WorldWideScience

Sample records for cd8 effector-t cells

  1. Serial Assessment of Immune Status by Circulating CD8+ Effector T Cell Frequencies for Posttransplant Infectious Complications

    Directory of Open Access Journals (Sweden)

    Shinji Uemoto

    2008-01-01

    Full Text Available To clarify the role of CD8+ effector T cells for infectious complications, 92 recipients were classified according to the hierarchical clustering of preoperative CD8+CD45 isoforms: Group I was naive, Group II was effector memory, and Group III was effector (E T cell-dominant. The posttransplant infection rates progressively increased from 29% in Group I to 64.3% in Group III recipients. The posttransplant immune status was compared with the pretransplant status, based on the measure (% difference and its graphical form (scatter plot. In Groups I and II, both approaches showed a strong upward deviation from pretransplant status upon posttransplant infection, indicating an enhanced clearance of pathogens. In Group III, in contrast, both approaches showed a clear downward deviation from preoperative status, indicating deficient cytotoxicity. The % E difference and scatter plot can be used as a useful indicator of a posttransplant infectious complication.

  2. CXCL10 is the key ligand for CXCR3 on CD8+ effector T cells involved in immune surveillance of the lymphocytic choriomeningitis virus-infected central nervous system

    DEFF Research Database (Denmark)

    Christensen, Jeanette Erbo; de Lemos, Carina; Moos, Torben;

    2006-01-01

    /ligand pair is thought to play a central role in regulating T cell-mediated inflammation in this organ site. In this report, we investigated the role of CXCL10 in regulating CD8(+) T cell-mediated inflammation in the virus-infected brain. This was done through analysis of CXCL10-deficient mice infected....... Furthermore, despite marked up-regulation of the two remaining CXCR3 ligands: CXCL9 and 11, we found a reduced accumulation of CD8(+) T cells in the brain parenchyma around the time point when wild-type mice succumb as a result of CD8(+) T cell-mediated inflammation. Thus, taken together these results...... indicate a central role for CXCL10 in regulating the accumulation of effector T cells at sites of CNS inflammation, with no apparent compensatory effect of other CXCR3 ligands....

  3. Preferential amplification of CD8 effector-T cells after transcutaneous application of an inactivated influenza vaccine: a randomized phase I trial.

    Directory of Open Access Journals (Sweden)

    Behazine Combadière

    Full Text Available BACKGROUND: Current conventional vaccination approaches do not induce potent CD8 T-cell responses for fighting mostly variable viral diseases such as influenza, avian influenza viruses or HIV. Following our recent study on vaccine penetration by targeting of vaccine to human hair follicular ducts surrounded by Langerhans cells, we tested in the first randomized Phase-Ia trial based on hair follicle penetration (namely transcutaneous route the induction of virus-specific CD8 T cell responses. METHODS AND FINDINGS: We chose the inactivated influenza vaccine - a conventional licensed tetanus/influenza (TETAGRIP vaccine - to compare the safety and immunogenicity of transcutaneous (TC versus IM immunization in two randomized controlled, multi-center Phase I trials including 24 healthy-volunteers and 12 HIV-infected patients. Vaccination was performed by application of inactivated influenza vaccine according to a standard protocol allowing the opening of the hair duct for the TC route or needle-injection for the IM route. We demonstrated that the safety of the two routes was similar. We showed the superiority of TC application, but not the IM route, to induce a significant increase in influenza-specific CD8 cytokine-producing cells in healthy-volunteers and in HIV-infected patients. However, these routes did not differ significantly for the induction of influenza-specific CD4 responses, and neutralizing antibodies were induced only by the IM route. The CD8 cell response is thus the major immune response observed after TC vaccination. CONCLUSIONS: This Phase Ia clinical trial (Manon05 testing an anti-influenza vaccine demonstrated that vaccines designed for antibody induction by the IM route, generate vaccine-specific CD8 T cells when administered transcutaneously. These results underline the necessity of adapting vaccination strategies to control complex infectious diseases when CD8 cellular responses are crucial. Our work opens up a key area for the

  4. Depletion of Regulatory T Cells Induces High Numbers of Dendritic Cells and Unmasks a Subset of Anti-Tumour CD8+CD11c+ PD-1lo Effector T Cells.

    Directory of Open Access Journals (Sweden)

    Nicolas Goudin

    Full Text Available Natural regulatory T (Treg cells interfere with multiple functions, which are crucial for the development of strong anti-tumour responses. In a model of 4T1 mammary carcinoma, depletion of CD25+Tregs results in tumour regression in Balb/c mice, but the mechanisms underlying this process are not fully understood. Here, we show that partial Treg depletion leads to the generation of a particular effector CD8 T cell subset expressing CD11c and low level of PD-1 in tumour draining lymph nodes. These cells have the capacity to migrate into the tumour, to kill DCs, and to locally regulate the anti-tumour response. These events are concordant with a substantial increase in CD11b+ resident dendritic cells (DCs subsets in draining lymph nodes followed by CD8+ DCs. These results indicate that Treg depletion leads to tumour regression by unmasking an increase of DC subsets as a part of a program that optimizes the microenvironment by orchestrating the activation, amplification, and migration of high numbers of fully differentiated CD8+CD11c+PD1lo effector T cells to the tumour sites. They also indicate that a critical pattern of DC subsets correlates with the evolution of the anti-tumour response and provide a template for Treg depletion and DC-based therapy.

  5. CD8 T Cells Enter the Splenic T Cell Zones Independently of CCR7, but the Subsequent Expansion and Trafficking Patterns of Effector T Cells after Infection Are Dysregulated in the Absence of CCR7 Migratory Cues.

    Science.gov (United States)

    Sharma, Naveen; Benechet, Alexandre P; Lefrançois, Leo; Khanna, Kamal M

    2015-12-01

    CCR7 is an important chemokine receptor that regulates T cell trafficking and compartmentalization within secondary lymphoid organs. However, the T cell-intrinsic role of CCR7 during infection in the spleen is not well understood. This study was designed to understand how CCR7-dependent localization and migration of CD8(+) T cells in different compartments of the spleen affected the primary and recall responses after infection. To this end, we used adoptive transfer of naive Ag-specific CD8 T cells (OT-I) that either lacked CCR7 or constitutively expressed CCR7 (CD2-CCR7) in mice that were subsequently infected i.v. with Listeria monocytogenes. We show that naive CCR7(-/-)CD8(+) T cells failed to enter the T cell zone, whereas CD2-CCR7 OT-I cells were exclusively confined to the T cell zones of the spleen. Surprisingly, however, CCR7(-/-) OT-I cells entered the T cell zones after infection, but the entry and egress migratory pattern of these cells was dysregulated and very distinct compared with wild-type OT-I cells. Moreover, CCR7-deficient OT-I cells failed to expand robustly when compared with wild-type OT-I cells and were preferentially skewed toward a short-lived effector cell differentiation pattern. Interestingly, CCR7(-/-), CD2-CCR7, and wild-type OT-I memory cells responded equally well to rechallenge infection. These results highlight a novel role of CCR7 in regulating effector CD8 T cell migration in the spleen and demonstrate differential requirement of CCR7 for primary and secondary CD8 T cell responses to infection.

  6. CCR9 Is Not Required for the Homing of Pro-inflammatory Effector T cells, but Is Crucial for Recruitment and Expansion of FoxP3+ CD8+ Tregs in the Small Intestine

    DEFF Research Database (Denmark)

    Gomez-Casado, Cristina; Joeris, Thorsten; Holmkvist, Petra;

    did not only differentiate into Teff, but also into FoxP3+ CD8+ Tregs, which in contrast to Teff cells expressed high levels of CCR9. Indeed, recruitment and expansion of this regulatory subset in the small intestine was strongly dependent on CCR9. Hence, our data show that Teff and regulatory T cell...

  7. Fisiopatologia da dermatite de contato alérgica: papel das células T CD8 efetoras e das células T CD4 regulatórias Update on the pathophysiology with special emphasis on CD8 effector T cells and CD4 regulatory T cells

    Directory of Open Access Journals (Sweden)

    Ana Hennino

    2005-08-01

    , and vesicles, followed by scaling and dry skin. ACD is elicited upon skin contact with non-protein chemicals called haptens and corresponds to a cutaneous delayed-type hypersensitivity reaction, mediated by hapten-specific T cells. During the sensitization phase, both CD4+ and CD8+ T cell precursors are activated in the draining lymph nodes by presentation of haptenated peptides by skin dendritic cells (DC. Subsequent hapten painting on a remote skin site induces the recruitment and activation of specific T cells at the site of challenge leading to apoptosis of keratinocytes, recruitment of inflammatory cells and development of clinical symptoms. Experimental studies from the last 10 years have demonstrated that, in normal CHS responses to strong haptens, CD8+ type 1 T cells are effector cells of CHS through cytotoxicity and IFNgamma, production while CD4+ T cells are endowed with down-regulatory functions. The latter may correspond to the recently described CD4+ CD25+ regulatory T cell population. However, in some instances, especially those where there is a deficient CD8 T cell pool, CD4+ T cells can be effector cells of CHS. Ongoing studies will have to confirm that the pathophysiology of human ACD is similar to the mouse CHS and that the CHS response to common weak haptens, most frequently involved in human ACD, is similar to that reported for strong haptens.

  8. Effector T cell differentiation: are master regulators of effector T cells still the masters?

    Science.gov (United States)

    Wang, Chao; Collins, Mary; Kuchroo, Vijay K

    2015-12-01

    Effector CD4 T cell lineages have been implicated as potent inducers of autoimmune diseases. Tbet, Gata3 and Rorgt are master transcriptional regulators of Th1, Th2 and Th17 lineages respectively and promote the distinct expression of signature cytokines. Significant progress has been made in understanding the transcriptional network that drives CD4 T cell differentiation, revealing novel points of regulation mediated by transcription factors, cell surface receptors, cytokines and chemokines. Epigenetic modifications and metabolic mediators define the transcriptional landscape in which master transcription factors operate and collaborate with a network of transcriptional modifiers to guide lineage specification, plasticity and function.

  9. How Diverse-CD4 Effector T Cells and their Functions

    Institute of Scientific and Technical Information of China (English)

    Yisong Y. Wan; Richard A. Flavell

    2009-01-01

    CD4 effector T cells, also called helper T (Th) cells, are the functional cells for executing immune functions. Balanced immune responses can only be achieved by proper regulation of the differentiation and function of Th cells. Dysregulated Th cell function of ten leads to inefficient clearance of pathogens and causes inflammatory diseases and autoimmunity. Since the establishment of the Th1–Th2 dogma in the 1980s, different lineages of effector T cells have been identified that not only promote but also suppress immune responses. Through years of collective efforts, much information was gained on the function and regulation of different subsets of Th cells. In this review, we attempt to sample the essence of what has been learnt in this field over the past two decades. We will discuss the classification and immunological functions of effector T cells, the determinants for effector T cell differentiation,as well as the relationship between different lineages of effector T cells.

  10. The Alpha-Melanocyte Stimulating Hormone Induces Conversion of Effector T Cells into Treg Cells

    Directory of Open Access Journals (Sweden)

    Andrew W. Taylor

    2011-01-01

    Full Text Available The neuropeptide alpha-melanocyte stimulating hormone (α-MSH has an important role in modulating immunity and homeostasis. The production of IFN-γ by effector T cells is suppressed by α-MSH, while TGF-β production is promoted in the same cells. Such α-MSH-treated T cells have immune regulatory activity and suppress hypersensitivity, autoimmune diseases, and graft rejection. Previous characterizations of the α-MSH-induced Treg cells showed that the cells are CD4+ T cells expressing the same levels of CD25 as effector T cells. Therefore, we further analyzed the α-MSH-induced Treg cells for expression of effector and regulatory T-cell markers. Also, we examined the potential for α-MSH-induced Treg cells to be from the effector T-cell population. We found that the α-MSH-induced Treg cells are CD25+  CD4+ T cells that share similar surface markers as effector T cells, except that they express on their surface LAP. Also, the α-MSH treatment augments FoxP3 message in the effector T cells, and α-MSH induction of regulatory activity was limited to the effector CD25+ T-cell population. Therefore, α-MSH converts effector T cells into Treg cells, which suppress immunity targeting specific antigens and tissues.

  11. CD8+ T Cells: GITR Matters

    Directory of Open Access Journals (Sweden)

    Simona Ronchetti

    2012-01-01

    Full Text Available As many members of the tumor necrosis factor receptor superfamily, glucocorticoid-induced TNFR-related gene (GITR plays multiple roles mostly in the cells of immune system. CD8+ T cells are key players in the immunity against viruses and tumors, and GITR has been demonstrated to be an essential molecule for these cells to mount an immune response. The aim of this paper is to focus on GITR function in CD8+ cells, paying particular attention to numerous and recent studies that suggest its crucial role in mouse disease models.

  12. Quetiapine, an atypical antipsychotic, is protective against autoimmune-mediated demyelination by inhibiting effector T cell proliferation.

    Directory of Open Access Journals (Sweden)

    Feng Mei

    Full Text Available Quetiapine (Que, a commonly used atypical antipsychotic drug (APD, can prevent myelin from breakdown without immune attack. Multiple sclerosis (MS, an autoimmune reactive inflammation demyelinating disease, is triggered by activated myelin-specific T lymphocytes (T cells. In this study, we investigated the potential efficacy of Que as an immune-modulating therapeutic agent for experimental autoimmune encephalomyelitis (EAE, a mouse model for MS. Que treatment was initiated on the onset of MOG(35-55 peptide induced EAE mice and the efficacy of Que on modulating the immune response was determined by Flow Cytometry through analyzing CD4(+/CD8(+ populations and the proliferation of effector T cells (CD4(+CD25(- in peripheral immune organs. Our results show that Que dramatically attenuates the severity of EAE symptoms. Que treatment decreases the extent of CD4(+/CD8(+ T cell infiltration into the spinal cord and suppresses local glial activation, thereby diminishing the loss of mature oligodendrocytes and myelin breakdown in the spinal cord of EAE mice. Our results further demonstrate that Que treatment decreases the CD4(+/CD8(+ T cell populations in lymph nodes and spleens of EAE mice and inhibits either MOG(35-55 or anti-CD3 induced proliferation as well as IL-2 production of effector T cells (CD4(+CD25(- isolated from EAE mice spleen. Together, these findings suggest that Que displays an immune-modulating role during the course of EAE, and thus may be a promising candidate for treatment of MS.

  13. Imbalanced expression of functional surface molecules in regulatory and effector T cells in systemic lupus erythematosus

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita Júnior, D. [Disciplina de Reumatologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Cruvinel, W.M. [Disciplina de Reumatologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Departamento de Biomedicina, Universidade Católica de Goiás, Goiânia, GO (Brazil); Araujo, J.A.P. [Disciplina de Reumatologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Salmazi, K.C.; Kallas, E.G. [Disciplina de Imunologia Clínica e Alergia, Departamento de Clínica Médica, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Andrade, L.E.C. [Disciplina de Reumatologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil)

    2014-08-22

    Regulatory T (TREG) cells play an important role in maintaining immune tolerance and avoiding autoimmunity. We analyzed the expression of membrane molecules in TREG and effector T cells in systemic lupus erythematosus (SLE). TREG and effector T cells were analyzed for the expression of CTLA-4, PD1, CD28, CD95, GITR, HLA-DR, OX40, CD40L, and CD45RO in 26 patients with active disease, 31 with inactive disease, and 26 healthy controls. TREG cells were defined as CD25{sup +/high}CD127{sup Ø/low}FoxP3{sup +}, and effector T cells were defined as CD25{sup +}CD127{sup +}FoxP3{sup Ø}. The ratio of TREG to effector T cells expressing GITR, PD1, HLA-DR, OX40, CD40L, and CD45RO was determined in the three groups. The frequency of TREG cells was similar in patients with SLE and controls. However, SLE patients had a decreased frequency of CTLA-4{sup +}TREG and CD28{sup +}TREG cells and an increased frequency of CD40L{sup +}TREG cells. There was a decrease in the TREG/effector-T ratio for GITR{sup +}, HLA-DR{sup +}, OX40{sup +}, and CD45RO{sup +} cells, and an increased ratio of TREG/effector-T CD40L{sup +} cells in patients with SLE. In addition, CD40L{sup +}TREG cell frequency correlated with the SLE disease activity index (P=0.0163). In conclusion, our findings showed several abnormalities in the expression of functionally critical surface molecules in TREG and effector T cells in SLE that may be relevant to the pathogenesis of this disease.

  14. Imbalanced expression of functional surface molecules in regulatory and effector T cells in systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    D. Mesquita Júnior

    2014-08-01

    Full Text Available Regulatory T (TREG cells play an important role in maintaining immune tolerance and avoiding autoimmunity. We analyzed the expression of membrane molecules in TREG and effector T cells in systemic lupus erythematosus (SLE. TREG and effector T cells were analyzed for the expression of CTLA-4, PD1, CD28, CD95, GITR, HLA-DR, OX40, CD40L, and CD45RO in 26 patients with active disease, 31 with inactive disease, and 26 healthy controls. TREG cells were defined as CD25+/highCD127Ø/lowFoxP3+, and effector T cells were defined as CD25+CD127+FoxP3Ø. The ratio of TREG to effector T cells expressing GITR, PD1, HLA-DR, OX40, CD40L, and CD45RO was determined in the three groups. The frequency of TREG cells was similar in patients with SLE and controls. However, SLE patients had a decreased frequency of CTLA-4+TREG and CD28+TREG cells and an increased frequency of CD40L+TREG cells. There was a decrease in the TREG/effector-T ratio for GITR+, HLA-DR+, OX40+, and CD45RO+ cells, and an increased ratio of TREG/effector-T CD40L+ cells in patients with SLE. In addition, CD40L+TREG cell frequency correlated with the SLE disease activity index (P=0.0163. In conclusion, our findings showed several abnormalities in the expression of functionally critical surface molecules in TREG and effector T cells in SLE that may be relevant to the pathogenesis of this disease.

  15. Immunology Mechanism of CD4+ CD25 T Regulatory Cells Acting on Effector T Cells

    Institute of Scientific and Technical Information of China (English)

    FENGNing-han; WUHong-fei; WUJun; ZHANGWei; SUIYuan-gen; HEHou-guang; ZHANGChun-lei; ZHENGJun-song

    2004-01-01

    Objective: To detect the inhibiting co-stimulating molecule CTLA4 and cytokines secreted by Treg cells, and explore the immunology mechanism of T regulatory cells acting on effector T cells in co-cultured system(CCS) and separating-cultured system(SCS). Methods: Detecting the percentage of CTLA4 and CD28 expressed on the Treg ceils and effector T ceils, and then adding Treg cells to mixed lymphocyte reaction(MLR) system in CCS and TransWeil Milliceil-PCF SCS, at the same time, adding or not adding anti-IL-10 or anti-TGF.II1 to the reacting systems, examining the inhibitory capacity of Treg ceils exerting on the MLR. Results: Compared with effector T cells, Treg cells expressed higher level CTLA4 and secreted much more IL-10 and TGF-β(P<0.01). The inhibitory capacity of Treg cells co-cultured with effector T ceils is much stronger than that in separating cultured group(P<0.01). Moreover, the inhibiting rate of Treg ceils exerting on effector T ceils through secretin_g IL-10 was more powerful than that through secreting TGF-β1 (P<0.01). Coaclusion: Both ceil-to-ceil contact and cytokines secretion mechanisms are involved in CD4+ CD25+ Treg ceils operating function. However, the former is more important. Intresfingly, we for the first time pointfound that IL-10 plays more powerful roles than TGF-β1 in the cytokines secretion mechanism.

  16. CD4+/CD8+ double-positive T cells

    DEFF Research Database (Denmark)

    Overgaard, Nana H; Jung, Ji-Won; Steptoe, Raymond J

    2015-01-01

    CD4(+)/CD8(+) DP thymocytes are a well-described T cell developmental stage within the thymus. However, once differentiated, the CD4(+) lineage or the CD8(+) lineage is generally considered to be fixed. Nevertheless, mature CD4(+)/CD8(+) DP T cells have been described in the blood and peripheral...... lymphoid tissues of numerous species, as well as in numerous disease settings, including cancer. The expression of CD4 and CD8 is regulated by a very strict transcriptional program involving the transcription factors Runx3 and ThPOK. Initially thought to be mutually exclusive within CD4(+) and CD8(+) T...... cells, CD4(+)/CD8(+) T cell populations, outside of the thymus, have recently been described to express concurrently ThPOK and Runx3. Considerable heterogeneity exists within the CD4(+)/CD8(+) DP T cell pool, and the function of CD4(+)/CD8(+) T cell populations remains controversial, with conflicting...

  17. CD8+ T cells in inflammatory demyelinating disease

    DEFF Research Database (Denmark)

    Weiss, Hanne A; Millward, Jason M; Owens, Trevor

    2007-01-01

    We review the contribution made by CD8+ T cells to inflammation in the central nervous system (CNS) in Multiple Sclerosis (MS), and discuss their role in the animal model Experimental Autoimmune Encephalomyelitis (EAE). We show that the inflammatory cytokines interferon-gamma and interleukin-17...... are differentially regulated in CNS-infiltrating CD4+ and CD8+ T cells in EAE, and that CD8+ T cells regulate disease. In MS, CD8+ T cells appear to play a role in promotion of disease, so cytokine regulation is likely different in CD8+ T cells in MS and EAE...

  18. Thymic Nurse Cells Support CD4-CD8+ Thymocytes to Differentiate into CD4+CD8+ Cells

    Institute of Scientific and Technical Information of China (English)

    Aidong Li; Xueli Liu; Baochun Duan; Jie Ma

    2005-01-01

    Thymic nurse cells (TNCs) represent a unique microenvironment in the thymus for T cell maturation. In order to investigate the role of thymic nurse cells during T cell differentiation, a TNC clone, RWTE-1, which formed a typical complex with fetal thymocytes in vitro was established from normal Wistar rat. Hanging drop culture method was applied to reveal the interaction between TNCs and thymocytes. Our result revealed that eighty percent of immature CD4-CD8+ cells differentiated into CD4+CD8+ cells after a 12-hour hanging drop culture with RWTE-1. However, in a 12-hour culture of immature CD4-CD8+ cells with or without RWTE-1 supernatant, only 30% of the cells differentiated into CD4+CD8+ cells spontaneously. This observation led to the conclusion that RWTE-1 cell has the capacity to facilitate immature CD4-CD8+ thymocytes to differentiate into CD4+CD8+ T cells by direct interaction.

  19. Defect of CD8+ Memory T Cells Developed in Absence of IL-12 Priming for Secondary Expansion

    Institute of Scientific and Technical Information of China (English)

    Zhenmin Ye; Shulin Xu; Terence Moyana; Jicheng Yang; Jim Xiang

    2008-01-01

    IL-12 priming plays an important role in stimulation of CD8+ effector T cells and development of CD8+ memory T (Tm) cells. However, the functional alteration of CD8+ Tm cells developed in the absence of IL-12 priming is elusive.In this study, we investigated the capacity of secondary expansion of CD8+ Tm cells developed from transgenic OT I CD8+ T cells. The latter cells were in vitro and in vivo stimulated by ovalbumin (OVA)-puised dendritic cells [DCOVA and (IL-12-/-)DCOVA] derived from wild-type C57BL/6 and IL-12 gene knockout mice, respectively. We demonstrated that IL-12 priming is important not only in CD8+ T cell clonal expansion, but also in generation of CD8+ Tm cells with the capacity of secondary expansion upon antigen re-encounter. However, IL-12 signaling is not involved in CD8+ Tm cell survival and recall responses. Therefore, this study provides useful information for vaccine design and development.

  20. CD8+ T cells in Leishmania infections: friends or foes?

    Directory of Open Access Journals (Sweden)

    Simona eStager

    2012-01-01

    Full Text Available Host protection against several intracellular pathogens requires the induction of CD8+ T cell responses. CD8+ T cells are potent effector cells that can produce high amounts of pro-inflammatory cytokines and kill infected target cells efficiently. However, a protective role for CD8+ T cells during Leishmania infections is still controversial and largely depends on the infection model. In this review, we discuss the role of CD8+ T cells during various types Leishmania infections, following vaccination, and as potential immunotherapeutic targets.

  1. TLR activation excludes circulating naive CD8+ T cells from gut-associated lymphoid organs in mice.

    Science.gov (United States)

    Heidegger, Simon; Kirchner, Sophie-Kathrin; Stephan, Nicolas; Bohn, Bernadette; Suhartha, Nina; Hotz, Christian; Anz, David; Sandholzer, Nadja; Stecher, Bärbel; Rüssmann, Holger; Endres, Stefan; Bourquin, Carole

    2013-05-15

    The trafficking of effector T cells is tightly regulated by the expression of site-specific sets of homing molecules. In contrast, naive T cells are generally assumed to express a uniform pattern of homing molecules and to follow a random distribution within the blood and secondary lymphoid organs. In this study, we demonstrate that systemic infection fundamentally modifies the trafficking of circulating naive CD8(+) T cells. We show that on naive CD8(+) T cells, the constitutive expression of the integrin α4β7 that effects their entry into GALT is downregulated following infection of mice with Salmonella typhimurium. We further show that this downregulation is dependent on TLR signaling, and that the TLR-activated naive CD8(+) T cells are blocked from entering GALT. This contrasts strongly with Ag-experienced effector T cells, for which TLR costimulation in the GALT potently upregulates α4β7 and enhances trafficking to intestinal tissues. Thus, TLR activation leads to opposite effects on migration of naive and effector CD8(+) T cells. Our data identify a mechanism that excludes noncognate CD8(+) T cells from selected immune compartments during TLR-induced systemic inflammation.

  2. PD-1 expression on dendritic cells suppresses CD8+ T cell function and antitumor immunity

    Science.gov (United States)

    Lim, Tong Seng; Chew, Valerie; Sieow, Je Lin; Goh, Siting; Yeong, Joe Poh-Sheng; Soon, Ai Ling; Ricciardi-Castagnoli, Paola

    2016-01-01

    ABSTRACT Programmed death one (PD-1) is a well-established co-inhibitory regulator that suppresses proliferation and cytokine production of T cells. Despite remarkable progress in delineating the functional roles of PD-1 on T lymphocytes, little is known about the regulatory role of PD-1 expressed on myeloid cells such as dendritic cells (DCs). Here, we show that CD8+ T cells can be more potently activated to secrete IL-2 and IFNγ by PD-1-deficient DCs compared to wild-type DCs. Adoptive transfer of PD-1-deficient DCs demonstrated their superior capabilities in inducing antigen-specific CD8+ T cell proliferation in vivo. In addition, we provide first evidence demonstrating the existence of peripheral blood DCs and CD11c+ tumor-infiltrating myeloid cells that co-express PD-1 in patients with hepatocellular carcinoma (HCC). The existence of PD-1-expressing HCC-infiltrating DCs (HIDCs) was further supported in a mouse model of HCC. Intratumoral transfer of PD-1-deficient DCs rendered recipient mice resistant to the growth of HCC by promoting tumor-infiltrating CD8+ effector T cells to secrete perforin and granzyme B. This novel finding provides a deeper understanding of the role of PD-1 in immune regulation and has significant implications for cancer immunotherapies targeting PD-1. PMID:27141339

  3. Consensus nomenclature for CD8+ T cell phenotypes in cancer

    Science.gov (United States)

    Apetoh, Lionel; Smyth, Mark J.; Drake, Charles G.; Abastado, Jean-Pierre; Apte, Ron N.; Ayyoub, Maha; Blay, Jean-Yves; Bonneville, Marc; Butterfield, Lisa H.; Caignard, Anne; Castelli, Chiara; Cavallo, Federica; Celis, Esteban; Chen, Lieping; Colombo, Mario P.; Comin-Anduix, Begoña; Coukos, Georges; Dhodapkar, Madhav V.; Dranoff, Glenn; Frazer, Ian H.; Fridman, Wolf-Hervé; Gabrilovich, Dmitry I.; Gilboa, Eli; Gnjatic, Sacha; Jäger, Dirk; Kalinski, Pawel; Kaufman, Howard L.; Kiessling, Rolf; Kirkwood, John; Knuth, Alexander; Liblau, Roland; Lotze, Michael T.; Lugli, Enrico; Marincola, Francesco; Melero, Ignacio; Melief, Cornelis J.; Mempel, Thorsten R.; Mittendorf, Elizabeth A.; Odun, Kunle; Overwijk, Willem W.; Palucka, Anna Karolina; Parmiani, Giorgio; Ribas, Antoni; Romero, Pedro; Schreiber, Robert D.; Schuler, Gerold; Srivastava, Pramod K.; Tartour, Eric; Valmori, Danila; van der Burg, Sjoerd H.; van der Bruggen, Pierre; van den Eynde, Benoît J.; Wang, Ena; Zou, Weiping; Whiteside, Theresa L.; Speiser, Daniel E.; Pardoll, Drew M.; Restifo, Nicholas P.; Anderson, Ana C.

    2015-01-01

    Whereas preclinical investigations and clinical studies have established that CD8+ T cells can profoundly affect cancer progression, the underlying mechanisms are still elusive. Challenging the prevalent view that the beneficial effect of CD8+ T cells in cancer is solely attributable to their cytotoxic activity, several reports have indicated that the ability of CD8+ T cells to promote tumor regression is dependent on their cytokine secretion profile and their ability to self-renew. Evidence has also shown that the tumor microenvironment can disarm CD8+ T cell immunity, leading to the emergence of dysfunctional CD8+ T cells. The existence of different types of CD8+ T cells in cancer calls for a more precise definition of the CD8+ T cell immune phenotypes in cancer and the abandonment of the generic terms “pro-tumor” and “antitumor.” Based on recent studies investigating the functions of CD8+ T cells in cancer, we here propose some guidelines to precisely define the functional states of CD8+ T cells in cancer. PMID:26137416

  4. Analysis of CD8+ Treg cells in patients with ovarian cancer: a possible mechanism for immune impairment.

    Science.gov (United States)

    Zhang, Shuping; Ke, Xing; Zeng, Suyun; Wu, Meng; Lou, Jianfang; Wu, Lei; Huang, Peijun; Huang, Lei; Wang, Fang; Pan, Shiyang

    2015-09-01

    Regulatory T (Treg) cells may participate in mediating a suppressive microenvironment that blunts successful anti-tumor immunotherapy. Recent studies show that CD8(+) Treg cells might impede effective immune responses to established tumors. However, there is limited research regarding CD8(+) Treg cells in ovarian cancer (OC) patients. Here, we investigated CD8(+) Treg cells in OC patients and their in vitro induction. The immunohistochemistry of tumor-infiltrating lymphocytes revealed a significant correlation between the intratumoral CD8(+) T cells and the forkhead box p3 (Foxp3)(+) cells in the intraepithelial and stromal areas of advanced OC tissues. We examined the expression of Treg markers in CD8(+) T cells from the peripheral blood and fresh tumor tissues of OC patients using flow cytometry. Our results indicated an increase in the CD8(+) Treg cell subsets of OC patients compared with those in patients with benign ovarian tumors and healthy controls, including an increased expression of CD25, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), and Foxp3 and decreased CD28 expression. To demonstrate whether the tumor microenvironment could convert CD8(+) effector T cells into suppressor cells, we used an in vitro transwell culturing system. Compared with the CD8(+) T cells cultured alone, the CD8(+) Treg cells induced in vitro by coculture with SK-OV-3/A2780 showed increased CTLA-4 and Foxp3 expression and decreased CD28 expression. In addition, the in vitro-induced CD8(+) Treg cells inhibited naı¨ve CD4(+) T-cell proliferation, which was partially mediated through TGF-β1 and IFN-γ. Our study suggests that CD8(+) Treg cells were increased in OC patients and could be induced in vitro, which may be the way that tumors limit antitumor immunity and evade immune surveillance.

  5. Subset- and Antigen-Specific Effects of Treg on CD8+ T Cell Responses in Chronic HIV Infection.

    Science.gov (United States)

    Nikolova, Maria; Wiedemann, Aurélie; Muhtarova, Maria; Achkova, Daniela; Lacabaratz, Christine; Lévy, Yves

    2016-11-01

    We, and others, have reported that in the HIV-negative settings, regulatory CD4+CD25highFoxP3+ T cells (Treg) exert differential effects on CD8 subsets, and maintain the memory / effector CD8+ T cells balance, at least in part through the PD-1/PD-L1 pathway. Here we investigated Treg-mediated effects on CD8 responses in chronic HIV infection. As compared to Treg from HIV negative controls (Treg/HIV-), we show that Treg from HIV infected patients (Treg/HIV+) did not significantly inhibit polyclonal autologous CD8+ T cell function indicating either a defect in the suppressive capacity of Treg/HIV+ or a lack of sensitivity of effector T cells in HIV infection. Results showed that Treg/HIV+ inhibited significantly the IFN-γ expression of autologous CD8+ T cells stimulated with recall CMV/EBV/Flu (CEF) antigens, but did not inhibit HIV-Gag-specific CD8+ T cells. In cross-over cultures, we show that Treg/HIV- inhibited significantly the differentiation of either CEF- or Gag-specific CD8+ T cells from HIV infected patients. The expression of PD-1 and PD-L1 was higher on Gag-specific CD8+ T cells as compared to CEF-specific CD8+ T cells, and the expression of these markers did not change significantly after Treg depletion or co-culture with Treg/HIV-, unlike on CEF-specific CD8+ T cells. In summary, we show a defect of Treg/HIV+ in modulating both the differentiation and the expression of PD-1/PD-L1 molecules on HIV-specific CD8 T cells. Our results strongly suggest that this particular defect of Treg might contribute to the exhaustion of HIV-specific T cell responses.

  6. Mast-Cell-Derived TNF Amplifies CD8+ Dendritic Cell Functionality and CD8+ T Cell Priming

    Directory of Open Access Journals (Sweden)

    Jan Dudeck

    2015-10-01

    Full Text Available Mast cells are critical promoters of adaptive immunity in the contact hypersensitivity model, but the mechanism of allergen sensitization is poorly understood. Using Mcpt5-CreTNFFL/FL mice, we show here that the absence of TNF exclusively in mast cells impaired the expansion of CD8+ T cells upon sensitization and the T-cell-driven adaptive immune response to elicitation. T cells primed in the absence of mast cell TNF exhibited a diminished efficiency to transfer sensitization to naive recipients. Specifically, mast cell TNF promotes CD8+ dendritic cell (DC maturation and migration to draining lymph nodes. The peripherally released mast cell TNF further critically boosts the CD8+ T-cell-priming efficiency of CD8+ DCs, thereby linking mast cell effects on T cells to DC modulation. Collectively, our findings identify the distinct potential of mast cell TNF to amplify CD8+ DC functionality and CD8+ T-cell-dominated adaptive immunity, which may be of great importance for immunotherapy and vaccination approaches.

  7. CD8αα expression marks terminally differentiated human CD8+ T cells expanded in chronic viral infection

    Directory of Open Access Journals (Sweden)

    Lucy Jane Walker

    2013-08-01

    Full Text Available The T cell co-receptor CD8αβ enhances T cell sensitivity to antigen, however studies indicate CD8αα has the converse effect and acts as a co-repressor. Using a combination of Thymic Leukaemia antigen (TL tetramer, which directly binds CD8αα, anti-CD161 and anti-Vα7.2 antibodies we have been able for the first time to clearly define CD8αα expression on human CD8 T cells subsets. In healthy controls CD8αα is most highly expressed by CD161 bright (CD161++ mucosal associated invariant T (MAIT cells, with CD8αα expression highly restricted to the TCR Vα7.2+ cells of this subset. We also identified CD8αα-expressing populations within the CD161 mid (CD161+ and negative (CD161- non-MAIT CD8 T cell subsets and show TL-tetramer binding to correlate with expression of CD8β at low levels in the context of maintained CD8α expression (CD8α+CD8βlow. In addition, we found CD161-CD8α+CD8βlow populations to be significantly expanded in the peripheral blood of HIV-1 and hepatitis B (mean of 47% and 40% of CD161- T cells respectively infected individuals. Such CD8αα expressing T cells are an effector-memory population (CD45RA-, CCR7-, CD62L- that express markers of activation and maturation (HLA-DR+, CD28-, CD27-, CD57+ and are functionally distinct, expressing greater levels of TNF-α and IFN-γ on stimulation and perforin at rest than their CD8α+CD8βhigh counterparts. Antigen-specific T cells in HLA-B*4201+HIV-1 infected patients are found within both the CD161-CD8α+CD8βhigh and CD161-CD8α+CD8βlow populations. Overall we have clearly defined CD8αα expressing human T cell subsets using the TL-tetramer, and have demonstrated CD161-CD8α+CD8βlow populations, highly expanded in disease settings, to co-express CD8αβ and CD8αα. Co-expression of CD8αα on CD8αβ T cells may impact on their overall function in-vivo and contribute to the distinctive phenotype of highly differentiated populations in HBV and HIV-1 infection.

  8. Induction of Specific CD8+ T Cells against Intracellular Bacteria by CD8+ T-Cell-Oriented Immunization Approaches

    Directory of Open Access Journals (Sweden)

    Toshi Nagata

    2010-01-01

    Full Text Available For protection against intracellular bacteria such as Mycobacterium tuberculosis and Listeria monocytogenes, the cellular arm of adaptive immunity is necessary. A variety of immunization methods have been evaluated and are reported to induce specific CD8+ T cells against intracellular bacterial infection. Modified BCG vaccines have been examined to enhance CD8+ T-cell responses. Naked DNA vaccination is a promising strategy to induce CD8+ T cells. In addition to this strategy, live attenuated intracellular bacteria such as Shigella, Salmonella, and Listeria have been utilized as carriers of DNA vaccines in animal models. Vaccination with dendritic cells pulsed with antigenic peptides or the cells introduced antigen genes by virus vectors such as retroviruses is also a powerful strategy. Furthermore, vaccination with recombinant lentivirus has been attempted to induce specific CD8+ T cells. Combinations of these strategies (prime-boost immunization have been studied for the efficient induction of intracellular bacteria-specific CD8+ T cells.

  9. Role of CD8+ regulatory T cells in organ transplantation

    Directory of Open Access Journals (Sweden)

    Jiyan Su

    2014-01-01

    Full Text Available CD8 + T cells are regulatory T cells (Tregs that suppress both alloimmunity and autoimmunity in many animal models. This class of regulatory cells includes the CD8 + CD28 - , CD8 + CD103 + , CD8 + FoxP3 + and CD8 + CD122 + subsets. The mechanisms of action of these regulatory cells are not fully understood; however, the secretion of immunosuppressive cytokines, such as interleukin (IL-4, IL-10 and transforming growth factor beta (TGF-β as well as the direct killing of target cells via Fas L/Fas and the perforin/granzyme B pathways have been demonstrated in various models. Further studies are necessary to fully understand the mechanisms underlying the suppressive effects of Tregs and to provide experimental support for potential clinical trials. We recently observed that CD8 + CD122 + Tregs more potently suppressed allograft rejection compared to their CD4 + CD25 + counterparts, supporting the hypothesis that CD8 + Tregs may represent a new and promising Treg family that can be targeted to prevent allograft rejection in the clinic. In this review, we summarize the progress in the field during the past 7-10 years and discuss CD8 + Treg phenotypes, mechanisms of action, and their potential clinical applications; particularly in composite tissue transplants in burn and trauma patients.

  10. Decreased proportion of cytomegalovirus specific CD8 T-cells but no signs of general immunosenescence in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Gabriel Westman

    Full Text Available Cytomegalovirus (CMV has been suggested as a contributing force behind the impaired immune responsiveness in the elderly, with decreased numbers of naïve T-cells and an increased proportion of effector T-cells. Immunological impairment is also implicated as a part of the pathogenesis in Alzheimer's disease (AD. The aim of this study was to investigate whether AD patients present with a different CMV-specific CD8 immune profile compared to non-demented controls. Blood samples from 50 AD patients and 50 age-matched controls were analysed for HLA-type, CMV serostatus and systemic inflammatory biomarkers. Using multi-colour flow cytometry, lymphocytes from peripheral blood mononuclear cells were analysed for CMV-specific CD8 immunity with MHC-I tetramers A01, A02, A24, B07, B08 and B35 and further classified using CD27, CD28, CD45RA and CCR7 antibodies. Among CMV seropositive subjects, patients with AD had significantly lower proportions of CMV-specific CD8 T-cells compared to controls, 1.16 % vs. 4.13 % (p=0.0057. Regardless of dementia status, CMV seropositive subjects presented with a lower proportion of naïve CD8 cells and a higher proportion of effector CD8 cells compared to seronegative subjects. Interestingly, patients with AD showed a decreased proportion of CMV-specific CD8 cells but no difference in general CD8 differentiation.

  11. Heterogeneous differentiation patterns of individual CD8+ T cells.

    Science.gov (United States)

    Gerlach, Carmen; Rohr, Jan C; Perié, Leïla; van Rooij, Nienke; van Heijst, Jeroen W J; Velds, Arno; Urbanus, Jos; Naik, Shalin H; Jacobs, Heinz; Beltman, Joost B; de Boer, Rob J; Schumacher, Ton N M

    2013-05-03

    Upon infection, antigen-specific CD8(+) T lymphocyte responses display a highly reproducible pattern of expansion and contraction that is thought to reflect a uniform behavior of individual cells. We tracked the progeny of individual mouse CD8(+) T cells by in vivo lineage tracing and demonstrated that, even for T cells bearing identical T cell receptors, both clonal expansion and differentiation patterns are heterogeneous. As a consequence, individual naïve T lymphocytes contributed differentially to short- and long-term protection, as revealed by participation of their progeny during primary versus recall infections. The discordance in fate of individual naïve T cells argues against asymmetric division as a singular driver of CD8(+) T cell heterogeneity and demonstrates that reproducibility of CD8(+) T cell responses is achieved through population averaging.

  12. Generation and Regulation of CD8+ Regulatory T Cells

    Institute of Scientific and Technical Information of China (English)

    Linrong Lu; Harvey Cantor

    2008-01-01

    Research into the suppressive activity of CD4+FoxP3+ T regulatory cells (Treg) has defined a sublineage of CD4+ cells that contribute to self-tolerance and resistance to autoimmune disease. Much less attention has been given to the potential contribution of regulatory sublineages of CD8+ cells. Analysis of a small fraction of CD8+ cells that target autoreactive CD4+ cells through recognition of the MHC class Ib molecule Qa-1 in mouse and HLA-E in human has revitalized interest in CD8+ Treg. Here we summarize recent progress and future directions of research into the role of this CD8+ sublineage in resistance to autoimmune disease. Cellular & Molecular Immunology. 2008;5(6):401-406.

  13. Targeted suppression of autoreactive CD8+ T-cell activation using blocking anti-CD8 antibodies

    Science.gov (United States)

    Clement, Mathew; Pearson, James A.; Gras, Stephanie; van den Berg, Hugo A.; Lissina, Anya; Llewellyn-Lacey, Sian; Willis, Mark D.; Dockree, Tamsin; McLaren, James E.; Ekeruche-Makinde, Julia; Gostick, Emma; Robertson, Neil P.; Rossjohn, Jamie; Burrows, Scott R.; Price, David A.; Wong, F. Susan; Peakman, Mark; Skowera, Ania; Wooldridge, Linda

    2016-01-01

    CD8+ T-cells play a role in the pathogenesis of autoimmune diseases such as multiple sclerosis and type 1 diabetes. However, drugs that target the entire CD8+ T-cell population are not desirable because the associated lack of specificity can lead to unwanted consequences, most notably an enhanced susceptibility to infection. Here, we show that autoreactive CD8+ T-cells are highly dependent on CD8 for ligand-induced activation via the T-cell receptor (TCR). In contrast, pathogen-specific CD8+ T-cells are relatively CD8-independent. These generic differences relate to an intrinsic dichotomy that segregates self-derived and exogenous antigen-specific TCRs according to the monomeric interaction affinity with cognate peptide-major histocompatibility complex class I (pMHCI). As a consequence, “blocking” anti-CD8 antibodies can suppress autoreactive CD8+ T-cell activation in a relatively selective manner. These findings provide a rational basis for the development and in vivo assessment of novel therapeutic strategies that preferentially target disease-relevant autoimmune responses within the CD8+ T-cell compartment. PMID:27748447

  14. The role of CD8+ T cells during allograft rejection

    Directory of Open Access Journals (Sweden)

    Bueno V.

    2002-01-01

    Full Text Available Organ transplantation can be considered as replacement therapy for patients with end-stage organ failure. The percent of one-year allograft survival has increased due, among other factors, to a better understanding of the rejection process and new immunosuppressive drugs. Immunosuppressive therapy used in transplantation prevents activation and proliferation of alloreactive T lymphocytes, although not fully preventing chronic rejection. Recognition by recipient T cells of alloantigens expressed by donor tissues initiates immune destruction of allogeneic transplants. However, there is controversy concerning the relative contribution of CD4+ and CD8+ T cells to allograft rejection. Some animal models indicate that there is an absolute requirement for CD4+ T cells in allogeneic rejection, whereas in others CD4-depleted mice reject certain types of allografts. Moreover, there is evidence that CD8+ T cells are more resistant to immunotherapy and tolerance induction protocols. An intense focal infiltration of mainly CD8+CTLA4+ T lymphocytes during kidney rejection has been described in patients. This suggests that CD8+ T cells could escape from immunosuppression and participate in the rejection process. Our group is primarily interested in the immune mechanisms involved in allograft rejection. Thus, we believe that a better understanding of the role of CD8+ T cells in allograft rejection could indicate new targets for immunotherapy in transplantation. Therefore, the objective of the present review was to focus on the role of the CD8+ T cell population in the rejection of allogeneic tissue.

  15. Specific Control of Immunity by Regulatory CD8 T Cells

    Institute of Scientific and Technical Information of China (English)

    XiaoleiTang; TrevorRFSmith

    2005-01-01

    T lymphocytes with dedicated suppressor function (Treg) play a crucial role in the homeostatic control of immunity in the periphery. Several Treg phenotypes have now been identified in the CD4 and CD8 T cell populations, suggesting their down-regulatory function in both human and animal models of autoimmunity, transplantation and tumor immunity. Here we will focus on the CD8 Treg population and their ability to specifically inhibit a pathogenic autoimmune response. This review will detail the current advances in the knowledge of CD8 Treg in the context of antigen specificity, phenotype, MHC restriction, mechanism of action, and priming. Cellular & Molecular Immunology. 2005;2(1):11-19.

  16. Specific Control of Immunity by Regulatory CD8 T Cells

    Institute of Scientific and Technical Information of China (English)

    Xiaolei Tang; Trevor RF Smith; Vipin Kumar

    2005-01-01

    T lymphocytes with dedicated suppressor function (Treg) play a crucial role in the homeostatic control of immunity in the periphery. Several Treg phenotypes have now been identified in the CD4 and CD8 T cell populations,suggesting their down-regulatory function in both human and animal models of autoimmunity, transplantation and tumor immunity. Here we will focus on the CD8 Treg population and their ability to specifically inhibit a pathogenic autoimmune response. This review will detail the current advances in the knowledge of CD8 Treg in the context of antigen specificity, phenotype, MHC restriction, mechanism of action, and priming.

  17. CMV-specific CD8 T Cell Differentiation and Localization: Implications for Adoptive Therapies

    Directory of Open Access Journals (Sweden)

    Corinne J Smith

    2016-09-01

    Full Text Available Human cytomegalovirus (HCMV is a ubiquitous virus that causes chronic infection, and thus is one of the most common infectious complications of immune suppression. Adoptive transfer of HCMV-specific T cells has emerged as an effective method to reduce the risk for HCMV infection and/or reactivation by restoring immunity in transplant recipients. However, the CMV-specific CD8+ T cell response is comprised of a heterogenous mixture of subsets with distinct functions and localization and it is not clear if current adoptive immunotherapy protocols can reconstitute the full spectrum of CD8+ T cell immunity. The aim of this review is to briefly summarize the role of these T cell subsets in CMV immunity and to describe how current adoptive immunotherapy practices might affect their reconstitution in patients. The bulk of the CMV-specific CD8+ T cell population is made up of terminally differentiated effector T cells with immediate effector function and a short life span. Self-renewing memory T cells within the CMV-specific population retain the capacity to expand and differentiate upon challenge and are important for the long-term persistence of the CD8+ T cell response. Finally mucosal organs, which are frequent sites of CMV reactivation, are primarily inhabited by tissue resident memory T cells, which do not recirculate. Future work on adoptive transfer strategies may need to focus on striking a balance between the formation of these subsets to ensure the development of long lasting and protective immune responses that can access the organs affected by CMV disease.

  18. Functional heterogeneity of human effector CD8+ T cells.

    Science.gov (United States)

    Takata, Hiroshi; Naruto, Takuya; Takiguchi, Masafumi

    2012-02-09

    Effector CD8(+) T cells are believed to be terminally differentiated cells having cytotoxic activity and the ability to produce effector cytokines such as INF-γ and TNF-α. We investigated the difference between CXCR1(+) and CXCR1(-) subsets of human effector CD27(-)CD28(-)CD8(+) T cells. The subsets expressed cytolytic molecules similarly and exerted substantial cytolytic activity, whereas only the CXCR1(-) subset had IL-2 productivity and self-proliferative activity and was more resistant to cell death than the CXCR1(+) subset. These differences were explained by the specific up-regulation of CAMK4, SPRY2, and IL-7R in the CXCR1(-) subset and that of pro-apoptotic death-associated protein kinase 1 (DAPK1) in the CXCR1(+) subset. The IL-2 producers were more frequently found in the IL-7R(+) subset of the CXCR1(-) effector CD8(+) T cells than in the IL-7R(-) subset. IL-7/IL-7R signaling promoted cell survival only in the CXCR1(-) subset. The present study has highlighted a novel subset of effector CD8(+) T cells producing IL-2 and suggests the importance of this subset in the homeostasis of effector CD8(+) T cells.

  19. Human influenza viruses and CD8(+) T cell responses.

    Science.gov (United States)

    Grant, Emma J; Quiñones-Parra, Sergio M; Clemens, E Bridie; Kedzierska, Katherine

    2016-02-01

    Influenza A viruses (IAVs) cause significant morbidity and mortality worldwide, despite new strain-specific vaccines being available annually. As IAV-specific CD8(+) T cells promote viral control in the absence of neutralizing antibodies, and can mediate cross-reactive immunity toward distinct IAVs to drive rapid recovery from both mild and severe influenza disease, there is great interest in developing a universal T cell vaccine. However, despite detailed studies in mouse models of influenza virus infection, there is still a paucity of data on human epitope-specific CD8(+) T cell responses to IAVs. This review focuses on our current understanding of human CD8(+) T cell immunity against distinct IAVs and discusses the possibility of achieving a CD8(+) T cell mediated-vaccine that protects against multiple, distinct IAV strains across diverse human populations. We also review the importance of CD8(+) T cell immunity in individuals highly susceptible to severe influenza infection, including those hospitalised with influenza, the elderly and Indigenous populations.

  20. Adoptive immunotherapy via CD4+ versus CD8+ T cells

    Directory of Open Access Journals (Sweden)

    Vy Phan-Lai

    2016-04-01

    Full Text Available The goal of cancer immunotherapy is to induce specific and durable antitumor immunity. Adoptive T cell therapy (ACT has garnered wide interest, particularly in regard to strategies to improve T cell efficacy in trials. There are many types of T cells (and subsets which can be selected for use in ACT. CD4+ T cells are critical for the regulation, activation and aid of host defense mechanisms and, importantly, for enhancing the function of tumor-specific CD8+ T cells. To date, much research in cancer immunotherapy has focused on CD8+ T cells, in melanoma and other cancers. Both CD4+ T cells and CD8+ T cells have been evaluated as ACT in mice and humans, and both are effective at eliciting antitumor responses. IL-17 producing CD4+ T cells are a new subset of CD4+ T cells to be evaluated in ACT models. This review discusses the benefits of adoptive immunotherapy mediated by CD8+ and CD4+ cells. It also discusses the various type of T cells, source of T cells, and ex vivo cytokine growth factors for augmenting clinical efficacy of ACT. [Biomed Res Ther 2016; 3(4.000: 588-595

  1. Autocrine regulation of pulmonary inflammation by effector T-cell derived IL-10 during infection with respiratory syncytial virus.

    Directory of Open Access Journals (Sweden)

    Jie Sun

    2011-08-01

    Full Text Available Respiratory syncytial virus (RSV infection is the leading viral cause of severe lower respiratory tract illness in young infants. Clinical studies have documented that certain polymorphisms in the gene encoding the regulatory cytokine IL-10 are associated with the development of severe bronchiolitis in RSV infected infants. Here, we examined the role of IL-10 in a murine model of primary RSV infection and found that high levels of IL-10 are produced in the respiratory tract by anti-viral effector T cells at the onset of the adaptive immune response. We demonstrated that the function of the effector T cell -derived IL-10 in vivo is to limit the excess pulmonary inflammation and thereby to maintain critical lung function. We further identify a novel mechanism by which effector T cell-derived IL-10 controls excess inflammation by feedback inhibition through engagement of the IL-10 receptor on the antiviral effector T cells. Our findings suggest a potentially critical role of effector T cell-derived IL-10 in controlling disease severity in clinical RSV infection.

  2. Human regulatory T cell suppressive function is independent of apoptosis induction in activated effector T cells.

    Directory of Open Access Journals (Sweden)

    Yvonne Vercoulen

    Full Text Available BACKGROUND: CD4(+CD25(+FOXP3(+ Regulatory T cells (Treg play a central role in the immune balance to prevent autoimmune disease. One outstanding question is how Tregs suppress effector immune responses in human. Experiments in mice demonstrated that Treg restrict effector T cell (Teff responses by deprivation of the growth factor IL-2 through Treg consumption, resulting in apoptosis of Teff. PRINCIPAL FINDINGS: In this study we investigated the relevance of Teff apoptosis induction to human Treg function. To this end, we studied naturally occurring Treg (nTreg from peripheral blood of healthy donors, and, to investigate Treg function in inflammation in vivo, Treg from synovial fluid of Juvenile Idiopathic Arthritis (JIA patients (SF-Treg. Both nTreg and SF-Treg suppress Teff proliferation and cytokine production efficiently as predicted. However, in contrast with murine Treg, neither nTreg nor SF-Treg induce apoptosis in Teff. Furthermore, exogenously supplied IL-2 and IL-7 reverse suppression, but do not influence apoptosis of Teff. SIGNIFICANCE: Our functional data here support that Treg are excellent clinical targets to counteract autoimmune diseases. For optimal functional outcome in human clinical trials, future work should focus on the ability of Treg to suppress proliferation and cytokine production of Teff, rather than induction of Teff apoptosis.

  3. CD8 T cell memory: it takes all kinds

    Directory of Open Access Journals (Sweden)

    Stephen Christopher Jameson

    2012-11-01

    Full Text Available Understanding the mechanisms that regulate the differentiation and maintenance of CD8+ memory T cells is fundamental to the development of effective T cell based vaccines. Memory cell differentiation is influenced by the cytokines that accompany T cell priming, the history of previous antigen encounters, and the tissue sites into which memory cells migrate. These cues combine to influence the developing CD8+ memory pool, and recent work has revealed the importance of multiple transcription factors, metabolic molecules, and surface receptors in revealing the type of memory cell that is generated. Paired with increasingly meticulous subsetting and sorting of memory populations, we now know the CD8+ memory pool to be phenotypically and functionally heterogeneous in nature. This includes both recirculating and tissue resident memory populations, and cells with varying degrees of inherent longevity and protective function. These data point to the importance of tailored vaccine design. Here we discuss how the diversity of the memory CD8+ T cell pool challenges the notion that ‘one size fits all’ for pathogen control, and how distinct memory subsets may be suited for distinct aspects of protective immunity.

  4. T Cell Help Amplifies Innate Signals in CD8+ DCs for Optimal CD8+ T Cell Priming

    Directory of Open Access Journals (Sweden)

    Marie Greyer

    2016-01-01

    Full Text Available DCs often require stimulation from CD4+ T cells to propagate CD8+ T cell responses, but precisely how T cell help optimizes the priming capacity of DCs and why this appears to differ between varying types of CD8+ T cell immunity remains unclear. We show that CD8+ T cell priming upon HSV-1 skin infection depended on DCs receiving stimulation from both IFN-α/β and CD4+ T cells to provide IL-15. This was not an additive effect but resulted from CD4+ T cells amplifying DC production of IL-15 in response to IFN-α/β. We also observed that increased innate stimulation reversed the helper dependence of CD8+ T cell priming and that the innate stimulus, rather than the CD4+ T cells themselves, determined how “help’” was integrated into the priming response by DCs. These findings identify T cell help as a flexible means to amplify varying suboptimal innate signals in DCs.

  5. Effector T Cells Abrogate Stroma-Mediated Chemoresistance in Ovarian Cancer.

    Science.gov (United States)

    Wang, Weimin; Kryczek, Ilona; Dostál, Lubomír; Lin, Heng; Tan, Lijun; Zhao, Lili; Lu, Fujia; Wei, Shuang; Maj, Tomasz; Peng, Dongjun; He, Gong; Vatan, Linda; Szeliga, Wojciech; Kuick, Rork; Kotarski, Jan; Tarkowski, Rafał; Dou, Yali; Rattan, Ramandeep; Munkarah, Adnan; Liu, J Rebecca; Zou, Weiping

    2016-05-19

    Effector T cells and fibroblasts are major components in the tumor microenvironment. The means through which these cellular interactions affect chemoresistance is unclear. Here, we show that fibroblasts diminish nuclear accumulation of platinum in ovarian cancer cells, resulting in resistance to platinum-based chemotherapy. We demonstrate that glutathione and cysteine released by fibroblasts contribute to this resistance. CD8(+) T cells abolish the resistance by altering glutathione and cystine metabolism in fibroblasts. CD8(+) T-cell-derived interferon (IFN)γ controls fibroblast glutathione and cysteine through upregulation of gamma-glutamyltransferases and transcriptional repression of system xc(-) cystine and glutamate antiporter via the JAK/STAT1 pathway. The presence of stromal fibroblasts and CD8(+) T cells is negatively and positively associated with ovarian cancer patient survival, respectively. Thus, our work uncovers a mode of action for effector T cells: they abrogate stromal-mediated chemoresistance. Capitalizing upon the interplay between chemotherapy and immunotherapy holds high potential for cancer treatment.

  6. CD8α dendritic cells drive establishment of HSV-1 latency.

    Directory of Open Access Journals (Sweden)

    Kevin R Mott

    Full Text Available It is generally accepted that CD8 T cells play the key role to maintain HSV-1 latency in trigeminal ganglia of ocularly infected mice. Yet, comparably little is known about the role of innate immunity in establishment of viral latency. In the current study, we investigated whether CD8α DCs impact HSV-1 latency by examining latency in the trigeminal ganglia (TG of wild-type (WT C57BL/6 versus CD8α-/- (lack functional CD8 T cells and CD8α+ DCs, CD8β-/- (have functional CD8α+ T cells and CD8α+ DCs, and β2m-/- (lack functional CD8 T cells but have CD8α+ DCs mice as well as BXH2 (have functional CD8 T cells but lack CD8α+ DCs versus WT C3H (have functional CD8α T cells and CD8α+ DCs mice. We also determined whether the phenotype of CD8α-/- and BXH2 mice could be restored to that of WT mice by adoptive transfer of WT CD8+ T cells or bone marrow (BM derived CD8α+ DCs. Our results clearly demonstrate that CD8α DCs, rather than CD8 T cells, are responsible for enhanced viral latency and recurrences.

  7. Competition for IL-2 between regulatory and effector T cells to chisel immune responses

    Directory of Open Access Journals (Sweden)

    Thomas eHöfer

    2012-09-01

    Full Text Available In this review we discuss how the competition for cytokines between different cells of the immune system can shape the system wide immune response. We focus on interleukin-2 (IL-2 secretion by activated effector T cells (Teff and on the competition for IL-2 consumption between Teff and regulatory T cells (Treg. We discuss the evidence for the mechanism in which the depletion of IL-2 by Treg cells would be sufficient to suppress an autoimmune response, yet not strong enough to prevent an immune response. We present quantitative estimations and summarize our modeling effort to show that the tug-of-war between Treg and Teff cells for IL-2 molecules can be won by Treg cells in the case of weak activation of Teff leading to the suppression of the immune response. Or, for strongly activated Teff cells, it can be won by Teff cells bringing about the activation of the whole adaptive immune system. Finally, we discuss some recent applications attempting to achieve clinical effects through the modulation of IL-2 consumption by Treg compartment.

  8. Characterization of a novel single-chain bispecific antibody for retargeting of T cells to tumor cells via the TCR co-receptor CD8.

    Directory of Open Access Journals (Sweden)

    Irene Michalk

    Full Text Available There is currently growing interest in retargeting of effector T cells to tumor cells via bispecific antibodies (bsAbs. Usually, bsAbs are directed on the one hand to the CD3 complex of T cells and on the other hand to a molecule expressed on the surface of the target cell. A bsAb-mediated cross-linkage via CD3 leads to an activation of CD8+ T cells and consequently to killing of the target cells. In parallel, CD4+ T cells including TH1, TH2, TH17 cells and even regulatory T cells (Tregs will be activated as well. Cytokines produced by CD4+ T cells can contribute to severe side effects e. g. life-threatening cytokine storms and, thinking of the immunosupressive function of Tregs, can even be counterproductive. Therefore, we asked whether or not it is feasible to limit retargeting to CD8+ T cells e. g. via targeting of the co-receptor CD8 instead of CD3. In order to test for proof of concept, a novel bsAb with specificity for CD8 and a tumor-associated surface antigen was constructed. Interestingly, we found that pre-activated (but not freshly isolated CD8+ T cells can be retargeted via CD8-engaging bsAbs leading to an efficient lysis of target cells.

  9. Abnormal phenotypic distribution of regulatory and effector T cells in octogenarian and nonagenarian women

    Directory of Open Access Journals (Sweden)

    Wilson de Melo Cruvinel

    2015-08-01

    Full Text Available SummaryIntroduction:aging is associated with several immunologic changes. Regulatory (Treg and effector T cells are involved in the pathogenesis of infectious, neoplastic, and autoimmune diseases. Little is known about the effects of aging on the frequency and function of these T cell subpopulations.Methods:peripheral blood mononuclear cells (PBMC were obtained from 26 young (under 44 years old and 18 elderly (above 80 years old healthy women. T cell subpopulations were analyzed by flow cytometry.Results:elderly individuals had lower frequency of several activated effector T cell phenotypes as compared with young individuals: CD3+CD4+CD25+ (3.82±1.93 versus 9.53±4.49; p<0.0001; CD3+CD4+CD25+CD127+(2.39±1.19 versus 7.26±3.84; p<0.0001; CD3+CD4+CD25+ (0.41±0.22 versus 1.86±0.85, p<0.0001; and CD3+CD4+CD25highCD127+(0.06±0.038 versus 0.94±0.64, p<0.0001. Treg (CD3+CD4+CD25+CD127øFoxp3+ presented lower frequency in elderly individuals as compared to young adults (0.34±0.18 versus 0.76±0.48; p=0.0004 and its frequency was inversely correlated with age in the whole group (r=-0.439; p=0.013. The elderly group showed higher frequency of two undefined CD25øFoxp3+ phenotypes: CD3+CD4+CD25øFoxp3+(15.05±7.34 versus 1.65±1.71; p<0.0001 and CD3+CD4+CD25øCD127øFoxp3+(13.0±5.52 versus 3.51±2.87; p<0.0001.Conclusions:the altered proportion of different T cell subsets herein documented in healthy elderly women may be relevant to the understanding of the immunologic behavior and disease susceptibility patterns observed in geriatric patients.

  10. Viral sequestration of antigen subverts cross presentation to CD8(+ T cells.

    Directory of Open Access Journals (Sweden)

    Eric F Tewalt

    2009-05-01

    Full Text Available Virus-specific CD8(+ T cells (T(CD8+ are initially triggered by peptide-MHC Class I complexes on the surface of professional antigen presenting cells (pAPC. Peptide-MHC complexes are produced by two spatially distinct pathways during virus infection. Endogenous antigens synthesized within virus-infected pAPC are presented via the direct-presentation pathway. Many viruses have developed strategies to subvert direct presentation. When direct presentation is blocked, the cross-presentation pathway, in which antigen is transferred from virus-infected cells to uninfected pAPC, is thought to compensate and allow the generation of effector T(CD8+. Direct presentation of vaccinia virus (VACV antigens driven by late promoters does not occur, as an abortive infection of pAPC prevents production of these late antigens. This lack of direct presentation results in a greatly diminished or ablated T(CD8+ response to late antigens. We demonstrate that late poxvirus antigens do not enter the cross-presentation pathway, even when identical antigens driven by early promoters access this pathway efficiently. The mechanism mediating this novel means of viral modulation of antigen presentation involves the sequestration of late antigens within virus factories. Early antigens and cellular antigens are cross-presented from virus-infected cells, as are late antigens that are targeted to compartments outside of the virus factories. This virus-mediated blockade specifically targets the cross-presentation pathway, since late antigen that is not cross-presented efficiently enters the MHC Class II presentation pathway. These data are the first to describe an evasion mechanism employed by pathogens to prevent entry into the cross-presentation pathway. In the absence of direct presentation, this evasion mechanism leads to a complete ablation of the T(CD8+ response and a potential replicative advantage for the virus. Such mechanisms of viral modulation of antigen presentation

  11. Killing of targets by effector CD8 T cells in the mouse spleen follows the law of mass action

    Energy Technology Data Exchange (ETDEWEB)

    Ganusov, Vitaly V [Los Alamos National Laboratory

    2009-01-01

    In contrast with antibody-based vaccines, it has been difficult to measure the efficacy of T cell-based vaccines and to correlate the efficacy of CD8 T cell responses with protection again viral infections. In part, this difficulty is due to poor understanding of the in vivo efficacy of CD8 T cells produced by vaccination. Using a: recently developed experimental method of in vivo cytotoxicity we have investigated quantitative aspects of killing of peptide-pulsed targets by effector and memory CD8 T cells, specific to three epitopes of lymphocytic choriomeningitis virus (LCMV), in the mouse spleen. By analyzing data on killing of targets with varying number of epitope-specific effector and memory CD8 T cells, we find that killing of targets by effectors follows the law of mass-action, that is the death rate of peptide-pulsed targets is proportional to the frequency of CTLs in the spleen. In contrast, killing of targets by memory CD8 T cells does not follow the mass action law because the death rate of targets saturates at high frequencies of memory CD8 T cells. For both effector and memory cells, we also find little support for the killing term that includes the decrease of the death rate of targets with target cell density. Interestingly, our analysis suggests that at low CD8 T cell frequencies, memory CD8 T cells on the per capita basis are more efficient at killing peptide-pulsed targets than effectors, but at high frequencies, effectors are more efficient killers than memory T cells. Comparison of the estimated killing efficacy of effector T cells with the value that is predicted from theoretical physics and based on motility of T cells in lymphoid tissues, suggests that limiting step in the killing of peptide-pulsed targets is delivering the lethal hit and not finding the target. Our results thus form a basis for quantitative understanding of the process of killing of virus-infected cells by T cell responses in tissues and can be used to correlate the

  12. Unexpected positive control of NFκB and miR-155 by DGKα and ζ ensures effector and memory CD8+ T cell differentiation

    Science.gov (United States)

    Yang, Jialong; Zhang, Ping; Krishna, Sruti; Wang, Jinli; Lin, Xingguang; Huang, Hongxiang; Xie, Danli; Gorentla, Balachandra; Huang, Rick; Gao, Jimin; Li, Qi-Jing; Zhong, Xiao-Ping

    2016-01-01

    Signals from the T-cell receptor (TCR) and γ-chain cytokine receptors play crucial roles in initiating activation and effector/memory differentiation of CD8 T-cells. We report here that simultaneous deletion of both diacylglycerol kinase (DGK) α and ζ (DKO) severely impaired expansion of CD8 effector T cells and formation of memory CD8 T-cells after Listeria monocytogenes infection. Moreover, ablation of both DGKα and ζ in preformed memory CD8 T-cells triggered death and impaired homeostatic proliferation of these cells. DKO CD8 T-cells were impaired in priming due to decreased expression of chemokine receptors and migration to the draining lymph nodes. Moreover, DKO CD8 T-cells were unexpectedly defective in NFκB-mediated miR-155 transcript, leading to excessive SOCS1 expression and impaired γ-chain cytokine signaling. Our data identified a DGK-NFκB-miR-155-SOCS1 axis that bridges TCR and γ-chain cytokine signaling for robust CD8 T-cell primary and memory responses to bacterial infection. PMID:27014906

  13. CD40 activation rescues antiviral CD8⁺ T cells from PD-1-mediated exhaustion.

    Directory of Open Access Journals (Sweden)

    Masanori Isogawa

    Full Text Available The intrahepatic immune environment is normally biased towards tolerance. Nonetheless, effective antiviral immune responses can be induced against hepatotropic pathogens. To examine the immunological basis of this paradox we studied the ability of hepatocellularly expressed hepatitis B virus (HBV to activate immunologically naïve HBV-specific CD8⁺ T cell receptor (TCR transgenic T cells after adoptive transfer to HBV transgenic mice. Intrahepatic priming triggered vigorous in situ T cell proliferation but failed to induce interferon gamma production or cytolytic effector function. In contrast, the same T cells differentiated into cytolytic effector T cells in HBV transgenic mice if Programmed Death 1 (PD-1 expression was genetically ablated, suggesting that intrahepatic antigen presentation per se triggers negative regulatory signals that prevent the functional differentiation of naïve CD8⁺ T cells. Surprisingly, coadministration of an agonistic anti-CD40 antibody (αCD40 inhibited PD-1 induction and restored T cell effector function, thereby inhibiting viral gene expression and causing a necroinflammatory liver disease. Importantly, the depletion of myeloid dendritic cells (mDCs strongly diminished the αCD40 mediated functional differentiation of HBV-specific CD8⁺ T cells, suggesting that activation of mDCs was responsible for the functional differentiation of HBV-specific CD8⁺ T cells in αCD40 treated animals. These results demonstrate that antigen-specific, PD-1-mediated CD8⁺ T cell exhaustion can be rescued by CD40-mediated mDC-activation.

  14. Nicotinic acid adenine dinucleotide phosphate-mediated calcium signalling in effector T cells regulates autoimmunity of the central nervous system

    Science.gov (United States)

    Cordiglieri, Chiara; Odoardi, Francesca; Zhang, Bo; Nebel, Merle; Kawakami, Naoto; Klinkert, Wolfgang E. F.; Lodygin, Dimtri; Lühder, Fred; Breunig, Esther; Schild, Detlev; Ulaganathan, Vijay Kumar; Dornmair, Klaus; Dammermann, Werner; Potter, Barry V. L.; Guse, Andreas H.

    2010-01-01

    Nicotinic acid adenine dinucleotide phosphate represents a newly identified second messenger in T cells involved in antigen receptor-mediated calcium signalling. Its function in vivo is, however, unknown due to the lack of biocompatible inhibitors. Using a recently developed inhibitor, we explored the role of nicotinic acid adenine dinucleotide phosphate in autoreactive effector T cells during experimental autoimmune encephalomyelitis, the animal model for multiple sclerosis. We provide in vitro and in vivo evidence that calcium signalling controlled by nicotinic acid adenine dinucleotide phosphate is relevant for the pathogenic potential of autoimmune effector T cells. Live two photon imaging and molecular analyses revealed that nicotinic acid adenine dinucleotide phosphate signalling regulates T cell motility and re-activation upon arrival in the nervous tissues. Treatment with the nicotinic acid adenine dinucleotide phosphate inhibitor significantly reduced both the number of stable arrests of effector T cells and their invasive capacity. The levels of pro-inflammatory cytokines interferon-gamma and interleukin-17 were strongly diminished. Consecutively, the clinical symptoms of experimental autoimmune encephalomyelitis were ameliorated. In vitro, antigen-triggered T cell proliferation and cytokine production were evenly suppressed. These inhibitory effects were reversible: after wash-out of the nicotinic acid adenine dinucleotide phosphate antagonist, the effector T cells fully regained their functions. The nicotinic acid derivative BZ194 induced this transient state of non-responsiveness specifically in post-activated effector T cells. Naïve and long-lived memory T cells, which express lower levels of the putative nicotinic acid adenine dinucleotide phosphate receptor, type 1 ryanodine receptor, were not targeted. T cell priming and recall responses in vivo were not reduced. These data indicate that the nicotinic acid adenine dinucleotide phosphate

  15. Generalized Lévy walks and the role of chemokines in migration of effector CD8+ T cells.

    Science.gov (United States)

    Harris, Tajie H; Banigan, Edward J; Christian, David A; Konradt, Christoph; Tait Wojno, Elia D; Norose, Kazumi; Wilson, Emma H; John, Beena; Weninger, Wolfgang; Luster, Andrew D; Liu, Andrea J; Hunter, Christopher A

    2012-06-28

    Chemokines have a central role in regulating processes essential to the immune function of T cells, such as their migration within lymphoid tissues and targeting of pathogens in sites of inflammation. Here we track T cells using multi-photon microscopy to demonstrate that the chemokine CXCL10 enhances the ability of CD8+ T cells to control the pathogen Toxoplasma gondii in the brains of chronically infected mice. This chemokine boosts T-cell function in two different ways: it maintains the effector T-cell population in the brain and speeds up the average migration speed without changing the nature of the walk statistics. Notably, these statistics are not Brownian; rather, CD8+ T-cell motility in the brain is well described by a generalized Lévy walk. According to our model, this unexpected feature enables T cells to find rare targets with more than an order of magnitude more efficiency than Brownian random walkers. Thus, CD8+ T-cell behaviour is similar to Lévy strategies reported in organisms ranging from mussels to marine predators and monkeys, and CXCL10 aids T cells in shortening the average time taken to find rare targets.

  16. Derivation and Utilization of Functional CD8(+) Dendritic Cell Lines.

    Science.gov (United States)

    Pigni, Matteo; Ashok, Devika; Acha-Orbea, Hans

    2016-01-01

    It is notoriously difficult to obtain large quantities of non-activated dendritic cells ex vivo. For this reason, we produced and characterized a mouse model expressing the large T oncogene under the CD11c promoter (Mushi mice), in which CD8α(+) dendritic cells transform after 4 months. We derived a variety of stable cell lines from these primary lines. These cell lines reproducibly share with freshly isolated dendritic cells most surface markers, mRNA and protein expression, and all tested biological functions. Cell lines can be derived from various strains and knockout mice and can be easily transduced with lentiviruses. In this article, we describe the derivation, culture, and lentiviral transduction of these dendritic cell lines.

  17. Expansion of CD8+ cells in autoimmune hemolytic anemia.

    Science.gov (United States)

    Smirnova, S Ju; Sidorova, Ju V; Tsvetaeva, N V; Nikulina, O F; Biderman, B V; Nikulina, E E; Kulikov, S M; Sudarikov, A B

    2016-01-01

    Autoimmune hemolytic anemia (AIHA) is a rare blood disease associated with the production of auto-antibodies and autoimmune hemolysis. A critical role of B-cells in the development of AIHA has been demonstrated before. Here, we present the analysis of the clonal T-cell populations in patients with AIHA. Thirty-three patients with AIHA were included in this study. Thirteen patients with other anemias, 14 patients with other autoimmune conditions (SLE - 6, RA - 8) and 20 healthy donors were included in the study as a control group. The clonality of T-cell was evaluated by the assessment of the T-cell receptor gamma and beta chain gene rearrangements (TCRG and TCRB). The incidence of T-cell monoclonality detected in patients with AIHA was significantly higher compared to the control group. The persistence of T-cell clones did not correlate with the level of hemoglobin and other signs of remission or relapse and did not disappear after the therapy and clinical improvement (observation period was between 1 and 10 years). There was no correlation between the T-cell clonality and the gender, age, splenectomy, duration or severity of the disease. Fractionation of T-lymphocytes (CD4+, CD8+, CD4+25+) revealed that the monoclonal T-cells belonged to the CD8+ sub-population. We assume that besides a possible causative role of the T-cell clones in AIHA to autoimmune process, these clones do not directly participate in the development and maintenance of hemolysis. Most of the AIHA patients (48.5%) demonstrated a T-cell monoclonality, which requires monitoring and should be distinguished from T-cell tumors.

  18. Consequences of exposure to ionizing radiation for effector T cell function in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Rouse, B.T.; Hartley, D.; Doherty, P.C. (Univ. of Tennessee, Knoxville (USA))

    1989-01-01

    The adoptive transfer of acutely primed and memory virus-immune CD8+ T cells causes enhanced meningitis in both cyclophosphamide (Cy) suppressed, and unsuppressed, recipients infected with lymphocytic choriomeningitis virus (LCMV). The severity of meningitis is assessed by counting cells in cerebrospinal fluid (CSF) obtained from the cisterna magna, which allows measurement of significant inflammatory process ranging from 3 to more than 300 times the background number of cells found in mice injected with virus alone. Exposure of the donor immune population to ionizing radiation prior to transfer has shown that activated T cells from mice primed 7 or 8 days previously with virus may still promote a low level of meningitis in unsuppressed recipients following as much as 800 rads, while this effect is lost totally in Cy-suppressed mice at 600 rads. Memory T cells are more susceptible and show no evidence of in vivo effector function in either recipient population subsequent to 400 rads, a dose level which also greatly reduces the efficacy of acutely-primed T cells. The results are interpreted as indicating that heavily irradiated cells that are already fully functional show evidence of primary localization to the CNS and a limited capacity to cause pathology. Secondary localization, and events that require further proliferation of the T cells in vivo, are greatly inhibited by irradiation.

  19. CD8+ T cells in human autoimmune arthritis : The unusual suspects

    NARCIS (Netherlands)

    Petrelli, Alessandra; Van Wijk, Femke

    2016-01-01

    CD8+ T cells are key players in the body's defence against viral infections and cancer. To date, data on the role of CD8+ T cells in autoimmune diseases have been scarce, especially when compared with the wealth of research on CD4+ T cells. However, growing evidence suggests that CD8+ T-cell homeost

  20. Origin of CD8+ Effector and Memory T Cell Subsets

    Institute of Scientific and Technical Information of China (English)

    Christian Stemberger; Michael Neuenhahn; Veit R.Buchholz; Dirk H.Busch

    2007-01-01

    It is well accepted that CD8+ T cells play a pivotal role in providing protection against infection with intracellular pathogens and some tumors. In many cases protective immunity is maintained for long periods of time (immunological memory). Over the past years, it has become evident that in order to fulfill these multiple tasks,distinct subsets of effector and memory T cells have to be generated. Until today, however, little is known about the underlying mechanisms of subset differentiation and the timing of lineage fate decisions. In this context, it is of special importance to determine at which level of clonal expansion functional and phenotypical heterogeneity is achieved. Different models for T cell subset diversification have been proposed; these differ mainly in the time point during priming and clonal expansion (prior, during, or beyond the first cell division) when differentiation programs are induced. Recently developed single-cell adoptive transfer technology has allowed us to demonstrate that individual precursor cell still bears the full plasticity to develop into a plethora different T cell subsets. This observation targets the shaping of T cell subset differentiation towards factors that are still operative beyond the first cell division. These findings have important implications for vaccine development, as the modulation of differentiation patterns towards distinct subsets could become a powerful strategy to enhance the efficacy and quality of vaccines.

  1. Good syndrome presenting with CD8+ T-Cell large granular lymphocyte leukemia

    OpenAIRE

    Caperton, Caroline; Agrawal, Sudhanshu; Gupta, Sudhir

    2015-01-01

    Good Syndrome is an adult-onset combined immunodeficiency defined by hypogammaglobulinemia, low or absent number of B cells, T cell deficiency and thymic tumor. We have characterized CD8+ T cells from a patient with Good syndrome that presented with CD8+T-cell large granular lymphocytic leukemia (LGL). Characterization of peripheral blood CD8+ T cells revealed that majority of CD8+ T cells were terminally differentiated effector memory phenotype (TEMRA; CD8+CCR7-CD45RA+), and were PD-1high (C...

  2. Human CD8 T cells generated in vitro from hematopoietic stem cells are functionally mature

    Directory of Open Access Journals (Sweden)

    Zúñiga-Pflücker Juan

    2011-03-01

    Full Text Available Abstract Background T cell development occurs within the highly specialized thymus. Cytotoxic CD8 T cells are critical in adaptive immunity by targeting virally infected or tumor cells. In this study, we addressed whether functional CD8 T cells can be generated fully in vitro using human umbilical cord blood (UCB hematopoietic stem cells (HSCs in coculture with OP9-DL1 cells. Results HSC/OP9-DL1 cocultures supported the differentiation of CD8 T cells, which were TCR/CD3hi CD27hi CD1aneg and thus phenotypically resembled mature functional CD8 single positive thymocytes. These in vitro-generated T cells also appeared to be conventional CD8 cells, as they expressed high levels of Eomes and low levels of Plzf, albeit not identical to ex vivo UCB CD8 T cells. Consistent with the phenotypic and molecular characterization, upon TCR-stimulation, in vitro-generated CD8 T cells proliferated, expressed activation markers (MHC-II, CD25, CD38, secreted IFN-γ and expressed Granzyme B, a cytotoxic T-cell effector molecule. Conclusion Taken together, the ability to direct human hematopoietic stem cell or T-progenitor cells towards a mature functional phenotype raises the possibility of establishing cell-based treatments for T-immunodeficiencies by rapidly restoring CD8 effector function, thereby mitigating the risks associated with opportunistic infections.

  3. Autoreactive effector/memory CD4+ and CD8+ T cells infiltrating grafted and endogenous islets in diabetic NOD mice exhibit similar T cell receptor usage.

    Directory of Open Access Journals (Sweden)

    Ramiro Diz

    Full Text Available Islet transplantation provides a "cure" for type 1 diabetes but is limited in part by recurrent autoimmunity mediated by β cell-specific CD4(+ and CD8(+ T cells. Insight into the T cell receptor (TCR repertoire of effector T cells driving recurrent autoimmunity would aid the development of immunotherapies to prevent islet graft rejection. Accordingly, we used a multi-parameter flow cytometry strategy to assess the TCR variable β (Vβ chain repertoires of T cell subsets involved in autoimmune-mediated rejection of islet grafts in diabetic NOD mouse recipients. Naïve CD4(+ and CD8(+ T cells exhibited a diverse TCR repertoire, which was similar in all tissues examined in NOD recipients including the pancreas and islet grafts. On the other hand, the effector/memory CD8(+ T cell repertoire in the islet graft was dominated by one to four TCR Vβ chains, and specific TCR Vβ chain usage varied from recipient to recipient. Similarly, islet graft- infiltrating effector/memory CD4(+ T cells expressed a limited number of prevalent TCR Vβ chains, although generally TCR repertoire diversity was increased compared to effector/memory CD8(+ T cells. Strikingly, the majority of NOD recipients showed an increase in TCR Vβ12-bearing effector/memory CD4(+ T cells in the islet graft, most of which were proliferating, indicating clonal expansion. Importantly, TCR Vβ usage by effector/memory CD4(+ and CD8(+ T cells infiltrating the islet graft exhibited greater similarity to the repertoire found in the pancreas as opposed to the draining renal lymph node, pancreatic lymph node, or spleen. Together these results demonstrate that effector/memory CD4(+ and CD8(+ T cells mediating autoimmune rejection of islet grafts are characterized by restricted TCR Vβ chain usage, and are similar to T cells that drive destruction of the endogenous islets.

  4. T Cell Receptor Activation of NF-κB in Effector T Cells: Visualizing Signaling Events Within and Beyond the Cytoplasmic Domain of the Immunological Synapse.

    Science.gov (United States)

    Traver, Maria K; Paul, Suman; Schaefer, Brian C

    2017-01-01

    The T cell receptor (TCR) to NF-κB signaling pathway plays a critical role in regulation of proliferation and effector T cell differentiation and function. In naïve T cells, data suggest that most or all key cytoplasmic NF-κB signaling occurs in a TCR-proximal manner at the immunological synapse (IS). However, the subcellular organization of cytoplasmic NF-κB-activating complexes in effector T cells is more complex, involving signaling molecules and regulatory mechanisms beyond those operative in naïve cells. Additionally, in effector T cells, much signaling occurs at cytoplasmic locations distant from the IS. Visualization of these cytoplasmic signaling complexes has provided key insights into the complex and dynamic regulation of NF-κB signal transduction in effector T cells. In this chapter, we provide in-depth protocols for activating and preparing effector T cells for fluorescence imaging, as well as a discussion of the effective application of distinct imaging methodologies, including confocal and super-resolution microscopy and imaging flow cytometry.

  5. Low and high CD8 positive T cells in multiple sclerosis patients.

    Directory of Open Access Journals (Sweden)

    Maryam Izad

    2013-09-01

    Full Text Available Cumulating evidence points to a key role for CD8+ T cells in the pathogenesis of multiple sclerosis.CD8 expression level was believed to be present constantly on the surface of human peripheral blood T cells. However, it was shown that peripheral blood lymphocytes may be divided by the level of CD8 expression, into CD8+high and CD8+low T cells. Now it is well established that the CD8low population of CD8+ T cells demonstrates an activated effector phenotype while the CD8+high T cells have been reported to have regulatory function. In this report we used a flow cytometric assay to compare the frequency of these two subsets in multiple sclerosis patients (n=31 with healthy age- and gender-matched controls (n=18. We found that CD8+ T cells and CD8+low T cells significantly increased in secondary progressive (SP and primary progressive multiple sclerosis (PPMS patients in comparison to controls (p<0.0002 and p<0.004 respectively and also RRMS (p<0.005 and p<0.017 respectively. These results demonstrated the role of CD8low T cells in progressive form of multiple sclerosis.

  6. Peptide pool immunization and CD8+ T cell reactivity

    DEFF Research Database (Denmark)

    Rasmussen, Susanne B; Harndahl, Mikkel N; Buus, Anette Stryhn

    2013-01-01

    Mice were immunized twice with a pool of five peptides selected among twenty 8-9-mer peptides for their ability to form stable complexes at 37°C with recombinant H-2K(b) (half-lives 10-15h). Vaccine-induced immunity of splenic CD8(+) T cells was studied in a 24h IFNγ Elispot assay. Surprisingly......, IFNγ spot-formation was observed without addition of peptide to the assay culture at 3 weeks and 3 months after immunization. To clarify if IFNγ spot formation in the absence of peptide exposure ex vivo is caused by the peptide-pool per se, mice were immunized with single peptides. Three of the five...... peptides induced normal peptide immunity i.e. the specific T cell reactivity in the Elispot culture was strictly dependent on exposure to the immunizing peptide ex vivo. However, immunization with two of the peptides, a VSV- and a Mycobacterium-derived peptide, resulted in IFNγ spot formation without...

  7. Peripheral canine CD4(+)CD8(+) double-positive T cells - unique amongst others.

    Science.gov (United States)

    von Buttlar, Heiner; Bismarck, Doris; Alber, Gottfried

    2015-12-15

    T lymphocytes co-expressing CD4 and CD8 ("double-positive T cells") are commonly associated with a thymic developmental stage of T cells. Their first description in humans and pigs as extrathymic T cells with a memory phenotype almost 30 years ago came as a surprise. Meanwhile peripheral double-positive T cells have been described in a growing number of different species. In this review we highlight novel data from our very recent studies on canine peripheral double-positive T cells which point to unique features of double-positive T cells in the dog. In contrast to porcine CD4(+)CD8(+) T cells forming a homogenous cellular population based on their expression of CD4 and CD8α, canine CD4(+)CD8(+) T cells can be divided into three different cellular subsets with distinct expression levels of CD4 and CD8α. Double-positive T cells expressing CD8β are present in humans and dogs but absent in swine. Moreover, canine CD4(+)CD8(+) T cells can not only develop from CD4(+) single-positive T cells but also from CD8(+) single-positive T cells. Together, this places canine CD4(+)CD8(+) T cells closer to their human than porcine counterparts since human double-positive T cells also appear to be heterogeneous in their CD4 and CD8α expression and have both CD4(+) and CD8(+) T cells as progenitor cells. However, CD4(+) single-positive T cells are the more potent progenitors for canine double-positive T cells, whereas CD8(+) single-positive T cells are more potent progenitors for human double-positive T cells. Canine double-positive T cells have an activated phenotype and may have as yet unrecognized roles in vivo in immunity to infection or in inflammatory diseases such as chronic infection, autoimmunity, allergy, or cancer.

  8. Suppression of IL-7-dependent Effector T-cell Expansion by Multipotent Adult Progenitor Cells and PGE2

    Science.gov (United States)

    Reading, James L; Vaes, Bart; Hull, Caroline; Sabbah, Shereen; Hayday, Thomas; Wang, Nancy S; DiPiero, Anthony; Lehman, Nicholas A; Taggart, Jen M; Carty, Fiona; English, Karen; Pinxteren, Jef; Deans, Robert; Ting, Anthony E; Tree, Timothy I M

    2015-01-01

    T-cell depletion therapy is used to prevent acute allograft rejection, treat autoimmunity and create space for bone marrow or hematopoietic cell transplantation. The evolved response to T-cell loss is a transient increase in IL-7 that drives compensatory homeostatic proliferation (HP) of mature T cells. Paradoxically, the exaggerated form of this process that occurs following lymphodepletion expands effector T-cells, often causing loss of immunological tolerance that results in rapid graft rejection, autoimmunity, and exacerbated graft-versus-host disease (GVHD). While standard immune suppression is unable to treat these pathologies, growing evidence suggests that manipulating the incipient process of HP increases allograft survival, prevents autoimmunity, and markedly reduces GVHD. Multipotent adult progenitor cells (MAPC) are a clinical grade immunomodulatory cell therapy known to alter γ-chain cytokine responses in T-cells. Herein, we demonstrate that MAPC regulate HP of human T-cells, prevent the expansion of Th1, Th17, and Th22 effectors, and block the development of pathogenic allograft responses. This occurs via IL-1β-primed secretion of PGE2 and activates T-cell intrinsic regulatory mechanisms (SOCS2, GADD45A). These data provide proof-of-principle that HP of human T-cells can be targeted by cellular and molecular therapies and lays a basis for the development of novel strategies to prevent immunopathology in lymphodepleted patients. PMID:26216515

  9. Chronic parasitic infection maintains high frequencies of short-lived Ly6C+CD4+ effector T cells that are required for protection against re-infection.

    Directory of Open Access Journals (Sweden)

    Nathan C Peters

    2014-12-01

    Full Text Available In contrast to the ability of long-lived CD8(+ memory T cells to mediate protection against systemic viral infections, the relationship between CD4(+ T cell memory and acquired resistance against infectious pathogens remains poorly defined. This is especially true for T helper 1 (Th1 concomitant immunity, in which protection against reinfection coincides with a persisting primary infection. In these situations, pre-existing effector CD4 T cells generated by ongoing chronic infection, not memory cells, may be essential for protection against reinfection. We present a systematic study of the tissue homing properties, functionality, and life span of subsets of memory and effector CD4 T cells activated in the setting of chronic Leishmania major infection in resistant C57Bl/6 mice. We found that pre-existing, CD44(+CD62L(-T-bet(+Ly6C+ effector (T(EFF cells that are short-lived in the absence of infection and are not derived from memory cells reactivated by secondary challenge, mediate concomitant immunity. Upon adoptive transfer and challenge, non-dividing Ly6C(+ T(EFF cells preferentially homed to the skin, released IFN-γ, and conferred protection as compared to CD44(+CD62L(-Ly6C(- effector memory or CD44(+CD62L(+Ly6C(- central memory cells. During chronic infection, Ly6C(+ T(EFF cells were maintained at high frequencies via reactivation of T(CM and the T(EFF themselves. The lack of effective vaccines for many chronic diseases may be because protection against infectious challenge requires the maintenance of pre-existing T(EFF cells, and is therefore not amenable to conventional, memory inducing, vaccination strategies.

  10. The Breadth of Expandable Memory CD8+ T Cells Inversely Correlates with Residual Viral Loads in HIV Elite Controllers

    Science.gov (United States)

    Ndhlovu, Zaza M.; Stampouloglou, Eleni; Cesa, Kevin; Mavrothalassitis, Orestes; Alvino, Donna Marie; Li, Jonathan Z.; Wilton, Shannon; Karel, Daniel; Piechocka-Trocha, Alicja; Chen, Huabiao; Pereyra, Florencia

    2015-01-01

    ABSTRACT Previous studies have shown that elite controllers with minimal effector T cell responses harbor a low-frequency, readily expandable, highly functional, and broadly directed memory population. Here, we interrogated the in vivo relevance of this cell population by investigating whether the breadth of expandable memory responses is associated with the magnitude of residual viremia in individuals achieving durable suppression of HIV infection. HIV-specific memory CD8+ T cells were expanded by using autologous epitopic and variant peptides. Viral load was measured by an ultrasensitive single-copy PCR assay. Following expansion, controllers showed a greater increase in the overall breadth of Gag responses than did untreated progressors (P = 0.01) as well as treated progressors (P = 0.0003). Nef- and Env-specific memory cells expanded poorly for all groups, and their expanded breadths were indistinguishable among groups (P = 0.9 for Nef as determined by a Kruskal-Wallis test; P = 0.6 for Env as determined by a Kruskal-Wallis test). More importantly, we show that the breadth of expandable, previously undetectable Gag-specific responses was inversely correlated with residual viral load (r = −0.6; P = 0.009). Together, these data reveal a direct link between the abundance of Gag-specific expandable memory responses and prolonged maintenance of low-level viremia. Our studies highlight a CD8+ T cell feature that would be desirable in a vaccine-induced T cell response. IMPORTANCE Many studies have shown that the rare ability of some individuals to control HIV infection in the absence of antiretroviral therapy appears to be heavily dependent upon special HIV-specific killer T lymphocytes that are able to inhibit viral replication. The identification of key features of these immune cells has the potential to inform rational HIV vaccine design. This study shows that a special subset of killer lymphocytes, known as central memory CD8+ T lymphocytes, is at least

  11. Local induction of immunosuppressive CD8+ T cells in the gut-associated lymphoid tissues.

    Directory of Open Access Journals (Sweden)

    Diana Fleissner

    Full Text Available BACKGROUND: In contrast to intestinal CD4(+ regulatory T cells (T(regs, the generation and function of immunomodulatory intestinal CD8(+ T cells is less well defined. To dissect the immunologic mechanisms of CD8(+ T cell function in the mucosa, reactivity against hemagglutinin (HA expressed in intestinal epithelial cells of mice bearing a MHC class-I-restricted T-cell-receptor specific for HA was studied. METHODOLOGY AND PRINCIPAL FINDINGS: HA-specific CD8(+ T cells were isolated from gut-associated tissues and phenotypically and functionally characterized for the expression of Foxp3(+ and their suppressive capacity. We demonstrate that intestinal HA expression led to peripheral induction of HA-specific CD8(+Foxp3(+ T cells. Antigen-experienced CD8(+ T cells in this transgenic mouse model suppressed the proliferation of CD8(+ and CD4(+ T cells in vitro. Gene expression analysis of suppressive HA-specific CD8(+ T cells revealed a specific up-regulation of CD103, Nrp1, Tnfrsf9 and Pdcd1, molecules also expressed on CD4(+ T(reg subsets. Finally, gut-associated dendritic cells were able to induce HA-specific CD8(+Foxp3(+ T cells. CONCLUSION AND SIGNIFICANCE: We demonstrate that gut specific antigen presentation is sufficient to induce CD8(+ T(regsin vivo which may maintain intestinal homeostasis by down-modulating effector functions of T cells.

  12. Sustained CD8+ T-cell responses induced after acute parvovirus B19 infection in humans

    DEFF Research Database (Denmark)

    Norbeck, Oscar; Isa, Adiba; Pöhlmann, Christoph

    2005-01-01

    Murine models have suggested that CD8+ T-cell responses peak early in acute viral infections and are not sustained, but no evidence for humans has been available. To address this, we longitudinally analyzed the CD8+ T-cell response to human parvovirus B19 in acutely infected individuals. We...... observed striking CD8+ T-cell responses, which were sustained or even increased over many months after the resolution of acute disease, indicating that CD8+ T cells may play a prominent role in the control of parvovirus B19 and other acute viral infections of humans, including potentially those generated...

  13. Distribution, characterization, and induction of CD8+ regulatory T cells and IL-17-producing CD8+ T cells in nasopharyngeal carcinoma

    Directory of Open Access Journals (Sweden)

    Li Jiang

    2011-11-01

    Full Text Available Abstract Background CD8+ effector cells often have an antitumor function in patients with cancer. However, CD8+Foxp3+ regulatory T cells (Tcregs and interleukin (IL-17-producing CD8+ T cells (Tc17 cells also derive from the CD8+ T cell lineage. Their role in the antitumor response remains largely unknown. In the present study, we aimed to investigate the distribution, characterization, and generation of CD8+ Tcregs and Tc17 cells in NPC patients. Methods Peripheral blood and tumor biopsy tissues from 21 newly diagnosed patients with nasopharyngeal carcinoma (NPC were collected, along with peripheral blood from 21 healthy donors. The biological characteristics of Tcregs and Tc17 cells from blood and tumor tissues were examined by intracellular staining, tetramer staining and fluorescence-activated cell sorting (FACS analysis. The suppressive function of Tcregs was investigated using a proliferation assay that involved co-culture of sorted CD8+CD25+ T cells with naïve CD4+ T cells in vitro. Results We observed an increased prevalence of Tcregs and Tc17 cells among tumor-infiltrating lymphocytes (TILs and different distribution among peripheral blood mononuclear cells (PBMCs in NPC patients. Cytokine profiles showed that the Tcregs expressed a high level of IL-10 and low level of transforming growth factor β, whereas Tc17 cells expressed a high level of tumor necrosis factor α. Interestingly, both subsets expressed a high level of interferon γ in TILs, and the Tcregs suppressed naïve CD4+ T cell proliferation by a cell contact-dependent mechanism in vitro. Moreover, we demonstrated the existence of Epstein-Barr virus latent membrane protein (LMP 1 and LMP2 antigen-specific Tcregs in NPC. Conclusions Our data provide new insights into the composition and function of CD8+ T-cell subsets in NPC, which may have an important influence on NPC immunotherapy.

  14. Virus-specific regulatory T cells ameliorate encephalitis by repressing effector T cell functions from priming to effector stages.

    Directory of Open Access Journals (Sweden)

    Jingxian Zhao

    2014-08-01

    Full Text Available Several studies have demonstrated the presence of pathogen-specific Foxp3+ CD4 regulatory T cells (Treg in infected animals, but little is known about where and how these cells affect the effector T cell responses and whether they are more suppressive than bulk Treg populations. We recently showed the presence of both epitope M133-specific Tregs (M133 Treg and conventional CD4 T cells (M133 Tconv in the brains of mice with coronavirus-induced encephalitis. Here, we provide new insights into the interactions between pathogenic Tconv and Tregs responding to the same epitope. M133 Tregs inhibited the proliferation but not initial activation of M133 Tconv in draining lymph nodes (DLN. Further, M133 Tregs inhibited migration of M133 Tconv from the DLN. In addition, M133 Tregs diminished microglia activation and decreased the number and function of Tconv in the infected brain. Thus, virus-specific Tregs inhibited pathogenic CD4 T cell responses during priming and effector stages, particularly those recognizing cognate antigen, and decreased mortality and morbidity without affecting virus clearance. These cells are more suppressive than bulk Tregs and provide a targeted approach to ameliorating immunopathological disease in infectious settings.

  15. A critical role for CD8 T cells in a nonhuman primate model of tuberculosis.

    Science.gov (United States)

    Chen, Crystal Y; Huang, Dan; Wang, Richard C; Shen, Ling; Zeng, Gucheng; Yao, Shuyun; Shen, Yun; Halliday, Lisa; Fortman, Jeff; McAllister, Milton; Estep, Jim; Hunt, Robert; Vasconcelos, Daphne; Du, George; Porcelli, Steven A; Larsen, Michelle H; Jacobs, William R; Haynes, Barton F; Letvin, Norman L; Chen, Zheng W

    2009-04-01

    The role of CD8 T cells in anti-tuberculosis immunity in humans remains unknown, and studies of CD8 T cell-mediated protection against tuberculosis in mice have yielded controversial results. Unlike mice, humans and nonhuman primates share a number of important features of the immune system that relate directly to the specificity and functions of CD8 T cells, such as the expression of group 1 CD1 proteins that are capable of presenting Mycobacterium tuberculosis lipids antigens and the cytotoxic/bactericidal protein granulysin. Employing a more relevant nonhuman primate model of human tuberculosis, we examined the contribution of BCG- or M. tuberculosis-elicited CD8 T cells to vaccine-induced immunity against tuberculosis. CD8 depletion compromised BCG vaccine-induced immune control of M. tuberculosis replication in the vaccinated rhesus macaques. Depletion of CD8 T cells in BCG-vaccinated rhesus macaques led to a significant decrease in the vaccine-induced immunity against tuberculosis. Consistently, depletion of CD8 T cells in rhesus macaques that had been previously infected with M. tuberculosis and cured by antibiotic therapy also resulted in a loss of anti-tuberculosis immunity upon M. tuberculosis re-infection. The current study demonstrates a major role for CD8 T cells in anti-tuberculosis immunity, and supports the view that CD8 T cells should be included in strategies for development of new tuberculosis vaccines and immunotherapeutics.

  16. A critical role for CD8 T cells in a nonhuman primate model of tuberculosis.

    Directory of Open Access Journals (Sweden)

    Crystal Y Chen

    2009-04-01

    Full Text Available The role of CD8 T cells in anti-tuberculosis immunity in humans remains unknown, and studies of CD8 T cell-mediated protection against tuberculosis in mice have yielded controversial results. Unlike mice, humans and nonhuman primates share a number of important features of the immune system that relate directly to the specificity and functions of CD8 T cells, such as the expression of group 1 CD1 proteins that are capable of presenting Mycobacterium tuberculosis lipids antigens and the cytotoxic/bactericidal protein granulysin. Employing a more relevant nonhuman primate model of human tuberculosis, we examined the contribution of BCG- or M. tuberculosis-elicited CD8 T cells to vaccine-induced immunity against tuberculosis. CD8 depletion compromised BCG vaccine-induced immune control of M. tuberculosis replication in the vaccinated rhesus macaques. Depletion of CD8 T cells in BCG-vaccinated rhesus macaques led to a significant decrease in the vaccine-induced immunity against tuberculosis. Consistently, depletion of CD8 T cells in rhesus macaques that had been previously infected with M. tuberculosis and cured by antibiotic therapy also resulted in a loss of anti-tuberculosis immunity upon M. tuberculosis re-infection. The current study demonstrates a major role for CD8 T cells in anti-tuberculosis immunity, and supports the view that CD8 T cells should be included in strategies for development of new tuberculosis vaccines and immunotherapeutics.

  17. Memory CD8+ T cell differentiation in viral infection: A cell for all seasons

    Institute of Scientific and Technical Information of China (English)

    Henry Radziewicz; Luke Uebelhoer; Bertram Bengsch; Arash Grakoui

    2007-01-01

    Chronic viral infections such as hepatitis B virus (HBV),hepatitis C virus (HCV) and human immunodeficiency virus (HIV) are major global health problems affecting more than 500 million people worldwide. Virus-specific CD8+ T cells play an important role in the course and outcome of these viral infections and it is hypothesized that altered or impaired differentiation of virusspecific CD8+ T cells contributes to the development of persistence and/or disease progression. A deeper understanding of the mechanisms responsible for functional differentiation of CD8+ T cells is essential for the generation of successful therapies aiming to strengthen the adaptive component of the immune system.

  18. miRNA profiling of naive, effector and memory CD8 T cells.

    Directory of Open Access Journals (Sweden)

    Haoquan Wu

    Full Text Available microRNAs have recently emerged as master regulators of gene expression during development and cell differentiation. Although profound changes in gene expression also occur during antigen-induced T cell differentiation, the role of miRNAs in the process is not known. We compared the miRNA expression profiles between antigen-specific naïve, effector and memory CD8+ T cells using 3 different methods--small RNA cloning, miRNA microarray analysis and real-time PCR. Although many miRNAs were expressed in all the T cell subsets, the frequency of 7 miRNAs (miR-16, miR-21, miR-142-3p, miR-142-5p, miR-150, miR-15b and let-7f alone accounted for approximately 60% of all miRNAs, and their expression was several fold higher than the other expressed miRNAs. Global downregulation of miRNAs (including 6/7 dominantly expressed miRNAs was observed in effector T cells compared to naïve cells and the miRNA expression levels tended to come back up in memory T cells. However, a few miRNAs, notably miR-21 were higher in effector and memory T cells compared to naïve T cells. These results suggest that concomitant with profound changes in gene expression, miRNA profile also changes dynamically during T cell differentiation. Sequence analysis of the cloned mature miRNAs revealed an extensive degree of end polymorphism. While 3'end polymorphisms dominated, heterogeneity at both ends, resembling drosha/dicer processing shift was also seen in miR-142, suggesting a possible novel mechanism to generate new miRNA and/or to diversify miRNA target selection. Overall, our results suggest that dynamic changes in the expression of miRNAs may be important for the regulation of gene expression during antigen-induced T cell differentiation. Our study also suggests possible novel mechanisms for miRNA biogenesis and function.

  19. CD4+ T cell effects on CD8+ T cell location defined using bioluminescence.

    Directory of Open Access Journals (Sweden)

    Mitra Azadniv

    Full Text Available T lymphocytes of the CD8+ class are critical in delivering cytotoxic function and in controlling viral and intracellular infections. These cells are "helped" by T lymphocytes of the CD4+ class, which facilitate their activation, clonal expansion, full differentiation and the persistence of memory. In this study we investigated the impact of CD4+ T cells on the location of CD8+ T cells, using antibody-mediated CD4+ T cell depletion and imaging the antigen-driven redistribution of bioluminescent CD8+ T cells in living mice. We documented that CD4+ T cells influence the biodistribution of CD8+ T cells, favoring their localization to abdominal lymph nodes. Flow cytometric analysis revealed that this was associated with an increase in the expression of specific integrins. The presence of CD4+ T cells at the time of initial CD8+ T cell activation also influences their biodistribution in the memory phase. Based on these results, we propose the model that one of the functions of CD4+ T cell "help" is to program the homing potential of CD8+ T cells.

  20. Ncf1 (p47phox is essential for direct regulatory T cell mediated suppression of CD4+ effector T cells.

    Directory of Open Access Journals (Sweden)

    Olga Efimova

    Full Text Available BACKGROUND: Multiple mechanisms have been advanced to account for CD4+FOXP3+ regulatory T cell (Treg-mediated suppression of CD4+ effector T cells (Teffs but none appear to completely explain suppression. Previous data indicates that Tregs may affect the microenvironment redox state. Given the inherent redox sensitivity of T cells, we tested the hypothesis that oxidants may mediate the direct suppression of Teffs by Tregs. METHODOLOGY/PRINCIPAL FINDINGS: Tregs and Teffs were isolated from the spleens of wild type (WT C57BL/6 mice or Ncf1(p47phox-deficient C57BL/6 mice which lack NADPH oxidase function. Teffs were labeled with CFSE and co-cultured with unlabeled Tregs at varying Treg:Teff ratios in the presence of anti-CD3/CD28 coated beads for 3 days in suppression assays. Treg-mediated suppression was quantified by flow cytometric analysis of CFSE dilution in Teffs. The presence of the antioxidants n-acetylcysteine (NAC or 2-mercaptoethanol or inhibitors of NADPH oxidase (diphenyleneiodonium and VAS-2870 resulted in reduced WT Treg-mediated suppression. The observed suppression was in part dependent upon TGFβ as it was partially blocked with neutralizing antibodies. The suppression of Teff proliferation induced by exogenous TGFβ treatment could be overcome with NAC. Ncf1-deficient Teff were slightly but significantly less sensitive than WT Teff to suppression by exogenous TGFβ. Ncf1-deficient Tregs suppressed Ncf1-deficient Teff very poorly compared to wild type controls. There was partial but incomplete reconstitution of suppression in assays with WT Tregs and Ncf1-deficient Teff. CONCLUSIONS/SIGNIFICANCE: We present evidence that NADPH oxidase derived ROS plays a role in the direct Treg mediated suppression of CD4+ effector T cells in a process that is blocked by thiol-containing antioxidants, NADPH oxidase inhibitors or a lack of Ncf1 expression in Tregs and Teffs. Oxidants may represent a potential new target for therapeutic modulation

  1. CD8+ T cells induce platelet clearance in the liver via platelet desialylation in immune thrombocytopenia

    Science.gov (United States)

    Qiu, Jihua; Liu, Xuena; Li, Xiaoqing; Zhang, Xu; Han, Panpan; Zhou, Hai; Shao, Linlin; Hou, Yu; Min, Yanan; Kong, Zhangyuan; Wang, Yawen; Wei, Yu; Liu, Xinguang; Ni, Heyu; Peng, Jun; Hou, Ming

    2016-01-01

    In addition to antiplatelet autoantibodies, CD8+ cytotoxic T lymphocytes (CTLs) play an important role in the increased platelet destruction in immune thrombocytopenia (ITP). Recent studies have highlighted that platelet desialylation leads to platelet clearance via hepatocyte asialoglycoprotein receptors (ASGPRs). Whether CD8+ T cells induce platelet desialylation in ITP remains unclear. Here, we investigated the cytotoxicity of CD8+ T cells towards platelets and platelet desialylation in ITP. We found that the desialylation of fresh platelets was significantly higher in ITP patients with positive cytotoxicity of CD8+ T cells than those without cytotoxicity and controls. In vitro, CD8+ T cells from ITP patients with positive cytotoxicity induced significant platelet desialylation, neuraminidase-1 expression on the platelet surface, and platelet phagocytosis by hepatocytes. To study platelet survival and clearance in vivo, CD61 knockout mice were immunized and their CD8+ splenocytes were used. Platelets co-cultured with these CD8+ splenocytes demonstrated decreased survival in the circulation and increased phagocytosis in the liver. Both neuraminidase inhibitor and ASGPRs competitor significantly improved platelet survival and abrogated platelet clearance caused by CD8+ splenocytes. These findings suggest that CD8+ T cells induce platelet desialylation and platelet clearance in the liver in ITP, which may be a novel mechanism of ITP. PMID:27321376

  2. Why Do CD8 + T Cells Become Indifferent To Tumors: A Dynamic Modeling Approach

    Directory of Open Access Journals (Sweden)

    Colin eCampbell

    2011-07-01

    Full Text Available CD8+ T cells have the potential to influence the outcome of cancer pathogenesis, including complete tumor eradication or selection of malignant tumor escape variants. The Simian virus 40 large T-antigen oncoprotein promotes tumor formation in T-antigen transgenic mice and also provides multiple target determinants (sites for responding CD8+ T cells in C57BL/6 (H-2b mice. To understand the in vivo quantitative dynamics of CD8+ T cells after encountering T-antigen, we constructed a dynamic model from in vivo-generated data to simulate the interactions between T-antigen expressing cells and CD8+ T cells in distinct scenarios including immunization of wild type C57BL/6 mice and of T-antigen transgenic mice that develop various tumors. In these scenarios the model successfully reproduces the dynamics of both the T-antigen-expressing cells and antigen specific CD8+ T cell responses. The model predicts that the tolerance of the site-specific T cells is dependent on their apoptosis rates and that the net growth of CD8+ T cells is altered in transgenic mice. We experimentally validate both predictions. Our results indicate that site-specific CD8+ T cells have tissue-specific apoptosis rates affecting their tolerance to the tumor antigen. Moreover, the model highlights differences in apoptosis rates that contribute to compromised CD8+ T cell responses and tumor progression, knowledge of which is essential for development of cancer immunotherapy.

  3. T cytotoxic-1 CD8+ T cells are effector cells against pneumocystis in mice.

    Science.gov (United States)

    McAllister, Florencia; Mc Allister, Florencia; Steele, Chad; Zheng, Mingquan; Young, Erana; Shellito, Judd E; Marrero, Luis; Kolls, Jay K

    2004-01-15

    Host defenses are profoundly compromised in HIV-infected hosts due to progressive depletion of CD4+ T lymphocytes. A hallmark of HIV infection is Pneumocystis carinii (PC) pneumonia. Recently, CD8+ T cells, which are recruited to the lung in large numbers in response to PC infection, have been associated with some level of host defense as well as contributing to lung injury in BALB/c mice. In this study, we show that CD8+ T cells that have a T cytotoxic-1 response to PC in BALB/c mice, as determined by secretion of IFN-gamma, have in vitro killing activity against PC and effect clearance of the organism in adoptive transfer studies. Moreover, non-T cytotoxic-1 CD8+ T cells lacked in vitro effector activity and contributed to lung injury upon adoptive transfer. This dichotomous response in CD8+ T cell response may in part explain the clinical heterogeneity in the severity of PC pneumonia.

  4. IL-15 promotes activation and expansion of CD8+ T cells in HIV-1 infection

    Science.gov (United States)

    Younes, Souheil-Antoine; Freeman, Michael L.; Mudd, Joseph C.; Shive, Carey L.; Reynaldi, Arnold; Estes, Jacob D.; Deleage, Claire; Lucero, Carissa; Anderson, Jodi; Schacker, Timothy W.; Davenport, Miles P.; McCune, Joseph M.; Hunt, Peter W.; Lee, Sulggi A.; Debernardo, Robert L.; Jacobson, Jeffrey M.; Canaday, David H.; Sekaly, Rafick-Pierre; Sieg, Scott F.; Lederman, Michael M.

    2016-01-01

    In HIV-1–infected patients, increased numbers of circulating CD8+ T cells are linked to increased risk of morbidity and mortality. Here, we identified a bystander mechanism that promotes CD8 T cell activation and expansion in untreated HIV-1–infected patients. Compared with healthy controls, untreated HIV-1–infected patients have an increased population of proliferating, granzyme B+, CD8+ T cells in circulation. Vβ expression and deep sequencing of CDR3 revealed that in untreated HIV-1 infection, cycling memory CD8 T cells possess a broad T cell repertoire that reflects the repertoire of the resting population. This suggests that cycling is driven by bystander activation, rather than specific antigen exposure. Treatment of peripheral blood mononuclear cells with IL-15 induced a cycling, granzyme B+ phenotype in CD8+ T cells. Moreover, elevated IL-15 expression in the lymph nodes of untreated HIV-1–infected patients correlated with circulating CD8+ T cell counts and was normalized in these patients following antiretroviral therapy. Together, these results suggest that IL-15 drives bystander activation of CD8+ T cells, which predicts disease progression in untreated HIV-1–infected patients and suggests that elevated IL-15 may also drive CD8+ T cell expansion that is linked to increased morbidity and mortality in treated patients. PMID:27322062

  5. Pathogenic CD8 T cells in Multiple Sclerosis and its experimental models

    Directory of Open Access Journals (Sweden)

    Eric S. Huseby

    2012-03-01

    Full Text Available A growing body of evidence suggests that autoreactive CD8 T cells contribute to the disease process in Multiple Sclerosis (MS. Lymphocytes in MS plaques are biased toward the CD8 lineage, and MS patients harbor CD8 T cells specific for multiple central nervous system (CNS antigens. Currently, there are relatively few experimental model systems available to study these pathogenic CD8 T cells in vivo. However, the few studies that have been done characterizing the mechanisms used by CD8 T cells to induce CNS autoimmunity indicate that several of the paradigms of how CD4 T cells mediate CNS autoimmunity do not hold true for CD8 T cells or for patients with MS. Thus, myelin-specific CD4 T cells are likely to be one of several important mechanisms that drive CNS disease in MS patients. The focus of this review is to highlight the current models of pathogenic CNS-reactive CD8 T cells and the molecular mechanisms these lymphocytes use when causing CNS inflammation and damage. Understanding how CNS-reactive CD8 T cells escape tolerance induction and induce CNS autoimmunity is critical to our ability to propose and test new therapies for MS.

  6. Tuberculosis-specific CD8 cells in HLA A*02-positive TB- and LTBI patients

    DEFF Research Database (Denmark)

    Fløe, Andreas; Brix, Liselotte; Wejse, Christian;

    on a flow cytometer. The MTB epitopes were analyzed in 5 pools (3-7 epitopes each). Positive responses included >0.001 % of CD8+, CD3+ cells, supported by inspection of flow cytometry plots. Results: MTB-specific CD8+ T-cells were detected more often in TB patients (57%) than in LTBI patients (41...

  7. Molecular profiling of cytomegalovirus-induced human CD8+ T cell differentiation

    NARCIS (Netherlands)

    Hertoghs, K.M.L.; Moerland, P.D.; van Stijn, A.; Remmerswaal, E.B.M.; Yong, S.L.; van de Berg, P.J.E.J.; Ham, S.M.; Baas, F.; ten Berge, R.J.M.; van Lier, R.A.W.

    2010-01-01

    CD8+ T cells play a critical role in the immune response to viral pathogens. Persistent human cytomegalovirus (HCMV) infection results in a strong increase in the number of virus-specific, quiescent effector-type CD8+ T cells with constitutive cytolytic activity, but the molecular pathways involved

  8. Diagnostic biopsy does not commonly induce intratumoral CD8 T cell infiltration in Merkel cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Shinichi Koba

    Full Text Available BACKGROUND: Merkel cell carcinoma is a polyomavirus-associated cancer that is strongly linked with T lymphocyte immune suppression in epidemiologic studies. CD8+ T cell infiltration into MCC tumors (intratumoral has recently been shown to be strongly predictive of improved survival. In contrast, the presence of CD8+ T cells at the border of the tumor (peritumoral had no independent prognostic value. Spontaneous regression has been reported for MCC approximately one thousand times more often than would be expected given the frequency of this cancer. Many of these events began shortly after biopsy, and in some cases lymphocytic infiltration was described. METHODOLOGY/PRINCIPAL FINDINGS: To determine whether CD8+ lymphocyte infiltration in MCC tumors is commonly altered by biopsy.33 MCC patients who had microscopic confirmation of MCC on both an initial biopsy and a re-excision specimen were included in this study. Intratumoral and peritumoral CD8 lymphocyte infiltration was quantitated using immunohistochemistry and compared using the paired t-test in biopsy versus re-excision samples. There was a trend toward increased CD8 infiltration after biopsy in a peritumoral ('stalled' pattern (p = 0.08, however, biopsy was not associated with a significant increase in CD8 T cells in the clinically more important intratumoral location (p = 0.58. CONCLUSIONS/SIGNIFICANCE: The initial diagnostic biopsy for MCC does not commonly alter intratumoral CD8+ T cell infiltration, suggesting it does not directly induce immunologic recognition of this cancer. Because CD8 infiltration is typically stable after biopsy, this parameter may be useful to assess the efficacy of future immune therapies for this virus-associated, immunogenic, often-lethal cancer.

  9. Lactose inhibits regulatory T-cell-mediated suppression of effector T-cell interferon-γ and IL-17 production.

    Science.gov (United States)

    Paasela, Monika; Kolho, Kaija-Leena; Vaarala, Outi; Honkanen, Jarno

    2014-12-14

    Our interest in lactose as an immunomodulatory molecule results from studies showing that lactose binds to galectin-9, which has been shown to have various regulatory functions in the immune system including regulation of T-cell responses. Impaired regulation of T helper (Th)1 and Th17 type immune responses and dysfunction of regulatory T cells (Treg) have been implicated in many human immune-mediated diseases. In the present study, we investigated the effects of lactose on immune regulation using co-cultures of human peripheral blood mononuclear cell (PBMC)-derived Treg and effector T cells (Teff) obtained from twenty healthy adults. Treg, i.e. CD4+CD25+CD127-, were isolated from PBMC by immunomagnetic separation. The fraction of CD4+CD127- cells that was depleted of CD25+ cells was used as Teff. Treg and Teff at a ratio 1:5 were activated and the effects of lactose on the secretion of interferon-γ (IFN-γ) and IL-17 were analysed using ELISA for protein and quantitative RT-PCR for mRNA. Treg down-regulated the secretion of both IFN-γ (8.8-3.9 ng/ml, n 20, P= 0.003) and IL-17 (0.83-0.64 ng/ml, n 15, P= 0.04) in co-cultures, while in the presence of lactose the levels of secreted IFN-γ and IL-17 remained high and no down-regulation was observed (16.4 v. 3.99 ng/ml, n 20, Plactose inhibits human Treg-mediated suppression of Th1 and Th17 immune responses in vitro.

  10. A protective role for dengue virus-specific CD8+ T cells.

    Science.gov (United States)

    Yauch, Lauren E; Zellweger, Raphaël M; Kotturi, Maya F; Qutubuddin, Afrina; Sidney, John; Peters, Bjoern; Prestwood, Tyler R; Sette, Alessandro; Shresta, Sujan

    2009-04-15

    Infection with one of the four serotypes of dengue virus (DENV1-4) can result in a range of clinical manifestations in humans, from dengue fever to the more serious dengue hemorrhagic fever/dengue shock syndrome. Although T cells have been implicated in the immunopathogenesis of secondary infections with heterologous DENV serotypes, the role of T cells in protection against DENV is unknown. In this study, we used a mouse-passaged DENV2 strain, S221, to investigate the role of CD8(+) T cells in the immune response to primary DENV infection. S221 did not replicate well in wild-type mice, but did induce a CD8(+) T cell response, whereas viral replication and a robust CD8(+) T cell response were observed after infection of IFN-alpha/betaR(-/-) mice. Depletion of CD8(+) T cells from IFN-alpha/betaR(-/-) mice before infection resulted in significantly higher viral loads compared with undepleted mice. Mapping the specificity of the CD8(+) T cell response led to the identification of 12 epitopes derived from 6 of the 10 DENV proteins, with a similar immunodominance hierarchy observed in wild-type and IFN-alpha/betaR(-/-) mice. DENV-specific CD8(+) T cells produced IFN-gamma, TNF-alpha, expressed cell surface CD107a, and exhibited cytotoxic activity in vivo. Finally, immunization with four of the immunodominant CD8(+) T cell epitopes enhanced viral clearance. Collectively, our results reveal an important role for CD8(+) T cells in the host defense against DENV and demonstrate that the anti-DENV CD8(+) T cell response can be enhanced by immunization, providing rationale for designing DENV-specific vaccines that induce cell-mediated immunity.

  11. Dynamic Imaging of CD8(+) T cells and dendritic cells during infection with Toxoplasma gondii.

    Science.gov (United States)

    John, Beena; Harris, Tajie H; Tait, Elia D; Wilson, Emma H; Gregg, Beth; Ng, Lai Guan; Mrass, Paulus; Roos, David S; Dzierszinski, Florence; Weninger, Wolfgang; Hunter, Christopher A

    2009-07-01

    To better understand the initiation of CD8(+) T cell responses during infection, the primary response to the intracellular parasite Toxoplasma gondii was characterized using 2-photon microscopy combined with an experimental system that allowed visualization of dendritic cells (DCs) and parasite specific CD8(+) T cells. Infection with T. gondii induced localization of both these populations to the sub-capsular/interfollicular region of the draining lymph node and DCs were required for the expansion of the T cells. Consistent with current models, in the presence of cognate antigen, the average velocity of CD8(+) T cells decreased. Unexpectedly, infection also resulted in modulation of the behavior of non-parasite specific T cells. This TCR-independent process correlated with the re-modeling of the lymph node micro-architecture and changes in expression of CCL21 and CCL3. Infection also resulted in sustained interactions between the DCs and CD8(+) T cells that were visualized only in the presence of cognate antigen and were limited to an early phase in the response. Infected DCs were rare within the lymph node during this time frame; however, DCs presenting the cognate antigen were detected. Together, these data provide novel insights into the earliest interaction between DCs and CD8(+) T cells and suggest that cross presentation by bystander DCs rather than infected DCs is an important route of antigen presentation during toxoplasmosis.

  12. Dynamic Imaging of CD8(+ T cells and dendritic cells during infection with Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Beena John

    2009-07-01

    Full Text Available To better understand the initiation of CD8(+ T cell responses during infection, the primary response to the intracellular parasite Toxoplasma gondii was characterized using 2-photon microscopy combined with an experimental system that allowed visualization of dendritic cells (DCs and parasite specific CD8(+ T cells. Infection with T. gondii induced localization of both these populations to the sub-capsular/interfollicular region of the draining lymph node and DCs were required for the expansion of the T cells. Consistent with current models, in the presence of cognate antigen, the average velocity of CD8(+ T cells decreased. Unexpectedly, infection also resulted in modulation of the behavior of non-parasite specific T cells. This TCR-independent process correlated with the re-modeling of the lymph node micro-architecture and changes in expression of CCL21 and CCL3. Infection also resulted in sustained interactions between the DCs and CD8(+ T cells that were visualized only in the presence of cognate antigen and were limited to an early phase in the response. Infected DCs were rare within the lymph node during this time frame; however, DCs presenting the cognate antigen were detected. Together, these data provide novel insights into the earliest interaction between DCs and CD8(+ T cells and suggest that cross presentation by bystander DCs rather than infected DCs is an important route of antigen presentation during toxoplasmosis.

  13. Dendritic cell-derived IL-15 controls the induction of CD8 T cell immune responses.

    Science.gov (United States)

    Rückert, René; Brandt, Katja; Bulanova, Elena; Mirghomizadeh, Farhad; Paus, Ralf; Bulfone-Paus, Silvia

    2003-12-01

    The development and the differentiation of CD8(+) T cells are dependent on IL-15. Here, we have studied the source and mechanism of how IL-15 modulates CD8(+) T cell-mediated Th1 immune responses by employing two delayed-type hypersensitivity (DTH) models. IL-15-deficient (IL-15(-/-)) mice or mice treated with soluble IL-15Ralpha as an IL-15 antagonist showed significantly reduced CD8(+) T cell-dependent DTH responses, while activation of CD4(+) T cell and B cell functions remained unaffected. Injection of antigen-labeled dendritic cells (DC) from IL-15(+/+), IL-15(-/-) or IL-15Ralpha(-/-) mice revealed that DC-derived IL-15 is an absolute requirement for the initiation of DTH response. The re-establishment of the interaction of IL-15 with the IL-15Ralpha by incubating IL-15(-/-) DC with IL-15 completely restored the capacity to prime T cells for DTH induction in vivo. Moreover, IL-15 also enhanced secretion of pro-inflammatory cytokines by DC and triggered in vitro CD8(+) T cell proliferation and IL-2 release. Taken together, the data suggest that an autocrine IL-15/IL-15Ralpha signaling loop in DC is essential for inducing CD8(+)-dependent Th1 immune responses in mice. Therefore, targeted manipulation of this loop promises to be an effective, novel strategy for therapeutic modulation of clinically relevant DTH reactions.

  14. Acetyl CoA Carboxylase 2 Is Dispensable for CD8+ T Cell Responses.

    Directory of Open Access Journals (Sweden)

    Jang Eun Lee

    Full Text Available Differentiation of T cells is closely associated with dynamic changes in nutrient and energy metabolism. However, the extent to which specific metabolic pathways and molecular components are determinative of CD8+ T cell fate remains unclear. It has been previously established in various tissues that acetyl CoA carboxylase 2 (ACC2 regulates fatty acid oxidation (FAO by inhibiting carnitine palmitoyltransferase 1 (CPT1, a rate-limiting enzyme of FAO in mitochondria. Here, we explore the cell-intrinsic role of ACC2 in T cell immunity in response to infections. We report here that ACC2 deficiency results in a marginal increase of cellular FAO in CD8+ T cells, but does not appear to influence antigen-specific effector and memory CD8+ T cell responses during infection with listeria or lymphocytic choriomeningitis virus. These results suggest that ACC2 is dispensable for CD8+ T cell responses.

  15. TLR3-induced activation of mast cells modulates CD8+ T-cell recruitment.

    Science.gov (United States)

    Orinska, Zane; Bulanova, Elena; Budagian, Vadim; Metz, Martin; Maurer, Marcus; Bulfone-Paus, Silvia

    2005-08-01

    Mast cells play an important role in host defense against various pathogens, but their role in viral infection has not been clarified in detail. dsRNA, synthesized by various types of viruses and mimicked by polyinosinic-polycytidylic acid (poly(I:C)) is recognized by Toll-like receptor 3 (TLR3). In this study, we demonstrate that poly(I:C) injection in vivo potently stimulates peritoneal mast cells to up-regulate a number of different costimulatory molecules. Therefore, we examined the expression and the functional significance of TLR3 activation in mast cells. Mast cells express TLR3 on the cell surface and intracellularly. After stimulation of mast cells with poly(I:C) and Newcastle disease virus (NDV), TLR3 is phosphorylated and the expression of key antiviral response cytokines (interferon beta, ISG15) and chemokines (IP10, RANTES) is upregulated. Interestingly, mast cells activated via TLR3-poly(I:C) potently stimulate CD8+ T-cell recruitment. Indeed, mast-cell-deficient mice (KitW/KitW-v) given an intraperitoneal injection of poly(I:C) show a decreased CD8+ T-cell recruitment, whereas granulocytes normally migrate to the peritoneal cavity. Mast-cell reconstitution of KitW/KitW-v mice normalizes the CD8+ T-cell influx. Thus, mast cells stimulated through engagement of TLR3 are potent regulators of CD8+ T-cell activities in vitro and in vivo.

  16. Characterization of Human CD8 T Cell Responses in Dengue Virus-Infected Patients from India

    OpenAIRE

    Chandele, Anmol; Sewatanon, Jaturong; Gunisetty, Sivaram; Singla, Mohit; Onlamoon, Nattawat; Akondy, Rama S.; Kissick, Haydn Thomas; Nayak, Kaustuv; Reddy, Elluri Seetharami; Kalam, Haroon; Kumar, Dhiraj; Verma, Anil; Panda, Harekrushna; Wang, Siyu; Angkasekwinai, Nasikarn

    2016-01-01

    ABSTRACT Epidemiological studies suggest that India has the largest number of dengue virus infection cases worldwide. However, there is minimal information about the immunological responses in these patients. CD8 T cells are important in dengue, because they have been implicated in both protection and immunopathology. Here, we provide a detailed analysis of HLA-DR+ CD38+ and HLA-DR− CD38+ effector CD8 T cell subsets in dengue patients from India and Thailand. Both CD8 T cell subsets expanded ...

  17. Salmonella impairs CD8 T cell response through PD-1: PD-L axis.

    Science.gov (United States)

    López-Medina, Marcela; Carrillo-Martín, Ismael; Leyva-Rangel, Jessica; Alpuche-Aranda, Celia; Ortiz-Navarrete, Vianney

    2015-12-01

    We have shown that Salmonella remains for a long period of time within B cells, plasma cells, and bone marrow B cell precursors, which might allow persistence and dissemination of infection. Nonetheless, how infected cells evade CD8 T cell response has not been characterized. Evidence indicates that some pathogens exploit the PD-1: PD-L (PD-L1 and PD-L2) interaction to inhibit CD8 T cells response to contribute the chronicity of the infection. To determine whether the PD-1: PD-L axis plays a role during Salmonella infection; we evaluated PD-1 expression in antigen-specific CD8 T cells and PD-1 ligands in Salmonella-infected cells. Our results show that infected B cells and macrophages express continuously co-stimulatory (CD40, CD80, and CD86) and inhibitory molecules (PD-L1 and PD-L2) in early and late stages of chronic Salmonella infection, while antigen-specific CD8 T cells express in a sustained manner PD-1 in the late stages of infection. Blocking this axis restores the ability of the CD8 T cells to proliferate and eliminate primary infected APCs. Therefore, a continuous PD-1: PDL interaction might be a mechanism employed by Salmonella to negatively regulate Salmonella-specific CD8 T cell cytotoxic response in order to remain within the host for a long period of time.

  18. Tumor-Induced CD8+ T-Cell Dysfunction in Lung Cancer Patients

    Directory of Open Access Journals (Sweden)

    Heriberto Prado-Garcia

    2012-01-01

    Full Text Available Lung cancer is the leading cause of cancer deaths worldwide and one of the most common types of cancers. The limited success of chemotherapy and radiotherapy regimes have highlighted the need to develop new therapies like antitumor immunotherapy. CD8+ T-cells represent a major arm of the cell-mediated anti-tumor response and a promising target for developing T-cell-based immunotherapies against lung cancer. Lung tumors, however, have been considered to possess poor immunogenicity; even so, lung tumor-specific CD8+ T-cell clones can be established that possess cytotoxicity against autologous tumor cells. This paper will focus on the alterations induced in CD8+ T-cells by lung cancer. Although memory CD8+ T-cells infiltrate lung tumors, in both tumor-infiltrating lymphocytes (TILs and malignant pleural effusions, these cells are dysfunctional and the effector subset is reduced. We propose that chronic presence of lung tumors induces dysfunctions in CD8+ T-cells and sensitizes them to activation-induced cell death, which may be associated with the poor clinical responses observed in immunotherapeutic trials. Getting a deeper knowledge of the evasion mechanisms lung cancer induce in CD8+ T-cells should lead to further understanding of lung cancer biology, overcome tumor evasion mechanisms, and design improved immunotherapeutic treatments for lung cancer.

  19. Tumor-Induced CD8+ T-Cell Dysfunction in Lung Cancer Patients

    Science.gov (United States)

    Prado-Garcia, Heriberto; Romero-Garcia, Susana; Aguilar-Cazares, Dolores; Meneses-Flores, Manuel; Lopez-Gonzalez, Jose Sullivan

    2012-01-01

    Lung cancer is the leading cause of cancer deaths worldwide and one of the most common types of cancers. The limited success of chemotherapy and radiotherapy regimes have highlighted the need to develop new therapies like antitumor immunotherapy. CD8+ T-cells represent a major arm of the cell-mediated anti-tumor response and a promising target for developing T-cell-based immunotherapies against lung cancer. Lung tumors, however, have been considered to possess poor immunogenicity; even so, lung tumor-specific CD8+ T-cell clones can be established that possess cytotoxicity against autologous tumor cells. This paper will focus on the alterations induced in CD8+ T-cells by lung cancer. Although memory CD8+ T-cells infiltrate lung tumors, in both tumor-infiltrating lymphocytes (TILs) and malignant pleural effusions, these cells are dysfunctional and the effector subset is reduced. We propose that chronic presence of lung tumors induces dysfunctions in CD8+ T-cells and sensitizes them to activation-induced cell death, which may be associated with the poor clinical responses observed in immunotherapeutic trials. Getting a deeper knowledge of the evasion mechanisms lung cancer induce in CD8+ T-cells should lead to further understanding of lung cancer biology, overcome tumor evasion mechanisms, and design improved immunotherapeutic treatments for lung cancer. PMID:23118782

  20. Molecular Programming of Tumor-Infiltrating CD8+ T Cells and IL15 Resistance.

    Science.gov (United States)

    Doedens, Andrew L; Rubinstein, Mark P; Gross, Emilie T; Best, J Adam; Craig, David H; Baker, Megan K; Cole, David J; Bui, Jack D; Goldrath, Ananda W

    2016-09-02

    Despite clinical potential and recent advances, durable immunotherapeutic ablation of solid tumors is not routinely achieved. IL15 expands natural killer cell (NK), natural killer T cell (NKT) and CD8(+) T-cell numbers and engages the cytotoxic program, and thus is under evaluation for potentiation of cancer immunotherapy. We found that short-term therapy with IL15 bound to soluble IL15 receptor α-Fc (IL15cx; a form of IL15 with increased half-life and activity) was ineffective in the treatment of autochthonous PyMT murine mammary tumors, despite abundant CD8(+) T-cell infiltration. Probing of this poor responsiveness revealed that IL15cx only weakly activated intratumoral CD8(+) T cells, even though cells in the lung and spleen were activated and dramatically expanded. Tumor-infiltrating CD8(+) T cells exhibited cell-extrinsic and cell-intrinsic resistance to IL15. Our data showed that in the case of persistent viral or tumor antigen, single-agent systemic IL15cx treatment primarily expanded antigen-irrelevant or extratumoral CD8(+) T cells. We identified exhaustion, tissue-resident memory, and tumor-specific molecules expressed in tumor-infiltrating CD8(+) T cells, which may allow therapeutic targeting or programming of specific subsets to evade loss of function and cytokine resistance, and, in turn, increase the efficacy of IL2/15 adjuvant cytokine therapy. Cancer Immunol Res; 4(9); 799-811. ©2016 AACR.

  1. Renal allograft rejection: examination of delayed differentiation of Treg and Th17 effector T cells.

    Science.gov (United States)

    Pekalski, Marcin; Jenkinson, Sarah E; Willet, Joseph D P; Poyner, Elizabeth F M; Alhamidi, Abdulaziz H; Robertson, Helen; Ali, Simi; Kirby, John A

    2013-03-01

    Antigen presentation after kidney transplantation occurs in lymphoid tissues remote from the allograft, with activated T cells then migrating towards the graft. This study examined the possibility that these activated T cells can differentiate to acquire Th17 or Treg phenotypes after a time consistent with their arrival within renal allograft tissues. An immunocytochemical study was performed to demonstrate the response to intragraft TGF-β and the phenotype of lymphoid cells within rejecting human renal allograft tissue. A series of in vitro experiments was then performed to determine the potential to induce these phenotypes by addition of appropriate cytokines 3days after initial T cell activation. During renal allograft rejection there was a strong response to TGF-β, and both FOXP3 and IL-17A were expressed by separate lymphoid cells in the graft infiltrate. FOXP3 could be induced to high levels by the addition of TGF-β1 3days after the initiation of allogeneic mixed leukocyte culture. This Treg marker was enriched in the sub-population of T cells expressing the cell-surface αE(CD103)β7 integrin. The RORγt transcription factor and IL-17A were induced 3days after T cell activation by the addition of TGF-β1, IL-1β, IL-6 and IL-23; many of these Th17 cells also co-expressed CD103. T cells can develop an effector phenotype following cytokine stimulation 3days after initial activation. This suggests that the intragraft T cell phenotype may be indicative of the prevailing cytokine microenvironment.

  2. A Critical Role for CD8 T Cells in a Nonhuman Primate Model of Tuberculosis

    OpenAIRE

    2009-01-01

    The role of CD8 T cells in anti-tuberculosis immunity in humans remains unknown, and studies of CD8 T cell–mediated protection against tuberculosis in mice have yielded controversial results. Unlike mice, humans and nonhuman primates share a number of important features of the immune system that relate directly to the specificity and functions of CD8 T cells, such as the expression of group 1 CD1 proteins that are capable of presenting Mycobacterium tuberculosis lipids antigens and the cytoto...

  3. Adoptive immunotherapy of cancer with polyclonal, 108-fold hyperexpanded, CD4+ and CD8+ T cells

    Directory of Open Access Journals (Sweden)

    Kim Julian A

    2004-11-01

    Full Text Available Abstract T cell-mediated cancer immunotherapy is dose dependent and optimally requires participation of antigen-specific CD4+ and CD8+ T cells. Here, we isolated tumor-sensitized T cells and activated them in vitro using conditions that led to greater than 108-fold numerical hyperexpansion of either the CD4+ or CD8+ subset while retaining their capacity for in vivo therapeutic efficacy. Murine tumor-draining lymph node (TDLN cells were segregated to purify the CD62Llow subset, or the CD4+ subset thereof. Cells were then propagated through multiple cycles of anti-CD3 activation with IL-2 + IL-7 for the CD8+ subset, or IL-7 + IL-23 for the CD4+ subset. A broad repertoire of TCR Vβ families was maintained throughout hyperexpansion, which was similar to the starting population. Adoptive transfer of hyper-expanded CD8+ T cells eliminated established pulmonary metastases, in an immunologically specific fashion without the requirement for adjunct IL-2. Hyper-expanded CD4+ T cells cured established tumors in intracranial or subcutaneous sites that were not susceptible to CD8+ T cells alone. Because accessibility and antigen presentation within metastases varies according to anatomic site, maintenance of a broad repertoire of both CD4+ and CD8+ T effector cells will augment the overall systemic efficacy of adoptive immunotherapy.

  4. CD160-associated CD8 T-cell functional impairment is independent of PD-1 expression.

    Directory of Open Access Journals (Sweden)

    Selena Viganò

    2014-09-01

    Full Text Available Expression of co-inhibitory molecules is generally associated with T-cell dysfunction in chronic viral infections such as HIV or HCV. However, their relative contribution in the T-cell impairment remains unclear. In the present study, we have evaluated the impact of the expression of co-inhibitory molecules such as 2B4, PD-1 and CD160 on the functions of CD8 T-cells specific to influenza, EBV and CMV. We show that CD8 T-cell populations expressing CD160, but not PD-1, had reduced proliferation capacity and perforin expression, thus indicating that the functional impairment in CD160(+ CD8 T cells may be independent of PD-1 expression. The blockade of CD160/CD160-ligand interaction restored CD8 T-cell proliferation capacity, and the extent of restoration directly correlated with the ex vivo proportion of CD160(+ CD8 T cells suggesting that CD160 negatively regulates TCR-mediated signaling. Furthermore, CD160 expression was not up-regulated upon T-cell activation or proliferation as compared to PD-1. Taken together, these results provide evidence that CD160-associated CD8 T-cell functional impairment is independent of PD-1 expression.

  5. Neonatal CD8+ T-cell differentiation is dependent on interleukin-12.

    LENUS (Irish Health Repository)

    McCarron, Mark J

    2012-02-01

    Neonatal CD8(+) T-cell activation is significantly impaired compared with that in adults. Recent studies have demonstrated that interleukin (IL)-12 is necessary as a third signal, in addition to antigen and co-stimulation, to authorize the differentiation of naive CD8(+) T cells. We examined whether human neonatal CD8(+) T cells, which possess an exclusively naive T-cell phenotype, required a third signal to authorize a productive T-cell response. IL-12 enhanced activated naive CD8(+) T-cell survival, expansion, CD25 expression, and IL-2 production. Activated CD8(+) T cells produced interferon-gamma and intracellular granzyme B and were cytotoxic only in the presence of IL-12. Sustained IL-12 signaling for 72 hours was required for optimal interferon-gamma production. IL-12, in concert with T cell receptor (TCR) stimulation, sustained late-stage (48-72 hours) intracellular phosphorylation and particularly total protein levels of the proximal TCR components, Lck, and CD3xi. The requirement for a third signal for productive human neonatal CD8(+) T-cell differentiation may have implications for neonatal vaccination strategies.

  6. Host and viral factors contributing to CD8+ T cell failure in hepatitis C virus infection

    Institute of Scientific and Technical Information of China (English)

    Christoph Neumann-Haefelin; Hans Christian Spangenberg; Hubert E Blum; Robert Thimme

    2007-01-01

    Virus-specific CD8+ T cells are thought to be the major anti-viral effector cells in hepatitis C virus (HCV)infection. Indeed, viral clearance is associated with vigorous CD8+ T cell responses targeting multiple epitopes. In the chronic phase of infection, HCV-specific CD8+ T cell responses are usually weak, narrowly focused and display often functional defects regarding cytotoxicity, cytokine production, and proliferative capacity. In the last few years, different mechanisms which might contribute to the failure of HCV-specific CD8+ T cells in chronic infection have been identified,including insufficient CD4+ help, deficient CD8+ T cell differentiation, viral escape mutations, suppression by viral factors, inhibitory cytokines, inhibitory ligands, and regulatory T cells. In addition, host genetic factors such as the host's human leukocyte antigen (HLA) background may play an important role in the efficiency of the HCVspecific CD8+ T cell response and thus outcome of infection. The growing understanding of the mechanisms contributing to T cell failure and persistence of HCV infection will contribute to the development of successful immunotherapeutical and -prophylactical strategies.

  7. Characterization of Human CD8 T Cell Responses in Dengue Virus-Infected Patients from India.

    Science.gov (United States)

    Chandele, Anmol; Sewatanon, Jaturong; Gunisetty, Sivaram; Singla, Mohit; Onlamoon, Nattawat; Akondy, Rama S; Kissick, Haydn Thomas; Nayak, Kaustuv; Reddy, Elluri Seetharami; Kalam, Haroon; Kumar, Dhiraj; Verma, Anil; Panda, HareKrushna; Wang, Siyu; Angkasekwinai, Nasikarn; Pattanapanyasat, Kovit; Chokephaibulkit, Kulkanya; Medigeshi, Guruprasad R; Lodha, Rakesh; Kabra, Sushil; Ahmed, Rafi; Murali-Krishna, Kaja

    2016-12-15

    Epidemiological studies suggest that India has the largest number of dengue virus infection cases worldwide. However, there is minimal information about the immunological responses in these patients. CD8 T cells are important in dengue, because they have been implicated in both protection and immunopathology. Here, we provide a detailed analysis of HLA-DR(+) CD38(+) and HLA-DR(-) CD38(+) effector CD8 T cell subsets in dengue patients from India and Thailand. Both CD8 T cell subsets expanded and expressed markers indicative of antigen-driven proliferation, tissue homing, and cytotoxic effector functions, with the HLA-DR(+) CD38(+) subset being the most striking in these effector qualities. The breadth of the dengue-specific CD8 T cell response was diverse, with NS3-specific cells being the most dominant. Interestingly, only a small fraction of these activated effector CD8 T cells produced gamma interferon (IFN-γ) when stimulated with dengue virus peptide pools. Transcriptomics revealed downregulation of key molecules involved in T cell receptor (TCR) signaling. Consistent with this, the majority of these CD8 T cells remained IFN-γ unresponsive even after TCR-dependent polyclonal stimulation (anti-CD3 plus anti-CD28) but produced IFN-γ by TCR-independent polyclonal stimulation (phorbol 12-myristate 13-acetate [PMA] plus ionomycin). Thus, the vast majority of these proliferating, highly differentiated effector CD8 T cells probably acquire TCR refractoriness at the time the patient is experiencing febrile illness that leads to IFN-γ unresponsiveness. Our studies open novel avenues for understanding the mechanisms that fine-tune the balance between CD8 T cell-mediated protective versus pathological effects in dengue.

  8. PKC-theta in regulatory and effector T-cell functions

    Directory of Open Access Journals (Sweden)

    Vedran eBrezar

    2015-10-01

    Full Text Available One of the major goals in immunology research is to understand the regulatory mechanisms that underpin the rapid switch on/off of robust and efficient effector (Teff or regulatory (Tregs T-cell responses. Understanding the molecular mechanisms underlying the regulation of such responses is critical for the development of effective therapies. T-cell activation involves the engagement of T-cell receptor and co-stimulatory signals, but the subsequent recruitment of serine/threonine-specific protein Kinase C-theta (PKC-θ to the immunological synapse is instrumental for the formation of signalling complexes, that ultimately lead to a transcriptional network in T cells. Recent studies demonstrated that major differences between Teffs and Tregs occurred at the immunological synapse where its formation induces altered signalling pathways in Tregs. These pathways are characterized by reduced recruitment of PKC-θ, suggesting that PKC-θ inhibits Tregs suppressive function in a negative feedback loop. As the balance of Teffs and Tregs has been shown to be central in several diseases, it was not surprising that some studies revealed that PKC-θ plays a major role in the regulation of this balance.This review will examine recent knowledge on the role of PKC-θ in T-cell transcriptional responses and how this protein can impact on the function of both Tregs and Teffs.

  9. Label Free Detection of CD4+ and CD8+ T Cells Using the Optofluidic Ring Resonator

    Directory of Open Access Journals (Sweden)

    John T. Gohring

    2010-06-01

    Full Text Available We have demonstrated label free detection of CD4+ and CD8+ T-Lymphocyte whole cells and CD4+ T-Lymphocyte cell lysis using the optofluidic ring resonator (OFRR sensor. The OFRR sensing platform incorporates microfluidics and photonics in a setup that utilizes small sample volume and achieves a fast detection time. In this work, white blood cells were isolated from healthy blood and the concentrations were adjusted to match T-Lymphocyte levels of individuals infected with HIV. Detection was accomplished by immobilizing CD4 and CD8 antibodies on the inner surface of the OFRR. Sensing results show excellent detection of CD4+ and CD8+ T-Lymphocyte cells at medically significant concentrations with a detection time of approximately 30 minutes. This work will lead to a rapid and low-cost sensing device that can provide a CD4 and CD8 count as a measure of HIV progression.

  10. Distinct populations of innate CD8+ T cells revealed in a CXCR3 reporter mouse.

    Science.gov (United States)

    Oghumu, Steve; Dong, Ran; Varikuti, Sanjay; Shawler, Todd; Kampfrath, Thomas; Terrazas, Cesar A; Lezama-Davila, Claudio; Ahmer, Brian M M; Whitacre, Caroline C; Rajagopalan, Sanjay; Locksley, Richard; Sharpe, Arlene H; Satoskar, Abhay R

    2013-03-01

    CXCR3, expressed mainly on activated T and NK cells, is implicated in a host of immunological conditions and can contribute either to disease resolution or pathology. We report the generation and characterization of a novel CXCR3 internal ribosome entry site bicistronic enhanced GFP reporter (CIBER) mouse in which enhanced GFP expression correlates with surface levels of CXCR3. Using CIBER mice, we identified two distinct populations of innate CD8(+) T cells based on constitutive expression of CXCR3. We demonstrate that CXCR3(+) innate CD8(+) T cells preferentially express higher levels of Ly6C and CD122, but lower levels of CCR9 compared with CXCR3(-) innate CD8(+) T cells. Furthermore, we show that CXCR3(+) innate CD8(+) T cells express higher transcript levels of antiapoptotic but lower levels of proapoptotic factors, respond more robustly to IL-2 and IL-15, and produce significantly more IFN-γ and granzyme B. Interestingly, CXCR3(+) innate CD8(+) T cells do not respond to IL-12 or IL-18 alone, but produce significant amounts of IFN-γ on stimulation with a combination of these cytokines. Taken together, these findings demonstrate that CXCR3(+) and CXCR3(-) innate CD8(+) T cells are phenotypically and functionally distinct. These newly generated CIBER mice provide a novel tool for studying the role of CXCR3 and CXCR3-expressing cells in vivo.

  11. Variability in CRP, regulatory T cells and effector T cells over time in gynaecological cancer patients: a study of potential oscillatory behaviour and correlations

    OpenAIRE

    2014-01-01

    Background The inflammatory marker, C reactive protein has been proposed to also be a biomarker for adaptive immune responses in cancer patients with a possible application in time based chemotherapy. Fluxes in serum CRP levels were suggested to be indicative of a cyclical process in which, immune activation is followed by auto-regulating immune suppression. The applicability of CRP as a biomarker for regulatory or effector T cells was therefore investigated in a cohort of patients with gynae...

  12. Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction

    Science.gov (United States)

    Zhao, Ende; Maj, Tomasz; Kryczek, Ilona; Li, Wei; Wu, Ke; Zhao, Lili; Wei, Shuang; Crespo, Joel; Wan, Shanshan; Vatan, Linda; Szeliga, Wojciech; Shao, Irene; Wang, Yin; Liu, Yan; Varambally, Sooryanarayana; Chinnaiyan, Arul M.; Welling, Theodore H.; Marquez, Victor E.; Kotarski, Jan; Wang, Hongbo; Wang, Zehua; Zhang, Yi; Liu, Rebecca; Wang, Guobin; Zou, Weiping

    2015-01-01

    Aerobic glycolysis regulates T cell function. However, if and how primary cancer alters T cell glycolytic metabolism and affects tumor immunity remains a question in cancer patients. Here we report that ovarian cancers imposed glucose restriction on T cells and dampened their function via maintaining high expression of microRNA101 and microRNA26a, which constrained expression of the methyltransferase EZH2. EZH2 activated the Notch pathway by suppressing Notch repressors, Numb and Fbxw7, via H3K27me3, and consequently stimulated T cell polyfunctional cytokine expression and promoted their survival via Bcl-2 signaling. Moreover, human shRNA-knockdown-EZH2-deficient T cells elicited poor anti-tumor immunity. EZH2+CD8+ T cells were associated with improved cancer patient survival. Together, the data unveil a novel metabolic target and mechanism of cancer immune evasion. PMID:26523864

  13. Measuring the diaspora for virus-specific CD8+ T cells.

    Science.gov (United States)

    Marshall, D R; Turner, S J; Belz, G T; Wingo, S; Andreansky, S; Sangster, M Y; Riberdy, J M; Liu, T; Tan, M; Doherty, P C

    2001-05-22

    The CD8(+) T cell diaspora has been analyzed after secondary challenge with an influenza A virus that replicates only in the respiratory tract. Numbers of D(b)NP(366)- and D(b)PA(224)-specific CD8(+) T cells were measured by tetramer staining at the end of the recall response, then followed sequentially in the lung, lymph nodes, spleen, blood, and other organs. The extent of clonal expansion did not reflect the sizes of the preexisting memory T cell pools. Although the high-frequency CD8(+) tetramer(+) populations in the pneumonic lung and mediastinal lymph nodes fell rapidly from peak values, the "whole mouse" virus-specific CD8(+) T cell counts decreased only 2-fold over the 4 weeks after infection, then subsided at a fairly steady rate to reach a plateau at about 2 months. The largest numbers were found throughout in the spleen, then the bone marrow. The CD8(+)D(b)NP(366)+ and CD8(+)D(b)PA(224)+ sets remained significantly enlarged for at least 4 months, declining at equivalent rates while retaining the nucleoprotein > acid polymerase immunodominance hierarchy characteristic of the earlier antigen-driven phase. Lowest levels of the CD69 "activation marker" were detected consistently on virus-specific CD8(+) T cells in the blood, then the spleen. Those in the bone marrow and liver were intermediate, and CD69(hi) T cells were very prominent in the regional lymph nodes and the nasal-associated lymphoid tissue. Any population of "resting" CD8(+) memory T cells is thus phenotypically heterogeneous, widely dispersed, and subject to broad homeostatic and local environmental effects irrespective of epitope specificity or magnitude.

  14. Oligoclonal CD8+ T cells play a critical role in the development of hypertension.

    Science.gov (United States)

    Trott, Daniel W; Thabet, Salim R; Kirabo, Annet; Saleh, Mohamed A; Itani, Hana; Norlander, Allison E; Wu, Jing; Goldstein, Anna; Arendshorst, William J; Madhur, Meena S; Chen, Wei; Li, Chung-I; Shyr, Yu; Harrison, David G

    2014-11-01

    Recent studies have emphasized a role of adaptive immunity, and particularly T cells, in the genesis of hypertension. We sought to determine the T-cell subtypes that contribute to hypertension and renal inflammation in angiotensin II-induced hypertension. Using T-cell receptor spectratyping to examine T-cell receptor usage, we demonstrated that CD8(+) cells, but not CD4(+) cells, in the kidney exhibited altered T-cell receptor transcript lengths in Vβ3, 8.1, and 17 families in response to angiotensin II-induced hypertension. Clonality was not observed in other organs. The hypertension caused by angiotensin II in CD4(-/-) and MHCII(-/-) mice was similar to that observed in wild-type mice, whereas CD8(-/-) mice and OT1xRAG-1(-/-) mice, which have only 1 T-cell receptor, exhibited a blunted hypertensive response to angiotensin II. Adoptive transfer of pan T cells and CD8(+) T cells but not CD4(+)/CD25(-) cells conferred hypertension to RAG-1(-/-) mice. In contrast, transfer of CD4(+)/CD25(+) cells to wild-type mice receiving angiotensin II decreased blood pressure. Mice treated with angiotensin II exhibited increased numbers of kidney CD4(+) and CD8(+) T cells. In response to a sodium/volume challenge, wild-type and CD4(-/-) mice infused with angiotensin II retained water and sodium, whereas CD8(-/-) mice did not. CD8(-/-) mice were also protected against angiotensin-induced endothelial dysfunction and vascular remodeling in the kidney. These data suggest that in the development of hypertension, an oligoclonal population of CD8(+) cells accumulates in the kidney and likely contributes to hypertension by contributing to sodium and volume retention and vascular rarefaction.

  15. CD8{sup +}CD25{sup +} T cells reduce atherosclerosis in apoE(−/−) mice

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jianchang; Dimayuga, Paul C.; Zhao, Xiaoning; Yano, Juliana; Lio, Wai Man; Trinidad, Portia; Honjo, Tomoyuki; Cercek, Bojan; Shah, Prediman K.; Chyu, Kuang-Yuh, E-mail: Chyuk@cshs.org

    2014-01-17

    Highlights: •The role of a sub-population of CD8{sup +} T cells with suppressor functions was investigated in atherosclerosis. •CD8{sup +}CD25{sup +} T cells from adult apoE(−/−) mice had phenotype characteristics of T suppressor cells. •These CD8{sup +}CD25{sup +} T cells reduced CD4{sup +} T cell proliferation and CD8{sup +} cytotoxic activity in vitro. •Adoptive transfer of CD8{sup +}CD25{sup +} T cells significantly reduced atherosclerosis. •CD8{sup +}CD25{sup +} T cells have a suppressive function in atherosclerosis. -- Abstract: Background: It is increasingly evident that CD8{sup +} T cells are involved in atherosclerosis but the specific subtypes have yet to be defined. CD8{sup +}CD25{sup +} T cells exert suppressive effects on immune signaling and modulate experimental autoimmune disorders but their role in atherosclerosis remains to be determined. The phenotype and functional role of CD8{sup +}CD25{sup +} T cells in experimental atherosclerosis were investigated in this study. Methods and results: CD8{sup +}CD25{sup +} T cells were observed in atherosclerotic plaques of apoE(−/−) mice fed hypercholesterolemic diet. Characterization by flow cytometric analysis and functional evaluation using a CFSE-based proliferation assays revealed a suppressive phenotype and function of splenic CD8{sup +}CD25{sup +} T cells from apoE(−/−) mice. Depletion of CD8{sup +}CD25{sup +} from total CD8{sup +} T cells rendered higher cytolytic activity of the remaining CD8{sup +}CD25{sup −} T cells. Adoptive transfer of CD8{sup +}CD25{sup +} T cells into apoE(−/−) mice suppressed the proliferation of splenic CD4{sup +} T cells and significantly reduced atherosclerosis in recipient mice. Conclusions: Our study has identified an athero-protective role for CD8{sup +}CD25{sup +} T cells in experimental atherosclerosis.

  16. Exploring the induction of preproinsulin-specific Foxp3(+) CD4(+) Treg cells that inhibit CD8(+) T cell-mediated autoimmune diabetes by DNA vaccination.

    Science.gov (United States)

    Stifter, Katja; Schuster, Cornelia; Schlosser, Michael; Boehm, Bernhard Otto; Schirmbeck, Reinhold

    2016-07-11

    DNA vaccination is a promising strategy to induce effector T cells but also regulatory Foxp3(+) CD25(+) CD4(+) Treg cells and inhibit autoimmune disorders such as type 1 diabetes. Little is known about the antigen requirements that facilitate priming of Treg cells but not autoreactive effector CD8(+) T cells. We have shown that the injection of preproinsulin (ppins)-expressing pCI/ppins vector into PD-1- or PD-L1-deficient mice induced K(b)/A12-21-monospecific CD8(+) T cells and autoimmune diabetes. A pCI/ppinsΔA12-21 vector (lacking the critical K(b)/A12-21 epitope) did not induce autoimmune diabetes but elicited a systemic Foxp3(+) CD25(+) Treg cell immunity that suppressed diabetes induction by a subsequent injection of the diabetogenic pCI/ppins. TGF-β expression was significantly enhanced in the Foxp3(+) CD25(+) Treg cell population of vaccinated/ppins-primed mice. Ablation of Treg cells in vaccinated/ppins-primed mice by anti-CD25 antibody treatment abolished the protective effect of the vaccine and enabled diabetes induction by pCI/ppins. Adoptive transfer of Treg cells from vaccinated/ppins-primed mice into PD-L1(-/-) hosts efficiently suppressed diabetes induction by pCI/ppins. We narrowed down the Treg-stimulating domain to a 15-residue ppins76-90 peptide. Vaccine-induced Treg cells thus play a crucial role in the control of de novo primed autoreactive effector CD8(+) T cells in this diabetes model.

  17. Visualizing early splenic memory CD8+ T cells reactivation against intracellular bacteria in the mouse.

    Directory of Open Access Journals (Sweden)

    Marc Bajénoff

    Full Text Available Memory CD8(+ T cells represent an important effector arm of the immune response in maintaining long-lived protective immunity against viruses and some intracellular bacteria such as Listeria monocytogenes (L.m. Memory CD8(+ T cells are endowed with enhanced antimicrobial effector functions that perfectly tail them to rapidly eradicate invading pathogens. It is largely accepted that these functions are sufficient to explain how memory CD8(+ T cells can mediate rapid protection. However, it is important to point out that such improved functional features would be useless if memory cells were unable to rapidly find the pathogen loaded/infected cells within the infected organ. Growing evidences suggest that the anatomy of secondary lymphoid organs (SLOs fosters the cellular interactions required to initiate naive adaptive immune responses. However, very little is known on how the SLOs structures regulate memory immune responses. Using Listeria monocytogenes (L.m as a murine infection model and imaging techniques, we have investigated if and how the architecture of the spleen plays a role in the reactivation of memory CD8(+ T cells and the subsequent control of L.m growth. We observed that in the mouse, memory CD8(+ T cells start to control L.m burden 6 hours after the challenge infection. At this very early time point, L.m-specific and non-specific memory CD8(+ T cells localize in the splenic red pulp and form clusters around L.m infected cells while naïve CD8(+ T cells remain in the white pulp. Within these clusters that only last few hours, memory CD8(+ T produce inflammatory cytokines such as IFN-gamma and CCL3 nearby infected myeloid cells known to be crucial for L.m killing. Altogether, we describe how memory CD8(+ T cells trafficking properties and the splenic micro-anatomy conjugate to create a spatio-temporal window during which memory CD8(+ T cells provide a local response by secreting effector molecules around infected cells.

  18. Starved and asphyxiated: how can CD8+T cells within a tumor microenvironment prevent tumor progression

    Directory of Open Access Journals (Sweden)

    Ying eZhang

    2016-02-01

    Full Text Available Although cancer immunotherapy has achieved significant breakthroughs in recent years, its overall efficacy remains limited in the majority of patients. One major barrier is exhaustion of tumor antigen (TA-specific CD8+ tumor-infiltrating lymphocytes (TILs, which conventionally has been attributed to persistent stimulation with antigen within the tumor microenvironment (TME. A series of recent studies have highlighted that the TME poses significant metabolic challenges to TILs, which may contribute to their functional exhaustion. Hypoxia increases the expression of co-inhibitors on activated CD8+T cells, which in general reduces the T cells’ effector functions. It also impairs the cells’ ability to gain energy through oxidative phosphorylation (OXPHOS. Glucose limitation increases expression of programmed cell death protein (PD-1 and reduces functions of activated CD8+T cells. A combination of hypoxia and hypoglycemia, as is common in solid tumors, places CD8+TILs at dual metabolic jeopardy by affecting both major pathways of energy production. Recently, a number of studies addressed the effects of metabolic stress on modulating CD8+T cell metabolism, differentiation and functions. Here we discuss recent findings on how different types of metabolic stress within the TME shape the tumor-killing capacity of CD8+T cells. We propose that manipulating the metabolism of TILs to more efficiently utilize nutrients especially during intermittent periods of hypoxia could maximize their performance, prolong their survival and improve the efficacy of active cancer immunotherapy.

  19. Differential remodeling of a T-cell transcriptome following CD8-versus CD3-induced signaling

    Institute of Scientific and Technical Information of China (English)

    S Hussain I Abidi; Tao Dong; Mai T Vuong; Vattipally B Sreenu; Sarah L Rowland-Jones; Edward J Evans; Simon J Davis

    2008-01-01

    CD8 engagement with class I major histocompatibility antigens greatly enhances T-cell activation,but it is not clear how this is achieved.We address the question of whether or not the antibody-mediated ligation of CD8 alone induces transcriptional remodeling in a T-cell clone,using serial analysis of gene expression.Even though it fails to induce overt phenotypic changes,we find that CD8 ligation profoundly alters transcription in the T-cell clone,at a scale comparable to that induced by antibody-mediated ligation of CD3.The character of the resulting changes is distinct,however,with the net effect ofCD8 ligation being substantially inhibitory.We speculate that ligating CD8 induces weak,T-cell receptor (TCR)-mediated inhibitory signals reminiscent of the effects of TCR antagonists.Our results imply that CD8 ligation alone is incapable of activating the T-cell clone because it fails to fully induce NFAT-dependent transcription.

  20. Cooperation between CD4 and CD8 T cells for anti-tumor activity is enhanced by OX40 signals.

    Science.gov (United States)

    Song, Aihua; Song, Jianxun; Tang, Xiaohong; Croft, Michael

    2007-05-01

    The relative contribution of OX40 (CD134) to priming of CD8 T cells in complex systems where CD4 and CD8 cells respond and cooperate together is not clear. We previously found that OX40 expressed on tumor-reactive CD8 T cells controls their initial persistence when adoptively transferred in vivo and is required for delayed tumor growth. We now show that exogenous stimulation of OX40 with agonist antibody augments its ability to suppress the growth of new as well as established tumors, correlating with marked expansion of adoptively transferred CD8 T cells. Concomitantly, anti-OX40 strongly enhanced the number of tumor antigen-reactive CD4 T cells. Moreover, the augmented accumulation of CD8 T cells was prevented in animals lacking MHC class II or depleted of CD4 cells and did not occur in OX40-deficient animals receiving wild-type CD8 cells, demonstrating that non-CD8 cells are the major target of OX40 signals. These results suggest that while OX40 signaling to a CD8 T cell can control its expansion, OX40 expressed on non-CD8 cells strongly influences CD8 priming and in vivo activity. OX40 therefore represents an important signal for allowing effective cooperation between CD4 and CD8 cells and for promoting cell interplay and tumor rejection where CD8 activity is limiting.

  1. CD8+ T cells complement antibodies in protecting against yellow fever virus.

    Science.gov (United States)

    Bassi, Maria R; Kongsgaard, Michael; Steffensen, Maria A; Fenger, Christina; Rasmussen, Michael; Skjødt, Karsten; Finsen, Bente; Stryhn, Anette; Buus, Søren; Christensen, Jan P; Thomsen, Allan R

    2015-02-01

    The attenuated yellow fever (YF) vaccine (YF-17D) was developed in the 1930s, yet little is known about the protective mechanisms underlying its efficiency. In this study, we analyzed the relative contribution of cell-mediated and humoral immunity to the vaccine-induced protection in a murine model of YF-17D infection. Using different strains of knockout mice, we found that CD4(+) T cells, B cells, and Abs are required for full clinical protection of vaccinated mice, whereas CD8(+) T cells are dispensable for long-term survival after intracerebral challenge. However, by analyzing the immune response inside the infected CNS, we observed an accelerated T cell influx into the brain after intracerebral challenge of vaccinated mice, and this T cell recruitment correlated with improved virus control in the brain. Using mice deficient in B cells we found that, in the absence of Abs, YF vaccination can still induce some antiviral protection, and in vivo depletion of CD8(+) T cells from these animals revealed a pivotal role for CD8(+) T cells in controlling virus replication in the absence of a humoral response. Finally, we demonstrated that effector CD8(+) T cells also contribute to viral control in the presence of circulating YF-specific Abs. To our knowledge, this is the first time that YF-specific CD8(+) T cells have been demonstrated to possess antiviral activity in vivo.

  2. Induction of cytotoxic CD8+CD56+ T cells from human thymocytes by interleukin-15

    DEFF Research Database (Denmark)

    Thulesen, S; Nissen, Mogens Holst; Ødum, N;

    2001-01-01

    CD8(+) CD56(+) cells isolated from human peripheral blood lymphocytes have been shown recently to represent a population of cytotoxic active T cells. However, it is not known if these cells are intrathymically or extrathymically developed or how these cells are influenced by growth factors...... of thymocytes. The majority of the IL-15-grown CD8(+) CD56(+) cells were CD45R0(+), representing a memory phenotype, and showed high expression of the IL-15R-complex and high numbers of CD69(+) cells. Moreover, cytotoxic activity was confined to this cell population....

  3. Neuroantigen-specific autoregulatory CD8+ T cells inhibit autoimmune demyelination through modulation of dendritic cell function.

    Directory of Open Access Journals (Sweden)

    Venkatesh P Kashi

    Full Text Available Experimental autoimmune encephalomyelitis (EAE is a well-established murine model of multiple sclerosis, an immune-mediated demyelinating disorder of the central nervous system (CNS. We have previously shown that CNS-specific CD8+ T cells (CNS-CD8+ ameliorate EAE, at least in part through modulation of CNS-specific CD4+ T cell responses. In this study, we show that CNS-CD8+ also modulate the function of CD11c+ dendritic cells (DC, but not other APCs such as CD11b+ monocytes or B220+ B cells. DC from mice receiving either myelin oligodendrocyte glycoprotein-specific CD8+ (MOG-CD8+ or proteolipid protein-specific CD8+ (PLP-CD8+ T cells were rendered inefficient in priming T cell responses from naïve CD4+ T cells (OT-II or supporting recall responses from CNS-specific CD4+ T cells. CNS-CD8+ did not alter DC subset distribution or MHC class II and CD86 expression, suggesting that DC maturation was not affected. However, the cytokine profile of DC from CNS-CD8+ recipients showed lower IL-12 and higher IL-10 production. These functions were not modulated in the absence of immunization with CD8-cognate antigen, suggesting an antigen-specific mechanism likely requiring CNS-CD8-DC interaction. Interestingly, blockade of IL-10 in vitro rescued CD4+ proliferation and in vivo expression of IL-10 was necessary for the suppression of EAE by MOG-CD8+. These studies demonstrate a complex interplay between CNS-specific CD8+ T cells, DC and pathogenic CD4+ T cells, with important implications for therapeutic interventions in this disease.

  4. CD4+ and CD8+ T cells have opposing roles in breast cancer progression and outcome

    Science.gov (United States)

    Zhang, Qunyuan; Ye, Jian; Wang, Fang; Zhang, Yanping; Hunborg, Pamela; Varvares, Mark A.; Hoft, Daniel F.; Hsueh, Eddy C.; Peng, Guangyong

    2015-01-01

    The Cancer Immunoediting concept has provided critical insights suggesting dual functions of immune system during the cancer initiation and development. However, the dynamics and roles of CD4+ and CD8+ T cells in the pathogenesis of breast cancer remain unclear. Here we utilized two murine breast cancer models (4T1 and E0771) and demonstrated that both CD4+ and CD8+ T cells were increased and involved in immune responses, but with distinct dynamic trends in breast cancer development. In addition to cell number increases, CD4+ T cells changed their dominant subsets from Th1 in the early stages to Treg and Th17 cells in the late stages of the cancer progression. We also analyzed CD4+ and CD8+ T cell infiltration in primary breast cancer tissues from cancer patients. We observed that CD8+ T cells are the key effector cell population mediating effective anti-tumor immunity resulting in better clinical outcomes. In contrast, intra-tumoral CD4+ T cells have negative prognostic effects on breast cancer patient outcomes. These studies indicate that CD4+ and CD8+ T cells have opposing roles in breast cancer progression and outcomes, which provides new insights relevant for the development of effective cancer immunotherapeutic approaches. PMID:25968569

  5. An IFN-gamma-IL-18 signaling loop accelerates memory CD8+ T cell proliferation.

    Directory of Open Access Journals (Sweden)

    Yoshiko Iwai

    Full Text Available Rapid proliferation is one of the important features of memory CD8(+ T cells, ensuring rapid clearance of reinfection. Although several cytokines such as IL-15 and IL-7 regulate relatively slow homeostatic proliferation of memory T cells during the maintenance phase, it is unknown how memory T cells can proliferate more quickly than naïve T cells upon antigen stimulation. To examine antigen-specific CD8(+ T cell proliferation in recall responses in vivo, we targeted a model antigen, ovalbumin(OVA, to DEC-205(+ dendritic cells (DCs with a CD40 maturation stimulus. This led to the induction of functional memory CD8(+ T cells, which showed rapid proliferation and multiple cytokine production (IFN-gamma, IL-2, TNF-alpha during the secondary challenge to DC-targeted antigen. Upon antigen-presentation, IL-18, an IFN-gamma-inducing factor, accumulated at the DC:T cell synapse. Surprisingly, IFN-gamma receptors were required to augment IL-18 production from DCs. Mice genetically deficient for IL-18 or IFN-gamma-receptor 1 also showed delayed expansion of memory CD8(+ T cells in vivo. These results indicate that a positive regulatory loop involving IFN-gamma and IL-18 signaling contributes to the accelerated memory CD8(+ T cell proliferation during a recall response to antigen presented by DCs.

  6. Peripheral tolerance through clonal deletion of mature CD4-CD8+ T cells.

    Science.gov (United States)

    Carlow, D A; Teh, S J; van Oers, N S; Miller, R G; Teh, H S

    1992-05-01

    Transgenic mice bearing the alpha beta transgenes encoding a defined T cell receptor specific for the male (H-Y) antigen presented by the H-2Db class I MHC molecule were used to study mechanisms of peripheral tolerance. Female transgenic mice produce large numbers of functionally homogeneous CD8+ male antigen-reactive T cells in the thymus that subsequently accumulate in the peripheral lymphoid organs. We have used three experimental approaches to show that male reactive CD8+ T cells can be eliminated from peripheral lymphoid organs after exposure to male antigen. (i) In female transgenic mice that were neonatally tolerized with male spleen cells, male reactive CD8+ T cells continued to be produced in large numbers in the thymus but were virtually absent in the lymph nodes. (ii) Injection of thymocytes from female transgenic mice into female mice neonatally tolerized with the male antigen, or into normal male mice, led to the specific elimination of male-reactive CD8+ T cells in the lymph nodes. (iii) Four days after male lymphoid cells were injected intravenously into female transgenic mice, male antigen-reactive CD8+ T cells recovered from the lymph nodes of recipient mice were highly apoptotic when compared to CD4+ (non-male reactive) T cells. These data indicate that tolerance to extrathymic antigen can be achieved through elimination of mature T cells in the peripheral lymphoid organs.

  7. Direct presentation is sufficient for an efficient anti-viral CD8+ T cell response.

    Directory of Open Access Journals (Sweden)

    Ren-Huan Xu

    2010-02-01

    Full Text Available The extent to which direct- and cross-presentation (DP and CP contribute to the priming of CD8(+ T cell (T(CD8+ responses to viruses is unclear mainly because of the difficulty in separating the two processes. Hence, while CP in the absence of DP has been clearly demonstrated, induction of an anti-viral T(CD8+ response that excludes CP has never been purposely shown. Using vaccinia virus (VACV, which has been used as the vaccine to rid the world of smallpox and is proposed as a vector for many other vaccines, we show that DP is the main mechanism for the priming of an anti-viral T(CD8+ response. These findings provide important insights to our understanding of how one of the most effective anti-viral vaccines induces immunity and should contribute to the development of novel vaccines.

  8. CD8 T Cells and Immunoediting of Breast Cancer

    Science.gov (United States)

    2008-08-01

    transfected cells treated with or without ADM by using a non-acetylation, enzyme immunoassay system (The HitHunter™ Enzyme Fragment Complementation...HC D3 HB IG I; 5 ) GJ4... immunoassay ." In some cases, DCs were not exposed to T cells but rather allowed to remain in media for 48 hours after which DC-conditioned media were

  9. Memory CD8+ T Cells: Orchestrators and Key Players of Innate Immunity?

    Science.gov (United States)

    Lauvau, Grégoire; Goriely, Stanislas

    2016-09-01

    Over the past decades, the dichotomy between innate and adaptive immune responses has largely dominated our understanding of immunology. Upon primary encounter with microbial pathogens, differentiation of adaptive immune cells into functional effectors usually takes several days or even longer, making them contribute to host protection only late during primary infection. However, once generated, antigen-experienced T lymphocytes can persist in the organism and constitute a pool of memory cells that mediate fast and effective protection to a recall infection with the same microbial pathogen. Herein, we challenge this classical paradigm by highlighting the "innate nature" of memory CD8+ T cells. First, within the thymus or in the periphery, naïve CD8+ T cells may acquire phenotypic and functional characteristics of memory CD8+ T cells independently of challenge with foreign antigens. Second, both the "unconventional" and the "conventional" memory cells can rapidly express protective effector functions in response to sets of inflammatory cytokines and chemokines signals, independent of cognate antigen triggering. Third, memory CD8+ T cells can act by orchestrating the recruitment, activation, and licensing of innate cells, leading to broad antimicrobial states. Thus, collectively, memory CD8+ T cells may represent important actors of innate immune defenses.

  10. CD8+ T cells as a source of IFN-γ production in human cutaneous leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Mahmoud Nateghi Rostami

    Full Text Available BACKGROUND: In human leishmaniasis Th1/Th2 dichotomy similar to murine model is not clearly defined and surrogate marker(s of protection is not yet known. In this study, Th1/Th2 cytokines (IL-5, IL-10, IL-13 and IFN-γ profile induced by purified CD4(+/CD8(+ T cells in response to Leishmania antigens were assessed at transcript and protein levels in 14 volunteers with a history of self-healing cutaneous leishmaniasis (HCL and compared with 18 healthy control volunteers. METHODOLOGY/PRINCIPAL FINDINGS: CD4(+/CD8(+/CD14(+ cells were purified from peripheral blood using magnetic beads; CD4(+/CD8(+ T cells were co-cultured with autologous CD14(+ monocytes in the presence of soluble Leishmania antigens (SLA. Stimulation of either CD4(+ T cells or CD8(+ T cells of HCL volunteers with SLA induced a significantly (P<0.05 higher IFN-γ production compared with the cells of controls. Upregulation of IFN-γ gene expression in CD4(+ cells (P<0.001 and CD8(+ cells (P = 0.006 of HCL volunteers was significantly more than that of controls. Significantly (P<0.05 higher fold-expression of IFN-γ gene was seen in CD4(+ cells than in CD8(+ cells. In HCL volunteers a significantly (P = 0.014 higher number of CD4(+ cells were positive for intracellular IFN-γ production than CD8(+ cells. CONCLUSIONS/SIGNIFICANCE: Collectively, the volunteers have shown maintenance of specific long-term immune responses characterized by a strong reaction to leishmanin skin test and IFN-γ production. The dominant IFN-γ response was the result of expansion of both CD4(+ and CD8(+ T cells. The results suggested that immune response in protected individuals with a history of zoonotic cutaneous leishmaniasis (ZCL due to L. major is mediated not only through the expansion of antigen-specific IFN-γ producing CD4(+ Th1 cells, but also through IFN-γ producing CD8(+ T cells.

  11. T cell intrinsic NOD2 is dispensable for CD8 T cell immunity.

    Directory of Open Access Journals (Sweden)

    Gloria H Y Lin

    Full Text Available NOD2 is an intracellular pattern recognition receptor that provides innate sensing of bacterial muramyl dipeptide by host cells, such as dendritic cells, macrophages and epithelial cells. While NOD2's role as an innate pathogen sensor is well established, NOD2 is also expressed at low levels in T cells and there are conflicting data as to whether NOD2 plays an intrinsic role in T cell function. Here we show that following adoptive transfer into WT hosts, NOD2(-/- OT-I T cells show a small decrease in the number of OVA-specific CD8 T cells recovered at the peak of the response to respiratory influenza virus infection. On the other hand, no such defect was observed upon intranasal immunization with a replication defective adenovirus carrying the OVA epitope recognized by OT-I, or when OVA was delivered with LPS subcutaneously, or when influenza-OVA was delivered intraperitoneally. Thus we observed a selective defect in NOD2-deficient T cell responses only during a live viral infection. Moreover, there was no apparent defect when NOD2(-/- OT-I T cells were stimulated in vitro. Finally, this selective defect in recovery of NOD2-deficient CD8 T cells was not observed in a non-transgenic respiratory infection model in which mixed bone marrow chimeras were used such that the NOD2(-/- T cells were allowed to develop and respond in a NOD2-sufficient host. Taken together our data indicate that T cell intrinsic NOD2 is not required for CD8 T cell responses to antigen delivered under a variety of conditions in vitro and in vivo. However, CD8 T cells that have developed in the absence of NOD2 show a selective and modest impairment in their response to live respiratory influenza infection.

  12. V beta T cell repertoire of CD8+ splenocytes selected on nonpolymorphic MHC class I molecules.

    Science.gov (United States)

    Laouini, D; Casrouge, A; Dalle, S; Lemonnier, F; Kourilsky, P; Kanellopoulos, J

    2000-12-01

    In this work, we have studied the role of the MHC class Ib molecules in the selection and maintenance of CD8(+) T splenocytes. We have compared the CD8(+) T cell repertoires of wild-type, H-2K-deficient, H-2D-deficient, or double knockout C57BL/6 mice. We show that the different CD8(+) repertoires, selected either by class Ia and class Ib or by class Ib molecules only, use the various V alpha (AV) and V beta (BV) rearrangements in the same proportion and without biases in the CDR3 size distribution. Furthermore, we have estimated the size of the BV repertoire in the four different strains of mice. Interestingly, we have found that the BV repertoire size is proportional to the overall number of CD8(+) splenocytes. This observation implies that BV diversity is positively correlated with the number of CD8(+) cells, even when the number of CD8(+) splenocytes is dramatically reduced (90% in the double knockout mice).

  13. Altered Function in CD8+ T Cells following Paramyxovirus Infection of the Respiratory Tract

    Science.gov (United States)

    Gray, Peter M.; Arimilli, Subhashini; Palmer, Ellen M.; Parks, Griffith D.; Alexander-Miller, Martha A.

    2005-01-01

    For many respiratory pathogens, CD8+ T cells have been shown to play a critical role in clearance. However, there are still many unanswered questions with regard to the factors that promote the most efficacious immune response and the potential for immunoregulation of effector cells at the local site of infection. We have used infection of the respiratory tract with the model paramyxovirus simian virus 5 (SV5) to study CD8+ T-cell responses in the lung. For the present study, we report that over time a population of nonresponsive, virus-specific CD8+ T cells emerged in the lung, culminating in a lack of function in ∼85% of cells specific for the immunodominant epitope from the viral matrix (M) protein by day 40 postinfection. Concurrent with the induction of nonresponsiveness, virus-specific cells that retained function at later times postinfection exhibited an increased requirement for CD8 engagement. This change was coupled with a nearly complete loss of functional phosphoprotein-specific cells, a response previously shown to be almost exclusively CD8 independent. These studies add to the growing evidence for immune dysregulation following viral infection of the respiratory tract. PMID:15731228

  14. Thymoproteasomes produce unique peptide motifs for positive selection of CD8(+) T cells.

    Science.gov (United States)

    Sasaki, Katsuhiro; Takada, Kensuke; Ohte, Yuki; Kondo, Hiroyuki; Sorimachi, Hiroyuki; Tanaka, Keiji; Takahama, Yousuke; Murata, Shigeo

    2015-01-01

    Positive selection in the thymus provides low-affinity T-cell receptor (TCR) engagement to support the development of potentially useful self-major histocompatibility complex class I (MHC-I)-restricted T cells. Optimal positive selection of CD8(+) T cells requires cortical thymic epithelial cells that express β5t-containing thymoproteasomes (tCPs). However, how tCPs govern positive selection is unclear. Here we show that the tCPs produce unique cleavage motifs in digested peptides and in MHC-I-associated peptides. Interestingly, MHC-I-associated peptides carrying these tCP-dependent motifs are enriched with low-affinity TCR ligands that efficiently induce the positive selection of functionally competent CD8(+) T cells in antigen-specific TCR-transgenic models. These results suggest that tCPs contribute to the positive selection of CD8(+) T cells by preferentially producing low-affinity TCR ligand peptides.

  15. Functional classification of memory CD8+ T cells by CX3CR1 expression

    Science.gov (United States)

    Böttcher, Jan P.; Beyer, Marc; Meissner, Felix; Abdullah, Zeinab; Sander, Jil; Höchst, Bastian; Eickhoff, Sarah; Rieckmann, Jan C.; Russo, Caroline; Bauer, Tanja; Flecken, Tobias; Giesen, Dominik; Engel, Daniel; Jung, Steffen; Busch, Dirk H.; Protzer, Ulrike; Thimme, Robert; Mann, Matthias; Kurts, Christian; Schultze, Joachim L.; Kastenmüller, Wolfgang; Knolle, Percy A.

    2015-01-01

    Localization of memory CD8+ T cells to lymphoid or peripheral tissues is believed to correlate with proliferative capacity or effector function. Here we demonstrate that the fractalkine-receptor/CX3CR1 distinguishes memory CD8+ T cells with cytotoxic effector function from those with proliferative capacity, independent of tissue-homing properties. CX3CR1-based transcriptome and proteome-profiling defines a core signature of memory CD8+ T cells with effector function. We find CD62LhiCX3CR1+ memory T cells that reside within lymph nodes. This population shows distinct migration patterns and positioning in proximity to pathogen entry sites. Virus-specific CX3CR1+ memory CD8+ T cells are scarce during chronic infection in humans and mice but increase when infection is controlled spontaneously or by therapeutic intervention. This CX3CR1-based functional classification will help to resolve the principles of protective CD8+ T-cell memory. PMID:26404698

  16. Different phenotypes of CD8+ T cells associated with bacterial load in active tuberculosis.

    Science.gov (United States)

    Silva, Bruna Daniella de Souza; Trentini, Monalisa Martins; da Costa, Adeliane Castro; Kipnis, Andre; Junqueira-Kipnis, Ana Paula

    2014-07-01

    Tuberculosis is an infectious disease that affects millions of people worldwide with an annual mortality rate of 1.3 million. The mechanisms contributing to the loss of balance of immune responses and progression to active tuberculosis disease are unknown. Although CD4+ and CD8+ T cells and the cytokines they produce are crucial for protection against tuberculosis they have different roles in tuberculosis immunology. The function of CD4+ T cells has been extensively studied; however, less is known about the phenotype and function of CD8+ T cells. This study evaluated the specific expression of IFN-γ, IL-17, IL-10, and TGF-β and ex vivo expression of perforin and granzyme-B by CD8+ T cells from active tuberculosis individuals compared with latent infected individuals and non-latent infected individuals. Tuberculosis responses were correlated with the baciloscopy score. We observed that the presence of IL-10 and TGF-β expression and down-expression of granzyme-B in CD8+ T cells correlated with increased sputum bacillary load in active tuberculosis individuals. These findings provide new insights into the role of CD8+ T cells in Mycobacterium tuberculosis disease.

  17. On the role of CD8+ T cells in determining recovery time from influenza virus infection

    Directory of Open Access Journals (Sweden)

    Pengxing Cao

    2016-12-01

    Full Text Available Myriad experiments have identified an important role for CD8+ T cell response mechanisms in determining recovery from influenza A virus infection. Animal models of influenza infection further implicate multiple elements of the immune response in defining the dynamical characteristics of viral infection. To date, influenza virus models, while capturing particular aspects of the natural infection history, have been unable to reproduce the full gamut of observed viral kinetic behaviour in a single coherent framework. Here, we introduce a mathematical model of influenza viral dynamics incorporating innate, humoral and cellular immune components and explore its properties with a particular emphasis on the role of cellular immunity. Calibrated against a range of murine data, our model is capable of recapitulating observed viral kinetics from a multitude of experiments. Importantly, the model predicts a robust exponential relationship between the level of effector CD8+ T cells and recovery time, whereby recovery time rapidly decreases to a fixed minimum recovery time with an increasing level of effector CD8+ T cells. We find support for this relationship in recent clinical data from influenza A(H7N9 hospitalized patients. The exponential relationship implies that people with a lower level of naive CD8+ T cells may receive significantly more benefit from induction of additional effector CD8+ T cells arising from immunological memory, itself established through either previous viral infection or T cell-based vaccines.

  18. Interleukin-7 Modulates Anti-Tumor CD8+ T Cell Responses via Its Action on Host Cells

    Science.gov (United States)

    Deiser, Katrin; Stoycheva, Diana; Bank, Ute; Blankenstein, Thomas; Schüler, Thomas

    2016-01-01

    The adoptive transfer of antigen-specific CD8+ T cells is a promising approach for the treatment of chronic viral and malignant diseases. In order to improve adoptive T cell therapy (ATT) of cancer, recent strategies aim at the antibody-based blockade of immunosuppressive signaling pathways in CD8+ T cells. Alternatively, adjuvant effects of immunostimulatory cytokines might be exploited to improve therapeutic CD8+ T cell responses. For example, Interleukin-7 (IL-7) is a potent growth, activation and survival factor for CD8+ T cells that can be used to improve virus- and tumor-specific CD8+ T cell responses. Although direct IL-7 effects on CD8+ T cells were studied extensively in numerous models, the contribution of IL-7 receptor-competent (IL-7R+) host cells remained unclear. In the current study we provide evidence that CD8+ T cell-mediated tumor rejection in response to recombinant IL-7 (rIL-7) therapy is strictly dependent on IL-7R+ host cells. On the contrary, CD8+ T cell expansion is independent of host IL-7R expression. If, however, rIL-7 therapy and peptide vaccination are combined, host IL-7R signaling is crucial for CD8+ T cell expansion. Unexpectedly, maximum CD8+ T cell expansion relies mainly on IL-7R signaling in non-hematopoietic host cells, similar to the massive accumulation of dendritic cells and granulocytes. In summary, we provide evidence that IL-7R+ host cells are major targets of rIL-7 that modulate therapeutic CD8+ T cell responses and the outcome of rIL-7-assisted ATT. This knowledge may have important implications for the design and optimization of clinical ATT protocols. PMID:27447484

  19. Interleukin-7 Modulates Anti-Tumor CD8+ T Cell Responses via Its Action on Host Cells.

    Directory of Open Access Journals (Sweden)

    Katrin Deiser

    Full Text Available The adoptive transfer of antigen-specific CD8+ T cells is a promising approach for the treatment of chronic viral and malignant diseases. In order to improve adoptive T cell therapy (ATT of cancer, recent strategies aim at the antibody-based blockade of immunosuppressive signaling pathways in CD8+ T cells. Alternatively, adjuvant effects of immunostimulatory cytokines might be exploited to improve therapeutic CD8+ T cell responses. For example, Interleukin-7 (IL-7 is a potent growth, activation and survival factor for CD8+ T cells that can be used to improve virus- and tumor-specific CD8+ T cell responses. Although direct IL-7 effects on CD8+ T cells were studied extensively in numerous models, the contribution of IL-7 receptor-competent (IL-7R+ host cells remained unclear. In the current study we provide evidence that CD8+ T cell-mediated tumor rejection in response to recombinant IL-7 (rIL-7 therapy is strictly dependent on IL-7R+ host cells. On the contrary, CD8+ T cell expansion is independent of host IL-7R expression. If, however, rIL-7 therapy and peptide vaccination are combined, host IL-7R signaling is crucial for CD8+ T cell expansion. Unexpectedly, maximum CD8+ T cell expansion relies mainly on IL-7R signaling in non-hematopoietic host cells, similar to the massive accumulation of dendritic cells and granulocytes. In summary, we provide evidence that IL-7R+ host cells are major targets of rIL-7 that modulate therapeutic CD8+ T cell responses and the outcome of rIL-7-assisted ATT. This knowledge may have important implications for the design and optimization of clinical ATT protocols.

  20. Interleukin-7 Modulates Anti-Tumor CD8+ T Cell Responses via Its Action on Host Cells.

    Science.gov (United States)

    Deiser, Katrin; Stoycheva, Diana; Bank, Ute; Blankenstein, Thomas; Schüler, Thomas

    2016-01-01

    The adoptive transfer of antigen-specific CD8+ T cells is a promising approach for the treatment of chronic viral and malignant diseases. In order to improve adoptive T cell therapy (ATT) of cancer, recent strategies aim at the antibody-based blockade of immunosuppressive signaling pathways in CD8+ T cells. Alternatively, adjuvant effects of immunostimulatory cytokines might be exploited to improve therapeutic CD8+ T cell responses. For example, Interleukin-7 (IL-7) is a potent growth, activation and survival factor for CD8+ T cells that can be used to improve virus- and tumor-specific CD8+ T cell responses. Although direct IL-7 effects on CD8+ T cells were studied extensively in numerous models, the contribution of IL-7 receptor-competent (IL-7R+) host cells remained unclear. In the current study we provide evidence that CD8+ T cell-mediated tumor rejection in response to recombinant IL-7 (rIL-7) therapy is strictly dependent on IL-7R+ host cells. On the contrary, CD8+ T cell expansion is independent of host IL-7R expression. If, however, rIL-7 therapy and peptide vaccination are combined, host IL-7R signaling is crucial for CD8+ T cell expansion. Unexpectedly, maximum CD8+ T cell expansion relies mainly on IL-7R signaling in non-hematopoietic host cells, similar to the massive accumulation of dendritic cells and granulocytes. In summary, we provide evidence that IL-7R+ host cells are major targets of rIL-7 that modulate therapeutic CD8+ T cell responses and the outcome of rIL-7-assisted ATT. This knowledge may have important implications for the design and optimization of clinical ATT protocols.

  1. MEK kinase 1 is a negative regulator of virus-specific CD8(+) T cells

    DEFF Research Database (Denmark)

    Labuda, Tord; Christensen, Jan Pravsgaard; Rasmussen, Susanne;

    2006-01-01

    MEK kinase 1 (MEKK1) is a potent JNK-activating kinase, a regulator of T helper cell differentiation, cytokine production and proliferation in vitro. Using mice deficient for MEKK1 activity (Mekk1(DeltaKD)) exclusively in their hematopoietic system, we show that MEKK1 has a negative regulatory role...... in the generation of a virus-specific immune response. Mekk1(DeltaKD) mice challenged with vesicular stomatitis virus (VSV) showed a fourfold increase in splenic CD8(+) T cell numbers. In contrast, the number of splenic T cells in infected WT mice was only marginally increased. The CD8(+) T cell expansion in Mekk1...... suggest that MEKK1 plays a negative regulatory role in the expansion of virus-specific CD8(+) T cells in vivo....

  2. Complementary Dendritic Cell–activating Function of CD8+ and CD4+ T Cells

    Science.gov (United States)

    Mailliard, Robbie B.; Egawa, Shinichi; Cai, Quan; Kalinska, Anna; Bykovskaya, Svetlana N.; Lotze, Michael T.; Kapsenberg, Martien L.; Storkus, Walter J.; Kalinski, Pawel

    2002-01-01

    Dendritic cells (DCs) activated by CD40L-expressing CD4+ T cells act as mediators of “T helper (Th)” signals for CD8+ T lymphocytes, inducing their cytotoxic function and supporting their long-term activity. Here, we show that the optimal activation of DCs, their ability to produce high levels of bioactive interleukin (IL)-12p70 and to induce Th1-type CD4+ T cells, is supported by the complementary DC-activating signals from both CD4+ and CD8+ T cells. Cord blood– or peripheral blood–isolated naive CD8+ T cells do not express CD40L, but, in contrast to naive CD4+ T cells, they are efficient producers of IFN-γ at the earliest stages of the interaction with DCs. Naive CD8+ T cells cooperate with CD40L-expressing naive CD4+ T cells in the induction of IL-12p70 in DCs, promoting the development of primary Th1-type CD4+ T cell responses. Moreover, the recognition of major histocompatibility complex class I–presented epitopes by antigen-specific CD8+ T cells results in the TNF-α– and IFN-γ–dependent increase in the activation level of DCs and in the induction of type-1 polarized mature DCs capable of producing high levels of IL-12p70 upon a subsequent CD40 ligation. The ability of class I–restricted CD8+ T cells to coactivate and polarize DCs may support the induction of Th1-type responses against class I–presented epitopes of intracellular pathogens and contact allergens, and may have therapeutical implications in cancer and chronic infections. PMID:11854360

  3. Analysis of CD8+CD28- T-suppressor cells in living donor liver transplant recipients

    Institute of Scientific and Technical Information of China (English)

    Yi-Xin Lin; Lan-Lan Wang; Lu-Nan Yan; Pei Cai; Bo Li; Tian-Fu Wen; Yong Zeng

    2009-01-01

    BACKGROUND: Human CD8+CD28- T-suppressor (Ts) cells have been considered to indicate a reduced need for immunosuppression in pediatric liver-intestine transplant recipients and recipients of deceased heart-kidney transplants. However, in adult-to-adult living donor liver transplantation (A-A LDLT) little information is available and the clinical signiifcance is still unknown. METHODS: Flow cytometry was used to detect the population of CD8+CD28- Ts cells present in peripheral blood in A-A LDLT recipients (n=31), patients with end-stage liver disease (n=24) and healthy controls (n=19). Meanwhile, we tested the graft function and trough levels of immunosuppression in recipients. The clinical and follow-up data of 31 transplant recipients were analyzed. RESULTS: Compared with diseased controls (P=0.007) and healthy individuals (P=0.000), a notable expansion of CD8+CD28- Ts cells was found in recipients of A-A LDLT. This was associated with graft function, levels of immunosuppression and rejection episodes. CONCLUSIONS: To monitor the CD8+CD28- Ts cells levels is important to evaluate the immune state of recipients. Meanwhile, it is also important to promote expansion of CD8+CD28- Ts cells in recipients of A-A LDLT, not only to sustain good graft function and decrease the dosage of immunosuppressants, but also to reduce the occurrence of rejection.

  4. Therapeutic effect of curcumin on experimental colitis mediated by inhibiting CD8+CD11c+ cells

    Science.gov (United States)

    Zhao, Hai-Mei; Han, Fei; Xu, Rong; Huang, Xiao-Ying; Cheng, Shao-Min; Huang, Min-Fang; Yue, Hai-Yang; Wang, Xin; Zou, Yong; Xu, Han-Lin; Liu, Duan-Yong

    2017-01-01

    AIM To verify whether curcumin (Cur) can treat inflammatory bowel disease by regulating CD8+CD11c+ cells. METHODS We evaluated the suppressive effect of Cur on CD8+CD11c+ cells in spleen and Peyer’s patches (PPs) in colitis induced by trinitrobenzene sulfonic acid. Mice with colitis were treated by 200 mg/kg Cur for 7 d. On day 8, the therapeutic effect of Cur was evaluated by visual assessment and histological examination, while co-stimulatory molecules of CD8+CD11c+ cells in the spleen and PPs were measured by flow cytometry. The levels of interleukin (IL)-10, interferon (IFN)-γ and transforming growth factor (TGF)-β1 in spleen and colonic mucosa were determined by ELISA. RESULTS The disease activity index, colon weight, weight index of colon and histological score of experimental colitis were obviously decreased after Cur treatment, while the body weight and colon length recovered. After treatment with Cur, CD8+CD11c+ cells were decreased in the spleen and PPs, and the expression of major histocompatibility complex II, CD205, CD40, CD40L and intercellular adhesion molecule-1 was inhibited. IL-10, IFN-γ and TGF-β1 levels were increased compared with those in mice with untreated colitis. CONCLUSION Cur can effectively treat experimental colitis, which is realized by inhibiting CD8+CD11c+ cells. PMID:28348486

  5. Expansion of CD8+CD57+ T Cells in an Immunocompetent Patient with Acute Toxoplasmosis

    Science.gov (United States)

    García-Muñoz, R.; Rodríguez-Otero, P.; Galar, A.; Merino, J.; Beunza, J. J.; Páramo, J. A.; Lecumberri, R.

    2009-01-01

    CD57+ T cells increase in several viral infections like cytomegalovirus, herpesvirus, parvovirus, HIV and hepatitis C virus and are associated with several clinical conditions related to immune dysfunction and ageing. We report for the first time an expansion of CD8+ CD57+ T cells in a young patient with an acute infection with Toxoplasma gondii. Our report supports the concept that CD8+ CD57+ T cells could be important in the control of chronic phase of intracellular microorganisms and that the high numbers of these cells may reflect the continuing survey of the immune system, searching for parasite proliferation in the tissues. PMID:19946421

  6. Expansion of CD8+CD57+ T Cells in an Immunocompetent Patient with Acute Toxoplasmosis

    Directory of Open Access Journals (Sweden)

    R. García-Muñoz

    2009-01-01

    Full Text Available CD57+ T cells increase in several viral infections like cytomegalovirus, herpesvirus, parvovirus, HIV and hepatitis C virus and are associated with several clinical conditions related to immune dysfunction and ageing. We report for the first time an expansion of CD8+CD57+ T cells in a young patient with an acute infection with Toxoplasma gondii. Our report supports the concept that CD8+CD57+ T cells could be important in the control of chronic phase of intracellular microorganisms and that the high numbers of these cells may reflect the continuing survey of the immune system, searching for parasite proliferation in the tissues.

  7. CD8+ T cells specific for the islet autoantigen IGRP are restricted in their T cell receptor chain usage

    Science.gov (United States)

    Fuchs, Yannick F.; Eugster, Anne; Dietz, Sevina; Sebelefsky, Christian; Kühn, Denise; Wilhelm, Carmen; Lindner, Annett; Gavrisan, Anita; Knoop, Jan; Dahl, Andreas; Ziegler, Anette-G.; Bonifacio, Ezio

    2017-01-01

    CD8+ T cells directed against beta cell autoantigens are considered relevant for the pathogenesis of type 1 diabetes. Using single cell T cell receptor sequencing of CD8+ T cells specific for the IGRP265-273 epitope, we examined whether there was expansion of clonotypes and sharing of T cell receptor chains in autoreactive CD8+ T cell repertoires. HLA-A*0201 positive type 1 diabetes patients (n = 19) and controls (n = 18) were analysed. TCR α- and β-chain sequences of 418 patient-derived IGRP265-273-multimer+ CD8+ T cells representing 48 clonotypes were obtained. Expanded populations of IGRP265-273-specific CD8+ T cells with dominant clonotypes that had TCR α-chains shared across patients were observed. The SGGSNYKLTF motif corresponding to TRAJ53 was contained in 384 (91.9%) cells, and in 20 (41.7%) patient-derived clonotypes. TRAJ53 together with TRAV29/DV5 was found in 15 (31.3%) clonotypes. Using next generation TCR α-chain sequencing, we found enrichment of one of these TCR α-chains in the memory CD8+ T cells of patients as compared to healthy controls. CD8+ T cell clones bearing the enriched motifs mediated antigen-specific target cell lysis. We provide the first evidence for restriction of T cell receptor motifs in the alpha chain of human CD8+ T cells with specificity to a beta cell antigen. PMID:28300170

  8. Cutting edge: Multiple sclerosis-like lesions induced by effector CD8 T cells recognizing a sequestered antigen on oligodendrocytes.

    Science.gov (United States)

    Saxena, Amit; Bauer, Jan; Scheikl, Tanja; Zappulla, Jacques; Audebert, Marc; Desbois, Sabine; Waisman, Ari; Lassmann, Hans; Liblau, Roland S; Mars, Lennart T

    2008-08-01

    CD8 T cells are emerging as important players in multiple sclerosis (MS) pathogenesis, although their direct contribution to tissue damage is still debated. To assess whether autoreactive CD8 T cells can contribute to the pronounced loss of oligodendrocytes observed in MS plaques, we generated mice in which the model Ag influenza hemagglutinin is selectively expressed in oligodendrocytes. Transfer of preactivated hemagglutinin-specific CD8 T cells led to inflammatory lesions in the optic nerve, spinal cord, and brain. These lesions, associating CD8 T cell infiltration with focal loss of oligodendrocytes, demyelination, and microglia activation, were very reminiscent of active MS lesions. Thus, our study demonstrates the potential of CD8 T cells to induce oligodendrocyte lysis in vivo as a likely consequence of direct Ag-recognition. These results provide new insights with regard to CNS tissue damage mediated by CD8 T cells and for understanding the role of CD8 T cells in MS.

  9. Identification of Theileria lestoquardi Antigens Recognized by CD8+ T Cells

    Science.gov (United States)

    Ngugi, Daniel; Lizundia, Regina; Hostettler, Isabel; Woods, Kerry; Ballingall, Keith; MacHugh, Niall D.; Morrison, W. Ivan; Weir, Willie; Shiels, Brian; Werling, Dirk

    2016-01-01

    As part of an international effort to develop vaccines for Theileria lestoquardi, we undertook a limited screen to test T. lestoquardi orthologues of antigens recognised by CD8+ T lymphocyte responses against T. annulata and T. parva in cattle. Five MHC defined sheep were immunized by live T. lestoquardi infection and their CD8+ T lymphocyte responses determined. Thirteen T. lestoquardi orthologues of T. parva and T. annulata genes, previously shown to be targets of CD8+ T lymphocyte responses of immune cattle, were expressed in autologous fibroblasts and screened for T cell recognition using an IFNγ assay. Genes encoding T. lestoquardi antigens Tl8 (putative cysteine proteinase, 349 aa) or Tl9 (hypothetical secreted protein, 293 aa) were recognise by T cells from one animal that displayed a unique MHC class I genotype. Antigenic 9-mer peptide epitopes of Tl8 and Tl9 were identified through peptide scans using CD8+ T cells from the responding animal. These experiments identify the first T. lestoquardi antigens recognised by CD8+ T cell responses linked to specific MHC class I alleles. PMID:27611868

  10. Prolonged activation of virus-specific CD8+T cells after acute B19 infection.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available BACKGROUND: Human parvovirus B19 (B19 is a ubiquitous and clinically significant pathogen, causing erythema infectiosum, arthropathy, transient aplastic crisis, and intrauterine fetal death. The phenotype of CD8+ T cells in acute B19 infection has not been studied previously. METHODS AND FINDINGS: The number and phenotype of B19-specific CD8+ T cell responses during and after acute adult infection was studied using HLA-peptide multimeric complexes. Surprisingly, these responses increased in magnitude over the first year post-infection despite resolution of clinical symptoms and control of viraemia, with T cell populations specific for individual epitopes comprising up to 4% of CD8+ T cells. B19-specific T cells developed and maintained an activated CD38+ phenotype, with strong expression of perforin and CD57 and downregulation of CD28 and CD27. These cells possessed strong effector function and intact proliferative capacity. Individuals tested many years after infection exhibited lower frequencies of B19-specific cytotoxic T lymphocytes, typically 0.05%-0.5% of CD8+ T cells, which were perforin, CD38, and CCR7 low. CONCLUSION: This is the first example to our knowledge of an "acute" human viral infection inducing a persistent activated CD8+ T cell response. The likely explanation--analogous to that for cytomegalovirus infection--is that this persistent response is due to low-level antigen exposure. CD8+ T cells may contribute to the long-term control of this significant pathogen and should be considered during vaccine development.

  11. Activated iNKT cells promote memory CD8+ T cell differentiation during viral infection.

    Directory of Open Access Journals (Sweden)

    Emma C Reilly

    Full Text Available α-Galactosylceramide (α-GalCer is the prototypical lipid ligand for invariant NKT cells. Recent studies have proposed that α-GalCer is an effective adjuvant in vaccination against a range of immune challenges, however its mechanism of action has not been completely elucidated. A variety of delivery methods have been examined including pulsing dendritic cells with α-GalCer to optimize the potential of α-GalCer. These methods are currently being used in a variety of clinical trials in patients with advanced cancer but cannot be used in the context of vaccine development against pathogens due to their complexity. Using a simple delivery method, we evaluated α-GalCer adjuvant properties, using the mouse model for cytomegalovirus (MCMV. We measured several key parameters of the immune response to MCMV, including inflammation, effector, and central memory CD8(+ T cell responses. We found that α-GalCer injection at the time of the infection decreases viral titers, alters the kinetics of the inflammatory response, and promotes both increased frequencies and numbers of virus-specific memory CD8(+ T cells. Overall, our data suggest that iNKT cell activation by α-GalCer promotes the development of long-term protective immunity through increased fitness of central memory CD8(+ T cells, as a consequence of reduced inflammation.

  12. Solid tumors "melt" from the inside after successful CD8 T cell attack.

    NARCIS (Netherlands)

    Blohm, U.; Potthoff, D.; Kogel, A.J. van der; Pircher, H.

    2006-01-01

    Adoptive transfer of tumor-specific T cells represents a promising approach for cancer immunotherapy. Here, we visualized the anti-tumor response of CD8 T cells from P14 TCR-transgenic mice specific for the model antigen GP33 by immunohistology. P14 T cells, adoptively transferred into tumor-bearing

  13. Memory Stem T Cells in Autoimmune Disease: High Frequency of Circulating CD8+ Memory Stem Cells in Acquired Aplastic Anemia.

    Science.gov (United States)

    Hosokawa, Kohei; Muranski, Pawel; Feng, Xingmin; Townsley, Danielle M; Liu, Baoying; Knickelbein, Jared; Keyvanfar, Keyvan; Dumitriu, Bogdan; Ito, Sawa; Kajigaya, Sachiko; Taylor, James G; Kaplan, Mariana J; Nussenblatt, Robert B; Barrett, A John; O'Shea, John; Young, Neal S

    2016-02-15

    Memory stem T cells (TSCMs) constitute a long-lived, self-renewing lymphocyte population essential for the maintenance of functional immunity. Hallmarks of autoimmune disease pathogenesis are abnormal CD4(+) and CD8(+) T cell activation. We investigated the TSCM subset in 55, 34, 43, and 5 patients with acquired aplastic anemia (AA), autoimmune uveitis, systemic lupus erythematosus, and sickle cell disease, respectively, as well as in 41 age-matched healthy controls. CD8(+) TSCM frequency was significantly increased in AA compared with healthy controls. An increased CD8(+) TSCM frequency at diagnosis was associated with responsiveness to immunosuppressive therapy, and an elevated CD8(+) TSCM population after immunosuppressive therapy correlated with treatment failure or relapse in AA patients. IFN-γ and IL-2 production was significantly increased in various CD8(+) and CD4(+) T cell subsets in AA patients, including CD8(+) and CD4(+) TSCMs. CD8(+) TSCM frequency was also increased in patients with autoimmune uveitis or sickle cell disease. A positive correlation between CD4(+) and CD8(+) TSCM frequencies was found in AA, autoimmune uveitis, and systemic lupus erythematosus. Evaluation of PD-1, CD160, and CD244 expression revealed that TSCMs were less exhausted compared with other types of memory T cells. Our results suggest that the CD8(+) TSCM subset is a novel biomarker and a potential therapeutic target for AA.

  14. Role of CD8^+ T Cells in Murine Experimental Allergic Encephalomyelitis

    Science.gov (United States)

    Jiang, Hong; Zhang, Sheng-Le; Pernis, Benvenuto

    1992-05-01

    The course of experimental allergic encephalomyelitis (EAE), an animal model for multiple sclerosis, is affected by immunoregulatory T lymphocytes. When animals are immunized with encephalitogenic peptide of myelin basic protein and recover from the first episode of EAE, they become resistant to a second induction of this disease. Animals depleted of CD8^+ T cells by antibody-mediated clearance were used to examine the role of CD8^+ T cells in EAE. These cells were found to be major participants in the resistance to a second induction of EAE but were not essential for spontaneous recovery from the first episode of the disease.

  15. IL-6 trans-Signaling-Dependent Rapid Development of Cytotoxic CD8+ T Cell Function

    Directory of Open Access Journals (Sweden)

    Jan P. Böttcher

    2014-09-01

    Full Text Available Immune control of infections with viruses or intracellular bacteria relies on cytotoxic CD8+ T cells that use granzyme B (GzmB for elimination of infected cells. During inflammation, mature antigen-presenting dendritic cells instruct naive T cells within lymphoid organs to develop into effector T cells. Here, we report a mechanistically distinct and more rapid process of effector T cell development occurring within 18 hr. Such rapid acquisition of effector T cell function occurred through cross-presenting liver sinusoidal endothelial cells (LSECs in the absence of innate immune stimulation and known costimulatory signaling. Rather, interleukin-6 (IL-6 trans-signaling was required and sufficient for rapid induction of GzmB expression in CD8+ T cells. Such LSEC-stimulated GzmB-expressing CD8+ T cells further responded to inflammatory cytokines, eliciting increased and protracted effector functions. Our findings identify a role for IL-6 trans-signaling in rapid generation of effector function in CD8+ T cells that may be beneficial for vaccination strategies.

  16. Human CD8+ T cells mediate protective immunity induced by a human malaria vaccine in human immune system mice.

    Science.gov (United States)

    Li, Xiangming; Huang, Jing; Zhang, Min; Funakoshi, Ryota; Sheetij, Dutta; Spaccapelo, Roberta; Crisanti, Andrea; Nussenzweig, Victor; Nussenzweig, Ruth S; Tsuji, Moriya

    2016-08-31

    A number of studies have shown that CD8+ T cells mediate protective anti-malaria immunity in a mouse model. However, whether human CD8+ T cells play a role in protection against malaria remains unknown. We recently established human immune system (HIS) mice harboring functional human CD8+ T cells (HIS-CD8 mice) by transduction with HLA-A∗0201 and certain human cytokines using recombinant adeno-associated virus-based gene transfer technologies. These HIS-CD8 mice mount a potent, antigen-specific HLA-A∗0201-restricted human CD8+ T-cell response upon immunization with a recombinant adenovirus expressing a human malaria antigen, the Plasmodium falciparum circumsporozoite protein (PfCSP), termed AdPfCSP. In the present study, we challenged AdPfCSP-immunized HIS-CD8 mice with transgenic Plasmodium berghei sporozoites expressing full-length PfCSP and found that AdPfCSP-immunized (but not naïve) mice were protected against subsequent malaria challenge. The level of the HLA-A∗0201-restricted, PfCSP-specific human CD8+ T-cell response was closely correlated with the level of malaria protection. Furthermore, depletion of human CD8+ T cells from AdPfCSP-immunized HIS-CD8 mice almost completely abolished the anti-malaria immune response. Taken together, our data show that human CD8+ T cells mediate protective anti-malaria immunity in vivo.

  17. Tumor necrosis factor alpha production from CD8+ T cells mediates oviduct pathological sequelae following primary genital Chlamydia muridarum infection.

    Science.gov (United States)

    Murthy, Ashlesh K; Li, Weidang; Chaganty, Bharat K R; Kamalakaran, Sangamithra; Guentzel, M Neal; Seshu, J; Forsthuber, Thomas G; Zhong, Guangming; Arulanandam, Bernard P

    2011-07-01

    The immunopathogenesis of Chlamydia trachomatis-induced oviduct pathological sequelae is not well understood. Mice genetically deficient in perforin (perforin(-/-) mice) or tumor necrosis factor alpha (TNF-α) production (TNF-α(-/-) mice) displayed comparable vaginal chlamydial clearance rates but significantly reduced oviduct pathology (hydrosalpinx) compared to that of wild-type mice. Since both perforin and TNF-α are effector mechanisms of CD8(+) T cells, we evaluated the role of CD8(+) T cells during genital Chlamydia muridarum infection and oviduct sequelae. Following vaginal chlamydial challenge, (i) mice deficient in TAP I (and therefore the major histocompatibility complex [MHC] I pathway and CD8(+) T cells), (ii) wild-type mice depleted of CD8(+) T cells, and (iii) mice genetically deficient in CD8 (CD8(-/-) mice) all displayed similar levels of vaginal chlamydial clearance but significantly reduced hydrosalpinx, compared to those of wild-type C57BL/6 mice, suggesting a role for CD8(+) T cells in chlamydial pathogenesis. Repletion of CD8(-/-) mice with wild-type or perforin(-/-), but not TNF-α(-/-), CD8(+) T cells at the time of challenge restored hydrosalpinx to levels observed in wild-type C57BL/6 mice, suggesting that TNF-α production from CD8(+) T cells is important for pathogenesis. Additionally, repletion of TNF-α(-/-) mice with TNF-α(+/+) CD8(+) T cells significantly enhanced the incidence of hydrosalpinx and oviduct dilatation compared to those of TNF-α(-/-) mice but not to the levels found in wild-type mice, suggesting that TNF-α production from CD8(+) T cells and non-CD8(+) cells cooperates to induce optimal oviduct pathology following genital chlamydial infection. These results provide compelling new evidence supporting the contribution of CD8(+) T cells and TNF-α production to Chlamydia-induced reproductive tract sequelae.

  18. Polymyalgia rheumatica is characterized by pro-inflammatory, senescent CD8+ T cells

    NARCIS (Netherlands)

    Van Der Geest, K.; Abdulahad, W.; Huitema, M.; Kroesen, B.; Rutgers, A.; Brouwer, E.; Boots, A.

    2013-01-01

    Background Polymyalgia rheumatica (PMR) is a frequent, inflammatory rheumatic disease affecting elderly people. Previous studies suggest that T cell mediated immune responses contribute to PMR. However, little is known about CD4+ and CD8+ T cell subsets and their function in PMR. Furthermore, it rem

  19. Immunological control of a murine gammaherpesvirus independent of CD8+ T cells

    DEFF Research Database (Denmark)

    Stevenson, P G; Cardin, R D; Christensen, Jan Pravsgaard;

    1999-01-01

    the concurrent removal of both T cell subsets proved invariably fatal. The same depletions had little effect on mice with established infection. The results indicate firstly that both CD4+ and CD8+ T cells play a significant part in dealing with the acute infection, and secondly that virus-specific antibody...

  20. mRNA Structural constraints on EBNA1 synthesis impact on in vivo antigen presentation and early priming of CD8+ T cells.

    Directory of Open Access Journals (Sweden)

    Judy T Tellam

    2014-10-01

    Full Text Available Recent studies have shown that virally encoded mRNA sequences of genome maintenance proteins from herpesviruses contain clusters of unusual structural elements, G-quadruplexes, which modulate viral protein synthesis. Destabilization of these G-quadruplexes can override the inhibitory effect on self-synthesis of these proteins. Here we show that the purine-rich repetitive mRNA sequence of Epstein-Barr virus encoded nuclear antigen 1 (EBNA1 comprising G-quadruplex structures, limits both the presentation of MHC class I-restricted CD8(+ T cell epitopes by CD11c(+ dendritic cells in draining lymph nodes and early priming of antigen-specific CD8(+ T-cells. Destabilization of the G-quadruplex structures through codon-modification significantly enhanced in vivo antigen presentation and activation of virus-specific T cells. Ex vivo imaging of draining lymph nodes by confocal microscopy revealed enhanced antigen-specific T-cell trafficking and APC-CD8(+ T-cell interactions in mice primed with viral vectors encoding a codon-modified EBNA1 protein. More importantly, these antigen-specific T cells displayed enhanced expression of the T-box transcription factor and superior polyfunctionality consistent with the qualitative impact of translation efficiency. These results provide an important insight into how viruses exploit mRNA structure to down regulate synthesis of their viral maintenance proteins and delay priming of antigen-specific T cells, thereby establishing a successful latent infection in vivo. Furthermore, targeting EBNA1 mRNA rather than protein by small molecules or antisense oligonucleotides will enhance EBNA1 synthesis and the early priming of effector T cells, to establish a more rapid immune response and prevent persistent infection.

  1. PD-1 expression on dendritic cells suppresses CD8+ T cell function and antitumor immunity

    OpenAIRE

    Lim, Tong Seng; Chew, Valerie; Sieow, Je Lin; Goh, Siting; Yeong, Joe Poh-Sheng; Soon, Ai Ling; Ricciardi-Castagnoli, Paola

    2015-01-01

    Programmed death one (PD-1) is a well-established co-inhibitory regulator that suppresses proliferation and cytokine production of T cells. Despite remarkable progress in delineating the functional roles of PD-1 on T lymphocytes, little is known about the regulatory role of PD-1 expressed on myeloid cells such as dendritic cells (DCs). Here, we show that CD8+ T cells can be more potently activated to secrete IL-2 and IFNγ by PD-1-deficient DCs compared to wild-type DCs. Adoptive transfer of P...

  2. Interferon-alpha administration enhances CD8+ T cell activation in HIV infection.

    Directory of Open Access Journals (Sweden)

    Maura Manion

    Full Text Available BACKGROUND: Type I interferons play important roles in innate immune defense. In HIV infection, type I interferons may delay disease progression by inhibiting viral replication while at the same time accelerating disease progression by contributing to chronic immune activation. METHODS: To investigate the effects of type I interferons in HIV-infection, we obtained cryopreserved peripheral blood mononuclear cell samples from 10 subjects who participated in AIDS Clinical Trials Group Study 5192, a trial investigating the activity of systemic administration of IFNα for twelve weeks to patients with untreated HIV infection. Using flow cytometry, we examined changes in cell cycle status and expression of activation antigens by circulating T cells and their maturation subsets before, during and after IFNα treatment. RESULTS: The proportion of CD38+HLA-DR+CD8+ T cells increased from a mean of 11.7% at baseline to 24.1% after twelve weeks of interferon treatment (p = 0.006. These frequencies dropped to an average of 20.1% six weeks after the end of treatment. In contrast to CD8+ T cells, the frequencies of activated CD4+ T cells did not change with administration of type I interferon (mean percentage of CD38+DR+ cells = 2.62% at baseline and 2.17% after 12 weeks of interferon therapy. As plasma HIV levels fell with interferon therapy, this was correlated with a "paradoxical" increase in CD8+ T cell activation (p<0.001. CONCLUSION: Administration of type I interferon increased expression of the activation markers CD38 and HLA DR on CD8+ T cells but not on CD4+ T cells of HIV+ persons. These observations suggest that type I interferons may contribute to the high levels of CD8+ T cell activation that occur during HIV infection.

  3. HIV-specific CD8+ T cells: serial killers condemned to die?

    Science.gov (United States)

    Petrovas, Constantinos; Mueller, Yvonne M; Katsikis, Peter D

    2004-04-01

    An increasing body of evidence supports a key role for cytotoxic CD8+ T cells (CTL) in controlling HIV infection. Although a vigorous HIV-specific CD8+ T cell response is raised during the primary infection, these cells ultimately fail to control virus and prevent disease progression. The failure of CTL to control HIV infection has been attributed to a number of strategies HIV employs to evade the immune system. Recently, intrinsic defects in the CTL themselves have been proposed to contribute to the failure of CTL to control HIV. HIV-specific CD8+ T cells differ in their effector/memory phenotype from other virus-specific CD8+ T cells indicating that their differentiation status differs. This altered differentiation may affect effector functions as well as homing properties of these cells. Other studies have indicated that activation of HIV-specific CTL may be impaired and this contributes to their dysfunction. The effector function of these CTL may also be affected. There are conflicting reports about their ability to kill, whereas IFNgamma production does not appear to be impaired in these cells. In this review we focus on recent work indicating that apoptosis may be an important mechanism through which HIV evades the CTL response. In particular, HIV-specific CD8+ T cells are highly susceptible to CD95/Fas-induced apoptosis. This leads to the hypothesis that virus-specific cytotoxic T cells can be eliminated upon binding CD95L/FasL on HIV-infected cells. Understanding the intrinsic defects of CTL in HIV infection could lead to new therapeutic strategies and optimized vaccination protocols that enhance the HIV-specific cytotoxic response.

  4. Intrahepatic infiltrating NK and CD8 T cells cause liver cell death in different phases of dengue virus infection.

    Science.gov (United States)

    Sung, Jui-Min; Lee, Chien-Kuo; Wu-Hsieh, Betty A

    2012-01-01

    Elevated liver enzyme level is an outstanding feature in patients with dengue. However, the pathogenic mechanism of liver injury has not been clearly demonstrated. In this study, employing a mouse model we aimed to investigate the immunopathogenic mechanism of dengue liver injury. Immunocompetent C57BL/6 mice were infected intravenously with dengue virus strain 16681. Infected mice had transient viremia, detectable viral capsid gene and cleaved caspase 3 in the liver. In the mean time, NK cell and T cell infiltrations peaked at days 1 and 5, respectively. Neutralizing CXCL10 or depletion of Asialo GM1(+) cells reduced cleaved caspase 3 and TUNEL(+) cells in the liver at day 1 after infection. CD8(+) T cells infiltrated into the liver at later time point and at which time intrahepatic leukocytes (IHL) exhibited cytotoxicity against DENV-infected targets. Cleaved caspase 3 and TUNEL(+) cells were diminished in mice with TCRβ deficiency and in those depleted of CD8(+) T cells, respectively, at day 5 after infection. Moreover, intrahepatic CD8(+) T cells were like their splenic counterparts recognized DENV NS4B(99-107) peptide. Together, these results show that infiltrating NK and CD8(+) T cells cause liver cell death. While NK cells were responsible for cell death at early time point of infection, CD8(+) T cells were for later. CD8(+) T cells that recognize NS4B(99-107) constitute at least one of the major intrahepatic cytotoxic CD8(+) T cell populations.

  5. Intrahepatic infiltrating NK and CD8 T cells cause liver cell death in different phases of dengue virus infection.

    Directory of Open Access Journals (Sweden)

    Jui-Min Sung

    Full Text Available Elevated liver enzyme level is an outstanding feature in patients with dengue. However, the pathogenic mechanism of liver injury has not been clearly demonstrated. In this study, employing a mouse model we aimed to investigate the immunopathogenic mechanism of dengue liver injury. Immunocompetent C57BL/6 mice were infected intravenously with dengue virus strain 16681. Infected mice had transient viremia, detectable viral capsid gene and cleaved caspase 3 in the liver. In the mean time, NK cell and T cell infiltrations peaked at days 1 and 5, respectively. Neutralizing CXCL10 or depletion of Asialo GM1(+ cells reduced cleaved caspase 3 and TUNEL(+ cells in the liver at day 1 after infection. CD8(+ T cells infiltrated into the liver at later time point and at which time intrahepatic leukocytes (IHL exhibited cytotoxicity against DENV-infected targets. Cleaved caspase 3 and TUNEL(+ cells were diminished in mice with TCRβ deficiency and in those depleted of CD8(+ T cells, respectively, at day 5 after infection. Moreover, intrahepatic CD8(+ T cells were like their splenic counterparts recognized DENV NS4B(99-107 peptide. Together, these results show that infiltrating NK and CD8(+ T cells cause liver cell death. While NK cells were responsible for cell death at early time point of infection, CD8(+ T cells were for later. CD8(+ T cells that recognize NS4B(99-107 constitute at least one of the major intrahepatic cytotoxic CD8(+ T cell populations.

  6. CD8 T cells are essential for recovery from a respiratory vaccinia virus infection.

    Science.gov (United States)

    Goulding, John; Bogue, Rebecka; Tahiliani, Vikas; Croft, Michael; Salek-Ardakani, Shahram

    2012-09-01

    The precise immune components required for protection against a respiratory Orthopoxvirus infection, such as human smallpox or monkeypox, remain to be fully identified. In this study, we used the virulent Western Reserve strain of vaccinia virus (VACV-WR) to model a primary respiratory Orthopoxvirus infection. Naive mice infected with VACV-WR mounted an early CD8 T cell response directed against dominant and subdominant VACV-WR Ags, followed by a CD4 T cell and Ig response. In contrast to other VACV-WR infection models that highlight the critical requirement for CD4 T cells and Ig, we found that only mice deficient in CD8 T cells presented with severe cachexia, pulmonary inflammation, viral dissemination, and 100% mortality. Depletion of CD8 T cells at specified times throughout infection highlighted that they perform their critical function between days 4 and 6 postinfection and that their protective requirement is critically dictated by initial viral load and virulence. Finally, the ability of adoptively transferred naive CD8 T cells to protect RAG⁻/⁻ mice against a lethal VACV-WR infection demonstrated that they are both necessary and sufficient in protecting against a primary VACV-WR infection of the respiratory tract.

  7. CD8(+) T cell-mediated immunity during Trypanosoma cruzi infection: a path for vaccine development?

    Science.gov (United States)

    Dos Santos Virgilio, Fernando; Pontes, Camila; Dominguez, Mariana Ribeiro; Ersching, Jonatan; Rodrigues, Mauricio Martins; Vasconcelos, José Ronnie

    2014-01-01

    MHC-restricted CD8(+) T cells are important during infection with the intracellular protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. Experimental studies performed in the past 25 years have elucidated a number of features related to the immune response mediated by these T cells, which are important for establishing the parasite/host equilibrium leading to chronic infection. CD8(+) T cells are specific for highly immunodominant antigens expressed by members of the trans-sialidase family. After infection, their activation is delayed, and the cells display a high proliferative activity associated with high apoptotic rates. Although they participate in parasite control and elimination, they are unable to clear the infection due to their low fitness, allowing the parasite to establish the chronic phase when these cells then play an active role in the induction of heart immunopathology. Vaccination with a number of subunit recombinant vaccines aimed at eliciting specific CD8(+) T cells can reverse this path, thereby generating a productive immune response that will lead to the control of infection, reduction of symptoms, and reduction of disease transmission. Due to these attributes, activation of CD8(+) T lymphocytes may constitute a path for the development of a veterinarian or human vaccine.

  8. CD8+ T Cell-Mediated Immunity during Trypanosoma cruzi Infection: A Path for Vaccine Development?

    Directory of Open Access Journals (Sweden)

    Fernando dos Santos Virgilio

    2014-01-01

    Full Text Available MHC-restricted CD8+ T cells are important during infection with the intracellular protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. Experimental studies performed in the past 25 years have elucidated a number of features related to the immune response mediated by these T cells, which are important for establishing the parasite/host equilibrium leading to chronic infection. CD8+ T cells are specific for highly immunodominant antigens expressed by members of the trans-sialidase family. After infection, their activation is delayed, and the cells display a high proliferative activity associated with high apoptotic rates. Although they participate in parasite control and elimination, they are unable to clear the infection due to their low fitness, allowing the parasite to establish the chronic phase when these cells then play an active role in the induction of heart immunopathology. Vaccination with a number of subunit recombinant vaccines aimed at eliciting specific CD8+ T cells can reverse this path, thereby generating a productive immune response that will lead to the control of infection, reduction of symptoms, and reduction of disease transmission. Due to these attributes, activation of CD8+ T lymphocytes may constitute a path for the development of a veterinarian or human vaccine.

  9. Contribution of herpesvirus specific CD8 T cells to anti-viral T cell response in humans.

    Directory of Open Access Journals (Sweden)

    Elena Sandalova

    Full Text Available Herpesviruses infect most humans. Their infections can be associated with pathological conditions and significant changes in T cell repertoire but evidences of symbiotic effects of herpesvirus latency have never been demonstrated. We tested the hypothesis that HCMV and EBV-specific CD8 T cells contribute to the heterologous anti-viral immune response. Volume of activated/proliferating virus-specific and total CD8 T cells was evaluated in 50 patients with acute viral infections: 20 with HBV, 12 with Dengue, 12 with Influenza, 3 with Adenovirus infection and 3 with fevers of unknown etiology. Virus-specific (EBV, HCMV, Influenza pentamer+ and total CD8 T cells were analyzed for activation (CD38/HLA-DR, proliferation (Ki-67/Bcl-2(low and cytokine production. We observed that all acute viral infections trigger an expansion of activated/proliferating CD8 T cells, which differs in size depending on the infection but is invariably inflated by CD8 T cells specific for persistent herpesviruses (HCMV/EBV. CD8 T cells specific for other non-related non persistent viral infection (i.e. Influenza were not activated. IL-15, which is produced during acute viral infections, is the likely contributing mechanism driving the selective activation of herpesvirus specific CD8 T cells. In addition we were able to show that herpesvirus specific CD8 T cells displayed an increased ability to produce the anti-viral cytokine interferon-gamma during the acute phase of heterologous viral infection. Taken together, these data demonstrated that activated herpesvirus specific CD8 T cells inflate the activated/proliferating CD8 T cells population present during acute viral infections in human and can contribute to the heterologous anti-viral T cell response.

  10. Contribution of herpesvirus specific CD8 T cells to anti-viral T cell response in humans.

    Science.gov (United States)

    Sandalova, Elena; Laccabue, Diletta; Boni, Carolina; Tan, Anthony T; Fink, Katja; Ooi, Eng Eong; Chua, Robert; Shafaeddin Schreve, Bahar; Ferrari, Carlo; Bertoletti, Antonio

    2010-08-19

    Herpesviruses infect most humans. Their infections can be associated with pathological conditions and significant changes in T cell repertoire but evidences of symbiotic effects of herpesvirus latency have never been demonstrated. We tested the hypothesis that HCMV and EBV-specific CD8 T cells contribute to the heterologous anti-viral immune response. Volume of activated/proliferating virus-specific and total CD8 T cells was evaluated in 50 patients with acute viral infections: 20 with HBV, 12 with Dengue, 12 with Influenza, 3 with Adenovirus infection and 3 with fevers of unknown etiology. Virus-specific (EBV, HCMV, Influenza) pentamer+ and total CD8 T cells were analyzed for activation (CD38/HLA-DR), proliferation (Ki-67/Bcl-2(low)) and cytokine production. We observed that all acute viral infections trigger an expansion of activated/proliferating CD8 T cells, which differs in size depending on the infection but is invariably inflated by CD8 T cells specific for persistent herpesviruses (HCMV/EBV). CD8 T cells specific for other non-related non persistent viral infection (i.e. Influenza) were not activated. IL-15, which is produced during acute viral infections, is the likely contributing mechanism driving the selective activation of herpesvirus specific CD8 T cells. In addition we were able to show that herpesvirus specific CD8 T cells displayed an increased ability to produce the anti-viral cytokine interferon-gamma during the acute phase of heterologous viral infection. Taken together, these data demonstrated that activated herpesvirus specific CD8 T cells inflate the activated/proliferating CD8 T cells population present during acute viral infections in human and can contribute to the heterologous anti-viral T cell response.

  11. Exhaustion of Activated CD8 T Cells Predicts Disease Progression in Primary HIV-1 Infection.

    Directory of Open Access Journals (Sweden)

    Matthias Hoffmann

    2016-07-01

    Full Text Available The rate at which HIV-1 infected individuals progress to AIDS is highly variable and impacted by T cell immunity. CD8 T cell inhibitory molecules are up-regulated in HIV-1 infection and associate with immune dysfunction. We evaluated participants (n = 122 recruited to the SPARTAC randomised clinical trial to determine whether CD8 T cell exhaustion markers PD-1, Lag-3 and Tim-3 were associated with immune activation and disease progression. Expression of PD-1, Tim-3, Lag-3 and CD38 on CD8 T cells from the closest pre-therapy time-point to seroconversion was measured by flow cytometry, and correlated with surrogate markers of HIV-1 disease (HIV-1 plasma viral load (pVL and CD4 T cell count and the trial endpoint (time to CD4 count <350 cells/μl or initiation of antiretroviral therapy. To explore the functional significance of these markers, co-expression of Eomes, T-bet and CD39 was assessed. Expression of PD-1 on CD8 and CD38 CD8 T cells correlated with pVL and CD4 count at baseline, and predicted time to the trial endpoint. Lag-3 expression was associated with pVL but not CD4 count. For all exhaustion markers, expression of CD38 on CD8 T cells increased the strength of associations. In Cox models, progression to the trial endpoint was most marked for PD-1/CD38 co-expressing cells, with evidence for a stronger effect within 12 weeks from confirmed diagnosis of PHI. The effect of PD-1 and Lag-3 expression on CD8 T cells retained statistical significance in Cox proportional hazards models including antiretroviral therapy and CD4 count, but not pVL as co-variants. Expression of 'exhaustion' or 'immune checkpoint' markers in early HIV-1 infection is associated with clinical progression and is impacted by immune activation and the duration of infection. New markers to identify exhausted T cells and novel interventions to reverse exhaustion may inform the development of novel immunotherapeutic approaches.

  12. Ectopic expression of anti-HIV-1 shRNAs protects CD8{sup +} T cells modified with CD4ζ CAR from HIV-1 infection and alleviates impairment of cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Kamata, Masakazu, E-mail: masa3k@ucla.edu [Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Kim, Patrick Y. [Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Ng, Hwee L. [Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Ringpis, Gene-Errol E.; Kranz, Emiko; Chan, Joshua; O' Connor, Sean [Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Yang, Otto O. [Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); UCLA AIDS Institute, Los Angeles, CA (United States); AIDS Healthcare Foundation, Los Angeles, CA (United States); Chen, Irvin S.Y. [Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); UCLA AIDS Institute, Los Angeles, CA (United States)

    2015-07-31

    Chimeric antigen receptors (CARs) are artificially engineered receptors that confer a desired specificity to immune effector T cells. As an HIV-1-specific CAR, CD4ζ CAR has been extensively tested in vitro as well as in clinical trials. T cells modified with this CAR mediated highly potent anti-HIV-1 activities in vitro and were well-tolerated in vivo, but exerted limited effects on viral load and reservoir size due to poor survival and/or functionality of the transduced cells in patients. We hypothesize that ectopic expression of CD4ζ on CD8{sup +} T cells renders them susceptible to HIV-1 infection, resulting in poor survival of those cells. To test this possibility, highly purified CD8{sup +} T cells were genetically modified with a CD4ζ-encoding lentiviral vector and infected with HIV-1. CD8{sup +} T cells were vulnerable to HIV-1 infection upon expression of CD4ζ as evidenced by elevated levels of p24{sup Gag} in cells and culture supernatants. Concurrently, the number of CD4ζ-modified CD8{sup +} T cells was reduced relative to control cells upon HIV-1 infection. To protect these cells from HIV-1 infection, we co-expressed two anti-HIV-1 shRNAs previously developed by our group together with CD4ζ. This combination vector was able to suppress HIV-1 infection without impairing HIV-1-dependent effector activities of CD4ζ. In addition, the number of CD4ζ-modified CD8{sup +} T cells maintained similar levels to that of the control even under HIV-1 infection. These results suggest that protecting CD4ζ-modified CD8{sup +} T cells from HIV-1 infection is required for prolonged HIV-1-specific immune surveillance. - Highlights: • Ectopic expression of CD4ζ CAR in CD8{sup +} T cells renders them susceptible to HIV-1 infection. • Co-expression of two anti-HIV-1 shRNAs protects CD4ζ CAR-modified CD8{sup +} T cells from HIV-1 infection. • Protecting CD4ζ CAR-modified CD8{sup +} T cells from HIV-1 infection suppresses its cytopathic effect.

  13. Influence of race on microsatellite instability and CD8+ T cell infiltration in colon cancer.

    Directory of Open Access Journals (Sweden)

    John M Carethers

    Full Text Available African American patients with colorectal cancer show higher mortality than their Caucasian counterparts. Biology might play a partial role, and prior studies suggest a higher prevalence for microsatellite instability (MSI among cancers from African Americans, albeit patients with MSI cancers have improved survival over patients with non-MSI cancers, counter to the outcome observed for African American patients. CD8+ T cell infiltration of colon cancer is postively correlated with MSI tumors, and is also related to improved outcome. Here, we utilized a 503-person, population-based colon cancer cohort comprising 45% African Americans to determine, under blinded conditions from all epidemiological data, the prevalence of MSI and associated CD8+ T cell infiltration within the cancers. Among Caucasian cancers, 14% were MSI, whereas African American cancers demonstrated 7% MSI (P = 0.009. Clinically, MSI cancers between races were similar; among microsatellite stable cancers, African American patients were younger, female, and with proximal cancers. CD8+ T cells were higher in MSI cancers (88.0 vs 30.4/hpf, P<0.0001, but was not different between races. Utilizing this population-based cohort, African American cancers show half the MSI prevalence of Caucasians without change in CD8+ T cell infiltration which may contribute towards their higher mortality from colon cancer.

  14. Navigating the immune system: Improving CD8+ T cell responses for vaccine design

    NARCIS (Netherlands)

    Platteel, A.C.M.

    2016-01-01

    Most vaccines rely on the protective effect of the humoral response. In case of intracellular- or rapidly mutating pathogens, humoral responses are less protective and the cellular response, mainly CD8+ T cells, can convey protection. However, vaccine efficacy is hampered by insufficient knowledge o

  15. Immunization with vaccinia virus induces polyfunctional and phenotypically distinctive CD8+ T cell responses

    Science.gov (United States)

    Precopio, Melissa L.; Betts, Michael R.; Parrino, Janie; Price, David A.; Gostick, Emma; Ambrozak, David R.; Asher, Tedi E.; Douek, Daniel C.; Harari, Alexandre; Pantaleo, Giuseppe; Bailer, Robert; Graham, Barney S.; Roederer, Mario; Koup, Richard A.

    2007-01-01

    Vaccinia virus immunization provides lifelong protection against smallpox, but the mechanisms of this exquisite protection are unknown. We used polychromatic flow cytometry to characterize the functional and phenotypic profile of CD8+ T cells induced by vaccinia virus immunization in a comparative vaccine trial of modified vaccinia virus Ankara (MVA) versus Dryvax immunization in which protection was assessed against subsequent Dryvax challenge. Vaccinia virus–specific CD8+ T cells induced by both MVA and Dryvax were highly polyfunctional; they degranulated and produced interferon γ, interleukin 2, macrophage inflammatory protein 1β, and tumor necrosis factor α after antigenic stimulation. Responding CD8+ T cells exhibited an unusual phenotype (CD45RO−CD27intermediate). The unique phenotype and high degree of polyfunctionality induced by vaccinia virus also extended to inserted HIV gene products of recombinant NYVAC. This quality of the CD8+ T cell response may be at least partially responsible for the profound efficacy of these vaccines in protection against smallpox and serves as a benchmark against which other vaccines can be evaluated. PMID:17535971

  16. MicroRNA Expression Patterns of CD8+ T Cells in Acute and Chronic Brucellosis

    Science.gov (United States)

    Budak, Ferah; Bal, S. Haldun; Tezcan, Gulcin; Guvenc, Furkan; Akalin, E. Halis; Goral, Guher; Deniz, Gunnur

    2016-01-01

    Although our knowledge about Brucella virulence factors and the host response increase rapidly, the mechanisms of immune evasion by the pathogen and causes of chronic disease are still unknown. Here, we aimed to investigate the immunological factors which belong to CD8+ T cells and their roles in the transition of brucellosis from acute to chronic infection. Using miRNA microarray, more than 2000 miRNAs were screened in CD8+ T cells of patients with acute or chronic brucellosis and healthy controls that were sorted from peripheral blood with flow cytometry and validated through qRT-PCR. Findings were evaluated using GeneSpring GX (Agilent) 13.0 software and KEGG pathway analysis. Expression of two miRNAs were determined to display a significant fold change in chronic group when compared with acute or control groups. Both miRNAs (miR-126-5p and miR-4753-3p) were decreased (p 2). These miRNAs have the potential to be the regulators of CD8+ T cell-related marker genes for chronic brucellosis infections. The differentially expressed miRNAs and their predicted target genes are involved in MAPK signaling pathway, cytokine-cytokine receptor interactions, endocytosis, regulation of actin cytoskeleton, and focal adhesion indicating their potential roles in chronic brucellosis and its progression. It is the first study of miRNA expression analysis of human CD8+ T cells to clarify the mechanism of inveteracy in brucellosis. PMID:27824867

  17. Prolonged activation of virus-specific CD8+T cells after acute B19 infection

    DEFF Research Database (Denmark)

    Isa, Adiba; Kasprowicz, Victoria; Norbeck, Oscar;

    2005-01-01

    and intact proliferative capacity. Individuals tested many years after infection exhibited lower frequencies of B19-specific cytotoxic T lymphocytes, typically 0.05%-0.5% of CD8+ T cells, which were perforin, CD38, and CCR7 low. CONCLUSION: This is the first example to our knowledge of an "acute" human viral...

  18. Tolerogenic interactions between CD8+ dendritic cells and NKT cells prevent rejection of bone marrow and organ grafts.

    Science.gov (United States)

    Hongo, David; Tang, Xiaobin; Zhang, Xiangyue; Engleman, Edgar G; Strober, Samuel

    2017-01-17

    The combination of total lymphoid irradiation and anti-T cell antibodies safely induces immune tolerance to combined hematopoietic cell and organ allografts in humans. Our mouse model required host natural killer T (NKT) cells to induce tolerance. Since NKT cells normally depend on signals from CD8+ dendritic cells (DCs) for their activation, we used the mouse model to test the hypothesis that after lymphoid irradiation host CD8+DCs play a requisite role in tolerance induction through interactions with NKT cells. Selective deficiency of either CD8+DCs or NKT cells abrogated chimerism and organ graft acceptance. After radiation, the CD8+DCs increased expression of surface molecules required for NKT and apoptotic cell interactions and developed suppressive immune functions including production of indoleamine 2,3-deoxygenase (IDO). Injection of naïve mice with apoptotic spleen cells generated by irradiation led to DC changes similar to those induced by lymphoid radiation, suggesting that apoptotic body ingestion by CD8+DCs initiates tolerance induction. Tolerogenic CD8+DCs induced the development of tolerogenic NKT cells with a marked Th2 bias that, in turn, regulated the differentiation of the DCs and suppressed rejection of the transplants. Thus, reciprocal interactions between CD8+DCs and iNKT cells are required for tolerance induction in this system that was translated into a successful clinical protocol.

  19. CD4 on CD8+ T cells directly enhances effector function and is a target for HIV infection

    Science.gov (United States)

    Kitchen, Scott G.; Jones, Nicole R.; Laforge, Stuart; Whitmire, Jason K.; Vu, Bien-Aimee; Galic, Zoran; Brooks, David G.; Brown, Stephen J.; Kitchen, Christina M. R.; Zack, Jerome A.

    2004-06-01

    Costimulation of purified CD8+ T lymphocytes induces de novo expression of CD4, suggesting a previously unrecognized function for this molecule in the immune response. Here, we report that the CD4 molecule plays a direct role in CD8+ T cell function by modulating expression of IFN- and Fas ligand, two important CD8+ T cell effector molecules. CD4 expression also allows infection of CD8 cells by HIV, which results in down-regulation of the CD4 molecule and impairs the induction of IFN-, Fas ligand, and the cytotoxic responses of activated CD8+ T cells. Thus, the CD4 molecule plays a direct role in CD8 T cell function, and infection of these cells by HIV provides an additional reservoir for the virus and also may contribute to the immunodeficiency seen in HIV disease.

  20. Memory CD4+ T cells are suppressed by CD8+ regulatory T cells in vitro and in vivo

    Science.gov (United States)

    Long, Xin; Cheng, Qi; Liang, Huifang; Zhao, Jianping; Wang, Jian; Wang, Wei; Tomlinson, Stephen; Chen, Lin; Atkinson, Carl; Zhang, Bixiang; Chen, Xiaoping; Zhu, Peng

    2017-01-01

    Background: Acute graft rejection mediated by alloreactive memory CD4+ T cells is a major obstacle to transplantation tolerance. It has been reported that CD8+ T regulatory cells (Tregs) have the ability to induce graft tolerance by restraining the function of activated CD4+ T cells, but not including memory T cells. The aim of this study is to elucidate the effect of CD8+ Tregs on alloreactive memory CD4+ T cells. Methods: We detected Qa-1 expression and performed proliferative assay on memory CD4+ T cells. All memory CD4+ T cells were purified from mice receiving skin allografts. We performed inhibitory and cytotoxic assays on CD8+ Tregs, which were isolated from a T cell vaccination mouse model, and IL-2, IL-4, IL-10 and IFN-γ levels were measured in co-culture supernatants by ELISA. To confirm CD8+ Tregs inhibition of memory CD4+ T cells in-vivo, we utilized a murine model of cardiac allograft transplantation. Results: Memory CD4+ T cells mediated acute allograft rejection, and CD8+ Tregs suppressed the proliferation of memory CD4+ T cells. In vitro, memory CD4+ T cells were inhibited and lysed by CD8+ Tregs. There was a positive correlation between IFN-γ levels, and cell lysis rate induced by CD8+ Tregs. In-vivo studies demonstrated CD8+ Tregs prolonged graft survival times, by inhibiting CD4+ memory T cells, through a Qa-1-peptide-TCR pathway. Conclusions: CD8+ Tregs inhibit CD4+ memory T cell-mediated acute murine cardiac allograft rejection, and further prolong graft survival times. These results provide new insights into immune regulation of organ rejection. PMID:28123634

  1. T-bet and Eomes Are Differentially Linked to the Exhausted Phenotype of CD8+T Cells in HIV Infection

    DEFF Research Database (Denmark)

    Buggert, Marcus; Tauriainen, Johanna; Yamamoto, Takuya;

    2014-01-01

    CD8+ T cells was elevated in chronically infected individuals and highly associated with a T-betdimEomeshi expressional profile. Interestingly, both resting and activated HIV-specific CD8+ T cells in chronic infection were almost exclusively T-betdimEomeshi cells, while CMV-specific CD8+ T cells...... displayed a balanced expression pattern of T-bet and Eomes. The T-betdimEomeshi virus-specific CD8+ T cells did not show features of terminal differentiation, but rather a transitional memory phenotype with poor polyfunctional (effector) characteristics. The transitional and exhausted phenotype of HIV...

  2. CD8 T Cell Sensory Adaptation Dependent on TCR Avidity for Self-Antigens

    DEFF Research Database (Denmark)

    Marquez, M.-E.; Ellmeier, W.; Sanchez-Guajardo, Vanesa Maria;

    2005-01-01

    Adaptation of the T cell activation threshold may be one mechanism to control autoreactivity. To investigate its occurrence in vivo, we engineered a transgenic mouse model with increased TCR-dependent excitability by expressing a Zap70 gain-of-function mutant (ZAP-YEEI) in postselection CD8...... ZAP-YEEI cells were enhanced. Our data provide support for central and peripheral sensory T cell adaptation induced as a function of TCR avidity for self-ligands and signaling level. This may contribute to buffer excessive autoreactivity while optimizing TCR repertoire usage....... thymocytes and T cells. Increased basal phosphorylation of the Zap70 substrate linker for activation of T cells was detected in ZAP-YEEI-bearing CD8 T cells. However, these cells were not activated, but had reduced levels of TCR and CD5. Moreover, they produced lower cytokine amounts and showed faster...

  3. Alpha 4 integrin directs virus-activated CD8+ T cells to sites of infection

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Andersson, E C; Scheynius, A;

    1995-01-01

    This article examines the role of VLA-4 in directing lymphocytes to sites of viral infection using the murine lymphocytic choriomeningitis virus infection (LCMV) as the model system. This virus by itself induces little or no inflammation, but in most mouse/virus strain combinations a potent T cell...... infection results in the appearance of activated CD8+ cells with an increased expression of VLA-4. In this study we have compared various T cell high and low responder situations, and these experiments revealed that acute inflammation correlates directly with VLA-4 expression on splenic CD8+ cells....... This correlation could be extended to CD4+ and B cells in chronically infected low responder DBA/2 mice. The vascular ligand for VLA-4, VCAM-1, was found to be up-regulated on endothelial cells in sites of inflammation. Finally, preincubation of virus-primed donor cells with mAb to VLA-4 completely blocked...

  4. A dominant role for the immunoproteasome in CD8+ T cell responses to murine cytomegalovirus.

    Directory of Open Access Journals (Sweden)

    Sarah Hutchinson

    Full Text Available Murine cytomegalovirus (MCMV is an important animal model of human cytomegalovirus (HCMV, a β-Herpesvirus that infects the majority of the world's population and causes disease in neonates and immunocompromised adults. CD8(+ T cells are a major part of the immune response to MCMV and HCMV. Processing of peptides for presentation to CD8(+ T cells may be critically dependent on the immunoproteasome, expression of which is affected by MCMV. However, the overall importance of the immunoproteasome in the generation of immunodominant peptides from MCMV is not known. We therefore examined the role of the immunoproteasome in stimulation of CD8(+ T cell responses to MCMV - both conventional memory responses and those undergoing long-term expansion or "inflation". We infected LMP7(-/- and C57BL/6 mice with MCMV or with newly-generated recombinant vaccinia viruses (rVVs encoding the immunodominant MCMV protein M45 in either full-length or epitope-only minigene form. We analysed CD8(+ T cell responses using intracellular cytokine stain (ICS and MHC Class I tetramer staining for a panel of MCMV-derived epitopes. We showed a critical role for immunoproteasome in MCMV affecting all epitopes studied. Interestingly we found that memory "inflating" epitopes demonstrate reduced immunoproteasome dependence compared to non-inflating epitopes. M45-specific responses induced by rVVs remain immunoproteasome-dependent. These results help to define a critical restriction point for CD8(+ T cell epitopes in natural cytomegalovirus (CMV infection and potentially in vaccine strategies against this and other viruses.

  5. PSGL-1 regulates the migration and proliferation of CD8(+) T cells under homeostatic conditions.

    Science.gov (United States)

    Veerman, Krystle M; Carlow, Douglas A; Shanina, Iryna; Priatel, John J; Horwitz, Marc S; Ziltener, Hermann J

    2012-02-15

    P-selectin glycoprotein ligand-1 (PSGL-1), a heavily glycosylated sialomucin expressed on most leukocytes, has dual function as a selectin ligand for leukocyte rolling on vascular selectins expressed in inflammation and as a facilitator of resting T cell homing into lymphoid organs. In this article, we document disturbances in T cell homeostasis present in PSGL-1(null) mice. Naive CD4(+) and CD8(+) T cell frequencies were profoundly reduced in blood, whereas T cell numbers in lymph nodes and spleen were at or near normal levels. Although PSGL-1(null) T cells were less efficient at entering lymph nodes, they also remained in lymph nodes longer than PSGL-1(+/+) T cells, suggesting that PSGL-1 supports T cell egress. In addition, PSGL-1(null) CD8(+) T cell proliferation was observed under steady-state conditions and PSGL-1(null) CD8(+) T cells were found to be hyperresponsive to homeostatic cytokines IL-2, IL-4, and IL-15. Despite these disturbances in T cell homeostasis, PSGL-1(null) mice exhibited a normal acute response (day 8) to lymphocytic choriomeningitis virus infection but generated an increased frequency of memory T cells (day 40). Our observations demonstrate a novel pleiotropic influence of PSGL-1 deficiency on several aspects of T cell homeostasis that would not have been anticipated based on the mild phenotype of PSGL-1(null) mice. These potentially offsetting effects presumably account for the near-normal cellularity seen in lymph nodes of PSGL-1(null) mice.

  6. Comparison of Vaccine-Induced Effector CD8 T Cell Responses Directed against Self- and Non-Self-Tumor Antigens

    DEFF Research Database (Denmark)

    Pedersen, Sara R; Sørensen, Maria R; Buus, Søren

    2013-01-01

    It is generally accepted that CD8 T cells play a major role in tumor control, yet vaccination aimed at eliciting potent CD8 T cell responses are rarely efficient in clinical trials. To try and understand why this is so, we have generated potent adenoviral vectors encoding the endogenous tumor Ags...... that low avidity of the self-TA-specific CD8 T cells may represent a major obstacle for efficient immunotherapy of cancer....

  7. Structural Basis of the CD8[alpha beta]/MHC Class I Interaction: Focused Recognition Orients CD8[beta] to a T Cell Proximal Position[superscript 1,2

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rui; Natarajan, Kannan; Margulies, David H.; (NIH)

    2009-09-18

    In the immune system, B cells, dendritic cells, NK cells, and T lymphocytes all respond to signals received via ligand binding to receptors and coreceptors. Although the specificity of T cell recognition is determined by the interaction of T cell receptors with MHC/peptide complexes, the development of T cells in the thymus and their sensitivity to Ag are also dependent on coreceptor molecules CD8 (for MHC class I (MHCI)) and CD4 (for MHCII). The CD8{alpha}{beta} heterodimer is a potent coreceptor for T cell activation, but efforts to understand its function fully have been hampered by ignorance of the structural details of its interactions with MHCI. In this study we describe the structure of CD8{alpha}{beta} in complex with the murine MHCI molecule H-2D{sup d} at 2.6 {angstrom} resolution. The focus of the CD8{alpha}{beta} interaction is the acidic loop (residues 222-228) of the {alpha}3 domain of H-2D{sup d}. The {beta} subunit occupies a T cell membrane proximal position, defining the relative positions of the CD8{alpha} and CD8{beta} subunits. Unlike the CD8{alpha}{alpha} homodimer, CD8{alpha}{beta} does not contact the MHCI {alpha}{sub 2}- or {beta}{sub 2}-microglobulin domains. Movements of the CD8{alpha} CDR2 and CD8{beta} CDR1 and CDR2 loops as well as the flexibility of the H-2D{sup d} CD loop facilitate the monovalent interaction. The structure resolves inconclusive data on the topology of the CD8{alpha}{beta}/MHCI interaction, indicates that CD8{beta} is crucial in orienting the CD8{alpha}{beta} heterodimer, provides a framework for understanding the mechanistic role of CD8{alpha}{beta} in lymphoid cell signaling, and offers a tangible context for design of structurally altered coreceptors for tumor and viral immunotherapy.

  8. Molecular anatomy and number of antigen specific CD8 T cells required to cause type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Michael B A Oldstone

    Full Text Available We quantified CD8 T cells needed to cause type 1 diabetes and studied the anatomy of the CD8 T cell/beta (β cell interaction at the immunologic synapse. We used a transgenic model, in situ tetramer staining to distinguish antigen specific CD8 T cells from total T cells infiltrating islets and a variety of viral mutants selected for functional deletion(s of various CD8 T cell epitopes. Twenty percent of CD8 T cells in the spleen were specific for all immunodominant and subdominant viral glycoprotein (GP epitopes. CTLs to the immunodominant LCMV GP33-41 epitope accounted for 63% of the total (12.5% of tetramers. In situ hybridization analysis demonstrated only 1 to 2% of total infiltrating CD8 T cells were specific for GP33 CD8 T cell epitope, yet diabetes occurred in 94% of mice. The immunologic synapse between GP33 CD8 CTL and β cell contained LFA-1 and perforin. Silencing both immunodominant epitopes (GP33, GP276-286 in the infecting virus led to a four-fold reduction in viral specific CD8 CTL responses, negligible lymphocyte infiltration into islets and absence of diabetes.

  9. Qualitative and quantitative analysis of adenovirus type 5 vector-induced memory CD8 T cells

    DEFF Research Database (Denmark)

    Steffensen, Maria Abildgaard; Holst, Peter Johannes; Steengaard, Sanne Skovvang

    2013-01-01

    is followed by sustained expansion of the memory CD8 T-cell population, and the generated memory cells do not appear to have been driven towards exhaustive differentiation. Based on these findings, we suggest that adenovirus based prime-boost regimens (including Ad5 and Ad5-like vectors) represent...... adenoviral boosting and, importantly, the generated secondary memory cells cannot be qualitatively differentiated from those induced by primary infection with replicating virus. Quantitatively, DNA priming prior to Ad-vaccination will lead to even higher numbers of memory cells. In this case, the vaccination...... leads to the generation of a population of memory cells characterized by relatively low CD27 expression and high CD127 and KLRG1 expression. These memory CD8 T cells are capable of proliferating in response to viral challenge, and protect against infection with live virus. Furthermore, viral challenge...

  10. A Critical Role of IL-21-Induced BATF in Sustaining CD8-T-Cell-Mediated Chronic Viral Control

    Directory of Open Access Journals (Sweden)

    Gang Xin

    2015-11-01

    Full Text Available Control of chronic viral infections by CD8cells is critically dependent on CD4 help. In particular, helper-derived IL-21 plays a key role in sustaining the CD8cell response; however, the molecular pathways by which IL-21 sustains CD8cell immunity remain unclear. We demonstrate that IL-21 causes a phenotypic switch of transcription factor expression in CD8cells during chronic viral infection characterized by sustained BATF expression. Importantly, BATF expression during chronic infection is both required for optimal CD8cell persistence and anti-viral effector function and sufficient to rescue “unhelped” CD8cells. Mechanistically, BATF sustains the response by cooperating with IRF4, an antigen-induced transcription factor that is also critically required for CD8cell maintenance, to preserve Blimp-1 expression and thereby sustain CD8cell effector function. Collectively, these data suggest that CD4 T cells “help” the CD8 response during chronic infection via IL-21-induced BATF expression.

  11. An altered endometrial CD8 tissue resident memory T cell population in recurrent miscarriage.

    Science.gov (United States)

    Southcombe, J H; Mounce, G; McGee, K; Elghajiji, A; Brosens, J; Quenby, S; Child, T; Granne, I

    2017-01-23

    When trying to conceive 1% of couples have recurrent miscarriages, defined as three or more consecutive pregnancy losses. This is not accounted for by the known incidence of chromosomal aneuploidy in miscarriage, and it has been suggested that there is an immunological aetiology. The endometrial mucosa is populated by a variety of immune cells which in addition to providing host pathogen immunity must facilitate pregnancy. Here we characterise the endometrial CD8-T cell population during the embryonic window of implantation and find that the majority of cells are tissue resident memory T cells with high levels of CD69 and CD103 expression, proteins that prevent cells egress. We demonstrate that unexplained recurrent miscarriage is associated with significantly decreased expression of the T-cell co-receptor CD8 and tissue residency marker CD69. These cells differ from those found in control women, with less expression of CD127 indicating a lack of homeostatic cell control through IL-7 signalling. Nevertheless this population is resident in the endometrium of women who have RM, more than three months after the last miscarriage, indicating that the memory CD8-T cell population is altered in RM patients. This is the first evidence of a differing pre-pregnancy phenotype in endometrial immune cells in RM.

  12. Memory CD8(+) T cells elicited by HIV-1 lipopeptide vaccines display similar phenotypic profiles but differences in term of magnitude and multifunctionality compared with FLU- or EBV-specific memory T cells in humans.

    Science.gov (United States)

    Figueiredo, Suzanne; Charmeteau, Benedicte; Surenaud, Mathieu; Salmon, Dominique; Launay, Odile; Guillet, Jean-Gérard; Hosmalin, Anne; Gahery, Hanne

    2014-01-16

    Differentiation marker, multifunctionality and magnitude analyses of specific-CD8(+) memory T cells are crucial to improve development of HIV vaccines designed to generate cell-mediated immunity. Therefore, we fully characterized the HIV-specific CD8(+) T cell responses induced in volunteers vaccinated with HIV lipopeptide vaccines for phenotypic markers, tetramer staining, cytokine secretion, and cytotoxic activities. The frequency of ex vivo CD8(+) T cells elicited by lipopeptide vaccines is very rare and central-memory phenotype and functions of these cells were been shown to be important in AIDS immunity. So, we expanded them using specific peptides to compare the memory T cell responses induced in volunteers by HIV vaccines with responses to influenza (FLU) or Epstein Barr virus (EBV). By analyzing the differentiation state of IFN-γ-secreting CD8(+) T cells, we found a CCR7(-)CD45RA(-)CD28(+int)/CD28(-) profile (>85%) belonging to a subset of intermediate-differentiated effector T cells for HIV, FLU, and EBV. We then assessed the quality of the response by measuring various T cell functions. The percentage of single IFN-γ T cell producers in response to HIV was 62% of the total of secreting T cells compared with 35% for FLU and EBV, dual and triple (IFN-γ/IL-2/CD107a) T cell producers could also be detected but at lower levels (8% compared with 37%). Finally, HIV-specific T cells secreted IFN-γ and TNF-α, but not the dual combination like FLU- and EBV-specific T cells. Thus, we found that the functional profile and magnitude of expanded HIV-specific CD8(+) T precursors were more limited than those of to FLU- and EBV-specific CD8(+) T cells. These data show that CD8(+) T cells induced by these HIV vaccines have a similar differentiation profile to FLU and EBV CD8(+) T cells, but that the vaccine potency to induce multifunctional T cells needs to be increased in order to improve vaccination strategies.

  13. Phenotypic characterization of CD8+ T cell populations in HIV disease and in anti-HIV immunity.

    Science.gov (United States)

    Watret, K C; Whitelaw, J A; Froebel, K S; Bird, A G

    1993-04-01

    The CD8+ T cell population is believed to play an important role in the control of viral infection, both for suppression of viral replication and for cytotoxic activity against viral infected cells. Elevated numbers of CD8+ T cells have been demonstrated in HIV infection, and CD8+ cytotoxic T cell (CTL) activity is associated with the early, asymptomatic stage of disease. We investigated the phenotypic characteristics of the CD8 population, in whole blood, in HIV disease and determined the predominant CD8+ subpopulation involved in anti-HIV CTL activity. We found that CD8+ T cells co-expressing markers of activation (HLA-DR), memory (CD45RO, CD29), and cytotoxic activity (S6F1) were significantly elevated in the early stages of disease, while the numbers of naive (CD45RA) cells remained unchanged. Progression to AIDS resulted in an overall loss of absolute CD8+ T cells, though the percentages of CD8+ HLA-DR+ and CD8+ S6F1+ remained elevated. In contrast to patients in the late stages of disease, anti-HIVgag CTL activity, following in vitro stimulation, was present in most HIV+ asymptomatic subjects and was associated with an expansion of CD8+ HLA-DR+ and CD8+ CD45RO+ cells. The absence of CTL activity was associated with a reduced ability of these populations to expand in vitro and with a significant loss of peripheral CD4+ T cells, independent of clinical stage. We suggest that CD8+ expressing HLA-DR+ CD45RO+ and S6F1+ play an important role in anti-HIV cytotoxicity.

  14. Splenic CD8α⁺ dendritic cells undergo rapid programming by cytosolic bacteria and inflammation to induce protective CD8⁺ T-cell memory.

    Science.gov (United States)

    Campisi, Laura; Soudja, Saidi M'Homa; Cazareth, Julie; Bassand, Delphine; Lazzari, Anne; Brau, Frédéric; Narni-Mancinelli, Emilie; Glaichenhaus, Nicolas; Geissmann, Frédéric; Lauvau, Grégoire

    2011-06-01

    Memory CD8(+) T lymphocytes are critical effector cells of the adaptive immune system mediating long-lived pathogen-specific protective immunity. Three signals - antigen, costimulation and inflammation - orchestrate optimal CD8(+) T-cell priming and differentiation into effector and memory cells and shape T-cell functional fate and ability to protect against challenge infections. While among the conventional spleen DCs (cDCs), the CD8α(+) but not the CD8α(-) cDCs most efficiently mediate CD8(+) T-cell priming, it is unclear which subset, irrespective of their capacity to process MHC class I-associated antigens, is most efficient at inducing naïve CD8(+) T-cell differentiation into pathogen-specific protective memory cells in vivo. Moreover, the origin of the required signals is still unclear. Using mice infected with the intracellular bacterium Listeria monocytogenes, we show that splenic CD8α(+) cDCs become endowed with all functional features to optimally prime protective memory CD8(+) T cells in vivo within only a few hours post-immunization. Such programming requires both cytosolic signals resulting from bacterial invasion of the host cells and extracellular inflammatory mediators. Thus, these data designate these cells as the best candidates to facilitate the development of cell-based vaccine therapy.

  15. A novel mycobacterial In Vitro infection assay identifies differences of induced macrophage apoptosis between CD4+ and CD8+ T cells

    Science.gov (United States)

    Nkwouano, Vanesa; Witkowski, Sven; Rehberg, Nidja; Kalscheuer, Rainer; Nausch, Norman; Mayatepek, Ertan

    2017-01-01

    Macrophages are natural host cells for pathogenic mycobacteria, like Mycobacterium tuberculosis (M.tb). Immune surveillance by T cells and interaction with M.tb infected macrophages is crucial for protection against M.tb reactivation and development of active tuberculosis. Several factors play a role in the control of M.tb infection but reliable biomarkers remain elusive. One major obstacle is the absence of functional in vitro assays which allow concomitant determination of i) mycobacterial eradication; ii) cytotoxic effects on host macrophages; and iii) effector T-cell functions. We established a novel functional in vitro assay based on flow cytometry analysis of monocyte-derived macrophages (MDM) infected with a Mycobacterium bovis BCG strain containing a tetracycline inducible live/dead reporter plasmid (LD-BCG). MDM of healthy human donors were generated in vitro and infected with defined LD-BCG numbers. After short-term MDM/LD-BCG co-incubation with autologous effector T cells or in the presence of antibiotics, proportions of MDM containing live or dead LD-BCG were determined by flow cytometry. Concomitant measure of defined numbers of added beads allowed comparison of absolute MDM numbers between samples. Differential effects of T-cell subpopulations on anti-mycobacterial cytotoxicity and on MDM apoptosis were determined. Flow cytometry measure of MDM/LD-BCG treated with rifampicin correlated well with mycobacterial colony forming units and fluorescence microscopy results. Co-culture with pre-activated effector T cells reduced viability of both, LD-BCG and MDM, in a concentration-dependent manner. M.tb protein specific CD4+ and CD8+ T-cells contributed similarly to anti-mycobacterial cytotoxicity but CD4+ T cells induced higher levels of apoptosis in infected MDMs. This novel assay enables rapid quantification of anti-mycobacterial cytotoxicity and characterization of effector functions. Our functional in vitro assay has the potential to contribute to the

  16. The Secreted Protein Rv1860 of Mycobacterium tuberculosis Stimulates Human Polyfunctional CD8+ T Cells.

    Science.gov (United States)

    Satchidanandam, Vijaya; Kumar, Naveen; Biswas, Sunetra; Jumani, Rajiv S; Jain, Chandni; Rani, Rajni; Aggarwal, Bharti; Singh, Jaya; Kotnur, Mohan Rao; Sridharan, Anand

    2016-04-01

    We previously reported that Rv1860 protein from Mycobacterium tuberculosis stimulated CD4(+)and CD8(+)T cells secreting gamma interferon (IFN-γ) in healthy purified protein derivative (PPD)-positive individuals and protected guinea pigs immunized with a DNA vaccine and a recombinant poxvirus expressing Rv1860 from a challenge with virulent M. tuberculosis We now show Rv1860-specific polyfunctional T (PFT) cell responses in the blood of healthy latently M. tuberculosis-infected individuals dominated by CD8(+) T cells, using a panel of 32 overlapping peptides spanning the length of Rv1860. Multiple subsets of CD8(+) PFT cells were significantly more numerous in healthy latently infected volunteers (HV) than in tuberculosis (TB) patients (PAT). The responses of peripheral blood mononuclear cells (PBMC) from PAT to the peptides of Rv1860 were dominated by tumor necrosis factor alpha (TNF-α) and interleukin-10 (IL-10) secretions, the former coming predominantly from non-T cell sources. Notably, the pattern of the T cell response to Rv1860 was distinctly different from those of the widely studied M. tuberculosis antigens ESAT-6, CFP-10, Ag85A, and Ag85B, which elicited CD4(+) T cell-dominated responses as previously reported in other cohorts. We further identified a peptide spanning amino acids 21 to 39 of the Rv1860 protein with the potential to distinguish latent TB infection from disease due to its ability to stimulate differential cytokine signatures in HV and PAT. We suggest that a TB vaccine carrying these and other CD8(+) T-cell-stimulating antigens has the potential to prevent progression of latent M. tuberculosis infection to TB disease.

  17. T cell metabolism. The protein LEM promotes CD8⁺ T cell immunity through effects on mitochondrial respiration.

    Science.gov (United States)

    Okoye, Isobel; Wang, Lihui; Pallmer, Katharina; Richter, Kirsten; Ichimura, Takahuru; Haas, Robert; Crouse, Josh; Choi, Onjee; Heathcote, Dean; Lovo, Elena; Mauro, Claudio; Abdi, Reza; Oxenius, Annette; Rutschmann, Sophie; Ashton-Rickardt, Philip G

    2015-05-29

    Protective CD8(+) T cell-mediated immunity requires a massive expansion in cell number and the development of long-lived memory cells. Using forward genetics in mice, we identified an orphan protein named lymphocyte expansion molecule (LEM) that promoted antigen-dependent CD8(+) T cell proliferation, effector function, and memory cell generation in response to infection with lymphocytic choriomeningitis virus. Generation of LEM-deficient mice confirmed these results. Through interaction with CR6 interacting factor (CRIF1), LEM controlled the levels of oxidative phosphorylation (OXPHOS) complexes and respiration, resulting in the production of pro-proliferative mitochondrial reactive oxygen species (mROS). LEM provides a link between immune activation and the expansion of protective CD8(+) T cells driven by OXPHOS and represents a pathway for the restoration of long-term protective immunity based on metabolically modified cytotoxic CD8(+) T cells.

  18. Skewed distribution of IL-7 receptor-α-expressing effector memory CD8+ T cells with distinct functional characteristics in oral squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Jang-Jaer Lee

    Full Text Available CD8(+ T cells play important roles in anti-tumor immunity but distribution profile or functional characteristics of effector memory subsets during tumor progression are unclear. We found that, in oral squamous carcinoma patients, circulating CD8(+ T cell pools skewed toward effector memory subsets with the distribution frequency of CCR7(-CD45RA(-CD8(+ T cells and CCR7(- CD45RA(+CD8(+ T cells negatively correlated with each other. A significantly higher frequency of CD127(lo CCR7(-CD45RA(-CD8(+ T cells or CCR7(-CD45RA(+CD8(+ T cells among total CD8(+ T cells was found in peripheral blood or tumor infiltrating lymphocytes, but not in regional lymph nodes. The CD127(hi CCR7(-CD45RA(-CD8(+ T cells or CCR7(-CD45RA(+CD8(+ T cells maintained significantly higher IFN-γ, IL-2 productivity and ex vivo proliferative capacity, while the CD127(lo CCR7(-CD45RA(-CD8(+ T cells or CCR7(-CD45RA(+CD8(+ T cells exhibited higher granzyme B productivity and susceptibility to activation induced cell death. A higher ratio of CCR7(-CD45RA(+CD8(+ T cells to CCR7(-CD45RA(-CD8(+ T cells was associated with advanced cancer staging and poor differentiation of tumor cells. Therefore, the CD127(lo CCR7(-CD45RA(-CD8(+ T cells and CCR7(-CD45RA(+CD8(+ T cells are functionally similar CD8(+ T cell subsets which exhibit late differentiated effector phenotypes and the shift of peripheral CD8(+ effector memory balance toward CCR7(-CD45RA(+CD8(+ T cells is associated with OSCC progression.

  19. Intravenous immunoglobulin treatment responsiveness depends on the degree of CD8+ T cell activation in Kawasaki disease.

    Science.gov (United States)

    Ye, Qing; Gong, Fang-Qi; Shang, Shi-Qiang; Hu, Jian

    2016-10-01

    Kawasaki disease (KD) has become the most common cause of acquired heart disease in children and is also a risk factor for ischemic heart disease in adults. However, Kawasaki disease lacks specific laboratory diagnostic indices. Thus, this study analyzed the T cell activation profiles of Kawasaki disease and assessed their value in the diagnosis of Kawasaki disease and the prediction of intravenous immunoglobulin (IVIG) sensitivity. We analyzed human leukocyte antigen-DR (HLA-DR), CD69 and CD25 expression on peripheral blood CD4+ and CD8+ T cells during the acute phase of KD. We compared the percentages of HLA-DR+/CD69+/CD25+ T cells in the CD4+ and CD8+ T cell populations of IVIG-effective and IVIG-resistant groups. Receiver operating characteristic curves were used to assess the diagnostic value of the above parameters. The median percentage of CD8+HLA-DR+ T cells and the median ratio of CD8+HLA-DR+ T cells/CD8+CD25+ T cells were significantly elevated in the patient group compared with those in the control group during the acute phase of KD. Regarding the diagnosis of Kawasaki disease, the area under the ROC curve was 0.939 for the percentage of CD8+HLA-DR+ T cells. There was a significant difference in the ratio of CD8+HLA-DR+ T cells/CD8+CD69+ T cells between IVIG-resistant patients and IVIG-sensitive patients. Regarding IVIG sensitivity, the area under the ROC curve was 0.795 for it. Excessive CD8+ T cell activation, as well as an imbalance between CD8+ T cell activation and inhibition, underlies the pathogenesis of Kawasaki disease. The percentage of CD8+ HLA-DR+ T cells may be used as an index to diagnose Kawasaki disease. IVIG inhibits CD8+ T cell activation, but excessive CD8+ T cell activation may cause IVIG resistance. The ratio of CD8+HLA-DR+ T cells/CD8+CD69+ T cells may be used as a predictor of IVIG sensitivity.

  20. Functional CD8+ T Cell Responses in Lethal Ebola Virus Infection

    Science.gov (United States)

    2008-03-15

    2003. Cutting edge: impairment of dendritic cells and adaptive immunity by Ebola and Lassa viruses . J. Immunol. 170: 2797–2801. 20. Bosio, C. M., B...Functional CD8 T Cell Responses in Lethal Ebola Virus Infection1 Steven B. Bradfute, Kelly L. Warfield, and Sina Bavari2 Ebola virus (EBOV) causes...the development of an effective adap- tive immune response, leading to overwhelming infection and death. Ebola virus (EBOV)3 is a single-stranded

  1. Novel CD8(+) cytotoxic T cell epitopes in bovine leukemia virus with cattle.

    Science.gov (United States)

    Bai, Lanlan; Takeshima, Shin-Nosuke; Isogai, Emiko; Kohara, Junko; Aida, Yoko

    2015-12-16

    Bovine leukemia virus (BLV) is associated with enzootic bovine leukosis and is closely related to human T cell leukemia virus (HTLV). The cytotoxic T lymphocyte (CTL) plays a key role in suppressing the progression of disease caused by BLV. T and B cell epitopes in BLV have been studied, but CD8(+) CTL epitopes remain poorly understood. We used a library of 115 synthetic peptides covering the entirety of the Env proteins (gp51 and gp30), the Gag proteins (p15, p24, and p12), and the Tax protein of BLV to identify 11 novel CD8(+) T cell epitopes (gp51N5, gp51N11, gp51N12, gp30N5, gp30N6, gp30N8, gp30N16, tax16, tax18, tax19, and tax20) in four calves experimentally infected with BLV. The number of CD8(+) T cell epitopes that could be identified in each calf correlated with the BLV proviral load. Interestingly, among the 11 epitopes identified, only gp51N11 was capable of inducing CD8(+) T cell-mediated cytotoxicity in all four calves, but it is not a suitable vaccine target because it shows a high degree of polymorphism according to the Wu-Kabat variability index. By contrast, no CTL epitopes were identified from the Gag structural protein. In addition, several epitopes were obtained from gp30 and Tax, indicating that cellular immunity against BLV is strongly targeted to these proteins. CD8(+) CTL epitopes from gp30 and Tax were less polymorphic than epitopes from. Indeed, peptides tax16, tax18, tax19, and tax20 include a leucine-rich activation domain that encompasses a transcriptional activation domain, and the gp30N16 peptide contains a proline-rich region that interacts with a protein tyrosine phosphatase SHP1 to regulate B cell activation. Moreover, at least one CD8(+) CTL epitope derived from gp30 was identified in each of the four calves. These results indicate that BLV gp30 may be the best candidate for the development of a BLV vaccine.

  2. Impact of HIV on CD8+ T cell CD57 expression is distinct from that of CMV and aging.

    Directory of Open Access Journals (Sweden)

    Sulggi A Lee

    Full Text Available Chronic antigenic stimulation by cytomegalovirus (CMV is thought to increase "immunosenesence" of aging, characterized by accumulation of terminally differentiated CD28- CD8+ T cells and increased CD57, a marker of proliferative history. Whether chronic HIV infection causes similar effects is currently unclear.We compared markers of CD8+ T cell differentiation (e.g., CD28, CD27, CCR7, CD45RA and CD57 expression on CD28- CD8+ T cells in healthy HIV-uninfected adults with and without CMV infection and in both untreated and antiretroviral therapy (ART-suppressed HIV-infected adults with asymptomatic CMV infection.Compared to HIV-uninfected adults without CMV (n=12, those with asymptomatic CMV infection (n=31 had a higher proportion of CD28-CD8+ T cells expressing CD57 (P=0.005. Older age was also associated with greater proportions of CD28-CD8+ T cells expressing CD57 (rho: 0.47, P=0.007. In contrast, untreated HIV-infected CMV+ participants (n=55 had much lower proportions of CD28- CD8+ cells expressing CD57 than HIV-uninfected CMV+ participants (P<0.0001 and were enriched for less well-differentiated CD28- transitional memory (TTR CD8+ T cells (P<0.0001. Chronically HIV-infected adults maintaining ART-mediated viral suppression (n=96 had higher proportions of CD28-CD8+ T cells expressing CD57 than untreated patients (P<0.0001, but continued to have significantly lower levels than HIV-uninfected controls (P=0.001. Among 45 HIV-infected individuals initiating their first ART regimen, the proportion of CD28-CD8+ T cells expressing CD57 declined (P<0.0001, which correlated with a decline in percent of transitional memory CD8+ T cells, and appeared to be largely explained by a decline in CD28-CD57- CD8+ T cell counts rather than an expansion of CD28-CD57+ CD8+ T cell counts.Unlike CMV and aging, which are associated with terminal differentiation and proliferation of effector memory CD8+ T cells, HIV inhibits this process, expanding less well

  3. Human CD8(+) T Cells Target Multiple Epitopes in Respiratory Syncytial Virus Polymerase.

    Science.gov (United States)

    Burbulla, Daniel; Günther, Patrick S; Peper, Janet K; Jahn, Gerhard; Dennehy, Kevin M

    2016-06-01

    Respiratory syncytial virus (RSV) infection is a serious health problem in young children, immunocompromised patients, and the elderly. The development of novel prevention strategies, such as a vaccine to RSV, is a high priority. One strategy is to design a peptide-based vaccine that activates appropriate CD8(+) T-cell responses. However, this approach is limited by the low number of RSV peptide epitopes defined to date that activate CD8(+) T cells. We aimed to identify peptide epitopes that are presented by common human leukocyte antigen types (HLA-A*01, -A*02, and -B*07). We identify one novel HLA-A*02-restricted and two novel HLA-A*01-restricted peptide epitopes from RSV polymerase. Peptide-HLA multimer staining of specific T cells from healthy donor peripheral blood mononuclear cell, the memory phenotype of such peptide-specific T cells ex vivo, and functional IFNγ responses in short-term stimulation assays suggest that these peptides are recognized during RSV infection. Such peptides are candidates for inclusion into a peptide-based RSV vaccine designed to stimulate defined CD8(+) T-cell responses.

  4. Targeting Transcriptional Regulators of CD8+ T Cell Dysfunction to Boost Anti-Tumor Immunity.

    Science.gov (United States)

    Waugh, Katherine A; Leach, Sonia M; Slansky, Jill E

    2015-01-01

    Transcription is a dynamic process influenced by the cellular environment: healthy, transformed, and otherwise. Genome-wide mRNA expression profiles reflect the collective impact of pathways modulating cell function under different conditions. In this review we focus on the transcriptional pathways that control tumor infiltrating CD8+ T cell (TIL) function. Simultaneous restraint of overlapping inhibitory pathways may confer TIL resistance to multiple mechanisms of suppression traditionally referred to as exhaustion, tolerance, or anergy. Although decades of work have laid a solid foundation of altered transcriptional networks underlying various subsets of hypofunctional or "dysfunctional" CD8+ T cells, an understanding of the relevance in TIL has just begun. With recent technological advances, it is now feasible to further elucidate and utilize these pathways in immunotherapy platforms that seek to increase TIL function.

  5. Targeting Transcriptional Regulators of CD8+ T Cell Dysfunction to Boost Anti-Tumor Immunity

    Directory of Open Access Journals (Sweden)

    Katherine A. Waugh

    2015-09-01

    Full Text Available Transcription is a dynamic process influenced by the cellular environment: healthy, transformed, and otherwise. Genome-wide mRNA expression profiles reflect the collective impact of pathways modulating cell function under different conditions. In this review we focus on the transcriptional pathways that control tumor infiltrating CD8+ T cell (TIL function. Simultaneous restraint of overlapping inhibitory pathways may confer TIL resistance to multiple mechanisms of suppression traditionally referred to as exhaustion, tolerance, or anergy. Although decades of work have laid a solid foundation of altered transcriptional networks underlying various subsets of hypofunctional or “dysfunctional” CD8+ T cells, an understanding of the relevance in TIL has just begun. With recent technological advances, it is now feasible to further elucidate and utilize these pathways in immunotherapy platforms that seek to increase TIL function.

  6. Clonal expansions of CD8+ T cells with IL-10 secreting capacity occur during chronic Mycobacterium tuberculosis infection.

    Directory of Open Access Journals (Sweden)

    Joshua C Cyktor

    Full Text Available The exact role of CD8(+ T cells during Mycobacterium tuberculosis (Mtb infection has been heavily debated, yet it is generally accepted that CD8(+ T cells contribute to protection against Mtb. In this study, however, we show that the Mtb-susceptible CBA/J mouse strain accumulates large numbers of CD8(+ T cells in the lung as infection progresses, and that these cells display a dysfunctional and immunosuppressive phenotype (PD-1(+, Tim-3(+, CD122(+. CD8(+ T cell expansions from the lungs of Mtb-infected CBA/J mice were also capable of secreting the immunosuppressive cytokine interleukin-10 (IL-10, although in vivo CD8(+ T cell depletion did not significantly alter Mtb burden. Further analysis revealed that pulmonary CD8(+ T cells from Mtb-infected CBA/J mice were clonally expanded, preferentially expressing T cell receptor (TcR Vβ chain 8 (8.2, 8.3 or Vβ 14. Although Vβ8(+ CD8(+ T cells were responsible for the majority of IL-10 production, in vivo depletion of Vβ8(+ did not significantly change the outcome of Mtb infection, which we hypothesize was a consequence of their dual IL-10/IFN-γ secreting profiles. Our data demonstrate that IL-10-secreting CD8(+ T cells can arise during chronic Mtb infection, although the significance of this T cell population in tuberculosis pathogenesis remains unclear.

  7. Prolonged presence of effector-memory CD8 T cells in the central nervous system after dengue virus encephalitis.

    Science.gov (United States)

    van der Most, Robbert G; Murali-Krishna, Kaja; Ahmed, Rafi

    2003-01-01

    Dengue virus infection in the central nervous system (CNS) of immunized mice results in a strong influx of CD8 T cells into the brain. Whereas the kinetics of the splenic antiviral response are conventional, i.e. expansion followed by a rapid drop in the frequency of specific CD8 T cells, dengue virus-specific CD8 T cells are retained in the CNS at a high frequency. These CD8 T cells display a partially activated phenotype (CD69(high), Ly-6A/E(high), CD62L(low)), characteristic for effector-memory T cells. CD43 expression, visualized by staining with the 1B11 mAb, decreased in time, suggesting that these persisting CD8 T cells differentiated into memory cells. These data add to the growing evidence implicating the CNS as a non-lymphoid tissue capable of supporting prolonged T cell survival/maintenance.

  8. Contribution of Herpesvirus Specific CD8 T Cells to Anti-Viral T Cell Response in Humans

    OpenAIRE

    Elena Sandalova; Diletta Laccabue; Carolina Boni; Tan, Anthony T; Katja Fink; Eng Eong Ooi; Robert Chua; Bahar Shafaeddin Schreve; Carlo Ferrari; Antonio Bertoletti

    2010-01-01

    Herpesviruses infect most humans. Their infections can be associated with pathological conditions and significant changes in T cell repertoire but evidences of symbiotic effects of herpesvirus latency have never been demonstrated. We tested the hypothesis that HCMV and EBV-specific CD8 T cells contribute to the heterologous anti-viral immune response. Volume of activated/proliferating virus-specific and total CD8 T cells was evaluated in 50 patients with acute viral infections: 20 with HBV, 1...

  9. Genetic adjuvantation of recombinant MVA with CD40L potentiates CD8 T cell mediated immunity

    Directory of Open Access Journals (Sweden)

    Henning eLauterbach

    2013-08-01

    Full Text Available Modified vaccinia Ankara (MVA is a safe and promising viral vaccine vector that is currently investigated in several clinical and pre-clinical trials. In contrast to inactivated or sub-unit vaccines, MVA is able to induce strong humoral as well as cellular immune responses. In order to further improve its CD8 T cell inducing capacity, we genetically adjuvanted MVA with the coding sequence of murine CD40L, a member of the tumor necrosis factor (TNF superfamily. Immunization of mice with this new vector led to strongly enhanced primary and memory CD8 T cell responses. Concordant with the enhanced CD8 T cell response, we could detect stronger activation of dendritic cells and higher systemic levels of innate cytokines (including IL-12p70 early after immunization. Interestingly, acquisition of memory characteristics (i.e., IL-7R expression was accelerated after immunization with MVA-CD40L in comparison to non-adjuvanted MVA. Furthermore, the generated CTLs also showed improved functionality as demonstrated by intracellular cytokine staining and in vivo killing activity. Importantly, the superior CTL response after a single MVA-CD40L immunization was able to protect B cell deficient mice against a fatal infection with ectromelia virus. Taken together, we show that genetic adjuvantation of MVA can change strength, quality and functionality of innate and adaptive immune responses. These data should facilitate a rational vaccine design with a focus on rapid induction of large numbers of CD8 T cells able to protect against specific diseases.

  10. Initial viral load determines the magnitude of the human CD8 T cell response to yellow fever vaccination.

    Science.gov (United States)

    Akondy, Rama S; Johnson, Philip L F; Nakaya, Helder I; Edupuganti, Srilatha; Mulligan, Mark J; Lawson, Benton; Miller, Joseph D; Pulendran, Bali; Antia, Rustom; Ahmed, Rafi

    2015-03-10

    CD8 T cells are a potent tool for eliminating intracellular pathogens and tumor cells. Thus, eliciting robust CD8 T-cell immunity is the basis for many vaccines under development. However, the relationship between antigen load and the magnitude of the CD8 T-cell response is not well-described in a human immune response. Here we address this issue by quantifying viral load and the CD8 T-cell response in a cohort of 80 individuals immunized with the live attenuated yellow fever vaccine (YFV-17D) by sampling peripheral blood at days 0, 1, 2, 3, 5, 7, 9, 11, 14, 30, and 90. When the virus load was below a threshold (peak virus load < 225 genomes per mL, or integrated virus load < 400 genome days per mL), the magnitude of the CD8 T-cell response correlated strongly with the virus load (R(2) ∼ 0.63). As the virus load increased above this threshold, the magnitude of the CD8 T-cell responses saturated. Recent advances in CD8 T-cell-based vaccines have focused on replication-incompetent or single-cycle vectors. However, these approaches deliver relatively limited amounts of antigen after immunization. Our results highlight the requirement that T-cell-based vaccines should deliver sufficient antigen during the initial period of the immune response to elicit a large number of CD8 T cells that may be needed for protection.

  11. The Combined Deficiency of Immunoproteasome Subunits Affects Both the Magnitude and Quality of Pathogen- and Genetic Vaccination-Induced CD8+ T Cell Responses to the Human Protozoan Parasite Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Jonatan Ersching

    2016-04-01

    Full Text Available The β1i, β2i and β5i immunoproteasome subunits have an important role in defining the repertoire of MHC class I-restricted epitopes. However, the impact of combined deficiency of the three immunoproteasome subunits in the development of protective immunity to intracellular pathogens has not been investigated. Here, we demonstrate that immunoproteasomes play a key role in host resistance and genetic vaccination-induced protection against the human pathogen Trypanosoma cruzi (the causative agent of Chagas disease, immunity to which is dependent on CD8+ T cells and IFN-γ (the classical immunoproteasome inducer. We observed that infection with T. cruzi triggers the transcription of immunoproteasome genes, both in mice and humans. Importantly, genetically vaccinated or T. cruzi-infected β1i, β2i and β5i triple knockout (TKO mice presented significantly lower frequencies and numbers of splenic CD8+ effector T cells (CD8+CD44highCD62Llow specific for the previously characterized immunodominant (VNHRFTLV H-2Kb-restricted T. cruzi epitope. Not only the quantity, but also the quality of parasite-specific CD8+ T cell responses was altered in TKO mice. Hence, the frequency of double-positive (IFN-γ+/TNF+ or single-positive (IFN-γ+ cells specific for the H-2Kb-restricted immunodominant as well as subdominant T. cruzi epitopes were higher in WT mice, whereas TNF single-positive cells prevailed among CD8+ T cells from TKO mice. Contrasting with their WT counterparts, TKO animals were also lethally susceptible to T. cruzi challenge, even after an otherwise protective vaccination with DNA and adenoviral vectors. We conclude that the immunoproteasome subunits are key determinants in host resistance to T. cruzi infection by influencing both the magnitude and quality of CD8+ T cell responses.

  12. The Combined Deficiency of Immunoproteasome Subunits Affects Both the Magnitude and Quality of Pathogen- and Genetic Vaccination-Induced CD8+ T Cell Responses to the Human Protozoan Parasite Trypanosoma cruzi

    Science.gov (United States)

    Ersching, Jonatan; Vasconcelos, José R.; Ferreira, Camila P.; Caetano, Braulia C.; Machado, Alexandre V.; Bruna–Romero, Oscar; Baron, Monique A.; Ferreira, Ludmila R. P.; Cunha-Neto, Edécio; Rock, Kenneth L.

    2016-01-01

    The β1i, β2i and β5i immunoproteasome subunits have an important role in defining the repertoire of MHC class I-restricted epitopes. However, the impact of combined deficiency of the three immunoproteasome subunits in the development of protective immunity to intracellular pathogens has not been investigated. Here, we demonstrate that immunoproteasomes play a key role in host resistance and genetic vaccination-induced protection against the human pathogen Trypanosoma cruzi (the causative agent of Chagas disease), immunity to which is dependent on CD8+ T cells and IFN-γ (the classical immunoproteasome inducer). We observed that infection with T. cruzi triggers the transcription of immunoproteasome genes, both in mice and humans. Importantly, genetically vaccinated or T. cruzi-infected β1i, β2i and β5i triple knockout (TKO) mice presented significantly lower frequencies and numbers of splenic CD8+ effector T cells (CD8+CD44highCD62Llow) specific for the previously characterized immunodominant (VNHRFTLV) H-2Kb-restricted T. cruzi epitope. Not only the quantity, but also the quality of parasite-specific CD8+ T cell responses was altered in TKO mice. Hence, the frequency of double-positive (IFN-γ+/TNF+) or single-positive (IFN-γ+) cells specific for the H-2Kb-restricted immunodominant as well as subdominant T. cruzi epitopes were higher in WT mice, whereas TNF single-positive cells prevailed among CD8+ T cells from TKO mice. Contrasting with their WT counterparts, TKO animals were also lethally susceptible to T. cruzi challenge, even after an otherwise protective vaccination with DNA and adenoviral vectors. We conclude that the immunoproteasome subunits are key determinants in host resistance to T. cruzi infection by influencing both the magnitude and quality of CD8+ T cell responses. PMID:27128676

  13. CD8α− Dendritic Cells Induce Antigen-Specific T Follicular Helper Cells Generating Efficient Humoral Immune Responses

    Directory of Open Access Journals (Sweden)

    Changsik Shin

    2015-06-01

    Full Text Available Recent studies on T follicular helper (Tfh cells have significantly advanced our understanding of T cell-dependent B cell responses. However, little is known about the early stage of Tfh cell commitment by dendritic cells (DCs, particularly by the conventional CD8α+ and CD8α− DC subsets. We show that CD8α− DCs localized at the interfollicular zone play a pivotal role in the induction of antigen-specific Tfh cells by upregulating the expression of Icosl and Ox40l through the non-canonical NF-κB signaling pathway. Tfh cells induced by CD8α− DCs function as true B cell helpers, resulting in significantly increased humoral immune responses against various human pathogenic antigens, including Yersinia pestis LcrV, HIV Gag, and hepatitis B surface antigen. Our findings uncover a mechanistic role of CD8α− DCs in the initiation of Tfh cell differentiation and thereby provide a rationale for investigating CD8α− DCs in enhancing antigen-specific humoral immune responses for improving vaccines and therapeutics.

  14. Blocking of PDL-1 interaction enhances primary and secondary CD8 T cell response to herpes simplex virus-1 infection.

    Directory of Open Access Journals (Sweden)

    Rudragouda Channappanavar

    Full Text Available The blocking of programmed death ligand-1 (PDL-1 has been shown to enhance virus-specific CD8 T cell function during chronic viral infections. Though, how PDL-1 blocking at the time of priming affects the quality of CD8 T cell response to acute infections is not well understood and remains controversial. This report demonstrates that the magnitude of the primary and secondary CD8 T cell responses to herpes simplex virus-1 (HSV-1 infection is subject to control by PDL-1. Our results showed that after footpad HSV-1 infection, PD-1 expression increases on immunodominant SSIEFARL peptide specific CD8 T cells. Additionally, post-infection, the level of PDL-1 expression also increases on CD11c+ dendritic cells. Intraperitoneal administration of anti-PDL-1 monoclonal antibody given one day prior to and three days after cutaneous HSV-1 infection, resulted in a marked increase in effector and memory CD8 T cell response to SSIEFARL peptide. This was shown by measuring the quantity and quality of SSIEFARL-specific CD8 T cells by making use of ex-vivo assays that determine antigen specific CD8 T cell function, such as intracellular cytokine assay, degranulation assay to measure cytotoxicity and viral clearance. Our results are discussed in terms of the beneficial effects of blocking PDL-1 interactions, while giving prophylactic vaccines, to generate a more effective CD8 T cell response to viral infection.

  15. HLA-A*0201-restricted CD8+ T-cell epitopes identified in dengue viruses

    Directory of Open Access Journals (Sweden)

    Duan Zhi-Liang

    2012-11-01

    Full Text Available Abstract Background All four dengue virus (DV serotypes (D1V, D2V, D3V and D4V can cause a series of disorders, ranging from mild dengue fever (DF to severe dengue hemorrhagic fever and dengue shock syndrome (DHF/DSS. Previous studies have revealed that DV serotype-specific CD8+ T cells are involved in controlling DV infection. Serotype cross-reactive CD8+ T-cells may contribute to the immunopathogenesis of DHF/DSS. The aim of the study was to identify HLA-A*0201-binding peptides from four DV serotypes. We then examined their immunogenicity in vivo and cross-reactivity within heterologous peptides. Methods D1V-derived candidate CD8+ T-cell epitopes were synthesized and evaluated for their affinity to the HLA-A*0201 molecule. Variant peptides representing heterologous D2V, D3V, D4V serotypes were synthesized. The immunogenicity of the high-affinity peptides were evaluated in HLA-A*0201 transgenic mice. Results Of the seven D1V-derived candidate epitopes [D1V-NS4a56–64(MLLALIAVL, D1V-C46–54(LVMAFMAFL, D1V-NS4b562–570(LLATSIFKL, D1V-NS2a169–177(AMVLSIVSL, D1V-NS4a140–148(GLLFMILTV, D1V-NS2a144–152(QLWAALLSL and D1V-NS4b183–191(LLMRTTWAL], three peptides [D1V-NS4a140–148, D1V-NS2a144–152 and D1V-NS4b183–191] had a high affinity for HLA-A*0201 molecules. Moreover, their variant peptides for D2V, D3V and D4V [D2V-NS4a140–148(AILTVVAAT, D3V-NS4a140-148(GILTLAAIV, D4V-NS4a140-148(TILTIIGLI, D2V-NS2a144–152(QLAVTIMAI, D3V-NS2a144–152(QLWTALVSL, D4V-NS2a143–151(QVGTLALSL, D2V-NS4b182–190(LMMRTTWAL, D3V-NS4b182–190 (LLMRTSWAL and D4V-NS4b179–187(LLMRTTWAF] also had a high affinity for HLA-A*0201 molecules. Furthermore, CD8+ T cells directed to these twelve peptides were induced in HLA-A*0201 transgenic mice following immunization with these peptides. Additionally, cross-reactivity within four peptides (D1V-NS4b183–191, D2V-NS4b182–190, D3V-NS4b182–190 and D4V-NS4b179–187 was observed. Conclusions Two novel serotype

  16. Immune outcomes in the liver: Is CD8 T cell fate determined by the environment?

    Science.gov (United States)

    Wong, Yik Chun; Tay, Szun Szun; McCaughan, Geoffrey W; Bowen, David G; Bertolino, Patrick

    2015-10-01

    The liver is known for its tolerogenic properties. This unique characteristic is associated with persistent infection of the liver by the hepatitis B and C viruses. Improper activation of cellular adaptive immune responses within the liver and immune exhaustion over time both contribute to ineffective cytotoxic T cell responses to liver-expressed antigens in animal models, and likely play a role in incomplete clearance of chronic hepatitis virus infections in humans. However, under some conditions, functional immune responses can be elicited against hepatic antigens, resulting in control of hepatotropic infections. In order to develop improved therapeutics in immune-mediated chronic liver diseases, including viral hepatitis, it is essential to understand how intrahepatic immunity is regulated. This review focuses on CD8 T cell immunity directed towards foreign antigens expressed in the liver, and explores how the liver environment dictates the outcome of intrahepatic CD8 T cell responses. Potential strategies to rescue unresponsive CD8 T cells in the liver are also discussed.

  17. Type 1 CD8+ T Cells are Superior to Type 2 CD8+ T Cells in Tumor Immunotherapy due to Their Efficient Cytotoxicity, Prolonged Survival and Type 1 Immune Modulation

    Institute of Scientific and Technical Information of China (English)

    Zhenmin Ye; Chaoke Tang; Shulin Xu; Bei Zhang; Xueshu Zhang; Terence Moyana; Jicheng Yang; Jim Xiang

    2007-01-01

    CD8+ cytotoxic T (Tc) cells play a crucial role in host immune responses to cancer, and in this context, adoptive CD8+ Tc cell therapy has been studied in numerous animal tumor models. Its antitumor efficacy is, to a large extent,determined by the ability of Tc cells to survive and infiltrate tumors. In clinical trials, such in vitro-activated T cells often die within hours to days, and this greatly limits their therapeutic efficacy. CD8+ Tc cells fall into two subpopulations based upon their differential cytokine secretion. In this study, we in vitro generated that ovalbumin(OVA)-pulsed dendritic cell (DCOVA)-activated CD8+ type 1 Tc (Tc1) cells secreting IFN-γ, and CD8+ type 2 Tc (Tc2)cells secreting IL-4, IL-5 and IL-10, which were derived from OVA-specific T cell receptor (TCR) transgenic OT I mice. We then systemically investigated the in vitro and in vivo effector function and survival of Tc1 and Tc2 cells,and then assessed their survival kinetics after adoptively transferred into C57BL/6 mice, respectively. We demonstrated that, when compared to CD8+ Tc2, Tc1 cells were significantly more effective in perforin-mediated cytotoxicity to tumor cells, had a significantly higher capacity for in vivo survival after the adoptive T cell transfer,and had a significantly stronger therapeutic effect on eradication of well-established tumors expressing OVA in animal models. In addition, CD8+Tc1 and Tc2 cells skewed the phenotype of CD4+ T cells toward Th1 and Th2 type, respectively. Therefore, the information regarding the differential effector function, survival and immune modulation of CD8+ Tc1 and Tc2 cells may provide useful information when preparing in vitro DC-activated CD8+ T cells for adoptive T cell therapy of cancer.

  18. HIV-Specific CD8+ T Cell-Mediated Viral Suppression Correlates With the Expression of CD57

    DEFF Research Database (Denmark)

    Jensen, Sanne S; Tingstedt, Jeanette Linnea; Larsen, Tine Kochendorf

    2016-01-01

    BACKGROUND: Virus-specific CD8(+) T-cell responses are believed to play an important role in the control of HIV-1 infection; however, what constitutes an effective HIV-1 CD8(+) T-cell response remains a topic of debate. The ex vivo viral suppressive capacity was measured of CD8(+) T cells from 44....... METHOD: Ex vivo suppression assay was used to evaluate the ability of CD8(+) T cells to suppress HIV-1 replication in autologous CD4(+) T cells. The CD107a, interferon-γ, interleukin-2, tumor necrosis factor-α (TNF-α), and macrophage inflammatory protein-1β (MIP-1β) responses to HIV-1 were evaluated...... significantly higher in individuals with ex vivo suppressive activity compared with individuals without suppressive activity. CONCLUSIONS: Standard in vitro assays measuring one or several cytokines do not correlate with the functional viral suppressive capacity of CD8(+) T cells from HIV-1-positive individuals...

  19. CD49a Expression Defines Tissue-Resident CD8+ T Cells Poised for Cytotoxic Function in Human Skin

    DEFF Research Database (Denmark)

    Cheuk, Stanley; Schlums, Heinrich; Sérézal, Irène Gallais

    2017-01-01

    with vitiligo, where melanocytes are eradicated locally, CD8+CD49a+ Trm cells that constitutively expressed perforin and granzyme B accumulated both in the epidermis and dermis. Conversely, CD8+CD49a– Trm cells from psoriasis lesions predominantly generated IL-17 responses that promote local inflammation...

  20. Naive CD8 T-Cells Initiate Spontaneous Autoimmunity to a Sequestered Model Antigen of the Central Nervous System

    Science.gov (United States)

    Na, Shin-Young; Cao, Yi; Toben, Catherine; Nitschke, Lars; Stadelmann, Christine; Gold, Ralf; Schimpl, Anneliese; Hunig, Thomas

    2008-01-01

    In multiple sclerosis, CD8 T-cells are thought play a key pathogenetic role, but mechanistic evidence from rodent models is limited. Here, we have tested the encephalitogenic potential of CD8 T-cells specific for the model antigen ovalbumin (OVA) sequestered in oligodendrocytes as a cytosolic molecule. We show that in these "ODC-OVA" mice, the…

  1. CD8+ T Lymphocyte Self-Renewal during Effector Cell Determination

    Directory of Open Access Journals (Sweden)

    Wen-Hsuan W. Lin

    2016-11-01

    Full Text Available Selected CD8+ T cells must divide, produce differentiated effector cells, and self-renew, often repeatedly. We now show that silencing expression of the transcription factor TCF1 marks loss of self-renewal by determined effector cells and that this requires cell division. In acute infections, the first three CD8+ T cell divisions produce daughter cells with unequal proliferative signaling but uniform maintenance of TCF1 expression. The more quiescent initial daughter cells resemble canonical central memory cells. The more proliferative, effector-prone cells from initial divisions can subsequently undergo division-dependent production of a TCF1-negative effector daughter cell along with a self-renewing TCF1-positive daughter cell, the latter also contributing to the memory cell pool upon resolution of infection. Self-renewal in the face of effector cell determination may promote clonal amplification and memory cell formation in acute infections, sustain effector regeneration during persistent subclinical infections, and be rate limiting, but remediable, in chronic active infections and cancer.

  2. CD8 T cell memory recall is enhanced by novel direct interactions with CD4 T cells enabled by MHC class II transferred from APCs.

    Directory of Open Access Journals (Sweden)

    Pablo A Romagnoli

    Full Text Available Protection against many intracellular pathogens is provided by CD8 T cells, which are thought to need CD4 T cell help to develop into effective memory CD8 T cells. Because murine CD8 T cells do not transcribe MHC class II (MHC-II genes, several models have proposed antigen presenting cells (APCs as intermediaries required for CD4 T cells to deliver their help to CD8 T cells. Here, we demonstrate the presence of MHC-II molecules on activated murine CD8 T cells in vitro as well as in vivo. These MHC-II molecules are acquired via trogocytosis by CD8 T cells from their activating APCs, particularly CD11c positive dendritic cells (DCs. Transferred MHC-II molecules on activated murine CD8 T cells were functionally competent in stimulating specific indicator CD4 T cells. CD8 T cells that were "helped" in vitro and subsequently allowed to rest in vivo showed enhanced recall responses upon challenge compared to "helpless" CD8 T cells; in contrast, no differences were seen upon immediate challenge. These data indicate that direct CD8:CD4 T cell interactions may significantly contribute to help for CD8 T cells. Furthermore, this mechanism may enable CD8 T cells to communicate with different subsets of interacting CD4 T cells that could modulate immune responses.

  3. Perivascular Arrest of CD8+ T Cells Is a Signature of Experimental Cerebral Malaria.

    Directory of Open Access Journals (Sweden)

    Tovah N Shaw

    Full Text Available There is significant evidence that brain-infiltrating CD8+ T cells play a central role in the development of experimental cerebral malaria (ECM during Plasmodium berghei ANKA infection of C57BL/6 mice. However, the mechanisms through which they mediate their pathogenic activity during malaria infection remain poorly understood. Utilizing intravital two-photon microscopy combined with detailed ex vivo flow cytometric analysis, we show that brain-infiltrating T cells accumulate within the perivascular spaces of brains of mice infected with both ECM-inducing (P. berghei ANKA and non-inducing (P. berghei NK65 infections. However, perivascular T cells displayed an arrested behavior specifically during P. berghei ANKA infection, despite the brain-accumulating CD8+ T cells exhibiting comparable activation phenotypes during both infections. We observed T cells forming long-term cognate interactions with CX3CR1-bearing antigen presenting cells within the brains during P. berghei ANKA infection, but abrogation of this interaction by targeted depletion of the APC cells failed to prevent ECM development. Pathogenic CD8+ T cells were found to colocalize with rare apoptotic cells expressing CD31, a marker of endothelial cells, within the brain during ECM. However, cellular apoptosis was a rare event and did not result in loss of cerebral vasculature or correspond with the extensive disruption to its integrity observed during ECM. In summary, our data show that the arrest of T cells in the perivascular compartments of the brain is a unique signature of ECM-inducing malaria infection and implies an important role for this event in the development of the ECM-syndrome.

  4. Dysfunctional memory CD8+ T cells after priming in the absence of the cell cycle regulator E2F4.

    Science.gov (United States)

    Bancos, Simona; Cao, Qingyu; Bowers, William J; Crispe, Ian Nicholas

    2009-01-01

    The transcriptional repressor E2F4 is important for cell cycle exit and terminal differentiation in epithelial cells, neuronal cells and adipocytes but its role in T lymphocytes proliferation and memory formation is not known. Herein, we investigated the function of E2F4 protein for the formation of functional murine memory T cells. Murine transgenic CD8+ T cells were infected in vitro with lentivirus vector expressing a shRNA targeted against E2F4 followed by in vitro stimulation with SIINFEKL antigenic peptide. For in vivo assays, transduced cells were injected into congenic mice which were then infected with HSV-OVA. The primary response, memory formation and secondary stimulation were determined for CD8+ lentivirus transduced cells. In the absence of E2F4 cell cycle repressor, activated CD8+ T cells underwent intensive proliferation in vitro and in vivo. These cells had the ability to differentiate into memory cells in vivo, but they were defective in recall proliferation. We show that transient suppression of E2F4 during CD8+ T cell priming enhances primary proliferation and has a negative effect on secondary stimulation. These findings demonstrate that the cell cycle repressor E2F4 is essential for the formation of functional memory T cells. A decrease in CD8+ T-lymphocyte compartment would diminish our capacity to control viral infections.

  5. Priming of CD8 T Cells by Adenoviral Vectors Is Critically Dependent on B7 and Dendritic Cells but Only Partially Dependent on CD28 Ligation on CD8 T Cells

    DEFF Research Database (Denmark)

    Nielsen, Karen N; Steffensen, Maria A; Christensen, Jan P

    2014-01-01

    investigated the organ sites, molecules, and cell subsets that play a critical role in the priming of transgene-specific CD8 T cells after vaccination with a replication-deficient adenoviral vector. Using a human adenovirus serotype 5 (Ad5) vector and genetically engineered mice, we found that CD8(+) and/or CD......Adenoviral vectors have long been forerunners in the development of effective CD8 T cell-based vaccines; therefore, it is imperative that we understand the factors controlling the induction of robust and long-lasting transgene-specific immune responses by these vectors. In this study, we...... in vivo effector capabilities: in vivo cytotoxicity and short-term in vivo protective capacity. Overall, our data point to an absolute requirement for professional APCs and the expression of the costimulatory molecules CD80/86 for efficient CD8 T cell priming by adenoviral vectors. Additionally, our...

  6. A role for the histone H2A deubiquitinase MYSM1 in maintenance of CD8(+) T cells.

    Science.gov (United States)

    Förster, Michael; Boora, Rupinder K; Petrov, Jessica C; Fodil, Nassima; Albanese, Isabella; Kim, Jamie; Gros, Philippe; Nijnik, Anastasia

    2017-05-01

    Several previous studies outlined the importance of the histone H2A deubiquitinase MYSM1 in the regulation of stem cell quiescence and haematopoiesis. In this study we investigated the role of MYSM1 in T-cell development. Using mouse models that allow conditional Mysm1 ablation at late stages of thymic development, we found that MYSM1 is intricately involved in the maintenance, activation and survival of CD8(+) T cells. Mysm1 ablation resulted in a twofold reduction in CD8(+) T-cell numbers, and also led to a hyperactivated CD8(+) T-cell state accompanied by impaired proliferation and increased pro-inflammatory cytokine production after ex vivo stimulation. These phenotypes coincided with an increased apoptosis and preferential up-regulation of p53 tumour suppressor protein in CD8(+) T cells. Lastly, we examined a model of experimental cerebral malaria, in which pathology is critically dependent on CD8(+) T cells. In the mice conditionally deleted for Mysm1 in the T-cell compartment, CD8(+) T-cell numbers remained reduced following infection, both in the periphery and in the brain, and the mice displayed improved survival after parasite challenge. Collectively, our data identify MYSM1 as a novel factor for CD8(+) T cells in the immune system, increasing our understanding of the role of histone H2A deubiquitinases in cytotoxic T-cell biology.

  7. Incomplete effector/memory differentiation of antigen-primed CD8+ T cells in gene gun DNA-vaccinated mice

    DEFF Research Database (Denmark)

    Bartholdy, Christina; Stryhn, Anette; Hansen, Nils Jacob Vest

    2003-01-01

    DNA vaccination is an efficient way to induce CD8+ T cell memory, but it is still unclear to what extent such memory responses afford protection in vivo. To study this, we induced CD8+ memory responses directed towards defined viral epitopes, using DNA vaccines encoding immunodominant MHC class I...

  8. A Protective Role for Dengue Virus-Specific CD8+ T Cells

    OpenAIRE

    Yauch, Lauren E.; Zellweger, Raphaël M.; Kotturi, Maya F.; Qutubuddin, Afrina; Sidney, John; Peters, Bjoern; Prestwood, Tyler R.; Sette, Alessandro; Shresta, Sujan

    2009-01-01

    Infection with one of the four serotypes of dengue virus (DENV1-4) can result in a range of clinical manifestations in humans, from dengue fever to the more serious dengue hemorrhagic fever/dengue shock syndrome. Although T cells have been implicated in the immunopathogenesis of secondary infections with heterologous DENV serotypes, the role of T cells in protection against DENV is unknown. In this study, we used a mouse-passaged DENV2 strain, S221, to investigate the role of CD8+ T cells in ...

  9. Rapamycin Impairs Antitumor CD8+ T-cell Responses and Vaccine-Induced Tumor Eradication.

    Science.gov (United States)

    Chaoul, Nada; Fayolle, Catherine; Desrues, Belinda; Oberkampf, Marine; Tang, Alexandre; Ladant, Daniel; Leclerc, Claude

    2015-08-15

    The metabolic sensor mTOR broadly regulates cell growth and division in cancer cells, leading to a significant focus on studies of rapamycin and its analogues as candidate anticancer drugs. However, mTOR inhibitors have failed to produce useful clinical efficacy, potentially because mTOR is also critical in T cells implicated in immunosurveillance. Indeed, recent studies using rapamycin have demonstrated the important role of mTOR in differentiation and induction of the CD8+ memory in T-cell responses associated with antitumor properties. In this study, we demonstrate that rapamycin harms antitumor immune responses mediated by T cells in the setting of cancer vaccine therapy. Specifically, we analyzed how rapamycin affects the antitumor efficacy of a human papilloma virus E7 peptide vaccine (CyaA-E7) capable of eradicating tumors in the TC-1 mouse model of cervical cancer. In animals vaccinated with CyaA-E7, rapamycin administration completely abolished recruitment of CD8+ T cells into TC-1 tumors along with the ability of the vaccine to reduce infiltration of T regulatory cells and myeloid-derived suppressor cells. Moreover, rapamycin completely abolished vaccine-induced cytotoxic T-cell responses and therapeutic activity. Taken together, our results demonstrate the powerful effects of mTOR inhibition in abolishing T-cell-mediated antitumor immune responses essential for the therapeutic efficacy of cancer vaccines.

  10. PD-L1 Expression on Retrovirus-Infected Cells Mediates Immune Escape from CD8+ T Cell Killing.

    Directory of Open Access Journals (Sweden)

    Ilseyar Akhmetzyanova

    2015-10-01

    Full Text Available Cytotoxic CD8+ T Lymphocytes (CTL efficiently control acute virus infections but can become exhausted when a chronic infection develops. Signaling of the inhibitory receptor PD-1 is an important mechanism for the development of virus-specific CD8+ T cell dysfunction. However, it has recently been shown that during the initial phase of infection virus-specific CD8+ T cells express high levels of PD-1, but are fully competent in producing cytokines and killing virus-infected target cells. To better understand the role of the PD-1 signaling pathway in CD8+ T cell cytotoxicity during acute viral infections we analyzed the expression of the ligand on retrovirus-infected cells targeted by CTLs. We observed increased levels of PD-L1 expression after infection of cells with the murine Friend retrovirus (FV or with HIV. In FV infected mice, virus-specific CTLs efficiently eliminated infected target cells that expressed low levels of PD-L1 or that were deficient for PD-L1 but the population of PD-L1high cells escaped elimination and formed a reservoir for chronic FV replication. Infected cells with high PD-L1 expression mediated a negative feedback on CD8+ T cells and inhibited their expansion and cytotoxic functions. These findings provide evidence for a novel immune escape mechanism during acute retroviral infection based on PD-L1 expression levels on virus infected target cells.

  11. Acellular pertussis booster in adolescents induces Th1 and memory CD8+ T cell immune response.

    Directory of Open Access Journals (Sweden)

    Nikolaus Rieber

    Full Text Available In a number of countries, whole cell pertussis vaccines (wcP were replaced by acellular vaccines (aP due to an improved reactogenicity profile. Pertussis immunization leads to specific antibody production with the help of CD4(+ T cells. In earlier studies in infants and young children, wcP vaccines selectively induced a Th1 dominated immune response, whereas aP vaccines led to a Th2 biased response. To obtain data on Th1 or Th2 dominance of the immune response in adolescents receiving an aP booster immunization after a wcP or aP primary immunization, we analyzed the concentration of Th1 (IL-2, TNF-α, INF-γ and Th2 (IL-4, IL-5, IL-10 cytokines in supernatants of lymphocyte cultures specifically stimulated with pertussis antigens. We also investigated the presence of cytotoxic T cell responses against the facultative intracellular bacterium Bordetella pertussis by quantifying pertussis-specific CD8(+ T cell activation following the aP booster immunization. Here we show that the adolescent aP booster vaccination predominantly leads to a Th1 immune response based on IFNgamma secretion upon stimulation with pertussis antigen, irrespective of a prior whole cell or acellular primary vaccination. The vaccination also induces an increase in peripheral CD8(+CD69(+ activated pertussis-specific memory T cells four weeks after vaccination. The Th1 bias of this immune response could play a role for the decreased local reactogenicity of this adolescent aP booster immunization when compared to the preceding childhood acellular pertussis booster. Pertussis-specific CD8(+ memory T cells may contribute to protection against clinical pertussis.

  12. CD8+ Tumor-Infiltrating T Cells Are Trapped in the Tumor-Dendritic Cell Network

    Directory of Open Access Journals (Sweden)

    Alexandre Boissonnas

    2013-01-01

    Full Text Available Chemotherapy enhances the antitumor adaptive immune T cell response, but the immunosuppressive tumor environment often dominates, resulting in cancer relapse. Antigen-presenting cells such as tumor-associated macrophages (TAMs and tumor dendritic cells (TuDCs are the main protagonists of tumor-infiltrating lymphocyte (TIL immuno-suppression. TAMs have been widely investigated and are associated with poor prognosis, but the immuno-suppressive activity of TuDCs is less well understood. We performed two-photon imaging of the tumor tissue to examine the spatiotemporal interactions between TILs and TuDCs after chemotherapy. In a strongly immuno-suppressive murine tumor model, cyclophosphamide-mediated chemotherapy transiently enhanced the antitumor activity of adoptively transferred ovalbumin-specific CD8+ T cell receptor transgenic T cells (OTI but barely affected TuDC compartment within the tumor. Time lapse imaging of living tumor tissue showed that TuDCs are organized as a mesh with dynamic interconnections. Once infiltrated into the tumor parenchyma, OTI T cells make antigen-specific and long-lasting contacts with TuDCs. Extensive analysis of TIL infiltration on histologic section revealed that after chemotherapy the majority of OTI T cells interact with TuDCs and that infiltration is restricted to TuDC-rich areas. We propose that the TuDC network exerts antigen-dependent unproductive retention that trap T cells and limit their antitumor effectiveness.

  13. Functional Signatures of Human CD4 and CD8 T Cell Responses to Mycobacterium tuberculosis.

    Science.gov (United States)

    Prezzemolo, Teresa; Guggino, Giuliana; La Manna, Marco Pio; Di Liberto, Diana; Dieli, Francesco; Caccamo, Nadia

    2014-01-01

    contribute to the recruitment and activation of innate immune cells, like monocytes and granulocytes. Thus, while other antigen (Ag)-specific T cells such as CD8(+) T cells, natural killer (NK) cells, γδ T cells, and CD1-restricted T cells can also produce IFN-γ during Mtb infection, they cannot compensate for the lack of CD4(+) T cells. The detection of Ag-specific cytokine production by intracellular cytokine staining (ICS) and the use of flow cytometry techniques are a common routine that supports the studies aimed at focusing the role of the immune system in infectious diseases. Flow cytometry permits to evaluate simultaneously the presence of different cytokines that can delineate different subsets of cells as having "multifunctional/polyfunctional" profile. It has been proposed that polyfunctional T cells, are associated with protective immunity toward Mtb, in particular it has been highlighted that the number of Mtb-specific T cells producing a combination of IFN-γ, IL-2, and/or TNF-α may be correlated with the mycobacterial load, while other studies have associated the presence of this particular functional profile as marker of TB disease activity. Although the role of CD8 T cells in TB is less clear than CD4 T cells, they are generally considered to contribute to optimal immunity and protection. CD8 T cells possess a number of anti-microbial effector mechanisms that are less prominent or absent in CD4 Th1 and Th17 T cells. The interest in studying CD8 T cells that are either MHC-class Ia or MHC-class Ib-restricted, has gained more attention. These studies include the role of HLA-E-restricted cells, lung mucosal-associated invariant T-cells (MAIT), and CD1-restricted cells. Nevertheless, the knowledge about the role of CD8(+) T cells in Mtb infection is relatively new and recent studies have delineated that CD8 T cells, which display a functional profile termed "multifunctional," can be a better marker of protection in TB than CD4(+) T cells. Their effector

  14. Natural suppression of human immunodeficiency virus type 1 replication is mediated by transitional memory CD8+ T cells.

    Science.gov (United States)

    Killian, M Scott; Johnson, Carl; Teque, Fernando; Fujimura, Sue; Levy, Jay A

    2011-02-01

    HIV replication is suppressed in vitro by a CD8(+) cell noncytotoxic antiviral response (CNAR). This activity directly correlates with an asymptomatic clinical state. The objective of this study was to identify the phenotype of CD8(+) cell subsets having strong CNAR activity. CD8(+) cell subset frequencies and CNAR levels were measured for human immunodeficiency virus (HIV)-uninfected individuals and three groups of HIV type 1 (HIV-1)-infected individuals: asymptomatic individuals with low-level viremia (vHIV), antiretroviral-drug-treated subjects with undetectable virus levels (TxHIV), and therapy-naïve aviremic elite controllers (EC). CD8(+) cells from the vHIV individuals exhibited the highest HIV-suppressing activity and had elevated frequencies of CD45RA(-) CD27(+) and PD-1(+) (CD279(+)) cells. Functional assessments of CD8(+) cells sorted into distinct subsets established that maximal CNAR activity was mediated by CD45RA(-) CCR7(-) CD27(+) and PD-1(+) CD8(+) cells. T cell receptor (TCR) repertoire profiles of CD8(+) cell subsets having strong CNAR activity exhibited increased perturbations in comparison to those of inactive subsets. Together, these studies suggest that CNAR is driven by HIV replication and that this antiviral activity is associated with oligoclonally expanded activated CD8(+) cells expressing PD-1 and having a transitional memory cell phenotype. The findings better describe the identity of CD8(+) cells showing CNAR and should facilitate the evaluation of this important immune response in studies of HIV pathogenesis, resistance to infection, and vaccine development.

  15. Viral Escape Mutant Epitope Maintains TCR Affinity for Antigen yet Curtails CD8 T Cell Responses.

    Directory of Open Access Journals (Sweden)

    Shayla K Shorter

    Full Text Available T cells have the remarkable ability to recognize antigen with great specificity and in turn mount an appropriate and robust immune response. Critical to this process is the initial T cell antigen recognition and subsequent signal transduction events. This antigen recognition can be modulated at the site of TCR interaction with peptide:major histocompatibility (pMHC or peptide interaction with the MHC molecule. Both events could have a range of effects on T cell fate. Though responses to antigens that bind sub-optimally to TCR, known as altered peptide ligands (APL, have been studied extensively, the impact of disrupting antigen binding to MHC has been highlighted to a lesser extent and is usually considered to result in complete loss of epitope recognition. Here we present a model of viral evasion from CD8 T cell immuno-surveillance by a lymphocytic choriomeningitis virus (LCMV escape mutant with an epitope for which TCR affinity for pMHC remains high but where the antigenic peptide binds sub optimally to MHC. Despite high TCR affinity for variant epitope, levels of interferon regulatory factor-4 (IRF4 are not sustained in response to the variant indicating differences in perceived TCR signal strength. The CD8+ T cell response to the variant epitope is characterized by early proliferation and up-regulation of activation markers. Interestingly, this response is not maintained and is characterized by a lack in IL-2 and IFNγ production, increased apoptosis and an abrogated glycolytic response. We show that disrupting the stability of peptide in MHC can effectively disrupt TCR signal strength despite unchanged affinity for TCR and can significantly impact the CD8+ T cell response to a viral escape mutant.

  16. DAP10 contributes to CD8(+) T cell-mediated cytotoxic effector mechanisms during Mycobacterium tuberculosis infection.

    Science.gov (United States)

    Hessmann, Manuela; Rausch, Alexandra; Rückerl, Dominik; Adams, Pamela Scott; Simon, Markus; Gilfillan, Susan; Colonna, Marco; Ehlers, Stefan; Hölscher, Christoph

    2011-05-01

    The activating C-type lectin-like receptor NKG2D, which is expressed by mouse NK cells and activated CD8 T cells, was previously demonstrated to be involved in tumor rejection and as a defense mechanism against viral and bacterial infections. Because CD8 T cells are important for protective immune responses during chronic Mycobacterium tuberculosis (Mtb) infection and represent a promising target for new vaccine strategies to prevent human pulmonary tuberculosis (TB), we studied the immune response in mice deficient for the NKG2D adapter molecule DAP10 during experimental TB. After aerosol infection, DAP10-defcient mice displayed an unimpaired recruitment, activation and development of antigen-specific CD8 T cells. Whereas the frequency of interferon-gamma-producing CD8 T cells from Mtb-infected DAP10-defcient mice was not affected, CD8 T cell-mediated cytotoxicity was significantly reduced in the absence of DAP10. The loss of cytotoxic activity in DAP10-deficient CD8 T cells was associated with an impaired release of cytotoxic granules. Together, our results suggest that during Mtb infection DAP10 is required for maximal cytolytic activity of CD8 T cells.

  17. Timing of CD8+ T cell responses in relation to commencement of capillary leakage in children with dengue.

    Science.gov (United States)

    Dung, Nguyen Thi Phuong; Duyen, Huynh Thi Le; Thuy, Nguyen Thi Van; Ngoc, Tran Van; Chau, Nguyen Van Vinh; Hien, Tran Tinh; Rowland-Jones, Sarah L; Dong, Tao; Farrar, Jeremy; Wills, Bridget; Simmons, Cameron P

    2010-06-15

    Immune activation is a feature of dengue hemorrhagic fever (DHF) and CD8+ T cell responses in particular have been suggested as having a role in the vasculopathy that characterizes this disease. By phenotyping CD8+ T cells (CD38+/HLA-DR+, CD38+/Ki-67+, or HLA-DR+/Ki-67+) in serial blood samples from children with dengue, we found no evidence of increased CD8+ T cell activation prior to the commencement of resolution of viremia or hemoconcentration. Investigations with MHC class I tetramers to detect NS3(133-142)-specific CD8+ T cells in two independent cohorts of children suggested the commencement of hemoconcentration and thrombocytopenia in DHF patients generally begins before the appearance of measurable frequencies of NS3(133-142)-specific CD8+ T cells. The temporal mismatch between the appearance of measurable surface activated or NS3(133-142)-specific CD8+ T cells suggests that these cells are sequestered at sites of infection, have phenotypes not detected by our approach, or that other mechanisms independent of CD8+ T cells are responsible for early triggering of capillary leakage in children with DHF.

  18. IL-4 increases type 2, but not type 1, cytokine production in CD8+ T cells from mild atopic asthmatics

    Directory of Open Access Journals (Sweden)

    Coyle Anthony J

    2005-07-01

    Full Text Available Abstract Background Virus infections are the major cause of asthma exacerbations. CD8+ T cells have an important role in antiviral immune responses and animal studies suggest a role for CD8+ T cells in the pathogenesis of virus-induced asthma exacerbations. We have previously shown that the presence of IL-4 during stimulation increases the frequency of IL-5-positive cells and CD30 surface staining in CD8+ T cells from healthy, normal subjects. In this study, we investigated whether excess IL-4 during repeated TCR/CD3 stimulation of CD8+ T cells from atopic asthmatic subjects alters the balance of type 1/type 2 cytokine production in favour of the latter. Methods Peripheral blood CD8+ T cells from mild atopic asthmatic subjects were stimulated in vitro with anti-CD3 and IL-2 ± excess IL-4 and the expression of activation and adhesion molecules and type 1 and type 2 cytokine production were assessed. Results Surface expression of very late antigen-4 [VLA-4] and LFA-1 was decreased and the production of the type 2 cytokines IL-5 and IL-13 was augmented by the presence of IL-4 during stimulation of CD8+ T cells from mild atopic asthmatics. Conclusion These data suggest that during a respiratory virus infection activated CD8+ T cells from asthmatic subjects may produce excess type 2 cytokines and may contribute to asthma exacerbation by augmenting allergic inflammation.

  19. Prolonged antigen presentation by immune complex-binding dendritic cells programs the proliferative capacity of memory CD8 T cells.

    Science.gov (United States)

    León, Beatriz; Ballesteros-Tato, André; Randall, Troy D; Lund, Frances E

    2014-07-28

    The commitment of naive CD8 T cells to effector or memory cell fates can occur after a single day of antigenic stimulation even though virus-derived antigens (Ags) are still presented by DCs long after acute infection is resolved. However, the effects of extended Ag presentation on CD8 T cells are undefined and the mechanisms that regulate prolonged Ag presentation are unknown. We showed that the sustained presentation of two different epitopes from influenza virus by DCs prevented the premature contraction of the primary virus-specific CD8 T cell response. Although prolonged Ag presentation did not alter the number of memory CD8 T cells that developed, it was essential for programming the capacity of these cells to proliferate, produce cytokines, and protect the host after secondary challenge. Importantly, prolonged Ag presentation by DCs was dependent on virus-specific, isotype-switched antibodies (Abs) that facilitated the capture and cross-presentation of viral Ags by FcγR-expressing DCs. Collectively, our results demonstrate that B cells and Abs can regulate the quality and functionality of a subset of antiviral CD8 T cell memory responses and do so by promoting sustained Ag presentation by DCs during the contraction phase of the primary T cell response.

  20. Phenotype of NK-Like CD8(+) T Cells with Innate Features in Humans and Their Relevance in Cancer Diseases

    Science.gov (United States)

    Barbarin, Alice; Cayssials, Emilie; Jacomet, Florence; Nunez, Nicolas Gonzalo; Basbous, Sara; Lefèvre, Lucie; Abdallah, Myriam; Piccirilli, Nathalie; Morin, Benjamin; Lavoue, Vincent; Catros, Véronique; Piaggio, Eliane; Herbelin, André; Gombert, Jean-Marc

    2017-01-01

    Unconventional T cells are defined by their capacity to respond to signals other than the well-known complex of peptides and major histocompatibility complex proteins. Among the burgeoning family of unconventional T cells, innate-like CD8(+) T cells in the mouse were discovered in the early 2000s. This subset of CD8(+) T cells bears a memory phenotype without having encountered a foreign antigen and can respond to innate-like IL-12 + IL-18 stimulation. Although the concept of innate memory CD8(+) T cells is now well established in mice, whether an equivalent memory NK-like T-cell population exists in humans remains under debate. We recently reported that CD8(+) T cells responding to innate-like IL-12 + IL-18 stimulation and co-expressing the transcription factor Eomesodermin (Eomes) and KIR/NKG2A membrane receptors with a memory/EMRA phenotype may represent a new, functionally distinct innate T cell subset in humans. In this review, after a summary on the known innate CD8(+) T-cell features in the mouse, we propose Eomes together with KIR/NKG2A and CD49d as a signature to standardize the identification of this innate CD8(+) T-cell subset in humans. Next, we discuss IL-4 and IL-15 involvement in the generation of innate CD8(+) T cells and particularly its possible dependency on the promyelocytic leukemia zinc-finger factor expressing iNKT cells, an innate T cell subset well documented for its susceptibility to tumor immune subversion. After that, focusing on cancer diseases, we provide new insights into the potential role of these innate CD8(+) T cells in a physiopathological context in humans. Based on empirical data obtained in cases of chronic myeloid leukemia, a myeloproliferative syndrome controlled by the immune system, and in solid tumors, we observe both the possible contribution of innate CD8(+) T cells to cancer disease control and their susceptibility to tumor immune subversion. Finally, we note that during tumor progression, innate CD8(+) T

  1. Perforin-deficient CD8+ T cells mediate fatal lymphocytic choriomeningitis despite impaired cytokine production

    DEFF Research Database (Denmark)

    Storm, Pernille; Bartholdy, Christina; Sørensen, Maria Rathmann;

    2006-01-01

    Intracerebral (i.c.) infection with lymphocytic choriomeningitis virus (LCMV) is one of the most studied models for virus-induced immunopathology, and based on results from perforin-deficient mice, it is currently assumed that fatal disease directly reflects perforin-mediated cell lysis. However,...... for the delayed onset of fatal disease in perforin-deficient mice. However, once accumulated in the CNS, virus-specific CD8(+) T cells can induce fatal CNS pathology despite the absence of perforin-mediated lysis and reduced capacity to produce several key cytokines....

  2. Genome-Based In Silico Identification of New Mycobacterium tuberculosis Antigens Activating Polyfunctional CD8+ T Cells in Human Tuberculosis

    DEFF Research Database (Denmark)

    Tang, Sheila Tuyet; van Meijgaarden, Krista E.; Caccamo, Nadia

    2011-01-01

    was validated for all 18 epitopes. Intracellular cytokine staining for IFN-gamma, IL-2, and TNF-alpha revealed mono-, dual-, as well as triple-positive CD8(+) T cells, indicating these M. tuberculosis peptide-specific CD8(+) T cells were (poly) functional. Moreover, these T cells were primed during natural...... infection, because they were absent from M. tuberculosis-noninfected individuals. Control CMV peptide/HLA-A*0201 tetramers stained CD8(+) T cells in M. tuberculosis-infected and noninfected individuals equally, whereas Ebola peptide/HLA-A*0201 tetramers were negative. In conclusion, the M. tuberculosis...

  3. The Qa-1 Dependent CD8+ T Cell Mediated Regulatory Pathway

    Institute of Scientific and Technical Information of China (English)

    Hong Jiang

    2005-01-01

    The immune system has evolved a variety of regulatory mechanisms to ensure the peripheral self-tolerance as well as the optimal capacity to elicit effective anti-infection immunity. At present, there is no satisfactory conceptual framework to explain how the peripheral immunity is regulated at a biological system level, which enables the immune system to perform its essential functions to mount effective immunity to virtually any foreign antigens but avoid harmful immune responses to self. In this regard, during the past few years, an "affinity/avidity model of peripheral T cell regulation" has been proposed and tested, which opens up a new paradigm to understand how the peripheral immunity, to both self and foreign antigens, is regulated. The paradigm is based on the discovery of a subset CD8+ T cells with TCRs which specifically recognize a unique set of self-peptides presented by the MHC class Ib molecule Qa-1 differentially expressed on T cells as a function of the affinity/avidity of T cell activation.These Qa-1 restricted CD8+ T cells represent an example of how the immune system utilizes a unified mechanism to regulate adaptive immunity to both self and foreign antigens. Thus, by selectively down-regulating T cells of intermediate affinity/avidity, to any antigens, the immune system controls the adaptive immunity without the necessity to distinguish self from non-self in the periphery at the level of T cell regulation.

  4. Critical role for CD8 T cells in allograft acceptance induced by DST and CD40/CD154 costimulatory blockade.

    Science.gov (United States)

    Gao, Donghong; Lunsford, Keri E; Eiring, Anna M; Bumgardner, Ginny L

    2004-07-01

    Donor-specific transfusion (DST) and CD40/CD154 costimulation blockade is a powerful immunosuppressive strategy which prolongs survival of many allografts. The efficacy of DST and anti-CD154 mAb for prolongation of hepatocellular allograft survival was only realized in C57BL/6 mice that have both CD4- and CD8-dependent pathways available (median survival time, MST, 82 days). Hepatocyte rejection in CD8 KO mice which is CD4-dependent was not suppressed by DST and anti-CD154 mAb treatment (MST, 7 days); unexpectedly DST abrogated the beneficial effects of anti-CD154 mAb for suppression of hepatocyte rejection (MST, 42 days) and on donor-reactive alloantibody production. Hepatocyte rejection in CD4 KO mice which is CD8-dependent was suppressed by treatment with DST and anti-CD154 mAb therapy (MST, 35 days) but did not differ significantly from immunotherapy with anti-CD154 mAb alone (MST, 32 days). Induction of hepatocellular allograft acceptance by DST and anti-CD154 mAb immunotherapy was dependent on host CD8(+) T cells, as demonstrated by CD8 depletion studies in C57BL/6 mice (MST, 14 days) and CD8 reconstitution of CD8 KO mice (MST, 56 days). These studies demonstrate that both CD4(+) and CD8(+) T-cell subsets contribute to induction of hepatocellular allograft acceptance by this immunotherapeutic strategy.

  5. Batf3 and Id2 have a synergistic effect on Irf8-directed classical CD8α+ dendritic cell development

    KAUST Repository

    Jaiswal, Hemant

    2013-11-13

    Dendritic cells (DCs) are heterogeneous cell populations represented by different subtypes, each varying in terms of gene expression patterns and specific functions. Recent studies identified transcription factors essential for the development of different DC subtypes, yet molecular mechanisms for the developmental program and functions remain poorly understood. In this study, we developed and characterized a mouse DC progenitor-like cell line, designated DC9, from Irf8-/- bone marrow cells as a model for DC development and function. Expression of Irf8 in DC9 cells led to plasmacytoid DCs and CD8α+ DC-like cells, with a concomitant increase in plasmacytoid DC- and CD8α+ DC-specific gene transcripts and induction of type I IFNs and IL12p40 following TLR ligand stimulation. Irf8 expression in DC9 cells led to an increase in Id2 and Batf3 transcript levels, transcription factors shown to be important for the development of CD8α+ DCs. We show that, without Irf8 , expression of Id2 and Batf3 was not sufficient for directing classical CD8α+ DC development. When coexpressed with Irf8, Batf3 and Id2 had a synergistic effect on classical CD8α+ DC development. We demonstrate that Irf8 is upstream of Batf3 and Id2 in the classical CD8α+ DC developmental program and define the hierarchical relationship of transcription factors important for classical CD8α+ DC development.

  6. Control of simian immunodeficiency virus replication by vaccine-induced Gag- and Vif-specific CD8+ T cells.

    Science.gov (United States)

    Iwamoto, Nami; Takahashi, Naofumi; Seki, Sayuri; Nomura, Takushi; Yamamoto, Hiroyuki; Inoue, Makoto; Shu, Tsugumine; Naruse, Taeko K; Kimura, Akinori; Matano, Tetsuro

    2014-01-01

    For development of an effective T cell-based AIDS vaccine, it is critical to define the antigens that elicit the most potent responses. Recent studies have suggested that Gag-specific and possibly Vif/Nef-specific CD8(+) T cells can be important in control of the AIDS virus. Here, we tested whether induction of these CD8(+) T cells by prophylactic vaccination can result in control of simian immunodeficiency virus (SIV) replication in Burmese rhesus macaques sharing the major histocompatibility complex class I (MHC-I) haplotype 90-010-Ie associated with dominant Nef-specific CD8(+) T-cell responses. In the first group vaccinated with Gag-expressing vectors (n = 5 animals), three animals that showed efficient Gag-specific CD8(+) T-cell responses in the acute phase postchallenge controlled SIV replication. In the second group vaccinated with Vif- and Nef-expressing vectors (n = 6 animals), three animals that elicited Vif-specific CD8(+) T-cell responses in the acute phase showed SIV control, whereas the remaining three with Nef-specific but not Vif-specific CD8(+) T-cell responses failed to control SIV replication. Analysis of 18 animals, consisting of seven unvaccinated noncontrollers and the 11 vaccinees described above, revealed that the sum of Gag- and Vif-specific CD8(+) T-cell frequencies in the acute phase was inversely correlated with plasma viral loads in the chronic phase. Our results suggest that replication of the AIDS virus can be controlled by vaccine-induced subdominant Gag/Vif epitope-specific CD8(+) T cells, providing a rationale for the induction of Gag- and/or Vif-specific CD8(+) T-cell responses by prophylactic AIDS vaccines.

  7. Targeting the gut vascular endothelium induces gut effector CD8 T cell responses via cross-presentation by dendritic cells.

    Science.gov (United States)

    Bourges, Dorothee; Zhan, Yifan; Brady, Jamie L; Braley, Hal; Caminschi, Irina; Prato, Sandro; Villadangos, José A; Lew, Andrew M

    2007-11-01

    Systemic delivery of Ag usually induces poor mucosal immunity. To improve the CD8 T cell response at mucosal sites, we targeted the Ag to MAdCAM-1, a mucosal addressin cell adhesion molecule expressed mainly by high endothelial venules (HEV) in mesenteric lymph nodes (MLN) and Peyer's patches of gut-associated lymphoid tissue. When chemical conjugates of anti-MAdCAM-1 Ab and model Ag OVA were injected i.v., a greatly enhanced proliferative response of Ag-specific OT-I CD8 T cells was detected in MLN. This was preceded by prolonged accumulation, up to 2 wk, of the anti-MAdCAM OVA conjugate on HEV of Peyer's patches and MLN. In contrast, nontargeted OVA conjugate was very inefficient in inducing OT-I CD8 T cell proliferation in MLN and required at least 20-fold more Ag to induce a comparable response. In addition, MAdCAM targeting elicits an endogenous OVA-specific CD8 T cell response, evident by IFN-gamma production and target killing. Induced response offers protection against an OVA-expressing B cell lymphoma. We propose that the augmentation of gut CD8 T cell responses by MAdCAM targeting is due to both accumulation of Ag in the HEV and conversion of a soluble Ag to a cell-associated one, allowing cross-presentation by DCs.

  8. Normalization of tumor microenvironment by neem leaf glycoprotein potentiates effector T cell functions and therapeutically intervenes in the growth of mouse sarcoma.

    Directory of Open Access Journals (Sweden)

    Subhasis Barik

    Full Text Available We have observed restriction of the murine sarcoma growth by therapeutic intervention of neem leaf glycoprotein (NLGP. In order to evaluate the mechanism of tumor growth restriction, here, we have analyzed tumor microenvironment (TME from sarcoma bearing mice with NLGP therapy (NLGP-TME, in comparison to PBS-TME. Analysis of cytokine milieu within TME revealed IL-10, TGFβ, IL-6 rich type 2 characters was switched to type 1 microenvironment with dominance of IFNγ secretion within NLGP-TME. Proportion of CD8(+ T cells was increased within NLGP-TME and these T cells were protected from TME-induced anergy by NLGP, as indicated by higher expression of pNFAT and inhibit related downstream signaling. Moreover, low expression of FasR(+ cells within CD8(+ T cell population denotes prevention from activation induced cell death. Using CFSE as a probe, better migration of T cells was noted within TME from NLGP treated mice than PBS cohort. CD8(+ T cells isolated from NLGP-TME exhibited greater cytotoxicity to sarcoma cells in vitro and these cells show higher expression of cytotoxicity related molecules, perforin and granzyme B. Adoptive transfer of NLGP-TME exposed T cells, but not PBS-TME exposed cells in mice, is able to significantly inhibit the growth of sarcoma in vivo. Such tumor growth inhibition by NLGP-TME exposed T cells was not observed when mice were depleted for CD8(+ T cells. Accumulated evidences strongly suggest NLGP mediated normalization of TME allows T cells to perform optimally to inhibit the tumor growth.

  9. A Natural Variant of the T Cell Receptor-Signaling Molecule Vav1 Reduces Both Effector T Cell Functions and Susceptibility to Neuroinflammation

    Science.gov (United States)

    Kassem, Sahar; Bernard, Isabelle; Dejean, Anne S.; Liblau, Roland; Fournié, Gilbert J.; Colacios, Céline

    2016-01-01

    The guanine nucleotide exchange factor Vav1 is essential for transducing T cell antigen receptor signals and therefore plays an important role in T cell development and activation. Our previous genetic studies identified a locus on rat chromosome 9 that controls the susceptibility to neuroinflammation and contains a non-synonymous polymorphism in the major candidate gene Vav1. To formally demonstrate the causal implication of this polymorphism, we generated a knock-in mouse bearing this polymorphism (Vav1R63W). Using this model, we show that Vav1R63W mice display reduced susceptibility to experimental autoimmune encephalomyelitis (EAE) induced by MOG35-55 peptide immunization. This is associated with a lower production of effector cytokines (IFN-γ, IL-17 and GM-CSF) by autoreactive CD4 T cells. Despite increased proportion of Foxp3+ regulatory T cells in Vav1R63W mice, we show that this lowered cytokine production is intrinsic to effector CD4 T cells and that Treg depletion has no impact on EAE development. Finally, we provide a mechanism for the above phenotype by showing that the Vav1R63W variant has normal enzymatic activity but reduced adaptor functions. Together, these data highlight the importance of Vav1 adaptor functions in the production of inflammatory cytokines by effector T cells and in the susceptibility to neuroinflammation. PMID:27438086

  10. Identification of Zika virus epitopes reveals immunodominant and protective roles for dengue virus cross-reactive CD8(+) T cells.

    Science.gov (United States)

    Wen, Jinsheng; Tang, William Weihao; Sheets, Nicholas; Ellison, Julia; Sette, Alessandro; Kim, Kenneth; Shresta, Sujan

    2017-03-13

    CD8(+) T cells play an important role in controlling Flavivirus infection, including Zika virus (ZIKV). Here, we have identified 25 HLA-B*0702-restricted epitopes and 1 HLA-A*0101-restricted epitope using interferon (IFN)-γ enzyme-linked immunospot (ELISPOT) and intracellular cytokine staining (ICS) in ZIKV-infected IFN-α/β receptor-deficient HLA transgenic mice. The cross-reactivity of ZIKV epitopes to dengue virus (DENV) was tested using IFN-γ-ELISPOT and IFN-γ-ICS on CD8(+) T cells from DENV-infected mice, and five cross-reactive HLA-B*0702-binding peptides were identified by both assays. ZIKV/DENV cross-reactive CD8(+) T cells in DENV-immune mice expanded post ZIKV challenge and dominated in the subsequent CD8(+) T cell response. ZIKV challenge following immunization of mice with ZIKV-specific and ZIKV/DENV cross-reactive epitopes elicited CD8(+) T cell responses that reduced infectious ZIKV levels, and CD8(+) T cell depletions confirmed that CD8(+) T cells mediated this protection. These results identify ZIKV-specific and ZIKV/DENV cross-reactive epitopes and demonstrate both an altered immunodominance pattern in the DENV-immune setting relative to naive, as well as a protective role for epitope-specific CD8(+) T cells against ZIKV. These results have important implications for ZIKV vaccine development and provide a mouse model for evaluating anti-ZIKV CD8(+) T cell responses of human relevance.

  11. Proliferation of CD8-positive T cells in blood vessels of rat renal allografts.

    Science.gov (United States)

    Grau, V; Fuchs-Moll, G; Wilker, S; Weimer, R; Padberg, W

    2011-09-01

    It is still disputed in which anatomical compartments of allograft recipients T-cells proliferate. After experimental renal transplantation, host monocytes and lymphocytes accumulate in the lumina of graft blood vessels. In this study, we test the hypothesis that T lymphocytes proliferate in the vascular bed of the graft. Kidneys were transplanted in the Dark Agouti to Lewis rat strain combination, an established experimental model for acute rejection. Isogeneic transplantation was performed as a control. Cells in the S-phase of mitosis were detected in situ three days posttransplantation by pulse-labeling with BrdU and by immunohistochemical detection of the proliferating cell nuclear antigen (PCNA). More than 20% of all T-cells in the lumina of allograft blood vessels incorporated BrdU and approximately 30% of them expressed PCNA. In the blood vessels of isografts as well as in other organs of allograft recipients, only few BrdU(+) cells were detected. A majority of the BrdU(+) cells in graft blood vessels expressed CD8. In conclusion, we demonstrate that CD8(+) T lymphocytes proliferate in the lumina of the blood vessels of renal allografts during the onset of acute rejection.

  12. Decline of influenza-specific CD8+ T cell repertoire in healthy geriatric donors

    Directory of Open Access Journals (Sweden)

    Ramachandra Lakshmi

    2011-08-01

    Full Text Available Abstract Background While influenza vaccination results in protective antibodies against primary infections, clearance of infection is primarily mediated through CD8+ T cells. Studying the CD8+ T cell response to influenza epitopes is crucial in understanding the disease associated morbidity and mortality especially in at risk populations such as the elderly. We compared the CD8+ T cell response to immunodominant and subdominant influenza epitopes in HLA-A2+ control, adult donors, aged 21-42, and in geriatric donors, aged 65 and older. Results We used a novel artificial Antigen Presenting Cell (aAPC based stimulation assay to reveal responses that could not be detected by enzyme-linked immunosorbent spot (ELISpot. 14 younger control donors and 12 geriatric donors were enrolled in this study. The mean number of influenza-specific subdominant epitopes per control donor detected by ELISpot was only 1.4 while the mean detected by aAPC assay was 3.3 (p = 0.0096. Using the aAPC assay, 92% of the control donors responded to at least one subdominant epitopes, while 71% of control donors responded to more than one subdominant influenza-specific response. 66% of geriatric donors lacked a subdominant influenza-specific response and 33% of geriatric donors responded to only 1 subdominant epitope. The difference in subdominant response between age groups is statistically significant (p = 0.0003. Conclusion Geriatric donors lacked the broad, multi-specific response to subdominant epitopes seen in the control donors. Thus, we conclude that aging leads to a decrease in the subdominant influenza-specific CTL responses which may contribute to the increased morbidity and mortality in older individuals.

  13. Age-related ranges of memory, activation, and cytotoxic markers on CD4 and CD8 cells in children.

    Science.gov (United States)

    Aldhous, M C; Raab, G M; Doherty, K V; Mok, J Y; Bird, A G; Froebel, K S

    1994-09-01

    The expression of markers defining functional subpopulations on the surface of CD4 and CD8 cells changes with disease. To monitor these changes in children, it is important to establish the age-related normal changes in marker expression due to maturation of the immune system. We have studied the expression of several functionally important molecules on both CD4 and CD8 cells in 168 children (aged 0-122 months) using monoclonal antibodies and flow cytometry. Our results show that the percentage of CD4 cells decreases with age, while the CD8 percentage increases, resulting in a decrease in the CD4/CD8 ratio. The expression of CD45RO and CD29 increases with age, while CD45RA expression decreases, both on CD4 and CD8 cells. The expression of HLA-DR on both CD4 and CD8 cells, and of CD11a and CD57 on CD8 cells, is less clearly age dependent. The relationships between the marker percentages and age were not straightforward; the standard deviations and the skewness, as well as their mean values, varied as a function of age. The changes were modeled for each marker and age-specific centiles are presented.

  14. Mixed T Cell Chimerism After Allogeneic Hematopoietic Stem Cell Transplantation for Severe Aplastic Anemia Using an Alemtuzumab-Containing Regimen Is Shaped by Persistence of Recipient CD8 T Cells.

    Science.gov (United States)

    Grimaldi, Francesco; Potter, Victoria; Perez-Abellan, Pilar; Veluchamy, John P; Atif, Muhammad; Grain, Rosemary; Sen, Monica; Best, Steven; Lea, Nicholas; Rice, Carmel; Pagliuca, Antonio; Mufti, Ghulam J; Marsh, Judith C W; Barber, Linda D

    2017-02-01

    Prevention of graft-versus-host disease (GVHD) is paramount for allogeneic hematopoietic stem cell transplantation (HSCT) to treat nonmalignant diseases. We previously reported that allogeneic HSCT for severe aplastic anemia (SAA) using the fludarabine, cyclophosphamide, and alemtuzumab (Campath-1H) (FCC) regimen is associated with a very low risk of GVHD and excellent clinical outcomes. We now report a single-center study of 45 patients with longer follow-up and investigation of lymphocyte recovery. Overall survival (OS) was 93%, and event-free survival (EFS) was 90.7%. Acute and chronic GVHD each occurred in 6 patients (13.3%), and only 1 case was severe. Mixed T cell chimerism was frequent and persisted after cessation of immunosuppression. T cells were extensively depleted, representing only 11.3% of lymphocytes at day 30 and rising to 43.8% by 1 year, but still significantly below normal levels (67.2%; P = .018), and deficiency persisted after immunosuppressive therapy (IST) withdrawal. Depletion of CD4 T cells was particularly profound, causing inversion of the normal CD4:CD8 T cell ratio. T cell subset composition was also abnormal, with memory and effector T cells predominating for at least 6 months after FCC HSCT. Analysis of T cell subset chimerism showed that CD4 T cells were predominantly donor-derived at 1 year, whereas recipient-derived CD8 T cells shaped mixed chimerism with a notable contribution of recipient effector CD8 T cells. The prolonged mixed T cell chimerism after IST withdrawal and low incidence of GVHD indicates the establishment of mutual tolerance, but the low incidence of viral disease suggests maintenance of antiviral immunity. Our study shows that despite the abnormal T cell profile after allogeneic HSCT for SAA using the FCC regimen, this regimen is conducive to an excellent clinical outcome.

  15. Galectin-9 ameliorates Con A-induced hepatitis by inducing CD4(+CD25(low/int effector T-Cell apoptosis and increasing regulatory T cell number.

    Directory of Open Access Journals (Sweden)

    Kun Lv

    Full Text Available BACKGROUND: T cell-mediated liver damage is a key event in the pathogenesis of many chronic human liver diseases, such as liver transplant rejection, primary biliary cirrhosis, and sclerosing cholangitis. We and other groups have previously reported that galectin-9, one of the β-galactoside binding animal lectins, might be potentially useful in the treatment of T cell-mediated diseases. To evaluate the direct effect of galectin-9 on hepatitis induced by concanavalin A (Con A administration in mice and to clarify the mechanisms involved, we administered galectin-9 into mice, and evaluated its therapeutic effect on Con A-induced hepatitis. METHODOLOGY/PRINCIPAL FINDINGS: Galectin-9 was administrated i.v. to Balb/c mice 30 min before Con A injection. Compared with no treatment, galectin-9 pretreatment significantly reduced serum ALT and AST levels and improved liver histopathology, suggesting an ameliorated hepatitis. This therapeutic effect was not only attributable to a blunted Th1 immune response, but also to an increased number in regulatory T cells, as reflected in a significantly increased apoptosis of CD4(+CD25(low/int effector T cells and in reduced proinflammatory cytokine levels. CONCLUSION/SIGNIFICANCE: Our findings constitute the first preclinical data indicating that interfering with TIM-3/galectin-9 signaling in vivo could ameliorate Con A-induced hepatitis. This strategy may represent a new therapeutic approach in treating human diseases involving T cell activation.

  16. Galectin-9 Ameliorates Con A-Induced Hepatitis by Inducing CD4+CD25low/int Effector T-Cell Apoptosis and Increasing Regulatory T Cell Number

    Science.gov (United States)

    Zhang, Mengying; Zhong, Min; Suo, Qifeng

    2012-01-01

    Background T cell-mediated liver damage is a key event in the pathogenesis of many chronic human liver diseases, such as liver transplant rejection, primary biliary cirrhosis, and sclerosing cholangitis. We and other groups have previously reported that galectin-9, one of the β-galactoside binding animal lectins, might be potentially useful in the treatment of T cell-mediated diseases. To evaluate the direct effect of galectin-9 on hepatitis induced by concanavalin A (Con A) administration in mice and to clarify the mechanisms involved, we administered galectin-9 into mice, and evaluated its therapeutic effect on Con A-induced hepatitis. Methodology/Principal Findings Galectin-9 was administrated i.v. to Balb/c mice 30 min before Con A injection. Compared with no treatment, galectin-9 pretreatment significantly reduced serum ALT and AST levels and improved liver histopathology, suggesting an ameliorated hepatitis. This therapeutic effect was not only attributable to a blunted Th1 immune response, but also to an increased number in regulatory T cells, as reflected in a significantly increased apoptosis of CD4+CD25low/int effector T cells and in reduced proinflammatory cytokine levels. Conclusion/Significance Our findings constitute the first preclinical data indicating that interfering with TIM-3/galectin-9 signaling in vivo could ameliorate Con A-induced hepatitis. This strategy may represent a new therapeutic approach in treating human diseases involving T cell activation. PMID:23118999

  17. Predominant role of interferon-γ in the host protective effect of CD8(+) T cells against Neospora caninum infection.

    Science.gov (United States)

    Correia, Alexandra; Ferreirinha, Pedro; Botelho, Sofia; Belinha, Ana; Leitão, Catarina; Caramalho, Íris; Teixeira, Luzia; González-Fernandéz, África; Appelberg, Rui; Vilanova, Manuel

    2015-10-09

    It is well established that CD8(+) T cells play an important role in protective immunity against protozoan infections. However, their role in the course of Neospora caninum infection has not been fully elucidated. Here we report that CD8-deficient mice infected with N. caninum presented higher parasitic loads in the brain and lungs and lower spleen and brain immunity-related GTPases than their wild-type counterparts. Moreover, adoptive transfer of splenic CD8(+) T cells sorted from N. caninum-primed immunosufficient C57BL/10 ScSn mice prolonged the survival of infected IL-12-unresponsive C57BL/10 ScCr recipients. In both C57BL/6 and C57BL/10 ScSn mice CD8(+) T cells are activated and produce interferon-γ (IFN-γ) upon challenged with N. caninum. The host protective role of IFN-γ produced by CD8(+) T cells was confirmed in N. caninum-infected RAG2-deficient mice reconstituted with CD8(+) T cells obtained from either IFN-γ-deficient or wild-type donors. Mice receiving IFN-γ-expressing CD8(+) T cells presented lower parasitic burdens than counterparts having IFN-γ-deficient CD8(+) T cells. Moreover, we observed that N. caninum-infected perforin-deficient mice presented parasitic burdens similar to those of infected wild-type controls. Altogether these results demonstrate that production of IFN-γ is a predominant protective mechanism conferred by CD8(+) T cells in the course of neosporosis.

  18. Diminished primary and secondary influenza virus-specific CD8(+) T-cell responses in CD4-depleted Ig(-/-) mice

    DEFF Research Database (Denmark)

    Riberdy, J M; Christensen, Jan Pravsgaard; Branum, K;

    2000-01-01

    Optimal expansion of influenza virus nucleoprotein (D(b)NP(366))-specific CD8(+) T cells following respiratory challenge of naive Ig(-/-) microMT mice was found to require CD4(+) T-cell help, and this effect was also observed in primed animals. Absence of the CD4(+) population was consistently...... correlated with diminished recruitment of virus-specific CD8(+) T cells to the infected lung, delayed virus clearance, and increased morbidity. The splenic CD8(+) set generated during the recall response in Ig(-/-) mice primed at least 6 months previously showed a normal profile of gamma interferon...

  19. Timing of CD8+ T Cell Responses in Relation to Commencement of Capillary Leakage in Children with Dengue

    OpenAIRE

    Dung, Nguyen Thi Phuong; Le Duyen, Huynh Thi; Thuy, Nguyen Thi; Van Ngoc, Tran; van Vinh Chau, Nguyen; Hien, Tran Tinh; Rowland-Jones, Sarah L.; Dong, Tao; Farrar, Jeremy; Wills, Bridget; Simmons, Cameron P.

    2010-01-01

    Immune activation is a feature of dengue hemorrhagic fever (DHF) and CD8+ T cell responses in particular have been suggested as having a role in the vasculopathy that characterizes this disease. By phenotyping CD8+ T cells (CD38+/HLA-DR+, CD38+/Ki-67+, or HLA-DR+/Ki-67+) in serial blood samples from children with dengue, we found no evidence of increased CD8+ T cell activation prior to the commencement of resolution of viremia or hemoconcentration. Investigations with MHC class I tetramers to...

  20. Activation of Blood CD3+CD56+CD8+ T Cells during Pregnancy and Multiple Sclerosis

    Science.gov (United States)

    de Andrés, Clara; Fernández-Paredes, Lidia; Tejera-Alhambra, Marta; Alonso, Bárbara; Ramos-Medina, Rocío; Sánchez-Ramón, Silvia

    2017-01-01

    A striking common feature of most autoimmune diseases is their female predominance, with at least twice as common among women than men in relapsing–remitting multiple sclerosis (MS), the prevailing MS clinical form with onset at childbearing age. This fact, together with the protective effect on disease activity during pregnancy, when there are many biological changes including high levels of estrogens and progesterone, puts sex hormones under the spotlight. The role of natural killer (NK) and NKT cells in MS disease beginning and course is still to be elucidated. The uterine NK (uNK) cells are the most predominant immune population in early pregnancy, and the number and function of uNK cells infiltrating the endometrium are sex-hormones’ dependent. However, there is controversy on the role of estrogen or progesterone on circulating NK (CD56dim and CD56bright) and NKT cells’ subsets. Here, we show a significantly increased activation of CD3+CD56+CD8+ cells in pregnant MS women (MSP) compared with non-pregnant MS women (NPMS) (p pregnancy. Further studies on specific CD8+ NKT cells function and their role in pregnancy beneficial effects on MS are warranted to move forward more effective MS treatments. PMID:28280497

  1. TCR Down-Regulation Controls Virus-Specific CD8+ T Cell Responses

    DEFF Research Database (Denmark)

    Bonefeld, Charlotte Menné; Haks, Mariëlle; Nielsen, Bodil

    2008-01-01

    The CD3gamma di-leucine-based motif plays a central role in TCR down-regulation. However, little is understood about the role of the CD3gamma di-leucine-based motif in physiological T cell responses. In this study, we show that the expansion in numbers of virus-specific CD8(+) T cells is impaired...... in mice with a mutated CD3gamma di-leucine-based motif. The CD3gamma mutation did not impair early TCR signaling, nor did it compromise recruitment or proliferation of virus-specific T cells, but it increased the apoptosis rate of the activated T cells by increasing down-regulation of the antiapoptotic...... molecule Bcl-2. This resulted in a 2-fold reduction in the clonal expansion of virus-specific CD8(+) T cells during the acute phase of vesicular stomatitis virus and lymphocytic choriomeningitis virus infections. These results identify an important role of CD3gamma-mediated TCR down-regulation in virus...

  2. A Numerically Subdominant CD8 T Cell Response to Matrix Protein of Respiratory Syncytial Virus Controls Infection with Limited Immunopathology.

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2016-03-01

    Full Text Available CD8 T cells are involved in pathogen clearance and infection-induced pathology in respiratory syncytial virus (RSV infection. Studying bulk responses masks the contribution of individual CD8 T cell subsets to protective immunity and immunopathology. In particular, the roles of subdominant responses that are potentially beneficial to the host are rarely appreciated when the focus is on magnitude instead of quality of response. Here, by evaluating CD8 T cell responses in CB6F1 hybrid mice, in which multiple epitopes are recognized, we found that a numerically subdominant CD8 T cell response against DbM187 epitope of the virus matrix protein expressed high avidity TCR and enhanced signaling pathways associated with CD8 T cell effector functions. Each DbM187 T effector cell lysed more infected targets on a per cell basis than the numerically dominant KdM282 T cells, and controlled virus replication more efficiently with less pulmonary inflammation and illness than the previously well-characterized KdM282 T cell response. Our data suggest that the clinical outcome of viral infections is determined by the integrated functional properties of a variety of responding CD8 T cells, and that the highest magnitude response may not necessarily be the best in terms of benefit to the host. Understanding how to induce highly efficient and functional T cells would inform strategies for designing vaccines intended to provide T cell-mediated immunity.

  3. Antigen and Memory CD8 T Cells: Were They Both Right?

    Directory of Open Access Journals (Sweden)

    Epelman Slava

    2007-06-01

    Full Text Available Picture yourself as a researcher in immunology. To begin your project, you ask a question: Do CD8 T cells require antigen to maintain a memory response? This question is of prime importance to numerous medical fields. In chronologic order, you digest the literature, but unfortunately, you hit a major stumbling block in the 1990s. The crux of the problem is that which so often happens in science: two well-recognized, capable groups emerge with diametrically opposed conclusions, leaving you pondering which set of wellcontrolled data to believe. Fortunately, years later, a surprising group of articles sheds light on this mystery and subtly reconciles these two positions.

  4. Optimal in vitro culture conditions for murine predominant immature CD8a+ dendritic cells

    Institute of Scientific and Technical Information of China (English)

    NA Ning; XU Lin; CAO Kai-yuan; LUO Yun; YUAN Guang-qing; XIANG Peng; HONG Liang-qing; LI Shu-nong

    2009-01-01

    Background The prospects of using immature CD8a+ dendritic cells (DC2) to establish transplant immunologic tolerance and treatments for autoimmune diseases in the future are promising. However, the methods for inducing DC2 are still being explored. The present study was aimed to investigate the optimal in vitro conditions for preparing large numbers f predominant DC2 from murine bone marrow cells.Methods Three groups of bone marrow cells cultured under different conditions were examined, namely a cytokine-induced experimental group (cytokine group), a control group with a low concentration of granulocyte-macrophage colony stimulating factor (GM-CSF, low GM-CSF group) and a control group without ndogenous cytokines. The cytokine group was cultured with 5 ng/ml GM-CSF, 25 ng/ml Fit3 ligand (Flt3L), 20 ng/ml interleukin 4 (IL-4) and 100 ng/ml stem cell factor (SCF). The low GM-CSF control group was cultured with 0.4 ng/ml GM-CSF, 25 ng/ml FIt3L and 100 ng/ml SCF, without IL-4. The control group without exogenous cytokines was cultured without dditional cytokines. All cells were cultured at 37℃ under 5% CO2. On days 3, 7 and 16, 4-color flow cytometry was carried out to analyze the cell phenotypes, and the total cell numbers were counted to analyze the cell yields. Phase-contrast microscopy was used to observe the cell morphologies.Results The cytokine group exhibited higher proportions f typical immature CD8a+ DC, especially on day 3, but the total cell number and DC2 proportion decreased during prolonged culture. The low GM-CSF control group showed the same tendencies as the cytokine group on days 16 and 22, but produced higher total cell numbers (P <0.05) with lower DC2 proportions and cell numbers. The control group without exogenous cytokines spontaneously generated a certain proportion of DC2, but with low total cell and DC2 numbers that decreased rapidly, especially during prolonged culture (days 7 and 16, P <0.05).Conclusions Culture in the presence of 5 ng

  5. Intravacuolar Membranes Regulate CD8 T Cell Recognition of Membrane-Bound Toxoplasma gondii Protective Antigen

    Directory of Open Access Journals (Sweden)

    Jodie Lopez

    2015-12-01

    Full Text Available Apicomplexa parasites such as Toxoplasma gondii target effectors to and across the boundary of their parasitophorous vacuole (PV, resulting in host cell subversion and potential presentation by MHC class I molecules for CD8cell recognition. The host-parasite interface comprises the PV limiting membrane and a highly curved, membranous intravacuolar network (IVN of uncertain function. Here, using a cell-free minimal system, we dissect how membrane tubules are shaped by the parasite effectors GRA2 and GRA6. We show that membrane association regulates access of the GRA6 protective antigen to the MHC I pathway in infected cells. Although insertion of GRA6 in the PV membrane is key for immunogenicity, association of GRA6 with the IVN limits presentation and curtails GRA6-specific CD8 responses in mice. Thus, membrane deformations of the PV regulate access of antigens to the MHC class I pathway, and the IVN may play a role in immune modulation.

  6. Peripheral blood TIM-3 positive NK and CD8+ T cells throughout pregnancy

    DEFF Research Database (Denmark)

    Meggyes, Matyas; Miko, Eva; Polgar, Beata;

    2014-01-01

    of TIM-3+ peripheral blood mononuclear cells during healthy human pregnancy. METHODS OF STUDY: 57 healthy pregnant women [first trimester (n = 16); second trimester (n = 19); third trimester (n = 22)] and 30 non-pregnant controls were enrolled in the study. We measured the surface expression of TIM-3...... negative regulator of Th1 immunity and tolerance induction. Data about the TIM-3/Gal-9 pathway in the pathogenesis of human diseases is emerging, but their possible role during human pregnancy is not precisely known. The aim of our study was to investigate the number, phenotype and functional activity...... by cytotoxic T cells, NK cells and NK cell subsets as well as Galectin-9 expression by regulatory T cells by flow cytometry. We analyzed the cytokine production and cytotoxicity of TIM3+ and TIM3- CD8 T and NK cells obtained from non-pregnant and healthy pregnant women at different stages of pregnancy by flow...

  7. TCR affinity promotes CD8+ T cell expansion by regulating survival.

    Science.gov (United States)

    Hommel, Mirja; Hodgkin, Philip D

    2007-08-15

    Ligation with high affinity ligands are known to induce T lymphocytes to become fully activated effector cells while ligation with low affinity ligands (or partial agonists) may result in a delayed or incomplete response. We have examined the quantitative features of CD8(+) T cell proliferation induced by peptides of different TCR affinities at a range of concentrations in the mouse OT-I model. Both the frequency of cells responding and the average time taken for cells to reach their first division are affected by peptide concentration and affinity. Consecutive division times, however, remained largely unaffected by these variables. Importantly, we identified affinity to be the sole regulator of cell death in subsequent division. These results suggest a mechanism whereby TCR affinity detection can modulate the subsequent rate of T cell growth and ensure the dominance of higher affinity clones over time.

  8. Human mesenchymal stem cells shift CD8+ T cells towards a suppressive phenotype by inducing tolerogenic monocytes.

    Science.gov (United States)

    Hof-Nahor, Irit; Leshansky, Lucy; Shivtiel, Shoham; Eldor, Liron; Aberdam, Daniel; Itskovitz-Eldor, Joseph; Berrih-Aknin, Sonia

    2012-10-01

    The mechanisms underlying the immunomodulatory effects of mesenchymal stem cells (MSCs) have been investigated under extreme conditions of strong T cell activation, which induces the rapid death of activated lymphocytes. The objective of this study was to investigate these mechanisms in the absence of additional polyclonal activation. In co-cultures of peripheral mononuclear blood cells with human MSCs (hereafter referred to as hMSCs), we observed a striking decrease in the level of CD8 expression on CD8+ cells, together with decreased expression of CD28 and CD44, and impaired production of IFN-gamma and Granzyme B. This effect was specific to hMSCs, because it was not observed with several other cell lines. Downregulation of CD8 expression required CD14+ monocytes to be in direct contact with the CD8+ cells, whereas the effects of hMSCs on the CD14+ cells were essentially mediated by soluble factors. The CD14+ monocytes exhibited a tolerogenic pattern when co-cultured with hMSCs, with a clear decrease in CD80 and CD86 co-stimulatory molecules, and an increase in the inhibitory receptors ILT-3 and ILT-4. CD8+ cells that were preconditioned by MSCs had similar effects on monocytes and were able to inhibit lymphocyte proliferation. Injection of hMSCs in humanized NSG mice showed similar trends, in particular decreased levels of CD44 and CD28 in human immune cells. Our study demonstrates a new immunomodulation mechanism of action of hMSCs through the modulation of CD8+ cells towards a non-cytotoxic and/or suppressive phenotype. This mechanism of action has to be taken into account in clinical trials, where it should be beneficial in grafts and autoimmune diseases, but potentially detrimental in malignant diseases.

  9. Phenotypic and Functional Analysis of LCMV gp33-41-Specific CD8 T Cells Elicited by Multiple Peptide Immunization in Mice Revealed the Up-regulation of PD-1 Expression on Antigen Specific CD8 T Cells

    Institute of Scientific and Technical Information of China (English)

    Yi Liu; Lihui Xu; Yiqun Jiang; Jianfang Sun; Xianhui He

    2007-01-01

    The phenotype and function of antigen-specific CD8 T cells are closely associated with the efficacy of a therapeutic vaccination. Here we showed that multiple immunizations with LCMV gp33-41 peptide (KAV) in Freund's adjuvant could induce KAV-specific CD8 T cells with low expression of CD127 and CD62L molecules. The inhibitory receptor PD-1 was also expressed on a substantial part of KAV-specific CD8 T cells, and its expression level on KAV-specific CD8 T cells in spleen and lymph nodes was much higher when compared to those in peripheral blood. Furthermore, KAV-specific CD8 T cells could specifically kill KAV-pulsed target cells in vivo but the efficiency was low. These data suggest that prime-boost vaccination schedule with peptide in Freund's adjuvant can elicit antigen-specific CD8 T cells of effector-like phenotype with partial functional exhaustion, which may only provide short-term protection against the pathogen.

  10. Early transcriptional and epigenetic regulation of CD8(+) T cell differentiation revealed by single-cell RNA sequencing.

    Science.gov (United States)

    Kakaradov, Boyko; Arsenio, Janilyn; Widjaja, Christella E; He, Zhaoren; Aigner, Stefan; Metz, Patrick J; Yu, Bingfei; Wehrens, Ellen J; Lopez, Justine; Kim, Stephanie H; Zuniga, Elina I; Goldrath, Ananda W; Chang, John T; Yeo, Gene W

    2017-04-01

    During microbial infection, responding CD8(+) T lymphocytes differentiate into heterogeneous subsets that together provide immediate and durable protection. To elucidate the dynamic transcriptional changes that underlie this process, we applied a single-cell RNA-sequencing approach and analyzed individual CD8(+) T lymphocytes sequentially throughout the course of a viral infection in vivo. Our analyses revealed a striking transcriptional divergence among cells that had undergone their first division and identified previously unknown molecular determinants that controlled the fate specification of CD8(+) T lymphocytes. Our findings suggest a model for the differentiation of terminal effector cells initiated by an early burst of transcriptional activity and subsequently refined by epigenetic silencing of transcripts associated with memory lymphocytes, which highlights the power and necessity of single-cell approaches.

  11. Induction of CD8+ T-cell responses against subunit antigens by the novel cationic liposomal CAF09 adjuvant

    DEFF Research Database (Denmark)

    Korsholm, Karen Smith; Hansen, Jon; Karlsen, Kasper

    2014-01-01

    Vaccines inducing cytotoxic T-cell responses are required to achieve protection against cancers and intracellular infections such as HIV and Hepatitis C virus. Induction of CD8+ T cell responses in animal models can be achieved by the use of viral vectors or DNA vaccines but so far without much...... clinical success. Here we describe the novel CD8+ T-cell inducing adjuvant, cationic adjuvant formulation (CAF) 09, consisting of dimethyldioctadecylammonium (DDA)-liposomes stabilized with monomycoloyl glycerol (MMG)-1 and combined with the TLR3 ligand, Poly(I:C). Different antigens from tuberculosis (TB......10.3, H56), HIV (Gag p24), HPV (E7) and the model antigen ovalbumin were formulated with CAF09 and administering these vaccines to mice resulted in a high frequency of antigen-specific CD8+ T cells. CAF09 was superior in its ability to induce antigen-specific CD8+ T cells as compared to other...

  12. Regulatory T cells negatively affect IL-2 production of effector T cells through CD39/adenosine pathway in HIV infection.

    Directory of Open Access Journals (Sweden)

    Mohammad-Ali Jenabian

    Full Text Available The mechanisms by which Regulatory T cells suppress IL-2 production of effector CD4+ T cells in pathological conditions are unclear. A subpopulation of human Treg expresses the ectoenzyme CD39, which in association with CD73 converts ATP/ADP/AMP to adenosine. We show here that Treg/CD39+ suppress IL-2 expression of activated CD4+ T-cells more efficiently than Treg/CD39-. This inhibition is due to the demethylation of an essential CpG site of the il-2 gene promoter, which was reversed by an anti-CD39 mAb. By recapitulating the events downstream CD39/adenosine receptor (A2AR axis, we show that A2AR agonist and soluble cAMP inhibit CpG site demethylation of the il-2 gene promoter. A high frequency of Treg/CD39+ is associated with a low clinical outcome in HIV infection. We show here that CD4+ T-cells from HIV-1 infected individuals express high levels of A2AR and intracellular cAMP. Following in vitro stimulation, these cells exhibit a lower degree of demethylation of il-2 gene promoter associated with a lower expression of IL-2, compared to healthy individuals. These results extend previous data on the role of Treg in HIV infection by filling the gap between expansion of Treg/CD39+ in HIV infection and the suppression of CD4+ T-cell function through inhibition of IL-2 production.

  13. Defining CD8+ T cell determinants during human viral infection in populations of Asian ethnicity.

    Science.gov (United States)

    Rivino, Laura; Tan, Anthony T; Chia, Adeline; Kumaran, Emmanuelle A P; Grotenbreg, Gijsbert M; MacAry, Paul A; Bertoletti, Antonio

    2013-10-15

    The identification of virus-specific CD8(+) T cell determinants is a fundamental requirement for our understanding of viral disease pathogenesis. T cell epitope mapping strategies increasingly rely on algorithms that predict the binding of peptides to MHC molecules. There is, however, little information on the reliability of predictive algorithms in the context of human populations, in particular, for those expressing HLA class I molecules for which there are limited experimental data available. In this study, we evaluate the ability of NetMHCpan to predict antiviral CD8(+) T cell epitopes that we identified with a traditional approach in patients of Asian ethnicity infected with Dengue virus, hepatitis B virus, or severe acute respiratory syndrome coronavirus. We experimentally demonstrate that the predictive power of algorithms defining peptide-MHC interaction directly correlates with the amount of training data on which the predictive algorithm has been constructed. These results highlight the limited applicability of the NetMHCpan algorithm for populations expressing HLA molecules for which there are little or no experimental binding data, such as those of Asian ethnicity.

  14. The effect of aging and caloric restriction on murine CD8+ T cell chemokine receptor gene expression

    Directory of Open Access Journals (Sweden)

    Mo RuRan

    2007-11-01

    Full Text Available Abstract Background The mechanism explaining the increased disease susceptibility in aging is not well understood. CD8+ T cells are crucial in anti-viral and anti-tumor responses. Although the chemokine system plays a critical role in CD8+ T cell function, very little is known about the relationship between aging and the T cell chemokine system. Results In this study we have examined the effect of aging on murine CD8+ T cell chemokine receptor gene expression. Freshly isolated splenic CD8+ T cells from old C57BL/6 mice were found to have higher CCR1, CCR2, CCR4, CCR5 and CXCR5, and lower CCR7 gene expression compared to their younger cohort. Anti-CD3/anti-CD28 stimulation elicited a similar robust chemokine receptor response from young and old CD8+ T cells. Western blot analyses confirmed elevated protein level of CCR4 and CCR5 in aged CD8+ T cells. Increases in T cell CCR1 and CCR5 expression also correlate to increased in vitro chemotaxis response to macrophage-inflammatory protein-1 α(MIP-1α. Finally, caloric restriction selectively prevents the loss of CD8+ T cell CCR7 gene expression in aging to the level that is seen in young CD8+ T cells. Conclusion These findings are consistent with the notion that aging exists in a state of low grade pro-inflammatory environment. In addition, our results provide a potential mechanism for the reported aging-associated impaired T cell lymphoid homing and allograft response, and reduced survival in sepsis.

  15. Association between Nef-specific CD8 T-cell responses and disease progression in HIV-1 subtype B infection

    Institute of Scientific and Technical Information of China (English)

    JIAO Yang; LI Tai-sheng; XIE Jing; HAN Yang; QIU Zhi-feng; ZUO Ling-yan; Thomas Mourez; WANG Ai-xia

    2006-01-01

    Background The correlation between HIV-1 Nef-specific CD8 T-cell responses and markers of HIV-1 disease progression still remains unclear. This study analysed and compared the role of HIV-1 Nef-specific CD8 T-cell responses in patients with different disease status.Methods Two groups of patients with HIV-1 subtype B infection were selected according to CD4 count and clinical manifestations: long-term nonprogresssors (LTNPs, n = 20) and advanced progressors (Aps, CD4 count <500 cells/μ1, n = 34). Nef-specific CD8 T-cell responses were studied by interferon- γ ELISpot assay against 3 pools of HIV-Nef peptides.Results Nef-specific CD8 T-cell responses did not correlate with viral load or CD4 count in all patients and no significant differences were found in the magnitude of Nef-specific CD8 T-cell responses between groups LTNPs and Aps (670 SFC/106 peripheral blood mononuclear cells vs 1107 SFC/106 peripheral blood mononuclear cells,P = 0.255). Further comparisons showed that there were also no significant correlations observed in group LTNPs,but Nef-specific CD8 T cells correlated negatively with viral load (r = -0.397, P = 0.020) and positively with CD4 count (r = 0.364, P = 0.034) in group Aps.Conclusion These data suggest that different correlation patterns between Nef-specific CD8 T-cell responses and disease progression exist in LTNPs and Aps. Although a negative association was observed with concurrent plasma HIV RNA in Aps, Nef-specific CD8 T-cell responses might fail to play a protective role in different stages of HIV- 1 infection.

  16. C-Myc regulation by costimulatory signals modulates the generation of CD8+ memory T cells during viral infection.

    Science.gov (United States)

    Haque, Mohammad; Song, Jianyong; Fino, Kristin; Wang, Youfei; Sandhu, Praneet; Song, Xinmeng; Norbury, Christopher; Ni, Bing; Fang, Deyu; Salek-Ardakani, Shahram; Song, Jianxun

    2016-01-01

    The signalling mechanisms of costimulation in the development of memory T cells remain to be clarified. Here, we show that the transcription factor c-Myc in CD8(+) T cells is controlled by costimulatory molecules, which modulates the development of memory CD8(+) T cells. C-Myc expression was dramatically reduced in Cd28(-/-) or Ox40(-/-) memory CD8(+) T cells, and c-Myc over-expression substantially reversed the defects in the development of T-cell memory following viral infection. C-Myc regulated the expression of survivin, an inhibitor of apoptosis, which promoted the generation of virus-specific memory CD8(+) T cells. Moreover, over-expression of survivin with bcl-xL, a downstream molecule of NF-κB and intracellular target of costimulation that controls survival, in Cd28(-/-) or Ox40(-/-) CD8(+) T cells, reversed the defects in the generation of memory T cells in response to viral infection. These results identify c-Myc as a key controller of memory CD8(+) T cells from costimulatory signals.

  17. Complementary dendritic cell-activating function of CD8+ and CD4+ T cells: helper role of CD8+ T cells in the development of T helper type 1 responses.

    Science.gov (United States)

    Mailliard, Robbie B; Egawa, Shinichi; Cai, Quan; Kalinska, Anna; Bykovskaya, Svetlana N; Lotze, Michael T; Kapsenberg, Martien L; Storkus, Walter J; Kalinski, Pawel

    2002-02-18

    Dendritic cells (DCs) activated by CD40L-expressing CD4+ T cells act as mediators of "T helper (Th)" signals for CD8+ T lymphocytes, inducing their cytotoxic function and supporting their long-term activity. Here, we show that the optimal activation of DCs, their ability to produce high levels of bioactive interleukin (IL)-12p70 and to induce Th1-type CD4+ T cells, is supported by the complementary DC-activating signals from both CD4+ and CD8+ T cells. Cord blood- or peripheral blood-isolated naive CD8+ T cells do not express CD40L, but, in contrast to naive CD4+ T cells, they are efficient producers of IFN-gamma at the earliest stages of the interaction with DCs. Naive CD8+ T cells cooperate with CD40L-expressing naive CD4+ T cells in the induction of IL-12p70 in DCs, promoting the development of primary Th1-type CD4+ T cell responses. Moreover, the recognition of major histocompatibility complex class I-presented epitopes by antigen-specific CD8+ T cells results in the TNF-alpha- and IFN-gamma-dependent increase in the activation level of DCs and in the induction of type-1 polarized mature DCs capable of producing high levels of IL-12p70 upon a subsequent CD40 ligation. The ability of class I-restricted CD8+ T cells to coactivate and polarize DCs may support the induction of Th1-type responses against class I-presented epitopes of intracellular pathogens and contact allergens, and may have therapeutical implications in cancer and chronic infections.

  18. A Distinct Lung-Interstitium-Resident Memory CD8+ T Cell Subset Confers Enhanced Protection to Lower Respiratory Tract Infection

    Directory of Open Access Journals (Sweden)

    Pavlo Gilchuk

    2016-08-01

    Full Text Available The nature and anatomic location of the protective memory CD8+ T cell subset induced by intranasal vaccination remain poorly understood. We developed a vaccination model to assess the anatomic location of protective memory CD8+ T cells and their role in lower airway infections. Memory CD8+ T cells elicited by local intranasal, but not systemic, vaccination with an engineered non-replicative CD8+ T cell-targeted antigen confer enhanced protection to a lethal respiratory viral challenge. This protection depends on a distinct CXCR3LO resident memory CD8+ T (Trm cell population that preferentially localizes to the pulmonary interstitium. Because they are positioned close to the mucosa, where infection occurs, interstitial Trm cells act before inflammation can recruit circulating memory CD8+ T cells into the lung tissue. This results in a local protective immune response as early as 1 day post-infection. Hence, vaccine strategies that induce lung interstitial Trm cells may confer better protection against respiratory pathogens.

  19. Full-Breadth Analysis of CD8+ T-Cell Responses in Acute Hepatitis C Virus Infection and Early Therapy

    Science.gov (United States)

    Lauer, Georg M.; Lucas, Michaela; Timm, Joerg; Ouchi, Kei; Kim, Arthur Y.; Day, Cheryl L.; zur Wiesch, Julian Schulze; Paranhos-Baccala, Glaucia; Sheridan, Isabelle; Casson, Deborah R.; Reiser, Markus; Gandhi, Rajesh T.; Li, Bin; Allen, Todd M.; Chung, Raymond T.; Klenerman, Paul; Walker, Bruce D.

    2005-01-01

    Multispecific CD8+ T-cell responses are thought to be important for the control of acute hepatitis C virus (HCV) infection, but to date little information is actually available on the breadth of responses at early time points. Additionally, the influence of early therapy on these responses and their relationships to outcome are controversial. To investigate this issue, we performed comprehensive analysis of the breadth and frequencies of virus-specific CD8+ T-cell responses on the single epitope level in eight acutely infected individuals who were all started on early therapy. During the acute phase, responses against up to five peptides were identified. During therapy, CD8+ T-cell responses decreased rather than increased as virus was controlled, and no new specificities emerged. A sustained virological response following completion of treatment was independent of CD8+ T-cell responses, as well as CD4+ T-cell responses. Rapid recrudescence also occurred despite broad CD8+ T-cell responses. Importantly, in vivo suppression of CD3+ T cells using OKT3 in one subject did not result in recurrence of viremia. These data suggest that broad CD8+ T-cell responses alone may be insufficient to contain HCV replication, and also that early therapy is effective independent of such responses. PMID:16189000

  20. NADH oxidase-dependent CD39 expression by CD8(+) T cells modulates interferon gamma responses via generation of adenosine.

    Science.gov (United States)

    Bai, Aiping; Moss, Alan; Rothweiler, Sonja; Longhi, Maria Serena; Wu, Yan; Junger, Wolfgang G; Robson, Simon C

    2015-11-09

    Interferon gamma (IFNγ)-producing CD8(+) T cells (Tc1) play important roles in immunological disease. We now report that CD3/CD28-mediated stimulation of CD8(+) T cells to generate Tc1 cells, not only increases IFNγ production but also boosts the generation of reactive oxygen species (ROS) and augments expression of CD39. Inhibition of NADPH oxidases or knockdown of gp91phox in CD8(+) T cells abrogates ROS generation, which in turn modulates JNK and NFκB signalling with decreases in both IFNγ levels and CD39 expression. CD39(+)CD8(+) T cells substantially inhibit IFNγ production by CD39(-)CD8(+) T cells via the paracrine generation of adenosine, which is operational via adenosine type 2A receptors. Increases in numbers of CD39(+)CD8(+) T cells and associated enhancements in ROS signal transduction are noted in cells from patients with Crohn's disease. Our findings provide insights into Tc1-mediated IFNγ responses and ROS generation and link these pathways to CD39/adenosine-mediated effects in immunological disease.

  1. IL-10 distinguishes a unique population of activated, effector-like CD8(+) T cells in murine acute liver inflammation.

    Science.gov (United States)

    Rood, Julia E; Canna, Scott W; Weaver, Lehn K; Tobias, John W; Behrens, Edward M

    2017-04-01

    Immune-mediated liver injury is a central feature of hyperinflammatory diseases, such as hemophagocytic syndromes, yet the immunologic mechanisms underlying those processes are incompletely understood. In this study, we used the toll-like receptor 9 (TLR9)-mediated model of a hemophagocytic syndrome known as macrophage activation syndrome (MAS) to dissect the predominant immune cell populations infiltrating the liver during inflammation. We identified CD8(+) T cells that unexpectedly produce interleukin-10 (IL-10) in addition to interferon-γ (IFN-γ) as a major hepatic population induced by TLR9 stimulation. Despite their ability to produce this anti-inflammatory cytokine, IL-10(+) hepatic CD8(+) T cells in TLR9-MAS mice did not resemble CD8(+) T suppressor cells. Instead, the induction of these cells occurred independently of antigen stimulation and was partially dependent on IFN-γ. IL-10(+) hepatic CD8(+) T cells demonstrated an activated phenotype and high turnover rate, consistent with an effector-like identity. Transcriptional analysis of this population confirmed a gene signature of effector CD8(+) T cells yet suggested responsiveness to liver injury-associated growth factors. Together, these findings suggest that IL-10(+) CD8(+) T cells induced by systemic inflammation to infiltrate the liver have initiated an inflammatory, rather than regulatory, program and may thus have a pathogenic role in severe, acute hepatitis.

  2. CD8 positive T cells express IL-17 in patients with chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Eidelman David H

    2011-04-01

    Full Text Available Abstract Background Chronic obstructive pulmonary disease (COPD is a progressive and irreversible chronic inflammatory disease of the lung. The nature of the immune reaction in COPD raises the possibility that IL-17 and related cytokines may contribute to this disorder. This study analyzed the expression of IL-17A and IL-17F as well as the phenotype of cells producing them in bronchial biopsies from COPD patients. Methods Bronchoscopic biopsies of the airway were obtained from 16 COPD subjects (GOLD stage 1-4 and 15 control subjects. Paraffin sections were used for the investigation of IL-17A and IL-17F expression in the airways by immunohistochemistry, and frozen sections were used for the immunofluorescence double staining of IL-17A or IL-17F paired with CD4 or CD8. In order to confirm the expression of IL-17A and IL-17F at the mRNA level, a quantitative RT-PCR was performed on the total mRNA extracted from entire section or CD8 positive cells selected by laser capture microdissection. Results IL-17F immunoreactivity was significantly higher in the bronchial biopsies of COPD patients compared to control subjects (P P P P Conclusion These findings support the notion that Th17 cytokines could play important roles in the pathogenesis of COPD, raising the possibility of using this mechanism as the basis for novel therapeutic approaches.

  3. Clonal CD8+ T Cell Persistence and Variable Gene Usage Bias in a Human Transplanted Hand.

    Directory of Open Access Journals (Sweden)

    Joseph Y Kim

    Full Text Available Immune prophylaxis and treatment of transplanted tissue rejection act indiscriminately, risking serious infections and malignancies. Although animal data suggest that cellular immune responses causing rejection may be rather narrow and predictable based on genetic background, there are only limited data regarding the clonal breadth of anti-donor responses in humans after allogeneic organ transplantation. We evaluated the graft-infiltrating CD8+ T lymphocytes in skin punch biopsies of a transplanted hand over 178 days. Profiling of T cell receptor (TCR variable gene usage and size distribution of the infiltrating cells revealed marked skewing of the TCR repertoire indicating oligoclonality, but relatively normal distributions in the blood. Although sampling limitation prevented complete assessment of the TCR repertoire, sequencing further identified 11 TCR clonal expansions that persisted through varying degrees of clinical rejection and immunosuppressive therapy. These 11 clones were limited to three TCR beta chain variable (BV gene families. Overall, these data indicate significant oligoclonality and likely restricted BV gene usage of alloreactive CD8+ T lymphocytes, and suggest that changes in rejection status are more due to varying regulation of their activity or number rather than shifts in the clonal populations in the transplanted organ. Given that controlled animal models produce predictable BV usage in T lymphocytes mediating rejection, understanding the determinants of TCR gene usage associated with rejection in humans may have application in specifically targeted immunotherapy.

  4. HIV-infected individuals with low CD4/CD8 ratio despite effective antiretroviral therapy exhibit altered T cell subsets, heightened CD8+ T cell activation, and increased risk of non-AIDS morbidity and mortality.

    Directory of Open Access Journals (Sweden)

    Sergio Serrano-Villar

    2014-05-01

    Full Text Available A low CD4/CD8 ratio in elderly HIV-uninfected adults is associated with increased morbidity and mortality. A subset of HIV-infected adults receiving effective antiretroviral therapy (ART fails to normalize this ratio, even after they achieve normal CD4+ T cell counts. The immunologic and clinical characteristics of this clinical phenotype remain undefined. Using data from four distinct clinical cohorts and three clinical trials, we show that a low CD4/CD8 ratio in HIV-infected adults during otherwise effective ART (after CD4 count recovery above 500 cells/mm3 is associated with a number of immunological abnormalities, including a skewed T cell phenotype from naïve toward terminally differentiated CD8+ T cells, higher levels of CD8+ T cell activation (HLADR+CD38+ and senescence (CD28- and CD57+CD28-, and higher kynurenine/tryptophan ratio. Changes in the peripheral CD4/CD8 ratio are also reflective of changes in gut mucosa, but not in lymph nodes. In a longitudinal study, individuals who initiated ART within six months of infection had greater CD4/CD8 ratio increase compared to later initiators (>2 years. After controlling for age, gender, ART duration, nadir and CD4 count, the CD4/CD8 ratio predicted increased risk of morbidity and mortality. Hence, a persistently low CD4/CD8 ratio during otherwise effective ART is associated with increased innate and adaptive immune activation, an immunosenescent phenotype, and higher risk of morbidity/mortality. This ratio may prove useful in monitoring response to ART and could identify a unique subset of individuals needed of novel therapeutic interventions.

  5. The Vitamin D Analogue Calcipotriol Reduces the Frequency of CD8(+) IL-17(+) T Cells in Psoriasis Lesions

    DEFF Research Database (Denmark)

    Dyring Andersen, Beatrice; Bonefeld, C M; Bzorek, M;

    2015-01-01

    The vitamin D analogue calcipotriol is an immunomodulatory drug widely used to treat psoriasis; however, how calcipotriol affects the immune cells in psoriasis lesions is not fully understood. The aim of this atudy was to investigate the effect of calcipotriol on the frequency of CD4(+) and CD8...... that the vitamin D analogue calcipotriol reduces the frequency of CD8(+) IL-17(+) T cells in psoriasis lesions concomitant with clinical improvement....

  6. Reduced interleukin-4 receptor α expression on CD8+ T cells correlates with higher quality anti-viral immunity.

    Directory of Open Access Journals (Sweden)

    Danushka K Wijesundara

    Full Text Available With the hope of understanding how interleukin (IL-4 and IL-13 modulated quality of anti-viral CD8(+ T cells, we evaluated the expression of receptors for these cytokines following a range of viral infections (e.g. pox viruses and influenza virus. Results clearly indicated that unlike other IL-4/IL-13 receptor subunits, IL-4 receptor α (IL-4Rα was significantly down-regulated on anti-viral CD8(+ T cells in a cognate antigen dependent manner. The infection of gene knockout mice and wild-type (WT mice with vaccinia virus (VV or VV expressing IL-4 confirmed that IL-4, IL-13 and signal transducer and activator of transcription 6 (STAT6 were required to increase IL-4Rα expression on CD8(+ T cells, but not interferon (IFN-γ. STAT6 dependent elevation of IL-4Rα expression on CD8(+ T cells was a feature of poor quality anti-viral CD8(+ T cell immunity as measured by the production of IFN-γ and tumor necrosis factor α (TNF-α in response to VV antigen stimulation in vitro. We propose that down-regulation of IL-4Rα, but not the other IL-4/IL-13 receptor subunits, is a mechanism by which CD8(+ T cells reduce responsiveness to IL-4 and IL-13. This can improve the quality of anti-viral CD8(+ T cell immunity. Our findings have important implications in understanding anti-viral CD8(+ T cell immunity and designing effective vaccines against chronic viral infections.

  7. A comparative study of psoriasis and psoriasiform lesion on basis of CD4 and CD8 cell infiltration

    OpenAIRE

    2012-01-01

    Introduction: Psoriasis is a chronic inflammatory skin disorder with immunological factors playing an important role in its pathogenesis. It is now regarded as a T cell mediated disorder in which lymphocytic infiltrates, mainly CD4 and CD 8 cells which provide a major contribution in the initiation and maintenance of psoriatic lesions.Methods: Skin biopsies from both psoriatic and psoriasiform lesions were stained with monoclonal antibodies against CD4 and CD8 and their percentage was calcula...

  8. Changes of CD8+CD28- T regulatory cells in rat model of colitis induced by 2,4-dinitrofluorobenzene

    Institute of Scientific and Technical Information of China (English)

    Wen-Bin Xiao; Yu-Lan Liu

    2003-01-01

    AIM: To determine the changes of CD8+ T subsets especially CD8+CD28- T regulatory cells in rat model of experimental colitis induced by 2,4-dinitrofiuorobenzene (DNFB).METHODS: The rat model of experimental colitis was induced by enema with DNFB. Ten days later, colonic intraepithelial and splenic lymphocytes were isolated from colitis animals (n=16) and controls (n=8). The proportion of CD8+ T cells, CD8+CD28+ T cells and CD8+CD28- T regulatory cells were determined by flow cytometry.RESULTS: The model of experimental colitis was successfully established by DNFB that was demonstrated by bloody diarrhea, weight loss and colonic histopathology. The proportion of CD8+ T cells in either splenic or colonic intraepithelial lymphocytes was not significantly different between colitis animals and controls (spleen: 34.6±7.24 % vs33.5±9.41%,colon: 14.0±8.93 % vs 18.0±4.06 %, P>0.05). But CD8+CD28-T regulatory cells from colitis animals were significantly more than those from controls (spleen: 11.3±2.26 % vs5.64±1.01%,colon: 6.50±5.37 % vs 1.07±0.65 %, P<0.05). In contrast,CD8+CD28+ T cells from colitis animals were less than those from controls (spleen: 23.3±6.14 % vs27.8±9.70 %, P=0.06;colon: 7.52±4.18 % vs 16.9±4.07 %, P<0.05). The proportion of CD8+CD28- T regulatory cells in splenic and colonintraepithelial CD8+ T cells from colitis animals was higher than that from controls (spleen: 33.3±5.49 % vs 18.4±7.26 %,colon: 46.0±14.3 % vs6.10±3.72 %, P<0.005).CONCLUSION: Experimental colitis of rats can be induced by DNFB with simplicity and good reproducibility. The proportion of CD8+CD28- T regulatory cells in rats with experimental colitis is increased, which may be associated with the pathogenesis of colitis.

  9. M tuberculosis in the adjuvant modulates time of appearance of CNS-specific effector T cells in the spleen through a polymorphic site of TLR2.

    Directory of Open Access Journals (Sweden)

    Chiara Nicolò

    Full Text Available DC deliver information regulating trafficking of effector T cells along T-cell priming. However, the role of pathogen-derived motives in the regulation of movement of T cells has not been studied. We hereinafter report that amount of M tuberculosis in the adjuvant modulates relocation of PLP139-151 specific T cells. In the presence of a low dose of M tuberculosis in the adjuvant, T cells (detected by CDR3 BV-BJ spectratyping, the so-called "immunoscope" mostly reach the spleen by day 28 after immunization ("late relocation" in the SJL strain, whereas T cells reach the spleen by d 14 with a high dose of M tuberculosis ("early relocation". The C57Bl/6 background confers a dominant "early relocation" phenotype to F1 (SJL×C57Bl/6 mice, allowing early relocation of T cells in the presence of low dose M tuberculosis. A single non-synonymous polymorphism of TLR2 is responsible for "early/late" relocation phenotype. Egress of T lymphocytes is regulated by TLR2 expressed on T cells. Thus, pathogens engaging TLR2 on T cells regulate directly T-cell trafficking, and polymorphisms of TLR2 condition T-cell trafficking upon a limiting concentration of ligand.

  10. CD8+ T-Cells Count in Acute Myocardial Infarction in HIV Disease in a Predominantly Male Cohort

    Directory of Open Access Journals (Sweden)

    Oluwatosin A. Badejo

    2015-01-01

    Full Text Available Human Immunodeficiency Virus- (HIV- infected persons have a higher risk for acute myocardial infarction (AMI than HIV-uninfected persons. Earlier studies suggest that HIV viral load, CD4+ T-cell count, and antiretroviral therapy are associated with cardiovascular disease (CVD risk. Whether CD8+ T-cell count is associated with CVD risk is not clear. We investigated the association between CD8+ T-cell count and incident AMI in a cohort of 73,398 people (of which 97.3% were men enrolled in the U.S. Veterans Aging Cohort Study-Virtual Cohort (VACS-VC. Compared to uninfected people, HIV-infected people with high baseline CD8+ T-cell counts (>1065 cells/mm3 had increased AMI risk (adjusted HR=1.82, P<0.001, 95% CI: 1.46 to 2.28. There was evidence that the effect of CD8+ T-cell tertiles on AMI risk differed by CD4+ T-cell level: compared to uninfected people, HIV-infected people with CD4+ T-cell counts ≥200 cells/mm3 had increased AMI risk with high CD8+ T-cell count, while those with CD4+ T-cell counts <200 cells/mm3 had increased AMI risk with low CD8+ T-cell count. CD8+ T-cell counts may add additional AMI risk stratification information beyond that provided by CD4+ T-cell counts alone.

  11. Characterization of CD4 and CD8 T cell responses in MuSK myasthenia gravis.

    Science.gov (United States)

    Yi, J S; Guidon, A; Sparks, S; Osborne, R; Juel, V C; Massey, J M; Sanders, D B; Weinhold, K J; Guptill, J T

    2014-08-01

    Muscle specific tyrosine kinase myasthenia gravis (MuSK MG) is a form of autoimmune MG that predominantly affects women and has unique clinical features, including prominent bulbar weakness, muscle atrophy, and excellent response to therapeutic plasma exchange. Patients with MuSK MG have predominantly IgG4 autoantibodies directed against MuSK on the postsynaptic muscle membrane. Lymphocyte functionality has not been reported in this condition. The goal of this study was to characterize T cell responses in patients with MuSK MG. Intracellular production of IFN-gamma, TNF-alpha, IL-2, IL-17, and IL-21 by CD4+ and CD8+ T cells was measured by polychromatic flow cytometry in peripheral blood samples from 11 Musk MG patients and 10 healthy controls. Only one MuSK MG patient was not receiving immunosuppressive therapy. Regulatory T cells (Treg) were also included in our analysis to determine if changes in T cell function were due to altered Treg frequencies. CD8+ T cells from MuSK MG patients had higher frequencies of polyfunctional responses than controls, and CD4+ T cells had higher IL-2, TNF-alpha, and IL-17. MuSK MG patients had a higher percentage of CD4+ T cells producing combinations of IFN-gamma/IL-2/TNF-gamma, TNF-alpha/IL-2, and IFN-gamma/TNF-alpha. Interestingly, Treg numbers and CD39 expression were not different from control values. MuSK MG patients had increased frequencies of Th1 and Th17 cytokines and were primed for polyfunctional proinflammatory responses that cannot be explained by a defect in CD39 expression or Treg number.

  12. Antigens expressed by myelinating glia cells induce peripheral cross-tolerance of endogenous CD8+ T cells.

    Science.gov (United States)

    Schildknecht, Anita; Probst, Hans Christian; McCoy, Kathy D; Miescher, Iris; Brenner, Corinne; Leone, Dino P; Suter, Ueli; Ohashi, Pamela S; van den Broek, Maries

    2009-06-01

    Auto-reactivity of T cells is largely prevented by central and peripheral tolerance. Nevertheless, immunization with certain self-antigens emulsified in CFA induces autoimmunity in rodents, suggesting that tolerance to some self-antigens is not robust. To investigate the fate of nervous system-specific CD8(+) T cells, which only recently came up as being important contributors for MS pathogenesis, we developed a mouse model that allows inducible expression of lymphocytic choriomeningitis virus-derived CD8(+) T-cell epitopes specifically in oligodendrocytes and Schwann cells, the myelinating glia of the nervous system. These transgenic CD8(+) T-cell epitopes induced robust tolerance of endogenous auto-reactive T cells, which proved thymus-independent and was mediated by cross-presenting bone-marrow-derived cells. Immunohistological staining of secondary lymphoid organs demonstrated the presence of glia-derived antigens in DC, suggesting that peripheral tolerance of CD8(+) T cells results from uptake and presentation by steady state DC.

  13. The peripheral CD8 T cell repertoire is largely independent of the presence of intestinal flora.

    Science.gov (United States)

    Bousso, P; Lemaître, F; Laouini, D; Kanellopoulos, J; Kourilsky, P

    2000-04-01

    While numerous studies have analyzed the shaping of T cell repertoires by self or foreign peptides, little is known on the influence of commensal self peptides derived from the intestinal flora (IF). Here, we have analyzed naive and immune repertoires in mice devoid of IF [germ-free (GF) mice]. First, by means of an extensive CDR3beta sequencing strategy, we show that the naive peripheral CD8 T cell repertoire does not exhibit a major imprint of IF antigens. Second, using MHC-peptide tetramers, CDR3beta length distribution analyses and TCR sequencing, we show that cytotoxic T lymphocyte (CTL) responses specific for two distinct epitopes are quasi-identical in normal and GF mice. Our findings indicate that, in general, peptides derived from the intestinal microflora have little if any influence on CTL responses in the mouse.

  14. File list: NoD.Bld.50.AllAg.CD4_CD8_double_negative_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.50.AllAg.CD4_CD8_double_negative_cells mm9 No description Blood CD4 CD8 double negative... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Bld.50.AllAg.CD4_CD8_double_negative_cells.bed ...

  15. File list: DNS.Bld.10.AllAg.CD4_CD8_double_negative_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.10.AllAg.CD4_CD8_double_negative_cells mm9 DNase-seq Blood CD4 CD8 double negative... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Bld.10.AllAg.CD4_CD8_double_negative_cells.bed ...

  16. File list: Pol.Bld.20.AllAg.CD4_CD8_double_negative_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.20.AllAg.CD4_CD8_double_negative_cells mm9 RNA polymerase Blood CD4 CD8 double negative... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.20.AllAg.CD4_CD8_double_negative_cells.bed ...

  17. File list: DNS.Bld.50.AllAg.CD4_CD8_double_negative_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.50.AllAg.CD4_CD8_double_negative_cells mm9 DNase-seq Blood CD4 CD8 double negative... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Bld.50.AllAg.CD4_CD8_double_negative_cells.bed ...

  18. File list: NoD.Bld.20.AllAg.CD4_CD8_double_negative_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.20.AllAg.CD4_CD8_double_negative_cells mm9 No description Blood CD4 CD8 double negative... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Bld.20.AllAg.CD4_CD8_double_negative_cells.bed ...

  19. File list: Pol.Bld.50.AllAg.CD4_CD8_double_negative_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.50.AllAg.CD4_CD8_double_negative_cells mm9 RNA polymerase Blood CD4 CD8 double negative... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.50.AllAg.CD4_CD8_double_negative_cells.bed ...

  20. File list: Unc.Bld.05.AllAg.CD4_CD8_double_negative_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.05.AllAg.CD4_CD8_double_negative_cells mm9 Unclassified Blood CD4 CD8 double negative... cells SRX398232,SRX199974 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bld.05.AllAg.CD4_CD8_double_negative_cells.bed ...

  1. File list: NoD.Bld.05.AllAg.CD4_CD8_double_negative_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.05.AllAg.CD4_CD8_double_negative_cells mm9 No description Blood CD4 CD8 double negative... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Bld.05.AllAg.CD4_CD8_double_negative_cells.bed ...

  2. File list: Unc.Bld.20.AllAg.CD4_CD8_double_negative_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.20.AllAg.CD4_CD8_double_negative_cells mm9 Unclassified Blood CD4 CD8 double negative... cells SRX199974,SRX398232 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bld.20.AllAg.CD4_CD8_double_negative_cells.bed ...

  3. File list: Unc.Bld.50.AllAg.CD4_CD8_double_negative_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.50.AllAg.CD4_CD8_double_negative_cells mm9 Unclassified Blood CD4 CD8 double negative... cells SRX398232,SRX199974 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bld.50.AllAg.CD4_CD8_double_negative_cells.bed ...

  4. File list: Pol.Bld.05.AllAg.CD4_CD8_double_negative_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.05.AllAg.CD4_CD8_double_negative_cells mm9 RNA polymerase Blood CD4 CD8 double negative... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.05.AllAg.CD4_CD8_double_negative_cells.bed ...

  5. File list: DNS.Bld.20.AllAg.CD4_CD8_double_negative_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.20.AllAg.CD4_CD8_double_negative_cells mm9 DNase-seq Blood CD4 CD8 double negative... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Bld.20.AllAg.CD4_CD8_double_negative_cells.bed ...

  6. File list: Unc.Bld.10.AllAg.CD4_CD8_double_negative_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.10.AllAg.CD4_CD8_double_negative_cells mm9 Unclassified Blood CD4 CD8 double negative... cells SRX398232,SRX199974 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bld.10.AllAg.CD4_CD8_double_negative_cells.bed ...

  7. File list: Pol.Bld.10.AllAg.CD4_CD8_double_negative_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.10.AllAg.CD4_CD8_double_negative_cells mm9 RNA polymerase Blood CD4 CD8 double negative... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.10.AllAg.CD4_CD8_double_negative_cells.bed ...

  8. File list: DNS.Bld.05.AllAg.CD4_CD8_double_negative_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.05.AllAg.CD4_CD8_double_negative_cells mm9 DNase-seq Blood CD4 CD8 double negative... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Bld.05.AllAg.CD4_CD8_double_negative_cells.bed ...

  9. File list: Pol.Bld.20.AllAg.CD4_CD8_double_positive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.20.AllAg.CD4_CD8_double_positive_cells mm9 RNA polymerase Blood CD4 CD8 double positive... cells SRX063926,SRX099398,SRX099388 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.20.AllAg.CD4_CD8_double_positive_cells.bed ...

  10. File list: Pol.Bld.10.AllAg.CD4_CD8_double_positive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.10.AllAg.CD4_CD8_double_positive_cells mm9 RNA polymerase Blood CD4 CD8 double positive... cells SRX063926,SRX099388,SRX099398 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.10.AllAg.CD4_CD8_double_positive_cells.bed ...

  11. File list: DNS.Bld.50.AllAg.CD4_CD8_double_positive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.50.AllAg.CD4_CD8_double_positive_cells mm9 DNase-seq Blood CD4 CD8 double positive... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Bld.50.AllAg.CD4_CD8_double_positive_cells.bed ...

  12. File list: Pol.Bld.05.AllAg.CD4_CD8_double_positive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.05.AllAg.CD4_CD8_double_positive_cells mm9 RNA polymerase Blood CD4 CD8 double positive... cells SRX063926,SRX099388,SRX099398 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.05.AllAg.CD4_CD8_double_positive_cells.bed ...

  13. File list: Unc.Bld.10.AllAg.CD4_CD8_double_positive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.10.AllAg.CD4_CD8_double_positive_cells mm9 Unclassified Blood CD4 CD8 double positive... cells SRX199993 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bld.10.AllAg.CD4_CD8_double_positive_cells.bed ...

  14. File list: NoD.Bld.05.AllAg.CD4_CD8_double_positive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.05.AllAg.CD4_CD8_double_positive_cells mm9 No description Blood CD4 CD8 double positive... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Bld.05.AllAg.CD4_CD8_double_positive_cells.bed ...

  15. File list: NoD.Bld.10.AllAg.CD4_CD8_double_positive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.10.AllAg.CD4_CD8_double_positive_cells mm9 No description Blood CD4 CD8 double positive... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Bld.10.AllAg.CD4_CD8_double_positive_cells.bed ...

  16. File list: Unc.Bld.50.AllAg.CD4_CD8_double_positive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.50.AllAg.CD4_CD8_double_positive_cells mm9 Unclassified Blood CD4 CD8 double positive... cells SRX199993 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bld.50.AllAg.CD4_CD8_double_positive_cells.bed ...

  17. File list: DNS.Bld.20.AllAg.CD4_CD8_double_positive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.20.AllAg.CD4_CD8_double_positive_cells mm9 DNase-seq Blood CD4 CD8 double positive... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Bld.20.AllAg.CD4_CD8_double_positive_cells.bed ...

  18. File list: NoD.Bld.20.AllAg.CD4_CD8_double_positive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.20.AllAg.CD4_CD8_double_positive_cells mm9 No description Blood CD4 CD8 double positive... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Bld.20.AllAg.CD4_CD8_double_positive_cells.bed ...

  19. File list: Unc.Bld.05.AllAg.CD4_CD8_double_positive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.05.AllAg.CD4_CD8_double_positive_cells mm9 Unclassified Blood CD4 CD8 double positive... cells SRX199993 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bld.05.AllAg.CD4_CD8_double_positive_cells.bed ...

  20. File list: DNS.Bld.10.AllAg.CD4_CD8_double_positive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.10.AllAg.CD4_CD8_double_positive_cells mm9 DNase-seq Blood CD4 CD8 double positive... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Bld.10.AllAg.CD4_CD8_double_positive_cells.bed ...

  1. File list: Unc.Bld.20.AllAg.CD4_CD8_double_positive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.20.AllAg.CD4_CD8_double_positive_cells mm9 Unclassified Blood CD4 CD8 double positive... cells SRX199993 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bld.20.AllAg.CD4_CD8_double_positive_cells.bed ...

  2. File list: DNS.Bld.05.AllAg.CD4_CD8_double_positive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.05.AllAg.CD4_CD8_double_positive_cells mm9 DNase-seq Blood CD4 CD8 double positive... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Bld.05.AllAg.CD4_CD8_double_positive_cells.bed ...

  3. Regulation of T cell receptor expression in immature CD4+CD8+ thymocytes by p56lck tyrosine kinase: basis for differential signaling by CD4 and CD8 in immature thymocytes expressing both coreceptor molecules

    OpenAIRE

    1993-01-01

    Signals transduced through the T cell antigen receptor (TCR) are modulated by the src family tyrosine kinase p56lck (lck), which associates in mature T cells with the coreceptor molecules CD4 and CD8. Here we describe a novel function of lck in immature CD4+CD8+ thymocytes, that of regulating TCR expression. Activation of lck in immature CD4+CD8+ thymocytes by intrathymic engagement of CD4 maintains low TCR expression by causing most TCR components to be retained and degraded within the endop...

  4. A Possible Role for CD8+ T Lymphocytes in the Cell-Mediated Pathogenesis of Pemphigus Vulgaris

    Directory of Open Access Journals (Sweden)

    Federica Giurdanella

    2013-01-01

    Full Text Available Pemphigus vulgaris (PV is an autoimmune blistering disease whose pathogenesis involves both humoral and cell-mediated immune response. Though the pathogenetic role of autoantibodies directed against desmoglein 3 is certain, a number of other factors have been suggested to determine acantholysis in PV. In this study we examined the possible role of CD8+ T cells in the development of acantholysis by a passive transfer of PV autoantibodies using CD8 deficient mice, and we also studied the inflammatory infiltrate of PV skin lesions by immunohistochemical staining. The results of the immunohistochemical staining to study the expression of CD3, CD4, and CD8 in PV skin lesions showed that CD4+ are more expressed than CD8+ in the inflammatory infiltrate of PV lesions, confirming the data of the previous literature. The passive transfer study showed a lower incidence of pemphigus in the group of CD8 deficient mice compared to the control one of wild-type mice. These results suggest that CD8+ T cells may play a role in the pathogenesis of PV, perhaps through the Fas/FasL pathway.

  5. Multiscale Modeling of the Early CD8 T-Cell Immune Response in Lymph Nodes: An Integrative Study

    Directory of Open Access Journals (Sweden)

    Sotiris A. Prokopiou

    2014-09-01

    Full Text Available CD8 T-cells are critical  in controlling infection by intracellular  pathogens. Upon encountering antigen presenting cells, T-cell receptor activation promotes the differentiation of naïve CD8 T-cells into strongly proliferating  activated and effector stages. We propose a 2D-multiscale computational model to study the maturation of CD8 T-cells in a lymph node controlled by their molecular profile. A novel molecular pathway is presented and converted into an ordinary differential  equation model, coupled with a cellular Potts model to describe cell-cell interactions. Key molecular  players such as activated IL2 receptor and Tbet levels  control the differentiation  from naïve into activated and effector stages, respectively,  while caspases and Fas-Fas ligand interactions control cell apoptosis.  Coupling  this molecular model to the cellular scale successfully  reproduces  qualitatively the evolution of total CD8 T-cell counts observed in mice lymph node, between Day 3 and 5.5 post-infection. Furthermore, this model allows us to make testable predictions  of the evolution of the different CD8 T-cell stages.

  6. TIL therapy broadens the tumor-reactive CD8+ T cell compartment in melanoma patients

    Science.gov (United States)

    Kvistborg, Pia; Shu, Chengyi Jenny; Heemskerk, Bianca; Fankhauser, Manuel; Thrue, Charlotte Albæk; Toebes, Mireille; van Rooij, Nienke; Linnemann, Carsten; van Buuren, Marit M.; Urbanus, Jos H.M.; Beltman, Joost B.; thor Straten, Per; Li, Yong F.; Robbins, Paul F.; Besser, Michal J.; Schachter, Jacob; Kenter, Gemma G.; Dudley, Mark E.; Rosenberg, Steven A.; Haanen, John B.A.G.; Hadrup, Sine Reker; Schumacher, Ton N.M.

    2012-01-01

    There is strong evidence that both adoptive T cell transfer and T cell checkpoint blockade can lead to regression of human melanoma. However, little data are available on the effect of these cancer therapies on the tumor-reactive T cell compartment. To address this issue we have profiled therapy-induced T cell reactivity against a panel of 145 melanoma-associated CD8+ T cell epitopes. Using this approach, we demonstrate that individual tumor-infiltrating lymphocyte cell products from melanoma patients contain unique patterns of reactivity against shared melanoma-associated antigens, and that the combined magnitude of these responses is surprisingly low. Importantly, TIL therapy increases the breadth of the tumor-reactive T cell compartment in vivo, and T cell reactivity observed post-therapy can almost in full be explained by the reactivity observed within the matched cell product. These results establish the value of high-throughput monitoring for the analysis of immuno-active therapeutics and suggest that the clinical efficacy of TIL therapy can be enhanced by the preparation of more defined tumor-reactive T cell products. PMID:22754759

  7. TIL therapy broadens the tumor-reactive CD8(+) T cell compartment in melanoma patients.

    Science.gov (United States)

    Kvistborg, Pia; Shu, Chengyi Jenny; Heemskerk, Bianca; Fankhauser, Manuel; Thrue, Charlotte Albæk; Toebes, Mireille; van Rooij, Nienke; Linnemann, Carsten; van Buuren, Marit M; Urbanus, Jos H M; Beltman, Joost B; Thor Straten, Per; Li, Yong F; Robbins, Paul F; Besser, Michal J; Schachter, Jacob; Kenter, Gemma G; Dudley, Mark E; Rosenberg, Steven A; Haanen, John B A G; Hadrup, Sine Reker; Schumacher, Ton N M

    2012-07-01

    There is strong evidence that both adoptive T cell transfer and T cell checkpoint blockade can lead to regression of human melanoma. However, little data are available on the effect of these cancer therapies on the tumor-reactive T cell compartment. To address this issue we have profiled therapy-induced T cell reactivity against a panel of 145 melanoma-associated CD8(+) T cell epitopes. Using this approach, we demonstrate that individual tumor-infiltrating lymphocyte cell products from melanoma patients contain unique patterns of reactivity against shared melanoma-associated antigens, and that the combined magnitude of these responses is surprisingly low. Importantly, TIL therapy increases the breadth of the tumor-reactive T cell compartment in vivo, and T cell reactivity observed post-therapy can almost in full be explained by the reactivity observed within the matched cell product. These results establish the value of high-throughput monitoring for the analysis of immuno-active therapeutics and suggest that the clinical efficacy of TIL therapy can be enhanced by the preparation of more defined tumor-reactive T cell products.

  8. Ex Vivo Restimulation of Human PBMC Expands a CD3+CD4-CD8-γδ+ T Cell Population That Can Confound the Evaluation of CD4 and CD8 T Cell Responses to Vaccination

    Directory of Open Access Journals (Sweden)

    B. J. Sedgmen

    2013-01-01

    Full Text Available The measurement of vaccine-induced humoral and CD4+ and CD8+ cellular immune responses represents an important correlate of vaccine efficacy. Accurate and reliable assays evaluating such responses are therefore critical during the clinical development phase of vaccines. T cells play a pivotal role both in coordinating the adaptive and innate immune responses and as effectors. During the assessment of cell-mediated immunity (CMI in subjects participating in a large-scale influenza vaccine trial, we identified the expansion of an IFN-γ-producing CD3+CD4-CD8-γδ+ T cell population in the peripheral blood of 90/610 (15% healthy subjects. The appearance of CD3+CD4-CD8-γδ+ T cells in the blood of subjects was transient and found to be independent of the study cohort, vaccine group, subject gender and ethnicity, and ex vivo restimulation conditions. Although the function of this population and relevance to vaccination are unclear, their inclusion in the total vaccine-specific T-cell response has the potential to confound data interpretation. It is thus recommended that when evaluating the induction of IFN-γ-producing CD4+ and CD8+ immune responses following vaccination, the CD3+CD4-CD8-γδ+ T cells are either excluded or separately enumerated from the overall frequency determination.

  9. Ex Vivo Restimulation of Human PBMC Expands a CD3+CD4−CD8−γδ+ T Cell Population That Can Confound the Evaluation of CD4 and CD8 T Cell Responses to Vaccination

    Science.gov (United States)

    Sedgmen, B. J.; Papalia, L.; Wang, L.; Dyson, A. R.; McCallum, H. A.; Simson, C. M.; Pearse, M. J.; Maraskovsky, E.; Hung, D.; Eomois, P. P.; Hartel, G.; Barnden, M. J.; Rockman, S. P.

    2013-01-01

    The measurement of vaccine-induced humoral and CD4+ and CD8+ cellular immune responses represents an important correlate of vaccine efficacy. Accurate and reliable assays evaluating such responses are therefore critical during the clinical development phase of vaccines. T cells play a pivotal role both in coordinating the adaptive and innate immune responses and as effectors. During the assessment of cell-mediated immunity (CMI) in subjects participating in a large-scale influenza vaccine trial, we identified the expansion of an IFN-γ-producing CD3+CD4−CD8−γδ+ T cell population in the peripheral blood of 90/610 (15%) healthy subjects. The appearance of CD3+CD4−CD8−γδ+ T cells in the blood of subjects was transient and found to be independent of the study cohort, vaccine group, subject gender and ethnicity, and ex vivo restimulation conditions. Although the function of this population and relevance to vaccination are unclear, their inclusion in the total vaccine-specific T-cell response has the potential to confound data interpretation. It is thus recommended that when evaluating the induction of IFN-γ-producing CD4+ and CD8+ immune responses following vaccination, the CD3+CD4−CD8−γδ+ T cells are either excluded or separately enumerated from the overall frequency determination. PMID:24066003

  10. CXCR5(+) CD8(+) T Cells Indirectly Offer B Cell Help and Are Inversely Correlated with Viral Load in Chronic Hepatitis B Infection.

    Science.gov (United States)

    Jiang, Hang; Li, Linhai; Han, Jiang; Sun, Zhiwei; Rong, Yihui; Jin, Yun

    2017-04-01

    Treatment options for chronic hepatitis B (CHB) infection are extremely limited. CXCR5(+) CD8(+) T cell is a novel cell subtype and could possess strong cytotoxic properties in HIV infection. In this study, we investigated the role of CXCR5(+) CD8(+) T cells in CHB patients. Compared to healthy individuals, both CHB patients and hepatitis B virus (HBV)-infected hepatocellular carcinoma patients presented significant upregulation of CXCR5(+) CD8(+) T cells in peripheral blood, in which CXCR5(+) CD8(+) T cells were negatively correlated with the frequency of CXCR5(+) CD4(+) T cells in CHB patients. After PMA+ionomycin stimulation, CXCR5(+) CD8(+) T cells from CHB patients presented significantly higher transcription level of interferon gamma (IFN-γ), interleukin 10 (IL-10), and IL-21, as well as higher IL-10 and IL-21 protein secretion, than CXCR5(-) CD8(+) T cells. Unlike CXCR5(+) CD4(+) T cells, when incubated with naive CD19(+)CD27(-) B cells, CXCR5(+) CD8(+) T cells alone did not upregulate IgM, IgG, and IgA secretion. However, addition of CXCR5(+) CD8(+) T cells in B cell-CXCR5(+) CD4(+) T cell coculture significantly increased the levels of secreted IgG and IgA, demonstrating that CXCR5(+) CD8(+) T cell could indirectly offer B cell help. Furthermore, high frequencies of CXCR5(+) CD8(+) T cells tended to associate with low HBV DNA load, and the frequency of CXCR5(+) CD8(+) T cells was negatively correlated with alanine aminotransferase (ALT) level. Together, these results suggested that CXCR5(+) CD8(+) T cells were involved in the antiviral immune responses in CHB and could potentially serve as a therapeutic candidate.

  11. Adoptive immunotherapy with Cl-IB-MECA-treated CD8+ T cells reduces melanoma growth in mice.

    Directory of Open Access Journals (Sweden)

    Antonella Montinaro

    Full Text Available Cl-IB-MECA is a selective A3 adenosine receptor agonist, which plays a crucial role in limiting tumor progression. In mice, Cl-IB-MECA administration enhances the anti-tumor T cell-mediated response. However, little is known about the activity of Cl-IB-MECA on CD8+ T cells. The aim of this study was to investigate the effect of ex vivo Cl-IB-MECA treatment of CD8+ T cells, adoptively transferred in melanoma-bearing mice. Adoptive transfer of Cl-IB-MECA-treated CD8+ T cells or a single administration of Cl-IB-MECA (20 ng/mouse inhibited tumor growth compared with the control group and significantly improved mouse survival. This was associated with the release of Th1-type cytokines and a greater influx of mature Langerin+ dendritic cells (LCs into the tumor microenvironment. CD8+ T cells treated with Cl-IB-MECA released TNF-α which plays a critical role in the therapeutic efficacy of these cells when injected to mice. Indeed, neutralization of TNF-α by a specific monoclonal Ab significantly blocked the anti-tumor activity of Cl-IB-MECA-treated T cells. This was due to the reduction in levels of cytotoxic cytokines and the presence of fewer LCs. In conclusion, these studies reveal that ex vivo treatment with Cl-IB-MECA improves CD8+ T cell adoptive immunotherapy for melanoma in a TNF-α-dependent manner.

  12. Vaccination with Ad5 vectors expands Ad5-specific CD8 T cells without altering memory phenotype or functionality.

    Directory of Open Access Journals (Sweden)

    Natalie A Hutnick

    Full Text Available BACKGROUND: Adenoviral (Ad vaccine vectors represent both a vehicle to present a novel antigen to the immune system as well as restimulation of immune responses against the Ad vector itself. To what degree Ad-specific CD8(+ T cells are restimulated by Ad vector vaccination is unclear, although such knowledge would be important as vector-specific CD8(+ T cell expansion could potentially further limit Ad vaccine efficacy beyond Ad-specific neutralizing antibody alone. METHODOLOGY/PRINCIPAL FINDINGS: Here we addressed this issue by measuring human Adenovirus serotype 5 (Ad5-specific CD8(+ T cells in recipients of the Merck Ad5 HIV-1 vaccine vector before, during, and after vaccination by multicolor flow cytometry. Ad5-specific CD8(+ T-cells were detectable in 95% of subjects prior to vaccination, and displayed primarily an effector-type functional profile and phenotype. Peripheral blood Ad5-specific CD8(+ T-cell numbers expanded after Ad5-HIV vaccination in all subjects, but differential expansion kinetics were noted in some baseline Ad5-neutralizing antibody (Ad5 nAb seronegative subjects compared to baseline Ad5 nAb seropositive subjects. However, in neither group did vaccination alter polyfunctionality, mucosal targeting marker expression, or memory phenotype of Ad5-specific CD8(+ T-cells. CONCLUSIONS: These data indicate that repeat Ad5-vector administration in humans expands Ad5-specific CD8(+ T-cells without overtly affecting their functional capacity or phenotypic properties. This is a secondary analysis of samples collected during the 016 trial. Results of the Merck 016 trial safety and immunogenicity have been previously published in the journal of clinical infectious diseases [1]. TRIAL REGISTRATION: ClinicalTrials.gov NCT00849680[http://www.clinicaltrials.gov/show/NCT00849680].

  13. CD25+CD127+Foxp3- Cells Represent a Major Subpopulation of CD8+ T Cells in the Eye Chambers of Normal Mice

    Science.gov (United States)

    Ziółkowska, Natalia; Ziółkowski, Hubert; Małaczewska, Joanna

    2017-01-01

    The aim of this study has been to determine whether eye chambers constitute part of the normal migratory pathway of naive CD4+ and CD8+ T cells in mouse and if natural CD4+CD25+Foxp3+ and CD8+CD25+Foxp3+ regulatory T cells are present within these eye compartments. To this aim, the cells obtained from aqueous humor (AH) of normal mice were phenotyped in terms of the expression CD4, CD8, CD25, CD127 and transcription factor Foxp3. The mean percentage of CD8+ T cells in the total AH lymphocyte population was as high as 28.69%; the mean percentage of CD8high and CD8low cells in this population was 34.09% and 65.91%, respectively. The presence of cells with the regulatory phenotype, i.e. CD25+Foxp3+ cells, constituted only 0.32% of CD8+ T cell subset. Regarding the expression of CD25, AH CD8+ T cells were an exceptional population in that nearly 85% of these cells expressed this molecule without concomitant Foxp3 expression. Despite having this phenotype, they should not be viewed as activated cells because most of them co-expressed CD127, which indicates that they are naive lymphocytes. With regard to the markers applied in the present research, CD8+CD25+CD127+Foxp3- T cells represent the most numerous subset of AH CD8+ cells. The results suggest that eye chambers in mice are an element in the normal migratory pathway of naive CD8+ T cells. The study presented herein demonstrated only trace presence of CD4+ cells in the eye chambers, as the mean percentage of these cells was just 0.56. Such selective and specific homing of CD8+ and CD4+ cells to the eye chambers is most clearly engaged in the induction and maintenance of ocular immune privilege. PMID:28081241

  14. Splenectomy alters distribution and turnover but not numbers or protective capacity of de novo generated memory CD8 T cells.

    Directory of Open Access Journals (Sweden)

    Marie eKim

    2014-11-01

    Full Text Available The spleen is a highly compartmentalized lymphoid organ that allows for efficient antigen presentation and activation of immune responses. Additionally, the spleen itself functions to remove senescent red blood cells, filter bacteria, and sequester platelets. Splenectomy, commonly performed after blunt force trauma or splenomegaly, has been shown to increase risk of certain bacterial and parasitic infections years after removal of the spleen. Although previous studies report defects in memory B cells and IgM titers in splenectomized patients, the effect of splenectomy on CD8 T cell responses and memory CD8 T cell function remains ill defined. Using TCR-transgenic P14 cells, we demonstrate that homeostatic proliferation and representation of pathogen-specific memory CD8 T cells in the blood are enhanced in splenectomized compared to sham surgery mice. Surprisingly, despite the enhanced turnover, splenectomized mice displayed no changes in total memory CD8 T cell numbers nor impaired protection against lethal dose challenge with Listeria monocytogenes. Thus, our data suggest that memory CD8 T cell maintenance and function remain intact in the absence of the spleen.

  15. IL-15 induces unspecific effector functions in human peptide-specific CD8+ T-cell cultures

    DEFF Research Database (Denmark)

    Lyngstrand, S T; Würtzen, P A; Ødum, N

    2002-01-01

    . Secondary IMP-specific CD8+ T cells were generated by the addition of IL-2 during two cycles of restimulation. From the third restimulation, identical CTL cultures were expanded with either IL-2 or IL-15 in parallel. Cell expansion as well as Ag specificity was considerably reduced after a 5 day culture......Antigen (Ag)-specific CD8+ T cells are a major host defence against viral infections. In the present study, we generated human CD8+ T-cell lines specific towards influenza matrix peptide (IMP)-pulsed Ag-presenting cells. We compared the effect of interleukin-2 (IL-2) and IL-15 on the proliferation...... and cytotoxic activity of primary and secondary IMP-specific cytotoxic T lymphocyte (CTL) culture. In primary CTL cultures, IL-15-induced cell expansion was considerably reduced as compared with IL-2-induced cell expansion, and IL-15 favoured the outgrowth of CTLs without peptide specificity in these cultures...

  16. Protective Role of Cross-Reactive CD8 T Cells Against Dengue Virus Infection

    Directory of Open Access Journals (Sweden)

    Annie Elong Ngono

    2016-11-01

    Full Text Available Infection with one of the four dengue virus serotypes (DENV1-4 presumably leads to lifelong immunity against the infecting serotype but not against heterotypic reinfection, resulting in a greater risk of developing Dengue Hemorrhagic Fever/Dengue Shock Syndrome (DHF/DSS during secondary infection. Both antibodies and T cell responses have been implicated in DHF/DSS pathogenesis. According to the T cell-based hypothesis termed “original antigenic sin,” secondary DENV infection is dominated by non-protective, cross-reactive T cells that elicit an aberrant immune response. The goal of our study was to compare the roles of serotype-specific and cross-reactive T cells in protection vs. pathogenesis during DENV infection in vivo. Specifically, we utilized IFN-α/βR−/− HLA*B0702 transgenic mice in the context of peptide vaccination with relevant human CD8 T cell epitopes. IFN-α/βR−/− HLA*B0702 transgenic mice were immunized with DENV serotype 2 (DENV2-specific epitopes or variants found in any of the other three serotypes (DENV1, DENV3 or DENV4, followed by challenge with DENV. Although cross-reactive T cell responses were lower than responses elicited by serotype-specific T cells, immunization with either serotype-specific or variant peptide epitopes enhanced viral clearance, demonstrating that both serotype-specific and cross-reactive T cells can contribute to protection in vivo against DENV infection.

  17. Protective Role of Cross-Reactive CD8 T Cells Against Dengue Virus Infection.

    Science.gov (United States)

    Elong Ngono, Annie; Chen, Hui-Wen; Tang, William W; Joo, Yunichel; King, Kevin; Weiskopf, Daniela; Sidney, John; Sette, Alessandro; Shresta, Sujan

    2016-11-01

    Infection with one of the four dengue virus serotypes (DENV1-4) presumably leads to lifelong immunity against the infecting serotype but not against heterotypic reinfection, resulting in a greater risk of developing Dengue Hemorrhagic Fever/Dengue Shock Syndrome (DHF/DSS) during secondary infection. Both antibodies and T cell responses have been implicated in DHF/DSS pathogenesis. According to the T cell-based hypothesis termed "original antigenic sin," secondary DENV infection is dominated by non-protective, cross-reactive T cells that elicit an aberrant immune response. The goal of our study was to compare the roles of serotype-specific and cross-reactive T cells in protection vs. pathogenesis during DENV infection in vivo. Specifically, we utilized IFN-α/βR(-/-) HLA*B0702 transgenic mice in the context of peptide vaccination with relevant human CD8 T cell epitopes. IFN-α/βR(-/-) HLA*B0702 transgenic mice were immunized with DENV serotype 2 (DENV2)-specific epitopes or variants found in any of the other three serotypes (DENV1, DENV3 or DENV4), followed by challenge with DENV. Although cross-reactive T cell responses were lower than responses elicited by serotype-specific T cells, immunization with either serotype-specific or variant peptide epitopes enhanced viral clearance, demonstrating that both serotype-specific and cross-reactive T cells can contribute to protection in vivo against DENV infection.

  18. File list: InP.Bld.20.AllAg.CD4_CD8_double_negative_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.20.AllAg.CD4_CD8_double_negative_cells mm9 Input control Blood CD4 CD8 double negative...,SRX091680 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Bld.20.AllAg.CD4_CD8_double_negative_cells.bed ...

  19. File list: ALL.Bld.20.AllAg.CD4_CD8_double_negative_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.20.AllAg.CD4_CD8_double_negative_cells mm9 All antigens Blood CD4 CD8 double negative...091663,SRX091665 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.20.AllAg.CD4_CD8_double_negative_cells.bed ...

  20. File list: InP.Bld.05.AllAg.CD4_CD8_double_negative_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.05.AllAg.CD4_CD8_double_negative_cells mm9 Input control Blood CD4 CD8 double negative...,SRX091680 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Bld.05.AllAg.CD4_CD8_double_negative_cells.bed ...

  1. File list: ALL.Bld.10.AllAg.CD4_CD8_double_negative_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.10.AllAg.CD4_CD8_double_negative_cells mm9 All antigens Blood CD4 CD8 double negative...692952,SRX692966 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.10.AllAg.CD4_CD8_double_negative_cells.bed ...

  2. File list: InP.Bld.10.AllAg.CD4_CD8_double_negative_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.10.AllAg.CD4_CD8_double_negative_cells mm9 Input control Blood CD4 CD8 double negative...,SRX091680 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Bld.10.AllAg.CD4_CD8_double_negative_cells.bed ...

  3. File list: ALL.Bld.05.AllAg.CD4_CD8_double_negative_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.05.AllAg.CD4_CD8_double_negative_cells mm9 All antigens Blood CD4 CD8 double negative...692954,SRX692966 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.05.AllAg.CD4_CD8_double_negative_cells.bed ...

  4. File list: ALL.Bld.50.AllAg.CD4_CD8_double_negative_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.50.AllAg.CD4_CD8_double_negative_cells mm9 All antigens Blood CD4 CD8 double negative...091667,SRX091665 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.50.AllAg.CD4_CD8_double_negative_cells.bed ...

  5. File list: InP.Bld.50.AllAg.CD4_CD8_double_negative_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.50.AllAg.CD4_CD8_double_negative_cells mm9 Input control Blood CD4 CD8 double negative...,SRX091680 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Bld.50.AllAg.CD4_CD8_double_negative_cells.bed ...

  6. File list: ALL.Bld.20.AllAg.CD4_CD8_double_positive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.20.AllAg.CD4_CD8_double_positive_cells mm9 All antigens Blood CD4 CD8 double positive...X018116,SRX018113 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.20.AllAg.CD4_CD8_double_positive_cells.bed ...

  7. File list: His.Bld.50.AllAg.CD4_CD8_double_positive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.50.AllAg.CD4_CD8_double_positive_cells mm9 Histone Blood CD4 CD8 double positive...iencedbc.jp/kyushu-u/mm9/assembled/His.Bld.50.AllAg.CD4_CD8_double_positive_cells.bed ...

  8. File list: ALL.Bld.05.AllAg.CD4_CD8_double_positive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.05.AllAg.CD4_CD8_double_positive_cells mm9 All antigens Blood CD4 CD8 double positive...X692962,SRX692956 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.05.AllAg.CD4_CD8_double_positive_cells.bed ...

  9. File list: ALL.Bld.50.AllAg.CD4_CD8_double_positive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.50.AllAg.CD4_CD8_double_positive_cells mm9 All antigens Blood CD4 CD8 double positive...X018116,SRX018113 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.50.AllAg.CD4_CD8_double_positive_cells.bed ...

  10. File list: His.Bld.20.AllAg.CD4_CD8_double_positive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.20.AllAg.CD4_CD8_double_positive_cells mm9 Histone Blood CD4 CD8 double positive...iencedbc.jp/kyushu-u/mm9/assembled/His.Bld.20.AllAg.CD4_CD8_double_positive_cells.bed ...

  11. File list: ALL.Bld.10.AllAg.CD4_CD8_double_positive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.10.AllAg.CD4_CD8_double_positive_cells mm9 All antigens Blood CD4 CD8 double positive...X099392,SRX018112 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.10.AllAg.CD4_CD8_double_positive_cells.bed ...

  12. File list: His.Bld.05.AllAg.CD4_CD8_double_positive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.05.AllAg.CD4_CD8_double_positive_cells mm9 Histone Blood CD4 CD8 double positive...iencedbc.jp/kyushu-u/mm9/assembled/His.Bld.05.AllAg.CD4_CD8_double_positive_cells.bed ...

  13. File list: His.Bld.10.AllAg.CD4_CD8_double_positive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.10.AllAg.CD4_CD8_double_positive_cells mm9 Histone Blood CD4 CD8 double positive...iencedbc.jp/kyushu-u/mm9/assembled/His.Bld.10.AllAg.CD4_CD8_double_positive_cells.bed ...

  14. CD8 T cells are involved in skeletal muscle regeneration through facilitating MCP-1 secretion and Gr1(high) macrophage infiltration.

    Science.gov (United States)

    Zhang, Jing; Xiao, Zhicheng; Qu, Chao; Cui, Wei; Wang, Xiaonan; Du, Jie

    2014-11-15

    Inflammatory microenvironments play a key role in skeletal muscle regeneration. The infiltration of CD8 T cells into injured muscle has been reported. However, the role of CD8 T cells during skeletal muscle regeneration remains unclear. In this study, we used cardiotoxin-induced mouse skeletal muscle injury/regeneration model to investigate the role of CD8 T cells. Muscle regeneration was impaired and matrix deposit was increased in CD8α-deficient mice compared with wild-type (WT) mice whose CD8 T cells were infiltrated into damaged muscle after cardiotoxin injection. Adoptive transfer of CD8 T cells to CD8α-deficient mice improved muscle regeneration and inhibited matrix remodeling. Compared with WT mice, CD8α deficiency limited the recruitment of Gr1(high) macrophages (MPs) into muscle, resulting in the reduction of satellite cell number. The expression of MCP-1 (MCP-1/CCL2), which regulates the migration of Gr1(high) MPs, was reduced in CD8α-deficient mice compared with WT mice. Coculture CD8 T cells with MPs promoted MCP-1 secretion. The i.m. injection of MCP-1 markedly promoted the recruitment of Gr1(high) MPs and improved muscle regeneration in CD8α-deficient mice. We conclude that CD8 T cells are involved in skeletal muscle regeneration by regulating the secretion of MCP-1 to recruit Gr1(high) MPs, which facilitate myoblast proliferation.

  15. CD4+ FOXP3+ Regulatory T Cells Exhibit Impaired Ability to Suppress Effector T Cell Proliferation in Patients with Turner Syndrome.

    Directory of Open Access Journals (Sweden)

    Young Ah Lee

    Full Text Available We investigated whether the frequency, phenotype, and suppressive function of CD4+ FOXP3+ regulatory T cells (Tregs are altered in young TS patients with the 45,X karyotype compared to age-matched controls.Peripheral blood mononuclear cells from young TS patients (n = 24, 17.4-35.9 years and healthy controls (n = 16 were stained with various Treg markers to characterize their phenotypes. Based on the presence of thyroid autoimmunity, patients were categorized into TS (- (n = 7 and TS (+ (n = 17. Tregs sorted for CD4+ CD25bright were co-cultured with autologous CD4+ CD25- target cells in the presence of anti-CD3 and -CD28 antibodies to assess their suppressive function.Despite a lower frequency of CD4+ T cells in the TS (- and TS (+ patients (mean 30.8% and 31.7%, vs. 41.2%; P = 0.003 and P < 0.001, respectively, both groups exhibited a higher frequency of FOXP3+ Tregs among CD4+ T cells compared with controls (means 1.99% and 2.05%, vs. 1.33%; P = 0.029 and P = 0.004, respectively. There were no differences in the expression of CTLA-4 and the frequency of Tregs expressing CXCR3+, and CCR4+ CCR6+ among the three groups. However, the ability of Tregs to suppress the in vitro proliferation of autologous CD4+ CD25- T cells was significantly impaired in the TS (- and TS (+ patients compared to controls (P = 0.003 and P = 0.041. Meanwhile, both the TS (- and TS (+ groups had lower frequencies of naïve cells (P = 0.001 for both but higher frequencies of effector memory cells (P = 0.004 and P = 0.002 than did the healthy control group.The Tregs of the TS patients could not efficiently suppress the proliferation of autologous effector T cells, despite their increased frequency in peripheral CD4+ T cells.

  16. Increased numbers of CD4+ and CD8+ T cells in lesional skin of cats with allergic dermatitis.

    Science.gov (United States)

    Roosje, P J; van Kooten, P J; Thepen, T; Bihari, I C; Rutten, V P; Koeman, J P; Willemse, T

    1998-07-01

    The aim of this study was to characterize T cells in the skin of cats with an allergic dermatitis histologically compatible with atopic dermatitis, since T cells play an important role in the pathogenesis of atopic dermatitis in humans. We observed a significantly greater number of T cells in lesional skin of domestic short-haired cats with allergic dermatitis (n = 10; median age 5.8 years) than in the skin of healthy control animals (n = 10; median age 5.0 years). In the skin of the healthy control animals, one or two CD4+ cells and no CD8+ cells were found. A predominant increase of CD4+ T cells and a CD4+/CD8+ ratio (mean +/- SD: 3.9 +/- 2.0) was found in the lesional skin of 10 cats with allergic dermatitis. The CD4+/CD8+ cell ratio in the skin of healthy control animals could not be determined because of the absence of CD8+ cells. The CD4+/CD8+ cell ratio in the peripheral blood of 10 cats with allergic dermatitis (mean +/- SD: 1.9 +/- 0.4) did not differ significantly from that in 10 healthy control animals (2.2 +/- 0.4). The CD4+/CD8+ cell ratio and predominance of CD4+ T cells in the lesional skin of cats with allergic dermatitis is comparable to that found in atopic dermatitis in humans. In addition, the observed increase of CD4+ T cells in the nonlesional skin of cats with allergic dermatitis compared to the skin of healthy cats is similar to what is seen in humans. Cytokines produced by T cells and antigen-specific T cells are important mediators in the inflammatory cascade resulting in atopic dermatitis in humans. This study is a first step to investigate their role in feline allergic dermatitis.

  17. Noncytotoxic suppression of human immunodeficiency virus type 1 transcription by exosomes secreted from CD8+ T cells.

    Science.gov (United States)

    Tumne, Ashwin; Prasad, Varsha Shridhar; Chen, Yue; Stolz, Donna B; Saha, Kunal; Ratner, Deena M; Ding, Ming; Watkins, Simon C; Gupta, Phalguni

    2009-05-01

    CD8(+) T cells display a noncytotoxic activity that suppresses transcription of human immunodeficiency virus type 1 (HIV-1) in an antigen-independent and major histocompatibility complex-unrestricted manner. To date, the precise cellular and molecular factors mediating this CD8(+) T-cell effector function remain unsolved. Despite evidence indicating the dependence of the activity on cell-cell contact, the possibility of a membrane-mediated activity that represses transcription from the viral promoter remains unexplored. We therefore investigated whether this inhibition of HIV-1 transcription might be elicited by a membrane-bound determinant. Using a CD8(+) T-cell line displaying potent noncytotoxic HIV-1 suppression activity, we have identified a membrane-localized HIV-1-suppressing activity that is concomitantly secreted as 30- to 100-nm endosome-derived tetraspanin-rich vesicles known as exosomes. Purified exosomes from CD8(+) T-cell culture supernatant noncytotoxically suppressed CCR5-tropic (R5) and CXCR4-tropic (X4) replication of HIV-1 in vitro through a protein moiety. Similar antiviral activity was also found in exosomes isolated from two HIV-1-infected subjects. The antiviral exosomes specifically inhibited HIV-1 transcription in both acute and chronic models of infection. Our results, for the first time, indicate the existence of an antiviral membrane-bound factor consistent with the hallmarks defining noncytotoxic CD8(+) T-cell suppression of HIV-1.

  18. Early cytoskeletal rearrangement during dendritic cell maturation enhances synapse formation and Ca(2+) signaling in CD8(+) T cells.

    Science.gov (United States)

    Averbeck, Marco; Braun, Thorsten; Pfeifer, Gunther; Sleeman, Jonathan; Dudda, Jan; Martin, Stefan F; Kremer, Bernhard; Aktories, Klaus; Simon, Jan C; Termeer, Christian

    2004-10-01

    The interplay between dendritic cells (DC) and T cells is a dynamic process critically depending on DC maturation. Ca(2+) influx is one of the initial events occurring during DC/T cell contacts. To determine how DC maturation influences DC/T cell contacts, time-lapse video microscopy was established using TCR-transgenic CD8(+) T cells from P14 mice. DC maturation shifted DC/T cell contacts from short-lived interactions with transient Ca(2+) influx in T cells to long-lasting interactions and sustained Ca(2+) influx of 30 min and more. Follow-up of DC/T cell interactions after 2 h using confocal microscopy revealed that long-lasting Ca(2+) responses in T cells were preferentially associated with the formation of an immunological synapse involving CD54 and H2-K(b) at the DC/T cell interface. Such synapse formation preceded MHC or B7 up-regulation, since DC developed into potent Ca(2+) stimulators 7 h after initiation of maturation. Instead, the enhanced capacity of 7 h-matured DC to induce sustained Ca(2+) responses in CD8(+) T cells is critically dependent on the polarization and rearrangement of the cytoskeleton, as shown by Clostridium difficile toxin B inhibitor experiments. These data indicate that already very early after receiving a maturation stimulus, DC display enhanced cytoskeletal activity resulting in the rapid formation of immunological synapses and effective CD8(+) T cell stimulation.

  19. CD4 T cell control primary measles virus infection of the CNS: regulation is dependent on combined activity with either CD8 T cells or with B cells: CD4, CD8 or B cells alone are ineffective.

    Science.gov (United States)

    Tishon, Antoinette; Lewicki, Hanna; Andaya, Abegail; McGavern, Dorian; Martin, Lee; Oldstone, Michael B A

    2006-03-30

    Measles virus (MV), one of the most infectious of human pathogens, still infects over 30 million humans and causes over 500,000 deaths each year [Griffin, D., 2001. Measles virus. In: Fields, B., Knipe, D., Howley, P. (Eds.), Fields Virology. Lippincott-Raven, Philadelphia, pp. 1401-1442; ]. Death is primarily due to secondary microbial infections associated with the immunosuppression caused by MV. Studies of humans with genetic or acquired deficiencies of either the humoral or cellular arm of the immune system, and rodent models have implicated T cells in the control of the ongoing MV infection but the precise role and activities of the specific T cell subset or the molecules they produce is not clear. Using a transgenic mouse model in conjunction with depletion and reconstitution of individual B and T cell subsets alone or in combination, we show that neither CD4, CD8 nor B cells per se control acute MV infection. However, combinations of either CD4 T cells and B cells, or of CD4 and CD8 T cells are essential but CD8 T with B cells are ineffective. Interferon-gamma and neutralizing antibodies, but neither perforin nor TNF-alpha alone are associated with clearance of MV infection. TNF-alpha combined with interferon-gamma is more effective in protection than interferon alone. Further, the lack of an interferon-gamma response leads to persistence of MV.

  20. Regulation of Gag- and Env-Specific CD8+ T Cell Responses in ART-Naive HIV-Infected Patients: Potential Implications for Individualized Immunotherapy.

    Directory of Open Access Journals (Sweden)

    Christian Prebensen

    Full Text Available Strategies to develop a functional cure for HIV infection will likely require boosting of effector T cell responses to eliminate reactivated, latently infected cells. We have recently explored an assay for assessing antigen-specific regulation of T cell proliferation, which was related to clinical progression in untreated patients and to vaccine efficacy in two trials of therapeutic Gag-based vaccines. We here expand the same assay to further investigate regulation mediated by various inhibitory pathways. Peripheral blood mononuclear cells from 26 asymptomatic HIV-infected, antiretroviral therapy-naïve patients were stimulated with Gag and Env overlapping peptide panels for 5 days. Monoclonal antibodies (mAbs blocking inhibitory mediators interleukin (IL 10, transforming growth factor (TGF β, programmed death ligand (PD-L 1 and herpes virus entry mediator (HVEM were added to parallel cultures. Functional T cell regulation (FTR was defined as the difference in proliferation between stimulated cultures with and without blocking mAbs. FTR was detected in 54% of patients. Blockade of IL-10/PD-L1 and IL10/TGF-β detected all cases with Gag- and Env-associated FTR, respectively. In accordance with previous findings, isolated Env FTR was associated with higher plasma HIV RNA and lower CD4 counts, while patients with both Gag and Env FTR also had higher Gag- and Env-specific proliferative CD8+ T cell responses. There was no association between FTR and frequencies of activated regulatory T cells. In conclusion, we observed substantial heterogeneity in FTR between patients, inhibitory pathways and HIV antigens. FTR may help to individualize immunomodulation and warrants further assessment in clinical immunotherapy trials.

  1. Regulation of Gag- and Env-Specific CD8+ T Cell Responses in ART-Naïve HIV-Infected Patients: Potential Implications for Individualized Immunotherapy.

    Science.gov (United States)

    Prebensen, Christian; Lind, Andreas; Dyrhol-Riise, Anne-Ma; Kvale, Dag

    2016-01-01

    Strategies to develop a functional cure for HIV infection will likely require boosting of effector T cell responses to eliminate reactivated, latently infected cells. We have recently explored an assay for assessing antigen-specific regulation of T cell proliferation, which was related to clinical progression in untreated patients and to vaccine efficacy in two trials of therapeutic Gag-based vaccines. We here expand the same assay to further investigate regulation mediated by various inhibitory pathways. Peripheral blood mononuclear cells from 26 asymptomatic HIV-infected, antiretroviral therapy-naïve patients were stimulated with Gag and Env overlapping peptide panels for 5 days. Monoclonal antibodies (mAbs) blocking inhibitory mediators interleukin (IL) 10, transforming growth factor (TGF) β, programmed death ligand (PD-L) 1 and herpes virus entry mediator (HVEM) were added to parallel cultures. Functional T cell regulation (FTR) was defined as the difference in proliferation between stimulated cultures with and without blocking mAbs. FTR was detected in 54% of patients. Blockade of IL-10/PD-L1 and IL10/TGF-β detected all cases with Gag- and Env-associated FTR, respectively. In accordance with previous findings, isolated Env FTR was associated with higher plasma HIV RNA and lower CD4 counts, while patients with both Gag and Env FTR also had higher Gag- and Env-specific proliferative CD8+ T cell responses. There was no association between FTR and frequencies of activated regulatory T cells. In conclusion, we observed substantial heterogeneity in FTR between patients, inhibitory pathways and HIV antigens. FTR may help to individualize immunomodulation and warrants further assessment in clinical immunotherapy trials.

  2. Molecular analysis of tumor-promoting CD8+ T cells in two-stage cutaneous chemical carcinogenesis.

    Science.gov (United States)

    Kwong, Bernice Y; Roberts, Scott J; Silberzahn, Tobias; Filler, Renata B; Neustadter, Jason H; Galan, Anjela; Reddy, Swapna; Lin, William M; Ellis, Peter D; Langford, Cordelia F; Hayday, Adrian C; Girardi, Michael

    2010-06-01

    T-pro are tumor-infiltrating TCRalphabeta(+)CD8(+) cells of reduced cytotoxic potential that promote experimental two-stage chemical cutaneous carcinogenesis. Toward understanding their mechanism of action, this study uses whole-genome expression analysis to compare T-pro with systemic CD8(+) T cells from multiple groups of tumor-bearing mice. T-pro show an overt T helper 17-like profile (high retinoic acid-related orphan receptor-(ROR)gammat, IL-17A, IL-17F; low T-bet and eomesodermin), regulatory potential (high FoxP3, IL-10, Tim-3), and transcripts encoding epithelial growth factors (amphiregulin, Gro-1, Gro-2). Tricolor flow cytometry subsequently confirmed the presence of TCRbeta(+) CD8(+) IL-17(+) T cells among tumor-infiltrating lymphocytes (TILs). Moreover, a time-course analysis of independent TIL isolates from papillomas versus carcinomas exposed a clear association of the "T-pro phenotype" with malignant progression. This molecular characterization of T-pro builds a foundation for elucidating the contributions of inflammation to cutaneous carcinogenesis, and may provide useful biomarkers for cancer immunotherapy in which the widely advocated use of tumor-specific CD8(+) cytolytic T cells should perhaps accommodate the cells' potential corruption toward the T-pro phenotype. The data are also likely germane to psoriasis, in which the epidermis may be infiltrated by CD8(+) IL-17-producing T cells.

  3. Successful protection against tularemia in C57BL/6 mice is correlated with expansion of Francisella tularensis-specific effector T cells.

    Science.gov (United States)

    Griffin, Amanda J; Crane, Deborah D; Wehrly, Tara D; Bosio, Catharine M

    2015-01-01

    Francisella tularensis is an intracellular, Gram-negative bacterium that causes the fatal disease tularemia. Currently, there are no licensed vaccines for tularemia and the requirements for protection against infection are poorly defined. To identify correlates of vaccine-induced immunity against tularemia, we compared different strains of the live vaccine strain (LVS) for their relative levels of virulence and ability to protect C57BL/6 mice against challenge with virulent F. tularensis strain SchuS4. Successful vaccination, as defined by survival of C57BL/6 mice, was correlated with significantly greater numbers of effector T cells in the spleen and lung. Further, lung cells and splenocytes from fully protected animals were more effective than lung cells and splenocytes from vaccinated but nonimmune animals in limiting intracellular replication of SchuS4 in vitro. Together, our data provide a unique model to compare efficacious vaccines to nonefficacious vaccines, which will enable comprehensive identification of host and bacterial components required for immunization against tularemia.

  4. TCR affinity for thymoproteasome-dependent positively selecting peptides conditions antigen responsiveness in CD8(+) T cells.

    Science.gov (United States)

    Takada, Kensuke; Van Laethem, Francois; Xing, Yan; Akane, Kazuyuki; Suzuki, Haruhiko; Murata, Shigeo; Tanaka, Keiji; Jameson, Stephen C; Singer, Alfred; Takahama, Yousuke

    2015-10-01

    In the thymus, low-affinity T cell antigen receptor (TCR) engagement facilitates positive selection of a useful T cell repertoire. Here we report that TCR responsiveness of mature CD8(+) T cells is fine tuned by their affinity for positively selecting peptides in the thymus and that optimal TCR responsiveness requires positive selection on major histocompatibility complex class I-associated peptides produced by the thymoproteasome, which is specifically expressed in the thymic cortical epithelium. Thymoproteasome-independent positive selection of monoclonal CD8(+) T cells results in aberrant TCR responsiveness, homeostatic maintenance and immune responses to infection. These results demonstrate a novel aspect of positive selection, in which TCR affinity for positively selecting peptides produced by thymic epithelium determines the subsequent antigen responsiveness of mature CD8(+) T cells in the periphery.

  5. In vivo proliferation of naïve and memory influenza-specific CD8(+) T cells

    DEFF Research Database (Denmark)

    Flynn, K J; Riberdy, J M; Christensen, Jan Pravsgaard;

    1999-01-01

    days. The greatly expanded population of CD8(+)NPP(+) memory T cells in the lymphoid tissue of secondarily challenged mice declines progressively in mean prevalence over the ensuing 100 days, despite the fact that at least some of these lymphocytes continue to cycle. The recall of cell......The virus-specific CD8(+) T cell response has been analyzed through the development, effector, and recovery phases of primary and secondary influenza pneumonia. Apparently, most, if not all, memory T cells expressing clonotypic receptors that bind a tetrameric complex of influenza nucleoprotein (NP......)(366-374) peptide+H-2D(b) (NPP) are induced to divide during the course of this localized respiratory infection. The replicative phase of the recall response ends about the time that virus can no longer be recovered from the lung, whereas some primary CD8(+)NPP(+) T cells may proliferate for a few more...

  6. Co-receptor choice by V alpha14i NKT cells is driven by Th-POK expression rather than avoidance of CD8-mediated negative selection.

    Science.gov (United States)

    Engel, Isaac; Hammond, Kirsten; Sullivan, Barbara A; He, Xi; Taniuchi, Ichiro; Kappes, Dietmar; Kronenberg, Mitchell

    2010-05-10

    Mouse natural killer T (NKT) cells with an invariant V alpha14-J alpha18 rearrangement (V alpha14 invariant [V alpha14i] NKT cells) are either CD4(+)CD8(-) or CD4(-)CD8(-). Because transgenic mice with forced CD8 expression in all T cells exhibited a profound NKT cell deficit, the absence of CD8 has been attributed to negative selection. We now present evidence that CD8 does not serve as a coreceptor for CD1d recognition and that the defect in development in CD8 transgene homozygous mice is the result of a reduction in secondary T cell receptor alpha rearrangements. Thymocytes from mice hemizygous for the CD8 transgene have a less severe rearrangement defect and have functional CD8(+) V alpha14i NKT cells. Furthermore, we demonstrate that the transcription factor Th, Poxviruses and Zinc finger, and Krüppel family (Th-POK) is expressed by V alpha14i NKT cells throughout their differentiation and is necessary both to silence CD8 expression and for the functional maturity of V alpha14i NKT cells. We therefore suggest that Th-POK expression is required for the normal development of V alpha14i NKT cells and that the absence of CD8 expression by these cells is a by-product of such expression, as opposed to the result of negative selection of CD8-expressing V alpha14i NKT cells.

  7. CD8 T cell response maturation defined by anentropic specificity and repertoire depth correlates with SIVΔnef-induced protection.

    Directory of Open Access Journals (Sweden)

    Sama Adnan

    2015-02-01

    Full Text Available The live attenuated simian immunodeficiency virus (LASIV vaccine SIVΔnef is one of the most effective vaccines in inducing protection against wild-type lentiviral challenge, yet little is known about the mechanisms underlying its remarkable protective efficacy. Here, we exploit deep sequencing technology and comprehensive CD8 T cell epitope mapping to deconstruct the CD8 T cell response, to identify the regions of immune pressure and viral escape, and to delineate the effect of epitope escape on the evolution of the CD8 T cell response in SIVΔnef-vaccinated animals. We demonstrate that the initial CD8 T cell response in the acute phase of SIVΔnef infection is mounted predominantly against more variable epitopes, followed by widespread sequence evolution and viral escape. Furthermore, we show that epitope escape expands the CD8 T cell repertoire that targets highly conserved epitopes, defined as anentropic specificity, and generates de novo responses to the escaped epitope variants during the vaccination period. These results correlate SIVΔnef-induced protection with expanded anentropic specificity and increased response depth. Importantly, these findings render SIVΔnef, long the gold standard in HIV/SIV vaccine research, as a proof-of-concept vaccine that highlights the significance of the twin principles of anentropic specificity and repertoire depth in successful vaccine design.

  8. High numbers of IL-2-producing CD8+ T cells during viral infection: correlation with stable memory development

    DEFF Research Database (Denmark)

    Kristensen, Nanna Ny; Christensen, Jan Pravsgaard; Thomsen, Allan Randrup

    2002-01-01

    Using infections with lymphocytic choriomeningitis virus (LCMV) and vesicular stomatitis virus in mice as model systems, we have investigated the ability of antigen-primed CD8+ T cells generated in the context of viral infections to produce IL-2. Our results indicate that acute immunizing infection...... normally leads to generation of high numbers of IL-2-producing antigen-specific CD8+ T cells. By costaining for IL-2 and IFN-gamma intracellularly, we found that IL-2-producing cells predominantly constitute a subset of cells also producing IFN-gamma. Comparison of the kinetics of generation revealed...

  9. Paraflagellar rod protein-specific CD8+ cytotoxic T lymphocytes target Trypanosoma cruzi-infected host cells.

    Science.gov (United States)

    Wrightsman, Ruth A; Luhrs, Keith A; Fouts, David; Manning, Jerry E

    2002-08-01

    Our previous studies show that in mice immunized with the paraflagellar rod (PFR) proteins of Trypanosoma cruzi protective immunity against this protozoan parasite requires MHC class I-restricted T cell function. To determine whether PFR-specific CD8+ T cell subsets are generated during T. cruzi infection, potential CTL targets in the PFR proteins were identified by scanning the amino acid sequences of the four PFR proteins for regions of 8-10 amino acids that conform to predicted MHC class I H-2b binding motifs. A subset of the peptide sequences identified were synthesized and tested as target antigen in 51Cr-release assays with effector cells from chronically infected T. cruzi mice. Short-term cytotoxic T lymphocyte (CTL) lines specific for two of the peptides, PFR-1(164-171) and PFR-3(123-130), showed high levels of lytic activity against peptide-pulsed target cells, secreted interferon (IFN)-gamma in response to parasite-infected target cells, and were found to be CD8+, CD4-, CD3+, TCRalphabeta+ cells of the Tc1 subset. Challenge of PFR immunized CD8-/- and perforin-deficient (PKO) mice confirmed that while CD8+ cells are required for survival of T. cruzi challenge infection, perforin activity is not required. Furthermore, while lytic activity of PFR-specific CD8+ T cell lines derived from PKO mice was severely impaired, the IFN-gamma levels secreted by CTLs from PKO mice were equivalent to that of normal mice, suggesting that the critical role played by CD8+ T cells in immunity to the parasite may be secretion of type 1 cytokines rather than lysis of parasite infected host cells.

  10. Characterization of CD8+ T cell differentiation following SIVΔnef vaccination by transcription factor expression profiling.

    Directory of Open Access Journals (Sweden)

    James M Billingsley

    2015-03-01

    Full Text Available The onset of protective immunity against pathogenic SIV challenge in SIVΔnef-vaccinated macaques is delayed for 15-20 weeks, a process that is related to qualitative changes in CD8+ T cell responses induced by SIVΔnef. As a novel approach to characterize cell differentiation following vaccination, we used multi-target qPCR to measure transcription factor expression in naïve and memory subsets of CD8++ T cells, and in SIV-specific CD8+ T cells obtained from SIVΔnef-vaccinated or wild type SIVmac239-infected macaques. Unsupervised clustering of expression profiles organized naïve and memory CD8+ T cells into groups concordant with cell surface phenotype. Transcription factor expression patterns in SIV-specific CD8+ T cells in SIVΔnef-vaccinated animals were distinct from those observed in purified CD8+ T cell subsets obtained from naïve animals, and were intermediate to expression profiles of purified central memory and effector memory T cells. Expression of transcription factors elicited by SIVΔnef vaccination also varied over time: cells obtained at later time points, temporally associated with greater protection, appeared more central-memory like than cells obtained at earlier time points, which appeared more effector memory-like. Expression of transcription factors associated with effector differentiation, such as ID2 and RUNX3, were decreased over time, while expression of transcription factors associated with quiescence or memory differentiation, such as TCF7, BCOR and EOMES, increased. CD8+ T cells specific for a more conserved epitope expressed higher levels of TBX21 and BATF, and appeared more effector-like than cells specific for an escaped epitope, consistent with continued activation by replicating vaccine virus. These data suggest transcription factor expression profiling is a novel method that can provide additional data complementary to the analysis of memory cell differentiation based on classical phenotypic markers

  11. Recombinant yellow fever viruses elicit CD8+ T cell responses and protective immunity against Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Raquel Tayar Nogueira

    Full Text Available Chagas' disease is a major public health problem affecting nearly 10 million in Latin America. Despite several experimental vaccines have shown to be immunogenic and protective in mouse models, there is not a current vaccine being licensed for humans or in clinical trial against T. cruzi infection. Towards this goal, we used the backbone of Yellow Fever (YF 17D virus, one of the most effective and well-established human vaccines, to express an immunogenic fragment derived from T. cruzi Amastigote Surface Protein 2 (ASP-2. The cDNA sequence of an ASP-2 fragment was inserted between E and NS1 genes of YF 17D virus through the construction of a recombinant heterologous cassette. The replication ability and genetic stability of recombinant YF virus (YF17D/ENS1/Tc was confirmed for at least six passages in Vero cells. Immunogenicity studies showed that YF17D/ENS1/Tc virus elicited neutralizing antibodies and gamma interferon (IFN-γ producing-cells against the YF virus. Also, it was able to prime a CD8(+ T cell directed against the transgenic T. cruzi epitope (TEWETGQI which expanded significantly as measured by T cell-specific production of IFN-γ before and after T. cruzi challenge. However, most important for the purposes of vaccine development was the fact that a more efficient protective response could be seen in mice challenged after vaccination with the YF viral formulation consisting of YF17D/ENS1/Tc and a YF17D recombinant virus expressing the TEWETGQI epitope at the NS2B-3 junction. The superior protective immunity observed might be due to an earlier priming of epitope-specific IFN-γ-producing T CD8(+ cells induced by vaccination with this viral formulation. Our results suggest that the use of viral formulations consisting of a mixture of recombinant YF 17D viruses may be a promising strategy to elicit protective immune responses against pathogens, in general.

  12. Comparative analysis of immune activation markers of CD8+ T cells in lymph nodes of different origins in SIV-infected Chinese rhesus macaques

    Directory of Open Access Journals (Sweden)

    Jinbiao Liu

    2016-09-01

    Full Text Available Altered T-cell homeostasis, such as expansion of CD8+ T cells to the secondary lymphatic compartments has been suggested as a mechanism of HIV/SIV-pathogenesis. However, the role of immune activation of CD8+ T cells in the CD4/CD8 turnover and viral replication in these tissues is not completely understood. In the present study, we compared the expression of immune activation markers (CD69 and HLA-DR on CD8+ T cells in the peripheral blood and lymph nodes (LNs of SIV-infected/uninfected Chinese rhesus macaques. SIV-infected macaques had significantly higher percentages of CD8+CD69+ and CD8+HLA-DR+ T cells in all these anatomical compartments than uninfected macaques except for CD8+HLA-DR+ T cells in peripheral blood. LNs that located close to the gastrointestinal (GI tract (colon, mesenteric and iliac LNs of SIV-infected macaques had profoundly lower numbers of CD4+ T cells, but no significantly difference in expression of activation marker (CD8+CD69+ and CD8+HLA-DR+ as compared with the peripheral lymphatic tissues (axillary and inguinal LNs. The CD4/CD8 ratios were negatively correlated with the activation of CD8 T cells in the overall LNs, with further associations with CD8+HLA-DR+ in GI LNs while CD8+CD69+ in peripheral LNs. These observations demonstrate that the increase of CD8+ T cell activation is a contributing factor for the decline of CD4/CD8 ratios in GI system.

  13. Generation of effector T cells in Hymenolepis nana-infected, FK-506-treated BALB/c mice.

    Science.gov (United States)

    Asano, K; Matsuo, S; Okamoto, K

    1995-05-01

    FK-506 administered into mice daily at a dose of 10.0 mg/kg (but not 1.0 and 5.0 mg/kg) caused suppression of protective immunity to Hymenolepis nana, when the agent was injected intraperitoneally during the induction phase of protective immunity. Daily administration of 10.0 mg/kg FK-506, during the course of larval development from challenge, also suppressed protective immunity. Inhibition of protective immunity was only observed in mice that received FK-506 for 6 days at a daily dose of 10.0 mg/kg and were challenged 24 h after the final FK-506 injection. FK-506 did not inhibit formation of effector cells that mediate delayed-type hypersensitivity (DTH) to H. nana egg antigen when the agent was administered intraperitoneally at a dose of 10.0 mg/kg/day for 6 days before cell preparation. However, FK-506 did inhibit DTH effector cell activation when cells prepared from infected, saline-injected mice were transferred into 10.0 mg/kg FK-506-treated recipient mice. These results strongly indicate that FK-506 cannot inhibit the generation of effector cells but will suppress their function in vivo.

  14. Distinct dendritic cell subsets dictate the fate decision between effector and memory CD8(+) T cell differentiation by a CD24-dependent mechanism.

    Science.gov (United States)

    Kim, Taeg S; Gorski, Stacey A; Hahn, Steven; Murphy, Kenneth M; Braciale, Thomas J

    2014-03-20

    The contribution of different DC subsets to effector and memory CD8(+) T cell generation during infection and the mechanism by which DCs controls these fate decisions is unclear. Here we demonstrated that the CD103(+) and CD11b(hi) migratory respiratory DC (RDC) subsets after influenza virus infection activated naive virus-specific CD8(+) T cells differentially. CD103(+) RDCs supported the generation of CD8(+) T effector (Teff) cells, which migrate from lymph nodes to the infected lungs. In contrast, migrant CD11b(hi) RDCs activated CD8(+) T cells characteristic of central memory CD8(+) T (CD8(+) Tcm) cells including retention within the draining lymph nodes. CD103(+) RDCs expressed CD24 at an elevated level, contributing to the propensity of this DC subpopulation to support CD8(+) Teff cell differentiation. Mechanistically, CD24 was shown to regulate CD8(+) T cell activation through HMGB1-mediated engagement of T cell RAGE. Thus, there is distribution of labor among DC subsets in regulating CD8(+) T cell differentiation.

  15. Initiation and regulation of CD8+T cells recognizing melanocytic antigens in the epidermis: implications for the pathophysiology of vitiligo.

    Science.gov (United States)

    Steitz, Julia; Wenzel, Jörg; Gaffal, Evelyn; Tüting, Thomas

    2004-12-01

    Antigen-specific CD8+T lymphocytes play an important role in defense against cutaneous microbial infection and skin cancer as well as in the pathophysiology of autoimmune skin disease such as lupus erythematodes and vitiligo. We have explored the role of CD8+ cytotoxic T lymphocytes (CTL) in an experimental mouse model of vitiligo, a pigmentation disorder characterized by focal loss of melanocytes in the skin. Using genetic immunization techniques we found that pigment cells in the epidermis can be destroyed by CD8+ T cells specifically recognizing a single H2-Kb-binding peptide derived from the model melanocytic self antigen tyrosinase-related protein 2 (TRP2), a melanosomal enzyme involved in pigment synthesis. Experimental evidence suggests that peripheral tolerance of pigment cell-specific cytotoxic CD8+T cells is regulated in two steps. In the induction phase, stimulation and expansion of these T cells in vivo strictly depends on CD4+ T cell help. In the effector phase, autoimmune destruction of melanocytes in the skin depends on local inflammation facilitating the migration of T cells into the epidermis and supporting effector functions. Our results suggest that accidental stimulation of CD8+ CTL recognizing MHC class I-binding peptides derived from melanocytic proteins in the context of an inflammatory skin disease may play an important role in the pathophysiology of vitiligo. Further investigations will address the role of chemokines, chemokine receptors and adhesion molecules in this experimental system and will reveal the role of keratinocytes and Langerhans cells in regulating cutaneous CD8+ T cell responses.

  16. Experimental depletion of CD8+ cells in acutely SIVagm-Infected African Green Monkeys results in increased viral replication

    Directory of Open Access Journals (Sweden)

    Apetrei Cristian

    2010-05-01

    Full Text Available Abstract Background In vivo CD8+ cell depletions in pathogenic SIV infections identified a key role for cellular immunity in controlling viral load (VL and disease progression. However, similar studies gave discordant results in chronically-infected SMs, leading some authors to propose that in natural hosts, SIV replication is independent of cellular immunity. To assess the role of cellular immune responses in the control of SIV replication in natural hosts, we investigated the impact of CD8+ cell depletion during acute SIV infection in AGMs. Results Nine AGMs were infected with SIVagm.sab and were followed up to day 225 p.i. Four were intravenously infused with the cM-T807 antibody on days 0 (50 mg/kg, 6, and 13 (10 mg/kg, respectively post infection (p.i.. CD8+ cells were depleted for up to 28 days p.i. in peripheral blood and LNs in all treated AGMs. Partial CD8+ T cell depletion occurred in the intestine. SIVagm VLs peaked at similar levels in both groups (107-108 RNA copies/ml. However, while VLs were controlled in undepleted AGMs, reaching set-point levels (104-105 RNA copies/ml by day 28 p.i., high VLs (>106 RNA copies/ml were maintained by day 21 p.i. in CD8-depleted AGMs. By day 42 p.i., VLs were comparable between the two groups. The levels of immune activation and proliferation remained elevated up to day 72 p.i. in CD8-depleted AGMs and returned to preinfection levels in controls by day 28 p.i. None of the CD8-depleted animals progressed to AIDS. Conclusion CD8+ cells are responsible for a partial control of postacute viral replication in SIVagm.sab-infected AGMs. In contrast to macaques, the SIVagm-infected AGMs are able to control viral replication after recovery of the CD8+ T cells and avoid disease progression.

  17. A Human Trypanosome Suppresses CD8+ T Cell Priming by Dendritic Cells through the Induction of Immune Regulatory CD4+ Foxp3+ T Cells

    Science.gov (United States)

    Ersching, Jonatan; Basso, Alexandre Salgado; Kalich, Vera Lucia Garcia; Bortoluci, Karina Ramalho

    2016-01-01

    Although CD4+ Foxp3+ T cells are largely described in the regulation of CD4+ T cell responses, their role in the suppression of CD8+ T cell priming is much less clear. Because the induction of CD8+ T cells during experimental infection with Trypanosoma cruzi is remarkably delayed and suboptimal, we raised the hypothesis that this protozoan parasite actively induces the regulation of CD8+ T cell priming. Using an in vivo assay that eliminated multiple variables associated with antigen processing and dendritic cell activation, we found that injection of bone marrow-derived dendritic cells exposed to T. cruzi induced regulatory CD4+ Foxp3+ T cells that suppressed the priming of transgenic CD8+ T cells by peptide-loaded BMDC. This newly described suppressive effect on CD8+ T cell priming was independent of IL-10, but partially dependent on CTLA-4 and TGF-β. Accordingly, depletion of Foxp3+ cells in mice infected with T. cruzi enhanced the response of epitope-specific CD8+ T cells. Altogether, our data uncover a mechanism by which T. cruzi suppresses CD8+ T cell responses, an event related to the establishment of chronic infections. PMID:27332899

  18. A Human Trypanosome Suppresses CD8+ T Cell Priming by Dendritic Cells through the Induction of Immune Regulatory CD4+ Foxp3+ T Cells.

    Directory of Open Access Journals (Sweden)

    Jonatan Ersching

    2016-06-01

    Full Text Available Although CD4+ Foxp3+ T cells are largely described in the regulation of CD4+ T cell responses, their role in the suppression of CD8+ T cell priming is much less clear. Because the induction of CD8+ T cells during experimental infection with Trypanosoma cruzi is remarkably delayed and suboptimal, we raised the hypothesis that this protozoan parasite actively induces the regulation of CD8+ T cell priming. Using an in vivo assay that eliminated multiple variables associated with antigen processing and dendritic cell activation, we found that injection of bone marrow-derived dendritic cells exposed to T. cruzi induced regulatory CD4+ Foxp3+ T cells that suppressed the priming of transgenic CD8+ T cells by peptide-loaded BMDC. This newly described suppressive effect on CD8+ T cell priming was independent of IL-10, but partially dependent on CTLA-4 and TGF-β. Accordingly, depletion of Foxp3+ cells in mice infected with T. cruzi enhanced the response of epitope-specific CD8+ T cells. Altogether, our data uncover a mechanism by which T. cruzi suppresses CD8+ T cell responses, an event related to the establishment of chronic infections.

  19. Accumulation of cytolytic CD8{sup +} T cells in B16-melanoma and proliferation of mature T cells in TIS21-knockout mice after T cell receptor stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Min Sook [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Woo, Min-Yeong [Department of Microbiology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Department of Biomedical Sciences, The Graduate School, Ajou University (Korea, Republic of); Kwon, Daeho [Department of Microbiology, Kwandong University College of Medicine, Gangneung, Gangwon-do 210-701 (Korea, Republic of); Hong, Allen E. [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Song, Kye Yong [Department of Pathology, Chung-Ang University College of Medicine, Dongjak-gu, Seoul 156-756 (Korea, Republic of); Park, Sun [Department of Microbiology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Lim, In Kyoung [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of)

    2014-10-01

    In vivo and in vitro effects of TIS21 gene on the mature T cell activation and antitumor activities were explored by employing MO5 melanoma orthograft and splenocytes isolated from the TIS21-knockout (KO) mice. Proliferation and survival of mature T cells were significantly increased in the KO than the wild type (WT) cells, indicating that TIS21 inhibits the rate of mature T cell proliferation and its survival. In MO5 melanoma orthograft model, the KO mice recruited much more CD8{sup +} T cells into the tumors at around day 14 after tumor cell injection along with reduced tumor volumes compared with the WT. The increased frequency of granzyme B{sup +} CD8{sup +} T cells in splenocytes of the KO mice compared with the WT may account for antitumor-immunity of TIS21 gene in the melanoma orthograft. In contrast, reduced frequencies of CD107a{sup +} CD8{sup +} T cells in the splenocytes of KO mice may affect the loss of CD8{sup +} T cell infiltration in the orthograft at around day 19. These results indicate that TIS21 exhibits antiproliferative and proapoptotic effects in mature T cells, and differentially affects the frequencies of granzyme B{sup +} CD8{sup +} T-cells and CD107a{sup +} CD8{sup +} T-cells, thus transiently regulating in vivo anti-tumor immunity. - Highlights: • Constitutive expression of TIS21 in splenocytes and upregulation by TCR stimulation. • Proliferation of mature T-cells in spleen of TIS21KO mice after TCR stimulation. • Inhibition of cell death in mature T-cells of TIS21KO mice compared with the wild type. • Inhibition of melanoma growth in TIS21KO mice and CD8{sup +} T cell infiltration in tumor. • Reduction of CD 107{sup +}CD8{sup +} T cells, but increased granzyme B{sup +} CD8{sup +} T cells in TIS21KO mice.

  20. Specific induction of anti-leukemia effects by umbilical cord cell-derived CD8~+ T cytotoxic lymphocytes

    Institute of Scientific and Technical Information of China (English)

    刘芯

    2006-01-01

    Objective To explore the specific anti-leukemia immune response of CD8+ cytotoxic T lymphocyte (CTL) derived from cord blood (CB) ex vivo and evaluate the feasibilities and values of the CTL for specific immunotherapy. Methods Dendritic cells (DC) were induced from mononuclear cells (MNC) by combination cytokines in 10 CB samples. Loading U937 cell lysate antigen on

  1. A temporal role of type I interferon signaling in CD8+ T cell maturation during acute West Nile virus infection.

    Directory of Open Access Journals (Sweden)

    Amelia K Pinto

    2011-12-01

    Full Text Available A genetic absence of the common IFN-α/β signaling receptor (IFNAR in mice is associated with enhanced viral replication and altered adaptive immune responses. However, analysis of IFNAR(-/- mice is limited for studying the functions of type I IFN at discrete stages of viral infection. To define the temporal functions of type I IFN signaling in the context of infection by West Nile virus (WNV, we treated mice with MAR1-5A3, a neutralizing, non cell-depleting anti-IFNAR antibody. Inhibition of type I IFN signaling at or before day 2 after infection was associated with markedly enhanced viral burden, whereas treatment at day 4 had substantially less effect on WNV dissemination. While antibody treatment prior to infection resulted in massive expansion of virus-specific CD8(+ T cells, blockade of type I IFN signaling starting at day 4 induced dysfunctional CD8(+ T cells with depressed cytokine responses and expression of phenotypic markers suggesting exhaustion. Thus, only the later maturation phase of anti-WNV CD8(+ T cell development requires type I IFN signaling. WNV infection experiments in BATF3(-/- mice, which lack CD8-α dendritic cells and have impaired priming due to inefficient antigen cross-presentation, revealed a similar effect of blocking IFN signaling on CD8(+ T cell maturation. Collectively, our results suggest that cell non-autonomous type I IFN signaling shapes maturation of antiviral CD8(+ T cell response at a stage distinct from the initial priming event.

  2. Subdominant/cryptic CD8 T cell epitopes contribute to resistance against experimental infection with a human protozoan parasite.

    Directory of Open Access Journals (Sweden)

    Mariana R Dominguez

    Full Text Available During adaptive immune response, pathogen-specific CD8(+ T cells recognize preferentially a small number of epitopes, a phenomenon known as immunodominance. Its biological implications during natural or vaccine-induced immune responses are still unclear. Earlier, we have shown that during experimental infection, the human intracellular pathogen Trypanosoma cruzi restricts the repertoire of CD8(+ T cells generating strong immunodominance. We hypothesized that this phenomenon could be a mechanism used by the parasite to reduce the breath and magnitude of the immune response, favoring parasitism, and thus that artificially broadening the T cell repertoire could favor the host. Here, we confirmed our previous observation by showing that CD8(+ T cells of H-2(a infected mice recognized a single epitope of an immunodominant antigen of the trans-sialidase super-family. In sharp contrast, CD8(+ T cells from mice immunized with recombinant genetic vaccines (plasmid DNA and adenovirus expressing this same T. cruzi antigen recognized, in addition to the immunodominant epitope, two other subdominant epitopes. This unexpected observation allowed us to test the protective role of the immune response to subdominant epitopes. This was accomplished by genetic vaccination of mice with mutated genes that did not express a functional immunodominant epitope. We found that these mice developed immune responses directed solely to the subdominant/cryptic CD8 T cell epitopes and a significant degree of protective immunity against infection mediated by CD8(+ T cells. We concluded that artificially broadening the T cell repertoire contributes to host resistance against infection, a finding that has implications for the host-parasite relationship and vaccine development.

  3. Vaccination with TAT-antigen fusion protein induces protective, CD8(+) T cell-mediated immunity against Leishmania major.

    Science.gov (United States)

    Kronenberg, Katharina; Brosch, Sven; Butsch, Florian; Tada, Yayoi; Shibagaki, Naotaka; Udey, Mark C; von Stebut, Esther

    2010-11-01

    In murine leishmaniasis, healing is mediated by IFN-γ-producing CD4(+) and CD8(+) T cells. Thus, an efficacious vaccine should induce Th1 and Tc1 cells. Dendritic cells (DCs) pulsed with exogenous proteins primarily induce strong CD4-dependent immunity; induction of CD8 responses has proven to be difficult. We evaluated the immunogenicity of fusion proteins comprising the protein transduction domain of HIV-1 TAT and the Leishmania antigen LACK (Leishmania homolog of receptors for activated C kinase), as TAT-fusion proteins facilitate major histocompatibility complex class I-dependent antigen presentation. In vitro, TAT-LACK-pulsed DCs induced stronger proliferation of Leishmania-specific CD8(+) T cells compared with DCs incubated with LACK alone. Vaccination with TAT-LACK-pulsed DCs or fusion proteins plus adjuvant in vivo significantly improved disease outcome in Leishmania major-infected mice and was superior to vaccination with DCs treated with LACK alone. Vaccination with DC+TAT-LACK resulted in stronger proliferation of CD8(+) T cells when compared with immunization with DC+LACK. Upon depletion of CD4(+) or CD8(+) T cells, TAT-LACK-mediated protection was lost. TAT-LACK-pulsed IL-12p40-deficient DCs did not promote protection in vivo. In summary, these data show that TAT-fusion proteins are superior in activating Leishmania-specific Tc1 cells when compared with antigen alone and suggest that IL-12-dependent preferential induction of antigen-specific CD8(+) cells promotes significant protection against this important human pathogen.

  4. Pentoxifylline reverses chronic experimental Chagasic cardiomyopathy in association with repositioning of abnormal CD8+ T-cell response.

    Directory of Open Access Journals (Sweden)

    Isabela Resende Pereira

    2015-03-01

    Full Text Available Chronic chagasic cardiomyopathy (CCC, the main clinical sign of Chagas disease, is associated with systemic CD8+ T-cell abnormalities and CD8-enriched myocarditis occurring in an inflammatory milieu. Pentoxifylline (PTX, a phosphodiesterase inhibitor, has immunoregulatory and cardioprotective properties. Here, we tested PTX effects on CD8+ T-cell abnormalities and cardiac alterations using a model of experimental Chagas' heart disease.C57BL/6 mice chronically infected by the Colombian Trypanosoma cruzi strain and presenting signs of CCC were treated with PTX. The downmodulation of T-cell receptors on CD8+ cells induced by T. cruzi infection was rescued by PTX therapy. Also, PTX reduced the frequency of CD8+ T-cells expressing activation and migration markers in the spleen and the activation of blood vessel endothelial cells and the intensity of inflammation in the heart tissue. Although preserved interferon-gamma production systemically and in the cardiac tissue, PTX therapy reduced the number of perforin+ cells invading this tissue. PTX did not alter parasite load, but hampered the progression of heart injury, improving connexin 43 expression and decreasing fibronectin overdeposition. Further, PTX reversed electrical abnormalities as bradycardia and prolonged PR, QTc and QRS intervals in chronically infected mice. Moreover, PTX therapy improved heart remodeling since reduced left ventricular (LV hypertrophy and restored the decreased LV ejection fraction.PTX therapy ameliorates critical aspects of CCC and repositioned CD8+ T-cell response towards homeostasis, reinforcing that immunological abnormalities are crucially linked, as cause or effect, to CCC. Therefore, PTX emerges as a candidate to treat the non-beneficial immune deregulation associated with chronic Chagas' heart disease and to improve prognosis.

  5. Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909.

    Science.gov (United States)

    Speiser, Daniel E; Liénard, Danielle; Rufer, Nathalie; Rubio-Godoy, Verena; Rimoldi, Donata; Lejeune, Ferdy; Krieg, Arthur M; Cerottini, Jean-Charles; Romero, Pedro

    2005-03-01

    The induction of potent CD8+ T cell responses by vaccines to fight microbes or tumors remains a major challenge, as many candidates for human vaccines have proved to be poorly immunogenic. Deoxycytidyl-deoxyguanosin oligodeoxynucleotides (CpG ODNs) trigger Toll-like receptor 9, resulting in dendritic cell maturation that can enhance immunogenicity of peptide-based vaccines in mice. We tested whether a synthetic ODN, CpG 7909, could improve human tumor antigen-specific CD8+ T cell responses. Eight HLA-A2+ melanoma patients received 4 monthly vaccinations of low-dose CpG 7909 mixed with melanoma antigen A (Melan-A; identical to MART-1) analog peptide and incomplete Freund's adjuvant. All patients exhibited rapid and strong antigen-specific T cell responses: the frequency of Melan-A-specific T cells reached over 3% of circulating CD8+ T cells. This was one order of magnitude higher than the frequency seen in 8 control patients treated similarly but without CpG and 1-3 orders of magnitude higher than that seen in previous studies with synthetic vaccines. The enhanced T cell populations consisted primarily of effector memory cells, which in part secreted IFN- and expressed granzyme B and perforin ex vivo. In vitro, T cell clones recognized and killed melanoma cells in an antigen-specific manner. Thus, CpG 7909 is an efficient vaccine adjuvant that promotes strong antigen-specific CD8+ T cell responses in humans.

  6. CD8+ T cells of chronic HCV-infected patients express multiple negative immune checkpoints following stimulation with HCV peptides.

    Science.gov (United States)

    Barathan, Muttiah; Mohamed, Rosmawati; Vadivelu, Jamuna; Chang, Li Yen; Vignesh, Ramachandran; Krishnan, Jayalakshmi; Sigamani, Panneer; Saeidi, Alireza; Ram, M Ravishankar; Velu, Vijayakumar; Larsson, Marie; Shankar, Esaki M

    2017-03-01

    Hepatitis C virus (HCV)-specific CD4+ and CD8+ T cells are key to successful viral clearance in HCV disease. Accumulation of exhausted HCV-specific T cells during chronic infection results in considerable loss of protective functional immune responses. The role of T-cell exhaustion in chronic HCV disease remains poorly understood. Here, we studied the frequency of HCV peptide-stimulated T cells expressing negative immune checkpoints (PD-1, CTLA-4, TRAIL, TIM-3 and BTLA) by flow cytometry, and measured the levels of Th1/Th2/Th17 cytokines secreted by T cells by a commercial Multi-Analyte ELISArray™ following in vitro stimulation of T cells using HCV peptides and phytohemagglutinin (PHA). HCV peptide-stimulated CD4+ and CD8+ T cells of chronic HCV (CHC) patients showed significant increase of CTLA-4. Furthermore, HCV peptide-stimulated CD4+ T cells of CHC patients also displayed relatively higher levels of PD-1 and TRAIL, whereas TIM-3 was up-regulated on HCV peptide-stimulated CD8+ T cells. Whereas the levels of IL-10 and TGF-β1 were significantly increased, the levels of pro-inflammatory cytokines IL-2, TNF-α, IL-17A and IL-6 were markedly decreased in the T cell cultures of CHC patients. Chronic HCV infection results in functional exhaustion of CD4+ and CD8+ T cells likely contributing to viral persistence.

  7. Superior control of HIV-1 replication by CD8+ T cells targeting conserved epitopes: implications for HIV vaccine design.

    Directory of Open Access Journals (Sweden)

    Pratima Kunwar

    Full Text Available A successful HIV vaccine will likely induce both humoral and cell-mediated immunity, however, the enormous diversity of HIV has hampered the development of a vaccine that effectively elicits both arms of the adaptive immune response. To tackle the problem of viral diversity, T cell-based vaccine approaches have focused on two main strategies (i increasing the breadth of vaccine-induced responses or (ii increasing vaccine-induced responses targeting only conserved regions of the virus. The relative extent to which set-point viremia is impacted by epitope-conservation of CD8(+ T cell responses elicited during early HIV-infection is unknown but has important implications for vaccine design. To address this question, we comprehensively mapped HIV-1 CD8(+ T cell epitope-specificities in 23 ART-naïve individuals during early infection and computed their conservation score (CS by three different methods (prevalence, entropy and conseq on clade-B and group-M sequence alignments. The majority of CD8(+ T cell responses were directed against variable epitopes (p<0.01. Interestingly, increasing breadth of CD8(+ T cell responses specifically recognizing conserved epitopes was associated with lower set-point viremia (r = - 0.65, p = 0.009. Moreover, subjects possessing CD8(+ T cells recognizing at least one conserved epitope had 1.4 log10 lower set-point viremia compared to those recognizing only variable epitopes (p = 0.021. The association between viral control and the breadth of conserved CD8(+ T cell responses may be influenced by the method of CS definition and sequences used to determine conservation levels. Strikingly, targeting variable versus conserved epitopes was independent of HLA type (p = 0.215. The associations with viral control were independent of functional avidity of CD8(+ T cell responses elicited during early infection. Taken together, these data suggest that the next-generation of T-cell based HIV-1 vaccines should focus

  8. Selective support of a mouse thymus epithelial cell line (MTEC1) to the viability and proliferation of CD4+CD8—,CD4—CD8—,and CD4+CD8+thymocytes in vitro

    Institute of Scientific and Technical Information of China (English)

    CHENWEIFENG; JAPINGATO; 等

    1992-01-01

    The MTEC1 cell line,established in our laboratory,is a normal epithelial cell line derived from thymus medulla of Balb/c mice and these cells constituteively produce multiple cytokines.The selection of thymic microenvironment on developing T cells was investigated in an in vitro system.Unseparated fresh thymocytes from Balb/c mice were cocultured with MTEC1 cells or/and MTEC1-SN,then,the viability,proliferation and phenotypes of cultured thymocytes were assessed.Without any exogenous stimulus,both MTEC1 cells and MTEC1-SN were able to maintain the viability of thymocytes,while only the MTEC1 cells,not the MTEC1-SN,could directly activate thymocytes to exhibit moderate proliferation,indicating that the proliferative signal is delivered through cell surface interatcions of MTEC1 cells and thymocytes.Phenotype analysis on FACS of viable thymocytes after coculture revealed that MTEC1 cells preferentially activate the subsets of CD4+ CD8-,CD4+ CD8+ and CD4- CD8- thymocytes;whereas MTEC1-SN preferentially maintained the viability of CD4+CD8- and CD4-CD8+ thymocyte subsets.For the Con A-activated thymocytes.both MTEC1 cells and MTEC1-SN provided accessory signal(s) to significantly increase the number of viable cells and to markedly enhance the proliferation of thymocytes with virtually equal potency,phenotyped as CD4+CD8-,CD4-CD8+,and CD4-CD8-subests,In summary,MTEC1 cells displayed Selection of thymic epithelial cells on thymocyte subsets. selective support to the different thymocyte subsets,and the selectivity is dependent on the status of thymocytes.

  9. Early and Delayed Antiretroviral Therapy (ART) Result in Comparable Reductions in CD8+ T Cell Exhaustion Marker Expression.

    Science.gov (United States)

    Rutishauser, Rachel; Hartogensis, Wendy; Deguit, Christian D; Krone, Melissa; Hoh, Rebecca; Hecht, Rick; Pilcher, Christopher D; Bacchetti, Peter; Deeks, Steven G; Hunt, Peter W; McCune, Joseph M

    2017-03-23

    In untreated HIV infection, CD8+ T cell exhaustion (i.e., decreased proliferative and effector capacity) is associated with high levels of expression of co-inhibitory receptors, including PD-1, TIGIT, CD160, and 2B4. This is evident for both HIV-specific and non-HIV-specific CD8+ T cells. Antiretroviral therapy (ART) initiated during chronic infection decreases but may not completely normalize the expression of such "exhaustion markers." Compared to initiation of ART later in the course of disease, initiation soon after infection reduces some parameters of chronic inflammation and adaptive immune dysfunction. However, it is not known if Early ART (e.g., initiated within the first six months after HIV infection) versus Delayed ART (e.g., initiated during chronic infection) preferentially reduces expression of exhaustion markers. We evaluated exhaustion marker expression on subsets of circulating effector and memory CD8+ T cells at longitudinal pre- and post-ART (two and five years on ART) time points from n=19 (Early ART) and n=23 (Delayed ART) individuals. Prior to ART, TIGIT and CD160 were expressed on a statistically significantly higher proportion of effector and transitional memory cells from individuals in the Delayed ART group: the timing of ART initiation, however, did not consistently affect the expression of the exhaustion markers once viral suppression was achieved. Understanding which factors do and do not regulate aspects of CD8+ T cell exhaustion, including the expression of exhaustion markers, is critical to inform the rational design of CD8+ T cell-based therapies to treat HIV, for which CD8+ T cell exhaustion remains an important barrier to efficacy.

  10. Influenza Virus Specific CD8+ T Cells Exacerbate Infection Following High Dose Influenza Challenge of Aged Mice

    Directory of Open Access Journals (Sweden)

    E. M. Parzych

    2013-01-01

    Full Text Available Influenza viruses cause severe illnesses and death, mainly in the aged population. Protection afforded by licensed vaccines through subtype-specific neutralizing antibodies is incomplete, especially when the vaccine antigens fail to closely match those of the circulating viral strains. Efforts are underway to generate a so-called universal influenza vaccine expressing conserved viral sequences that induce broad protection to multiple strains of influenza virus through the induction of CD8+ T cells. Here we assess the effect of a potent antiviral CD8+ T cell response on influenza virus infection of young and aged mice. Our results show that CD8+ T cell-inducing vaccines can provide some protection to young mice, but they exacerbate influenza virus-associated disease in aged mice, causing extensive lung pathology and death.

  11. Comprehensive analysis of dengue virus-specific responses supports an HLA-linked protective role for CD8+ T cells.

    Science.gov (United States)

    Weiskopf, Daniela; Angelo, Michael A; de Azeredo, Elzinandes L; Sidney, John; Greenbaum, Jason A; Fernando, Anira N; Broadwater, Anne; Kolla, Ravi V; De Silva, Aruna D; de Silva, Aravinda M; Mattia, Kimberly A; Doranz, Benjamin J; Grey, Howard M; Shresta, Sujan; Peters, Bjoern; Sette, Alessandro

    2013-05-28

    The role of CD8(+) T cells in dengue virus infection and subsequent disease manifestations is not fully understood. According to the original antigenic sin theory, skewing of T-cell responses induced by primary infection with one serotype causes less effective response upon secondary infection with a different serotype, predisposing individuals to severe disease. A comprehensive analysis of CD8(+) responses in the general population from the Sri Lankan hyperendemic area, involving the measurement of ex vivo IFNγ responses associated with more than 400 epitopes, challenges the original antigenic sin theory. Although skewing of responses toward primary infecting viruses was detected, this was not associated with impairment of responses either qualitatively or quantitatively. Furthermore, we demonstrate higher magnitude and more polyfunctional responses for HLA alleles associated with decreased susceptibility to severe disease, suggesting that a vigorous response by multifunctional CD8(+) T cells is associated with protection from dengue virus disease.

  12. Specific mutation of a gammaherpesvirus-expressed antigen in response to CD8 T cell selection in vivo.

    Science.gov (United States)

    Loh, Joy; Popkin, Daniel L; Droit, Lindsay; Braaten, Douglas C; Zhao, Guoyan; Zhang, Xin; Vachharajani, Punit; Myers, Nancy; Hansen, Ted H; Virgin, Herbert W

    2012-03-01

    Herpesviruses are thought to be highly genetically stable, and their use as vaccine vectors has been proposed. However, studies of the human gammaherpesvirus, Epstein-Barr virus, have found viral isolates containing mutations in HLA class I-restricted epitopes. Using murine gammaherpesvirus 68 expressing ovalbumin (OVA), we examined the stability of a gammaherpesvirus antigenic locus under strong CD8 T cell selection in vivo. OVA-specific CD8 T cells selected viral isolates containing mutations in the OVA locus but minimal alterations in other genomic regions. Thus, a CD8 T cell response to a gammaherpesvirus-expressed antigen that is not essential for replication or pathogenesis can result in selective mutation of that antigen in vivo. This finding may have relevance for the use of herpesvirus vectors for chronic antigen expression in vivo.

  13. 1810011o10 Rik Inhibits the Antitumor Effect of Intratumoral CD8+ T Cells through Suppression of Notch2 Pathway in a Murine Hepatocellular Carcinoma Model

    Science.gov (United States)

    Dai, Kai; Huang, Ling; Huang, Ya-bing; Chen, Zu-bing; Yang, Li-hua; Jiang, Ying-an

    2017-01-01

    The mechanisms by which tumor-responsive CD8+ T cells are regulated are important for understanding the tumor immunity and for developing new therapeutic strategies. In current study, we identified the expression of 1810011o10 Rik, which is the homolog of human thyroid cancer 1, in intratumoral activated CD8+ T cells in a murine hepatocellular carcinoma (HCC) implantation model. To investigate the role of 1810011o10 Rik in the regulation of antitumor activity of CD8+ T cells, normal CD8+ T cells were transduced with 1810011o10 Rik-expressing lentiviruses. Although 1810011o10 Rik overexpression did not influence agonistic antibody-induced CD8+ T cell activation in vitro, it inhibited the cytotoxic efficacy of CD8+ T cells on HCC cells in vivo. 1810011o10 Rik overexpression impeded CD8+ T cell-mediated HCC cell apoptosis and favored tumor cell growth in vivo. Further investigation revealed that 1810011o10 Rik blocked the nuclear translocation of Notch2 intracellular domain, which is crucial for CD8+ T cell activity. Furthermore, a brief in vitro experiment suggested that both antigen-presenting cells and TGF-β might be necessary for the upregulation of Rik expression in activated CD8+ T cells. In general, our study disclosed a novel mechanism underlying the negative regulation of antitumor CD8+ T cells during HCC progression.

  14. Functional Proteomics to Identify Moderators of CD8+ T-Cell Function in Melanoma

    Science.gov (United States)

    2014-10-01

    intervention prior to checkpoint inhibitor therapy . One phage we have identified to date appears to have agonistic activity, which supports the proof-of...funding period we have optimized phage -screens to select clones that differentially bind to either tumor infiltrating cytotoxic (CD8+) lymphocytes...allows us to screen the specificity of several phage clones for each of these CD8+ populations. Using this initial approach we have identified 17

  15. CD8+ T Cell Response to Gammaherpesvirus Infection Mediates Inflammation and Fibrosis in Interferon Gamma Receptor-Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Brigid M O'Flaherty

    Full Text Available Idiopathic pulmonary fibrosis (IPF, one of the most severe interstitial lung diseases, is a progressive fibrotic disorder of unknown etiology. However, there is growing appreciation for the role of viral infection in disease induction and/or progression. A small animal model of multi-organ fibrosis, which involves murine gammaherpesvirus (MHV68 infection of interferon gamma receptor deficient (IFNγR-/- mice, has been utilized to model the association of gammaherpesvirus infections and lung fibrosis. Notably, several MHV68 mutants which fail to induce fibrosis have been identified. Our current study aimed to better define the role of the unique MHV68 gene, M1, in development of pulmonary fibrosis. We have previously shown that the M1 gene encodes a secreted protein which possesses superantigen-like function to drive the expansion and activation of Vβ4+ CD8+ T cells. Here we show that M1-dependent fibrosis is correlated with heightened levels of inflammation in the lung. We observe an M1-dependent cellular infiltrate of innate immune cells with most striking differences at 28 days-post infection. Furthermore, in the absence of M1 protein expression we observed reduced CD8+ T cells and MHV68 epitope specific CD8+ T cells to the lungs-despite equivalent levels of viral replication between M1 null and wild type MHV68. Notably, backcrossing the IFNγR-/- onto the Balb/c background, which has previously been shown to exhibit weak MHV68-driven Vβ4+ CD8+ T cell expansion, eliminated MHV68-induced fibrosis-further implicating the activated Vβ4+ CD8+ T cell population in the induction of fibrosis. We further addressed the role that CD8+ T cells play in the induction of fibrosis by depleting CD8+ T cells, which protected the mice from fibrotic disease. Taken together these findings are consistent with the hypothesized role of Vβ4+ CD8+ T cells as mediators of fibrotic disease in IFNγR-/- mice.

  16. Increased CD8+ T cell response to Epstein-Barr virus lytic antigens in the active phase of multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Daniela F Angelini

    Full Text Available It has long been known that multiple sclerosis (MS is associated with an increased Epstein-Barr virus (EBV seroprevalence and high immune reactivity to EBV and that infectious mononucleosis increases MS risk. This evidence led to postulate that EBV infection plays a role in MS etiopathogenesis, although the mechanisms are debated. This study was designed to assess the prevalence and magnitude of CD8+ T-cell responses to EBV latent (EBNA-3A, LMP-2A and lytic (BZLF-1, BMLF-1 antigens in relapsing-remitting MS patients (n = 113 and healthy donors (HD (n = 43 and to investigate whether the EBV-specific CD8+ T cell response correlates with disease activity, as defined by clinical evaluation and gadolinium-enhanced magnetic resonance imaging. Using HLA class I pentamers, lytic antigen-specific CD8+ T cell responses were detected in fewer untreated inactive MS patients than in active MS patients and HD while the frequency of CD8+ T cells specific for EBV lytic and latent antigens was higher in active and inactive MS patients, respectively. In contrast, the CD8+ T cell response to cytomegalovirus did not differ between HD and MS patients, irrespective of the disease phase. Marked differences in the prevalence of EBV-specific CD8+ T cell responses were observed in patients treated with interferon-β and natalizumab, two licensed drugs for relapsing-remitting MS. Longitudinal studies revealed expansion of CD8+ T cells specific for EBV lytic antigens during active disease in untreated MS patients but not in relapse-free, natalizumab-treated patients. Analysis of post-mortem MS brain samples showed expression of the EBV lytic protein BZLF-1 and interactions between cytotoxic CD8+ T cells and EBV lytically infected plasma cells in inflammatory white matter lesions and meninges. We therefore propose that inability to control EBV infection during inactive MS could set the stage for intracerebral viral reactivation and disease relapse.

  17. Prolonged antigen presentation is required for optimal CD8+ T cell responses against malaria liver stage parasites.

    Directory of Open Access Journals (Sweden)

    Ian A Cockburn

    2010-05-01

    Full Text Available Immunization with irradiated sporozoites is currently the most effective vaccination strategy against liver stages of malaria parasites, yet the mechanisms underpinning the success of this approach are unknown. Here we show that the complete development of protective CD8+ T cell responses requires prolonged antigen presentation. Using TCR transgenic cells specific for the malaria circumsporozoite protein, a leading vaccine candidate, we found that sporozoite antigen persists for over 8 weeks after immunization--a remarkable finding since irradiated sporozoites are incapable of replication and do not differentiate beyond early liver stages. Persisting antigen was detected in lymphoid organs and depends on the presence of CD11c+ cells. Prolonged antigen presentation enhanced the magnitude of the CD8+ T cell response in a number of ways. Firstly, reducing the time primed CD8+ T cells were exposed to antigen in vivo severely reduced the final size of the developing memory population. Secondly, fully developed memory cells expanded in previously immunized mice but not when transferred to naïve animals. Finally, persisting antigen was able to prime naïve cells, including recent thymic emigrants, to become functional effector cells capable of eliminating parasites in the liver. Together these data show that the optimal development of protective CD8+ T cell immunity against malaria liver stages is dependent upon the prolonged presentation of sporozoite-derived antigen.

  18. Effector and Central Memory Poly-functional CD4+ and CD8+ T cells are Boosted upon ZOSTAVAX® Vaccination

    Directory of Open Access Journals (Sweden)

    Kalpit A Vora

    2015-10-01

    Full Text Available ZOSTAVAX® is a live attenuated varicella-zoster virus (VZV vaccine that is licensed for the protection of individuals ≥ 50 years against shingles, and its most common complication, post-herpetic neuralgia. While IFN responses increase upon vaccination, the quality of the T cell response has not been elucidated. By using polychromatic flow cytometry, we characterized the breadth, magnitude, and quality of ex vivo CD4+ and CD8+ T cell responses induced 3 – 4 weeks after ZOSTAVAX vaccination of healthy adults. We show, for the first time that the highest frequencies of VZV-specific CD4+ T cells were poly-functional CD154+IFNγ+IL-2+TNFα+ cells, which were boosted upon vaccination. The CD4+ T cells were broadly reactive to several VZV proteins, with IE63 ranking the highest amongst them in the fold-rise of poly-functional cells, followed by IE62, gB, ORF9, and gE. We identified a novel poly-functional ORF9-specific CD8+ T cell population in 62% of the subjects, and these were boosted upon vaccination. Poly-functional CD4+ and CD8+ T cells produced significantly higher levels of IFNγ, IL-2, and TNFα compared to mono-functional cells. After vaccination, a boost in the expression of IFN by poly-functional IE63-and ORF9-specific CD4+ T cells, and IFNγ, IL-2, and TNFα by ORF9-specific poly-functional CD8+ T cells was observed. Responding poly-functional T cells exhibited both effector (CCR7−CD45RA−CD45RO+, and central (CCR7+CD45RA−CD45RO+ memory phenotypes, which expressed comparable levels of cytokines. Altogether, our studies demonstrate that a boost in memory poly-functional CD4+ T cells, and ORF9-specific CD8+ T cells may contribute towards ZOSTAVAX efficacy.

  19. Differential expression and function of PDE8 and PDE4 in effector T cells: Implications for PDE8 as a drug target in inflammation.

    Directory of Open Access Journals (Sweden)

    Amanda G. Vang

    2016-08-01

    Full Text Available Abolishing the inhibitory signal of intracellular cAMP is a prerequisite for effector T (Teff cell function. The regulation of cAMP within leukocytes critically depends on its degradation by cyclic nucleotide phosphodiesterases (PDEs. We have previously shown that PDE8A, a PDE isoform with 40-100-fold greater affinity for cAMP than PDE4, is selectively expressed in Teff versus regulatory T (Treg cells and controls CD4+ Teff cell adhesion and chemotaxis. Here, we determined PDE8A expression and function in CD4+ Teff cell populations in vivo. Using magnetic bead separation to purify leukocyte populations from the lung draining hilar lymph node (HLN in a mouse model of ovalbumin-induced allergic airway disease (AAD, we found by Western immunoblot and quantitative (qRT-PCR that PDE8A protein and gene expression are enhanced in the CD4+ T cell fraction over the course of the acute inflammatory disease and recede at the late tolerant non-inflammatory stage. To evaluate PDE8A as a potential drug target, we compared the selective and combined effects of the recently characterized highly potent PDE8-selective inhibitor PF-04957325 with the PDE4-selective inhibitor piclamilast (PICL. As previously shown, PF-04957325 suppresses T cell adhesion to endothelial cells. In contrast, we found that PICL alone increased firm T cell adhesion to endothelial cells by approximately 20% and significantly abrogated the inhibitory effect of PF-04957325 on T cell adhesion by over 50% when cells were co-exposed to PICL and PF-04957325. Despite its robust effect on T cell adhesion, PF-04957325 was over two orders of magnitude less efficient than PICL in suppressing polyclonal Teff cell proliferation, and showed no effect on cytokine gene expression in these cells. More importantly, PDE8 inhibition did not suppress proliferation and cytokine production of myelin-antigen reactive proinflammatory Teff cells in vivo and in vitro. Thus, targeting PDE8 through PF-04957325

  20. Lymphocytic choriomeningitis virus infection is associated with long-standing perturbation of LFA-1 expression on CD8+ T cells

    DEFF Research Database (Denmark)

    Andersson, E C; Christensen, Jan Pravsgaard; Scheynius, A;

    1995-01-01

    belonged to the CD8+LFA-1hi subset and, correspondingly, the ligand ICAM-1 was found to be up-regulated on endothelial cells in the inflamed meninges. Preincubation of LCMV-primed donor splenocytes with anti-LFA-1 markedly inhibited the transfer of virus-specific delayed-type hypersensitivity to naive...... recipients. Together, these findings indicate that up-regulation of LFA-1 expression is a critical factor involved in directing activated CD8+ T cells to sites of viral infection....

  1. MHC class-I-restricted CD8 T cells play a protective role during primary Salmonella infection.

    Science.gov (United States)

    Lee, Seung-Joo; Dunmire, Samantha; McSorley, Stephen J

    2012-12-17

    Protective immunity against Salmonella infection is known to require CD4 Th1 cells and B cells, but the role of MHC class-I-restricted CD8 T cells is less clear. Previous studies have suggested that CD8 T cells participate in secondary, but not primary, bacterial clearance. However, these studies have used experimental models that are difficult to interpret and do not clearly isolate the role of MHC class-I-restricted CD8 T cells from other cell populations. Here, we examined the role of class-I-restricted T cells in protection against Salmonella infection using mice lacking all classical MHC class-Ia molecules, perforin, or granzyme B. Immunized K(b)D(b)-, perforin-, granzyme B-, or perforin/granzyme B-deficient mice were able to resolve secondary infection with virulent Salmonella, demonstrating that class-I-restricted CTLs are not required for acquired immunity. However, during primary infection with attenuated bacteria, bacterial clearance was delayed in each of these mouse strains when compared to wild-type mice. Taken together, these data demonstrate that CD8 T cells are not required for acquired immunity to Salmonella, but can play a protective role in resolving primary infection with attenuated bacteria.

  2. Acute aerobic exercise in humans increases cytokine expression in CD27- but not CD27+ CD8+ T-cells

    NARCIS (Netherlands)

    LaVoy, E.C.; Bosch, J.A.; Lowder, T.W.; Simpson, R.J.

    2013-01-01

    Exercise alters the percentage of CD8+ T-cells in the bloodstream expressing type I and type II cytokines. It is unknown if this reflects a change in cytokine expression within individual cells, or whether these observations result from the exercise-induced shift in the proportions of early/intermed

  3. Acute aerobic exercise in humans increases cytokine expression in CD27- but not CD27+ CD8+ T-cells

    NARCIS (Netherlands)

    E.C. LaVoy; J.A. Bosch; T.W. Lowder; R.J. Simpson

    2012-01-01

    Exercise alters the percentage of CD8+ T-cells in the bloodstream expressing type I and type II cytokines. It is unknown if this reflects a change in cytokine expression within individual cells, or whether these observations result from the exercise-induced shift in the proportions of early/intermed

  4. Compartmentalization of Total and Virus-Specific Tissue-Resident Memory CD8+ T Cells in Human Lymphoid Organs.

    Science.gov (United States)

    Woon, Heng Giap; Braun, Asolina; Li, Jane; Smith, Corey; Edwards, Jarem; Sierro, Frederic; Feng, Carl G; Khanna, Rajiv; Elliot, Michael; Bell, Andrew; Hislop, Andrew D; Tangye, Stuart G; Rickinson, Alan B; Gebhardt, Thomas; Britton, Warwick J; Palendira, Umaimainthan

    2016-08-01

    Disruption of T cell memory during severe immune suppression results in reactivation of chronic viral infections, such as Epstein Barr virus (EBV) and Cytomegalovirus (CMV). How different subsets of memory T cells contribute to the protective immunity against these viruses remains poorly defined. In this study we examined the compartmentalization of virus-specific, tissue resident memory CD8+ T cells in human lymphoid organs. This revealed two distinct populations of memory CD8+ T cells, that were CD69+CD103+ and CD69+CD103-, and were retained within the spleen and tonsils in the absence of recent T cell stimulation. These two types of memory cells were distinct not only in their phenotype and transcriptional profile, but also in their anatomical localization within tonsils and spleen. The EBV-specific, but not CMV-specific, CD8+ memory T cells preferentially accumulated in the tonsils and acquired a phenotype that ensured their retention at the epithelial sites where EBV replicates. In vitro studies revealed that the cytokine IL-15 can potentiate the retention of circulating effector memory CD8+ T cells by down-regulating the expression of sphingosine-1-phosphate receptor, required for T cell exit from tissues, and its transcriptional activator, Kruppel-like factor 2 (KLF2). Within the tonsils the expression of IL-15 was detected in regions where CD8+ T cells localized, further supporting a role for this cytokine in T cell retention. Together this study provides evidence for the compartmentalization of distinct types of resident memory T cells that could contribute to the long-term protection against persisting viral infections.

  5. DAP12 deficiency in liver allografts results in enhanced donor DC migration, augmented effector T cell responses and abrogation of transplant tolerance.

    Science.gov (United States)

    Yoshida, O; Kimura, S; Dou, L; Matta, B M; Yokota, S; Ross, M A; Geller, D A; Thomson, A W

    2014-08-01

    Liver interstitial dendritic cells (DC) have been implicated in immune regulation and tolerance induction. We found that the transmembrane immuno-adaptor DNAX-activating protein of 12 kDa (DAP12) negatively regulated conventional liver myeloid (m) DC maturation and their in vivo migratory and T cell allostimulatory ability. Livers were transplanted from C57BL/6(H2(b) ) (B6) WT or DAP12(-/-) mice into WT C3H (H2(k) ) recipients. Donor mDC (H2-K(b+) CD11c(+) ) were quantified in spleens by flow cytometry. Anti-donor T cell reactivity was evaluated by ex vivo carboxyfluorescein diacetate succinimidyl ester-mixed leukocyte reaction and delayed-type hypersensitivity responses, while T effector and regulatory T cells were determined by flow analysis. A threefold to fourfold increase in donor-derived DC was detected in spleens of DAP12(-/-) liver recipients compared with those given WT grafts. Moreover, pro-inflammatory cytokine gene expression in the graft, interferon gamma (IFNγ) production by graft-infiltrating CD8(+) T cells and systemic levels of IFNγ were all elevated significantly in DAP12(-/-) liver recipients. DAP12(-/-) grafts also exhibited reduced incidences of CD4(+) Foxp3(+) cells and enhanced CD8(+) T cell IFNγ secretion in response to donor antigen challenge. Unlike WT grafts, DAP12(-/-) livers failed to induce tolerance and were rejected acutely. Thus, DAP12 expression in liver grafts regulates donor mDC migration to host lymphoid tissue, alloreactive T cell responses and transplant tolerance.

  6. Enhanced Th1/Th17 Functions of CD161+ CD8+ T Cells in Mucosal Tissues of Rhesus Macaques.

    Directory of Open Access Journals (Sweden)

    Namita Rout

    Full Text Available Expression of the C-type lectin-like receptor CD161 by human T cells is associated with type-17 responses, which play critical regulatory roles in immunity and inflammation at mucosal sites. However, the functions of CD161-expressing T cells in macaques, the pre-clinical model of several human diseases, remain unknown. This study examined the phenotypic and functional characteristics of CD161+ T cells in peripheral blood, mucosal tissues and lymph nodes of rhesus macaques. Majority of CD161-expressing T cells in peripheral blood and lung/intestinal mucosal tissues of rhesus macaques were found to be CD8+CD4- in phenotype. There was a significant enrichment of CD161+CD8+ T cells in the lungs and colonic mucosa (16.1%±6.6 and 16.8%±5.7 in comparison to peripheral blood (4.2%±1.2 and mesenteric lymph nodes (1.3%±0.8. Regardless of the tissue compartment, CD161+CD8+ T cells mainly comprised of γδ T cells and TCR Vα7.2+ MAIT cells (up to 80%, and displayed Th1 and Th17 cytokine responses to mitogen stimulation. Mucosal CD161+CD8+ T cells were characterized by very high expression of CD69, a recent activation marker that is preferentially expressed on tissue resident cells. Furthermore, lung and colonic mucosal CD161+CD8+ T cells showed enhanced IFN-γ, IL-17, and Perforin production in comparison to those in blood. Thus, macaque CD161+CD8+ T cells represent mucosal tissue-homing innate-like CD8+ T-cell populations with Th1/Th17 type cytokine and cytotoxic effector functions that can potentially enhance the recruitment of adaptive immune cells and control initial pathogen burden/dissemination in tissues. Analysis of their role in early immune responses to mucosal pathogens will be valuable in the design of vaccines and therapeutics.

  7. Rapid G0/1 transition and cell cycle progression in CD8(+) T cells compared to CD4(+) T cells following in vitro stimulation.

    Science.gov (United States)

    Mishima, Takuya; Fukaya, Shotaro; Toda, Shoko; Ando, Yoshiaki; Matsunaga, Tsukasa; Inobe, Manabu

    2017-04-01

    T cell population consists of two major subsets, CD4(+) T cells and CD8(+) T cells, which can be distinguished by the expression of CD4 or CD8 molecules, respectively. Although they play quite different roles in an immune system, many of their basic cellular processes such as proliferation following stimulation are presumably common. In this study, we have carefully analyzed time course of G0/1 transition as well as cell cycle progression in the two subsets of quiescent T cell population following in vitro growth stimulation. We found that CD8(+) T cells promote G0/1 transition more rapidly and drive their cell cycle progression faster compared to CD4(+) T cells. In addition, expression of CD25 and effects of its blockade revealed that IL-2 is implicated in the rapid progression, but not the earlier G0/1 transition, of CD8(+) T cells.

  8. Alphavirus replicon particles acting as adjuvants promote CD8+ T cell responses to co-delivered antigen.

    Science.gov (United States)

    Thompson, Joseph M; Whitmore, Alan C; Staats, Herman F; Johnston, Robert E

    2008-08-05

    Alphavirus replicon particles induce strong antibody and CD8+ T cell responses to expressed antigens in numerous experimental systems. We have recently demonstrated that Venezuelan equine encephalitis virus replicon particles (VRP) possess adjuvant activity for systemic and mucosal antibody responses. In this report, we demonstrate that VRP induced an increased and balanced serum IgG subtype response to co-delivered antigen, with simultaneous induction of antigen-specific IgG1 and IgG2a antibodies, and increased both systemic and mucosal antigen-specific CD8+ T cell responses, as measured by an IFN-gamma ELISPOT assay. Additionally, VRP further increased antigen-specific T cell immunity in an additive fashion following co-delivery with the TLR ligand, CpG DNA. VRP infection led to recruitment of CD8+ T cells into the mucosal compartment, possibly utilizing the mucosal homing receptor, as this integrin was upregulated on CD8+ T cells in the draining lymph node of VRP-infected animals, where VRP-infected dendritic cells reside. This newly recognized ability of VRP to mediate increased T cell response towards co-delivered antigen provides the potential to both define the molecular basis of alphavirus-induced immunity, and improve alphavirus-based vaccines.

  9. Induction and maintenance of protective CD8+ T cells against malaria liver stages: implications for vaccine development

    Directory of Open Access Journals (Sweden)

    Sze-Wah Tse

    2011-08-01

    Full Text Available CD8+ T cells against malaria liver stages represent a major protective immune mechanism against infection. Following induction in the peripheral lymph nodes by dendritic cells (DCs, these CD8+ T cells migrate to the liver and eliminate parasite infected hepatocytes. The processing and presentation of sporozoite antigen requires TAP mediated transport of major histocompatibility complex class I epitopes to the endoplasmic reticulum. Importantly, in DCs this process is also dependent on endosome-mediated cross presentation while this mechanism is not required for epitope presentation on hepatocytes. Protective CD8+ T cell responses are strongly dependent on the presence of CD4+ T cells and the capacity of sporozoite antigen to persist for a prolonged period of time. While human trials with subunit vaccines capable of inducing antibodies and CD4+ T cell responses have yielded encouraging results, an effective anti-malaria vaccine will likely require vaccine constructs designed to induce protective CD8+ T cells against malaria liver stages.

  10. Inhibitory receptor expression depends more dominantly on differentiation and activation than exhaustion of human CD8 T cells

    Directory of Open Access Journals (Sweden)

    Amandine eLegat

    2013-12-01

    Full Text Available Under conditions of chronic antigen stimulation, such as persistent viral infection and cancer, CD8 T cells may diminish effector function, which has been termed exhaustion. Expression of inhibitory Receptors (iRs is often regarded as a hallmark of exhaustion. Here we studied the expression of eight different iRs by CD8 T cells of healthy humans, including CTLA-4, PD1, TIM3, LAG3, 2B4, BTLA, CD160 and KLRG-1. We show that many iRs are expressed upon activation, and with progressive differentiation to effector cells, even in absence of long-term (chronic antigenic stimulation. In particular, we evaluated the direct relationship between iR expression and functionality in CD8 T cells by using anti-CD3 and anti-CD28 stimulation to stimulate all cells and differentiation subsets. We observed a striking upregulation of certain iRs following the cytokine production wave, in agreement with the notion that iRs function as a negative feedback mechanism. Intriguingly, we found no major impairment of cytokine production in cells positive for a broad array of iRs, as previously shown for PD1 in healthy donors. Rather, the expression of the various iRs strongly correlated with T cell differentiation or activation states, or both. Furthermore, we analyzed CD8 T cells from lymph nodes (LNs of melanoma patients. Interestingly, we found altered iR expression and lower cytokine production by T cells from metastatic LNs, but also from non-metastatic LNs, likely due to mechanisms which are not related to exhaustion. Together, our data shows that expression of iRs per se does not mark dysfunctional cells, but is rather tightly linked to activation and differentiation. This study highlights the importance of considering the status of activation and differentiation for the study and the clinical monitoring of CD8 T cells.

  11. CD8+ T cells mediate antibody-independent platelet clearance in mice.

    Science.gov (United States)

    Arthur, Connie M; Patel, Seema R; Sullivan, H Cliff; Winkler, Annie M; Tormey, Chris A; Hendrickson, Jeanne E; Stowell, Sean R

    2016-04-07

    Platelet transfusion provides an important therapeutic intervention in the treatment and prevention of bleeding. However, some patients rapidly clear transfused platelets, preventing the desired therapeutic outcome. Although platelet clearance can occur through a variety of mechanisms, immune-mediated platelet removal often plays a significant role. Numerous studies demonstrate that anti-platelet alloantibodies can induce significant platelet clearance following transfusion. In fact, for nearly 50 years, anti-platelet alloantibodies were considered to be the sole mediator of immune-mediated platelet clearance in platelet-refractory individuals. Although nonimmune mechanisms of platelet clearance can often explain platelet removal in the absence of anti-platelet alloantibodies, many patients experience platelet clearance following transfusion in the absence of a clear mechanism. These results suggest that other processes of antibody-independent platelet clearance may occur. Our studies demonstrate that CD8(+)T cells possess the unique ability to induce platelet clearance in the complete absence of anti-platelet alloantibodies. These results suggest a previously unrecognized form of immune-mediated platelet clearance with significant implications in the appropriate management of platelet-refractory individuals.

  12. Interleukin-35-Producing CD8α+ Dendritic Cells Acquire a Tolerogenic State and Regulate T Cell Function

    Science.gov (United States)

    Haller, Sergio; Duval, Anaïs; Migliorini, Romain; Stevanin, Mathias; Mack, Vanessa; Acha-Orbea, Hans

    2017-01-01

    Dendritic cells (DCs) play a central role in shaping immunogenic as well as tolerogenic adaptive immune responses and thereby dictate the outcome of adaptive immunity. Here, we report the generation of a CD8α+ DC line constitutively secreting the tolerogenic cytokine interleukin (IL)-35. IL-35 secretion led to impaired CD4+ and CD8+ T lymphocyte proliferation and interfered with their function in vitro and also in vivo. IL-35 was furthermore found to induce a tolerogenic phenotype on CD8α+ DCs, characterized by the upregulation of CD11b, downregulation of MHC class II, a reduced costimulatory potential as well as production of the immunomodulatory molecule IL-10. Vaccination of mice with IL-35-expressing DCs promoted tumor growth and reduced the severity of autoimmune encephalitis not only in a preventive but also after induction of encephalitogenic T cells. The reduction in experimental autoimmune encephalitis severity was significantly more pronounced when antigen-pulsed IL-35+ DCs were used. These findings suggest a new, indirect effector mechanism by which IL-35-responding antigen-presenting cells contribute to immune tolerance. Furthermore, IL-35-transfected DCs may be a promising approach for immunotherapy in the context of autoimmune diseases. PMID:28228759

  13. Abundance of early functional HIV-specific CD8+ T cells does not predict AIDS-free survival time.

    Directory of Open Access Journals (Sweden)

    Ingrid M M Schellens

    Full Text Available BACKGROUND: T-cell immunity is thought to play an important role in controlling HIV infection, and is a main target for HIV vaccine development. HIV-specific central memory CD8(+ and CD4(+ T cells producing IFNgamma and IL-2 have been associated with control of viremia and are therefore hypothesized to be truly protective and determine subsequent clinical outcome. However, the cause-effect relationship between HIV-specific cellular immunity and disease progression is unknown. We investigated in a large prospective cohort study involving 96 individuals of the Amsterdam Cohort Studies with a known date of seroconversion whether the presence of cytokine-producing HIV-specific CD8(+ T cells early in infection was associated with AIDS-free survival time. METHODS AND FINDINGS: The number and percentage of IFNgamma and IL-2 producing CD8(+ T cells was measured after in vitro stimulation with an overlapping Gag-peptide pool in T cells sampled approximately one year after seroconversion. Kaplan-Meier survival analysis and Cox proportional hazard models showed that frequencies of cytokine-producing Gag-specific CD8(+ T cells (IFNgamma, IL-2 or both shortly after seroconversion were neither associated with time to AIDS nor with the rate of CD4(+ T-cell decline. CONCLUSIONS: These data show that high numbers of functional HIV-specific CD8(+ T cells can be found early in HIV infection, irrespective of subsequent clinical outcome. The fact that both progressors and long-term non-progressors have abundant T cell immunity of the specificity associated with low viral load shortly after seroconversion suggests that the more rapid loss of T cell immunity observed in progressors may be a consequence rather than a cause of disease progression.

  14. Specificity and dynamics of effector and memory CD8 T cell responses in human tick-borne encephalitis virus infection.

    Directory of Open Access Journals (Sweden)

    Kim Blom

    2015-01-01

    Full Text Available Tick-borne encephalitis virus (TBEV is transferred to humans by ticks. The virus causes tick-borne encephalitis (TBE with symptoms such as meningitis and meningoencephalitis. About one third of the patients suffer from long-lasting sequelae after clearance of the infection. Studies of the immune response during TBEV-infection are essential to the understanding of host responses to TBEV-infection and for the development of therapeutics. Here, we studied in detail the primary CD8 T cell response to TBEV in patients with acute TBE. Peripheral blood CD8 T cells mounted a considerable response to TBEV-infection as assessed by Ki67 and CD38 co-expression. These activated cells showed a CD45RA-CCR7-CD127- phenotype at day 7 after hospitalization, phenotypically defining them as effector cells. An immunodominant HLA-A2-restricted TBEV epitope was identified and utilized to study the characteristics and temporal dynamics of the antigen-specific response. The functional profile of TBEV-specific CD8 T cells was dominated by variants of mono-functional cells as the effector response matured. Antigen-specific CD8 T cells predominantly displayed a distinct Eomes+Ki67+T-bet+ effector phenotype at the peak of the response, which transitioned to an Eomes-Ki67-T-bet+ phenotype as the infection resolved and memory was established. These transcription factors thus characterize and discriminate stages of the antigen-specific T cell response during acute TBEV-infection. Altogether, CD8 T cells responded strongly to acute TBEV infection and passed through an effector phase, prior to gradual differentiation into memory cells with distinct transcription factor expression-patterns throughout the different phases.

  15. IL-6 Improves the Nitric Oxide-Induced Cytotoxic CD8+ T Cell Dysfunction in Human Chagas Disease

    Science.gov (United States)

    Sanmarco, Liliana Maria; Visconti, Laura Marina; Eberhardt, Natalia; Ramello, Maria Cecilia; Ponce, Nicolás Eric; Spitale, Natalia Beatriz; Vozza, Maria Lola; Bernardi, Germán Andrés; Gea, Susana; Minguez, Angel Ramón; Aoki, Maria Pilar

    2016-01-01

    Reactive oxygen and nitrogen species are important microbicidal agents and are also involved in lymphocyte unresponsiveness during experimental infections. Many of the biological effects attributed to nitric oxide are mediated by peroxynitrites, which induce the nitration of immune cells, among others. Our group has demonstrated that nitric oxide is involved in the suppressive activity of myeloid-derived suppressor cells in Trypanosoma cruzi-infected mice, with a higher number of CD8+ T cells suffering surface-nitration compared to uninfected controls. Studying the functional and phenotypic features of peripheral CD8+ T cells from chagasic patients and human cells experimentally infected with T. cruzi, we found that different regulatory mechanisms impaired the effector functions of T cytotoxic population from seropositive patients. Peripheral leukocytes from chagasic patients showed increased nitric oxide production concomitant with increased tyrosine nitration of CD8+ T cells. Additionally, this cytotoxic population exhibited increased apoptotic rate, loss of the TCRζ-chain, and lower levels of CD107a, a marker of degranulation. Strikingly, IL-6 stimulation of in vitro-infected peripheral blood mononuclear cells obtained from healthy donors, blunted T. cruzi-induced nitration of CD3+CD8+ cells, and increased their survival. Furthermore, the treatment of these cultures with an IL-6 neutralizing antibody increased the percentage of T. cruzi-induced CD8+ T cell nitration and raised the release of nitric oxide. The results suggest that the under-responsiveness of cytotoxic T cell population observed in the setting of long-term constant activation of the immune system could be reverted by the pleiotropic actions of IL-6, since this cytokine improves its survival and effector functions. PMID:28066435

  16. Activated human neonatal CD8+ T cells are subject to immunomodulation by direct TLR2 or TLR5 stimulation.

    LENUS (Irish Health Repository)

    McCarron, Mark

    2012-02-01

    In conditions of optimal priming, the neonate possesses competency to mount quantitatively adult-like responses. Vaccine formulations containing sufficiently potent adjuvants may overcome the neonate\\'s natural tendency for immunosuppression and provoke a similarly robust immune response. TLR expression on T cells represents the possibility of directly enhancing T cell immunity. We examined the ex vivo responsiveness of highly purified human cord blood-derived CD8(+) T cells to direct TLR ligation by a repertoire of TLR agonists. In concert with TCR stimulation, only Pam(3)Cys (palmitoyl-3-Cys-Ser-(Lys)(4)) and flagellin monomers significantly enhanced proliferation, CD25(+) expression, IL-2, IFN-gamma, TNF-alpha, and intracellular granzyme B expression. TLR2 and TLR5 mRNA was detected in the CD8(+) T cells. Blocking studies confirmed that the increase in IFN-gamma production was by the direct triggering of surface TLR2 or TLR5. The simultaneous exposure of CD8(+) T cells to both TLR agonists had an additive effect on IFN-gamma production. These data suggest that a combination of the two TLR ligands would be a potent T cell adjuvant. This may represent a new approach to TLR agonist-based adjuvant design for future human neonatal vaccination strategies requiring a CD8(+) component.

  17. CD8+ T cells promote proliferation of benign prostatic hyperplasia epithelial cells under low androgen level via modulation of CCL5/STAT5/CCND1 signaling pathway

    Science.gov (United States)

    Yang, Yang; Hu, Shuai; Liu, Jie; Cui, Yun; Fan, Yu; Lv, Tianjing; Liu, Libo; Li, Jun; He, Qun; Han, Wenke; Yu, Wei; Sun, Yin; Jin, Jie

    2017-01-01

    Previous studies by our group have shown that low intra-prostatic dihydrotestosterone (DHT) induced BPH epithelial cells (BECs) to recruit CD8+ T cells. However, the influence of the recruited CD8+ T cells on BECs under a low androgen level is still unknown. Here, we found CD8+ T cells have the capacity to promote proliferation of BECs in low androgen condition. Mechanism dissection revealed that interaction between CD8+ T cells and BECs through secretion of CCL5 might promote the phosphorylation of STAT5 and a higher expression of CCND1 in BECs. Suppressed CCL5/STAT5 signals via CCL5 neutralizing antibody or STAT5 inhibitor Pimozide led to reverse CD8+ T cell-enhanced BECs proliferation. IHC analysis from Finasteride treated patients showed PCNA expression in BECs was highly correlated to the level of CD8+ T cell infiltration and the expression of CCL5. Consequently, our data indicated infiltrating CD8+ T cells could promote the proliferation of BECs in low androgen condition via modulation of CCL5/STAT5/CCND1 signaling. The increased secretion of CCL5 from the CD8+ T cells/BECs interaction might help BECs survive in a low DHT environment. Targeting these signals may provide a new potential therapeutic approach to better treat BPH patients who failed the therapy of 5α-reductase inhibitors. PMID:28216616

  18. Enhanced local and systemic anti-melanoma CD8+ T cell responses after memory T cell-based adoptive immunotherapy in mice

    Science.gov (United States)

    Contreras, Amanda; Sen, Siddhartha; Tatar, Andrew J.; Mahvi, David A.; Meyers, Justin V.; Srinand, Prakrithi; Suresh, Marulasiddappa

    2016-01-01

    Adoptive cell transfer (ACT) melanoma immunotherapy typically employs acutely activated effector CD8+ T cells for their ability to rapidly recognize and clear antigen. We have previously observed that effector CD8+ T cells are highly susceptible to melanoma-induced suppression, whereas memory CD8+ T cells are not. Although memory T cells have been presumed to be potentially advantageous for ACT, the kinetics of local and systemic T cell responses after effector and memory ACT have not been compared. B16F10 melanoma cells stably transfected to express very low levels of the lymphocytic choriomeningitis virus (LCMV) peptide GP33 (B16GP33) were inoculated into syngeneic C57BL/6 mice. Equal numbers of bona fide naïve, effector, or memory phenotype GP33-specific CD8+ T cells were adoptively transferred into mice 1 day after B16GP33 inoculation. The efficacy of ACT immunotherapy was kinetically assessed using serial tumor measurements and flow cytometric analyses of local and systemic CD8+ T cell responses. Control of B16GP33 tumor growth, persistence of adoptively transferred CD8+ cells, intratumoral infiltration of CD8+ T cells, and systemic CD8+ T cell responsiveness to GP33 were strongest after ACT of memory CD8+ T cells. Following surgical tumor resection and melanoma tumor challenge, only mice receiving memory T cell-based ACT immunotherapy exhibited durable tumor-specific immunity. These findings demonstrate how the use of non-expanded memory CD8+ T cells may enhance ACT immunotherapeutic efficacy. PMID:27011014

  19. Antigen-sensitized CD4+CD62Llow memory/effector T helper 2 cells can induce airway hyperresponsiveness in an antigen free setting

    Directory of Open Access Journals (Sweden)

    Nagatani Katsuya

    2005-05-01

    Full Text Available Abstract Background Airway hyperresponsiveness (AHR is one of the most prominent features of asthma, however, precise mechanisms for its induction have not been fully elucidated. We previously reported that systemic antigen sensitization alone directly induces AHR before development of eosinophilic airway inflammation in a mouse model of allergic airway inflammation, which suggests a critical role of antigen-specific systemic immune response itself in the induction of AHR. In the present study, we examined this possibility by cell transfer experiment, and then analyzed which cell source was essential for this process. Methods BALB/c mice were immunized with ovalbumin (OVA twice. Spleen cells were obtained from the mice and were transferred in naive mice. Four days later, AHR was assessed. We carried out bronchoalveolar lavage (BAL to analyze inflammation and cytokine production in the lung. Fluorescence and immunohistochemical studies were performed to identify T cells recruiting and proliferating in the lung or in the gut of the recipient. To determine the essential phenotype, spleen cells were column purified by antibody-coated microbeads with negative or positive selection, and transferred. Then, AHR was assessed. Results Transfer of spleen cells obtained from OVA-sensitized mice induced a moderate, but significant, AHR without airway antigen challenge in naive mice without airway eosinophilia. Immunization with T helper (Th 1 elicited antigen (OVA with complete Freund's adjuvant did not induce the AHR. Transferred cells distributed among organs, and the cells proliferated in an antigen free setting for at least three days in the lung. This transfer-induced AHR persisted for one week. Interleukin-4 and 5 in the BAL fluid increased in the transferred mice. Immunoglobulin E was not involved in this transfer-induced AHR. Transfer of in vitro polarized CD4+ Th2 cells, but not Th1 cells, induced AHR. We finally clarified that CD4+CD62Llow memory/effector

  20. Cortisol mediates redistribution of CD8+ but not of CD56+ cells after the psychological stress of public speaking.

    Science.gov (United States)

    Hennig, J; Netter, P; Voigt, K H

    2001-10-01

    The present study investigated the question if a pharmacological blockade of cortisol release with stress affects lymphocyte redistribution in healthy volunteers. It was expected that the well known increases in the number of CD8+ (T-suppressor/cytotoxic cells) and CD56+ (natural killer cells) after stress would not be downregulated in the absence of an appropriate cortisol response, since redistribution is markedly influenced by glucocorticoids. In a double blind design, forty healthy male volunteers were exposed to a brief psychological stressor (public speaking) and received a single oral dose of dexamethasone [DEX] (N=20) or placebo (N=20) the evening before the main experiment. Ratings on emotional states and blood samples for determination of hormones, CD8+, and CD56+ cell counts were obtained at different time points during the experiment. Stress of public speaking led to highly significant increases in catecholamine and cortisol concentrations, to subjective discomfort and, most pronounced, to high increases in the number of CD8+ and CD56+ cells. DEX neither influenced baseline levels of mood, catecholamines and cell numbers nor stress induced responses of mood and catecholamines. However, during the whole experiment cortisol concentrations were suppressed in the DEX-condition and the number of CD8+, but not CD56+, cells remained elevated at the end of the session, while in the placebo condition the numbers of these cells were decreased to baseline levels. The data demonstrate that cortisol seems to play an important role in stress induced redistribution patterns of CD8+ but not CD56+ cells. This, however, can be explained by different migration processes between those cells (e.g. different targets of migration) and, therefore, different glucocorticoid influences on target tissues.