associated with a nuclear DNA defect (P=0.002; odds ratio 8.43, 95% confidence interval 2.24-31.76). Multinomial logistic regression analysis identified peripheral neuropathy, family history and hearing loss as significant predictors of the genotype, and the same three variables showed the highest performance in genotype classification in a decision tree analysis. Of these variables, peripheral neuropathy had the highest specificity (91%), negative

  3. A defect in the thymidine kinase 2 gene causing isolated mitochondrial myopathy without mtDNA depletion.

    Science.gov (United States)

    Leshinsky-Silver, E; Michelson, M; Cohen, S; Ginsberg, M; Sadeh, M; Barash, V; Lerman-Sagie, T; Lev, D

    2008-07-01

    Isolated mitochondrial myopathies (IMM) are either due to primary defects in mtDNA, in nuclear genes that control mtDNA abundance and structure such as thymidine kinase 2 (TK2), or due to CoQ deficiency. Defects in the TK2 gene have been found to be associated with mtDNA depletion attributed to a depleted mitochondrial dNTP pool in non-dividing cells. We report an unusual case of IMM, homozygous for the H90N mutation in the TK2 gene but unlike other cases with the same mutation, does not demonstrate mtDNA depletion. The patient's clinical course is relatively mild and a muscle biopsy showed ragged red muscle fibers with a mild decrease in complexes I and an increase in complexes IV and II activities. This report extends the phenotypic expression of TK2 defects and suggests that all patients who present with an IMM even with normal quantities of mtDNA should be screened for TK2 mutations.

  4. Cloning analysis of HBV-specific CD8 T cell receptor gene in patients with acute hepatitis B

    Directory of Open Access Journals (Sweden)

    Ning DING

    2011-05-01

    Full Text Available Objective To investigate the molecular mechanism of T cell receptor(TCR in CD8 T cell-mediated immune response to HBV in patients with acute hepatitis B(AHB.Methods Peripheral blood mononuclear cells(PBMCs were collected from HLA-A2-positive AHB patients.To determine HBsAg183-191 and HBsAg335-343-specific CD8 T cell frequencies,the PBMCs were stained by fluorescence-labeled anti-CD3,anti-CD8 and pentamers,and analyzed by flow cytometry.PBMCs from 6 patients were stimulated with epitopic peptide HBsAg335-343 in vitro for 3 to 4 weeks.HBV-specific CD8 T cells were isolated by magnetic activated cell sorting followed by flow florescence activated cell sorting.The mRNA of sorted cells was extracted after expanding by IL-2,anti-CD3 and anti-CD8.The full-length gene fragments of variable region of TCR α and β chains were gained by 5’-RACE,and then cloned and sequenced(≥50 clones for single chain of each sample.The gene families of TCR α and β chains were identified and the sequence characters of CDR3 were compared.Results Analysis of more than 600 cloned gene sequences of TCR α and β chains showed that the proliferated HBV-specific CD8 T cells from 6 AHB patients presented a predominant expression in TCR α and chains,with 2-4 α chain families and 1-4 chain families in each case.The α2,α14,α15,β3,β13 and 23 families were detected in more than one case.The chain genes were all 13 for all tested clones in one case.For the same α chain or-chain family,CDR3 sequences tended to be identical in one case but different among cases.Conclusions HBV-specific CD8 T cells with antigenic peptide-induced proliferation present predominance in the usage of TCR α and β chains.This property might be one of the important molecular factors influencing anti-HBV immunity.

  5. HIV-1 transgenic rat CD4+ T cells develop decreased CD28 responsiveness and suboptimal Lck tyrosine dephosphorylation following activation

    International Nuclear Information System (INIS)

    Yadav, Anjana; Pati, Shibani; Nyugen, Anhthu; Barabitskaja, Oxana; Mondal, Prosanta; Anderson, Michael; Gallo, Robert C.; Huso, David L.; Reid, William

    2006-01-01

    Impaired CD4+ T cell responses, resulting in dysregulated T-helper 1 (Th1) effector and memory responses, are a common result of HIV-1 infection. These defects are often preceded by decreased expression and function of the α/β T cell receptor (TCR)-CD3 complex and of co-stimulatory molecules including CD28, resulting in altered T cell proliferation, cytokine secretion and cell survival. We have previously shown that HIV Tg rats have defective development of T cell effector function and generation of specific effector/memory T cell subsets. Here we identify abnormalities in activated HIV-1 Tg rat CD4+ T cells that include decreased pY505 dephosphorylation of Lck (required for Lck activation), decreased CD28 function, reduced expression of the anti-apoptotic molecule Bcl-xL, decreased secretion of the mitogenic lympokine interleukin-2 (IL-2) and increased activation induced apoptosis. These events likely lead to defects in antigen-specific signaling and may help explain the disruption of Th1 responses and the generation of specific effector/memory subsets in transgenic CD4+ T cells

  6. Autonomous and Non-autonomous Defects Underlie Hypertrophic Cardiomyopathy in BRAF-Mutant hiPSC-Derived Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Rebecca Josowitz

    2016-09-01

    Full Text Available Germline mutations in BRAF cause cardio-facio-cutaneous syndrome (CFCS, whereby 40% of patients develop hypertrophic cardiomyopathy (HCM. As the role of the RAS/MAPK pathway in HCM pathogenesis is unclear, we generated a human induced pluripotent stem cell (hiPSC model for CFCS from three patients with activating BRAF mutations. By cell sorting for SIRPα and CD90, we generated a method to examine hiPSC-derived cell type-specific phenotypes and cellular interactions underpinning HCM. BRAF-mutant SIRPα+/CD90− cardiomyocytes displayed cellular hypertrophy, pro-hypertrophic gene expression, and intrinsic calcium-handling defects. BRAF-mutant SIRPα−/CD90+ cells, which were fibroblast-like, exhibited a pro-fibrotic phenotype and partially modulated cardiomyocyte hypertrophy through transforming growth factor β (TGFβ paracrine signaling. Inhibition of TGFβ or RAS/MAPK signaling rescued the hypertrophic phenotype. Thus, cell autonomous and non-autonomous defects underlie HCM due to BRAF mutations. TGFβ inhibition may be a useful therapeutic option for patients with HCM due to RASopathies or other etiologies.

  7. Response of induced bone defects in horses to collagen matrix containing the human parathyroid hormone gene.

    Science.gov (United States)

    Backstrom, Kristin C; Bertone, Alicia L; Wisner, Erik R; Weisbrode, Stephen E

    2004-09-01

    To determine whether human parathyroid hormone (hPTH) gene in collagen matrix could safely promote bone formation in diaphyseal or subchondral bones of horses. 8 clinically normal adult horses. Amount, rate, and quality of bone healing for 13 weeks were determined by use of radiography, quantitative computed tomography, and histomorphometric analysis. Diaphyseal cortex and subchondral bone defects of metacarpi were filled with hPTH(1-34) gene-activated matrix (GAM) or remained untreated. Joints were assessed on the basis of circumference, synovial fluid analysis, pain on flexion, lameness, and gross and histologic examination. Bone volume index was greater for cortical defects treated with hPTH(1-34) GAM, compared with untreated defects. Bone production in cortical defects treated with hPTH(1-34) GAM positively correlated with native bone formation in untreated defects. In contrast, less bone was detected in hPTH(1-34) GAM-treated subchondral bone defects, compared with untreated defects, and histology confirmed poorer healing and residual collagen sponge. Use of hPTH(1-34) GAM induced greater total bone, specifically periosteal bone, after 13 weeks of healing in cortical defects of horses. The hPTH(1-34) GAM impeded healing of subchondral bone but was biocompatible with joint tissues. Promotion of periosteal bone formation may be beneficial for healing of cortical fractures in horses, but the delay in onset of bone formation may negate benefits. The hPTH(1-34) GAM used in this study should not be placed in articular subchondral bone defects, but contact with articular surfaces is unlikely to cause short-term adverse effects.

  8. Emitter/absorber interface of CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tao, E-mail: tsong241@gmail.com; Sites, James R. [Physics Department, Colorado State University, Fort Collins, Colorado 80523 (United States); Kanevce, Ana [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)

    2016-06-21

    The performance of CdTe solar cells can be very sensitive to the emitter/absorber interface, especially for high-efficiency cells with high bulk lifetime. Performance losses from acceptor-type interface defects can be significant when interface defect states are located near mid-gap energies. Numerical simulations show that the emitter/absorber band alignment, the emitter doping and thickness, and the defect properties of the interface (i.e., defect density, defect type, and defect energy) can all play significant roles in the interface recombination. In particular, a type I heterojunction with small conduction-band offset (0.1 eV ≤ ΔE{sub C} ≤ 0.3 eV) can help maintain good cell efficiency in spite of high interface defect density, much like with Cu(In,Ga)Se{sub 2} (CIGS) cells. The basic principle is that positive ΔE{sub C}, often referred to as a “spike,” creates an absorber inversion and hence a large hole barrier adjacent to the interface. As a result, the electron-hole recombination is suppressed due to an insufficient hole supply at the interface. A large spike (ΔE{sub C} ≥ 0.4 eV), however, can impede electron transport and lead to a reduction of photocurrent and fill-factor. In contrast to the spike, a “cliff” (ΔE{sub C} < 0 eV) allows high hole concentration in the vicinity of the interface, which will assist interface recombination and result in a reduced open-circuit voltage. Another way to mitigate performance losses due to interface defects is to use a thin and highly doped emitter, which can invert the absorber and form a large hole barrier at the interface. CdS is the most common emitter material used in CdTe solar cells, but the CdS/CdTe interface is in the cliff category and is not favorable from the band-offset perspective. The ΔE{sub C} of other n-type emitter choices, such as (Mg,Zn)O, Cd(S,O), or (Cd,Mg)Te, can be tuned by varying the elemental ratio for an optimal positive value of ΔE{sub C}. These

  9. Variation of DNA methylation patterns associated with gene expression in rice (Oryza sativa) exposed to cadmium.

    Science.gov (United States)

    Feng, Sheng Jun; Liu, Xue Song; Tao, Hua; Tan, Shang Kun; Chu, Shan Shan; Oono, Youko; Zhang, Xian Duo; Chen, Jian; Yang, Zhi Min

    2016-12-01

    We report genome-wide single-base resolution maps of methylated cytosines and transcriptome change in Cd-exposed rice. Widespread differences were identified in CG and non-CG methylation marks between Cd-exposed and Cd-free rice genomes. There are 2320 non-redundant differentially methylated regions detected in the genome. RNA sequencing revealed 2092 DNA methylation-modified genes differentially expressed under Cd exposure. More genes were found hypermethylated than those hypomethylated in CG, CHH and CHG (where H is A, C or T) contexts in upstream, gene body and downstream regions. Many of the genes were involved in stress response, metal transport and transcription factors. Most of the DNA methylation-modified genes were transcriptionally altered under Cd stress. A subset of loss of function mutants defective in DNA methylation and histone modification activities was used to identify transcript abundance of selected genes. Compared with wide type, mutation of MET1 and DRM2 resulted in general lower transcript levels of the genes under Cd stress. Transcripts of OsIRO2, OsPR1b and Os09g02214 in drm2 were significantly reduced. A commonly used DNA methylation inhibitor 5-azacytidine was employed to investigate whether DNA demethylation affected physiological consequences. 5-azacytidine provision decreased general DNA methylation levels of selected genes, but promoted growth of rice seedlings and Cd accumulation in rice plant. © 2016 John Wiley & Sons Ltd.

  10. Novel de novo pathogenic variant in the NR2F2 gene in a boy with congenital heart defect and dysmorphic features.

    Science.gov (United States)

    Upadia, Jariya; Gonzales, Patrick R; Robin, Nathaniel H

    2018-04-16

    The NR2F2 gene plays an important role in angiogenesis and heart development. Moreover, this gene is involved in organogenesis in many other organs in mouse models. Variants in this gene have been reported in a number of patients with nonsyndromic atrioventricular septal defect, and in one patient with congenital heart defect and dysmorphic features. Here we report an 11-month-old Caucasian male with global developmental delay, dysmorphic features, coarctation of the aorta, and ventricular septal defect. He was later found to have a pathogenic mutation in the NR2F2 gene by whole exome sequencing. This is the second instance in which an NR2F2 mutation has been identified in a child with a congenital heart defect and other anomalies. This case suggests that some variants in NR2F2 may cause syndromic forms of congenital heart defect. © 2018 Wiley Periodicals, Inc.

  11. A defect in the TUSC3 gene is associated with autosomal recessive mental retardation.

    Science.gov (United States)

    Garshasbi, Masoud; Hadavi, Valeh; Habibi, Haleh; Kahrizi, Kimia; Kariminejad, Roxana; Behjati, Farkhondeh; Tzschach, Andreas; Najmabadi, Hossein; Ropers, Hans Hilger; Kuss, Andreas Walter

    2008-05-01

    Recent studies have shown that autosomal recessive mental retardation (ARMR) is extremely heterogeneous, and there is reason to believe that the number of underlying gene defects goes into the thousands. To date, however, only four genes have been implicated in nonsyndromic ARMR (NS-ARMR): PRSS12 (neurotrypsin), CRBN (cereblon), CC2D1A, and GRIK2. As part of an ongoing systematic study aiming to identify ARMR genes, we investigated a large consanguineous family comprising seven patients with nonsyndromic ARMR in four sibships. Genome-wide SNP typing enabled us to map the relevant genetic defect to a 4.6 Mbp interval on chromosome 8. Haplotype analyses and copy-number studies led to the identification of a homozygous deletion partly removing TUSC3 (N33) in all patients. All obligate carriers of this family were heterozygous, but none of 192 unrelated healthy individuals from the same population carried this deletion. We excluded other disease-causing mutations in the coding regions of all genes within the linkage interval by sequencing; moreover, we verified the complete absence of a functional TUSC3 transcript in all patients through RT-PCR. TUSC3 is thought to encode a subunit of the endoplasmic reticulum-bound oligosaccharyltransferase complex that catalyzes a pivotal step in the protein N-glycosylation process. Our data suggest that in contrast to other genetic defects of glycosylation, inactivation of TUSC3 causes nonsyndromic MR, a conclusion that is supported by a separate report in this issue of AJHG. TUSC3 is only the fifth gene implicated in NS-ARMR and the first for which mutations have been reported in more than one family.

  12. Hyperpolarized 3He MRI and 81mKr SPECT in chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Stavngaard, Trine; Søgaard, Lise; Mortensen, J

    2005-01-01

    visual defect score (r=0.80, pemphysema (pulmonary function test and HRCT). The defect scores were largest on 81mKr SPECT (the score on HP 3He MRI...... was to compare ventilation imaging methods in 26 patients with chronic obstructive pulmonary disease (COPD) and nine lung healthy volunteers. METHODS: HP 3He MRI, 81mKr single-photon emission computed tomography (SPECT), high-resolution computed tomography (HRCT) and pulmonary function tests were performed....... The three scans were scored visually as percentage of non-ventilated/diseased lung, and a computer-based objective measure of the ventilated volume in HP 3He MRI and 81mKr SPECT and an emphysema index in HRCT were calculated. RESULTS: We found a good correlation between HP 3He MRI and 81mKr SPECT for both...

  13. The Metallothionein Gene, TaMT3, from Tamarix androssowii Confers Cd2+ Tolerance in Tobacco

    Directory of Open Access Journals (Sweden)

    Boru Zhou

    2014-06-01

    Full Text Available Cadmium (Cd is a nonessential microelement and low concentration Cd2+ has strong toxicity to plant growth. Plant metallothioneins, a class of low molecular, cystein(Cys-rich and heavy-metal binding proteins, play an important role in both metal chaperoning and scavenging of reactive oxygen species (ROS with their large number of cysteine residues and therefore, protect plants from oxidative damage. In this study, a metallothionein gene, TaMT3, isolated from Tamarix androssowii was transformed into tobacco (Nicotiana tobacum through Agrobacterium-mediated leaf disc method, and correctly expressed under the control of 35S promoter. Under Cd2+ stress, the transgenic tobacco showed significant increases of superoxide dismutase (SOD activity and chlorophyll concentration, but decreases of peroxidase (POD activity and malondialdehyde (MDA accumulation when compared to the non-transgenic tobacco. Vigorous growth of transgenic tobacco was observed at the early development stages, resulting in plant height and fresh weight were significantly larger than those of the non-transgenic tobacco under Cd2+ stress. These results demonstrated that the expression of the exogenous TaMT3 gene increased the ability of ROS cleaning-up, indicating a stronger tolerance to Cd2+ stress.

  14. The metallothionein gene, TaMT3, from Tamarix androssowii confers Cd2+ tolerance in tobacco.

    Science.gov (United States)

    Zhou, Boru; Yao, Wenjing; Wang, Shengji; Wang, Xinwang; Jiang, Tingbo

    2014-06-10

    Cadmium (Cd) is a nonessential microelement and low concentration Cd2+ has strong toxicity to plant growth. Plant metallothioneins, a class of low molecular, cystein(Cys)-rich and heavy-metal binding proteins, play an important role in both metal chaperoning and scavenging of reactive oxygen species (ROS) with their large number of cysteine residues and therefore, protect plants from oxidative damage. In this study, a metallothionein gene, TaMT3, isolated from Tamarix androssowii was transformed into tobacco (Nicotiana tobacum) through Agrobacterium-mediated leaf disc method, and correctly expressed under the control of 35S promoter. Under Cd2+ stress, the transgenic tobacco showed significant increases of superoxide dismutase (SOD) activity and chlorophyll concentration, but decreases of peroxidase (POD) activity and malondialdehyde (MDA) accumulation when compared to the non-transgenic tobacco. Vigorous growth of transgenic tobacco was observed at the early development stages, resulting in plant height and fresh weight were significantly larger than those of the non-transgenic tobacco under Cd2+ stress. These results demonstrated that the expression of the exogenous TaMT3 gene increased the ability of ROS cleaning-up, indicating a stronger tolerance to Cd2+ stress.

  15. Rapid screening for nuclear genes mutations in isolated respiratory chain complex I defects.

    Science.gov (United States)

    Pagniez-Mammeri, Hélène; Lombes, Anne; Brivet, Michèle; Ogier-de Baulny, Hélène; Landrieu, Pierre; Legrand, Alain; Slama, Abdelhamid

    2009-04-01

    Complex I or reduced nicotinamide adenine dinucleotide (NADH): ubiquinone oxydoreductase deficiency is the most common cause of respiratory chain defects. Molecular bases of complex I deficiencies are rarely identified because of the dual genetic origin of this multi-enzymatic complex (nuclear DNA and mitochondrial DNA) and the lack of phenotype-genotype correlation. We used a rapid method to screen patients with isolated complex I deficiencies for nuclear genes mutations by Surveyor nuclease digestion of cDNAs. Eight complex I nuclear genes, among the most frequently mutated (NDUFS1, NDUFS2, NDUFS3, NDUFS4, NDUFS7, NDUFS8, NDUFV1 and NDUFV2), were studied in 22 cDNA fragments spanning their coding sequences in 8 patients with a biochemically proved complex I deficiency. Single nucleotide polymorphisms and missense mutations were detected in 18.7% of the cDNA fragments by Surveyor nuclease treatment. Molecular defects were detected in 3 patients. Surveyor nuclease screening is a reliable method for genotyping nuclear complex I deficiencies, easy to interpret, and limits the number of sequence reactions. Its use will enhance the possibility of prenatal diagnosis and help us for a better understanding of complex I molecular defects.

  16. Association between CD14 gene polymorphisms and cancer risk: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Jun Wang

    Full Text Available BACKGROUND: Two polymorphisms, -260C/T and -651C/T, in the CD14 gene have been implicated in susceptibility to cancer. However, the results remain inconclusive. This meta-analysis aimed to investigate the association between the two polymorphisms and risk of cancer. METHODS: All eligible case-control studies published up to March 2014 were identified by searching PubMed, Web of Science, CNKI and WanFang database. Pooled odds ratio (OR with 95% confidence interval (CI were used to access the strength of this association in fixed- or random-effects model. RESULTS: 17 case-control studies from fourteen articles were included. Of those, there were 17 studies (4198 cases and 4194 controls for -260C/T polymorphism and three studies (832 cases and 1190 controls for -651C/T polymorphism. Overall, no significant associations between the two polymorphisms of CD14 gene and cancer risk were found. When stratified by ethnicity, cancer type and source of control, similar results were observed among them. In addition, in further subgroups analysis by Helicobacter pylori (H. pylori infection status and tumor location in gastric cancer subgroup, we found that the CD14 -260C/T polymorphism may increase the risk of gastric cancer in H. pylori-infected individuals. CONCLUSIONS: This meta-analysis suggests that the CD14 -260C/T polymorphism may increase the risk of gastric cancer in H. pylori-infected individuals. However, large and well-designed studies are warranted to validate our findings.

  17. Study of CdTe:Cl and CdZnTe detectors for medical multi-slices X-ray Computed Tomography; Etude de detecteurs en CdTe:Cl et CdZnTe pour la tomographie X medicale multicoupes

    Energy Technology Data Exchange (ETDEWEB)

    Ricq, St

    1999-09-28

    The application of CdTe and CdZnTe detectors to medical X-ray Computed Tomography have been investigated. Different electrodes (Au, Pt, In) have been deposited on CdZnTe HPBM and on CdTe:ClTHM. Their injection properties have been determined with Current-Voltage characteristics. Under X-ray in CT conditions, injection currents measurements reveal trapped carriers space-charges formation. The same way, the comparisons of the responses to X-beam cut-off with various injection possibilities enable to follow the space-charges evolutions and then to determine the predominant traps types. Nevertheless, both hole and electron traps are responsible for the memory effect e.g. the currents levels dependence with irradiation history. This effect is noticed in particular on responses to fast flux variations that simulate scanner's conditions. Trap levels probably corresponding to native defects are responsible for these limitations. In order to make such detectors suitable for X-ray Computed Tomography, significant progresses in CdTe for CdZnTe crystal growth with an important defects densities reduction (factor 10), or possibly counting mode operation, seem necessary. (author)

  18. Requirement for CD4 T Cell Help in Generating Functional CD8 T Cell Memory

    Science.gov (United States)

    Shedlock, Devon J.; Shen, Hao

    2003-04-01

    Although primary CD8 responses to acute infections are independent of CD4 help, it is unknown whether a similar situation applies to secondary responses. We show that depletion of CD4 cells during the recall response has minimal effect, whereas depletion during the priming phase leads to reduced responses by memory CD8 cells to reinfection. Memory CD8 cells generated in CD4+/+ mice responded normally when transferred into CD4-/- hosts, whereas memory CD8 cells generated in CD4-/- mice mounted defective recall responses in CD4+/+ adoptive hosts. These results demonstrate a previously undescribed role for CD4 help in the development of functional CD8 memory.

  19. Supplementary data: Association of CTLA4, CD28 and ICOS gene ...

    Indian Academy of Sciences (India)

    Supplementary data: Association of CTLA4, CD28 and ICOS gene polymorphisms with clinicopathologic characteristics of childhood IgA nephropathy in Korean population. Hak-Jae Kim, Joo-Ho Chung, Sungwook Kang, Su-Kang Kim, Byoung-Soo Cho, Sung-Do Kim and Won-Ho Hahn. J. Genet. 90, 151–155. Table 1.

  20. Alterations in the adenosine metabolism and CD39/CD73 adenosinergic machinery cause loss of Treg cell function and autoimmunity in ADA-deficient SCID

    Science.gov (United States)

    Sauer, Aisha V.; Brigida, Immacolata; Carriglio, Nicola; Jofra Hernandez, Raisa; Scaramuzza, Samantha; Clavenna, Daniela; Sanvito, Francesca; Poliani, Pietro L.; Gagliani, Nicola; Carlucci, Filippo; Tabucchi, Antonella; Roncarolo, Maria Grazia; Traggiai, Elisabetta; Villa, Anna

    2012-01-01

    Adenosine acts as anti-inflammatory mediator on the immune system and has been described in regulatory T cell (Treg)–mediated suppression. In the absence of adenosine deaminase (ADA), adenosine and other purine metabolites accumulate, leading to severe immunodeficiency with recurrent infections (ADA-SCID). Particularly ADA-deficient patients with late-onset forms and after enzyme replacement therapy (PEG-ADA) are known to manifest immune dysregulation. Herein we provide evidence that alterations in the purine metabolism interfere with Treg function, thereby contributing to autoimmune manifestations in ADA deficiency. Tregs isolated from PEG-ADA–treated patients are reduced in number and show decreased suppressive activity, whereas they are corrected after gene therapy. Untreated murine ADA−/− Tregs show alterations in the plasma membrane CD39/CD73 ectonucleotidase machinery and limited suppressive activity via extracellular adenosine. PEG-ADA–treated mice developed multiple autoantibodies and hypothyroidism in contrast to mice treated with bone marrow transplantation or gene therapy. Tregs isolated from PEG-ADA–treated mice lacked suppressive activity, suggesting that this treatment interferes with Treg functionality. The alterations in the CD39/CD73 adenosinergic machinery and loss of function in ADA-deficient Tregs provide new insights into a predisposition to autoimmunity and the underlying mechanisms causing defective peripheral tolerance in ADA-SCID. Trials were registered at www.clinicaltrials.gov as NCT00598481/NCT00599781. PMID:22184407

  1. Progesterone impairs antigen-non-specific immune protection by CD8 T memory cells via interferon-γ gene hypermethylation.

    Science.gov (United States)

    Yao, Yushi; Li, Hui; Ding, Jie; Xia, Yixin; Wang, Lei

    2017-11-01

    Pregnant women and animals have increased susceptibility to a variety of intracellular pathogens including Listeria monocytogenes (LM), which has been associated with significantly increased level of sex hormones such as progesterone. CD8 T memory(Tm) cell-mediated antigen-non-specific IFN-γ responses are critically required in the host defense against LM. However, whether and how increased progesterone during pregnancy modulates CD8 Tm cell-mediated antigen-non-specific IFN-γ production and immune protection against LM remain poorly understood. Here we show in pregnant women that increased serum progesterone levels are associated with DNA hypermethylation of IFN-γ gene promoter region and decreased IFN-γ production in CD8 Tm cells upon antigen-non-specific stimulation ex vivo. Moreover, IFN-γ gene hypermethylation and significantly reduced IFN-γ production post LM infection in antigen-non-specific CD8 Tm cells are also observed in pregnant mice or progesterone treated non-pregnant female mice, which is a reversible phenotype following demethylation treatment. Importantly, antigen-non-specific CD8 Tm cells from progesterone treated mice have impaired anti-LM protection when adoptive transferred in either pregnant wild type mice or IFN-γ-deficient mice, and demethylation treatment rescues the adoptive protection of such CD8 Tm cells. These data demonstrate that increased progesterone impairs immune protective functions of antigen-non-specific CD8 Tm cells via inducing IFN-γ gene hypermethylation. Our findings thus provide insights into a new mechanism through which increased female sex hormone regulate CD8 Tm cell functions during pregnancy.

  2. Progesterone impairs antigen-non-specific immune protection by CD8 T memory cells via interferon-γ gene hypermethylation.

    Directory of Open Access Journals (Sweden)

    Yushi Yao

    2017-11-01

    Full Text Available Pregnant women and animals have increased susceptibility to a variety of intracellular pathogens including Listeria monocytogenes (LM, which has been associated with significantly increased level of sex hormones such as progesterone. CD8 T memory(Tm cell-mediated antigen-non-specific IFN-γ responses are critically required in the host defense against LM. However, whether and how increased progesterone during pregnancy modulates CD8 Tm cell-mediated antigen-non-specific IFN-γ production and immune protection against LM remain poorly understood. Here we show in pregnant women that increased serum progesterone levels are associated with DNA hypermethylation of IFN-γ gene promoter region and decreased IFN-γ production in CD8 Tm cells upon antigen-non-specific stimulation ex vivo. Moreover, IFN-γ gene hypermethylation and significantly reduced IFN-γ production post LM infection in antigen-non-specific CD8 Tm cells are also observed in pregnant mice or progesterone treated non-pregnant female mice, which is a reversible phenotype following demethylation treatment. Importantly, antigen-non-specific CD8 Tm cells from progesterone treated mice have impaired anti-LM protection when adoptive transferred in either pregnant wild type mice or IFN-γ-deficient mice, and demethylation treatment rescues the adoptive protection of such CD8 Tm cells. These data demonstrate that increased progesterone impairs immune protective functions of antigen-non-specific CD8 Tm cells via inducing IFN-γ gene hypermethylation. Our findings thus provide insights into a new mechanism through which increased female sex hormone regulate CD8 Tm cell functions during pregnancy.

  3. Surface Passivation of CdSe Quantum Dots in All Inorganic Amorphous Solid by Forming Cd1-xZnxSe Shell.

    Science.gov (United States)

    Xia, Mengling; Liu, Chao; Zhao, Zhiyong; Wang, Jing; Lin, Changgui; Xu, Yinsheng; Heo, Jong; Dai, Shixun; Han, Jianjun; Zhao, Xiujian

    2017-02-07

    CdSe quantum dots (QDs) doped glasses have been widely investigated for optical filters, LED color converter and other optical emitters. Unlike CdSe QDs in solution, it is difficult to passivate the surface defects of CdSe QDs in glass matrix, which strongly suppress its intrinsic emission. In this study, surface passivation of CdSe quantum dots (QDs) by Cd 1-x Zn x Se shell in silicate glass was reported. An increase in the Se/Cd ratio can lead to the partial passivation of the surface states and appearance of the intrinsic emission of CdSe QDs. Optimizing the heat-treatment condition promotes the incorporation of Zn into CdSe QDs and results in the quenching of the defect emission. Formation of CdSe/Cd 1-x Zn x Se core/graded shell QDs is evidenced by the experimental results of TEM and Raman spectroscopy. Realization of the surface passivation and intrinsic emission of II-VI QDs may facilitate the wide applications of QDs doped all inorganic amorphous materials.

  4. Natural disease course and genotype-phenotype correlations in Complex I deficiency caused by nuclear gene defects

    DEFF Research Database (Denmark)

    Koene, S; Rodenburg, R J; van der Knaap, M S

    2012-01-01

    cases and 126 from literature) with mutations in nuclear genes encoding structural complex I proteins or those involved in its assembly. Complex I deficiency caused by a nuclear gene defect is usually a non-dysmorphic syndrome, characterized by severe multi-system organ involvement and a poor prognosis...

  5. Deletion of ETS-1, a gene in the Jacobsen syndrome critical region, causes ventricular septal defects and abnormal ventricular morphology in mice

    Science.gov (United States)

    Ye, Maoqing; Coldren, Chris; Liang, Xingqun; Mattina, Teresa; Goldmuntz, Elizabeth; Benson, D. Woodrow; Ivy, Dunbar; Perryman, M.B.; Garrett-Sinha, Lee Ann; Grossfeld, Paul

    2010-01-01

    Congenital heart defects comprise the most common form of major birth defects, affecting 0.7% of all newborn infants. Jacobsen syndrome (11q-) is a rare chromosomal disorder caused by deletions in distal 11q. We have previously determined that a wide spectrum of the most common congenital heart defects occur in 11q-, including an unprecedented high frequency of hypoplastic left heart syndrome (HLHS). We identified an ∼7 Mb ‘cardiac critical region’ in distal 11q that contains a putative causative gene(s) for congenital heart disease. In this study, we utilized chromosomal microarray mapping to characterize three patients with 11q- and congenital heart defects that carry interstitial deletions overlapping the 7 Mb cardiac critical region. We propose that this 1.2 Mb region of overlap harbors a gene(s) that causes at least a subset of the congenital heart defects that occur in 11q-. We demonstrate that one gene in this region, ETS-1 (a member of the ETS family of transcription factors), is expressed in the endocardium and neural crest during early mouse heart development. Gene-targeted deletion of ETS-1 in mice in a C57/B6 background causes, with high penetrance, large membranous ventricular septal defects and a bifid cardiac apex, and less frequently a non-apex-forming left ventricle (one of the hallmarks of HLHS). Our results implicate an important role for the ETS-1 transcription factor in mammalian heart development and should provide important insights into some of the most common forms of congenital heart disease. PMID:19942620

  6. Native defect changes in CdS single crystal platelets induced by vacuum heat treatments at temperatures up to 600/sup 0/C

    Energy Technology Data Exchange (ETDEWEB)

    Christmann, M H; Dierssen, G H; Salmon, O N; Taylor, A L; Thom, W H

    1975-12-01

    Physical properties of selected CdS single crystal platelets as-grown and after vacuum heat treatments at temperatures up to 600/sup 0/C were studied using uv excited edge emission, mass spectrometry, electrical resistivity, and electron paramagnetic resonance (EPR). It was found that sulfur leaves the crystal at temperatures as low as 100/sup 0/C creating a depletion layer. The native defect changes were monitored by edge emission studies at 4.2/sup 0/K in combination with etch treatments. The defect structure throughout the crystal is not only dependent upon the temperature and atmosphere of the treatments, but is also strongly dependent upon the cooling rate. (auth)

  7. Study of CdTe:Cl and CdZnTe detectors for medical multi-slices X-ray Computed Tomography; Etude de detecteurs en CdTe:Cl et CdZnTe pour la tomographie X medicale multicoupes

    Energy Technology Data Exchange (ETDEWEB)

    Ricq, St

    1999-09-28

    The application of CdTe and CdZnTe detectors to medical X-ray Computed Tomography have been investigated. Different electrodes (Au, Pt, In) have been deposited on CdZnTe HPBM and on CdTe:ClTHM. Their injection properties have been determined with Current-Voltage characteristics. Under X-ray in CT conditions, injection currents measurements reveal trapped carriers space-charges formation. The same way, the comparisons of the responses to X-beam cut-off with various injection possibilities enable to follow the space-charges evolutions and then to determine the predominant traps types. Nevertheless, both hole and electron traps are responsible for the memory effect e.g. the currents levels dependence with irradiation history. This effect is noticed in particular on responses to fast flux variations that simulate scanner's conditions. Trap levels probably corresponding to native defects are responsible for these limitations. In order to make such detectors suitable for X-ray Computed Tomography, significant progresses in CdTe for CdZnTe crystal growth with an important defects densities reduction (factor 10), or possibly counting mode operation, seem necessary. (author)

  8. Investigation of the chlorine A-Center in polycrystalline CdTe layers by photoluminescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, Christian; Metzner, Heiner; Haedrich, Mathias [Institut fuer Festkoerperphysik, Universitaet Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Schley, Pascal [Institut fuer Physik, Technische Universitaet Ilmenau, 98684 Ilmenau (Germany); Goldhahn, Ruediger [Institut fuer Experimentelle Physik, Universitaet Magdeburg, 39016 Magdeburg (Germany)

    2012-07-01

    Polycrystalline CdTe is a well known absorber material for thin film solar cells. However, the improvement of CdTe-based solar cells for industrial application is mainly based on empirical enhancements of certain process steps which are not concerning the absorber itself. Hence, the defect structure of CdTe is still not understood in detail. One of the most discussed defects in CdTe is the so called chlorine A-center. In general, the A-Center describes a defect complex of the intrinsic cadmium vacancy defect and an extrinsic impurity. By means of photoluminescence spectroscopy at temperatures of 5 K we investigated the behavior of the chlorine A-center under different CdTe activation techniques. Therefore, we were able to determine the electronic level of that defect and to analyze its influence on the crystal quality and the functionality of solar cells that were prepared of the corresponding samples.

  9. Sulpyrine inhalation challenge test monitored continuously by respiratory impedance and 81mKr ventilation image

    International Nuclear Information System (INIS)

    Suenaga, Naoto; Nakamura, Hitoshi; Shiratsuki, Natsuo; Nishioka, Yasuhiro; Kitada, Osamu; Sugita, Minoru

    1993-01-01

    Continuous changes of respiratory impedance by the oscillation method using Asthograph and 81m Kr ventilation image during saline and sulpyrine solution (100 mg/ml, 250 mg/ml) provocation were simultaneously measured in 15 adult asthmatics and 7 normal individuals. Estimation of airway obstruction by respiratory impedance using Asthograph was difficult during sulpyrine inhalation, since respiratory impedance increased gradually. In addition to the measurement of respiratory impedance, images of 81m Kr ventilation were also obtained to estimate the regional ventilatory distribution. Estimation of the airway obstruction was easily obtained. Another advantage of 81m Kr ventilation image is that it can estimate the regional ventilatory distribution. The site of airway obstruction provoked by sulpyrine was observed predominantly in the lower lung field. The results of our present study were as follows. In 3 patients, increase of respiratory impedance and defect of 81m Kr ventilation image were observed. Two cases in this group were clinically diagnosed as having aspirin-induced asthma. In 7 patients, a defect of 81m Kr ventilation image was observed, but no increase of respiratory impedance was observed. Five cases in this group could not be clinically diagnosed as having aspirin-induced asthma. In 5 patients, neither defect of 81m Kr ventilation image nor increase of respiratory impedance could be detected. These results suggest that 81m Kr ventilation image on sulpyrine inhalation challenge test is a useful method for evaluating regional ventilatory distribution, but should be further investigated for application to aspirin-induced asthma. (author)

  10. The morphology, microstructure, and luminescent properties of CdS/CdTe films

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jassim, M.M.; Dhere, R.G.; Jones, K.M.; Hasoon, F.S.; Sheldon, P. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    This paper is concerned with the characterization of CdS/CdTe polycrystalline thin films for solar cells. The morphology, microstructure, and luminescent properties are studied by a powerful array of characterization techniques. The presence of pinholes in 100-nm thick CdS is observed. The microstructure of CdS and CdTe films is shown to be heavily faulted polycrystalline. The effect of deposition temperature on the grain size and the microstructure is investigated. The interdiffusion of sulfur and tellurium at the CdS/CdTe interface is studied for the first time by a nanoprobe technique. Considerable amount of sulfur is detected in CdTe in the vicinity of the interface of samples deposited at 625 C. The recombination behavior of grain boundaries and intragrain defects is investigated in as-deposited and heat-treated samples.

  11. Nipbl and mediator cooperatively regulate gene expression to control limb development.

    Directory of Open Access Journals (Sweden)

    Akihiko Muto

    2014-09-01

    Full Text Available Haploinsufficiency for Nipbl, a cohesin loading protein, causes Cornelia de Lange Syndrome (CdLS, the most common "cohesinopathy". It has been proposed that the effects of Nipbl-haploinsufficiency result from disruption of long-range communication between DNA elements. Here we use zebrafish and mouse models of CdLS to examine how transcriptional changes caused by Nipbl deficiency give rise to limb defects, a common condition in individuals with CdLS. In the zebrafish pectoral fin (forelimb, knockdown of Nipbl expression led to size reductions and patterning defects that were preceded by dysregulated expression of key early limb development genes, including fgfs, shha, hand2 and multiple hox genes. In limb buds of Nipbl-haploinsufficient mice, transcriptome analysis revealed many similar gene expression changes, as well as altered expression of additional classes of genes that play roles in limb development. In both species, the pattern of dysregulation of hox-gene expression depended on genomic location within the Hox clusters. In view of studies suggesting that Nipbl colocalizes with the mediator complex, which facilitates enhancer-promoter communication, we also examined zebrafish deficient for the Med12 Mediator subunit, and found they resembled Nipbl-deficient fish in both morphology and gene expression. Moreover, combined partial reduction of both Nipbl and Med12 had a strongly synergistic effect, consistent with both molecules acting in a common pathway. In addition, three-dimensional fluorescent in situ hybridization revealed that Nipbl and Med12 are required to bring regions containing long-range enhancers into close proximity with the zebrafish hoxda cluster. These data demonstrate a crucial role for Nipbl in limb development, and support the view that its actions on multiple gene pathways result from its influence, together with Mediator, on regulation of long-range chromosomal interactions.

  12. Defect in IgV gene somatic hypermutation in common variable immuno-deficiency syndrome.

    Science.gov (United States)

    Levy, Y; Gupta, N; Le Deist, F; Garcia, C; Fischer, A; Weill, J C; Reynaud, C A

    1998-10-27

    Common Variable Immuno-Deficiency (CVID) is the most common symptomatic primary antibody-deficiency syndrome, but the basic immunologic defects underlying this syndrome are not well defined. We report here that among eight patients studied (six CVID and two hypogammaglobulinemic patients with recurrent infections), there is in two CVID patients a dramatic reduction in Ig V gene somatic hypermutation with 40-75% of IgG transcripts totally devoid of mutations in the circulating memory B cell compartment. Functional assays of the T cell compartment point to an intrinsic B cell defect in the process of antibody affinity maturation in these two cases.

  13. Combined effects of thermal stress and Cd on lysosomal biomarkers and transcription of genes encoding lysosomal enzymes and HSP70 in mussels, Mytilus galloprovincialis

    Energy Technology Data Exchange (ETDEWEB)

    Izagirre, Urtzi; Errasti, Aitzpea; Bilbao, Eider; Múgica, María; Marigómez, Ionan, E-mail: ionan.marigomez@ehu.es

    2014-04-01

    Highlights: • Thermal stress and Cd caused lysosomal enlargement and membrane destabilisation. • hex, gusb and ctsl but not hsp70 were up-regulated at elevated temperature but down-regulated by Cd. • Thermal stress influenced lysosomal responses to Cd exposure. • The presence of Cd jeopardised responsiveness against thermal stress. - Abstract: In estuaries and coastal areas, intertidal organisms may be subject to thermal stress resulting from global warming, together with pollution. In the present study, the combined effects of thermal stress and exposure to Cd were investigated in the endo-lysosomal system of digestive cells in mussels, Mytilus galloprovincialis. Mussels were maintained for 24 h at 18 °C and 26 °C seawater temperature in absence and presence of 50 μg Cd/L seawater. Cadmium accumulation in digestive gland tissue, lysosomal structural changes and membrane stability were determined. Semi-quantitative PCR was applied to reveal the changes elicited by the different experimental conditions in hexosaminidase (hex), β-glucuronidase (gusb), cathepsin L (ctsl) and heat shock protein 70 (hsp70) gene transcription levels. Thermal stress provoked lysosomal enlargement whilst Cd-exposure led to fusion of lysosomes. Both thermal stress and Cd-exposure caused lysosomal membrane destabilisation. hex, gusb and ctsl genes but not hsp70 gene were transcriptionally up-regulated as a result of thermal stress. In contrast, all the studied genes were transcriptionally down-regulated in response to Cd-exposure. Cd bioaccumulation was comparable at 18 °C and 26 °C seawater temperatures but interactions between thermal stress and Cd-exposure were remarkable both in lysosomal biomarkers and in gene transcription. hex, gusb and ctsl genes, reacted to elevated temperature in absence of Cd but not in Cd-exposed mussels. Therefore, thermal stress resulting from global warming might influence the use and interpretation of lysosomal biomarkers in marine pollution

  14. Marfan syndrome gene search intensifies following identification of basic defect

    Energy Technology Data Exchange (ETDEWEB)

    Randall, T.

    1990-10-03

    Somewhere, quite possible along chromosomes 8 and/or 15, the gene(s) for Marfan syndrome will be found. The search is intensifying following a report that faulty scaffolding in the body's connective tissue appears to be the long sought after defect behind the syndrome, and inherited disorder that has caused the premature death of young, healthy-looking individuals. Finding that something in the living masonry of the human body has proven to be a 30-year inquisition of nearly two dozen molecules that has engaged investigators worldwide. Historically, researchers have searched for a structural flaw in one of the collagen molecules to explain the cause of Marfan Syndrome. Using monoclonal antibodies, researchers have implicated microfibrils, the extracellular filaments that provide a matrix for the deposit of elastin during embryonic development.

  15. Correlation of point defects in CdZnTe with charge transport:application to room-temperature X-ray and gamma-ray detectors. Final Technical Report

    International Nuclear Information System (INIS)

    Giles, Nancy C.

    2003-01-01

    The primary goal of this project has been to characterize and identify point defects (e.g., impurities, vacancies, vacancy-impurity complexes, etc.) in CdZnTe and determine the mechanisms by which these defects influence the carrier μτproducts. Special attention is given to the role of shallow donors, shallow acceptors, and deeper acceptors. There are two experimental focus areas in the project: (1) liquid-helium photoluminescence (PL) and PL excitation spectroscopy are used to identify and characterize donors and acceptors and to determine zinc molar fraction; and (2) electron paramagnetic resonance (EPR) and photoinduced EPR experiments are performed at liquid-helium temperature to identify paramagnetic point defects and to determine the concentration of these defects. Results from the two experimental focus areas are correlated with detector performance parameters (e.g., electron and hole μτ products), crystal growth conditions, and microstructure analyses

  16. CD14+CD16+ monocytes are the main target of Zika virus infection in peripheral blood mononuclear cells in a paediatric study in Nicaragua.

    Science.gov (United States)

    Michlmayr, Daniela; Andrade, Paulina; Gonzalez, Karla; Balmaseda, Angel; Harris, Eva

    2017-11-01

    The recent Zika pandemic in the Americas is linked to congenital birth defects and Guillain-Barré syndrome. White blood cells (WBCs) play an important role in host immune responses early in arboviral infection. Infected WBCs can also function as 'Trojan horses' and carry viruses into immune-sheltered spaces, including the placenta, testes and brain. Therefore, defining which WBCs are permissive to Zika virus (ZIKV) is critical. Here, we analyse ZIKV infectivity of peripheral blood mononuclear cells (PBMCs) in vitro and from Nicaraguan Zika patients and show CD14 + CD16 + monocytes are the main target of infection, with ZIKV replication detected in some dendritic cells. The frequency of CD14 + monocytes was significantly decreased, while the CD14 + CD16 + monocyte population was significantly expanded during ZIKV infection compared to uninfected controls. Viral RNA was detected in PBMCs from all patients, but in serum from only a subset, suggesting PBMCs may be a reservoir for ZIKV. In Zika patients, the frequency of infected cells was lower but the percentage of infected CD14 + CD16 + monocytes was significantly higher compared to dengue cases. The gene expression profile in monocytes isolated from ZIKV- and dengue virus-infected patients was comparable, except for significant differences in interferon-γ, CXCL12, XCL1, interleukin-6 and interleukin-10 levels. Thus, our study provides a detailed picture of the innate immune profile of ZIKV infection and highlights the important role of monocytes, and CD14 + CD16 + monocytes in particular.

  17. [X-linked immunodeficiency with magnesium defect, Epstein-Barr virus infection, and neoplasia: report of a family and literature review].

    Science.gov (United States)

    He, T Y; Xia, Y; Li, C G; Li, C R; Qi, Z X; Yang, J

    2018-01-02

    Objective: To investigate the clinical features and genetic characteristics of cases with X-linked immunodeficiency with magnesium defect, Epstein-Barr virus (EBV) infection, and neoplasia (XMEN). Methods: Characteristics of clinical material, immunological data and gene mutation of two cases with XMEN in the same family in China were retrospectively analyzed. The related reports literature were searched by using search terms'MAGT1 gene'or'XMEN'. Results: The proband, a 2-year-eight-month old boy, was admitted due to 'Urine with deepened color for two days and yellow stained skin for one day'. He had suffered from recurrent upper respiratory tract infection and sinusitis previously. Hemoglobin level was 38 g/L. The absolute count of reticulocytes was 223.2×10(9)/L. Urobilinogen level was 38 μmol/L (3-16 μmol/L). Coomb's test was positive. Both total (77.2 μmol/L) and indirect bilirubin (66 μmol/L) levels were elevated. There was an inverted CD4(+)/CD8(+)T cell ratio (0.89). The gene sequencing results showed MAGT1 gene c.472delG, p.D158Mfs*6 mutation. His 1-year-6-month old brother, was also identified to have MAGT1 gene c.472delG, p.D158Mfs*6 mutation.The younger brother mainly suffered from recurrent upper respiratory tract infection, accompanied by an inverted CD4(+)/CD8(+)T cell ratio (0.45), an elevated ratio and number of total B cells (45.7%). A total of 7 reports were retrieved including 11 male cases caused by MAGT1 gene mutation. These 11 cases were characterized by EBV viremia (11 cases), recurrent upper respiratory tract infection, otitis media or sinusitis (10 cases), secondary neoplasia diseases (8 cases), reduction of CD4(+)/CD8(+) T cell ratio (7 cases),and autoimmune thrombocytopenia or hemolytic anemia (2 cases). Conclusion: XMEN often manifests as male onset, recurrent upper respiratory tract infection, otitis media or sinusitis, EBV viremia, lymphoproliferative disease or lymphoma, autoimmune diseases and reduction of CD4(+)/CD8 (+)T cell

  18. Differential gene expression in a DNA double-strand-break repair mutant XRS-5 defective in Ku80. Analysis by cDNA microarray

    International Nuclear Information System (INIS)

    Chan, John Y.H.; Chen, Lung-Kun; Chang, Jui-Feng

    2001-01-01

    The ability of cells to rejoin DNA double-strand breaks (DSBs) usually correlates with their radiosensitivity. This correlation has been demonstrated in radiosensitive cells, including the Chinese hamster ovary mutant XRS-5. XRS-5 is defective in a DNA end-binding protein, Ku80, which is a component of a DNA-dependent protein kinase complex used for joining strand breaks. However, Ku80-deficient cells are known to be retarded in cell proliferation and growth as well as other yet to be identified defects. Using custom-made 600-gene cDNA microarray filters, we found differential gene expressions between the wild-type and XRS-5 cells. Defective Ku80 apparently affects the expression of several repair genes, including topoisomerase-I and -IIA, ERCC5, MLH1, and ATM. In contrast, other DNA repair-associated genes, such as GADD45A, EGR1 MDM2 and p53, were not affected. In addition, for large numbers of growth-associated genes, such as cyclins and clks, the growth factors and cytokines were also affected. Down-regulated expression was also found in several categories of seemingly unrelated genes, including apoptosis, angiogenesis, kinase and signaling, phosphatase, stress protein, proto-oncogenes and tumor suppressors, transcription and translation factors. A RT-PCR analysis confirmed that the XRS-5 cells used were defective in Ku80 expression. The diversified groups of genes being affected could mean that Ku80, a multi-functional DNA-binding protein, not only affects DNA repair, but is also involved in transcription regulation. Our data, taken together, indicate that there are specific genes being modulated in Ku80- deficient cells, and that some of the DNA repair pathways and other biological functions are apparently linked, suggesting that a defect in one gene could have global effects on many other processes. (author)

  19. Differential gene expression in a DNA double-strand-break repair mutant XRS-5 defective in Ku80. Analysis by cDNA microarray

    Energy Technology Data Exchange (ETDEWEB)

    Chan, John Y.H.; Chen, Lung-Kun; Chang, Jui-Feng [National Yang Ming Univ., Taipei, Taiwan (China). Inst. of Radiological Sciences] (and others)

    2001-12-01

    The ability of cells to rejoin DNA double-strand breaks (DSBs) usually correlates with their radiosensitivity. This correlation has been demonstrated in radiosensitive cells, including the Chinese hamster ovary mutant XRS-5. XRS-5 is defective in a DNA end-binding protein, Ku80, which is a component of a DNA-dependent protein kinase complex used for joining strand breaks. However, Ku80-deficient cells are known to be retarded in cell proliferation and growth as well as other yet to be identified defects. Using custom-made 600-gene cDNA microarray filters, we found differential gene expressions between the wild-type and XRS-5 cells. Defective Ku80 apparently affects the expression of several repair genes, including topoisomerase-I and -IIA, ERCC5, MLH1, and ATM. In contrast, other DNA repair-associated genes, such as GADD45A, EGR1 MDM2 and p53, were not affected. In addition, for large numbers of growth-associated genes, such as cyclins and clks, the growth factors and cytokines were also affected. Down-regulated expression was also found in several categories of seemingly unrelated genes, including apoptosis, angiogenesis, kinase and signaling, phosphatase, stress protein, proto-oncogenes and tumor suppressors, transcription and translation factors. A RT-PCR analysis confirmed that the XRS-5 cells used were defective in Ku80 expression. The diversified groups of genes being affected could mean that Ku80, a multi-functional DNA-binding protein, not only affects DNA repair, but is also involved in transcription regulation. Our data, taken together, indicate that there are specific genes being modulated in Ku80- deficient cells, and that some of the DNA repair pathways and other biological functions are apparently linked, suggesting that a defect in one gene could have global effects on many other processes. (author)

  20. Interethnic diversity of the CD209 (rs4804803 gene promoter polymorphism in African but not American sickle cell disease

    Directory of Open Access Journals (Sweden)

    Jenelle A. Noble

    2015-02-01

    Full Text Available Elucidating the genomic diversity of CD209 gene promoter polymorphism could assist in clarifying disease pathophysiology as well as contribution to co-morbidities. CD209 gene promoter polymorphism has been shown to be associated with susceptibility to infection. We hypothesize that CD209 mutant variants occur at a higher frequency among Africans and in sickle cell disease. We analyzed the frequency of the CD209 gene (rs4804803 in healthy control and sickle cell disease (SCD populations and determined association with disease. Genomic DNA was extracted from blood samples collected from 145 SCD and 231 control Africans (from Mali, 331 SCD and 379 control African Americans and 159 Caucasians. Comparative analysis among and between groups was carried out by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP. Per ethnic diversification, we found significant disparity in genotypic (23.4% versus 16.9% versus 3.2% and allelic frequencies (48.7% versus 42.1% versus 19.8% of the homozygote mutant variant of the CD209 (snp 309A/G gene promoter between Africans, African Americans and Caucasians respectively. Comparative evaluation between disease and control groups reveal a significant difference in genotypic (10.4% versus 23.4%; p = 0.002 and allelic frequencies (39.7% versus 48.7%; p = 0.02 of the homozygote mutant variant in African SCD and healthy controls respectively, an observation that is completely absent among Americans. Comparing disease groups, we found no difference in the genotypic (p = 0.19 or allelic (p = 0.72 frequencies of CD209 homozygote mutant variant between Africans and Americans with sickle cell disease. The higher frequency of CD209 homozygote mutant variants in the African control group reveals a potential impairment of the capacity to mount an immune response to infectious diseases, and possibly delineate susceptibility to or severity of infectious co-morbidities within and between groups.

  1. Study of CdTe:Cl and CdZnTe detectors for medical multi-slices X-ray Computed Tomography

    International Nuclear Information System (INIS)

    Ricq, St.

    1999-01-01

    The application of CdTe and CdZnTe detectors to medical X-ray Computed Tomography have been investigated. Different electrodes (Au, Pt, In) have been deposited on CdZnTe HPBM and on CdTe:ClTHM. Their injection properties have been determined with Current-Voltage characteristics. Under X-ray in CT conditions, injection currents measurements reveal trapped carriers space-charges formation. The same way, the comparisons of the responses to X-beam cut-off with various injection possibilities enable to follow the space-charges evolutions and then to determine the predominant traps types. Nevertheless, both hole and electron traps are responsible for the memory effect e.g. the currents levels dependence with irradiation history. This effect is noticed in particular on responses to fast flux variations that simulate scanner's conditions. Trap levels probably corresponding to native defects are responsible for these limitations. In order to make such detectors suitable for X-ray Computed Tomography, significant progresses in CdTe for CdZnTe crystal growth with an important defects densities reduction (factor 10), or possibly counting mode operation, seem necessary. (author)

  2. Selective in vivo radiosensitization by 5-fluorocytosine of human colorectal carcinoma cells transduced with the E. coli cytosine deaminase (CD) gene

    International Nuclear Information System (INIS)

    Gabel, M.; Kim, J.H.; Kolozsvary, A.; Khil, M.; Freytag, S.

    1998-01-01

    Purpose: The E. coli cytosine deaminase (CD) gene encodes an enzyme capable of converting the nontoxic prodrug 5-fluorocytosine (5-FC) to 5-fluorouracil (5-FU), a known radiosensitizer. Having previously shown that combined CD suicide gene therapy and radiation (RT) results in pronounced radiosensitization in vitro, we progressed to in vivo studies of combined therapy. Methods and Materials: WiDr human colon cancer cells were transduced in vitro with the CD gene and cells expressing CD were selected for use as xenografts in a nude mouse model. After administration of 5-FC, tumors received 10-30 Gy local field radiation (RT) and tumor growth delay was compared to control animals receiving either 5-FU, 5-FC, or RT alone. Results: Maximal growth delay was seen in mice treated with 5-FC for 6 consecutive days prior to RT. Combined treatment with 15 Gy radiation resulted in a dose-modifying factor (DMF) of 1.50, and a greater DMF was observed with higher doses of radiation. There was no appreciable toxicity using this new approach. In contrast, a similar treatment of combined 5-FU and radiation resulted in considerable toxicity and no appreciable radiosensitization. Conclusion: The present results show that combined suicide gene therapy and RT results in pronounced antitumor effect without any notable toxicity. This indicates that the CD gene may be useful in the development of novel treatment strategies combining radiation and gene therapy in the treatment of locally advanced cancers

  3. Decreased Expression of T-Cell Costimulatory Molecule CD28 on CD4 and CD8 T Cells of Mexican Patients with Pulmonary Tuberculosis

    Directory of Open Access Journals (Sweden)

    German Bernal-Fernandez

    2010-01-01

    Full Text Available Patients with tuberculosis frequently develop anergy, a state of T-cell hyporesponsiveness in which defective T-cell costimulation could be a factor. To know if the expression of T-cell costimulatory molecules was altered in tuberculosis, we analyzed the peripheral blood T-cell phenotype of 23 Mexican patients with pulmonary tuberculosis. There was severe CD4 (P<.001 and CD8 (P<.01 lymphopenia and upregulation of costimulatory molecule CD30 on CD4 and CD8 T cells (P<.05; this increase was higher in relapsing tuberculosis. The main finding was severe downregulation of the major costimulatory molecule CD28 on both CD8 and CD4 T cells (P<.001. Depletion of the CD4/CD28 subset, a hitherto undescribed finding, is relevant because CD4 T cells constitute the main arm of the cell-mediated antimycobacterial immune response.

  4. Growth and analysis of micro and nano CdTe arrays for solar cell applications

    Science.gov (United States)

    Aguirre, Brandon Adrian

    CdTe is an excellent material for infrared detectors and photovoltaic applications. The efficiency of CdTe/CdS solar cells has increased very rapidly in the last 3 years to ˜20% but is still below the maximum theoretical value of 30%. Although the short-circuit current density is close to its maximum of 30 mA/cm2, the open circuit voltage has potential to be increased further to over 1 Volt. The main limitation that prevents further increase in the open-circuit voltage and therefore efficiency is the high defect density in the CdTe absorber layer. Reducing the defect density will increase the open-circuit voltage above 1 V through an increase in the carrier lifetime and concentration to tau >10 ns and p > 10 16 cm-3, respectively. However, the large lattice mismatch (10%) between CdTe and CdS and the polycrystalline nature of the CdTe film are the fundamental reasons for the high defect density and pose a difficult challenge to solve. In this work, a method to physically and electrically isolate the different kinds of defects at the nanoscale and understand their effect on the electrical performance of CdTe is presented. A SiO2 template with arrays of window openings was deposited between the CdTe and CdS to achieve selective-area growth of the CdTe via close-space sublimation. The diameter of the window openings was varied from the micro to the nanoscale to study the effect of size on nucleation, grain growth, and defect density. The resulting structures enabled the possibility to electrically isolate and individually probe micrometer and nanoscale sized CdTe/CdS cells. Electron back-scattered diffraction was used to observe grain orientation and defects in the miniature cells. Scanning and transmission electron microscopy was used to study the morphology, grain boundaries, grain orientation, defect structure, and strain in the layers. Finally, conducting atomic force microscopy was used to study the current-voltage characteristics of the solar cells. An

  5. Determination of defect content and defect profile in semiconductor heterostructures

    International Nuclear Information System (INIS)

    Zubiaga, A; Garcia, J A; Plazaola, F; Zuniga-Perez, J; Munoz-Sanjose, V

    2011-01-01

    In this article we present an overview of the technique to obtain the defects depth profile and width of a deposited layer and multilayer based on positron annihilation spectroscopy. In particular we apply the method to ZnO and ZnO/ZnCdO layers deposited on sapphire substrates. After introducing some terminology we first calculate the trend that the W/S parameters of the Doppler broadening measurements must follow, both in a qualitative and quantitative way. From this point we extend the results to calculate the width and defect profiles in deposited layer samples.

  6. Determination of defect content and defect profile in semiconductor heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Zubiaga, A [Laboratory of Physics, HUT, PO Box 1100, 02015 TKK, Espoo (Finland); Garcia, J A; Plazaola, F [Zientzia eta Teknologia Fakultatea, Euskal Herriko Unbertsitatea, P. K. 644, 48080, Bilbao (Spain); Zuniga-Perez, J; Munoz-Sanjose, V, E-mail: fernando.plazaola@ehu.es [Universitat de Valencia, Departamento de Fisica Aplicada i Electromagnetisme, Dr. Moliner 50, 46100 Burjassot, Valencia (Spain)

    2011-01-10

    In this article we present an overview of the technique to obtain the defects depth profile and width of a deposited layer and multilayer based on positron annihilation spectroscopy. In particular we apply the method to ZnO and ZnO/ZnCdO layers deposited on sapphire substrates. After introducing some terminology we first calculate the trend that the W/S parameters of the Doppler broadening measurements must follow, both in a qualitative and quantitative way. From this point we extend the results to calculate the width and defect profiles in deposited layer samples.

  7. Steady state minority carrier lifetime and defect level occupation in thin film CdTe solar cells

    International Nuclear Information System (INIS)

    Cheng, Zimeng; Delahoy, Alan E.; Su, Zhaoqian; Chin, Ken K.

    2014-01-01

    A model consisting of Shockley Read Hall (SRH) recombination under steady state conditions of constant photon injection is proposed in this work to study the steady state minority carrier lifetime in CdS/CdTe thin film solar cells. The SRH recombination rate versus optical injection level is analytically approximated in the junction and neutral regions. In the neutral region, it is found that the recombination rate through certain defect levels has one constant value under lower optical injection conditions and another constant value under higher optical injection conditions with the transition occurring at a critical optical injection level. By simultaneously solving the equations of charge neutrality, charge conservation and SRH recombination in the neutral region, it is found that the compensation of doping and the reduction of minority carrier lifetime by donors in the p-type semiconductor can each be remedied by optical injection. It is also demonstrated that this optical-dependent SRH recombination is significant in large bandgap thin films. The measured minority carrier diffusion length in a CdS/CdTe solar cells, as determined from the steady-state photo-generated carrier collection efficiency, shows the predicted transition of minority carrier lifetime versus optical injection level. A numerical fitting of the indirectly-measured minority carrier lifetime by assuming the minority carrier mobility gives a non-intuitive picture of the p–n junction with a low free hole concentration but a narrow depletion region width. - Highlights: • Minority carrier lifetimes under different optical injections are solved. • Simplifications of Shockley–Read–Hall recombination equation are discussed. • The compensation of donor can be remedied with optical injection. • The recombination efficiency of donor can be remedied with optical injection. • The minority carrier lifetime transition under illumination was experimentally observed

  8. Associations between CD36 gene polymorphisms and susceptibility to coronary artery heart disease

    International Nuclear Information System (INIS)

    Zhang, Y.; Ling, Z.Y.; Deng, S.B.; Du, H.A.; Yin, Y.H.; Yuan, J.; She, Q.; Chen, Y.Q.

    2014-01-01

    Associations between polymorphisms of the CD36 gene and susceptibility to coronary artery heart disease (CHD) are not clear. We assessed allele frequencies and genotype distributions of CD36 gene polymorphisms in 112 CHD patients and 129 control patients using semi-quantitative polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) analysis. Additionally, we detected CD36 mRNA expression by real-time quantitative PCR, and we quantified plasma levels of oxidized low-density lipoprotein (ox-LDL) using an enzyme-linked immunosorbent assay (ELISA). There were no significant differences between the two groups (P>0.05) in allele frequencies of rs1761667 or in genotype distribution and allele frequencies of rs3173798. The genotype distribution of rs1761667 significantly differed between CHD patients and controls (P=0.034), with a significantly higher frequency of the AG genotype in the CHD group compared to the control group (P=0.011). The plasma levels of ox-LDL in patients with the AG genotype were remarkably higher than those with the GG and AA genotypes (P=0.010). In a randomized sample taken from patients in the two groups, the CD36 mRNA expression of the CHD patients was higher than that of the controls. In CHD patients, the CD36 mRNA expression in AG genotype patients was remarkably higher than in those with an AA genotype (P=0.005). After adjusted logistic regression analysis, the AG genotype of rs1761667 was associated with an increased risk of CHD (OR=2.337, 95% CI=1.336-4.087, P=0.003). In conclusion, the rs1761667 polymorphism may be closely associated with developing CHD in the Chongqing Han population of China, and an AG genotype may be a genetic susceptibility factor for CHD

  9. Associations between CD36 gene polymorphisms and susceptibility to coronary artery heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.; Ling, Z.Y.; Deng, S.B.; Du, H.A.; Yin, Y.H.; Yuan, J.; She, Q.; Chen, Y.Q. [Department of Cardiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing (China)

    2014-08-08

    Associations between polymorphisms of the CD36 gene and susceptibility to coronary artery heart disease (CHD) are not clear. We assessed allele frequencies and genotype distributions of CD36 gene polymorphisms in 112 CHD patients and 129 control patients using semi-quantitative polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) analysis. Additionally, we detected CD36 mRNA expression by real-time quantitative PCR, and we quantified plasma levels of oxidized low-density lipoprotein (ox-LDL) using an enzyme-linked immunosorbent assay (ELISA). There were no significant differences between the two groups (P>0.05) in allele frequencies of rs1761667 or in genotype distribution and allele frequencies of rs3173798. The genotype distribution of rs1761667 significantly differed between CHD patients and controls (P=0.034), with a significantly higher frequency of the AG genotype in the CHD group compared to the control group (P=0.011). The plasma levels of ox-LDL in patients with the AG genotype were remarkably higher than those with the GG and AA genotypes (P=0.010). In a randomized sample taken from patients in the two groups, the CD36 mRNA expression of the CHD patients was higher than that of the controls. In CHD patients, the CD36 mRNA expression in AG genotype patients was remarkably higher than in those with an AA genotype (P=0.005). After adjusted logistic regression analysis, the AG genotype of rs1761667 was associated with an increased risk of CHD (OR=2.337, 95% CI=1.336-4.087, P=0.003). In conclusion, the rs1761667 polymorphism may be closely associated with developing CHD in the Chongqing Han population of China, and an AG genotype may be a genetic susceptibility factor for CHD.

  10. Study of Cd Te recrystallization by hydrated-CdCl_2 thermal treatment

    International Nuclear Information System (INIS)

    Hernandez V, C.; Albor A, M. L.; Galarza G, U.; Aguilar H, J. R.; Gonzalez T, M. A.; Flores M, J. M.; Jimenez O, D.

    2017-01-01

    Cd Te thin films solar cells are currently produced using a layer sequence of glass/FTO/CdS/Cd Te/metal contact (Cu/Ag), these films are deposited by two different techniques, chemical bath deposition (CBD) and close space vapour transport (CSVT). In order to reach reasonable conversion efficiencies, the device has to be thermally treated in a hydrated-CdCl_2 atmosphere. This study was carried out using X-ray diffraction (XRD), photoluminescence, Sem-EDS, four probe method and Sims profiling of Cd Te. These analyses confirm the presence of hydrated CdCl_2 and Cd Te phases on Cd Te surface and shown a good recrystallization morphology helping to the carriers mobility along the structure. Using the thermal treatment was possible to reduce the resistivity of Cd Te thin film; it is a result to the Cl migration along the Cd Te solar cell structure, reducing the defects between CdS and Cd Te thin films. A strong Cd Te thin film recrystallization was observed by the implementation of a hydrated-CdCl_2 treatment doing to this a good candidate to Cd Te solar cells process. (Author)

  11. Identification of Ag-acceptors in $^{111}Ag^{111}Cd$ doped ZnTe and CdTe

    CERN Document Server

    Hamann, J; Deicher, M; Filz, T; Lany, S; Ostheimer, V; Strasser, F; Wolf, H; Wichert, T

    2000-01-01

    Nominally undoped ZnTe and CdTe crystals were implanted with radioactive /sup 111/Ag, which decays to /sup 111/Cd, and investigated by photoluminescence spectroscopy (PL). In ZnTe, the PL lines caused by an acceptor level at 121 meV are observed: the principal bound exciton (PBE) line, the donor-acceptor pair (DAP) band, and the two-hole transition lines. In CdTe, the PBE line and the DAP band that correspond to an acceptor level at 108 meV appear. Since the intensities of all these PL lines decrease in good agreement with the half-life of /sup 111/Ag of 178.8 h, both acceptor levels are concluded to be associated with defects containing a single Ag atom. Therefore, the earlier assignments to substitutional Ag on Zn- and Cd-lattice sites in the respective II-VI semiconductors are confirmed. The assignments in the literature of the S/sub 1/, S /sub 2/, and S/sub 3/ lines in ZnTe and the X/sub 1//sup Ag/, X/sub 2 //sup Ag//C/sub 1//sup Ag/, and C/sub 2//sup Ag/ lines in CdTe to Ag- related defect complexes are ...

  12. Metastability and reliability of CdTe solar cells

    Science.gov (United States)

    Guo, Da; Brinkman, Daniel; Shaik, Abdul R.; Ringhofer, Christian; Vasileska, Dragica

    2018-04-01

    Thin-film modules of all technologies often suffer from performance degradation over time. Some of the performance changes are reversible and some are not, which makes deployment, testing, and energy-yield prediction more challenging. Manufacturers devote significant empirical efforts to study these phenomena and to improve semiconductor device stability. Still, understanding the underlying reasons of these instabilities remains clouded due to the lack of ability to characterize materials at atomistic levels and the lack of interpretation from the most fundamental material science. The most commonly alleged causes of metastability in CdTe devices, such as ‘migration of Cu’, have been investigated rigorously over the past fifteen years. Still, the discussion often ended prematurely with stating observed correlations between stress conditions and changes in atomic profiles of impurities or CV doping concentration. Multiple hypotheses suggesting degradation of CdTe solar cell devices due to interaction and evolution of point defects and complexes were proposed, and none of them received strong theoretical or experimental confirmation. It should be noted that atomic impurity profiles in CdTe provide very little intelligence on active doping concentrations. The same elements could form different energy states, which could be either donors or acceptors, depending on their position in crystalline lattice. Defects interact with other extrinsic and intrinsic defects; for example, changing the state of an impurity from an interstitial donor to a substitutional acceptor often is accompanied by generation of a compensating intrinsic interstitial donor defect. Moreover, all defects, intrinsic and extrinsic, interact with the electrical potential and free carriers so that charged defects may drift in the electric field and the local electrical potential affects the formation energy of the point defects. Such complexity of interactions in CdTe makes understanding of temporal

  13. Gene expression patterns in CD4+ peripheral blood cells in healthy subjects and stage IV melanoma patients.

    Science.gov (United States)

    Felts, Sara J; Van Keulen, Virginia P; Scheid, Adam D; Allen, Kathleen S; Bradshaw, Renee K; Jen, Jin; Peikert, Tobias; Middha, Sumit; Zhang, Yuji; Block, Matthew S; Markovic, Svetomir N; Pease, Larry R

    2015-11-01

    Melanoma patients exhibit changes in immune responsiveness in the local tumor environment, draining lymph nodes, and peripheral blood. Immune-targeting therapies are revolutionizing melanoma patient care increasingly, and studies show that patients derive clinical benefit from these newer agents. Nonetheless, predicting which patients will benefit from these costly therapies remains a challenge. In an effort to capture individual differences in immune responsiveness, we are analyzing patterns of gene expression in human peripheral blood cells using RNAseq. Focusing on CD4+ peripheral blood cells, we describe multiple categories of immune regulating genes, which are expressed in highly ordered patterns shared by cohorts of healthy subjects and stage IV melanoma patients. Despite displaying conservation in overall transcriptome structure, CD4+ peripheral blood cells from melanoma patients differ quantitatively from healthy subjects in the expression of more than 2000 genes. Moreover, 1300 differentially expressed genes are found in transcript response patterns following activation of CD4+ cells ex vivo, suggesting that widespread functional discrepancies differentiate the immune systems of healthy subjects and melanoma patients. While our analysis reveals that the transcriptome architecture characteristic of healthy subjects is maintained in cancer patients, the genes expressed differentially among individuals and across cohorts provide opportunities for understanding variable immune states as well as response potentials, thus establishing a foundation for predicting individual responses to stimuli such as immunotherapeutic agents.

  14. [The Role of 5-Aza-CdR on Methylation of Promoter in RASSF1A Gene in Endometrial Carcinoma].

    Science.gov (United States)

    Huang, Li-ping; Chen, Chen; Wang, Xue-ping; Liu, Hui

    2015-05-01

    To explore the effect of demethylating drug 5-Aza-2'-deoxycytidine (5-Aza-CdR) on methtylation status of the Ras-association domain familylA gene (RASSF1A) in human endometrial carcinoma. Randomly'assign the human endometrial carcinoma cell line HEC-1-B into groups and use demethylating drug 5-Aza-CdR of different concentration to treat them. Then Methylation-specific polymerase chain reaction (MSP), real-time PCR, Western blot, TUNEL technology were used to analyze methylation status of RASSF1A promoter CpG islands, RASSF1A mRNA expression, RASSF1A protein expression and apoptosis of HEC-1-B cell. High DNA methylation in RASSF1A gene promoter region, low RASSF1A mRNA level and protein expression and out of control of human endometrial carcinoma cell HEC-1-B apoptosis were observed. 5-Aza-CdR of different concentration could reverse RASSF1A gene's methylation status, recover the expression of mRNA and protein, and control the growth of HEC-1-B by inducing apoptosis. Aberrant methylation of RASSF1A in endometrial cancer as a therapeutic target, demethylating agent 5-Aza-CdR could be an effective way of gene therapy.

  15. CD52 expression on CD4+ T cells in HIV-positive individuals on cART

    DEFF Research Database (Denmark)

    Vojdeman, Fie Juhl; Gaardbo, Julie Christine; Hartling, Hans Jakob

    2018-01-01

    BACKGROUND: Human immune defect virus (HIV) persists in a latent state in quiescent CD4+ T cells preventing eradication of HIV. CD52 is a surface molecule modulated by HIV. We aimed at examining factors related to CD52 expression on CD4+ T cells in HIV-positive individuals and the impact...... of initiation of combination antiretroviral therapy (cART). METHODS: Peripheral blood mononuclear cells (PBMC) from 18 HIV-positive individuals and 10 uninfected age and gender matched controls were examined by flow cytometry for CD38 and CD52 expression on CD4+ T cells. Stimulation assays were performed on 8...... healthy blood donors to determine a cut-off for CD52 expression. RESULTS: All examined CD4+ T cells expressed CD52. However, both CD4+ T cells with higher (CD52++) and with lower CD52 expression (CD52dim) were found in HIV-positive individuals compared to uninfected controls. Two % CD52dim cells defined...

  16. Association between CD14 gene C-260T polymorphism and inflammatory bowel disease: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Zhengting Wang

    Full Text Available BACKGROUND: The gene encoding CD14 has been proposed as an IBD-susceptibility gene with its polymorphism C-260T being widely evaluated, yet with conflicting results. The aim of this study was to investigate the association between this polymorphism and IBD by conducting a meta-analysis. METHODOLOGY/PRINCIPAL FINDINGS: Seventeen articles met the inclusion criteria, which included a total of 18 case-control studies, including 1900 ulcerative colitis (UC cases, 2535 Crohn's disease (CD cases, and 4004 controls. Data were analyzed using STATA software. Overall, association between C-260T polymorphism and increased UC risk was significant in allelic comparison (odds ratio [OR]  =1.21, 95% confidence interval [CI]: 1.02-1.43; P=0.027, homozygote model (OR  =1.44, 95% CI: 1.03-2.01; P=0.033, as well as dominant model (OR  =1.36, 95% CI: 1.06-1.75; P=0.016. However, there was negative association between this polymorphism and CD risk across all genetic models. Subgroup analyses by ethnicity suggested the risk-conferring profiles of -260T allele and -260 TT genotype with UC in Asians, but not in Caucasians. There was a low probability of publication bias. CONCLUSIONS/SIGNIFICANCE: Expanding previous results of individual studies, our findings demonstrated that CD14 gene C-260T polymorphism might be a promising candidate marker in susceptibility to UC, especially in Asians.

  17. Modification of electron states in CdTe absorber due to a buffer layer in CdTe/CdS solar cells

    International Nuclear Information System (INIS)

    Fedorenko, Y. G.; Major, J. D.; Pressman, A.; Phillips, L. J.; Durose, K.

    2015-01-01

    By application of the ac admittance spectroscopy method, the defect state energy distributions were determined in CdTe incorporated in thin film solar cell structures concluded on ZnO, ZnSe, and ZnS buffer layers. Together with the Mott-Schottky analysis, the results revealed a strong modification of the defect density of states and the concentration of the uncompensated acceptors as influenced by the choice of the buffer layer. In the solar cells formed on ZnSe and ZnS, the Fermi level and the energy position of the dominant deep trap levels were observed to shift closer to the midgap of CdTe, suggesting the mid-gap states may act as recombination centers and impact the open-circuit voltage and the fill factor of the solar cells. For the deeper states, the broadening parameter was observed to increase, indicating fluctuations of the charge on a microscopic scale. Such changes can be attributed to the grain-boundary strain and the modification of the charge trapped at the grain-boundary interface states in polycrystalline CdTe

  18. Modification of electron states in CdTe absorber due to a buffer layer in CdTe/CdS solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Fedorenko, Y. G., E-mail: y.fedorenko@liverpool.ac.uk; Major, J. D.; Pressman, A.; Phillips, L. J.; Durose, K. [Stephenson Institute for Renewable Energy and Department of Physics, School of Physical Sciences, Chadwick Building, University of Liverpool, Liverpool L69 7ZF (United Kingdom)

    2015-10-28

    By application of the ac admittance spectroscopy method, the defect state energy distributions were determined in CdTe incorporated in thin film solar cell structures concluded on ZnO, ZnSe, and ZnS buffer layers. Together with the Mott-Schottky analysis, the results revealed a strong modification of the defect density of states and the concentration of the uncompensated acceptors as influenced by the choice of the buffer layer. In the solar cells formed on ZnSe and ZnS, the Fermi level and the energy position of the dominant deep trap levels were observed to shift closer to the midgap of CdTe, suggesting the mid-gap states may act as recombination centers and impact the open-circuit voltage and the fill factor of the solar cells. For the deeper states, the broadening parameter was observed to increase, indicating fluctuations of the charge on a microscopic scale. Such changes can be attributed to the grain-boundary strain and the modification of the charge trapped at the grain-boundary interface states in polycrystalline CdTe.

  19. Vortex trapping by tilted columnar defects

    International Nuclear Information System (INIS)

    Baladie, I.; Buzdin, A.

    2000-01-01

    The irradiation of high-T c superconductors by inclined heavy-ion beam can create columnar defects (CD's) practically at any angle towards the crystal c axis. We calculate the energy of a tilted vortex trapped on an inclined columnar defect within the framework of an electromagnetic model. Under a weak perpendicular magnetic field, and if the CD radius is larger than the superconducting coherence length, vortices always prefer to be on a tilted CD than to be aligned along the external field. We calculate also the interaction energy between two tilted vortices and find that large attractive regions appear. In particular, in the plane defined by c axis and the CD axis, tilted vortices attract each other at long distances, leading to the formation of vortex chains. The equilibrium distance between vortices in a chain is of the order of the magnitude of the in-plane London penetration depth. The existence of the inclined trapped vortices could be revealed by torque measurements, and could also lead to the anisotropy of the in-plane resistivity and the critical current

  20. Formation of CdS/Cd{sub 1−x}Zn{sub x}S sandwich-structured quantum dots with high quantum efficiency in silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Mengling; Liu, Chao, E-mail: hite@whut.edu.cn; Han, Jianjun; Zhao, Xiujian

    2017-06-15

    CdS/Cd{sub 1−x}Zn{sub x}S sandwich-structured quantum dots (QDs) were precipitated in silicate glasses with high quantum efficiency up to 53%. The QDs were composed by a CdS core with a Cd{sub 1−x}Zn{sub x}S shell of about 1–3 nm in thickness through heat-treatment at 550 °C for 10 h. With the increased heat-treatment temperature, the intensity ratio between the intrinsic emission and the defects emission increased and the Stokes shift decreased from 84 to 4 meV, which was caused by both the increased size and passivated surface defects of the QDs.

  1. Joint molecule resolution requires the redundant activities of MUS-81 and XPF-1 during Caenorhabditis elegans meiosis.

    Directory of Open Access Journals (Sweden)

    Nigel J O'Neil

    Full Text Available The generation and resolution of joint molecule recombination intermediates is required to ensure bipolar chromosome segregation during meiosis. During wild type meiosis in Caenorhabditis elegans, SPO-11-generated double stranded breaks are resolved to generate a single crossover per bivalent and the remaining recombination intermediates are resolved as noncrossovers. We discovered that early recombination intermediates are limited by the C. elegans BLM ortholog, HIM-6, and in the absence of HIM-6 by the structure specific endonuclease MUS-81. In the absence of both MUS-81 and HIM-6, recombination intermediates persist, leading to chromosome breakage at diakinesis and inviable embryos. MUS-81 has an additional role in resolving late recombination intermediates in C. elegans. mus-81 mutants exhibited reduced crossover recombination frequencies suggesting that MUS-81 is required to generate a subset of meiotic crossovers. Similarly, the Mus81-related endonuclease XPF-1 is also required for a subset of meiotic crossovers. Although C. elegans gen-1 mutants have no detectable meiotic defect either alone or in combination with him-6, mus-81 or xpf-1 mutations, mus-81;xpf-1 double mutants are synthetic lethal. While mus-81;xpf-1 double mutants are proficient for the processing of early recombination intermediates, they exhibit defects in the post-pachytene chromosome reorganization and the asymmetric disassembly of the synaptonemal complex, presumably triggered by crossovers or crossover precursors. Consistent with a defect in resolving late recombination intermediates, mus-81; xpf-1 diakinetic bivalents are aberrant with fine DNA bridges visible between two distinct DAPI staining bodies. We were able to suppress the aberrant bivalent phenotype by microinjection of activated human GEN1 protein, which can cleave Holliday junctions, suggesting that the DNA bridges in mus-81; xpf-1 diakinetic oocytes are unresolved Holliday junctions. We propose that the

  2. Deregulated Lipid Sensing by Intestinal CD36 in Diet-Induced Hyperinsulinemic Obese Mouse Model.

    Directory of Open Access Journals (Sweden)

    Marjorie Buttet

    Full Text Available The metabolic syndrome (MetS greatly increases risk of cardiovascular disease and diabetes and is generally associated with abnormally elevated postprandial triglyceride levels. We evaluated intestinal synthesis of triglyceride-rich lipoproteins (TRL in a mouse model of the MetS obtained by feeding a palm oil-rich high fat diet (HFD. By contrast to control mice, MetS mice secreted two populations of TRL. If the smaller size population represented 44% of total particles in the beginning of intestinal lipid absorption in MetS mice, it accounted for only 17% after 4 h due to the secretion of larger size TRL. The MetS mice displayed accentuated postprandial hypertriglyceridemia up to 3 h due to a defective TRL clearance. These alterations reflected a delay in lipid induction of genes for key proteins of TRL formation (MTP, L-FABP and blood clearance (ApoC2. These abnormalities associated with blunted lipid sensing by CD36, which is normally required to optimize jejunal formation of large TRL. In MetS mice CD36 was not downregulated by lipid in contrast to control mice. Treatment of controls with the proteosomal inhibitor MG132, which prevented CD36 downregulation, resulted in blunted lipid-induction of MTP, L-FABP and ApoC2 gene expression, as in MetS mice. Absence of CD36 sensing was due to the hyperinsulinemia in MetS mice. Acute insulin treatment of controls before lipid administration abolished CD36 downregulation, lipid-induction of TRL genes and reduced postprandial triglycerides (TG, while streptozotocin-treatment of MetS mice restored lipid-induced CD36 degradation and TG secretion. In vitro, insulin treatment abolished CD36-mediated up-regulation of MTP in Caco-2 cells. In conclusion, HFD treatment impairs TRL formation in early stage of lipid absorption via insulin-mediated inhibition of CD36 lipid sensing. This impairment results in production of smaller TRL that are cleared slowly from the circulation, which might contribute to the

  3. [Polymorphism of CD209 and TLR3 genes in populations of North Eurasia].

    Science.gov (United States)

    Barkhash, A V; Babenko, V N; Voevoda, M I; Romaschenko, A G

    2016-06-01

    The DC-SIGN (dendritic cell-specific intercellular adhesion molecule (ICAM)-3-grabbing non-integrin) and TLR3 (toll-like receptor 3) proteins are key effectors of the innate immunity and particularly play an important role in the organism’s antiviral defense as pattern-recognition receptors. Previously, we demonstrated that certain genotypes and alleles of single nucleotide polymorphisms (SNPs) rs2287886 (G/A) in the promoter region of the CD209 gene (encoding DC-SIGN) and rs3775291 (G/A, Leu412Phe) in the exon 4 of the TLR3 gene are associated with human predisposition to tick-borne encephalitis in the Russian population. In the present work, the distribution of genotype and allele frequencies for these SNPs was studied in seven populations of North Eurasia, including Caucasians (Russians and Germans (from Altai region)), Central Asian Mongoloids (Altaians, Khakass, Tuvinians, and Shorians), and Arctic Mongoloids (Chukchi). It was found that the CD209 gene rs2287886 SNP A/A genotype and A allele, as well as the TLR3 gene rs3775291 SNP G/G genotype and G allele (the frequencies of which in our previous studies were increased in tick-borne encephalitis patients as compared with the population control (Russian citizens of Novosibirsk)), are preserved with a high frequency in Central Asian Mongoloids (who for a long time regularly came in contact with tick-borne encephalitis virus in places of their habitation). We suggested that predisposition to tick-borne encephalitis in Central Asian Mongoloid populations can be predetermined by a different set of genes and their polymorphisms than in the Russian population.

  4. Effect of microwave treatment on the luminescence properties of CdS and CdTe:Cl Single Crystals

    International Nuclear Information System (INIS)

    Red’ko, R. A.; Budzulyak, S. I.; Korbutyak, D. V.; Lotsko, A. P.; Vakhnyak, N. D.; Demchyna, L. A.; Kalytchuk, S. M.; Konakova, R. V.; Milenin, V. V.; Bykov, Yu. V.; Egorov, S. V.; Eremeev, A. G.

    2015-01-01

    The effect of microwave radiation on the luminescence properties of CdS and CdTe:Cl single crystals is studied. It is established that the exposure of these semiconductors to short-term (≤30 s) microwave radiation substantially modifies their impurity and defect structure. The mechanisms of transformation of the defect subsystem of II–VI single crystals upon microwave treatment are discussed. It is shown that the experimentally observed changes are defined by the nonthermal effects of microwave radiation at a power density of 7.5 W cm –2 ; at 90 W cm –2 , nonthermal effects are prevailing

  5. Study of Cd Te recrystallization by hydrated-CdCl{sub 2} thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez V, C.; Albor A, M. L.; Galarza G, U.; Aguilar H, J. R. [IPN, Escuela Superior de Fisica y Matematicas, Departamento de Fisica, San Pedro Zacatenco, 07738 Ciudad de Mexico (Mexico); Gonzalez T, M. A. [IPN, Escuela Superior de Computo, Nueva Industrial Vallejo, 07738 Ciudad de Mexico (Mexico); Flores M, J. M. [IPN, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, Departamento de Ingenieria en Metalurgia y Materiales, Nueva Industrial Vallejo, 07738 Ciudad de Mexico (Mexico); Jimenez O, D. [IPN, Escuela Superior de Ingenieria Mecanica y Electrica, SEPI, Nueva Industrial Vallejo, 07738 Ciudad de Mexico (Mexico)

    2017-11-01

    Cd Te thin films solar cells are currently produced using a layer sequence of glass/FTO/CdS/Cd Te/metal contact (Cu/Ag), these films are deposited by two different techniques, chemical bath deposition (CBD) and close space vapour transport (CSVT). In order to reach reasonable conversion efficiencies, the device has to be thermally treated in a hydrated-CdCl{sub 2} atmosphere. This study was carried out using X-ray diffraction (XRD), photoluminescence, Sem-EDS, four probe method and Sims profiling of Cd Te. These analyses confirm the presence of hydrated CdCl{sub 2} and Cd Te phases on Cd Te surface and shown a good recrystallization morphology helping to the carriers mobility along the structure. Using the thermal treatment was possible to reduce the resistivity of Cd Te thin film; it is a result to the Cl migration along the Cd Te solar cell structure, reducing the defects between CdS and Cd Te thin films. A strong Cd Te thin film recrystallization was observed by the implementation of a hydrated-CdCl{sub 2} treatment doing to this a good candidate to Cd Te solar cells process. (Author)

  6. Effects of CdCl2 treatment on the recrystallization and electro-optical properties of CdTe thin films

    International Nuclear Information System (INIS)

    Moutinho, H.R.; Al-Jassim, M.M.; Levi, D.H.; Dippo, P.C.; Kazmerski, L.L.

    1998-01-01

    The effects of CdCl 2 processing on the physical and electro-optical properties of CdTe were evaluated for thin films produced by physical vapor deposition and close-spaced sublimation (CSS). Two substrates (CdS and Indium - tin - oxide) were used with the physical vapor deposition (PVD) films specifically to isolate the effects of the Cd(S x Te 1-x ) alloy formed during the treatment of films deposited on CdS. The samples were analyzed by x-ray diffraction (XRD), atomic force microscopy (AFM), and photoluminescence. The observed changes in microstructure were caused by recrystallization, which consisted of the nucleation and development of a new CdTe structure and subsequent grain growth. Nevertheless, for these processes to take place, it was necessary that enough lattice-strain energy was available in the films. For this reason, PVD films did recrystallize, while CSS films did not. For the first time, recrystallization was observed directly in AFM images of CdTe films and confirmed by XRD analysis, which indicated the existence of two lattice parameters in PVD samples treated at 350 degree C. For samples treated at 400 degree C, the CdCl 2 treatment improved the minority-carrier lifetime of the films by more than one order of magnitude. This improvement was attributed to the elimination of deep defect levels within the band gap of the CdTe films as a result of the treatment. The sulfur diffusion into CdTe films deposited on CdS, during the CdCl 2 treatment at 400 degree C, strongly affected the defect structure

  7. Aryl hydrocarbon receptor (AhR-mediated perturbations in gene expression during early stages of CD4+ T-cell differentiation

    Directory of Open Access Journals (Sweden)

    Diana eRohlman

    2012-08-01

    Full Text Available Activation of the aryl hydrocarbon receptor (AhR by its prototypic ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, mediates potent suppression of T-cell dependent immune responses. The suppressive effects of TCDD occur early during CD4+ T-cell differentiation in the absence of effects on proliferation and have recently been associated with the induction of AhR-dependent regulatory T-cells (Treg. Since AhR functions as a ligand-activated transcription factor, changes in gene expression induced by TCDD during the early stages of CD4+ T-cell differentiation are likely to reflect fundamental mechanisms of AhR action. A custom panel of genes associated with T-cell differentiation was used to query changes in gene expression induced by exposure to 1 nM TCDD. CD4+ T-cells from AhR+/+ and AhR-/- mice were cultured with cytokines known to polarize the differentiation of T-cells to various effector lineages. Treatment with TCDD induced expression of Cyp1a1, Cyp1b1 and Ahrr in CD4+ T-cells from AhR+/+ mice under all culture conditions, validating the presence and activation of AhR in these cells. The highest levels of AhR activation occurred under Th17 conditions at 24 hours and Tr1 conditions at 48 hours. Unexpectedly, expression levels of most genes associated with early T-cell differentiation were unaltered by AhR activation, including lineage-specific genes that drive CD4+ T-cell polarization. The major exception was AhR-dependent up-regulation of Il22 that was seen under all culture conditions. Independent of TCDD, AhR down-regulated the expression of Il17a and Rorc based on increased expression of these genes in AhR-deficient cells across culture conditions. These findings are consistent with a role for AhR in down-regulation of inflammatory immune responses and implicate IL-22 as a potential contributor to the immunosuppressive effects of TCDD.

  8. Preferential repair of ionizing radiation-induced damage in the transcribed strand of an active human gene is defective in Cockayne syndrome

    International Nuclear Information System (INIS)

    Leadon, S.A.; Copper, P.K.

    1993-01-01

    Cells from patients with Cockayne syndrome (CS), which are sensitive to killing by UV although overall damage removal appears normal, are specifically defective in repair of UV damage in actively transcribe genes. Because several CS strains display cross-sensitivity to killing by ionizing radiation, the authors examined whether ionizing radiation-induced damage in active genes is preferentially repaired by normal cells and whether the radiosensitivity of CS cells can be explained by a defect in this process. They found that ionizing radiation-induced damage was repaired more rapidly in the transcriptionally active metallothionein IIA (MTIIA) gene than in the inactive MTIIB gene or in the genome overall in normal cells as a result of faster repair on the transcribed strand of MTIIA. Cells of the radiosensitive CS strain CS1AN are completely defective in this strand-selective repair of ionizing radiation-induced damage, although their overall repair rate appears normal. CS3BE cells, which are intermediate in radiosensitivity, do exhibit more rapid repair of the transcribed strand but at a reduced rate compared to normal cells. Xeroderma pigmentosum complementation group A cells, which are hypersensitive to UV light because of a defect in the nucleotide excision repair pathway but do not show increased sensitivity to ionizing radiation, preferentially repair ionizing radiation-induced damage on the transcribed strand of MTIIA. Thus, the ability to rapidly repair ionizing radiation-induced damage in actively transcribing genes correlates with cell survival. The results extend the generality of preferential repair in active genes to include damage other than bulky lesions

  9. [Transient congenital hypothyroidism due to biallelic defects of DUOX2 gene. Two clinical cases].

    Science.gov (United States)

    Enacán, Rosa E; Masnata, María E; Belforte, Fiorella; Papendieck, Patricia; Olcese, María C; Siffo, Sofía; Gruñeiro-Papendieck, Laura; Targovnik, Héctor; Rivolta, Carina M; Chiesa, Ana E

    2017-06-01

    Congenital hypothyroidism affects 1:2000-3000 newborns detected by neonatal screening programs. Dual oxidases, DUOX1 and 2, generate hydrogen peroxide needed for the thyroid hormone synthesis. Hipotiroidismo congénito transitorio por defectos bialélicos del gen DUOX2. Dos casos clínicos Transient congenital hypothyroidism due to biallelic defects of DUOX2 gene. Two clinical cases Mutations in the DUOX2 gene have been described in transient and permanent congenital hypothyroidism. Two brothers with congenital hypothyroidism detected by neonatal screening with eutopic gland and elevated thyroglobulin are described. They were treated with levothyroxine until it could be suspended in both during childhood, assuming the picture as transient. Organification disorder was confirmed. Both patients were compounds heterozygous for a mutation in exon 9 of the paternal allele (c.1057_1058delTT, p.F353PfsX36 or p.F353fsX388) and in exon 11 of the maternal allele (c.1271T > G, p.Y425X) of DUOX2 gene. Our finding confirms that the magnitude of the defect of DUOX2 is not related to the number of inactivated alleles, suggesting compensatory mechanisms in the peroxide supply. Sociedad Argentina de Pediatría.

  10. Genetic interactions between planar cell polarity genes cause diverse neural tube defects in mice

    Directory of Open Access Journals (Sweden)

    Jennifer N. Murdoch

    2014-10-01

    Full Text Available Neural tube defects (NTDs are among the commonest and most severe forms of developmental defect, characterized by disruption of the early embryonic events of central nervous system formation. NTDs have long been known to exhibit a strong genetic dependence, yet the identity of the genetic determinants remains largely undiscovered. Initiation of neural tube closure is disrupted in mice homozygous for mutations in planar cell polarity (PCP pathway genes, providing a strong link between NTDs and PCP signaling. Recently, missense gene variants have been identified in PCP genes in humans with NTDs, although the range of phenotypes is greater than in the mouse mutants. In addition, the sequence variants detected in affected humans are heterozygous, and can often be detected in unaffected individuals. It has been suggested that interactions between multiple heterozygous gene mutations cause the NTDs in humans. To determine the phenotypes produced in double heterozygotes, we bred mice with all three pairwise combinations of Vangl2Lp, ScribCrc and Celsr1Crsh mutations, the most intensively studied PCP mutants. The majority of double-mutant embryos had open NTDs, with the range of phenotypes including anencephaly and spina bifida, therefore reflecting the defects observed in humans. Strikingly, even on a uniform genetic background, variability in the penetrance and severity of the mutant phenotypes was observed between the different double-heterozygote combinations. Phenotypically, Celsr1Crsh;Vangl2Lp;ScribCrc triply heterozygous mutants were no more severe than doubly heterozygous or singly homozygous mutants. We propose that some of the variation between double-mutant phenotypes could be attributed to the nature of the protein disruption in each allele: whereas ScribCrc is a null mutant and produces no Scrib protein, Celsr1Crsh and Vangl2Lp homozygotes both express mutant proteins, consistent with dominant effects. The variable outcomes of these genetic

  11. Temperature-dependent photoluminescence from CdS/Si nanoheterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yue Li; Li, Yong; Ji, Peng Fei; Zhou, Feng Qun; Sun, Xiao Jun; Yuan, Shu Qing; Wan, Ming Li [Pingdingshan University, Department of Physics, Solar New Energy Research Center, Pingdingshan (China); Ling, Hong [North China University of Water Resources and Electric Power, Department of Mathematics and Information Science, Zhengzhou (China)

    2016-12-15

    CdS/Si nanoheterojunctions have been fabricated by growing nanocrystal CdS (nc-CdS) on the silicon nanoporous pillar array (Si-NPA) through using a chemical bath deposition method. The nanoheterojunctions have been constructed by three layers: the upper layer being a nc-CdS thin films, the intermediate layer being the interface region including nc-CdS and nanocrystal silicon (nc-Si), and the bottom layer being nc-Si layer grown on sc-Si substrate. The room temperature and temperature-dependent photoluminescence (PL) have been measured and analyzed to provide some useful information of defect states. Utilizing the Gauss-Newton fitting method, five emission peaks from the temperature-dependent PL spectra can be determined. From the high energy to low energy, these five peaks are ascribed to the some luminescence centers which are formed by the oxygen-related deficiency centers in the silicon oxide layer of Si-NPA, the band gap emission of nc-CdS, the transition from the interstitial cadmium (I{sub Cd}) to the valence band, the recombination from I{sub Cd} to cadmium vacancies (V{sub Cd}), and from sulfur vacancies (V{sub s}) to the valence band, respectively. Understanding of the defect states in the CdS/Si nanoheterojunctions is very meaningful for the performance of devices based on CdS/Si nanoheterojunctions. (orig.)

  12. CD133 expression in osteosarcoma and derivation of CD133⁺ cells.

    Science.gov (United States)

    Li, Ji; Zhong, Xiao-Yan; Li, Zong-Yu; Cai, Jin-Fang; Zou, Lin; Li, Jian-Min; Yang, Tao; Liu, Wei

    2013-02-01

    Cluster of differentiation 133 (CD133) is recognized as a stem cell marker for normal and cancerous tissues. Using cell culture and real‑time fluorescent polymerase chain reaction, CD133 expression was analyzed in osteosarcoma tissue and Saos‑2 cell lines. In addition, cancer stem cell‑related gene expression in the Saos‑2 cell line was determined to explore the mechanisms underlying tumorigenesis and high drug resistance in osteosarcoma. CD133+ cells were found to be widely distributed in various types of osteosarcoma tissue. Following cell culture, cells entered the G2/M and S cell cycle stages from G0/G1. Levels of CD133+ cells decreased to normal levels rapidly over the course of cell culture. Colony forming efficiency was higher in the CD133+ compared with the CD133‑ subpopulation of Saos‑2 cells. Expression levels of stem cell‑related genes, including multidrug resistance protein 1 (MDR1) and sex determining region Y‑box 2 (Sox2) in the CD133+ subpopulation of cells were found to be significantly higher compared with the CD133‑ subpopulation. These observations indicate that CD133+ Saos‑2 cells exhibit stem cell characteristics, including low abundance, quiescence and a high potential to undergo differentiation, as well as expression of key stem cell regulatory and drug resistance genes, which may cause osteosarcoma and high drug resistance.

  13. Aberrant Splicing of Estrogen Receptor, HER2, and CD44 Genes in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Kazushi Inoue

    2015-01-01

    Full Text Available Breast cancer (BC is the most common cause of cancer-related death among women under the age of 50 years. Established biomarkers, such as hormone receptors (estrogen receptor [ER]/progesterone receptor and human epidermal growth factor receptor 2 (HER2, play significant roles in the selection of patients for endocrine and trastuzumab therapies. However, the initial treatment response is often followed by tumor relapse with intrinsic resistance to the first-line therapy, so it has been expected to identify novel molecular markers to improve the survival and quality of life of patients. Alternative splicing of pre-messenger RNAs is a ubiquitous and flexible mechanism for the control of gene expression in mammalian cells. It provides cells with the opportunity to create protein isoforms with different, even opposing, functions from a single genomic locus. Aberrant alternative splicing is very common in cancer where emerging tumor cells take advantage of this flexibility to produce proteins that promote cell growth and survival. While a number of splicing alterations have been reported in human cancers, we focus on aberrant splicing of ER , HER2 , and CD44 genes from the viewpoint of BC development. ERα36 , a splice variant from the ER1 locus, governs nongenomic membrane signaling pathways triggered by estrogen and confers 4-hydroxytamoxifen resistance in BC therapy. The alternative spliced isoform of HER2 lacking exon 20 (Δ16HER2 has been reported in human BC; this isoform is associated with transforming ability than the wild-type HER2 and recapitulates the phenotypes of endocrine therapy-resistant BC. Although both CD44 splice isoforms ( CD44s , CD44v play essential roles in BC development, CD44v is more associated with those with favorable prognosis, such as luminal A subtype, while CD44s is linked to those with poor prognosis, such as HER2 or basal cell subtypes that are often metastatic. Hence, the detection of splice variants from these loci

  14. Enrichment of CD44 in basal-type breast cancer correlates with EMT, cancer stem cell gene profile, and prognosis

    Directory of Open Access Journals (Sweden)

    Xu HX

    2016-01-01

    Full Text Available Hanxiao Xu,1 Yijun Tian,1 Xun Yuan,1 Yu Liu,2 Hua Wu,1 Qian Liu,1 Gen Sheng Wu,3,4 Kongming Wu1 1Department of Oncology, 2Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China; 3Department of Oncology, 4Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA Abstract: Cluster of differentiation 44 (CD44 is a transmembrane glycoprotein that serves as the receptor for the extracellular matrix component hyaluronic acid. CD44 has been reported to play key roles in cell proliferation, motility, and survival, but its role in breast cancer remains controversial. In this study, we conducted a meta-analysis. A total of 23 published Gene Expression Omnibus databases were included to evaluate the association between CD44 mRNA expression and clinicopathological characteristics or prognosis of the patients with breast cancer. Our analysis revealed that CD44 expression was associated with clinicopathological features, including the histological grade, estrogen receptor status, progesterone receptor status, and human epidermal growth factor receptor-2 status. Higher levels of CD44 expression were observed in the basal subtype of breast cancer both at the mRNA and protein levels (odds ratio [OR] =2.08, 95% confidence interval [CI]: 1.72–2.52; OR =2.11, 95% CI: 1.67–2.68. Patients with CD44 overexpression exhibited significantly worse overall survival (hazard ratio =1.27; 95% CI: 1.04–1.55. Whole gene profile analysis revealed that CD44 expression was enriched in basal-type breast cancer and correlated with epithelial–mesenchymal transition and cancer stem cell gene profiles. In summary, our analyses indicated that CD44 potentially might be a prognostic marker for breast cancer and thus can serve as a therapeutic target for basal-type breast cancer. Keywords: breast cancer, CD44, survival prediction, meta

  15. Mutation update of transcription factor genes FOXE3, HSF4, MAF, and PITX3 causing cataracts and other developmental ocular defects.

    Science.gov (United States)

    Anand, Deepti; Agrawal, Smriti A; Slavotinek, Anne; Lachke, Salil A

    2018-04-01

    Mutations in the transcription factor genes FOXE3, HSF4, MAF, and PITX3 cause congenital lens defects including cataracts that may be accompanied by defects in other components of the eye or in nonocular tissues. We comprehensively describe here all the variants in FOXE3, HSF4, MAF, and PITX3 genes linked to human developmental defects. A total of 52 variants for FOXE3, 18 variants for HSF4, 20 variants for MAF, and 19 variants for PITX3 identified so far in isolated cases or within families are documented. This effort reveals FOXE3, HSF4, MAF, and PITX3 to have 33, 16, 18, and 7 unique causal mutations, respectively. Loss-of-function mutant animals for these genes have served to model the pathobiology of the associated human defects, and we discuss the currently known molecular function of these genes, particularly with emphasis on their role in ocular development. Finally, we make the detailed FOXE3, HSF4, MAF, and PITX3 variant information available in the Leiden Online Variation Database (LOVD) platform at https://www.LOVD.nl/FOXE3, https://www.LOVD.nl/HSF4, https://www.LOVD.nl/MAF, and https://www.LOVD.nl/PITX3. Thus, this article informs on key variants in transcription factor genes linked to cataract, aphakia, corneal opacity, glaucoma, microcornea, microphthalmia, anterior segment mesenchymal dysgenesis, and Ayme-Gripp syndrome, and facilitates their access through Web-based databases. © 2018 Wiley Periodicals, Inc.

  16. Splicing factor SR34b mutation reduces cadmium tolerance in Arabidopsis by regulating iron-regulated transporter 1 gene

    International Nuclear Information System (INIS)

    Zhang, Wentao; Du, Bojing; Liu, Di; Qi, Xiaoting

    2014-01-01

    Highlights: • Arabidopsis splicing factor SR34b gene is cadmium-inducible. • SR34b T-DNA insertion mutant is sensitive to cadmium due to high cadmium uptake. • SR34b is a regulator of cadmium transporter IRT1 at the posttranscription level. • These results highlight the roles of splicing factors in cadmium tolerance of plant. - Abstract: Serine/arginine-rich (SR) proteins are important splicing factors. However, the biological functions of plant SR proteins remain unclear especially in abiotic stresses. Cadmium (Cd) is a non-essential element that negatively affects plant growth and development. In this study, we provided clear evidence for SR gene involved in Cd tolerance in planta. Systemic expression analysis of 17 Arabidopsis SR genes revealed that SR34b is the only SR gene upregulated by Cd, suggesting its potential roles in Arabidopsis Cd tolerance. Consistent with this, a SR34b T-DNA insertion mutant (sr34b) was moderately sensitive to Cd, which had higher Cd 2+ uptake rate and accumulated Cd in greater amounts than wild-type. This was due to the altered expression of iron-regulated transporter 1 (IRT1) gene in sr34b mutant. Under normal growth conditions, IRT1 mRNAs highly accumulated in sr34b mutant, which was a result of increased stability of IRT1 mRNA. Under Cd stress, however, sr34b mutant plants had a splicing defect in IRT1 gene, thus reducing the IRT1 mRNA accumulation. Despite of this, sr34b mutant plants still constitutively expressed IRT1 proteins under Cd stress, thereby resulting in Cd stress-sensitive phenotype. We therefore propose the essential roles of SR34b in posttranscriptional regulation of IRT1 expression and identify it as a regulator of Arabidopsis Cd tolerance

  17. Splicing factor SR34b mutation reduces cadmium tolerance in Arabidopsis by regulating iron-regulated transporter 1 gene

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wentao; Du, Bojing; Liu, Di; Qi, Xiaoting, E-mail: qixiaoting@cnu.edu.cn

    2014-12-12

    Highlights: • Arabidopsis splicing factor SR34b gene is cadmium-inducible. • SR34b T-DNA insertion mutant is sensitive to cadmium due to high cadmium uptake. • SR34b is a regulator of cadmium transporter IRT1 at the posttranscription level. • These results highlight the roles of splicing factors in cadmium tolerance of plant. - Abstract: Serine/arginine-rich (SR) proteins are important splicing factors. However, the biological functions of plant SR proteins remain unclear especially in abiotic stresses. Cadmium (Cd) is a non-essential element that negatively affects plant growth and development. In this study, we provided clear evidence for SR gene involved in Cd tolerance in planta. Systemic expression analysis of 17 Arabidopsis SR genes revealed that SR34b is the only SR gene upregulated by Cd, suggesting its potential roles in Arabidopsis Cd tolerance. Consistent with this, a SR34b T-DNA insertion mutant (sr34b) was moderately sensitive to Cd, which had higher Cd{sup 2+} uptake rate and accumulated Cd in greater amounts than wild-type. This was due to the altered expression of iron-regulated transporter 1 (IRT1) gene in sr34b mutant. Under normal growth conditions, IRT1 mRNAs highly accumulated in sr34b mutant, which was a result of increased stability of IRT1 mRNA. Under Cd stress, however, sr34b mutant plants had a splicing defect in IRT1 gene, thus reducing the IRT1 mRNA accumulation. Despite of this, sr34b mutant plants still constitutively expressed IRT1 proteins under Cd stress, thereby resulting in Cd stress-sensitive phenotype. We therefore propose the essential roles of SR34b in posttranscriptional regulation of IRT1 expression and identify it as a regulator of Arabidopsis Cd tolerance.

  18. Antioxidant defense gene analysis in Brassica oleracea and Trifolium repens exposed to Cd and/or Pb.

    Science.gov (United States)

    Bernard, F; Dumez, S; Brulle, F; Lemière, S; Platel, A; Nesslany, F; Cuny, D; Deram, A; Vandenbulcke, F

    2016-02-01

    This study focused on the expression analysis of antioxidant defense genes in Brassica oleracea and in Trifolium repens. Plants were exposed for 3, 10, and 56 days in microcosms to a field-collected suburban soil spiked by low concentrations of cadmium and/or lead. In both species, metal accumulations and expression levels of genes encoding proteins involved and/or related to antioxidant defense systems (glutathione transferases, peroxidases, catalases, metallothioneins) were quantified in leaves in order to better understand the detoxification processes involved following exposure to metals. It appeared that strongest gene expression variations in T. repens were observed when plants are exposed to Cd (metallothionein and ascorbate peroxidase upregulations) whereas strongest variations in B. oleracea were observed in case of Cd/Pb co-exposures (metallothionein, glutathione transferase, and peroxidase upregulations). Results also suggest that there is a benefit to use complementary species in order to better apprehend the biological effects in ecotoxicology.

  19. In-Depth Analysis of Citrulline Specific CD4 T-Cells in Rheumatoid Arthritis

    Science.gov (United States)

    2017-01-01

    AWARD NUMBER: W81XWH-15-1-0004 TITLE: In-Depth Analysis of Citrulline-Specific CD4 T - Cells in Rheumatoid Arthritis PRINCIPAL INVESTIGATOR...2016 4. TITLE AND SUBTITLE In-Depth Analysis of Citrulline-Specific CD4 T Cells in Rheumatoid Arthritis 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH...NOTES 14. ABSTRACT The goal of this project is to test the hypothesis that cit-specific CD4 T cells present in rheumatoid arthritis (RA) patients

  20. CD48-deficient T-lymphocytes from DMBA-treated rats have de novo mutations in the endogenous Pig-a gene.

    Science.gov (United States)

    Dobrovolsky, Vasily N; Revollo, Javier; Pearce, Mason G; Pacheco-Martinez, M Monserrat; Lin, Haixia

    2015-10-01

    A major question concerning the scientific and regulatory acceptance of the rodent red blood cell-based Pig-a gene mutation assay is the extent to which mutants identified by their phenotype in the assay are caused by mutations in the Pig-a gene. In this study, we identified T-lymphocytes deficient for the glycosylphosphatidylinositol-anchored surface marker, CD48, in control and 7,12-dimethylbenz[a]anthracene (DMBA)-treated rats using a flow cytometric assay and determined the spectra of mutations in the endogenous Pig-a gene in these cells. CD48-deficient T-cells were seeded by sorting at one cell per well into 96-well plates, expanded into clones, and exons of their genomic Pig-a were sequenced. The majority (78%) of CD48-deficient T-cell clones from DMBA-treated rats had mutations in the Pig-a gene. The spectrum of DMBA-induced Pig-a mutations was dominated by mutations at A:T, with the mutated A being on the nontranscribed strand and A → T transversion being the most frequent change. The spectrum of Pig-a mutations in DMBA-treated rats was different from the spectrum of Pig-a mutations in N-ethyl-N-nitrosourea (ENU)-treated rats, but similar to the spectrum of DMBA mutations for another endogenous X-linked gene, Hprt. Only 15% of CD48-deficient mutants from control animals contained Pig-a mutations; T-cell biology may be responsible for a relatively large fraction of false Pig-a mutant lymphocytes in control animals. Among the verified mutants from control rats, the most common were frameshifts and deletions. The differences in the spectra of spontaneous, DMBA-, and ENU-induced Pig-a mutations suggest that the flow cytometric Pig-a assay detects de novo mutation in the endogenous Pig-a gene. © 2015 Wiley Periodicals, Inc.

  1. Molecular defects of the growth hormone receptor gene, including a new mutation, in Laron syndrome patients in Israel: relationship between defects and ethnic groups.

    Science.gov (United States)

    Shevah, Orit; Rubinstein, Menachem; Laron, Zvi

    2004-10-01

    Laron Syndrome, first described in Israel, is a form of dwarfism similar to isolated growth hormone deficiency caused by molecular defects in the GH receptor gene. To characterize the molecular defects of the GH-R in Laron syndrome patients followed in our clinic. Of the 63 patients in the cohort, we investigated 31 patients and 32 relatives belonging to several ethnic origins. Molecular analysis of the GH-R gene was performed using the single strand conformation polymorphism and DNA sequencing techniques. Eleven molecular defects including a novel mutation were found. Twenty-two patients carried mutations in the extracellular domain, one in the transmembrane domain, and 3 siblings with typical Laron syndrome presented a normal GH-R. Of interest are, on one hand, different mutations within the same ethnic groups: W-15X and 5, 6 exon deletion in Jewish-Iraqis, and E180 splice and 5, 6 exon deletion in Jewish-Moroccans; and on the other hand, identical findings in patients from distinct regions: the 785-1 G to T mutation in an Israeli-Druze and a Peruvian patient. A polymorphism in exon 6, Gly168Gly, was found in 15 probands. One typical Laron patient from Greece was heterozygous for R43X in exon 4 and heterozygous for Gly168Gly. In addition, a novel mutation in exon 5: substitution of T to G replacing tyrosine 86 for aspartic acid (Y86D) is described. This study demonstrates: a) an increased focal incidence of Laron syndrome in different ethnic groups from our area with a high incidence of consanguinity; and b) a relationship between molecular defects of the GH-R, ethnic group and geographic area.

  2. Surface preparation effects on efficient indium-tin-oxide-CdTe and CdS-CdTe heterojunction solar cells

    Science.gov (United States)

    Werthen, J. G.; Fahrenbruch, A. L.; Bube, R. H.; Zesch, J. C.

    1983-05-01

    The effects of CdTe surface preparation and subsequent junction formation have been investigated through characterization of ITO/CdTe and CdS/CdTe heterojunction solar cells formed by electron beam evaporation of indium-tin-oxide (ITO) and CdS onto single crystal p-type CdTe. Surfaces investigated include air-cleaved (110) surfaces, bromine-in-methanol etched (110) and (111) surfaces, and teh latter surfaces subjected to a hydrogen heat treatment. Both air-cleaved and hydrogen heat treated surfaces have a stoichiometric Cd to Te ratio. The ITO/CdTe junction formation process involves an air heat treatment, which ahs serious effects on the behavior of junctions formed on these surfaces. Etched surfaces which have a large excesss of Te, are less affected by the junction formation process and result in ITO/CdTe heterojunctions with solar efficiencies of 9% (Vsc =20 mA/cm2). Use of low-doped CdTe results in junctions characterized by considerably larger open-circuit votages (Voc =0.81 V) which are attributable to increasing diode factors caused by a shift from interfacial recombination to recombination in the depletion region. Resulting solar efficiencies reach 10.5% which is the highest value reported to date for a genuine CdTe heterojunction, CdS/CdTe heterojunctions show a strong dependence on CdTe surface condition, but less influence on the junction formation process. Solar efficiencies of 7.5% on an etched and heat treated surface are observed. All of these ITO/CdTe and CdS/CdTe heterojunctions have been stable for at least 10 months.

  3. Peripheral T-Cell Lymphoma with Aberrant Expression of CD19, CD20, and CD79a: Case Report and Literature Review

    Science.gov (United States)

    Matnani, Rahul G.; Stewart, Rachel L.; Pulliam, Joseph; Jennings, Chester D.; Kesler, Melissa

    2013-01-01

    A case of lymphoma of T-cell derivation with aberrant expression of three B-cell lineage markers (CD19, CD20, and CD79a), which was diagnosed on a left axillary excision, is described. Immunohistochemical studies and flow cytometry analysis demonstrated neoplastic cells expressing CD3, CD19, CD20, and CD79a with absence of CD4, CD8, CD10, CD30, CD34, CD56, CD68, TDT, MPO, PAX-5, and surface immunoglobulin. Gene rearrangement studies performed on paraffin blocks demonstrated monoclonal T-cell receptor gamma chain rearrangement with no evidence of clonal heavy chain rearrangement. The neoplastic cells were negative for Epstein-Barr virus (EBV) or Human Herpes Virus 8 (HHV-8). At the time of diagnosis, the PET scan demonstrated hypermetabolic neoplastic cells involving the left axilla, bilateral internal jugular areas, mediastinum, right hilum, bilateral lungs, and spleen. However, bone marrow biopsy performed for hemolytic anemia revealed normocellular bone marrow with trilineage maturation. The patient had no evidence of immunodeficiency or infection with EBV or HHV-8. This is the first reported case of a mature T-cell lymphoma with aberrant expression of three B-cell lineage markers. The current report also highlights the need for molecular gene rearrangement studies to determine the precise lineage of ambiguous neoplastic clones. PMID:24066244

  4. Peripheral T-Cell Lymphoma with Aberrant Expression of CD19, CD20, and CD79a: Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Rahul G. Matnani

    2013-01-01

    Full Text Available A case of lymphoma of T-cell derivation with aberrant expression of three B-cell lineage markers (CD19, CD20, and CD79a, which was diagnosed on a left axillary excision, is described. Immunohistochemical studies and flow cytometry analysis demonstrated neoplastic cells expressing CD3, CD19, CD20, and CD79a with absence of CD4, CD8, CD10, CD30, CD34, CD56, CD68, TDT, MPO, PAX-5, and surface immunoglobulin. Gene rearrangement studies performed on paraffin blocks demonstrated monoclonal T-cell receptor gamma chain rearrangement with no evidence of clonal heavy chain rearrangement. The neoplastic cells were negative for Epstein-Barr virus (EBV or Human Herpes Virus 8 (HHV-8. At the time of diagnosis, the PET scan demonstrated hypermetabolic neoplastic cells involving the left axilla, bilateral internal jugular areas, mediastinum, right hilum, bilateral lungs, and spleen. However, bone marrow biopsy performed for hemolytic anemia revealed normocellular bone marrow with trilineage maturation. The patient had no evidence of immunodeficiency or infection with EBV or HHV-8. This is the first reported case of a mature T-cell lymphoma with aberrant expression of three B-cell lineage markers. The current report also highlights the need for molecular gene rearrangement studies to determine the precise lineage of ambiguous neoplastic clones.

  5. Association of CD40 gene polymorphisms with sporadic breast cancer in Chinese Han women of Northeast China.

    Directory of Open Access Journals (Sweden)

    Chen Shuang

    Full Text Available BACKGROUND: Breast cancer is a polygenetic disorder with a complex inheritance pattern. Single nucleotide polymorphisms (SNPs, the most common genetic variations, influence not only phenotypic traits, but also interindividual predisposition to disease, treatment outcomes with drugs and disease prognosis. The co-stimulatory molecule CD40 plays a prominent role in immune regulation and homeostasis. Accumulating evidence suggests that CD40 contributes to the pathogenesis of cancer. Here, we set out to test the association between polymorphisms in the CD40 gene and breast carcinogenesis and tumor pathology. METHODOLOGY AND PRINCIPAL FINDINGS: Four SNPs (rs1800686, rs1883832, rs4810485 and rs3765459 were genotyped by the polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP method in a case-control study including 591 breast cancer patients and 600 age-matched healthy controls. Differences in the genotypic distribution between breast cancer patients and healthy controls were analyzed by the Chi-square test for trends. Our preliminary data showed a statistically significant association between the four CD40 gene SNPs and sporadic breast cancer risk (additive P = 0.0223, 0.0012, 0.0013 and 0.0279, respectively. A strong association was also found using the dominant, recessive and homozygote comparison genetic models. In the clinical features analysis, significant associations were observed between CD40 SNPs and lymph node metastasis, human epidermal growth factor receptor 2 (C-erbB2, estrogen receptor (ER, progesterone receptor (PR and tumor protein 53 (P53 statuses. In addition, our haplotype analysis indicated that the haplotype C(rs1883832G(rs4810485, which was located within the only linkage disequilibrium (LD block identified, was a protective haplotype for breast cancer, whereas T(rs1883832T(rs4810485 increased the risk in the studied population, even after correcting the P value for multiple testing (P = 0.0337 and

  6. Gene Therapy in Fanconi Anemia: A Matter of Time, Safety and Gene Transfer Tool Efficiency.

    Science.gov (United States)

    Verhoeyen, Els; Roman-Rodriguez, Francisco Jose; Cosset, Francois-Loic; Levy, Camille; Rio, Paula

    2017-01-01

    Fanconi anemia (FA) is a rare genetic syndrome characterized by progressive marrow failure. Gene therapy by infusion of FA-corrected autologous hematopoietic stem cells (HSCs) may offer a potential cure since it is a monogenetic disease with mutations in the FANC genes, coding for DNA repair enzymes [1]. However, the collection of hCD34+-cells in FA patients implies particular challenges because of the reduced numbers of progenitor cells present in their bone marrow (BM) [2] or mobilized peripheral blood [3-5]. In addition, the FA genetic defect fragilizes the HSCs [6]. These particular features might explain why the first clinical trials using murine leukemia virus derived retroviral vectors conducted for FA failed to show engraftment of corrected cells. The gene therapy field is now moving towards the use of lentiviral vectors (LVs) evidenced by recent succesful clinical trials for the treatment of patients suffering from adrenoleukodystrophy (ALD) [7], β-thalassemia [8], metachromatic leukodystrophy [9] and Wiskott-Aldrich syndrome [10]. LV trials for X-linked severe combined immunodificiency and Fanconi anemia (FA) defects were recently initiated [11, 12]. Fifteen years of preclinical studies using different FA mouse models and in vitro research allowed us to find the weak points in the in vitro culture and transduction conditions, which most probably led to the initial failure of FA HSC gene therapy. In this review, we will focus on the different obstacles, unique to FA gene therapy, and how they have been overcome through the development of optimized protocols for FA HSC culture and transduction and the engineering of new gene transfer tools for FA HSCs. These combined advances in the field hopefully will allow the correction of the FA hematological defect in the near future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. CdCl2 passivation of polycrystalline CdMgTe and CdZnTe absorbers for tandem photovoltaic cells

    Science.gov (United States)

    Swanson, Drew E.; Reich, Carey; Abbas, Ali; Shimpi, Tushar; Liu, Hanxiao; Ponce, Fernando A.; Walls, John M.; Zhang, Yong-Hang; Metzger, Wyatt K.; Sampath, W. S.; Holman, Zachary C.

    2018-05-01

    As single-junction silicon solar cells approach their theoretical limits, tandems provide the primary path to higher efficiencies. CdTe alloys can be tuned with magnesium (CdMgTe) or zinc (CdZnTe) for ideal tandem pairing with silicon. A II-VI/Si tandem holds the greatest promise for inexpensive, high-efficiency top cells that can be quickly deployed in the market using existing polycrystalline CdTe manufacturing lines combined with mature silicon production lines. Currently, all high efficiency polycrystalline CdTe cells require a chloride-based passivation process to passivate grain boundaries and bulk defects. This research examines the rich chemistry and physics that has historically limited performance when extending Cl treatments to polycrystalline 1.7-eV CdMgTe and CdZnTe absorbers. A combination of transmittance, quantum efficiency, photoluminescence, transmission electron microscopy, and energy-dispersive X-ray spectroscopy clearly reveals that during passivation, Mg segregates and out-diffuses, initially at the grain boundaries but eventually throughout the bulk. CdZnTe exhibits similar Zn segregation behavior; however, the onset and progression is localized to the back of the device. After passivation, CdMgTe and CdZnTe can render a layer that is reduced to predominantly CdTe electro-optical behavior. Contact instabilities caused by inter-diffusion between the layers create additional complications. The results outline critical issues and paths for these materials to be successfully implemented in Si-based tandems and other applications.

  8. Transcriptomic meta-analysis identifies gene expression characteristics in various samples of HIV-infected patients with nonprogressive disease.

    Science.gov (United States)

    Zhang, Le-Le; Zhang, Zi-Ning; Wu, Xian; Jiang, Yong-Jun; Fu, Ya-Jing; Shang, Hong

    2017-09-12

    A small proportion of HIV-infected patients remain clinically and/or immunologically stable for years, including elite controllers (ECs) who have undetectable viremia (10 years). However, the mechanism of nonprogression needs to be further resolved. In this study, a transcriptome meta-analysis was performed on nonprogressor and progressor microarray data to identify differential transcriptome pathways and potential biomarkers. Using the INMEX (integrative meta-analysis of expression data) program, we performed the meta-analysis to identify consistently differentially expressed genes (DEGs) in nonprogressors and further performed functional interpretation (gene ontology analysis and pathway analysis) of the DEGs identified in the meta-analysis. Five microarray datasets (81 cases and 98 controls in total), including whole blood, CD4 + and CD8 + T cells, were collected for meta-analysis. We determined that nonprogressors have reduced expression of important interferon-stimulated genes (ISGs), CD38, lymphocyte activation gene 3 (LAG-3) in whole blood, CD4 + and CD8 + T cells. Gene ontology (GO) analysis showed a significant enrichment in DEGs that function in the type I interferon signaling pathway. Upregulated pathways, including the PI3K-Akt signaling pathway in whole blood, cytokine-cytokine receptor interaction in CD4 + T cells and the MAPK signaling pathway in CD8 + T cells, were identified in nonprogressors compared with progressors. In each metabolic functional category, the number of downregulated DEGs was more than the upregulated DEGs, and almost all genes were downregulated DEGs in the oxidative phosphorylation (OXPHOS) and tricarboxylic acid (TCA) cycle in the three types of samples. Our transcriptomic meta-analysis provides a comprehensive evaluation of the gene expression profiles in major blood types of nonprogressors, providing new insights in the understanding of HIV pathogenesis and developing strategies to delay HIV disease progression.

  9. A cluster of coregulated genes determines TGF-beta-induced regulatory T-cell (Treg) dysfunction in NOD mice.

    Science.gov (United States)

    D'Alise, Anna Morena; Ergun, Ayla; Hill, Jonathan A; Mathis, Diane; Benoist, Christophe

    2011-05-24

    Foxp3(+) regulatory T cells (Tregs) originate in the thymus, but the Treg phenotype can also be induced in peripheral lymphoid organs or in vitro by stimulation of conventional CD4(+) T cells with IL-2 and TGF-β. There have been divergent reports on the suppressive capacity of these TGF-Treg cells. We find that TGF-Tregs derived from diabetes-prone NOD mice, although expressing normal Foxp3 levels, are uniquely defective in suppressive activity, whereas TGF-Tregs from control strains (B6g7) or ex vivo Tregs from NOD mice all function normally. Most Treg-typical transcripts were shared by NOD or B6g7 TGF-Tregs, except for a small group of differentially expressed genes, including genes relevant for suppressive activity (Lrrc32, Ctla4, and Cd73). Many of these transcripts form a coregulated cluster in a broader analysis of T-cell differentiation. The defect does not map to idd3 or idd5 regions. Whereas Treg cells from NOD mice are normal in spleen and lymph nodes, the NOD defect is observed in locations that have been tied to pathogenesis of diabetes (small intestine lamina propria and pancreatic lymph node). Thus, a genetic defect uniquely affects a specific Treg subpopulation in NOD mice, in a manner consistent with a role in determining diabetes susceptibility.

  10. An innovative strategy to clone positive modifier genes of defects caused by mtDNA mutations: MRPS18C as suppressor gene of m.3946G>A mutation in MT-ND1 gene.

    Science.gov (United States)

    Rodríguez-García, María Elena; Cotrina-Vinagre, Francisco Javier; Carnicero-Rodríguez, Patricia; Martínez-Azorín, Francisco

    2017-07-01

    We have developed a new functional complementation approach to clone modifier genes which overexpression is able to suppress the biochemical defects caused by mtDNA mutations (suppressor genes). This strategy consists in transferring human genes into respiratory chain-deficient fibroblasts, followed by a metabolic selection in a highly selective medium. We used a normalized expression cDNA library in an episomal vector (pREP4) to transfect the fibroblasts, and a medium with glutamine and devoid of any carbohydrate source to select metabolically. Growing the patient's fibroblasts in this selective medium, the deficient cells rapidly disappear unless they are rescued by the cDNA of a suppressor gene. The use of an episomal vector allows us to carry out several rounds of transfection/selection (cyclical phenotypic rescue) to enrich the rescue with true clones of suppressor genes. Using fibroblasts from a patient with epileptic encephalopathy with the m.3946G>A (p.E214K) mutation in the MT-ND1 gene, several candidate genes were identified and one of them was characterized functionally. Thus, overexpression of MRPS18C gene (that encode for bS18m protein) suppressed the molecular defects produced by this mtDNA mutation, recovering the complex I activity and reducing the ROS produced by this complex to normal levels. We suggest that modulation of bS18m expression may be an effective therapeutic strategy for the patients with this mutation.

  11. Repair of full-thickness articular cartilage defects by cultured mesenchymal stem cells transfected with the transforming growth factor β1 gene

    International Nuclear Information System (INIS)

    Guo Xiaodong; Zheng Qixin; Yang Shuhua; Shao Zengwu; Yuan Quan; Pan Zhengqi; Tang Shuo; Liu Kai; Quan Daping

    2006-01-01

    Articular cartilage repair remains a clinical and scientific challenge with increasing interest focused on the combined techniques of gene transfer and tissue engineering. Transforming growth factor beta 1 (TGF-β 1 ) is a multifunctional molecule that plays a central role in promotion of cartilage repair, and inhibition of inflammatory and alloreactive immune response. Cell mediated gene therapy can allow a sustained expression of TGF-β 1 that may circumvent difficulties associated with growth factor delivery. The objective of this study was to investigate whether TGF-β 1 gene modified mesenchymal stem cells (MSCs) could enhance the repair of full-thickness articular cartilage defects in allogeneic rabbits. The pcDNA 3 -TGF-β 1 gene transfected MSCs were seeded onto biodegradable poly-L-lysine coated polylactide (PLA) biomimetic scaffolds in vitro and allografted into full-thickness articular cartilage defects in 18 New Zealand rabbits. The pcDNA 3 gene transfected MSCs/biomimetic scaffold composites and the cell-free scaffolds were taken as control groups I and II, respectively. The follow-up times were 2, 4, 12 and 24 weeks. Macroscopical, histological and ultrastructural studies were performed. In vitro SEM studies found that abundant cartilaginous matrices were generated and completely covered the interconnected pores of the scaffolds two weeks post-seeding in the experimental groups. In vivo, the quality of regenerated tissue improved over time with hyaline cartilage filling the chondral region and a mixture of trabecular and compact bone filling the subchondral region at 24 weeks post-implantation. Joint repair in the experimental groups was better than that of either control group I or II, with respect to: (1) synthesis of hyaline cartilage specific extracellular matrix at the upper portion of the defect; (2) reconstitution of the subchondral bone at the lower portion of the defect and (3) inhibition of inflammatory and alloreactive immune responses. The

  12. L-leucine partially rescues translational and developmental defects associated with zebrafish models of Cornelia de Lange syndrome.

    Science.gov (United States)

    Xu, Baoshan; Sowa, Nenja; Cardenas, Maria E; Gerton, Jennifer L

    2015-03-15

    Cohesinopathies are human genetic disorders that include Cornelia de Lange syndrome (CdLS) and Roberts syndrome (RBS) and are characterized by defects in limb and craniofacial development as well as mental retardation. The developmental phenotypes of CdLS and other cohesinopathies suggest that mutations in the structure and regulation of the cohesin complex during embryogenesis interfere with gene regulation. In a previous project, we showed that RBS was associated with highly fragmented nucleoli and defects in both ribosome biogenesis and protein translation. l-leucine stimulation of the mTOR pathway partially rescued translation in human RBS cells and development in zebrafish models of RBS. In this study, we investigate protein translation in zebrafish models of CdLS. Our results show that phosphorylation of RPS6 as well as 4E-binding protein 1 (4EBP1) was reduced in nipbla/b, rad21 and smc3-morphant embryos, a pattern indicating reduced translation. Moreover, protein biosynthesis and rRNA production were decreased in the cohesin morphant embryo cells. l-leucine partly rescued protein synthesis and rRNA production in the cohesin morphants and partially restored phosphorylation of RPS6 and 4EBP1. Concomitantly, l-leucine treatment partially improved cohesinopathy embryo development including the formation of craniofacial cartilage. Interestingly, we observed that alpha-ketoisocaproate (α-KIC), which is a keto derivative of leucine, also partially rescued the development of rad21 and nipbla/b morphants by boosting mTOR-dependent translation. In summary, our results suggest that cohesinopathies are caused in part by defective protein synthesis, and stimulation of the mTOR pathway through l-leucine or its metabolite α-KIC can partially rescue development in zebrafish models for CdLS. © The Author 2014. Published by Oxford University Press.

  13. Electrical properties of MIS devices on CdZnTe/HgCdTe

    Science.gov (United States)

    Lee, Tae-Seok; Jeoung, Y. T.; Kim, Hyun Kyu; Kim, Jae Mook; Song, Jinhan; Ann, S. Y.; Lee, Ji Y.; Kim, Young Hun; Kim, Sun-Ung; Park, Mann-Jang; Lee, S. D.; Suh, Sang-Hee

    1998-10-01

    In this paper, we report the capacitance-voltage (C-V) properties of metal-insulator-semiconductor (MIS) devices on CdTe/HgCdTe by the metalorganic chemical vapor deposition (MOCVD) and CdZnTe/HgCdTe by thermal evaporation. In MOCVD, CdTe layers are directly grown on HgCdTe using the metal organic sources of DMCd and DiPTe. HgCdTe layers are converted to n-type and the carrier concentration, ND is low 1015 cm-3 after Hg-vacancy annealing at 260 degrees Celsius. In thermal evaporation, CdZnTe passivation layers were deposited on HgCdTe surfaces after the surfaces were etched with 0.5 - 2.0% bromine in methanol solution. To investigate the electrical properties of the MIS devices, the C-V measurement is conducted at 80 K and 1 MHz. C-V curve of MIS devices on CdTe/HgCdTe by MOCVD has shown nearly flat band condition and large hysteresis, which is inferred to result from many defects in CdTe layer induced during Hg-vacancy annealing process. A negative flat band voltage (VFB approximately equals -2 V) and a small hysteresis have been observed for MIS devices on CdZnTe/HgCdTe by thermal evaporation. It is inferred that the negative flat band voltage results from residual Te4+ on the surface after etching with bromine in methanol solution.

  14. Heterogeneity of Human Neutrophil CD177 Expression Results from CD177P1 Pseudogene Conversion.

    Directory of Open Access Journals (Sweden)

    Zuopeng Wu

    2016-05-01

    Full Text Available Most humans harbor both CD177neg and CD177pos neutrophils but 1-10% of people are CD177null, placing them at risk for formation of anti-neutrophil antibodies that can cause transfusion-related acute lung injury and neonatal alloimmune neutropenia. By deep sequencing the CD177 locus, we catalogued CD177 single nucleotide variants and identified a novel stop codon in CD177null individuals arising from a single base substitution in exon 7. This is not a mutation in CD177 itself, rather the CD177null phenotype arises when exon 7 of CD177 is supplied entirely by the CD177 pseudogene (CD177P1, which appears to have resulted from allelic gene conversion. In CD177 expressing individuals the CD177 locus contains both CD177P1 and CD177 sequences. The proportion of CD177hi neutrophils in the blood is a heritable trait. Abundance of CD177hi neutrophils correlates with homozygosity for CD177 reference allele, while heterozygosity for ectopic CD177P1 gene conversion correlates with increased CD177neg neutrophils, in which both CD177P1 partially incorporated allele and paired intact CD177 allele are transcribed. Human neutrophil heterogeneity for CD177 expression arises by ectopic allelic conversion. Resolution of the genetic basis of CD177null phenotype identifies a method for screening for individuals at risk of CD177 isoimmunisation.

  15. Immune function genes CD99L2, JARID2 and TPO show association with autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Ramos Paula S

    2012-06-01

    Full Text Available Abstract Background A growing number of clinical and basic research studies have implicated immunological abnormalities as being associated with and potentially responsible for the cognitive and behavioral deficits seen in autism spectrum disorder (ASD children. Here we test the hypothesis that immune-related gene loci are associated with ASD. Findings We identified 2,012 genes of known immune-function via Ingenuity Pathway Analysis. Family-based tests of association were computed on the 22,904 single nucleotide polymorphisms (SNPs from the 2,012 immune-related genes on 1,510 trios available at the Autism Genetic Resource Exchange (AGRE repository. Several SNPs in immune-related genes remained statistically significantly associated with ASD after adjusting for multiple comparisons. Specifically, we observed significant associations in the CD99 molecule-like 2 region (CD99L2, rs11796490, P = 4.01 × 10-06, OR = 0.68 (0.58-0.80, in the jumonji AT rich interactive domain 2 (JARID2 gene (rs13193457, P = 2.71 × 10-06, OR = 0.61 (0.49-0.75, and in the thyroid peroxidase gene (TPO (rs1514687, P = 5.72 × 10-06, OR = 1.46 (1.24-1.72. Conclusions This study suggests that despite the lack of a general enrichment of SNPs in immune function genes in ASD children, several novel genes with known immune functions are associated with ASD.

  16. CD133+CD24lo defines a 5-Fluorouracil-resistant colon cancer stem cell-like phenotype

    Science.gov (United States)

    Paschall, Amy V.; Yang, Dafeng; Lu, Chunwan; Redd, Priscilla S.; Choi, Jeong-Hyeon; Heaton, Christopher M.; Lee, Jeffrey R.; Nayak-Kapoor, Asha; Liu, Kebin

    2016-01-01

    The chemotherapeutic agent 5-Fluorouracil (5-FU) is the most commonly used drug for patients with advanced colon cancer. However, development of resistance to 5-FU is inevitable in almost all patients. The mechanism by which colon cancer develops 5-FU resistance is still unclear. One recently proposed theory is that cancer stem-like cells underlie colon cancer 5-FU resistance, but the phenotypes of 5-FU-resistant colon cancer stem cells are still controversial. We report here that 5-FU treatment selectively enriches a subset of CD133+ colon cancer cells in vitro. 5-FU chemotherapy also increases CD133+ tumor cells in human colon cancer patients. However, sorted CD133+ colon cancer cells exhibit no increased resistance to 5-FU, and CD133 levels exhibit no correlation with colon cancer patient survival or cancer recurrence. Genome-wide analysis of gene expression between sorted CD133+ colon cancer cells and 5-FU-selected colon cancer cells identifies 207 differentially expressed genes. CD24 is one of the genes whose expression level is lower in the CD133+ and 5-FU-resistant colon cancer cells as compared to CD133+ and 5-FU-sensitive colon cancer cells. Consequently, CD133+CD24lo cells exhibit decreased sensitivity to 5-FU. Therefore, we determine that CD133+CD24lo phenotype defines 5-FU-resistant human colon cancer stem cell-like cells. PMID:27659530

  17. Strain-Driven Stacking Faults in CdSe/CdS Core/Shell Nanorods.

    Science.gov (United States)

    Demortière, Arnaud; Leonard, Donovan N; Petkov, Valeri; Chapman, Karena; Chattopadhyay, Soma; She, Chunxing; Cullen, David A; Shibata, Tomohiro; Pelton, Matthew; Shevchenko, Elena V

    2018-04-19

    Colloidal semiconductor nanocrystals are commonly grown with a shell of a second semiconductor material to obtain desired physical properties, such as increased photoluminescence quantum yield. However, the growth of a lattice-mismatched shell results in strain within the nanocrystal, and this strain has the potential to produce crystalline defects. Here, we study CdSe/CdS core/shell nanorods as a model system to investigate the influence of core size and shape on the formation of stacking faults in the nanocrystal. Using a combination of high-angle annular dark-field scanning transmission electron microscopy and pair-distribution-function analysis of synchrotron X-ray scattering, we show that growth of the CdS shell on smaller, spherical CdSe cores results in relatively small strain and few stacking faults. By contrast, growth of the shell on larger, prolate spheroidal cores leads to significant strain in the CdS lattice, resulting in a high density of stacking faults.

  18. Virus-induced dysfunction of CD4+CD25+ T cells in patients with HTLV-I-associated neuroimmunological disease.

    Science.gov (United States)

    Yamano, Yoshihisa; Takenouchi, Norihiro; Li, Hong-Chuan; Tomaru, Utano; Yao, Karen; Grant, Christian W; Maric, Dragan A; Jacobson, Steven

    2005-05-01

    CD4(+)CD25(+) Tregs are important in the maintenance of immunological self tolerance and in the prevention of autoimmune diseases. As the CD4(+)CD25(+) T cell population in patients with human T cell lymphotropic virus type I-associated (HTLV-I-associated) myelopathy/tropical spastic paraparesis (HAM/TSP) has been shown to be a major reservoir for this virus, it was of interest to determine whether the frequency and function of CD4(+)CD25(+) Tregs in HAM/TSP patients might be affected. In these cells, both mRNA and protein expression of the forkhead transcription factor Foxp3, a specific marker of Tregs, were lower than those in CD4(+)CD25(+) T cells from healthy individuals. The virus-encoded transactivating HTLV-I tax gene was demonstrated to have a direct inhibitory effect on Foxp3 expression and function of CD4(+)CD25(+) T cells. This is the first report to our knowledge demonstrating the role of a specific viral gene product (HTLV-I Tax) on the expression of genes associated with Tregs (in particular, foxp3) resulting in inhibition of Treg function. These results suggest that direct human retroviral infection of CD4(+)CD25(+) T cells may be associated with the pathogenesis of HTLV-I-associated neurologic disease.

  19. CdTe and Cd1-xZnxTe for nuclear detectors: facts and fictions

    International Nuclear Information System (INIS)

    Fougeres, P.; Siffert, P.; Hageali, M.; Koebel, J.M.; Regal, R.

    1999-01-01

    Both CdTe and Cd 1-x Zn x Te (CZT) can be considered from their physical properties as very good materials for room temperature X- and γ-rays detection. However, despite years of intense material research, no significant advance has been made to help one to choose between both semiconductors. This paper reviews a few facts about CdTe and CZT to attempt to draw a real comparison between both. THM-CdTe and HPB-CZT have been grown and characterized in Strasbourg. Crystal growth, alloying effects, transport properties and defects are reviewed on the basis of our results and the published ones. The results show that it is still very difficult to claim which one is the best

  20. Comparative Studies of Vertebrate Platelet Glycoprotein 4 (CD36

    Directory of Open Access Journals (Sweden)

    Roger S. Holmes

    2012-09-01

    Full Text Available Platelet glycoprotein 4 (CD36 (or fatty acyl translocase [FAT], or scavenger receptor class B, member 3 [SCARB3] is an essential cell surface and skeletal muscle outer mitochondrial membrane glycoprotein involved in multiple functions in the body. CD36 serves as a ligand receptor of thrombospondin, long chain fatty acids, oxidized low density lipoproteins (LDLs and malaria-infected erythrocytes. CD36 also influences various diseases, including angiogenesis, thrombosis, atherosclerosis, malaria, diabetes, steatosis, dementia and obesity. Genetic deficiency of this protein results in significant changes in fatty acid and oxidized lipid uptake. Comparative CD36 amino acid sequences and structures and CD36 gene locations were examined using data from several vertebrate genome projects. Vertebrate CD36 sequences shared 53–100% identity as compared with 29–32% sequence identities with other CD36-like superfamily members, SCARB1 and SCARB2. At least eight vertebrate CD36 N-glycosylation sites were conserved which are required for membrane integration. Sequence alignments, key amino acid residues and predicted secondary structures were also studied. Three CD36 domains were identified including cytoplasmic, transmembrane and exoplasmic sequences. Conserved sequences included N- and C-terminal transmembrane glycines; and exoplasmic cysteine disulphide residues; TSP-1 and PE binding sites, Thr92 and His242, respectively; 17 conserved proline and 14 glycine residues, which may participate in forming CD36 ‘short loops’; and basic amino acid residues, and may contribute to fatty acid and thrombospondin binding. Vertebrate CD36 genes usually contained 12 coding exons. The human CD36 gene contained transcription factor binding sites (including PPARG and PPARA contributing to a high gene expression level (6.6 times average. Phylogenetic analyses examined the relationships and potential evolutionary origins of the vertebrate CD36 gene with vertebrate

  1. Responses of different water spinach cultivars and their hybrid to Cd, Pb and Cd-Pb exposures.

    Science.gov (United States)

    Xin, Junliang; Huang, Baifei; Yang, Zhongyi; Yuan, Jiangang; Dai, Hongwen; Qiu, Qiu

    2010-03-15

    A pot experiment was conducted to investigate the stability of Cd and/or Pb accumulation in shoot of Cd and Pb pollution-safe cultivars (PSCs), the hereditary pattern of shoot Cd accumulation, and the transfer potentials of Cd and Pb in water spinach (Ipomoea aquatica Forsk.). A typical Cd-PSC, a typical non-Cd-PSC (Cd accumulative cultivar), a hybrid from the former two cultivars, and two typical Cd+Pb-PSCs were grown in seven soils with different concentrations of Cd and Pb. The results showed that concentrations of Cd and Pb in shoot of the PSCs were always lower than the non-PSC and the highest Cd and Pb transfer factors were also always observed in the non-PSC, indicating the stability of the PSCs in Cd and Pb accumulation. Shoot Cd concentration seemed to be controlled by high Cd dominant gene(s) and thus crossbreeding might not minimize Cd accumulation in water spinach. Interaction between Cd and Pb in soils affected the accumulations of the metals in shoot of water spinach. Under middle Cd and Pb treatments, the presence of higher Pb promoted the accumulation of Cd. However, under high Pb treatment, accumulations of Cd and Pb were both restricted. (c) 2009 Elsevier B.V. All rights reserved.

  2. A cluster of coregulated genes determines TGF-β–induced regulatory T-cell (Treg) dysfunction in NOD mice

    Science.gov (United States)

    D'Alise, Anna Morena; Ergun, Ayla; Hill, Jonathan A.; Mathis, Diane; Benoist, Christophe

    2011-01-01

    Foxp3+ regulatory T cells (Tregs) originate in the thymus, but the Treg phenotype can also be induced in peripheral lymphoid organs or in vitro by stimulation of conventional CD4+ T cells with IL-2 and TGF-β. There have been divergent reports on the suppressive capacity of these TGF-Treg cells. We find that TGF-Tregs derived from diabetes-prone NOD mice, although expressing normal Foxp3 levels, are uniquely defective in suppressive activity, whereas TGF-Tregs from control strains (B6g7) or ex vivo Tregs from NOD mice all function normally. Most Treg-typical transcripts were shared by NOD or B6g7 TGF-Tregs, except for a small group of differentially expressed genes, including genes relevant for suppressive activity (Lrrc32, Ctla4, and Cd73). Many of these transcripts form a coregulated cluster in a broader analysis of T-cell differentiation. The defect does not map to idd3 or idd5 regions. Whereas Treg cells from NOD mice are normal in spleen and lymph nodes, the NOD defect is observed in locations that have been tied to pathogenesis of diabetes (small intestine lamina propria and pancreatic lymph node). Thus, a genetic defect uniquely affects a specific Treg subpopulation in NOD mice, in a manner consistent with a role in determining diabetes susceptibility. PMID:21543717

  3. In Vitro Pre-Clinical Validation of Suicide Gene Modified Anti-CD33 Redirected Chimeric Antigen Receptor T-Cells for Acute Myeloid Leukemia.

    Directory of Open Access Journals (Sweden)

    Kentaro Minagawa

    Full Text Available Approximately fifty percent of patients with acute myeloid leukemia can be cured with current therapeutic strategies which include, standard dose chemotherapy for patients at standard risk of relapse as assessed by cytogenetic and molecular analysis, or high-dose chemotherapy with allogeneic hematopoietic stem cell transplant for high-risk patients. Despite allogeneic hematopoietic stem cell transplant about 25% of patients still succumb to disease relapse, therefore, novel strategies are needed to improve the outcome of patients with acute myeloid leukemia.We developed an immunotherapeutic strategy targeting the CD33 myeloid antigen, expressed in ~ 85-90% of patients with acute myeloid leukemia, using chimeric antigen receptor redirected T-cells. Considering that administration of CAR T-cells has been associated with cytokine release syndrome and other potential off-tumor effects in patients, safety measures were here investigated and reported. We genetically modified human activated T-cells from healthy donors or patients with acute myeloid leukemia with retroviral supernatant encoding the inducible Caspase9 suicide gene, a ΔCD19 selectable marker, and a humanized third generation chimeric antigen receptor recognizing human CD33. ΔCD19 selected inducible Caspase9-CAR.CD33 T-cells had a 75±3.8% (average ± standard error of the mean chimeric antigen receptor expression, were able to specifically lyse CD33+ targets in vitro, including freshly isolated leukemic blasts from patients, produce significant amount of tumor-necrosis-factor-alpha and interferon-gamma, express the CD107a degranulation marker, and proliferate upon antigen specific stimulation. Challenging ΔCD19 selected inducible Caspase9-CAR.CD33 T-cells with programmed-death-ligand-1 enriched leukemia blasts resulted in significant killing like observed for the programmed-death-ligand-1 negative leukemic blasts fraction. Since the administration of 10 nanomolar of a non

  4. First principles calculations of point defect diffusion in CdS buffer layers: Implications for Cu(In,Ga)(Se,S){sub 2} and Cu{sub 2}ZnSn(Se,S){sub 4}-based thin-film photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Varley, J. B.; Lordi, V. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); He, X.; Rockett, A. [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2016-01-14

    We investigate point defects in CdS buffer layers that may arise from intermixing with Cu(In,Ga)Se{sub 2} (CIGSe) or Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) absorber layers in thin-film photovoltaics (PV). Using hybrid functional calculations, we characterize the migration barriers of Cu, In, Ga, Se, Sn, Zn, Na, and K impurities and assess the activation energies necessary for their diffusion into the bulk of the buffer. We find that Cu, In, and Ga are the most mobile defects in CIGS-derived impurities, with diffusion expected to proceed into the buffer via interstitial-hopping and cadmium vacancy-assisted mechanisms at temperatures ∼400 °C. Cu is predicted to strongly favor migration paths within the basal plane of the wurtzite CdS lattice, which may facilitate defect clustering and ultimately the formation of Cu-rich interfacial phases as observed by energy dispersive x-ray spectroscopic elemental maps in real PV devices. Se, Zn, and Sn defects are found to exhibit much larger activation energies and are not expected to diffuse within the CdS bulk at temperatures compatible with typical PV processing temperatures. Lastly, we find that Na interstitials are expected to exhibit slightly lower activation energies than K interstitials despite having a larger migration barrier. Still, we find both alkali species are expected to diffuse via an interstitially mediated mechanism at slightly higher temperatures than enable In, Ga, and Cu diffusion in the bulk. Our results indicate that processing temperatures in excess of ∼400 °C will lead to more interfacial intermixing with CdS buffer layers in CIGSe devices, and less so for CZTSSe absorbers where only Cu is expected to significantly diffuse into the buffer.

  5. Design Strategies for High-Efficiency CdTe Solar Cells

    Science.gov (United States)

    Song, Tao

    With continuous technology advances over the past years, CdTe solar cells have surged to be a leading contributor in thin-film photovoltaic (PV) field. While empirical material and device optimization has led to considerable progress, further device optimization requires accurate device models that are able to provide an in-depth understanding of CdTe device physics. Consequently, this thesis is intended to develop a comprehensive model system for high-efficiency CdTe devices through applying basic design principles of solar cells with numerical modeling and comparing results with experimental CdTe devices. The CdTe absorber is central to cell performance. Numerical simulation has shown the feasibility of high energy-conversion efficiency, which requires both high carrier density and long minority carrier lifetime. As the minority carrier lifetime increases, the carrier recombination at the back surface becomes a limitation for cell performance with absorber thickness cell performance, since it can induce a large valence-band bending which suppresses the hole injection near the interface for the electron-hole recombination, but too large a spike is detrimental to photocurrent transport. In a heterojunction device with many defects at the emitter/absorber interface (high SIF), a thin and highly-doped emitter can induce strong absorber inversion and hence help maintain good cell performance. Performance losses from acceptor-type interface defects can be significant when interface defect states are located near mid-gap energies. In terms of specific emitter materials, the calculations suggest that the (Mg,Zn)O alloy with 20% Mg, or a similar type-I heterojunction partner with moderate DeltaE C (e.g., Cd(S,O) or (Cd,Mg)Te with appropriate oxygen or magnesium ratios) should yield higher voltages and would therefore be better candidates for the CdTe-cell emitter. The CdTe/substrate interface is also of great importance, particularly in the growth of epitaxial

  6. Device design of GaSb/CdS thin film thermal photovoltaic solar cells%基于GaSb/CdS薄膜热光伏电池的器件设计∗

    Institute of Scientific and Technical Information of China (English)

    吴限量; 张德贤; 蔡宏琨; 周严; 倪牮; 张建军

    2015-01-01

    基于GaSb薄膜热光伏器件是降低热光伏系统成本的有效途径之一,本文主要针对GaSb/CdS薄膜热光伏器件结构进行理论分析.采用AFORS-HET软件进行模拟仿真,分析GaSb和CdS两种材料各自的缺陷态密度、界面态对电池性能的影响.根据软件模拟可以得知,吸收层GaSb的缺陷态密度以及GaSb与CdS之间的界面态密度是影响电池性能的重要因素.当GaSb缺陷态增加时,主要影响电池的填充因子,电池效率明显下降.而作为窗口层的CdS缺陷态密度对电池性能影响不明显,当CdS缺陷态密度上升4个数量级时,电池效率仅下降0.11%.%Enthusiasm in the research of thermo-photovoltaic (TPV) cells has been aroused because the low bandwidth semi-conductors of III-V family are coming into use. GaSb, as a member of III-V family, has many merits such as high absorption coeffcient, and low band gap of 0.725 eV at 300 K etc.. At present thermo-photovoltaic cells are usually based on GaSb wafer, and it can be manufactured by the vertical Bridgeman method. Thermo-photovoltaic cell based on GaSb films is one of the effective ways to reduce the cost of the thermo-photovoltaic system. GaSb polycrystalline films can be grown by physical vapor deposition (PVD) which has advantages in using fewer materials and energy, and also in doing little harm to the environment. Because of residual acceptor defects VGaGaSb, GaSb thin film is usually of p-type semiconductor. So we should find n-type semiconductor material to form pn junction. We choose CdS as the emission layer of a cell structure. CdS belongs to n-type semiconductor with a narrow band gap of 2.4 eV and high light transmissivity. CdS thin film grown by chemical bath deposition (CBD) has passivation properties for GaSb. CdS layers can remove native oxides from GaSb surface and reduce the surface recombination velocity of GaSb. This paper focuses on theoretical analysis of GaSb/CdS thin film photovoltaic

  7. Electron microscopy and positron annihilation study of CdSe nanoclusters embedded in MgO

    International Nuclear Information System (INIS)

    Huis, M.A. van; Veen, A. van; Schut, H.; Eijt, S.W.H.; Kooi, B.J.; Hosson, J.Th.M. de

    2004-01-01

    CdSe nanoclusters are created in MgO by means of co-implantation of 280 keV, 1 x 10 16 Cd ions cm -2 and 210 keV, 1 x 10 16 Se ions cm -2 in single crystals of MgO(0 0 1) and subsequent thermal annealing at a temperature of 1300 K. The structural properties and the orientation relationship between the CdSe and the MgO are investigated using cross-sectional transmission electron microscopy (XTEM). The crystal structure of the nanoclusters depends on their size. The smallest nanoclusters with a size below 5 nm have the cubic rocksalt crystal structure. The larger nanoclusters have a different (most likely the cubic sphalerite) crystal structure. The defect evolution in the sample after ion implantation and during thermal annealing is investigated using Doppler broadening positron beam analysis (PBA). The defect evolution in samples co-implanted with Cd and Se is compared to the defect evolution in samples implanted with only Cd or only Se ions

  8. Electron microscopy and positron annihilation study of CdSe nanoclusters embedded in MgO

    Science.gov (United States)

    van Huis, M. A.; van Veen, A.; Schut, H.; Eijt, S. W. H.; Kooi, B. J.; De Hosson, J. Th. M.

    2004-06-01

    CdSe nanoclusters are created in MgO by means of co-implantation of 280 keV, 1 × 10 16 Cd ions cm -2 and 210 keV, 1 × 10 16 Se ions cm -2 in single crystals of MgO(0 0 1) and subsequent thermal annealing at a temperature of 1300 K. The structural properties and the orientation relationship between the CdSe and the MgO are investigated using cross-sectional transmission electron microscopy (XTEM). The crystal structure of the nanoclusters depends on their size. The smallest nanoclusters with a size below 5 nm have the cubic rocksalt crystal structure. The larger nanoclusters have a different (most likely the cubic sphalerite) crystal structure. The defect evolution in the sample after ion implantation and during thermal annealing is investigated using Doppler broadening positron beam analysis (PBA). The defect evolution in samples co-implanted with Cd and Se is compared to the defect evolution in samples implanted with only Cd or only Se ions.

  9. The Adaptor Protein SAP Directly Associates with CD3ζ Chain and Regulates T Cell Receptor Signaling

    Science.gov (United States)

    Proust, Richard; Bertoglio, Jacques; Gesbert, Franck

    2012-01-01

    Mutations altering the gene encoding the SLAM associated protein (SAP) are responsible for the X-linked lymphoproliferative disease or XLP1. Its absence is correlated with a defective NKT cells development, a decrease in B cell functions and a reduced T cells and NK cells cytotoxic activities, thus leading to an immunodeficiency syndrome. SAP is a small 128 amino-acid long protein that is almost exclusively composed of an SH2 domain. It has been shown to interact with the CD150/SLAM family of receptors, and in a non-canonical manner with SH3 containing proteins such as Fyn, βPIX, PKCθ and Nck1. It would thus play the role of a minimal adaptor protein. It has been shown that SAP plays an important function in the activation of T cells through its interaction with the SLAM family of receptors. Therefore SAP defective T cells display a reduced activation of signaling events downstream of the TCR-CD3 complex triggering. In the present work, we evidence that SAP is a direct interactor of the CD3ζ chain. This direct interaction occurs through the first ITAM of CD3ζ, proximal to the membrane. Additionally, we show that, in the context of the TCR-CD3 signaling, an Sh-RNA mediated silencing of SAP is responsible for a decrease of several canonical T cell signaling pathways including Erk, Akt and PLCγ1 and to a reduced induction of IL-2 and IL-4 mRNA. Altogether, we show that SAP plays a central function in the T cell activation processes through a direct association with the CD3 complex. PMID:22912825

  10. Identification of immediate early gene products of bovine herpes virus 1 (BHV-1) as dominant antigens recognized by CD8 T cells in immune cattle

    DEFF Research Database (Denmark)

    Hart, Jane; MacHugh, Niall D.; Sheldrake, Tara

    2017-01-01

    candidate viral gene products with CD8 T-cell lines from 3 BHV-1-immune cattle of defined MHC genotypes identified 4 antigens, including 3 immediate early (IE) gene products (ICP4, ICP22 and Circ) and a tegument protein (UL49). Identification of the MHC restriction specificities revealed that the antigens...... cases refined, the identity of the epitopes. Analyses of the epitope specificity of the CD8 T-cell lines showed that a large component of the response is directed against these IE epitopes. The results indicate that these IE gene products are dominant targets of the CD8 T-cell response in BHV...

  11. Binding of superantigen toxins into the CD28 homodimer interface is essential for induction of cytokine genes that mediate lethal shock.

    Directory of Open Access Journals (Sweden)

    Gila Arad

    2011-09-01

    Full Text Available Bacterial superantigens, a diverse family of toxins, induce an inflammatory cytokine storm that can lead to lethal shock. CD28 is a homodimer expressed on T cells that functions as the principal costimulatory ligand in the immune response through an interaction with its B7 coligands, yet we show here that to elicit inflammatory cytokine gene expression and toxicity, superantigens must bind directly into the dimer interface of CD28. Preventing access of the superantigen to CD28 suffices to block its lethality. Mice were protected from lethal superantigen challenge by short peptide mimetics of the CD28 dimer interface and by peptides selected to compete with the superantigen for its binding site in CD28. Superantigens use a conserved β-strand/hinge/α-helix domain of hitherto unknown function to engage CD28. Mutation of this superantigen domain abolished inflammatory cytokine gene induction and lethality. Structural analysis showed that when a superantigen binds to the T cell receptor on the T cell and major histocompatibility class II molecule on the antigen-presenting cell, CD28 can be accommodated readily as third superantigen receptor in the quaternary complex, with the CD28 dimer interface oriented towards the β-strand/hinge/α-helix domain in the superantigen. Our findings identify the CD28 homodimer interface as a critical receptor target for superantigens. The novel role of CD28 as receptor for a class of microbial pathogens, the superantigen toxins, broadens the scope of pathogen recognition mechanisms.

  12. Novel teleost CD4-bearing cell populations provide insights into the evolutionary origins and primordial roles of CD4+ lymphocytes and CD4+ macrophages

    OpenAIRE

    Takizawa, Fumio; Magadan, Susana; Parra, David; Xu, Zhen; Koryt����, Tom����; Boudinot, Pierre; Sunyer, J. Oriol

    2016-01-01

    Tetrapods contain a single CD4 co-receptor with four immunoglobulin domains that likely arose from a primordial two-domain ancestor. Notably, teleost fish contain two CD4 genes. Like tetrapod CD4, CD4-1 of rainbow trout includes four immunoglobulin domains while CD4-2 contains only two. Since CD4-2 is reminiscent of the prototypic two-domain CD4 co-receptor, we hypothesized that by characterizing the cell types bearing CD4-1 and CD4-2, we would shed light into the evolution and primordial rol...

  13. Defect control in room temperature deposited cadmium sulfide thin films by pulsed laser deposition

    International Nuclear Information System (INIS)

    Hernandez-Como, N.; Martinez-Landeros, V.; Mejia, I.; Aguirre-Tostado, F.S.; Nascimento, C.D.; Azevedo, G. de M; Krug, C.; Quevedo-Lopez, M.A.

    2014-01-01

    The control of defects in cadmium sulfide thin films and its impact on the resulting CdS optical and electrical characteristics are studied. Sulfur vacancies and cadmium interstitial concentrations in the CdS films are controlled using the ambient pressure during pulsed laser deposition. CdS film resistivities ranging from 10 −1 to 10 4 Ω-cm are achieved. Hall Effect measurements show that the carrier concentration ranges from 10 19 to 10 13 cm −3 and is responsible for the observed resistivity variation. Hall mobility varies from 2 to 12 cm 2 /V-s for the same pressure regime. Although the energy bandgap remains unaffected (∼ 2.42 eV), the optical transmittance is reduced due to the increase of defects in the CdS films. Rutherford back scattering spectroscopy shows the dependence of the CdS films stoichiometry with deposition pressure. The presence of CdS defects is attributed to more energetic species reaching the substrate, inducing surface damage in the CdS films during pulsed laser deposition. - Highlights: • CdS thin films deposited by pulsed laser deposition at room temperature. • The optical, electrical and structural properties were evaluated. • Carrier concentration ranged from 10 19 to 10 13 cm −3 . • The chemical composition was studied by Rutherford back scattering. • The density of sulfur vacancies and cadmium interstitial was varied

  14. Production of multiple transgenic Yucatan miniature pigs expressing human complement regulatory factors, human CD55, CD59, and H-transferase genes.

    Directory of Open Access Journals (Sweden)

    Young-Hee Jeong

    Full Text Available The present study was conducted to generate transgenic pigs coexpressing human CD55, CD59, and H-transferase (HT using an IRES-mediated polycistronic vector. The study focused on hyperacute rejection (HAR when considering clinical xenotransplantation as an alternative source for human organ transplants. In total, 35 transgenic cloned piglets were produced by somatic cell nuclear transfer (SCNT and were confirmed for genomic integration of the transgenes from umbilical cord samples by PCR analysis. Eighteen swine umbilical vein endothelial cells (SUVEC were isolated from umbilical cord veins freshly obtained from the piglets. We observed a higher expression of transgenes in the transgenic SUVEC (Tg SUVEC compared with the human umbilical vein endothelial cells (HUVEC. Among these genes, HT and hCD59 were expressed at a higher level in the tested Tg organs compared with non-Tg control organs, but there was no difference in hCD55 expression between them. The transgenes in various organs of the Tg clones revealed organ-specific and spatial expression patterns. Using from 0 to 50% human serum solutions, we performed human complement-mediated cytolysis assays. The results showed that, overall, the Tg SUVEC tested had greater survival rates than did the non-Tg SUVEC, and the Tg SUVEC with higher HT expression levels tended to have more down-regulated α-Gal epitope expression, resulting in greater protection against cytotoxicity. By contrast, several Tg SUVEC with low CD55 expression exhibited a decreased resistance response to cytolysis. These results indicated that the levels of HT expression were inversely correlated with the levels of α-Gal epitope expression and that the combined expression of hCD55, hCD59, and HT proteins in SUVECs markedly enhances a protective response to human serum-mediated cytolysis. Taken together, these results suggest that combining a polycistronic vector system with SCNT methods provides a fast and efficient alternative

  15. [Effect of total glucosides of peony on expression and DNA methylation status of ITGAL gene in CD4(+) T cells of systemic lupus erythematosus].

    Science.gov (United States)

    Zhao, Ming; Liang, Gongping; Luo, Shuangyan; Lu, Qianjin

    2012-05-01

    To investigate the effect of total glucosides of peony (TGP) on expression and DNA methylation status of ITGAL gene (CD11a) in CD4(+) T cells from patients with systemic lupus erythematosus (SLE). CD4(+) T cells were isolated by positive selection using CD4 beads. CD4(+) T cells were treated by TGP at 0, 62.5, 312.5 and 1562.5 mg/L for 48 h. The MTT method was used to assess cell viability; mRNA expression level was measured by realtime-PCR; protein level of CD11a was measured by flow cytometric analysis; DNA methylation status was assayed by bisulfite sequencing. No significant change in cell viability was found in CD4(+) T cells among the different concentration groups (P>0.05). Compared with control, the mRNA and protein levels of ITGAL were down-regulated significantly in SLE CD4(+) T cells treated with TGP (1562.5 mg/L) (PTGP (1562.5 mg/L) treated CD4(+) T cells compared with control group (PTGP can repress CD11a gene expression through enhancing DNA methylation of ITGAL promoter in CD4(+) T cells from patients with SLE. This observation represents a preliminary step in understanding the mechanism of TGP in SLE therapy.

  16. Effect of curcumin on the cell surface markers CD44 and CD24 in breast cancer.

    Science.gov (United States)

    Calaf, Gloria M; Ponce-Cusi, Richard; Abarca-Quinones, Jorge

    2018-04-20

    Human breast cell lines are often characterized based on the expression of the cell surface markers CD44 and CD24. CD44 is a type I transmembrane glycoprotein that regulates cell adhesion and cell-cell, as well as cell-extracellular matrix interactions. CD24 is expressed in benign and malignant solid tumors and is also involved in cell adhesion and metastasis. The aim of the present study was to investigate the effects of curcumin on the surface expression of CD44 and CD24 in breast epithelial cell lines. An established breast cancer model derived from the MCF-10F cell line was used. The results revealed that curcumin decreased CD44 and CD24 gene and protein expression levels in MCF-10F (normal), Alpha5 (premalignant) and Tumor2 (malignant) cell lines compared with the levels in their counterpart control cells. Flow cytometry revealed that the CD44+/CD24+ cell subpopulation was greater than the CD44+/CD24- subpopulation in these three cell lines. Curcumin increased CD44+/CD24+ to a greater extent and decreased CD44+/CD24- subpopulations in the normal MCF-10F and the pre-tumorigenic Alpha5 cells, but had no significant effect on Tumor2 cells compared with the corresponding control cells. Conversely, curcumin increased CD44 and decreased CD24 gene expression in MCF-7 breast cancer cells, and decreased CD44 gene expression in MDA-MB-231 cell line, while CD24 was not present in these cells. Curcumin did not alter the CD44+/CD24+ or CD44+/CD24- subpopulations in the MCF-7 cell line. However, it increased CD44+/CD24+ and decreased CD44+/CD24- subpopulations in MDA-MB-231 cells. In breast cancer specimens from patients, normal tissues were negative for CD44 and CD24 expression, while benign lesions were positive for both markers, and malignant tissues were found to be negative for CD44 and positive for CD24 in most cases. In conclusion, these results indicated that curcumin may be used to improve the proportion of CD44+/CD24+ cells and decrease the proportion of CD44

  17. Repair of full-thickness articular cartilage defects by cultured mesenchymal stem cells transfected with the transforming growth factor {beta}{sub 1} gene

    Energy Technology Data Exchange (ETDEWEB)

    Guo Xiaodong [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Zheng Qixin [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Yang Shuhua [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Shao Zengwu [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Yuan Quan [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Pan Zhengqi [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Tang Shuo [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Liu Kai [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Quan Daping [Institute of Polymer Science, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

    2006-12-15

    Articular cartilage repair remains a clinical and scientific challenge with increasing interest focused on the combined techniques of gene transfer and tissue engineering. Transforming growth factor beta 1 (TGF-{beta}{sub 1}) is a multifunctional molecule that plays a central role in promotion of cartilage repair, and inhibition of inflammatory and alloreactive immune response. Cell mediated gene therapy can allow a sustained expression of TGF-{beta}{sub 1} that may circumvent difficulties associated with growth factor delivery. The objective of this study was to investigate whether TGF-{beta}{sub 1} gene modified mesenchymal stem cells (MSCs) could enhance the repair of full-thickness articular cartilage defects in allogeneic rabbits. The pcDNA{sub 3}-TGF-{beta}{sub 1} gene transfected MSCs were seeded onto biodegradable poly-L-lysine coated polylactide (PLA) biomimetic scaffolds in vitro and allografted into full-thickness articular cartilage defects in 18 New Zealand rabbits. The pcDNA{sub 3} gene transfected MSCs/biomimetic scaffold composites and the cell-free scaffolds were taken as control groups I and II, respectively. The follow-up times were 2, 4, 12 and 24 weeks. Macroscopical, histological and ultrastructural studies were performed. In vitro SEM studies found that abundant cartilaginous matrices were generated and completely covered the interconnected pores of the scaffolds two weeks post-seeding in the experimental groups. In vivo, the quality of regenerated tissue improved over time with hyaline cartilage filling the chondral region and a mixture of trabecular and compact bone filling the subchondral region at 24 weeks post-implantation. Joint repair in the experimental groups was better than that of either control group I or II, with respect to: (1) synthesis of hyaline cartilage specific extracellular matrix at the upper portion of the defect; (2) reconstitution of the subchondral bone at the lower portion of the defect and (3) inhibition of

  18. Analysis of CdS/CdTe devices incorporating a ZnTe:Cu/Ti Contact

    International Nuclear Information System (INIS)

    Gessert, T.A.; Asher, S.; Johnston, S.; Young, M.; Dippo, P.; Corwine, C.

    2007-01-01

    High-performance CdS/CdTe photovoltaic devices can be produced using a ZnTe:Cu/Ti back contact deposited onto the CdTe layer. We observe that prolonged exposure of the ZnTe:Cu and Ti sputtering targets to an oxygen-containing plasma significantly reduces device open-circuit voltage and fill factor. High-resolution compositional analysis of these devices reveals that Cu concentration in the CdTe and CdS layers is lower for devices with poor performance. Capacitance-voltage analysis and related numerical simulations indicate that the net acceptor concentration in the CdTe is also lower for devices with poor performance. Photoluminescence analyses of the junction region reveal that the intensity of a luminescent peak associated with a defect complex involving interstitial Cu (Cu i ) and oxygen on Te (O Te ) is reduced in devices with poor performance. Combined with thermodynamic considerations, these results suggest that oxygen incorporation into the ZnTe:Cu sputtering target reduces the ability of sputtered ZnTe:Cu film to diffuse Cu into the CdTe

  19. Association Study between the CD157/BST1 Gene and Autism Spectrum Disorders in a Japanese Population

    Directory of Open Access Journals (Sweden)

    Shigeru Yokoyama

    2015-05-01

    Full Text Available CD157, also referred to as bone marrow stromal cell antigen-1 (BST-1, is a glycosylphosphatidylinositol-anchored molecule that promotes pre-B-cell growth. Previous studies have reported associations between single-nucleotide polymorphisms (SNPs of the CD157/BST1 gene with Parkinson’s disease. In an attempt to determine whether SNPs or haplotypes in the CD157/BST1 are associated with other brain disorders, we performed a case-control study including 147 autism spectrum disorder (ASD patients at Kanazawa University Hospital in Japan and 150 unselected Japanese volunteers by the sequence-specific primer-polymerase chain reaction method combined with fluorescence correlation spectroscopy. Of 93 SNPs examined, two SNPs showed significantly higher allele frequencies in cases with ASDs than in unaffected controls (rs4301112, OR = 6.4, 95% CI = 1.9 to 22, p = 0.0007; and rs28532698, OR = 6.2, 95% CI = 1.8 to 21, p = 0.0012; Fisher’s exact test; p < 0.002 was considered significant after multiple testing correction. In addition, CT genotype in rs10001565 was more frequently observed in the ASD group than in the control group (OR = 15, 95% CI = 2.0 to 117, p = 0.0007; Fisher’s exact test. The present data indicate that genetic variation of the CD157/BST1 gene might confer susceptibility to ASDs.

  20. Suppression of human breast tumors in NOD/SCID mice by CD44 shRNA gene therapy combined with doxorubicin treatment

    Directory of Open Access Journals (Sweden)

    Pham PV

    2012-05-01

    significantly decreased by 4.38-fold compared with that of the control group.Conclusion: These results support a new strategy for breast cancer treatment by combining gene therapy with chemotherapy.Keywords: breast cancer, breast cancer stem cells, CD44, doxorubicin, gene therapy

  1. FLT3 ligand preserves the uncommitted CD34+CD38- progenitor cells during cytokine prestimulation for retroviral transduction

    DEFF Research Database (Denmark)

    Nielsen, S D; Husemoen, L L; Sørensen, T U

    2000-01-01

    for transduction of CD34+ cells. The effect of cytokine prestimulation on transduction efficiency and the population of uncommitted CD34+CD38- cells was determined. CD34+ cells harvested from umbilical cord blood were kept in suspension cultures and stimulated with combinations of the cytokines stem cell factor......Before stem cell gene therapy can be considered for clinical applications, problems regarding cytokine prestimulation remain to be solved. In this study, a retroviral vector carrying the genes for the enhanced version of green fluorescent protein (EGFP) and neomycin resistance (neo(r)) was used...... in a higher percentage of cells than the EGFP gene, but there seemed to be a positive correlation between expression of the two genes. The effect of cytokine prestimulation was therefore monitored using EGFP as marker for transduction. When SCF was compared to SCF in combination with more potent cytokines...

  2. Downregulation of CD44 reduces doxorubicin resistance of CD44+CD24- breast cancer cells

    Directory of Open Access Journals (Sweden)

    Phuc PV

    2011-06-01

    Full Text Available Pham Van Phuc, Phan Lu Chinh Nhan, Truong Hai Nhung, Nguyen Thanh Tam, Nguyen Minh Hoang, Vuong Gia Tue, Duong Thanh Thuy, Phan Kim NgocLaboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh, VietnamBackground: Cells within breast cancer stem cell populations have been confirmed to have a CD44+CD24- phenotype. Strong expression of CD44 plays a critical role in numerous types of human cancers. CD44 is involved in cell differentiation, adhesion, and metastasis of cancer cells.Methods: In this study, we reduced CD44 expression in CD44+CD24- breast cancer stem cells and investigated their sensitivity to an antitumor drug. The CD44+CD24- breast cancer stem cells were isolated from breast tumors; CD44 expression was downregulated with siRNAs followed by treatment with different concentrations of the antitumor drug.Results: The proliferation of CD44 downregulated CD44+CD24- breast cancer stem cells was decreased after drug treatment. We noticed treated cells were more sensitive to doxorubicin, even at low doses, compared with the control groups.Conclusions: It would appear that expression of CD44 is integral among the CD44+CD24- cell population. Reducing the expression level of CD44, combined with doxorubicin treatment, yields promising results for eradicating breast cancer stem cells in vitro. This study opens a new direction in treating breast cancer through gene therapy in conjunction with chemotherapy.Keywords: antitumor drugs, breast cancer stem cells, CD44, CD44+CD24- cells, doxorubicin

  3. Folic acid and pantothenic acid protection against valproic acid-induced neural tube defects in CD-1 mice

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Jennifer E [Department of Pharmacology and Toxicology and School of Environmental Studies, Queen' s University, Kingston, Ontario, K7L 3N6 (Canada); Raymond, Angela M [Department of Pharmacology and Toxicology and School of Environmental Studies, Queen' s University, Kingston, Ontario, K7L 3N6 (Canada); Winn, Louise M [Department of Pharmacology and Toxicology and School of Environmental Studies, Queen' s University, Kingston, Ontario, K7L 3N6 (Canada)

    2006-03-01

    In utero exposure to valproic acid (VPA) during pregnancy is associated with an increased risk of neural tube defects (NTDs). Although the mechanism by which VPA mediates these effects is unknown, VPA-initiated changes in embryonic protein levels have been implicated. The objectives of this study were to investigate the effect of in utero VPA exposure on embryonic protein levels of p53, NF-{kappa}B, Pim-1, c-Myb, Bax, and Bcl-2 in the CD-1 mouse. We also evaluated the protective effects of folic acid and pantothenic acid on VPA-induced NTDs and VPA-induced embryonic protein changes in this model. Pregnant CD-1 mice were administered a teratogenic dose of VPA prior to neural tube closure and embryonic protein levels were analyzed. In our study, VPA (400 mg/kg)-induced NTDs (24%) and VPA-exposed embryos with an NTD showed a 2-fold increase in p53, and 4-fold decreases in NF-{kappa}B, Pim-1, and c-Myb protein levels compared to their phenotypically normal littermates (P < 0.05). Additionally, VPA increased the ratio of embryonic Bax/Bcl-2 protein levels (P < 0.05). Pretreatment of pregnant dams with either folic acid or pantothenic acid prior to VPA significantly protected against VPA-induced NTDs (P < 0.05). Folic acid also reduced VPA-induced alterations in p53, NF-{kappa}B, Pim-1, c-Myb, and Bax/Bcl-2 protein levels, while pantothenic acid prevented VPA-induced alterations in NF-{kappa}B, Pim-1, and c-Myb. We hypothesize that folic acid and pantothenic acid protect CD-1 embryos from VPA-induced NTDs by independent, but not mutually exclusive mechanisms, both of which may be mediated by the prevention of VPA-induced alterations in proteins involved in neurulation.

  4. Defect control in room temperature deposited cadmium sulfide thin films by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Como, N. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, 75080 (United States); Martinez-Landeros, V. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, 75080 (United States); Centro de Investigación en Materiales Avanzados, Monterrey, Nuevo Leon, 66600, México (Mexico); Mejia, I. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, 75080 (United States); Aguirre-Tostado, F.S. [Centro de Investigación en Materiales Avanzados, Monterrey, Nuevo Leon, 66600, México (Mexico); Nascimento, C.D.; Azevedo, G. de M; Krug, C. [Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91509-900 (Brazil); Quevedo-Lopez, M.A., E-mail: mquevedo@utdallas.edu [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, 75080 (United States)

    2014-01-01

    The control of defects in cadmium sulfide thin films and its impact on the resulting CdS optical and electrical characteristics are studied. Sulfur vacancies and cadmium interstitial concentrations in the CdS films are controlled using the ambient pressure during pulsed laser deposition. CdS film resistivities ranging from 10{sup −1} to 10{sup 4} Ω-cm are achieved. Hall Effect measurements show that the carrier concentration ranges from 10{sup 19} to 10{sup 13} cm{sup −3} and is responsible for the observed resistivity variation. Hall mobility varies from 2 to 12 cm{sup 2}/V-s for the same pressure regime. Although the energy bandgap remains unaffected (∼ 2.42 eV), the optical transmittance is reduced due to the increase of defects in the CdS films. Rutherford back scattering spectroscopy shows the dependence of the CdS films stoichiometry with deposition pressure. The presence of CdS defects is attributed to more energetic species reaching the substrate, inducing surface damage in the CdS films during pulsed laser deposition. - Highlights: • CdS thin films deposited by pulsed laser deposition at room temperature. • The optical, electrical and structural properties were evaluated. • Carrier concentration ranged from 10{sup 19} to 10{sup 13} cm{sup −3}. • The chemical composition was studied by Rutherford back scattering. • The density of sulfur vacancies and cadmium interstitial was varied.

  5. Effect of low dose of vinclozolin on reproductive tract development and sperm parameters in CD1 outbred mice.

    Science.gov (United States)

    Elzeinova, Fatima; Novakova, Vendula; Buckiova, Daniela; Kubatova, Alena; Peknicova, Jana

    2008-01-01

    The effect of a low dose of vinclozolin within the development of the reproductive tract during gestation (VIN-GD 15-22) and puberty (VIN-PND 23-44) in CD1 mice was tested. We found a decrease in the anogenital distance, prostate weight and pathology of testes in both experimental groups. Sperm counts decreased to 46% (VIN-GD) and to 81% (VIN-PND), and also the acrosomal state (evaluated by antiacrosomal antibody) decreased in both groups to 89% in comparison to the control group (100%). Sperm head abnormalities increased by approximately 18% and 13%, respectively. In this connection, the expression of some genes was changed (arosome-related gene (Acr), apoptosis related genes (p53, p21)). In conclusion, a low dose of vinclozolin affected the reproductive tract, sperm parameters and expression of selected genes in both experimental groups.

  6. Electron microscopy and positron annihilation study of CdSe nanoclusters embedded in MgO

    Energy Technology Data Exchange (ETDEWEB)

    Huis, M.A. van E-mail: vanhuis@iri.tudelft.nl; Veen, A. van; Schut, H.; Eijt, S.W.H.; Kooi, B.J.; Hosson, J.Th.M. de

    2004-06-01

    CdSe nanoclusters are created in MgO by means of co-implantation of 280 keV, 1 x 10{sup 16} Cd ions cm{sup -2} and 210 keV, 1 x 10{sup 16} Se ions cm{sup -2} in single crystals of MgO(0 0 1) and subsequent thermal annealing at a temperature of 1300 K. The structural properties and the orientation relationship between the CdSe and the MgO are investigated using cross-sectional transmission electron microscopy (XTEM). The crystal structure of the nanoclusters depends on their size. The smallest nanoclusters with a size below 5 nm have the cubic rocksalt crystal structure. The larger nanoclusters have a different (most likely the cubic sphalerite) crystal structure. The defect evolution in the sample after ion implantation and during thermal annealing is investigated using Doppler broadening positron beam analysis (PBA). The defect evolution in samples co-implanted with Cd and Se is compared to the defect evolution in samples implanted with only Cd or only Se ions.

  7. Homologs of CD83 from elasmobranch and teleost fish.

    Science.gov (United States)

    Ohta, Yuko; Landis, Eric; Boulay, Thomas; Phillips, Ruth B; Collet, Bertrand; Secombes, Chris J; Flajnik, Martin F; Hansen, John D

    2004-10-01

    Dendritic cells are one of the most important cell types connecting innate and adaptive immunity, but very little is known about their evolutionary origins. To begin to study dendritic cells from lower vertebrates, we isolated and characterized CD83 from the nurse shark (Ginglymostoma cirratum (Gici)) and rainbow trout (Oncorhynchus mykiss (Onmy)). The open reading frames for Gici-CD83 (194 aa) and Onmy-CD83 (218 aa) display approximately 28-32% identity to mammalian CD83 with the presence of two conserved N-linked glycosylation sites. Identical with mammalian CD83 genes, Gici-CD83 is composed of five exons including conservation of phase for the splice sites. Mammalian CD83 genes contain a split Ig superfamily V domain that represents a unique sequence feature for CD83 genes, a feature conserved in both Gici- and Onmy-CD83. Gici-CD83 and Onmy-CD83 are not linked to the MHC, an attribute shared with mouse but not human CD83. Gici-CD83 is expressed rather ubiquitously with highest levels in the epigonal tissue, a primary site for lymphopoiesis in the nurse shark, whereas Onmy-CD83 mRNA expression largely paralleled that of MHC class II but at lower levels. Finally, Onmy-CD83 gene expression is up-regulated in virus-infected trout, and the promoter is responsive to trout IFN regulatory factor-1. These results suggest that the role of CD83, an adhesion molecule for cell-mediated immunity, has been conserved over 450 million years of vertebrate evolution.

  8. Expression of CD55, CD59, and CD35 on red blood cells of β-thalassaemia patients

    Science.gov (United States)

    Koçtekin, Belkls; Kurtoǧlu, Erdal; Yildiz, Mustafa; Bozkurt, Selen

    2017-01-01

    Aim of the study β-thalassaemia (β-Thal) is considered a severe, progressive haemolytic anaemia, which needs regular blood transfusions for life expectancy. Complement-mediated erythrocyte destruction can cause both intravascular and extravascular haemolysis. Complement regulatory proteins protect cells from such effects of the complement system. We aimed to perform quantitative analysis of membrane-bound complement regulators, CD55 (decay accelerating factor – DAF), CD35 (complement receptor type 1 – CR1), and CD59 (membrane attack complex inhibitory factor – MACIF) on peripheral red blood cells by flow cytometry. Material and methods The present study was carried out on 47 β-thalassemia major (β-TM) patients, 20 β-thalassaemia intermedia (β-TI) patients, and 17 healthy volunteers as control subjects. Results CD55 levels of β-TM patients (58.64 ±17.06%) were significantly decreased compared to β-TI patients (83.34 ±13.82%) and healthy controls (88.57 ±11.69%) (p < 0.01). CD59 levels of β-TM patients were not significantly different than β-TI patients and controls, but CD35 levels were significantly lower in the β-TM patients (3.56 ±4.87%) and β-TI patients (12.48 ±9.19%) than in the control group (39.98 ±15.01%) (p < 0.01). Conclusions Low levels of CD55 and CD35 in thalassaemia major patients indicates a role for them in the aetiopathogenesis of haemolysis in this disease, and also this defect in a complement system may be responsible for the chronic complications seen in these patients. PMID:28680334

  9. Composition-controlled optical properties of colloidal CdSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Ayele, Delele Worku [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Department of Chemistry, Bahir Dar University, Bahir Dar (Ethiopia); Su, Wei-Nien, E-mail: wsu@mail.ntust.edu.tw [Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Chou, Hung-Lung [Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Pan, Chun-Jern [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Hwang, Bing-Joe, E-mail: bjh@mail.ntust.edu.tw [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan (China)

    2014-12-15

    Graphical abstract: - Highlights: • The surface of CdSe QDs are modified with cadmium followed by selenium. • The optical properties of CdSe QDs can be controlled by manipulating the composition. • Surface compositional change affects the surface defects or traps and recombination. • The surface trapping state can be controlled by tuning the surface composition. • A change in composition shows a change in the carrier life time. - Abstract: A strategy with respect to band gap engineering by controlling the composition of CdSe quantum dots (QDs) is reported. After the CdSe QDs are prepared, their compositions can be effectively manipulated from 1:1 (Cd:Se) CdSe QDs to Cd-rich and then to Se-rich QDs. To obtain Cd-rich CdSe QDs, Cd was deposited on equimolar CdSe QDs. Further deposition of Se on Cd-rich CdSe QDs produced Se-rich CdSe QDs. The compositions (Cd:Se) of the as-prepared CdSe quantum dots were acquired by Energy-dispersive X-ray spectroscopy (EDX). By changing the composition, the overall optical properties of the CdSe QDs can be manipulated. It was found that as the composition of the QDs changes from 1:1 (Cd:Se) CdSe to Cd-rich and then Se-rich CdSe, the band gap decreases along with a red shift of UV–vis absorption edges and photoluminescence (PL) peaks. The quantum yield also decreases with surface composition from 1:1 (Cd:Se) CdSe QDs to Cd-rich and then to Se-rich, largely due to the changes in the surface state. Because of the involvement of the surface defect or trapping state, the carrier life time increased from the 1:1 (Cd:Se) CdSe QDs to the Cd-rich to the Se-rich CdSe QDs. We have shown that the optical properties of CdSe QDs can be controlled by manipulating the composition of the surface atoms. This strategy can potentially be extended to other semiconductor nanocrystals to modify their properties.

  10. Composition-controlled optical properties of colloidal CdSe quantum dots

    International Nuclear Information System (INIS)

    Ayele, Delele Worku; Su, Wei-Nien; Chou, Hung-Lung; Pan, Chun-Jern; Hwang, Bing-Joe

    2014-01-01

    Graphical abstract: - Highlights: • The surface of CdSe QDs are modified with cadmium followed by selenium. • The optical properties of CdSe QDs can be controlled by manipulating the composition. • Surface compositional change affects the surface defects or traps and recombination. • The surface trapping state can be controlled by tuning the surface composition. • A change in composition shows a change in the carrier life time. - Abstract: A strategy with respect to band gap engineering by controlling the composition of CdSe quantum dots (QDs) is reported. After the CdSe QDs are prepared, their compositions can be effectively manipulated from 1:1 (Cd:Se) CdSe QDs to Cd-rich and then to Se-rich QDs. To obtain Cd-rich CdSe QDs, Cd was deposited on equimolar CdSe QDs. Further deposition of Se on Cd-rich CdSe QDs produced Se-rich CdSe QDs. The compositions (Cd:Se) of the as-prepared CdSe quantum dots were acquired by Energy-dispersive X-ray spectroscopy (EDX). By changing the composition, the overall optical properties of the CdSe QDs can be manipulated. It was found that as the composition of the QDs changes from 1:1 (Cd:Se) CdSe to Cd-rich and then Se-rich CdSe, the band gap decreases along with a red shift of UV–vis absorption edges and photoluminescence (PL) peaks. The quantum yield also decreases with surface composition from 1:1 (Cd:Se) CdSe QDs to Cd-rich and then to Se-rich, largely due to the changes in the surface state. Because of the involvement of the surface defect or trapping state, the carrier life time increased from the 1:1 (Cd:Se) CdSe QDs to the Cd-rich to the Se-rich CdSe QDs. We have shown that the optical properties of CdSe QDs can be controlled by manipulating the composition of the surface atoms. This strategy can potentially be extended to other semiconductor nanocrystals to modify their properties

  11. Changes in natural Foxp3(+Treg but not mucosally-imprinted CD62L(negCD38(+Foxp3(+Treg in the circulation of celiac disease patients.

    Directory of Open Access Journals (Sweden)

    Marieke A van Leeuwen

    Full Text Available BACKGROUND: Celiac disease (CD is an intestinal inflammation driven by gluten-reactive CD4(+ T cells. Due to lack of selective markers it has not been determined whether defects in inducible regulatory T cell (Treg differentiation are associated with CD. This is of importance as changes in numbers of induced Treg could be indicative of defects in mucosal tolerance development in CD. Recently, we have shown that, after encounter of retinoic acid during differentiation, circulating gut-imprinted T cells express CD62L(negCD38(+. Using this new phenotype, we now determined whether alterations occur in the frequency of natural CD62L(+Foxp3(+ Treg or mucosally-imprinted CD62L(negCD38(+Foxp3(+ Treg in peripheral blood of CD patients. In particular, we compared pediatric CD, aiming to select for disease at onset, with adult CD. METHODS: Cell surface markers, intracellular Foxp3 and Helios were determined by flow cytometry. Foxp3 expression was also detected by immunohistochemistry in duodenal tissue of CD patients. RESULTS: In children, the percentages of peripheral blood CD4(+Foxp3(+ Treg were comparable between CD patients and healthy age-matched controls. Differentiation between natural and mucosally-imprinted Treg on the basis of CD62L and CD38 did not uncover differences in Foxp3. In adult patients on gluten-free diet and in refractory CD increased percentages of circulating natural CD62L(+Foxp3(+ Treg, but normal mucosally-imprinted CD62L(negCD38(+Foxp3(+ Treg frequencies were observed. CONCLUSIONS: Our data exclude that significant numeric deficiency of mucosally-imprinted or natural Foxp3(+ Treg explains exuberant effector responses in CD. Changes in natural Foxp3(+ Treg occur in a subset of adult patients on a gluten-free diet and in refractory CD patients.

  12. Platelet released growth factors boost expansion of bone marrow derived CD34(+) and CD133(+) endothelial progenitor cells for autologous grafting.

    Science.gov (United States)

    Lippross, Sebastian; Loibl, Markus; Hoppe, Sven; Meury, Thomas; Benneker, Lorin; Alini, Mauro; Verrier, Sophie

    2011-01-01

    Stem cell based autologous grafting has recently gained mayor interest in various surgical fields for the treatment of extensive tissue defects. CD34(+) and CD133(+) cells that can be isolated from the pool of bone marrow mononuclear cells (BMC) are capable of differentiating into mature endothelial cells in vivo. These endothelial progenitor cells (EPC) are believed to represent a major portion of the angiogenic regenerative cells that are released from bone marrow when tissue injury has occurred. In recent years tissue engineers increasingly looked at the process of vessel neoformation because of its major importance for successful cell grafting to replace damaged tissue. Up to now one of the greatest problems preventing a clinical application is the large scale of expansion that is required for such purpose. We established a method to effectively enhance the expansion of CD34(+) and CD133(+) cells by the use of platelet-released growth factors (PRGF) as a media supplement. PRGF were prepared from thrombocyte concentrates and used as a media supplement to iscove's modified dulbecco's media (IMDM). EPC were immunomagnetically separated from human bone morrow monocyte cells and cultured in IMDM + 10% fetal calf serum (FCS), IMDM + 5%, FCS + 5% PRGF and IMDM + 10% PRGF. We clearly demonstrate a statistically significant higher and faster cell proliferation rate at 7, 14, 21, and 28 days of culture when both PRGF and FCS were added to the medium as opposed to 10% FCS or 10% PRGF alone. The addition of 10% PRGF to IMDM in the absence of FCS leads to a growth arrest from day 14 on. In histochemical, immunocytochemical, and gene-expression analysis we showed that angiogenic and precursor markers of CD34(+) and CD133(+) cells are maintained during long-term culture. In summary, we established a protocol to boost the expansion of CD34(+) and CD133(+) cells. Thereby we provide a technical step towards the clinical application of autologous stem cell

  13. Scaffold protein JLP mediates TCR-initiated CD4+T cell activation and CD154 expression.

    Science.gov (United States)

    Yan, Qi; Yang, Cheng; Fu, Qiang; Chen, Zhaowei; Liu, Shan; Fu, Dou; Rahman, Rahmat N; Nakazato, Ryota; Yoshioka, Katsuji; Kung, Sam K P; Ding, Guohua; Wang, Huiming

    2017-07-01

    CD4 + T-cell activation and its subsequent induction of CD154 (CD40 ligand, CD40L) expression are pivotal in shaping both the humoral and cellular immune responses. Scaffold protein JLP regulates signal transduction pathways and molecular trafficking inside cells, thus represents a critical component in maintaining cellular functions. Its role in regulating CD4 + T-cell activation and CD154 expression, however, is unclear. Here, we demonstrated expression of JLP in mouse tissues of lymph nodes, thymus, spleen, and also CD4 + T cells. Using CD4+ T cells from jlp-deficient and jlp-wild-type mice, we demonstrated that JLP-deficiency impaired T-cell proliferation, IL-2 production, and CD154 induction upon TCR stimulations, but had no impacts on the expression of other surface molecules such as CD25, CD69, and TCR. These observed impaired T-cell functions in the jlp-/- CD4 + T cells were associated with defective NF-AT activation and Ca 2 + influx, but not the MAPK, NF-κB, as well as AP-1 signaling pathways. Our findings indicated that, for the first time, JLP plays a critical role in regulating CD4 + T cells response to TCR stimulation partly by mediating the activation of TCR-initiated Ca 2+ /NF-AT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Investigation of CD28 gene polymorphisms in patients with sporadic breast cancer in a Chinese Han population in Northeast China.

    Directory of Open Access Journals (Sweden)

    Shuang Chen

    Full Text Available BACKGROUND: CD28 is one of a number of costimulatory molecules that play crucial roles in immune regulation and homeostasis. Accumulating evidence indicates that immune factors influence breast carcinogenesis. To clarify the relationships between polymorphisms in the CD28 gene and breast carcinogenesis, a case-control study was conducted in women from Heilongjiang Province in northeast of China. METHODOLOGY/PRINCIPAL FINDINGS: Our research subjects consisted of 565 female patients with sporadic breast cancer and 605 age- and sex-matched healthy controls. In total, 12 single nucleotide polymorphisms (SNPs in the CD28 gene were successfully determined using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP method. The relationship between the CD28 variants and clinical features, including histological grade, tumor size, lymph node metastasis, human epidermal growth factor receptor 2 (C-erbB2, estrogen receptor (ER, progesterone receptor (PR, and tumor protein 53 (P53 status were analyzed. A statistically significant association was observed between rs3116496 and breast cancer risk under different genetic models (additive P = 0.0164, dominant P = 0.0042. Different distributions of the rs3116496 'T' allele were found in patients and controls, which remained significant after correcting the P value for multiple testing using Haploview with 10,000 permutations (corrected P = 0.0384. In addition, significant associations were observed between rs3116487/rs3116494 (D' = 1, r(2 = 0.99 and clinicopathological features such as C-erbB2 and ER status, in breast cancer patients. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that CD28 gene polymorphisms contribute to sporadic breast cancer risk and have a significant association with clinicopathological features in a northeast Chinese Han population.

  15. Novel Therapy for Bone Regeneration in Large Segmental Defects

    Science.gov (United States)

    2017-12-01

    can maintain bone length and allow successfully regeneration in segmental defects. r 2006 Elsevier Ltd. All rights reserved. Keywords: Bone...pre- formed endothelial networks, as the MSCs can act as pericytes to the newly formed blood vessels. Pirraco et al. [159] also cultured ECs and...AWARD NUMBER: W81XWH-13-1-0407 TITLE: Novel Therapy for Bone Regeneration in Large Segmental Defects PRINCIPAL INVESTIGATOR: Melissa Kacena

  16. Relationship between p53 dysfunction, CD38 expression, and IgV(H) mutation in chronic lymphocytic leukemia.

    Science.gov (United States)

    Lin, Ke; Sherrington, Paul D; Dennis, Michael; Matrai, Zoltan; Cawley, John C; Pettitt, Andrew R

    2002-08-15

    Established adverse prognostic factors in chronic lymphocytic leukemia (CLL) include CD38 expression, relative lack of IgV(H) mutation, and defects of the TP53 gene. However, disruption of the p53 pathway can occur through mechanisms other than TP53 mutation, and we have recently developed a simple screening test that detects p53 dysfunction due to mutation of the genes encoding either p53 or ATM, a kinase that regulates p53. The present study was conducted to examine the predictive value of this test and to establish the relationship between p53 dysfunction, CD38 expression, and IgV(H) mutation. CLL cells from 71 patients were examined for IgV(H) mutation, CD38 expression, and p53 dysfunction (detected as an impaired p53/p21 response to ionizing radiation). Survival data obtained from 69 patients were analyzed according to each of these parameters. Relative lack of IgV(H) mutation (less than 5%; n = 45), CD38 positivity (antigen expressed on more than 20% of malignant cells; n = 19), and p53 dysfunction (n = 19) were independently confirmed as adverse prognostic factors. Intriguingly, all p53-dysfunctional patients and all but one of the CD38(+) patients had less [corrected] than 5% IgV(H) mutation. Moreover, patients with p53 dysfunction and/or CD38 positivity (n = 31) accounted for the short survival of the less mutated group. These findings indicate that the poor outcome associated with having less than 5% IgV(H) mutation may be due to the overrepresentation of high-risk patients with p53 dysfunction and/or CD38 positivity within this group, and that CD38(-) patients with functionally intact p53 may have a prolonged survival regardless of the extent of IgV(H) mutation.

  17. Expression of CdDHN4, a Novel YSK2-Type Dehydrin Gene from Bermudagrass, Responses to Drought Stress through the ABA-Dependent Signal Pathway.

    Science.gov (United States)

    Lv, Aimin; Fan, Nana; Xie, Jianping; Yuan, Shili; An, Yuan; Zhou, Peng

    2017-01-01

    Dehydrin improves plant resistance to many abiotic stresses. In this study, the expression profiles of a dehydrin gene, CdDHN4 , were estimated under various stresses and abscisic acid (ABA) treatments in two bermudagrasses ( Cynodon dactylon L.): Tifway (drought-tolerant) and C299 (drought-sensitive). The expression of CdDHN4 was up-regulated by high temperatures, low temperatures, drought, salt and ABA. The sensitivity of CdDHN4 to ABA and the expression of CdDHN4 under drought conditions were higher in Tifway than in C299. A 1239-bp fragment, CdDHN4-P, the partial upstream sequence of the CdDHN4 gene, was cloned by genomic walking from Tifway. Bioinformatic analysis showed that the CdDHN4-P sequence possessed features typical of a plant promoter and contained many typical cis elements, including a transcription initiation site, a TATA-box, an ABRE, an MBS, a MYC, an LTRE, a TATC-box and a GT1-motif. Transient expression in tobacco leaves demonstrated that the promoter CdDHN4-P can be activated by ABA, drought and cold. These results indicate that CdDHN4 is regulated by an ABA-dependent signal pathway and that the high sensitivity of CdDHN4 to ABA might be an important mechanism enhancing the drought tolerance of bermudagrass.

  18. Expression of CdDHN4, a Novel YSK2-Type Dehydrin Gene from Bermudagrass, Responses to Drought Stress through the ABA-Dependent Signal Pathway

    Directory of Open Access Journals (Sweden)

    Aimin Lv

    2017-05-01

    Full Text Available Dehydrin improves plant resistance to many abiotic stresses. In this study, the expression profiles of a dehydrin gene, CdDHN4, were estimated under various stresses and abscisic acid (ABA treatments in two bermudagrasses (Cynodon dactylon L.: Tifway (drought-tolerant and C299 (drought-sensitive. The expression of CdDHN4 was up-regulated by high temperatures, low temperatures, drought, salt and ABA. The sensitivity of CdDHN4 to ABA and the expression of CdDHN4 under drought conditions were higher in Tifway than in C299. A 1239-bp fragment, CdDHN4-P, the partial upstream sequence of the CdDHN4 gene, was cloned by genomic walking from Tifway. Bioinformatic analysis showed that the CdDHN4-P sequence possessed features typical of a plant promoter and contained many typical cis elements, including a transcription initiation site, a TATA-box, an ABRE, an MBS, a MYC, an LTRE, a TATC-box and a GT1-motif. Transient expression in tobacco leaves demonstrated that the promoter CdDHN4-P can be activated by ABA, drought and cold. These results indicate that CdDHN4 is regulated by an ABA-dependent signal pathway and that the high sensitivity of CdDHN4 to ABA might be an important mechanism enhancing the drought tolerance of bermudagrass.

  19. ROOT HAIR DEFECTIVE SIX-LIKE Class I Genes Promote Root Hair Development in the Grass Brachypodium distachyon.

    Directory of Open Access Journals (Sweden)

    Chul Min Kim

    2016-08-01

    Full Text Available Genes encoding ROOT HAIR DEFECTIVE SIX-LIKE (RSL class I basic helix loop helix proteins are expressed in future root hair cells of the Arabidopsis thaliana root meristem where they positively regulate root hair cell development. Here we show that there are three RSL class I protein coding genes in the Brachypodium distachyon genome, BdRSL1, BdRSL2 and BdRSL3, and each is expressed in developing root hair cells after the asymmetric cell division that forms root hair cells and hairless epidermal cells. Expression of BdRSL class I genes is sufficient for root hair cell development: ectopic overexpression of any of the three RSL class I genes induces the development of root hairs in every cell of the root epidermis. Expression of BdRSL class I genes in root hairless Arabidopsis thaliana root hair defective 6 (Atrhd6 Atrsl1 double mutants, devoid of RSL class I function, restores root hair development indicating that the function of these proteins has been conserved. However, neither AtRSL nor BdRSL class I genes is sufficient for root hair development in A. thaliana. These data demonstrate that the spatial pattern of class I RSL activity can account for the pattern of root hair cell differentiation in B. distachyon. However, the spatial pattern of class I RSL activity cannot account for the spatial pattern of root hair cells in A. thaliana. Taken together these data indicate that that the functions of RSL class I proteins have been conserved among most angiosperms-monocots and eudicots-despite the dramatically different patterns of root hair cell development.

  20. First-principles study of intrinsic defects in CdO

    Science.gov (United States)

    Zhukov, V. P.; Medvedeva, N. I.; Krasilnikov, V. N.

    2018-03-01

    Using the density functional theory (DFT) in the GGA and LSDA + U approximations, we studied the effect of cadmium atoms in the interstitial sites and vacancies in the oxygen and cadmium sublattices on the electronic structure of rock-salt cadmium oxide (CdO). Migration of cadmium atoms into interstitial sites was shown to be unlikely. In the presence of oxygen vacancies, the behavior of CdO remains semiconducting and nonmagnetic. Cadmium vacancies induce d0 ferromagnetism and spin-dependent conductivity, which is semiconducting for spin-up electrons and is p-type metallic for spin-down electrons. The formation energies and free energies were calculated for oxygen vacancies and metallic cadmium phase, which allowed an explanation to be offered for the large number of vacancies and the metallic phase formed during reduction in hydrogen atmosphere.

  1. Broad-spectrum inhibition of HIV-1 by a monoclonal antibody directed against a gp120-induced epitope of CD4.

    Science.gov (United States)

    Burastero, Samuele E; Frigerio, Barbara; Lopalco, Lucia; Sironi, Francesca; Breda, Daniela; Longhi, Renato; Scarlatti, Gabriella; Canevari, Silvana; Figini, Mariangela; Lusso, Paolo

    2011-01-01

    To penetrate susceptible cells, HIV-1 sequentially interacts with two highly conserved cellular receptors, CD4 and a chemokine receptor like CCR5 or CXCR4. Monoclonal antibodies (MAbs) directed against such receptors are currently under clinical investigation as potential preventive or therapeutic agents. We immunized Balb/c mice with molecular complexes of the native, trimeric HIV-1 envelope (Env) bound to a soluble form of the human CD4 receptor. Sera from immunized mice were found to contain gp120-CD4 complex-enhanced antibodies and showed broad-spectrum HIV-1-inhibitory activity. A proportion of MAbs derived from these mice preferentially recognized complex-enhanced epitopes. In particular, a CD4-specific MAb designated DB81 (IgG1Κ) was found to preferentially bind to a complex-enhanced epitope on the D2 domain of human CD4. MAb DB81 also recognized chimpanzee CD4, but not baboon or macaque CD4, which exhibit sequence divergence in the D2 domain. Functionally, MAb DB81 displayed broad HIV-1-inhibitory activity, but it did not exert suppressive effects on T-cell activation in vitro. The variable regions of the heavy and light chains of MAb DB81 were sequenced. Due to its broad-spectrum anti-HIV-1 activity and lack of immunosuppressive effects, a humanized derivative of MAb DB81 could provide a useful complement to current preventive or therapeutic strategies against HIV-1.

  2. Broad-spectrum inhibition of HIV-1 by a monoclonal antibody directed against a gp120-induced epitope of CD4.

    Directory of Open Access Journals (Sweden)

    Samuele E Burastero

    Full Text Available To penetrate susceptible cells, HIV-1 sequentially interacts with two highly conserved cellular receptors, CD4 and a chemokine receptor like CCR5 or CXCR4. Monoclonal antibodies (MAbs directed against such receptors are currently under clinical investigation as potential preventive or therapeutic agents. We immunized Balb/c mice with molecular complexes of the native, trimeric HIV-1 envelope (Env bound to a soluble form of the human CD4 receptor. Sera from immunized mice were found to contain gp120-CD4 complex-enhanced antibodies and showed broad-spectrum HIV-1-inhibitory activity. A proportion of MAbs derived from these mice preferentially recognized complex-enhanced epitopes. In particular, a CD4-specific MAb designated DB81 (IgG1Κ was found to preferentially bind to a complex-enhanced epitope on the D2 domain of human CD4. MAb DB81 also recognized chimpanzee CD4, but not baboon or macaque CD4, which exhibit sequence divergence in the D2 domain. Functionally, MAb DB81 displayed broad HIV-1-inhibitory activity, but it did not exert suppressive effects on T-cell activation in vitro. The variable regions of the heavy and light chains of MAb DB81 were sequenced. Due to its broad-spectrum anti-HIV-1 activity and lack of immunosuppressive effects, a humanized derivative of MAb DB81 could provide a useful complement to current preventive or therapeutic strategies against HIV-1.

  3. Effect of granulocyte colony-stimulating factor (G-CSF) in human immunodeficiency virus-infected patients: increase in numbers of naive CD4 cells and CD34 cells makes G-CSF a candidate for use in gene therapy or to support antiretroviral therapy

    DEFF Research Database (Denmark)

    Nielsen, S D; Afzelius, P; Dam-Larsen, S

    1998-01-01

    The potential of granulocyte colony-stimulating factor (G-CSF) to mobilize CD4 cells and/or CD34 cells for use in gene therapy or to support antiretroviral therapy was examined. Ten human immunodeficiency virus-infected patients were treated with G-CSF (300 microg/day) for 5 days. Numbers of CD4.......01/microL (P CSF induced increases in numbers of CD34 cells and CD4 cells in HIV-infected patients...

  4. Cadmium(Cd)-induced oxidative stress down-regulates the gene expression of DNA mismatch recognition proteins MutS homolog 2 (MSH2) and MSH6 in zebrafish (Danio rerio) embryos

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Todd, E-mail: toddhsu@mail.ntou.edu.tw [Institute of Bioscience and Biotechnology and Center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan (China); Huang, Kuan-Ming; Tsai, Huei-Ting; Sung, Shih-Tsung; Ho, Tsung-Nan [Institute of Bioscience and Biotechnology and Center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan (China)

    2013-01-15

    DNA mismatch repair (MMR) of simple base mismatches and small insertion-deletion loops in eukaryotes is initiated by the binding of the MutS homolog 2 (MSH2)-MSH6 heterodimer to mismatched DNA. Cadmium (Cd) is a genotoxic heavy metal that has been recognized as a human carcinogen. Oxidant stress and inhibition of DNA repair have been proposed as major factors underlying Cd genotoxicity. Our previous studies indicated the ability of Cd to disturb the gene expression of MSH6 in zebrafish (Danio rerio) embryos. This study was undertaken to explore if Cd-induced oxidative stress down-regulated MSH gene activities. Following the exposure of zebrafish embryos at 1 h post fertilization (hpf) to sublethal concentrations of Cd at 3-5 {mu}M for 4 or 9 h, a parallel down-regulation of MSH2, MSH6 and Cu/Zn superoxide dismutase (Cu/Zn-SOD) gene expression was detected by real-time RT-PCR and the expression levels were 40-50% of control after a 9-h exposure. Cd exposure also induced oxidative stress, yet no inhibition of catalase gene activity was observed. Whole mount in situ hybridization revealed a wide distribution of msh6 mRNA in the head regions of 10 hpf embryos and pretreatment of embryos with antioxidants butylhydroxytoluene (BHT), D-mannitol or N-acetylcysteine (NAC) at 1-10 {mu}M restored Cd-suppressed msh6 expression. QPCR confirmed the protective effects of antioxidants on Cd-suppressed msh2/msh6 mRNA production. Down-regulated MSH gene activities reaching about 50% of control were also induced in embryos exposed to paraquat, a reactive oxygen species (ROS)-generating herbicide, or hydrogen peroxide at 200 {mu}M. Hence, Cd at sublethal levels down-regulates msh2/msh6 expression primarily via ROS as signaling molecules. The transcriptional activation of human msh6 is known to be fully dependent on the specificity factor 1 (Sp1). Cd failed to inhibit the DNA binding activity of zebrafish Sp1 unless at lethal concentrations based on band shift assay, therefore

  5. Structural defect linked to nonrandom mutations in the matrix gene of Biden strain subacute sclerosing panencephalitis virus defined by cDNA cloning and expression of chimeric genes

    International Nuclear Information System (INIS)

    Ayata, M.; Hirano, A.; Wong, T.C.

    1989-01-01

    Biken strain, a nonproductive measles viruslike agent isolated from a subacute sclerosing panencephalitis (SSPE) patient, contains a posttranscriptional defect affecting matrix (M) protein. A putative M protein was translated in vitro with RNA from Biken strain-infected cells. A similar protein was detected in vivo by an antiserum against a peptide synthesized from the cloned M gene of Edmonston strain measles virus. By using a novel method, full-length cDNAs of the Biken M gene were selectively cloned. The cloned Biken M gene contained an open reading frame which encoded 8 extra carboxy-terminal amino acid residues and 20 amino acid substitutions predicted to affect both the hydrophobicity and secondary structure of the gene product. The cloned gene was expressed in vitro and in vivo into a 37,500 M r protein electrophoretically and antigenically distinct from the M protein of Edmonston strain but identical to the M protein in Biken strain-infected cells. Chimeric M proteins synthesized in vitro and in vivo showed that the mutations in the carboxy-proximal region altered the local antigenicity and those in the amino region affected the overall protein conformation. The protein expressed from the Biken M gene was unstable in vivo. Instability was attributed to multiple mutations. These results offer insights into the basis of the defect in Biken strain and pose intriguing questions about the evolutionary origins of SSPE viruses in general

  6. The CD4+CD26-T-cell population in classical Hodgkin's lymphoma displays a distinctive regulatory T-cell profile

    NARCIS (Netherlands)

    Ma, Yue; Visser, Lydia; Blokzijl, Tjasso; Harms, Geert; Atayar, Cigdem; Poppema, Sibrand; van den Berg, Anke

    Little is known about the gene expression profile and significance of the rosetting CD4+CD26- T cells in classical Hodgkin's lymphoma (cHL). To characterize these T cells, CD4+CD26- and CD4+CD26+ T-cell populations were sorted from lymph node (LN) cell suspensions from nodular sclerosis HL (NSHL)

  7. Mechanisms involved in the differential recovery of CD4 and CD8 T-lymphocytes after local irradiation in mice

    International Nuclear Information System (INIS)

    De Ruysscher, D; Waer, M.; Vandeputte, M.; Van der Schueren, E.

    1990-01-01

    The mechanisms involved in the differential recovery of CD4 (helper/inducer phenotype) and CD8 (Cytotoxic/suppressor phenotype) T-lymphocytes after fractionated local irradiation were investigated. In mice, a better recovery of CD4 cells than of CD8 cells was found, while the reverse has been described in humans. Differences in radiosensivitity between CD4 and CD8 mouse splenocytes could not be found. No sequestration of CD8 cells in irradiated tissues could be demonstrated. Irradiation of the thymus did not influence the observed immune changes. Altered thymic production of CD4 and CD8 cells could be excluded by intrathymic injection of FITC (fluorescein isothiocyanate). Hindlimb and tail irradiation did suggest that the differential recovery of CD4 and CD8 T-lymphocytes after local irradiation is determined by extrathymic factors in man and mice, and that the observed differences in immune recovery between man and mice are due to defective thymic function in the former and normal function in the latter. (author). 12 refs.; 5 figs.; 2 tabs

  8. Cellular gene expression upon human immunodeficiency virus type 1 infection of CD4(+)-T-cell lines

    NARCIS (Netherlands)

    van 't Wout, Angélique B.; Lehrman, Ginger K.; Mikheeva, Svetlana A.; O'Keeffe, Gemma C.; Katze, Michael G.; Bumgarner, Roger E.; Geiss, Gary K.; Mullins, James I.

    2003-01-01

    The expression levels of approximately 4,600 cellular RNA transcripts were assessed in CD4(+)-T-cell lines at different times after infection with human immunodeficiency virus type 1 strain BRU (HIV-1(BRU)) using DNA microarrays. We found that several classes of genes were inhibited by HIV-1(BRU)

  9. Atomic-resolution characterization of the effects of CdCl2 treatment on poly-crystalline CdTe thin films

    Science.gov (United States)

    Paulauskas, T.; Buurma, C.; Colegrove, E.; Guo, Z.; Sivananthan, S.; Chan, M. K. Y.; Klie, R. F.

    2014-08-01

    Poly-crystalline CdTe thin films on glass are used in commercial solar-cell superstrate devices. It is well known that post-deposition annealing of the CdTe thin films in a CdCl2 environment significantly increases the device performance, but a fundamental understanding of the effects of such annealing has not been achieved. In this Letter, we report a change in the stoichiometry across twin boundaries in CdTe and propose that native point defects alone cannot account for this variation. Upon annealing in CdCl2, we find that the stoichiometry is restored. Our experimental measurements using atomic-resolution high-angle annular dark field imaging, electron energy-loss spectroscopy, and energy dispersive X-ray spectroscopy in a scanning transmission electron microscope are supported by first-principles density functional theory calculations.

  10. Influence of the layer parameters on the performance of the CdTe solar cells

    Science.gov (United States)

    Haddout, Assiya; Raidou, Abderrahim; Fahoume, Mounir

    2018-03-01

    Influence of the layer parameters on the performances of the CdTe solar cells is analyzed by SCAPS-1D. The ZnO: Al film shows a high efficiency than SnO2:F. Moreover, the thinner window layer and lower defect density of CdS films are the factor in the enhancement of the short-circuit current density. As well, to increase the open-circuit voltage, the responsible factors are low defect density of the absorbing layer CdTe and high metal work function. For the low cost of cell production, ultrathin film CdTe cells are used with a back surface field (BSF) between CdTe and back contact, such as PbTe. Further, the simulation results show that the conversion efficiency of 19.28% can be obtained for the cell with 1-μm-thick CdTe, 0.1-μm-thick PbTe and 30-nm-thick CdS.

  11. Endothelial Progenitor Cell Dysfunction in Myelodysplastic Syndromes: Possible Contribution of a Defective Vascular Niche to Myelodysplasia

    Directory of Open Access Journals (Sweden)

    Luciana Teofili

    2015-05-01

    Full Text Available We set a model to replicate the vascular bone marrow niche by using endothelial colony forming cells (ECFCs, and we used it to explore the vascular niche function in patients with low-risk myelodysplastic syndromes (MDS. Overall, we investigated 56 patients and we observed higher levels of ECFCs in MDS than in healthy controls; moreover, MDS ECFCs were found variably hypermethylated for p15INK4b DAPK1, CDH1, or SOCS1. MDS ECFCs exhibited a marked adhesive capacity to normal mononuclear cells. When normal CD34+ cells were co-cultured with MDS ECFCs, they generated significant lower amounts of CD11b+ and CD41+ cells than in co-culture with normal ECFCs. At gene expression profile, several genes involved in cell adhesion were upregulated in MDS ECFCs, while several members of the Wingless and int (Wnt pathways were underexpressed. Furthermore, at miRNA expression profile, MDS ECFCs hypo-expressed various miRNAs involved in Wnt pathway regulation. The addition of Wnt3A reduced the expression of intercellular cell adhesion molecule-1 on MDS ECFCs and restored the defective expression of markers of differentiation. Overall, our data demonstrate that in low-risk MDS, ECFCs exhibit various primary abnormalities, including putative MDS signatures, and suggest the possible contribution of the vascular niche dysfunction to myelodysplasia.

  12. Can liming reduce cadmium (Cd) accumulation in rice (Oryza sativa) in slightly acidic soils? A contradictory dynamic equilibrium between Cd uptake capacity of roots and Cd immobilisation in soils.

    Science.gov (United States)

    Yang, Yongjie; Chen, Jiangmin; Huang, Qina; Tang, Shaoqing; Wang, Jianlong; Hu, Peisong; Shao, Guosheng

    2018-02-01

    Cadmium (Cd) accumulation in rice is strongly controlled by liming, but information on the use of liming to control Cd accumulation in rice grown in slightly acidic soils is inconsistent. Here, pot experiments were carried out to investigate the mechanisms of liming on Cd accumulation in two rice varieties focusing on two aspects: available/exchangeable Cd content in soils that were highly responsive to liming, and Cd uptake and transport capacity in the roots of rice in terms of Cd accumulation-relative gene expression. The results showed that soil availability and exchangeable iron, manganese, zinc and Cd contents decreased with increased liming, and that genes related to Cd uptake (OsNramp5 and OsIRT1) were sharply up-regulated in the roots of the two rice varieties. Thus, iron, manganese, zinc and Cd contents in rice plants increased under low liming applications but decreased in response to high liming applications. However, yield and rice quantities were only slightly affected. These results indicated that Cd accumulation in rice grown in slightly acidic soils presents a contradictory dynamic equilibrium between Cd uptake capacity by roots and soil Cd immobilisation in response to liming. The enhanced Cd uptake capacity under low liming dosages increases risks to human health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. T-cell synapse formation depends on antigen recognition but not CD3 interaction: studies with TCR:ζ, a candidate transgene for TCR gene therapy.

    Science.gov (United States)

    Roszik, János; Sebestyén, Zsolt; Govers, Coen; Guri, Yakir; Szöor, Arpád; Pályi-Krekk, Zsuzsanna; Vereb, György; Nagy, Peter; Szöllosi, János; Debets, Reno

    2011-05-01

    T-cell receptors (TCRs) can be genetically modified to improve gene-engineered T-cell responses, a strategy considered critical for the success of clinical TCR gene therapy to treat cancers. TCR:ζ, which is a heterodimer of TCRα and β chains each coupled to complete human CD3ζ, overcomes issues of mis-pairing with endogenous TCR chains, shows high surface expression and mediates antigen-specific T-cell functions in vitro. In the current study, we further characterized TCR:ζ in gene-engineered T cells and assessed whether this receptor is able to interact with surface molecules and drive correct synapse formation in Jurkat T cells. The results showed that TCR:ζ mediates the formation of synaptic areas with antigen-positive target cells, interacts closely with CD8α and MHC class I (MHCI), and co-localizes with CD28, CD45 and lipid rafts, similar to WT TCR. TCR:ζ did not closely associate with endogenous CD3ε, despite its co-presence in immune synapses, and TCR:ζ showed enhanced synaptic accumulation in T cells negative for surface-expressed TCR molecules. Notably, synaptic TCR:ζ demonstrated lowered densities when compared with TCR in dual TCR T cells, a phenomenon that was related to both extracellular and intracellular CD3ζ domains present in the TCR:ζ molecule and responsible for enlarged synapse areas. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effects of HAb18G/CD147 knockout on hepatocellular carcinoma cells in vitro using a novel zinc-finger nuclease-targeted gene knockout approach.

    Science.gov (United States)

    Li, Hong-Wei; Yang, Xiang-Min; Tang, Juan; Wang, Shi-Jie; Chen, Zhi-Nan; Jiang, Jian-Li

    2015-03-01

    HAb18G/CD147 belongs to the immunoglobulin superfamily and predominantly functions as an inducer of matrix metalloproteinase secretion for tumor invasion and metastasis. This study was designed to investigate the effects of HAb18G/CD147 knockout on hepatocellular carcinoma cells using zinc-finger nuclease (ZFNs)-targeted gene knockout approach. The HCC cell line SMMC-7721 was used for ZFNs-targeted cleavage of the HAb18G/CD147 gene. RT-PCR and Western blot assays were used to detect HAb18G/CD147 expression. HAb18G phenotypic changes following HAb18G/CD147 knockout in SMMC-K7721 cells were assessed using tumor cell adhesion, invasion, migration and colony formation and flow cytometric assays. These data demonstrated that tumor cell adhesion, invasion, migration, and colony formation capabilities of SMMC-K7721 were significantly reduced compared to parental cells or SMMC-7721 with re-expression of HAb18G/CD147 protein transfected with HAb18G/CD147 cDNA. Moreover, knockout of HAb18G/CD147 expression also induced SMMC-K7721 cells to undergo apoptosis compared to SMMC-7721 and SMMC-R7721 (P CD147 reduced p53 levels in SMMC-R7721 cells, possibly through inhibition of the PI3K-Akt-MDM2 signaling pathway. The findings provide a novel insight into the mechanisms underlying HAb18G/CD147-induced progression of HCC cells.

  15. Microarray gene expression during early healing of GBR-treated calvarial critical size defects.

    Science.gov (United States)

    Al-Kattan, R; Retzepi, M; Calciolari, E; Donos, N

    2017-10-01

    To investigate the gene expression and molecular pathways implicated in the regulation of the osseous healing process following guided bone regeneration (GBR). Six 6-month-old Wistar male rats were used. Standardized 5-mm critical size defects were created in the parietal bones of each animal and treated with an extracranial and intracranial ePTFE membrane, according to the GBR principle. Three animals were randomly sacrificed after 7 and 15 days of healing. Total RNA was extracted from each sample and prepared for gene expression analysis. RNA quality and quantity were assessed, followed by hybridization of the cRNA to Affymetrix GeneChip Rat Genome 230 2.0 Arrays. The Affymetrix data were processed, and first-order analysis, quality control and statistical analysis were performed. Biological interpretation was performed via pathway and Gene Ontology (GO) analysis. Between the 7- and 15-day samples, 538 genes were differently regulated. At day 7, inflammatory and immune responses were clearly upregulated. In addition, GO terms related to angiogenesis and cell cycle regulation were overexpressed. At day 15, a more complex cellular activity and cell metabolism were evident. The bone formation processes were significantly overexpressed, with several genes encoding growth factors, enzyme activity, and extracellular matrix formation found as upregulated. Remarkably, a negative regulation of Wnt signalling pathway was observed at 15 days. The gene expression profile of the cells participating in osseous formation varied depending on the healing stage. A number of candidate genes that seem differentially expressed during early stages of intramembranous bone regeneration was suggested. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Photoluminescence measurement of polycrystalline CdTe made of high purity source material

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Hannes; Kraft, Christian; Heisler, Christoph; Geburt, Sebastian; Ronning, Carsten; Wesch, Werner [Institute of Solid State Physics, Friedrich Schiller Universitaet Jena, Helmholtzweg 3, 07743 Jena (Germany)

    2012-07-01

    CdTe is a common material for thin film solar cells. However, the mainly used CdTe source material is known to contain a high number of intrinsic defects and impurities. In this work we investigate the defect structure of high purity CdTe by means of Photoluminescence, which is a common method to detect the energy levels of defects in the band gap of semiconductors. We used a 633 nm HeNe-Laser at sample temperatures of 8 K. The examined samples were processed in a new vacuum system based on the PVD method. They yield significantly different spectra on as-grown samples compared to those measured on samples which are grown by the standard process, since the double peak at 1.55 eV was hardly detectable and the A-center correlated transition vanished. Instead a peak at 1.50 eV with pronounced phonon coupling was observed. The 1.50 eV peak is known from other measurements but has not been characterized so far. The intention of this work is to characterize this new feature and the influence of post deposition treatments of the CdTe layers on the PL spectra.

  17. Gene expression in cardiac tissues from infants with idiopathic conotruncal defects

    Directory of Open Access Journals (Sweden)

    Lofland Gary K

    2011-01-01

    Full Text Available Abstract Background Tetralogy of Fallot (TOF is the most commonly observed conotruncal congenital heart defect. Treatment of these patients has evolved dramatically in the last few decades, yet a genetic explanation is lacking for the failure of cardiac development for the majority of children with TOF. Our goal was to perform genome wide analyses and characterize expression patterns in cardiovascular tissue (right ventricle, pulmonary valve and pulmonary artery obtained at the time of reconstructive surgery from 19 children with tetralogy of Fallot. Methods We employed genome wide gene expression microarrays to characterize cardiovascular tissue (right ventricle, pulmonary valve and pulmonary artery obtained at the time of reconstructive surgery from 19 children with TOF (16 idiopathic and three with 22q11.2 deletions and compared gene expression patterns to normally developing subjects. Results We detected a signal from approximately 26,000 probes reflecting expression from about half of all genes, ranging from 35% to 49% of array probes in the three tissues. More than 1,000 genes had a 2-fold change in expression in the right ventricle (RV of children with TOF as compared to the RV from matched control infants. Most of these genes were involved in compensatory functions (e.g., hypertrophy, cardiac fibrosis and cardiac dilation. However, two canonical pathways involved in spatial and temporal cell differentiation (WNT, p = 0.017 and Notch, p = 0.003 appeared to be generally suppressed. Conclusions The suppression of developmental networks may represent a remnant of a broad malfunction of regulatory pathways leading to inaccurate boundary formation and improper structural development in the embryonic heart. We suggest that small tissue specific genomic and/or epigenetic fluctuations could be cumulative, leading to regulatory network disruption and failure of proper cardiac development.

  18. Comparison of gene expression of mitogenic kinin path in adherent and non-adherent CD 34-stem cells using oligonucleotide microarrays.

    Directory of Open Access Journals (Sweden)

    Krzysztof Machaj

    2008-02-01

    Full Text Available One of the more interesting cells present in the umbilical cord blood - as far as their potential clinical use is concerned - are stem cells not presenting the CD34 antigen. These are the pluripotential cells with their biological properties similar to mesenchymal stem cells, with the ability to differentiate into such tissue types as bone, cartilage, nervous (to some extent, glia and muscle. The authors compared the activity of genes coding the proteins in mitogenic signal paths activated by kinin receptors using oligonucleotide microarrays in adherent and non-adherent CD 34- cells derived from umbilical cord blood. In the linear regression model with a 95% prognosis area for differentiating genes outside this area, the following genes were selected: c-jun (present in 3 isoforms and c-fos. The fos and jun genes create the AP-1 transcriptive factor which regulates the expression of genes taking part in numerous cellular processes, including the cell cycle and mitosis. The obtained results shed some light on the molecular processes behind the MSC proliferation and are a starting point for further studies on the mesenchymal stem cell biology.

  19. Coincidence and noncoincidence counting (81Rb and 43K): a comparative study

    International Nuclear Information System (INIS)

    Ikeda, S.; Duken, H.; Tillmanns, H.; Bing, R.J.

    1975-01-01

    The accuracy of imaging and resolution obtained with 81 Rb and 43 K using coincidence and noncoincidence counting was compared. Phantoms and isolated infarcted dog hearts were used. The results clearly show the superiority of coincidence counting with a resolution of 0.5 cm. Noncoincidence counting failed to reveal even sizable defects in the radioactive source. (U.S.)

  20. Selection of suitable housekeeping genes for real-time quantitative PCR in CD4(+ lymphocytes from asthmatics with or without depression.

    Directory of Open Access Journals (Sweden)

    Ting Wang

    Full Text Available OBJECTIVE: No optimal housekeeping genes (HKGs have been identified for CD4(+ T cells from non-depressive asthmatic and depressive asthmatic adults for normalizing quantitative real-time PCR (qPCR assays. The aim of present study was to select appropriate HKGs for gene expression analysis in purified CD4(+ T cells from these asthmatics. METHODS: Three groups of subjects (Non-depressive asthmatic, NDA, n = 10, Depressive asthmatic, DA, n = 11, and Healthy control, HC, n = 10 respectively were studied. qPCR for 9 potential HKGs, namely RNA, 28S ribosomal 1 (RN28S1, ribosomal protein, large, P0 (RPLP0, actin, beta (ACTB, cyclophilin A (PPIA, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, phosphoglycerate kinase 1 (PGK1, beta-2-microglobulin (B2M, glucuronidase, beta (GUSB and ribosomal protein L13a (RPL13A, was performed. Then the data were analyzed with three different applications namely BestKeeper, geNorm, and NormFinder. RESULTS: The analysis of gene expression data identified B2M and RPLP0 as the most stable reference genes and showed that the level of PPIA was significantly different among subjects of three groups when the two best HKGs identified were applied. Post-hoc analysis by Student-Newman-Keuls correction shows that depressive asthmatics and non-depressive asthmatics exhibited lower expression level of PPIA than healthy controls (p<0.05. CONCLUSIONS: B2M and RPLP0 were identified as the most optimal HKGs in gene expression studies involving human blood CD4(+ T cells derived from normal, depressive asthmatics and non-depressive asthmatics. The suitability of using the PPIA gene as the HKG for such studies was questioned due to its low expression in asthmatics.

  1. Use of zinc-finger nucleases to knock out the WAS gene in K562 cells: a human cellular model for Wiskott-Aldrich syndrome

    Directory of Open Access Journals (Sweden)

    Miguel G. Toscano

    2013-03-01

    Mutations in the WAS gene cause Wiskott-Aldrich syndrome (WAS, which is characterized by eczema, immunodeficiency and microthrombocytopenia. Although the role of WASP in lymphocytes and myeloid cells is well characterized, its role on megakaryocyte (MK development is poorly understood. In order to develop a human cellular model that mimics the megakaryocytic-derived defects observed in WAS patients we used K562 cells, a well-known model for study of megakaryocytic development. We knocked out the WAS gene in K562 cells using a zinc-finger nuclease (ZFN pair targeting the WAS intron 1 and a homologous donor DNA that disrupted WASP expression. Knockout of WASP on K562 cells (K562WASKO cells resulted in several megakaryocytic-related defects such as morphological alterations, lower expression of CD41ɑ, lower increments in F-actin polymerization upon stimulation, reduced CD43 expression and increased phosphatidylserine exposure. All these defects have been previously described either in WAS-knockout mice or in WAS patients, validating K562WASKO as a cell model for WAS. However, K562WASPKO cells showed also increased basal F-actin and adhesion, increased expression of CD61 and reduced expression of TGFβ and Factor VIII, defects that have never been described before for WAS-deficient cells. Interestingly, these phenotypic alterations correlate with different roles for WASP in megakaryocytic differentiation. All phenotypic alterations observed in K562WASKO cells were alleviated upon expression of WAS following lentiviral transduction, confirming the role of WASP in these phenotypes. In summary, in this work we have validated a human cellular model, K562WASPKO, that mimics the megakaryocytic-related defects found in WAS-knockout mice and have found evidences for a role of WASP as regulator of megakaryocytic differentiation. We propose the use of K562WASPKO cells as a tool to study the molecular mechanisms involved in the megakaryocytic-related defects observed in WAS

  2. Quality improvement of CdZnTe single crystal by ultrasound processing

    Science.gov (United States)

    Lisiansky, M.; Berner, A.; Korchnoy, V.

    2017-06-01

    Intrinsic defects and contaminations removal from the undoped p-type Cd0.96Zn0.04Te single crystals has been achieved by the ultrasound vibration processing at the room temperature. Surface analysis based on Auger Electron Spectroscopy, Energy Dispersive Spectroscopy, and Scanning Electron Spectroscopy shows a significant reconstruction of the crystal surface after processing, namely, the appearance of numerous "volcano craters" and triangle-shaped defects with a typical size of 0.2-5.0 μm. Elemental analysis of these defects shows that they are Te inclusions emerged on the surface. The regular crystal surface outside the defects also displays a considerable enrichment by Te. Distinct presence of copper is found in both the thin surface layer and in the defects emerged on the surface. The surface reconstruction is associated with a remarkable change in the bulk material properties, electrical (an increase in the resistivity by a factor of ∼6) and optical (an IR transmittance increase). A post-polishing following the ultrasound processing makes the CdZnTe material more stable and reliable for a wide range of device applications.

  3. Unified Numerical Solver for Device Metastabilities in CdTe Thin-Film PV

    Energy Technology Data Exchange (ETDEWEB)

    Vasileska, Dragica [Arizona State Univ., Tempe, AZ (United States)

    2017-08-17

    Thin-film modules of all technologies often suffer from performance degradation over time. Some of the performance changes are reversible and some are not, which makes deployment, testing, and energy-yield prediction more challenging. Manufacturers de-vote significant empirical efforts to study these phenomena and to improve semiconduc-tor device stability. Still, understanding the underlying reasons of these instabilities re-mains clouded due to the lack of ability to characterize materials at atomistic levels and the lack of interpretation from the most fundamental material science. The most com-monly alleged causes of metastability in CdTe device, such as “migration of Cu,” have been investigated rigorously over the past fifteen years. Still, the discussion often ended prematurely with stating observed correlations between stress conditions and changes in atomic profiles of impurities or CV doping concentration. Multiple hypotheses sug-gesting degradation of CdTe solar cell devices due to interaction and evolution of point defects and complexes were proposed, and none of them received strong theoretical or experimental confirmation. It should be noted that atomic impurity profiles in CdTe pro-vide very little intelligence on active doping concentrations. The same elements could form different energy states, which could be either donors or acceptors, depending on their position in crystalline lattice. Defects interact with other extrinsic and intrinsic de-fects; for example, changing the state of an impurity from an interstitial donor to a sub-stitutional acceptor often is accompanied by generation of a compensating intrinsic in-terstitial donor defect. Moreover, all defects, intrinsic and extrinsic, interact with the elec-trical potential and free carriers so that charged defects may drift in the electric field and the local electrical potential affects the formation energy of the point defects. Such complexity of interactions in CdTe makes understanding of

  4. Mechanisms of PD-L1/PD-1-mediated CD8 T-cell dysfunction in the context of aging-related immune defects in the Eµ-TCL1 CLL mouse model.

    Science.gov (United States)

    McClanahan, Fabienne; Riches, John C; Miller, Shaun; Day, William P; Kotsiou, Eleni; Neuberg, Donna; Croce, Carlo M; Capasso, Melania; Gribben, John G

    2015-07-09

    T-cell defects, immune suppression, and poor antitumor immune responses are hallmarks of chronic lymphocytic leukemia (CLL), and PD-1/PD-L1 inhibitory signaling has emerged as a major immunosuppressive mechanism. However, the effect of different microenvironments and the confounding influence of aging are poorly understood. The current study uses the Eμ-TCL1 mouse model, which replicates human T-cell defects, as a preclinical platform to longitudinally examine patterns of T-cell dysfunction alongside developing CLL and in different microenvironments, with a focus on PD-1/PD-L1 interactions. The development of CLL was significantly associated with changes in T-cell phenotype across all organs and function. Although partly mirrored in aging wild-type mice, CLL-specific T-cell changes were identified. Murine CLL cells highly expressed PD-L1 and PD-L2 in all organs, with high PD-L1 expression in the spleen. CD3(+)CD8(+) T cells from leukemic and aging healthy mice highly expressed PD-1, identifying aging as a confounder, but adoptive transfer experiments demonstrated CLL-specific PD-1 induction. Direct comparisons of PD-1 expression and function between aging CLL mice and controls identified PD-1(+) T cells in CLL as a heterogeneous population with variable effector function. This is highly relevant for therapeutic targeting of CD8(+) T cells, showing the potential of reprogramming and selective subset expansion to restore antitumor immunity. © 2015 by The American Society of Hematology.

  5. Analysis of the association between CD40 and CD40 ligand polymorphisms and systemic sclerosis

    OpenAIRE

    Teruel, María; Simeón Aznar, Carmen Pilar; Broen, Jasper C.; Vonk, Madelon C.; Carreira, Patricia; Camps García, María Teresa; García-Portales, Rosa; Delgado-Frías, Esmeralda; Gallego, Maria; Espinosa Garriga, Gerard; Spanish Scleroderma Group; Beretta, Lorenzo; Airó, Paolo; Lunardi, Claudio; Riemekasten, Gabriela

    2012-01-01

    Introduction: The aim of the present study was to investigate the possible role of CD40 and CD40 ligand (CD40LG) genes in the susceptibility and phenotype expression of systemic sclerosis (SSc). Methods: In total, 2,670 SSc patients and 3,245 healthy individuals from four European populations (Spain, Germany, The Netherlands, and Italy) were included in the study. Five single-nucleotide polymorphisms (SNPs) of CD40 (rs1883832, rs4810485, rs1535045) and CD40LG (rs3092952, rs3092920) were genot...

  6. Apoptotic effects of antilymphocyte globulins on human pro-inflammatory CD4+CD28- T-cells.

    Directory of Open Access Journals (Sweden)

    Christina Duftner

    Full Text Available BACKGROUND: Pro-inflammatory, cytotoxic CD4(+CD28(- T-cells with known defects in apoptosis have been investigated as markers of premature immuno-senescence in various immune-mediated diseases. In this study we evaluated the influence of polyclonal antilymphocyte globulins (ATG-Fresenius, ATG-F on CD4(+CD28(- T-cells in vivo and in vitro. PRINCIPAL FINDINGS: Surface and intracellular three colour fluorescence activated cell sorting analyses of peripheral blood mononuclear cells from 16 consecutive transplant recipients and short-term cell lines were performed. In vivo, peripheral levels of CD3(+CD4(+CD28(- T-cells decreased from 3.7 ± 7.1% before to 0 ± 0% six hours after ATG-F application (P = 0.043 in 5 ATG-F treated but not in 11 control patients (2.9 ± 2.9% vs. 3.9 ± 3.0%. In vitro, ATG-F induced apoptosis even in CD4(+CD28(- T-cells, which was 4.3-times higher than in CD4(+CD28(+ T-cells. ATG-F evoked apoptosis was partially reversed by the broad-spectrum caspase inhibitor benzyloxycarbonyl (Cbz-Val-Ala-Asp(OMe-fluoromethylketone (zVAD-fmk and prednisolon-21-hydrogensuccinate. ATG-F triggered CD25 expression and production of pro-inflammatory cytokines, and induced down-regulation of the type 1 chemokine receptors CXCR-3, CCR-5, CX3CR-1 and the central memory adhesion molecule CD62L predominately in CD4(+CD28(- T-cells. CONCLUSION: In summary, in vivo depletion of peripheral CD3(+CD4(+CD28(- T-cells by ATG-F in transplant recipients was paralleled in vitro by ATG-F induced apoptosis. CD25 expression and chemokine receptor down-regulation in CD4(+CD28(- T-cells only partly explain the underlying mechanism.

  7. Identification of CD34+ and CD34− leukemia-initiating cells in MLL-rearranged human acute lymphoblastic leukemia

    Science.gov (United States)

    Aoki, Yuki; Watanabe, Takashi; Saito, Yoriko; Kuroki, Yoko; Hijikata, Atsushi; Takagi, Masatoshi; Tomizawa, Daisuke; Eguchi, Mariko; Eguchi-Ishimae, Minenori; Kaneko, Akiko; Ono, Rintaro; Sato, Kaori; Suzuki, Nahoko; Fujiki, Saera; Koh, Katsuyoshi; Ishii, Eiichi; Shultz, Leonard D.; Ohara, Osamu; Mizutani, Shuki

    2015-01-01

    Translocation of the mixed-lineage leukemia (MLL) gene with AF4, AF9, or ENL results in acute leukemia with both lymphoid and myeloid involvement. We characterized leukemia-initiating cells (LICs) in primary infant MLL-rearranged leukemia using a xenotransplantation model. In MLL-AF4 patients, CD34+CD38+CD19+ and CD34−CD19+ cells initiated leukemia, and in MLL-AF9 patients, CD34−CD19+ cells were LICs. In MLL-ENL patients, either CD34+ or CD34− cells were LICs, depending on the pattern of CD34 expression. In contrast, in patients with these MLL translocations, CD34+CD38−CD19−CD33− cells were enriched for normal hematopoietic stem cells (HSCs) with in vivo long-term multilineage hematopoietic repopulation capacity. Although LICs developed leukemic cells with clonal immunoglobulin heavy-chain (IGH) rearrangement in vivo, CD34+CD38−CD19−CD33− cells repopulated recipient bone marrow and spleen with B cells, showing broad polyclonal IGH rearrangement and recipient thymus with CD4+ single positive (SP), CD8+ SP, and CD4+CD8+ double-positive (DP) T cells. Global gene expression profiling revealed that CD9, CD32, and CD24 were over-represented in MLL-AF4, MLL-AF9, and MLL-ENL LICs compared with normal HSCs. In patient samples, these molecules were expressed in CD34+CD38+ and CD34− LICs but not in CD34+CD38−CD19−CD33− HSCs. Identification of LICs and LIC-specific molecules in primary human MLL-rearranged acute lymphoblastic leukemia may lead to improved therapeutic strategies for MLL-rearranged leukemia. PMID:25538041

  8. Expression of CdDHN4, a Novel YSK2-Type Dehydrin Gene from Bermudagrass, Responses to Drought Stress through the ABA-Dependent Signal Pathway

    OpenAIRE

    Lv, Aimin; Fan, Nana; Xie, Jianping; Yuan, Shili; An, Yuan; Zhou, Peng

    2017-01-01

    Dehydrin improves plant resistance to many abiotic stresses. In this study, the expression profiles of a dehydrin gene, CdDHN4, were estimated under various stresses and abscisic acid (ABA) treatments in two bermudagrasses (Cynodon dactylon L.): Tifway (drought-tolerant) and C299 (drought-sensitive). The expression of CdDHN4 was up-regulated by high temperatures, low temperatures, drought, salt and ABA. The sensitivity of CdDHN4 to ABA and the expression of CdDHN4 under drought conditions wer...

  9. Cadmium Manganese Telluride (Cd1-xMnxTe): A potential material for room-temperature radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, A.; Cui, Y.; Bolotnikov, A.; Camarda, G.; Yang, G.; Kim, K-H.; Gul, R.; Xu, L.; Li, L.; Mycielski, A.; and James, R.B.

    2010-07-11

    Cadmium Manganese Telluride (CdMnTe) recently emerged as a promising material for room-temperature X- and gamma-ray detectors. It offers several potential advantages over CdZnTe. Among them is its optimal tunable band gap ranging from 1.7-2.2 eV, and its relatively low (< 50%) content of Mn compared to that of Zn in CdZnTe that assures this favorable band-gap range. Another important asset is the segregation coefficient of Mn in CdTe that is approximately unity compared to 1.35 for Zn in CdZnTe, so ensuring the homogenous distribution of Mn throughout the ingot; hence, a large-volume stoichiometric yield is attained. However, some materials issues primarily related to the growth process impede the production of large, defect-free single crystals. The high bond-ionicity of CdMnTe entails a higher propensity to crystallize into a hexagonal structure rather than to adopt the expected zinc-blend structure, which is likely to generate twins in the crystals. In addition, bulk defects generate in the as-grown crystals due to the dearth of high-purity Mn, which yields a low-resistivity material. In this presentation, we report on our observations of such material defects in current CdMnTe materials, and our evaluation of its potential as an alternative detector material to the well-known CdZnTe detectors. We characterized the bulk defects of several indium- and vanadium-doped Cd1-xMnxTe crystals by using several advanced techniques, viz., micro-scale mapping, white-beam x-ray diffraction/reflection topography, and chemical etching. Thereafter, we fabricated some detectors from selected CdMnTe crystals, characterized their electrical properties, and tested their performance as room-temperature X- and gamma-ray detectors. Our experimental results indicate that CdMnTe materials could well prove to become a viable alternative in the near future.

  10. Atorvastatin inhibits the immediate-early response gene EGR1 and improves the functional profile of CD4+T-lymphocytes in acute coronary syndromes.

    Science.gov (United States)

    Severino, Anna; Zara, Chiara; Campioni, Mara; Flego, Davide; Angelini, Giulia; Pedicino, Daniela; Giglio, Ada Francesca; Trotta, Francesco; Giubilato, Simona; Pazzano, Vincenzo; Lucci, Claudia; Iaconelli, Antonio; Ruggio, Aureliano; Biasucci, Luigi Marzio; Crea, Filippo; Liuzzo, Giovanna

    2017-03-14

    Background- Adaptive immune-response is associated with a worse outcome in acute coronary syndromes. Statins have anti-inflammatory activity beyond lowering lipid levels. We investigated the effects of ex-vivo and in-vivo atorvastatin treatment in acute coronary syndromes on CD4+T-cells, and the underlying molecular mechanisms.Approach and results- Blood samples were collected from 50 statin-naïve acute coronary syndrome patients. We assessed CD4+T-cell activation by flow-cytometry, the expression of 84 T-helper transcription-factors and 84 T-cell related genes by RT-qPCR, and protein expression by Western-blot, before and after 24-hours incubation with increasing doses of atorvastatin: 3-10-26 μg/ml (corresponding to blood levels achieved with doses of 10-40-80 mg, respectively). After incubation, we found a significant decrease in interferon-γ-producing CD4+CD28nullT-cells (P = 0.009) and a significant increase in interleukin-10-producing CD4+CD25highT-cells (P 3-fold changes).The in-vivo effects of atorvastatin were analyzed in 10 statin-free acute coronary syndrome patients at baseline, and after 24h and 48h of atorvastatin therapy (80 mg/daily): EGR1-gene expression decreased at 24h (P = 0.01) and 48h (P = 0.005); EGR1-protein levels decreased at 48h (P = 0.03).Conclusions-In acute coronary syndromes, the effects of atorvastatin on immune system might be partially related to the inhibition of the master regulator gene EGR1. Our finding might offer a causal explanation on why statins improve the early outcome in acute coronary syndromes.

  11. Defective APETALA2 Genes Lead to Sepal Modification in Brassica Crops

    Science.gov (United States)

    Zhang, Yanfeng; Huang, Shuhua; Wang, Xuefang; Liu, Jianwei; Guo, Xupeng; Mu, Jianxin; Tian, Jianhua; Wang, Xiaofeng

    2018-01-01

    Many vegetable and oilseed crops belong to Brassica species. The seed production of these crops is hampered often by abnormal floral organs, especially under the conditions of abiotic conditions. However, the molecular reasons for these abnormal floral organs remains poorly understood. Here, we report a novel pistil-like flower mutant of B. rapa. In the flower of this mutant, the four sepals are modified to one merged carpel that look like a ring in the sepal positions, enveloping some abnormal stamens and a pistil, and resulting in poor seed production. This novel mutant is named sepal-carpel modification (scm). DNA sequencing showed that the BrAP2a gene, the ortholog of Arabidopsis APETALA2 (AP2) that specifies sepal identity, losses the function of in scm mutant due to a 119-bp repeated sequence insertion that resulted in an early transcription termination. BrAP2b, the paralog of BrAP2a featured two single-nucleotide substitutions that cause a single amino acid substitution in the highly conserved acidic serine-rich transcriptional activation domain. Each of the two BrAP2 genes rescues the sepal defective phenotype of the ap2-5 mutant of Arabidopsis. Furthermore, the knockout mutation of the corresponding BnAP2 genes of oilseed rape (B. napus) by CRISPR/Cas9-mediated genome editing system resulted in scm-like phenotype. These results suggest that BrAP2 gene plays a key role in sepal modification. Our finding provides an insight into molecular mechanism underlying morphological modification of floral organs and is useful for genetic manipulation of flower modification and improvement of seed production of Brassica crops. PMID:29616073

  12. Defective APETALA2 Genes Lead to Sepal Modification in Brassica Crops

    Directory of Open Access Journals (Sweden)

    Yanfeng Zhang

    2018-03-01

    Full Text Available Many vegetable and oilseed crops belong to Brassica species. The seed production of these crops is hampered often by abnormal floral organs, especially under the conditions of abiotic conditions. However, the molecular reasons for these abnormal floral organs remains poorly understood. Here, we report a novel pistil-like flower mutant of B. rapa. In the flower of this mutant, the four sepals are modified to one merged carpel that look like a ring in the sepal positions, enveloping some abnormal stamens and a pistil, and resulting in poor seed production. This novel mutant is named sepal-carpel modification (scm. DNA sequencing showed that the BrAP2a gene, the ortholog of Arabidopsis APETALA2 (AP2 that specifies sepal identity, losses the function of in scm mutant due to a 119-bp repeated sequence insertion that resulted in an early transcription termination. BrAP2b, the paralog of BrAP2a featured two single-nucleotide substitutions that cause a single amino acid substitution in the highly conserved acidic serine-rich transcriptional activation domain. Each of the two BrAP2 genes rescues the sepal defective phenotype of the ap2-5 mutant of Arabidopsis. Furthermore, the knockout mutation of the corresponding BnAP2 genes of oilseed rape (B. napus by CRISPR/Cas9-mediated genome editing system resulted in scm-like phenotype. These results suggest that BrAP2 gene plays a key role in sepal modification. Our finding provides an insight into molecular mechanism underlying morphological modification of floral organs and is useful for genetic manipulation of flower modification and improvement of seed production of Brassica crops.

  13. Differential expression of the costimulatory molecules CD86, CD28, CD152 and PD-1 correlates with the host-parasite outcome in leprosy

    Directory of Open Access Journals (Sweden)

    Maria de Lourdes Palermo

    2012-12-01

    Full Text Available Leprosy is a spectral disease exhibiting two polar sides, namely, lepromatous leprosy (LL characterised by impaired T-cell responses and tuberculoid leprosy in which T-cell responses are strong. Proper T-cell activation requires signalling through costimulatory molecules expressed by antigen presenting cells and their ligands on T-cells. We studied the influence of costimulatory molecules on the immune responses of subjects along the leprosy spectrum. The expression of the costimulatory molecules was evaluated in in vitro-stimulated peripheral blood mononuclear cells of lepromatous and tuberculoid patients and healthy exposed individuals (contacts. We show that LL patients have defective monocyte CD86 expression, which likely contributes to the impairment of the antigen presentation process and to patients anergy. Accordingly, CD86 but not CD80 blockade inhibited the lymphoproliferative response to Mycobacterium leprae. Consistent with the LL anergy, there was reduced expression of the positive signalling costimulatory molecules CD28 and CD86 on the T-cells in these patients. In contrast, tuberculoid leprosy patients displayed increased expression of the negative signalling molecules CD152 and programmed death-1 (PD-1, which represents a probable means of modulating an exacerbated immune response and avoiding immunopathology. Notably, the contacts exhibited proper CD86 and CD28 expression but not exacerbated CD152 or PD-1 expression, suggesting that they tend to develop a balanced immunity without requiring immunosuppressive costimulatory signalling.

  14. Dynamics of antigen presentation to transgene product-specific CD4+ T cells and of Treg induction upon hepatic AAV gene transfer

    Directory of Open Access Journals (Sweden)

    George Q Perrin

    2016-01-01

    Full Text Available The tolerogenic hepatic microenvironment impedes clearance of viral infections but is an advantage in viral vector gene transfer, which often results in immune tolerance induction to transgene products. Although the underlying tolerance mechanism has been extensively studied, our understanding of antigen presentation to transgene product-specific CD4+ T cells remains limited. To address this, we administered hepatotropic adeno-associated virus (AAV8 vector expressing cytoplasmic ovalbumin (OVA into wt mice followed by adoptive transfer of transgenic OVA-specific T cells. We find that that the liver-draining lymph nodes (celiac and portal are the major sites of MHC II presentation of the virally encoded antigen, as judged by in vivo proliferation of DO11.10 CD4+ T cells (requiring professional antigen-presenting cells, e.g., macrophages and CD4+CD25+FoxP3+ Treg induction. Antigen presentation in the liver itself contributes to activation of CD4+ T cells egressing from the liver. Hepatic-induced Treg rapidly disseminate through the systemic circulation. By contrast, a secreted OVA transgene product is presented in multiple organs, and OVA-specific Treg emerge in both the thymus and periphery. In summary, liver draining lymph nodes play an integral role in hepatic antigen presentation and peripheral Treg induction, which results in systemic regulation of the response to viral gene products.

  15. Whole-body aerosol exposure of cadmium chloride (CdCl{sub 2}) and tetrabromobisphenol A (TBBPA) induced hepatic changes in CD-1 male mice

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuanhong; Hu, Yabing; Liu, Shuyun; Zheng, Huiying; Wu, Xiaojuan; Huang, Zhengyu; Li, Hao; Peng, Baoqi; Long, Jinlie [Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035 (China); Pan, Bishu [Taizhou Center for Disease Control and Prevention, Taizhou 318000 (China); Huang, Changjiang, E-mail: cjhuang5711@163.com [Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035 (China); Dong, Qiaoxiang, E-mail: dqxdong@163.com [Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035 (China)

    2016-11-15

    Highlights: • Hepatotoxicity of TBBPA and Cd aerosol co-exposure was evaluated in CD-1 male mice. • Hepatic changes include focal necrosis, increased organ weight, and elevated enzymes. • TBBPA group exhibited highest hepatic toxicity followed by co-exposure and Cd groups. • We did not observe any synergistic effect of hepatic toxicity between TBBPA and Cd. • TBBPA/Cd suppressed antioxidant defensive mechanisms and increased oxidative stress. - Abstract: Cadmium (Cd) and tetrabromobisphenol A (TBBPA) are two prevalent contaminants in e-waste recycling facilities. However, the potential adversely health effect of co-exposure to these two types of pollutants in an occupational setting is unknown. In this study, we investigated co-exposure of these two pollutants on hepatic toxicity in CD-1 male mice through a whole-body aerosol inhalation route. Specifically, mice were exposed to solvent control (5% DMSO), Cd (8 μg/m{sup 3}), TBBPA (16 μg/m{sup 3}) and Cd/TBBPA mixture for 8 h/day and 6 days a week for 60 days. Hepatic changes include increased organ weight, focal necrosis, and elevated levels of liver enzymes in serum. These changes were most severe in mice exposed to TBBPA, followed by Cd/TBBPA mixture and Cd. These chemicals also led to suppressed antioxidant defensive mechanisms and increased oxidative stress. Further, these chemicals induced gene expression of apoptosis-related genes, activated genes encoding for phase I detoxification enzymes and inhibited genes encoding for phase II detoxification enzymes. These findings indicate that the hepatic damages induced by subchronic aerosol exposure of Cd and TBBPA may result from the oxidative damages caused by excessive ROS production when these chemicals were metabolized in the liver.

  16. Kinetic barriers for Cd and Te adatoms on Cd and Te terminated CdTe (111) surface using ab initio simulations

    Science.gov (United States)

    Naderi, Ebadollah; Nanavati, Sachin P.; Majumder, Chiranjib; Ghaisas, S. V.

    2014-03-01

    In the present work we have calculated using density functional theory (DFT), diffusion barrier potentials on both the CdTe (111) surfaces, Cd terminated (A-type) & Te terminated (B-type). We employ nudge elastic band method (NEB) for obtaining the barrier potentials. The barrier is computed for Cd and for Te adatoms on both A-type and B-type surfaces. We report two energetically favourable positions along the normal to the surface, one above and other below the surface. The one above the surface has binding energy slightly more the one below. According to the results of this work, binding energy (in all cases) for adatoms are reasonable and close to experimental data. The barrier potential for hopping adatoms (Cd and Te) on both the surfaces is less than 0.35 eV. Apart from these most probable sites, there are other at least two sites on both the types of surfaces which are meta stable. We have also computed barriers for hopping to and from these meta stable positions. The present results can shade light on the defect formation mechanism in CdTe thin films during growth. The authors would like to thank C-DAC for the computing time on its PARAM series of supercomputers and DST Govt. of India, for partial funding.

  17. Water-Soluble CdTe/CdS Core/Shell Semiconductor Nanocrystals: How Their Optical Properties Depend on the Synthesis Methods

    Directory of Open Access Journals (Sweden)

    Brener R. C. Vale

    2016-10-01

    Full Text Available We conducted a comparative synthesis of water-soluble CdTe/CdS colloidal nanocrystalline semiconductors of the core/shell type. We prepared the CdS shell using two different methods: a one-pot approach and successive ionic layer adsorption and reaction (SILAR; in both cases, we used 3-mercaptopropionic acid (MPA as the surface ligand. In the one-pot approach, thiourea was added over the freshly formed CdTe dispersion, and served as the sulfur source. We achieved thicker CdS layers by altering the Cd:S stoichiometric ratio (1:1, 1:2, 1:4, and 1:8. The Cd:S ratios 1:1 and 1:2 furnished the best optical properties; these ratios also made the formation of surface defects less likely. For CdTe/CdS obtained using SILAR, we coated the surface of three differently sized CdTe cores (2.17, 3.10, and 3.45 nm with one to five CdS layers using successive injections of the Cd2+ and S2– ions. The results showed that the core size influenced the optical properties of the materials. The deposition of three to five layers over the surface of smaller CdTe colloidal nanocrystals generated strain effects on the core/shell structure.

  18. Partial correction of a severe molecular defect in hemophilia A, because of errors during expression of the factor VIII gene

    Energy Technology Data Exchange (ETDEWEB)

    Young, M.; Antonarakis, S.E. [Univ. of Geneva (Switzerland); Inaba, Hiroshi [Tokyo Medical College (Japan)] [and others

    1997-03-01

    Although the molecular defect in patients in a Japanese family with mild to moderately severe hemophilia A was a deletion of a single nucleotide T within an A{sub 8}TA{sub 2} sequence of exon 14 of the factor VIII gene, the severity of the clinical phenotype did not correspond to that expected of a frameshift mutation. A small amount of functional factor VIII protein was detected in the patient`s plasma. Analysis of DNA and RNA molecules from normal and affected individuals and in vitro transcription/translation suggested a partial correction of the molecular defect, because of the following: (i) DNA replication/RNA transcription errors resulting in restoration of the reading frame and/or (ii) {open_quotes}ribosomal frameshifting{close_quotes} resulting in the production of normal factor VIII polypeptide and, thus, in a milder than expected hemophilia A. All of these mechanisms probably were promoted by the longer run of adenines, A{sub 10} instead of A{sub 8}TA{sub 2}, after the delT. Errors in the complex steps of gene expression therefore may partially correct a severe frameshift defect and ameliorate an expected severe phenotype. 36 refs., 6 figs.

  19. Effect of interfacial defects on the electronic and magnetic properties of epitaxial CrAs/InAs and CrAs/CdSe half-metallic multilayers

    International Nuclear Information System (INIS)

    Galanakis, I.; Lekkas, I.

    2010-01-01

    We present an extended study of single impurity atoms at the interface between the half-metallic ferromagnetic zinc-blende CrAs compound and the zinc-blende binary InAs and CdSe semiconductors in the form of very thin multilayers. Contrary to the case of impurities in the perfect bulk CrAs studied in Galanakis and Pouliasis [J. Magn. Magn. Mater. 321 (2009) 1084] defects at the interfaces do not alter in general the half-metallic character of the perfect systems. The only exception are Void impurities at Cr or In(Cd) sites which lead, due to the lower-dimensionality of the interfaces with respect to the bulk CrAs, to a shift of the p bands of the nearest neighboring As(Se) atom to higher energies and thus to the loss of the half-metallicity. But Void impurities are Schottky-type and should exhibit high formation energies and thus we expect the interfaces in the case of thin multilayers to exhibit a robust half-metallic character.

  20. Age-related changes in CD8 T cell homeostasis and immunity to infection.

    Science.gov (United States)

    Nikolich-Žugich, Janko; Li, Gang; Uhrlaub, Jennifer L; Renkema, Kristin R; Smithey, Megan J

    2012-10-01

    Studies of CD8 T cell responses to vaccination or infection with various pathogens in both animal models and human subjects have revealed a markedly consistent array of age-related defects. In general, recent work shows that aged CD8 T cell responses are decreased in magnitude, and show poor differentiation into effector cells, with a reduced arsenal of effector functions. Here we review potential mechanisms underlying these defects. We specifically address phenotypic and numeric changes to the naïve CD8 T cell precursor pool, the impact of persistent viral infection(s) and inflammation, and contributions of the aging environment in which these cells are activated. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. CdTe and Cd sub 1 sub - sub x Zn sub x Te for nuclear detectors: facts and fictions

    CERN Document Server

    Fougeres, P; Hageali, M; Koebel, J M; Regal, R

    1999-01-01

    Both CdTe and Cd sub 1 sub - sub x Zn sub x Te (CZT) can be considered from their physical properties as very good materials for room temperature X- and gamma-rays detection. However, despite years of intense material research, no significant advance has been made to help one to choose between both semiconductors. This paper reviews a few facts about CdTe and CZT to attempt to draw a real comparison between both. THM-CdTe and HPB-CZT have been grown and characterized in Strasbourg. Crystal growth, alloying effects, transport properties and defects are reviewed on the basis of our results and the published ones. The results show that it is still very difficult to claim which one is the best.

  2. Decreased Numbers of CD57+CD3- Cells Identify Potential Innate Immune Differences in Patients with Autism Spectrum Disorder.

    Science.gov (United States)

    Siniscalco, Dario; Mijatovic, Tatjana; Bosmans, Eugene; Cirillo, Alessandra; Kruzliak, Peter; Lombardi, Vincent C; De Meirleir, Kenny; Antonucci, Nicola

    2016-01-01

    Autism spectrum disorders (ASD) are complex, and severe heterogeneous neurodevelopmental pathologies with accepted but complex immune system abnormalities. Additional knowledge regarding potential immune dysfunctions may provide a greater understanding of this malady. The aim of this study was to evaluate the CD57(+)CD3(-) mature lymphocyte subpopulation of natural killer cells as a marker of immune dysfunction in ASD. Three-color flow cytometry-based analysis of fresh peripheral blood samples from children with autism was utilized to measure CD57(+)CD3(-) lymphocytes. A reduction of CD57(+)CD3(-) lymphocyte count was recorded in a significant number of patients with autism. We demonstrated that the number of peripheral CD57(+)CD3(-) cells in children with autism often falls below the clinically accepted normal range. This implies that a defect in the counter-regulatory functions necessary for balancing pro-inflammatory cytokines exists, thus opening the way to chronic inflammatory conditions associated with ASD. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  3. Intrinsic Plasma Cell Differentiation Defects in B Cell Expansion with NF-κB and T Cell Anergy Patient B Cells

    Directory of Open Access Journals (Sweden)

    Swadhinya Arjunaraja

    2017-08-01

    Full Text Available B cell Expansion with NF-κB and T cell Anergy (BENTA disease is a novel B cell lymphoproliferative disorder caused by germline, gain-of-function mutations in the lymphocyte scaffolding protein CARD11, which drives constitutive NF-κB signaling. Despite dramatic polyclonal expansion of naive and immature B cells, BENTA patients also present with signs of primary immunodeficiency, including markedly reduced percentages of class-switched/memory B cells and poor humoral responses to certain vaccines. Using purified naive B cells from our BENTA patient cohort, here we show that BENTA B cells exhibit intrinsic defects in B cell differentiation. Despite a profound in vitro survival advantage relative to normal donor B cells, BENTA patient B cells were severely impaired in their ability to differentiate into short-lived IgDloCD38hi plasmablasts or CD138+ long-lived plasma cells in response to various stimuli. These defects corresponded with diminished IgG antibody production and correlated with poor induction of specific genes required for plasma cell commitment. These findings provide important mechanistic clues that help explain both B cell lymphocytosis and humoral immunodeficiency in BENTA disease.

  4. CD47 Promotes Protective Innate and Adaptive Immunity in a Mouse Model of Disseminated Candidiasis

    Science.gov (United States)

    Navarathna, Dhammika H. M. L. P.; Stein, Erica V.; Lessey-Morillon, Elizabeth C.; Nayak, Debasis; Martin-Manso, Gema; Roberts, David D.

    2015-01-01

    CD47 is a widely expressed receptor that regulates immunity by engaging its counter-receptor SIRPα on phagocytes and its secreted ligand thrombospondin-1. Mice lacking CD47 can exhibit enhanced or impaired host responses to bacterial pathogens, but its role in fungal immunity has not been examined. cd47 -/- mice on a C57BL/6 background showed significantly increased morbidity and mortality following Candida albicans infection when compared with wild-type mice. Despite normal fungal colonization at earlier times, cd47 -/- mice at four days post-infection had increased colonization of brain and kidneys accompanied by stronger inflammatory reactions. Neutrophil and macrophage numbers were significantly elevated in kidneys and neutrophils in the brains of infected cd47 -/- mice. However, no defect in phagocytic activity towards C. albicans was observed in cd47 -/- bone-marrow-derived macrophages, and neutrophil and macrophage killing of C. albicans was not impaired. CD47-deficiency did not alter the early humoral immune response to C. albicans. Th1, Th2, and Th17 population of CD4+ T cells were expanded in the spleen, and gene expression profiles of spleen and kidney showed stronger pro-inflammatory signaling in infected cd47 -/- mice. The chemoattractant chemokines MIP-2α and MIP-2β were highly expressed in infected spleens of cd47 -/- mice. G-CSF, GM-CSF, and the inflammasome component NLRP3 were more highly expressed in infected cd47 -/- kidneys than in infected wild-type controls. Circulating pro- (TNF-α, IL-6) and anti-inflammatory cytokines (IL-10) were significantly elevated, but IL-17 was decreased. These data indicate that CD47 plays protective roles against disseminated candidiasis and alters pro-inflammatory and immunosuppressive pathways known to regulate innate and T cell immunity. PMID:26010544

  5. Microstructure of absorber layers in CdTe/CdS solar cells

    International Nuclear Information System (INIS)

    Cousins, M.A.

    2001-04-01

    This work concerns the microstructure of CSS-grown CdTe layers used for CdTe/CdS solar cells. Particular attention is given to how the development of microstructure on annealing with CdCl 2 may correlate with increases in efficiency. By annealing pressed pellets of bulk CdTe powder, it is shown that microstructural change does occur on heating the material, enhanced by the inclusion of CdCl 2 flux. However, the temperature required to cause significant effects is demonstrated to be higher than that at which heavy oxidation takes place. The dynamics of this oxidation are also examined. To investigate microstructural evolution in thin-films of CdTe, bi-layers of CdTe and CdS are examined by bevelling, thus revealing the microstructure to within ∼1 μm of the interface. This allows optical microscopy and subsequent image analysis of grain structure. The work shows that the grain-size, which is well described by the Rayleigh distribution, varies linearly throughout the layer, but is invariant under CdCl 2 treatment. Electrical measurements on these bi-layers, however, showed increased efficiency, as is widely reported. This demonstrates that the efficiency of these devices is not dictated by the bulk microstructure. Further, the region within 1 μm of the interface, of similar bi-layers to above, is examined by plan-view TEM. This reveals five-fold grain-growth on CdCl 2 treatment. Moreover, these grains show a considerably smaller grain size than expected from extrapolating the linear trend in the bulk. These observations are explained in terms of the pinning of the CdTe grain size to the underlying CdS, and the small grain size this causes. A simple model was proposed for a link between the grain-growth to the efficiency improvement. The study also examines the behaviour of defects within grains upon CdCl 2 treatment provided the first direct evidence of recovery on CdCl 2 treatment in this system. Finally, a computer model is presented to describe the evolution of

  6. The effect of intracellular trafficking of CD1d on the formation of TCR repertoire of NKT cells.

    Science.gov (United States)

    Shin, Jung Hoon; Park, Se-Ho

    2014-05-01

    CD1 molecules belong to non-polymorphic MHC class I-like proteins and present lipid antigens to T cells. Five different CD1 genes (CD1a-e) have been identified and classified into two groups. Group 1 include CD1a-c and present pathogenic lipid antigens to αβ T cells reminiscence of peptide antigen presentation by MHC-I molecules. CD1d is the only member of Group 2 and presents foreign and self lipid antigens to a specialized subset of αβ T cells, NKT cells. NKT cells are involved in diverse immune responses through prompt and massive production of cytokines. CD1d-dependent NKT cells are categorized upon the usage of their T cell receptors. A major subtype of NKT cells (type I) is invariant NKT cells which utilize invariant Vα14-Jα18 TCR alpha chain in mouse. The remaining NKT cells (type II) utilize diverse TCR alpha chains. Engineered CD1d molecules with modified intracellular trafficking produce either type I or type II NKT cell-defects suggesting the lipid antigens for each subtypes of NKT cells are processed/generated in different intracellular compartments. Since the usage of TCR by a T cell is the result of antigen-driven selection, the intracellular metabolic pathways of lipid antigen are a key in forming the functional NKT cell repertoire.

  7. Influence of CdCl{sub 2} activation treatment on ultra-thin Cd{sub 1−x}Zn{sub x}S/CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, A.J., E-mail: a.clayton@glyndwr.ac.uk [Centre for Solar Energy Research, Glyndŵr University, OpTIC, St. Asaph LL17 0JD (United Kingdom); Baker, M.A.; Babar, S. [Faculty of Engineering & Physical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom); Gibson, P.N. [Institute for Health & Consumer Protection, Joint Research Centre, 21020 Ispra, VA (Italy); Irvine, S.J.C.; Kartopu, G.; Lamb, D.A.; Barrioz, V. [Centre for Solar Energy Research, Glyndŵr University, OpTIC, St. Asaph LL17 0JD (United Kingdom)

    2015-09-01

    Ultra-thin CdTe photovoltaic solar cells with an absorber thickness of 0.5 μm were produced by metal organic chemical vapour deposition onto indium tin oxide coated boroaluminosilicate glass. A wide band gap Cd{sub 1−x}Zn{sub x}S alloy window layer was employed to improve spectral response in the blue region of the solar spectrum. X-ray photoelectron spectroscopy, X-ray diffraction and scanning electron microscopy were used to monitor changes in the chemical composition and microstructure of the Cd{sub 1−x}Zn{sub x}S/CdTe solar cell after varying the post-deposition CdCl{sub 2} activation treatment time and annealing temperature. The CdCl{sub 2} treatment leached Zn from the Cd{sub 1−x}Zn{sub x}S layer causing a redshift in the spectral response onset of window absorption. S diffusion occurred across the Cd{sub 1−x}Zn{sub x}S/CdTe interface, which was more pronounced as the CdCl{sub 2} treatment was increased. A CdTe{sub 1−y}S{sub y} alloy was formed at the interface, which thickened with CdCl{sub 2} treatment time. Small concentrations of S (up to 2 at.%) were observed throughout the CdTe layer as the degree of CdCl{sub 2} treatment was increased. Greater S diffusion across the Cd{sub 1−x}Zn{sub x}S/CdTe interface caused the device open-circuit voltage (V{sub oc}) to increase. The higher V{sub oc} is attributed to enhanced strain relaxation and associated reduction of defects in the interface region as well as the increase in CdTe grain size. - Highlights: • Increased CdCl{sub 2} activation treatment resulted in loss of Zn from Cd{sub 1−x}Zn{sub x}S. • Sulphur diffusion into CdTe was enhanced with greater CdCl{sub 2} activation treatment. • Improvement to V{sub oc} correlated with increased sulphur diffusion into CdTe.

  8. Novel mutation of GATA4 gene in Kurdish population of Iran with nonsyndromic congenital heart septals defects.

    Science.gov (United States)

    Soheili, Fariborz; Jalili, Zahra; Rahbar, Mahtab; Khatooni, Zahed; Mashayekhi, Amir; Jafari, Hossein

    2018-03-01

    The mutations in GATA4 gene induce inherited atrial and ventricular septation defects, which is the most frequent forms of congenital heart defects (CHDs) constituting about half of all cases. We have performed High resolution melting (HRM) mutation scanning of GATA4 coding exons of nonsyndrome 100 patients as a case group including 39 atrial septal defects (ASD), 57 ventricular septal defects (VSD) and four patients with both above defects and 50 healthy individuals as a control group. Our samples are categorized according to their HRM graph. The genome sequencing has been done for 15 control samples and 25 samples of patients whose HRM analysis were similar to healthy subjects for each exon. The PolyPhen-2 and MUpro have been used to determine the causative possibility and structural stability prediction of GATA4 sequence variation. The HRM curve analysis exhibit that 21 patients and 3 normal samples have deviated curves for GATA4 coding exons. Sequencing analysis has revealed 12 nonsynonymous mutations while all of them resulted in stability structure of protein 10 of them are pathogenic and 2 of them are benign. Also we found two nucleotide deletions which one of them was novel and one new indel mutation resulting in frame shift mutation, and 4 synonymous variations or polymorphism in 6 of patients and 3 of normal individuals. Six or about 50% of these nonsynonymous mutations have not been previously reported. Our results show that there is a spectrum of GATA4 mutations resulting in septal defects. © 2018 Wiley Periodicals, Inc.

  9. Characterization of tetraspanin protein CD81 in mouse spermatozoa and bovine gametes

    Czech Academy of Sciences Publication Activity Database

    Jankovičová, J.; Frolíková, Michaela; Šebková, Nataša; Simon, M.; Cupperova, P.; Lipcseyova, D.; Michalková, K.; Horovská, L.; Sedláček, Radislav; Stopka, P.; Antalíková, J.; Dvořáková-Hortová, Kateřina

    2016-01-01

    Roč. 152, č. 6 (2016), s. 785-793 ISSN 1470-1626 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) LM2011032; GA ČR GA14-05547S Institutional support: RVO:86652036 ; RVO:68378050 Keywords : ACROSOME REACTION * CD9-DEFICIENT MICE * SPERM Subject RIV: EB - Genetics ; Molecular Biology; EB - Genetics ; Molecular Biology (UMG-J) Impact factor: 3.100, year: 2016

  10. CD11b regulates antibody class switching via induction of AID.

    Science.gov (United States)

    Park, Seohyun; Sim, Hyunsub; Kim, Hye-In; Jeong, Daecheol; Wu, Guang; Cho, Soo Young; Lee, Young Seek; Kwon, Hyung-Joo; Lee, Keunwook

    2017-07-01

    The integrin CD11b, which is encoded by the integrin subunit alpha M (ITGAM), is primarily expressed on the surface of innate immune cells. Genetic variations in ITGAM are among the strongest risk factors for systemic lupus erythematosus, an autoimmune disease characterized by the presence of autoantibodies. However, the regulatory function of CD11b in the antibody responses remains unclear. Here, we report the induction of CD11b in activated B2 B cells and define its unexpected role in immunoglobulin heavy chain class switch recombination (CSR). LPS-activated B cells lacking CD11b yielded fewer IgG subtypes such as IgG1 and IgG2a in vitro, and immunization-dependent CSR and affinity maturation of antibodies were severely impaired in CD11b-deficient mice. Notably, we observed the reduced expression of activation-induced cytidine deaminase (AID), an enzyme that initiates CSR and somatic hypermutation, and ectopic expression of AID was sufficient to rescue the defective CSR of CD11b-deficient B cells. LPS-induced phosphorylation of NF-κB p65 and IκBα was attenuated in CD11b-deficient B cells, and hyperactivation of IκB kinase 2 restored the defective AID expression and CSR, which implied that CD11b regulates the NF-κB-dependent induction of AID. Overall, our experimental evidence emphasized the function of CD11b in antibody responses and the role of CD11b as a vital regulator of CSR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Expression and Significance of gp96 and Immune-related Gene CTLA-4, CD8 in Lung Cancer Tissues

    Directory of Open Access Journals (Sweden)

    Haiyan ZHENG

    2010-08-01

    Full Text Available Background and objective It has been proven that gp96 plays an important role in specific cytotoxic immune response which is involved in anti-tumor effect in the body. The aim of this study is to investigate the biological significance of heat shock protein gp96 and immune-related gene CTLA-4, CD8 expressions in lung cancer tissues of different progressive stages. Methods We used Envision immunohistochemistry method to detect the levels of expression of gp96, CTLA-4, CD8 in tissue microarray, which contained 89 primary lung cancer tissues, 12 lymph node metastasis lung cancer tissues, 12 precancerous lesions and 10 normal lung tissues, and analyzed the relationship between their expressions and clinicopathological parameters. Results (1 The positive rate of gp96 in primary lung cancer was remarkably higher than that in precancerous lesion and normal lung tissue (P < 0.05. The positive rate of CTLA-4 in primary lung cancer tissue and precancerous lesion was significantly higher than that in normal lung tissue (P < 0.05. The positive rate of CD8 in primary lung cancer tissue was significantly higher than that in normal lung tissue (P < 0.05. The positive rate of gp96 in CD8-positive lymphocytes in the high expression group was less than that in the low group (P < 0.05. (2 The positive rate of gp96 was closely related to sex, differentiation and clinical stage (P < 0.05, but not to age, gross type, histological type and lymph node metastasis (P > 0.05. The positive rate of CTLA-4 was closely related to age and differentiation (P < 0.05, but not to sex, gross type, histological type, clinical stage and lymph node metastasis (P > 0.05. CD8 expression was related to clinical stage (P < 0.05, but not to sex, age, gross type, histological type, differentiation and lymph node metastasis (P > 0.05. The positive rates of gp96, CTLA-4 were higher than that of CD8 in squamous cell carcinoma and SCLC, respectively. (3 There was positive correlation between gp

  12. Effect of the pos-deposition annealing with CdCl2 on the optical, structural and morphological properties of CdTe-films grown by CSS

    International Nuclear Information System (INIS)

    Ricárdez-Jiménez, C; Pérez-Hernández, G; Angulo-Córdova, Q; Díaz-Flores, L L; Pantoja-Enríquez, J; Escobar-Morales, B; Hernández-Torres, M E; Gracia-Jiménez, J M; Silva-González, N R; Mathew, X

    2013-01-01

    A set of CdTe films grown by the CSS method were annealed in aCdCl 2 atmosphere of during 5 min at 345, 365, 385, 405, 425, 435, 445 and 455 °C. The films were characterized before and after annealing by the SEM, EDS, X-ray, optical absorption and photoluminescence (PL) techniques. As the annealing temperature is increased a tendency to improve the Cd/Te ratio is observed. After the thermal treatment at 430 °C the films reach the stoichiometry. A deviation from stoichiometry appears again for annealing temperatures higher than 430 °C. The PL spectra of the films at 6.5 K exhibit two emission bands, one corresponds to the defects energy levels band (1.4–1.5 eV) and the other is located in the interval from 1.564 to 1.584 eV (pA). For annealing temperatures higher than 430 °C an increment in the intensity and energy position of pA is observed, while for annealing temperatures less than 430 °C the behavior is irregular. In the emission mechanisms of pA the expected impurities and/or native defects in the material such as the V Te , V Cd Cl T e, Cd Te and Cl Te are involved.

  13. Nuclear retention of multiply spliced HIV-1 RNA in resting CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Kara G Lassen

    2006-07-01

    Full Text Available HIV-1 latency in resting CD4+ T cells represents a major barrier to virus eradication in patients on highly active antiretroviral therapy (HAART. We describe here a novel post-transcriptional block in HIV-1 gene expression in resting CD4+ T cells from patients on HAART. This block involves the aberrant localization of multiply spliced (MS HIV-1 RNAs encoding the critical positive regulators Tat and Rev. Although these RNAs had no previously described export defect, we show that they exhibit strict nuclear localization in resting CD4+ T cells from patients on HAART. Overexpression of the transcriptional activator Tat from non-HIV vectors allowed virus production in these cells. Thus, the nuclear retention of MS HIV-1 RNA interrupts a positive feedback loop and contributes to the non-productive nature of infection of resting CD4+ T cells. To define the mechanism of nuclear retention, proteomic analysis was used to identify proteins that bind MS HIV-1 RNA. Polypyrimidine tract binding protein (PTB was identified as an HIV-1 RNA-binding protein differentially expressed in resting and activated CD4+ T cells. Overexpression of PTB in resting CD4+ T cells from patients on HAART allowed cytoplasmic accumulation of HIV-1 RNAs. PTB overexpression also induced virus production by resting CD4+ T cells. Virus culture experiments showed that overexpression of PTB in resting CD4+ T cells from patients on HAART allowed release of replication-competent virus, while preserving a resting cellular phenotype. Whether through effects on RNA export or another mechanism, the ability of PTB to reverse latency without inducing cellular activation is a result with therapeutic implications.

  14. Inherited variants in regulatory T cell genes and outcome of ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Ellen L Goode

    Full Text Available Although ovarian cancer is the most lethal of gynecologic malignancies, wide variation in outcome following conventional therapy continues to exist. The presence of tumor-infiltrating regulatory T cells (Tregs has a role in outcome of this disease, and a growing body of data supports the existence of inherited prognostic factors. However, the role of inherited variants in genes encoding Treg-related immune molecules has not been fully explored. We analyzed expression quantitative trait loci (eQTL and sequence-based tagging single nucleotide polymorphisms (tagSNPs for 54 genes associated with Tregs in 3,662 invasive ovarian cancer cases. With adjustment for known prognostic factors, suggestive results were observed among rarer histological subtypes; poorer survival was associated with minor alleles at SNPs in RGS1 (clear cell, rs10921202, p=2.7×10(-5, LRRC32 and TNFRSF18/TNFRSF4 (mucinous, rs3781699, p=4.5×10(-4, and rs3753348, p=9.0×10(-4, respectively, and CD80 (endometrioid, rs13071247, p=8.0×10(-4. Fo0r the latter, correlative data support a CD80 rs13071247 genotype association with CD80 tumor RNA expression (p=0.006. An additional eQTL SNP in CD80 was associated with shorter survival (rs7804190, p=8.1×10(-4 among all cases combined. As the products of these genes are known to affect induction, trafficking, or immunosuppressive function of Tregs, these results suggest the need for follow-up phenotypic studies.

  15. Inherited variants in regulatory T cell genes and outcome of ovarian cancer.

    Science.gov (United States)

    Goode, Ellen L; DeRycke, Melissa; Kalli, Kimberly R; Oberg, Ann L; Cunningham, Julie M; Maurer, Matthew J; Fridley, Brooke L; Armasu, Sebastian M; Serie, Daniel J; Ramar, Priya; Goergen, Krista; Vierkant, Robert A; Rider, David N; Sicotte, Hugues; Wang, Chen; Winterhoff, Boris; Phelan, Catherine M; Schildkraut, Joellen M; Weber, Rachel P; Iversen, Ed; Berchuck, Andrew; Sutphen, Rebecca; Birrer, Michael J; Hampras, Shalaka; Preus, Leah; Gayther, Simon A; Ramus, Susan J; Wentzensen, Nicolas; Yang, Hannah P; Garcia-Closas, Montserrat; Song, Honglin; Tyrer, Jonathan; Pharoah, Paul P D; Konecny, Gottfried; Sellers, Thomas A; Ness, Roberta B; Sucheston, Lara E; Odunsi, Kunle; Hartmann, Lynn C; Moysich, Kirsten B; Knutson, Keith L

    2013-01-01

    Although ovarian cancer is the most lethal of gynecologic malignancies, wide variation in outcome following conventional therapy continues to exist. The presence of tumor-infiltrating regulatory T cells (Tregs) has a role in outcome of this disease, and a growing body of data supports the existence of inherited prognostic factors. However, the role of inherited variants in genes encoding Treg-related immune molecules has not been fully explored. We analyzed expression quantitative trait loci (eQTL) and sequence-based tagging single nucleotide polymorphisms (tagSNPs) for 54 genes associated with Tregs in 3,662 invasive ovarian cancer cases. With adjustment for known prognostic factors, suggestive results were observed among rarer histological subtypes; poorer survival was associated with minor alleles at SNPs in RGS1 (clear cell, rs10921202, p=2.7×10(-5)), LRRC32 and TNFRSF18/TNFRSF4 (mucinous, rs3781699, p=4.5×10(-4), and rs3753348, p=9.0×10(-4), respectively), and CD80 (endometrioid, rs13071247, p=8.0×10(-4)). Fo0r the latter, correlative data support a CD80 rs13071247 genotype association with CD80 tumor RNA expression (p=0.006). An additional eQTL SNP in CD80 was associated with shorter survival (rs7804190, p=8.1×10(-4)) among all cases combined. As the products of these genes are known to affect induction, trafficking, or immunosuppressive function of Tregs, these results suggest the need for follow-up phenotypic studies.

  16. First and second harmonic generation of the XAl{sub 2}Se{sub 4} (X=Zn,Cd,Hg) defect chalcopyrite compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ouahrani, Tarik, E-mail: tarik_ouahrani@yahoo.fr [Laboratoire de Physique Theorique, Universite de Tlemcen, B.P.230,13000 Tlemcen (Algeria); Ecole Preparatoire en Sciences et Techniques, Depertement de Physique EPST-T, Tlemcen 13000 (Algeria); Khenata, R. [Laboratoire de Physique Quantique et de Modelisation Mathematique (LPQ3M), Universite de Mascara, 29000 Mascara (Algeria); Lasri, B. [Laboratoire de Physique Theorique, Universite de Tlemcen, B.P.230,13000 Tlemcen (Algeria); Universite Dr Tahar Moulay de Saida, B.P. 138, Cite el Nasr, Saida 20000 (Algeria); Reshak, Ali H. [School of Complex systems, FFPW- South Bohemia University, Nove Hrady 37333 (Czech Republic); School of Material Engineering, Malaysia University of Perlis, P.O Box 77, d/a Pejabat Pos Besar, 01007 Kangar, Perlis (Malaysia); Bouhemadou, A. [Department of Physics, Faculty of Sciences, University of Setif, 19000 Setif (Algeria); Bin-Omran, S. [Department of Physics and Astronomy, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia)

    2012-09-15

    The chemical bonding of the ZnAl{sub 2}Se{sub 4}, CdAl{sub 2}Se{sub 4} and HgAl{sub 2}Se{sub 4} defect chalcopyrites has been studied in the framework of the quantum theory of atoms in molecules (AIM). The GW quasi-particle approximation is used to correct the DFT-underestimation of energy gap, and as a consequence the linear and nonlinear optical properties are significantly enhanced. The second harmonic generation (SHG) displays certain dependence with the ionicity degree decrease through the dependency of the SHG on the band gap. The occurrence of the AIM saddle point is characterized and some clarifying features in relationship with the density topology are exposed, which enable to understand the relation with the second harmonic generation effect.

  17. The study of the deep levels of In/CdTe Schottky diode

    International Nuclear Information System (INIS)

    Kim, Hey-kyeong; Jeen, Gwangsoo; Nam, S.H.

    2000-01-01

    p-type CdTe is an important component of II-VI compound based solar cells as well as a promising substance for X- and gamma-ray detector. Despite that a lot of researches has been performed on CdTe, the manufacture of large homogeneous ingots with high resistivity (ρ) and a high value of lifetime-mobility product (μτ) still difficult. Both ρ and μτ, which determine detection properties, are strongly dependent on the impurity and defect levels of crystals. As in general, deep defect levels act as recombination centers and influence strongly the efficiency of the detector material, so information about deep levels is an essential need. To estimate deep levels of semiconductor materials, the TSC (thermally stimulated current), TSCD (thermally stimulated capacitor discharges) and admittance spectroscopic method are used. In order to study the deep levels of CdTe, the samples were taken from a CdTe-crystal grown by the vertical Bridgman method. From this boule single crystalline samples of about 0.5 mm thickness were prepared. All samples were initially p-type which was determined by the hot-probe method. In-CdTe Schottky diodes were prepared by the process of evaporation of In in the vacuum of 10 -6 Torr on surface of CdTe. The area of the deposited contact was equal to 1.626 mm 2 . As ohmic contacts, dots of Au soldered for 30 min. in temperature 160 deg C. Measurements were carried out within a 100-250 K temperature and 1-10 kHz frequency range. Related Arrhenius plots, i.e. the experimentally determined emission rates corresponding to the signal maximum divided by the square of temperature as a function of reciprocal temperature are plotted. The experimental data were best fitted by the least-square method. The fitting yielded the defect level energies E T . In this study, by using admittance spectroscopy measurements, we presented the information about the energy and concentration of the defect levels inside the gap, in order to improve the quality of

  18. Identification of the Oxidized Low-Density Lipoprotein Scavenger Receptor CD36 in Plasma

    DEFF Research Database (Denmark)

    Handberg, Aase; Levin, Klaus; Højlund, Kurt

    2006-01-01

    BACKGROUND: Macrophage CD36 scavenges oxidized low-density lipoprotein, leading to foam cell formation, and appears to be a key proatherogenic molecule. Increased expression of CD36 has been attributed to hyperglycemia and to defective macrophage insulin signaling in insulin resistance. Premature...

  19. Evidence implicating the Ras pathway in multiple CD28 costimulatory functions in CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Sujit V Janardhan

    Full Text Available CD28 costimulation is a critical event in the full activation of CD4(+ T cells that augments cytokine gene transcription, promotes cytokine mRNA stability, prevents induction of anergy, increases cellular metabolism, and increases cell survival. However, despite extensive biochemical analysis of the signaling events downstream of CD28, molecular pathways sufficient to functionally replace the diverse aspects of CD28-mediated costimulation in normal T cells have not been identified. Ras/MAPK signaling is a critical pathway downstream of T cell receptor stimulation, but its role in CD28-mediated costimulation has been controversial. We observed that physiologic CD28 costimulation caused a relocalization of the RasGEF RasGRP to the T cell-APC interface by confocal microscopy. In whole cell biochemical analysis, CD28 cross-linking with either anti-CD28 antibody or B7.1-Ig augmented TCR-induced Ras activation. To determine whether Ras signaling was sufficient to functionally mimic CD28 costimulation, we utilized an adenoviral vector encoding constitutively active H-Ras (61L to transduce normal, Coxsackie-Adenovirus Receptor (CAR transgenic CD4(+ T cells. Like costimulation via CD28, active Ras induced AKT, JNK and ERK phosphorylation. In addition, constitutive Ras signaling mimicked the ability of CD28 to costimulate IL-2 protein secretion, prevent anergy induction, increase glucose uptake, and promote cell survival. Importantly, we also found that active Ras mimicked the mechanism by which CD28 costimulates IL-2 production: by increasing IL-2 gene transcription, and promoting IL-2 mRNA stability. Finally, active Ras was able to induce IL-2 production when combined with ionomycin stimulation in a MEK-1-dependent fashion. Our results are consistent with a central role for Ras signaling in CD28-mediated costimulation.

  20. Molecular characterization of CD9 and CD63, two tetraspanin family members expressed in trout B lymphocytes.

    Science.gov (United States)

    Castro, Rosario; Abós, Beatriz; González, Lucia; Aquilino, Carolina; Pignatelli, Jaime; Tafalla, Carolina

    2015-07-01

    Tetraspanins are a family of membrane-organizing proteins, characterized by the presence of four highly conserved transmembrane regions that mediate diverse physiological functions. In the current study, we have identified two novel tetraspanin members in rainbow trout (Oncorhynchus mykiss), homologs to mammalian CD9 and CD63. Both genes were expressed in muscle, skin, gills, hindgut, gonad, liver, spleen, head kidney, thymus and peripheral blood leukocytes. Throughout the early life cycle stages, CD9 mRNA levels significantly increased after first feeding, whereas CD63 transcription remained constant during all the developmental stages analyzed. In response to an experimental bath infection with viral hemorrhagic septicemia virus (VHSV), CD9 transcription was down-regulated in the gills, while CD63 mRNA levels were down-regulated in the head kidney. Instead, when the virus was intraperitoneally injected, the transcription of both genes was significantly up-regulated in peritoneal cells at several days post-infection. Additionally, both genes were transcriptionally up-regulated in the muscle of trout injected with a VHSV DNA vaccine. To gain insight on the relation of these tetraspanins with B cell activity we determined their constitutive expression in naive IgM(+) populations from different sources and observed that both molecules were being transcribed by IgM(+) cells in different tissues. Furthermore, CD9 transcription was significantly down-regulated in splenic IgM(+) cells in response to in vitro VHSV exposure. Our results provide insights on the potential role of these tetraspanins on teleost B cell and antiviral immunity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Driving down defect density in composite EUV patterning film stacks

    Science.gov (United States)

    Meli, Luciana; Petrillo, Karen; De Silva, Anuja; Arnold, John; Felix, Nelson; Johnson, Richard; Murray, Cody; Hubbard, Alex; Durrant, Danielle; Hontake, Koichi; Huli, Lior; Lemley, Corey; Hetzer, Dave; Kawakami, Shinichiro; Matsunaga, Koichi

    2017-03-01

    Extreme ultraviolet lithography (EUVL) technology is one of the leading candidates for enabling the next generation devices, for 7nm node and beyond. As the technology matures, further improvement is required in the area of blanket film defectivity, pattern defectivity, CD uniformity, and LWR/LER. As EUV pitch scaling approaches sub 20 nm, new techniques and methods must be developed to reduce the overall defectivity, mitigate pattern collapse and eliminate film related defect. IBM Corporation and Tokyo Electron Limited (TELTM) are continuously collaborating to develop manufacturing quality processes for EUVL. In this paper, we review key defectivity learning required to enable 7nm node and beyond technology. We will describe ongoing progress in addressing these challenges through track-based processes (coating, developer, baking), highlighting the limitations of common defect detection strategies and outlining methodologies necessary for accurate characterization and mitigation of blanket defectivity in EUV patterning stacks. We will further discuss defects related to pattern collapse and thinning of underlayer films.

  2. Characterization of cancer stem cell properties of CD24 and CD26-positive human malignant mesothelioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Hiroto; Naito, Motohiko; Ghani, Farhana Ishrat [Division of Clinical Immunology, Institute of Medical Science, University of Tokyo, Tokyo (Japan); Dang, Nam H. [Division of Hematology/Oncology, University of Florida Shands Cancer Center, Gainesville, FL 32610 (United States); Iwata, Satoshi [Division of Clinical Immunology, Institute of Medical Science, University of Tokyo, Tokyo (Japan); Morimoto, Chikao, E-mail: morimoto@ims.u-tokyo.ac.jp [Division of Clinical Immunology, Institute of Medical Science, University of Tokyo, Tokyo (Japan)

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer We focused on CD24 and CD26 for further analysis of CSC properties in MM. Black-Right-Pointing-Pointer Their expressions were correlated with chemoresistance, cell growth, and invasion. Black-Right-Pointing-Pointer Their expressions were also correlated with several cancer related genes. Black-Right-Pointing-Pointer The expression of each marker was correlated with different CSC property in Meso1. Black-Right-Pointing-Pointer Phosphorylation of ERK by EGF was regulated by expression of CD26, but not CD24. -- Abstract: Malignant mesothelioma (MM) is an asbestos-related malignancy characterized by rapid growth and poor prognosis. In our previous study, we have demonstrated that several cancer stem cell (CSC) markers correlated with CSC properties in MM cells. Among these markers, we focused on two: CD24, the common CSC marker, and CD26, the additional CSC marker. We further analyzed the CSC properties of CD24 and CD26-positve MM cells. We established RNAi-knockdown cells and found that these markers were significantly correlated with chemoresistance, proliferation, and invasion potentials in vitro. Interestingly, while Meso-1 cells expressed both CD24 and CD26, the presence of each of these two markers was correlated with different CSC property. In addition, downstream signaling of these markers was explored by microarray analysis, which revealed that their expressions were correlated with several cancer-related genes. Furthermore, phosphorylation of ERK by EGF stimulation was significantly affected by the expression of CD26, but not CD24. These results suggest that CD24 and CD26 differentially regulate the CSC potentials of MM and could be promising targets for CSC-oriented therapy.

  3. Dynamic Response Genes in CD4+ T Cells Reveal a Network of Interactive Proteins that Classifies Disease Activity in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Sandra Hellberg

    2016-09-01

    Full Text Available Multiple sclerosis (MS is a chronic inflammatory disease of the CNS and has a varying disease course as well as variable response to treatment. Biomarkers may therefore aid personalized treatment. We tested whether in vitro activation of MS patient-derived CD4+ T cells could reveal potential biomarkers. The dynamic gene expression response to activation was dysregulated in patient-derived CD4+ T cells. By integrating our findings with genome-wide association studies, we constructed a highly connected MS gene module, disclosing cell activation and chemotaxis as central components. Changes in several module genes were associated with differences in protein levels, which were measurable in cerebrospinal fluid and were used to classify patients from control individuals. In addition, these measurements could predict disease activity after 2 years and distinguish low and high responders to treatment in two additional, independent cohorts. While further validation is needed in larger cohorts prior to clinical implementation, we have uncovered a set of potentially promising biomarkers.

  4. Research into the electrical property variation of undoped CdTe and ZnTe crystals grown under Te-rich conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yadong, E-mail: xyd220@nwpu.edu.cn; Liu, Hang; He, Yihui; Yang, Rui; Luo, Lin; Jie, Wanqi

    2014-11-05

    Highlights: • Conductivity type and resistivity of undoped Te-rich ZnTe and CdTe are different. • Te{sub i} and V{sub Zn} as the dominant defects account for the p-type low resistivity ZnTe. • Te{sub Cd} as the principle defect leading to the light n-type high resistivity CdTe. • DAP and eA peaks dominate the luminescence with their intensities anti-correlated. - Abstract: Both undoped ZnTe and CdTe bulk single crystals are grown under Te-saturated conditions from the solution and melt, respectively. To give an insight into the variation of the electrical properties, the defects structures in both tellurides are discussed. According to the actual growth velocities and the entire cooling history, tellurium interstitials (Te{sub i}) and Zinc vacancies (V{sub Zn}) are proposed as the dominant grown-in defects, account for the low resistivity of p-type ZnTe. However, relatively high pulling rates and slow cooling-down processes result in tellurium anti-sites (Te{sub Cd}) as the principle grown-in defects, leading to the high resistivity of light n-type CdTe. Further low-temperature (8.6 K) photoluminescence spectra of both tellurides are obtained. The donor–acceptor pair (DAP) and recombination of free electron to neutral acceptor (eA) dominate the luminescence, however, with their intensities are anti-correlated. eA is superior to DAP in undoped Te-rich ZnTe, suggests a high concentration of Te{sub i} or V{sub Zn}. On the contrary, DAP is the principal emission for undoped Te-rich CdTe. In addition, V-line is clearly identified in undoped Te-rich ZnTe, which possibly associated with V{sub Zn} or close Frenkel pair V{sub Zn}–Zn{sub i}.

  5. CD146+ human umbilical cord perivascular cells maintain stemness under hypoxia and as a cell source for skeletal regeneration.

    Directory of Open Access Journals (Sweden)

    Wing Pui Tsang

    Full Text Available The human umbilical cord perivascular cells (HUCPVCs have been considered as an alternative source of mesenchymal progenitors for cell based regenerative medicine. However, the biological properties of these cells remain to be well characterized. In the present study, HUCPVCs were isolated and sorted by CD146(+ pericyte marker. The purified CD146(+ HUCPVCs were induced to differentiate efficiently into osteoblast, chondrocyte and adipocyte lineages in vitro. Six weeks following subcutaneous transplantation of CD146(+ HUCPVCs-Gelfoam-alginate 3D complexes in severe combined immunodeficiency (SCID mice, newly formed bone matrix with embedded osteocytes of donor origin was observed. The functional engraftment of CD146(+ HUCPVCs in the new bone regenerates was further confirmed in a critical-sized bone defect model in SCID mice. Hypoxic conditions suppressed osteogenic differentiation while increased cell proliferation and colony-forming efficiency of CD146(+ HUCPVCs as compared to that under normoxic conditions. Re-oxygenation restored the multi-differentiation potential of the CD146(+ HUCPVCs. Western blot analysis revealed an upregulation of HIF-1α, HIF-2α, and OCT-4 protein expression in CD146(+ HUCPVCs under hypoxia, while there was no remarkable change in SOX2 and NANOG expression. The gene expression profiles of stem cell transcription factors between cells treated by normoxia and hypoxic conditions were compared by PCR array analysis. Intriguingly, PPAR-γ was dramatically downregulated (20-fold in mRNA expression under hypoxia, and was revealed to possess a putative binding site in the Hif-2α gene promoter region. Chromatin immunoprecipitation assays confirmed the binding of PPAR-γ protein to the Hif-2α promoter and the binding was suppressed by hypoxia treatment. Luciferase reporter assay showed that the Hif-2α promoter activity was suppressed by PPAR expression. Thus, PPAR-γ may involve in the regulation of HIF-2α for stemness

  6. Degradation sources of CdTe thin film PV: CdCl{sub 2} residue and shunting pinholes

    Energy Technology Data Exchange (ETDEWEB)

    Gorji, Nima E. [University of Bologna, Department of Electrical, Electronics and Information Engineering, Bologna (Italy)

    2014-09-15

    The present work considers two observable phenomena through the experimental fabrication and electrical characterization of the rf-sputtered CdS/CdTe thin film solar cells that extremely reduce the overall conversion efficiency of the device: CdCl{sub 2} residue on the surface of the semiconductor and shunting pinholes. The former happens through nonuniform treatment of the As-deposited solar cells before annealing at high temperature and the latter occurs by shunting pinholes when the cell surface is shunted by defects, wire-like pathways or scratches on the metallic back contact caused from the external contacts. Such physical problems may be quite common in the experimental activities and reduce the performance down to 4-5 % which leads to dismantle the device despite its precise fabrication. We present our electrical characterization on the samples that received wet CdCl{sub 2} surface treatment (uniform or nonuniform) and are damaged by the pinholes. (orig.)

  7. ASSOCIATION OF POLYMORPHISM OF C159T GENE OF RECEPTOR CD14 AND ANTIENDOTOXIN IMMUNITY IN PATIENTS WITH REFRACTORY / CORTICOSTEROIDSSENSITIVE ASTHMA

    Directory of Open Access Journals (Sweden)

    Bisyuk Yu.A.

    2015-05-01

    Full Text Available Introduction. The refractory asthma refers to the phenotype, which is characterized by severe persistent course with frequent exacerbations and resistance to corticosteroid therapy. This phenotype of asthma can be related to C159T polymorphism of CD14 receptor gene Material and methods. There were studied the C159T polymorphism of CD14 gene in 331 patients with bronchial asthma. The control group consisted of 285 healthy individuals of Crimea. The C159T gene polymorphism of CD14 was detected by allele-specific polymerase chain reaction with electrophoretic detection. The distribution of genotypes was checked according to the law of the Hardy-Weinberg equilibrium by using Fisher's exact test and χ2. There was used logistic regression to determine the difference in the frequency of genotypes and alleles. Results and discussion. In our study have been identified 291 patients with corticosteroid-sensitive and 40 with refractory asthma. The genotype distribution of control (CC – 34%, CT – 51%, CT – 15% and patients with corticosteroid-sensitive asthma (CC – 29%, CT – 53%, CT – 18% were in accordance with the law of Hardy- Weinberg equilibrium and did not significantly differ (χ2 = 2.204, P = 0.332. There were no significant differences when comparing the allele and genotype frequencies by using risk allele T and C model. In the control group the frequency distribution of genotypes CC – 34%, CT – 51%, TT – 15% did not differ significantly (χ2 = 3.540, P = 0.170 from refractory asthma (CC – 52%, CT – 35%, CT – 13%. The risk analysis for the T allele showed that the frequency of CT+TT genotype in patients with refractory asthma (49% was significantly lower (OR = 0.467, CI = [0.240-0.910], χ2 = 5.17, p = 0.023 compere to control (66 %. In turn, the difference of allelic frequencies for the control and patients with persistent asthma did not differ significantly (p = 0.076. The content of antiendotoxin antibody of class A in

  8. Transcriptome sequencing and differential gene expression analysis in Viola yedoensis Makino (Fam. Violaceae) responsive to cadmium (Cd) pollution

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jian [Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan (China); Luo, Mao [Drug Discovery Research Center of Luzhou Medical College, Luzhou, Sichuan (China); Zhu, Ye; He, Ying; Wang, Qin [Department of Pharmacy of Luzhou Medical College, Luzhou, Sichuan (China); Zhang, Chun, E-mail: zc83good@126.com [Department of Pharmacy of Luzhou Medical College, Luzhou, Sichuan (China)

    2015-03-27

    Viola yedoensis Makino is an important Chinese traditional medicine plant adapted to cadmium (Cd) pollution regions. Illumina sequencing technology was used to sequence the transcriptome of V. yedoensis Makino. We sequenced Cd-treated (VIYCd) and untreated (VIYCK) samples of V. yedoensis, and obtained 100,410,834 and 83,587,676 high quality reads, respectively. After de novo assembly and quantitative assessment, 109,800 unigenes were finally generated with an average length of 661 bp. We then obtained functional annotations by aligning unigenes with public protein databases including NR, NT, SwissProt, KEGG and COG. In addition, 892 differentially expressed genes (DEGs) were investigated between the two libraries of untreated (VIYCK) and Cd-treated (VIYCd) plants. Moreover, 15 randomly selected DEGs were further validated with qRT-PCR and the results were highly accordant with the Solexa analysis. This study firstly generated a successful global analysis of the V. yedoensis transcriptome and it will provide for further studies on gene expression, genomics, and functional genomics in Violaceae. - Highlights: • A de novo assembly generated 109,800 unigenes and 5,4479 of them were annotated. • 31,285 could be classified into 26 COG categories. • 263 biosynthesis pathways were predicted and classified into five categories. • 892 DEGs were detected and 15 of them were validated by qRT-PCR.

  9. Transcriptome sequencing and differential gene expression analysis in Viola yedoensis Makino (Fam. Violaceae) responsive to cadmium (Cd) pollution

    International Nuclear Information System (INIS)

    Gao, Jian; Luo, Mao; Zhu, Ye; He, Ying; Wang, Qin; Zhang, Chun

    2015-01-01

    Viola yedoensis Makino is an important Chinese traditional medicine plant adapted to cadmium (Cd) pollution regions. Illumina sequencing technology was used to sequence the transcriptome of V. yedoensis Makino. We sequenced Cd-treated (VIYCd) and untreated (VIYCK) samples of V. yedoensis, and obtained 100,410,834 and 83,587,676 high quality reads, respectively. After de novo assembly and quantitative assessment, 109,800 unigenes were finally generated with an average length of 661 bp. We then obtained functional annotations by aligning unigenes with public protein databases including NR, NT, SwissProt, KEGG and COG. In addition, 892 differentially expressed genes (DEGs) were investigated between the two libraries of untreated (VIYCK) and Cd-treated (VIYCd) plants. Moreover, 15 randomly selected DEGs were further validated with qRT-PCR and the results were highly accordant with the Solexa analysis. This study firstly generated a successful global analysis of the V. yedoensis transcriptome and it will provide for further studies on gene expression, genomics, and functional genomics in Violaceae. - Highlights: • A de novo assembly generated 109,800 unigenes and 5,4479 of them were annotated. • 31,285 could be classified into 26 COG categories. • 263 biosynthesis pathways were predicted and classified into five categories. • 892 DEGs were detected and 15 of them were validated by qRT-PCR

  10. Strain relaxation of CdTe on Ge studied by medium energy ion scattering

    Energy Technology Data Exchange (ETDEWEB)

    Pillet, J.C., E-mail: jean-christophe.pillet@cea.fr [Univ. Grenoble Alpes, CEA, LETI, MINATEC campus, F38000 Grenoble (France); CEA, LETI, Département Optique et Photonique, F38054 Grenoble (France); Pierre, F. [Univ. Grenoble Alpes, CEA, LETI, MINATEC campus, F38000 Grenoble (France); CEA, LETI, Service de Caractérisation des Matériaux et Composants, F38054 Grenoble (France); Jalabert, D. [Univ. Grenoble Alpes, CEA, LETI, MINATEC campus, F38000 Grenoble (France); CEA-INAC/UJF-Grenoble 1 UMR-E, SP2M, LEMMA, Minatec Grenoble F-38054 (France)

    2016-10-01

    We have used the medium energy ion scattering (MEIS) technique to assess the strain relaxation in molecular-beam epitaxial (MBE) grown CdTe (2 1 1)/Ge (2 1 1) system. A previous X-ray diffraction study, on 10 samples of the same heterostructure having thicknesses ranging from 25 nm to 10 μm has allowed the measurement of the strain relaxation on a large scale. However, the X-ray diffraction measurements cannot achieve a stress measurement in close proximity to the CdTe/Ge interface at the nanometer scale. Due to the huge lattice misfit between the CdTe and Ge, a high degree of disorder is expected at the interface. The MEIS in channeling mode is a good alternative in order to profile defects with a high depth resolution. For a 21 nm thick CdTe layer, we observed, at the interface, a high density of Cd and/or Te atoms moved from their expected crystallographic positions followed by a rapid recombination of defects. Strain relaxation mechanisms in the vicinity of the interface are discussed.

  11. Effects of phosphorylatable short peptide-conjugated chitosan-mediated IL-1Ra and igf-1 gene transfer on articular cartilage defects in rabbits.

    Directory of Open Access Journals (Sweden)

    Ronglan Zhao

    Full Text Available Previously, we reported an improvement in the transfection efficiency of the plasmid DNA-chitosan (pDNA/CS complex by the utilization of phosphorylatable short peptide-conjugated chitosan (pSP-CS. In this study, we investigated the effects of pSP-CS-mediated gene transfection of interleukin-1 receptor antagonist protein (IL-1Ra combined with insulin-like growth factor-1 (IGF-1 in rabbit chondrocytes and in a rabbit model of cartilage defects. pBudCE4.1-IL-1Ra+igf-1, pBudCE4.1-IL-1Ra and pBudCE4.1-igf-1 were constructed and combined with pSP-CS to form pDNA/pSP-CS complexes. These complexes were transfected into rabbit primary chondrocytes or injected into the joint cavity. Seven weeks after treatment, all rabbits were sacrificed and analyzed. High levels of IL-1Ra and igf-1 expression were detected both in the cell culture supernatant and in the synovial fluid. In vitro, the transgenic complexes caused significant proliferation of chondrocytes, promotion of glycosaminoglycan (GAG and collagen II synthesis, and inhibition of chondrocyte apoptosis and nitric oxide (NO synthesis. In vivo, the exogenous genes resulted in increased collagen II synthesis and reduced NO and GAG concentrations in the synovial fluid; histological studies revealed that pDNA/pSP-CS treatment resulted in varying degrees of hyaline-like cartilage repair and Mankin score decrease. The co-expression of both genes produced greater effects than each single gene alone both in vitro and in vivo. The results suggest that pSP-CS is a good candidate for use in gene therapy for the treatment of cartilage defects and that igf-1 and IL-1Ra co-expression produces promising biologic effects on cartilage defects.

  12. [Key effect genes responding to nerve injury identified by gene ontology and computer pattern recognition].

    Science.gov (United States)

    Pan, Qian; Peng, Jin; Zhou, Xue; Yang, Hao; Zhang, Wei

    2012-07-01

    In order to screen out important genes from large gene data of gene microarray after nerve injury, we combine gene ontology (GO) method and computer pattern recognition technology to find key genes responding to nerve injury, and then verify one of these screened-out genes. Data mining and gene ontology analysis of gene chip data GSE26350 was carried out through MATLAB software. Cd44 was selected from screened-out key gene molecular spectrum by comparing genes' different GO terms and positions on score map of principal component. Function interferences were employed to influence the normal binding of Cd44 and one of its ligands, chondroitin sulfate C (CSC), to observe neurite extension. Gene ontology analysis showed that the first genes on score map (marked by red *) mainly distributed in molecular transducer activity, receptor activity, protein binding et al molecular function GO terms. Cd44 is one of six effector protein genes, and attracted us with its function diversity. After adding different reagents into the medium to interfere the normal binding of CSC and Cd44, varying-degree remissions of CSC's inhibition on neurite extension were observed. CSC can inhibit neurite extension through binding Cd44 on the neuron membrane. This verifies that important genes in given physiological processes can be identified by gene ontology analysis of gene chip data.

  13. IL-5 promotes induction of antigen-specific CD4+CD25+ T regulatory cells that suppress autoimmunity.

    Science.gov (United States)

    Tran, Giang T; Hodgkinson, Suzanne J; Carter, Nicole M; Verma, Nirupama D; Plain, Karren M; Boyd, Rochelle; Robinson, Catherine M; Nomura, Masaru; Killingsworth, Murray; Hall, Bruce M

    2012-05-10

    Immune responses to foreign and self-Ags can be controlled by regulatory T cells (Tregs) expressing CD4 and IL-2Rα chain (CD25). Defects in Tregs lead to autoimmunity, whereas induction of Ag-specific CD4+CD25+ Tregs restores tolerance. Ag-specific CD4+CD25+ FOXP3+Tregs activated by the T helper type 2 (Th2) cytokine, IL-4, and specific alloantigen promote allograft tolerance. These Tregs expressed the specific IL-5Rα and in the presence of IL-5 proliferate to specific but not third-party Ag. These findings suggest that recombinant IL-5 (rIL-5) therapy may promote Ag-specific Tregs to mediate tolerance. This study showed normal CD4+CD25+ Tregs cultured with IL-4 and an autoantigen expressed Il-5rα. Treatment of experimental autoimmune neuritis with rIL-5 markedly reduced clinical paralysis, weight loss, demyelination, and infiltration of CD4+ (Th1 and Th17) CD8+ T cells and macrophages in nerves. Clinical improvement was associated with expansion of CD4+CD25+FOXP3+ Tregs that expressed Il-5rα and proliferated only to specific autoantigen that was enhanced by rIL-5. Depletion of CD25+ Tregs or blocking of IL-4 abolished the benefits of rIL-5. Thus, rIL-5 promoted Ag-specific Tregs, activated by autoantigen and IL-4, to control autoimmunity. These findings may explain how Th2 responses, especially to parasitic infestation, induce immune tolerance. rIL-5 therapy may be able to induce Ag-specific tolerance in autoimmunity.

  14. Circulating CD4+CD28null T Cells May Increase the Risk of an Atherosclerotic Vascular Event Shortly after Kidney Transplantation

    Directory of Open Access Journals (Sweden)

    Michiel G. H. Betjes

    2013-01-01

    Full Text Available Proinflammatory CD4+ T cells without the costimulatory molecule CD28 (CD4+CD28null T cells are expanded in patients with end-stage renal disease (ESRD and associated with atherosclerotic vascular events (AVE. In a prospective study, the number of circulating CD4+CD28null T cells was established in 295 ESRD patients prior to receiving a kidney allograft. Within the first year after transplantation, an AVE occurred in 20 patients. Univariate analysis showed that besides a history of cardiovascular disease (CVDpos, HR 8.1, , age (HR 1.04, , dyslipidaemia (HR 8.8, , and the % of CD4+CD28null T cells (HR 1.04 per % increase, 95% CI 1.00–1.09, were significantly associated with the occurrence of a posttransplantation AVE. In a multivariate analysis, only CVDpos remained a significant risk factor with a significant and positive interaction between the terms CVDpos and the % of CD4+CD28null T cells (HR 1.05, 95% CI 1.03–1.11, . Within the CVDpos group, the incidence of an AVE was 13% in the lowest tertile compared to 25% in the highest tertile of % of CD4+CD28null T cells. In conclusion, the presence of circulating CD4+CD28null T cells is associated with an increased risk for a cardiovascular event shortly after kidney transplantation.

  15. Full GMP-Compliant Validation of Bone Marrow-Derived Human CD133+ Cells as Advanced Therapy Medicinal Product for Refractory Ischemic Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Daniela Belotti

    2015-01-01

    Full Text Available According to the European Medicine Agency (EMA regulatory frameworks, Advanced Therapy Medicinal Products (ATMP represent a new category of drugs in which the active ingredient consists of cells, genes, or tissues. ATMP-CD133 has been widely investigated in controlled clinical trials for cardiovascular diseases, making CD133+ cells one of the most well characterized cell-derived drugs in this field. To ensure high quality and safety standards for clinical use, the manufacturing process must be accomplished in certified facilities following standard operative procedures (SOPs. In the present work, we report the fully compliant GMP-grade production of ATMP-CD133 which aims to address the treatment of chronic refractory ischemic heart failure. Starting from bone marrow (BM, ATMP-CD133 manufacturing output yielded a median of 6.66 × 106 of CD133+ cells (range 2.85 × 106–30.84 × 106, with a viability ranged between 96,03% and 99,97% (median 99,87% and a median purity of CD133+ cells of 90,60% (range 81,40%–96,20%. Based on these results we defined our final release criteria for ATMP-CD133: purity ≥ 70%, viability ≥ 80%, cellularity between 1 and 12 × 106 cells, sterile, and endotoxin-free. The abovementioned criteria are currently applied in our Phase I clinical trial (RECARDIO Trial.

  16. Full GMP-compliant validation of bone marrow-derived human CD133(+) cells as advanced therapy medicinal product for refractory ischemic cardiomyopathy.

    Science.gov (United States)

    Belotti, Daniela; Gaipa, Giuseppe; Bassetti, Beatrice; Cabiati, Benedetta; Spaltro, Gabriella; Biagi, Ettore; Parma, Matteo; Biondi, Andrea; Cavallotti, Laura; Gambini, Elisa; Pompilio, Giulio

    2015-01-01

    According to the European Medicine Agency (EMA) regulatory frameworks, Advanced Therapy Medicinal Products (ATMP) represent a new category of drugs in which the active ingredient consists of cells, genes, or tissues. ATMP-CD133 has been widely investigated in controlled clinical trials for cardiovascular diseases, making CD133(+) cells one of the most well characterized cell-derived drugs in this field. To ensure high quality and safety standards for clinical use, the manufacturing process must be accomplished in certified facilities following standard operative procedures (SOPs). In the present work, we report the fully compliant GMP-grade production of ATMP-CD133 which aims to address the treatment of chronic refractory ischemic heart failure. Starting from bone marrow (BM), ATMP-CD133 manufacturing output yielded a median of 6.66 × 10(6) of CD133(+) cells (range 2.85 × 10(6)-30.84 × 10(6)), with a viability ranged between 96,03% and 99,97% (median 99,87%) and a median purity of CD133(+) cells of 90,60% (range 81,40%-96,20%). Based on these results we defined our final release criteria for ATMP-CD133: purity ≥ 70%, viability ≥ 80%, cellularity between 1 and 12 × 10(6) cells, sterile, and endotoxin-free. The abovementioned criteria are currently applied in our Phase I clinical trial (RECARDIO Trial).

  17. Full GMP-Compliant Validation of Bone Marrow-Derived Human CD133+ Cells as Advanced Therapy Medicinal Product for Refractory Ischemic Cardiomyopathy

    Science.gov (United States)

    Belotti, Daniela; Gaipa, Giuseppe; Bassetti, Beatrice; Cabiati, Benedetta; Spaltro, Gabriella; Biagi, Ettore; Parma, Matteo; Biondi, Andrea; Cavallotti, Laura; Gambini, Elisa; Pompilio, Giulio

    2015-01-01

    According to the European Medicine Agency (EMA) regulatory frameworks, Advanced Therapy Medicinal Products (ATMP) represent a new category of drugs in which the active ingredient consists of cells, genes, or tissues. ATMP-CD133 has been widely investigated in controlled clinical trials for cardiovascular diseases, making CD133+ cells one of the most well characterized cell-derived drugs in this field. To ensure high quality and safety standards for clinical use, the manufacturing process must be accomplished in certified facilities following standard operative procedures (SOPs). In the present work, we report the fully compliant GMP-grade production of ATMP-CD133 which aims to address the treatment of chronic refractory ischemic heart failure. Starting from bone marrow (BM), ATMP-CD133 manufacturing output yielded a median of 6.66 × 106 of CD133+ cells (range 2.85 × 106–30.84 × 106), with a viability ranged between 96,03% and 99,97% (median 99,87%) and a median purity of CD133+ cells of 90,60% (range 81,40%–96,20%). Based on these results we defined our final release criteria for ATMP-CD133: purity ≥ 70%, viability ≥ 80%, cellularity between 1 and 12 × 106 cells, sterile, and endotoxin-free. The abovementioned criteria are currently applied in our Phase I clinical trial (RECARDIO Trial). PMID:26495296

  18. Epigenetic control of CD8+ T cell differentiation.

    Science.gov (United States)

    Henning, Amanda N; Roychoudhuri, Rahul; Restifo, Nicholas P

    2018-05-01

    Upon stimulation, small numbers of naive CD8 + T cells proliferate and differentiate into a variety of memory and effector cell types. CD8 + T cells can persist for years and kill tumour cells and virally infected cells. The functional and phenotypic changes that occur during CD8 + T cell differentiation are well characterized, but the epigenetic states that underlie these changes are incompletely understood. Here, we review the epigenetic processes that direct CD8 + T cell differentiation and function. We focus on epigenetic modification of DNA and associated histones at genes and their regulatory elements. We also describe structural changes in chromatin organization that affect gene expression. Finally, we examine the translational potential of epigenetic interventions to improve CD8 + T cell function in individuals with chronic infections and cancer.

  19. Detection of copy number variants reveals association of cilia genes with neural tube defects.

    Directory of Open Access Journals (Sweden)

    Xiaoli Chen

    Full Text Available BACKGROUND: Neural tube defects (NTDs are one of the most common birth defects caused by a combination of genetic and environmental factors. Currently, little is known about the genetic basis of NTDs although up to 70% of human NTDs were reported to be attributed to genetic factors. Here we performed genome-wide copy number variants (CNVs detection in a cohort of Chinese NTD patients in order to exam the potential role of CNVs in the pathogenesis of NTDs. METHODS: The genomic DNA from eighty-five NTD cases and seventy-five matched normal controls were subjected for whole genome CNVs analysis. Non-DGV (the Database of Genomic Variants CNVs from each group were further analyzed for their associations with NTDs. Gene content in non-DGV CNVs as well as participating pathways were examined. RESULTS: Fifty-five and twenty-six non-DGV CNVs were detected in cases and controls respectively. Among them, forty and nineteen CNVs involve genes (genic CNV. Significantly more non-DGV CNVs and non-DGV genic CNVs were detected in NTD patients than in control (41.2% vs. 25.3%, p<0.05 and 37.6% vs. 20%, p<0.05. Non-DGV genic CNVs are associated with a 2.65-fold increased risk for NTDs (95% CI: 1.24-5.87. Interestingly, there are 41 cilia genes involved in non-DGV CNVs from NTD patients which is significantly enriched in cases compared with that in controls (24.7% vs. 9.3%, p<0.05, corresponding with a 3.19-fold increased risk for NTDs (95% CI: 1.27-8.01. Pathway analyses further suggested that two ciliogenesis pathways, tight junction and protein kinase A signaling, are top canonical pathways implicated in NTD-specific CNVs, and these two novel pathways interact with known NTD pathways. CONCLUSIONS: Evidence from the genome-wide CNV study suggests that genic CNVs, particularly ciliogenic CNVs are associated with NTDs and two ciliogenesis pathways, tight junction and protein kinase A signaling, are potential pathways involved in NTD pathogenesis.

  20. Prospects of Ternary Cd1-x Zn x S as an Electron Transport Layer and Associated Interface Defects in a Planar Lead Halide Perovskite Solar Cell via Numerical Simulation

    Science.gov (United States)

    Chowdhury, Towhid Hossain; Ferdaous, Mohammad Tanvirul; Wadi, Mohd. Aizat Abdul; Chelvanathan, Puvaneswaran; Amin, Nowshad; Islam, Ashraful; Kamaruddin, Nurhafiza; Zin, Muhammad Irsyamuddin M.; Ruslan, Mohd Hafidz; Sopian, Kamaruzzaman Bin; Akhtaruzzaman, Md.

    2018-03-01

    In this study we present a ternary alloy, Cd1-x Zn x S as an electron transport layer for a planar lead halide perovskite solar cell via numerical simulation with solar cell capacitance simulator (SCAPS) software. Performance dependence on molar composition variation in the Cd1-x Zn x S alloy was studied for the mixed perovskite CH3NH3PbI3-x Cl x absorber and spiro-OMeTAD hole transport material in a planar perovskite solar cell. Additionally, the defects on both Cd1-x Zn x S/CH3NH3PbI3-x Cl x and CH3NH3PbI3-x Cl x /spiro-OMeTAD interface were thoroughly investigated. Simultaneously, a thickness of 700 nm for CH3NH3PbI3-x Cl x absorber with 50-nm-thick Cd0.2Zn0.8S (x = 0.8) was optimized. Analysis of the numerical solutions via SCAPS provides a trend and pattern for Cd0.2Zn0.8S as an effective electron transport layer for planar perovskite solar cells with a yield efficiency up to 24.83%. The planar perovskite solar cell shows an open-circuit voltage of 1.224 V, short-circuit current density of 25.283 mA/cm2 and a fill factor of 80.22.

  1. Chronic exposure to water pollutant trichloroethylene increased epigenetic drift in CD4(+) T cells.

    Science.gov (United States)

    Gilbert, Kathleen M; Blossom, Sarah J; Erickson, Stephen W; Reisfeld, Brad; Zurlinden, Todd J; Broadfoot, Brannon; West, Kirk; Bai, Shasha; Cooney, Craig A

    2016-05-01

    Autoimmune disease and CD4(+) T-cell alterations are induced in mice exposed to the water pollutant trichloroethylene (TCE). We examined here whether TCE altered gene-specific DNA methylation in CD4(+) T cells as a possible mechanism of immunotoxicity. Naive and effector/memory CD4(+) T cells from mice exposed to TCE (0.5 mg/ml in drinking water) for 40 weeks were examined by bisulfite next-generation DNA sequencing. A probabilistic model calculated from multiple genes showed that TCE decreased methylation control in CD4(+) T cells. Data from individual genes fitted to a quadratic regression model showed that TCE increased gene-specific methylation variance in both CD4 subsets. TCE increased epigenetic drift of specific CpG sites in CD4(+) T cells.

  2. Spin dynamics in bulk CdTe at room temperature

    International Nuclear Information System (INIS)

    Nahalkova, P.; Nemec, P.; Sprinzl, D.; Belas, E.; Horodysky, P.; Franc, J.; Hlidek, P.; Maly, P.

    2006-01-01

    In this paper, we report on the room temperature dynamics of spin-polarized carriers in undoped bulk CdTe. Platelets of CdTe with different concentration of preparation-induced dislocations were prepared by combining the mechanical polishing and chemical etching. Using the polarization-resolved pump-probe experiment in transmission geometry, we have observed a systematic decrease of both the signal polarization and the electron spin dephasing time (from 52 to 36 ps) with the increased concentration of defects. We have suggested that the Elliot-Yafet mechanism might be the dominant spin dephasing mechanism in platelets of CdTe at room temperature

  3. Association of ATG16L1 gene haplotype with inflammatory bowel disease in Indians.

    Directory of Open Access Journals (Sweden)

    Srinivasan Pugazhendhi

    Full Text Available Inflammatory bowel disease (IBD is characterized by multigenic inheritance. Defects in autophagy related genes are considered to show genetic heterogeneity between populations. We evaluated the association of several single nucleotide polymorphisms (SNPs in the autophagy related 16 like 1 (ATG16L1 gene with IBD in Indians. The ATG16L1 gene was genotyped for ten different SNPs using DNA extracted from peripheral blood of 234 patients with Crohn's disease (CD, 249 patients with ulcerative colitis (UC and 393 healthy controls The SNPs rs2241880, rs4663396, rs3792106, rs10210302, rs3792109, rs2241877, rs6737398, rs11682898, rs4663402 and rs4663421 were genotyped using the Sequenom MassArray platform. PLINK was used for the association analysis and pairwise linkage disequilibrium (LD values. Haplotype analysis was done using Haploview. All SNPs were in Hardy Weinberg equilibrium in cases and controls. The G allele at rs6737398 exhibited a protective association with both CD and UC. The T allele at rs4663402 and C allele at rs4663421 were positively associated with CD and UC. The T allele at rs2241877 exhibited protective association with UC only. The AA genotype at rs4663402 and the GG genotype at rs4663421 were protectively associated with both CD and UC. Haplotype analysis revealed that all the SNPs in tight LD (D' = 0.76-1.0 and organized in a single haplotype block. Haplotype D was positively associated with IBD (P = 5.8 x 10-6 for CD and 0.002 for UC. SNPs in ATG16L1 were associated with IBD in Indian patients. The relevance to management of individual patients requires further study.

  4. Separating genetic and hemodynamic defects in neuropilin 1 knockout embryos.

    Science.gov (United States)

    Jones, Elizabeth A V; Yuan, Li; Breant, Christine; Watts, Ryan J; Eichmann, Anne

    2008-08-01

    Targeted inactivation of genes involved in murine cardiovascular development frequently leads to abnormalities in blood flow. As blood fluid dynamics play a crucial role in shaping vessel morphology, the presence of flow defects generally prohibits the precise assignment of the role of the mutated gene product in the vasculature. In this study, we show how to distinguish between genetic defects caused by targeted inactivation of the neuropilin 1 (Nrp1) receptor and hemodynamic defects occurring in homozygous knockout embryos. Our analysis of a Nrp1 null allele bred onto a C57BL/6 background shows that vessel remodeling defects occur concomitantly with the onset of blood flow and cause death of homozygous mutants at E10.5. Using mouse embryo culture, we establish that hemodynamic defects are already present at E8.5 and continuous circulation is never established in homozygous mutants. The geometry of yolk sac blood vessels is altered and remodeling into yolk sac arteries and veins does not occur. To separate flow-induced deficiencies from those caused by the Nrp1 mutation, we arrested blood flow in cultured wild-type and mutant embryos and followed their vascular development. We find that loss of Nrp1 function rather than flow induces the altered geometry of the capillary plexus. Endothelial cell migration, but not replication, is altered in Nrp1 mutants. Gene expression analysis of endothelial cells isolated from freshly dissected wild-type and mutants and after culture in no-flow conditions showed down-regulation of the arterial marker genes connexin 40 and ephrin B2 related to the loss of Nrp1 function. This method allows genetic defects caused by loss-of-function of a gene important for cardiovascular development to be isolated even in the presence of hemodynamic defects.

  5. MicroRNA expression, target genes, and signaling pathways in infants with a ventricular septal defect.

    Science.gov (United States)

    Chai, Hui; Yan, Zhaoyuan; Huang, Ke; Jiang, Yuanqing; Zhang, Lin

    2018-02-01

    This study aimed to systematically investigate the relationship between miRNA expression and the occurrence of ventricular septal defect (VSD), and characterize the miRNA target genes and pathways that can lead to VSD. The miRNAs that were differentially expressed in blood samples from VSD and normal infants were screened and validated by implementing miRNA microarrays and qRT-PCR. The target genes regulated by differentially expressed miRNAs were predicted using three target gene databases. The functions and signaling pathways of the target genes were enriched using the GO database and KEGG database, respectively. The transcription and protein expression of specific target genes in critical pathways were compared in the VSD and normal control groups using qRT-PCR and western blotting, respectively. Compared with the normal control group, the VSD group had 22 differentially expressed miRNAs; 19 were downregulated and three were upregulated. The 10,677 predicted target genes participated in many biological functions related to cardiac development and morphogenesis. Four target genes (mGLUR, Gq, PLC, and PKC) were involved in the PKC pathway and four (ECM, FAK, PI3 K, and PDK1) were involved in the PI3 K-Akt pathway. The transcription and protein expression of these eight target genes were significantly upregulated in the VSD group. The 22 miRNAs that were dysregulated in the VSD group were mainly downregulated, which may result in the dysregulation of several key genes and biological functions related to cardiac development. These effects could also be exerted via the upregulation of eight specific target genes, the subsequent over-activation of the PKC and PI3 K-Akt pathways, and the eventual abnormal cardiac development and VSD.

  6. CD28 controls the development of innate-like CD8+ T cells by promoting the functional maturation of NKT cells.

    Science.gov (United States)

    Yousefi, Mitra; Duplay, Pascale

    2013-11-01

    NK T cells(NKT cells) share functional characteristics and homing properties that are distinct from conventional T cells. In this study, we investigated the contribution of CD28 in the functional development of γδ NKT and αβ NKT cells in mice. We show that CD28 promotes the thymic maturation of promyelocytic leukemia zinc finger(+) IL-4(+) NKT cells and upregulation of LFA-1 expression on NKT cells. We demonstrate that the developmental defect of γδ NKT cells in CD28-deficient mice is cell autonomous. Moreover, we show in both wild-type C57BL/6 mice and in downstream of tyrosine kinase-1 transgenic mice, a mouse model with increased numbers of γδ NKT cells, that CD28-mediated regulation of thymic IL-4(+) NKT cells promotes the differentiation of eomesodermin(+) CD44(high) innate-like CD8(+) T cells. These findings reveal a previously unappreciated mechanism by which CD28 controls NKT-cell homeostasis and the size of the innate-like CD8(+) T-cell pool. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. uvsI mutants defective in UV mutagenesis define a fourth epistatic group of uvs genes in Aspergillus.

    Science.gov (United States)

    Chae, S K; Kafer, E

    1993-01-01

    Three UV-sensitive mutations of A. nidulans, uvsI, uvsJ and uvsA, were tested for epistatic relationships with members of the previously established groups, here called the "UvsF", "UvsC", and "UvsB" groups. uvsI mutants are defective for spontaneous and induced reversion of certain point mutations and differ also for other properties from previously analyzed uvs types. They are very sensitive to the killing effects of UV-light and 4-NQO (4-nitro-quinoline-N-oxide) but not to MMS (methylmethane sulfonate). When double- and single-mutant uvs strains were compared for sensitivity to these three agents, synergistic or additive effects were found for uvsI with all members of the three groups. The uvsI gene may therefore represent a fourth epistatic group, possibly involved in mutagenic repair. On the other hand, uvsJ was clearly epistatic with members of the UvsF group and fitted well into this group also by phenotype. The uvsA gene was tentatively assigned to the UvsC group. uvsA showed epistatic interactions with uvsC in all tests, and like UvsC-group mutants is UV-sensitive mainly in dividing cells. However, the uvsA mutation does not cause the defects in recombination and UV mutagenesis typical for this group.

  8. Caudal dysgenesis, sirenomelia, and situs inversus totalis: a primitive defect in blastogenesis.

    Science.gov (United States)

    Rougemont, Anne-Laure; Bouron-Dal Soglio, Dorothée; Désilets, Valérie; Jovanovic, Mubina; Perreault, Gilles; Laurier Oligny, Luc; Fournet, Jean-Christophe

    2008-06-01

    Caudal dysgenesis (CD) constitutes a heterogeneous spectrum of congenital caudal anomalies, including varying degrees of agenesis of the vertebral column, as well as anorectal and genitourinary anomalies. Sirenomelia, characterized by a fusion of the lower limbs, could represent the most severe end of this spectrum. The two main debated pathogenic hypotheses are an aberrant vascular supply versus a primary axial mesoderm defect. We present the autopsy findings of two fetuses of non-diabetic mothers, with normal karyotype. Both fetuses presented situs inversus associated with a CD, in one case consisting of sirenomelia, establishing a very rare association profile that might be random. This association also suggests the occurrence of a common pathogenic mechanism, in accordance to recent genetic data, such as displayed in the Kif3A murine mutation phenotype. Some cases of sirenomelia and CD could represent developmental field defects of blastogenesis involving the caudal mesoderm, rather than being related to vascular insufficiency.

  9. ADP ribosyl-cyclases (CD38/CD157), social skills and friendship.

    Science.gov (United States)

    Chong, Anne; Malavasi, Fabio; Israel, Salomon; Khor, Chiea Chuen; Yap, Von Bing; Monakhov, Mikhail; Chew, Soo Hong; Lai, Poh San; Ebstein, Richard P

    2017-04-01

    Why some individuals seek social engagement while others shy away has profound implications for normal and pathological human behavior. Evidence suggests that oxytocin (OT), the paramount human social hormone, and CD38 that governs OT release, contribute to individual differences in social skills from intense social involvement to extreme avoidance that characterize autism. To explore the neurochemical underpinnings of sociality, CD38 expression of peripheral blood leukocytes (PBL) was measured in Han Chinese undergraduates. First, CD38 mRNA levels were correlated with lower Autism Quotient (AQ), indicating enhanced social skills. AQ assesses the extent of autistic-like traits including the propensity and dexterity needed for successful social engagement in the general population. Second, three CD157 eQTL SNPs in the CD38/CD157 gene region were associated with CD38 expression. CD157 is a paralogue of CD38 and is contiguous with it on chromosome 4p15. Third, association was also observed between the CD157 eQTL SNPs, CD38 expression and AQ. In the full model, CD38 expression and CD157 eQTL SNPs altogether account for a substantial 14% of the variance in sociality. Fourth, functionality of CD157 eQTL SNPs was suggested by a significant association with plasma oxytocin immunoreactivity products. Fifth, the ecological validity of these findings was demonstrated with subjects with higher PBL CD38 expression having more friends, especially for males. Furthermore, CD157 sequence variation predicts scores on the Friendship questionnaire. To summarize, this study by uniquely leveraging various measures reveals salient elements contributing to nonkin sociality and friendship, revealing a likely pathway underpinning the transition from normality to psychopathology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Transporters for Antiretroviral Drugs in Colorectal CD4+ T Cells and Circulating α4β7 Integrin CD4+ T Cells: Implications for HIV Microbicides.

    Science.gov (United States)

    Mukhopadhya, Indrani; Murray, Graeme I; Duncan, Linda; Yuecel, Raif; Shattock, Robin; Kelly, Charles; Iannelli, Francesco; Pozzi, Gianni; El-Omar, Emad M; Hold, Georgina L; Hijazi, Karolin

    2016-09-06

    CD4+ T lymphocytes in the colorectal mucosa are key in HIV-1 transmission and dissemination. As such they are also the primary target for antiretroviral (ARV)-based rectal microbicides for pre-exposure prophylaxis. Drug transporters expressed in mucosal CD4+ T cells determine ARV distribution across the cell membrane and, most likely, efficacy of microbicides. We describe transporters for antiretroviral drugs in colorectal mucosal CD4+ T lymphocytes and compare gene expression with circulating α4β7+CD4+ T cells, which traffic to the intestine and have been shown to be preferentially infected by HIV-1. Purified total CD4+ T cells were obtained from colorectal tissue and blood samples by magnetic separation. CD4+ T cells expressing α4β7 integrin were isolated by fluorescence-activated cell sorting from peripheral blood mononuclear cells of healthy volunteers. Expressions of 15 efflux and uptake drug transporter genes were quantified using Taqman qPCR assays. Expression of efflux transporters MRP3, MRP5, and BCRP and uptake transporter CNT2 were significantly higher in colorectal CD4+ T cells compared to circulating CD4+ T cells (p = 0.01-0.03). Conversely, circulating α4β7+CD4+ T cells demonstrated significantly higher expression of OATPD compared to colorectal CD4+ T cells (p = 0.001). To the best of our knowledge this is the first report of drug transporter gene expression in colorectal CD4+ and peripheral α4β7+CD4+ T cells. The qualitative and quantitative differences in drug transporter gene expression profiles between α4β7+CD4+ T cells and total mucosal CD4+ T cells may have significant implications for the efficacy of rectally delivered ARV-microbicides. Most notably, we have identified efflux drug transporters that could be targeted by selective inhibitors or beneficial drug-drug interactions to enhance intracellular accumulation of antiretroviral drugs.

  11. Thyroid Medication Use and Birth Defects in the National Birth Defects Prevention Study.

    Science.gov (United States)

    Howley, Meredith M; Fisher, Sarah C; Van Zutphen, Alissa R; Waller, Dorothy K; Carmichael, Suzan L; Browne, Marilyn L

    2017-11-01

    Thyroid disorders are common among reproductive-aged women, with hypothyroidism affecting 2 to 3% of pregnancies, and hyperthyroidism affecting an additional 0.1 to 1%. We examined associations between thyroid medications and individual birth defects using data from the National Birth Defects Prevention Study (NBDPS). The NBDPS is a multisite, population-based, case-control study that included pregnancies with estimated delivery dates from 1997 to 2011. We analyzed self-reported thyroid medication use from mothers of 31,409 birth defect cases and 11,536 unaffected controls. Adjusted odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using logistic regression for birth defects with five or more exposed cases, controlling for maternal age, race/ethnicity, and study center. Crude ORs and exact 95% CIs were estimated for defects with 3 to 4 exposed cases. Thyroid hormone was used by 738 (2.3%) case and 237 (2.1%) control mothers, and was associated with anencephaly (OR = 1.68; 95% CI, 1.03-2.73), holoprosencephaly (OR = 2.48; 95% CI, 1.13-5.44), hydrocephaly (1.77; 95% CI, 1.07-2.95) and small intestinal atresia (OR = 1.81; 95% CI, 1.04-3.15). Anti-thyroid medication was used by 34 (0.1%) case and 10 (<0.1%) control mothers, and was associated with aortic valve stenosis (OR = 6.91; 95% CI, 1.21-27.0). While new associations were identified, our findings are relatively consistent with previous NBDPS analyses. Our findings suggest thyroid medication use is not associated with most birth defects studied in the NBDPS, but may be associated with some specific birth defects. These results should not be interpreted to suggest that medications used to treat thyroid disease are teratogens, as the observed associations may reflect effects of the underlying thyroid disease. Birth Defects Research 109:1471-1481, 2017.© 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Vacuolar invertase gene silencing in potato (Solanum tuberosum L. improves processing quality by decreasing the frequency of sugar-end defects.

    Directory of Open Access Journals (Sweden)

    Xiaobiao Zhu

    Full Text Available Sugar-end defect is a tuber quality disorder and persistent problem for the French fry processing industry that causes unacceptable darkening of one end of French fries. This defect appears when environmental stress during tuber growth increases post-harvest vacuolar acid invertase activity at one end of the tuber. Reducing sugars produced by invertase form dark-colored Maillard reaction products during frying. Acrylamide is another Maillard reaction product formed from reducing sugars and acrylamide consumption has raised health concerns worldwide. Vacuolar invertase gene (VInv expression was suppressed in cultivars Russet Burbank and Ranger Russet using RNA interference to determine if this approach could control sugar-end defect formation. Acid invertase activity and reducing sugar content decreased at both ends of tubers. Sugar-end defects and acrylamide in fried potato strips were strongly reduced in multiple transgenic potato lines. Thus vacuolar invertase silencing can minimize a long-standing French fry quality problem while providing consumers with attractive products that reduce health concerns related to dietary acrylamide.

  13. Effect of mutagens, chemotherapeutic agents and defects in DNA repair genes on recombination in F' partial diploid Escherichia coli

    International Nuclear Information System (INIS)

    Norin, A.J.; Goldschmidt, E.P.

    1979-01-01

    The ability of mutagenic agents, nonmutagenic substances and defects in DNA repair to alter the genotype of F' partial diploid (F30) Escherichia coli was determined. The frequency of auxotrophic mutants and histidine requiring (His - ) haploid colonies was increased by mutagen treatment but Hfr colonies were not detected in F30 E. coli even with specific selection techniques. Genotype changes due to nonreciprocal recombination were determined by measuring the frequency of His - homogenotes, eg. F' hisC780, hisI + /hisC780, hisI + , arising from a His + heterogenote, F' hisC780 hisI + /hisC + , his1903. At least 75% of the recombinants were homozygous for histidine alleles which were present on the F' plasmid (exogenote) of the parental hetergenote rather than for histidine alleles on the chromosome. Mutagens, chemotherapeutic agents which block DNA synthesis and a defective DNA polymerase I gene, polA1, were found to increase the frequency of nonreciprocal recombination. A defect in the ability to excise thymine dimers, uvrC34, did not increase spontaneous nonreciprocal recombination. However, UV irradiation but not methyl methanesulfonate (MMS) induced greater recombination in this excision-repair defective mutant than in DNA-repair-proficient strains. (Auth.)

  14. Improving reticle defect disposition via fully automated lithography simulation

    Science.gov (United States)

    Mann, Raunak; Goodman, Eliot; Lao, Keith; Ha, Steven; Vacca, Anthony; Fiekowsky, Peter; Fiekowsky, Dan

    2016-03-01

    Most advanced wafer fabs have embraced complex pattern decoration, which creates numerous challenges during in-fab reticle qualification. These optical proximity correction (OPC) techniques create assist features that tend to be very close in size and shape to the main patterns as seen in Figure 1. A small defect on an assist feature will most likely have little or no impact on the fidelity of the wafer image, whereas the same defect on a main feature could significantly decrease device functionality. In order to properly disposition these defects, reticle inspection technicians need an efficient method that automatically separates main from assist features and predicts the resulting defect impact on the wafer image. Analysis System (ADAS) defect simulation system[1]. Up until now, using ADAS simulation was limited to engineers due to the complexity of the settings that need to be manually entered in order to create an accurate result. A single error in entering one of these values can cause erroneous results, therefore full automation is necessary. In this study, we propose a new method where all needed simulation parameters are automatically loaded into ADAS. This is accomplished in two parts. First we have created a scanner parameter database that is automatically identified from mask product and level names. Second, we automatically determine the appropriate simulation printability threshold by using a new reference image (provided by the inspection tool) that contains a known measured value of the reticle critical dimension (CD). This new method automatically loads the correct scanner conditions, sets the appropriate simulation threshold, and automatically measures the percentage of CD change caused by the defect. This streamlines qualification and reduces the number of reticles being put on hold, waiting for engineer review. We also present data showing the consistency and reliability of the new method, along with the impact on the efficiency of in

  15. Absence of both Sos-1 and Sos-2 in peripheral CD4+ T cells leads to PI3K pathway activation and defects in migration

    Science.gov (United States)

    Guittard, Geoffrey; Kortum, Robert L; Balagopalan, Lakshmi; Çuburu, Nicolas; Nguyen, Phan; Sommers, Connie L; Samelson, Lawrence E

    2015-01-01

    Sos-1 and Sos-2 are ubiquitously expressed Ras-Guanine Exchange Factors involved in Erk-MAP kinase pathway activation. Using mice lacking genes encoding Sos-1 and Sos-2, we evaluated the role of these proteins in peripheral T-cell signaling and function. Our results confirmed that TCR-mediated Erk activation in peripheral CD4+ T cells does not depend on Sos-1 and Sos-2, although IL-2-mediated Erk activation does. Unexpectedly, however, we show an increase in AKT phosphorylation in Sos-1/2dKO CD4+ T cells upon TCR and IL-2 stimulation. Activation of AKT was likely a consequence of increased recruitment of PI3K to Grb2 upon TCR and/or IL-2 stimulation in Sos-1/2dKO CD4+ T cells. The increased activity of the PI3K/AKT pathway led to downregulation of the surface receptor CD62L in Sos-1/2dKO T cells and a subsequent impairment in T-cell migration. PMID:25973715

  16. Detection of Surface Defects and Servo Signal Restoration for a Compact Disc Player

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Andersen, Palle

    2006-01-01

    Compact disc (CD) players have been on the market for more than two decades, and the involved technologies, including control are very mature. Some problems, however, still remain with respect to playing CDs having to surface defects like scratches and fingerprints. Two servo control loops are used...... to keep the optical pick-up unit (OPU) focused and radially locked to the information track of the CD. The problem is to design servo controllers which are well suited for both handling surface defects and disturbances like mechanical shocks. The handling of surface defects requires a low-controller...... bandwidth which is in conflict with the requirement for the handling of disturbances. This control problem can be solved by the use of a fault tolerant control strategy, where the fault detection is very important. The OPU feeds the controllers with detector signals. Based on these, focus and radial...

  17. Chronic exposure to water pollutant trichloroethylene increased epigenetic drift in CD4+ T cells

    Science.gov (United States)

    Gilbert, Kathleen M; Blossom, Sarah J; Erickson, Stephen W; Reisfeld, Brad; Zurlinden, Todd J; Broadfoot, Brannon; West, Kirk; Bai, Shasha; Cooney, Craig A

    2016-01-01

    Aim: Autoimmune disease and CD4+ T-cell alterations are induced in mice exposed to the water pollutant trichloroethylene (TCE). We examined here whether TCE altered gene-specific DNA methylation in CD4+ T cells as a possible mechanism of immunotoxicity. Materials & methods: Naive and effector/memory CD4+ T cells from mice exposed to TCE (0.5 mg/ml in drinking water) for 40 weeks were examined by bisulfite next-generation DNA sequencing. Results: A probabilistic model calculated from multiple genes showed that TCE decreased methylation control in CD4+ T cells. Data from individual genes fitted to a quadratic regression model showed that TCE increased gene-specific methylation variance in both CD4 subsets. Conclusion: TCE increased epigenetic drift of specific CpG sites in CD4+ T cells. PMID:27092578

  18. The osteo-inductive activity of bone-marrow-derived mononuclear cells resides within the CD14+ population and is independent of the CD34+ population.

    Science.gov (United States)

    Henrich, D; Seebach, C; Verboket, R; Schaible, A; Marzi, I; Bonig, H

    2018-03-06

    Bone marrow mononuclear cells (BMC) seeded on a scaffold of β-tricalcium phosphate (β-TCP) promote bone healing in a critical-size femur defect model. Being BMC a mixed population of predominantly mature haematopoietic cells, which cell type(s) is(are) instrumental for healing remains elusive. Although clinical therapies using BMC are often dubbed as stem cell therapies, whether stem cells are relevant for the therapeutic effects is unclear and, at least in the context of bone repair, seems dubious. Instead, in light of the critical contribution of monocytes and macrophages to tissue development, homeostasis and injury repair, in the current study it was hypothesised that BMC-mediated bone healing derived from the stem cell population. To test this hypothesis, bone remodelling studies were performed in an established athymic rats critical-size femoral defect model, with β-TCP scaffolds augmented with complete BMC or BMC immunomagnetically depleted of stem cells (CD34+) or monocytes/macrophages (CD14+). Bone healing was assessed 8 weeks after transplantation. Compared to BMC-augmented controls, when CD14- BMC, but not CD34- BMC were transplanted into the bone defect, femora possessed dramatically decreased biomechanical stability and new bone formation was markedly reduced, as measured by histology. The degree of vascularisation did not differ between the two groups. It was concluded that the monocyte fraction within the BMC provided critical osteo-inductive cues during fracture healing. Which factors were responsible at the molecular levels remained elusive. However, this study marked a significant progress towards elucidating the mechanisms by which BMC elicit their therapeutic effects, at least in bone regeneration.

  19. Dysregulated CD46 shedding interferes with Th1-contraction in systemic lupus erythematosus.

    Science.gov (United States)

    Ellinghaus, Ursula; Cortini, Andrea; Pinder, Christopher L; Le Friec, Gaelle; Kemper, Claudia; Vyse, Timothy J

    2017-07-01

    IFN-γ-producing T helper 1 (Th1) cell responses mediate protection against infections but uncontrolled Th1 activity also contributes to a broad range of autoimmune diseases. Autocrine complement activation has recently emerged as key in the induction and contraction of human Th1 immunity: activation of the complement regulator CD46 and the C3aR expressed by CD4 + T cells via autocrine generated ligands C3b and C3a, respectively, are critical to IFN-γ production. Further, CD46-mediated signals also induce co-expression of immunosuppressive IL-10 in Th1 cells and transition into a (self)-regulating and contracting phase. In consequence, C3 or CD46-deficient patients suffer from recurrent infections while dysregulation of CD46 signaling contributes to Th1 hyperactivity in rheumatoid arthritis and multiple sclerosis. Here, we report a defect in CD46-regulated Th1 contraction in patients with systemic lupus erythematosus (SLE). We observed that MMP-9-mediated increased shedding of soluble CD46 by Th1 cells was associated with this defect and that inhibition of MMP-9 activity normalized release of soluble CD46 and restored Th1 contraction in patients' T cells. These data may deliver the first mechanistic explanation for the increased serum CD46 levels observed in SLE patients and indicate that targeting CD46-cleaving proteases could be a novel avenue to modulate Th1 responses. © 2017 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. CD3+/CD16+CD56+ cell numbers in peripheral blood are correlated with higher tumor burden in patients with diffuse large B-cell lymphoma

    Directory of Open Access Journals (Sweden)

    Anna Twardosz

    2011-04-01

    Full Text Available Diffuse large B-cell lymphoma is the commonest histological type of malignant lymphoma, andremains incurable in many cases. Developing more efficient immunotherapy strategies will require betterunderstanding of the disorders of immune responses in cancer patients. NKT (natural killer-like T cells wereoriginally described as a unique population of T cells with the co-expression of NK cell markers. Apart fromtheir role in protecting against microbial pathogens and controlling autoimmune diseases, NKT cells havebeen recently revealed as one of the key players in the immune responses against tumors. The objective of thisstudy was to evaluate the frequency of CD3+/CD16+CD56+ cells in the peripheral blood of 28 diffuse largeB-cell lymphoma (DLBCL patients in correlation with clinical and laboratory parameters. Median percentagesof CD3+/CD16+CD56+ were significantly lower in patients with DLBCL compared to healthy donors(7.37% vs. 9.01%, p = 0.01; 4.60% vs. 5.81%, p = 0.03, although there were no differences in absolute counts.The frequency and the absolute numbers of CD3+/CD16+CD56+ cells were lower in advanced clinical stagesthan in earlier ones. The median percentage of CD3+/CD16+CD56+ cells in patients in Ann Arbor stages 1–2 was5.55% vs. 3.15% in stages 3–4 (p = 0.02, with median absolute counts respectively 0.26 G/L vs. 0.41 G/L (p == 0.02. The percentage and absolute numbers of CD3+/CD16+CD56+ cells were significantly higher in DL-BCL patients without B-symptoms compared to the patients with B-symptoms, (5.51% vs. 2.46%, p = 0.04;0.21 G/L vs. 0.44 G/L, p = 0.04. The percentage of CD3+/CD16+CD56+ cells correlated adversely with serumlactate dehydrogenase (R= –445; p < 0.05 which might influence NKT count. These figures suggest a relationshipbetween higher tumor burden and more aggressive disease and decreased NKT numbers. But it remains tobe explained whether low NKT cell counts in the peripheral blood of patients with DLBCL are the result

  1. Alternative promoter usage of the membrane glycoprotein CD36

    Directory of Open Access Journals (Sweden)

    Whatling Carl

    2006-03-01

    Full Text Available Abstract Background CD36 is a membrane glycoprotein involved in a variety of cellular processes such as lipid transport, immune regulation, hemostasis, adhesion, angiogenesis and atherosclerosis. It is expressed in many tissues and cell types, with a tissue specific expression pattern that is a result of a complex regulation for which the molecular mechanisms are not yet fully understood. There are several alternative mRNA isoforms described for the gene. We have investigated the expression patterns of five alternative first exons of the CD36 gene in several human tissues and cell types, to better understand the molecular details behind its regulation. Results We have identified one novel alternative first exon of the CD36 gene, and confirmed the expression of four previously known alternative first exons of the gene. The alternative transcripts are all expressed in more than one human tissue and their expression patterns vary highly in skeletal muscle, heart, liver, adipose tissue, placenta, spinal cord, cerebrum and monocytes. All alternative first exons are upregulated in THP-1 macrophages in response to oxidized low density lipoproteins. The alternative promoters lack TATA-boxes and CpG islands. The upstream region of exon 1b contains several features common for house keeping gene and monocyte specific gene promoters. Conclusion Tissue-specific expression patterns of the alternative first exons of CD36 suggest that the alternative first exons of the gene are regulated individually and tissue specifically. At the same time, the fact that all first exons are upregulated in THP-1 macrophages in response to oxidized low density lipoproteins may suggest that the alternative first exons are coregulated in this cell type and environmental condition. The molecular mechanisms regulating CD36 thus appear to be unusually complex, which might reflect the multifunctional role of the gene in different tissues and cellular conditions.

  2. DFT-derived reactive potentials for the simulation of activated processes: the case of CdTe and CdTe:S.

    Science.gov (United States)

    Hu, Xiao Liang; Ciaglia, Riccardo; Pietrucci, Fabio; Gallet, Grégoire A; Andreoni, Wanda

    2014-06-19

    We introduce a new ab initio derived reactive potential for the simulation of CdTe within density functional theory (DFT) and apply it to calculate both static and dynamical properties of a number of systems (bulk solid, defective structures, liquid, surfaces) at finite temperature. In particular, we also consider cases with low sulfur concentration (CdTe:S). The analysis of DFT and classical molecular dynamics (MD) simulations performed with the same protocol leads to stringent performance tests and to a detailed comparison of the two schemes. Metadynamics techniques are used to empower both Car-Parrinello and classical molecular dynamics for the simulation of activated processes. For the latter, we consider surface reconstruction and sulfur diffusion in the bulk. The same procedures are applied using previously proposed force fields for CdTe and CdTeS materials, thus allowing for a detailed comparison of the various schemes.

  3. Whole-gene analysis of two groups of hepatitis B virus C/D inter-genotype recombinant strains isolated in Tibet, China.

    Directory of Open Access Journals (Sweden)

    Tiezhu Liu

    Full Text Available Tibet is a highly hepatitis B virus (HBV endemic area. Two types of C/D recombinant HBV are commonly isolated in Tibet and have been previously described. In an effort to better understand the molecular characteristic of these C/D recombinant strains from Tibet, we undertook a multistage random sampling project to collect HBsAg positive samples. Molecular epidemiological and bio-informational technologies were used to analyze the characteristics of the sequences found in this study. There were 60 samples enrolled in the survey, and we obtained 19 whole-genome sequences. 19 samples were all C/D recombinant, and could be divided into two sub-types named C/D1 and C/D2 according to the differences in the location of the recombinant breakpoint. The recombination breakpoint of the 10 strains belonging to the C/D1 sub-type was located at nt750, while the 9 stains belonging to C/D2 had their recombination break point at nt1530. According to whole-genome sequence analysis, the 19 identified strains belong to genotype C, but the nucleotide distance was more than 5% between the 19 strains and sub-genotypes C1 to C15. The distance between C/D1with C2 was 5.8±2.1%, while the distance between C/D2 with C2 was 6.4±2.1%. The parental strain was most likely sub-genotype C2. C/D1 strains were all collected in the middle and northern areas of Tibet including Lhasa, Linzhi and Ali, while C/D2 was predominant in Shannan in southern Tibet. This indicates that the two recombinant genotypes are regionally distributed in Tibet. These results provide important information for the study of special HBV recombination events, gene features, virus evolution, and the control and prevention policy of HBV in Tibet.

  4. Lethal genes surviving by mosaicism: a possible explanation for sporadic birth defects involving the skin.

    Science.gov (United States)

    Happle, R

    1987-04-01

    A genetic concept is advanced to explain the origin of several sporadic syndromes characterized by a mosaic distribution of skin defects. It is postulated that these disorders are due to the action of a lethal gene surviving by mosaicism. The presence of the mutation in the zygote will lead to death of the embryo at an early stage of development. Cells bearing the mutation can survive only in a mosaic state, in close proximity with normal cells. The mosaic may arise either from a gametic half chromatid mutation or from an early somatic mutation. This concept of origin is proposed to apply to the Schimmelpenning-Feuerstein-Mims syndrome, the McCune-Albright syndrome, the Klippel-Trenaunay syndrome, the Sturge-Weber syndrome, and neurocutaneous melanosis. Moreover, this etiologic hypothesis may apply to two other birth defects that have recently been delineated, the Proteus syndrome (partial gigantism of hands or feet, hemihypertrophy, macrocephaly, linear papillomatous epidermal nevus, subcutaneous hemangiomas and lipomas, accelerated growth, and visceral anomalies), and the Delleman-Oorthuys syndrome (orbital cyst, porencephaly, periorbital appendages, and focal aplasia of the skin.

  5. Mutations in the Caenorhabditis elegans orthologs of human genes required for mitochondrial tRNA modification cause similar electron transport chain defects but different nuclear responses.

    Science.gov (United States)

    Navarro-González, Carmen; Moukadiri, Ismaïl; Villarroya, Magda; López-Pascual, Ernesto; Tuck, Simon; Armengod, M-Eugenia

    2017-07-01

    Several oxidative phosphorylation (OXPHOS) diseases are caused by defects in the post-transcriptional modification of mitochondrial tRNAs (mt-tRNAs). Mutations in MTO1 or GTPBP3 impair the modification of the wobble uridine at position 5 of the pyrimidine ring and cause heart failure. Mutations in TRMU affect modification at position 2 and cause liver disease. Presently, the molecular basis of the diseases and why mutations in the different genes lead to such different clinical symptoms is poorly understood. Here we use Caenorhabditis elegans as a model organism to investigate how defects in the TRMU, GTPBP3 and MTO1 orthologues (designated as mttu-1, mtcu-1, and mtcu-2, respectively) exert their effects. We found that whereas the inactivation of each C. elegans gene is associated with a mild OXPHOS dysfunction, mutations in mtcu-1 or mtcu-2 cause changes in the expression of metabolic and mitochondrial stress response genes that are quite different from those caused by mttu-1 mutations. Our data suggest that retrograde signaling promotes defect-specific metabolic reprogramming, which is able to rescue the OXPHOS dysfunction in the single mutants by stimulating the oxidative tricarboxylic acid cycle flux through complex II. This adaptive response, however, appears to be associated with a biological cost since the single mutant worms exhibit thermosensitivity and decreased fertility and, in the case of mttu-1, longer reproductive cycle. Notably, mttu-1 worms also exhibit increased lifespan. We further show that mtcu-1; mttu-1 and mtcu-2; mttu-1 double mutants display severe growth defects and sterility. The animal models presented here support the idea that the pathological states in humans may initially develop not as a direct consequence of a bioenergetic defect, but from the cell's maladaptive response to the hypomodification status of mt-tRNAs. Our work highlights the important association of the defect-specific metabolic rewiring with the pathological phenotype

  6. Disruption of polyubiquitin gene Ubc leads to defective proliferation of hepatocytes and bipotent fetal liver epithelial progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyejin; Yoon, Min-Sik; Ryu, Kwon-Yul, E-mail: kyryu@uos.ac.kr

    2013-06-07

    Highlights: •Proliferation capacity of Ubc{sup −/−} FLCs was reduced during culture in vitro. •Ubc is required for proliferation of both hepatocytes and bipotent FLEPCs. •Bipotent FLEPCs exhibit highest Ubc transcription and proliferation capacity. •Cell types responsible for Ubc{sup −/−} fetal liver developmental defect were identified. -- Abstract: We have previously demonstrated that disruption of polyubiquitin gene Ubc leads to mid-gestation embryonic lethality most likely due to a defect in fetal liver development, which can be partially rescued by ectopic expression of Ub. In a previous study, we assessed the cause of embryonic lethality with respect to the fetal liver hematopoietic system. We confirmed that Ubc{sup −/−} embryonic lethality could not be attributed to impaired function of hematopoietic stem cells, which raises the question of whether or not FLECs such as hepatocytes and bile duct cells, the most abundant cell types in the liver, are affected by disruption of Ubc and contribute to embryonic lethality. To answer this, we isolated FLCs from E13.5 embryos and cultured them in vitro. We found that proliferation capacity of Ubc{sup −/−} cells was significantly reduced compared to that of control cells, especially during the early culture period, however we did not observe the increased number of apoptotic cells. Furthermore, levels of Ub conjugate, but not free Ub, decreased upon disruption of Ubc expression in FLCs, and this could not be compensated for by upregulation of other poly- or mono-ubiquitin genes. Intriguingly, the highest Ubc expression levels throughout the entire culture period were observed in bipotent FLEPCs. Hepatocytes and bipotent FLEPCs were most affected by disruption of Ubc, resulting in defective proliferation as well as reduced cell numbers in vitro. These results suggest that defective proliferation of these cell types may contribute to severe reduction of fetal liver size and potentially mid

  7. Alternative pathway for the development of Vα14+ NKT cells directly from CD4-CD8- thymocytes that bypasses the CD4+CD8+ stage.

    Science.gov (United States)

    Dashtsoodol, Nyambayar; Shigeura, Tomokuni; Aihara, Minako; Ozawa, Ritsuko; Kojo, Satoshi; Harada, Michishige; Endo, Takaho A; Watanabe, Takashi; Ohara, Osamu; Taniguchi, Masaru

    2017-03-01

    Although invariant V α 14 + natural killer T cells (NKT cells) are thought to be generated from CD4 + CD8 + double-positive (DP) thymocytes, the developmental origin of CD4 - CD8 - double-negative (DN) NKT cells still remains unresolved. Here we provide definitive genetic evidence obtained, through studies of mice with DP-stage-specific ablation of expression of the gene encoding the recombinase component RAG-2 (Rag2) and by a fate-mapping approach, that supports the proposal of the existence of an alternative developmental pathway through which a fraction of DN NKT cells with strong T-helper-type-1 (T H 1)-biased and cytotoxic characteristics develop from late DN-stage thymocytes, bypassing the DP stage. These findings provide new insight into understanding of the development of NKT cells and propose a role for timing of expression of the invariant T cell antigen receptor in determining the functional properties of NKT cells.

  8. CD70-deficiency impairs effector CD8 T cell generation and viral clearance but is dispensable for the recall response to LCMV

    Science.gov (United States)

    Munitic, Ivana; Kuka, Mirela; Allam, Atef; Scoville, Jonathan P.; Ashwell, Jonathan D.

    2012-01-01

    CD27 interactions with its ligand, CD70, are thought to be necessary for optimal primary and memory adaptive immune responses to a variety of pathogens. Thus far all studies addressing the function of the CD27-CD70 axis have been performed either in mice lacking CD27, overexpressing CD70, or in which these receptors were blocked or mimicked by antibodies or recombinant soluble CD70. Because these methods have in some cases led to divergent results, we generated CD70-deficient mice to directly assess its role in vivo. We find that lack of CD70-mediated stimulation during primary responses to LCMV lowered the magnitude of CD8 antigen-specific T cell response, resulting in impaired viral clearance, without affecting CD4 T cell responses. Unexpectedly, CD70-CD27 costimulation was not needed for memory CD8 T cell generation or the ability to mount a recall response to LCMV. Adoptive transfers of wild type (WT) memory T cells into CD70−/− or WT hosts also showed no need for CD70-mediated stimulation during the course of the recall response. Moreover, CD70-expression by CD8 T cells could not rescue endogenous CD70−/− cells from defective expansion, arguing against a role for CD70-mediated T:T help in this model. Therefore, CD70 appears to be an important factor in the initiation of a robust and effective primary response but dispensable for CD8 T cell memory responses. PMID:23269247

  9. Visualization of the human CD4+ T-cell response in humanized HLA-DR4-expressing NOD/Shi-scid/γcnull (NOG) mice by retrogenic expression of the human TCR gene

    International Nuclear Information System (INIS)

    Takahashi, Takeshi; Katano, Ikumi; Ito, Ryoji; Ito, Mamoru

    2015-01-01

    Highlights: • β-Lactoglobulin (BLG) specific TCR genes were introduced to human HSC by retrovirus. • Human HSC with BLG-specific TCR were transplanted into NOG-HLA-DR4 I-A −/− mice. • BLG-specific TCR induced positive selection of thymocytes. • BLG-specific TCR positive CD4 + T cells mediated immune responses in humanized mice. - Abstract: The development of severe immunodeficient mouse strains containing various human genes, including cytokines or HLA, has enabled the reconstitution of functional human immune systems after transplantation of human hematopoietic stem cells (HSC). Accumulating evidence has suggested that HLA-restricted antigen-specific human T-cell responses can be generated in these humanized mice. To directly monitor immune responses of human CD4 + T cells, we introduced β-lactoglobulin (BLG)-specific T cell receptor (TCR) genes derived from CD4 + T-cell clones of cow-milk allergy patients into HSCs, and subsequently transplanted them into NOG-HLA-DR4 transgenic/I-Aβ deficient mice (NOG-DR4/I-A o ). In the thymus, thymocytes with BLG-specific TCR preferentially differentiated into CD4 + CD8 − single-positive cells. Adoptive transfer of mature CD4 + T cells expressing the TCR into recipient NOG-DR4/I-A o mice demonstrated that human CD4 + T cells proliferated in response to antigenic stimulation and produced IFN-γ in vivo, suggesting that functional T-cell reactions (especially Th1-skewed responses) were induced in humanized mice

  10. Global developmental gene expression and pathway analysis of normal brain development and mouse models of human neuronal migration defects.

    Directory of Open Access Journals (Sweden)

    Tiziano Pramparo

    2011-03-01

    Full Text Available Heterozygous LIS1 mutations are the most common cause of human lissencephaly, a human neuronal migration defect, and DCX mutations are the most common cause of X-linked lissencephaly. LIS1 is part of a protein complex including NDEL1 and 14-3-3ε that regulates dynein motor function and microtubule dynamics, while DCX stabilizes microtubules and cooperates with LIS1 during neuronal migration and neurogenesis. Targeted gene mutations of Lis1, Dcx, Ywhae (coding for 14-3-3ε, and Ndel1 lead to neuronal migration defects in mouse and provide models of human lissencephaly, as well as aid the study of related neuro-developmental diseases. Here we investigated the developing brain of these four mutants and wild-type mice using expression microarrays, bioinformatic analyses, and in vivo/in vitro experiments to address whether mutations in different members of the LIS1 neuronal migration complex lead to similar and/or distinct global gene expression alterations. Consistent with the overall successful development of the mutant brains, unsupervised clustering and co-expression analysis suggested that cell cycle and synaptogenesis genes are similarly expressed and co-regulated in WT and mutant brains in a time-dependent fashion. By contrast, focused co-expression analysis in the Lis1 and Ndel1 mutants uncovered substantial differences in the correlation among pathways. Differential expression analysis revealed that cell cycle, cell adhesion, and cytoskeleton organization pathways are commonly altered in all mutants, while synaptogenesis, cell morphology, and inflammation/immune response are specifically altered in one or more mutants. We found several commonly dysregulated genes located within pathogenic deletion/duplication regions, which represent novel candidates of human mental retardation and neurocognitive disabilities. Our analysis suggests that gene expression and pathway analysis in mouse models of a similar disorder or within a common pathway can

  11. Diagnostic Performance of Bronchoalveolar Lavage Fluid CD4/CD8 Ratio for Sarcoidosis: A Meta-analysis.

    Science.gov (United States)

    Shen, Yongchun; Pang, Caishuang; Wu, Yanqiu; Li, Diandian; Wan, Chun; Liao, Zenglin; Yang, Ting; Chen, Lei; Wen, Fuqiang

    2016-06-01

    The usefulness of bronchoalveolar lavage fluid (BALF) CD4/CD8 ratio for diagnosing sarcoidosis has been reported in many studies with variable results. Therefore, we performed a meta-analysis to estimate the overall diagnostic accuracy of BALF CD4/CD8 ratio based on the bulk of published evidence. Studies published prior to June 2015 and indexed in PubMed, OVID, Web of Science, Scopus and other databases were evaluated for inclusion. Data on sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR) were pooled from included studies. Summary receiver operating characteristic (SROC) curves were used to summarize overall test performance. Deeks's funnel plot was used to detect publication bias. Sixteen publications with 1885 subjects met our inclusion criteria and were included in this meta-analysis. Summary estimates of the diagnostic performance of the BALF CD4/CD8 ratio were as follows: sensitivity, 0.70 (95%CI 0.64-0.75); specificity, 0.83 (95%CI 0.78-0.86); PLR, 4.04 (95%CI 3.13-5.20); NLR, 0.36 (95%CI 0.30-0.44); and DOR, 11.17 (95%CI 7.31-17.07). The area under the SROC curve was 0.84 (95%CI 0.81-0.87). There was no evidence of publication bias. Measuring the BALF CD4/CD8 ratio may assist in the diagnosis of sarcoidosis when interpreted in parallel with other diagnostic factors. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Neurophysiological defects and neuronal gene deregulation in Drosophila mir-124 mutants.

    Directory of Open Access Journals (Sweden)

    Kailiang Sun

    2012-02-01

    Full Text Available miR-124 is conserved in sequence and neuronal expression across the animal kingdom and is predicted to have hundreds of mRNA targets. Diverse defects in neural development and function were reported from miR-124 antisense studies in vertebrates, but a nematode knockout of mir-124 surprisingly lacked detectable phenotypes. To provide genetic insight from Drosophila, we deleted its single mir-124 locus and found that it is dispensable for gross aspects of neural specification and differentiation. On the other hand, we detected a variety of mutant phenotypes that were rescuable by a mir-124 genomic transgene, including short lifespan, increased dendrite variation, impaired larval locomotion, and aberrant synaptic release at the NMJ. These phenotypes reflect extensive requirements of miR-124 even under optimal culture conditions. Comparison of the transcriptomes of cells from wild-type and mir-124 mutant animals, purified on the basis of mir-124 promoter activity, revealed broad upregulation of direct miR-124 targets. However, in contrast to the proposed mutual exclusion model for miR-124 function, its functional targets were relatively highly expressed in miR-124-expressing cells and were not enriched in genes annotated with epidermal expression. A notable aspect of the direct miR-124 network was coordinate targeting of five positive components in the retrograde BMP signaling pathway, whose activation in neurons increases synaptic release at the NMJ, similar to mir-124 mutants. Derepression of the direct miR-124 target network also had many secondary effects, including over-activity of other post-transcriptional repressors and a net incomplete transition from a neuroblast to a neuronal gene expression signature. Altogether, these studies demonstrate complex consequences of miR-124 loss on neural gene expression and neurophysiology.

  13. Gene expression profile in long-term non progressor HIV infected patients: in search of potential resistance factors.

    Science.gov (United States)

    Luque, Maria Carolina; Santos, Camila C; Mairena, Eliane C; Wilkinson, Peter; Boucher, Genèvieve; Segurado, Aluisio C; Fonseca, Luiz A; Sabino, Ester; Kalil, Jorge E; Cunha-Neto, Edecio

    2014-11-01

    Long-term non-progressors (LTNP) represent a minority (1-5%) of HIV-infected individuals characterized by documented infection for more than 7-10 years, a stable CD4+ T cell count over 500/mm(3) and low viremia in the absence of antiretroviral treatment. Protective factors described so far such as the CCR5delta32 deletion, protective HLA alleles, or defective viruses fail to fully explain the partial protection phenotype. The existence of additional host resistance mechanisms in LTNP patients was investigated here using a whole human genome microarray study comparing gene expression profiles of unstimulated peripheral blood mononuclear cells from LTNP patients, HIV-1 infected patients under antiretroviral therapy with CD4+ T cell levels above 500/mm(3) (ST), as well as healthy individuals. Genes that were up- or downregulated exclusively in LTNP, ST or in both groups in comparison to controls were identified and classified in functional categories using Ingenuity Pathway Analysis. ST and LTNP patient groups revealed distinct genetic profiles, regarding gene number in each category and up- or downregulation of specific genes, which could have a bearing on the outcome of each group. We selected some relevant genes to validate the differential expression using quantitative real-time qRT-PCR. Among others, we found several genes related to the canonical Wnt/beta-catenin signaling pathway. Our results identify new possible host genes and molecules that could be involved in the mechanisms leading to the slower progression to AIDS and sustained CD4+ T cell counts that is peculiar to LTNP patients. Copyright © 2014. Published by Elsevier Ltd.

  14. SHOX gene defects and selected dysmorphic signs in patients of idiopathic short stature and Léri-Weill dyschondrosteosis.

    Science.gov (United States)

    Hirschfeldova, K; Solc, R; Baxova, A; Zapletalova, J; Kebrdlova, V; Gaillyova, R; Prasilova, S; Soukalova, J; Mihalova, R; Lnenicka, P; Florianova, M; Stekrova, J

    2012-01-10

    The aim of the study was to analyze frequency of SHOX gene defects and selected dysmorphic signs in patients of both idiopathic short stature (ISS) and Léri-Weill dyschondrosteosis (LWD), all derived from the Czech population. Overall, 98 subjects were analyzed in the study. Inclusion criteria were the presence of short stature (-2.0 SD), in combination with at least one of the selected dysmorphic signs for the ISS+ group; and the presence of Madelung deformity, without positive karyotyping for the LWD+ group. Each proband was analyzed by use of P018 MLPA kit, which covers SHOX and its regulatory sequences. Additionally, mutational analysis was done of the coding portions of the SHOX. Both extent and breakpoint localizations in the deletions/duplications found were quite variable. Some PAR1 rearrangements were detected, without obvious phenotypic association. In the ISS+ group, MLPA analysis detected four PAR1 deletions associated with a SHOX gene defect, PAR1 duplication with an ambiguous effect, and two SHOX mutations (13.7%). In the LWD+ group, MLPA analysis detected nine deletions in PAR1 region, with a deleterious effect on SHOX, first reported case of isolated SHOX enhancer duplication, and SHOX mutation (68.8%). In both ISS+ and LWD+ groups were positivity associated with a disproportionately short stature; in the ISS+ group, in combination with muscular hypertrophy. It seems that small PAR1 rearrangements might be quite frequent in the population. Our study suggests disproportionateness, especially in combination with muscular hypertrophy, as relevant indicators of ISS to be the effect of SHOX defect. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Human CD141+ Dendritic Cell and CD1c+ Dendritic Cell Undergo Concordant Early Genetic Programming after Activation in Humanized Mice In Vivo

    Directory of Open Access Journals (Sweden)

    Yoshihito Minoda

    2017-10-01

    Full Text Available Human immune cell subsets develop in immunodeficient mice following reconstitution with human CD34+ hematopoietic stem cells. These “humanized” mice are useful models to study human immunology and human-tropic infections, autoimmunity, and cancer. However, some human immune cell subsets are unable to fully develop or acquire full functional capacity due to a lack of cross-reactivity of many growth factors and cytokines between species. Conventional dendritic cells (cDCs in mice are categorized into cDC1, which mediate T helper (Th1 and CD8+ T cell responses, and cDC2, which mediate Th2 and Th17 responses. The likely human equivalents are CD141+ DC and CD1c+ DC subsets for mouse cDC1 and cDC2, respectively, but the extent of any interspecies differences is poorly characterized. Here, we exploit the fact that human CD141+ DC and CD1c+ DC develop in humanized mice, to further explore their equivalency in vivo. Global transcriptome analysis of CD141+ DC and CD1c+ DC isolated from humanized mice demonstrated that they closely resemble those in human blood. Activation of DC subsets in vivo, with the TLR3 ligand poly I:C, and the TLR7/8 ligand R848 revealed that a core panel of genes consistent with DC maturation status were upregulated by both subsets. R848 specifically upregulated genes associated with Th17 responses by CD1c+ DC, while poly I:C upregulated IFN-λ genes specifically by CD141+ DC. MYCL expression, known to be essential for CD8+ T cell priming by mouse DC, was specifically induced in CD141+ DC after activation. Concomitantly, CD141+ DC were superior to CD1c+ DC in their ability to prime naïve antigen-specific CD8+ T cells. Thus, CD141+ DC and CD1c+ DC share a similar activation profiles in vivo but also have induce unique signatures that support specialized roles in CD8+ T cell priming and Th17 responses, respectively. In combination, these data demonstrate that humanized mice provide an attractive and tractable model to study

  16. Mutation Glu82Lys in lamin A/C gene is associated with cardiomyopathy and conduction defect

    International Nuclear Information System (INIS)

    Wang Hu; Wang Jizheng; Zheng Weiyue; Wang Xiaojian; Wang Shuxia; Song Lei; Zou Yubao; Yao Yan; Hui Rutai

    2006-01-01

    Dilated cardiomyopathy is a form of heart muscle disease characterized by impaired systolic function and ventricular dilation. The mutations in lamin A/C gene have been linked to dilated cardiomyopathy. We screened genetic mutations in a large Chinese family of 50 members including members with dilated cardiomyopathy and found a Glu82Lys substitution mutation in the rod domain of the lamin A/C protein in eight family members, three of them have been diagnosed as dilated cardiomyopathy, one presented with heart dilation. The pathogenic mechanism of lamin A/C gene defect is poorly understood. Glu82Lys mutated lamin A/C and wild type protein was transfected into HEK293 cells. The mutated protein was not properly localized at the inner nuclear membrane and the emerin protein, which interacts with lamin A/C, was also aberrantly distributed. The nuclear membrane structure was disrupted and heterochromatin was aggregated aberrantly in the nucleus of the HEK293 cells stably transfected with mutated lamin A/C gene as determined by transmission electron microscopy

  17. Electrical and optical characterization of the influence of chemical bath deposition time and temperature on CdS/Cu(In,Ga)Se{sub 2} junction properties in Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Han-Kyu; Ok, Eun-A [Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Kim, Won-Mok; Park, Jong-Keuk [Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Seong, Tae-Yeon [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Lee, Dong Wha; Cho, Hoon Young [Department of Physics, College of Engineering, Dongguk University, Seoul 100-715 (Korea, Republic of); Jeong, Jeung-hyun, E-mail: jhjeong@kist.re.kr [Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of)

    2013-11-01

    The effects of varying the conditions for the chemical bath deposition (CBD) of cadmium sulfide (CdS) layers on CdS/Cu(In,Ga)Se{sub 2} (CIGS) hetero-junctions were investigated using photoluminescence (PL), electroluminescence (EL), deep level transient spectroscopy (DLTS), and red-light-illuminated current-voltage (I–V) measurements. We demonstrated that varying CBD-CdS conditions such as the temperature and time influenced the recombination pathways around the CdS/CIGS junction via the formation of different electronic defects, which eventually changed the photovoltaic conversion efficiency. As the CBD-CdS time and temperature were increased, the cell efficiency decreased. PL measurements revealed that this degradation of the cell efficiency was accompanied by increases in the defect-related recombination, which were attributed to the existence of donor defects around CdS/CIGS having an energy level of 0.65 eV below conduction band, as revealed by DLTS. Increasing distortions in the red-light-illuminated I–V characteristics suggested that the related defects might also have played a critical role in metastable changes around the CdS/CIGS junction. Because the CBD-CdS time and temperature were considered to influence the diffusion of impurities into the CIGS surface, the evolution of the efficiency, PL spectra, defect populations, and red-light-illuminated I–V characteristics observed in this work could be attributed to the diffusion of impurities during the CBD-CdS process. - Highlights: • CdS layers were grown by chemical bath deposition (CBD). • The CBD-CdS influenced the efficiency of Cu(In,Ga)Se{sub 2} (CIGS) solar cell. • It could be related to slight alteration in carrier recombination around CdS/CIGS. • Photo- and electroluminescence spectra detected those alterations in recombination. • The variation of results could be related to the changes in deep-level defects.

  18. Defects in ZnO, CdTe, and Si: Optical, structural, and electrical characterization

    CERN Multimedia

    Deicher, M; Kronenberg, J; Johnston, K; Roder, J; Byrne, D J

    Electronic and optical properties of semiconductors are extremely sensitive to defects and impurities that have localized electronic states with energy levels in the band gap of the semiconductor. Spectroscopic techniques like photo-luminescence (PL), deep level transient spectroscopy (DLTS), or Hall effect that are able to detect and characterize band gap states do not reveal direct information about their microscopic origin. To overcome this chemical "blindness" radioactive isotopes are used as a tracer. Moreover, the recoil energies involved in ${\\beta}$- and ${\\gamma}$-decays can be used to create intrinsic, isolated point defects (interstitials, vacancies) in a controlled way. A microscopic insight into the structure and the thermodynamic properties of complexes formed by interacting defects can be gained by detecting the hyperfine interaction between the nuclear moments of radioactive dopants and the electromagnetic fields present at the site of the radioactive nucleus. These techniques will be used to...

  19. Successful in vitro expansion and differentiation of cord blood derived CD34+ cells into early endothelial progenitor cells reveals highly differential gene expression.

    Directory of Open Access Journals (Sweden)

    Ingo Ahrens

    Full Text Available Endothelial progenitor cells (EPCs can be purified from peripheral blood, bone marrow or cord blood and are typically defined by a limited number of cell surface markers and a few functional tests. A detailed in vitro characterization is often restricted by the low cell numbers of circulating EPCs. Therefore in vitro culturing and expansion methods are applied, which allow at least distinguishing two different types of EPCs, early and late EPCs. Herein, we describe an in vitro culture technique with the aim to generate high numbers of phenotypically, functionally and genetically defined early EPCs from human cord blood. Characterization of EPCs was done by flow cytometry, immunofluorescence microscopy, colony forming unit (CFU assay and endothelial tube formation assay. There was an average 48-fold increase in EPC numbers. EPCs expressed VEGFR-2, CD144, CD18, and CD61, and were positive for acetylated LDL uptake and ulex lectin binding. The cells stimulated endothelial tube formation only in co-cultures with mature endothelial cells and formed CFUs. Microarray analysis revealed highly up-regulated genes, including LL-37 (CAMP, PDK4, and alpha-2-macroglobulin. In addition, genes known to be associated with cardioprotective (GDF15 or pro-angiogenic (galectin-3 properties were also significantly up-regulated after a 72 h differentiation period on fibronectin. We present a novel method that allows to generate high numbers of phenotypically, functionally and genetically characterized early EPCs. Furthermore, we identified several genes newly linked to EPC differentiation, among them LL-37 (CAMP was the most up-regulated gene.

  20. Pluronic L-81 ameliorates diabetic symptoms in db/db mice through transcriptional regulation of microsomal triglyceride transfer protein

    Science.gov (United States)

    Au, Wo-Shing; Lu, Li-Wei; Tam, Sidney; Ko, Otis King Hung; Chow, Billy KC; He, Ming-Liang; Ng, Samuel S; Yeung, Chung-Man; Liu, Ching-Chiu; Kung, Hsiang-Fu; Lin, Marie C

    2009-01-01

    AIM: To test whether oral L-81 treatment could improve the condition of mice with diabetes and to investigate how L-81 regulates microsomal triglyceride transfer protein (MTP) activity in the liver. METHODS: Genetically diabetic (db/db) mice were fed on chow supplemented with or without L-81 for 4 wk. The body weight, plasma glucose level, plasma lipid profile, and adipocyte volume of the db/db mice were assessed after treatment. Toxicity of L-81 was also evaluated. To understand the molecular mechanism, HepG2 cells were treated with L-81 and the effects on apolipoprotein B (apoB) secretion and mRNA level of the MTP gene were assessed. RESULTS: Treatment of db/db mice with L-81 significantly reduced and nearly normalized their body weight, hyperphagia and polydipsia. L-81 also markedly decreased the fasting plasma glucose level, improved glucose tolerance, and attenuated the elevated levels of plasma cholesterol and triglyceride. At the effective dosage, little toxicity was observed. Treatment of HepG2 cells with L-81 not only inhibited apoB secretion, but also significantly decreased the mRNA level of the MTP gene. Similar to the action of insulin, L-81 exerted its effect on the MTP promoter. CONCLUSION: L-81 represents a promising candidate in the development of a selective insulin-mimetic molecule and an anti-diabetic agent. PMID:19554651

  1. CD44 and Bak expression in IL-6 or TNF-alpha gene knockout mice after whole lung irradiation

    International Nuclear Information System (INIS)

    Sakai, Minako; Iwakawa, Mayumi; Ohta, Toshie; Tsujii, Hirohiko; Imai, Takashi; Iwakura, Yoichiro

    2008-01-01

    To understand the molecular mechanisms that underlie radiation pneumonitis, we examined whether knockout of the tumor necrosis factor (TNF) or the interleukin (IL)-6 gene could give mice an inherent resistance to radiation in the acute phase of alveolar damage after thoracic irradiation. The temporal expression of inflammation (CD44) and apoptosis (Bak) markers in lung after thoracic irradiation was measured to determine the degree of alveolar damage. At 4 weeks post-irradiation (10 Gy), small inflammatory foci were observed in all mice, but there were no obvious histological differences between control (C57BL/6JSlc), TNF-alpha knockout (TNF KO), and IL-6 knockout (IL-6 KO) mice. However, immunohistochemical analysis of CD44 and Bak expression over a time course of 2 weeks highlighted significant differences between the three groups. C57BL/6JSlc and TNF KO mice had increased numbers of both CD44-positive and Bak-positive cells after irradiation, while the IL-6 KO mice showed stable levels of CD44 and Bak. In conclusion, the radioresistant status of IL-6 KO mice in the acute phase of alveolar damage after irradiation suggested an important role for IL-6 in radiation pneumonitis. (author)

  2. Absence of both Sos-1 and Sos-2 in peripheral CD4(+) T cells leads to PI3K pathway activation and defects in migration.

    Science.gov (United States)

    Guittard, Geoffrey; Kortum, Robert L; Balagopalan, Lakshmi; Çuburu, Nicolas; Nguyen, Phan; Sommers, Connie L; Samelson, Lawrence E

    2015-08-01

    Sos-1 and Sos-2 are ubiquitously expressed Ras-guanine exchange factors involved in Erk-MAP kinase pathway activation. Using mice lacking genes encoding Sos-1 and Sos-2, we evaluated the role of these proteins in peripheral T-cell signaling and function. Our results confirmed that TCR-mediated Erk activation in peripheral CD4(+) T cells does not depend on Sos-1 and Sos-2, although IL-2-mediated Erk activation does. Unexpectedly, however, we show an increase in AKT phosphorylation in Sos-1/2dKO CD4(+) T cells upon TCR and IL-2 stimulation. Activation of AKT was likely a consequence of increased recruitment of PI3K to Grb2 upon TCR and/or IL-2 stimulation in Sos-1/2dKO CD4(+) T cells. The increased activity of the PI3K/AKT pathway led to downregulation of the surface receptor CD62L in Sos-1/2dKO T cells and a subsequent impairment in T-cell migration. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  3. Defect-Mediated Lithium Adsorption and Diffusion on Monolayer Molybdenum Disulfide.

    Science.gov (United States)

    Sun, Xiaoli; Wang, Zhiguo; Fu, Y Q

    2015-12-22

    Monolayer Molybdenum Disulfide (MoS2) is a promising anode material for lithium ion batteries because of its high capacities. In this work, first principle calculations based on spin density functional theory were performed to investigate adsorption and diffusion of lithium on monolayer MoS2 with defects, such as single- and few-atom vacancies, antisite, and grain boundary. The values of adsorption energies on the monolayer MoS2 with the defects were increased compared to those on the pristine MoS2. The presence of defects causes that the Li is strongly bound to the monolayer MoS2 with adsorption energies in the range between 2.81 and 3.80 eV. The donation of Li 2s electron to the defects causes an enhancement of adsorption of Li on the monolayer MoS2. At the same time, the presence of defects does not apparently affect the diffusion of Li, and the energy barriers are in the range of 0.25-0.42 eV. The presence of the defects can enhance the energy storage capacity, suggesting that the monolayer MoS2 with defects is a suitable anode material for the Li-ion batteries.

  4. Investigation of the optoelectronic behavior of Pb-doped CdO nanostructures

    Science.gov (United States)

    Eskandari, Abdollah; Jamali-Sheini, Farid; Cheraghizade, Mohsen; Yousefi, Ramin

    2018-03-01

    Un- and lead (Pb)-doped cadmium oxide (CdO) semiconductor nanostructures were synthesized by a sonochemical method to study their physical properties. The obtained X-ray diffraction (XRD) patterns indicated cubic CdO crystalline structures for all samples and showed that the crystallite size of CdO increases with Pb addition. Scanning electron microscopy (SEM) images of the nanostructures illustrated agglomerated oak-like particles for the Pb-doped CdO nanostructures. Furthermore, optical studies suggested that the emission band gap energy of the CdO nanostructures lies in the range of 2.27-2.38 eV and crystalline defects increase by incorporation of Pb atoms in the CdO crystalline lattice. In addition, electrical experiments declared that the n-type electrical nature of the un- and Pb-doped CdO nanostructures and the minimum of Pb atoms lead to a high carrier concentration.

  5. ILT based defect simulation of inspection images accurately predicts mask defect printability on wafer

    Science.gov (United States)

    Deep, Prakash; Paninjath, Sankaranarayanan; Pereira, Mark; Buck, Peter

    2016-05-01

    printability of defects at wafer level and automates the process of defect dispositioning from images captured using high resolution inspection machine. It first eliminates false defects due to registration, focus errors, image capture errors and random noise caused during inspection. For the remaining real defects, actual mask-like contours are generated using the Calibre® ILT solution [1][2], which is enhanced to predict the actual mask contours from high resolution defect images. It enables accurate prediction of defect contours, which is not possible from images captured using inspection machine because some information is already lost due to optical effects. Calibre's simulation engine is used to generate images at wafer level using scanner optical conditions and mask-like contours as input. The tool then analyses simulated images and predicts defect printability. It automatically calculates maximum CD variation and decides which defects are severe to affect patterns on wafer. In this paper, we assess the printability of defects for the mask of advanced technology nodes. In particular, we will compare the recovered mask contours with contours extracted from SEM image of the mask and compare simulation results with AIMSTM for a variety of defects and patterns. The results of printability assessment and the accuracy of comparison are presented in this paper. We also suggest how this method can be extended to predict printability of defects identified on EUV photomasks.

  6. [Refractory CD20-positive peripheral T-cell lymphoma showing loss of CD20 expression after rituximab therapy and gain of CD20 expression after administration of vorinostat and gemcitabine].

    Science.gov (United States)

    Teshima, Kazuaki; Ohyagi, Hideaki; Kume, Masaaki; Takahashi, Satsuki; Saito, Masahiro; Takahashi, Naoto

    A 79-year-old male patient presented with systemic lymphadenopathy. A lymph node biopsy revealed effacement of the normal nodal architecture with diffuse proliferation of medium-sized atypical lymphoid cells. Southern blot analyses demonstrated rearrangement of the T-cell receptor gene but not the immunoglobulin heavy chain gene. He was diagnosed with CD20-positive peripheral T-cell lymphoma (PTCL), NOS. Although he achieved partial remission after six cycles of R-CHOP, he relapse occurred after 2 months. CD20-negative conversion was confirmed in the lymph node, which was positive for CCR4, and the skin at the time of relapse. The patient received the GDP regimen as salvage therapy with the addition of vorinostat for skin involvement; however, he failed to respond, and the disease systemically progressed. Furthermore, he also exhibited progression in the skin after stopping vorinostat due to hematologic toxicity. A lymph node biopsy at progression revealed CD20 re-expression by immunohistochemistry. At progression, the patient received mogamulizumab but failed to respond, and he died owing to disease progression 8 months after relapse. In this case, we demonstrated CD20-negative conversion following rituximab and CD20-positive reversion after using vorinostat and gemcitabine.

  7. Congenital heart defects in Williams syndrome.

    Science.gov (United States)

    Yuan, Shi-Min

    2017-01-01

    Yuan SM. Congenital heart defects in Williams syndrome. Turk J Pediatr 2017; 59: 225-232. Williams syndrome (WS), also known as Williams-Beuren syndrome, is a rare genetic disorder involving multiple systems including the circulatory system. However, the etiologies of the associated congenital heart defects in WS patients have not been sufficiently elucidated and represent therapeutic challenges. The typical congenital heart defects in WS were supravalvar aortic stenosis, pulmonary stenosis (both valvular and peripheral), aortic coarctation and mitral valvar prolapse. The atypical cardiovascular anomalies include tetralogy of Fallot, atrial septal defects, aortic and mitral valvular insufficiencies, bicuspid aortic valves, ventricular septal defects, total anomalous pulmonary venous return, double chambered right ventricle, Ebstein anomaly and arterial anomalies. Deletion of the elastin gene on chromosome 7q11.23 leads to deficiency or abnormal deposition of elastin during cardiovascular development, thereby leading to widespread cardiovascular abnormalities in WS. In this article, the distribution, treatment and surgical outcomes of typical and atypical cardiac defects in WS are discussed.

  8. HIV-specific CD8+ T cells: serial killers condemned to die?

    Science.gov (United States)

    Petrovas, Constantinos; Mueller, Yvonne M; Katsikis, Peter D

    2004-04-01

    An increasing body of evidence supports a key role for cytotoxic CD8+ T cells (CTL) in controlling HIV infection. Although a vigorous HIV-specific CD8+ T cell response is raised during the primary infection, these cells ultimately fail to control virus and prevent disease progression. The failure of CTL to control HIV infection has been attributed to a number of strategies HIV employs to evade the immune system. Recently, intrinsic defects in the CTL themselves have been proposed to contribute to the failure of CTL to control HIV. HIV-specific CD8+ T cells differ in their effector/memory phenotype from other virus-specific CD8+ T cells indicating that their differentiation status differs. This altered differentiation may affect effector functions as well as homing properties of these cells. Other studies have indicated that activation of HIV-specific CTL may be impaired and this contributes to their dysfunction. The effector function of these CTL may also be affected. There are conflicting reports about their ability to kill, whereas IFNgamma production does not appear to be impaired in these cells. In this review we focus on recent work indicating that apoptosis may be an important mechanism through which HIV evades the CTL response. In particular, HIV-specific CD8+ T cells are highly susceptible to CD95/Fas-induced apoptosis. This leads to the hypothesis that virus-specific cytotoxic T cells can be eliminated upon binding CD95L/FasL on HIV-infected cells. Understanding the intrinsic defects of CTL in HIV infection could lead to new therapeutic strategies and optimized vaccination protocols that enhance the HIV-specific cytotoxic response.

  9. CD38 gene-modified dendritic cells inhibit murine asthma development by increasing IL-12 production and promoting Th1 cell differentiation.

    Science.gov (United States)

    Wang, Jiaoli; Zhu, Weiguo; Chen, Yinghu; Lin, Zhendong; Ma, Shenglin

    2016-11-01

    Predominant T helper (Th)2 and impaired Th1 cell polarization has a crucial role in the development of asthma. Cluster of differentiation (CD)38 is associated with the increased release of interleukin (IL)‑12 from dendritic cells (DCs) and DC‑induced Th1 cell polarization. However, whether CD38 expression affects DC function in asthma development remains unknown. In the current study, adenoviruses were constructed containing the murine CD38 gene. Overexpression of CD38 protein level in DCs induced from bone‑marrow derived DCs (BMDCs) by recombinant mouse granulocyte macrophage colony‑stimulating factor and IL‑4 was achieved through 24 h adenovirus infection. The results demonstrated that BMDCs with CD38 overexpression exhibited no phenotypic change; however, following stimulation with lipopolysaccharide (LPS), maturation and IL‑12 secretion were increased. In addition, CD38‑overexpressing BMDCs stimulated with LPS exhibited more effective Th1 cell differentiation. Mice that were administered CD38‑overexpressing BMDCs exhibited milder symptoms of asthma. Furthermore, decreased IL‑4, IL‑5 and IL‑13 levels were detected in bronchoalveolar lavage fluid (BALF), reduced immunoglobulin E levels were measured in the sera, and increased interferon‑γ was detected in BALF from the recipients of CD38‑overexpressing BMDCs. Increased phosphorylated‑p38 expression was also detected in LPS-stimulated CD38-overexpressing BMDCs, whereas pretreatment with a p38‑specific inhibitor was able to abolish the effects of LPS stimulation and CD38 overexpression on IL‑12 release and Th1 cell differentiation in BMDCs. These results suggested that CD38 may be involved in the DC function of alleviating asthma via restoration of the Th1/Th2 balance, thus providing a novel strategy for asthma therapy.

  10. Spatial variation in carrier dynamics along a single CdSSe nanowire

    International Nuclear Information System (INIS)

    Blake, Jolie C.; Eldridge, Peter S.; Gundlach, Lars

    2014-01-01

    Highlights: • Femtosecond Kerr-gate microscopy allows ultrafast fluorescence measurements along different positions of a single nanowire. • Amplified spontaneous emission observed at high fluences can be used to calculate recombination rates. • Observation of ASE at different locations along a single CdSSe nanowire provides the ability to extract defect densities. - Abstract: Ultrafast charge carrier dynamics along individual CdS x Se 1−x nanowires has been measured. The use of an improved ultrafast Kerr-gated microscope allows for spatially resolved luminescence measurements along a single nanowire. Amplified spontaneous emission (ASE) was observed at high excitation fluences. Position dependent variations of ultrafast ASE dynamics were observed. SEM and colorimetric measurements showed that the difference in dynamics can be attributed to variations in non-radiative recombination rates along the wire. The dominant Shockley-Read recombination rate can be extracted from ASE dynamics and can be directly related to charge carrier mobility and defect density. Employing ASE as a probe for defect densities provides a new sub-micron spatially resolved, contactless method for measurements of charge carrier mobility

  11. Genome-based insights into the resistome and mobilome of multidrug-resistant Aeromonas sp. ARM81 isolated from wastewater.

    Science.gov (United States)

    Adamczuk, Marcin; Dziewit, Lukasz

    2017-01-01

    The draft genome of multidrug-resistant Aeromonas sp. ARM81 isolated from a wastewater treatment plant in Warsaw (Poland) was obtained. Sequence analysis revealed multiple genes conferring resistance to aminoglycosides, β-lactams or tetracycline. Three different β-lactamase genes were identified, including an extended-spectrum β-lactamase gene bla PER-1 . The antibiotic susceptibility was experimentally tested. Genome sequencing also allowed us to investigate the plasmidome and transposable mobilome of ARM81. Four plasmids, of which two carry phenotypic modules (i.e., genes encoding a zinc transporter ZitB and a putative glucosyltransferase), and 28 putative transposase genes were identified. The mobility of three insertion sequences (isoforms of previously identified elements ISAs12, ISKpn9 and ISAs26) was confirmed using trap plasmids.

  12. Evaluation of common genetic variants in 82 candidate genes as risk factors for neural tube defects

    LENUS (Irish Health Repository)

    Pangilinan, Faith

    2012-08-02

    AbstractBackgroundNeural tube defects (NTDs) are common birth defects (~1 in 1000 pregnancies in the US and Europe) that have complex origins, including environmental and genetic factors. A low level of maternal folate is one well-established risk factor, with maternal periconceptional folic acid supplementation reducing the occurrence of NTD pregnancies by 50-70%. Gene variants in the folate metabolic pathway (e.g., MTHFR rs1801133 (677 C > T) and MTHFD1 rs2236225 (R653Q)) have been found to increase NTD risk. We hypothesized that variants in additional folate\\/B12 pathway genes contribute to NTD risk.MethodsA tagSNP approach was used to screen common variation in 82 candidate genes selected from the folate\\/B12 pathway and NTD mouse models. We initially genotyped polymorphisms in 320 Irish triads (NTD cases and their parents), including 301 cases and 341 Irish controls to perform case–control and family based association tests. Significantly associated polymorphisms were genotyped in a secondary set of 250 families that included 229 cases and 658 controls. The combined results for 1441 SNPs were used in a joint analysis to test for case and maternal effects.ResultsNearly 70 SNPs in 30 genes were found to be associated with NTDs at the p < 0.01 level. The ten strongest association signals (p-value range: 0.0003–0.0023) were found in nine genes (MFTC, CDKN2A, ADA, PEMT, CUBN, GART, DNMT3A, MTHFD1 and T (Brachyury)) and included the known NTD risk factor MTHFD1 R653Q (rs2236225). The single strongest signal was observed in a new candidate, MFTC rs17803441 (OR = 1.61 [1.23-2.08], p = 0.0003 for the minor allele). Though nominally significant, these associations did not remain significant after correction for multiple hypothesis testing.ConclusionsTo our knowledge, with respect to sample size and scope of evaluation of candidate polymorphisms, this is the largest NTD genetic association study reported to date. The scale of the study and the

  13. TiO2 nanocrystals decorated Z-schemed core-shell CdS-CdO nanorod arrays as high efficiency anodes for photoelectrochemical hydrogen generation.

    Science.gov (United States)

    Li, Chia-Hsun; Hsu, Chan-Wei; Lu, Shih-Yuan

    2018-07-01

    TiO 2 nanocrystals decorated core-shell CdS-CdO nanorod arrays, TiO 2 @CdO/CdS NR, were fabricated as high efficiency anodes for photoelctrochemical hydrogen generation. The novel sandwich heterostructure was constructed from first growth of CdS nanorod arrays on a fluorine doped tin oxide (FTO) substrate with a hydrothermal process, followed by in situ generation of CdO thin films of single digit nanometers from the CdS nanorod surfaces through thermal oxidation, and final decoration of TiO 2 nanocrystals of 10-20 nm via a successive ionic layer absorption and reaction process. The core-shell CdS-CdO heterostructure possesses a Z-scheme band structure to enhance interfacial charge transfer, facilitating effective charge separation to suppress electron-hole recombination within CdS for much improved current density generation. The final decoration of TiO 2 nanocrystals passivates surface defects and trap states of CdO, further suppressing surface charge recombination for even higher photovoltaic conversion efficiencies. The photoelectrochemical performances of the plain CdS nanorod array were significantly improved with the formation of the sandwich heterostructure, achieving a photo current density of 3.2 mA/cm 2 at 1.23 V (vs. RHE), a 141% improvement over the plain CdS nanorod array and a 32% improvement over the CdO/CdS nanorod array. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Defect-mediated photoluminescence up-conversion in cadmium sulfide nanobelts (Conference Presentation)

    Science.gov (United States)

    Morozov, Yurii; Kuno, Masaru K.

    2017-02-01

    The concept of optical cooling of solids has existed for nearly 90 years ever since Pringsheim proposed a way to cool solids through the annihilation of phonons via phonon-assisted photoluminescence (PL) up-conversion. In this process, energy is removed from the solid by the emission of photons with energies larger than those of incident photons. However, actually realizing optical cooling requires exacting parameters from the condensed phase medium such as near unity external quantum efficiencies as well as existence of a low background absorption. Until recently, laser cooling has only been successfully realized in rare earth doped solids. In semiconductors, optical cooling has very recently been demonstrated in cadmium sulfide (CdS) nanobelts as well as in hybrid lead halide perovskites. For the former, large internal quantum efficiencies, sub-wavelength thicknesses, which decrease light trapping, and low background absorption, all make near unity external quantum yields possible. Net cooling by as much as 40 K has therefore been possible with CdS nanobelts. In this study, we describe a detailed investigation of the nature of efficient anti-Stokes photoluminescence (ASPL) in CdS nanobelts. Temperature-dependent PL up-conversion and optical absorption studies on individual NBs together with frequency-dependent up-converted PL intensity spectroscopies suggest that ASPL in CdS nanobelts is defect-mediated through involvement of defect levels below the band gap.

  15. Aggregation performance of CdO grains grown on surface of N silicon crystal

    International Nuclear Information System (INIS)

    Zhang Jizhong; Zhao Huan

    2010-01-01

    Four kinds of aggregation patterns of CdO grains were formed on the surface of N silicon substrate heated at 580 deg. C for 1 h in an evaporation-deposition device. They were ellipse-shaped or quasi-circular-shaped aggregate, long ribbon-shaped aggregate, long chain-shaped or long double-chain-shaped aggregate, and long ellipse-chain-shaped aggregate. These aggregates consisted of numerous grains or tiny crystals, and deposited on top of the CdO bush-like long crystal clusters grown earlier. They exhibited clearly spontaneous self-organization aggregation performance. Surface defects of the virgin N silicon crystal were analyzed, and mechanism of the self-organization aggregation was discussed with a defect induced aggregation (DIA) model.

  16. Chemokines involved in protection from colitis by CD4+CD25+ regulatory T cells

    DEFF Research Database (Denmark)

    Kristensen, Nanna Ny; Brudzewsky, Dan; Gad, Monika

    2006-01-01

    /chemokine receptor-specific gene expression profiling system of 67 genes, the authors have determined the expression profile of chemokine and chemokine receptor genes in the rectum of colitic mice and in mice that have been protected fromcolitis by CD4CD25 regulatory T cells. In mice protected from colitis......, the authors found down regulation of the mRNA expression of the inflammatory chemokine receptors CCR1 and CXCR3 and their ligands CXCL9, CXCL10, CCL5, and CCL7. Also the transcripts for CCR9, CCL25, CCL17, and CXCL1 are found down regulated in protected compared with colitic animals. In addition, the authors......' results suggest that CCL20 is used by CCR6 regulatory T cells in the complex process of controlling colitis because transcripts for this chemokine were expressed to a higher level in protected animals. The chemokine pathways identified in the present study may be of importance for the development of new...

  17. Identification of a new gene regulatory circuit involving B cell receptor activated signaling using a combined analysis of experimental, clinical and global gene expression data

    Science.gov (United States)

    Schrader, Alexandra; Meyer, Katharina; Walther, Neele; Stolz, Ailine; Feist, Maren; Hand, Elisabeth; von Bonin, Frederike; Evers, Maurits; Kohler, Christian; Shirneshan, Katayoon; Vockerodt, Martina; Klapper, Wolfram; Szczepanowski, Monika; Murray, Paul G.; Bastians, Holger; Trümper, Lorenz; Spang, Rainer; Kube, Dieter

    2016-01-01

    To discover new regulatory pathways in B lymphoma cells, we performed a combined analysis of experimental, clinical and global gene expression data. We identified a specific cluster of genes that was coherently expressed in primary lymphoma samples and suppressed by activation of the B cell receptor (BCR) through αIgM treatment of lymphoma cells in vitro. This gene cluster, which we called BCR.1, includes numerous cell cycle regulators. A reduced expression of BCR.1 genes after BCR activation was observed in different cell lines and also in CD10+ germinal center B cells. We found that BCR activation led to a delayed entry to and progression of mitosis and defects in metaphase. Cytogenetic changes were detected upon long-term αIgM treatment. Furthermore, an inverse correlation of BCR.1 genes with c-Myc co-regulated genes in distinct groups of lymphoma patients was observed. Finally, we showed that the BCR.1 index discriminates activated B cell-like and germinal centre B cell-like diffuse large B cell lymphoma supporting the functional relevance of this new regulatory circuit and the power of guided clustering for biomarker discovery. PMID:27166259

  18. Disruption of SLX4-MUS81 Function Increases the Relative Biological Effectiveness of Proton Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qi [Laboratory of Cellular and Molecular Radiation Oncology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Underwood, Tracy S.A.; Kung, Jong [Division of Radiation Physics, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Wang, Meng [Laboratory of Cellular and Molecular Radiation Oncology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Lu, Hsiao-Ming; Paganetti, Harald [Division of Radiation Physics, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Held, Kathryn D.; Hong, Theodore S.; Efstathiou, Jason A. [Laboratory of Cellular and Molecular Radiation Oncology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Willers, Henning, E-mail: hwillers@mgh.harvard.edu [Laboratory of Cellular and Molecular Radiation Oncology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2016-05-01

    Purpose: Clinical proton beam therapy has been based on the use of a generic relative biological effectiveness (RBE) of ∼1.1. However, emerging data have suggested that Fanconi anemia (FA) and homologous recombination pathway defects can lead to a variable RBE, at least in vitro. We investigated the role of SLX4 (FANCP), which acts as a docking platform for the assembly of multiple structure-specific endonucleases, in the response to proton irradiation. Methods and Materials: Isogenic cell pairs for the study of SLX4, XPF/ERCC1, MUS81, and SLX1 were irradiated at the mid-spread-out Bragg peak of a clinical proton beam (linear energy transfer 2.5 keV/μm) or with 250 kVp x-rays, and the clonogenic survival fractions were determined. To estimate the RBE of the protons relative to cobalt-60 photons (Co60Eq), we assigned a RBE(Co60Eq) of 1.1 to x-rays to correct the physical dose measured. Standard DNA repair foci assays were used to monitor the damage responses, and the cell cycle distributions were assessed by flow cytometry. The poly(ADP-ribose) polymerase inhibitor olaparib was used for comparison. Results: Loss of SLX4 function resulted in an enhanced proton RBE(Co60Eq) of 1.42 compared with 1.11 for wild-type cells (at a survival fraction of 0.1; P<.05), which correlated with increased persistent DNA double-strand breaks in cells in the S/G{sub 2} phase. Genetic analysis identified the SLX4-binding partner MUS81 as a mediator of resistance to proton radiation. Both proton irradiation and olaparib treatment resulted in a similar prolonged accumulation of RAD51 foci in SLX4/MUS81-deficient cells, suggesting a common defect in the repair of DNA replication fork-associated damage. Conclusions: A defect in the FA pathway at the level of SLX4 results in hypersensitivity to proton radiation, which is, at least in part, due to impaired MUS81-mediated processing of replication forks that stall at clustered DNA damage. In vivo and clinical studies are needed to

  19. Functional defect of circulating regulatory CD4+T cells in patients with Wegener's granulomatosis in remission

    NARCIS (Netherlands)

    Abdulahad, Wayel Habib; Stegeman, Coen; van der Geld, Y.M.; Doornbos-van der Meer, B.; Limburg, Piet; Kallenberg, Cees

    Objective. Accumulating data support the role of regulatory T cells, a subset of CD4+ T cells that expresses CD25(high) and the transcription factor fork-head box P3 (FoxP3), in controlling and preventing autoimmunity. In Wegener's granulomatosis (WG), an autoimmune vasculitis, up-regulation of CD25

  20. Spatially conserved regulatory elements identified within human and mouse Cd247 gene using high-throughput sequencing data from the ENCODE project

    DEFF Research Database (Denmark)

    Pundhir, Sachin; Hannibal, Tine Dahlbæk; Bang-Berthelsen, Claus Heiner

    2014-01-01

    . In this study, we have utilized the wealth of high-throughput sequencing data produced during the Encyclopedia of DNA Elements (ENCODE) project to identify spatially conserved regulatory elements within the Cd247 gene from human and mouse. We show the presence of two transcription factor binding sites...

  1. The diagnostic accuracy of endovaginal and transperineal ultrasound for detecting anal sphincter defects: The PREDICT study

    Energy Technology Data Exchange (ETDEWEB)

    Roos, A.-M., E-mail: annemarie.roos@gmail.com [Department of Obstetrics and Gynaecology, Mayday University Hospital, Croydon (United Kingdom); Abdool, Z. [Department of Obstetrics and Gynaecology, University of Pretoria, Pretoria (South Africa); Sultan, A.H.; Thakar, R. [Department of Obstetrics and Gynaecology, Mayday University Hospital, Croydon (United Kingdom)

    2011-07-15

    Aim: To determine the accuracy and predictive value of transperineal (TPU) and endovaginal ultrasound (EVU) in the detection of anal sphincter defects in women with obstetric anal sphincter injuries and/or postpartum symptoms of faecal incontinence. Materials and methods: One hundred and sixty-five women were recruited, four women were excluded as they were seen years after their last delivery. TPU and EVU, followed by endonanal ultrasound (EAU), were performed using the B and K Viking 2400 scanner. Sensitivity and specificity, as well as predictive values with 95% confidence intervals, for detecting anal sphincter defects were calculated for EVU and TPU, using EAU as the reference standard. Results: On EAU a defect was found in 42 (26%) women: 39 (93%) had an external (EAS) and 23 (55%) an internal anal sphincter (IAS) defect. Analysable images of one level of the EAS combined with an analysable IAS were available in 140 (87%) women for EVU and in 131 (81%) for TPU. The sensitivity and specificity for the detection of any defect was 48% (30-67%) and 85% (77-91%) for EVU and 64% (44-81%) and 85% (77-91%) for TPU, respectively. Conclusion: Although EAU using a rotating endoprobe is the validated reference standard in the identification of anal sphincter defects, it is not universally available. However while TPU and/or EVU with conventional ultrasound probes can be useful in identifying normality, for clinical purposes they are not sensitive enough to identify an underlying sphincter defect.

  2. The diagnostic accuracy of endovaginal and transperineal ultrasound for detecting anal sphincter defects: The PREDICT study

    International Nuclear Information System (INIS)

    Roos, A.-M.; Abdool, Z.; Sultan, A.H.; Thakar, R.

    2011-01-01

    Aim: To determine the accuracy and predictive value of transperineal (TPU) and endovaginal ultrasound (EVU) in the detection of anal sphincter defects in women with obstetric anal sphincter injuries and/or postpartum symptoms of faecal incontinence. Materials and methods: One hundred and sixty-five women were recruited, four women were excluded as they were seen years after their last delivery. TPU and EVU, followed by endonanal ultrasound (EAU), were performed using the B and K Viking 2400 scanner. Sensitivity and specificity, as well as predictive values with 95% confidence intervals, for detecting anal sphincter defects were calculated for EVU and TPU, using EAU as the reference standard. Results: On EAU a defect was found in 42 (26%) women: 39 (93%) had an external (EAS) and 23 (55%) an internal anal sphincter (IAS) defect. Analysable images of one level of the EAS combined with an analysable IAS were available in 140 (87%) women for EVU and in 131 (81%) for TPU. The sensitivity and specificity for the detection of any defect was 48% (30-67%) and 85% (77-91%) for EVU and 64% (44-81%) and 85% (77-91%) for TPU, respectively. Conclusion: Although EAU using a rotating endoprobe is the validated reference standard in the identification of anal sphincter defects, it is not universally available. However while TPU and/or EVU with conventional ultrasound probes can be useful in identifying normality, for clinical purposes they are not sensitive enough to identify an underlying sphincter defect.

  3. Somatic USP8 Gene Mutations Are a Common Cause of Pediatric Cushing Disease.

    Science.gov (United States)

    Faucz, Fabio R; Tirosh, Amit; Tatsi, Christina; Berthon, Annabel; Hernández-Ramírez, Laura C; Settas, Nikolaos; Angelousi, Anna; Correa, Ricardo; Papadakis, Georgios Z; Chittiboina, Prashant; Quezado, Martha; Pankratz, Nathan; Lane, John; Dimopoulos, Aggeliki; Mills, James L; Lodish, Maya; Stratakis, Constantine A

    2017-08-01

    Somatic mutations in the ubiquitin-specific protease 8 (USP8) gene have been recently identified as the most common genetic alteration in patients with Cushing disease (CD). However, the frequency of these mutations in the pediatric population has not been extensively assessed. We investigated the status of the USP8 gene at the somatic level in a cohort of pediatric patients with corticotroph adenomas. The USP8 gene was fully sequenced in both germline and tumor DNA samples from 42 pediatric patients with CD. Clinical, biochemical, and imaging data were compared between patients with and without somatic USP8 mutations. Five different USP8 mutations (three missense, one frameshift, and one in-frame deletion) were identified in 13 patients (31%), all of them located in exon 14 at the previously described mutational hotspot, affecting the 14-3-3 binding motif of the protein. Patients with somatic mutations were older at disease presentation [mean 5.1 ± 2.1 standard deviation (SD) vs 13.1 ± 3.6 years, P = 0.03]. Levels of urinary free cortisol, midnight serum cortisol, and adrenocorticotropic hormone, as well as tumor size and frequency of invasion of the cavernous sinus, were not significantly different between the two groups. However, patients harboring somatic USP8 mutations had a higher likelihood of recurrence compared with patients without mutations (46.2% vs 10.3%, P = 0.009). Somatic USP8 gene mutations are a common cause of pediatric CD. Patients harboring a somatic mutation had a higher likelihood of tumor recurrence, highlighting the potential importance of this molecular defect for the disease prognosis and the development of targeted therapeutic options. Copyright © 2017 Endocrine Society

  4. Wafer plane inspection for advanced reticle defects

    Science.gov (United States)

    Nagpal, Rajesh; Ghadiali, Firoz; Kim, Jun; Huang, Tracy; Pang, Song

    2008-05-01

    Readiness of new mask defect inspection technology is one of the key enablers for insertion & transition of the next generation technology from development into production. High volume production in mask shops and wafer fabs demands a reticle inspection system with superior sensitivity complemented by a low false defect rate to ensure fast turnaround of reticle repair and defect disposition (W. Chou et al 2007). Wafer Plane Inspection (WPI) is a novel approach to mask defect inspection, complementing the high resolution inspection capabilities of the TeraScanHR defect inspection system. WPI is accomplished by using the high resolution mask images to construct a physical mask model (D. Pettibone et al 1999). This mask model is then used to create the mask image in the wafer aerial plane. A threshold model is applied to enhance the inspectability of printing defects. WPI can eliminate the mask restrictions imposed on OPC solutions by inspection tool limitations in the past. Historically, minimum image restrictions were required to avoid nuisance inspection stops and/or subsequent loss of sensitivity to defects. WPI has the potential to eliminate these limitations by moving the mask defect inspections to the wafer plane. This paper outlines Wafer Plane Inspection technology, and explores the application of this technology to advanced reticle inspection. A total of twelve representative critical layers were inspected using WPI die-to-die mode. The results from scanning these advanced reticles have shown that applying WPI with a pixel size of 90nm (WPI P90) captures all the defects of interest (DOI) with low false defect detection rates. In validating CD predictions, the delta CDs from WPI are compared against Aerial Imaging Measurement System (AIMS), where a good correlation is established between WPI and AIMSTM.

  5. Transplantation of mesenchymal stem cells cultured on biomatrix support induces repairing of digestive tract defects, in animal model.

    Science.gov (United States)

    Sîrbu-Boeţi, Mirela-Patricia; Chivu, Mihaela; Pâslaru, Liliana Livia; Efrimescu, C; Herlea, V; Pecheanu, C; Moldovan, Lucia; Dragomir, Laura; Bleotu, Coralia; Ciucur, Elena; Vidulescu, Cristina; Vasilescu, Mihaela; Boicea, Anişoara; Mănoiu, S; Ionescu, M I; Popescu, I

    2009-01-01

    Transplanted mesenchymal stem cells (MSCs) appear to play a significant role in adult tissue repair. The aim of this research was to obtain MSCs enriched, three dimensional (3D) patches for transplant, and to test their ability to induce repair of iatrogenic digestive tract defects in rats. MSCs were obtained from human and rat bone marrow, cultured in vitro, and seeded in a collagen-agarose scaffold, where they showed enhanced viability and proliferation. The phenotype of the cultured cells was representative for MSCs (CD105+, CD90+, and CD34-, CD45-, CD3-, CD14-). The 3D patch was obtained by laying the MSCs enriched collagen-agarose scaffold on a human or swine aortic fragment. After excision of small portions of the rat digestive tract, the 3D patches were sutured at the edge of the defect using micro-surgical techniques. The rats were sacrificed at time-points and the regeneration of the digestive wall was investigated by immunofluorescence, light and electron microscopy. The MSCs enriched 3D patches were biocompatible, biodegradable, and prompted the regeneration of the four layers of the stomach and intestine wall in rats. Human cells were identified in the rat regenerated digestive wall as a hallmark of the transplanted MSCs. For the first time we constructed 3D patches made of cultured bone marrow MSCs, embedded into a collagen-rich biomatrix, on vascular bio-material support, and transplanted them in order to repair iatrogenic digestive tract defects. The result was a complete repair with preservation of the four layered structure of the digestive wall.

  6. The role of CD154-CD40 versus CD28-B7 costimulatory pathways in regulating allogeneic Th1 and Th2 responses in vivo

    DEFF Research Database (Denmark)

    Kishimoto, K; Dong, V M; Issazadeh-Navikas, Shohreh

    2000-01-01

    We used signal transducer and activator of transcription 4 (STAT4) and STAT6 gene knockout (-/-) mice as recipients of fully mismatched cardiac allografts to study the role of T-cell costimulatory pathways in regulating allogeneic T-helper 1 (Th1) versus Th2 responses in vivo. STAT4(-/-) mice have...... impaired Th1 responses, whereas STAT6(-/-) mice do not generate normal Th2 responses. Cardiac allografts from C57BL/6 mice were transplanted into normal wild-type (WT), STAT4(-/-), and STAT6(-/-) BALB/c recipients. STAT4(-/-) and STAT6(-/-) mice rejected their grafts with the same tempo as untreated WT....... Furthermore, there was a similar differential effect of CD28-B7 versus CD154-CD40 blockade in inhibiting immune responses in animals immunized with ovalbumin and complete Freund's adjuvant. These novel data indicate that Th1 and Th2 cells are differentially regulated by CD28-B7 versus CD154-CD40 costimulation...

  7. The studies of radiation distorations in CdS single crystals by using a proton back-scattering method

    International Nuclear Information System (INIS)

    Grigor'ev, A.N.; Dikij, N.P.; Matyash, P.P.; Nikolajchuk, L.I.; Pivovar, L.I.

    1974-01-01

    The radiation defects in semiconducting CdS single crystals induced during doping with 140 keV Na ions (10 15 -2.10 16 ion/cm 2 ) were studied by the orientation dependence of 700 keV proton backscattering. The absence of discrete peaks in the scattered proton eneryg spectra indicates a small contribution of direct scattering at large angles. The defects formed during doping increase the fractionof dechanneled particles, which are then scattered at large anlges. No amorphization of CdS was observed at high Na ion dose 2x10 16 ion/cm 2

  8. Elevated Plasma Soluble CD14 and Skewed CD16+ Monocyte Distribution Persist despite Normalisation of Soluble CD163 and CXCL10 by Effective HIV Therapy: A Changing Paradigm for Routine HIV Laboratory Monitoring?

    Science.gov (United States)

    Castley, Alison; Berry, Cassandra; French, Martyn; Fernandez, Sonia; Krueger, Romano; Nolan, David

    2014-01-01

    Objective We investigated plasma and flow cytometric biomarkers of monocyte status that have been associated with prognostic utility in HIV infection and other chronic inflammatory diseases, comparing 81 HIV+ individuals with a range of treatment outcomes to a group of 21 healthy control blood donors. Our aim is to develop and optimise monocyte assays that combine biological relevance, clinical utility, and ease of adoption into routine HIV laboratory practice. Design Cross-sectional evaluation of concurrent plasma and whole blood samples. Methods A flow cytometry protocol was developed comprising single-tube CD45, CD14, CD16, CD64, CD163, CD143 analysis with appropriately matched isotype controls. Plasma levels of soluble CD14 (sCD14), soluble CD163 (sCD163) and CXCL10 were measured by ELISA. Results HIV status was associated with significantly increased expression of CD64, CD143 and CD163 on CD16+ monocytes, irrespective of the virological response to HIV therapy. Plasma levels of sCD14, sCD163 and CXCL10 were also significantly elevated in association with viremic HIV infection. Plasma sCD163 and CXCL10 levels were restored to healthy control levels by effective antiretroviral therapy while sCD14 levels remained elevated despite virological suppression (p<0.001). Conclusions Flow cytometric and plasma biomarkers of monocyte activation indicate an ongoing systemic inflammatory response to HIV infection, characterised by persistent alterations of CD16+ monocyte expression profiles and elevated sCD14 levels, that are not corrected by antiretroviral therapy and likely to be prognostically significant. In contrast, sCD163 and CXCL10 levels declined on antiretroviral therapy, suggesting multiple activation pathways revealed by these biomarkers. Incorporation of these assays into routine clinical care is feasible and warrants further consideration, particularly in light of emerging therapeutic strategies that specifically target innate immune activation in HIV

  9. Elevated plasma soluble CD14 and skewed CD16+ monocyte distribution persist despite normalisation of soluble CD163 and CXCL10 by effective HIV therapy: a changing paradigm for routine HIV laboratory monitoring?

    Directory of Open Access Journals (Sweden)

    Alison Castley

    Full Text Available OBJECTIVE: We investigated plasma and flow cytometric biomarkers of monocyte status that have been associated with prognostic utility in HIV infection and other chronic inflammatory diseases, comparing 81 HIV+ individuals with a range of treatment outcomes to a group of 21 healthy control blood donors. Our aim is to develop and optimise monocyte assays that combine biological relevance, clinical utility, and ease of adoption into routine HIV laboratory practice. DESIGN: Cross-sectional evaluation of concurrent plasma and whole blood samples. METHODS: A flow cytometry protocol was developed comprising single-tube CD45, CD14, CD16, CD64, CD163, CD143 analysis with appropriately matched isotype controls. Plasma levels of soluble CD14 (sCD14, soluble CD163 (sCD163 and CXCL10 were measured by ELISA. RESULTS: HIV status was associated with significantly increased expression of CD64, CD143 and CD163 on CD16+ monocytes, irrespective of the virological response to HIV therapy. Plasma levels of sCD14, sCD163 and CXCL10 were also significantly elevated in association with viremic HIV infection. Plasma sCD163 and CXCL10 levels were restored to healthy control levels by effective antiretroviral therapy while sCD14 levels remained elevated despite virological suppression (p<0.001. CONCLUSIONS: Flow cytometric and plasma biomarkers of monocyte activation indicate an ongoing systemic inflammatory response to HIV infection, characterised by persistent alterations of CD16+ monocyte expression profiles and elevated sCD14 levels, that are not corrected by antiretroviral therapy and likely to be prognostically significant. In contrast, sCD163 and CXCL10 levels declined on antiretroviral therapy, suggesting multiple activation pathways revealed by these biomarkers. Incorporation of these assays into routine clinical care is feasible and warrants further consideration, particularly in light of emerging therapeutic strategies that specifically target innate immune

  10. X-linked immunodeficiency with magnesium defect, Epstein-Barr virus infection, and neoplasia disease: a combined immune deficiency with magnesium defect.

    Science.gov (United States)

    Ravell, Juan; Chaigne-Delalande, Benjamin; Lenardo, Michael

    2014-12-01

    To describe the role of the magnesium transporter 1 (MAGT1) in the pathogenesis of 'X-linked immunodeficiency with magnesium defect, Epstein-Barr virus (EBV) infection, and neoplasia' (XMEN) disease and its clinical implications. The magnesium transporter protein MAGT1 participates in the intracellular magnesium ion (Mg) homeostasis and facilitates a transient Mg influx induced by the activation of the T-cell receptor. Loss-of-function mutations in MAGT1 cause an immunodeficiency named 'XMEN syndrome', characterized by CD4 lymphopenia, chronic EBV infection, and EBV-related lymphoproliferative disorders. Patients with XMEN disease have impaired T-cell activation and decreased cytolytic function of natural killer (NK) and CD8 T cells because of decreased expression of the NK stimulatory receptor 'natural-killer group 2, member D' (NKG2D). Patients may have defective specific antibody responses secondary to T cell dysfunction, but B cells have not been shown to be directly affected by mutations in MAGT1. XMEN disease has revealed a novel role for free intracellular magnesium in the immune system. Further understanding of the MAGT1 signaling pathway may lead to new diagnostic and therapeutic approaches.

  11. Structure and red shift of optical band gap in CdO–ZnO nanocomposite synthesized by the sol gel method

    Energy Technology Data Exchange (ETDEWEB)

    Mosquera, Edgar, E-mail: edemova@ing.uchile.cl [Laboratorio de Materiales a Nanoescala, Departamento de Ciencia de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Tupper 2069, Santiago (Chile); Pozo, Ignacio del, E-mail: ignacio.dpf@gmail.com [Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Av. José Pedro Alessandri 1242, Santiago (Chile); Morel, Mauricio, E-mail: mmorel@ing.uchile.cl [Laboratorio de Materiales a Nanoescala, Departamento de Ciencia de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Tupper 2069, Santiago (Chile)

    2013-10-15

    The structure and the optical band gap of CdO–ZnO nanocomposites were studied. Characterization using X-ray diffraction (XRD), transmission electron microscopy (TEM) and diffuse reflectance spectroscopy (DRS) analysis confirms that CdO phase is present in the nanocomposites. TEM analysis confirms the formation of spheroidal nanoparticles and nanorods. The particle size was calculated from Debey–Sherrer′s formula and corroborated by TEM images. FTIR spectroscopy shows residual organic materials (aromatic/Olefinic carbon) from nanocomposites surface. CdO content was modified in the nanocomposites in function of polyvinylalcohol (PVA) added. The optical band gap is found to be red shift from 3.21 eV to 3.11 eV with the increase of CdO content. Photoluminescence (PL) measurements reveal the existence of defects in the synthesized CdO–ZnO nanocomposites. - Graphical abstract: Optical properties of ZnO, CdO and ZnO/CdO nanoparticles. Display Omitted - Highlights: • TEM analysis confirms the presence of spherical nanoparticles and nanorods. • The CdO phase is present in the nanocomposites. • The band gap of the CdO–ZnO nanocomposites is slightly red shift with CdO content. • PL emission of CdO–ZnO nanocomposite are associated to structural defects.

  12. Genetic defect causing familial Alzheimer's disease maps on chromosome 21

    Energy Technology Data Exchange (ETDEWEB)

    St. George-Hyslop, P.H.; Tanzi, R.E.; Polinsky, R.J.; Haines, J.L.; Nee, L.; Watkins, P.C.; Myers, R.H.; Feldman, R.G.; Pollen, D.; Drachman, D.; Growdon, J.

    1987-02-20

    Alzheimer's disease is a leading cause of morbidity and mortality among the elderly. Several families have been described in which Alzheimer's disease is caused by an autosomal dominant gene defect. The chromosomal location of this defective gene has been discovered by using genetic linkage to DNA markers on chromosome 21. The localization on chromosome 21 provides an explanation for the occurrence of Alzheimer's disease-like pathology in Down syndrome. Isolation and characterization of the gene at this locus may yield new insights into the nature of the defect causing familial Alzheimer's disease and possibly, into the etiology of all forms of Alzheimer's disease.

  13. Expression of a retinoic acid signature in circulating CD34 cells from coronary artery disease patients

    Directory of Open Access Journals (Sweden)

    van der Laan Anja M

    2010-06-01

    Full Text Available Abstract Background Circulating CD34+ progenitor cells have the potential to differentiate into a variety of cells, including endothelial cells. Knowledge is still scarce about the transcriptional programs used by CD34+ cells from peripheral blood, and how these are affected in coronary artery disease (CAD patients. Results We performed a whole genome transcriptome analysis of CD34+ cells, CD4+ T cells, CD14+ monocytes, and macrophages from 12 patients with CAD and 11 matched controls. CD34+ cells, compared to other mononuclear cells from the same individuals, showed high levels of KRAB box transcription factors, known to be involved in gene silencing. This correlated with high expression levels in CD34+ cells for the progenitor markers HOXA5 and HOXA9, which are known to control expression of KRAB factor genes. The comparison of expression profiles of CD34+ cells from CAD patients and controls revealed a less naïve phenotype in patients' CD34+ cells, with increased expression of genes from the Mitogen Activated Kinase network and a lowered expression of a panel of histone genes, reaching levels comparable to that in more differentiated circulating cells. Furthermore, we observed a reduced expression of several genes involved in CXCR4-signaling and migration to SDF1/CXCL12. Conclusions The altered gene expression profile of CD34+ cells in CAD patients was related to activation/differentiation by a retinoic acid-induced differentiation program. These results suggest that circulating CD34+ cells in CAD patients are programmed by retinoic acid, leading to a reduced capacity to migrate to ischemic tissues.

  14. Primary murine CD4+ T cells fail to acquire the ability to produce effector cytokines when active Ras is present during Th1/Th2 differentiation.

    Directory of Open Access Journals (Sweden)

    Sujit V Janardhan

    Full Text Available Constitutive Ras signaling has been shown to augment IL-2 production, reverse anergy, and functionally replace many aspects of CD28 co-stimulation in CD4+ T cells. These data raise the possibility that introduction of active Ras into primary T cells might result in improved functionality in pathologic situations of T cell dysfunction, such as cancer or chronic viral infection. To test the biologic effects of active Ras in primary T cells, CD4+ T cells from Coxsackie-Adenovirus Receptor Transgenic mice were transduced with an adenovirus encoding active Ras. As expected, active Ras augmented IL-2 production in naive CD4+ T cells. However, when cells were cultured for 4 days under conditions to promote effector cell differentiation, active Ras inhibited the ability of CD4+ T cells to acquire a Th1 or Th2 effector cytokine profile. This differentiation defect was not due to deficient STAT4 or STAT6 activation by IL-12 or IL-4, respectively, nor was it associated with deficient induction of T-bet and GATA-3 expression. Impaired effector cytokine production in active Ras-transduced cells was associated with deficient demethylation of the IL-4 gene locus. Our results indicate that, despite augmenting acute activation of naïve T cells, constitutive Ras signaling inhibits the ability of CD4+ T cells to properly differentiate into Th1/Th2 effector cytokine-producing cells, in part by interfering with epigenetic modification of effector gene loci. Alternative strategies to potentiate Ras pathway signaling in T cells in a more regulated fashion should be considered as a therapeutic approach to improve immune responses in vivo.

  15. Histone deacetylase inhibition enhances self renewal and cardioprotection by human cord blood-derived CD34 cells.

    Directory of Open Access Journals (Sweden)

    Ilaria Burba

    Full Text Available BACKGROUND: Use of peripheral blood- or bone marrow-derived progenitors for ischemic heart repair is a feasible option to induce neo-vascularization in ischemic tissues. These cells, named Endothelial Progenitors Cells (EPCs, have been extensively characterized phenotypically and functionally. The clinical efficacy of cardiac repair by EPCs cells remains, however, limited, due to cell autonomous defects as a consequence of risk factors. The devise of "enhancement" strategies has been therefore sought to improve repair ability of these cells and increase the clinical benefit. PRINCIPAL FINDINGS: Pharmacologic inhibition of histone deacetylases (HDACs is known to enhance hematopoietic stem cells engraftment by improvement of self renewal and inhibition of differentiation in the presence of mitogenic stimuli in vitro. In the present study cord blood-derived CD34(+ were pre-conditioned with the HDAC inhibitor Valproic Acid. This treatment affected stem cell growth and gene expression, and improved ischemic myocardium protection in an immunodeficient mouse model of myocardial infarction. CONCLUSIONS: Our results show that HDAC blockade leads to phenotype changes in CD34(+ cells with enhanced self renewal and cardioprotection.

  16. Carrier Decay and Diffusion Dynamics in Single-Crystalline CdTe as seen via Microphotoluminescence

    Science.gov (United States)

    Mascarenhas, Angelo; Fluegel, Brian; Alberi, Kirstin; Zhang, Yong-Hang

    2015-03-01

    The ability to spatially resolve the degree to which extended defects impact carrier diffusion lengths and lifetimes is important for determining upper limits for defect densities in semiconductor devices. We show that a new spatially and temporally resolved photoluminescence (PL) imaging technique can be used to accurately extract carrier lifetimes in the immediate vicinity of dark-line defects in CdTe/MgCdTe double heterostructures. A series of PL images captured during the decay process show that extended defects with a density of 1.4x10-5 cm-2 deplete photogenerated charge carriers from the surrounding semiconductor material on a nanosecond time scale. The technique makes it possible to elucidate the interplay between nonradiative carrier recombination and carrier diffusion and reveals that they both combine to degrade the PL intensity over a fractional area that is much larger than the physical size of the defects. Carrier lifetimes are correctly determined from numerical simulations of the decay behavior by taking these two effects into account. Our study demonstrates that it is crucial to measure and account for the influence of local defects in the measurement of carrier lifetime and diffusion, which are key transport parameters for the design and modeling of advanced solar-cell and light-emitting devices. We acknowledge the financial support of the Department of Energy Office of Science under Grant No. DE-AC36-08GO28308.

  17. 118 SNPs of folate-related genes and risks of spina bifida and conotruncal heart defects

    Directory of Open Access Journals (Sweden)

    Shaw Gary M

    2009-06-01

    Full Text Available Abstract Background Folic acid taken in early pregnancy reduces risks for delivering offspring with several congenital anomalies. The mechanism by which folic acid reduces risk is unknown. Investigations into genetic variation that influences transport and metabolism of folate will help fill this data gap. We focused on 118 SNPs involved in folate transport and metabolism. Methods Using data from a California population-based registry, we investigated whether risks of spina bifida or conotruncal heart defects were influenced by 118 single nucleotide polymorphisms (SNPs associated with the complex folate pathway. This case-control study included 259 infants with spina bifida and a random sample of 359 nonmalformed control infants born during 1983–86 or 1994–95. It also included 214 infants with conotruncal heart defects born during 1983–86. Infant genotyping was performed blinded to case or control status using a designed SNPlex assay. We examined single SNP effects for each of the 118 SNPs, as well as haplotypes, for each of the two outcomes. Results Few odds ratios (ORs revealed sizable departures from 1.0. With respect to spina bifida, we observed ORs with 95% confidence intervals that did not include 1.0 for the following SNPs (heterozygous or homozygous relative to the reference genotype: BHMT (rs3733890 OR = 1.8 (1.1–3.1, CBS (rs2851391 OR = 2.0 (1.2–3.1; CBS (rs234713 OR = 2.9 (1.3–6.7; MTHFD1 (rs2236224 OR = 1.7 (1.1–2.7; MTHFD1 (hcv11462908 OR = 0.2 (0–0.9; MTHFD2 (rs702465 OR = 0.6 (0.4–0.9; MTHFD2 (rs7571842 OR = 0.6 (0.4–0.9; MTHFR (rs1801133 OR = 2.0 (1.2–3.1; MTRR (rs162036 OR = 3.0 (1.5–5.9; MTRR (rs10380 OR = 3.4 (1.6–7.1; MTRR (rs1801394 OR = 0.7 (0.5–0.9; MTRR (rs9332 OR = 2.7 (1.3–5.3; TYMS (rs2847149 OR = 2.2 (1.4–3.5; TYMS (rs1001761 OR = 2.4 (1.5–3.8; and TYMS (rs502396 OR = 2.1 (1.3–3.3. However, multiple SNPs observed for a given gene showed evidence of linkage disequilibrium indicating

  18. Application of Learning Methods to Local Electric Field Distributions in Defected Dielectric Materials

    Science.gov (United States)

    Ferris, Kim; Jones, Dumont

    2014-03-01

    Local electric fields reflect the structural and dielectric fluctuations in a semiconductor, and affect the material performance both for electron transport and carrier lifetime properties. In this paper, we use the LOCALF methodology with periodic boundary conditions to examine the local electric field distributions and its perturbations for II-VI (CdTe, Cd(1-x)Zn(x)Te) semiconductors, containing Te inclusions and small fluctuations in the local dielectric susceptibility. With inclusion of the induced-field term, the electric field distribution shows enhancements and diminishments compared to the macroscopic applied field, reflecting the microstructure characteristics of the dielectric. Learning methods are applied to these distributions to assess the spatial extent of the perturbation, and determine an electric field defined defect size as compared to its physical dimension. Critical concentrations of defects are assessed in terms of defect formation energies. This work was supported by the US Department of Homeland Security, Domestic Nuclear Detection Office, under competitively awarded contract/IAA HSHQDC-08-X-00872-e. This support does not constitute an express or implied endorsement on the part of the Gov't.

  19. Transmission electron microscopy investigations of the CdSe based quantum structures

    Energy Technology Data Exchange (ETDEWEB)

    Roventa, E.

    2006-09-22

    In this work, the structural morphology of the active region of the ZnSe laser diode: quaternary CdZnSSe quantum well or CdSe quantum dots embedded in CdSe/ZnSSe superlattices is investigated using Transmission Electron Microscopy. The conventional as well as high resolution imaging studies indicated that the degradation of the ZnSe laser diodes is connected with the formation of extended defects in the optical active region leading to a local strain relaxation of the quantum well. Furthermore the outdiffusion of Cd from the quantum well occurs predominantly where the defects are located. The chemical composition and ordering phenomena in CdSe/ZnSSe supperlattices were also investigated, employing a series of five-fold structures with different spacer layer thickness and a ten-fold structure. The composition in the CdSe/ZnSSe superlattice was determined to a certain extent using different techniques. Generally, the encountered difficulties regarding the accuracy of the obtained values are correlated with the complexity of the investigated system and with the available experimental methods used. Regarding the alignment of the dots, experimental results support a strain driven ordering process, in which the strain fields from buried dots lead to heterogeneous nucleation conditions for the dots in the subsequently deposited layers. An increased ordering with subsequent stacking of the dot layers is was also found. An anisotropy of the lateral alignment of the CdSe dots was also observed in two different left angle 110 right angle zone axes. The similar plan-view images shows that the preferential alignment of the dots does not follow low-index crystallographic directions. However, it is assumed that this is attributed to the anisotropic elastic strain distribution combined with surface diffusion. (orig.)

  20. Transmission electron microscopy investigations of the CdSe based quantum structures

    International Nuclear Information System (INIS)

    Roventa, E.

    2006-01-01

    In this work, the structural morphology of the active region of the ZnSe laser diode: quaternary CdZnSSe quantum well or CdSe quantum dots embedded in CdSe/ZnSSe superlattices is investigated using Transmission Electron Microscopy. The conventional as well as high resolution imaging studies indicated that the degradation of the ZnSe laser diodes is connected with the formation of extended defects in the optical active region leading to a local strain relaxation of the quantum well. Furthermore the outdiffusion of Cd from the quantum well occurs predominantly where the defects are located. The chemical composition and ordering phenomena in CdSe/ZnSSe supperlattices were also investigated, employing a series of five-fold structures with different spacer layer thickness and a ten-fold structure. The composition in the CdSe/ZnSSe superlattice was determined to a certain extent using different techniques. Generally, the encountered difficulties regarding the accuracy of the obtained values are correlated with the complexity of the investigated system and with the available experimental methods used. Regarding the alignment of the dots, experimental results support a strain driven ordering process, in which the strain fields from buried dots lead to heterogeneous nucleation conditions for the dots in the subsequently deposited layers. An increased ordering with subsequent stacking of the dot layers is was also found. An anisotropy of the lateral alignment of the CdSe dots was also observed in two different left angle 110 right angle zone axes. The similar plan-view images shows that the preferential alignment of the dots does not follow low-index crystallographic directions. However, it is assumed that this is attributed to the anisotropic elastic strain distribution combined with surface diffusion. (orig.)

  1. In-Depth Analysis of Citrulline-Specific CD4 T-Cells in Rheumatoid Arthritis

    Science.gov (United States)

    2016-01-01

    be used to identify and characterize CD4+T cells specific for influenza A, West Nile, Yellow fever , Dengue and Japanese Encephalitis viruses. The...four difference species of Flavivirus using the TGEM approach. These will include: Yellow Fever Virus, West Nile Virus, Dengue Virus and Japanese...1 AWARD NUMBER: W81XWH-15-1-0004 TITLE: In-Depth Analysis of Citrulline-Specific CD4 T-Cells in Rheumatoid Arthritis PRINCIPAL INVESTIGATOR

  2. CD73 Regulates Stemness and Epithelial-Mesenchymal Transition in Ovarian Cancer-Initiating Cells

    Directory of Open Access Journals (Sweden)

    Michela Lupia

    2018-04-01

    Full Text Available Summary: Cancer-initiating cells (CICs have been implicated in tumor development and aggressiveness. In ovarian carcinoma (OC, CICs drive tumor formation, dissemination, and recurrence, as well as drug resistance, thus accounting for the high death-to-incidence ratio of this neoplasm. However, the molecular mechanisms that underlie such a pathogenic role of ovarian CICs (OCICs remain elusive. Here, we have capitalized on primary cells either from OC or from its tissues of origin to obtain the transcriptomic profile associated with OCICs. Among the genes differentially expressed in OCICs, we focused on CD73, which encodes the membrane-associated 5′-ectonucleotidase. The genetic inactivation of CD73 in OC cells revealed that this molecule is causally involved in sphere formation and tumor initiation, thus emerging as a driver of OCIC function. Furthermore, functional inhibition of CD73 via either a chemical compound or a neutralizing antibody reduced sphere formation and tumorigenesis, highlighting the druggability of CD73 in the context of OCIC-directed therapies. The biological function of CD73 in OCICs required its enzymatic activity and involved adenosine signaling. Mechanistically, CD73 promotes the expression of stemness and epithelial-mesenchymal transition-associated genes, implying a regulation of OCIC function at the transcriptional level. CD73, therefore, is involved in OCIC biology and may represent a therapeutic target for innovative treatments aimed at OC eradication. : Cavallaro et al. characterized the transcriptome of OCIC-enriched primary cultures and found CD73 as an upregulated gene. CD73 was then shown to regulate the expression of stemness and EMT-associated genes. The expression and function of CD73 in OCICs is required for tumor initiation, and CD73-targeted drugs decrease the rate of tumor take and inhibit cancer growth. Keywords: CD73, ovarian cancer, cancer-initiating cells, cancer stem cells, EMT, adenosine

  3. Anaplasma phagocytophilum-Related Defects in CD8, NKT, and NK Lymphocyte Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Diana G. Scorpio

    2018-04-01

    Full Text Available Human granulocytic anaplasmosis, caused by the tick-transmitted Anaplasma phagocytophilum, is not controlled by innate immunity, and induces a proinflammatory disease state with innate immune cell activation. In A. phagocytophilum murine infection models, hepatic injury occurs with production of IFNγ thought to be derived from NK, NKT cells, and CD8 T lymphocytes. Specific A. phagocytophilum ligands that drive inflammation and disease are not known, but suggest a clinical and pathophysiologic basis strikingly like macrophage activation syndrome (MAS and hemophagocytic syndrome (HPS. We studied in vivo responses of NK, NKT, and CD8 T lymphocytes from infected animals for correlates of lymphocyte-mediated cytotoxicity and examined in vitro interactions with A. phagocytophilum-loaded antigen-presenting cells (APCs. Murine splenocytes were examined and found deficient in cytotoxicity as determined by CD107a expression in vitro for specific CTL effector subsets as determined by flow cytometry. Moreover, A. phagocytophilum-loaded APCs did not lead to IFNγ production among CTLs in vitro. These findings support the concept of impaired cytotoxicity with A. phagocytophilum presentation by APCs that express MHC class I and that interact with innate and adaptive immune cells with or after infection. The findings strengthen the concept of an enhanced proinflammatory phenotype, such as MAS and HPS disease states as the basis of disease and severity with A. phagocytophilum infection, and perhaps by other obligate intracellular bacteria.

  4. The identification of irreversible rituximab-resistant lymphoma caused by CD20 gene mutations

    Energy Technology Data Exchange (ETDEWEB)

    Mishima, Y [Department of Clinical Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo (Japan); Olympas Bio-Imaging Lab, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo (Japan); Terui, Y [Department of Clinical Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo (Japan); Takeuchi, K [Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo (Japan); Matsumoto-Mishima, Y; Matsusaka, S [Department of Clinical Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo (Japan); Utsubo-Kuniyoshi, R [Department of Clinical Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo (Japan); Olympas Bio-Imaging Lab, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo (Japan); Hatake, K [Department of Clinical Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo (Japan)

    2011-04-01

    C-terminal mutations of CD20 constitute part of the mechanisms that resist rituximab therapy. Most CD20 having a C-terminal mutation was not recognized by L26 antibody. As the exact epitope of L26 has not been determined, expression and localization of mutated CD20 have not been completely elucidated. In this study, we revealed that the binding site of L26 monoclonal antibody is located in the C-terminal cytoplasmic region of CD20 molecule, which was often lost in mutated CD20 molecules. This indicates that it is difficult to distinguish the mutation of CD20 from under expression of the CD20 protein. To detect comprehensive CD20 molecules including the resistant mutants, we developed a novel monoclonal antibody that recognizes the N-terminal cytoplasm region of CD20 molecule. We screened L26-negative cases with our antibody and found several mutations. A rituximab-binding analysis using the cryopreserved specimen that mutation was identified in CD20 molecules indicated that the C-terminal region of CD20 undertakes a critical role in presentation of the large loop in which the rituximab-binding site locates. Thus, combination of antibodies of two kinds of epitope permits the identification of C-terminal CD20 mutations associated with irreversible resistance to rituximab and may help the decision of the treatment strategy.

  5. Genetic subspecies diversity of the chimpanzee CD4 virus-receptor gene

    DEFF Research Database (Denmark)

    Hvilsom, Christina; Carlsen, Frands; Siegismund, Hans R

    2008-01-01

    six among the subspecies of chimpanzees. We found the CD4 receptor to be conserved in individuals belonging to the P. t. verus subspecies and divergent from the other three subspecies, which harbored highly variable CD4 receptors. The CD4 receptor of chimpanzees differed from that of humans. We...... question whether the observed diversity can explain the species-specific differences in susceptibility to and pathogenicity of SIV/HIV....

  6. Lymphocyte gene expression signatures from patients and mouse models of hereditary hemochromatosis reveal a function of HFE as a negative regulator of CD8+ T-lymphocyte activation and differentiation in vivo.

    Science.gov (United States)

    Costa, Mónica; Cruz, Eugénia; Oliveira, Susana; Benes, Vladimir; Ivacevic, Tomi; Silva, Maria João; Vieira, Inês; Dias, Francisco; Fonseca, Sónia; Gonçalves, Marta; Lima, Margarida; Leitão, Catarina; Muckenthaler, Martina U; Pinto, Jorge; Porto, Graça

    2015-01-01

    Abnormally low CD8+ T-lymphocyte numbers is characteristic of some patients with hereditary hemochromatosis (HH), a MHC-linked disorder of iron overload. Both environmental and genetic components are known to influence CD8+ T-lymphocyte homeostasis but the role of the HH associated protein HFE is still insufficiently understood. Genome-wide expression profiling was performed in peripheral blood CD8+ T lymphocytes from HH patients selected according to CD8+ T-lymphocyte numbers and from Hfe-/- mice maintained either under normal or high iron diet conditions. In addition, T-lymphocyte apoptosis and cell cycle progression were analyzed by flow cytometry in HH patients. HH patients with low CD8+ T-lymphocyte numbers show a differential expression of genes related to lymphocyte differentiation and maturation namely CCR7, LEF1, ACTN1, NAA50, P2RY8 and FOSL2, whose expression correlates with the relative proportions of naïve, central and effector memory subsets. In addition, expression levels of LEF1 and P2RY8 in memory cells as well as the proportions of CD8+ T cells in G2/M cell cycle phase are significantly different in HH patients compared to controls. Hfe-/- mice do not show alterations in CD8+ T-lymphocyte numbers but differential gene response patterns. We found an increased expression of S100a8 and S100a9 that is most pronounced in high iron diet conditions. Similarly, CD8+ T lymphocytes from HH patients display higher S100a9 expression both at the mRNA and protein level. Altogether, our results support a role for HFE as a negative regulator of CD8+ T-lymphocyte activation. While the activation markers S100a8 and S100a9 are strongly increased in CD8+ T cells from both, Hfe-/- mice and HH patients, a differential profile of genes related to differentiation/maturation of CD8+ T memory cells is evident in HH patients only. This supports the notion that HFE contributes, at least in part, to the generation of low peripheral blood CD8+ T lymphocytes in HH.

  7. Targeting CD38 with Daratumumab Monotherapy in Multiple Myeloma

    DEFF Research Database (Denmark)

    Lokhorst, Henk M; Plesner, Torben; Laubach, Jacob P

    2015-01-01

    BACKGROUND: Multiple myeloma cells uniformly overexpress CD38. We studied daratumumab, a CD38-targeting, human IgG1κ monoclonal antibody, in a phase 1-2 trial involving patients with relapsed myeloma or relapsed myeloma that was refractory to two or more prior lines of therapy. METHODS: In part 1...... interval [CI], 4.2 to 8.1), and 65% (95% CI, 28 to 86) of the patients who had a response did not have progression at 12 months. CONCLUSIONS: Daratumumab monotherapy had a favorable safety profile and encouraging efficacy in patients with heavily pretreated and refractory myeloma. (Funded by Janssen...

  8. Study on the mechanism of using IR illumination to improve the carrier transport performance of CdZnTe detector

    Science.gov (United States)

    Mao, Yifei; Zhang, Jijun; Lin, Liwen; Lai, Jianming; Min, Jiahua; Liang, Xiaoyan; Huang, Jian; Tang, Ke; Wang, Linjun

    2018-04-01

    Different wavelength IR light (770-1150 nm) was used to evaluate the effect of IR light on the carrier transport performance of CdZnTe detector. The effective mobility-lifetime product (μτ*) of CdZnTe achieved 10-2 cm2 V-1 when the IR wavelength was in the range of 820-920 nm, but decreased to 1 × 10-4 cm2 V-1 when the wavelength was longer than 920 nm. The mechanism about how IR light affecting the carrier transport property of CdZnTe detector was analyzed with Shockley-Read-Hall model. The defect of doubly ionized Cd vacancy ([VCd]2-) was found to be the main factor that assist IR light affecting the μτ of CdZnTe detector. The photoconductive experiment under 770-1150 nm IR illumination was carried out, and three kinds of photocurrent curve were detected and analyzed by solving the Hecht equation. The experiments demonstrated the effect of [VCd]2- defect on the carrier transport property of CdZnTe detector under IR illumination.

  9. Analysis of Dystrophin Gene Deletions by Multiplex PCR in Moroccan Patients

    Directory of Open Access Journals (Sweden)

    Aziza Sbiti

    2002-01-01

    Full Text Available Duchenne and Becker muscular dystrophy (DMD and BMD are X-linked diseases resulting from a defect in the dystrophin gene located on Xp21. DMD is the most frequent neuromuscular disease in humans (1/3500 male newborn. Deletions in the dystrophin gene represent 65% of mutations in DMD/BMD patients. We have analyzed DNA from 72 Moroccan patients with DMD/BMD using the multiplex polymerase chain reaction (PCR to screen for exon deletions within the dystrophin gene, and to estimate the frequency of these abnormalities. We found dystrophin gene deletions in 37 cases. Therefore the frequency in Moroccan DMD/BMD patients is about 51.3%. All deletions were clustered in the two known hot-spots regions, and in 81% of cases deletions were detected in the region from exon 43 to exon 52. These findings are comparable to those reported in other studies. It is important to note that in our population, we can first search for deletions of DMD gene in the most frequently deleted exons determined by this study. This may facilitate the molecular diagnosis of DMD and BMD in our country.

  10. Bridgman growth and assessment of CdTe and CdZnTe using the accelerated crucible rotation technique

    Energy Technology Data Exchange (ETDEWEB)

    Capper, P.; Harris, J.E.; O' Keefe, E.; Jones, C.L.; Ard, C.K.; Mackett, P.; Dutton, D. (Philips Infrared Defence Components, Southampton (United Kingdom))

    1993-01-30

    The Bridgman growth process for CdTe has been extended by applying the accelerated crucible rotation technique (ACRT). Modelling using ACRT has been extended to the 50 mm diameter required to produce grains large enough to yield CdTe(and Cd[sub 0.96]Zn[sub 0.04]Te) slices suitable for use in liquid phase epitaxy of Cd[sub x]Hg[sub 1-x]Te (CMT) layers. Two regimes are identified: ACRT parameter combinations which give maximum fluid velocities and that which maintains stable Ekman flow. Growth of crystals shows that larger single crystal regions are obtained when the Ekman flow is stable. Effects of changing the ampoule base shape have also been investigated. Techniques have been developed to produce 20 mm x 30 mm substrates oriented oriented close to the (111) direction. Assessment of these samples has included IR transmission, IR microscopy, defect etching, X-ray topography and X-ray diffraction curve width measurements. Chemical analyses have been carried out to determine impurity levels and matrix element distributions. Good quality CMT epitaxial layers, as demonstrated by good surface topography, electrical data and chemical analyses, have been grown onto material produced in this study. (orig.).

  11. Cell Adhesion Molecule CD166/ALCAM Functions Within the Crypt to Orchestrate Murine Intestinal Stem Cell HomeostasisSummary

    Directory of Open Access Journals (Sweden)

    Nicholas R. Smith

    2017-05-01

    Full Text Available Background & Aims: Intestinal epithelial homeostasis is maintained by active-cycling and slow-cycling stem cells confined within an instructive crypt-based niche. Exquisite regulating of these stem cell populations along the proliferation-to-differentiation axis maintains a homeostatic balance to prevent hyperproliferation and cancer. Although recent studies focus on how secreted ligands from mesenchymal and epithelial populations regulate intestinal stem cells (ISCs, it remains unclear what role cell adhesion plays in shaping the regulatory niche. Previously we have shown that the cell adhesion molecule and cancer stem cell marker, CD166/ALCAM (activated leukocyte cell adhesion molecule, is highly expressed by both active-cycling Lgr5+ ISCs and adjacent Paneth cells within the crypt base, supporting the hypothesis that CD166 functions to mediate ISC maintenance and signal coordination. Methods: Here we tested this hypothesis by analyzing a CD166–/– mouse combined with immunohistochemical, flow cytometry, gene expression, and enteroid culture. Results: We found that animals lacking CD166 expression harbored fewer active-cycling Lgr5+ ISCs. Homeostasis was maintained by expansion of the transit-amplifying compartment and not by slow-cycling Bmi1+ ISC stimulation. Loss of active-cycling ISCs was coupled with deregulated Paneth cell homeostasis, manifested as increased numbers of immature Paneth progenitors due to decreased terminal differentiation, linked to defective Wnt signaling. CD166–/– Paneth cells expressed reduced Wnt3 ligand expression and depleted nuclear β-catenin. Conclusions: These data support a function for CD166 as an important cell adhesion molecule that shapes the signaling microenvironment by mediating ISC–niche cell interactions. Furthermore, loss of CD166 expression results in decreased ISC and Paneth cell homeostasis and an altered Wnt microenvironment. Keywords: Intestinal Stem Cell, Homeostasis

  12. Transcriptome analysis by cDNA-AFLP of Suillus luteus Cd-tolerant and Cd-sensitive isolates.

    Science.gov (United States)

    Ruytinx, Joske; Craciun, Adrian R; Verstraelen, Karen; Vangronsveld, Jaco; Colpaert, Jan V; Verbruggen, Nathalie

    2011-04-01

    The ectomycorrhizal basidiomycete Suillus luteus (L.:Fr.), a typical pioneer species which associates with young pine trees colonizing disturbed sites, is a common root symbiont found at heavy metal contaminated sites. Three Cd-sensitive and three Cd-tolerant isolates of S. luteus, isolated respectively from non-polluted and a heavy metal-polluted site in Limburg (Belgium), were used for a transcriptomic analysis. We identified differentially expressed genes by cDNA-AFLP analysis. The possible roles of some of the encoded proteins in heavy metal (Cd) accumulation and tolerance are discussed. Despite the high conservation of coding sequences in S. luteus, a large intraspecific variation in the transcript profiles was observed. This variation was as large in Cd-tolerant as in sensitive isolates and may help this pioneer species to adapt to novel environments.

  13. Robust H-infinity control in CD players to suppress external disturbances and defects on the disk

    DEFF Research Database (Denmark)

    Vidal, E.; Andersen, B.; Karlsson, R.V.

    2000-01-01

    This paper deals with the design and implementation of robust H8 controllers in order to suppress external disturbances and defects on the disk. Due to the conflictive requirements concerning the bandwidth of the closed loop to suppress external disturbances and defects on the disk, two independe...... H8 controllers are designed where norm-bounded uncertainties are assumed. The controllers are evaluated through an experiment showing better performance than a classical PID controller......This paper deals with the design and implementation of robust H8 controllers in order to suppress external disturbances and defects on the disk. Due to the conflictive requirements concerning the bandwidth of the closed loop to suppress external disturbances and defects on the disk, two independent...

  14. Characterization of SMAD3 Gene Variants for Possible Roles in Ventricular Septal Defects and Other Congenital Heart Diseases.

    Directory of Open Access Journals (Sweden)

    Fei-Feng Li

    Full Text Available Nodal/TGF signaling pathway has an important effect at early stages of differentiation of human embryonic stem cells in directing them to develop into different embryonic lineages. SMAD3 is a key intracellular messenger regulating factor in the Nodal/TGF signaling pathway, playing important roles in embryonic and, particularly, cardiovascular system development. The aim of this work was to find evidence on whether SMAD3 variations might be associated with ventricular septal defects (VSD or other congenital heart diseases (CHD.We sequenced the SMAD3 gene for 372 Chinese Han CHD patients including 176 VSD patients and evaluated SNP rs2289263, which is located before the 5'UTR sequence of the gene. The statistical analyses were conducted using Chi-Square Tests as implemented in SPSS (version 13.0. The Hardy-Weinberg equilibrium test of the population was carried out using the online software OEGE.Three heterozygous variants in SMAD3 gene, rs2289263, rs35874463 and rs17228212, were identified. Statistical analyses showed that the rs2289263 variant located before the 5'UTR sequence of SMAD3 gene was associated with the risk of VSD (P value=0.013 <0.05.The SNP rs2289263 in the SMAD3 gene is associated with VSD in Chinese Han populations.

  15. Dysregulated cytokine expression by CD4+ T cells from post-septic mice modulates both Th1 and Th2-mediated granulomatous lung inflammation.

    Directory of Open Access Journals (Sweden)

    William F Carson

    Full Text Available Previous epidemiological studies in humans and experimental studies in animals indicate that survivors of severe sepsis exhibit deficiencies in the activation and effector function of immune cells. In particular, CD4+ T lymphocytes can exhibit reduced proliferative capacity and improper cytokine responses following sepsis. To further investigate the cell-intrinsic defects of CD4+ T cells following sepsis, splenic CD4+ T cells from sham surgery and post-septic mice were transferred into lymphopenic mice. These recipient mice were then subjected to both TH1-(purified protein derivative and TH2-(Schistosoma mansoni egg antigen driven models of granulomatous lung inflammation. Post-septic CD4+ T cells mediated smaller TH1 and larger TH2 lung granulomas as compared to mice receiving CD4+ T cells from sham surgery donors. However, cytokine production by lymph node cells in antigen restimulation assays indicated increased pan-specific cytokine expression by post-septic CD4+ T cell recipient mice in both TH1 and TH2 granuloma models. These include increased production of T(H2 cytokines in TH1 inflammation, and increased production of T(H1 cytokines in TH2 inflammation. These results suggest that cell-intrinsic defects in CD4+ T cell effector function can have deleterious effects on inflammatory processes post-sepsis, due to a defect in the proper regulation of TH-specific cytokine expression.

  16. The diagnostic accuracy of endovaginal and transperineal ultrasound for detecting anal sphincter defects: The PREDICT study.

    Science.gov (United States)

    Roos, A-M; Abdool, Z; Sultan, A H; Thakar, R

    2011-07-01

    To determine the accuracy and predictive value of transperineal (TPU) and endovaginal ultrasound (EVU) in the detection of anal sphincter defects in women with obstetric anal sphincter injuries and/or postpartum symptoms of faecal incontinence. One hundred and sixty-five women were recruited, four women were excluded as they were seen years after their last delivery. TPU and EVU, followed by endonanal ultrasound (EAU), were performed using the B&K Viking 2400 scanner. Sensitivity and specificity, as well as predictive values with 95% confidence intervals, for detecting anal sphincter defects were calculated for EVU and TPU, using EAU as the reference standard. On EAU a defect was found in 42 (26%) women: 39 (93%) had an external (EAS) and 23 (55%) an internal anal sphincter (IAS) defect. Analysable images of one level of the EAS combined with an analysable IAS were available in 140 (87%) women for EVU and in 131 (81%) for TPU. The sensitivity and specificity for the detection of any defect was 48% (30-67%) and 85% (77-91%) for EVU and 64% (44-81%) and 85% (77-91%) for TPU, respectively. Although EAU using a rotating endoprobe is the validated reference standard in the identification of anal sphincter defects, it is not universally available. However while TPU and/or EVU with conventional ultrasound probes can be useful in identifying normality, for clinical purposes they are not sensitive enough to identify an underlying sphincter defect. Copyright © 2011 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  17. MRC OX19 RECOGNIZES THE RAT CD5 SURFACE GLYCOPROTEIN, BUT DOES NOT PROVIDE EVIDENCE FOR A POPULATION OF CD5(BRIGHT) B-CELLS

    NARCIS (Netherlands)

    VERMEER, LA; DEBOER, NK; BUCCI, C; BOS, NA; KROESE, FGM; ALBERTI, S

    To clone the rat CD5 gene we first produced two rat CD5 probes. The probes were obtained by polymerase chain reaction (PCR) on rat genomic DNA using primers designed on conserved regions between mouse and human CD5. The screening of a rat cDNA library at high stringency using these probes resulted

  18. Gene expression profiling of liver cancer stem cells by RNA-sequencing.

    Directory of Open Access Journals (Sweden)

    David W Y Ho

    Full Text Available BACKGROUND: Accumulating evidence supports that tumor growth and cancer relapse are driven by cancer stem cells. Our previous work has demonstrated the existence of CD90(+ liver cancer stem cells (CSCs in hepatocellular carcinoma (HCC. Nevertheless, the characteristics of these cells are still poorly understood. In this study, we employed a more sensitive RNA-sequencing (RNA-Seq to compare the gene expression profiling of CD90(+ cells sorted from tumor (CD90(+CSCs with parallel non-tumorous liver tissues (CD90(+NTSCs and elucidate the roles of putative target genes in hepatocarcinogenesis. METHODOLOGY/PRINCIPAL FINDINGS: CD90(+ cells were sorted respectively from tumor and adjacent non-tumorous human liver tissues using fluorescence-activated cell sorting. The amplified RNAs of CD90(+ cells from 3 HCC patients were subjected to RNA-Seq analysis. A differential gene expression profile was established between CD90(+CSCs and CD90(+NTSCs, and validated by quantitative real-time PCR (qRT-PCR on the same set of amplified RNAs, and further confirmed in an independent cohort of 12 HCC patients. Five hundred genes were differentially expressed (119 up-regulated and 381 down-regulated genes between CD90(+CSCs and CD90(+NTSCs. Gene ontology analysis indicated that the over-expressed genes in CD90(+CSCs were associated with inflammation, drug resistance and lipid metabolism. Among the differentially expressed genes, glypican-3 (GPC3, a member of glypican family, was markedly elevated in CD90(+CSCs compared to CD90(+NTSCs. Immunohistochemistry demonstrated that GPC3 was highly expressed in forty-two human liver tumor tissues but absent in adjacent non-tumorous liver tissues. Flow cytometry indicated that GPC3 was highly expressed in liver CD90(+CSCs and mature cancer cells in liver cancer cell lines and human liver tumor tissues. Furthermore, GPC3 expression was positively correlated with the number of CD90(+CSCs in liver tumor tissues. CONCLUSIONS

  19. Gene Expression Profiling of Liver Cancer Stem Cells by RNA-Sequencing

    Science.gov (United States)

    Lam, Chi Tat; Ng, Michael N. P.; Yu, Wan Ching; Lau, Joyce; Wan, Timothy; Wang, Xiaoqi; Yan, Zhixiang; Liu, Hang; Fan, Sheung Tat

    2012-01-01

    Background Accumulating evidence supports that tumor growth and cancer relapse are driven by cancer stem cells. Our previous work has demonstrated the existence of CD90+ liver cancer stem cells (CSCs) in hepatocellular carcinoma (HCC). Nevertheless, the characteristics of these cells are still poorly understood. In this study, we employed a more sensitive RNA-sequencing (RNA-Seq) to compare the gene expression profiling of CD90+ cells sorted from tumor (CD90+CSCs) with parallel non-tumorous liver tissues (CD90+NTSCs) and elucidate the roles of putative target genes in hepatocarcinogenesis. Methodology/Principal Findings CD90+ cells were sorted respectively from tumor and adjacent non-tumorous human liver tissues using fluorescence-activated cell sorting. The amplified RNAs of CD90+ cells from 3 HCC patients were subjected to RNA-Seq analysis. A differential gene expression profile was established between CD90+CSCs and CD90+NTSCs, and validated by quantitative real-time PCR (qRT-PCR) on the same set of amplified RNAs, and further confirmed in an independent cohort of 12 HCC patients. Five hundred genes were differentially expressed (119 up-regulated and 381 down-regulated genes) between CD90+CSCs and CD90+NTSCs. Gene ontology analysis indicated that the over-expressed genes in CD90+CSCs were associated with inflammation, drug resistance and lipid metabolism. Among the differentially expressed genes, glypican-3 (GPC3), a member of glypican family, was markedly elevated in CD90+CSCs compared to CD90+NTSCs. Immunohistochemistry demonstrated that GPC3 was highly expressed in forty-two human liver tumor tissues but absent in adjacent non-tumorous liver tissues. Flow cytometry indicated that GPC3 was highly expressed in liver CD90+CSCs and mature cancer cells in liver cancer cell lines and human liver tumor tissues. Furthermore, GPC3 expression was positively correlated with the number of CD90+CSCs in liver tumor tissues. Conclusions/Significance The identified genes

  20. Efficient Translation of Epstein-Barr Virus (EBV) DNA Polymerase Contributes to the Enhanced Lytic Replication Phenotype of M81 EBV.

    Science.gov (United States)

    Church, Trenton Mel; Verma, Dinesh; Thompson, Jacob; Swaminathan, Sankar

    2018-03-15

    Epstein-Barr virus (EBV) is linked to the development of both lymphoid and epithelial malignancies worldwide. The M81 strain of EBV, isolated from a Chinese patient with nasopharyngeal carcinoma (NPC), demonstrates spontaneous lytic replication and high-titer virus production in comparison to the prototype B95-8 EBV strain. Genetic comparisons of M81 and B95-8 EBVs were previously been performed in order to determine if the hyperlytic property of M81 is associated with sequence differences in essential lytic genes. EBV SM is an RNA-binding protein expressed during early lytic replication that is essential for virus production. We compared the functions of M81 SM and B95-8 SM and demonstrate that polymorphisms in SM do not contribute to the lytic phenotype of M81 EBV. However, the expression level of the EBV DNA polymerase protein was much higher in M81- than in B95-8-infected cells. The relative deficiency in the expression of B95-8 DNA polymerase was related to the B95-8 genome deletion, which truncates the BALF5 3' untranslated region (UTR). Similarly, the insertion of bacmid DNA into the widely used recombinant B95-8 bacmid creates an inefficient BALF5 3' UTR. We further showed that the while SM is required for and facilitates the efficient expression of both M81 and B95-8 mRNAs regardless of the 3' UTR, the BALF5 3' UTR sequence is important for BALF5 protein translation. These data indicate that the enhanced lytic replication and virus production of M81 compared to those of B95-8 are partly due to the robust translation of EBV DNA polymerase required for viral DNA replication due to a more efficient BALF5 3' UTR in M81. IMPORTANCE Epstein-Barr virus (EBV) infects more than 90% of the human population, but the incidence of EBV-associated tumors varies greatly in different parts of the world. Thus, understanding the connection between genetic polymorphisms from patient isolates of EBV, gene expression phenotypes, and disease is important and may help in

  1. Mycobacterium avium and purified protein derivative-specific cytotoxicity mediated by CD4+ lymphocytes from healthy HIV-seropositive and-seronegative individuals

    DEFF Research Database (Denmark)

    Ravn, P; Pedersen, B K

    1996-01-01

    by a defect in the cytotoxic capacity of the individual CD4+ lymphocyte after antigen stimulation, and it could not be explained by a reduction in the total number of CD4+ cells before antigen stimulation. The antigen-specific cytotoxic activity was, however, closely related to the ability of the CD4+ T cells...

  2. Selective enrichment of Th1 CD45RBlow CD4+ T cells in autoimmune infiltrates in experimental allergic encephalomyelitis

    DEFF Research Database (Denmark)

    Renno, T; Zeine, R; Girard, J M

    1994-01-01

    The cytokine effector status of CD4+ T cells from lymph nodes (LN) and the central nervous system (CNS) of SJL/J mice immunized with autoantigen in adjuvant for the induction of experimental allergic encephalomyelitis (EAE) was compared. CD4+ T cells were FACS sorted based on the levels...... in the sorted populations. CD45RBlow cells constituted a minority of CD4+ cells in the LN and expressed elevated levels of IL-2, IFN-gamma, and IL-4 mRNA, whereas the CD45RBlow CD4+ population did not express detectable message for these cytokines under linear PCR conditions. By contrast to the LN, CD4+ cells...... of expression of the activation marker CD45RB. Low levels of expression of this surface marker are induced by antigen recognition and are associated with 'effector' T cell function. Reverse transcriptase polymerase chain reaction (PCR) was used to analyze the expression of different T cell cytokine genes...

  3. [Molecular characterization of heterozygous beta-thalassemia in Lanzarote, Spain].

    Science.gov (United States)

    Calvo-Villas, José Manuel; de la Iglesia Iñigo, Silvia; Ropero Gradilla, Paloma; Zapata Ramos, María Francisca; Cuesta Tovar, Jorge; Sicilia Guillén, Francisco

    2008-04-05

    The aim of this study was to determine the molecular defects of heterozygous beta thalassaemia and to ascertain their distribution in Lanzarote. Molecular characterization was achieved by real time polymerase chain reaction (RT-PCR LightCycler, Roche), PCR-ARMS (PCR-amplification reaction mutations system) and DNA sequencing on an automated DNA sequencer. Two hundred forty-three heterozygous beta thalassaemia carriers were included between July 1991 and February 2007. RT-PCR detected the molecular defect in 81% of the beta thalassaemia chromosomes analyzed [113 codon CD 39 (C --> T); 41 IVS-1-nt-110 (G --> A), 25 IVS 1-nt-1 (G --> A) and 19 IVS 1-nt-6 (T --> C)]. The remaining 12 molecular defects included the deletion 619 bp (7.8%) and the mutations -28 (A --> G), IVS1-nt-2 (T --> G), CD 41/42 (-TTCT), CD 8/9 (+G), CD 51 (-C), CD 22 (G --> T) and CD 24 (T --> A), CD 67 (-TG) and the novel mutation CD 20/21-TGGA. The distribution of the mutations is similar to that found in the Mediterranean area. The increasing migratory flow received in the Canary Islands may explain the emergence of new mutations not reported before in our area.

  4. Clonal analysis of the T-cell response to in vivo expressed Mycobacterium tuberculosis protein Rv2034, using a CD154 expression based T-cell cloning method.

    Directory of Open Access Journals (Sweden)

    Susanna Commandeur

    Full Text Available Tuberculosis (TB, caused by Mycobacterium tuberculosis (Mtb, remains a leading cause of death worldwide. A better understanding of the role of CD4+ and CD8+ T cells, which are both important to TB protection, is essential to unravel the mechanisms of protection and to identify the key antigens seen by these T cells. We have recently identified a set of in vivo expressed Mtb genes (IVE-TB which is expressed during in vivo pulmonary infection in mice, and shown that their encoded antigens are potently recognized by polyclonal T cells from tuberculin skin test-positive, in vitro ESAT-6/CFP10-responsive individuals. Here we have cloned T cells specific for one of these newly identified in vivo expressed Mtb (IVE-TB antigens, Rv2034. T cells were enriched based on the expression of CD154 (CD40L, which represents a new method for selecting antigen-specific (low frequency T cells independent of their specific function. An Rv2034-specific CD4+ T-cell clone expressed the Th1 markers T-bet, IFN-γ, TNF-α, IL-2 and the cytotoxicity related markers granzyme B and CD107a as measured by flow cytometry. The clone specifically recognized Rv2034 protein, Rv2034 peptide p81-100 and Mtb lysate. Remarkably, while the recognition of the dominant p81-100 epitope was HLA-DR restricted, the T-cell clone also recognized a neighboring epitope (p88-107 in an HLA-DR- as well as HLA-DQ1-restricted fashion. Importantly, the T-cell clone was able to inhibit Mtb outgrowth from infected monocytes significantly. The characterization of the polyfunctional and Mtb inhibitory T-cell response to IVE-TB Rv2034 at the clonal level provides detailed further insights into the potential of IVE-TB antigens as new vaccine candidate antigens in TB. Our new approach allowed the identification of T-cell subsets that likely play a significant role in controlling Mtb infection, and can be applied to the analysis of T-cell responses in patient populations.

  5. CdS-based p-i-n diodes using indium and copper doped CdS films by pulsed laser deposition

    International Nuclear Information System (INIS)

    Hernandez-Como, N; Berrellez-Reyes, F; Mizquez-Corona, R; Ramirez-Esquivel, O; Mejia, I; Quevedo-Lopez, M

    2015-01-01

    In this work we report a method to dope cadmium sulfide (CdS) thin films using pulsed laser deposition. Doping is achieved during film growth at substrate temperatures of 100 °C by sequential deposition of the CdS and the dopant material. Indium sulfide and copper disulfide targets were used as the dopant sources for n-type and p-type doping, respectively. Film resistivities as low as 0.2 and 1 Ω cm were achieved for indium and copper doped films, respectively. Hall effect measurements demonstrated the change in conductivity type from n-type to p-type when the copper dopants are incorporated into the film. The controlled incorporation of indium or copper, in the undoped CdS film, results in substitutional defects in the CdS, which increases the electron and hole concentration up to 4 × 10 18 cm −3 and 3 × 10 20 cm −3 , respectively. The results observed with CdS doping can be expanded to other chalcogenides material compounds by just selecting different targets. With the optimized doped films, CdS-based p-i-n diodes were fabricated yielding an ideality factor of 4, a saturation current density of 2 × 10 −6 A cm −2 and a rectification ratio of three orders of magnitude at ±3 V. (paper)

  6. [Impact of siRNA-mediated down-regulation of CD147 on human breast cancer cells].

    Science.gov (United States)

    Li, Zhenqian; Li, Daoming; Li, Jiangwei; Huang, Pei; Qin, Hui

    2015-10-01

    To investigate the influence of siRNA-mediated down-regulation of CD147 on growth, proliferation and movement of human breast cancer cell line MDA-MB-231. The protein expression of CD147, MMP-2 and TIMP-2 of the MDA-MB-231 cells were analyzed by ABC. Lentiviral expression vector of CD147 gene was constructed and transfected into MDA-MB-231 cells. RT-PCR and Western blot were used to detect the mRNA and protein level changes of CD147 genes to identify the optimal time point, followed by detection of changes of mRNA and protein expression of MMP-2 and TIMP-2 genes. CCK-8 reagent method and cell scratch test were used to detect the proliferation and migration change of MDA-MB-231 cells. The nude mouse model of breast cancer by hypodermic injection with MDA-MB-231 cells was established to document the effect of CD147 siRNA on the tumor transplants. After transfection of lentiviral expression vector of CD147 gene, protein of CD147, MMP-2 and TIMP-2 were weakly or negative expressed, significantly weaker than those of control group (P CD147 and MMP-2 were 96.03% ± 0.84% and 96.03% ± 0.84%, respectively. Both CD147 mRNA and MMP-2 mRNA expression were down-regulated (P 0.05). No less than 2 days after transfection, cell growth of MDA-MB-231 cell line was found significantly inhibited (P CD147 led to reduction of volume and mass of nude mouses. The growth of the carcinoma transplant was inhibited upon siRNA-mediated down-regulation of CD147 (P CD147 may alter the MMP-2/TIMP-2 balance in MDA-MB-231 cells. CD147 gene silencing inhibits the proliferation and migration of MDA-MB-231 cells and the growth of carcinoma transplants in nude mice.

  7. Evaluation of common genetic variants in 82 candidate genes as risk factors for neural tube defects

    Directory of Open Access Journals (Sweden)

    Pangilinan Faith

    2012-08-01

    Full Text Available Abstract Background Neural tube defects (NTDs are common birth defects (~1 in 1000 pregnancies in the US and Europe that have complex origins, including environmental and genetic factors. A low level of maternal folate is one well-established risk factor, with maternal periconceptional folic acid supplementation reducing the occurrence of NTD pregnancies by 50-70%. Gene variants in the folate metabolic pathway (e.g., MTHFR rs1801133 (677 C > T and MTHFD1 rs2236225 (R653Q have been found to increase NTD risk. We hypothesized that variants in additional folate/B12 pathway genes contribute to NTD risk. Methods A tagSNP approach was used to screen common variation in 82 candidate genes selected from the folate/B12 pathway and NTD mouse models. We initially genotyped polymorphisms in 320 Irish triads (NTD cases and their parents, including 301 cases and 341 Irish controls to perform case–control and family based association tests. Significantly associated polymorphisms were genotyped in a secondary set of 250 families that included 229 cases and 658 controls. The combined results for 1441 SNPs were used in a joint analysis to test for case and maternal effects. Results Nearly 70 SNPs in 30 genes were found to be associated with NTDs at the p MFTC, CDKN2A, ADA, PEMT, CUBN, GART, DNMT3A, MTHFD1 and T (Brachyury and included the known NTD risk factor MTHFD1 R653Q (rs2236225. The single strongest signal was observed in a new candidate, MFTC rs17803441 (OR = 1.61 [1.23-2.08], p = 0.0003 for the minor allele. Though nominally significant, these associations did not remain significant after correction for multiple hypothesis testing. Conclusions To our knowledge, with respect to sample size and scope of evaluation of candidate polymorphisms, this is the largest NTD genetic association study reported to date. The scale of the study and the stringency of correction are likely to have contributed to real associations failing to survive

  8. CD4(+) T cell-mediated protection against a lethal outcome of systemic infection with vesicular stomatitis virus requires CD40 ligand expression, but not IFN-gamma or IL-4

    DEFF Research Database (Denmark)

    Andersen, C; Jensen, T; Nansen, A

    1999-01-01

    experiments using B cell- and T cell-deficient recipients revealed that no protection could be obtained in the absence of B cells, whereas treatment with virus-specific immune (IgG) serum controlled viral spreading to the central nervous system (CNS), but did not necessarily accomplish virus elimination......To investigate the mechanism(s) whereby T cells protect against a lethal outcome of systemic infection with vesicular stomatitis virus, mice with targeted defects in genes central to T cell function were tested for resistance to i.v. infection with this virus. Our results show that mice lacking...... the capacity to secrete both IFN-gamma and perforin completely resisted disease. Similar results were obtained using IL-4 knockout mice, indicating that neither cell-mediated nor T(h)2-dependent effector systems were required. In contrast, mice deficient in expression of CD40 ligand were more susceptible than...

  9. Visualization of the human CD4{sup +} T-cell response in humanized HLA-DR4-expressing NOD/Shi-scid/γc{sup null} (NOG) mice by retrogenic expression of the human TCR gene

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Takeshi, E-mail: takeshi-takahashi@ciea.or.jp; Katano, Ikumi; Ito, Ryoji; Ito, Mamoru

    2015-01-02

    Highlights: • β-Lactoglobulin (BLG) specific TCR genes were introduced to human HSC by retrovirus. • Human HSC with BLG-specific TCR were transplanted into NOG-HLA-DR4 I-A{sup −/−} mice. • BLG-specific TCR induced positive selection of thymocytes. • BLG-specific TCR positive CD4{sup +} T cells mediated immune responses in humanized mice. - Abstract: The development of severe immunodeficient mouse strains containing various human genes, including cytokines or HLA, has enabled the reconstitution of functional human immune systems after transplantation of human hematopoietic stem cells (HSC). Accumulating evidence has suggested that HLA-restricted antigen-specific human T-cell responses can be generated in these humanized mice. To directly monitor immune responses of human CD4{sup +} T cells, we introduced β-lactoglobulin (BLG)-specific T cell receptor (TCR) genes derived from CD4{sup +} T-cell clones of cow-milk allergy patients into HSCs, and subsequently transplanted them into NOG-HLA-DR4 transgenic/I-Aβ deficient mice (NOG-DR4/I-A{sup o}). In the thymus, thymocytes with BLG-specific TCR preferentially differentiated into CD4{sup +}CD8{sup −} single-positive cells. Adoptive transfer of mature CD4{sup +} T cells expressing the TCR into recipient NOG-DR4/I-A{sup o} mice demonstrated that human CD4{sup +} T cells proliferated in response to antigenic stimulation and produced IFN-γ in vivo, suggesting that functional T-cell reactions (especially Th1-skewed responses) were induced in humanized mice.

  10. [Evaluation of percentage of lymphocytes B with expression of co-receptors CD 40, CD22 and CD72 in hypertrophied adenoid at children with otitis media with effusion].

    Science.gov (United States)

    Wysocka, Jolanta; Zelazowska-Rutkowska, Beata; Ratomski, Karol; Skotnicka, Bozena; Hassmann-Poznańska, Elzbieta

    2009-01-01

    In hypertrophied adenoid lymphocytes B make up about 60% all lymphocytes. When the lymphocytes B come in interaction with antigens this membranes signal be passed through their receptor (BCR) to interior of cell. This signal affect modulation on gene expression, activation from which depends activation, anergy or apoptosis of lymphocyte B. Accompany BCR co-receptors regulate his functions influence stimulate or inhibitive. To the most important co-receptors stepping out on lymphocyte B belong: CD40, CD22, CD72. The aim of study was evaluation of lymphocytes B (CD19) with co-expression with CD72 and CD40 receptors in hypertrophied adenoid with at children with otitis media with effusion. An investigation was executed in hypertrophied adenoids with or without otitis media with effusion. By flow cytometry percentage of lymphocytes B with co-receptors CD 40, CD22 and CD72 in was analyzed. The percentages of CD19+CD72+ lymphocytes in the group of children with adenoid hypertrophy and exudative otitis media were lower as compared to the reference group. However, the percentages of CD19+CD22+, CD19+CD40+ in the study group was approximate to the reference group. The lower percentage of lymphocytes B CD72 + near approximate percentages of lymphocytes B CD40+ and BCD22+ at children with otitis media with effusion can be the cause of incorrect humoral response in hypertrophied adenoid at children. Maybe it is cause reduced spontaneous production IgA and IgG through lymphocyte at children with otitis media with effusion.

  11. Identification of phosphatidylserine as a ligand for the CD300a immunoreceptor

    Energy Technology Data Exchange (ETDEWEB)

    Nakahashi-Oda, Chigusa; Tahara-Hanaoka, Satoko; Honda, Shin-ichiro [Department of Immunology, Division of Biomedical Sciences, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575 (Japan); Japan Science and Technology Agency, CREST, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575 (Japan); Shibuya, Kazuko [Department of Immunology, Division of Biomedical Sciences, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575 (Japan); Shibuya, Akira, E-mail: ashibuya@md.tsukuba.ac.jp [Department of Immunology, Division of Biomedical Sciences, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575 (Japan); Japan Science and Technology Agency, CREST, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575 (Japan)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer CD300a is a new phosphatidylserine receptor expressed on myeloid cells. Black-Right-Pointing-Pointer Phosphatidylserine delivers a signal for recruitment of SHP-1 by CD300a in mast cells. Black-Right-Pointing-Pointer The CD300a/phosphatidylserine interaction is blocked by MFG-E8 or anti-CD300a antibody. -- Abstract: CD300a is a member of CD300 family molecules consisting of seven genes on human chromosome 17 and nine genes in mouse chromosome 11. CD300a has a long cytoplasmic region containing the consensus immunoreceptor tyrosine-based inhibitory motif (ITIM) sequence. Upon crosslinking with antibodies against CD300a, CD300a mediates an inhibitory signal in myeloid cells. However, the ligand for CD300a has not been identified and the physiological role of CD300a remained unclear. Here, we demonstrate that the chimeric fusion protein of CD300a extracellular domain with the Fc portion of human IgG specifically bound phosphatidylserine (PS), which is exposed on the outer leaflet of the plasma membrane of apoptotic cells. PS binding to CD300a induced SHP-1 recruitment by CD300a in mast cells in response to LPS. These results indicated that CD300a is a new PS receptor.

  12. Pre-treatment with N-acetylcysteine upregulates superoxide dismutase 2 and catalase genes in cadmium-induced oxidative stress in the chick omphalocele model.

    Science.gov (United States)

    Doi, Takashi; Puri, Prem; Bannigan, John; Thompson, Jennifer

    2011-02-01

    In the chick embryo, administration of the heavy metal Cadmium (Cd) induces omphalocele phenotype. Cd is a potent inhibitor of antioxidant enzymes and causes accumulation of reactive oxygen species (ROSs) such as hydrogen peroxide. Previous work with the Cd chick model has demonstrated that increased levels of MDA, as a marker for oxidative stress, 24 h post Cd treatment (24H) are identical in chick embryos exposed to Cd. Furthermore, of the several antioxidants assessed, only N-acetylcysteine (NAC) has been shown to reduce MDA levels to control values in the Cd-treated chick embryo. However, the molecular mechanisms by which NAC acts to maintain oxidative stress in the Cd-induced ventral body wall defect chick model remains to be unclear. We designed this study to investigate the hypothesis that gene expression levels of antioxidant enzymes are downregulated in malformed embryos exposed to Cd compared to controls and to determine the effect of pre-treatment with NAC on the expression levels of genes encoding antioxidant enzymes. After 60 h incubation, chick embryos were pre-treated with NAC and exposed to either chick saline or Cd. Chicks were then harvested at 24H and divided into five groups: control, Cd group without malformation [Cd(-)], Cd group with malformation [Cd(+)], NAC + Cd(-) and NAC + Cd(+). Real-time PCR was performed to evaluate the relative mRNA expression levels of antioxidant enzymes, including superoxide dismutase (SOD)-1, SOD2, catalase (CAT) and glutathione peroxidase (GPX)-4. Differences between five groups were tested by Tukey-Kramer post-hoc test following one-way ANOVA. Statistical significance was accepted at p < 0.05. Immunohistochemistry was also performed to evaluate protein expression. The mRNA expression levels of SOD2 and CAT were significantly decreased in Cd(+) as compared to controls, whereas there was no significant difference between controls and Cd(-) (p < 0.05 vs. controls). In addition, gene expression levels of

  13. Characterization of CD4 and CD8 T Cell Responses in MuSK Myasthenia Gravis

    Science.gov (United States)

    Yi, JS; Guidon, A; Sparks, S; Osborne, R; Juel, VC; Massey, JM; Sanders, DB; Weinhold, KJ; Guptill, JT

    2014-01-01

    Muscle specific tyrosine kinase myasthenia gravis (MuSK MG) is a form of autoimmune MG that predominantly affects women and has unique clinical features, including prominent bulbar weakness, muscle atrophy, and excellent response to therapeutic plasma exchange. Patients with MuSK MG have predominantly IgG4 autoantibodies directed against MuSK on the postsynaptic muscle membrane. Lymphocyte functionality has not been reported in this condition. The goal of this study was to characterize T-cell responses in patients with MuSK MG. Intracellular production of IFN-gamma, TNF-alpha, IL-2, IL-17, and IL-21 by CD4+ and CD8+ T-cells was measured by polychromatic flow cytometry in peripheral blood samples from 11 Musk MG patients and 10 healthy controls. Only one MuSK MG patient was not receiving immunosuppressive therapy. Regulatory T-cells (Treg) were also included in our analysis to determine if changes in T cell function were due to altered Treg frequencies. CD8+ T-cells from MuSK MG patients had higher frequencies of polyfunctional responses than controls, and CD4+ T-cells had higher IL-2, TNF-alpha, and IL-17. MuSK MG patients had a higher percentage of CD4+ T-cells producing combinations of IFN-gamma/IL-2/TNF-gamma, TNF-alpha/IL-2, and IFN-gamma/TNF-alpha. Interestingly, Treg numbers and CD39 expression were not different from control values. MuSK MG patients had increased frequencies of Th1 and Th17 cytokines and were primed for polyfunctional proinflammatory responses that cannot be explained by a defect in Treg function or number. PMID:24378287

  14. Diffusion of Cd and Te adatoms on CdTe(111) surfaces: A computational study using density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Naderi, Ebadollah, E-mail: enaderi42@gmail.com [Department of Physics, Savitribai Phule Pune University (SPPU), Pune-411007 (India); Nanavati, Sachin [Center for Development of Advanced Computing (C-DAC), SPPU campus, Pune 411007 (India); Majumder, Chiranjib [Chemistry Division, Bhabha Atomic Research Center, Mumbai, 400085 (India); Ghaisas, S. V. [Department of Electronic Science, Savitribai Phule Pune University (SPPU), Pune-411007 (India); Department of Physics, Savitribai Phule Pune University (SPPU), Pune-411007 (India)

    2015-01-15

    CdTe is one of the most promising semiconductor for thin-film based solar cells. Here we report a computational study of Cd and Te adatom diffusion on the CdTe (111) A-type (Cd terminated) and B-type (Te terminated) surfaces and their migration paths. The atomic and electronic structure calculations are performed under the DFT formalism and climbing Nudge Elastic Band (cNEB) method has been applied to evaluate the potential barrier of the Te and Cd diffusion. In general the minimum energy site on the surface is labeled as A{sub a} site. In case of Te and Cd on B-type surface, the sub-surface site (a site just below the top surface) is very close in energy to the A site. This is responsible for the subsurface accumulation of adatoms and therefore, expected to influence the defect formation during growth. The diffusion process of adatoms is considered from A{sub a} (occupied) to A{sub a} (empty) site at the nearest distance. We have explored three possible migration paths for the adatom diffusion. The adatom surface interaction is highly dependent on the type of the surface. Typically, Te interaction with both type (5.2 eV for A-type and 3.8 eV for B-type) is stronger than Cd interactions(2.4 eV for B-type and 0.39 eV for A-type). Cd interaction with the A-type surface is very weak. The distinct behavior of the A-type and B-type surfaces perceived in our study explain the need of maintaining the A-type surface during growth for smooth and stoichiometric growth.

  15. Diffusion of Cd and Te adatoms on CdTe(111) surfaces: A computational study using density functional theory

    Science.gov (United States)

    Naderi, Ebadollah; Nanavati, Sachin; Majumder, Chiranjib; Ghaisas, S. V.

    2015-01-01

    CdTe is one of the most promising semiconductor for thin-film based solar cells. Here we report a computational study of Cd and Te adatom diffusion on the CdTe (111) A-type (Cd terminated) and B-type (Te terminated) surfaces and their migration paths. The atomic and electronic structure calculations are performed under the DFT formalism and climbing Nudge Elastic Band (cNEB) method has been applied to evaluate the potential barrier of the Te and Cd diffusion. In general the minimum energy site on the surface is labeled as Aa site. In case of Te and Cd on B-type surface, the sub-surface site (a site just below the top surface) is very close in energy to the A site. This is responsible for the subsurface accumulation of adatoms and therefore, expected to influence the defect formation during growth. The diffusion process of adatoms is considered from Aa (occupied) to Aa (empty) site at the nearest distance. We have explored three possible migration paths for the adatom diffusion. The adatom surface interaction is highly dependent on the type of the surface. Typically, Te interaction with both type (5.2 eV for A-type and 3.8 eV for B-type) is stronger than Cd interactions(2.4 eV for B-type and 0.39 eV for A-type). Cd interaction with the A-type surface is very weak. The distinct behavior of the A-type and B-type surfaces perceived in our study explain the need of maintaining the A-type surface during growth for smooth and stoichiometric growth.

  16. Diffusion of Cd and Te adatoms on CdTe(111) surfaces: A computational study using density functional theory

    International Nuclear Information System (INIS)

    Naderi, Ebadollah; Nanavati, Sachin; Majumder, Chiranjib; Ghaisas, S. V.

    2015-01-01

    CdTe is one of the most promising semiconductor for thin-film based solar cells. Here we report a computational study of Cd and Te adatom diffusion on the CdTe (111) A-type (Cd terminated) and B-type (Te terminated) surfaces and their migration paths. The atomic and electronic structure calculations are performed under the DFT formalism and climbing Nudge Elastic Band (cNEB) method has been applied to evaluate the potential barrier of the Te and Cd diffusion. In general the minimum energy site on the surface is labeled as A a site. In case of Te and Cd on B-type surface, the sub-surface site (a site just below the top surface) is very close in energy to the A site. This is responsible for the subsurface accumulation of adatoms and therefore, expected to influence the defect formation during growth. The diffusion process of adatoms is considered from A a (occupied) to A a (empty) site at the nearest distance. We have explored three possible migration paths for the adatom diffusion. The adatom surface interaction is highly dependent on the type of the surface. Typically, Te interaction with both type (5.2 eV for A-type and 3.8 eV for B-type) is stronger than Cd interactions(2.4 eV for B-type and 0.39 eV for A-type). Cd interaction with the A-type surface is very weak. The distinct behavior of the A-type and B-type surfaces perceived in our study explain the need of maintaining the A-type surface during growth for smooth and stoichiometric growth

  17. Nobiletin Inhibits CD36-Dependent Tumor Angiogenesis, Migration, Invasion, and Sphere Formation Through the Cd36/Stat3/Nf-Κb Signaling Axis

    Directory of Open Access Journals (Sweden)

    Nipin Sp

    2018-06-01

    Full Text Available Targeted cancer therapy with natural compounds is more effective than nontargeted therapy. Nobiletin is a flavonoid derived from citrus peel that has anticancer activity. Cluster of differentiation 36 (CD36 is a member of the class B scavenger receptor family that is involved in importing fatty acids into cells. CD36 plays a role in tumor angiogenesis by binding to its ligand, thrombospondin-1 (TSP-1, and then interacting with transforming growth factor beta 1 (TGFβ1. CD36 is implicated in tumor metastasis through its roles in fatty acid metabolism. This study investigated the molecular mechanisms underlying nobiletin’s anticancer activity by characterizing its interactions with CD36 as the target molecule. We hypothesize that the anti-angiogenic activity of nobiletin involving its regulation of CD36 via signal transducer and activator of transcription 3 (STAT3 rather than through TSP-1. Gene analysis identified a Gamma interferon activation site (GAS element in the CD36 gene promoter that acts as a STAT3 binding site, an interaction that was confirmed by ChIP assay. STAT3 interacts with nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB, suggesting that nobiletin also acts through the CD36/ (STAT3/NF-κB signaling axis. Nobiletin inhibited CD36-dependent breast cancer cell migration and invasion as well as CD36-mediated tumor sphere formation. Taken together, these results suggest that nobiletin inhibits cancer stem cells in multiple ways.

  18. The SPINK gene family and celiac disease susceptibility

    NARCIS (Netherlands)

    Wapenaar, M.C.; Monsuur, A.J.; Poell, J.; Slot, R. van 't; Meijer, J.W.R.; Meijer, G.A.; Mulder, C.J.; Mearin, M.L.; Wijmenga, C.

    2007-01-01

    The gene family of serine protease inhibitors of the Kazal type (SPINK) are functional and positional candidate genes for celiac disease (CD). Our aim was to assess the gut mucosal gene expression and genetic association of SPINK1, -2, -4, and -5 in the Dutch CD population. Gene expression was

  19. The SPINK gene family and celiac disease susceptibility

    NARCIS (Netherlands)

    Wapenaar, Martin C.; Monsuur, Alienke J.; Poell, Jos; Slot, Ruben Van 't; Meijer, Jos W. R.; Meijer, Gerrit A.; Mulder, Chris J.; Mearin, Maria Luisa; Wijmenga, Cisca

    The gene family of serine protease inhibitors of the Kazal type (SPINK) are functional and positional candidate genes for celiac disease (CD). Our aim was to assess the gut mucosal gene expression and genetic association of SPINK1, -2, -4, and -5 in the Dutch CD population. Gene expression was

  20. Solar cells based on electrodeposited thin films of ZnS, CdS, CdSSe and CdTe

    Science.gov (United States)

    Weerasinghe, Ajith R.

    , the deposition parameters of CdTe layers were further optimised. This research programme has demonstrated that electrodeposited ZnS, CdS and CdTe thin film layers have material characteristics comparable with those of the materials reported in the literature and can be used in thin film solar cell devices. Furthermore, the electrolytes were used for up to two years, reducing the wastage even further, in comparison to other fabrication methods, such as chemical bath deposition. Several large-area semiconducting layers were successfully fabricated to test the scalability of the method. Nano-rods perpendicular to the glass/FTO surface with gaps among grains in CdS layers were observed. In order to reduce the possible pinholes due the gaps, a deposition of a semiconducting layer to cover completely the substrate was investigated. CdS(i-X)Sex layers were investigated to produce a layer-by-layer deposition of the material. However it was observed the surface morphology of CdS(j.X)Sex is a function of the growth parameters which produced nano-wires, nano-tubes and nano-sheets. This is the first recording of this effect for a low temperature deposition method, minimising the cost of producing this highly photosensitive material for use in various nano technology applications.The basic structure experimented was glass/conducting-glass/buffer layer/window material/absorber material/metal. By utilising all the semiconducting layers developed, several solar cell device structures were designed, fabricated and tested. This included a novel all-electrodeposited multi-layer graded bandgap device, to enhance the absorption of solar photons. The device efficiencies varied from batch to batch, and efficiencies in the range (3-7)% were observed. The variations in chemical concentrations, surface states and the presence of pin-hole defects in CdS were the main reasons for the range of efficiencies obtained. In the future work section, ways to avoid these variations and to increase

  1. Proposed solar neutrino experiment using 81Br(nu,e-)81Kr

    International Nuclear Information System (INIS)

    Hurst, G.S.; Chen, C.H.; Kramer, S.D.; Allman, S.L.

    1984-12-01

    It has now been shown that it is feasible to measure the 7 Be neutrino source in the sun by using the reaction 81 Br(nu,e - ) 81 Kr in a radiochemical experiment. Such an experiment would be quite similar to the Davis, Cleveland, and Rowley method for measuring the 8 B neutrino using 37 Cl(nu,e - ) 37 Ar except that the resonance ionization spectroscopy (RIS) method (instead of decay counting) would be employed to count the 2 x 10 5 -yr 81 Kr atoms

  2. Chemotaxis-defective mutants of the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Dusenbery, D B; Sheridan, R E; Russell, R L

    1975-06-01

    The technique of countercurrent separation has been used to isolate 17 independent chemotaxis-defective mutants of the nematode Caenorhabditis elegans. The mutants, selected to be relatively insensitive to the normally attractive salt NaCl, show varying degrees of residual sensitivity; some are actually weakly repelled by NaCl. The mutants are due to single gene defects, are autosomal and recessive, and identify at least five complementation groups.

  3. MPEG-CS/Bmi-1RNAi Nanoparticles Synthesis and Its Targeted Inhibition Effect on CD133+ Laryngeal Stem Cells.

    Science.gov (United States)

    Wei, Xudong; He, Jian; Wang, Jingyu; Wang, Wei

    2018-03-01

    Previous studies have confirmed that CD133+ cells in laryngeal tumor tissue have the characteristics of cancer stem cells. Bmi-1 gene expression is central to the tumorigenicity of CD133+ cells. In this study, we tried to develop a new siRNA carrier system using chitosan-methoxypolyethylene nanoparticles (CS-mPEG-NPs) that exhibit higher tumor-targeting ability and enhanced gene silencing efficacy in CD133+ tumor stem cells. It is hoped to block the self-renewal and kill the stem cells of laryngeal carcinoma. The mPEG-CS-Bmi-1RNAi-NPs were synthesized and their characters were checked. The changes in invasion ability and sensitivity to radiotherapy and chemotherapy of CD133+Hep-2 tumor cells were observed after Bmi-1 gene silencing. The mPEG-CS-Bmi-1RNAi-NPs synthesized in this experiment have a regular spherical form, a mean size of 139.70 ±6.40 nm, an encapsulation efficiency of 85.21 ± 1.94%, with drug loading capacity of 18.47 ± 1.83%, as well as low cytotoxicity, providing good protection to the loaded gene, strong resistance to nuclease degradation and high gene transfection efficiency. After Bmi-1 gene silencing, the invasion ability of CD133+ cells was weakened. Co-cultured with paclitaxel, the survival rates of CD133+Bmi-1RNAi cells were lower. After radiotherapy, the mean growth inhibition rate of CD133+/Bmi-1RNAi cells was significantly lower than CD133+ cells. In conclusion, the mPEG-CS nano-carrier is an ideal vector in gene therapy, while silencing the Bmi-1 gene can enhance the sensitivity of CD133+ tumor stem cells to chemoradiotherapy and abate their invasion ability.

  4. Polymorphism in interleukin-7 receptor α gene is associated with faster CD4 T-cell recovery after initiation of combination antiretroviral therapy

    DEFF Research Database (Denmark)

    Hartling, Hans J; Thørner, Lise W; Erikstrup, Christian

    2014-01-01

    OBJECTIVES: To investigate single-nucleotide polymorphisms (SNPs) in the gene encoding interleukin-7 receptor α (IL7RA) as predictors for CD4⁺ T-cell change after initiation of combination antiretroviral therapy (cART) in HIV-infected whites. DESIGN: SNPs in IL7RA were determined in the Danish HIV...

  5. A targeted sequencing panel identifies rare damaging variants in multiple genes in the cranial neural tube defect, anencephaly.

    Science.gov (United States)

    Ishida, M; Cullup, T; Boustred, C; James, C; Docker, J; English, C; Lench, N; Copp, A J; Moore, G E; Greene, N D E; Stanier, P

    2018-04-01

    Neural tube defects (NTDs) affecting the brain (anencephaly) are lethal before or at birth, whereas lower spinal defects (spina bifida) may lead to lifelong neurological handicap. Collectively, NTDs rank among the most common birth defects worldwide. This study focuses on anencephaly, which despite having a similar frequency to spina bifida and being the most common type of NTD observed in mouse models, has had more limited inclusion in genetic studies. A genetic influence is strongly implicated in determining risk of NTDs and a molecular diagnosis is of fundamental importance to families both in terms of understanding the origin of the condition and for managing future pregnancies. Here we used a custom panel of 191 NTD candidate genes to screen 90 patients with cranial NTDs (n = 85 anencephaly and n = 5 craniorachischisis) with a targeted exome sequencing platform. After filtering and comparing to our in-house control exome database (N = 509), we identified 397 rare variants (minor allele frequency, MAF < 1%), 21 of which were previously unreported and predicted damaging. This included 1 frameshift (PDGFRA), 2 stop-gained (MAT1A; NOS2) and 18 missense variations. Together with evidence for oligogenic inheritance, this study provides new information on the possible genetic causation of anencephaly. © 2017 The Authors. Clinical Genetics published by John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Antibody Therapy Targeting CD47 and CD271 Effectively Suppresses Melanoma Metastasis in Patient-Derived Xenografts

    Directory of Open Access Journals (Sweden)

    Michael Ngo

    2016-08-01

    Full Text Available The high rate of metastasis and recurrence among melanoma patients indicates the existence of cells within melanoma that have the ability to both initiate metastatic programs and bypass immune recognition. Here, we identify CD47 as a regulator of melanoma tumor metastasis and immune evasion. Protein and gene expression analysis of clinical melanoma samples reveals that CD47, an anti-phagocytic signal, correlates with melanoma metastasis. Antibody-mediated blockade of CD47 coupled with targeting of CD271+ melanoma cells strongly inhibits tumor metastasis in patient-derived xenografts. This therapeutic effect is mediated by drastic changes in the tumor and metastatic site immune microenvironments, both of whichwhich exhibit greatly increased density of differentiated macrophages and significantly fewer inflammatory monocytes, pro-metastatic macrophages (CCR2+/VEGFR1+, and neutrophils, all of which are associated with disease progression. Thus, antibody therapy that activates the innate immune response in combination with selective targeting of CD271+ melanoma cells represents a powerful therapeutic approach against metastatic melanoma.

  7. Effect of CdS Growth Time on the Optical Properties of One-Pot Preparation of CdS-Ag2S Binary Compounds

    Science.gov (United States)

    Karimipour, M.; Izadian, L.; Molaei, M.

    2018-02-01

    CdS-Ag2S binary nanoparticles were synthesized using a facile one-pot microwave irradiation method. The effect of initial nucleation of CdS quantum dots (QDs) using 3 min, 5 min, and 7 min of microwave irradiation on the optical properties of the final compound was studied. The composition and crystal structure of the compounds were verified using energy dispersive x-ray spectroscopy and x-ray diffraction. They revealed that existence of Ag and Cd elements with an atomic ratio of 0.19 crystalizes in the form of monoclinic Ag2S and hexagonal CdS. Scanning electron microscope images showed a spherical morphology of the resultant compound, and transmission electron microscope images showed the formation of fine particles of CdS-Ag2S composites with an average size of 5-7 nm and 10-14 nm for CdS and Ag2S, respectively. Photoluminescence spectroscopy revealed that the initial growth time of CdS has a crucial effect on the emission of binary compounds such that for 3 min and 5 min of irradiation of CdS solution, the binary compound obtains strong red and considerable near-IR emission (850 nm), but for longer time, it rapidly quenches. The results indicate that the strong red emission can be tuned from 600 nm up to 700 nm with prolonging nucleation time of CdS. This study also emphasized that the origin of red emission strongly depends on the size and defects created in the CdS QDs.

  8. A general approach for controlling transcription and probing epigenetic mechanisms: application to the CD4 locus.

    Science.gov (United States)

    Wan, Mimi; Kaundal, Ravinder; Huang, Haichang; Zhao, Jiugang; Yang, Xiaojun; Chaiyachati, Barbara H; Li, Sicong; Chi, Tian

    2013-01-15

    Synthetic regulatory proteins such as tetracycline (tet)-controlled transcription factors are potentially useful for repression as well as ectopic activation of endogenous genes and also for probing their regulatory mechanisms, which would offer a versatile genetic tool advantageous over conventional gene targeting methods. In this study, we provide evidence supporting this concept using Cd4 as a model. CD4 is expressed in double-positive and CD4 cells but irreversibly silenced in CD8 cells. The silencing is mediated by heterochromatin established during CD8 lineage development via transient action of the Cd4 silencer; once established, the heterochromatin becomes self-perpetuating independently of the Cd4 silencer. Using a tet-sensitive Cd4 allele harboring a removable Cd4 silencer, we found that a tet-controlled repressor recapitulated the phenotype of Cd4-deficient mice, inhibited Cd4 expression in a reversible and dose-dependent manner, and could surprisingly replace the Cd4 silencer to induce irreversible Cd4 silencing in CD8 cells, thus suggesting the Cd4 silencer is not the (only) determinant of heterochromatin formation. In contrast, a tet-controlled activator reversibly disrupted Cd4 silencing in CD8 cells. The Cd4 silencer impeded this disruption but was not essential for its reversal, which revealed a continuous role of the silencer in mature CD8 cells while exposing a remarkable intrinsic self-regenerative ability of heterochromatin after forced disruption. These data demonstrate an effective approach for gene manipulation and provide insights into the epigenetic Cd4 regulatory mechanisms that are otherwise difficult to obtain.

  9. Association between Polymorphisms in Antioxidant Genes and Inflammatory Bowel Disease.

    Directory of Open Access Journals (Sweden)

    Cristiana Costa Pereira

    Full Text Available Inflammation is the driving force in inflammatory bowel disease (IBD and its link to oxidative stress and carcinogenesis has long been accepted. The antioxidant system of the intestinal mucosa in IBD is compromised resulting in increased oxidative injury. This defective antioxidant system may be the result of genetic variants in antioxidant genes, which can represent susceptibility factors for IBD, namely Crohn's disease (CD and ulcerative colitis (UC. Single nucleotide polymorphisms (SNPs in the antioxidant genes SOD2 (rs4880 and GPX1 (rs1050450 were genotyped in a Portuguese population comprising 436 Crohn's disease and 367 ulcerative colitis patients, and 434 healthy controls. We found that the AA genotype in GPX1 is associated with ulcerative colitis (OR = 1.93, adjusted P-value = 0.037. Moreover, we found nominal significant associations between SOD2 and Crohn's disease susceptibility and disease subphenotypes but these did not withstand the correction for multiple testing. These findings indicate a possible link between disease phenotypes and antioxidant genes. These results suggest a potential role for antioxidant genes in IBD pathogenesis and should be considered in future association studies.

  10. Gene expression profiling of Gram-negative bacteria-induced inflammation in human whole blood: The role of complement and CD14-mediated innate immune response

    Directory of Open Access Journals (Sweden)

    Corinna Lau

    2015-09-01

    Full Text Available Non-sterile pathogen-induced sepsis and sterile inflammation like in trauma or ischemia–reperfusion injury may both coincide with the life threatening systemic inflammatory response syndrome and multi-organ failure. Consequently, there is an urgent need for specific biomarkers in order to distinguish sepsis from sterile conditions. The overall aim of this study was to uncover putative sepsis biomarkers and biomarker pathways, as well as to test the efficacy of combined inhibition of innate immunity key players complement and Toll-like receptor co-receptor CD14 as a possible therapeutic regimen for sepsis. We performed whole blood gene expression analyses using microarray in order to profile Gram-negative bacteria-induced inflammatory responses in an ex vivo human whole blood model. The experiments were performed in the presence or absence of inhibitors of complement proteins (C3 and CD88 (C5a receptor 1 and CD14, alone or in combination. In addition, we used blood from a C5-deficient donor. Anti-coagulated whole blood was challenged with heat-inactivated Escherichia coli for 2 h, total RNA was isolated and microarray analyses were performed on the Affymetrix GeneChip Gene 1.0 ST Array platform. The initial experiments were performed in duplicates using blood from two healthy donors. C5-deficiency is very rare, and only one donor could be recruited. In order to increase statistical power, a technical replicate of the C5-deficient samples was run. Subsequently, log2-transformed intensities were processed by robust multichip analysis and filtered using a threshold of four. In total, 73 microarray chips were run and analyzed. The normalized and filtered raw data have been deposited in NCBI's Gene Expression Omnibus (GEO and are accessible with GEO Series accession number GSE55537. Linear models for microarray data were applied to estimate fold changes between data sets and the respective multiple testing adjusted p-values (FDR q-values. The

  11. Expression profiles of the immune genes CD4, CD8β, IFNγ, IL-4, IL-6 and IL-10 in mitogen-stimulated koala lymphocytes (Phascolarctos cinereus by qRT-PCR

    Directory of Open Access Journals (Sweden)

    Iona E. Maher

    2014-03-01

    Full Text Available Investigation of the immune response of the koala (Phascolarctos cinereus is needed urgently, but has been limited by scarcity of species-specific reagents and methods for this unique and divergent marsupial. Infectious disease is an important threat to wild populations of koalas; the most widespread and important of these is Chlamydial disease, caused by Chlamydia pecorum and Chlamydia pneumoniae. In addition, koala retrovirus (KoRV, which is of 100% prevalence in northern Australia, has been proposed as an important agent of immune suppression that could explain the koala’s susceptibility to disease. The correct balance of T regulatory, T helper 1 (Th1 and Th2 lymphocyte responses are important to an individual’s susceptibility or resistance to chlamydial infection. The ability to study chlamydial or KoRV pathogenesis, effects of environmental stressors on immunity, and the response of koalas to vaccines under development, by examining the koala’s adaptive response to natural infection or in-vitro stimulation, has been limited to date by a paucity of species- specific reagents. In this study we have used cytokine sequences from four marsupial genomes to identify mRNA sequences for key T regulatory, Th1 and Th2 cytokines interleukin 4 (IL-4, interleukin 6 (IL-6, interleukin 10 (IL-10 and interferon gamma (IFNγ along with CD4 and CD8β. The koala sequences used for primer design showed >58% homology with grey short-tailed opossum, >71% with tammar wallaby and 78% with Tasmanian devil amino acid sequences. We report the development of real-time RT-PCR assays to measure the expression of these genes in unstimulated cells and after three common mitogen stimulation protocols (phorbol myristate acetate/ionomycin, phorbol myristate acetate/phytohemagglutinin and concanavalin A. Phorbol myristate acetate/ionomycin was found to be the most effective mitogen to up-regulate the production of IL-4, IL-10 and IFNγ. IL-6 production was not

  12. Expression profiles of the immune genes CD4, CD8β, IFNγ, IL-4, IL-6 and IL-10 in mitogen-stimulated koala lymphocytes (Phascolarctos cinereus) by qRT-PCR.

    Science.gov (United States)

    Maher, Iona E; Griffith, Joanna E; Lau, Quintin; Reeves, Thomas; Higgins, Damien P

    2014-01-01

    Investigation of the immune response of the koala (Phascolarctos cinereus) is needed urgently, but has been limited by scarcity of species-specific reagents and methods for this unique and divergent marsupial. Infectious disease is an important threat to wild populations of koalas; the most widespread and important of these is Chlamydial disease, caused by Chlamydia pecorum and Chlamydia pneumoniae. In addition, koala retrovirus (KoRV), which is of 100% prevalence in northern Australia, has been proposed as an important agent of immune suppression that could explain the koala's susceptibility to disease. The correct balance of T regulatory, T helper 1 (Th1) and Th2 lymphocyte responses are important to an individual's susceptibility or resistance to chlamydial infection. The ability to study chlamydial or KoRV pathogenesis, effects of environmental stressors on immunity, and the response of koalas to vaccines under development, by examining the koala's adaptive response to natural infection or in-vitro stimulation, has been limited to date by a paucity of species- specific reagents. In this study we have used cytokine sequences from four marsupial genomes to identify mRNA sequences for key T regulatory, Th1 and Th2 cytokines interleukin 4 (IL-4), interleukin 6 (IL-6), interleukin 10 (IL-10) and interferon gamma (IFNγ) along with CD4 and CD8β. The koala sequences used for primer design showed >58% homology with grey short-tailed opossum, >71% with tammar wallaby and 78% with Tasmanian devil amino acid sequences. We report the development of real-time RT-PCR assays to measure the expression of these genes in unstimulated cells and after three common mitogen stimulation protocols (phorbol myristate acetate/ionomycin, phorbol myristate acetate/phytohemagglutinin and concanavalin A). Phorbol myristate acetate/ionomycin was found to be the most effective mitogen to up-regulate the production of IL-4, IL-10 and IFNγ. IL-6 production was not consistently up-regulated by

  13. Hyperfine interactions in 111Cd-doped lutetium sesquioxide

    International Nuclear Information System (INIS)

    Errico, L.A.; Renteria, M.; Bibiloni, A.G.; Requejo, F.G.

    1999-01-01

    We report here first Perturbed Angular Correlation (PAC) results of the electric field gradient (EFG) characterisation at 111 Cd impurities located at both non-equivalent cation sites of the bixbyite structure of Lutetium sesquioxide, between room temperature (RT) and 1273 K. The comparison with results coming from a systematic 111 Cd PAC study in bixbyites and with point-charge model (PCM) predictions shows the presence of a trapped defect at RT in the neighbourhood of the asymmetric cation site, which is completely removed at T > 623 K. The anomalous EFG temperature dependence in Lu 2 O 3 can be described in the frame of a 'two-state' model with fluctuating interactions, which enables the experimental determination of the acceptor energy level introduced by the Cd impurity in the band-gap of the semiconductor and the estimation of the oxygen vacancy density in the sample

  14. Purification of cyclotron-produced 81Rb for the preparation of small krypton-81m generators

    International Nuclear Information System (INIS)

    Andersen, P.; Haasbroek, F.J.; Venter, S.S.J.; Strelow, F.W.E.

    1981-01-01

    A method is described for the separation of 81 Rb from sodium bromide targets. Ammonium molybdophosphate columns are used and the separation takes only about 20 minutes. More than 90% of the 81 Rb is recovered. The purified 81 Rb enables small Rubidium-81/Krypton-81m generators to be prepared with Bio-Rad 50W-X8 ion-exchange resin (200-400 mesh) [af

  15. Integration of adeno-associated virus vectors in CD34+ human hematopoietic progenitor cells after transduction.

    Science.gov (United States)

    Fisher-Adams, G; Wong, K K; Podsakoff, G; Forman, S J; Chatterjee, S

    1996-07-15

    Gene transfer vectors based on adeno-associated virus (AAV) appear promising because of their high transduction frequencies regardless of cell cycle status and ability to integrate into chromosomal DNA. We tested AAV-mediated gene transfer into a panel of human bone marrow or umbilical cord-derived CD34+ hematopoietic progenitor cells, using vectors encoding several transgenes under the control of viral and cellular promoters. Gene transfer was evaluated by (1) chromosomal integration of vector sequences and (2) analysis of transgene expression. Southern hybridization and fluorescence in situ hybridization analysis of transduced CD34 genomic DNA showed the presence of integrated vector sequences in chromosomal DNA in a portion of transduced cells and showed that integrated vector sequences were replicated along with cellular DNA during mitosis. Transgene expression in transduced CD34 cells in suspension cultures and in myeloid colonies differentiating in vitro from transduced CD34 cells approximated that predicted by the multiplicity of transduction. This was true in CD34 cells from different donors, regardless of the transgene or selective pressure. Comparisons of CD34 cell transduction either before or after cytokine stimulation showed similar gene transfer frequencies. Our findings suggest that AAV transduction of CD34+ hematopoietic progenitor cells is efficient, can lead to stable integration in a population of transduced cells, and may therefore provide the basis for safe and efficient ex vivo gene therapy of the hematopoietic system.

  16. Robust H-infinity control in CD players to suppress external disturbances and defects on the disk

    DEFF Research Database (Denmark)

    Vidal, E.; Andersen, B.; Karlsson, R.V.

    2000-01-01

    This paper deals with the design and implementation of robust H8 controllers in order to suppress external disturbances and defects on the disk. Due to the conflictive requirements concerning the bandwidth of the closed loop to suppress external disturbances and defects on the disk, two independe...

  17. A direct gene transfer strategy via brain internal capsule reverses the biochemical defect in Tay-Sachs disease.

    Science.gov (United States)

    Martino, S; Marconi, P; Tancini, B; Dolcetta, D; De Angelis, M G Cusella; Montanucci, P; Bregola, G; Sandhoff, K; Bordignon, C; Emiliani, C; Manservigi, R; Orlacchio, A

    2005-08-01

    Therapy for neurodegenerative lysosomal Tay-Sachs (TS) disease requires active hexosaminidase (Hex) A production in the central nervous system and an efficient therapeutic approach that can act faster than human disease progression. We combined the efficacy of a non-replicating Herpes simplex vector encoding for the Hex A alpha-subunit (HSV-T0alphaHex) and the anatomic structure of the brain internal capsule to distribute the missing enzyme optimally. With this gene transfer strategy, for the first time, we re-established the Hex A activity and totally removed the GM2 ganglioside storage in both injected and controlateral hemispheres, in the cerebellum and spinal cord of TS animal model in the span of one month's treatment. In our studies, no adverse effects were observed due to the viral vector, injection site or gene expression and on the basis of these results, we feel confident that the same approach could be applied to similar diseases involving an enzyme defect.

  18. Biomolecular characterization of exosomes released from cancer stem cells: Possible implications for biomarker and treatment of cancer.

    Science.gov (United States)

    Kumar, Dhruv; Gupta, Dwijendra; Shankar, Sharmila; Srivastava, Rakesh K

    2015-02-20

    Cancer recognized as one of the leading irrepressible health issues is contributing to increasing mortality-rate day-by-day. The tumor microenvironment is an important field of cancer to understand the detection, treatment and prevention of cancer. Recently, cancer stem cell (CSC) research has shown promising results aiming towards cancer diagnostics and treatment. Here, we found that prostate and breast cancer stem cells secreted vesicles of endosomal origin, called exosomes showed strong connection between autophagy and exosomes released from CSCs. Exosomes may serve as vesicles to communicate with neoplastic cells (autocrine and paracrine manner) and normal cells (paracrine and endocrine manner) and thereby suppress immune systems and regulate neoplastic growth, and metastasis. They can also be used as biomarkers for various cancers. We detected tetraspanin proteins (CD9, CD63, CD81), Alix and tumor susceptibility gene-101 (TSG101) of exosomal markers from rotenone treated CSCs. We have also detected the induction of autophagy genes, Atg7 and conversion of autophagy marker (LC3-I to LC3-II), and tetraspanin proteins (CD9, CD63, CD81) in rotenone treated CSCs by western blotting. The mRNA expression of CD9, CD63, CD81 and TSG101 analyzed by qRT-PCR showed that the rotenone induced the expression of CD9, CD63, CD81 and TSG101 in CSCs. Electron microscopy of rotenone treated CSCs showed the mitochondrial damage of CSCs as confirmed by the release of exosomes from CSCs. The constituents of exosomes may be useful to understand the mechanism of exosomes formation, release and function, and also serve as a useful biomarker and provide novel therapeutic strategies for the treatment and prevention of cancer.

  19. Clinically relevant morphological structures in breast cancer represent transcriptionally distinct tumor cell populations with varied degrees of epithelial-mesenchymal transition and CD44+CD24- stemness.

    Science.gov (United States)

    Denisov, Evgeny V; Skryabin, Nikolay A; Gerashchenko, Tatiana S; Tashireva, Lubov A; Wilhelm, Jochen; Buldakov, Mikhail A; Sleptcov, Aleksei A; Lebedev, Igor N; Vtorushin, Sergey V; Zavyalova, Marina V; Cherdyntseva, Nadezhda V; Perelmuter, Vladimir M

    2017-09-22

    Intratumor morphological heterogeneity in breast cancer is represented by different morphological structures (tubular, alveolar, solid, trabecular, and discrete) and contributes to poor prognosis; however, the mechanisms involved remain unclear. In this study, we performed 3D imaging, laser microdissection-assisted array comparative genomic hybridization and gene expression microarray analysis of different morphological structures and examined their association with the standard immunohistochemistry scorings and CD44 + CD24 - cancer stem cells. We found that the intratumor morphological heterogeneity is not associated with chromosomal aberrations. By contrast, morphological structures were characterized by specific gene expression profiles and signaling pathways and significantly differed in progesterone receptor and Ki-67 expression. Most importantly, we observed significant differences between structures in the number of expressed genes of the epithelial and mesenchymal phenotypes and the association with cancer invasion pathways. Tubular (tube-shaped) and alveolar (spheroid-shaped) structures were transcriptionally similar and demonstrated co-expression of epithelial and mesenchymal markers. Solid (large shapeless) structures retained epithelial features but demonstrated an increase in mesenchymal traits and collective cell migration hallmarks. Mesenchymal genes and cancer invasion pathways, as well as Ki-67 expression, were enriched in trabecular (one/two rows of tumor cells) and discrete groups (single cells and/or arrangements of 2-5 cells). Surprisingly, the number of CD44 + CD24 - cells was found to be the lowest in discrete groups and the highest in alveolar and solid structures. Overall, our findings indicate the association of intratumor morphological heterogeneity in breast cancer with the epithelial-mesenchymal transition and CD44 + CD24 - stemness and the appeal of this heterogeneity as a model for the study of cancer invasion.

  20. Increased risk for congenital heart defects in children carrying the ABCB1 Gene C3435T polymorphism and maternal periconceptional toxicants exposure.

    Directory of Open Access Journals (Sweden)

    Chuan Wang

    Full Text Available BACKGROUNDS: The etiology of congenital heart defect (CHD is commonly believed to involve the interaction of multiple environmental and genetic factors. This study aimed to explore the joint effects of the ABCB1 gene C3435T polymorphism and maternal periconceptional toxicants exposure on the CHD risk in a Han Chinese population. METHODS: An age and gender matched case-control study with standardized data collection involving 201 pairs was conducted. Periconceptional toxicants exposure was obtained through a structured questionnaire. A job exposure matrix (JEM was used for toxicants exposure assessment. Genotyping of the ABCB1 C3435T polymorphism was performed by sequencing. Logistic regression analysis was performed to assess the joint effects of the ABCB1 gene C3435T polymorphism and toxicants exposure on the risk of CHD. Placenta tissues and umbilical cords were collected to investigate the impact of C3435T polymorphism on the transcription and translation activities of ABCB1 gene. RESULTS: MATERNAL PERICONCEPTIONAL EXPOSURES TO PHTHALATES (ADJUSTED OR: 1.6; 95%CI: 1.0-2.6 and alkylphenolic compounds (adjusted OR:1.8; 95%CI:1.1-3.0 were associated with a higher incidence of CHDs in general. More cases were carriers of the ABCB1 CC/CT genotypes (OR: 2.0, 95%CI: 1.1-3.5, P-value: 0.021. Children carrying the CC/CT genotype and periconceptionally exposed to phthalates and alkylphenolic compounds suffered almost 3.5-fold increased risk of having CHD than non-exposed children with TT genotype (adjusted OR: 3.5, 95%CI: 1.5-7.9, P-value: 0.003, and the OR changed to 4.4 for septal defects (adjusted OR: 4.4,95%CI:1.8-10.9,P-value:0.001. The ABCB1 mRNA expression of the TT genotype was significantly higher than that of the CC genotype (P = 0.03. Compared with TT genotype, lower P-glycoprotein expression was observed for the CC/CT genotypes. CONCLUSION: The C3435T polymorphism in the ABCB1 gene of fetus increases the risks of CHD in a Han Chinese