WorldWideScience

Sample records for cd40 ligand induced

  1. CD40 Ligand (CD154) Incorporated into HIV Virions Induces Activation-Induced Cytidine Deaminase (AID) Expression in Human B Lymphocytes

    Science.gov (United States)

    Epeldegui, Marta; Thapa, Dharma R.; De La Cruz, Justin; Kitchen, Scott; Zack, Jerome A.; Martínez-Maza, Otoniel

    2010-01-01

    Most AIDS-associated non-Hodgkin's lymphoma (AIDS-NHL) arises from errors in immunoglobulin heavy-chain gene (IgH) class switch recombination (CSR) or somatic hypermutation (SHM), events that occur in germinal center (GC) B cells and require the activity of activation induced cytidine deaminase (AID). Several oncogenic viruses (EBV, HCV, HPV) can induce AID gene (AID) expression, and elevated AID expression is seen in circulating lymphocytes prior to AIDS-NHL diagnosis. Here, we report that HIV produced in peripheral blood mononuclear cells (PBMC) induced AID expression in normal human B cells. Since HIV produced in PBMC contains host cell CD40 ligand (CD40L) incorporated into the viral membrane, and CD40L is known to induce AID expression in human B cells, the role of virion-associated CD40L in HIV-induced AID expression was examined. Only viruses expressing functional CD40L were seen to induce AID expression; CD40L-negative HIV did not induce AID expression. The induction of AID expression by CD40L+ HIV was abrogated by addition of blocking anti-CD40L antibody. AID protein was detected in B cells exposed to CD40L+ HIV using intracellular multicolor flow cytometry, with most AID producing B cells expressing the CD71 activation marker on their surface. Therefore, HIV virions that express CD40L induce AID expression in B cells, and this induction appears to be due to a direct interaction between CD40L on these viruses and CD40 on B cells. These findings are consistent with a role for HIV in the direct stimulation of B cells, potentially leading to the accumulation of molecular lesions that have the potential to contribute to the development of NHL. PMID:20625427

  2. CD40 ligand (CD154 incorporated into HIV virions induces activation-induced cytidine deaminase (AID expression in human B lymphocytes.

    Directory of Open Access Journals (Sweden)

    Marta Epeldegui

    2010-07-01

    Full Text Available Most AIDS-associated non-Hodgkin's lymphoma (AIDS-NHL arises from errors in immunoglobulin heavy-chain gene (IgH class switch recombination (CSR or somatic hypermutation (SHM, events that occur in germinal center (GC B cells and require the activity of activation induced cytidine deaminase (AID. Several oncogenic viruses (EBV, HCV, HPV can induce AID gene (AID expression, and elevated AID expression is seen in circulating lymphocytes prior to AIDS-NHL diagnosis. Here, we report that HIV produced in peripheral blood mononuclear cells (PBMC induced AID expression in normal human B cells. Since HIV produced in PBMC contains host cell CD40 ligand (CD40L incorporated into the viral membrane, and CD40L is known to induce AID expression in human B cells, the role of virion-associated CD40L in HIV-induced AID expression was examined. Only viruses expressing functional CD40L were seen to induce AID expression; CD40L-negative HIV did not induce AID expression. The induction of AID expression by CD40L+ HIV was abrogated by addition of blocking anti-CD40L antibody. AID protein was detected in B cells exposed to CD40L+ HIV using intracellular multicolor flow cytometry, with most AID producing B cells expressing the CD71 activation marker on their surface. Therefore, HIV virions that express CD40L induce AID expression in B cells, and this induction appears to be due to a direct interaction between CD40L on these viruses and CD40 on B cells. These findings are consistent with a role for HIV in the direct stimulation of B cells, potentially leading to the accumulation of molecular lesions that have the potential to contribute to the development of NHL.

  3. Levels of human platelet-derived soluble CD40 ligand depend on haplotypes of CD40LG-CD40-ITGA2

    OpenAIRE

    Aloui, Chaker; Prigent, Antoine; Tariket, Sofiane; Sut, Caroline; Fagan, Jocelyne; Cognasse, Fabrice; Chakroun, Tahar; Garraud, Olivier; Laradi, Sandrine

    2016-01-01

    Increased circulating soluble CD40 ligand (sCD40L) is commonly associated with inflammatory disorders. We aimed to investigate whether gene polymorphisms in CD40LG, CD40 and ITGA2 are associated with a propensity to secrete sCD40L; thus, we examined this issue at the level of human platelets, the principal source of sCD40L. We performed single polymorphism and haplotype analyses to test for the effect of twelve polymorphisms across the CD40LG, CD40 and ITGA2 genes in blood donors. ITGA2 prese...

  4. B cell activating factor (BAFF) and a proliferation inducing ligand (APRIL) mediate CD40-independent help by memory CD4 T cells.

    Science.gov (United States)

    Gorbacheva, V; Ayasoufi, K; Fan, R; Baldwin, W M; Valujskikh, A

    2015-02-01

    Donor-reactive memory T cells undermine organ transplant survival and are poorly controlled by immunosuppression or costimulatory blockade. Memory CD4 T cells provide CD40-independent help for the generation of donor-reactive effector CD8 T cells and alloantibodies (alloAbs) that rapidly mediate allograft rejection. The goal of this study was to investigate the role of B cell activating factor (BAFF) and a proliferation-inducing ligand (APRIL) in alloresponses driven by memory CD4 T cells. The short-term neutralization of BAFF alone or BAFF plus APRIL synergized with anti-CD154 mAb to prolong heart allograft survival in recipients containing donor-reactive memory CD4 T cells. The prolongation was associated with reduction in antidonor alloAb responses and with inhibited reactivation and helper functions of memory CD4 T cells. Additional depletion of CD8 T cells did not enhance the prolonged allograft survival suggesting that donor-reactive alloAbs mediate late graft rejection in these recipients. This is the first report that targeting the BAFF cytokine network inhibits both humoral and cellular immune responses induced by memory CD4 T cells. Our results suggest that reagents neutralizing BAFF and APRIL may be used to enhance the efficacy of CD40/CD154 costimulatory blockade and improve allograft survival in T cell-sensitized recipients. © Copyright 2014 The American Society of Transplantation and the American Society of Transplant Surgeons.

  5. Soluble CD40 ligand directly alters glomerular permeability and may act as a circulating permeability factor in FSGS.

    Directory of Open Access Journals (Sweden)

    Sophie Doublier

    Full Text Available CD40/CD40 ligand (CD40L dyad, a co-stimulatory bi-molecular complex involved in the adaptive immune response, has also potent pro-inflammatory actions in haematopoietic and non-haematopoietic cells. We describe here a novel role for soluble CD40L (sCD40L as modifier of glomerular permselectivity directly acting on glomerular epithelial cells (GECs. We found that stimulation of CD40, constitutively expressed on GEC cell membrane, by the sCD40L rapidly induced redistribution and loss of nephrin in GECs, and increased albumin permeability in isolated rat glomeruli. Pre-treatment with inhibitors of CD40-CD40L interaction completely prevented these effects. Furthermore, in vivo injection of sCD40L induced a significant reduction of nephrin and podocin expression in mouse glomeruli, although no significant increase of urine protein/creatinine ratio was observed after in vivo injection. The same effects were induced by plasma factors partially purified from post-transplant plasma exchange eluates of patients with focal segmental glomerulosclerosis (FSGS, and were blocked by CD40-CD40L inhibitors. Moreover, 17 and 34 kDa sCD40L isoforms were detected in the same plasmapheresis eluates by Western blotting. Finally, the levels of sCD40Lwere significantly increased in serum of children both with steroid-sensitive and steroid-resistant nephrotic syndrome (NS, and in adult patients with biopsy-proven FSGS, compared to healthy subjects, but neither in children with congenital NS nor in patients with membranous nephropathy. Our results demonstrate that sCD40L directly modifies nephrin and podocin distribution in GECs. Moreover, they suggest that sCD40L contained in plasmapheresis eluates from FSGS patients with post-transplant recurrence may contribute, presumably cooperating with other mediators, to FSGS pathogenesis by modulating glomerular permeability.

  6. 2,3,7,8-Tetrachlorodibenzo-p-dioxin-mediated disruption of the CD40 ligand-induced activation of primary human B cells

    International Nuclear Information System (INIS)

    Lu Haitian; Crawford, Robert B.; Kaplan, Barbara L.F.; Kaminski, Norbert E.

    2011-01-01

    Suppression of the primary antibody response is particularly sensitive to suppression by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in mice; however, surprisingly little is known concerning the effects of TCDD on humoral immunity or B cell function in humans. Results from a limited number of previous studies, primarily employing in vitro activation models, suggested that human B cell effector function is suppressed by TCDD. The present study sought to extend these findings by investigating, in primary human B cells, the effects of TCDD on several critical stages leading to antibody secretion including activation and plasmacytic differentiation using an in vitro CD40 ligand activation model. These studies revealed important differences in the response of human and mouse B cells to TCDD, the most striking being altered expression of plasmacytic differentiation regulators, B lymphocyte-induced maturation protein 1 and paired box protein 5, in mouse but not human B cells. The activation of human B cells was profoundly impaired by TCDD, as evidenced by decreased expression of activation markers CD80, CD86, and CD69. The impaired activation correlated with decreased cell viability, which prevented the progression of human B cells toward plasmacytic differentiation. TCDD treatment also attenuated the early activation of mitogen-activated protein kinases (MAPK) and Akt signaling in human B cells. Collectively, the present study provided experimental evidence for novel mechanisms by which TCDD impairs the effector function of primary human B cells. - Highlights: → In this study primary human and mouse B cell toxicity to TCDD was compared. → TCDD altered the expression of Blimp-1 and Pax5 in mouse but not human B cells. → TCDD markedly suppressed human B cell activation as characterized by CD80, CD86 and CD69 expression. → TCDD inhibited ERK, p38, and Akt phosphorylation in human B cells.

  7. Lack of evidence of CD40 ligand involvement in transfusion-related acute lung injury

    NARCIS (Netherlands)

    Tuinman, P. R.; Gerards, M. C.; Jongsma, G.; Vlaar, A. P.; Boon, L.; Juffermans, N. P.

    2011-01-01

    Activated platelets have been implicated in playing a major role in transfusion-related acute lung injury (TRALI), as platelets can trigger neutrophils, resulting in vascular damage. We hypothesized that binding of platelet CD40 ligand (CD40L) to endothelial CD40 is essential in the onset of TRALI.

  8. Soluble CD40 Ligand and Oxidative Response Are Reciprocally Stimulated during Shiga Toxin-Associated Hemolytic Uremic Syndrome

    Directory of Open Access Journals (Sweden)

    Maria J. Abrey Recalde

    2017-10-01

    Full Text Available Shiga toxin (Stx, produced by Escherichia coli, is the main pathogenic factor of diarrhea-associated hemolytic uremic syndrome (HUS, which is characterized by the obstruction of renal microvasculature by platelet-fibrin thrombi. It is well known that the oxidative imbalance generated by Stx induces platelet activation, contributing to thrombus formation. Moreover, activated platelets release soluble CD40 ligand (sCD40L, which in turn contributes to oxidative imbalance, triggering the release of reactive oxidative species (ROS on various cellular types. The aim of this work was to determine if the interaction between the oxidative response and platelet-derived sCD40L, as consequence of Stx-induced endothelium damage, participates in the pathogenic mechanism during HUS. Activated human glomerular endothelial cells (HGEC by Stx2 induced platelets to adhere to them. Although platelet adhesion did not contribute to endothelial damage, high levels of sCD40L were released to the medium. The release of sCD40L by activated platelets was inhibited by antioxidant treatment. Furthermore, we found increased levels of sCD40L in plasma from HUS patients, which were also able to trigger the respiratory burst in monocytes in a sCD40L-dependent manner. Thus, we concluded that platelet-derived sCD40L and the oxidative response are reciprocally stimulated during Stx2-associated HUS. This process may contribute to the evolution of glomerular occlusion and the microangiopathic lesions.

  9. The Signaling Role of CD40 Ligand in Platelet Biology and in Platelet Component Transfusion

    Science.gov (United States)

    Aoui, Chaker; Prigent, Antoine; Sut, Caroline; Tariket, Sofiane; Hamzeh-Cognasse, Hind; Pozzetto, Bruno; Richard, Yolande; Cognasse, Fabrice; Laradi, Sandrine; Garraud, Olivier

    2014-01-01

    The CD40 ligand (CD40L) is a transmembrane molecule of crucial interest in cell signaling in innate and adaptive immunity. It is expressed by a variety of cells, but mainly by activated T-lymphocytes and platelets. CD40L may be cleaved into a soluble form (sCD40L) that has a cytokine-like activity. Both forms bind to several receptors, including CD40. This interaction is necessary for the antigen specific immune response. Furthermore, CD40L and sCD40L are involved in inflammation and a panoply of immune related and vascular pathologies. Soluble CD40L is primarily produced by platelets after activation, degranulation and cleavage, which may present a problem for transfusion. Soluble CD40L is involved in adverse transfusion events including transfusion related acute lung injury (TRALI). Although platelet storage designed for transfusion occurs in sterile conditions, platelets are activated and release sCD40L without known agonists. Recently, proteomic studies identified signaling pathways activated in platelet concentrates. Soluble CD40L is a good candidate for platelet activation in an auto-amplification loop. In this review, we describe the immunomodulatory role of CD40L in physiological and pathological conditions. We will focus on the main signaling pathways activated by CD40L after binding to its different receptors. PMID:25479079

  10. Soluble CD40 ligand stimulates CD40-dependent activation of the β2 integrin Mac-1 and protein kinase C zeda (PKCζ in neutrophils: implications for neutrophil-platelet interactions and neutrophil oxidative burst.

    Directory of Open Access Journals (Sweden)

    Rong Jin

    Full Text Available Recent work has revealed an essential involvement of soluble CD40L (sCD40L in inflammation and vascular disease. Activated platelets are the major source of sCD40L, which has been implicated in platelet and leukocyte activation, although its exact functional impact on leukocyte-platelet interactions and the underlying mechanisms remain undefined. We aimed to determine the impact and the mechanisms of sCD40L on neutrophils. We studied neutrophil interactions with activated, surface-adherent platelets as a model for leukocyte recruitment to the sites of injury. Our data show that CD40L contributes to neutrophil firm adhesion to and transmigration across activated surface-adherent platelets, possibly through two potential mechanisms. One involves the direct interaction of ligand-receptor (CD40L-CD40, i.e., platelet surface CD40L interaction with neutrophil CD40; another involves an indirect mechanism, i.e. soluble CD40L stimulates activation of the leukocyte-specific β2 integrin Mac-1 in neutrophils and thereby further promotes neutrophil adhesion and migration. Activation of the integrin Mac-1 is known to be critical for mediating neutrophil adhesion and migration. sCD40L activated Mac-1 in neutrophils and enhanced neutrophil-platelet interactions in wild-type neutrophils, but failed to elicit such responses in CD40-deficient neutrophils. Furthermore, our data show that the protein kinase C zeta (PKCζ is critically required for sCD40L-induced Mac-1 activation and neutrophil adhesive function. sCD40L strongly stimulated the focal clustering of Mac-1 (CD11b and the colocalization of Mac-1 with PKCζ in wild-type neutrophils, but had minimal effect in CD40-deficient neutrophils. Blocking PKCζ completely inhibited sCD40L-induced neutrophil firm adhesion. Moreover, sCD40L strongly stimulates neutrophil oxidative burst via CD40-dependent activation of PI3K/NF-KB, but independent of Mac-1 and PKCζ. These findings may contribute to a better

  11. Epitope-dependent synergism and antagonism between CD40 antibodies and soluble CD40 ligand for the regulation of CD23 expression and IgE synthesis in human B cells.

    Science.gov (United States)

    Challa, A; Pound, J D; Armitage, R J; Gordon, J

    1999-06-01

    The induction of IgE synthesis in naive B cells requires two T-cell-derived signals: one delivered through CD40 and the other via interleukin-4 (IL-4). The natural counterstructure to CD40 is the CD40 ligand (CD40L). We have asked about the interplay between CD40L and CD40 mAb that recognize distinct epitopes in delivering signals for regulating IL-4-dependent IgE synthesis and the expression of CD23, the low-affinity IgE receptor, in resting B cells. After culture of purified human tonsillar B cells with CD40 agonists and IL-4, surface CD23 was determined by flow cytometric analysis. CD23 levels in cell lysates and supernatants were quantified by ELISA, as were those of secreted IgE. With regard to both induction of CD23 and IgE production, soluble CD40L trimer (sCD40LT) showed synergistic interaction with two mAb to CD40 which bind to epitopes located outside the ligand binding site (EA5 and 5C3), but not with a mAb (G28-5) which effectively competes for CD40L binding to CD40. Each of the two noncompeting mAb to CD40 was able to cooperate strongly with sCD40LT in promoting high-level induction of CD23 even in the absence of IL-4, an effect mirrored in the promotion of strong homotypic clustering and high-rate DNA synthesis. G28-5, uniquely, induced a down-regulation in IL-4-induced CD23 expression with time, a change that was accompanied by an increase in the amount of soluble CD23 detected. While the two noncompeting mAb consistently synergized with sCD40LT for the promotion of IL-4-dependent IgE synthesis, sCD40LT and G28-5 (which, by itself, was the most potent of the CD40 mAb at inducing IL-4-dependent IgE production) exhibited mutual antagonism in this regard, the level of which could be quite profound. This study demonstrates that appropriate targeting of CD40 can modulate IgE synthesis either positively or negatively.

  12. Serum Levels of Platelet Released CD40 Ligand Are Increased in Early Onset Occlusive Carotid Artery Disease

    Directory of Open Access Journals (Sweden)

    József Balla

    2006-01-01

    Full Text Available Objective: Soluble CD40 ligand (sCD40L has been suggested as a key mediator between inflammation and atherosclerosis, and the CD40-CD40L interaction has a role in atherosclerotic lesion progression. We evaluated if platelet released serum sCD40L and sCD40 levels differ between patients with early onset occlusive carotid artery disease and age-matched controls.

  13. Efficient adenovector CD40 ligand immunotherapy of canine malignant melanoma.

    Science.gov (United States)

    von Euler, Henrik; Sadeghi, Arian; Carlsson, Björn; Rivera, Patricio; Loskog, Angelica; Segall, Thomas; Korsgren, Olle; Tötterman, Thomas H

    2008-05-01

    Cutaneous canine melanomas are usually benign in contrast to human malignant melanoma. However, the canine oropharyngeal, uveal, and mucocutaneous neoplasms are aggressive and have metastatic potential. Surgery and to a lesser extent radiotherapy and chemotherapy are widely adopted treatments but are seldom curative in advanced stages. The similarities between human and canine melanoma make spontaneous canine melanoma an excellent disease model for exploring novel therapies. Herein, we report the first 2 adenovector CD40L immunogene (AdCD40L) treatments of aggressive canine malignant melanoma. Case no. 1 was an advanced stage III oral melanoma that was cured from malignant melanoma with 2 intratumor AdCD40L injections before cytoreductive surgery. After treatment, the tumor tissue was infiltrated with T lymphocytes and B lymphocytes suggesting immune activation. This dog survived 401 days after the first round of gene therapy and was free of melanoma at autopsy. Case no. 2 had a conjunctival malignant melanoma with a rapid progression. This case was treated with 6 AdCD40L injections over 60 days. One hundred and twenty days after start of gene therapy and 60 days after the last injection, the tumor had regressed dramatically, and the dog had a minimal tumor mass and no signs of progression or metastasis. Our results indicate that AdCD40L immunogene therapy is beneficial in canine malignant melanoma and could be considered for human malignant melanoma as well.

  14. Increased plasma soluble CD40 ligand concentration in pelvic inflammatory disease.

    Science.gov (United States)

    Ho, Tsung-chin; Yang, Shun-Fa; Wang, Po-Hui; Lin, Long-Yau; Tee, Yi-Torng; Liao, Wen-Chun; Chang, Hsiu-Ju; Tsai, Hsiu-Ting

    2015-01-01

    The role of soluble CD40 ligand (sCD40L) in pelvic inflammatory disease (PID) remains unclear. We sought to determine whether sCD40L was an efficient serum marker as with WBC and CRP in PID patients. Enzyme-linked immunosorbent assay was used to measure the plasma levels of sCD40L before and after routine protocol treatments in sixty-four PID patients and seventy healthy controls. The level of plasma sCD40L (pg/ml) was significantly elevated in PID patients (1632.83±270.91) compared to that in normal controls (700.33±58.77; p=0.001) and decreased significantly as compared to that in the same patients (928.77±177.25; p=0.0001) after they received treatment. The concentration of sCD40L was significantly correlated with the level of plasma C-reactive protein (CRP) in the blood (r=0.202, p=0.01, n=134). When the cutoff level of plasma sCD40L levels was determined to be 1612.26pg/ml based on ROC, the sensitivity, specificity, and the area under the curve of plasma sCD40L level for predicting PID were 0.26, 0.97, and 0.58 (95% confidence interval: 0.48-0.68), respectively, while the adjusted odds ratio (AOR) with their 95% CI of plasma sCD40L for PID risk was 7.09 (95% CI=1.14-43.87, p=0.03). The expression of plasma sCD40L was increased in patients with PID and detection of plasma sCD40L could be useful for the diagnosis of PID. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Increased T cell expression of CD154 (CD40-ligand) in multiple sclerosis

    DEFF Research Database (Denmark)

    Jensen, J; Krakauer, M; Sellebjerg, F

    2001-01-01

    CD154 (CD40-ligand, gp39), expressed on activated T cells, is crucial in T cell-dependent immune responses and may be involved in the pathogenesis of multiple sclerosis (MS). We studied cerebro-spinal fluid and peripheral blood T cell expression of CD154 in MS by flow cytometry. Patients with sec......CD154 (CD40-ligand, gp39), expressed on activated T cells, is crucial in T cell-dependent immune responses and may be involved in the pathogenesis of multiple sclerosis (MS). We studied cerebro-spinal fluid and peripheral blood T cell expression of CD154 in MS by flow cytometry. Patients...

  16. Role of CD40 ligand and CD28 in induction and maintenance of antiviral CD8+ effector T cell responses

    DEFF Research Database (Denmark)

    Andreasen, Susanne; Christensen, Jeanette Erbo; Marker, O

    2000-01-01

    and extensively, whereas vesicular stomatitis virus (VSV) spreads poorly. We found that the primary response of CD40L-/- mice toward VSV is significantly impaired; proliferation of both CD4+ and CD8+ cells is reduced 2- to 3-fold, few CD8+ cells acquire an activated phenotype, and little functional activity...... is induced. Very similar results were obtained in VSV-infected, CD28-deficient mice. In contrast, neither CD40L nor CD28 was required for induction of a primary CD8+ response toward LCMV. Surprisingly, lack of CD4+ T cells had no impact on the primary immune response toward any of the viruses, even though...... the CD40 ligand dependence demonstrated for VSV would be expected to be associated with CD4 dependence. Upon coinfection of VSV-infected mice with LCMV, the requirement for CD40 ligand (but not CD28) could be partially bypassed, as evidenced by a 3-fold increase in the frequency of VSV-specific CD8+ T...

  17. Soluble CD40 ligands sensitize the epithelial ovarian cancer cells to cisplatin treatment.

    Science.gov (United States)

    Qin, Lijun; Qiu, Hongbing; Zhang, Minjie; Zhang, Fenghua; Yang, Hongfang; Yang, Liu; Jia, Li; Qin, Kaiyun; Jia, Ling; Dou, Xiaomeng; Cheng, Lili; Sang, Meixiang; Zhang, Chao; Shan, Baoen; Zhang, Zhengmao

    2016-04-01

    CD154 (CD40L) is a protein that is primarily expressed on activated T cells and is a member of the TNF superfamily of molecules. It binds to CD40 on antigen-presenting cells (APC), which leads to many effects depending on the target cell type. Being an activator of immune cells, CD40L has also been shown to directly induce apoptosis in tumor cells by multiple mechanisms. To understand the role of sCD40L in regulating the proliferation of epithelial ovarian cancer cells treated or untreated with cisplatin. Epithelial ovarian cancer cells: SKOV3 and its cisplatin-resistant strain SKOV3/DDP cells were used to test the effect of sCD40L and cisplatin. The proliferation of SKOV3 and SKOV3/DDP cells were measured by MTT. Cell cycle was assessed by flow cytometry. The mRNA expressions of targeted genes were detected by qRT-PCR. The protein expressions were detected by Western blotting. sCD40L showed a significant dose-dependence inhibitory effect on the proliferation of ovarian cancer cell lines. sCD40L in combination with cisplatin could sensitized SKOV3/DDP cells to cisplatin treatment and reversed the drug resistance of SKOV3/DDP cells. The reversal ratios of 1 μg/ml sCD40L combined with cisplatin in SKOV3 and SKOV3/DDP cells were 2.11, 2.71, while the reversal ratios of 2 μg/ml sCD40L combined with cisplatin in SKOV3 and SKOV3/DDP cells were 3.78, 5.20, respectively. sCD40L or sCD40L combined cisplatin increased tumor cells in G0/G1 phase. sCD40L in combination with cisplatin decreased the expression levels of GST-π, LRP, Survivin, p53 and Bcl-2 in both epithelial ovarian cancer cell lines. The protein expression level of GST-π, LRP and P53 protein was also decreased upon sCD40L in combination with cisplatin although the expression level of Bcl-2 and survivin protein had no significant difference. sCD40L inhibits the proliferation of SKOV3 and SKOV3/DDP cells. The combined application of sCD40L and cisplatin can strength the inhibitory effect of cisplatin, and to a

  18. Establishment and Identification of Chinese Hamster Ovary Cell Lines with Stable Expression of Soluble CD40 Ligands

    Directory of Open Access Journals (Sweden)

    JIANG Hua-wei

    2014-09-01

    Full Text Available Objective: To establish the Chinese Hamster Ovary (CHO cell lines with stable expression of soluble CD40 ligands (sCD40L. Methods: Recombinant plasmid pIRES2-EGFP-sCD40L, enzyme digestion and sequencing identification were obtained by cloning sCD40L coding sequences into eukaryotic expression vector pIRES2-EGFP from carrier pDC316-sCD40 containing sCD40L. CHO cells were transfected by electroporation, followed by screening of resistant clones with G418, after which monoclones were obtained by limited dilution assay and multiply cultured. Flow cytometer and reverted fluorescence microscope were applied to observe the expression of green fluorescent protein, while sCD40L expression was detected by polymerase chain reaction (PCR, reverse transcription-polymerase chain reaction (RT-PCR and enzyme-linked immunosorbent assay (ELISA from aspects of deoxyribose nucleic acid (DNA, messenger ribonucleic acid (mRNA and protein, respectively. CHO-sCD40L was cultured together with MDA-MB-231 cells to compare the expression changes of surface molecule fatty acid synthase (Fas by flow cytometer and observe the apoptosis of MDA-MB-231 cells after Fas activated antibodies (CH-11 were added 24 h later. Results: Plasmid pIRES2-EGFP-sCD40L was successfully established, and cell lines with stable expression of sCD40L were obtained with cloned culture after CHO cell transfection, which was named as B11. Flow cytometer and reverted fluorescence microscope showed >90% expression of green fluorescent protein, while PCR, RT-PCR and ELISA suggested integration of sCD40L genes into cell genome DNA, transcription of sCD40L mRNA and sCD40L protein expression being (4.5±2.1 ng/mL in the supernatant of cell culture, respectively. After co-culture of B11 and MDA-MB-231 cells, the surface Fas expression of MDA-MB-231 cells was increased from (3±1.02 % to (34.8±8.75%, while the apoptosis rate 24 h after addition of CH11 from (5.4±1.32% to (20.7±5.24%, and the differences

  19. Impaired NFAT and NFκB activation are involved in suppression of CD40 ligand expression by Δ9-tetrahydrocannabinol in human CD4+ T cells

    International Nuclear Information System (INIS)

    Ngaotepprutaram, Thitirat; Kaplan, Barbara L.F.; Kaminski, Norbert E.

    2013-01-01

    We have previously reported that Δ 9 -tetrahydrocannabinol (Δ 9 -THC), the main psychoactive cannabinoid in marijuana, suppresses CD40 ligand (CD40L) expression by activated mouse CD4 + T cells. CD40L is involved in pathogenesis of many autoimmune and inflammatory diseases. In the present study, we investigated the molecular mechanism of Δ 9 -THC-mediated suppression of CD40L expression using peripheral blood human T cells. Pretreatment with Δ 9 -THC attenuated CD40L expression in human CD4 + T cells activated by anti-CD3/CD28 at both the protein and mRNA level, as determined by flow cytometry and quantitative real-time PCR, respectively. Electrophoretic mobility shift assays revealed that Δ 9 -THC suppressed the DNA-binding activity of both NFAT and NFκB to their respective response elements within the CD40L promoter. An assessment of the effect of Δ 9 -THC on proximal T cell-receptor (TCR) signaling induced by anti-CD3/CD28 showed significant impairment in the rise of intracellular calcium, but no significant effect on the phosphorylation of ZAP70, PLCγ1/2, Akt, and GSK3β. Collectively, these findings identify perturbation of the calcium-NFAT and NFκB signaling cascade as a key mechanistic event by which Δ 9 -THC suppresses human T cell function. - Highlights: • Δ 9 -THC attenuated CD40L expression in activated human CD4+ T cells. • Δ 9 -THC suppressed DNA-binding activity of NFAT and NFκB. • Δ 9 -THC impaired elevation of intracellular Ca2+. • Δ 9 -THC did not affect phosphorylation of ZAP70, PLCγ1/2, Akt, and GSK3β

  20. Interaction of calreticulin with CD40 ligand, TRAIL and Fas ligand

    DEFF Research Database (Denmark)

    Duus, K; Pagh, R T; Holmskov, U

    2007-01-01

    characteristics as calreticulin's interaction with C1q and MBL: a time-dependent saturable binding to immobilized protein, which was initially sensitive to salt but gradually developed into a salt-insensitive interaction. Thus, the interaction requires a structural change in the interaction partner and leads...... found to bind calreticulin strongly. A low level or no binding was observed for adiponectin, tumour necrosis factor-alpha (TNF-alpha), CD30L, surfactant protein-A and -D and collagen VIII. The interaction with calreticulin required a conformational change in CD40L, TRAIL and FasL and showed the same......The molecular chaperone calreticulin has been shown to bind C1q and mannan-binding lectin (MBL), which are constituents of the innate immune defence system. C1q and MBL do not share a large sequence identity but have a similar overall molecular architecture: an N-terminal triple-helical collagen...

  1. Soluble CD40 ligand levels in essential hypertensive men: evidence of a possible role of insulin resistance.

    Science.gov (United States)

    Penno, Giuseppe; Pucci, Laura; Dell'Omo, Giulia; Lucchesi, Daniela; Miccoli, Roberto; Del Prato, Stefano; Solini, Anna; Pedrinelli, Roberto

    2009-09-01

    Elevated levels of the proinflammatory cytokine soluble CD40 ligand (sCD40L) were reported in subjects with diabetes, impaired glucose tolerance, metabolic syndrome (MS), obesity, and insulin resistance. Metabolic abnormalities might also account for increased sCD40L in subjects with essential hypertension. Several metabolic and vascular correlates of sCD40L levels have been investigated in 90 nondiabetic never-treated essential hypertensive men. Median sCD40L level was 8.7 ng/ml (interquartile range: 4.9-11.7). On the basis of sCD40L, subjects were divided by tertiles (thresholds at 6.6 and 11.0 ng/ml). The three groups did not differ for age, body mass index (BMI), smokers, blood pressure (BP), prevalence of nondippers, lipids and lipoproteins, renal function, and albuminuria. Carotid intima-media thickness (IMT: 0.79 +/- 0.22, 0.83 +/- 0.29, and 0.85 +/- 0.30 mm) and percentage of subjects with wall thickening (IMT >0.9 to <1.3 mm: 23, 27, and 27%, respectively) were superimposable in the three groups. No differences were observed in high-sensitivity C-reactive protein (hs-CRP) and no correlation emerged between sCD40L and hs-CRP. An increase through sCD40L tertiles emerged for basal insulin (11.2 +/- 5.6, 14.7 +/- 7.7, and 16.8 +/- 13.5 microU/ml, P = 0.10) and fasting glucose (95 +/- 11, 103 +/- 16, and 105 +/- 14 mg/dl, P = 0.028). Consistently, along with the increase in sCD40L, a worsening in insulin sensitivity was observed, which was expressed as homeostasis model assessment for insulin sensitivity (HOMA%S: 99 +/- 52, 77 +/- 43, and 72 +/- 35, P < 0.05), composite insulin sensitivity index (ISIcomp; Matsuda index: 5.11 +/- 2.65, 3.61 +/- 1.98, and 3.28 +/- 1.87, P = 0.025), or oral glucose insulin sensitivity (OGIS) index (OGIS: 421 +/- 67, 386 +/- 90, and 362 +/- 72, P = 0.004). In newly diagnosed hypertensive men, sCD40L levels are inversely related to insulin sensitivity, with no correlation with BP, other cardiovascular risk factors, or the degree of

  2. Increased concentrations of soluble CD40 ligand platelet in patients with primary antiphospholipidic syndrome.

    Science.gov (United States)

    Galicia López, Aida; Olguín Ortega, Lourdes; Saavedra, Miguel A; Méndez Cruz, René; Jimenez Flores, Rafael; García de la Peña, Maximiliano

    2013-01-01

    To determine the concentrations of sCD40L in patients with PAPS, and establish its association with the number of thrombosis. We included patients with PAPS and healthy controls of the same age and sex. For analysis, patients with PAPS were divided into 2 groups: 1) patients with 1 thrombosis, and 2) patients with >1 thrombosis. Soluble CD40L concentrations were determined by ELISA method. sCD40L concentrations were significantly higher in patients with PAPS compared with the controls (9.72 ng ± 11.23 ng/ml vs. 4.69 ± 4.04 ng/ml) (P=.04) There was no association between serum levels of sCD40L and the number of thrombosis (1 thrombosis: 9.81 ± 9.87 ng/ml vs 9.63 ± 12.75 ng/ml in ≥ 1thrombosis (P=.13). In women with pregnancy and abortions, (13 patients) concentrations of sCD40L were higher than in those patients without a history of abortion (26 patients) but without statically significant difference (12.11 ± 16.46 ng/ml vs. 8.80 ± 8.61 ng/ml) (P=.33). There was no correlation between levels of sCD40L and the total number of thrombosis. Patients with PAPS have higher concentrations of sCD40L compared with healthy subjects, although this is not associated with a greater number of thrombosis. Among patients with PAPS, there is a tendency to higher concentrations of sCD40L in women with pregnancy and history of abortion. Since the platelet is the main cellular source of sCD40L, is possible that this pathway plays a pathogenic role in patients with PAPS. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  3. The role of CD40 in CD40L- and antibody-mediated platelet activation.

    Science.gov (United States)

    Langer, Florian; Ingersoll, Susan B; Amirkhosravi, Ali; Meyer, Todd; Siddiqui, Farooq A; Ahmad, Sarfraz; Walker, Jamie M; Amaya, Mildred; Desai, Hina; Francis, John L

    2005-06-01

    Our initial finding that CD40- and CD40 ligand (CD40L)-deficient mice displayed prolonged tail bleeding and platelet function analyzer (PFA-100) closure times prompted us to further investigate the role of the CD40-CD40L dyad in primary hemostasis and platelet function. Recombinant human soluble CD40L (rhsCD40L), chemical cross-linking of which suggested a trimeric structure of the protein in solution, activated platelets in a CD40-dependent manner as evidenced by increased CD62P expression. CD40 monoclonal antibody (mAb) M3, which completely blocked rhsCD40L-induced platelet activation, also prolonged PFA-100 closure times of normal human blood. In contrast, CD40 mAb G28-5 showed less potential in blocking rhsCD40L-induced CD62P expression and did not affect PFA-100 closure times. However, when added to the platelets after rhsCD40L, G28-5 significantly enhanced the platelet response by causing clustering of, and signaling through, FcgammaRII. Similarly, higher order multimeric immune complexes formed at a 1/3 molar ratio of M90, a CD40L mAb, to rhsCD40L induced strong Fcgamma RII-mediated platelet activation when translocated to the platelet surface in a CD40-dependent manner, including the induction of morphological shape changes, fibrinogen binding, platelet aggregation, dense granule release, microparticle generation and monocyte-platelet-conjugate formation. The results suggest that CD40 may play a role in primary hemostasis and platelet biology by two independent mechanisms: First, by functioning as a primary signaling receptor for CD40L and, second, by serving as a docking molecule for CD40L immune complexes. The latter would also provide a potential mechanistic explanation for the unexpected high incidence of CD40L mAb-associated thrombotic events in recent human and animal studies.

  4. Blockade of CD40 ligand for intercellular communication reduces hypertension, placental oxidative stress, and AT1-AA in response to adoptive transfer of CD4+ T lymphocytes from RUPP rats.

    Science.gov (United States)

    Cornelius, Denise C; Castillo, Javier; Porter, Justin; Amaral, Lorena M; Campbell, Nathan; Paige, Adrienne; Thomas, Alexia J; Harmon, Ashlyn; Cunningham, Mark W; Wallace, Kedra; Herse, Florian; Wallukat, Gerd; Dechend, Ralf; LaMarca, Babbette

    2015-11-15

    Preeclampsia (PE) is associated with altered immune activation during pregnancy. We have previously shown that adoptive transfer of CD4(+) T cells from the reduced uterine perfusion pressure (RUPP) rat model of PE increases blood pressure, oxidative stress (ROS), and inflammation in normal pregnant recipient rats. The objective of this study was to determine if blockade of communication via the CD40-CD40 ligand (CD40L) interaction between placental ischemia-induced CD4(+) T cells with endogenous normal pregnant (NP) cells would improve pathophysiology that was previously observed in NP recipient rats of RUPP CD4(+) T cells. Splenic CD4(+) T lymphocytes were magnetically separated, incubated with 2.5 μg/ml anti-CD40 ligandCD40L) overnight, and transferred into NP rats on day 12 of gestation (NP+RUPP CD4(+) T+anti-CD40L). On day 19 of gestation, blood pressure (MAP), blood, and tissues were collected. MAP was 99 ± 2 in NP (n = 13), 116 ± 4 in NP+RUPP CD4(+) T cells (n = 7; P NP+RUPP CD4(+) T cells+CD40L (n = 24) (P vs. NP+RUPP CD4(+) T cells). Mechanisms of hypertension in response to RUPP CD4(+) T cells include endothelin-1 (ET-1), ROS, and angiotensin II type I receptor (AT1-AA) were analyzed. Inhibition of CD40L binding reduced placental ET-1 to 2.3-fold above NP rats and normalized placental ROS from 318.6 ± 89 in NP+RUPP CD4(+) T cells (P NP+RUPP CD4(+) T+anti-CD40L (P < 0.05). AT1-AA was also normalized with inhibition of CD40L. These data suggest that placental ischemia-induced T-cell communication via the CD40L is one important mechanism leading to much of the pathophysiology of PE. Copyright © 2015 the American Physiological Society.

  5. CD40 deficiency in mice exacerbates obesity-induced adipose tissue inflammation, hepatic steatosis, and insulin resistance.

    Science.gov (United States)

    Guo, Chang-An; Kogan, Sophia; Amano, Shinya U; Wang, Mengxi; Dagdeviren, Sezin; Friedline, Randall H; Aouadi, Myriam; Kim, Jason K; Czech, Michael P

    2013-05-01

    The pathophysiology of obesity and type 2 diabetes in rodents and humans is characterized by low-grade inflammation in adipose tissue and liver. The CD40 receptor and its ligand CD40L initiate immune cell signaling promoting inflammation, but conflicting data on CD40L-null mice confound its role in obesity-associated insulin resistance. Here, we demonstrate that CD40 receptor-deficient mice on a high-fat diet display the expected decrease in hepatic cytokine levels but paradoxically exhibit liver steatosis, insulin resistance, and glucose intolerance compared with their age-matched wild-type controls. Hyperinsulinemic-euglycemic clamp studies also demonstrated insulin resistance in glucose utilization by the CD40-null mice compared with wild-type mice. In contrast to liver, adipose tissue in CD40-deficient animals harbors elevated cytokine levels and infiltration of inflammatory cells, particularly macrophages and CD8(+) effector T cells. In addition, ex vivo explants of epididymal adipose tissue from CD40(-/-) mice display elevated basal and isoproterenol-stimulated lipolysis, suggesting a potential increase of lipid efflux from visceral fat to the liver. These findings reveal that 1) CD40-null mice represent an unusual model of hepatic steatosis with reduced hepatic inflammation, and 2) CD40 unexpectedly functions in adipose tissue to attenuate its inflammation in obesity, thereby protecting against hepatic steatosis.

  6. Soluble CD40 ligand: a novel biomarker in the pathogenesis of periodontal disease.

    Science.gov (United States)

    Chaturvedi, Rashi; Gupta, Mili; Jain, Ashish; Das, Tarun; Prashar, Savita

    2015-01-01

    Periodontitis involves a complex interplay of micro-organisms and host immune response via numerous mediator molecules playing strategic roles in its pathogenesis. Soluble CD40L (sCD40L) is one such co-stimulatory molecule which is essential for T-helper cell activation and is a well-known risk indicator of cardiovascular diseases. The levels of this marker in crevicular fluid of patients of chronic periodontitis have been explored in the present study for the first time along with an analysis of its association with levels in serum in otherwise systemically healthy patients. Sixty patients 20 healthy and 40 of chronic periodontitis (18 moderate and 22 severe) participated in the study. Patients of the diseased group underwent non-surgical periodontal therapy. Clinical evaluation and collection of gingival crevicular fluid (GCF) and serum samples was done at baseline, and 6 weeks after phase I periodontal therapy. sCD40L levels were quantified in the fluids using ELISA. Levels of sCD40L in GCF were significantly higher in the diseased group (p ≤ 0.001) and strongly correlated not only with increasing severity of disease but also with levels in serum. In post-treatment, the levels decreased significantly in both the biological fluids (p ≤ 0.001). The present study brings to light the role of sCD40L as a novel marker in mediating periodontal destruction and disease progression. Evaluation of local treatment outcomes seems promising in minimizing these effects. Positive association of its local levels with those in serum further implicates the possibility of widespread systemic effects of this infection.

  7. INVOLVEMENT OF TOLL-LIKE RECEPTOR 4 AND MAPK PATHWAYS IN LPS-INDUCED CD40 EXPRESSION IN MONOCYTIC CELLS

    Science.gov (United States)

    CD40 is a co-stimulatory surface molecule actively expressed on mature dendritic cells (DC). Recent studies suggest that endotoxin (LPS) inhalation induces DC maturation in the airways of healthy volunteers. To characterize the effect of LPS on CD40 expression and underlying mech...

  8. Expression, purification, and functional analysis of an antigen-targeting fusion protein composed of CD40 ligand and the C-terminal fragment of ovalbumin.

    Science.gov (United States)

    Shi, Yunnuo; Halperin, Scott A; Lee, Song F

    2018-02-01

    Delivering antigen via molecules specifically targeting receptors on the surface of antigen-presenting cells is a strategy to improve immune responses. In this study, an antigen-targeting fusion protein (OVA-CD40LS) composed of the C-terminal fragment of ovalbumin and the extracellular domain of mouse CD40 ligand was constructed by genetic fusion. The OVA-CD40LS and the control OVA (rOVA) genes were cloned in Escherichia coli and over-expressed as insoluble proteins. The rOVA protein was purified from the insoluble fraction of E. coli cell lysate by nickel affinity chromatography and refolded by step-wise dialysis to give a yield of 11.8 mg/L of culture. The OVA-CD40LS was purified by a 'two-round' nickel affinity and on-column protein-refolding chromatography. The yield was 528 μg/L of culture. The purified OVA-CD40LS, but not the rOVA, was able to simulate the production of pro-inflammatory cytokines and up-regulate cell surface marker proteins in mouse bone marrow-derived dendritic cells. The purified OVA-CD40LS elicited a robust immune response when injected submucosally in the oral cavity of mice. Collectively, the results indicate that the OVA-CD40LS fusion protein was biologically active, functioning as an antigen-targeting protein. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Impaired NFAT and NFκB activation are involved in suppression of CD40 ligand expression by Δ{sup 9}-tetrahydrocannabinol in human CD4{sup +} T cells

    Energy Technology Data Exchange (ETDEWEB)

    Ngaotepprutaram, Thitirat [Department of Pharmacology and Toxicology, Michigan State University (United States); Center for Integrative Toxicology, Michigan State University (United States); Kaplan, Barbara L.F. [Department of Pharmacology and Toxicology, Michigan State University (United States); Center for Integrative Toxicology, Michigan State University (United States); Neuroscience Program, Michigan State University (United States); Kaminski, Norbert E., E-mail: kamins11@msu.edu [Department of Pharmacology and Toxicology, Michigan State University (United States); Center for Integrative Toxicology, Michigan State University (United States)

    2013-11-15

    We have previously reported that Δ{sup 9}-tetrahydrocannabinol (Δ{sup 9}-THC), the main psychoactive cannabinoid in marijuana, suppresses CD40 ligand (CD40L) expression by activated mouse CD4{sup +} T cells. CD40L is involved in pathogenesis of many autoimmune and inflammatory diseases. In the present study, we investigated the molecular mechanism of Δ{sup 9}-THC-mediated suppression of CD40L expression using peripheral blood human T cells. Pretreatment with Δ{sup 9}-THC attenuated CD40L expression in human CD4{sup +} T cells activated by anti-CD3/CD28 at both the protein and mRNA level, as determined by flow cytometry and quantitative real-time PCR, respectively. Electrophoretic mobility shift assays revealed that Δ{sup 9}-THC suppressed the DNA-binding activity of both NFAT and NFκB to their respective response elements within the CD40L promoter. An assessment of the effect of Δ{sup 9}-THC on proximal T cell-receptor (TCR) signaling induced by anti-CD3/CD28 showed significant impairment in the rise of intracellular calcium, but no significant effect on the phosphorylation of ZAP70, PLCγ1/2, Akt, and GSK3β. Collectively, these findings identify perturbation of the calcium-NFAT and NFκB signaling cascade as a key mechanistic event by which Δ{sup 9}-THC suppresses human T cell function. - Highlights: • Δ{sup 9}-THC attenuated CD40L expression in activated human CD4+ T cells. • Δ{sup 9}-THC suppressed DNA-binding activity of NFAT and NFκB. • Δ{sup 9}-THC impaired elevation of intracellular Ca2+. • Δ{sup 9}-THC did not affect phosphorylation of ZAP70, PLCγ1/2, Akt, and GSK3β.

  10. Anthocyanin prevents CD40-activated proinflammatory signaling in endothelial cells by regulating cholesterol distribution.

    Science.gov (United States)

    Xia, Min; Ling, Wenhua; Zhu, Huilian; Wang, Qing; Ma, Jing; Hou, Mengjun; Tang, Zhihong; Li, Lan; Ye, Qinyuan

    2007-03-01

    Intracellular tumor necrosis factor receptor-associated factors (TRAFs) translocation to lipid rafts is a key element in CD40-induced signaling. The purpose of this study was to investigate the influence of anthocyanin on CD40-mediated proinflammatory events in human endothelial cells and the underlying possible molecular mechanism. Treatment of endothelial cells with anthocyanin prevented from CD40-induced proinflammatory status, measured by production of IL-6, IL-8, and monocyte chemoattractant protein-1 through inhibiting CD40-induced nuclear factor-kappaB (NF-kappaB) activation. TRAF-2 played pivotal role in CD40-NF-kappaB pathway as TRAF-2 small interference RNA (siRNA) diminished CD40-induced NF-kappaB activation and inflammation. TRAF-2 overexpression increased CD40-mediated NF-kappaB activation. Moreover, TRAF-2 almost totally recruited to lipid rafts after stimulation by CD40 ligand and depletion of cholesterol diminished CD40-mediated NF-kappaB activation. Exposure to anthocyanin not only interrupted TRAF-2 recruitment to lipid rafts but also decreased cholesterol content in Triton X-100 insoluble lipid rafts. However, anthocyanin did not influence the interaction between CD40 ligand and CD40 receptor. Our findings suggest that anthocyanin protects from CD40-induced proinflammatory signaling by preventing TRAF-2 translocation to lipid rafts through regulation of cholesterol distribution, which thereby may represent a mechanism that would explain the anti-inflammatory response of anthocyanin.

  11. Correlation between intravoxel incoherent motion magnetic resonance imaging derived metrics and serum soluble CD40 ligand level in an embolic canine stroke model

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xiao Quan; Wu, Chen Jiang; Lu, Shan Shan; Gao, Qian Qian; Zu, Qing Quan; Liu, Xing Long; Shi, Hai Bin; Liu, Sheng [Dept. of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing (China)

    2017-09-15

    To determine the relationship between intravoxel incoherent motion (IVIM) imaging derived quantitative metrics and serum soluble CD40 ligand (sCD40L) level in an embolic canine stroke model. A middle cerebral artery occlusion model was established in 24 beagle dogs. Experimental dogs were divided into low- and high-sCD40L group according to serum sCD40L level at 4.5 hours after establishing the model. IVIM imaging was scanned at 4.5 hours after model establishment using 10 b values ranging from 0 to 900 s/mm{sup 2}. Quantitative metrics diffusion coefficient (D), pseudodiffusion coefficient (D{sup *}), and perfusion fraction (f) of ischemic lesions were calculated. Quantitative metrics of ischemic lesions were normalized by contralateral hemisphere using the following formula: normalized D = D{sub stroke} / D{sub contralateral}. Differences in IVIM metrics between the low- and high-sCD40L groups were compared using t test. Pearson's correlation analyses were performed to determine the relationship between IVIM metrics and serum sCD40L level. The high-sCD40L group showed significantly lower f and normalized f values than the low-sCD40L group (f, p < 0.001; normalized f, p < 0.001). There was no significant difference in D{sup *}, normalized D{sup *}, D, or normalized D value between the two groups (All p > 0.05). Both f and normalized f values were negatively correlated with serum sCD40L level (f, r = −0.789, p < 0.001; normalized f, r = −0.823, p < 0.001). However, serum sCD40L level had no significant correlation with D{sup *}, normalized D{sup *}, D, or normalized D (All p > 0.05). The f value derived from IVIM imaging was negatively correlated with serum sCD40L level. f value might serve as a potential imaging biomarker to assess the formation of microvascular thrombosis in hyperacute period of ischemic stroke.

  12. Tumor necrosis factor-α/CD40 ligand-engineered mesenchymal stem cells greatly enhanced the antitumor immune response and lifespan in mice.

    Science.gov (United States)

    Shahrokhi, Somayeh; Daneshmandi, Saeed; Menaa, Farid

    2014-03-01

    The interaction between mesenchymal stem cells (MSCs) and dendritic cells (DCs) affects T cell development and function. Further, the chemotactic capacity of MSCs, their interaction with the tumor microenvironment, and the intervention of immune-stimulatory molecules suggest possible exploitation of tumor necrosis factor-α (TNF-α) and CD40 ligand (CD40L) to genetically modify MSCs for enhanced cancer therapy. Both DCs and MSCs were isolated from BALB/c mice. DCs were then cocultured with MSCs transduced with TNF-α and/or CD40L [(TNF-α/CD40L)-MSCs]. Major DCs' maturation markers, DC and T cell cytokines such as interleukin-4, -6, -10, -12, TNF-α, tumor growth factor-β, as well as T cell proliferation, were assessed. Meantime, a BALB/c mouse breast tumor model was inducted by injecting 4T1 cells subcutaneously. Mice (n = 10) in each well-defined test groups (n = 13) were cotreated with DCs and/or (TNF-α/CD40L)-MSCs. The controls included untreated, empty vector-MSC, DC-lipopolysaccharide, and immature DC mouse groups. Eventually, cytokine levels from murine splenocytes, as well as tumor volume and survival of mice, were assessed. Compared with the corresponding controls, both in vitro and in vivo analyses showed induction of T helper 1 (Th1) as well as suppression of Th2 and Treg responses in test groups, which led to a valuable antitumor immune response. Further, the longest mouse survival was observed in mouse groups that were administered with DCs plus (TNF-α/CD40L)-MSCs. In our experimental setting, the present pioneered study demonstrates that concomitant genetic modification of MSCs with TNF-α and CD40L optimized the antitumor immunity response in the presence of DCs, meantime increasing the mouse lifespan.

  13. Soluble CD40 ligand is elevated in type 1 diabetic nephropathy but not predictive of mortality, cardiovascular events or kidney function

    DEFF Research Database (Denmark)

    Lajer, Maria Stenkil; Tarnow, Inge; Michelson, Alan D

    2010-01-01

    Soluble CD40 ligand (sCD40L) derived from platelets mediates atherothrombosis, leading to proinflammatory and proatherosclerotic responses. We investigated the predictive value of plasma sCD40L for all-cause mortality, cardiovascular mortality and morbidity, progression towards end-stage renal...... disease (ESRD) and rate of decline in glomerular filtration rate (GFR) in patients with type 1 diabetes (T1DM) and nephropathy. The study was a prospective, observational follow-up study of 443 T1DM patients with diabetic nephropathy (274 men; age 42.1 ± 10.5 years [mean ± SD], duration of diabetes 28.......3 ± 8.9 years, GFR 76 ± 33 ml/min/1.73 m2) and a control group of 421 patients with longstanding type 1 diabetes and persistent normoalbuminuria (232 men; age 45.4 ± 11.5 years, duration of diabetes 27.7 ± 10.1 years) at baseline. sCD40L was measured by ELISA. Plasma sCD40L levels were higher...

  14. Safety and biodistribution of a double-deleted oncolytic vaccinia virus encoding CD40 ligand in laboratory Beagles

    Directory of Open Access Journals (Sweden)

    Karoliina Autio

    2014-01-01

    Full Text Available We evaluated adverse events, biodistribution and shedding of oncolytic vaccinia virus encoding CD40 ligand in two Beagles, in preparation for a phase 1 trial in canine cancer patients. Dog 1 received one dose of vaccinia virus and was euthanized 24 hours afterwards, while dog 2 received virus four times once weekly and was euthanized 7 days after that. Dogs were monitored for adverse events and underwent a detailed postmortem examination. Blood, saliva, urine, feces, and organs were collected for virus detection. Dog 1 had mild fever and lethargy while dog 2 experienced a possible seizure 5.5 hours after first virus administration. Viral DNA declined quickly in the blood after virus administration in both dogs but was still detectable 1 week later by quantitative polymerase chain reaction. Only samples taken directly after virus infusion contained infectious virus. Small amounts of viral DNA, but no infectious virus, were detected in a few saliva and urine samples. Necropsies did not reveal any relevant pathological changes and virus DNA was detected mainly in the spleen. The dogs in the study did not have cancer, and thus adverse events could be more common and viral load higher in dogs with tumors which allow viral amplification.

  15. Involvement of nuclear factor {kappa}B in platelet CD40 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Hachem, Ahmed [Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, Quebec, Canada H1T 1C8 (Canada); Yacoub, Daniel [Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, Quebec, Canada H1T 1C8 (Canada); Centre Hospitalier Universite de Montreal, 264 boul. Rene-Levesque est, Montreal, Quebec, Canada H2X 1P1 (Canada); Zaid, Younes [Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, Quebec, Canada H1T 1C8 (Canada); Mourad, Walid [Universite de Montreal, Department of Medicine, 2900 boul. Edouard-Montpetit, Montreal, Quebec, Canada H3T 1J4 (Canada); Centre Hospitalier Universite de Montreal, 264 boul. Rene-Levesque est, Montreal, Quebec, Canada H2X 1P1 (Canada); Merhi, Yahye, E-mail: yahye.merhi@icm-mhi.org [Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, Quebec, Canada H1T 1C8 (Canada); Universite de Montreal, Department of Medicine, 2900 boul. Edouard-Montpetit, Montreal, Quebec, Canada H3T 1J4 (Canada)

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer sCD40L induces TRAF2 association to CD40 and NF-{kappa}B activation in platelets. Black-Right-Pointing-Pointer I{kappa}B{alpha} phosphorylation downstream of CD40L/CD40 signaling is independent of p38 MAPK phosphorylation. Black-Right-Pointing-Pointer I{kappa}B{alpha} is required for sCD40L-induced platelet activation and potentiation of aggregation. -- Abstract: CD40 ligand (CD40L) is a thrombo-inflammatory molecule that predicts cardiovascular events. Platelets constitute the major source of soluble CD40L (sCD40L), which has been shown to potentiate platelet activation and aggregation, in a CD40-dependent manner, via p38 mitogen activated protein kinase (MAPK) and Rac1 signaling. In many cells, the CD40L/CD40 dyad also induces activation of nuclear factor kappa B (NF-{kappa}B). Given that platelets contain NF-{kappa}B, we hypothesized that it may be involved in platelet CD40 signaling and function. In human platelets, sCD40L induces association of CD40 with its adaptor protein the tumor necrosis factor receptor associated factor 2 and triggers phosphorylation of I{kappa}B{alpha}, which are abolished by CD40L blockade. Inhibition of I{kappa}B{alpha} phosphorylation reverses sCD40L-induced I{kappa}B{alpha} phosphorylation without affecting p38 MAPK phosphorylation. On the other hand, inhibition of p38 MAPK phosphorylation has no effect on I{kappa}B{alpha} phosphorylation, indicating a divergence in the signaling pathway originating from CD40 upon its ligation. In functional studies, inhibition of I{kappa}B{alpha} phosphorylation reverses sCD40L-induced platelet activation and potentiation of platelet aggregation in response to a sub-threshold concentration of collagen. This study demonstrates that the sCD40L/CD40 axis triggers NF-{kappa}B activation in platelets. This signaling pathway plays a critical role in platelet activation and aggregation upon sCD40L stimulation and may represent an important target against thrombo

  16. Involvement of nuclear factor κB in platelet CD40 signaling

    International Nuclear Information System (INIS)

    Hachem, Ahmed; Yacoub, Daniel; Zaid, Younes; Mourad, Walid; Merhi, Yahye

    2012-01-01

    Highlights: ► sCD40L induces TRAF2 association to CD40 and NF-κB activation in platelets. ► IκBα phosphorylation downstream of CD40L/CD40 signaling is independent of p38 MAPK phosphorylation. ► IκBα is required for sCD40L-induced platelet activation and potentiation of aggregation. -- Abstract: CD40 ligand (CD40L) is a thrombo-inflammatory molecule that predicts cardiovascular events. Platelets constitute the major source of soluble CD40L (sCD40L), which has been shown to potentiate platelet activation and aggregation, in a CD40-dependent manner, via p38 mitogen activated protein kinase (MAPK) and Rac1 signaling. In many cells, the CD40L/CD40 dyad also induces activation of nuclear factor kappa B (NF-κB). Given that platelets contain NF-κB, we hypothesized that it may be involved in platelet CD40 signaling and function. In human platelets, sCD40L induces association of CD40 with its adaptor protein the tumor necrosis factor receptor associated factor 2 and triggers phosphorylation of IκBα, which are abolished by CD40L blockade. Inhibition of IκBα phosphorylation reverses sCD40L-induced IκBα phosphorylation without affecting p38 MAPK phosphorylation. On the other hand, inhibition of p38 MAPK phosphorylation has no effect on IκBα phosphorylation, indicating a divergence in the signaling pathway originating from CD40 upon its ligation. In functional studies, inhibition of IκBα phosphorylation reverses sCD40L-induced platelet activation and potentiation of platelet aggregation in response to a sub-threshold concentration of collagen. This study demonstrates that the sCD40L/CD40 axis triggers NF-κB activation in platelets. This signaling pathway plays a critical role in platelet activation and aggregation upon sCD40L stimulation and may represent an important target against thrombo-inflammatory disorders.

  17. CD40L induces multidrug resistance to apoptosis in breast carcinoma and lymphoma cells through caspase independent and dependent pathways

    International Nuclear Information System (INIS)

    Voorzanger-Rousselot, Nathalie; Alberti, Laurent; Blay, Jean-Yves

    2006-01-01

    CD40L was found to reduce doxorubicin-induced apoptosis in non Hodgkin's lymphoma cell lines through caspase-3 dependent mechanism. Whether this represents a general mechanism for other tumor types is unknown. The resistance induced by CD40L against apoptosis induced by a panel of cytotoxic chemotherapeutic drugs in non Hodgkin's lymphoma and breast carcinoma cell lines was investigated. Doxorubicin, cisplatyl, etoposide, vinblastin and paclitaxel increased apoptosis in a dose-dependent manner in breast carcinoma as well as in non Hodgkin's lymphoma cell lines. Co-culture with irradiated L cells expressing CD40L significantly reduced the percentage of apoptotic cells in breast carcinoma and non Hodgkin's lymphoma cell lines treated with these drugs. In breast carcinoma cell lines, these 5 drugs induced an inconsistent increase of caspase-3/7 activity, while in non Hodgkin's lymphoma cell lines all 5 drugs increased caspase-3/7 activity up to 28-fold above baseline. Co-culture with CD40L L cells reduced (-39% to -89%) the activation of caspase-3/7 induced by these agents in all 5 non Hodgkin's lymphoma cell lines, but in none of the 2 breast carcinoma cell lines. Co culture with CD40L L cells also blocked the apoptosis induced by exogenous ceramides in breast carcinoma and non Hodgkin's lymphoma cell lines through a caspase-3-like, 8-like and 9-like dependent pathways. These results indicate that CD40L expressed on adjacent non tumoral cells induces multidrug resistance to cytotoxic agents and ceramides in both breast carcinoma and non Hodgkin's lymphoma cell lines, albeit through a caspase independent and dependent pathway respectively

  18. Soluble CD40 Ligand in Sera of Subjects Exposed to Leishmania infantum Infection Reduces the Parasite Load in Macrophages.

    Directory of Open Access Journals (Sweden)

    Fabrícia Alvisi de Oliveira

    Full Text Available While CD40L is typically a membrane glycoprotein expressed on activated T cells and platelets that binds and activates CD40 on the surface on antigen presenting cells, a soluble derivative (sCD40L that appears to retain its biological activity after cleavage from cell membrane also exists. We recently reported that sCD40L is associated with clinical resolution of visceral leishmaniasis and protection against the disease. In the present study we investigated if this sCD40L is functional and exerts anti-parasitic effect in L. infantum-infected macrophages.Macrophages from normal human donors were infected with L. infantum promastigotes and incubated with either sera from subjects exposed to L. infantum infection, monoclonal antibodies against human CD40L, or an isotype control antibody. We then evaluated infection by counting the number of infected cells and the number of parasites in each cell. We also measured a variety of immune modulatory cytokines in these macrophage culture supernatants by Luminex assay. The addition of sCD40L, either recombinant or from infected individuals' serum, decreased both the number of infected macrophages and number of intracellular parasites. Moreover, this treatment increased the production of IL-12, IL-23, IL-27, IL-15, and IL1β such that negative correlations between the levels of these cytokines with both the infection ratio and number of intracellular parasites were observed.sCD40L from sera of subjects exposed to L. infantum is functional and improves both the control of parasite and production of inflamatory cytokines of infected macrophages. Although the mechanisms involved in parasite killing are still unclear and require further exploration, these findings indicate a protective role of sCD40L in visceral leishmaniasis.

  19. CD137 is induced by the CD40 signal on chronic lymphocytic leukemia B cells and transduces the survival signal via NF-κB activation.

    Directory of Open Access Journals (Sweden)

    Yukana Nakaima

    Full Text Available CD137 is a member of the tumor necrosis factor receptor family that is expressed on activated T cells. This molecule provides a co-stimulatory signal that enhances the survival, and differentiation of cells, and has a crucial role in the development of CD8 cytotoxic T cells and anti-tumor immunity. Here we report that CD137 expression is also induced on normal or malignant human B cells by CD40 ligation by its ligand CD154. This CD137 induction was more prominent in chronic lymphocytic leukemia (CLL cells than in other types of B cells. CD137 stimulation on B cells by its ligand induced the nuclear translocation of p52 (a non-canonical NF-κB factor. In agreement with this finding, expression of the survival factor BCL-XL was upregulated. Consequently, the CD137 signal augmented the survival of CD154-stimulated CLL B cells in vitro. This unexpected induction of CD137 on B cells by CD40 signal may influence the clinical course of CLL.

  20. Involvement of mitogen-activated protein kinases and NFκB in LPS-induced CD40 expression on human monocytic cells

    International Nuclear Information System (INIS)

    Wu Weidong; Alexis, Neil E.; Chen Xian; Bromberg, Philip A.; Peden, David B.

    2008-01-01

    CD40 is a costimulatory molecule linking innate and adaptive immune responses to bacterial stimuli, as well as a critical regulator of functions of other costimulatory molecules. The mechanisms regulating lipopolysaccharide (LPS)-induced CD40 expression have not been adequately characterized in human monocytic cells. In this study we used a human monocytic cell line, THP-1, to investigate the possible mechanisms of CD40 expression following LPS exposure. Exposure to LPS resulted in a dose- and time-dependent increase in CD40 expression. Further studies using immunoblotting and pharmacological inhibitors revealed that mitogen-activated protein kinases (MAPKs) and NFκB were activated by LPS exposure and involved in LPS-induced CD40 expression. Activation of MAPKs was not responsible for LPS-induced NFκB activation. TLR4 was expressed on THP-1 cells and pretreatment of cells with a Toll-like receptor 4 (TLR4) neutralizing antibody (HTA125) significantly blunted LPS-induced MAPK and NFκB activation and ensuing CD40 expression. Additional studies with murine macrophages expressing wild type and mutated TLR4 showed that TLR4 was implicated in LPS-induced ERK and NFκB activation, and CD40 expression. Moreover, blockage of MAPK and NFκB activation inhibited LPS-induced TLR4 expression. In summary, LPS-induced CD40 expression in monocytic cells involves MAPKs and NFκB

  1. CD54/intercellular adhesion molecule 1 and major histocompatibility complex II signaling induces B cells to express interleukin 2 receptors and complements help provided through CD40 ligation

    DEFF Research Database (Denmark)

    Poudrier, J; Owens, T

    1994-01-01

    We have examined signaling roles for CD54 intercellular adhesion molecule 1 and major histocompatibility complex (MHC) II as contact ligands during T help for B cell activation. We used a T helper 1 (Th1)-dependent helper system that was previously shown to be contact as well as interleukin 2 (IL-2......) dependent to demonstrate the relative roles of CD54, MHC II, and CD40 signaling in the events leading to the induction of B cell proliferation and responsiveness to IL-2. Paraformaldehyde-fixed activated Th1-induced expression of IL-2R alpha, IL-2R beta, and B7, and upregulated MHC II and CD54 on B cells....... Anti-CD54 and MHC II mAbs as well as a CD8 alpha-CD40 ligand (L) soluble construct inhibited both the T-dependent induction of Ig secretion, and B cell phenotypic changes. We then compared the effects of activated Th1 cells with that of cross-linking these molecules. Cross-linking of CD54 and MHC II...

  2. The multi-functionality of CD40L and its receptor CD40 in atherosclerosis

    NARCIS (Netherlands)

    Lievens, Dirk; Eijgelaar, Wouter J.; Biessen, Erik A. L.; Daemen, Mat J. A. P.; Lutgens, Esther

    2009-01-01

    Disrupting the CD40-CD40L co-stimulatory pathway reduces atherosclerosis and induces a stable atherosclerotic plaque phenotype that is low in inflammation and high in fibrosis. Therefore, inhibition of the CD40-CD40L pathway is an attractive therapeutic target to reduce clinical complications of

  3. Protection of LDL from oxidation by olive oil polyphenols is associated with a downregulation of CD40-ligand expression and its downstream products in vivo in humans.

    Science.gov (United States)

    Castañer, Olga; Covas, María-Isabel; Khymenets, Olha; Nyyssonen, Kristiina; Konstantinidou, Valentini; Zunft, Hans-Franz; de la Torre, Rafael; Muñoz-Aguayo, Daniel; Vila, Joan; Fitó, Montserrat

    2012-05-01

    Recently, the European Food Safety Authority approved a claim concerning the benefits of olive oil polyphenols for the protection of LDL from oxidation. Polyphenols could exert health benefits not only by scavenging free radicals but also by modulating gene expression. We assessed whether olive oil polyphenols could modulate the human in vivo expressions of atherosclerosis-related genes in which LDL oxidation is involved. In a randomized, crossover, controlled trial, 18 healthy European volunteers daily received 25 mL olive oil with a low polyphenol content (LPC: 2.7 mg/kg) or a high polyphenol content (HPC: 366 mg/kg) in intervention periods of 3 wk separated by 2-wk washout periods. Systemic LDL oxidation and monocyte chemoattractant protein 1 and the expression of proatherogenic genes in peripheral blood mononuclear cells [ie, CD40 ligand (CD40L), IL-23α subunit p19 (IL23A), adrenergic β-2 receptor (ADRB2), oxidized LDL (lectin-like) receptor 1 (OLR1), and IL-8 receptor-α (IL8RA)] decreased after the HPC intervention compared with after the LPC intervention. Random-effects linear regression analyses showed 1) a significant decrease in CD40, ADRB2, and IL8RA gene expression with the decrease of LDL oxidation and 2) a significant decrease in intercellular adhesion molecule 1 and OLR1 gene expression with increasing concentrations of tyrosol and hydroxytyrosol in urine. In addition to reducing LDL oxidation, the intake of polyphenol-rich olive oil reduces CD40L gene expression, its downstream products, and related genes involved in atherogenic and inflammatory processes in vivo in humans. These findings provide evidence that polyphenol-rich olive oil can act through molecular mechanisms to provide cardiovascular health benefits. This trial was registered at www.controlled-trials.com as ISRCTN09220811.

  4. Constitutive activation of extracellular signal-regulated kinase predisposes diffuse large B-cell lymphoma cell lines to CD40-mediated cell death

    DEFF Research Database (Denmark)

    Hollmann, C Annette; Owens, Trevor; Nalbantoglu, Josephine

    2006-01-01

    , including LCK and VAV. In addition, CD40-sensitive DLBCL cell lines also displayed constitutive activation of extracellular signal-regulated kinase (ERK) and failed to undergo apoptosis when ERK phosphorylation was inhibited. In contrast, CD40-resistant lines showed no constitutive activation of ERK......CD40 promotes survival, proliferation, and differentiation of normal B cells but can cause activation-induced cell death in malignant B lymphocytes. CD40 ligand and anti-CD40 antibodies have been used successfully to induce apoptosis in lymphoma lines both in vitro and in xenograft tumor models....... Although this makes CD40 an attractive target for antitumor therapies, the response of malignant B cells to CD40 signaling is variable, and CD40 stimulation can enhance proliferation and can increase chemoresistance in some cell lines. It would therefore be useful to identify markers that predict whether...

  5. CD40 Ligand Deficient C57BL/6 Mouse Is a Potential Surrogate Model of Human X-Linked Hyper IgM (X-HIGM Syndrome for Characterizing Immune Responses against Pathogens

    Directory of Open Access Journals (Sweden)

    Catalina Lopez-Saucedo

    2015-01-01

    Full Text Available Individuals with X-HIGM syndrome fail to express functional CD40 ligand; consequently they cannot mount effective protective antibody responses against pathogenic bacteria. We evaluated, compared, and characterized the humoral immune response of wild type (WT and C57-CD40L deficient (C57-CD40L−/− mice infected with Citrobacter rodentium. Basal serum isotype levels were similar for IgM and IgG3 among mice, while total IgG and IgG2b concentrations were significantly lower in C57-CD40L−/− mice compared with WT. Essentially IgG1 and IgG2c levels were detectable only in WT mice. C57-CD40L−/− animals, orally inoculated with 2×109 CFU, presented several clinical manifestations since the second week of infection and eventually died. In contrast at this time point no clinical manifestations were observed among C57-CD40L−/− mice infected with 1×107 CFU. Infection was subclinical in WT mice inoculated with either bacterial dose. The serum samples from infected mice (1×107 CFU, collected at day 14 after infection, had similar C. rodentium-specific IgM titres. Although C57-CD40L−/− animals had lower IgG and IgG2b titres than WT mice, C57-CD40L−/− mice sera displayed complement-mediated bactericidal activity against C. rodentium. C. rodentium-infected C57-CD40L−/− mice are capable of producing antibodies that are protective. C57-CD40L−/− mouse is a useful surrogate model of X-HIGM syndrome for studying immune responses elicited against pathogens.

  6. The inflammatory receptor CD40 is expressed on human adipocytes: contribution to crosstalk between lymphocytes and adipocytes.

    Science.gov (United States)

    Poggi, M; Jager, J; Paulmyer-Lacroix, O; Peiretti, F; Gremeaux, T; Verdier, M; Grino, M; Stepanian, A; Msika, S; Burcelin, R; de Prost, D; Tanti, J F; Alessi, M C

    2009-06-01

    Obesity is associated with adipose tissue inflammation. The CD40 molecule, TNF receptor superfamily member 5 (CD40)/CD40 ligand (CD40L) pathway plays a role in the onset and maintenance of the inflammatory reaction, but has not been studied in human adipose tissue. Our aim was to examine CD40 expression by human adipocytes and its participation in adipose tissue inflammation. CD40 expression was investigated in human whole adipose tissue and during adipocyte differentiation by real-time PCR, Western blot and immunohistochemistry. The CD40/CD40L pathway was studied using recombinant CD40L (rCD40L) in adipocyte culture and neutralising antibodies in lymphocyte/adipocyte co-culture. CD40 mRNA levels in subcutaneous adipose tissue were higher in the adipocyte than in the stromal-vascular fraction. CD40 expression was upregulated during adipocyte differentiation. Addition of rCD40L to adipocytes induced mitogen activated protein kinase (MAPK) activation, stimulated inflammatory adipocytokine production, and decreased insulin-induced glucose transport in parallel with a downregulation of IRS1 and GLUT4 (also known as SCL2A4). rCD40L decreased the expression of lipogenic genes and increased lipolysis. CD40 mRNA levels were significantly higher in subcutaneous adipose tissue than in visceral adipose tissue of obese patients and were positively correlated with BMI, and with IL6 and leptin mRNA levels. Lymphocyte/adipocyte co-culture led to an upregulation of proinflammatory adipocytokines and a downregulation of leptin and adiponectin. Physical separation of the two cell types attenuated these effects, suggesting the involvement of a cell-cell contact. Blocking the CD40/CD40L interaction with neutralising antibodies reduced IL-6 secretion from adipocytes. Adipocyte CD40 may contribute to obesity-related inflammation and insulin resistance. T lymphocytes regulate adipocytokine production through both the release of soluble factor(s) and heterotypic contact with adipocytes

  7. Na/K-ATPase/src complex mediates regulation of CD40 in renal parenchyma.

    Science.gov (United States)

    Xie, Jeffrey X; Zhang, Shungang; Cui, Xiaoyu; Zhang, Jue; Yu, Hui; Khalaf, Fatimah K; Malhotra, Deepak; Kennedy, David J; Shapiro, Joseph I; Tian, Jiang; Haller, Steven T

    2017-12-22

    Recent studies have highlighted a critical role for CD40 in the pathogenesis of renal injury and fibrosis. However, little is currently understood about the regulation of CD40 in this setting. We use novel Na/K-ATPase cell lines and inhibitors in order to demonstrate the regulatory function of Na/K-ATPase with regards to CD40 expression and function. We utilize 5/6 partial nephrectomy as well as direct infusion of a Na/K-ATPase ligand to demonstrate this mechanism exists in vivo. We demonstrate that knockdown of the α1 isoform of Na/K-ATPase causes a reduction in CD40 while rescue of the α1 but not the α2 isoform restores CD40 expression in renal epithelial cells. Second, because the major functional difference between α1 and α2 is the ability of α1 to form a functional signaling complex with Src, we examined whether the Na/K-ATPase/Src complex is important for CD40 expression. We show that a gain-of-Src binding α2 mutant restores CD40 expression while loss-of-Src binding α1 reduces CD40 expression. Furthermore, loss of a functional Na/K-ATPase/Src complex also disrupts CD40 signaling. Importantly, we show that use of a specific Na/K-ATPase/Src complex antagonist, pNaKtide, can attenuate cardiotonic steroid (CTS)-induced induction of CD40 expression in vitro. Because the Na/K-ATPase/Src complex is also a key player in the pathogenesis of renal injury and fibrosis, our new findings suggest that Na/K-ATPase and CD40 may comprise a pro-fibrotic feed-forward loop in the kidney and that pharmacological inhibition of this loop may be useful in the treatment of renal fibrosis. © The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  8. Increased Levels of Oxidative Stress Markers, Soluble CD40 Ligand, and Carotid Intima-Media Thickness Reflect Acceleration of Atherosclerosis in Male Patients with Ankylosing Spondylitis in Active Phase and without the Classical Cardiovascular Risk Factors

    Directory of Open Access Journals (Sweden)

    Agata Stanek

    2017-01-01

    Full Text Available Objective. The primary aim of the study was to assess levels of oxidative stress markers, soluble CD40 ligand (sCD40L, serum pregnancy-associated plasma protein-A (PAPP-A, and placental growth factor (PlGF as well as carotid intima-media thickness (IMT in patients with ankylosing spondylitis (AS with active phase without concomitant classical cardiovascular risk factors. Material and methods. The observational study involved 96 male subjects: 48 AS patients and 48 healthy ones, who did not differ significantly regarding age, BMI, comorbid disorders, and distribution of classical cardiovascular risk factors. In both groups, we estimated levels of oxidative stress markers, lipid profile, and inflammation parameters as well as sCD40L, serum PAPP-A, and PlGF. In addition, we estimated carotid IMT in each subject. Results. The study showed that markers of oxidative stress, lipid profile, and inflammation, as well as sCD40L, PlGF, and IMT, were significantly higher in the AS group compared to the healthy group. Conclusion. Our results demonstrate that ankylosing spondylitis may be associated with increased risk for atherosclerosis.

  9. CD40L induces functional tunneling nanotube networks exclusively in dendritic cells programmed by mediators of type 1 immunity.

    Science.gov (United States)

    Zaccard, Colleen R; Watkins, Simon C; Kalinski, Pawel; Fecek, Ronald J; Yates, Aarika L; Salter, Russell D; Ayyavoo, Velpandi; Rinaldo, Charles R; Mailliard, Robbie B

    2015-02-01

    The ability of dendritic cells (DC) to mediate CD4(+) T cell help for cellular immunity is guided by instructive signals received during DC maturation, as well as the resulting pattern of DC responsiveness to the Th signal, CD40L. Furthermore, the professional transfer of antigenic information from migratory DC to lymph node-residing DC is critical for the effective induction of cellular immune responses. In this study we report that, in addition to their enhanced IL-12p70 producing capacity, human DC matured in the presence of inflammatory mediators of type 1 immunity are uniquely programmed to form networks of tunneling nanotube-like structures in response to CD40L-expressing Th cells or rCD40L. This immunologic process of DC reticulation facilitates intercellular trafficking of endosome-associated vesicles and Ag, but also pathogens such HIV-1, and is regulated by the opposing roles of IFN-γ and IL-4. The initiation of DC reticulation represents a novel helper function of CD40L and a superior mechanism of intercellular communication possessed by type 1 polarized DC, as well as a target for exploitation by pathogens to enhance direct cell-to-cell spread. Copyright © 2015 by The American Association of Immunologists, Inc.

  10. A20 Overexpression Inhibits Lipopolysaccharide-Induced NF-κB Activation, TRAF6 and CD40 Expression in Rat Peritoneal Mesothelial Cells

    Directory of Open Access Journals (Sweden)

    Xun-Liang Zou

    2014-04-01

    Full Text Available Zinc finger protein A20 is a key negative regulator of inflammation. However, whether A20 may affect inflammation during peritoneal dialysis (PD-associated peritonitis is still unclear. This study was aimed to investigate the effect of A20 overexpression on lipopolysaccharide (LPS-induced inflammatory response in rat peritoneal mesothelial cells (RPMCs. Isolated and cultured RPMCs in vitro. Plasmid pGEM-T easy-A20 was transfected into RPMCs by Lipofectamine™2000. The protein expression of A20, phospho-IκBα, IκBα, TNF receptor-associated factor (TRAF 6 and CD40 were analyzed by Western blot. The mRNA expression of TRAF6, CD40, interleukin-6 (IL-6 and tumor necrosis factor-α (TNF-α were determined by real time-PCR. NF-κB p65 DNA binding activity, IL-6 and TNF-α levels in cells culture supernatant were determined by ELISA. Our results revealed that RPMCs overexpression of A20 lead to significant decrease of LPS-induced IκBα phosphorylation and NF-κB DNA binding activity (all p < 0.01. In addition, A20 also attenuated the expression of TRAF6, CD40, IL-6 and TNF-α as well as levels of IL-6 and TNF-α in cells culture supernatant (all p < 0.05. However, A20 only partly inhibited CD40 expression. Our study indicated that A20 overexpression may depress the inflammatory response induced by LPS in cultured RPMCs through negatively regulated the relevant function of adaptors in LPS signaling pathway.

  11. CD40-CD40L interactions partly participate in the endothelial cel

    African Journals Online (AJOL)

    Jane

    2011-10-17

    Oct 17, 2011 ... (mAb) in vitro. On ECs, blockade of CD40/CD40L decreased the expression of IL (interleukin)-6, IL-8 and intercellular adhesion molecule (ICAM) in adenovirus vector-induced ..... Possible reflection of T lymphocyte and platelet involvement ... nuclear factor-kappaB activation by tumor necrosis factor-alpha,.

  12. Long term influence of regular intake of high dose n-3 fatty acids on CD40-ligand, pregnancy-associated plasma protein A and matrix metalloproteinase-9 following acute myocardial infarction.

    Science.gov (United States)

    Aarsetøy, Hildegunn; Brügger-Andersen, Trygve; Hetland, Øyvind; Grundt, Heidi; Nilsen, Dennis W T

    2006-02-01

    Pregnancy-associated plasma protein A (PAPP-A) and matrix metalloproteinase 9 (MMP-9), both zinc-binding endopeptidases, are abundantly expressed in ruptured and eroded plaques in patients with acute coronary syndromes (ACS). The adhesion molecule CD-40 ligand (CD40L), expressed on activated platelets and T-lymphocytes, can activate metalloproteinases and thereby promote plaque-rupture. N-3 fatty acids, through their anti-inflammatory and anti-thrombotic properties, might reduce the levels of these proatherosclerotic markers and thereby the development of ACS. 300 patients were randomized on day 4 to 6 following an acute myocardial infarction (MI) to receive either 4 g of n-3 fatty acids or a similar daily dose of corn oil for at least one year. We compared levels of PAPP-A, MMP-9 and sCD-40 L at baseline and 12 months in each group, and also looked for inter-group changes. In the omega-3 group, the median level of PAPP-A rose from 0.47 mU/l to 0.56 mU/l (p < 0.001). In the same group, sCD-40 L decreased from a mean baseline value of 5.19 ng/ml to 2.45 ng/ml (p < 0.001) and MMP-9 decreased nonsignificantly from 360.50 ng/ml to 308.00 ng/ml. Corresponding values for the corn oil group were 0.54 mU/l to 0.59 mU/l for PAPP-A (p = 0.007), 5.27 ng/ml to 2.84 ng/ml for sCD-40 L (p < 0.001) and 430.00 ng/ml to 324.00 ng/ml for MMP-9 (p = ns), respectively. In conclusion; both interventions resulted in a significant rise in PAPP-A, a significant decrease in sCD40L and a non-significant decrease in MMP-9 after 12 months of treatment in MI survivors. No inter-group differences were noted.

  13. CD40L and TNF both activate the classical NF-κB pathway, which is not required for the CD40L induced alternative pathway in endothelial cells.

    Science.gov (United States)

    Seigner, J; Basilio, J; Resch, U; de Martin, R

    2018-01-01

    CD40L and TNF signal through engagement of their respective receptors, which are both members of the TNF receptor family. They use partially common signaling molecules leading, among others, to activation of the NF-κB pathway. However, whereas TNF activates the classical, CD40L has been reported to activate the alternative NF-κB pathway, leading to the anticipation that differences in the pattern of inflammatory gene expression would occur. Here, we have compared the gene expression repertoire of CD40L (CD154) and TNF stimulated HUVEC and report that unexpectedly, apart from a stronger response to TNF, no major qualitative differences could be observed. This applies for the period of up to 6 h, a time where the alternative pathway has already been activated. Analysis of the early events after receptor engagement revealed that both TNF and CD40L activate the classical NF-κB pathway, and confirm activation of the alternative by the latter. Furthermore, using genetic and pharmacological inhibition of the classical pathway we show that activation of the alternative occurs independently of the former. This reveals novel insights into NF-κB signaling by CD40L and TNF in endothelial cells. Copyright © 2017. Published by Elsevier Inc.

  14. Pre-assembly of the extracellular domains of CD40 is not necessary for rescue of mouse B cells from anti-immunoglobulin M-induced apoptosis.

    Science.gov (United States)

    Ellmark, Peter; Furebring, Christina; Borrebaeck, Carl A K

    2003-04-01

    CD40 is a tumour necrosis factor receptor (TNFR) family member of central importance for the adaptive immune system. To elucidate the functional role of the different extracellular domains of CD40, we have created a set of truncated CD40 molecules where domains, or parts of domains, have been removed. These CD40 proteins, which contain a peptide tag in the N-terminal end, have been expressed in a murine B-cell line, WEHI 231. It was found that ligation of these engineered CD40 proteins via the peptide tag, was sufficient to rescue as well as to promote proliferation of apoptotic WEHI 231 cells, even when all the extracellular domains of CD40 were absent. Our results suggest that pre association of CD40 in the cell membrane plays no critical role for the CD40 signalling pathway. Furthermore, our data imply that conformational changes initiated in the extracellular domains of CD40 are not essential for signal transduction.

  15. Thyrotropin receptor and CD40 mediate interleukin-8 expression in fibrocytes: implications for thyroid-associated ophthalmopathy (an American Ophthalmological Society thesis).

    Science.gov (United States)

    Douglas, Raymond S; Mester, Tünde; Ginter, Anna; Kim, Denise S

    2014-01-01

    To better understand the pathogenesis of thyroid-associated orbitopathy (TAO) through elucidating the role of thyrotropin receptor (TSHR) and CD40 in the expression of interleukin-8 (IL-8) in peripheral blood fibrocytes. Fibrocytes infiltrate the orbit of patients with TAO, where they differentiate into fibroblasts. Fibrocyte precursors occur with increased frequency in the peripheral blood expressing TSHR and CD40 in TAO patients. We hypothesize that in vitro derived fibrocytes and peripheral blood fibrocyte precursors express proinflammatory chemoattractant molecules including IL-8 initiated by TSHR and CD40 signaling. Since nearly all TAO patients express activating antibodies to TSHR, this is particularly relevant for activation of peripheral blood fibrocytes. TSHR and CD40 expression on peripheral blood fibrocytes was determined by flow cytometry. IL-8 RNA was quantitated by real-time polymerase chain reaction. IL-8 protein production was measured by Luminex and flow cytometry. Thyroid-stimulating hormone and CD40 ligand-stimulated phosphorylation of Akt in peripheral blood fibrocytes was studied by flow cytometry. Both TSHR- and CD40-mediated signaling lead to IL-8 expression in mature fibrocytes. Fibrocyte precursors assayed directly from circulating peripheral blood demonstrate intracellular IL-8 expression with addition of thyroid-stimulating hormone or CD40 ligand. TSHR- and CD40-induced IL-8 production is mediated by Akt phosphorylation. Peripheral blood TSHR(+) and CD40(+) fibrocytes express IL-8 and may promote the recruitment of inflammatory cells, mitogenesis, and tissue remodeling in TAO. TSHR- and CD40-mediated IL-8 signaling is mediated by Akt. Delineating the molecular mechanisms of fibrocyte immune function may provide potential therapeutic targets for TAO.

  16. CD40 in Retinal Müller Cells Induces P2X7-Dependent Cytokine Expression in Macrophages/Microglia in Diabetic Mice and Development of Early Experimental Diabetic Retinopathy.

    Science.gov (United States)

    Portillo, Jose-Andres C; Lopez Corcino, Yalitza; Miao, Yanling; Tang, Jie; Sheibani, Nader; Kern, Timothy S; Dubyak, George R; Subauste, Carlos S

    2017-02-01

    Müller cells and macrophages/microglia are likely important for the development of diabetic retinopathy; however, the interplay between these cells in this disease is not well understood. An inflammatory process is linked to the onset of experimental diabetic retinopathy. CD40 deficiency impairs this process and prevents diabetic retinopathy. Using mice with CD40 expression restricted to Müller cells, we identified a mechanism by which Müller cells trigger proinflammatory cytokine expression in myeloid cells. During diabetes, mice with CD40 expressed in Müller cells upregulated retinal tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), intracellular adhesion molecule 1 (ICAM-1), and nitric oxide synthase (NOS2), developed leukostasis and capillary degeneration. However, CD40 did not cause TNF-α or IL-1β secretion in Müller cells. TNF-α was not detected in Müller cells from diabetic mice with CD40 + Müller cells. Rather, TNF-α was upregulated in macrophages/microglia. CD40 ligation in Müller cells triggered phospholipase C-dependent ATP release that caused P2X 7 -dependent production of TNF-α and IL-1β by macrophages. P2X 7 -/- mice and mice treated with a P2X 7 inhibitor were protected from diabetes-induced TNF-α, IL-1β, ICAM-1, and NOS2 upregulation. Our studies indicate that CD40 in Müller cells is sufficient to upregulate retinal inflammatory markers and appears to promote experimental diabetic retinopathy and that Müller cells orchestrate inflammatory responses in myeloid cells through a CD40-ATP-P2X 7 pathway. © 2017 by the American Diabetes Association.

  17. CD40-independent natural killer-cell help promotes dendritic cell vaccine-induced T-cell immunity against endogenous B-cell lymphoma.

    Science.gov (United States)

    Hömberg, Nadine; Adam, Christian; Riedel, Tanja; Brenner, Christoph; Flatley, Andrew; Röcken, Martin; Mocikat, Ralph

    2014-12-15

    It is well established that an interplay between natural killer (NK) cells and dendritic cells (DCs) gives rise to their reciprocal activation and provides a Th1-biased cytokine milieu that fosters antitumor T-cell responses. Ex vivo-differentiated DCs transferred into mice strongly stimulate endogenous NK cells to produce interferon (IFN)-γ and initiate a cascade that eventually leads to cytotoxic T-lymphocyte responses. We show that the ability of exogenous DCs to trigger this pathway obviates CD40 signaling and CD4(+) T-cell help and depends on a preceding maturation step. Importantly, this mechanism was also effective in endogenously arising tumors where IFN-γ production is compromised in contrast to transplantable tumors. In c-myc-transgenic mice developing spontaneous lymphomas, injection of unpulsed DCs caused NK-cell activation and induced CD8(+) T cells capable of recognizing the lymphoma cells. Animals treated with unpulsed DCs showed a survival benefit compared to untreated myc mice. Hence, tumor immunity induced by DC-based vaccines not only depends on specific antigens loaded on the DCs. Rather, DC vaccines generate broader immune responses, because endogenous DCs presenting tumor antigens may also become stimulated by NK cells that were activated by exogenous DCs. Thus, the DC/NK-cell/cytotoxic T lymphocyte axis may commonly have relevance for DC-based vaccination protocols in clinical settings. © 2014 UICC.

  18. Prevention of B cell antigen receptor-induced apoptosis by ligation of CD40 occurs downstream of cell cycle regulation

    NARCIS (Netherlands)

    Mackus, Wendelina J. M.; Lens, Susanne M. A.; Medema, René H.; Kwakkenbos, Mark J.; Evers, Ludo M.; Oers, Marinus H. J. van; van Lier, René A. W.; Eldering, Eric

    2002-01-01

    Cross-linking of the B cell antigen receptor (BCR) on germinal center B cells can induce growth arrest and apoptosis, thereby eliminating potentially autoreactive B cells. Using the Burkitt lymphoma cell line Ramos as a model, we studied the commitment to apoptosis following growth arrest, as well

  19. Ciliary neurotrophic factor (CNTF) plus soluble CNTF receptor alpha increases cyclooxygenase-2 expression, PGE2 release and interferon-gamma-induced CD40 in murine microglia.

    Science.gov (United States)

    Lin, Hsiao-Wen; Jain, Mohit Raja; Li, Hong; Levison, Steven W

    2009-03-06

    Ciliary neurotrophic factor (CNTF) has been regarded as a potent trophic factor for motor neurons. However, recent studies have shown that CNTF exerts effects on glial cells as well as neurons. For instance, CNTF stimulates astrocytes to secrete FGF-2 and rat microglia to secrete glial cell line-derived neurotrophic factor (GDNF), which suggest that CNTF exerts effects on astrocytes and microglia to promote motor neuron survival indirectly. As CNTF is structurally related to IL-6, which can stimulate immune functions of microglia, we hypothesized that CNTF might exert similar effects. We performed 2-D and 1-D proteomic experiments with western blotting and flow cytometry to examine effects of CNTF on primary microglia derived from neonatal mouse brains. We show that murine microglia express CNTF receptor alpha (CNTFRalpha), which can be induced by interferon-gamma (IFNgamma). Whereas IL-6 activated STAT-3 and ERK phosphorylation, CNTF did not activate these pathways, nor did CNTF increase p38 MAP kinase phosphorylation. Using 2-D western blot analysis, we demonstrate that CNTF induced the dephosphorylation of a set of proteins and phosphorylation of a different set. Two proteins that were phosphorylated upon CNTF treatment were the LYN substrate-1 and beta-tubulin 5. CNTF weakly stimulated microglia, whereas a stronger response was obtained by adding exogenous soluble CNTFRalpha (sCNTFRalpha) as has been observed for IL-6. When used in combination, CNTF and sCNTFRalpha collaborated with IFNgamma to increase microglial surface expression of CD40 and this effect was quite pronounced when the microglia were differentiated towards dendritic-like cells. CNTF/sCNTFRalpha complex, however, failed to increase MHC class II expression beyond that induced by IFNgamma. The combination of CNTF and sCNTFRalpha, but not CNTF alone, enhanced microglial Cox-2 protein expression and PGE2 secretion (although CNTF was 30 times less potent than LPS). Surprisingly, Cox-2 production was

  20. Ciliary neurotrophic factor (CNTF plus soluble CNTF receptor α increases cyclooxygenase-2 expression, PGE2 release and interferon-γ-induced CD40 in murine microglia

    Directory of Open Access Journals (Sweden)

    Li Hong

    2009-03-01

    Full Text Available Abstract Background Ciliary neurotrophic factor (CNTF has been regarded as a potent trophic factor for motor neurons. However, recent studies have shown that CNTF exerts effects on glial cells as well as neurons. For instance, CNTF stimulates astrocytes to secrete FGF-2 and rat microglia to secrete glial cell line-derived neurotrophic factor (GDNF, which suggest that CNTF exerts effects on astrocytes and microglia to promote motor neuron survival indirectly. As CNTF is structurally related to IL-6, which can stimulate immune functions of microglia, we hypothesized that CNTF might exert similar effects. Methods We performed 2-D and 1-D proteomic experiments with western blotting and flow cytometry to examine effects of CNTF on primary microglia derived from neonatal mouse brains. Results We show that murine microglia express CNTF receptor α (CNTFRα, which can be induced by interferon-γ (IFNγ. Whereas IL-6 activated STAT-3 and ERK phosphorylation, CNTF did not activate these pathways, nor did CNTF increase p38 MAP kinase phosphorylation. Using 2-D western blot analysis, we demonstrate that CNTF induced the dephosphorylation of a set of proteins and phosphorylation of a different set. Two proteins that were phosphorylated upon CNTF treatment were the LYN substrate-1 and β-tubulin 5. CNTF weakly stimulated microglia, whereas a stronger response was obtained by adding exogenous soluble CNTFRα (sCNTFRα as has been observed for IL-6. When used in combination, CNTF and sCNTFRα collaborated with IFNγ to increase microglial surface expression of CD40 and this effect was quite pronounced when the microglia were differentiated towards dendritic-like cells. CNTF/sCNTFRα complex, however, failed to increase MHC class II expression beyond that induced by IFNγ. The combination of CNTF and sCNTFRα, but not CNTF alone, enhanced microglial Cox-2 protein expression and PGE2 secretion (although CNTF was 30 times less potent than LPS. Surprisingly, Cox-2

  1. Immunization of chickens with an agonistic monoclonal anti-chicken CD40 antibody-hapten complex: rapid and robust IgG response induced by a single subcutaneous injection.

    Science.gov (United States)

    Chen, Chang-Hsin; Abi-Ghanem, Daad; Waghela, Suryakant D; Chou, Wen-Ko; Farnell, Morgan B; Mwangi, Waithaka; Berghman, Luc R

    2012-04-30

    Producing diagnostic antibodies in chicken egg yolk represents an alternate animal system that offers many advantages including high productivity at low cost. Despite being an excellent counterpart to mammalian antibodies, chicken IgG from yolk still represents an underused resource. The potential of agonistic monoclonal anti-CD40 antibodies (mAb) as a powerful immunological adjuvant has been demonstrated in mammals, but not in chickens. We recently reported an agonistic anti-chicken CD40 mAb (designated mAb 2C5) and showed that it may have potential as an immunological adjuvant. In this study, we examined the efficacy of targeting a short peptide to chicken CD40 [expressed by the antigen-presenting cells (APCs)] in enhancing an effective IgG response in chickens. For this purpose, an immune complex consisting of one streptavidin molecule, two directionally biotinylated mAb 2C5 molecules, and two biotinylated peptide molecules was produced. Chickens were immunized subcutaneously with doses of this complex ranging from 10 to 90 μg per injection once, and relative quantification of the peptide-specific IgG response showed that the mAb 2C5-based complex was able to elicit a strong IgG response as early as four days post-immunization. This demonstrates that CD40-targeting antigen to chicken APCs can significantly enhance antibody responses and induce immunoglobulin isotype-switching. This immunization strategy holds promise for rapid production of hapten-specific IgG in chickens. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Agonistic monoclonal antibody against CD40 receptor decreases lymphocyte apoptosis and improves survival in sepsis.

    Science.gov (United States)

    Schwulst, Steven J; Grayson, Mitchell H; DiPasco, Peter J; Davis, Christopher G; Brahmbhatt, Tejal S; Ferguson, Thomas A; Hotchkiss, Richard S

    2006-07-01

    Sepsis causes a marked apoptosis-induced depletion of lymphocytes. The degree of lymphocyte apoptosis during sepsis strongly correlates with survival. CD40, a member of the TNFR family, is expressed on APCs and has potent antiapoptotic activity. In this study we determined whether an agonistic Ab against CD40 could protect lymphocytes from sepsis-induced apoptosis. Secondly, we examined potential antiapoptotic mechanisms of the putative protection. Lastly, we aimed to determine whether anti-CD40 treatment could improve survival in sepsis. CD1 mice were made septic by the cecal ligation and puncture method and treated postoperatively with anti-CD40 Ab. Treatment with anti-CD40 completely abrogated sepsis-induced splenic B cell death and, surprisingly, decreased splenic and thymic T cell death as well (p < 0.001). To investigate the mechanism of protection of anti-CD40 therapy on T cells, CD40 receptor expression was examined. As anticipated, the CD40 receptor was constitutively expressed on B cells, but, unexpectedly, splenic and thymic T cells were found to express CD40 receptor during sepsis. Furthermore, CD4+CD8- T cells were the predominant subtype of T cells expressing CD40 receptor during sepsis. Additionally, the antiapoptotic protein Bcl-x(L) was found to be markedly increased in splenic B and T cells as well as in thymic T cells after treatment with anti-CD40 Ab (p < 0.0025). Lastly, mice that were made septic in a double injury model of sepsis had improved survival after treatment with anti-CD40 as compared with controls (p = 0.05). In conclusion, anti-CD40 treatment increases Bcl-x(L), provides nearly complete protection against sepsis-induced lymphocyte apoptosis, and improves survival in sepsis.

  3. Mechanisms of Nifedipine-Downregulated CD40L/sCD40L Signaling in Collagen Stimulated Human Platelets.

    Directory of Open Access Journals (Sweden)

    Tso-Hsiao Chen

    Full Text Available The platelet-derived soluble CD40L (sCD40L release plays a critical role in the development of atherosclerosis. Nifedipine, a dihydropyridine-based L-type calcium channel blocker (CCB, has been reported to have an anti-atherosclerotic effect beyond its blood pressure-lowering effect, but the molecular mechanisms remain unclear. The present study was designed to investigate whether nifedipine affects sCD40L release from collagen-stimulated human platelets and to determine the potential role of peroxisome proliferator-activated receptor-β/-γ (PPAR-β/-γ. We found that treatment with nifedipine significantly inhibited the platelet surface CD40L expression and sCD40L release in response to collagen, while the inhibition was markedly reversed by blocking PPAR-β/-γ activity with specific antagonist such as GSK0660 and GW9662. Meanwhile, nifedipine also enhanced nitric oxide (NO and cyclic GMP formation in a PPAR-β/-γ-dependent manner. When the NO/cyclic GMP pathway was suppressed, nifedipine-mediated inhibition of sCD40L release was abolished significantly. Collagen-induced phosphorylation of p38MAPK, ERK1/2 and HSP27, matrix metalloproteinase-2 (MMP-2 expression/activity and reactive oxygen species (ROS formation were significantly inhibited by nifedipine, whereas these alterations were all attenuated by co-treatment with PPAR-β/-γ antagonists. Collectively, these results demonstrate that PPAR-β/-γ-dependent pathways contribute to nifedipine-mediated downregulation of CD40L/sCD40L signaling in activated platelets through regulation of NO/ p38MAPK/ERK1/2/HSP27/MMP-2 signalings and provide a novel mechanism regarding the anti-atherosclerotic effect of nifedipine.

  4. The CD40-CD40L Dyad in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis

    NARCIS (Netherlands)

    Aarts, Suzanne A. B. M.; Seijkens, Tom T. P.; van Dorst, Koos J. F.; Dijkstra, Christine D.; Kooij, Gijs; Lutgens, Esther

    2017-01-01

    The CD40-CD40L dyad is an immune checkpoint regulator that promotes both innate and adaptive immune responses and has therefore an essential role in the development of inflammatory diseases, including multiple sclerosis (MS). In MS, CD40 and CD40L are expressed on immune cells present in blood and

  5. Anti-inflammatory and anti-thrombotic intervention strategies using atorvastatin, clopidogrel and knock-down of CD40L do not modify radiation-induced atherosclerosis in ApoE null mice

    International Nuclear Information System (INIS)

    Hoving, Saske; Heeneman, Sylvia; Gijbels, Marion J.J.; Poele, Johannes A.M. te; Pol, Jeffrey F.C.; Gabriels, Karen; Russell, Nicola S.; Daemen, Mat J.A.P.; Stewart, Fiona A.

    2011-01-01

    Background and purpose: We previously showed that irradiating the carotid arteries of ApoE −/− mice accelerated the development of macrophage-rich, inflammatory and thrombotic atherosclerotic lesions. In this study we investigated the potential of anti-inflammatory (atorvastatin, CD40L knockout) and anti-thrombotic (clopidogrel) intervention strategies to inhibit radiation-induced atherosclerosis. Material and methods: ApoE −/− mice were given 0 or 14 Gy to the neck and the carotid arteries were harvested at 4 or 28 weeks after irradiation. Atorvastatin (15 mg/kg/day) or clopidogrel (20 mg/kg/day) was given in the chow; control groups received regular chow. Clopidogrel inhibited platelet aggregation by 50%. CD40L −/− /ApoE −/− and ApoE −/− littermates were also given 0 or 14 Gy to the neck and the carotid arteries were harvested after 30 weeks. Results: Clopidogrel decreased MCP-1 expression in the carotid artery at 4 weeks after irradiation. Expression of VCAM-1, ICAM-1, thrombomodulin, tissue factor and eNOS was unchanged in atorvastatin and clopidogrel-treated mice. Neither drug inhibited either age-related or radiation-induced atherosclerosis. Furthermore, loss of the inflammatory mediator CD40L did not influence the development of age-related and radiation-induced atherosclerosis. Conclusions: The effects of radiation-induced atherosclerosis could not be circumvented by these specific anti-inflammatory and anti-coagulant therapies. This suggests that more effective drug combinations may be required to overcome the radiation stimulus, or that other underlying mechanistic pathways are involved compared to age-related atherosclerosis.

  6. Constitutive and ligand-induced TCR degradation

    DEFF Research Database (Denmark)

    von Essen, Marina; Bonefeld, Charlotte Menné; Siersma, Volkert

    2004-01-01

    divergent models for TCR down-regulation and degradation have been suggested. The aims of this study were to determine the rate constants for constitutive and ligand-induced TCR degradation and to determine whether the TCR subunits segregate or are processed as an intact unit during TCR down...

  7. p62 regulates CD40-mediated NFκB activation in macrophages through interaction with TRAF6

    Energy Technology Data Exchange (ETDEWEB)

    Seibold, Kristina; Ehrenschwender, Martin, E-mail: martin.ehrenschwender@ukr.de

    2015-08-14

    CD40 is a member of the tumor necrosis factor (TNF) receptor family. Activation-induced recruitment of adapter proteins, so-called TNF-receptor-associated factors (TRAFs) to the cytoplasmic tail of CD40 triggers signaling cascades important in the immune system, but has also been associated with excessive inflammation in diseases such as atherosclerosis and rheumatoid arthritis. Especially, pro-inflammatory nuclear factor κB (NFκB) signaling emanating from CD40-associated TRAF6 appears to be a key pathogenic driving force. Consequently, targeting the CD40-TRAF6 interaction is emerging as a promising therapeutic strategy, but the underlying molecular machinery of this signaling axis is to date poorly understood. Here, we identified the multifunctional adaptor protein p62 as a critical regulator in CD40-mediated NFκB signaling via TRAF6. CD40 activation triggered formation of a TRAF6-p62 complex. Disturbing this interaction tremendously reduced CD40-mediated NFκB signaling in macrophages, while TRAF6-independent signaling pathways remained unaffected. This highlights p62 as a potential target in hyper-inflammatory, CD40-associated pathologies. - Highlights: • CD40 activation triggers interaction of the adapter protein TRAF6 with p62. • TRAF6-p62 interaction regulates CD40-mediated NFκB signaling in macrophages. • Defective TRAF6-p62 interaction reduces CD40-mediated NFκB activation in macrophages.

  8. CD54/intercellular adhesion molecule 1 and major histocompatibility complex II signaling induces B cells to express interleukin 2 receptors and complements help provided through CD40 ligation

    DEFF Research Database (Denmark)

    Poudrier, J; Owens, T

    1994-01-01

    We have examined signaling roles for CD54 intercellular adhesion molecule 1 and major histocompatibility complex (MHC) II as contact ligands during T help for B cell activation. We used a T helper 1 (Th1)-dependent helper system that was previously shown to be contact as well as interleukin 2 (IL-2...

  9. CD40-mediated apoptosis in murine B-lymphoma lines containing mutated p53

    DEFF Research Database (Denmark)

    Hollmann, Annette C; Gong, Qiaoke; Owens, Trevor

    2002-01-01

    Crosslinking CD40 induces normal B-cells to proliferate and differentiate but causes many tumor cell lines to undergo apoptosis. As p53 is required for many apoptotic pathways, we analyzed the effects of CD40 ligation and their correlation with p53 function in four murine B-lymphoma lines. A20...... of detectable p21 mRNA in A20 and M12 cells. P21 mRNA was increased to detectable levels in M12 cells upon CD40 ligation; however, blocking this effect with the p53 inhibitor pifithrin had no effect on CD40-mediated apoptosis. Sequencing showed that p53 in A20 and M12 cells contained point mutations leading...... to amino acid substitutions in DNA binding regions, but was unmutated in WEHI231 and WEHI 279. These results suggest that CD40-mediated apoptosis can occur in the absence of functional p53....

  10. Anti-CD40-mediated cancer immunotherapy

    DEFF Research Database (Denmark)

    Hassan, Sufia Butt; Sørensen, Jesper Freddie; Olsen, Barbara Nicola

    2014-01-01

    activation and thus enhancement of immune responses. Treatment with anti-CD40 monoclonal antibodies has been exploited in several cancer immunotherapy studies in mice and led to the development of anti-CD40 antibodies for clinical use. Here, Dacetuzumab and Lucatumumab are in the most advanced stage...... with other cancer immunotherapies, in particular interleukin (IL)-2. An in-depth analysis of this immunotherapy is provided elsewhere. In the present review, we provide an update of the most recent clinical trials with anti-CD40 antibodies. We present and discuss recent and ongoing clinical trials...... in this field, including clinical studies which combine anti-CD40 treatment with other cancer-treatments, such as Rituximab and Tremelimumab....

  11. Elicitation of Both Anti HIV-1 Env Humoral and Cellular Immunities by Replicating Vaccinia Prime Sendai Virus Boost Regimen and Boosting by CD40Lm

    Science.gov (United States)

    Zhang, Xianfeng; Sobue, Tomoyoshi; Isshiki, Mao; Makino, Shun-ichi; Inoue, Makoto; Kato, Kazunori; Shioda, Tatsuo; Ohashi, Takashi; Sato, Hirotaka; Komano, Jun; Hanabusa, Hideji; Shida, Hisatoshi

    2012-01-01

    For protection from HIV-1 infection, a vaccine should elicit both humoral and cell-mediated immune responses. A novel vaccine regimen and adjuvant that induce high levels of HIV-1 Env-specific T cell and antibody (Ab) responses was developed in this study. The prime-boost regimen that used combinations of replication-competent vaccinia LC16m8Δ (m8Δ) and Sendai virus (SeV) vectors expressing HIV-1 Env efficiently produced both Env-specific CD8+ T cells and anti-Env antibodies, including neutralizing antibodies (nAbs). These results sharply contrast with vaccine regimens that prime with an Env expressing plasmid and boost with the m8Δ or SeV vector that mainly elicited cellular immunities. Moreover, co-priming with combinations of m8Δs expressing Env or a membrane-bound human CD40 ligand mutant (CD40Lm) enhanced Env-specific CD8+ T cell production, but not anti-Env antibody production. In contrast, priming with an m8Δ that coexpresses CD40Lm and Env elicited more anti-Env Abs with higher avidity, but did not promote T cell responses. These results suggest that the m8Δ prime/SeV boost regimen in conjunction with CD40Lm expression could be used as an immunization platform for driving both potent cellular and humoral immunities against pathogens such as HIV-1. PMID:23236521

  12. The role of CD40 expression in dendritic cells in cancer biology; a systematic review.

    Science.gov (United States)

    Lee, Gui Han; Askari, Alan; Malietzis, George; Bernardo, David; Clark, Susan K; Knight, Stella C; Al-Hassi, Hafid Omar

    2014-01-01

    for further studies on the role of CD40-CD40 ligand pathway to inform cancer treatment.

  13. Activation of human B cells by the agonist CD40 antibody CP-870,893 and augmentation with simultaneous toll-like receptor 9 stimulation

    Directory of Open Access Journals (Sweden)

    Rüter Jens

    2009-11-01

    Full Text Available Abstract Background CD40 activation of antigen presenting cells (APC such as dendritic cells (DC and B cells plays an important role in immunological licensing of T cell immunity. Agonist CD40 antibodies have been previously shown in murine models to activate APC and enhance tumor immunity; in humans, CD40-activated DC and B cells induce tumor-specific T cells in vitro. Although clinical translation of these findings for patients with cancer has been previously limited due to the lack of a suitable and available drug, promising clinical results are now emerging from phase I studies of the agonist CD40 monoclonal antibody CP-870,893. The most prominent pharmacodynamic effect of CP-870,893 infusion is peripheral B cell modulation, but direct evidence of CP-870,893-mediated B cell activation and the potential impact on T cell reactivity has not been reported, despite increasing evidence that B cells, like DC, regulate cellular immunity. Methods Purified total CD19+ B cells, CD19+ CD27+ memory, or CD19+ CD27neg subsets from peripheral blood were stimulated in vitro with CP-870,893, in the presence or absence of the toll like receptor 9 (TLR9 ligand CpG oligodeoxynucleotide (ODN. B cell surface molecule expression and cytokine secretion were evaluated using flow cytometry. Activated B cells were used as stimulators in mixed lymphocyte reactions to evaluate their ability to induce allogeneic T cell responses. Results Incubation with CP-870,893 activated B cells, including both memory and naïve B cells, as demonstrated by upregulation of CD86, CD70, CD40, and MHC class I and II. CP-870,893-activated B cells induced T cell proliferation and T cell secretion of effector cytokines including IFN-gamma and IL-2. These effects were increased by TLR9 co-stimulation via a CpG ODN identical in sequence to a well-studied clinical grade reagent. Conclusion The CD40 mAb CP-870,893 activates both memory and naïve B cells and triggers their T cell stimulatory

  14. Expression of CD40 and CD40L in Gastric Cancer Tissue and Its Clinical Significance

    Directory of Open Access Journals (Sweden)

    Rui Li

    2009-09-01

    Full Text Available To study expression of CD40 and CD40L in gastric cancer tissue we assessed gastric cancer patients admitted to the Department of Gastroenterology of The First Affiliated Hospital of Soochow University and control subjects. Gastric cancer and normal (from around tumours tissue samples were obtained from patients. Venous blood samples (gastric cancer and ulcer groups were drawn on the morning of the day before surgery for the measurement of peripheral sCD40L. The expression of CD40 in gastric carcinoma specimens was examined immuno-histochemically. The clinicopathological factors, including age, sex, tumor size, gross appearance, degree of cellular differentiation, histological classification, depth of tumor invasion, lymph node metastasis, peritoneal dissemination, and TNM stage were analyzed according to the different expression of CD40. The results indicated a high CD40 expression in gastric cancer tissues. This positive expression of CD40 revealed a significant (P < 0.05 correlation with lymphatic metastasis and tumor TNM stage in gastric cancer patients. It is concluded that higher CD40 expression existed in expanding type tumors and could play an important role in clinical diagnosis of gastric cancer patients.

  15. Systemic agonistic anti-CD40 treatment of tumor bearing mice modulates hepatic myeloid suppressive cells and causes immune-mediated liver damage

    Science.gov (United States)

    Medina-Echeverz, José; Ma, Chi; Duffy, Austin; Eggert, Tobias; Hawk, Nga; Kleiner, David E.; Korangy, Firouzeh; Greten, Tim F.

    2015-01-01

    Immune stimulatory monoclonal antibodies are currently evaluated as anti tumor agents. Although overall toxicity appears to be moderate, liver toxicities have been reported and are not completely understood. We studied the effect of systemic CD40 antibody treatment on myeloid cells in spleen and liver. Naïve and tumor-bearing mice were treated systemically with agonistic anti-CD40 antibody. Immune cell subsets in liver and spleen, serum transaminases and liver histologies were analyzed after antibody administration. Nox2−/−, Cd40−/− as well as bone marrow chimeric mice were used to study the mechanism by which agonistic anti-CD40 mediates its effects in vivo. Suppressor function of murine and human tumor-induced myeloid derived suppressive cells was studied upon CD40 ligation. Agonistic CD40 antibody caused liver damage within 24 hours after injection in two unrelated tumor models and mice strains. Using bone marrow chimeras we demonstrated that CD40 antibody-induced hepatitis in tumor-bearing mice was dependent on the presence of CD40-expressing hematopoietic cells. Agonistic CD40 ligation-dependent liver damage was induced by the generation of reactive oxygen species. Furthermore, agonistic CD40 antibody resulted in increased CD80 and CD40 positive liver CD11b+Gr-1+ immature myeloid cells. CD40 ligation on tumor-induced murine and human CD14+HLA-DRlow PBMC from cancer patients reduced their immune suppressor function. Collectively, agonistic CD40 antibody treatment activated tumor-induced, myeloid cells, caused myeloid dependent hepatotoxicity and ameliorated the suppressor function of murine and human MDSC. Collectively, our data suggests that CD40 may mature immunosuppressive myeloid cells and thereby cause liver damage in mice with an accumulation of tumor-induced hepatic MDSC. PMID:25637366

  16. Functional B cell abnormalities in HIV type 1 infection: role of CD40L and CD70

    NARCIS (Netherlands)

    Wolthers, K. C.; Otto, S. A.; Lens, S. M.; van Lier, R. A.; Miedema, F.; Meyaard, L.

    1997-01-01

    Early in HIV-1 infection, B cell responses to T cell-dependent antigens are impaired. In addition to the receptor-ligand pair CD40/CD40L, CD27/CD70 also appears to be involved in T cell-dependent B cell stimulation. We have shown that CD70+ B cells are the main producers of Ig when stimulated in a T

  17. related apoptosis-inducing ligand in transplastomic tobacco

    African Journals Online (AJOL)

    -inducing ligand (sTRAIL) can, as the whole length TRAIL protein, bind with its receptors and specifically induce the apoptosis of cancer cells; therefore, it has been developed as a potential therapeutic agent for various cancer treatments.

  18. Immunomodulation with CD40 Stimulation and Interleukin-2 Protects Mice from Disseminated Cryptococcosis

    Science.gov (United States)

    Zhou, Qing; Gault, Ruth A.; Kozel, Thomas R.; Murphy, William J.

    2006-01-01

    Cryptococcus neoformans is a ubiquitous fungus that can cause life-threatening infections during immunosuppressive states such as AIDS and after bone marrow transplantation. In this study we investigated the antifungal efficacy of an agonist antibody to CD40, an important costimulator of immune function, in combination with interleukin 2 (IL-2) in a murine model of disseminated cryptococcosis. Only the combination of anti-CD40 and IL-2 significantly prolonged the survival time of infected mice. This protection was correlated with decreased yeast burdens in the brain and kidney. Increased immune cell populations in the spleens, as well as increased serum gamma interferon (IFN-γ) and tumor necrosis factor alpha levels were observed in infected mice treated with anti-CD40 and IL-2. Further experiments with IFN-γ knockout mice demonstrated that the protection induced by anti-CD40 and IL-2 treatment was dependent on IFN-γ. Depletion of CD4+ T cells did not affect the increased serum IFN-γ levels induced by anti-CD40 and IL-2 treatment and, importantly, did not affect the antifungal effect of combination therapy. These studies indicate that immunotherapy using anti-CD40 and IL-2 has therapeutic potential in augmenting host resistance to disseminated cryptococcosis and that IFN-γ is essential for efficacy. PMID:16552046

  19. CD40 in clinical inflammation: From multiple sclerosis to atherosclerosis

    NARCIS (Netherlands)

    Laman, J.D.; Boer, M. de; Hart, B.A. 't

    1998-01-01

    The interactions of CD40 and CD40L have been known for some time to critically regulate B-cell responses with respect to proliferation, isotype switching, antibody production, and memory formation. More recent findings demonstrated that CD40 can be expressed on several other antigen-presenting cell

  20. CD40 is functionally expressed on human thymic epithelial cells

    NARCIS (Netherlands)

    Galy, A. H.; Spits, H.

    1992-01-01

    CD40 is a prominent B cell Ag also found on certain epithelial cells and on carcinomas. In this report, we analyzed CD40 distribution in the human thymus. CD40 was not found on the majority of CD45-positive thymocytes, but was present in a CD45-negative stromal cell population. Immunohistology

  1. Anti-inflammatory and anti-thrombotic intervention strategies using atorvastatin, clopidogrel and knock-down of CD40L do not modify radiation-induced atherosclerosis in ApoE null mice

    NARCIS (Netherlands)

    Hoving, Saske; Heeneman, Sylvia; Gijbels, Marion J. J.; te Poele, Johannes A. M.; Pol, Jeffrey F. C.; Gabriels, Karen; Russell, Nicola S.; Daemen, Mat J. A. P.; Stewart, Fiona A.

    2011-01-01

    We previously showed that irradiating the carotid arteries of ApoE(-/-) mice accelerated the development of macrophage-rich, inflammatory and thrombotic atherosclerotic lesions. In this study we investigated the potential of anti-inflammatory (atorvastatin, CD40L knockout) and anti-thrombotic

  2. Ligand Binding Domain Protein in Tetracycline-Inducible Expression

    African Journals Online (AJOL)

    Purpose: To investigate tetracycline-inducible expression system for producing clinically usable, highquality liver X receptor ligand-binding domain recombinant protein. Methods: In this study, we have expressed and purified the recombinant liver X receptor β-ligand binding domain proteins in E. coli using a tetracycline ...

  3. Radiation induced ligand loss from cobalt complexes

    International Nuclear Information System (INIS)

    Funston, A. M.; McFadyen, W.D.; Tregloan, P.A.

    2000-01-01

    Full text: Due to the rapid nature of ligand dissociation from cobalt(II) complexes the study of the rate of ligand dissociation necessitates the use of a technique such as pulse radiolysis. This allows the rapid reduction of the corresponding cobalt(III) complex by a reducing radical, such as the aquated electron, to form the cobalt(II) complex. However, to date, no systematic study of either the mechanism of reduction or the influence of the electronic structure on the rate of ligand dissociation has been carried out. In order to understand these processes more fully the mechanism of reduction of a range of related cobalt(III) complexes by the aquated electron and the subsequent rate of ligand dissociation from the resulting cobalt(II) complexes is being investigated. It has been found that a number of processes are observed following the initial rapid reaction of the cobalt(III) complex with the aquated electron. Ultimately ligand loss is observed. Depending upon the complex, the initial processes observed may include the formation of coordinated radicals and electron transfer within the complex. For complexes containing aromatic ligands such as 2,2'-bipyridine, 1,10-phenanthroline and dipyrido[3,2-a:2',3'-c]phenazine the formation of a coordinated radical is observed as the initial reduction step. The kinetics of ligand dissociation of these complexes has been determined. The loss of monodentate ligands is fast and has been indistinguishable from the reduction processes when aromatic ligands are also present in the complex. However, for diamine chelates and diimine chelates spectra of the transient species can be resolved

  4. Properties of mouse CD40: differential expression of CD40 epitopes on dendritic cells and epithelial cells

    NARCIS (Netherlands)

    van den Berg, T. K.; Hasbold, J.; Renardel de Lavalette, C.; Döpp, E. A.; Dijkstra, C. D.; Klaus, G. G.

    1996-01-01

    In this study we describe the tissue distribution of mouse CD40 using two monoclonal antibodies (mAb) against different epitopes of the molecule. In lymphoid tissues CD40 was expressed by B lymphocytes. Most B cells in typical B-cell compartments were CD40-positive, including germinal centre B

  5. Database of ligand-induced domain movements in enzymes

    Directory of Open Access Journals (Sweden)

    Hayward Steven

    2009-03-01

    Full Text Available Abstract Background Conformational change induced by the binding of a substrate or coenzyme is a poorly understood stage in the process of enzyme catalysed reactions. For enzymes that exhibit a domain movement, the conformational change can be clearly characterized and therefore the opportunity exists to gain an understanding of the mechanisms involved. The development of the non-redundant database of protein domain movements contains examples of ligand-induced domain movements in enzymes, but this valuable data has remained unexploited. Description The domain movements in the non-redundant database of protein domain movements are those found by applying the DynDom program to pairs of crystallographic structures contained in Protein Data Bank files. For each pair of structures cross-checking ligands in their Protein Data Bank files with the KEGG-LIGAND database and using methods that search for ligands that contact the enzyme in one conformation but not the other, the non-redundant database of protein domain movements was refined down to a set of 203 enzymes where a domain movement is apparently triggered by the binding of a functional ligand. For these cases, ligand binding information, including hydrogen bonds and salt-bridges between the ligand and specific residues on the enzyme is presented in the context of dynamical information such as the regions that form the dynamic domains, the hinge bending residues, and the hinge axes. Conclusion The presentation at a single website of data on interactions between a ligand and specific residues on the enzyme alongside data on the movement that these interactions induce, should lead to new insights into the mechanisms of these enzymes in particular, and help in trying to understand the general process of ligand-induced domain closure in enzymes. The website can be found at: http://www.cmp.uea.ac.uk/dyndom/enzymeList.do

  6. The role of CD40L, IL-10 and IL-17 in radioprotection

    International Nuclear Information System (INIS)

    Li Ting

    2003-01-01

    CD40L/CD40 interaction is central to the control of thymus-dependent humoral immunity and cell mediated immune responses. IL-17 has been shown to induce the production of IL-6 and G-CSF, which can induce proliferation and differentiation of CD34 + hematopoietic progenitors. IL-10 can interfere with up-regulation of costimulatory molecules, thus suppressing the production of costimulatory cytokines, such as IL-12. IL-10 has been implicated as an essential mediator in the induction of systemic immune suppression following ultraviolet (UV) exposure. Treating UV-irradiated mice with anti-IL-10 blocks the induction of immune suppression

  7. Human genetics in rheumatoid arthritis guides a high-throughput drug screen of the CD40 signaling pathway.

    Directory of Open Access Journals (Sweden)

    Gang Li

    2013-05-01

    Full Text Available Although genetic and non-genetic studies in mouse and human implicate the CD40 pathway in rheumatoid arthritis (RA, there are no approved drugs that inhibit CD40 signaling for clinical care in RA or any other disease. Here, we sought to understand the biological consequences of a CD40 risk variant in RA discovered by a previous genome-wide association study (GWAS and to perform a high-throughput drug screen for modulators of CD40 signaling based on human genetic findings. First, we fine-map the CD40 risk locus in 7,222 seropositive RA patients and 15,870 controls, together with deep sequencing of CD40 coding exons in 500 RA cases and 650 controls, to identify a single SNP that explains the entire signal of association (rs4810485, P = 1.4×10(-9. Second, we demonstrate that subjects homozygous for the RA risk allele have ∼33% more CD40 on the surface of primary human CD19+ B lymphocytes than subjects homozygous for the non-risk allele (P = 10(-9, a finding corroborated by expression quantitative trait loci (eQTL analysis in peripheral blood mononuclear cells from 1,469 healthy control individuals. Third, we use retroviral shRNA infection to perturb the amount of CD40 on the surface of a human B lymphocyte cell line (BL2 and observe a direct correlation between amount of CD40 protein and phosphorylation of RelA (p65, a subunit of the NF-κB transcription factor. Finally, we develop a high-throughput NF-κB luciferase reporter assay in BL2 cells activated with trimerized CD40 ligand (tCD40L and conduct an HTS of 1,982 chemical compounds and FDA-approved drugs. After a series of counter-screens and testing in primary human CD19+ B cells, we identify 2 novel chemical inhibitors not previously implicated in inflammation or CD40-mediated NF-κB signaling. Our study demonstrates proof-of-concept that human genetics can be used to guide the development of phenotype-based, high-throughput small-molecule screens to identify potential novel

  8. Specific blockade by CD54 and MHC II of CD40-mediated signaling for B cell proliferation and survival

    DEFF Research Database (Denmark)

    Doyle, I S; Hollmann, C A; Crispe, I N

    2001-01-01

    Regulation of B lymphocyte proliferation is critical to maintenance of self-tolerance, and intercellular interactions are likely to signal such regulation. Here, we show that coligation of either the adhesion molecule ICAM-1/CD54 or MHC II with CD40 inhibited cell cycle progression and promoted...... these effects. Addition of BCR or IL-4 signals did not overcome the effect of ICAM-1 or MHC II on CD40-induced proliferation. FasL expression was not detected in B cell populations. These results show that MHC II and ICAM-1 specifically modulate CD40-mediated signaling, so inhibiting proliferation...

  9. CD40L Expression Allows CD8+ T Cells to Promote Their Own Expansion and Differentiation through Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Neil Q. Tay

    2017-11-01

    Full Text Available CD8+ T cells play an important role in providing protective immunity against a wide range of pathogens, and a number of different factors control their activation. Although CD40L-mediated CD40 licensing of dendritic cells (DCs by CD4+ T cells is known to be necessary for the generation of a robust CD8+ T cell response, the contribution of CD8+ T cell-expressed CD40L on DC licensing is less clear. We have previously shown that CD8+ T cells are able to induce the production of IL-12 p70 by DCs in a CD40L-dependent manner, providing some evidence that CD8+ T cell-mediated activation of DCs is possible. To better understand the role of CD40L on CD8+ T cell responses, we generated and characterized CD40L-expressing CD8+ T cells both in vitro and in vivo. We found that CD40L was expressed on 30–50% of effector CD8+ T cells when stimulated and that this expression was transient. The expression of CD40L on CD8+ T cells promoted the proliferation and differentiation of both the CD40L-expressing CD8+ T cells and the bystander effector CD8+ T cells. This process occurred via a cell-extrinsic manner and was mediated by DCs. These data demonstrate the existence of a mechanism where CD8+ T cells and DCs cooperate to maximize CD8+ T cell responses.

  10. CD40L Expression Allows CD8+T Cells to Promote Their Own Expansion and Differentiation through Dendritic Cells.

    Science.gov (United States)

    Tay, Neil Q; Lee, Debbie C P; Chua, Yen Leong; Prabhu, Nayana; Gascoigne, Nicholas R J; Kemeny, David M

    2017-01-01

    CD8 + T cells play an important role in providing protective immunity against a wide range of pathogens, and a number of different factors control their activation. Although CD40L-mediated CD40 licensing of dendritic cells (DCs) by CD4 + T cells is known to be necessary for the generation of a robust CD8 + T cell response, the contribution of CD8 + T cell-expressed CD40L on DC licensing is less clear. We have previously shown that CD8 + T cells are able to induce the production of IL-12 p70 by DCs in a CD40L-dependent manner, providing some evidence that CD8 + T cell-mediated activation of DCs is possible. To better understand the role of CD40L on CD8 + T cell responses, we generated and characterized CD40L-expressing CD8 + T cells both in vitro and in vivo . We found that CD40L was expressed on 30-50% of effector CD8 + T cells when stimulated and that this expression was transient. The expression of CD40L on CD8 + T cells promoted the proliferation and differentiation of both the CD40L-expressing CD8 + T cells and the bystander effector CD8 + T cells. This process occurred via a cell-extrinsic manner and was mediated by DCs. These data demonstrate the existence of a mechanism where CD8 + T cells and DCs cooperate to maximize CD8 + T cell responses.

  11. Agonistic anti-CD40 antibody profoundly suppresses the immune response to infection with lymphocytic choriomeningitis virus

    DEFF Research Database (Denmark)

    Bartholdy, Christina; Kauffmann, Susanne Ørding; Christensen, Jan Pravsgaard

    2007-01-01

    also collapsed prematurely, and virus clearance was delayed. Additional analysis revealed that, following anti-CD40 treatment, the virus-specific CD8 T cells initially proliferated normally, but an increased cell loss compared with that in untreated mice was observed. The anti-CD40-induced abortion...... varies with the virus infection studied. For this reason, we recommend further evaluation of the safety of this regimen before being applied to human patients....

  12. Effectiveness of slow-release systems in CD40 agonistic antibody immunotherapy of cancer

    NARCIS (Netherlands)

    Fransen, Marieke F.; Cordfunke, Robert A.; Sluijter, Marjolein; Van Steenbergen, Mies J.; Drijfhout, Jan W.; Ossendorp, Ferry; Hennink, Wim E.; Melief, Cornelis J M

    2014-01-01

    Slow-release delivery has great potential for specifically targeting immune-modulating agents into the tumor-draining area. In prior work we showed that local treatment of slowly delivered anti-CD40 antibody induced robust anti-tumor CD8+ T cell responses without systemic toxicity. We now report on

  13. TLR9 ligand (CpG oligodeoxynucleotide induces CLL B-cells to differentiate into CD20+ antibody-secreting cells

    Directory of Open Access Journals (Sweden)

    Hussein eGhamlouch

    2014-06-01

    Full Text Available B-cell chronic lymphocytic leukemia (CLL is the most frequent adult leukemia in the Western world. It is a heterogeneous disease characterized by clonal proliferation and the accumulation of CD5+ mature B lymphocytes. However, the normal counterpart from which the latter cells arise has not yet been identified. CD27 expression and gene expression profiling data suggest that CLL cells are related to memory B-cells. In vitro, memory B-cells differentiate into plasma cells when stimulated with CpG oligodeoxynucleotide (CpG. The objective of the present study was therefore to investigate the ability of CpG, in the context of CD40 ligation, to induce the differentiation of CLL B-cells into antibody-secreting cells (ASCs. CD20+CD38− CLL B-cells were stimulated with a combination of CpG, CD40 ligand and cytokines (CpG/CD40L/c in a two-step, seven-day culture system. We found that the CpG/CD40L/c culture system prompted CLL B-cells to differentiate into CD19+CD20+CD27+CD38- ASCs. These cells secreted large amounts of IgM and had the same shape as plasma cells. However, only IgMs secreted by ASCs that had differentiated from unmutated CLL B-cells were poly/autoreactive. Class-switch recombination to IgG and IgA was detected in cells expressing the activation-induced cytidine deaminase gene (AICDA. Although these ASCs expressed high levels of the transcription factors PRDM1 (BLIMP1, IRF4 and XBP1s, they did not downregulate expression of PAX5. Our results suggest that CLL B-cells can differentiate into ASCs, undergo class-switch recombination and produce poly/autoreactive antibodies. Furthermore, our findings may be relevant for (i identifying the normal counterpart of CLL B-cells and (ii developing novel treatment strategies in CLL.

  14. Despite disorganized synapse structure, Th2 cells maintain directional delivery of CD40L to antigen-presenting B cells.

    Directory of Open Access Journals (Sweden)

    Jennifer L Gardell

    Full Text Available Upon recognition of peptide displayed on MHC molecules, Th1 and Th2 cells form distinct immunological synapse structures. Th1 cells have a bull's eye synapse structure with TCR/ MHC-peptide interactions occurring central to a ring of adhesion molecules, while Th2 cells have a multifocal synapse with small clusters of TCR/MHC interactions throughout the area of T cell/antigen-presenting cell interaction. In this study, we investigated whether this structural difference in the immunological synapse affects delivery of T cell help. The immunological synapse is thought to ensure antigen-specific delivery of cytolytic granules and killing of target cells by NK cells and cytolytic T cells. In helper T cells, it has been proposed that the immunological synapse may direct delivery of other effector molecules including cytokines. CD40 ligand (CD40L is a membrane-bound cytokine essential for antigen-specific T cell help for B cells in the antibody response. We incubated Th1 and Th2 cells overnight with a mixture of antigen-presenting and bystander B cells, and the delivery of CD40L to B cells and subsequent B cell responses were compared. Despite distinct immunological synapse structures, Th1 and Th2 cell do not differ in their ability to deliver CD40L and T cell help in an antigen-specific fashion, or in their susceptibility to inhibition of help by a blocking anti-CD40L antibody.

  15. Despite disorganized synapse structure, Th2 cells maintain directional delivery of CD40L to antigen-presenting B cells.

    Science.gov (United States)

    Gardell, Jennifer L; Parker, David C

    2017-01-01

    Upon recognition of peptide displayed on MHC molecules, Th1 and Th2 cells form distinct immunological synapse structures. Th1 cells have a bull's eye synapse structure with TCR/ MHC-peptide interactions occurring central to a ring of adhesion molecules, while Th2 cells have a multifocal synapse with small clusters of TCR/MHC interactions throughout the area of T cell/antigen-presenting cell interaction. In this study, we investigated whether this structural difference in the immunological synapse affects delivery of T cell help. The immunological synapse is thought to ensure antigen-specific delivery of cytolytic granules and killing of target cells by NK cells and cytolytic T cells. In helper T cells, it has been proposed that the immunological synapse may direct delivery of other effector molecules including cytokines. CD40 ligand (CD40L) is a membrane-bound cytokine essential for antigen-specific T cell help for B cells in the antibody response. We incubated Th1 and Th2 cells overnight with a mixture of antigen-presenting and bystander B cells, and the delivery of CD40L to B cells and subsequent B cell responses were compared. Despite distinct immunological synapse structures, Th1 and Th2 cell do not differ in their ability to deliver CD40L and T cell help in an antigen-specific fashion, or in their susceptibility to inhibition of help by a blocking anti-CD40L antibody.

  16. Excess soluble CD40L contributes to blood brain barrier permeability in vivo: implications for HIV-associated neurocognitive disorders.

    Directory of Open Access Journals (Sweden)

    Donna C Davidson

    Full Text Available Despite the use of anti-retroviral therapies, a majority of HIV-infected individuals still develop HIV-Associated Neurocognitive Disorders (HAND, indicating that host inflammatory mediators, in addition to viral proteins, may be contributing to these disorders. Consistently, we have previously shown that levels of the inflammatory mediator soluble CD40L (sCD40L are elevated in the circulation of HIV-infected, cognitively impaired individuals as compared to their infected, non-impaired counterparts. Recent studies from our group suggest a role for the CD40/CD40L dyad in blood brain barrier (BBB permeability and interestingly, sCD40L is thought to regulate BBB permeability in other inflammatory disorders of the CNS. Using complementary multiphoton microscopy and quantitative analyses in wild-type and CD40L deficient mice, we now reveal that the HIV transactivator of transcription (Tat can induce BBB permeability in a CD40L-dependent manner. This permeability of the BBB was found to be the result of aberrant platelet activation induced by Tat, since depletion of platelets prior to treatment reversed Tat-induced BBB permeability. Furthermore, Tat treatment led to an increase in granulocyte antigen 1 (Gr1 positive monocytes, indicating an expansion of the inflammatory subset of cells in these mice, which were found to adhere more readily to the brain microvasculature in Tat treated animals. Exploring the mechanisms by which the BBB becomes compromised during HIV infection has the potential to reveal novel therapeutic targets, thereby aiding in the development of adjunct therapies for the management of HAND, which are currently lacking.

  17. Dendritic cell based PSMA immunotherapy for prostate cancer using a CD40-targeted adenovirus vector.

    Directory of Open Access Journals (Sweden)

    Briana Jill Williams

    Full Text Available Human prostate tumor vaccine and gene therapy trials using ex vivo methods to prime dendritic cells (DCs with prostate specific membrane antigen (PSMA have been somewhat successful, but to date the lengthy ex vivo manipulation of DCs has limited the widespread clinical utility of this approach. Our goal was to improve upon cancer vaccination with tumor antigens by delivering PSMA via a CD40-targeted adenovirus vector directly to DCs as an efficient means for activation and antigen presentation to T-cells. To test this approach, we developed a mouse model of prostate cancer by generating clonal derivatives of the mouse RM-1 prostate cancer cell line expressing human PSMA (RM-1-PSMA cells. To maximize antigen presentation in target cells, both MHC class I and TAP protein expression was induced in RM-1 cells by transduction with an Ad vector expressing interferon-gamma (Ad5-IFNγ. Administering DCs infected ex vivo with CD40-targeted Ad5-huPSMA, as well as direct intraperitoneal injection of the vector, resulted in high levels of tumor-specific CTL responses against RM-1-PSMA cells pretreated with Ad5-IFNγ as target cells. CD40 targeting significantly improved the therapeutic antitumor efficacy of Ad5-huPSMA encoding PSMA when combined with Ad5-IFNγ in the RM-1-PSMA model. These results suggest that a CD-targeted adenovirus delivering PSMA may be effective clinically for prostate cancer immunotherapy.

  18. Programmed Death Ligand 2 in Cancer-Induced Immune Suppression

    Directory of Open Access Journals (Sweden)

    Esdy N. Rozali

    2012-01-01

    Full Text Available Inhibitory molecules of the B7/CD28 family play a key role in the induction of immune tolerance in the tumor microenvironment. The programmed death-1 receptor (PD-1, with its ligands PD-L1 and PD-L2, constitutes an important member of these inhibitory pathways. The relevance of the PD-1/PD-L1 pathway in cancer has been extensively studied and therapeutic approaches targeting PD-1 and PD-L1 have been developed and are undergoing human clinical testing. However, PD-L2 has not received as much attention and its role in modulating tumor immunity is less clear. Here, we review the literature on the immunobiology of PD-L2, particularly on its possible roles in cancer-induced immune suppression and we discuss the results of recent studies targeting PD-L2 in cancer.

  19. Death Induced by CD95 or CD95 Ligand Elimination

    Directory of Open Access Journals (Sweden)

    Abbas Hadji

    2014-04-01

    Full Text Available CD95 (Fas/APO-1, when bound by its cognate ligand CD95L, induces cells to die by apoptosis. We now show that elimination of CD95 or CD95L results in a form of cell death that is independent of caspase-8, RIPK1/MLKL, and p53, is not inhibited by Bcl-xL expression, and preferentially affects cancer cells. All tumors that formed in mouse models of low-grade serous ovarian cancer or chemically induced liver cancer with tissue-specific deletion of CD95 still expressed CD95, suggesting that cancer cannot form in the absence of CD95. Death induced by CD95R/L elimination (DICE is characterized by an increase in cell size, production of mitochondrial ROS, and DNA damage. It resembles a necrotic form of mitotic catastrophe. No single drug was found to completely block this form of cell death, and it could also not be blocked by the knockdown of a single gene, making it a promising way to kill cancer cells.

  20. Expanding the clinical and genetic spectrum of human CD40L deficiency: the occurrence of paracoccidioidomycosis and other unusual infections in Brazilian patients.

    Science.gov (United States)

    Cabral-Marques, Otavio; Schimke, Lena-Friederike; Pereira, Paulo Vítor Soeiro; Falcai, Angela; de Oliveira, João Bosco; Hackett, Mary J; Errante, Paolo Ruggero; Weber, Cristina Worm; Ferreira, Janaíra Fernandes; Kuntze, Gisele; Rosário-Filho, Nelson Augusto; Ochs, Hans D; Torgerson, Troy R; Carvalho, Beatriz Tavares Costa; Condino-Neto, Antonio

    2012-04-01

    CD40 ligand (CD40L) deficiency or X-linked hyper-IgM syndrome (X-HIGM) is a well-described primary immunodeficiency in which Pneumocystis jiroveci pneumonia is a common clinical feature. We have identified an unusual high incidence of fungal infections and other not yet described infections in a cohort of 11 X-HIGM patients from nine unrelated Brazilian families. Among these, we describe the first case of paracoccidioidomycosis (PCM) in X-HIGM. The molecular genetic analysis of CD40L was performed by gene sequencing and evaluation of CD40L protein expression. Nine of these 11 patients (82%) had fungal infections. These included fungal species common to CD40L deficiency (P. jiroveci and Candida albicans) as well as Paracoccidioides brasiliensis. One patient presented with PCM at age 11 years and is now doing well at 18 years of age. Additionally, one patient presented with a simultaneous infection with Klebsiella and Acinetobacter, and one with condyloma caused by human papilloma virus. Molecular analysis revealed four previously described CD40L mutations, two novel missense mutations (c.433 T > G and c.476 G > C) resulting in the absence of CD40L protein expression by activated CD4(+) cells and one novel insertion (c.484_485insAA) within the TNFH domain leading to a frame shift and premature stop codon. These observations demonstrated that the susceptibility to fungal infections in X-HIGM extends beyond those typically associated with X-HIGM (P. jiroveci and C. albicans) and that these patients need to be monitored for those pathogens.

  1. IL-12-mediated STAT4 signaling and TCR signal strength cooperate in the induction of CD40L in human and mouse CD8+ T cells.

    Science.gov (United States)

    Stark, Regina; Hartung, Anett; Zehn, Dietmar; Frentsch, Marco; Thiel, Andreas

    2013-06-01

    CD40L is one of the key molecules bridging the activation of specific T cells and the maturation of professional and nonprofessional antigen-presenting cells including B cells. CD4(+) T cells have been regarded as the major T-cell subset that expresses CD40L upon cognate activation; however, we demonstrate here that a putative CD8(+) helper T-cell subset expressing CD40L is induced in human and murine CD8(+) T cells in vitro and in mice immunized with antigen-pulsed dendritic cells. IL-12 and STAT4-mediated signaling was the major instructive cytokine signal boosting the ability of CD8(+) T cells to express CD40L both in vitro and in vivo. Additionally, TCR signaling strength modulated CD40L expression in CD8(+) T cells after primary differentiation in vitro as well as in vivo. The induction of CD40L in CD8(+) T cells regulated by IL-12 and TCR signaling may enable CD8(+) T cells to respond autonomously of CD4(+) T cells. Thus, we propose that under proinflammatory conditions, a self-sustaining positive feedback loop could facilitate the efficient priming of T cells stimulated by high affinity peptide displaying APCs. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Genetic adjuvantation of recombinant MVA with CD40L potentiates CD8 T cell mediated immunity

    Directory of Open Access Journals (Sweden)

    Henning eLauterbach

    2013-08-01

    Full Text Available Modified vaccinia Ankara (MVA is a safe and promising viral vaccine vector that is currently investigated in several clinical and pre-clinical trials. In contrast to inactivated or sub-unit vaccines, MVA is able to induce strong humoral as well as cellular immune responses. In order to further improve its CD8 T cell inducing capacity, we genetically adjuvanted MVA with the coding sequence of murine CD40L, a member of the tumor necrosis factor (TNF superfamily. Immunization of mice with this new vector led to strongly enhanced primary and memory CD8 T cell responses. Concordant with the enhanced CD8 T cell response, we could detect stronger activation of dendritic cells and higher systemic levels of innate cytokines (including IL-12p70 early after immunization. Interestingly, acquisition of memory characteristics (i.e., IL-7R expression was accelerated after immunization with MVA-CD40L in comparison to non-adjuvanted MVA. Furthermore, the generated CTLs also showed improved functionality as demonstrated by intracellular cytokine staining and in vivo killing activity. Importantly, the superior CTL response after a single MVA-CD40L immunization was able to protect B cell deficient mice against a fatal infection with ectromelia virus. Taken together, we show that genetic adjuvantation of MVA can change strength, quality and functionality of innate and adaptive immune responses. These data should facilitate a rational vaccine design with a focus on rapid induction of large numbers of CD8 T cells able to protect against specific diseases.

  3. Ligand-induced variations in subunit associations in bovine heart F1 ATPase.

    Science.gov (United States)

    Goldsmith, C D; Reid, R A

    1983-05-31

    Bovine heart soluble F1 ATPase shows ligand dependent changes in subunit accessibility to the protein labelling reagents acetic anhydride and diazonium benzenesulphonic acid. These correlate with changes in the ATPase activity of the enzyme induced by the same ligands. In particular, NAD+ and NADH show concentration dependent effects, the effect of the reduced nucleotide being opposite to that of the oxidised form.

  4. Characterization of a Broadly Reactive Anti-CD40 Agonistic Monoclonal Antibody for Potential Use as an Adjuvant.

    Directory of Open Access Journals (Sweden)

    Cameron Martin

    Full Text Available Lack of safe and effective adjuvants is a major hindrance to the development of efficacious vaccines. Signaling via CD40 pathway leads to enhanced antigen processing and presentation, nitric oxide expression, pro-inflammatory cytokine expression by antigen presenting cells, and stimulation of B-cells to undergo somatic hypermutation, immunoglobulin class switching, and proliferation. Agonistic anti-CD40 antibodies have shown promising adjuvant qualities in human and mouse vaccine studies. An anti-CD40 monoclonal antibody (mAb, designated 2E4E4, was identified and shown to have strong agonistic effects on primary cells from multiple livestock species. The mAb recognize swine, bovine, caprine, and ovine CD40, and evoked 25-fold or greater proliferation of peripheral blood mononuclear cells (PBMCs from these species relative to cells incubated with an isotype control (p<0.001. In addition, the mAb induced significant nitric oxide (p<0.0001 release by bovine macrophages. Furthermore, the mAb upregulated the expression of MHC-II by PBMCs, and stimulated significant (p<0.0001 IL-1α, IL6, IL-8, and TNF-α expression by PBMCs. These results suggest that the mAb 2E4E4 can target and stimulate cells from multiple livestock species and thus, it is a potential candidate for adjuvant development. This is the first study to report an anti-swine CD40 agonistic mAb that is also broadly reactive against multiple species.

  5. Maturation of dendritic cells by recombinant human CD40L-trimer leads to a homogeneous cell population with enhanced surface marker expression and increased cytokine production

    DEFF Research Database (Denmark)

    Würtzen, P A; Nissen, Mogens Holst; Claesson, M H

    2001-01-01

    -cell activating capacity of the DC. We studied DC phenotype and cytokine production as well as the T-cell proliferation and cytotoxic T lympocyte (CTL) activation induced by DC generated in vitro. In addition, the effect of exposure to recombinant human CD40L-trimer (huCD40LT) on these parameters was investigated...... enhanced by exposure to huCD40LT even compared to TNF-alpha exposure. Only a moderate cytokine production was observed initially, while TNF-alpha addition or CD40 triggering, especially, induced enhanced production of IL-6 and IL-12 p40. Surprisingly, comparable induction of T-cell proliferation by a DC......Dendritic cells (DC) have been shown to be potent inducers of specific cytotoxic T-cell responses both in vivo and in vitro. Furthermore, exposure to cytokines such as tumour necrosis factor (TNF)-alpha or CD40 triggering changes DC phenotype and cytokine production and may enhance the T...

  6. Maturation of dendritic cells by recombinant human CD40L-trimer leads to a homogeneous cell population with enhanced surface marker expression and increased cytokine production

    DEFF Research Database (Denmark)

    Würtzen, P A; Nissen, Mogens Holst; Claesson, M H

    2001-01-01

    Dendritic cells (DC) have been shown to be potent inducers of specific cytotoxic T-cell responses both in vivo and in vitro. Furthermore, exposure to cytokines such as tumour necrosis factor (TNF)-alpha or CD40 triggering changes DC phenotype and cytokine production and may enhance the T-cell act...... marker expression and high production of pro-inflammatory cytokines. In addition, the induction of responses to allo or recall antigens presented by huCD40LT maturated DC was comparable to the responses obtained with the DC maturated through TNF-alpha exposure.......Dendritic cells (DC) have been shown to be potent inducers of specific cytotoxic T-cell responses both in vivo and in vitro. Furthermore, exposure to cytokines such as tumour necrosis factor (TNF)-alpha or CD40 triggering changes DC phenotype and cytokine production and may enhance the T......-cell activating capacity of the DC. We studied DC phenotype and cytokine production as well as the T-cell proliferation and cytotoxic T lympocyte (CTL) activation induced by DC generated in vitro. In addition, the effect of exposure to recombinant human CD40L-trimer (huCD40LT) on these parameters was investigated...

  7. Ligand-induced protein mobility in complexes of carbonic anhydrase II and benzenesulfonamides with oligoglycine chains.

    Directory of Open Access Journals (Sweden)

    Vijay M Krishnamurthy

    Full Text Available This paper describes a biophysical investigation of residual mobility in complexes of bovine carbonic anhydrase II (BCA and para-substituted benzenesulfonamide ligands with chains of 1-5 glycine subunits, and explains the previously observed increase in entropy of binding with chain length. The reported results represent the first experimental demonstration that BCA is not the rigid, static globulin that has been typically assumed, but experiences structural fluctuations upon binding ligands. NMR studies with (15N-labeled ligands demonstrated that the first glycine subunit of the chain binds without stabilization or destabilization by the more distal subunits, and suggested that the other glycine subunits of the chain behave similarly. These data suggest that a model based on ligand mobility in the complex cannot explain the thermodynamic data. Hydrogen/deuterium exchange studies provided a global estimate of protein mobility and revealed that the number of exchanged hydrogens of BCA was higher when the protein was bound to a ligand with five glycine subunits than when bound to a ligand with only one subunit, and suggested a trend of increasing number of exchanged hydrogens with increasing chain length of the BCA-bound ligand, across the series. These data support the idea that the glycine chain destabilizes the structure of BCA in a length-dependent manner, causing an increase in BCA mobility. This study highlights the need to consider ligand-induced mobility of even "static" proteins in studies of protein-ligand binding, including rational ligand design approaches.

  8. Changes in electrostatic surface potential of Na+/K+-ATPase cytoplasmic headpiece induced by cytoplasmic ligand(s) binding.

    Science.gov (United States)

    Kubala, Martin; Grycova, Lenka; Lansky, Zdenek; Sklenovsky, Petr; Janovska, Marika; Otyepka, Michal; Teisinger, Jan

    2009-09-16

    A set of single-tryptophan mutants of the Na(+)/K(+)-ATPase isolated, large cytoplasmic loop connecting transmembrane helices M4 and M5 (C45) was prepared to monitor effects of the natural cytoplasmic ligands (i.e., Mg(2+) and/or ATP) binding. We introduced a novel method for the monitoring of the changes in the electrostatic surface potential (ESP) induced by ligand binding, using the quenching of the intrinsic tryptophan fluorescence by acrylamide or iodide. This approach opens a new way to understanding the interactions within the proteins. Our experiments revealed that the C45 conformation in the presence of the ATP (without magnesium) substantially differed from the conformation in the presence of Mg(2+) or MgATP or in the absence of any ligand not only in the sense of geometry but also in the sense of the ESP. Notably, the set of ESP-sensitive residues was different from the set of geometry-sensitive residues. Moreover, our data indicate that the effect of the ligand binding is not restricted only to the close environment of the binding site and that the information is in fact transmitted also to the distal parts of the molecule. This property could be important for the communication between the cytoplasmic headpiece and the cation binding sites located within the transmembrane domain.

  9. Effects of a novel, selective, sigma1-ligand, MS-377, on phencyclidine-induced behaviour.

    Science.gov (United States)

    Takahashi, S; Takagi, K; Horikomi, K

    2001-07-01

    Phencyclidine (PCP)-induced head-weaving is inhibited by a novel selective sigma1-ligand, (R)-(+)-1-(4-chlorophenyl)-3-[4-(2-methoxyethyl)piperazin-1-yl]methyl-2-pyrrolidinone L-tartrate (MS-377), but not by dopamine D2 antagonists. In the present study, we examined the effects of two potent and selective sigma1-ligands, MS-377 and N,N-dipropyl-2-(4-methoxy-3-(2-phenylethoxy)phenyl) ethylamine (NE-100), on PCP-induced rearing behaviour, hyperlocomotion and ataxia in comparison with the currently available antipsychotic agents with affinity for D2 receptors, haloperidol, sultopride and risperidone. Male Wistar rats or ddY mice were administered MS-377, NE-100, haloperidol, sultopride or risperidone, and PCP was administered 60 min later (in the case of NE-100 10 min later). Rearing behaviour, hyperlocomotion and ataxia were examined 10 min after PCP administration. MS-377, haloperidol, sultopride and risperidone dose-dependently inhibited PCP-induced rearing and hyperlocomotion, but did not antagonize PCP-induced ataxia. In contrast, the other selective sigma1-ligand, NE-100, did not affect any of the PCP-induced behaviour patterns in this study. These results suggest that there are at least two types of ligands for sigma1-receptors and that some sigma1-ligands, including MS-377, have more comprehensive effects against PCP-induced abnormal behaviour than other sigma1-ligands or D2 antagonists.

  10. CD40 signaling synergizes with TLR-2 in the BCR independent activation of resting B cells.

    Directory of Open Access Journals (Sweden)

    Shweta Jain

    Full Text Available Conventionally, signaling through BCR initiates sequence of events necessary for activation and differentiation of B cells. We report an alternative approach, independent of BCR, for stimulating resting B (RB cells, by involving TLR-2 and CD40--molecules crucial for innate and adaptive immunity. CD40 triggering of TLR-2 stimulated RB cells significantly augments their activation, proliferation and differentiation. It also substantially ameliorates the calcium flux, antigen uptake capacity and ability of B cells to activate T cells. The survival of RB cells was improved and it increases the number of cells expressing activation induced deaminase (AID, signifying class switch recombination (CSR. Further, we also observed increased activation rate and decreased threshold period required for optimum stimulation of RB cells. These results corroborate well with microarray gene expression data. This study provides novel insights into coordination between the molecules of innate and adaptive immunity in activating B cells, in a BCR independent manner. This strategy can be exploited to design vaccines to bolster B cell activation and antigen presenting efficiency, leading to faster and better immune response.

  11. Programmed death ligand 2 in cancer-induced immune suppression

    NARCIS (Netherlands)

    Rozali, Esdy N.; Hato, Stanleyson V.; Robinson, Bruce W.; Lake, Richard A.; Lesterhuis, W. Joost

    2012-01-01

    Inhibitory molecules of the B7/CD28 family play a key role in the induction of immune tolerance in the tumor microenvironment. The programmed death-1 receptor (PD-1), with its ligands PD-L1 and PD-L2, constitutes an important member of these inhibitory pathways. The relevance of the PD-1/PD-L1

  12. CD40 dependent exacerbation of immune mediated hepatitis by hepatic CD11b+ Gr-1+ myeloid derived suppressor cells in tumor bearing mice

    Science.gov (United States)

    Kapanadze, Tamar; Medina-Echeverz, José; Gamrekelashvili, Jaba; Weiss, Jonathan M.; Wiltrout, Robert H.; Kapoor, Veena; Hawk, Nga; Terabe, Masaki; Berzofsky, Jay A.; Manns, Michael P.; Wang, Ena; Marincola, Francesco M.; Korangy, Firouzeh; Greten, Tim F.

    2015-01-01

    Immunosuppressive CD11b+Gr-1+ myeloid-derived suppressor cells (MDSC) accumulate in the livers of tumor-bearing mice. We studied hepatic MDSC in two murine models of immune mediated hepatitis. Unexpectedly, treatment of tumor bearing mice with Concanavalin A or α-Galactosylceramide resulted in increased ALT and AST serum levels in comparison to tumor free mice. Adoptive transfer of hepatic MDSC into naïve mice exacerbated Concanavalin A induced liver damage. Hepatic CD11b+Gr-1+ cells revealed a polarized pro-inflammatory gene signature after Concanavalin A treatment. An interferon gamma- dependent up-regulation of CD40 on hepatic CD11b+Gr-1+ cells along with an up-regulation of CD80, CD86, and CD1d after Concanavalin A treatment was observed. Concanavalin A treatment resulted in a loss of suppressor function by tumor-induced CD11b+Gr-1+ MDSC as well as enhanced reactive oxygen species-mediated hepatotoxicity. CD40 knockdown in hepatic MDSC led to increased arginase activity upon Concanavalin A treatment and lower ALT/AST serum levels. Finally, blockade of arginase activity in Cd40−/− tumor-induced myeloid cells resulted in exacerbation of hepatitis and increased reactive oxygen species production in vivo. Our findings indicate that in a setting of acute hepatitis, tumor-induced hepatic MDSC act as pro-inflammatory immune effector cells capable of killing hepatocytes in a CD40-dependent manner. PMID:25616156

  13. Differential effect of prostaglandins E1 and E2 on lipopolysaccharide-induced adhesion molecule expression on human monocytes.

    Science.gov (United States)

    Takahashi, Hideo K; Iwagaki, Hiromi; Tamura, Ryuji; Katsuno, Goutaro; Xue, Dong; Sugita, Sachi; Mori, Shuji; Yoshino, Tadashi; Tanaka, Noriaki; Nishibori, Masahiro

    2005-04-11

    The effect of prostaglandins E1 and E2 on the 1 ng/ml lipopolysaccharide-induced expression of intercellular adhesion molecule (ICAM)-1, B7.1, B7.2, CD40 and CD40 ligand (CD40L) on monocytes was examined. Prostaglandin E1 suppressed B7.1 and CD40 expression, but prostaglandin E2 did not effect on any type of adhesion molecule expression. Both prostaglandins inhibited tumor necrosis factor (TNF)-alpha production and T-cell proliferation of lipopolysaccharide-treated human peripheral blood mononuclear cells (PBMC). Among prostaglandin E1 receptors (IP/EP1/EP2/EP3/EP4) agonists, ONO-1301, a prostanoid IP-receptor agonist, prevented B7.1 and CD40 expression. ONO-AE1-259-01 a prostanoid EP2-receptor agonist, ONO-AE1-329, a prostanoid EP4-receptor agonist, and ONO-1301 inhibited TNF-alpha production and T-cell proliferation. Moreover, anti-B7.1 and anti-CD40 Abs prevented lipopolysaccharide-induced TNF-alpha production and T-cell proliferation. Therefore, the effect of prostaglandin E1 on TNF-alpha production and T-cell proliferation might depend on the inhibition of B7.1 and CD40 expression, but that of prostaglandin E2 might be independent of adhesion molecules expression. In conclusion, the mechanism responsible for the effect of prostaglandin E1 on lipopolysaccharide-induced responses is distinct from that of prostaglandin E2.

  14. Ligand-induced conformational changes: Improved predictions of ligand binding conformations and affinities

    DEFF Research Database (Denmark)

    Frimurer, T.M.; Peters, Günther H.J.; Iversen, L.F.

    2003-01-01

    A computational docking strategy using multiple conformations of the target protein is discussed and evaluated. A series of low molecular weight, competitive, nonpeptide protein tyrosine phosphatase inhibitors are considered for which the x-ray crystallographic structures in complex with protein...... tyrosine phosphatase 1 B (PTP1B) are known. To obtain a quantitative measure of the impact of conformational changes induced by the inhibitors, these were docked to the active site region of various structures of PTP1B using the docking program FlexX. Firstly, the inhibitors were docked to a PTP1B crystal...... predicted binding energy and a correct docking mode. Thirdly, to improve the predictability of the docking procedure in the general case, where only a single target protein structure is known, we evaluate an approach which takes possible protein side-chain conformational changes into account. Here, side...

  15. Cooperation between lateral ligand mobility and accessibility for receptor recognition in selectin-induced cell rolling

    NARCIS (Netherlands)

    Bakowsky, U; Schumacher, G; Gege, C; Schmidt, RR; Rothe, U; Bendas, G

    2002-01-01

    Selectin-induced leukocyte rolling along the endothelial surface is an essential step in the immune response. Several in vitro studies showed that this cell rolling is a highly regulated adhesion phenomenon, controlled by the kinetics and forces of selectin-ligand interactions. In the flow chamber

  16. Ligand Binding Domain Protein in Tetracycline-Inducible Expression ...

    African Journals Online (AJOL)

    LXR agonist T-0901317 to the expression culture media and to all buffers used for lysis, and purification. The recombinant LXR β-LBD(197-461) fusion protein induced or uninduced at 15 ºC in the presence or absence of a synthetic agonist. T-0901317 and separated by SDS-PAGE and stained with Coomassie Brilliant Blue ...

  17. Binding-Induced Fluorescence of Serotonin Transporter Ligands

    DEFF Research Database (Denmark)

    Wilson, James; Ladefoged, Lucy Kate; Babinchak, Michael

    2014-01-01

    The binding-induced fluorescence of 4-(4-(dimethylamino)-phenyl)-1-methylpyridinium (APP(+)) and two new serotonin transporter (SERT)-binding fluorescent analogues, 1-butyl-4-[4-(1-dimethylamino)phenyl]-pyridinium bromide (BPP(+)) and 1-methyl-4-[4-(1-piperidinyl)phenyl]-pyridinium (PPP(+)), has...

  18. Human Genetics in Rheumatoid Arthritis Guides a High-Throughput Drug Screen of the CD40 Signaling Pathway

    NARCIS (Netherlands)

    Li, Gang; Diogo, Dorothee; Wu, Di; Spoonamore, Jim; Dancik, Vlado; Franke, Lude; Kurreeman, Fina; Rossin, Elizabeth J.; Duclos, Grant; Hartland, Cathy; Zhou, Xuezhong; Li, Kejie; Liu, Jun; De Jager, Philip L.; Siminovitch, Katherine A.; Zhernakova, Alexandra; Raychaudhuri, Soumya; Bowes, John; Eyre, Steve; Padyukov, Leonid; Gregersen, Peter K.; Worthington, Jane; Gupta, Namrata; Clemons, Paul A.; Stahl, Eli; Tolliday, Nicola; Plenge, Robert M.

    2013-01-01

    Although genetic and non-genetic studies in mouse and human implicate the CD40 pathway in rheumatoid arthritis (RA), there are no approved drugs that inhibit CD40 signaling for clinical care in RA or any other disease. Here, we sought to understand the biological consequences of a CD40 risk variant

  19. Thermodynamic analysis of ligand-induced changes in protein thermal unfolding applied to high-throughput determination of ligand affinities with extrinsic fluorescent dyes.

    Science.gov (United States)

    Layton, Curtis J; Hellinga, Homme W

    2010-12-28

    The quantification of protein-ligand interactions is essential for systems biology, drug discovery, and bioengineering. Ligand-induced changes in protein thermal stability provide a general, quantifiable signature of binding and may be monitored with dyes such as Sypro Orange (SO), which increase their fluorescence emission intensities upon interaction with the unfolded protein. This method is an experimentally straightforward, economical, and high-throughput approach for observing thermal melts using commonly available real-time polymerase chain reaction instrumentation. However, quantitative analysis requires careful consideration of the dye-mediated reporting mechanism and the underlying thermodynamic model. We determine affinity constants by analysis of ligand-mediated shifts in melting-temperature midpoint values. Ligand affinity is determined in a ligand titration series from shifts in free energies of stability at a common reference temperature. Thermodynamic parameters are obtained by fitting the inverse first derivative of the experimental signal reporting on thermal denaturation with equations that incorporate linear or nonlinear baseline models. We apply these methods to fit protein melts monitored with SO that exhibit prominent nonlinear post-transition baselines. SO can perturb the equilibria on which it is reporting. We analyze cases in which the ligand binds to both the native and denatured state or to the native state only and cases in which protein:ligand stoichiometry needs to treated explicitly.

  20. Induction of IL-12 Production in Human Peripheral Monocytes by Trypanosoma cruzi Is Mediated by Glycosylphosphatidylinositol-Anchored Mucin-Like Glycoproteins and Potentiated by IFN-γ and CD40-CD40L Interactions

    Directory of Open Access Journals (Sweden)

    Lúcia Cristina Jamli Abel

    2014-01-01

    Full Text Available Chagas disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi, is characterized by immunopathology driven by IFN-γ secreting Th1-like T cells. T. cruzi has a thick coat of mucin-like glycoproteins covering its surface, which plays an important role in parasite invasion and host immunomodulation. It has been extensively described that T. cruzi or its products—like GPI anchors isolated from GPI-anchored mucins from the trypomastigote life cycle stage (tGPI-mucins—are potent inducers of proinflammatory responses (i.e., cytokines and NO production by IFN-γ primed murine macrophages. However, little is known about whether T. cruzi or GPI-mucins exert a similar action in human cells. We therefore decided to further investigate the in vitro cytokine production profile from human mononuclear cells from uninfected donors exposed to T. cruzi as well as tGPI-mucins. We observed that both living T. cruzi trypomastigotes and tGPI-mucins are potent inducers of IL-12 by human peripheral blood monocytes and this effect depends on CD40-CD40L interaction and IFN-γ. Our findings suggest that the polarized T1-type cytokine profile seen in T. cruzi infected patients might be a long-term effect of IL-12 production induced by lifelong exposure to T. cruzi tGPI-mucins.

  1. CADASIL-associated Notch3 mutations have differential effects both on ligand binding and ligand-induced Notch3 receptor signaling through RBP-Jk.

    Science.gov (United States)

    Peters, Nils; Opherk, Christian; Zacherle, Simone; Capell, Anja; Gempel, Petra; Dichgans, Martin

    2004-10-01

    Mutations in the NOTCH3 gene are the cause of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a hereditary angiopathy leading to strokes and dementia. Pathogenic mutations remove or insert cysteine residues within epidermal growth factor (EGF) repeats in the extracellular domain of the Notch3 receptor (N3ECD). Vascular smooth muscle cells (VSMC) are the predominant site of Notch3 expression in adults. In CADASIL patients, VSMC degenerate and N3ECD is deposited within the vasculature. However, the mechanisms underlying VSMC degeneration and N3ECD accumulation are still unknown. In this study, we investigated the consequences of three pathogenic Notch3 mutations on the biological activity of the receptor by analyzing ligand (Delta-/Jagged-)-induced signaling via RBP-Jk. Two mutations (R133C and C183R) that are located outside the putative ligand binding domain (LBD) of the receptor were found to result in normal Jagged1-induced signaling in A7r5 VSMC, whereas the third mutation (C455R located within the putative LBD) showed strongly reduced signaling activity. Ligand binding assays with soluble Delta1 and Jagged1 revealed that C455R interferes with ligand binding through disruption of the LBD which, as we show here, is located in EGF repeats 10/11 of Notch3. All mutant receptors including Notch3C455R were targeted to the cell surface but showed an elevated ratio between the unprocessed full-length 280-kDa receptor and S1-cleaved receptor fragments. Taken together, these data indicate that CADASIL-associated Notch3 mutations differ with respect to their consequences both on ligand binding and ligand-induced signaling through RBP-Jk, whereas they have similar effects on receptor maturation. Moreover, the data suggest that ligand-induced receptor shedding may not be required for N3ECD deposition in CADASIL. Copyright 2004 Elsevier Inc.

  2. CD40 Signaling Drives Potent Cellular Immune Responses in Heterologous Cancer Vaccinations.

    Science.gov (United States)

    Nimanong, Supot; Ostroumov, Dmitrij; Wingerath, Jessica; Knocke, Sarah; Woller, Norman; Gürlevik, Engin; Falk, Christine S; Manns, Michael P; Kühnel, Florian; Wirth, Thomas C

    2017-04-15

    Antagonistic antibodies targeting coinhibitory receptors have revolutionized the treatment of cancer by inducing durable immune responses and clinical remissions in patients. In contrast, success of agonistic costimulatory antibodies has thus far been limited because of the insufficient induction of adaptive immune responses. Here, we describe a novel vaccination method consisting of a primary dendritic cell (DC) immunization followed by a composite vaccination, including an agonistic CD40 antibody, soluble antigen, and a TLR3 agonist, referred to as CoAT. In mice, DC/CoAT prime-boost vaccinations targeting either MHC class I or II neoantigens or tumor-associated antigens rendered up to 60% of the total T-cell population specific for a single tumor epitope. DC/CoAT induced durable and complete remissions of large subcutaneous tumors without detectable side effects. Thus, booster vaccinations with agonistic costimulatory antibodies represent an ideal means to amplify DC vaccinations and induce robust T-cell immune responses while providing maximum flexibility regarding the choice of antigen. Cancer Res; 77(8); 1918-26. ©2017 AACR . ©2017 American Association for Cancer Research.

  3. Local epigenetic reprogramming induced by G-quadruplex ligands

    Science.gov (United States)

    Guilbaud, Guillaume; Murat, Pierre; Recolin, Bénédicte; Campbell, Beth C.; Maiter, Ahmed; Sale, Julian E.; Balasubramanian, Shankar

    2017-11-01

    DNA and histone modifications regulate transcriptional activity and thus represent valuable targets to reprogram the activity of genes. Current epigenetic therapies target the machinery that regulates these modifications, leading to global transcriptional reprogramming with the potential for extensive undesired effects. Epigenetic information can also be modified as a consequence of disrupting processive DNA replication. Here, we demonstrate that impeding replication by small-molecule-mediated stabilization of G-quadruplex nucleic acid secondary structures triggers local epigenetic plasticity. We report the use of the BU-1 locus of chicken DT40 cells to screen for small molecules able to induce G-quadruplex-dependent transcriptional reprogramming. Further characterization of the top hit compound revealed its ability to induce a dose-dependent inactivation of BU-1 expression in two steps: the loss of H3K4me3 and then subsequent DNA cytosine methylation, changes that were heritable across cell divisions even after the compound was removed. Targeting DNA secondary structures thus represents a potentially new approach for locus-specific epigenetic reprogramming.

  4. RET ligand-induced internalization and its consequences for downstream signaling.

    Science.gov (United States)

    Richardson, D S; Lai, A Z; Mulligan, L M

    2006-05-25

    RET is a receptor tyrosine kinase (RTK) with roles in cell growth, differentiation and survival. Ligand-induced activation of RET results in stimulation of multiple signal transduction pathways, including the MAP kinase/Erk and PI3 kinase/Akt pathways. However, the mechanisms governing receptor internalization and signal down- regulation have not been explored. As other RTKs are internalized through the clathrin-coated pit pathway in a ligand-dependant manner, we have investigated whether RET is internalized through a similar process. Using a highly sensitive fluorescence resonance energy transfer (FRET)-based assay, we have shown that RET is internalized from the plasma membrane in a ligand-dependant manner that requires RET kinase activity as well as the GTPase activity of the clathrin-coated vesicle scission protein dynamin 2. Further, we have demonstrated that RET colocalizes with Rab5a, a marker of clathrin-coated vesicles and early endosomes, after internalization. Finally, we demonstrated that RET internalization is required for complete activation of Erk1/2, but not for activation of Akt signaling. Our data suggest that ligand-induced internalization of RET not only plays an overall role in downregulation and termination of signaling, but also functions to traffic RET to subcellular locations where it can fully activate certain downstream signaling pathways.

  5. Non-Ligand-Induced Dimerization is Sufficient to Initiate the Signalling and Endocytosis of EGF Receptor

    Directory of Open Access Journals (Sweden)

    George Kourouniotis

    2016-07-01

    Full Text Available The binding of epidermal growth factor (EGF to EGF receptor (EGFR stimulates cell mitogenesis and survival through various signalling cascades. EGF also stimulates rapid EGFR endocytosis and its eventual degradation in lysosomes. The immediate events induced by ligand binding include receptor dimerization, activation of intrinsic tyrosine kinase and autophosphorylation. However, in spite of intensified efforts, the results regarding the roles of these events in EGFR signalling and internalization is still very controversial. In this study, we constructed a chimeric EGFR by replacing its extracellular domain with leucine zipper (LZ and tagged a green fluorescent protein (GFP at its C-terminus. We showed that the chimeric LZ-EGFR-GFP was constitutively dimerized. The LZ-EGFR-GFP dimer autophosphorylated each of its five well-defined C-terminal tyrosine residues as the ligand-induced EGFR dimer does. Phosphorylated LZ-EGFR-GFP was localized to both the plasma membrane and endosomes, suggesting it is capable of endocytosis. We also showed that LZ-EGFR-GFP activated major signalling proteins including Src homology collagen-like (Shc, extracellular signal-regulated kinase (ERK and Akt. Moreover, LZ-EGFR-GFP was able to stimulate cell proliferation. These results indicate that non-ligand induced dimerization is sufficient to activate EGFR and initiate cell signalling and EGFR endocytosis. We conclude that receptor dimerization is a critical event in EGF-induced cell signalling and EGFR endocytosis.

  6. Synergy of anti-CD40, CpG and MPL in activation of mouse macrophages

    Science.gov (United States)

    Shi, Yongyu; Felder, Mildred A.R.; Sondel, Paul M.; Rakhmilevich, Alexander L.

    2015-01-01

    Activation of macrophages is a prerequisite for their antitumor effects. Several reagents, including agonistic anti-CD40 monoclonal antibody (anti-CD40), CpG oligodeoxynucleotides (CpG) and monophosphoryl lipid A (MPL), can stimulate activation of macrophages. Our previous studies showed synergy between anti-CD40 and CpG and between anti-CD40 and MPL in macrophage activation and antitumor efficacy in mice. In the present study, we asked whether there was synergy among these three reagents. The activation of adherent peritoneal exudate cells (PEC) obtained from mice injected with anti-CD40 and then treated with CpG and/or MPL in vitro was determined by their ability to suppress proliferation of tumor cells and to produce various cytokines and chemokines in vitro. Cell sorting and histology followed by functional testing showed that macrophages were the main cell population in PEC activated by CD40 ligation in vivo. A combination of anti-CD40, CpG or MPL activated PEC to suppress proliferation of B16 cells and produce nitric oxide far greater than the single reagents or any of the double combinations of these reagents. In addition, the combination of all three reagents activated PEC to secrete IL-12, IFN-γ and MCP-1 to a greater degree than any single reagent or any two combined reagents. These results demonstrate that macrophages can be synergistically activated by anti-CD40, CpG and MPL, suggesting that this novel combined approach might be further investigated as potential cancer therapy. PMID:25829245

  7. Ligand Induced Circular Dichroism and Circularly Polarized Luminescence in CdSe Quantum Dots

    Science.gov (United States)

    Tohgha, Urice; Deol, Kirandeep K.; Porter, Ashlin G.; Bartko, Samuel G.; Choi, Jung Kyu; Leonard, Brian M.; Varga, Krisztina; Kubelka, Jan; Muller, Gilles; Balaz, Milan

    2014-01-01

    Chiral thiol capping ligands L- and D-cysteines induced modular chiroptical properties in achiral cadmium selenide quantum dots (CdSe QDs). Cys-CdSe prepared from achiral oleic acid capped CdSe by post-synthetic ligand exchange displayed size-dependent electronic circular dichroism (CD) and circularly polarized luminescence (CPL). Opposite CPL signals were measured for the CdSe QDs capped with D- and L-cysteine. The CD profile and CD anisotropy varied with size of CdSe nanocrystals with largest anisotropy observed for CdSe nanoparticles of 4.4 nm. Magic angle spinning solid state NMR (MAS ssNMR) experiments suggested bidentate interaction between cysteine and the surface of CdSe. Density functional theory (DFT) calculations verified that attachment of L- and D-cysteine to the surface of model (CdSe)13 nanoclusters induces measurable opposite CD signals for the exitonic band of the nanocluster. The chirality was induced by the hybridization of highest occupied CdSe molecular orbitals with those of the chiral ligand. PMID:24200288

  8. Modulators of Response to Tumor Necrosis-Related Apoptosis-Inducing Ligand (TRAIL) Therapy in Ovarian Cancer

    National Research Council Canada - National Science Library

    Behbakht, Kian

    2008-01-01

    .... More effective therapies are urgently needed. One of the most promising therapies in development for ovarian cancer is the use of either the Tumor Necrosis Factor-related Apoptosis Inducing Ligand (TRAIL...

  9. Plasminogen activator inhibitor-1 polymers, induced by inactivating amphipathic organochemical ligands.

    Science.gov (United States)

    Pedersen, Katrine E; Einholm, Anja P; Christensen, Anni; Schack, Lotte; Wind, Troels; Kenney, John M; Andreasen, Peter A

    2003-06-15

    Negatively charged organochemical inactivators of the anti-proteolytic activity of plasminogen activator inhibitor-1 (PAI-1) convert it to inactive polymers. As investigated by native gel electrophoresis, the size of the PAI-1 polymers ranged from dimers to multimers of more than 20 units. As compared with native PAI-1, the polymers exhibited an increased resistance to temperature-induced unfolding. Polymerization was associated with specific changes in patterns of digestion with non-target proteases. During incubation with urokinase-type plasminogen activator, the polymers were slowly converted to reactive centre-cleaved monomers, indicating substrate behaviour of the terminal PAI-1 molecules in the polymers. A quadruple mutant of PAI-1 with a retarded rate of latency transition also had a retarded rate of polymerization. Studying a number of serpins by native gel electrophoresis, ligand-induced polymerization was observed only with PAI-1 and heparin cofactor II, which were also able to copolymerize. On the basis of these results, we suggest that the binding of ligands in a specific region of PAI-1 leads to so-called loop-sheet polymerization, in which the reactive centre loop of one molecule binds to beta-sheet A in another molecule. Induction of serpin polymerization by small organochemical ligands is a novel finding and is of protein chemical interest in relation to pathological protein polymerization in general.

  10. BAFF upregulates CD28/B7 and CD40/CD154 expression and promotes mouse T and B cell interaction in vitro via BAFF receptor.

    Science.gov (United States)

    Zhang, Feng; Song, Shan-Shan; Shu, Jin-Ling; Li, Ying; Wu, Yu-Jing; Wang, Qing-Tong; Chen, Jing-Yu; Chang, Yan; Wu, Hua-Xun; Zhang, Ling-Ling; Wei, Wei

    2016-08-01

    B cell-activating factor belonging to the TNF family (BAFF) is a member of TNF family and required for peripheral B cell survival and homeostasis. BAFF has been shown to promote the proliferation of T and B cells. In this study we examined whether and how BAFF mediated the interaction between mouse T and B cells in vitro. BAFF-stimulated B or T cells were co-cultured with T or B cells. The interactions between T and B cells were analyzed by measuring the expression of co-stimulatory molecules (CD28/CD80 or CD40/CD154), the proliferation and secretion of T and B cells and other factors. Two siRNAs against the transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI) and BAFF receptor (BAFF-R) were used to identify the receptors responsible for the actions of BAFF. BAFF-stimulated B cells significantly promoted the proliferation and activity of co-cultured T cells, and increased the percentages of CD4(+)CD28(+) and CD4(+)CD154(+) T cells. Similarly, BAFF-stimulated T cells significantly promoted the proliferation and activity of co-cultured B cells, and increased CD19(+)CD80(+) and CD19(+)CD40(+)B cell subpopulations. BAFF-R siRNA-silenced B cells showed significantly lower expression of CD40 and CD80 than the control B cells. When the BAFF-R siRNA-silenced B cells were stimulated with BAFF, then co-cultured with T cells, the expression of CD28 and CD154 on T cells was not increased. TACI siRNA-silenced B cells exhibited higher expression of CD40 and CD80 than the control B cells. When the TACI siRNA-silenced B cells were stimulated with BAFF, then co-cultured with T cells, the expression of CD28 and CD154 on T cells was significantly increased. BAFF upregulates CD28/B7 and CD40/CD154 expression, and promotes the interactions between T and B cells in a BAFF-R-dependent manner.

  11. CD40 agonist converting CTL exhaustion via the activation of the mTORC1 pathway enhances PD-1 antagonist action in rescuing exhausted CTLs in chronic infection.

    Science.gov (United States)

    Xu, Aizhang; Wang, Rong; Freywald, Andrew; Stewart, Kristoffor; Tikoo, Suresh; Xu, Jianqing; Zheng, Changyu; Xiang, Jim

    2017-03-11

    Expansion of PD-1-expressing CD8 + cytotoxic T lymphocytes (CTLs) and associated CTL exhaustion are chief issues for ineffective virus-elimination in chronic infectious diseases. PD-1 blockade using antagonistic anti-PD-L1 antibodies results in a moderate conversion of CTL exhaustion. We previously demonstrated that CD40L signaling of ovalbumin (OVA)-specific vaccine, OVA-Texo, converts CTL exhaustion via the activation of the mTORC1 pathway in OVA-expressing adenovirus (AdVova)-infected B6 mice showing CTL inflation and exhaustion. Here, we developed AdVova-infected B6 and transgenic CD11c-DTR (termed AdVova-B6 and AdVova-CD11c-DTR) mice with chronic infection, and assessed a potential effect of CD40 agonist on the conversion of CTL exhaustion and on a potential enhancement of PD-1 antagonist action in rescuing exhausted CTLs in our chronic infection models. We demonstrate that a single dose of anti-CD40 alone can effectively convert CTL exhaustion by activating the mTORC1 pathway, leading to CTL proliferation, up-regulation of an effector-cytokine IFN-γ and the cytolytic effect in AdVova-B6 mice. Using anti-CD4 antibody and diphtheria toxin (DT) to deplete CD4 + T-cells and dendritic cells (DCs), we discovered that the CD40 agonist-induced conversion in AdVova-B6 and AdVova-CD11c-DTR mice is dependent upon host CD4 + T-cell and DC involvements. Moreover, CD40 agonist significantly enhances PD-1 antagonist effectiveness in rescuing exhausted CTLs in chronic infection. Taken together, our data demonstrate the importance of CD40 signaling in the conversion of CTL exhaustion and its ability to enhance PD-1 antagonist action in rescuing exhausted CTLs in chronic infection. Therefore, our findings may positively impact the design of new therapeutic strategies for chronic infectious diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Prevention of carrageenan-induced pleurisy in mice by anti-CD30 ligand monoclonal antibody

    DEFF Research Database (Denmark)

    Di Paola, Rosanna; Di Marco, Roberto; Mazzon, Emanuela

    2004-01-01

    CD30 ligand (CD30L) and its receptor CD30 are members of the tumor necrosis factor (TNF) and TNF receptor superfamilies that play a major role in inflammation and immune regulation. To gain insight into the in vivo role of CD30L/CD30 in inflammatory diseases, we have used carrageenan (CAR......)-induced pleurisy in mice, a preclinical model of airway inflammation where type 1 proinflammatory cytokines such as interleukin (IL)-1 and TNF-alpha play a key pathogenic role. The data show that prophylactic treatment with anti-CD30L mAb markedly reduces both laboratory and histological signs of CAR...

  13. HOIL-1L interacting protein (HOIP as an NF-kappaB regulating component of the CD40 signaling complex.

    Directory of Open Access Journals (Sweden)

    Bruce S Hostager

    2010-06-01

    Full Text Available The tumor necrosis factor receptor (TNFR superfamily mediates signals critical for regulation of the immune system. One family member, CD40, is important for the efficient activation of antibody-producing B cells and other antigen-presenting cells. The molecules and mechanisms that mediate CD40 signaling are only partially characterized. Proteins known to interact with the cytoplasmic domain of CD40 include members of the TNF receptor-associated factor (TRAF family, which regulate signaling and serve as links to other signaling molecules. To identify additional proteins important for CD40 signaling, we used a combined stimulation/immunoprecipitation procedure to isolate CD40 signaling complexes from B cells and characterized the associated proteins by mass spectrometry. In addition to known CD40-interacting proteins, we detected SMAC/DIABLO, HTRA2/Omi, and HOIP/RNF31/PAUL/ZIBRA. We found that these previously unknown CD40-interacting partners were recruited in a TRAF2-dependent manner. HOIP is a ubiquitin ligase capable of mediating NF-kappaB activation through the ubiquitin-dependent activation of IKKgamma. We found that a mutant HOIP molecule engineered to lack ubiquitin ligase activity inhibited the CD40-mediated activation of NF-kappaB. Together, our results demonstrate a powerful approach for the identification of signaling molecules associated with cell surface receptors and indicate an important role for the ubiquitin ligase activity of HOIP in proximal CD40 signaling.

  14. Analysis of TNF-related apoptosis-inducing ligand and receptors and implications in thymus biology and myasthenia gravis.

    Science.gov (United States)

    Kanatli, Irem; Akkaya, Bahar; Uysal, Hilmi; Kahraman, Sevim; Sanlioglu, Ahter Dilsad

    2017-02-01

    Myasthenia Gravis is an autoantibody-mediated, neuromuscular junction disease, and is usually associated with thymic abnormalities presented as thymic tumors (~10%) or hyperplastic thymus (~65%). The exact role of thymus in Myasthenia Gravis development is not clear, yet many patients benefit from thymectomy. The apoptotic ligand TNF-Related Apoptosis-Inducing Ligand is thought to be involved in the regulation of thymocyte counts, although conflicting results are reported. We investigated differential expression profiles of TNF-Related Apoptosis-Inducing Ligand and its transmembrane receptors, Nuclear Factor-kB activation status, and apoptotic cell counts in healthy thymic tissue and pathological thymus from Myasthenia Gravis patients. All tissues expressed TNF-Related Apoptosis-Inducing Ligand and its receptors, with hyperplastic tissue having the highest expression levels of death receptors DR4 and DR5. No detectable Nuclear Factor-kB activation, at least via the canonical Protein Kinase A-mediated p65 Ser276 phosphorylation, was evident in any of the tissues studied. Apoptotic cell counts were higher in MG-associated tissue compared to the normal thymus. Possible use of the TNF-Related Apoptosis-Inducing Ligand within the concept of an apoptotic ligand-mediated medical thymectomy in thymoma- or thymic hyperplasia-associated Myasthenia Gravis is also discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. CD4+ T cells elicit host immune responses to MHC class II-negative ovarian cancer through CCL5 secretion and CD40-mediated licensing of dendritic cells.

    Science.gov (United States)

    Nesbeth, Yolanda C; Martinez, Diana G; Toraya, Seiko; Scarlett, Uciane K; Cubillos-Ruiz, Juan R; Rutkowski, Melanie R; Conejo-Garcia, Jose R

    2010-05-15

    T cell adoptive transfer strategies that have produced clinical remissions against specific tumors have so far produced disappointing results against ovarian cancer. Recent evidence suggests that adoptively transferred CD4(+) T cells can trigger endogenous immune responses in particular patients with ovarian cancer through unknown mechanisms. However, conflicting reports suggest that ovarian cancer-infiltrating CD4(+) T cells are associated with negative outcomes. In this study, we elucidate the phenotypic attributes that enable polyclonal CD4(+) T cells briefly primed against tumor Ags to induce therapeutically relevant endogenous antitumor immune responses. Our results unveil a therapeutic mechanism whereby tumor-primed CD4(+) T cells transferred into ovarian cancer-bearing mice secrete high levels of CCL5, which recruits endogenous CCR5(+) dendritic cells to tumor locations and activate them through CD40-CD40L interactions. These newly matured dendritic cells are then able to prime tumor-specific endogenous CD8(+) T cells, which mediate long-term protection. Correspondingly, administration of tumor-primed CD4(+) T cells significantly delayed progression of MHC class II(-) ovarian cancers, similarly to CD8(+) T cells only, and directly activated wild-type but not CD40-deficient dendritic cells recruited to the tumor microenvironment. Our results unveil a CCL5- and CD40L-dependent mechanism of transferring immunity from exogenously activated CD4(+) T cells to tumor-exposed host cells, resulting in sustained antitumor effects. Our data provide a mechanistic rationale for incorporating tumor-reactive CD4(+) T cells in adoptive cell transfer immunotherapies against ovarian cancer and underscore the importance of optimizing immunotherapeutic strategies for the specific microenvironment of individual tumors.

  16. Tumor necrosis factor related apoptosis inducing ligand triggers apoptosis in dividing but not in differentiating human epidermal keratinocytes

    NARCIS (Netherlands)

    Jansen, Bastiaan J. H.; van Ruissen, Fred; Cerneus, Stefanie; Cloin, Wendy; Bergers, Mieke; van Erp, Piet E. J.; Schalkwijk, Joost

    2003-01-01

    Using serial analysis of gene expression we have previously identified the expression of several pro-apoptotic and anti-apoptotic genes in cultured human primary epidermal keratinocytes, including tumor necrosis factor related apoptosis inducing ligand (TRAIL). TRAIL is a potent inducer of apoptosis

  17. Solvent-induced synthesis of cobalt(II) coordination polymers based on a rigid ligand and flexible carboxylic acid ligands: syntheses, structures and magnetic properties.

    Science.gov (United States)

    Wang, Ting; Zhang, Chuanlei; Ju, Zemin; Zheng, Hegen

    2015-04-21

    Five new cobalt(ii) coordination architectures, {[Co(L)2(H2O)2]·2H2O·2NO3}n (), {[Co(L)(ppda)]·2H2O}n (), {[Co2(L)(ppda)2]2·H2O}n (), {[Co(L)(nba)]·5H2O}n (), and {[Co(L)(oba)]2·3H2O}n (), have been constructed from the rigid ligand L [L = 2,8-di(1H-imidazol-1-yl)dibenzofuran] and different flexible carboxylic acid ligands [H2ppda = 4,4'-(perfluoropropane-2,2-diyl)dibenzoic acid, H2nba = 4,4'-azanediyldibenzoic acid, and H2oba = 4,4'-oxydibenzoic acid]. Depending on the nature of the solvent systems, these five different coordination polymers were synthesized and characterized by single-crystal X-ray diffraction, IR, PXRD and elemental analysis. Compounds , and were obtained by a one-pot method, and then we utilized the solvent-induced effect to obtain almost pure crystals of , respectively. Compound is an infinite 1D chain which is formed by L ligands and Co atoms. Compound contains a [Co2(CO2)4] secondary building unit (SBU), and can be topologically represented as a 6-connected 2-fold interpenetrating pcu net with the point symbol of {4(12)·6(3)}. Compound can be characterized as a 4-connected sql tetragonal planar network with the point symbol of {4(4)·6(2)}. In compounds and , there is a 1D chain which is formed by flexible carboxylic acid ligands and Co atoms; then the 1D chain is linked by L ligands in the tilting direction, leading to the formation of a 2D layer. Furthermore, UV-vis, TGA and magnetic properties have been investigated in detail.

  18. Human B cells induce dendritic cell maturation and favour Th2 polarization by inducing OX-40 ligand

    Science.gov (United States)

    Maddur, Mohan S.; Sharma, Meenu; Hegde, Pushpa; Stephen-Victor, Emmanuel; Pulendran, Bali; Kaveri, Srini V.; Bayry, Jagadeesh

    2015-01-01

    Dendritic cells (DCs) play a critical role in immune homeostasis by regulating the functions of various immune cells, including T and B cells. Notably, DCs also undergo education on reciprocal signalling by these immune cells and environmental factors. Various reports demonstrated that B cells have profound regulatory functions, although only few reports have explored the regulation of human DCs by B cells. Here we demonstrate that activated but not resting B cells induce maturation of DCs with distinct features to polarize Th2 cells that secrete interleukin (IL)-5, IL-4 and IL-13. B-cell-induced maturation of DCs is contact dependent and implicates signalling of B-cell activation molecules CD69, B-cell-activating factor receptor, and transmembrane activator and calcium-modulating cyclophilin ligand interactor. Mechanistically, differentiation of Th2 cells by B-cell-matured DCs is dependent on OX-40 ligand. Collectively, our results suggest that B cells have the ability to control their own effector functions by enhancing the ability of human DCs to mediate Th2 differentiation. PMID:24910129

  19. Myeloperoxidase formation of PAF receptor ligands induces PAF receptor-dependent kidney injury during ethanol consumption.

    Science.gov (United States)

    Latchoumycandane, Calivarathan; Nagy, Laura E; McIntyre, Thomas M

    2015-09-01

    Cytochrome P450 2E1 (CYP2E1) induction and oxidative metabolism of ethanol in hepatocytes inflame and damage liver. Chronic ethanol ingestion also induces kidney dysfunction, which is associated with mortality from alcoholic hepatitis. Whether the kidney is directly affected by ethanol or is secondary to liver damage is not established. We found that CYP2E1 was induced in kidney tubules of mice chronically ingesting a modified Lieber-deCarli liquid ethanol diet. Phospholipids of kidney tubules were oxidized and fragmented in ethanol-fed mice with accumulation of azelaoyl phosphatidylcholine (Az-PC), a nonbiosynthetic product formed only by oxidative truncation of polyunsaturated phosphatidylcholine. Az-PC stimulates the inflammatory PAF receptor (PTAFR) abundantly expressed by neutrophils and kidney tubules, and inflammatory cells and myeloperoxidase-containing neutrophils accumulated in the kidneys of ethanol-fed mice after significant hysteresis. Decreased kidney filtration and induction of the acute kidney injury biomarker KIM-1 in tubules temporally correlated with leukocyte infiltration. Genetic ablation of PTAFR reduced accumulation of PTAFR ligands and reduced leukocyte infiltration into kidneys. Loss of this receptor in PTAFR(-/-) mice also suppressed oxidative damage and kidney dysfunction without affecting CYP2E1 induction. Neutrophilic inflammation was responsible for ethanol-induced kidney damage, because loss of neutrophil myeloperoxidase in MPO(-/-) mice was similarly protective. We conclude that ethanol catabolism in renal tubules results in a self-perpetuating cycle of CYP2E1 induction, local PTAFR ligand formation, and neutrophil infiltration and activation that leads to myeloperoxidase-dependent oxidation and damage to kidney function. Hepatocytes do not express PTAFR, so this oxidative cycle is a local response to ethanol catabolism in the kidney. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Agonistic anti-CD40 antibody profoundly suppresses the immune response to infection with lymphocytic choriomeningitis virus

    DEFF Research Database (Denmark)

    Bartholdy, Christina; Kauffmann, Susanne Ørding; Christensen, Jan Pravsgaard

    2007-01-01

    -CD40 treatment of MHC class II-deficient mice infected with a moderate dose of LCMV resulted in severe suppression of the antiviral CD8 T cell response and uncontrolled virus spread, rather than improved CD8 T cell immune surveillance. In Ab-treated wild-type mice, the antiviral CD8 T cell response......Previous work has shown that agonistic Abs to CD40 (anti-CD40) can boost weak CD8 T cell responses as well as substitute for CD4 T cell function during chronic gammaherpes virus infection. Agonistic anti-CD40 treatment has, therefore, been suggested as a potential therapeutic strategy...... in immunocompromised patients. In this study, we investigated whether agonistic anti-CD40 could substitute for CD4 T cell help in generating a sustained CD8 T cell response and prevent viral recrudescence following infection with lymphocytic choriomeningitis virus (LCMV). Contrary to expectations, we found that anti...

  1. Controlled expression of functional miR-122 with a ligand inducible expression system.

    Science.gov (United States)

    Shea, Cathy M; Tzertzinis, George

    2010-10-20

    To study the biological function of miRNAs, and to achieve sustained or conditional gene silencing with siRNAs, systems that allow controlled expression of these small RNAs are desirable. Methods for cell delivery of siRNAs include transient transfection of synthetic siRNAs and expression of siRNAs in the form of short hairpins using constitutive RNA polymerase III promoters. Systems employing constitutive RNA polymerase II promoters have been used to express miRNAs. However, for many experimental systems these methods do not offer sufficient control over expression. We present an inducible mammalian expression system that allows for the conditional expression of short hairpin RNAs that are processed in vivo to generate miRNAs or siRNAs. Using modified nuclear receptors in a two hybrid format and a synthetic ligand, the Rheoswitch system allows rapid and reversible induction of mRNA expression. We evaluated the system's properties using miR-122 as a model miRNA. A short hairpin encoding miR-122 cloned into the expression vector was correctly processed to yield mature miRNA upon induction with ligand and the amount of miRNA produced was commensurate with the concentration of ligand. miR-122 produced in this way was capable of silencing both endogenous target genes and appropriately designed reporter genes. Stable cell lines were obtained, resulting in heritable, consistent and reversible expression of miR-122, a significant advantage over transient transfection. Based on these results, obtained with a microRNA we adapted the method to produce a desired siRNA by designing short hairpins that can be accurately and efficiently processed. We established an Inducible expression system with a miR-122 backbone that can be used for functional studies of miRNAs and their targets, in heterologous cells that do not normally express the miRNA. Additionally we demonstrate the feasibility of using the miR-122 backbone to express shRNA with a desired siRNA guide strand for

  2. Controlled expression of functional miR-122 with a ligand inducible expression system

    Directory of Open Access Journals (Sweden)

    Tzertzinis George

    2010-10-01

    Full Text Available Abstract Background To study the biological function of miRNAs, and to achieve sustained or conditional gene silencing with siRNAs, systems that allow controlled expression of these small RNAs are desirable. Methods for cell delivery of siRNAs include transient transfection of synthetic siRNAs and expression of siRNAs in the form of short hairpins using constitutive RNA polymerase III promoters. Systems employing constitutive RNA polymerase II promoters have been used to express miRNAs. However, for many experimental systems these methods do not offer sufficient control over expression. Results We present an inducible mammalian expression system that allows for the conditional expression of short hairpin RNAs that are processed in vivo to generate miRNAs or siRNAs. Using modified nuclear receptors in a two hybrid format and a synthetic ligand, the Rheoswitch system allows rapid and reversible induction of mRNA expression. We evaluated the system's properties using miR-122 as a model miRNA. A short hairpin encoding miR-122 cloned into the expression vector was correctly processed to yield mature miRNA upon induction with ligand and the amount of miRNA produced was commensurate with the concentration of ligand. miR-122 produced in this way was capable of silencing both endogenous target genes and appropriately designed reporter genes. Stable cell lines were obtained, resulting in heritable, consistent and reversible expression of miR-122, a significant advantage over transient transfection. Based on these results, obtained with a microRNA we adapted the method to produce a desired siRNA by designing short hairpins that can be accurately and efficiently processed. Conclusion We established an Inducible expression system with a miR-122 backbone that can be used for functional studies of miRNAs and their targets, in heterologous cells that do not normally express the miRNA. Additionally we demonstrate the feasibility of using the miR-122 backbone to

  3. Platelet-Activating Factor Receptor Ligands Protect Tumor Cells from Radiation-Induced Cell Death

    Directory of Open Access Journals (Sweden)

    Ildefonso Alves da Silva-Junior

    2018-02-01

    Full Text Available Irradiation generates oxidized phospholipids that activate platelet-activating factor receptor (PAFR associated with pro-tumorigenic effects. Here, we investigated the involvement of PAFR in tumor cell survival after irradiation. Cervical cancer samples presented higher levels of PAF-receptor gene (PTAFR when compared with normal cervical tissue. In cervical cancer patients submitted to radiotherapy (RT, the expression of PTAFR was significantly increased. Cervical cancer-derived cell lines (C33, SiHa, and HeLa and squamous carcinoma cell lines (SCC90 and SCC78 express higher levels of PAFR mRNA and protein than immortalized keratinocytes. Gamma radiation increased PAFR expression and induced PAFR ligands and prostaglandin E2 (PGE2 in these tumor cells. The blocking of PAFR with the antagonist CV3938 before irradiation inhibited PGE2 and increased tumor cells death. Similarly, human carcinoma cells transfected with PAFR (KBP were more resistant to radiation compared to those lacking the receptor (KBM. PGE2 production by irradiated KBP cells was also inhibited by CV3988. These results show that irradiation of carcinoma cells generates PAFR ligands that protect tumor cells from death and suggests that the combination of RT with a PAFR antagonist could be a promising strategy for cancer treatment.

  4. Endogenously generated arachidonate-derived ligands for TRPV1 induce cardiac protection in sepsis.

    Science.gov (United States)

    Chen, Jianmin; Hamers, Alexander J P; Finsterbusch, Michaela; Massimo, Gianmichele; Zafar, Maleeha; Corder, Roger; Colas, Romain A; Dalli, Jesmond; Thiemermann, Christoph; Ahluwalia, Amrita

    2018-02-20

    The severity of cardiac dysfunction predicts mortality in sepsis. Activation of transient receptor potential vanilloid receptor type (TRPV)-1, a predominantly neuronal nonselective cation channel, has been shown to improve outcome in sepsis and endotoxemia. However, the role of TRPV1 and the identity of its endogenous ligands in the cardiac dysfunction caused by sepsis and endotoxemia are unknown. Using TRPV1 -/- and TRPV1 +/+ mice, we showed that endogenous activation of cardiac TRPV1 during sepsis is key to limiting the ensuing cardiac dysfunction. Use of liquid chromatography-tandem mass spectrometry lipid analysis and selective inhibitors of arachidonic metabolism suggest that the arachidonate-derived TRPV1 activator, 20-hydroxyeicosateraenoic acid (20-HETE), underlies a substantial component of TRPV1-mediated cardioprotection in sepsis. Moreover, using selective antagonists for neuropeptide receptors, we show that this effect of TRPV1 relates to the activity of neuronally released cardiac calcitonin gene-related peptide (CGRP) and that, accordingly, administration of CGRP can rescue cardiac dysfunction in severe endotoxemia. In sum activation of TRPV1 by 20-HETE leads to the release of CGRP, which protects the heart against the cardiac dysfunction in endotoxemia and identifies both TRPV1 and CGRP receptors as potential therapeutic targets in endotoxemia.-Chen, J., Hamers, A. J. P., Finsterbusch, M., Massimo, G., Zafar, M., Corder, R., Colas, R. A., Dalli, J., Thiemermann, C., Ahluwalia, A. Endogenously generated arachidonate-derived ligands for TRPV1 induce cardiac protection in sepsis.

  5. CD5-positive and CD5-negative human B cells converge to an indistinguishable population on signalling through B-cell receptors and CD40.

    Science.gov (United States)

    Gagro, A; McCloskey, N; Challa, A; Holder, M; Grafton, G; Pound, J D; Gordon, J

    2000-10-01

    Whether CD5 on B cells marks a subset functionally distinct from the conventional CD5 negative (CD5neg) adult population or is more an indicator of activation, remains contentious. Here we have investigated whether CD5 positive (CD5pos) and CD5neg B cells can be distinguished in terms of their response to surrogate signals aimed to model, in vitro, T-cell dependent (TD) and T-independent (TI) encounters with antigen in vivo: the predominantly CD5pos B-cell population found in cord blood, CD5 B cells positively selected from tonsils and their CD5neg counterparts, were compared. Neonatal B cells displayed a near-identical phenotype to that of adult CD5pos B cells, being characterized by uniform immunoglobulin M (IgM), immunoglobulin D (IgD), CD23 and CD44 coexpression. When cultured with anti-IgM maintained at high density on CD32-tranfected mouse L cells to model TI responses or on CD40 ligand (CD40L)-bearing L cells (with or without captured anti-IgM) to model TD encounters, DNA synthesis was stimulated to a similar extent in all three populations. Focusing on CD5 and CD23, we found that - although the signals delivered promoted distinct profiles of expression - under each condition of activation, the phenotypes that emerged for adult CD5pos and CD5neg B cells were remarkably similar. Neonatal B cells displayed a greater diminution in CD5 expression than adult CD5pos B cells following CD40 signals but otherwise the two populations again behaved similarly. The inclusion of interleukin-4 (IL-4) to cultures where cells were costimulated via surface (s)IgM and CD40 resulted in a complete loss of CD5 expression and a corresponding hyperexpression of CD23, irrespective of the population studied. The near-identical response of CD5pos and CD5neg B cells to surrogate TD or TI signals in vitro and their convergence to indistinguishable phenotypes is wholly supportive of CD5 being a fluctuating marker of activation rather than it delineating functionally distinct subsets.

  6. A GM-CSF and CD40L bystander vaccine is effective in a murine breast cancer model

    Directory of Open Access Journals (Sweden)

    Soliman H

    2015-12-01

    Full Text Available Hatem Soliman,1 Melanie Mediavilla-Varela,2 Scott J Antonia,3 1Department of Women's Oncology and Experimental Therapeutics, 2Department of Immunology, 3Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, FL, USA Background: There is increasing interest in using cancer vaccines to treat breast cancer patients in the adjuvant setting to prevent recurrence in high risk situations or in combination with other immunomodulators in the advanced setting. Current peptide vaccines are limited by immunologic compatibility issues, and engineered autologous cellular vaccines are difficult to produce on a large scale. Using standardized bystander cell lines modified to secrete immune stimulating adjuvant substances can greatly enhance the ability to produce immunogenic cellular vaccines using unmodified autologous cells or allogeneic medical grade tumor cell lines as targets. We investigated the efficacy of a cellular vaccine using B78H1 bystander cell lines engineered to secrete granulocyte macrophage-colony stimulating factor and CD40 ligand (BCG in a murine model of breast cancer. Methods: Five-week-old female BALB/c mice were injected orthotopically in the mammary fat pad with 4T1 tumor cells. Treatment consisted of irradiated 4T1 ± BCG cells given subcutaneously every 4 days and was repeated three times per mouse when tumors became palpable. Tumors were measured two to three times per week for 25 days. The vaccine's activity was confirmed in a second experiment using Lewis lung carcinoma (LLC cells in C57BL/6 mice to exclude a model specific effect. Interferon-γ (IFN-γ and interleukin-2 (IL-2 enzyme-linked immunospots (ELISPOTS were performed on splenic lymphocytes incubated with 4T1 lysates along with immunohistochemistry for CD3 on tumor sections. Results: Tumor growth was significantly inhibited in the 4T1-BCG and LLC-BCG treatment groups when compared to 4T1 and LLC treatment groups. There were higher levels of IL-2 and IFN

  7. Antimycotics suppress the Malassezia extract-induced production of CXC chemokine ligand 10 in human keratinocytes.

    Science.gov (United States)

    Hau, Carren S; Kanda, Naoko; Makimura, Koichi; Watanabe, Shinichi

    2014-02-01

    Malassezia, a lipophilic yeast, exacerbates atopic dermatitis. Malassezia products can penetrate the disintegrated stratum corneum and encounter subcorneal keratinocytes in the skin of atopic dermatitis patients. Type 1 helper T (Th1) cells infiltrate chronic lesions with atopic dermatitis, and antimycotic agents improve its symptoms. We aimed to identify Malassezia-induced chemokines in keratinocytes and examine whether antimycotics suppressed this induction. Normal human keratinocytes were incubated with a Malassezia restricta extract and antimycotics. Chemokine expression was analyzed by enzyme-linked immunosorbent assays and real-time polymerase chain reaction. Signal transducer and activator of transcription (STAT)1 activity was examined by luciferase assays. The tyrosine-phosphorylation of STAT1 was analyzed by western blotting. The M. restricta extract increased the mRNA and protein expression of Th1-attracting CXC chemokine ligand (CXCL)10 and STAT1 activity and phosphorylation in keratinocytes, which was suppressed by a Janus kinase inhibitor. The antimycotics itraconazole, ketoconazole, luliconazole, terbinafine, butenafine and amorolfine suppressed M. restricta extract-induced CXCL10 mRNA and protein expression and STAT1 activity and phosphorylation. These effects were similarly induced by 15-deoxy-Δ-(12,14) -prostaglandin J2 (15d-PGJ2 ), a prostaglandin D2 metabolite. Antimycotics increased the release of 15d-PGJ2 from keratinocytes. The antimycotic-induced suppression of CXCL10 production and STAT1 activity was counteracted by a lipocalin-type prostaglandin D synthase inhibitor. The antimycotics itraconazole, ketoconazole, luliconazole, terbinafine, butenafine and amorolfine may suppress the M. restricta-induced production of CXCL10 by inhibiting STAT1 through an increase in 15d-PGJ2 production in keratinocytes. These antimycotics may block the Th1-mediated inflammation triggered by Malassezia in the chronic phase of atopic dermatitis. © 2014

  8. Propionic acid secreted from propionibacteria induces NKG2D ligand expression on human-activated T lymphocytes and cancer cells

    DEFF Research Database (Denmark)

    Andresen, Lars; Hansen, Karen Aagaard; Jensen, Helle

    2009-01-01

    We found that propionic acid secreted from propionibacteria induces expression of the NKG2D ligands MICA/B on activated T lymphocytes and different cancer cells, without affecting MICA/B expression on resting peripheral blood cells. Growth supernatant from propionibacteria or propionate alone cou...

  9. Ligand-induced type II interleukin-4 receptor dimers are sustained by rapid re-association within plasma membrane microcompartments

    Science.gov (United States)

    Richter, David; Moraga, Ignacio; Winkelmann, Hauke; Birkholz, Oliver; Wilmes, Stephan; Schulte, Markos; Kraich, Michael; Kenneweg, Hella; Beutel, Oliver; Selenschik, Philipp; Paterok, Dirk; Gavutis, Martynas; Schmidt, Thomas; Garcia, K. Christopher; Müller, Thomas D.; Piehler, Jacob

    2017-07-01

    The spatiotemporal organization of cytokine receptors in the plasma membrane is still debated with models ranging from ligand-independent receptor pre-dimerization to ligand-induced receptor dimerization occurring only after receptor uptake into endosomes. Here, we explore the molecular and cellular determinants governing the assembly of the type II interleukin-4 receptor, taking advantage of various agonists binding the receptor subunits with different affinities and rate constants. Quantitative kinetic studies using artificial membranes confirm that receptor dimerization is governed by the two-dimensional ligand-receptor interactions and identify a critical role of the transmembrane domain in receptor dimerization. Single molecule localization microscopy at physiological cell surface expression levels, however, reveals efficient ligand-induced receptor dimerization by all ligands, largely independent of receptor binding affinities, in line with the similar STAT6 activation potencies observed for all IL-4 variants. Detailed spatiotemporal analyses suggest that kinetic trapping of receptor dimers in actin-dependent microcompartments sustains robust receptor dimerization and signalling.

  10. TNF-related apoptosis-inducing ligand deficiency enhances survival in murine colon ascendens stent peritonitis

    Directory of Open Access Journals (Sweden)

    Beyer K

    2016-06-01

    Full Text Available Katharina Beyer,1 Laura Stollhof,1 Christian Poetschke,2 Wolfram von Bernstorff,1 Lars Ivo Partecke,1 Stephan Diedrich,1 Stefan Maier,1 Barbara M Bröker,2 Claus-Dieter Heidecke1 1Department of General, Visceral, Thoracic, and Vascular Surgery, 2Institute of Immunology, University of Greifswald, Greifswald, GermanyBackground: Apart from inducing apoptosis in tumor cells, tumor necrosis factor (TNF-related apoptosis-inducing ligand (TRAIL influences inflammatory reactions. Murine colon ascendens stent peritonitis (CASP represents a model of diffuse peritonitis. Recently, it has been demonstrated that administration of exogenous TRAIL not only induces apoptosis in neutrophils but also enhances survival in this model. The aim of this study was to examine the impact of genetic TRAIL deficiency on the course of CASP.Methods: Peritonitis was induced in 6- to 8-week-old female TRAIL−/− mice as well as in wild-type mice. The sepsis severity score and survival of mice were monitored. Bacterial loads in blood as well as in the lymphoid organs were examined. Additionally, the number of apoptotic cells within the lymphoid organs was determined.Results: As early as 8 hours postinduction of CASP, TRAIL−/− mice were significantly more affected by sepsis than wild-type mice, as measured by the sepsis severity score. However, during the further course of sepsis, TRAIL deficiency led to significantly decreased sepsis severity scores, resulting in an enhanced overall survival in TRAIL−/− mice. The better survival of TRAIL−/− mice was accompanied by a decreased bacterial load within the blood. In marked contrast, the number of apoptotic cells within the lymphoid organs was highly increased in TRAIL−/− mice 20 hours after induction of CASP.Conclusion: Hence, exogenous and endogenous TRAIL is protective during the early phase of sepsis, while endogenous TRAIL appears to be detrimental in the later course of this disease.Keywords: CASP, mice

  11. Substituted biurets as uranophilic ligands: A facile DMSO-induced conversion of a 1:1 into a 2:1 uranyl-ligand complex

    Energy Technology Data Exchange (ETDEWEB)

    Potts, K.T.; O' Brien, J.J.; Tham, F.S. (Rensselaer Polytechnic Inst., Troy, NY (United States))

    1990-01-01

    1,5-Bis(6-(1-ethoxycarbonyl-3-thioureido)-2-pyridindiyl)biuret and uranyl acetate gave a crystalline 1:1 uranyl-ligand complex which, on crystallization from DMSO, underwent rearrangement to a crystalline 2:1 uranyl-ligand complex and a stoichiometric amount of the uncomplexed ligand. Spectral characteristics of these ligands and their uranyl complexes together with single crystal x-ray data for the uranyl-ligand complexes are described.

  12. CD137 ligand activated microglia induces oligodendrocyte apoptosis via reactive oxygen species

    Directory of Open Access Journals (Sweden)

    Yeo Yee

    2012-07-01

    Full Text Available Abstract CD137 (4-1BB, TNFRSF9, a member of the tumor necrosis factor (TNF receptor family, is a potent T cell co-stimulatory molecule. CD137 ligand (CD137L is expressed by antigen presenting cells (APC as a transmembrane protein and transmits activating signals into APC. In this study we investigated the effects of CD137L signaling in microglia, the resident APC in the central nervous system. In vitro, the murine microglia cell lines BV-2 and N9, as well as primary murine microglia responded with activation as evidenced by adherence and secretion of proinflammatory cytokines, MMP-9, and soluble intercellular adhesion molecule (ICAM. CD137L signaling is also important for microglia activation in vivo, since CD137L-deficient mice exhibited profoundly less microglia activation during experimental autoimmune encephalomyelitis (EAE which is a well-established murine model for neuroinflammation and human multiple sclerosis (MS. Also CD137 is expressed in the CNS of mice during EAE. Activated microglia has been reported to mediate the destruction of axonal myelin sheaths and cause the death of oligodendrocytes, the main pathogenic mechanisms in EAE and MS. Corresponding to the lower microglia activation there were also fewer apoptotic oligodendrocytes in the CNS of CD137L-deficient mice. In vitro co-culture confirmed that CD137L-activated microglia induces apoptosis in oligodendrocytes, and identified reactive oxygen species as the mechanism of apoptosis induction. These data demonstrate activating effects of CD137L signaling to microglia, and show for the first time that the CD137 receptor/ligand system may be a mediator of neuroinflammatory and neurodegenerative disease, by activating microglia which in turn kill oligodendrocytes.

  13. Synthetic Peptide Ligands of the Antigen Binding Receptor Induce Programmed Cell Death in a Human B-Cell Lymphoma

    Science.gov (United States)

    Renschler, Markus F.; Bhatt, Ramesh R.; Dower, William J.; Levy, Ronald

    1994-04-01

    Peptide ligands for the antigen binding site of the surface immunoglobulin receptor of a human B-cell lymphoma cell line were identified with the use of filamentous phage libraries displaying random 8- and 12-amino acid peptides. Corresponding synthetic peptides bound specifically to the antigen binding site of this immunoglobulin receptor and blocked the binding of an anti-idiotype antibody. The ligands, when conjugated to form dimers or tetramers, induced cell death by apoptosis in vitro with an IC50 between 40 and 200 nM. This effect was associated with specific stimulation of intracellular protein tyrosine phosphorylation.

  14. Ligand-induced internalization of the type 1 cholecystokinin receptor independent of recognized signaling activity

    OpenAIRE

    Cawston, Erin E.; Harikumar, Kaleeckal G.; Miller, Laurence J.

    2011-01-01

    Receptor ligands, identified as antagonists, based on the absence of stimulation of signaling, can rarely stimulate receptor internalization. d-Tyr-Gly-[(Nle28,31,d-Trp30)CCK-26–32]-2-phenylethyl ester (d-Trp-OPE) is such a ligand that binds to the cholecystokinin (CCK) receptor and stimulates internalization. Here, the molecular basis of this trafficking event is explored, with the assumption that ligand binding initiates conformational change, exposing an epitope to direct endocytosis. Liga...

  15. Role of B61, the Ligand for the Eck Receptor Tyrosine Kinase, in TNF- α-Induced Angiogenesis

    Science.gov (United States)

    Pandey, Akhilesh; Shao, Haining; Marks, Rory M.; Polverini, Peter J.; Dixit, Vishva M.

    1995-04-01

    B61, a cytokine-inducible endothelial gene product, is the ligand for the Eck receptor protein tyrosine kinase (RPTK). Expression of a B61-immunoglobulin chimera showed that B61 could act as an angiogenic factor in vivo and a chemoattractant for endothelial cells in vitro. The Eck RPTK was activated by tumor necrosis factor-α (TNF-α) through induction of B61, and an antibody to B61 attenuated angiogenesis induced by TNF-α but not by basic fibroblast growth factor. This finding suggests the existence of an autocrine or paracrine loop involving activation of the Eck RPTK by its inducible ligand B61 after an inflammatory stimulus, the net effect of which would be to promote angiogenesis, a hallmark of chronic inflammation.

  16. Diverse inflammatory cytokines induce selectin ligand expression on murine CD4 T cells via p38 alpha MAP kinase1

    Science.gov (United States)

    Ebel, Mark E.; Awe, Olufolakemi; Kaplan, Mark H.; Kansas, Geoffrey S.

    2015-01-01

    Selectins are glycan-binding adhesion molecules which mediate the initial steps of leukocyte recognition of endothelium. Cytokines control numerous aspects of CD4 T helper differentiation, but how cytokines control induction of ligands for E- and P-selectin on T helper subsets remains poorly understood. Among 20 cytokines that affect T helper cell differentiation, we identified six, IL-12, IL-18, IL-27, IL-9, IL-25 and TGFβ1, that induce expression of selectin ligands on murine CD4 T cells above the low levels associated with TCR engagement. Collectively, these six cytokines could potentially account for selectin ligand expression on all of the currently defined non-sessile T helper lineages, including Th1, Th2, Th9, Th17 and Treg. Induction of selectin ligand expression by each of these six cytokines was almost completely inhibited by pharmacologic inhibition of p38 MAPK, but not other MAPKs, or by conditional genetic deletion of p38 alpha MAPK. Analysis of the expression of key glycosyltransferase genes revealed that p38 alpha signaling was selectively required for induction of Fut7 and Gcnt1, but not for induction of St3gal4 or St3gal6. Constitutively active MKK6, an immediate upstream activator of p38 MAPK, induced selectin ligand expression equivalent to that of cytokines, and this induction was completely dependent on expression of p38 alpha. Our results identify the repertoire of cytokines responsible for selectin ligand induction on CD4 T cells and provide a mechanistic link between T helper development and T cell migration. PMID:25941329

  17. Molecular cloning, in vitro expression and bioactivity of dog A proliferation-inducing ligand (APRIL).

    Science.gov (United States)

    Wang, Shu-Le; Cai, Yu-Feng; Lin, Qing-Ping; Sheng, Xiao-Ling; Shui, Yan; Zhang, Shuang-Quan

    2009-04-15

    A proliferation-inducing ligand (APRIL) is a novel member of the tumor necrosis factor (TNF) family, which is involved in immune regulation. In this study, the cDNA of dog APRIL (dAPRIL) was amplified from dog spleen by RT-PCR. The open reading frame (ORF) of dAPRIL encodes a protein of 250-amino acid, containing a predicted transmembrane domain and a putative furin protease cleavage site like other mammalian APRILs. The amino acid identities between biologically soluble dAPRIL and its pig, human, rabbit and mouse counterparts are 91%, 86%, 88% and 86%, respectively, dramatically higher than most other known cytokines. The result of real-time PCR revealed that dAPRIL is expressed in various tissues and is elevated in thymus and spleen. Recombinant soluble dAPRIL (dsAPRIL) fused with NusA.tag was efficiently produced in Origami B (DE3) pLysS expression host strain. In vitro, purified dsAPRIL was able to co-stimulate the proliferation of dog splenic B cells in response to anti-IgM. These findings indicate that dAPRIL plays an important role in survival/proliferation of dog B cells and provide the basis for investigation on the roles of APRIL in this important domestic species.

  18. TLR2 ligands induce NF-κB activation from endosomal compartments of human monocytes.

    Directory of Open Access Journals (Sweden)

    Karim J Brandt

    Full Text Available Localization of Toll-like receptors (TLR in subcellular organelles is a major strategy to regulate innate immune responses. While TLR4, a cell-surface receptor, signals from both the plasma membrane and endosomal compartments, less is known about the functional role of endosomal trafficking upon TLR2 signaling. Here we show that the bacterial TLR2 ligands Pam3CSK4 and LTA activate NF-κB-dependent signaling from endosomal compartments in human monocytes and in a NF-κB sensitive reporter cell line, despite the expression of TLR2 at the cell surface. Further analyses indicate that TLR2-induced NF-κB activation is controlled by a clathrin/dynamin-dependent endocytosis mechanism, in which CD14 serves as an important upstream regulator. These findings establish that internalization of cell-surface TLR2 into endosomal compartments is required for NF-κB activation. These observations further demonstrate the need of endocytosis in the activation and regulation of TLR2-dependent signaling pathways.

  19. Redox-​Active Ligand-​Induced Homolytic Bond Activation

    NARCIS (Netherlands)

    Broere, D.L.J.; Metz, L.L.; de Bruin, B.; Reek, J.N.H.; Siegler, M.A.; van der Vlugt, J.I.

    2015-01-01

    Coordination of the novel redox-​active phosphine-​appended aminophenol pincer ligand (PNOH2) to PdII generates a paramagnetic complex with a persistent ligand-​centered radical. The complex undergoes fully reversible single-​electron oxidn. and redn. Homolytic bond activation of diphenyldisulfide

  20. Enhancement of the priming efficacy of DNA vaccines encoding dendritic cell-targeted antigens by synergistic toll-like receptor ligands

    Directory of Open Access Journals (Sweden)

    Kornbluth Richard S

    2009-08-01

    Full Text Available Abstract Background Targeting of protein antigens to dendritic cells (DC via the DEC205 receptor enhances presentation of antigen-derived peptides on MHC-I and MHC-II molecules and, in the presence of costimulatory signals, antigen-specific immune responses. The immunogenicity and efficacy of DNA vaccination can also be enhanced by fusing the encoded antigen to single chain antibodies directed against DEC205. To further improve this strategy, we evaluated different toll-like receptor ligands (TLR and CD40 ligands (CD40L as adjuvants for DNA vaccines encoding a DEC205-single-chain antibody fused to the ovalbumin model antigen or HIV-1 Gag and assessed the priming efficacy of DNA in a DNA prime adenoviral vector boost immunization regimen. Results Mice were primed with the adjuvanted DEC-205 targeted DNA vaccines and boosted with adenoviral vectors encoding the same antigens. CD8+ T cell responses were determined after the adenoviral booster immunization, to determine how well the different DNA immunization regimens prime for the adenoviral boost. In the absence of adjuvants, targeting of DNA-encoded ovalbumin to DCs suppressed CD8+ T-cell responses after the adenoviral booster immunization. CD8+ T-cell responses to the DEC205 targeted DNA vaccines increased only slightly by adding either the TLR-9 ligand CpG, the TLR-3 ligand Poly I:C, or CD40 ligand expression plasmids. However, the combination of both TLR-ligands led to a strong enhancement of CD8+ T-cell responses compared to a non-targeted DNA vaccine. This finding was confirmed using HIV Gag as antigen. Conclusion Although DNA prime adenoviral vector boost immunizations belong to the strongest inducers of cytotoxic T cell responses in different animal models and humans, the CD8+ T cell responses can be further improved by targeting the DNA encoded antigen to DEC205 in the presence of synergistic TLR ligands CpG and Poly I:C.

  1. Bortezomib sensitizes primary human astrocytoma cells of WHO grades I to IV for tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis

    NARCIS (Netherlands)

    Koschny, Ronald; Holland, Heidrun; Sykora, Jaromir; Haas, Tobias L.; Sprick, Martin R.; Ganten, Tom M.; Krupp, Wolfgang; Bauer, Manfred; Ahnert, Peter; Meixensberger, Jürgen; Walczak, Henning

    2007-01-01

    Malignant gliomas are the most aggressive human brain tumors without any curative treatment. The antitumor effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in gliomas has thus far only been thoroughly established in tumor cell lines. In the present study, we investigated the

  2. Effects of the phytoestrogen coumestrol on RANK-ligand-induced differentiation of osteoclasts

    International Nuclear Information System (INIS)

    Kanno, Sanae; Hirano, Seishiro; Kayama, Fujio

    2004-01-01

    Phytoestrogens, which have structural similarity to 17β-estradiol, have been reported to act as agonists/antagonists of estrogen in animals and humans. Estrogen is known to have an important role in maintaining bone mass, because the concentration of serum estrogen decreases after menopause and the estrogen deficiency causes bone loss. In this study, we investigated the effects of coumestrol and other phytoestrogens on osteoclast differentiation using estrogen receptor α-transfected RAW264.7 (RAW264.7-ERα) cells. When the cells were cultured with the receptor activator of nuclear factor kappa B-ligand (RANKL), both formation of tartrate-resistant acid phosphatase (TRAP) positive multinucleated cells and TRAP activity were increased compared with control cells that were cultured in the absence of RANKL. Coumestrol decreased RANKL-induced formation of TRAP-positive multinucleated cells and TRAP activity dose-dependently. RANKL-stimulated RAW264.7-ERα cells formed resorption pits on calcium phosphate films and the pit formation was inhibited by coumestrol in a dose-dependent manner. RT-PCR analyses revealed that coumestrol (10 μM) decreased mRNA levels of calcitonin receptor (CTR) and matrix metalloproteinase-9 (MMP9) in RANKL-treated cells. In addition, pretreatment of coumestrol decreased RANKL-induced phosphorylation of extracellular signal-regulated kinases/p44/42 (ERK1/2). These results suggest that coumestrol has an inhibitory effect on the differentiation of osteoclasts, at least partially via ERK1/2 pathway

  3. Inflammation promotes oral squamous carcinoma immune evasion via induced programmed death ligand-1 surface expression.

    Science.gov (United States)

    Lu, Wanlu; Lu, Libing; Feng, Yun; Chen, Jiao; Li, Yan; Kong, Xiangli; Chen, Sixiu; Li, Xiaoyu; Chen, Qianming; Zhang, Ping

    2013-05-01

    The association between inflammation and cancer provides a new target for tumor biotherapy. The inflammatory cells and molecules within the tumor microenvironment have decisive dual roles in antitumor immunity and immune evasion. In the present study, phytohemagglutinin (PHA) was used to stimulate peripheral blood mononuclear cells (PBMCs) to simulate the tumor inflammatory microenvironment. The effect of immune cells and inflammatory cytokines on the surface expression of programmed cell death-1 ligand 1 (PD-L1) and tumor immune evasion was investigated using flow cytometry (FCM) and an in vivo xenotransplantation model. Based on the data, PHA-activated, but not resting, immune cells were able to promote the surface expression of PD-L1 in Tca8113 oral squamous carcinoma cells via the secretion of inflammatory cytokines, but not by cell-cell contact. The majority of the inflammatory cytokines had no significant effect on the proliferation, cell cycle progression and apoptosis of the Tca8113 cells, although they each induced the expression of PD-L1 in a dose-dependent manner. In total, 99% of the Tca8113 cells expressed PD-L1 following treatment with the supernatant of PHA-stimulated PBMCs. The PHA-supernatant pretreated Tca8113 cells unusually induced Tca8113 antigen-specific CD8 + T cell apoptosis in vitro and the evasion of antigen-specific T cell attraction in a nude mouse tumor-bearing model. These results indicate a new mechanism for the promotion of tumor immune evasion by the tumor inflammatory microenvironment.

  4. Inhibition of allergen-induced basophil activation by ASM-024, a nicotinic receptor ligand.

    Science.gov (United States)

    Watson, Brittany M; Oliveria, John Paul; Nusca, Graeme M; Smith, Steven G; Beaudin, Sue; Dua, Benny; Watson, Rick M; Assayag, Evelynne Israël; Cormier, Yvon F; Sehmi, Roma; Gauvreau, Gail M

    2014-01-01

    Nicotinic acetylcholine receptors (nAChRs) were identified on eosinophils and shown to regulate inflammatory responses, but nAChR expression on basophils has not been explored yet. We investigated surface receptor expression of nAChR α4, α7 and α1/α3/α5 subunits on basophils. Furthermore, we examined the effects of ASM-024, a synthetic nicotinic ligand, on in vitro anti-IgE and in vivo allergen-induced basophil activation. Basophils were enriched from the peripheral blood of allergic donors and the expression of nAChR subunits and muscarinic receptors was determined. Purified basophils were stimulated with anti-IgE in the presence of ASM-024 with or without muscarinic or nicotinic antagonists for the measurement of CD203c expression and histamine release. The effect of 9 days of treatment with 50 and 200 mg ASM-024 on basophil CD203c expression was examined in the blood of mild allergic asthmatics before and after allergen inhalation challenge. nAChR α4, α7 and α1/α3/α5 receptor subunit expression was detected on basophils. Stimulation of basophils with anti-IgE increased CD203c expression and histamine release, which was inhibited by ASM-024 (10(-5) to 10(-)(3) M, p ASM-024 was reversed in the presence of muscarinic and nicotinic antagonists. In subjects with mild asthma, ASM-024 inhalation significantly inhibited basophil CD203c expression measured 24 h after allergen challenge (p = 0.03). This study shows that ASM-024 inhibits IgE- and allergen-induced basophil activation through both nicotinic and muscarinic receptors, and suggests that ASM-024 may be an efficacious agent for modulating allergic asthma responses. © 2015 S. Karger AG, Basel.

  5. Andrographolide induces apoptotic and non-apoptotic death and enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in gastric cancer cells

    OpenAIRE

    Lim, Sung-Chul; Jeon, Ho Jong; Kee, Keun Hong; Lee, Mi Ja; Hong, Ran; Han, Song Iy

    2017-01-01

    Andrographolide, a natural compound isolated from Andrographis paniculata, has been reported to possess antitumor activity. In the present study, the effect of andrographolide in human gastric cancer (GC) cells was investigated. Andrographolide induced cell death with apoptotic and non-apoptotic features. At a low concentration, andrographolide potentiated apoptosis and reduction of clonogenicity triggered by recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL)....

  6. CD40: Novel Association with Crohn's Disease and Replication in Multiple Sclerosis Susceptibility

    Science.gov (United States)

    Alcina, Antonio; Teruel, María; Díaz-Gallo, Lina M.; Gómez-García, María; López-Nevot, Miguel A.; Rodrigo, Luis; Nieto, Antonio; Cardeña, Carlos; Alcain, Guillermo; Díaz-Rubio, Manuel; de la Concha, Emilio G.; Fernandez, Oscar; Arroyo, Rafael

    2010-01-01

    Background A functional polymorphism located at −1 from the start codon of the CD40 gene, rs1883832, was previously reported to disrupt a Kozak sequence essential for translation. It has been consistently associated with Graves' disease risk in populations of different ethnicity and genetic proxies of this variant evaluated in genome-wide association studies have shown evidence of an effect in rheumatoid arthritis and multiple sclerosis (MS) susceptibility. However, the protective allele associated with Graves' disease or rheumatoid arthritis has shown a risk role in MS, an effect that we aimed to replicate in the present work. We hypothesized that this functional polymorphism might also show an association with other complex autoimmune condition such as inflammatory bowel disease, given the CD40 overexpression previously observed in Crohn's disease (CD) lesions. Methodology Genotyping of rs1883832C>T was performed in 1564 MS, 1102 CD and 969 ulcerative colitis (UC) Spanish patients and in 2948 ethnically matched controls by TaqMan chemistry. Principal Findings The observed effect of the minor allele rs1883832T was replicated in our independent Spanish MS cohort [p = 0.025; OR (95% CI) = 1.12 (1.01–1.23)]. The frequency of the minor allele was also significantly higher in CD patients than in controls [p = 0.002; OR (95% CI) = 1.19 (1.06–1.33)]. This increased predisposition was not detected in UC patients [p = 0.5; OR (95% CI) = 1.04 (0.93–1.17)]. Conclusion The impact of CD40 rs1883832 on MS and CD risk points to a common signaling shared by these autoimmune conditions. PMID:20634952

  7. CD40: novel association with Crohn's disease and replication in multiple sclerosis susceptibility.

    Directory of Open Access Journals (Sweden)

    Fiona Blanco-Kelly

    Full Text Available BACKGROUND: A functional polymorphism located at -1 from the start codon of the CD40 gene, rs1883832, was previously reported to disrupt a Kozak sequence essential for translation. It has been consistently associated with Graves' disease risk in populations of different ethnicity and genetic proxies of this variant evaluated in genome-wide association studies have shown evidence of an effect in rheumatoid arthritis and multiple sclerosis (MS susceptibility. However, the protective allele associated with Graves' disease or rheumatoid arthritis has shown a risk role in MS, an effect that we aimed to replicate in the present work. We hypothesized that this functional polymorphism might also show an association with other complex autoimmune condition such as inflammatory bowel disease, given the CD40 overexpression previously observed in Crohn's disease (CD lesions. METHODOLOGY: Genotyping of rs1883832C>T was performed in 1564 MS, 1102 CD and 969 ulcerative colitis (UC Spanish patients and in 2948 ethnically matched controls by TaqMan chemistry. PRINCIPAL FINDINGS: The observed effect of the minor allele rs1883832T was replicated in our independent Spanish MS cohort [p = 0.025; OR (95% CI = 1.12 (1.01-1.23]. The frequency of the minor allele was also significantly higher in CD patients than in controls [p = 0.002; OR (95% CI = 1.19 (1.06-1.33]. This increased predisposition was not detected in UC patients [p = 0.5; OR (95% CI = 1.04 (0.93-1.17]. CONCLUSION: The impact of CD40 rs1883832 on MS and CD risk points to a common signaling shared by these autoimmune conditions.

  8. Impaired CD40L signaling is a cause of defective IL-12 and TNF-alpha production in Sézary syndrome: circumvention by hexameric soluble CD40L.

    Science.gov (United States)

    French, Lars E; Huard, Bertrand; Wysocka, Maria; Shane, Ryan; Contassot, Emmanuel; Arrighi, Jean-François; Piguet, Vincent; Calderara, Silvio; Rook, Alain H

    2005-01-01

    Sézary syndrome (SzS) is an advanced form of cutaneous T-cell lymphoma characterized by peripheral blood involvement, impaired cell-mediated immunity, and T-helper 1 (TH1) cytokine production. To understand the mechanism of these defects, we studied the expression and function of CD40L in peripheral blood mononuclear cells (PBMCs) of patients with SzS. We found that PBMCs of patients with SzS have a defect in interleukin-12 (IL-12) and tumor necrosis factor-alpha (TNF-alpha) production upon anti-CD3 stimulation and that tumor CD4+ T lymphocytes have a specific defect in CD40L induction after anti-CD3 ligation in vitro. This defect may explain the poor IL-12 production, because IL-12 production by anti-CD3-stimulated PBMCs was dependent on CD40L in healthy donors. The observed defect in tumor cell CD40L expression appears to be due to inappropriate T-cell signaling upon CD3 ligation, because expression of other T-cell activation antigens such as CD25, and to a lesser extent CD69, are also impaired on tumor cells. Importantly however, the inability of SzS PBMCs to appropriately produce IL-12 and TNF-alpha could be restored by recombinant hexameric CD40L. Taken together, our results demonstrate that impaired IL-12 and TNF-alpha production in SzS is associated with defective CD4+ T lymphocyte CD40L induction and indicate that CD40L may have therapeutic potential in SzS.

  9. PPARγ ligands switched high fat diet-induced macrophage M2b polarization toward M2a thereby improving intestinal Candida elimination

    DEFF Research Database (Denmark)

    Lefèvre, Lise; Galès, Amandine; Olagnier, David

    2010-01-01

    of Candida albicans through the activation of alternative M2 macrophage polarization. Here, we evaluated the impact of high fat diet (HFD)-induced obesity and the effect of rosiglitazone (PPARγ ligand) or WY14643 (PPARα ligand) both on the phenotypic M1/M2 polarization of peritoneal and cecal tissue...

  10. Ligand-induced substrate steering and reshaping of [Ag2(H)]+ scaffold for selective CO2 extrusion from formic acid

    OpenAIRE

    Zavras, Athanasios; Khairallah, George N.; Krsti?, Marjan; Girod, Marion; Daly, Steven; Antoine, Rodolphe; Maitre, Philippe; Mulder, Roger J.; Alexander, Stefanie-Ann; Bona?i?-Kouteck?, Vlasta; Dugourd, Philippe; O'Hair, Richard A. J.

    2016-01-01

    Metalloenzymes preorganize the reaction environment to steer substrate(s) along the required reaction coordinate. Here, we show that phosphine ligands selectively facilitate protonation of binuclear silver hydride cations, [LAg2(H)]+ by optimizing the geometry of the active site. This is a key step in the selective, catalysed extrusion of carbon dioxide from formic acid, HO2CH, with important applications (for example, hydrogen storage). Gas-phase ion-molecule reactions, collision-induced dis...

  11. Reversible Redox-Induced Modulation of Sterics in an α-Diimine Ligand Coordinated to Gallium

    Energy Technology Data Exchange (ETDEWEB)

    Zarkesh, Ryan A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Foster, Michael E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Ichimura, Andrew S. [San Francisco State Univ., CA (United States); Anstey, Mitchell R. [Davidson College, Davidson, NC (United States)

    2017-07-01

    The ability to tune the steric envelope through redox events post-synthetically or in tandem with other chemical processes is a powerful tool that could assist in enabling new catalytic methodologies and understanding potential pitfalls in ligand design. The α-diimine ligand, dmp-BIAN, exhibits the peculiar and previously unreported feature of varying steric profiles depending on oxidation state when paired with a main group element. A study of the factors that give rise to this behaviour as well as its impact on the incorporation of other ligands is performed.

  12. Receptor-mediated endocytosis is not required for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis.

    Science.gov (United States)

    Kohlhaas, Susan L; Craxton, Andrew; Sun, Xiao-Ming; Pinkoski, Michael J; Cohen, Gerald M

    2007-04-27

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is selectively toxic to tumor compared with normal cells. Other members of the TNF family of death ligands (TNF, CD95L) engage their respective receptors (TNF-R1 and CD95), resulting in internalization of receptor and ligand and recruitment of adaptor proteins to the caspase activation platform known as the death-inducing signaling complex (DISC). Recently, TNF-R1 and CD95 have been shown to induce apoptosis with an absolute requirement for internalization of their corresponding receptors in the formation of a DISC. We show that TRAIL and its receptors are rapidly endocytosed in a time- and concentration-dependent manner. Blockade of receptor internalization with hyperosmotic sucrose did not inhibit TRAIL-induced apoptosis but, rather, amplified the apoptotic signaling of TRAIL. Plate-bound and soluble TRAIL induced similar levels of apoptosis. Together these results suggest that neither ligand nor receptor internalization is required for TRAIL-induced apoptosis. Internalization of TRAIL is mediated primarily by clathrin-dependent endocytosis and also by clathrin-independent pathways. Inhibition of clathrin-dependent internalization by overexpression of dominant negative forms of dynamin or AP180 did not inhibit TRAIL-induced apoptosis. Consistent with the finding that neither internalization of TRAIL nor its receptors is required for transmission of its apoptotic signal, recruitment of FADD (Fas-associated death domain) and procaspase-8 to form the TRAIL-associated DISC occurred at 4 degrees C, independent of endocytosis. Our findings demonstrate that TRAIL and TRAIL receptor 1/2, unlike TNF-TNF-R1 or CD95L-CD95, do not require internalization for formation of the DISC, activation of caspase-8, or transmission of an apoptotic signal in BJAB type I cells.

  13. Killer B Lymphocytes and their Fas Ligand Positive Exosomes as Inducers of Immune Tolerance

    Directory of Open Access Journals (Sweden)

    Steven Karl Lundy

    2015-03-01

    Full Text Available Induction of immune tolerance is a key process by which the immune system is educated to modulate reactions against benign stimuli such as self-antigens and commensal microbes. Understanding and harnessing the natural mechanisms of immune tolerance may become an increasingly useful strategy for treating many types of allergic and autoimmune diseases, as well as for improving the acceptance of solid organ transplants. Our laboratory and others have been interested in the natural ability of some B lymphocytes to express the death-inducing molecule Fas ligand (FasL, and their ability to kill T helper (TH lymphocytes. We have recently shown that experimental transformation of human B cells by a non-replicative variant of Epstein-Barr virus (EBV consistently resulted in high expression of functional FasL protein. The production and release of FasL+ exosomes that co-expressed MHC Class II molecules and had the capacity to kill antigen-specific TH cells was also observed. Several lines of evidence indicate that FasL+ B cells and FasL+MHCII+ exosomes have important roles in natural immune tolerance and have a great deal of therapeutic potential. Taken together, these findings suggest that EBV-immortalized human B lymphoblastoid cell lines could be used as cellular factories for FasL+ exosomes, which would be employed to therapeutically establish and/or regain immune tolerance toward specific antigens. The goals of this review are to summarize current knowledge of the roles of FasL+ B cells and exosomes in immune regulation, and to suggest methods of manipulating killer B cells and FasL+ exosomes for clinical purposes.

  14. Persistent Polyclonal B Cell Lymphocytosis B Cells Can Be Activated through CD40-CD154 Interaction

    Directory of Open Access Journals (Sweden)

    Emmanuelle Dugas-Bourdages

    2014-01-01

    Full Text Available Persistent polyclonal B cell lymphocytosis (PPBL is a rare disorder, diagnosed primarily in adult female smokers and characterized by an expansion of CD19+CD27+IgM+ memory B cells, by the presence of binucleated lymphocytes, and by a moderate elevation of serum IgM. The clinical course is usually benign, but it is not known whether or not PPBL might be part of a process leading to the emergence of a malignant proliferative disorder. In this study we sought to investigate the functional response of B cells from patients with PPBL by use of an optimal memory B cell culture model based on the CD40-CD154 interaction. We found that the proliferation of PPBL B cells was almost as important as that of B cells from normal controls, resulting in high immunoglobulin secretion with in vitro isotypic switching. We conclude that the CD40-CD154 activation pathway is functional in the memory B cell population of PPBL patients, suggesting that the disorder may be due to either a dysfunction of other cells in the microenvironment or a possible defect in another B cell activation pathway.

  15. Ligand-induced dynamics of heterotrimeric G protein-coupled receptor-like kinase complexes.

    Directory of Open Access Journals (Sweden)

    Meral Tunc-Ozdemir

    Full Text Available Arabidopsis, 7-transmembrane Regulator of G signaling protein 1 (AtRGS1 modulates canonical G protein signaling by promoting the inactive state of heterotrimeric G protein complex on the plasma membrane. It is known that plant leucine-rich repeat receptor-like kinases (LRR RLKs phosphorylate AtRGS1 in vitro but little is known about the in vivo interaction, molecular dynamics, or the cellular consequences of this interaction.Therefore, a subset of the known RLKs that phosphorylate AtRGS1 were selected for elucidation, namely, BAK1, BIR1, FLS2. Several microscopies for both static and dynamic protein-protein interactions were used to follow in vivo interactions between the RLKs and AtRGS1 after the presentation of the Pathogen-associated Molecular Pattern, Flagellin 22 (Flg22. These microscopies included Förster Resonance Energy Transfer, Bimolecular Fluoresence Complementation, and Cross Number and Brightness Fluorescence Correlation Spectroscopy. In addition, reactive oxygen species and calcium changes in living cells were quantitated using luminometry and R-GECO1 microscopy.The LRR RLKs BAK1 and BIR1, interact with AtRGS1 at the plasma membrane. The RLK ligand flg22 sets BAK1 in motion toward AtRGS1 and BIR1 away, both returning to the baseline orientations by 10 minutes. The C-terminal tail of AtRGS1 is important for the interaction with BAK1 and for the tempo of the AtRGS1/BIR1 dynamics. This window of time corresponds to the flg22-induced transient production of reactive oxygen species and calcium release which are both attenuated in the rgs1 and the bak1 null mutants.A temporal model of these interactions is proposed. flg22 binding induces nearly instantaneous dimerization between FLS2 and BAK1. Phosphorylated BAK1 interacts with and enables AtRGS1 to move away from BIR1 and AtRGS1 becomes phosphorylated leading to its endocytosis thus leading to de-repression by permitting AtGPA1 to exchange GDP for GTP. Finally, the G protein complex

  16. Requirement for CD40 ligand, CD4(+) T cells, and B cells in an infectious mononucleosis-like syndrome

    DEFF Research Database (Denmark)

    Brooks, J W; Hamilton-Easton, A M; Christensen, J P

    1999-01-01

    Respiratory challenge with the murine gammaherpesvirus 68 (gammaHV-68) results in productive infection of the lung, the establishment of latency in B lymphocytes and other cell types, transient splenomegaly, and prolonged clonal expansion of activated CD8(+) CD62L(lo) T cells, particularly a Vbeta4...

  17. Inhibition of matrix metalloproteinase-9 activity by doxycycline ameliorates RANK ligand-induced osteoclast differentiation in vitro and in vivo

    International Nuclear Information System (INIS)

    Franco, Gilson C.N.; Kajiya, Mikihito; Nakanishi, Tadashi; Ohta, Kouji; Rosalen, Pedro L.; Groppo, Francisco C.; Ernst, Cory W.O.; Boyesen, Janie L.; Bartlett, John D.; Stashenko, Philip; Taubman, Martin A.; Kawai, Toshihisa

    2011-01-01

    Tetracycline antibiotics, including doxycycli/e (DOX), have been used to treat bone resorptive diseases, partially because of their activity to suppress osteoclastogenesis induced by receptor activator of nuclear factor kappa B ligand (RANKL). However, their precise inhibitory mechanism remains unclear. Therefore, the present study examined the effect of Dox on osteoclastogenesis signaling induced by RANKL, both in vitro and in vivo. Although Dox inhibited RANKL-induced osteoclastogenesis and down-modulated the mRNA expression of functional osteoclast markers, including tartrate-resistant acid phosphatase (TRAP) and cathepsin K, Dox neither affected RANKL-induced MAPKs phosphorylation nor NFATc1 gene expression in RAW264.7 murine monocytic cells. Gelatin zymography and Western blot analyses showed that Dox down-regulated the enzyme activity of RANKL-induced MMP-9, but without affecting its protein expression. Furthermore, MMP-9 enzyme inhibitor also attenuated both RANKL-induced osteoclastogenesis and up-regulation of TRAP and cathepsin K mRNA expression, indicating that MMP-9 enzyme action is engaged in the promotion of RANKL-induced osteoclastogenesis. Finally, Dox treatment abrogated RANKL-induced osteoclastogenesis and TRAP activity in mouse calvaria along with the suppression of MMP9 enzyme activity, again without affecting the expression of MMP9 protein. These findings suggested that Dox inhibits RANKL-induced osteoclastogenesis by its inhibitory effect on MMP-9 enzyme activity independent of the MAPK-NFATc1 signaling cascade.

  18. Inhibition of matrix metalloproteinase-9 activity by doxycycline ameliorates RANK ligand-induced osteoclast differentiation in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Gilson C.N. [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Department of Pharmacology, FOP/UNICAMP, Piracicaba, SP (Brazil); Kajiya, Mikihito [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA (United States); Nakanishi, Tadashi [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Ohta, Kouji [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA (United States); Rosalen, Pedro L.; Groppo, Francisco C. [Department of Pharmacology, FOP/UNICAMP, Piracicaba, SP (Brazil); Ernst, Cory W.O.; Boyesen, Janie L. [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Bartlett, John D.; Stashenko, Philip [Department of Cytokine Biology, Forsyth Institute, Cambridge, MA (United States); Taubman, Martin A. [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Kawai, Toshihisa, E-mail: tkawai@forsyth.org [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA (United States)

    2011-06-10

    Tetracycline antibiotics, including doxycycli/e (DOX), have been used to treat bone resorptive diseases, partially because of their activity to suppress osteoclastogenesis induced by receptor activator of nuclear factor kappa B ligand (RANKL). However, their precise inhibitory mechanism remains unclear. Therefore, the present study examined the effect of Dox on osteoclastogenesis signaling induced by RANKL, both in vitro and in vivo. Although Dox inhibited RANKL-induced osteoclastogenesis and down-modulated the mRNA expression of functional osteoclast markers, including tartrate-resistant acid phosphatase (TRAP) and cathepsin K, Dox neither affected RANKL-induced MAPKs phosphorylation nor NFATc1 gene expression in RAW264.7 murine monocytic cells. Gelatin zymography and Western blot analyses showed that Dox down-regulated the enzyme activity of RANKL-induced MMP-9, but without affecting its protein expression. Furthermore, MMP-9 enzyme inhibitor also attenuated both RANKL-induced osteoclastogenesis and up-regulation of TRAP and cathepsin K mRNA expression, indicating that MMP-9 enzyme action is engaged in the promotion of RANKL-induced osteoclastogenesis. Finally, Dox treatment abrogated RANKL-induced osteoclastogenesis and TRAP activity in mouse calvaria along with the suppression of MMP9 enzyme activity, again without affecting the expression of MMP9 protein. These findings suggested that Dox inhibits RANKL-induced osteoclastogenesis by its inhibitory effect on MMP-9 enzyme activity independent of the MAPK-NFATc1 signaling cascade.

  19. Vav-1 expression correlates with NFkappaB activation and CD40-mediated cell death in diffuse large B-cell lymphoma cell lines

    DEFF Research Database (Denmark)

    Hollmann, Annette; Aloyz, Raquel; Baker, Kristi

    2010-01-01

    Diffuse large B-cell lymphoma (DLBCL) is an aggressive malignancy with a variable response to therapy. We have previously shown that DLBCL cell lines differ in their susceptibility to CD40-mediated cell death, and that resistance to CD40-targeted antibodies correlated with increased expression...... as a potential marker to identify tumours likely to respond to CD40-targeted therapies. Copyright (c) 2010 John Wiley & Sons, Ltd....

  20. Leptin induces CYP1B1 expression in MCF-7 cells through ligand-independent activation of the ERα pathway

    Energy Technology Data Exchange (ETDEWEB)

    Khanal, Tilak; Kim, Hyung Gyun; Do, Minh Truong; Choi, Jae Ho; Won, Seong Su [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Kang, Wonku [College of Pharmacy, Yeungnam University, Gyeongsan (Korea, Republic of); Chung, Young Chul [Department of Food Science and Culinary, International University of Korea, Jinju (Korea, Republic of); Jeong, Tae Cheon, E-mail: taecheon@ynu.ac.kr [College of Pharmacy, Yeungnam University, Gyeongsan (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2014-05-15

    Leptin, a hormone with multiple biological actions, is produced predominantly by adipose tissue. Among its functions, leptin can stimulate tumour cell growth. Oestrogen receptor α (ERα), which plays an essential role in breast cancer development, can be transcriptionally activated in a ligand-independent manner. In this study, we investigated the effect of leptin on CYP1B1 expression and its mechanism in breast cancer cells. Leptin induced CYP1B1 protein, messenger RNA expression and promoter activity in ERα-positive MCF-7 cells but not in ERα-negative MDA-MB-231 cells. Additionally, leptin increased 4-hydroxyoestradiol in MCF-7 cells. Also, ERα knockdown by siRNA significantly blocked the induction of CYP1B1 expression by leptin, indicating that leptin induced CYP1B1 expression via an ERα-dependent mechanism. Transient transfection with CYP1B1 deletion promoter constructs revealed that the oestrogen response element (ERE) plays important role in the up-regulation of CYP1B1 by leptin. Furthermore, leptin stimulated phosphorylation of ERα at serine residues 118 and 167 and increased ERE-luciferase activity, indicating that leptin induced CYP1B1 expression by ERα activation. Finally, we found that leptin activated ERK and Akt signalling pathways, which are upstream kinases related to ERα phosphorylation induced by leptin. Taken together, our results indicate that leptin-induced CYP1B1 expression is mediated by ligand-independent activation of the ERα pathway as a result of the activation of ERK and Akt in MCF-7 cells. - Highlights: • Leptin increased 4-hydroxyoestradiol in MCF-7 breast cancer cells. • Leptin activated ERK and Akt kinases related to ERα phosphorylation. • Leptin induces phosphorylation of ERα at serine residues 118 and 167. • Leptin induces ERE-luciferase activity.

  1. Prevention of carrageenan-induced pleurisy in mice by anti-CD30 ligand monoclonal antibody

    DEFF Research Database (Denmark)

    Di Paola, Rosanna; Di Marco, Roberto; Mazzon, Emanuela

    2004-01-01

    CD30 ligand (CD30L) and its receptor CD30 are members of the tumor necrosis factor (TNF) and TNF receptor superfamilies that play a major role in inflammation and immune regulation. To gain insight into the in vivo role of CD30L/CD30 in inflammatory diseases, we have used carrageenan (CAR...

  2. Ligand induced structural isomerism in phosphine coordinated gold clusters revealed by ion mobility mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ligare, Marshall R.; Baker, Erin M.; Laskin, Julia; Johnson, Grant E.

    2017-01-01

    Structural isomerism in ligated gold clusters is revealed using electrospray ionization ion mobility spectrometry mass spectrometry. Phosphine ligated Au8 clusters are shown to adopt more “extended” type structures with increasing exchange of methyldiphenylphosphine (MePPh2) for triphenylphosphine (PPh3). These ligand-dependant structure-property relationships are critical to applications of clusters in catalysis.

  3. Rapid and Efficient Collection of Platinum from Karstedt's Catalyst Solution via Ligands-Exchange-Induced Assembly.

    Science.gov (United States)

    Yang, Gonghua; Wei, Yanlong; Huang, Zhenzhu; Hu, Jiwen; Liu, Guojun; Ou, Ming; Lin, Shudong; Tu, Yuanyuan

    2018-02-21

    Reported herein is a novel strategy for the rapid and efficient collection of platinum from Karstedt's catalyst solution. By taking advantage of a ligand-exchange reaction between alkynols and the 1,3-divinyltetramethyldisiloxane ligand (M Vi M Vi ) that coordinated with platinum (Pt(0)), the Karstedt's catalyst particles with a size of approximately 2.5 ± 0.7 nm could be reconstructed and assembled into larger particles with a size of 150 ± 35 nm due to the hydrogen bonding between the hydroxyl groups of the alkynol. In addition, because the silicone-soluble M Vi M Vi ligand of the Karstedt's catalyst was replaced by water-soluble alkynol ligands, the resultant large particles were readily dispersed in water, resulting in rapid, efficient, and complete collection of platinum from the Karstedt's catalyst solutions with platinum concentrations in the range from ∼20 000 to 0.05 ppm. Our current strategy not only was used for the rapid and efficient collection of platinum from the Karstedt's catalyst solutions, but it also enabled the precise evaluation of the platinum content in the Karstedt's catalysts, even if this platinum content was extremely low (i.e., 0.05 ppm). Moreover, these platinum specimens that were efficiently collected from the Karstedt's catalyst solutions could be directly used for the evaluation of platinum without the need for pretreatment processes, such as calcination and digestion with hydrofluoric acid, that were traditionally used prior to testing via inductively coupled plasma mass spectrometry in conventional methods.

  4. Toll-like receptor ligands induce human T cell activation and death, a model for HIV pathogenesis.

    Directory of Open Access Journals (Sweden)

    Nicholas Funderburg

    2008-04-01

    Full Text Available Recently, heightened systemic translocation of microbial products was found in persons with chronic HIV infection and this was linked to immune activation and CD4(+ T cell homeostasis.We examined here the effects of microbial Toll-like receptor (TLR ligands on T cell activation in vitro.We show that exposure to TLR ligands results in activation of memory and effector CD4(+ and CD8(+ T cells. After exposure to each of 8 different ligands that activate TLRs 2, 3, 4, 5, 7, 8, and 9, CD8(+ T cells are activated and gain expression of the C type lectin CD69 that may promote their retention in lymphoid tissues. In contrast, CD4(+ T cells rarely increase CD69 expression but instead enter cell cycle. Despite activation and cell cycle entry, CD4(+ T cells divide poorly and instead, disproportionately undergo activation-induced cell death. Systemic exposure to TLR agonists may therefore increase immune activation, effector cell sequestration in lymphoid tissues and T cell turnover. These events may contribute to the pathogenesis of immune dysfunction and CD4+ T cell losses in chronic infection with the human immunodeficiency virus.

  5. Recent Advances in Ligand and Structure Based Screening of Potent Quorum Sensing Inhibitors Against Antibiotic Resistance Induced Bacterial Virulence.

    Science.gov (United States)

    Nandi, Sisir

    2016-01-01

    Antibiotic resistance is a growing threat in the treatment of bacterial diseases. Bacterial invasion and its virulence can cause damage to the host cells via quorum sensing mechanism which is responsible for the intercellular communication among bacteria that regulates expression of many genes. Quorum sensing (QS) differentially expresses specific sets of genes which may produce resistance. Researchers have been devoted to develop more potent compounds against bacterial resistant quorum sensing inhibitors. A number of anti-quorum sensing approaches have been documented to screen potent inhibitors against quorum sensing induced bacterial virulence. Experimental screening of a large chemical compound library against a quorum sensing biological target is an established technology for lead identification but it is expensive, laborious and time consuming. Therefore, computer-aided high throughput ligand and structure based virtual screening are most effective pharmacoinformatic tools prior to experiment in this context. Ligand based screening includes quantitative structure-activity relationship (QSAR) and pharmacophore generation whereas techniques of structure based virtual screening include molecular docking. The study in this direction can increase the findings of hit rates and decrease cost of drug design and development by producing potent natural as well as synthetic anti-quorum sensing compounds. Most recent patent coverage on ligand and structure based design of novel bioactive quorum sensing inhibitors has been presented here. The paper has also critically reviewed the screening and design of potent quorum sensing inhibitor leads that would help in patenting novel leads active against bacterial virulence and minimizing antibiotic resistance among bacterial pathogens.

  6. A Series of Potent CREBBP Bromodomain Ligands Reveals an Induced-Fit Pocket Stabilized by a Cation–π Interaction**

    Science.gov (United States)

    Rooney, Timothy P C; Filippakopoulos, Panagis; Fedorov, Oleg; Picaud, Sarah; Cortopassi, Wilian A; Hay, Duncan A; Martin, Sarah; Tumber, Anthony; Rogers, Catherine M; Philpott, Martin; Wang, Minghua; Thompson, Amber L; Heightman, Tom D; Pryde, David C; Cook, Andrew; Paton, Robert S; Müller, Susanne; Knapp, Stefan; Brennan, Paul E; Conway, Stuart J

    2014-01-01

    The benzoxazinone and dihydroquinoxalinone fragments were employed as novel acetyl lysine mimics in the development of CREBBP bromodomain ligands. While the benzoxazinone series showed low affinity for the CREBBP bromodomain, expansion of the dihydroquinoxalinone series resulted in the first potent inhibitors of a bromodomain outside the BET family. Structural and computational studies reveal that an internal hydrogen bond stabilizes the protein-bound conformation of the dihydroquinoxalinone series. The side chain of this series binds in an induced-fit pocket forming a cation–π interaction with R1173 of CREBBP. The most potent compound inhibits binding of CREBBP to chromatin in U2OS cells. PMID:24821300

  7. Novel exosome-targeted T-cell-based vaccine counteracts T-cell anergy and converts CTL exhaustion in chronic infection via CD40L signaling through the mTORC1 pathway.

    Science.gov (United States)

    Wang, Rong; Xu, Aizhang; Zhang, Xueying; Wu, Jie; Freywald, Andrew; Xu, Jianqing; Xiang, Jim

    2017-06-01

    CD8 + cytotoxic T lymphocyte (CTL) exhaustion is a chief issue for ineffective virus elimination in chronic infectious diseases. We generated novel ovalbumin (OVA)-specific OVA-Texo and HIV-specific Gag-Texo vaccines inducing therapeutic immunity. To assess their therapeutic effect in chronic infection, we developed a new chronic infection model by i.v. infecting C57BL/6 mice with the OVA-expressing adenovirus AdVova. During chronic AdVova infection, mouse CTLs were found to express the inhibitory molecules programmed cell-death protein-1 (PD-1) and lymphocyte-activation gene-3 (LAG-3) and to be functionally exhausted, showing a significant deficiency in T-cell proliferation, IFN-γ production and cytolytic effects. Naive CD8 + T cells upregulated inhibitory PD-ligand 1 (PD-L1), B- and T-lymphocyte attenuator and T-cell anergy-associated molecules (Grail and Itch) while down-regulating the proliferative response upon stimulation in mice with chronic infection. Remarkably, the OVA-Texo vaccine counteracted T-cell anergy and converted CTL exhaustion. The latter was associated with (i) the upregulation of a marker for CTL functionality, diacetylated histone-H3 (diAcH3), (ii) a fourfold increase in CTLs, occurring independent of host DCs or CD4 + T cells, and (iii) the restoration of CTL IFN-γ production and cytotoxicity. In vivo OVA-Texo-stimulated CTLs upregulated the activities of the mTORC1 pathway-related molecules Akt, S6, eIF4E and T-bet, and treatment of the CTLs with an mTORC1 inhibitor, rapamycin, significantly reduced the OVA-Texo-induced increase in CTLs. Interestingly, OVA-Texo-mediated CD40L signaling played a critical role in the observed immunological effects. Importantly, the Gag-Texo vaccine induced Gag-specific therapeutic immunity in chronic infection. Therefore, this study should have a serious impact on the development of new therapeutic vaccines for human immunodeficiency virus (HIV-1) infection.

  8. Ligand and cation-induced structural alterations of the leukocyte integrin LFA-1.

    Science.gov (United States)

    Sen, Mehmet; Koksal, Adem C; Yuki, Koichi; Wang, Jianchuan; Springer, Timothy A

    2018-03-05

    In αI integrins including leukocyte function-associated antigen-1 (LFA-1), ligand-binding function is delegated to the αI domain, requiring extra steps in the relay of signals that activate ligand binding and coordinate it with cytoplasmic signals. Crystal structures reveal great variation in orientation between the αI domain and the remainder of the integrin head. Here, we investigated the mechanisms involved in signal relay to the αI domain, including whether binding of the ligand intercellular adhesion molecule-1 (ICAM-1) to the αI domain is linked to headpiece opening and engenders a preferred αI domain orientation. Using small-angle X-ray scattering (SAXS) and negative-stain EM we define structures of ICAM-1, LFA-1, and their complex, and the effect of activation by Mn 2+ Headpiece opening was substantially stabilized by substitution of Mg 2+ with Mn 2+ and became complete upon ICAM-1 addition. These agents stabilized αI-headpiece orientation, resulting in a well-defined orientation of ICAM-1 such that its tandem Ig-like domains pointed in the opposite direction from the β-subunit leg of LFA-1. Mutations in the integrin βI domain α1/α1` helix stabilizing either the open or the closed βI-domain conformation indicated that α1/α1` helix movements are linked to ICAM-1 binding by the αI domain and to the extended-open conformation of the ectodomain. The LFA-1--ICAM-1 orientation described here with ICAM-1 pointing anti-parallel to the LFA-1 β-subunit leg is the same orientation that would be stabilized by tensile force transmitted between the ligand and the actin cytoskeleton, and is consistent with the cytoskeletal force model of integrin activation. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Structural determinant for inducing RORgamma specific inverse agonism triggered by a synthetic benzoxazinone ligand

    OpenAIRE

    Marcotte, Douglas J.; Liu, YuTing; Little, Kevin; Jones, John H.; Powell, Noel A.; Wildes, Craig P.; Silvian, Laura F.; Chodaparambil, Jayanth V.

    2016-01-01

    Background The nuclear hormone receptor ROR? regulates transcriptional genes involved in the production of the pro-inflammatory interleukin IL-17 which has been linked to autoimmune diseases such as rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease. This transcriptional activity of ROR? is modulated through a protein-protein interaction involving the activation function 2 (AF2) helix on the ligand binding domain of ROR? and a conserved LXXLL helix motif on coactivator pr...

  10. Plasminogen activator inhibitor-1 polymers, induced by inactivating amphipathic organochemical ligands

    DEFF Research Database (Denmark)

    Pedersen, Katrine E; Einholm, Anja P; Christensen, Anni

    2003-01-01

    Negatively charged organochemical inactivators of the anti-proteolytic activity of plasminogen activator inhibitor-1 (PAI-1) convert it to inactive polymers. As investigated by native gel electrophoresis, the size of the PAI-1 polymers ranged from dimers to multimers of more than 20 units...... to beta-sheet A in another molecule. Induction of serpin polymerization by small organochemical ligands is a novel finding and is of protein chemical interest in relation to pathological protein polymerization in general. Udgivelsesdato: 2003-Jun-15...

  11. Ligand-induced dynamical change of G-protein-coupled receptor revealed by neutron scattering

    Science.gov (United States)

    Shrestha, Utsab R.; Bhowmik, Debsindhu; Mamontov, Eugene; Chu, Xiang-Qiang

    Light activation of the visual G-protein-coupled receptor rhodopsin leads to the significant change in protein conformation and structural fluctuations, which further activates the cognate G-protein (transducin) and initiates the biological signaling. In this work, we studied the rhodopsin activation dynamics using state-of-the-art neutron scattering technique. Our quasi-elastic neutron scattering (QENS) results revealed a broadly distributed relaxation rate of the hydrogen atom in rhodopsin on the picosecond to nanosecond timescale (beta-relaxation region), which is crucial for the protein function. Furthermore, the application of mode-coupling theory to the QENS analysis uncovers the subtle changes in rhodopsin dynamics due to the retinal cofactor. Comparing the dynamics of the ligand-free apoprotein, opsin versus the dark-state rhodopsin, removal of the retinal cofactor increases the relaxation time in the beta-relaxation region, which is due to the possible open conformation. Moreover, we utilized the concept of free-energy landscape to explain our results for the dark-state rhodopsin and opsin dynamics, which can be further applied to other GPCR systems to interpret various dynamic behaviors in ligand-bound and ligand-free protein.

  12. Ligand-induced changes in the structure and dynamics of Escherichia coli peptide deformylase.

    Science.gov (United States)

    Amero, Carlos D; Byerly, Douglas W; McElroy, Craig A; Simmons, Amber; Foster, Mark P

    2009-08-18

    Peptide deformylase (PDF) is an enzyme that is responsible for removing the formyl group from nascently synthesized polypeptides in bacteria, attracting much attention as a potential target for novel antibacterial agents. Efforts to develop potent inhibitors of the enzyme have progressed on the basis of classical medicinal chemistry, combinatorial chemistry, and structural approaches, yet the validity of PDF as an antibacterial target hangs, in part, on the ability of inhibitors to selectively target this enzyme in favor of structurally related metallohydrolases. We have used (15)N NMR spectroscopy and isothermal titration calorimetry to investigate the high-affinity interaction of EcPDF with actinonin, a naturally occurring potent EcPDF inhibitor. Backbone amide chemical shifts, residual dipolar couplings, hydrogen-deuterium exchange, and (15)N relaxation reveal structural and dynamic effects of ligand binding in the immediate vicinity of the ligand-binding site as well as at remote sites. A comparison of the crystal structures of free and actinonin-bound EcPDF with the solution data suggests that most of the consequences of the ligand binding to the protein are lost or obscured during crystallization. The results of these studies improve our understanding of the thermodynamic global minimum and have important implications for structure-based drug design.

  13. Treatment efficacy and immune stimulation by AdCD40L gene therapy of spontaneous canine malignant melanoma.

    Science.gov (United States)

    Westberg, Sara; Sadeghi, Arian; Svensson, Emma; Segall, Thomas; Dimopoulou, Maria; Korsgren, Olle; Hemminki, Akseli; Loskog, Angelica S I; Tötterman, Thomas H; von Euler, Henrik

    2013-01-01

    Malignant melanoma is a serious disease in both humans and dogs, and the high metastatic potential results in poor prognosis for many patients. Its similarities with human melanoma make spontaneous canine melanoma an excellent model for comparative studies of novel therapies and tumor biology. We report a pilot study of local adenovector CD40L (AdCD40L) immunogene treatment in 19 cases of canine melanoma (14 oral, 4 cutaneous, and 1 conjunctival). Three patients were World Health Organization stage I, 2 were stage II, 10 stage III, and 4 stage IV. One to 6 intratumoral injections of AdCD40L were given every 7 days, followed by cytoreductive surgery in 9 cases and only immunotherapy in 10 cases. Tumor tissue was infiltrated with T and B lymphocytes after treatment, suggesting immune stimulation. The best overall response included 5 complete responses, 8 partial responses, and 4 stable and 2 progressive disease statuses according to the World Health Organization response criteria. Median survival was 160 days (range, 20-1141 d), with 3 dogs still alive at submission. Our results suggest that local AdCD40L therapy is safe and could have beneficial effects in dogs, supporting further treatment development. Clinical translation to human patients is in progress.

  14. Specific blockade by CD54 and MHC II of CD40-mediated signaling for B cell proliferation and survival

    DEFF Research Database (Denmark)

    Doyle, I S; Hollmann, C A; Crispe, I N

    2001-01-01

    Regulation of B lymphocyte proliferation is critical to maintenance of self-tolerance, and intercellular interactions are likely to signal such regulation. Here, we show that coligation of either the adhesion molecule ICAM-1/CD54 or MHC II with CD40 inhibited cell cycle progression and promoted a...

  15. Ligand-induced internalization of the type 1 cholecystokinin receptor independent of recognized signaling activity.

    Science.gov (United States)

    Cawston, Erin E; Harikumar, Kaleeckal G; Miller, Laurence J

    2012-02-01

    Receptor ligands, identified as antagonists, based on the absence of stimulation of signaling, can rarely stimulate receptor internalization. d-Tyr-Gly-[(Nle(28,31),d-Trp(30))CCK-26-32]-2-phenylethyl ester (d-Trp-OPE) is such a ligand that binds to the cholecystokinin (CCK) receptor and stimulates internalization. Here, the molecular basis of this trafficking event is explored, with the assumption that ligand binding initiates conformational change, exposing an epitope to direct endocytosis. Ligand-stimulated internalization was studied morphologically using fluorescent CCK and d-Trp-OPE. d-Trp-OPE occupation of Chinese hamster ovary cell receptors stimulated internalization into the same region as CCK. Arrestin-biased action was ruled out using morphological translocation of fluorescent arrestin 2 and arrestin 3, moving to the membrane in response to CCK, but not d-Trp-OPE. Possible roles of the carboxyl terminus were studied using truncated receptor constructs, eliminating the proline-rich distal tail, the serine/threonine-rich midregion, and the remainder to the vicinal cysteines. None of these constructs disrupted d-Trp-OPE-stimulated internalization. Possible contributions of transmembrane segments were studied using competitive inhibition with peptides that also had no effect. Intracellular regions were studied with a similar strategy using coexpressing cell lines. Peptides corresponding to ends of each loop region were studied, with only the peptide at the carboxyl end of the third loop inhibiting d-Trp-OPE-stimulated internalization but having no effect on CCK-stimulated internalization. The region contributing to this effect was refined to peptide 309-323, located below the recognized G protein-association motif. While a receptor in which this segment was deleted did internalize in response to d-Trp-OPE, it exhibited abnormal ligand binding and did not signal in response to CCK, suggesting an abnormal conformation and possible mechanism of internalization

  16. TNF-related apoptosis-inducing ligand (TRAIL) for bone sarcoma treatment: Pre-clinical and clinical data.

    Science.gov (United States)

    Gamie, Zakareya; Kapriniotis, Konstantinos; Papanikolaou, Dimitra; Haagensen, Emma; Da Conceicao Ribeiro, Ricardo; Dalgarno, Kenneth; Krippner-Heidenreich, Anja; Gerrand, Craig; Tsiridis, Eleftherios; Rankin, Kenneth Samora

    2017-11-28

    Bone sarcomas are rare, highly malignant mesenchymal tumours that affect teenagers and young adults, as well as older patients. Despite intensive, multimodal therapy, patients with bone sarcomas have poor 5-year survival, close to 50%, with lack of improvement over recent decades. TNF-related apoptosis-inducing ligand (TRAIL), a member of the tumour necrosis factor (TNF) ligand superfamily (TNFLSF), has been found to induce apoptosis in cancer cells while sparing nontransformed cells, and may therefore offer a promising new approach to treatment. We cover the existing preclinical and clinical evidence about the use of TRAIL and other death receptor agonists in bone sarcoma treatment. In vitro studies indicate that TRAIL and other death receptor agonists are generally potent against bone sarcoma cell lines. Ewing's sarcoma cell lines present the highest sensitivity, whereas osteosarcoma and chondrosarcoma cell lines are considered less sensitive. In vivo studies also demonstrate satisfactory results, especially in Ewing's sarcoma xenograft models. However, the few clinical trials in the literature show only low or moderate efficacy of TRAIL in treating bone sarcoma. Potential strategies to overcome the in vivo resistance reported include co-administration with other drugs and the potential to deliver TRAIL on the surface of primed mesenchymal or immune cells and the use of targeted single chain antibodies such as scFv-scTRAIL. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Use of CD40L immunoconjugates to overcome the defective immune response to vaccines for infections and cancer in the aged.

    Science.gov (United States)

    Tang, Yu Cheng; Thoman, Marilyn; Linton, Phyllis-Jean; Deisseroth, Albert

    2009-12-01

    :147-164, 1998; Ben-Yehuda and Weksler In: Cancer Investigation 10:525-531, 1992]. One of the more interesting examples of the functional defects in the cells of the adaptive immune response is a reduced level of expression in the surface cytoadhesion and activation receptor molecules on CD4 helper T cells undergoing activation during vaccination. Upon infection or vaccination, CD40L is typically increased on the surface of CD4 helper T cells during activation, and this increased expression is absolutely essential to the CD40L promotion of expansion of antigen-specific B cells and CD 8 effector T cells in response to infection or vaccination [Singh et al. In: Protein Sci 7:1124-1135, 1998; Grewal and Flavell In: Immunol Res 16: 59-70, 1997; Kornbluth In: J Hematother Stem Cell Res 11:787-801, 2002; Garcia de Vinuesa et al. In: Eur J Immunol 29:3216-3224, 1999]. In aged human beings and mice, the reduced levels of expression of CD40 ligand (CD40L) in activated CD4 helper T cells is dramatically reduced [Eaton et al. In: J Exp Med 200:1613-1622, 2004; Dong et al. In: J Gen Virol 84:1623-1628, 2003]. To circumvent the reduction in CD40L expression and the subsequent reduction in immune response in the elderly, we have developed a chimeric vaccine comprised of the CD40L linked to the target antigen, in a replication incompetent adenoviral vector and in booster protein. This review will discuss the implementation the potential use of this approach for the vaccination of the older populations for cancer and infection.

  18. Blockade of CD40-CD154 at the time of donor-specific blood transfusion does not lead to prolonged kidney allograft survival in nonhuman primates

    NARCIS (Netherlands)

    Ringers, J; Haanstra, KG; Kroczek, RA; Kliem, K; Kuhn, EM; Wubben, J; Ossevoort, MA; Volk, HD; Jonker, M

    2002-01-01

    Background. In rodents it has been demonstrated that blockade of the CD40-CD154 (CD40L) pathway at the time of donor-specific blood transfusion (DST) can result in indefinite graft survival. Because it has been reported in the past that DST in monkeys can have a favorable effect on graft outcome and

  19. Full domain closure of the ligand-binding core of the ionotropic glutamate receptor iGluR5 induced by the high affinity agonist dysiherbaine and the functional antagonist 8,9-dideoxyneodysiherbaine

    DEFF Research Database (Denmark)

    Frydenvang, Karla Andrea; Lash, L Leanne; Naur, Peter

    2009-01-01

    The prevailing structural model for ligand activation of ionotropic glutamate receptors posits that agonist efficacy arises from the stability and magnitude of induced domain closure in the ligand-binding core structure. Here we describe an exception to the correlation between ligand efficacy and...

  20. Fenofibrate, a peroxisome proliferator-activated receptor α ligand, prevents abnormal liver function induced by a fasting–refeeding process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joon No; Dutta, Raghbendra Kumar; Kim, Seul-Gi; Lim, Jae-Young; Kim, Se-Jin; Choe, Seong-Kyu [Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University, Iksan (Korea, Republic of); Yoo, Kyeong-Won [Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University, Iksan (Korea, Republic of); Immune-network Pioneer Research Center, Department of Biochemistry, College of Medicine, Dong-A University, Busan (Korea, Republic of); Song, Seung Ryel [Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University, Iksan (Korea, Republic of); Park, Do-Sim [Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University, Iksan (Korea, Republic of); Department of Laboratory of Medicine, School of Medicine, Wonkwang University, Iksan (Korea, Republic of); So, Hong-Seob [Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University, Iksan (Korea, Republic of); Park, Raekil, E-mail: rkpark@wku.ac.kr [Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University, Iksan (Korea, Republic of)

    2013-12-06

    Highlights: •A fasting–refeeding high fat diet (HDF) model mimics irregular eating habit. •A fasting–refeeding HFD induces liver ballooning injury. •A fasting–refeeding HDF process elicits hepatic triglyceride accumulation. •Fenofibrate, PPARα ligand, prevents liver damage induced by refeeding HFD. -- Abstract: Fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, is an anti-hyperlipidemic agent that has been widely used in the treatment of dyslipidemia. In this study, we examined the effect of fenofibrate on liver damage caused by refeeding a high-fat diet (HFD) in mice after 24 h fasting. Here, we showed that refeeding HFD after fasting causes liver damage in mice determined by liver morphology and liver cell death. A detailed analysis revealed that hepatic lipid droplet formation is enhanced and triglyceride levels in liver are increased by refeeding HFD after starvation for 24 h. Also, NF-κB is activated and consequently induces the expression of TNF-α, IL1-β, COX-2, and NOS2. However, treating with fenofibrate attenuates the liver damage and triglyceride accumulation caused by the fasting–refeeding HFD process. Fenofibrate reduces the expression of NF-κB target genes but induces genes for peroxisomal fatty acid oxidation, peroxisome biogenesis and mitochondrial fatty acid oxidation. These results strongly suggest that the treatment of fenofibrate ameliorates the liver damage induced by fasting–refeeding HFD, possibly through the activation of fatty acid oxidation.

  1. Fenofibrate, a peroxisome proliferator-activated receptor α ligand, prevents abnormal liver function induced by a fasting–refeeding process

    International Nuclear Information System (INIS)

    Lee, Joon No; Dutta, Raghbendra Kumar; Kim, Seul-Gi; Lim, Jae-Young; Kim, Se-Jin; Choe, Seong-Kyu; Yoo, Kyeong-Won; Song, Seung Ryel; Park, Do-Sim; So, Hong-Seob; Park, Raekil

    2013-01-01

    Highlights: •A fasting–refeeding high fat diet (HDF) model mimics irregular eating habit. •A fasting–refeeding HFD induces liver ballooning injury. •A fasting–refeeding HDF process elicits hepatic triglyceride accumulation. •Fenofibrate, PPARα ligand, prevents liver damage induced by refeeding HFD. -- Abstract: Fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, is an anti-hyperlipidemic agent that has been widely used in the treatment of dyslipidemia. In this study, we examined the effect of fenofibrate on liver damage caused by refeeding a high-fat diet (HFD) in mice after 24 h fasting. Here, we showed that refeeding HFD after fasting causes liver damage in mice determined by liver morphology and liver cell death. A detailed analysis revealed that hepatic lipid droplet formation is enhanced and triglyceride levels in liver are increased by refeeding HFD after starvation for 24 h. Also, NF-κB is activated and consequently induces the expression of TNF-α, IL1-β, COX-2, and NOS2. However, treating with fenofibrate attenuates the liver damage and triglyceride accumulation caused by the fasting–refeeding HFD process. Fenofibrate reduces the expression of NF-κB target genes but induces genes for peroxisomal fatty acid oxidation, peroxisome biogenesis and mitochondrial fatty acid oxidation. These results strongly suggest that the treatment of fenofibrate ameliorates the liver damage induced by fasting–refeeding HFD, possibly through the activation of fatty acid oxidation

  2. Structural determinant for inducing RORgamma specific inverse agonism triggered by a synthetic benzoxazinone ligand.

    Science.gov (United States)

    Marcotte, Douglas J; Liu, YuTing; Little, Kevin; Jones, John H; Powell, Noel A; Wildes, Craig P; Silvian, Laura F; Chodaparambil, Jayanth V

    2016-06-01

    The nuclear hormone receptor RORγ regulates transcriptional genes involved in the production of the pro-inflammatory interleukin IL-17 which has been linked to autoimmune diseases such as rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease. This transcriptional activity of RORγ is modulated through a protein-protein interaction involving the activation function 2 (AF2) helix on the ligand binding domain of RORγ and a conserved LXXLL helix motif on coactivator proteins. Our goal was to develop a RORγ specific inverse agonist that would help down regulate pro-inflammatory gene transcription by disrupting the protein protein interaction with coactivator proteins as a therapeutic agent. We identified a novel series of synthetic benzoxazinone ligands having an agonist (BIO592) and inverse agonist (BIO399) mode of action in a FRET based assay. We show that the AF2 helix of RORγ is proteolytically sensitive when inverse agonist BIO399 binds. Using x-ray crystallography we show how small modifications on the benzoxazinone agonist BIO592 trigger inverse agonism of RORγ. Using an in vivo reporter assay, we show that the inverse agonist BIO399 displayed specificity for RORγ over ROR sub-family members α and β. The synthetic benzoxazinone ligands identified in our FRET assay have an agonist (BIO592) or inverse agonist (BIO399) effect by stabilizing or destabilizing the agonist conformation of RORγ. The proteolytic sensitivity of the AF2 helix of RORγ demonstrates that it destabilizes upon BIO399 inverse agonist binding perturbing the coactivator protein binding site. Our structural investigation of the BIO592 agonist and BIO399 inverse agonist structures identified residue Met358 on RORγ as the trigger for RORγ specific inverse agonism.

  3. Phosphatidylinositol 3-kinase is essential for kit ligand-mediated survival, whereas interleukin-3 and flt3 ligand induce expression of antiapoptotic Bcl-2 family genes

    DEFF Research Database (Denmark)

    Karlsson, Richard; Engström, Maria; Jönsson, Maria

    2003-01-01

    Cytokines such as interleukin 3 (IL-3), kit ligand (KL), and flt3 ligand (FL) promote survival of hematopoietic stem cells and myeloid progenitor cells. In many cell types, members of the Bcl-2 gene family are major regulators of survival, but the mediating mechanisms are not fully understood....... Using two myeloid progenitor cell lines, FDCP-mix and FDC-P1, as well as primary mouse bone marrow progenitors, we demonstrate that KL-mediated survival is dependent on the activation of phosphatidylinositol-3 (PI-3) kinase. The inhibitor LY294002 was able to completely abolish survival mediated by KL...

  4. Nanolayered hybrid mediates synergistic co-delivery of ligand and ligation activator for inducing stem cell differentiation and tissue healing.

    Science.gov (United States)

    Kang, Heemin; Kim, Minkyu; Feng, Qian; Lin, Sien; Wei, Kongchang; Li, Rui; Choi, Chan Ju; Kim, Tae-Hyun; Li, Gang; Oh, Jae-Min; Bian, Liming

    2017-12-01

    Cellular behaviors, such as differentiation, are regulated by complex ligation processes involving cell surface receptors, which can be activated by various divalent metal cations. The design of nanoparticle for co-delivery of ligand and ligation activator can offer a novel strategy to synergistically stimulate ligation processes in vivo. Here, we present a novel layered double hydroxide (LDH)-based nanohybrid (MgFe-Ado-LDH), composed of layered MgFe hydroxide nanocarriers sandwiching the adenosine cargo molecule, maintained through an electrostatic balance, to co-deliver the adenosine (Ado) ligand from the interlayer spacing and the Mg 2+ ion (ligation activator) through the dissolution of the MgFe nanocarrier itself. Our findings demonstrate that the MgFe-Ado-LDH nanohybrid promoted osteogenic differentiation of stem cells through the synergistic activation of adenosine A2b receptor (A2bR) by the dual delivery of adenosine and Mg 2+ ions, outperforming direct supplementation of adenosine alone. Furthermore, the injection of the MgFe-Ado-LDH nanohybrid and stem cells embedded within hydrogels promoted the healing of rat tibial bone defects through the rapid formation of fully integrated neo-bone tissue through the activation of A2bR. The newly formed bone tissue displayed the key features of native bone, including calcification, mature tissue morphology, and vascularization. This study demonstrates a novel and effective strategy of bifunctional nanocarrier-mediated delivery of ligand (cargo molecule) and activation of its ligation to receptor by the nanocarrier itself for synergistically inducing stem cell differentiation and tissue healing in vivo, thus offering novel design of biomaterials for regenerative medicine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Overview of the Mechanisms that May Contribute to the Non-Redundant Activities of Interferon-Inducible CXC Chemokine Receptor 3 Ligands

    Directory of Open Access Journals (Sweden)

    Mieke Metzemaekers

    2018-01-01

    Full Text Available The inflammatory chemokines CXCL9, CXCL10, and CXCL11 are predominantly induced by interferon (IFN-γ and share an exclusive chemokine receptor named CXC chemokine receptor 3 (CXCR3. With a prototype function of directing temporal and spatial migration of activated T cells and natural killer cells, and inhibitory effects on angiogenesis, these CXCR3 ligands have been implicated in infection, acute inflammation, autoinflammation and autoimmunity, as well as in cancer. Intense former research efforts led to recent and ongoing clinical trials using CXCR3 and CXCR3 ligand targeting molecules. Scientific evidence has claimed mutual redundancy, ligand dominance, collaboration or even antagonism, depending on the (pathophysiological context. Most research on their in vivo activity, however, illustrates that CXCL9, CXCL10, and CXCL11 each contribute to the activation and trafficking of CXCR3 expressing cells in a non-redundant manner. When looking into detail, one can unravel a multistep machinery behind final CXCR3 ligand functions. Not only can specific cell types secrete individual CXCR3 interacting chemokines in response to certain stimuli, but also the receptor and glycosaminoglycan interactions, major associated intracellular pathways and susceptibility to processing by particular enzymes, among others, seem ligand-specific. Here, we overview major aspects of the molecular properties and regulatory mechanisms of IFN-induced CXCR3 ligands, and propose that their in vivo non-redundancy is a reflection of the unprecedented degree of versatility that seems inherent to the IFN-related CXCR3 chemokine system.

  6. Generation of functional CLL-specific cord blood CTL using CD40-ligated CLL APC.

    Directory of Open Access Journals (Sweden)

    William K Decker

    Full Text Available Though remissions have been observed following allo-HSCT for the treatment of CLL, many CLL patients are ineligible for transplant due to the lack of HLA-compatible donors. The use of umbilical cord blood (UCB permits transplantation of many patients who lack HLA-compatible donors due to reduced requirements for stringent HLA matching between graft and recipient; however, disease relapse remains a concern with this modality. The generation of CLL-specific CTL from UCB T-cells, primed and expanded against the leukemic clone, might enhance the GVL effect and improve outcomes with UCB transplantation. Here we report the generation of functional, CLL-specific CTL using CD40-ligated CLL cells to prime partially-HLA matched UCB T-cells. Functionality and specificity were demonstrated by immune synapse assay, IFN-γ ELISpot, multi-parametric intracellular cytokine flow cytometry, and (51Cr release assay. The use of patient-specific, non-CLL controls demonstrated the generation of both alloantigen and CLL-specific responses. Subsequently, we developed a clinically-applicable procedure permitting separation of alloreactive CTL from leukemia-specific CTL. Leukemia-specific CTL were able to mediate in vivo killing of CLL in humanized mice without concurrent or subsequent development of xenoGVHD. Our results demonstrate that generation of CLL-specific effectors from UCB is feasible and practical, and the results support further exploration of this strategy as a treatment modality for CLL.

  7. The Hemoglobin Receptor Protein of Porphyromonas gingivalis Inhibits Receptor Activator NF-κB Ligand-Induced Osteoclastogenesis from Bone Marrow Macrophages

    OpenAIRE

    Fujimura, Yuji; Hotokezaka, Hitoshi; Ohara, Naoya; Naito, Mariko; Sakai, Eiko; Yoshimura, Mamiko; Narita, Yuka; Kitaura, Hideki; Yoshida, Noriaki; Nakayama, Koji

    2006-01-01

    Extracellular proteinaceous factors of Porphyromonas gingivalis, a periodontal pathogen, that influence receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclastogenesis from bone marrow macrophages were investigated. The culture supernatant of P. gingivalis had the ability to inhibit RANKL-induced in vitro osteoclastogenesis. A major protein of the culture supernatant, hemoglobin receptor protein (HbR), suppressed RANKL-induced osteoclastogenesis in a dose-dependent f...

  8. Regulation of fibroblast growth factor-inducible 14 (Fn14) expression levels via ligand-independent lysosomal degradation.

    Science.gov (United States)

    Gurunathan, Sujatha; Winkles, Jeffrey A; Ghosh, Sankar; Hayden, Matthew S

    2014-05-09

    Fibroblast growth factor-inducible 14 (Fn14) is a highly inducible cytokine receptor that engages multiple intracellular signaling pathways, including nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK). Fn14 expression is regulated by several cytokines and growth factors, and Fn14 is transiently up-regulated after injury. In contrast, in states of chronic inflammatory disease and in some solid tumors, Fn14 is persistently up-regulated. However, the post-translational regulation of Fn14 expression has not been directly investigated. Thus, we examined Fn14 proteostasis in the presence and absence of the Fn14 ligand TNF-like weak inducer of apoptosis (TWEAK). Similar to other TNF receptor superfamily members, we found that TWEAK induces Fn14 internalization and degradation. Surprisingly, we also observed rapid, TWEAK-independent, constitutive Fn14 internalization and turnover. Fn14 levels are maintained in cell culture by ongoing synthesis and trafficking of the receptor, leading to subsequent down-regulation by lysosomal degradation. Unexpectedly, the extracellular domain of Fn14 is necessary and sufficient for constitutive turnover. Based on these findings, we propose a model in which constitutive down-regulation of Fn14 facilitates dynamic regulation of Fn14 protein levels and prevents spontaneous or inappropriate receptor signaling.

  9. Exploration of electrostatic interaction in the hydrophobic pocket of lysozyme: Importance of ligand-induced perturbation of the secondary structure on the mode of binding of exogenous ligand and possible consequences.

    Science.gov (United States)

    Panja, Sudipta; Halder, Mintu

    2016-08-01

    Exogenous ligand binding can be adequate to alter the secondary structure of biomolecules besides other external stimuli. In such cases, structural alterations can complicate on the nature of interaction with the exogenous molecules. In order to accommodate the exogenous ligand, the biomolecule has to unfold resulting in a considerable change to its properties. If the bound ligand can be unbound, the biomolecule gets the opportunity to refold back and return to its native state. Keeping this in mind, we have purposely investigated the interaction of tartrazine (TZ), a well abundant azo food colorant, with two homologous lysozymes, namely, human lysozyme (HLZ) and chicken egg white lysozyme (CEWLZ) in physiological pH condition. The binding of TZ with lysozymes has been identified to accompany a ligand-induced secondary structure alteration as indicated by the circular dichroism spectra, and the reduction of α-helical content is more with HLZ than CEWLZ. Interestingly, the binding is identified to occur in the electronic ground state of TZ with lysozyme in its hydrophobic cavity, containing excess of positive charge, predominantly via electrostatic interaction. With increase of salinity of the medium the protein tends to refold back due to wakening of electrostatic forces and consequent reduction of strength of ligand interaction and unbinding. The entropy enthalpy compensation (EEC) has been probed to understand the binding features and it is found that CEWLZ-TZ shows better compensation than HLZ-TZ complex. This is presumably due to the fact that with CEWLZ the binding does not accompany substantial change in the protein secondary structure and hence ineffective to scramble the EEC. The present study initiates the importance of ligand-perturbed structural alteration of biomolecule in controlling the thermodynamics of binding. If there is a considerable alteration of the protein secondary structure due to binding, it is indicative that such changes should bring in

  10. Association of CD40 gene polymorphisms with sporadic breast cancer in Chinese Han women of Northeast China.

    Directory of Open Access Journals (Sweden)

    Chen Shuang

    Full Text Available BACKGROUND: Breast cancer is a polygenetic disorder with a complex inheritance pattern. Single nucleotide polymorphisms (SNPs, the most common genetic variations, influence not only phenotypic traits, but also interindividual predisposition to disease, treatment outcomes with drugs and disease prognosis. The co-stimulatory molecule CD40 plays a prominent role in immune regulation and homeostasis. Accumulating evidence suggests that CD40 contributes to the pathogenesis of cancer. Here, we set out to test the association between polymorphisms in the CD40 gene and breast carcinogenesis and tumor pathology. METHODOLOGY AND PRINCIPAL FINDINGS: Four SNPs (rs1800686, rs1883832, rs4810485 and rs3765459 were genotyped by the polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP method in a case-control study including 591 breast cancer patients and 600 age-matched healthy controls. Differences in the genotypic distribution between breast cancer patients and healthy controls were analyzed by the Chi-square test for trends. Our preliminary data showed a statistically significant association between the four CD40 gene SNPs and sporadic breast cancer risk (additive P = 0.0223, 0.0012, 0.0013 and 0.0279, respectively. A strong association was also found using the dominant, recessive and homozygote comparison genetic models. In the clinical features analysis, significant associations were observed between CD40 SNPs and lymph node metastasis, human epidermal growth factor receptor 2 (C-erbB2, estrogen receptor (ER, progesterone receptor (PR and tumor protein 53 (P53 statuses. In addition, our haplotype analysis indicated that the haplotype C(rs1883832G(rs4810485, which was located within the only linkage disequilibrium (LD block identified, was a protective haplotype for breast cancer, whereas T(rs1883832T(rs4810485 increased the risk in the studied population, even after correcting the P value for multiple testing (P = 0.0337 and

  11. BIP induces mice CD19(hi) regulatory B cells producing IL-10 and highly expressing PD-L1, FasL.

    Science.gov (United States)

    Tang, Youfa; Jiang, Qing; Ou, Yanghui; Zhang, Fan; Qing, Kai; Sun, Yuanli; Lu, Wenjie; Zhu, Huifen; Gong, Feili; Lei, Ping; Shen, Guanxin

    2016-01-01

    Many studies have shown that B cells possess a regulatory function in mouse models of autoimmune diseases. Regulatory B cells can modulate immune response through many types of molecular mechanisms, including the production of IL-10 and the expression of PD-1 Ligand and Fas Ligand, but the microenvironmental factors and mechanisms that induce regulatory B cells have not been fully identified. BIP (binding immunoglobulin protein), a member of the heat shock protein 70 family, is a type of evolutionarily highly conserved protein. In this article, we have found that IL-10(+), PD-L1(hi) and FasL(hi) B cells are discrete cell populations, but enriched in CD19(hi) cells. BIP can induce IL-10-producing splenic B cells, IL-10 secretion and B cells highly expressing PD-L1 and FasL. CD40 signaling acts in synergy with BIP to induce regulatory B cells. BIP increased surface CD19 molecule expression intensity and IL-10(+), PD-L1(hi) and FasL(hi) B cells induced by BIP share the CD19(hi) phenotype. Furthermore, B cells treated with BIP and anti-CD40 can lead to suppression of T cell proliferation and the effect is partially IL-10-dependent and mainly BIP-induced. Taken together, our findings identify a novel function of BIP in the induction of regulatory B cells and add a new reason for the therapy of autoimmune disorders or other inflammatory conditions. Copyright © 2015. Published by Elsevier Ltd.

  12. A series of potent CREBBP bromodomain ligands reveals an induced-fit pocket stabilized by a cation-π interaction.

    Science.gov (United States)

    Rooney, Timothy P C; Filippakopoulos, Panagis; Fedorov, Oleg; Picaud, Sarah; Cortopassi, Wilian A; Hay, Duncan A; Martin, Sarah; Tumber, Anthony; Rogers, Catherine M; Philpott, Martin; Wang, Minghua; Thompson, Amber L; Heightman, Tom D; Pryde, David C; Cook, Andrew; Paton, Robert S; Müller, Susanne; Knapp, Stefan; Brennan, Paul E; Conway, Stuart J

    2014-06-10

    The benzoxazinone and dihydroquinoxalinone fragments were employed as novel acetyl lysine mimics in the development of CREBBP bromodomain ligands. While the benzoxazinone series showed low affinity for the CREBBP bromodomain, expansion of the dihydroquinoxalinone series resulted in the first potent inhibitors of a bromodomain outside the BET family. Structural and computational studies reveal that an internal hydrogen bond stabilizes the protein-bound conformation of the dihydroquinoxalinone series. The side chain of this series binds in an induced-fit pocket forming a cation-π interaction with R1173 of CREBBP. The most potent compound inhibits binding of CREBBP to chromatin in U2OS cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. CR4056, a new analgesic I2 ligand, is highly effective against bortezomib-induced painful neuropathy in rats

    Directory of Open Access Journals (Sweden)

    Meregalli C

    2012-06-01

    Full Text Available Cristina Meregalli,1 Cecilia Ceresa,1 Annalisa Canta,1 Valentina Alda Carozzi,1 Alessia Chiorazzi,1 Barbara Sala,1 Norberto Oggioni,1 Marco Lanza,2 Ornella Letar,i2 Flora Ferrari,2 Federica Avezza,1 Paola Marmiroli,1 GianFranco Caselli,2 Guido Cavaletti11Department of Neuroscience and Biomedical Technologies, University of Milan-Bicocca, 2Pharmacology and Toxicology Department, Rottapharm | Madaus Research Center, Monza, ItalyAbstract: Although bortezomib (BTZ is the frontline treatment for multiple myeloma, its clinical use is limited by the occurrence of painful peripheral neuropathy, whose treatment is still an unmet clinical need. Previous studies have shown chronic BTZ administration (0.20 mg/kg intravenously three times a week for 8 weeks to female Wistar rats induced a peripheral neuropathy similar to that observed in humans. In this animal model of BTZ-induced neurotoxicity, the present authors evaluated the efficacy of CR4056, a novel I2 ligand endowed with a remarkable efficacy in several animal pain models. CR4056 was administered in a wide range of doses (0.6–60 mg/kg by gavage every day for 2–3 weeks in comparison with buprenorphine (Bupre (28.8 µg/kg subcutaneously every day for 2 weeks and gabapentin (Gaba (100 mg/kg by gavage every day for 3 weeks. Chronic administration of BTZ reduced nerve conduction velocity and induced allodynia. CR4056, Bupre, or Gaba did not affect the impaired nerve conduction velocity. Conversely, CR4056 dose-dependently reversed BTZ-induced allodynia (minimum effective dose 0.6 mg/kg. The optimal dose found, 6 mg/kg, provided a constant pain relief throughout the treatment period and without rebound after suspension, being effective when coadministered with BTZ, starting before or after allodynia was established, or when administered alone after BTZ cessation. A certain degree of tolerance was seen after 7 days of administration, but only at the highest doses (20 and 60 mg/kg. Bupre was effective

  14. Co-stimulation by anti-immunoglobulin is required for B cell activation by CD40Llow T cells

    DEFF Research Database (Denmark)

    Poudrier, J; Owens, T

    1994-01-01

    cell Ag specificity by using anti-CD3/T cell receptor (TcR) monoclonal antibodies (mAb) to activate T cells. To study the role of sIg engagement in the responsiveness of B cells to T help, we pre-treated small resting B cells with soluble anti-kappa mAb prior to contact with an activated Th1 clone...... strongly. Low buoyant density B cells also responded to CD40Llow Th cells. There was no B cell response to resting Th cells. mAb against CD54/intercellular adhesion molecule-1 or major histocompatibility complex (MHC) class II completely inhibited B cell responses to CD40Llow Th1 cells, equivalent...

  15. A chemometric analysis of ligand-induced changes in intrinsic fluorescence of folate binding protein indicates a link between altered conformational structure and physico-chemical characteristics

    DEFF Research Database (Denmark)

    Bruun, Susanne W; Holm, Jan; Hansen, Steen Ingemann

    2009-01-01

    Ligand binding alters the conformational structure and physico-chemical characteristics of bovine folate binding protein (FBP). For the purpose of achieving further information we analyzed ligand (folate and methotrexate)-induced changes in the fluorescence landscape of FBP. Fluorescence excitation...... of folate accords fairly well with the disappearance of strongly hydrophobic tryptophan residues from the solvent-exposed surface of FBP. The PARAFAC has thus proven useful to establish a hitherto unexplained link between parallel changes in conformational structure and physico-chemical characteristics...... of FBP induced by folate binding. Parameters for ligand binding derived from PARAFAC analysis of the fluorescence data were qualitatively and quantitatively similar to those obtained from binding of radiofolate to FBP. Herein, methotrexate exhibited a higher affinity for FBP than in competition...

  16. Role of histamine H4 receptor ligands in bleomycin-induced pulmonary fibrosis.

    Science.gov (United States)

    Lucarini, Laura; Pini, Alessandro; Rosa, Arianna Carolina; Lanzi, Cecilia; Durante, Mariaconcetta; Chazot, Paul Louis; Krief, Stéphane; Schreeb, Annemarie; Stark, Holger; Masini, Emanuela

    2016-09-01

    Fibrosis of lung tissue is a disease where a chronic inflammatory process determines a pathological remodelling of lung parenchyma. The animal model obtained by intra-tracheal administration of bleomycin in C57BL/6 mice is one of the most validated murine model. Bleomycin stimulates oxidative stress and the production of pro-inflammatory mediators. Histamine H4R have recently been implicated in inflammation and immune diseases. This study was focused to investigate the effects of H4R ligands in the modulation of inflammation and in the reduction of lung fibrosis in C57BL/6 mice treated with bleomycin. C57BL/6 mice were treated with vehicle, JNJ7777120 (JNJ, selective H4R antagonist) or ST-1006 (partial H4R agonist), ST-994 (H4R neutral antagonist) and ST-1012 (inverse H4R agonist) at equimolar doses, released by micro-osmotic pumps for 21days. Airway resistance to inflation was assayed and lung samples were processed to measure malondialdehyde (TBARS); 8-hydroxy-2'-deoxyguanosine (8OHdG); myeloperoxidase (MPO); COX-2 expression and activity as markers of oxidative stress and inflammation. Fibrosis and airway remodelling were evaluated throughout transforming growth factor-β (TGF-β), percentage of positive Goblet cells, smooth muscle layer thickness determination. Our results indicated that JNJ, ST-994 and ST-1012 decreased inflammation and oxidative stress markers, i.e. the number of infiltrating leukocytes evaluated as lung tissue MPO, COX-2 expression and activity, TBARS and 8OHdG production. They also reduced the level of TGF-β, a pro-fibrotic cytokine, collagen deposition, thickness of smooth muscle layer, Goblet cells hyperplasia; resulting in a decrease of airway functional impairment. The results here reported clearly demonstrated that H4R ligands have a beneficial effect in a model of lung fibrosis in the mouse, thus indicating that H4R antagonists or inverse agonists could be a novel therapeutic strategy for lung inflammatory diseases. Copyright © 2016

  17. Activation of Invariant NKT cells with glycolipid ligand α-galactosylceramide ameliorates glucose-6-phosphate isomerase peptide-induced arthritis.

    Directory of Open Access Journals (Sweden)

    Masanobu Horikoshi

    Full Text Available OBJECTIVE: Invariant natural killer T (iNKT cells regulate collagen-induced arthritis (CIA when activated by their potent glycolipid ligand, alpha-galactosylceramide (α-GalCer. Glucose-6-phosphate isomerase (GPI-induced arthritis is a closer model of human rheumatoid arthritis based on its association with CD4+ T cells and cytokines such as TNF-α and IL-6 than CIA. Dominant T cell epitope peptide of GPI (GPI325-339 can induce arthritis similar to GPI-induced arthritis. In this study, we investigated the roles of activation of iNKT cells by α-GalCer in GPI peptide-induced arthritis. METHODS: Arthritis was induced in susceptible DBA1 mice with GPI peptide and its severity was assessed clinically. The arthritic mice were treated with either the vehicle (DMSO or α-GalCer. iNKT cells were detected in draining lymph nodes (dLNs by flow cytometry, while serum anti-GPI antibody levels were measured by enzyme-linked immunosorbent assay. To evaluate GPI peptide-specific cytokine production from CD4+ T cells, immunized mice were euthanized and dLN CD4+ cells were re-stimulated by GPI-peptide in the presence of antigen-presenting cells. RESULTS: α-GalCer induced iNKT cell expansion in dLNs and significantly decreased the severity of GPI peptide-induced arthritis. In α-GalCer-treated mice, anti-GPI antibody production (total IgG, IgG1, IgG2b and IL-17, IFN-γ, IL-2, and TNF-α produced by GPI peptide-specific T cells were significantly suppressed at day 10. Moreover, GPI-reactive T cells from mice immunized with GPI and α-GalCer did not generate any cytokines even when these cells were co-cultured with APC from mice immunized with GPI alone. In vitro depletion of iNKT cells did not alter the suppressive effect of α-GalCer on CD4+ T cells. CONCLUSION: α-GalCer significantly suppressed GPI peptide-induced arthritis through the suppression of GPI-specific CD4+ T cells.

  18. Astrocytes mediate HIV-1 Tat-induced neuronal damage via ligand-gated ion channel P2X7R.

    Science.gov (United States)

    Tewari, Manju; Monika; Varghse, Rebu K; Menon, Malini; Seth, Pankaj

    2015-02-01

    During human immunodeficiency virus (HIV)-1 infection, perturbations in neuron–glia interactions may culminate in neuronal damage. Recently, purinergic receptors have been implicated in the promotion of virus-induced neurotoxicity and supporting the viral life cycle at multiple stages. The astrocytes robustly express purinergic receptors. We therefore sought to examine if P2X7R, a P2X receptor subtype, can mediate HIV-1 Tat-induced neuronal apoptosis. Tat augmented the expression of P2X7R in astrocytes. Our data reveal the involvement of P2X7R in Tat-mediated release of monocyte chemoattractant protein (MCP-1) /chemokine (C-C motif) ligand 2 (CCL2) from the astrocytes. P2X7R antagonists, such as the oxidized ATP, A438079, brilliant blue G, and broad spectrum P2 receptor antagonist suramin, attenuated Tat-induced CCL2 release in a calcium- and extracellular signal-regulated kinase (ERK)1/2-dependent manner. Calcium chelators, (1,2-bis(o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid) acetoxymethyl ester and EGTA, and ERK1/2 inhibitor U0126 abolished chemokine (C-C motif) ligand 2 release from astrocytes. Furthermore, in human neuronal cultures, we demonstrated P2X7R involvement in Tat-mediated neuronal death. Importantly, in the TUNEL assay, the application of P2X7R-specific antagonists or the knockdown of P2X7R in human astrocytes reduced HIV-Tat-induced neuronal death significantly, underlining the critical role of P2X7R in Tat-mediated neurotoxicity. Our study provides novel insights into astrocyte-mediated neuropathogenesis in HIV-1 infection and a novel target for therapeutic management of neuroAIDS. We investigated the role of P2X7R in Tat-mediated neuroinflammation and neuronal damage. We proposed the following cascade for Tat-mediated CCL2 release from astrocytes: Tat mediates increase in P2X7R expression, which on activation evokes increase in intracellular calcium, which further leads to phosphorylation of ERK1/2 followed by the release of CCL2 from

  19. Andrographolide induces apoptotic and non-apoptotic death and enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in gastric cancer cells.

    Science.gov (United States)

    Lim, Sung-Chul; Jeon, Ho Jong; Kee, Keun Hong; Lee, Mi Ja; Hong, Ran; Han, Song Iy

    2017-05-01

    Andrographolide, a natural compound isolated from Andrographis paniculata , has been reported to possess antitumor activity. In the present study, the effect of andrographolide in human gastric cancer (GC) cells was investigated. Andrographolide induced cell death with apoptotic and non-apoptotic features. At a low concentration, andrographolide potentiated apoptosis and reduction of clonogenicity triggered by recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL). Exposure of GC cells to andrographolide altered the expression level of several growth-inhibiting and apoptosis-regulating proteins, including death receptors. It was demonstrated that activity of the TRAIL-R2 (DR5) pathway was critical in the development of andrographolide-mediated rhTRAIL sensitization, since its inhibition significantly reduced the extent of apoptosis induced by the combination of rhTRAIL and andrographolide. In addition, andrographolide increased reactive oxygen species (ROS) generation in a dose-dependent manner. N-acetyl cysteine prevented andrographolide-mediated DR5 induction and the apoptotic effect induced by the combination of rhTRAIL and andrographolide. Collectively, the present study demonstrated that andrographolide enhances TRAIL-induced apoptosis through induction of DR5 expression. This effect appears to involve ROS generation in GCs.

  20. Calreticulin Binds to Fas Ligand and Inhibits Neuronal Cell Apoptosis Induced by Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Beilei Chen

    2015-01-01

    Full Text Available Background. Calreticulin (CRT can bind to Fas ligand (FasL and inhibit Fas/FasL-mediated apoptosis of Jurkat T cells. However, its effect on neuronal cell apoptosis has not been investigated. Purpose. We aimed to evaluate the neuroprotective effect of CRT following ischemia-reperfusion injury (IRI. Methods. Mice underwent middle cerebral artery occlusion (MCAO and SH-SY5Y cells subjected to oxygen glucose deprivation (OGD were used as models for IRI. The CRT protein level was detected by Western blotting, and mRNA expression of CRT, caspase-3, and caspase-8 was measured by real-time PCR. Immunofluorescence was used to assess the localization of CRT and FasL. The interaction of CRT with FasL was verified by coimmunoprecipitation. SH-SY5Y cell viability was determined by MTT assay, and cell apoptosis was assessed by flow cytometry. The measurement of caspase-8 and caspase-3 activity was carried out using caspase activity assay kits. Results. After IRI, CRT was upregulated on the neuron surface and bound to FasL, leading to increased viability of OGD-exposed SH-SY5Y cells and decreased activity of caspase-8 and caspase-3. Conclusions. This study for the first time revealed that increased CRT inhibited Fas/FasL-mediated neuronal cell apoptosis during the early stage of ischemic stroke, suggesting it to be a potential protector activated soon after IRI.

  1. The serotonin transporter: Examination of the changes in transporter affinity induced by ligand binding

    International Nuclear Information System (INIS)

    Humphreys, C.J.

    1989-01-01

    The plasmalemmal serotonin transporter uses transmembrane gradients of Na + , Cl - and K + to accumulate serotonin within blood platelets. Transport is competitively inhibited by the antidepressant imipramine. Like serotonin transport, imipramine binding requires Na + . Unlike serotonin, however, imipramine does not appear to be transported. To gain insight into the mechanism of serotonin transport the author have analyzed the influences of Na + and Cl - , the two ions cotransported with serotonin, on both serotonin transport and the interaction of imipramine and other antidepressant drugs with the plasmalemmal serotonin transporter of human platelets. Additionally, the author have synthesized, purified and characterized the binding of 2-iodoimipramine to the serotonin transporter. Finally, the author have conducted a preliminary study of the inhibition of serotonin transport and imipramine binding produced by dicyclohexylcarbodiimide. My results reveal many instances of positive heterotropic cooperativity in ligand binding to the serotonin transporter. Na + binding enhances the transporters affinity for imipramine and several other antidepressant drugs, and also increases the affinity for Cl - . Cl - enhances the transporters affinity for imipramine, as well as for Na + . At concentrations in the range of its K M for transport serotonin is a competitive inhibitor of imipramine binding. At much higher concentrations, however, serotonin also inhibits imipramines dissociation rate constant. This latter effect which is Na + -independent and species specific, is apparently produced by serotonin binding at a second, low affinity site on, or near, the transporter complex. Iodoimipramine competitively inhibit both [ 3 H]imipramine binding and [ 3 H]serotonin transport

  2. Amphiphilic ligand exchange reaction-induced supercapacitor electrodes with high volumetric and scalable areal capacitances

    Science.gov (United States)

    Nam, Donghyeon; Heo, Yeongbeom; Cheong, Sanghyuk; Ko, Yongmin; Cho, Jinhan

    2018-05-01

    We introduce high-performance supercapacitor electrodes with ternary components prepared from consecutive amphiphilic ligand-exchange-based layer-by-layer (LbL) assembly among amine-functionalized multi-walled carbon nanotubes (NH2-MWCNTs) in alcohol, oleic acid-stabilized Fe3O4 nanoparticles (OA-Fe3O4 NPs) in toluene, and semiconducting polymers (PEDOT:PSS) in water. The periodic insertion of semiconducting polymers within the (OA-Fe3O4 NP/NH2-MWCNT)n multilayer-coated indium tin oxide (ITO) electrode enhanced the volumetric and areal capacitances up to 408 ± 4 F cm-3 and 8.79 ± 0.06 mF cm-2 at 5 mV s-1, respectively, allowing excellent cycling stability (98.8% of the initial capacitance after 5000 cycles) and good rate capability. These values were higher than those of the OA-Fe3O4 NP/NH2-MWCNT multilayered electrode without semiconducting polymer linkers (volumetric capacitance ∼241 ± 4 F cm-3 and areal capacitance ∼1.95 ± 0.03 mF cm-2) at the same scan rate. Furthermore, when the asymmetric supercapacitor cells (ASCs) were prepared using OA-Fe3O4 NP- and OA-MnO NP-based ternary component electrodes, they displayed high volumetric energy (0.36 mW h cm-3) and power densities (820 mW cm-3).

  3. Osteoprotegerin and tumor necrosis factor-related apoptosis-inducing ligand as prognostic factors in rheumatoid arthritis: results from the ESPOIR cohort

    NARCIS (Netherlands)

    Audo, Rachel; Daien, Claire; Papon, Laura; Lukas, Cédric; Vittecoq, Olivier; Hahne, Michael; Combe, Bernard; Morel, Jacques

    2015-01-01

    We previously reported that low ratio of osteoprotegerin (OPG) to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) was associated with Disease Activity Score in 28 joints (DAS28) remission at 6 months in patients with early rheumatoid arthritis (RA). Here, we aimed to evaluate the

  4. Iminobisphosphines to (non-)symmetrical diphosphinoamine ligands : Metal-induced synthesis of diphosphorus nickel complexes and application in ethylene oligomerisation reactions

    NARCIS (Netherlands)

    Boulens, Pierre; Lutz, Martin|info:eu-repo/dai/nl/304828971; Jeanneau, Erwann; Olivier-Bourbigou, Hélène; Reek, Joost N H; Breuil, Pierre Alain R

    2014-01-01

    We describe the synthesis of a range of novel iminobisphosphine ligands based on a sulfonamido moiety [R1SO2N=P(R 2)2-P(R3)2]. These molecules rearrange in the presence of nickel by metal-induced breakage of the P-P bond to yield symmetrical and nonsymmetrical diphosphinoamine nickel complexes of

  5. Rates and equilibrium constants of the ligand-induced conformational transition of an HCN ion channel protein domain determined by DEER spectroscopy.

    Science.gov (United States)

    Collauto, Alberto; DeBerg, Hannah A; Kaufmann, Royi; Zagotta, William N; Stoll, Stefan; Goldfarb, Daniella

    2017-06-14

    Ligand binding can induce significant conformational changes in proteins. The mechanism of this process couples equilibria associated with the ligand binding event and the conformational change. Here we show that by combining the application of W-band double electron-electron resonance (DEER) spectroscopy with microfluidic rapid freeze quench (μRFQ) it is possible to resolve these processes and obtain both equilibrium constants and reaction rates. We studied the conformational transition of the nitroxide labeled, isolated carboxy-terminal cyclic-nucleotide binding domain (CNBD) of the HCN2 ion channel upon binding of the ligand 3',5'-cyclic adenosine monophosphate (cAMP). Using model-based global analysis, the time-resolved data of the μRFQ DEER experiments directly provide fractional populations of the open and closed conformations as a function of time. We modeled the ligand-induced conformational change in the protein using a four-state model: apo/open (AO), apo/closed (AC), bound/open (BO), bound/closed (BC). These species interconvert according to AC + L ⇌ AO + L ⇌ BO ⇌ BC. By analyzing the concentration dependence of the relative contributions of the closed and open conformations at equilibrium, we estimated the equilibrium constants for the two conformational equilibria and the open-state ligand dissociation constant. Analysis of the time-resolved μRFQ DEER data gave estimates for the intrinsic rates of ligand binding and unbinding as well as the rates of the conformational change. This demonstrates that DEER can quantitatively resolve both the thermodynamics and the kinetics of ligand binding and the associated conformational change.

  6. Tumorigenesis induced by the HHV8-encoded chemokine receptor requires ligand modulation of high constitutive activity

    DEFF Research Database (Denmark)

    Holst, P J; Rosenkilde, M M; Manfra, D

    2001-01-01

    ORF74 (or KSHV-vGPCR) is a highly constitutively active G protein-coupled receptor encoded by HHV8 that is regulated both positively and negatively by endogenous chemokines. When expressed in transgenic mice, this chemokine receptor induces an angioproliferative disease closely resembling Kaposi...

  7. GABA(A)-benzodiazepine receptor complex ligands and stress-induced hyperthermia in singly housed mice.

    NARCIS (Netherlands)

    Olivier, B.; Bouwknecht, J.A.; Pattij, T.; Leahy, C.; Oorschot, R. van; Zethof, T.J.

    2002-01-01

    Stress-induced hyperthermia (SIH) in singly housed mice, in which the rectal temperature of a mouse is measured twice with a 10-min interval, enables to study the effects of a drug on the basal (T(1)) and on the stress-enhanced temperature (T(2)), 10 min later, using the rectal procedure as

  8. Effects of sigma(1) receptor ligand MS-377 on D(2) antagonists-induced behaviors.

    Science.gov (United States)

    Karasawa, Jun-ichi; Takahashi, Shinji; Takagi, Kaori; Horikomi, Kazutoshi

    2002-10-01

    (R)-(+)-1-(4-Chlorophenyl)-3-[4-(2-methoxyethyl)piperazin-1-yl]methyl-2-pyrrolidinone L-tartrate (MS-377) is a novel antipsychotic agent with selective and high affinity for sigma(1) receptor. The present study was carried out to clarify the interaction of MS-377 with dopamine D(2) receptor antagonists (D(2) antagonists) in concurrent administration, and then the involvement of sigma receptors in the interaction. The effects of MS-377 on haloperidol- or sultopride-induced inhibition of apomorphine-induced climbing behavior and catalepsy were investigated in mice and rats, respectively. In addition, the effects of (+)-SKF-10,047 and SA4503, both of which are sigma receptor agonists, and WAY-100,635, which is a 5-HT(1A) receptor antagonist, on the interaction due to the concurrent use were also investigated. MS-377 potentiated the inhibitory effects of haloperidol or sultopride on apomorphine-induced climbing behavior in a dose-dependent manner. In contrast, MS-377 did not affect the catalepsy induction by these drugs. The potentiation of the inhibitory effects of haloperidol or sultopride on apomorphine-induced climbing behavior by MS-377 was not inhibited by WAY-100,635, but was inhibited by (+)-SKF-10,047 and SA4503. These findings showed that MS-377 potentiates the efficacy of D(2) antagonists, but it does not deteriorate the adverse effect. Moreover, sigma(1) receptors are involved in this potentiation of the efficacy of D(2) antagonists by MS-377.

  9. Expression of Apoptosis Inducing-Ligands, TRAIL and Fas-L in Hydatid Cyst Germinal Layer and Normal Tissue

    Directory of Open Access Journals (Sweden)

    Adel Spotin

    2012-04-01

    Full Text Available Background & objectives: Hydaticosis is a zoonotic helminthic disease of human and other intermediated hosts in which larval stages of the tapeworm Echinococcus granulosu transfect human. The liver and lung are the host tissues for the hydatid cyst . It is unknown which mechanisms are involved in infertility of the cyst and suppression of the fertile cyst. This study was aimed to evaluate the expression of the apoptosis inducing-ligands such as TRAIL and Fas-L in germinal layer of the cyst and human normal tissue surrounding the cyst that is one of the unknown host innate immunity mechanisms against the hydatid cyst.   Methods: In this study, four isolated hydatid cysts were used which had been diagnosed in patients by radiography and parasitological examination in Mashhad Ghaem hospital. Furthermore, the germinal layer of the cyst and accompanied normal peripheral tissues were separated by scalpel in sterile conditions. After homogenization, expression of TRAIL and Fas-L genes were studied by semi-quantitive RT-PCR method.   Results: The TRAIL and Fas-L showed significant higher level expression in germinal layer of infertile cyst than the fertile cyst and host normal tissues.   Conclusion: The host tissue-induced apoptosis of germinal layer of the fertile cysts is probably one of the infertility mechanism in patients with hydaticosis

  10. Study of association of CD40-CD154 gene polymorphisms with disease susceptibility and cardiovascular risk in Spanish rheumatoid arthritis patients.

    Directory of Open Access Journals (Sweden)

    Mercedes García-Bermúdez

    Full Text Available Rheumatoid arthritis (RA is a chronic inflammatory disease associated with increased cardiovascular (CV mortality. Since CD40-CD154 binding has direct consequences on inflammation process initiation, we aimed to replicate previous findings related to disease susceptibility in Spanish RA population. Furthermore, as the major complication in RA disease patients is the development of CV events due to accelerated atherosclerosis, and elevated levels of CD40L/CD154 are present in patients with acute myocardial infarction, we assessed the potential association of CD40 and CD154/CD40L gene variants with CV risk in Spanish RA patients.One thousand five hundred and seventy-five patients fulfilling the 1987 ACR classification criteria for RA and 1600 matched controls were genotyped for the CD40 rs1883832, rs4810485 and rs1535045 and CD154 rs3092952 and rs3092920 gene polymorphisms, using predesigned TaqMan single nucleotide polymorphism genotyping assays. Afterwards, we investigated the influence of CD40-CD154 gene variants in the development of CV events. Also, in a subgroup of 273 patients without history of CV events, we assessed the influence of these polymorphisms in the risk of subclinical atherosclerosis determined by carotid ultrasonography.Nominally significant differences in the allele frequencies for the rs1883832 CD40 gene polymorphism between RA patients and controls were found (p=0.038. Although we did not observe a significant association of CD40-CD154 gene variants with the development of CV events, an ANCOVA model adjusted for sex, age at the time of the ultrasonography assessment, follow-up time, traditional CV risk factors and anti-cyclic citrullinated peptide antibodies disclosed a significant association (p=0.0047 between CD40 rs1535045 polymorphism and carotid intima media thickness, a surrogate marker of atherosclerosis.Data from our pilot study indicate a potential association of rs1883832 CD40 gene polymorphism with susceptibility

  11. The effect of a liver-X-receptor ligand on bleomycin induced pulmonary fibrosis in mice.

    Science.gov (United States)

    Shi, Ying; Chen, Qiongju; Yan, Haijun; Gu, Wei

    2016-12-01

    The liver-X-receptors have shown anti-fibrosis ability in several animal models. Our purpose was to investigate the effect of LXRs in bleomycin induced lung fibrosis in mice. Bleomycin was intratracheally delivered to mice. Some mice were administered a LXR agonist, T0901317. Then mice were evaluated for the development of lung inflammation and fibrosis. T0901317 was able to attenuate the inflammation and fibrosis induced by bleomycin. T0901317 treatment evidently abolished the high level of TGF-β1 and inhibited NF-κB DNA-binding activity in lung. So LXRs may attenuate the progressing of lung fibrosis, providing a potential treatment of IPF. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Expression of CD40 is a positive prognostic factor of diffuse large B-cell lymphoma treated with R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone

    Directory of Open Access Journals (Sweden)

    Song G

    2016-06-01

    Full Text Available Guoqi Song,1 Huiyun Ni,1 Linqing Zou,2 Shukui Wang,3 Fuliang Tian,4 Hong Liu,1 William C Cho5 1Department of Hematology, Affiliated Hospital of Nantong University, Nantong, 2Department of Human Anatomy, Nantong University, Nantong, 3Central Laboratory of Nanjing First Hospital, Nanjing Medical University, Nanjing, 4Maternal and Child Health Hospital of Lianyungang, Lianyungang, Jiangsu, People’s Republic of China; 5Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong Objectives: The objective of this study was to investigate the expression level of CD40 and its role in the prognosis of patients with diffuse large B-cell lymphoma (DLBCL who were treated with rituximab-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone.Design and methods: The immunohistochemical expressions of CD40 in 186 well-characterized DLBCL patients were evaluated by tissue microarrays, thereby revealing the relationship of the molecule CD40 with known tumor, patient-related variables, and survival rates.Results: The results showed that CD40 expressions were not statistically different between the germinal center B-cell-like (GCB type and the non-GCB type. We also analyzed the relationships of CD40 expression with overall survival (OS and progression-free survival (PFS in DLBCL patients who were uniformly treated with R-CHOP. A low expression of CD40 compared to high expression is related to poor OS and PFS. Conclusion: Our findings indicate that the CD40 level at onset acts as an independent prognostic predictor of DLBCL patients treated with R-CHOP. Keywords: CD40, diffuse large B-cell lymphoma, R-CHOP, prognostic factor

  13. Molecular dynamics simulations of ligand-induced backbone conformational changes in the binding site of the periplasmic lysine-, arginine-, ornithine-binding protein

    Science.gov (United States)

    Yang, Ami Y.-C.; Mancera, Ricardo L.

    2008-11-01

    The periplasmic lysine-, arginine-, ornithine-binding protein (LAOBP) traps its ligands by a large hinge bending movement between two globular domains. The overall geometry of the binding site remains largely unchanged between the open (unliganded) and closed (liganded) forms, with only a small number of residues exhibiting limited movement of their side chains. However, in the case of the ornithine-bound structure, the backbone peptide bond between Asp11 and Thr12 undergoes a large rotation. Molecular dynamics simulations have been used to investigate the origin and mechanism of this backbone movement. Simulations allowing flexibility of a limited region and of the whole binding site, with and without bound ligands, suggest that this conformational change is induced by the binding of ornithine, leading to the stabilisation of an energetically favourable alternative conformation.

  14. The TCR ligand-inducible expression of CD73 marks γδ lineage commitment and a metastable intermediate in effector specification

    DEFF Research Database (Denmark)

    Coffey, Francis; Lee, Sang-Yun; Buus, Terkild B

    2014-01-01

    cells, suggesting this is a common occurrence during development. Moreover, CD73 induction appears to mark a metastable intermediate stage before acquisition of effector function, suggesting that γδ lineage and effector fate are specified sequentially. These findings have important implications......Numerous studies indicate that γδ T cell receptor (γδTCR) expression alone does not reliably mark commitment of early thymic progenitors to the γδ fate. This raises the possibility that the γδTCR is unable to intrinsically specify fate and instead requires additional environmental factors......, including TCR-ligand engagement. We use single cell progenitor assays to reveal that ligand acts instructionally to direct adoption of the γδ fate. Moreover, we identify CD73 as a TCR ligand-induced cell surface protein that distinguishes γδTCR-expressing CD4(-)CD8(-) progenitors that have committed...

  15. Poncirin Induces Apoptosis in AGS Human Gastric Cancer Cells through Extrinsic Apoptotic Pathway by up-Regulation of Fas Ligand

    Directory of Open Access Journals (Sweden)

    Venu Venkatarame Gowda Saralamma

    2015-09-01

    Full Text Available Poncirin, a natural bitter flavanone glycoside abundantly present in many species of citrus fruits, has various biological benefits such as anti-oxidant, anti-microbial, anti-inflammatory and anti-cancer activities. The anti-cancer mechanism of Poncirin remains elusive to date. In this study, we investigated the anti-cancer effects of Poncirin in AGS human gastric cancer cells (gastric adenocarcinoma. The results revealed that Poncirin could inhibit the proliferation of AGS cells in a dose-dependent manner. It was observed Poncirin induced accumulation of sub-G1 DNA content, apoptotic cell population, apoptotic bodies, chromatin condensation, and DNA fragmentation in a dose-dependent manner in AGS cells. The expression of Fas Ligand (FasL protein was up-regulated dose dependently in Poncirin-treated AGS cells Moreover, Poncirin in AGS cells induced activation of Caspase-8 and -3, and subsequent cleavage of poly(ADP-ribose polymerase (PARP. Inhibitor studies’ results confirm that the induction of caspase-dependent apoptotic cell death in Poncirin-treated AGS cells was led by the Fas death receptor. Interestingly, Poncirin did not show any effect on mitochondrial membrane potential (ΔΨm, pro-apoptotic proteins (Bax and Bak and anti-apoptotic protein (Bcl-xL in AGS-treated cells followed by no activation in the mitochondrial apoptotic protein caspase-9. This result suggests that the mitochondrial-mediated pathway is not involved in Poncirin-induced cell death in gastric cancer. These findings suggest that Poncirin has a potential anti-cancer effect via extrinsic pathway-mediated apoptosis, possibly making it a strong therapeutic agent for human gastric cancer.

  16. Ligand-induced expansion of the S1' site in the anthrax toxin lethal factor

    Energy Technology Data Exchange (ETDEWEB)

    Maize, Kimberly M.; Kurbanov, Elbek K.; Johnson, Rodney L.; Amin, Elizabeth Ambrose; Finzel, Barry C. (UMM)

    2016-07-05

    The Bacillus anthracis lethal factor (LF) is one component of a tripartite exotoxin partly responsible for persistent anthrax cytotoxicity after initial bacterial infection. Inhibitors of the zinc metalloproteinase have been investigated as potential therapeutic agents, but LF is a challenging target because inhibitors lack sufficient selectivity or possess poor pharmaceutical properties. These structural studies reveal an alternate conformation of the enzyme, induced upon binding of specific inhibitors, that opens a previously unobserved deep pocket termed S1'* which might afford new opportunities to design selective inhibitors that target this subsite.

  17. Direct Correlation Between Ligand-Induced α-Synuclein Oligomers and Amyloid-like Fibril Growth

    DEFF Research Database (Denmark)

    Pedersen, Martin Nors; Foderà, Vito; Horvath, Istvan

    2015-01-01

    link to disease related degenerative activity. Fibrils formed in the presence and absence of FN075 are indistinguishable on microscopic and macroscopic levels. Using small angle X-ray scattering, we reveal that FN075 induced oligomers are similar, but not identical, to oligomers previously observed......Aggregation of proteins into amyloid deposits is the hallmark of several neurodegenerative diseases such as Alzheimer's and Parkinson's disease. The suggestion that intermediate oligomeric species may be cytotoxic has led to intensified investigations of pre-fibrillar oligomers, which...

  18. Prognostic significance of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor expression in patients with breast cancer.

    Science.gov (United States)

    Ganten, Tom M; Sykora, Jaromir; Koschny, Ronald; Batke, Emanuela; Aulmann, Sebastian; Mansmann, Ulrich; Stremmel, Wolfgang; Sinn, Hans-Peter; Walczak, Henning

    2009-10-01

    TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis upon binding to TRAIL receptors 1 and 2 (TRAIL-R1/DR4 and TRAIL-R2/DR5). TRAIL-R3 (DcR1) and TRAIL-R4 (DcR2) have no or only a truncated cytoplasmic death domain. Consequently, they cannot induce apoptosis and instead have been proposed to inhibit apoptosis induction by TRAIL. Agonists for the apoptosis-inducing TRAIL-R1 and TRAIL-R2 are currently tested in clinical trials. To determine the expression pattern of all surface-bound TRAIL receptors and their prognostic clinical value, we investigated tumour samples of 311 patients with breast cancer by immunohistochemistry. TRAIL receptor expression profiles were correlated with clinico-pathological data, disease-free survival and overall survival. TRAIL-R1 was more strongly expressed in better differentiated tumours, and correlated positively with surrogate markers of a better prognosis (hormone receptor status, Bcl-2, negative nodal status), but negatively with the expression of Her2/neu and the proliferation marker Ki67. In contrast, TRAIL-R2 and TRAIL-R4 expression correlated with higher tumour grades, higher Ki67 index, higher Her2/neu expression and a positive nodal status at the time of diagnosis, but with lower expression of Bcl-2. Thus, the TRAIL receptor expression pattern was predictive of nodal status. Patients with grade 1 and 2 tumours, who had TRAIL-R2 but no TRAIL-R1, showed a positive lymph node status in 47% of the cases. Vice versa, only 19% had a positive nodal status with high TRAIL-R1 but low TRAIL-R2. Most strikingly, TRAIL-R4 and -R2 expression negatively correlated with overall survival of breast cancer patients. Although TRAIL-R2 correlated with more aggressive tumour behaviour, mammary carcinoma could be sensitised to TRAIL-R2-induced apoptosis, suggesting that TRAIL-R2 might therefore be used to therapeutically target such tumours. Hence, determination of the TRAIL receptor expression profile may aid in defining which breast

  19. Superiority in Rhesus Macaques of Targeting HIV-1 Env gp140 to CD40 versus LOX-1 in Combination with Replication-Competent NYVAC-KC for Induction of Env-Specific Antibody and T Cell Responses.

    Science.gov (United States)

    Zurawski, Gerard; Shen, Xiaoying; Zurawski, Sandra; Tomaras, Georgia D; Montefiori, David C; Roederer, Mario; Ferrari, Guido; Lacabaratz, Christine; Klucar, Peter; Wang, Zhiqing; Foulds, Kathryn E; Kao, Shing-Fen; Yu, Xuesong; Sato, Alicia; Yates, Nicole L; LaBranche, Celia; Stanfield-Oakley, Sherry; Kibler, Karen; Jacobs, Bertram; Salazar, Andres; Self, Steve; Fulp, William; Gottardo, Raphael; Galmin, Lindsey; Weiss, Deborah; Cristillo, Anthony; Pantaleo, Giuseppe; Levy, Yves

    2017-05-01

    We compared the HIV-1-specific immune responses generated by targeting HIV-1 envelope protein (Env gp140) to either CD40 or LOX-1, two endocytic receptors on dendritic cells (DCs), in rhesus macaques primed with a poxvirus vector (NYVAC-KC) expressing Env gp140. The DC-targeting vaccines, humanized recombinant monoclonal antibodies fused to Env gp140, were administered as a boost with poly-ICLC adjuvant either alone or coadministered with the NYVAC-KC vector. All the DC-targeting vaccine administrations with poly-ICLC increased the low-level serum anti-Env IgG responses elicited by NYVAC-KC priming significantly more (up to a P value of 0.01) than in a group without poly-ICLC. The responses were robust and cross-reactive and contained antibodies specific to multiple epitopes within gp140, including the C1, C2, V1, V2, and V3, C4, C5, and gp41 immunodominant regions. The DC-targeting vaccines also elicited modest serum Env-specific IgA responses. All groups gave serum neutralization activity limited to tier 1 viruses and antibody-dependent cytotoxicity responses (ADCC) after DC-targeting boosts. Furthermore, CD4 + and CD8 + T cell responses specific to multiple Env epitopes were strongly boosted by the DC-targeting vaccines plus poly-ICLC. Together, these results indicate that prime-boost immunization via NYVAC-KC and either anti-CD40.Env gp140/poly-ICLC or anti-LOX-1.Env gp140/poly-ICLC induced balanced antibody and T cell responses against HIV-1 Env. Coadministration of NYVAC-KC with the DC-targeting vaccines increased T cell responses but had minimal effects on antibody responses except for suppressing serum IgA responses. Overall, targeting Env to CD40 gave more robust T cell and serum antibody responses with broader epitope representation and greater durability than with LOX-1. IMPORTANCE An effective vaccine to prevent HIV-1 infection does not yet exist. An approach to elicit strong protective antibody development is to direct virus protein antigens

  20. Suppression of GPI-induced arthritis by oral administration of transgenic rice seeds expressing altered peptide ligands.

    Science.gov (United States)

    Hirota, Tomoya; Tsuboi, Hiroto; Takahashi, Hiroyuki; Asashima, Hiromitsu; Ohta, Masaru; Wakasa, Yuhya; Matsumoto, Isao; Takaiwa, Fumio; Sumida, Takayuki

    2017-01-01

    To investigate the effects and mechanisms of transgenic rice seeds expressing the altered peptide ligand (APL) of human glucose-6-phosphate-isomerase (hGPI 325-339 ) in mice model of GPI induced arthritis (GIA). We generated transgenic rice expressing APL12 which was analog peptide of hGPI 325-339 . The transgenic rice seeds were orally administered prophylactically before the induction of GIA. The severity of arthritis and titers of serum anti-GPI antibodies were evaluated. We examined IL-17 production from splenocytes and inguinal lymph node (iLN) and mesenteric lymph nodes (mLN) cells and analyzed the expression levels of functional molecules from splenocytes and iLN cells. Prophylactic treatment of GIA mice with APL12 transgenic rice seeds (APL12-TG) significantly improved the severity of arthritis, histopathological arthritis scores, and decreased titers of serum anti-GPI antibodies, BAFF mRNA in iLN cells, IL-17 production in splenocytes and iLN cells compared with non-transgenic rice-treated mice. APL12-TG-treated GIA mice showed upregulation of Foxp3 and GITR protein in CD4 + CD25 + cells in the spleen. APL12-TG improved the severity of GIA through a decrease in production of IL-17 and anti-GPI antibodies via upregulation of Foxp3 and GITR expression on regulatory T cells in spleen.

  1. Crystal structure and dynamics of a lipid-induced potential desensitized-state of a pentameric ligand-gated channel

    Energy Technology Data Exchange (ETDEWEB)

    Basak, Sandip [Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, United States; Schmandt, Nicolaus [Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, United States; Gicheru, Yvonne [Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, United States; Chakrapani, Sudha [Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, United States

    2017-03-06

    Desensitization in pentameric ligand-gated ion channels plays an important role in regulating neuronal excitability. Here, we show that docosahexaenoic acid (DHA), a key ω-3 polyunsaturated fatty acid in synaptic membranes, enhances the agonist-induced transition to the desensitized state in the prokaryotic channel GLIC. We determined a 3.25 Å crystal structure of the GLIC-DHA complex in a potentially desensitized conformation. The DHA molecule is bound at the channel-periphery near the M4 helix and exerts a long-range allosteric effect on the pore across domain-interfaces. In this previously unobserved conformation, the extracellular-half of the pore-lining M2 is splayed open, reminiscent of the open conformation, while the intracellular-half is constricted, leading to a loss of both water and permeant ions. These findings, in combination with spin-labeling/EPR spectroscopic measurements in reconstituted-membranes, provide novel mechanistic details of desensitization in pentameric channels.

  2. A predictive ligand-based Bayesian model for human drug-induced liver injury.

    Science.gov (United States)

    Ekins, Sean; Williams, Antony J; Xu, Jinghai J

    2010-12-01

    Drug-induced liver injury (DILI) is one of the most important reasons for drug development failure at both preapproval and postapproval stages. There has been increased interest in developing predictive in vivo, in vitro, and in silico models to identify compounds that cause idiosyncratic hepatotoxicity. In the current study, we applied machine learning, a Bayesian modeling method with extended connectivity fingerprints and other interpretable descriptors. The model that was developed and internally validated (using a training set of 295 compounds) was then applied to a large test set relative to the training set (237 compounds) for external validation. The resulting concordance of 60%, sensitivity of 56%, and specificity of 67% were comparable to results for internal validation. The Bayesian model with extended connectivity functional class fingerprints of maximum diameter 6 (ECFC_6) and interpretable descriptors suggested several substructures that are chemically reactive and may also be important for DILI-causing compounds, e.g., ketones, diols, and α-methyl styrene type structures. Using Smiles Arbitrary Target Specification (SMARTS) filters published by several pharmaceutical companies, we evaluated whether such reactive substructures could be readily detected by any of the published filters. It was apparent that the most stringent filters used in this study, such as the Abbott alerts, which captures thiol traps and other compounds, may be of use in identifying DILI-causing compounds (sensitivity 67%). A significant outcome of the present study is that we provide predictions for many compounds that cause DILI by using the knowledge we have available from previous studies. These computational models may represent cost-effective selection criteria before in vitro or in vivo experimental studies.

  3. A naphthyl-substituted pentamethylcyclopentadienyl ligand and its Sm(II) bent-metallocene complexes with solvent-induced structure change.

    Science.gov (United States)

    Yatabe, Takeshi; Karasawa, Masaki; Isobe, Kiyoshi; Ogo, Seiji; Nakai, Hidetaka

    2012-01-14

    A naphthyl-substituted pentamethylcyclopentadienyl ligand (Cp(Naph) = η(5)-C(5)Me(4)CH(2)C(10)H(7)) and its Sm(II) complexes [Sm(Cp(Naph))(2)(THF)(x)] (1: x = 2, 2: x = 0) have been prepared and characterised. The solvent-induced reversible conversion between the di-THF solvated purple complex 1 and the un-solvated dark green complex 2 is presented.

  4. Protection of Radiation-Induced Damage to the Hematopoietic System, Small Intestine and Salivary Glands in Rats by JNJ7777120 Compound, a Histamine H4 Ligand

    OpenAIRE

    Martinel Lamas, Diego J.; Carabajal, Eliana; Prestifilippo, Juan P.; Rossi, Luis; Elverdin, Juan C.; Merani, Susana; Bergoc, Rosa M.; Rivera, Elena S.; Medina, Vanina A.

    2013-01-01

    Based on previous data on the histamine radioprotective effect on highly radiosensitive tissues, in the present work we aimed at investigating the radioprotective potential of the H4R ligand, JNJ7777120, on ionizing radiation-induced injury and genotoxic damage in small intestine, salivary glands and hematopoietic tissue. For that purpose, rats were divided into 4 groups. JNJ7777120 and JNJ7777120-irradiated groups received a daily subcutaneous JNJ7777120 injection (10 mg/kg) starting 24 h be...

  5. Effective genetic vaccination with a widely shared endogenous retroviral tumor antigen requires CD40 stimulation during tumor rejection phase.

    Science.gov (United States)

    Bronte, Vincenzo; Cingarlini, Sara; Apolloni, Elisa; Serafini, Paolo; Marigo, Ilaria; De Santo, Carmela; Macino, Beatrice; Marin, Oriano; Zanovello, Paola

    2003-12-15

    Endogenous retrovirus (ERV) products are recognized by T lymphocytes in mice and humans. As these Ags are preferentially expressed by neoplastic tissues, they might represent an ideal target for active immunization by genetic vaccination. However, i.m. inoculation of plasmid DNA encoding mouse gp70 or p15E, two products of the env gene of an endogenous murine leukemia virus, elicited a weak Ag-specific T lymphocyte response and resulted in partial protection from challenge with mouse tumors possessing these Ags. Depletion experiments showed that CD8(+), but not CD4(+), T lymphocytes were crucial for the antitumor activity of the vaccines. Systemic administration of agonistic anti-CD40 mAb increased the therapeutic potential of genetic vaccination, but only when given during the tumor rejection phase and not at the time of immunization. This effect correlated with a dramatic increase in the number of ERV-specific CD8(+) T lymphocytes. Adjuvant activity of CD40 agonists thus seems to be relevant to enhance the CD8(+) T cell-dependent response in tumor-bearing hosts, suggesting that sustaining tumor-specific T lymphocyte survival in subjects undergoing vaccination might be a key event in the successful vaccination with weak tumor Ags.

  6. Osteonecrosis of the jaw induced by receptor activator of nuclear factor-kappa B ligand (Denosumab) - Review

    Science.gov (United States)

    Brizeno, Luiz-André-Cavalcante; de Sousa, Fabrício-Bitu; Mota, Mário-Rogério-Lima; Alves, Ana-Paula-Negreiros-Nunes

    2016-01-01

    Background Denosumab, an anti-resorptive agent, IgG2 monoclonal antibody for human Receptor activator of nuclear factor-kappa B ligand (RANKL), has been related to the occurrence of osteonecrosis of the jaws. Thus, the aim of this study was to review the literature from clinical case reports, regarding the type of patient and the therapeutic approach used for osteonecrosis of the jaws induced by chronic use of Denosumab. Material and Methods For this, a literature review was performed on PubMed, Medline and Cochrane databases, using the keywords “Denosumab” “anti-RANK ligand” and “Osteonecrosis of jaw”. To be included, articles should be a report or a serie of clinical cases, describing patients aged 18 years or over who used denosumab therapy and have received any therapy for ONJ. Results Thirteen complete articles were selected for this review, totaling 17 clinical cases. The majority of ONJ cases, patients receiving Denosumab as treatment for osteoporosis and prostate cancer therapy. In most cases, patients affected by ONJ were women aged 60 or over and posterior mandible area was the main site of involvement. Diabetes pre-treatment with bisphosphonates and exodontia were the most often risk factors related to the occurrence of this condition. It is concluded that the highest number of ONJ cases caused by the use of anti-RANKL agents occurred in female patients, aged 60 years or older, under treatment for osteoporosis and cancer metastasis, and the most affected region was the mandible posterior. Conclusions The results presented in this article are valid tool supporting the non-invasive mapping of facial vascularization. Key words:Denosumab, osteonecrosis, adverse effects, osteoporosis, antineoplastic protocols. PMID:26827069

  7. Helicobacter pylori enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in human gastric epithelial cells

    Science.gov (United States)

    Wu, Yi-Ying; Tsai, Hwei-Fang; Lin, We-Cheng; Chou, Ai-Hsiang; Chen, Hui-Ting; Yang, Jyh-Chin; Hsu, Ping-I; Hsu, Ping-Ning

    2004-01-01

    AIM: To investigate the relations between tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Helicobacter pylori (H pylori) infection in apoptosis of gastric epithelial cells and to assess the expression of TRAIL on the surface of infiltrating T-cells in H pylori-infected gastric mucosa. METHODS: Human gastric epithelial cell lines and primary gastric epithelial cells were co-cultured with H pylori in vitro, then recombinant TRAIL proteins were added to the culture. Apoptosis of gastric epithelial cells was determined by a specific ELISA for cell death. Infiltrating lymphocytes were isolated from H pylori-infected gastric mucosa, and expression of TRAIL in T cells was analyzed by flow cytometry. RESULTS: The apoptosis of gastric epithelial cell lines and primary human gastric epithelial cells was mildly increased by interaction with either TRAIL or H pylori alone. Interestingly, the apoptotic indices were markedly elevated when gastric epithelial cells were incubated with both TRAIL and H pylori (Control vs TRAIL and H pylori: 0.51 ± 0.06 vs 2.29 ± 0.27, P = 0.018). A soluble TRAIL receptor (DR4-Fc) could specifically block the TRAIL-mediated apoptosis. Further studies demonstrated that infiltrating T-cells in gastric mucosa expressed TRAIL on their surfaces, and the induction of TRAIL sensitivity by H pylori was dependent upon direct cell contact of viable bacteria, but not CagA and VacA of H pylori. CONCLUSION: H pylori can sensitize human gastric epithelial cells and enhance susceptibility to TRAIL-mediated apoptosis. Modulation of host cell sensitivity to apoptosis by bacterial interaction adds a new dimension to the immunopathogenesis of H pylori infection. PMID:15285015

  8. Expression of osteoprotegerin, receptor activator of nuclear factor kappa-B ligand, tumor necrosis factor-related apoptosis-inducing ligand, stromal cell-derived factor-1 and their receptors in epithelial metastatic breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Labovsky Vivian

    2012-06-01

    Full Text Available Abstract Background While breast cancer (BC is the major cause of death among women worldwide, there is no guarantee of better patient survival because many of these patients develop primarily metastases, despite efforts to detect it in its early stages. Bone metastasis is a common complication that occurs in 65-80 % of patients with disseminated disease, but the molecular basis underlying dormancy, dissemination and establishment of metastasis is not understood. Our objective has been to evaluate simultaneously osteoprotegerin (OPG, receptor activator of nuclear factor kappa B ligand (RANKL, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL, stromal cell-derived factor-1 (SDF-1, and their receptors (R in 2 human BC cell lines, MDA-MB-231 and MCF-7. Methods OPG, RANKL, TRAIL and SDF-1 expression and release, in addition to the expression of their receptors has been investigated using immunofluorescence, immunocytochemistry and ELISA analyses. Results MCF-7 cells released higher levels of OPG in conditioned media (CM than MDA-MB-231 cells; 100 % of both types of cell expressed OPG, RANKL, TRAIL and SDF-1. Moreover, 100 % in both lines expressed membrane RANKL and RANK, whereas only 50 % expressed CXCR4. Furthermore, 100 % expressed TRAIL-R1 and R4, 30-50 % TRAIL-R2, and 40-55 % TRAIL-R3. Conclusions MCF-7 and MDA-MB-231 cells not only released OPG, but expressed RANKL, TRAIL and SDF-1. The majority of the cells also expressed RANK, CXCR4 and TRAIL-R. Since these ligands and their receptors are implicated in the regulation of proliferation, survival, migration and future bone metastasis during breast tumor progression, assessment of these molecules in tumor biopsies of BC patients could be useful in identifying patients with more aggressive tumors that are also at risk of bone metastasis, which may thus improve the available options for therapeutic intervention.

  9. Tumor Therapeutics Work as Stress Inducers to Enhance Tumor Sensitivity to Natural Killer (NK) Cell Cytolysis by Up-regulating NKp30 Ligand B7-H6.

    Science.gov (United States)

    Cao, Guoshuai; Wang, Jian; Zheng, Xiaodong; Wei, Haiming; Tian, Zhigang; Sun, Rui

    2015-12-11

    Immune cells are believed to participate in initiating anti-tumor effects during regular tumor therapy such as chemotherapy, radiation, hyperthermia, and cytokine injection. One of the mechanisms underlying this process is the expression of so-called stress-inducible immunostimulating ligands. Although the activating receptor NKG2D has been proven to play roles in tumor therapy through targeting its ligands, the role of NKp30, another key activating receptor, is seldom addressed. In this study, we found that the NKp30 ligand B7-H6 was widely expressed in tumor cells and closely correlated to their susceptibility to NK cell lysis. Further studies showed that treatment of tumor cells with almost all standard tumor therapeutics, including chemotherapy (cisplatin, 5-fluorouracil), radiation therapy, non-lethal heat shock, and cytokine therapy (TNF-α), could up-regulate the expression of B7-H6 in tumor cells and enhance tumor sensitivity to NK cell cytolysis. B7-H6 shRNA treatment effectively dampened sensitization of tumor cells to NK-mediated lysis. Our study not only reveals the possibility that tumor therapeutics work as stress inducers to enhance tumor sensitivity to NK cell cytolysis but also suggests that B7-H6 could be a potential target for tumor therapy in the future. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Ligand-induced structural changes in TEM-1 probed by molecular dynamics and relative binding free energy calculations.

    Science.gov (United States)

    Pimenta, A C; Martins, J M; Fernandes, R; Moreira, I S

    2013-10-28

    The TEM family of enzymes has had a crucial impact on the pharmaceutical industry due to their important role in antibiotic resistance. Even with the latest technologies in structural biology and genomics, no 3D structure of a TEM-1/antibiotic complex is known previous to acylation. Therefore, the comprehension of their capability in acylate antibiotics is based on the protein macromolecular structure uncomplexed. In this work, molecular docking, molecular dynamic simulations, and relative free energy calculations were applied in order to get a comprehensive and thorough analysis of TEM-1/ampicillin and TEM-1/amoxicillin complexes. We described the complexes and analyzed the effect of ligand binding on the overall structure. We clearly demonstrate that the key residues involved in the stability of the ligand (hot-spots) vary with the nature of the ligand. Structural effects such as (i) the distances between interfacial residues (Ser70-Oγ and Lys73-Nζ, Lys73-Nζ and Ser130-Oγ, and Ser70-Oγ-Ser130-Oγ), (ii) side chain rotamer variation (Tyr105 and Glu240), and (iii) the presence of conserved waters can be also influenced by ligand binding. This study supports the hypothesis that TEM-1 suffers structural modifications upon ligand binding.

  11. X irradiation combined with TNF alpha-related apoptosis-inducing ligand (TRAIL) reduces hypoxic regions of human gastric adenocarcinoma xenografts in SCID mice

    International Nuclear Information System (INIS)

    Takahashi, Momoko; Yasui, Hironobu; Ogura, Aki; Asanuma, Taketoshi; Inanami, Osamu; Kubota, Nobuo; Tsujitani, Michihiko; Kuwabara, Mikinori

    2008-01-01

    Our previous study showed that X irradiation induced the expression of death receptor DR5 on the cell surface in tumor cell lines under not only normoxia but also hypoxia. X irradiation combined with TNF α-related apoptosis-inducing ligand (TRAIL), which is the ligand of DR5, induced apoptosis in vitro (Takahashi et al., (2007) Journal of Radiation Research, 48: 461-468). In this report, we examined the in vivo antitumor efficacy of X irradiation combined with TRAIL treatment in tumor xenograft models derived from human gastric adenocarcinoma MKN45 and MKN28 cells in severe combined immunodeficiency (SCID) mice. X irradiation combined with TRAIL synergistically suppressed the tumor growth rates in the xenograft models derived from MKN45 and MKN28 cells, which have wild type Tp53 and mutated Tp53, respectively, indicating that the antitumor effects occurred in a Tp53-independent manner. Histological analysis showed that the combination of X irradiation and TRAIL induced caspase-3-dependent apoptotic cell death. Moreover, the immunohistochemical detection of hypoxic regions using the hypoxic marker pimonidazole revealed that caspase-3-dependent apoptosis occurred in the hypoxic regions in the tumors. These results indicated that X irradiation combined with TRAIL may be a useful treatment to reduce tumor growth in not only normoxic but also hypoxic regions. (author)

  12. Field-Induced Co(II) Single-Ion Magnets with mer-Directing Ligands but Ambiguous Coordination Geometry.

    Science.gov (United States)

    Peng, Yan; Mereacre, Valeriu; Anson, Christopher E; Zhang, Yiquan; Bodenstein, Tilmann; Fink, Karin; Powell, Annie K

    2017-06-05

    Three air-stable Co(II) mononuclear complexes with different aromatic substituents have been prepared and structurally characterized by single-crystal X-ray diffraction. The mononuclear complexes [Co(H 2 L1) 2 ]·2THF (1), [Co(HL2) 2 ] (2), and [Co(H 2 L3) 2 ]·CH 2 Cl 2 (3) (where H 3 L1, H 2 L2, and H 3 L3 represent 3-hydroxy-naphthalene-2-carboxylic acid (6-hydroxymethyl-pyridin-2-ylmethylene) hydrazide, nicotinic acid (6-hydroxymethyl-pyridin-2-ylmethylene) hydrazide, and 2-hydroxy-benzoic acid (6-hydroxymethyl-pyridin-2-ylmethylene) hydrazide, respectively) feature a distorted mer octahedral coordination geometry. Detailed magnetic studies of 1-3 have been conducted using direct and alternating current magnetic susceptibility data. Field-induced slow magnetic relaxation was observed for these three complexes. There are few examples of such behavior in (distorted) octahedral coordination geometry (OC) Co(II) mononuclear complexes with uniaxial anisotropy. Analysis of the six-coordinate Co(II) mononuclear single-ion magnets (SIMs) in the literature using the SHAPE program revealed that they all show what is best described as distorted trigonal prismatic (TRP) coordination geometry, and in general, these show negative D zero-field splitting (ZFS) values. On the other hand, all the Co(II) mononuclear complexes displaying what is best approximated as distorted octahedral (OC) coordination geometry show positive D values. In the new Co(II) mononuclear complexes we describe here, there is an ambiguity, since the rigid tridentate ligands confer what is best described for an octahedral complex as a mer coordination geometry, but the actual shape of the first coordination sphere is between octahedral and trigonal prismatic. The negative D values observed experimentally and supported by high-level electronic structure calculations are thus in line with a trigonal prismatic geometry. However, a consideration of the rhombicity as indicated by the E value of the ZFS in

  13. The role of chemokine ligand 16 in high salt induced myocardial remodeling in salt sensitive hypertensive rats

    Directory of Open Access Journals (Sweden)

    Mei-li LIU

    2015-11-01

    Full Text Available Objective To investigate the effects of chemokine ligand 16 (CXCL16 in high salt induced myocardial remodeling in salt sensitive hypertensive rats. Methods Sixty-four Dahl salt sensitive (Dahl-SS rats were randomly divided into normal salt (NS, 0.3% NaCl and high salt (HS, 8.0% NaCl group, 32 rats for each group. Blood pressure was measured by tail-cuff method every week. Hearts were harvested and the expression of CXCL16 in heart tissues was detected by Western blotting at the 2nd, 4th, 6th and 8th week after NS or HS feeding. Immunofluorescence double staining was used to detect the colocalization of CXCL16 with both cardiomyocytes and cardiac fibroblasts. Immunofluorescence and immunohistochemical staining were used to detect the expression of CXCL16 and the biomarker of macrophage in the myocardial tissue after 6 week and 8 week of NS or HS feeding. Myocardial fibrosis was evaluated by HE and Masson trichrome staining. Results Compared with that in NS group, the systolic pressure and diastolic pressure in HS group increased significantly after 1 week of HS feeding (147.10±3.67mmHg vs128.57±6.32mmHg, P<0.01 and 110.86±4.24mmHg vs90.69±4.51mmHg, P<0.01, respectively. HS feeding significantly increased the myocardial CXCL16 expression in rats of HS group at the 6th week (1.18±0.05 vs0.58±0.02, P<0.05, and the expression of CXCL16 was further up-regulated at the 8th week (1.43±0.06 vs0.67±0.03, P<0.05. At the 8th week, obvious fibrosis remodeling and macrophage infiltration appeared in the myocardial tissue of the rats in HS group. Conclusion High salt intervention could up-regulate the expression of CXCL16 in salt sensitive hypertensive myocardial remodeling, which may promote macrophage infiltration and participate in the pathological process of myocardial fibrosis accordingly. DOI: 10.11855/j.issn.0577-7402.2015.11.04

  14. Chronic lymphocytic leukemia cells acquire regulatory B-cell properties in response to TLR9 and CD40 activation.

    Science.gov (United States)

    Ringelstein-Harlev, Shimrit; Avivi, Irit; Fanadka, Mona; Horowitz, Netanel A; Katz, Tami

    2018-02-15

    Circulating chronic lymphocytic leukemia (CLL) cells share phenotypic features with certain subsets of regulatory B-cells (Bregs). The latter cells have been reported to negatively regulate immune cell responses, mostly by provision of IL-10. The purpose of the current study was to identify and delineate Breg properties of CLL cells. B-cells and T-cells were obtained from the peripheral blood of untreated CLL patients diagnosed according to the 2008 Guidelines of the International Workshop on Chronic Lymphocytic Leukemia. Co-culture assays were used to examine the ability of CLL cells to suppress autologous T-cell immune responses. IL-10 potency of CLL cells was assessed following stimulation with activators of the toll-like receptor 9 (TLR9) or CD40 and was correlated with the inhibitory activity of the cells. TLR9-activated CLL cells were found to increase the frequency of CD4 + CD25 hi FOXp3 + regulatory T-cells (Tregs) and to inhibit autologous CD4 + T-cell proliferation. This signaling cascade proved to control IL-10 generation in CLL cells, which in turn promoted the inhibition of T-cell proliferation by CLL cells. However, CD40 activation of CLL cells, while exhibiting a similar ability to augment Treg frequency, did not either affect IL-10 generation or T-cell proliferation. In conclusion, CLL cells demonstrate a unique clonal quality of adopting Breg properties which promote modulation of T-cell characteristics. TLR9 appears to be a potent activator of regulatory abilities in CLL cells, possibly contributing to preferential immune escape of TLR9-responsive cells.

  15. Modulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis by Helicobacter pylori in immune pathogenesis of gastric mucosal damage.

    Science.gov (United States)

    Tsai, Hwei-Fang; Hsu, Ping-Ning

    2017-02-01

    Helicobacter pylori infection is associated with chronic gastritis, peptic ulcer, gastric carcinoma, and gastric mucosa-associated lymphoid tissue lymphomas. Apoptosis induced by microbial infections is implicated in the pathogenesis of H. pylori infection. Enhanced gastric epithelial cell apoptosis during H. pylori infection was suggested to play an important role in the pathogenesis of chronic gastritis and gastric pathology. In addition to directly triggering apoptosis, H. pylori induces sensitivity to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in gastric epithelial cells. Human gastric epithelial cells sensitized to H. pylori confer susceptibility to TRAIL-mediated apoptosis via modulation of death-receptor signaling. The induction of TRAIL sensitivity by H. pylori is dependent upon the activation of caspase-8 and its downstream pathway. H. pylori induces caspase-8 activation via enhanced assembly of the TRAIL death-inducing signaling complex through downregulation of cellular FLICE-inhibitory protein. Moreover, H. pylori infection induces infiltration of T lymphocytes and triggers inflammation to augment apoptosis. In H. pylori infection, significant increases in CCR6 + CD3 + T cell infiltration in the gastric mucosa was observed, and the CCR6 ligand, CCL20 chemokine, was selectively expressed in inflamed gastric tissues. These mechanisms initiate chemokine-mediated T lymphocyte trafficking into inflamed epithelium and induce mucosal injury during Helicobacter infection. This article will review recent findings on the interactions of H. pylori with host-epithelial signaling pathways and events involved in the initiation of gastric pathology, including gastric inflammation and mucosal damage. Copyright © 2016. Published by Elsevier B.V.

  16. Epicutaneous immunization with protein antigen TNP-Ig and NOD2 ligand muramyl dipeptide (MDP) reverses skin-induced suppression of contact hypersensitivity.

    Science.gov (United States)

    Majewska-Szczepanik, Monika; Dorożyńska, Iwona; Strzępa, Anna; Szczepanik, Marian

    2014-02-01

    Epicutaneous (EC) immunization offers a new method of a needle-free and self-administrable immunization by using a topically applied patch to deliver vaccine. We have previously shown that EC immunization with hapten-conjugated protein antigen TNP-Ig prior to hapten sensitization inhibits Th1-mediated contact hypersensitivity (CHS) in mice. Our further work showed that EC immunization with TNP-Ig and Toll-like receptor (TLR) ligands prior to hapten sensitization reverses skin-induced suppression. Animal model of contact hypersensitivity was used to study reversal of skin-induced suppression. Current work showed that EC immunization with protein antigen TNP-Ig and MDP NOD2 agonist - muramyldipeptide (L isoform) reverses skin-induced suppression of CHS. On the other hand L18-MDP NOD2 agonist - muramyldipeptide with a C18 fatty acid chain and MDP control - negative control for MDP - muramyldipeptide (D isoform, inactive) did not reverse skin-induced suppression. "Transfer in" experiment showed that reversal of skin-induced suppression can be adoptively transferred with lymphoid cells isolated from donors EC treated with TNP-Ig and MDP NOD2 agonist. Moreover, experiment employing two non-cross-reacting antigens TNP-Ig and OX-Ig proved that reversal of skin-induced suppression is antigen specific. Additionally, lymph node cells isolated from mice EC immunized with TNP-Ig and MDP NOD2 agonist produced increased level of IFN-γ suggesting that this cytokine might be involved in reversal of skin-induced suppression. This work shows that EC immunization with protein antigen plus NOD2 ligand MDP may be a potential tool to increase the immunogenicity of weekly immunogenic antigens. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  17. Ligand-induced association of surface immunoglobulin with the detergent insoluble cytoskeleton may involve an 89K protein

    International Nuclear Information System (INIS)

    Gupta, S.K.; Woda, B.

    1986-01-01

    Membrane immunoglobulin of B-lymphocytes is thought to play an important role in antigen recognition and cellular activation. Binding of cross-linking ligands to surface immunoglobulin (SIg) on intact cells converts it to a detergent insoluble state, and this conversion is associated with the transmission of a mitogenic signal. Insolubilized membrane proteins may be solubilized by incubating the detergent insoluble cytoskeletons in buffers which convert F-actin to G-actin [(Buffer 1), 0.34M sucrose, 0.5mM ATP, 0.5mM Dithiothrietol and lmM EDTA]. Immunoprecipitation of SIg from the detergent soluble fraction of 35 S-methionine labeled non ligand treated rat B-cells results in the co-isolation of an 89K protein and a 44K protein, presumably actin. The 89K protein is not associated with the fraction of endogenous detergent insoluble SIg. On treatment of rat B cells with cross-linking ligand (anti-Ig) the 89K protein becomes detergent insoluble along with most of the SIg and co-isolates with SIg on immunoprecipitation of the detergent insoluble, buffer l solubilized fraction. The migration of the SIg-associated 89K protein from the detergent soluble fraction to the detergent insoluble fraction after ligand treatment, suggests that this protein might be involved in linking SIg to the underlying cytoskeleton and could be involved in the transmission of a mitogenic signal

  18. DEPENDENCE OF PPAR LIGAND-INDUCED MAPK SIGNALING ON EPIDERMAL GROWTH FACTOR RECEPTOR TRANSACTIVATION HEPARIN-BINDING EGF CLEAVAGE MEDIATES ZINC-INDUCED EGF RECEPTOR PHOSPHORYLATION

    Science.gov (United States)

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that function as ligand-activated transcription factors regulating lipid metabolism and homeostasis. In addition to their ability to regulate PPAR-mediated gene transcription, PPARalpha and gamma li...

  19. Hydrogen and copper ion induced molecular reorganizations in two new scorpiand-like ligands appended with pyridine rings.

    Science.gov (United States)

    Blasco, Salvador; Verdejo, Begoña; Clares, M Paz; Castillo, Carmen E; Algarra, Andrés G; Latorre, Julio; Máñez, M Angeles; Basallote, Manuel G; Soriano, Conxa; García-España, Enrique

    2010-08-02

    The synthesis of two new ligands constituted of a tris(2-aminoethyl)amine moiety linked to the 2,6 positions of a pyridine spacer through methylene groups in which the hanging arm is further functionalized with a 2-pycolyl (L1) or 3-pycolyl (L2) group is presented. The protonation of L1 and L2 and formation of Cu(2+) complexes have been studied using potentiometric, NMR, X-ray, and kinetic experiments. The results provide new information about the relevance of molecular movements in the chemistry of this kind of so-called scorpiand ligand. The comparison between these two ligands that only differ in the position of the substituent at the arm reveals important differences in both thermodynamic and kinetic properties. The Cu(2+) complex with L1 is several orders of magnitude more stable than that with L2, surely because in the latter case the pyridine nitrogen at the pendant arm is unable to coordinate to the metal ion with the ligand acting as hexadentate, a possibility that occurs in the case of [CuL1](2+), as demonstrated by its crystal structure. Significant differences are also found between both ligands in the kinetic studies of complex formation and decomposition. For L1, those processes occur in a single kinetic step, whereas for L2 they occur with the formation of a detectable reaction intermediate whose structure corresponds to that resulting from the movement typical of scorpiands. Another interesting conclusion derived from kinetic studies on complex formation is that the reactive form of the ligand is H(3)L(3+) for L1 and H(2)L(2+) for L2. DFT calculations are also reported, and they allow a rationalization of the kinetic results relative to the reactive forms of the ligands in the process of complex formation. In addition, they provide a full picture of the mechanistic pathway leading to the formation of the first Cu-N bond, including outer-sphere complexation, water dissociation, and reorganization of the outer-sphere complex.

  20. Effects of sigma(1) receptor ligand, MS-377 on apomorphine- or phencyclidine-induced disruption of prepulse inhibition of acoustic startle in rats.

    Science.gov (United States)

    Yamada, S; Yamauchi, K; Hisatomi, S; Annoh, N; Tanaka, M

    2000-08-25

    To evaluate the antipsychotic property of a sigma(1) receptor ligand, (R)-(+)-1-(4-chlorophenyl)-3-¿4-(2-methoxyethyl)piperazin-1-yl¿ methyl-2-pyrrolidinone-L-tartrate (MS-377), an antagonistic effect of MS-377 on the disruption of prepulse inhibition (PPI) of the acoustic startle by apomorphine or phencyclidine (PCP) was investigated in rats. MS-377 antagonized the PCP-induced disruption of PPI. The ED(50) value of MS-377 for this effect was 0.66 mg/kg. In contrast, apomorphine-induced disruption of PPI was not attenuated by MS-377. These data indicate that the PCP-induced disruption of PPI in rats would be, at least partially, mediated by sigma receptors and MS-377 could be a novel anti-psychotic agent with clinical efficacy for the sensorimotor-gating deficit in schizophrenia.

  1. CD40L-adjuvanted DNA/modified vaccinia virus Ankara simian immunodeficiency virus SIV239 vaccine enhances SIV-specific humoral and cellular immunity and improves protection against a heterologous SIVE660 mucosal challenge.

    Science.gov (United States)

    Kwa, Suefen; Lai, Lilin; Gangadhara, Sailaja; Siddiqui, Mariam; Pillai, Vinod B; Labranche, Celia; Yu, Tianwei; Moss, Bernard; Montefiori, David C; Robinson, Harriet L; Kozlowski, Pamela A; Amara, Rama Rao

    2014-09-01

    It remains a challenge to develop a successful human immunodeficiency virus (HIV) vaccine that is capable of preventing infection. Here, we utilized the benefits of CD40L, a costimulatory molecule that can stimulate both dendritic cells (DCs) and B cells, as an adjuvant for our simian immunodeficiency virus (SIV) DNA vaccine in rhesus macaques. We coexpressed the CD40L with our DNA/SIV vaccine such that the CD40L is anchored on the membrane of SIV virus-like particle (VLP). These CD40L containing SIV VLPs showed enhanced activation of DCs in vitro. We then tested the potential of DNA/SIV-CD40L vaccine to adjuvant the DNA prime of a DNA/modified vaccinia virus Ankara (MVA) vaccine in rhesus macaques. Our results demonstrated that the CD40L adjuvant enhanced the functional quality of anti-Env antibody response and breadth of anti-SIV CD8 and CD4 T cell responses, significantly delayed the acquisition of heterologous mucosal SIV infection, and improved viral control. Notably, the CD40L adjuvant enhanced the control of viral replication in the gut at the site of challenge that was associated with lower mucosal CD8 immune activation, one of the strong predictors of disease progression. Collectively, our results highlight the benefits of CD40L adjuvant for enhancing antiviral humoral and cellular immunity, leading to enhanced protection against a pathogenic SIV. A single adjuvant that enhances both humoral and cellular immunity is rare and thus underlines the importance and practicality of CD40L as an adjuvant for vaccines against infectious diseases, including HIV-1. Despite many advances in the field of AIDS research, an effective AIDS vaccine that can prevent infection remains elusive. CD40L is a key stimulator of dendritic cells and B cells and can therefore enhance T cell and antibody responses, but its overly potent nature can lead to adverse effects unless used in small doses. In order to modulate local expression of CD40L at relatively lower levels, we expressed

  2. Recent advances in the molecular mechanisms determining tissue sensitivity to glucocorticoids: novel mutations, circadian rhythm and ligand-induced repression of the human glucocorticoid receptor

    Science.gov (United States)

    2014-01-01

    Glucocorticoids are pleiotropic hormones, which are involved in almost every cellular, molecular and physiologic network of the organism, and regulate a broad spectrum of physiologic functions essential for life. The cellular response to glucocorticoids displays profound variability both in magnitude and in specificity of action. Tissue sensitivity to glucocorticoids differs among individuals, within tissues of the same individual and within the same cell. The actions of glucocorticoids are mediated by the glucocorticoid receptor, a ubiquitously expressed intracellular, ligand-dependent transcription factor. Multiple mechanisms, such as pre-receptor ligand metabolism, receptor isoform expression, and receptor-, tissue-, and cell type-specific factors, exist to generate diversity as well as specificity in the response to glucocorticoids. Alterations in the molecular mechanisms of glucocorticoid receptor action impair glucocorticoid signal transduction and alter tissue sensitivity to glucocorticoids. This review summarizes the recent advances in our understanding of the molecular mechanisms determining tissue sensitivity to glucocorticoids with particular emphasis on novel mutations and new information on the circadian rhythm and ligand-induced repression of the glucocorticoid receptor. PMID:25155432

  3. Recent advances in the molecular mechanisms determining tissue sensitivity to glucocorticoids: novel mutations, circadian rhythm and ligand-induced repression of the human glucocorticoid receptor.

    Science.gov (United States)

    Nicolaides, Nicolas C; Charmandari, Evangelia; Chrousos, George P; Kino, Tomoshige

    2014-08-25

    Glucocorticoids are pleiotropic hormones, which are involved in almost every cellular, molecular and physiologic network of the organism, and regulate a broad spectrum of physiologic functions essential for life. The cellular response to glucocorticoids displays profound variability both in magnitude and in specificity of action. Tissue sensitivity to glucocorticoids differs among individuals, within tissues of the same individual and within the same cell. The actions of glucocorticoids are mediated by the glucocorticoid receptor, a ubiquitously expressed intracellular, ligand-dependent transcription factor. Multiple mechanisms, such as pre-receptor ligand metabolism, receptor isoform expression, and receptor-, tissue-, and cell type-specific factors, exist to generate diversity as well as specificity in the response to glucocorticoids. Alterations in the molecular mechanisms of glucocorticoid receptor action impair glucocorticoid signal transduction and alter tissue sensitivity to glucocorticoids. This review summarizes the recent advances in our understanding of the molecular mechanisms determining tissue sensitivity to glucocorticoids with particular emphasis on novel mutations and new information on the circadian rhythm and ligand-induced repression of the glucocorticoid receptor.

  4. Neurite outgrowth induced by a synthetic peptide ligand of neural cell adhesion molecule requires fibroblast growth factor receptor activation

    DEFF Research Database (Denmark)

    Rønn, L C; Doherty, P; Holm, A

    2000-01-01

    identified a neuritogenic ligand, termed the C3 peptide, of the first immunoglobulin (lg) module of NCAM using a combinatorial library of synthetic peptides. Here we investigate whether stimulation of neurite outgrowth by this synthetic ligand of NCAM involves FGFRs. In primary cultures of cerebellar neurons...... from wild-type mice, the C3 peptide stimulated neurite outgrowth. This response was virtually absent in cultures of cerebellar neurons from transgenic mice expressing a dominant-negative form of the FGFR1. Likewise, in PC12E2 cells transiently expressing a dominant-negative form of the mouse FGFR1......, induction of neurites by the C3 peptide was abrogated. These findings suggest that the neuritogenic effect of the C3 peptide requires the presence of functional FGFRs and support the hypothesis that FGFRs are essential in cell adhesion molecule-stimulated neurite outgrowth. The C3 peptide appears...

  5. CD73 expression identifies a subset of IgM+ antigen-experienced cells with memory attributes that is T cell and CD40 signalling dependent.

    Science.gov (United States)

    D'Souza, Lucas; Gupta, Sneh Lata; Bal, Vineeta; Rath, Satyajit; George, Anna

    2017-12-01

    B-cell memory was long characterized as isotype-switched, somatically mutated and germinal centre (GC)-derived. However, it is now clear that the memory pool is a complex mixture that includes unswitched and unmutated cells. Further, expression of CD73, CD80 and CD273 has allowed the categorization of B-cell memory into multiple subsets, with combinatorial expression of the markers increasing with GC progression, isotype-switching and acquisition of somatic mutations. We have extended these findings to determine whether these markers can be used to identify IgM memory phenotypically as arising from T-dependent versus T-independent responses. We report that CD73 expression identifies a subset of antigen-experienced IgM + cells that share attributes of functional B-cell memory. This subset is reduced in the spleens of T-cell-deficient and CD40-deficient mice and in mixed marrow chimeras made with mutant and wild-type marrow, the proportion of CD73 + IgM memory is restored in the T-cell-deficient donor compartment but not in the CD40-deficient donor compartment, indicating that CD40 ligation is involved in its generation. We also report that CD40 signalling supports optimal expression of CD73 on splenic T cells and age-associated B cells (ABCs), but not on other immune cells such as neutrophils, marginal zone B cells, peritoneal cavity B-1 B cells and regulatory T and B cells. Our data indicate that in addition to promoting GC-associated memory generation during B-cell differentiation, CD40-signalling can influence the composition of the unswitched memory B-cell pool. They also raise the possibility that a fraction of ABCs may represent T-cell-dependent IgM memory. © 2017 John Wiley & Sons Ltd.

  6. Synthetic Toll-like receptor 4 (TLR4) and TLR7 ligands as influenza virus vaccine adjuvants induce rapid, sustained, and broadly protective responses.

    Science.gov (United States)

    Goff, Peter H; Hayashi, Tomoko; Martínez-Gil, Luis; Corr, Maripat; Crain, Brian; Yao, Shiyin; Cottam, Howard B; Chan, Michael; Ramos, Irene; Eggink, Dirk; Heshmati, Mitra; Krammer, Florian; Messer, Karen; Pu, Minya; Fernandez-Sesma, Ana; Palese, Peter; Carson, Dennis A

    2015-03-01

    Current vaccines against influenza virus infection rely on the induction of neutralizing antibodies targeting the globular head of the viral hemagglutinin (HA). Protection against seasonal antigenic drift or sporadic pandemic outbreaks requires further vaccine development to induce cross-protective humoral responses, potentially to the more conserved HA stalk region. Here, we present a novel viral vaccine adjuvant comprised of two synthetic ligands for Toll-like receptor 4 (TLR4) and TLR7. 1Z105 is a substituted pyrimido[5,4-b]indole specific for the TLR4-MD2 complex, and 1V270 is a phospholipid-conjugated TLR7 agonist. Separately, 1Z105 induces rapid Th2-associated IgG1 responses, and 1V270 potently generates Th1 cellular immunity. 1Z105 and 1V270 in combination with recombinant HA from the A/Puerto Rico/8/1934 strain (rPR/8 HA) effectively induces rapid and sustained humoral immunity that is protective against lethal challenge with a homologous virus. More importantly, immunization with the combined adjuvant and rPR/8 HA, a commercially available split vaccine, or chimeric rHA antigens significantly improves protection against both heterologous and heterosubtypic challenge viruses. Heterosubtypic protection is associated with broadly reactive antibodies to HA stalk epitopes. Histological examination and cytokine profiling reveal that intramuscular (i.m.) administration of 1Z105 and 1V270 is less reactogenic than a squalene-based adjuvant, AddaVax. In summary, the combination of 1Z105 and 1V270 with a recombinant HA induces rapid, long-lasting, and balanced Th1- and Th2-type immunity; demonstrates efficacy in a variety of murine influenza virus vaccine models assaying homologous, heterologous, and heterosubtypic challenge viruses; and has an excellent safety profile. Novel adjuvants are needed to enhance immunogenicity and increase the protective breadth of influenza virus vaccines to reduce the seasonal disease burden and ensure pandemic preparedness. We show

  7. Inhibition by sigma receptor ligand, MS-377, of N-methyl- D-aspartate-induced currents in dopamine neurons of the rat ventral tegmental area.

    Science.gov (United States)

    Yamazaki, Yuu; Ishioka, Miwa; Matsubayashi, Hiroaki; Amano, Taku; Sasa, Masashi

    2002-04-01

    MS-377 [( R)-(+)-1-(4-chlorophenyl)-3-[4-(2-methoxyethyl) piperazin-1-yl]methyl-2-pyrrolidinone L-tartrate] is a novel anti-psychotic drug candidate with high affinity for sigma receptors but devoid of binding affinity for PCP binding site of NMDA receptor/ion channel complex. The effects of MS-377 on NMDA receptor and/or its ion channel complex were examined to elucidate the antipsychotic properties of MS-377. We examined the effect of MS-377 on NMDA ( N-methyl- D-aspartate)-induced current in acutely dissociated dopamine neurons of rat ventral tegmental area (VTA) using patch clamp whole cell recording. MS-377 applied in a bath inhibited the peak current evoked by NMDA applied via the U-tube method for 2 s in a concentration-dependent manner. Other sigma receptor ligands, BD-1063 (1-[2-(3,4-dichlorophenyl)ethyl]-4-methylpiperazine), NE-100 ( N, N-dipropyl-2-[4-methoxy-3-(2-phenylenoxy)-phenyl]-ethylamine monohydrochloride) and haloperidol also inhibited NMDA-induced current in a concentration-dependent manner. Interestingly, concomitant application of MS-377 with BD-1063, NE-100 or haloperidol at concentrations that had no effects on NMDA-induced current, potentiated the MS-377-induced inhibition. The results suggest that MS-377, as well as other sigma receptor ligands, indirectly acts on the sigma receptor to inhibit glutaminergic transmission mediated by NMDA receptor/ion channel complex in VTA dopamine neurons, thereby inhibiting dopamine release in target VTA areas.

  8. Dual functional BAFF receptor aptamers inhibit ligand-induced proliferation and deliver siRNAs to NHL cells

    Science.gov (United States)

    Zhou, Jiehua; Tiemann, Katrin; Chomchan, Pritsana; Alluin, Jessica; Swiderski, Piotr; Burnett, John; Zhang, Xizhe; Forman, Stephen; Chen, Robert; Rossi, John

    2013-01-01

    The B-cell–activating factor (BAFF)-receptor (BAFF-R) is restrictedly expressed on B-cells and is often overexpressed in B-cell malignancies, such as non-Hodgkin’s lymphoma. On binding to its ligand BAFF, proliferation and cell survival are increased, enabling cancer cells to proliferate faster than normal B-cells. Nucleic acid aptamers can bind to target ligands with high specificity and affinity and may offer therapeutic advantages over antibody-based approaches. In this study, we isolated several 2′-F–modified RNA aptamers targeting the B-cell–specific BAFF-R with nanomolar affinity using in vitro SELEX technology. The aptamers efficiently bound to BAFF-R on the surface of B-cells, blocked BAFF-mediated B-cell proliferation and were internalized into B-cells. Furthermore, chimeric molecules between the BAFF-R aptamer and small interfering RNAs (siRNAs) were specifically delivered to BAFF-R expressing cells with a similar efficiency as the aptamer alone. We demonstrate that a signal transducer and activator of transcription 3 (STAT3) siRNA delivered by the BAFF-R aptamer was processed by Dicer and efficiently reduced levels of target mRNA and protein in Jeko-1 and Z138 human B-cell lines. Collectively, our results demonstrate that the dual-functional BAFF-R aptamer–siRNA conjugates are able to deliver siRNAs and block ligand mediated processes, suggesting it might be a promising combinatorial therapeutic agent for B-cell malignancies. PMID:23470998

  9. Crystallization of protein–ligand complexes

    International Nuclear Information System (INIS)

    Hassell, Anne M.; An, Gang; Bledsoe, Randy K.; Bynum, Jane M.; Carter, H. Luke III; Deng, Su-Jun J.; Gampe, Robert T.; Grisard, Tamara E.; Madauss, Kevin P.; Nolte, Robert T.; Rocque, Warren J.; Wang, Liping; Weaver, Kurt L.; Williams, Shawn P.; Wisely, G. Bruce; Xu, Robert; Shewchuk, Lisa M.

    2007-01-01

    Methods presented for growing protein–ligand complexes fall into the categories of co-expression of the protein with the ligands of interest, use of the ligands during protein purification, cocrystallization and soaking the ligands into existing crystals. Obtaining diffraction-quality crystals has long been a bottleneck in solving the three-dimensional structures of proteins. Often proteins may be stabilized when they are complexed with a substrate, nucleic acid, cofactor or small molecule. These ligands, on the other hand, have the potential to induce significant conformational changes to the protein and ab initio screening may be required to find a new crystal form. This paper presents an overview of strategies in the following areas for obtaining crystals of protein–ligand complexes: (i) co-expression of the protein with the ligands of interest, (ii) use of the ligands during protein purification, (iii) cocrystallization and (iv) soaks

  10. Probing force-induced unfolding intermediates of a single staphylococcal nuclease molecule and the effect of ligand binding

    International Nuclear Information System (INIS)

    Ishii, Takaaki; Murayama, Yoshihiro; Katano, Atsuto; Maki, Kosuke; Kuwajima, Kunihiro; Sano, Masaki

    2008-01-01

    Single-molecule manipulation techniques have given experimental access to unfolding intermediates of proteins that are inaccessible in conventional experiments. A detailed characterization of the intermediates is a challenging problem that provides new possibilities for directly probing the energy landscape of proteins. We investigated single-molecule mechanical unfolding of a small globular protein, staphylococcal nuclease (SNase), using atomic force microscopy. The unfolding trajectories of the protein displayed sub-molecular and stochastic behavior with typical lengths corresponding to the size of the unfolded substructures. Our results support the view that the single protein unfolds along multiple pathways as suggested in recent theoretical studies. Moreover, we found the drastic change, caused by the ligand and inhibitor bindings, in the mechanical unfolding dynamics

  11. Earlier low-dose TBI or DST overcomes CD8+ T-cell-mediated alloresistance to allogeneic marrow in recipients of anti-CD40L.

    Science.gov (United States)

    Takeuchi, Yasuo; Ito, Hiroshi; Kurtz, Josef; Wekerle, Thomas; Ho, Leon; Sykes, Megan

    2004-01-01

    Treatment with a single injection of anti-CD40L (CD154) monoclonal antibody (mAb) and fully mismatched allogeneic bone marrow transplant (BMT) allows rapid tolerization of CD4+ T cells to the donor. The addition of in vivo CD8 T-cell depletion leads to permanent mixed hematopoietic chimerism and tolerance. We now describe two approaches that obviate the requirement for CD8 T-cell depletion by rapidly tolerizing recipient CD8 T cells in addition to CD4 cells. Administration of donor-specific transfusion (DST) to mice receiving 3 Gy total body irradiation (TBI), BMT and anti-CD40L mAb on day 0 uniformly led to permanent mixed chimerism and tolerance, compared with only 40% of mice receiving similar treatment without DST. In the absence of DST, moving the timing of 3 Gy TBI to day -1 or day -2 instead of day 0 led to rapid (by 2 weeks) induction of CD8+ cell tolerance, and also permitted uniform achievement of permanent mixed chimerism and donor-specific tolerance in recipients of anti-CD40L and BMT on day 0. These nontoxic regimens overcome CD8+ and CD4+ T-cell-mediated alloresistance without requiring host T-cell depletion, permitting the induction of permanent mixed chimerism and tolerance.

  12. Ultraviolet light converts propranolol, a nonselective β-blocker and potential lupus-inducing drug, into a proinflammatory AhR ligand.

    Science.gov (United States)

    Dorgham, Karim; Amoura, Zahir; Parizot, Christophe; Arnaud, Laurent; Frances, Camille; Pionneau, Cédric; Devilliers, Hervé; Pinto, Sandra; Zoorob, Rima; Miyara, Makoto; Larsen, Martin; Yssel, Hans; Gorochov, Guy; Mathian, Alexis

    2015-11-01

    UV light and some medications are known to trigger lupus erythematosus (LE). A common mechanism underlying the immunopathologic effect, resulting from exposure to these two seemingly unrelated factors, remains unknown. The aryl hydrocarbon receptor (AhR) plays a key role in the regulation of IL-22 production in humans and can be activated by both xenobiotics and naturally occurring photoproducts. A significant expansion of Th17 and Th22 cells was observed in the peripheral blood of active systemic LE (SLE) patients, compared to inactive patients and controls. We also show that propranolol, a potential lupus-inducing drug, induced stronger AhR activation in PBMCs of SLE patients than in those of controls. AhR agonist activity of propranolol was enhanced by UV light exposure. MS analysis of irradiated propranolol revealed the generation of a proinflammatory photoproduct. This compound behaves like the prototypic AhR ligand 6-formylindolo[3,2-b]carbazole, a cutaneous UV light-induced tryptophan metabolite, both promoting IL-22, IL-8, and CCL2 secretion by T-cells and macrophages. Finally, LE patients exhibit signs of cutaneous AhR activation that correlate with lesional expression of the same proinflammatory cytokines, suggesting a role for photometabolites in the induction of skin inflammation. The AhR might therefore represent a target for therapeutic intervention in LE. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. MDP-Induced selective tolerance to TLR4 ligands: impairment in NOD2 mutant Crohn's disease patients.

    Science.gov (United States)

    Cantó, Elisabet; Moga, Esther; Ricart, Elena; Garcia-Bosch, Orlando; Garcia-Planella, Esther; Juarez, Candido; Vidal, Silvia

    2009-11-01

    Pathogen infection is a complex process in which several pathogen-recognition receptor (PRR) pathways are activated to induce proinflammatory mediators. The activation of multiple PRRs suggests an interaction between Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain-like receptor (NOD) signaling pathways. To understand the modulation induced by NOD2 signals on successive responses to pathogen-associated molecular patterns (PAMPs), we examined how muramyl dipeptide (MDP) pretreatment reprograms the MDP+LPS (lipopolysaccharide) response of monocytes from human peripheral blood. Preexposure to bacterial MDP components induced selective tolerance to a subsequent NOD2+TLR4 stimulation. MDP pretreatment inhibited the production of tumor necrosis factor alpha (TNFalpha) and interleuken 10 (IL10), whereas IL6 and IL8 remained unaffected. MDP-induced tolerance was independent of receptor downregulation but was associated with reduced levels of phosphorylated TAK1 and abrogated phosphorylation of the downstream MAPK.Since Nod2 mutations have been associated with susceptibility to develop Crohn's disease (CD), we compared the MDP-induced tolerance in healthy donors and CD patients with compound heterozygous Nod2 mutations (Mut-Nod2) expressing variant NOD2 proteins. MDP-induced tolerance in Mut-Nod2 patients reduced IL10 but not TNFalpha production. In contrast with healthy donors, a p38-independent TNFalpha production was observed during the kinetics of the MDP+LPS response in Mut-Nod2 patients. Our findings suggest that the selective tolerance induced by MDP in healthy donors was related to the modulation of a convergent nub of NOD2 and TLR4 signaling pathways. This MDP-induced tolerance was impaired in Mut-Nod2 CD patients, resulting in a p38-independent TNFalpha production and an imbalance between pro- and antiinflammatory cytokines that could be partly responsible for the pathogenesis of CD.

  14. Insertion, reduction, and carbon-carbon coupling induced by monomeric aluminum hydride compounds bearing substituted pyrrolyl ligands.

    Science.gov (United States)

    Lin, Che-Yu; Tsai, Chia-Fu; Chen, Hsing-Jen; Hung, Chen-Hsiung; Yu, Ru-Ching; Kuo, Pei-Cheng; Lee, Hon Man; Huang, Jui-Hsien

    2006-04-03

    A monomeric aluminum hydride complex bearing substituted pyrrolyl ligands, AlH[C(4)H(3)N(CH(2)NMe(2))-2](2) (1), was synthesized and structurally characterized. To further confirm the presence of Al--H bonds, the compound AlD[C(4)H(3)N(CH(2)NMe(2))-2](2) ([D]1) was synthesized by reacting LiAlD(4) with [C(4)H(4)N(CH(2)NMe(2))-2]. Compound 1 and [D]1 react with phenyl isothiocyanate yielding Al[C(4)H(3)N(CH(2)NMe(2))-2](2)[eta(3)-SCHNPh] (2) and Al[C(4)H(3)N(CH(2)NMe(2))-2](2)[eta(3)-SCDNPh] ([D]2) by insertion. The reactions of 1 with 9-fluorenone and benzophenone generated the unusual aluminum alkoxide complexes 3 and 4, respectively, through intramolecular proton abstraction and C-C coupling. A mechanistic study shows that 9-fluorenone coordinates to [D]1 and releases one equivalent of HD followed by C-C coupling and hydride transfer to yield the final product. Reduction of benzil with 1 affords aluminum enediolate complex 5 in moderate yield. Mechanistic studies also showed that the benzil was inserted into the aluminum hydride bond of [D]1 through hydroalumination followed by proton transfer to generate the final product [D]5. All new complexes have been characterized by (1)H and (13)C NMR spectroscopy and X-ray crystallography.

  15. Generation and characterization of an anti-delta like ligand-4 Nanobody to induce non-productive angiogenesis.

    Science.gov (United States)

    Baharlou, Rasoul; Tajik, Nader; Habibi-Anbouhi, Mahdi; Shokrgozar, Mohammad Ali; Zarnani, Amir-Hassan; Shahhosseini, Fatemeh; Behdani, Mahdi

    2018-03-01

    Antibody-based targeting of angiogenesis is a key approach for cancer treatment. Delta-like ligand 4 (DLL4) plays a pivotal role in tumor neovascular development and angiogenesis during tumor progression. It forecasts the prognosis of human malignancies and blocking its signaling can help to inhibit neovascularization and tumor metastasis. Nanobodies are the smallest antigen-binding domains of heavy chain antibodies in camelidae. The aim of this study was to develop a Nanobody against DLL4 and apply binding and functional approaches to target it. In this work, a Nanobody library against human recombinant DLL4 was developed. After panning, the periplasmic-extract (PE) of individual colonies were screened through ELISA. The interactions between Nanobody and DLL4 were assessed using immunohistochemistry and FACS. The functional assessment was carried out via tube formation assay. We selected a Nanobody (3Nb3) with a high binding signal to DLL4, associated with a binding affinity of 3.6 nM. It was demonstrated that 3Nb3 binds to native DLL4 on the surface of MKN cells and gastric carcinoma tissue, and also inhibits the maturation of capillary-like structures in HUVECs. The results were indicative of the potential of Nanobody for DLL4 identification and can broaden the scope for development of cancer diagnosis and treatment techniques. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Ligand binding induces a sharp decrease in hydrophobicity of folate binding protein assessed by 1-anilinonaphthalene-8-sulphonate which suppresses self-association of the hydrophobic apo-protein

    DEFF Research Database (Denmark)

    Holm, Jan; Lawaetz, Anders Juul; Hansen, Steen I.

    2012-01-01

    decrease of the surface hydrophobicity associated with the ligand-induced conformation change of FBP, and protein-inter-protein interactions involved in self-association of hydrophobic apo-FBP. The extrinsic fluorescent apolar dye 1-anilinonaphthalene-8-sulphonate (ANS) exhibited enhanced fluorescence...

  17. Type 2 innate lymphoid cell suppression by regulatory T cells attenuates airway hyperreactivity and requires inducible T-cell costimulator-inducible T-cell costimulator ligand interaction.

    Science.gov (United States)

    Rigas, Diamanda; Lewis, Gavin; Aron, Jennifer L; Wang, Bowen; Banie, Homayon; Sankaranarayanan, Ishwarya; Galle-Treger, Lauriane; Maazi, Hadi; Lo, Richard; Freeman, Gordon J; Sharpe, Arlene H; Soroosh, Pejman; Akbari, Omid

    2017-05-01

    Atopic diseases, including asthma, exacerbate type 2 immune responses and involve a number of immune cell types, including regulatory T (Treg) cells and the emerging type 2 innate lymphoid cells (ILC2s). Although ILC2s are potent producers of type 2 cytokines, the regulation of ILC2 activation and function is not well understood. In the present study, for the first time, we evaluate how Treg cells interact with pulmonary ILC2s and control their function. ILC2s and Treg cells were evaluated by using in vitro suppression assays, cell-contact assays, and gene expression panels. Also, human ILC2s and Treg cells were adoptively transferred into NOD SCID γC-deficient mice, which were given isotype or anti-inducible T-cell costimulator ligand (ICOSL) antibodies and then challenged with IL-33 and assessed for airway hyperreactivity. We show that induced Treg cells, but not natural Treg cells, effectively suppress the production of the ILC2-driven proinflammatory cytokines IL-5 and IL-13 both in vitro and in vivo. Mechanistically, our data reveal the necessity of inducible T-cell costimulator (ICOS)-ICOS ligand cell contact for Treg cell-mediated ILC2 suppression alongside the suppressive cytokines TGF-β and IL-10. Using a translational approach, we then demonstrate that human induced Treg cells suppress syngeneic human ILC2s through ICOSL to control airway inflammation in a humanized ILC2 mouse model. These findings suggest that peripheral expansion of induced Treg cells can serve as a promising therapeutic target against ILC2-dependent asthma. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  18. Characteristic Ligand-Induced Crystal Forms of HIV-1 Protease Complexes: A Novel Discovery of X-Ray Crystallography

    International Nuclear Information System (INIS)

    Olajuyigbe, Folasade M.; Geremia, Silvano

    2009-10-01

    Mixtures of saquinavir (SQV) and ritonavir (RTV) were cocrystallized with HIV-1 protease (PR) in an attempt to compare their relative potencies using a crystallographic approach and factors responsible for the respective crystal forms obtained were examined. The mixture ratio of the SQV/RTV was in the range of 1:1 to 1:50 with increasing concentration of dimethyl sulphoxide (DMSO) used. Two crystal forms of PR complexes were obtained. At concentrations of 0.8 and 1.2 % DMSO using 1:1 and 1:15 ratios of SQV/RTV, the crystal form was monoclinic while increasing the concentration of DMSO to 3.2 and 5.0% using 1:15 and 1:50 ratios of SQV/RTV, the orthorhombic crystal form was obtained. The high resolution X-ray crystal structures of the PR/ inhibitor complexes reveal that crystal forms with respective space groups are dependent on the occupancy of either SQV or RTV in the active site of the PR. The occupancy of either of the PR inhibitors in the active site of PR has interestingly demonstrated unique cooperativity effects in crystallization of protein-ligand complexes. The crystal forms obtained were also related to the concentration of DMSO and ammonium sulphate in crystallization, and storage conditions of purified PR. Surprisingly, the relative occupancies of these inhibitors in the active site suggested a competition between the two inhibitors which were not inhibition constants related. Analysis of the structures in both crystal forms show no difference in DMSO content but at higher concentration of DMSO (3.2 - 5.0%) in the orthorhombic crystal forms, there were protein-sulphate interactions which were absent in the monoclinic forms with lower concentration (0.8 - 1.2%) of DMSO. This work has clearly demonstrated that there is cooperativity in crystallization and the conditions of crystallization influence specific intermolecular contacts in crystal packing (crystal form). (author)

  19. Writing on Nanocrystals: Patterning Colloidal Inorganic Nanocrystal Films through Irradiation-Induced Chemical Transformations of Surface Ligands.

    Science.gov (United States)

    Palazon, Francisco; Prato, Mirko; Manna, Liberato

    2017-09-27

    In the past couple of decades, colloidal inorganic nanocrystals (NCs) and, more specifically, semiconductor quantum dots (QDs) have emerged as crucial materials for the development of nanoscience and nanotechnology, with applications in very diverse areas such as optoelectronics and biotechnology. Films made of inorganic NCs deposited on a substrate can be patterned by e-beam lithography, altering the structure of their capping ligands and thus allowing exposed areas to remain on the substrate while non-exposed areas are redispersed in a solvent, as in a standard lift-off process. This methodology can be described as a "direct" lithography process, since the exposure is performed directly on the material of interest, in contrast with conventional lithography which uses a polymeric resist as a mask for subsequent material deposition (or etching). A few reports from the late 1990s and early 2000s used such direct lithography to fabricate electrical wires from metallic NCs. However, the poor conductivity obtained through this process hindered the widespread use of the technique. In the early 2010s, the same method was used to define fluorescent patterns on QD films, allowing for further applications in biosensing. For the past 2-3 years, direct lithography on NC films with e-beams and X-rays has gone through an important development as it has been demonstrated that it can tune further transformations on the NCs, leading to more complex patternings and opening a whole new set of possible applications. This Perspective summarizes the findings of the past 20 years on direct lithography on NC films with a focus on the latest developments on QDs from 2014 and provides different potential future outcomes of this promising technique.

  20. Cell surface-bound TIMP3 induces apoptosis in mesenchymal Cal78 cells through ligand-independent activation of death receptor signaling and blockade of survival pathways.

    Directory of Open Access Journals (Sweden)

    Christina Koers-Wunrau

    Full Text Available BACKGROUND: The matrix metalloproteinases (MMPs and their endogenous regulators, the tissue inhibitor of metalloproteinases (TIMPs 1-4 are responsible for the physiological remodeling of the extracellular matrix (ECM. Among all TIMPs, TIMP3 appears to play a unique role since TIMP3 is a secreted protein and, unlike the other TIMP family members, is tightly bound to the ECM. Moreover TIMP3 has been shown to be able to induce apoptotic cell death. As little is known about the underlying mechanisms, we set out to investigate the pro-apoptotic effect of TIMP3 in human mesenchymal cells. METHODOLOGY/PRINCIPAL FINDINGS: Lentiviral overexpression of TIMP3 in mesenchymal cells led to a strong dose-dependent induction of ligand-independent apoptosis as reflected by a five-fold increase in caspase 3 and 7 activity compared to control (pLenti6/V5-GW/lacZ or uninfected cells, whereas exogenous TIMP3 failed to induce apoptosis. Concordantly, increased cleavage of death substrate PARP and the caspases 3 and 7 was observed in TIMP3 overexpressing cultures. Notably, activation of caspase-8 but not caspase-9 was observed in TIMP3-overexpressing cells, indicating a death receptor-dependent mechanism. Moreover, overexpression of TIMP3 led to a further induction of apoptosis after stimulation with TNF-alpha, FasL and TRAIL. Most interestingly, TIMP3-overexpression was associated with a decrease in phosphorylation of cRaf, extracellular signal-regulated protein kinase (Erk1/2, ribosomal S6 kinase (RSK1 and Akt and serum deprivation of TIMP3-overexpressing cells resulted in a distinct enhancement of apoptosis, pointing to an impaired signaling of serum-derived survival factors. Finally, heparinase treatment of heparan sulfate proteoglycans led to the release of TIMP3 from the surface of overexpressing cells and to a significant decrease in apoptosis indicating that the binding of TIMP3 is necessary for apoptosis induction. CONCLUSION: The results demonstrate that

  1. The Nurr1 ligand,1,1-bis(3'-indolyl)-1-(p-chlorophenyl)methane, modulates glial reactivity and is neuroprotective in MPTP-induced parkinsonism.

    Science.gov (United States)

    Hammond, Sean L; Popichak, Katriana A; Li, Xi; Hunt, Lindsay G; Richman, Evan H; Damale, Pranav; Chong, Edwin; Backos, Donald S; Safe, Stephen; Tjalkens, Ronald B

    2018-04-06

    The orphan nuclear receptor, Nurr1 (NR4A2), regulates inflammatory gene expression in glial cells, as well as genes associated with homeostatic and trophic function in dopaminergic neurons. Despite these known functions of Nurr1, an endogenous ligand has not been discovered. We postulated that activation of Nurr1 would suppress activation of glia and thereby protect against loss of dopamine (DA) neurons following subacute lesioning with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Our previous studies have shown that a synthetic Nurr1 ligand, 1,1-bis(3'-indolyl)-1-(p-chlorophenyl)methane (C-DIM12), suppresses inflammatory gene expression in primary astrocytes and induces a dopaminergic phenotype in neurons. Pharmacokinetic analysis of C-DIM12 in mice by LC-MS demonstrated that approximately three-times more compound concentrated in brain than in plasma. Mice treated with 4 doses of MPTP + probenecid over 14 days were monitored for neurobehavioral function, loss of dopaminergic neurons and glial activation. C-DIM12 protected against loss of DA neurons in the substantia nigra pars compacta (SNpc) and DA terminals in the striatum (ST), maintained a ramified phenotype in microglia and suppressed activation of astrocytes. In vitro reporter assays demonstrated that C-DIM12 was an effective activator of Nurr1 transcription in neuronal cell lines. Computational modeling of C-DIM12 binding to the 3D structure of human Nurr1 identified a high affinity binding interaction with Nurr1 at the co-activator domain. Taken together, these data suggest C-DIM12 is an activator of Nurr1 that suppresses glial activation and neuronal loss in vivo following treatment with MPTP and suggests that this receptor could be an efficacious target for disease-modification in Parkinson's and related disorders. The American Society for Pharmacology and Experimental Therapeutics.

  2. Neurite outgrowth induced by a synthetic peptide ligand of neural cell adhesion molecule requires fibroblast growth factor receptor activation

    DEFF Research Database (Denmark)

    Rønn, L C; Doherty, P; Holm, A

    2000-01-01

    The neural cell adhesion molecule NCAM is involved in axonal outgrowth and target recognition in the developing nervous system. In vitro, NCAM-NCAM binding has been shown to induce neurite outgrowth, presumably through an activation of fibroblast growth factor receptors (FGFRs). We have recently...

  3. miR-212 increases tumor necrosis factor-related apoptosis-inducing ligand sensitivity in non-small cell lung cancer by targeting the antiapoptotic protein PED.

    Science.gov (United States)

    Incoronato, Mariarosaria; Garofalo, Michela; Urso, Loredana; Romano, Giulia; Quintavalle, Cristina; Zanca, Ciro; Iaboni, Margherita; Nuovo, Gerald; Croce, Carlo Maria; Condorelli, Gerolama

    2010-05-01

    PED/PEA-15 (PED) is a death effector domain family member of 15 kDa with a broad antiapoptotic function found overexpressed in a number of different human tumors, including lung cancer. To date, the mechanisms that regulate PED expression are unknown. Therefore, we address this point by the identification of microRNAs that in non-small cell lung cancer (NSCLC) modulate PED levels. In this work, we identify miR-212 as a negative regulator of PED expression. We also show that ectopic expression of this miR increases tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced cell death in NSCLC cells. In contrast, inhibition of endogenous miR-212 by use of antago-miR results in increase of PED protein expression and resistance to TRAIL treatment. Besides, in NSCLC, we show both in vitro and in vivo that PED and miR-212 expressions are inversely correlated, that is, PED is upregulated and miR-212 is rarely expressed. In conclusion, these findings suggest that miR-212 should be considered as a tumor suppressor because it negatively regulates the antiapoptotic protein PED and regulates TRAIL sensitivity. (c)2010 AACR.

  4. MS-377, a novel selective sigma(1) receptor ligand, reverses phencyclidine-induced release of dopamine and serotonin in rat brain.

    Science.gov (United States)

    Takahashi, S; Horikomi, K; Kato, T

    2001-09-21

    A novel selective sigma(1) receptor ligand, (R)-(+)-1-(4-chlorophenyl)-3-[4-(2-methoxyethyl)piperazin-1-yl]methyl-2-pyrrolidinone L-tartrate (MS-377), inhibits phencyclidine (1-(1-phenylcyclohexyl)piperidine; PCP)-induced behaviors in animal models. In this study, we measured extracellular dopamine and serotonin levels in the rat brain after treatment with MS-377 alone, using in vivo microdialysis. We also examined the effects of MS-377 on extracellular dopamine and serotonin levels in the rat medial prefrontal cortex after treatment with PCP. MS-377 itself had no significant effects on dopamine release in the striatum (10 mg/kg, p.o.) nor on dopamine or serotonin release in the medial prefrontal cortex (1 and 10 mg/kg, p.o.). PCP (3 mg/kg, i.p.) markedly increased dopamine and serotonin release in the medial prefrontal cortex. MS-377 (1 mg/kg, p.o.), when administered 60 min prior to PCP, significantly attenuated this effect of PCP. These results suggest that the inhibitory effects of MS-377 on PCP-induced behaviors are partly mediated by inhibition of the increase in dopamine and serotonin release in the rat medial prefrontal cortex caused by PCP.

  5. Phytochemicals prevent mitochondrial membrane permeabilization and protect SH-SY5Y cells against apoptosis induced by PK11195, a ligand for outer membrane translocator protein.

    Science.gov (United States)

    Wu, Yuqiu; Shamoto-Nagai, Masayo; Maruyama, Wakako; Osawa, Toshihiko; Naoi, Makoto

    2017-01-01

    Epidemiological studies present the beneficial effects of dietary habits on prevention of aging-associated decline of brain function. Phytochemicals, the second metabolites of food, protect neuronal cells from cell death in cellular models of neurodegenerative disorders, and the neuroprotective activity has been ascribed to the anti-oxidant and anti-inflammatory functions. In this paper, the cellular mechanism of neuroprotection by phytochemicals was investigated, using the cellular model of mitochondrial apoptosis induced by PK11195, a ligand of outer membrane translocator protein, in SH-SY5Y cells. PK11195 induced mitochondrial membrane permeabilization with rapid transit production of superoxide (superoxide flashes) and calcium release from mitochondria, and activated apoptosis signal pathway. Study on the structure-activity relationship of astaxanthin, ferulic acid derivatives, and sesame lignans revealed that these phytochemicals inhibited mitochondrial membrane permeabilization and protected cells from apoptosis. Ferulic acid derivatives and sesame lignans inhibited or enhanced the mitochondrial pore formation and cell death by PK11195 according to their amphiphilic properties, not directly depending on the antioxidant activity. Regulation of pore formation at mitochondrial membrane is discussed as a novel mechanism behind neuroprotective activity of phytochemicals in aging and age-associated neurodegenerative disorders, and also behind dual functions of phytochemicals in neuronal and cancer cells.

  6. Sublingual injection of microparticles containing glycolipid ligands for NKT cells and subunit vaccines induces antibody responses in oral cavity.

    Science.gov (United States)

    DeLyria, Elizabeth S; Zhou, Dapeng; Lee, Jun Soo; Singh, Shailbala; Song, Wei; Li, Fenge; Sun, Qing; Lu, Hongzhou; Wu, Jinhui; Qiao, Qian; Hu, Yiqiao; Zhang, Guodong; Li, Chun; Sastry, K Jagannadha; Shen, Haifa

    2015-03-20

    Natural Killer T (NKT) cells are a unique type of innate immune cells which exert paradoxical roles in animal models through producing either Th1 or Th2 cytokines and activating dendritic cells. Alpha-galactosylceramide (αGalCer), a synthetic antigen for NKT cells, was found to be safe and immune stimulatory in cancer and hepatitis patients. We recently developed microparticle-formulated αGalCer, which is selectively presented by dendritic cells and macrophages, but not B cells, and thus can avoid the anergy of NKT cells. In this study, we have examined the immunogenicity of microparticles containing αGalCer and protein vaccine components through sublingual injection in mice. The results showed that sublingual injection of microparticles containing αGalCer and ovalbumin triggered IgG responses in serum (titer >1:100,000), which persisted for more than 3months. Microparticles containing ovalbumin alone also induced comparable level of IgG responses. However, immunoglobulin subclass analysis showed that sublingually injected microparticles containing αGalCer and ovalbumin induced 20 fold higher Th1 biased antibody (IgG2c) than microparticles containing OVA alone (1:20,000 as compared to 1:1000 titer). Sublingual injection of microparticles containing αGalCer and ovalbumin induced secretion of both IgG (titer >1:1000) and IgA (titer=1:80) in saliva secretion, while microparticles containing ovalbumin alone only induced secretion of IgG in saliva. Our results suggest that sublingual injection of microparticles and their subsequent trafficking to draining lymph nodes may induce adaptive immune responses in mucosal compartments. Ongoing studies are focused on the mechanism of antigen presentation and lymphocyte biology in the oral cavity, as well as the toxicity and efficacy of these candidate microparticles for future applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. 7,12-Dimethylbenzanthracene induces apoptosis in RL95-2 human endometrial cancer cells: Ligand-selective activation of cytochrome P450 1B1

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Young [Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Medical Research Science Center, Dong-A University, Busan 602-714 (Korea, Republic of); Lee, Seung Gee [Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Mitochondria Hub Regulation Center, Dong-A University, Busan 602-714 (Korea, Republic of); Chung, Jin-Yong [Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Medical Research Science Center, Dong-A University, Busan 602-714 (Korea, Republic of); Kim, Yoon-Jae [Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Mitochondria Hub Regulation Center, Dong-A University, Busan 602-714 (Korea, Republic of); Park, Ji-Eun [Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Medical Research Science Center, Dong-A University, Busan 602-714 (Korea, Republic of); Oh, Seunghoon [Department of Physiology, College of Medicine, Dankook University, Cheonan 330-714 (Korea, Republic of); Lee, Se Yong [Department of Obstetrics and Gynecology, Busan Medical Center, Busan 611-072 (Korea, Republic of); Choi, Hong Jo [Department of General Surgery, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Yoo, Young Hyun, E-mail: yhyoo@dau.ac.kr [Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Mitochondria Hub Regulation Center, Dong-A University, Busan 602-714 (Korea, Republic of); Medical Research Science Center, Dong-A University, Busan 602-714 (Korea, Republic of); and others

    2012-04-15

    7,12-Dimethylbenzanthracene (DMBA), a polycyclic aromatic hydrocarbon, exhibits mutagenic, carcinogenic, immunosuppressive, and apoptogenic properties in various cell types. To achieve these functions effectively, DMBA is modified to its active form by cytochrome P450 1 (CYP1). Exposure to DMBA causes cytotoxicity-mediated apoptosis in bone marrow B cells and ovarian cells. Although uterine endometrium constitutively expresses CYP1A1 and CYP1B1, their apoptotic role after exposure to DMBA remains to be elucidated. Therefore, we chose RL95-2 endometrial cancer cells as a model system for studying DMBA-induced cytotoxicity and cell death and hypothesized that exposure to DMBA causes apoptosis in this cell type following CYP1A1 and/or CYP1B1 activation. We showed that DMBA-induced apoptosis in RL95-2 cells is associated with activation of caspases. In addition, mitochondrial changes, including decrease in mitochondrial potential and release of mitochondrial cytochrome c into the cytosol, support the hypothesis that a mitochondrial pathway is involved in DMBA-induced apoptosis. Exposure to DMBA upregulated the expression of AhR, Arnt, CYP1A1, and CYP1B1 significantly; this may be necessary for the conversion of DMBA to DMBA-3,4-diol-1,2-epoxide (DMBA-DE). Although both CYP1A1 and CYP1B1 were significantly upregulated by DMBA, only CYP1B1 exhibited activity. Moreover, knockdown of CYP1B1 abolished DMBA-induced apoptosis in RL95-2 cells. Our data show that RL95-2 cells are susceptible to apoptosis by exposure to DMBA and that CYP1B1 plays a pivotal role in DMBA-induced apoptosis in this system. -- Highlights: ► Cytotoxicity-mediated apoptogenic action of DMBA in human endometrial cancer cells. ► Mitochondrial pathway in DMBA-induced apoptosis of RL95-2 endometrial cancer cells. ► Requirement of ligand-selective activation of CYP1B1 in DMBA-induced apoptosis.

  8. The Fas/Fas ligand death receptor pathway contributes to phenylalanine-induced apoptosis in cortical neurons.

    Directory of Open Access Journals (Sweden)

    Xiaodong Huang

    Full Text Available Phenylketonuria (PKU, an autosomal recessive disorder of amino acid metabolism caused by mutations in the phenylalanine hydroxylase (PAH gene, leads to childhood mental retardation by exposing neurons to cytotoxic levels of phenylalanine (Phe. A recent study showed that the mitochondria-mediated (intrinsic apoptotic pathway is involved in Phe-induced apoptosis in cultured cortical neurons, but it is not known if the death receptor (extrinsic apoptotic pathway and endoplasmic reticulum (ER stress-associated apoptosis also contribute to neurodegeneration in PKU. To answer this question, we used specific inhibitors to block each apoptotic pathway in cortical neurons under neurotoxic levels of Phe. The caspase-8 inhibitor Z-IETD-FMK strongly attenuated apoptosis in Phe-treated neurons (0.9 mM, 18 h, suggesting involvement of the Fas receptor (FasR-mediated cell death receptor pathway in Phe toxicity. In addition, Phe significantly increased cell surface Fas expression and formation of the Fas/FasL complex. Blocking Fas/FasL signaling using an anti-Fas antibody markedly inhibited apoptosis caused by Phe. In contrast, blocking the ER stress-induced cell death pathway with salubrinal had no effect on apoptosis in Phe-treated cortical neurons. These experiments demonstrate that the Fas death receptor pathway contributes to Phe-induced apoptosis and suggest that inhibition of the death receptor pathway may be a novel target for neuroprotection in PKU patients.

  9. Pharmacodynamic effects of serotonin (5-HT) receptor ligands in pigs: stimulation of 5-HT2 receptors induces malignant hyperthermia.

    Science.gov (United States)

    Löscher, W; Witte, U; Fredow, G; Ganter, M; Bickhardt, K

    1990-06-01

    In pigs, the serotonin-2 (5-HT2) receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), 0.8 mg/kg, induced "psychotic" behaviour (e.g., grimacing, backward locomotion, blank stare) and a muscular syndrome, which is known as malignant hyperthermia (MH) in pigs and humans. This syndrome is characterized by generalized skeletal muscle rigidity, leading to an increase in body temperature, marked acidosis, hyperkaliaemia, cyanosis and elevation of lactate, carbon dioxide and the muscle enzyme creatine kinase (CK) in plasma. In pigs which were selectively bred for susceptibility to MH induction by known triggering agents, such as halothane, the administration of DOI was fatal in 3 out of 5 animals. In genetically susceptible pigs, MH was also induced by 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT), 0.5-1.8 mg/kg, and D-lysergic acid diethylamide (LSD), 60-110 micrograms/kg. Furthermore, 5-MeO-DMT and LSD induced head shakes in the animals, which had not been observed after DOI and could not be blocked by 5-HT2-antagonists, ketanserin (0.5-5 mg/kg) and ritanserin (1-2.5 mg/kg). The psychotomimetic effects of 5-MeO-DMT could be blocked by ketanserin or ritanserin, which, depending on the dose, also reduced or totally prevented the hyperthermia and metabolic changes induced by 5-MeO-DMT in pigs. Administration of 5-MeO-DMT, 1.8 mg/kg, was fatal in 4 of 5 MH-susceptible pigs, whereas pigs injected with this dosage after pretreatment with ketanserin (0.5-5 mg/kg) or ritanserin (1-2.5 mg/kg) did not die. In pigs from MH-resistant littermates, administration of 5-MeO-DMT was not fatal. Comparison of metabolic changes in susceptible and non-susceptible pigs suggested that the marked increase in plasma potassium, which arises principally from damaged muscle cells, is primarily responsible for the fatal effect of DOI and 5-MeO-DMT in genetically susceptible individuals. In MH-susceptible pigs, which were anesthetized, relaxed and artificially ventilated, 5-Me

  10. Designing the Ideal Uranyl Ligand: a Sterically-Induced Speciation Change in Complexes with Thiophene-Bridged Bis(3-hydroxy-N-methylpyridin-2-one)

    Energy Technology Data Exchange (ETDEWEB)

    Szigethy, Geza; Raymond, Kenneth N.

    2009-09-11

    Structural characterization of a mononuclear uranyl complex with a tetradentate, thiophene-linked bis(3-hydroxy-N-methylpyridin-2-one) ligand reveals the most planar coordination geometry yet observed with this ligand class. The introduction of ethylsulfanyl groups onto the thiophene linker disrupts this planar, conjugated ligand arrangement, resulting in the formation of dimeric (UO{sub 2}){sub 2}L{sub 2} species in which each ligand spans two uranyl centers. Relative energy calculations reveal that this tendency toward dimer formation is the result of steric interference between ethylsulfanyl substituents and linking amides.

  11. Agonistic anti-CD40 promotes early development and increases the incidence of severe thyroid epithelial cell hyperplasia (TEC H/P) in CD4-/- mice.

    Science.gov (United States)

    Yu, Shiguang; Downey, Edward F; Braley-Mullen, Helen

    2013-10-01

    IFN-γ-/-NOD.H-2h4 mice develop thyroid epithelial cell hyperplasia (TEC H/P) characterised by abnormal proliferation of thyrocytes and infiltration of thyroids by CD4+ and CD8+ T cells, macrophages and dendritic cells. CD8+ T cells from mice with severe TEC H/P transfer similar lesions to SCID recipients, whereas CD4+ T cells transfer mild TEC H/P. CD4- and CD8- deficient IFN-γ-/-NOD.H-2h4 mice were generated to determine if CD4+ T cells were required for initial activation of the CD8+ T cells that transfer TEC H/P. After 6-8 months on NaI water, only 2 of 60 CD8-/- mice developed severe TEC H/P, whereas 31 of 101 CD4-/- mice developed severe TEC H/P and fibrosis comparable in severity to that of IFN-γ-/- mice. However, splenocytes from CD4-/- mice with severe TEC H/P did not effectively transfer severe TEC H/P to SCID recipients. When CD4-/- donors were given agonistic anti-CD40 mAb, most developed severe TEC H/P and their cells transferred severe TEC H/P to SCID recipients. These results indicate that agonistic anti-CD40 can provide an important signal for activation of autoreactive CD8+ T cells that transfer severe TEC H/P. Therefore, targeting or blocking CD40 could provide effective therapy for diseases involving hyperplasia and fibrosis mediated by CD8+ T cells.

  12. First Case ofCD40LGDeficiency in Ecuador, Diagnosed after Whole Exome Sequencing in a Patient with Severe Cutaneous Histoplasmosis.

    Science.gov (United States)

    Pedroza, Luis Alberto; Guerrero, Nina; Stray-Pedersen, Asbjørg; Tafur, Cristina; Macias, Roque; Muñoz, Greta; Akdemir, Zeynep Coban; Jhangiani, Shalini N; Watkin, Levi B; Chinn, Ivan K; Lupski, James R; Orange, Jordan S

    2017-01-01

    Severe infections with Histoplasma capsulatum are commonly observed in patient with secondary immunodeficiency disorders. We report a two and a half years old boy previously healthy with disseminated cutaneous histoplasmosis. Using whole exome sequencing, we found an indel mutation at the CD40LG gene, suggesting a diagnosis of hyper-IgM (HIGM) syndrome, even in the absence of the usual features for the disease. Interestingly, the patient lives in a region endemic for histoplasmosis. The unusual infections in our case suggest that in children with severe histoplasmosis and resident in endemic areas, HIGM syndrome should be considered as a diagnosis.

  13. Ligand-guided receptor optimization.

    Science.gov (United States)

    Katritch, Vsevolod; Rueda, Manuel; Abagyan, Ruben

    2012-01-01

    Receptor models generated by homology or even obtained by crystallography often have their binding pockets suboptimal for ligand docking and virtual screening applications due to insufficient accuracy or induced fit bias. Knowledge of previously discovered receptor ligands provides key information that can be used for improving docking and screening performance of the receptor. Here, we present a comprehensive ligand-guided receptor optimization (LiBERO) algorithm that exploits ligand information for selecting the best performing protein models from an ensemble. The energetically feasible protein conformers are generated through normal mode analysis and Monte Carlo conformational sampling. The algorithm allows iteration of the conformer generation and selection steps until convergence of a specially developed fitness function which quantifies the conformer's ability to select known ligands from decoys in a small-scale virtual screening test. Because of the requirement for a large number of computationally intensive docking calculations, the automated algorithm has been implemented to use Linux clusters allowing easy parallel scaling. Here, we will discuss the setup of LiBERO calculations, selection of parameters, and a range of possible uses of the algorithm which has already proven itself in several practical applications to binding pocket optimization and prospective virtual ligand screening.

  14. Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand-Induced Apoptosis in Prostate Cancer Cells after Treatment with Xanthohumol—A Natural Compound Present in Humulus lupulus L.

    Directory of Open Access Journals (Sweden)

    Małgorzata Kłósek

    2016-06-01

    Full Text Available TRAIL (tumor necrosis factor-related apoptosis-inducing ligand is an endogenous ligand, which plays role in immune surveillance and anti-tumor immunity. It has ability to selectively kill tumor cells showing no toxicity to normal cells. We tested the apoptotic and cytotoxic activities of xanthohumol, a prenylated chalcone found in Humulus lupulus on androgen-sensitive human prostate adenocarcinoma cells (LNCaP in combination with TRAIL. Cytotoxicity was measured by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide tetrazolium reduction assay (MTT and lactate dehydrogenase assay (LDH. The expression of death receptors (DR4/TRAIL-R1 and DR5/TRAIL-R2 and apoptosis were detected using flow cytometry. We examined mitochondrial membrane potential (ΔΨm by DePsipher reagent using fluorescence microscopy. The intracellular expression of proteins was evaluated by Western blotting. Our study showed that xanthohumol enhanced cytotoxic and apoptotic effects of TRAIL. The tested compounds activated caspases-3, -8, -9, Bid, and increased the expression of Bax. They also decreased expression of Bcl-xL and decreased mitochondrial membrane potential, while the expression of death receptors was not changed. The findings suggest that xanthohumol is a compound of potential use in chemoprevention of prostate cancer due to its sensitization of cancer cells to TRAIL-mediated apoptosis.

  15. Association of Serum Tumor Necrosis Factor-Related Apoptosis Inducing Ligand with Body Fat Distribution as Assessed by Dual X-Rays Absorptiometry

    Directory of Open Access Journals (Sweden)

    Carlo Cervellati

    2014-01-01

    Full Text Available A low chronic inflammation mediated by cytokine release is considered a major pathogenic mechanism accounting for the higher risk of cardiovascular disease in the overweight/obese population. In this context, although the existence of a possible interaction between soluble tumor necrosis factor- (TNF- related apoptosis inducing ligand (TRAIL and quantity and localization, of adiposity in the body has been hypothesized, no studies have yet investigated this link by radiologic techniques able to assess directly fat mass (FM in different body regions. To address this issue, we assessed body fat distribution by dual X-rays absorptiometry (DXA in a sample of 103 women and investigated the possible association between the derived adiposity measures and serum TRAIL concentration. The level of TRAIL showed a positive and independent correlation with arms FM (P<0.05, trunk FM (P<0.001 and trunk FM% (P<0.05, total FM and total FM% (P<0.001 for both, and an inverse association with legs FM% (P<0.05. Only trunk FM retained a significant correlation (P<0.05 with TRAIL after adjusting for all the other indices of regional adiposity. In conclusion, from our study it emerged a significant and independent association of serum TRAIL levels with overall, and, mainly, central adiposity. Further studies are needed to longitudinally investigate the cause-effect relationship between change in body fat distribution and TRAIL.

  16. Application of Near-Infrared and Fourier Transform Infrared Spectroscopy in the Characterization of Ligand-Induced Conformation Changes in Folate Binding Protein Purified from Bovine Milk

    DEFF Research Database (Denmark)

    Bruun, Susanne Wrang; Holm, Jan; Hansen, Steen Ingemann

    2006-01-01

    and explained by side-chain contributions to the NIR, which could reflect the tertiary and quaternary structure differences. NIR spectra of FBP at pH 7.4 and 5.0 revealed contradictory effects on the side chains, reflecting different polymerization events at the two pH values, whereas the amide I region...... and phosphate buffers, and the formation of intermolecular beta-sheet was indicated at pH 5.0, in agreement with a dimerization of FBP taking place at this pH. The ligand-induced changes in the 2100-2300 nm NIR region were significant for FBP in acetate and phosphate buffers of pH 5.0, and the variations were...... indicated similar changes at the two pH values. Therefore, we suggest that FT-IR and NIR spectroscopy may complement each other, such that the two techniques in combination may give information on all three types of protein conformational changes. While the secondary structure changes are revealed by FT...

  17. Mutation-induced quisqualic acid and ibotenic acid affinity at the metabotropic glutamate receptor subtype 4: ligand selectivity results from a synergy of several amino acid residues

    DEFF Research Database (Denmark)

    Hermit, Mette B; Greenwood, Jeremy R; Bräuner-Osborne, Hans

    2004-01-01

    The metabotropic glutamate receptors (mGluRs) are key modulators of excitatory neurotransmission in the central nervous system. The eight mGluR subtypes are seven trans-membrane-spanning proteins that possess a large extracellular amino-terminal domain in which the endogenous ligand binding pocket...... resides. In this study, we have identified four non-conserved amino acid residues that are essential for differentiating mGluR1 from mGluR4. Our approach has been to increase the affinity of the classic mGluR1 agonists, quisqualic acid and ibotenic acid, at mGluR4 by making various point mutations......, the mutations K74Y and K317R induced dramatic triple-order-of-magnitude increases in the affinity of ibotenic acid at mGluR4, making the affinity equivalent to that of mGluR1. Furthermore, the affinity of quisqualic acid at mGluR4 was increased to the same level as mGluR1 by the two double mutations, K74Y/K317R...

  18. Aesculin modulates bone metabolism by suppressing receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis and transduction signals.

    Science.gov (United States)

    Zhao, Xiao-Li; Chen, Lin-Feng; Wang, Zhen

    2017-06-17

    Aesculin (AES), a coumarin compound derived from Aesculus hippocasanum L, is reported to exert protective role against inflammatory diseases, gastric disease and cancer. However, direct effect of AES in bone metabolism is deficient. In this study, we examined the effects of AES on osteoclast (OC) differentiation in receptor activator of NF-κB ligand (RANKL)-induced RAW264.7 cells. AES inhibits the OC differentiation in both dose- and time-dependent manner within non-toxic concentrations, as analyzed by Tartrate Resistant Acid Phosphatase (TRAP) staining. The actin ring formation manifesting OC function is also decreased by AES. Moreover, expressions of osteoclastogenesis related genes Trap, Atp6v0d2, Cathepsin K and Mmp-9 are decreased upon AES treatment. Mechanistically, AES attenuates the activation of MAPKs and NF-κB activity upon RANKL induction, thus leading to the reduction of Nfatc1 mRNA expression. Moreover, AES inhibits Rank expression, and RANK overexpression markedly decreases AES's effect on OC differentiation and NF-κB activity. Consistently, AES protects against bone mass loss in the ovariectomized and dexamethasone treated rat osteoporosis model. Taken together, our data demonstrate that AES can modulate bone metabolism by suppressing osteoclastogenesis and related transduction signals. AES therefore could be a promising agent for the treatment of osteoporosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Histamine inhibits high mobility group box 1-induced adhesion molecule expression on human monocytes.

    Science.gov (United States)

    Takahashi, Hideo; Sadamori, Hiroshi; Teshigawara, Kiyoshi; Niwa, Atsuko; Liu, Keyue; Wake, Hidenori; Mori, Shuji; Yoshino, Tadashi; Nishibori, Masahiro

    2013-10-15

    Cell-cell interaction through binding of adhesion molecules on monocytes to their ligands on T-cells plays roles in cytokine production and lymphocyte proliferation. High mobility group box 1 (HMGB1), an abundant and conserved nuclear protein, acts in the extracellular environment as a primary pro-inflammatory signal. HMGB1 induces expression of intercellular adhesion molecule (ICAM), B7.1, B7.2 and CD40 on monocytes, resulting in production of interferon (IFN)-γ and tumor necrosis factor (TNF)-α production and lymphocyte proliferation in human peripheral blood mononuclear cells (PBMCs). Histamine inhibits pro-inflammatory cytokine production via histamine H2-receptors; however, it is not known whether histamine inhibits HMGB1 activity. This study was designed to study the inhibitory effect of histamine on HMGB1 activity. We examined the effect of histamine on HMGB1-induced expression of ICAM-1, B7.1, B7.2 and CD40 on monocytes, production of IFN-γ and TNF-α and lymphocyte proliferation in PBMCs. Histamine inhibited HMGB1 activity in a concentration-dependent manner. The effects of histamine were partially ablated by the H2-receptor antagonist, famotidine, and mimicked by the H2/H4-receptor agonists, dimaprit and 4-methylhistamine. Histamine induced cyclic adenosine monophosphate (cAMP) production in the presence and absence of HMGB1. The effects of histamine were reversed by the protein kinase A (PKA) inhibitor, H89, and mimicked by the membrane-permeable cAMP analog, dibutyryl cAMP (dbcAMP), and the adenylate cyclase activator, forskolin. These results together indicated that histamine inhibited HMGB1 activity. © 2013 Elsevier B.V. All rights reserved.

  20. A titratable two-step transcriptional amplification strategy for targeted gene therapy based on ligand-induced intramolecular folding of a mutant human estrogen receptor

    DEFF Research Database (Denmark)

    Chen, Ian Y; Paulmurugan, Ramasamy; Nielsen, Carsten Haagen

    2014-01-01

    firefly luciferase reporter gene (fluc) depends on the binding of its mutant estrogen receptor (ER(G521T)) ligand binding domain (LBD) to an ER ligand such as raloxifene. Mice underwent either intramyocardial or hydrodynamic tail vein (HTV) injection of pcTnT-tTSTA-fluc, followed by differential...

  1. Repression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL but not its receptors during oral cancer progression

    Directory of Open Access Journals (Sweden)

    Muller Susan

    2007-06-01

    Full Text Available Abstract Background TRAIL plays an important role in host immunosurveillance against tumor progression, as it induces apoptosis of tumor cells but not normal cells, and thus has great therapeutic potential for cancer treatment. TRAIL binds to two cell-death-inducing (DR4 and DR5 and two decoy (DcR1, and DcR2 receptors. Here, we compare the expression levels of TRAIL and its receptors in normal oral mucosa (NOM, oral premalignancies (OPM, and primary and metastatic oral squamous cell carcinomas (OSCC in order to characterize the changes in their expression patterns during OSCC initiation and progression. Methods DNA microarray, immunoblotting and immunohistochemical analyses were used to examine the expression levels of TRAIL and its receptors in oral epithelial cell lines and in archival tissues of NOM, OPM, primary and metastatic OSCC. Apoptotic rates of tumor cells and tumor-infiltrating lymphocytes (TIL in OSCC specimens were determined by cleaved caspase 3 immunohistochemistry. Results Normal oral epithelia constitutively expressed TRAIL, but expression was progressively lost in OPM and OSCC. Reduction in DcR2 expression levels was noted frequently in OPM and OSCC compared to respective patient-matched uninvolved oral mucosa. OSCC frequently expressed DR4, DR5 and DcR1 but less frequently DcR2. Expression levels of DR4, DR5 and DcR1 receptors were not significantly altered in OPM, primary OSCC and metastatic OSCC compared to patient-matched normal oral mucosa. Expression of proapoptotic TRAIL-receptors DR4 and DR5 in OSCC seemed to depend, at least in part, on whether or not these receptors were expressed in their parental oral epithelia. High DR5 expression in primary OSCC correlated significantly with larger tumor size. There was no significant association between TRAIL-R expression and OSSC histology grade, nodal status or apoptosis rates of tumor cells and TIL. Conclusion Loss of TRAIL expression is an early event during oral

  2. High-level expression and purification of Cys-loop ligand-gated ion channels in a tetracycline-inducible stable mammalian cell line: GABAA and serotonin receptors.

    Science.gov (United States)

    Dostalova, Zuzana; Liu, Aiping; Zhou, Xiaojuan; Farmer, Sarah L; Krenzel, Eileen S; Arevalo, Enrique; Desai, Rooma; Feinberg-Zadek, Paula L; Davies, Paul A; Yamodo, Innocent H; Forman, Stuart A; Miller, Keith W

    2010-09-01

    The human neuronal Cys-loop ligand-gated ion channel superfamily of ion channels are important determinants of human behavior and the target of many drugs. It is essential for their structural characterization to achieve high-level expression in a functional state. The aim of this work was to establish stable mammalian cell lines that enable high-level heterologous production of pure receptors in a state that supports agonist-induced allosteric conformational changes. In a tetracycline-inducible stable human embryonic kidney cells (HEK293S) cell line, GABA(A) receptors containing α1 and β3 subunits could be expressed with specific activities of 29-34 pmol/mg corresponding to 140-170 pmol/plate, the highest expression level reported so far. Comparable figures for serotonin (5-HT(3A)) receptors were 49-63 pmol/mg and 245-315 pmol/plate. The expression of 10 nmol of either receptor in suspension in a bioreactor required 0.3-3.0 L. Both receptor constructs had a FLAG epitope inserted at the N-terminus and could be purified in one step after solubilization using ANTI-FLAG affinity chromatography with yields of 30-40%. Purified receptors were functional. Binding of the agonist [(3)H]muscimol to the purified GABA(A)R was enhanced allosterically by the general anesthetic etomidate, and purified 5-hydroxytryptamine-3A receptor supported serotonin-stimulated cation flux when reconstituted into lipid vesicles. Copyright © 2010 The Protein Society.

  3. Nullifying drug-induced sensitization: behavioral and electrophysiological evaluations of dopaminergic and serotonergic ligands in methamphetamine-sensitized rats.

    Science.gov (United States)

    McDaid, J; Tedford, C E; Mackie, A R; Dallimore, J E; Mickiewicz, A L; Shen, F; Angle, J M; Napier, T C

    2007-01-05

    Repeated exposure to methamphetamine produces a persistent enhancement of the acute motor effects of the drug, commonly referred to as behavioral sensitization. Behavioral sensitization involves monoaminergic projections to several forebrain nuclei. We recently revealed that the ventral pallidum (VP) may also be involved. In this study, we sought to establish if treatments with antagonists or partial agonists to monoaminergic receptors could "reverse" methamphetamine-induced behavioral and VP neuronal sensitization. Behavioral sensitization was obtained in rats with five once-daily s.c. injections of 2.5mg/kg methamphetamine, an effect that persisted for at least 60 days. After the development of sensitization, 15 once-daily treatments of mirtazapine (a 5-HT(2/3), alpha(2) and H(1) antagonist), SKF38393 (D(1) partial agonist) or SCH23390 (dopamine D(1) antagonist) nullified indices of motor sensitization as assessed by measuring the motoric response to an acute methamphetamine challenge 30 days after the fifth repeated methamphetamine treatment. VP neurons recorded in vivo from methamphetamine-sensitized rats at the 30-day withdrawal time also showed a robust downward shift in the excitatory responses observed to an acute i.v. methamphetamine challenge in non-sensitized rats. This decreased excitatory effect was reversed by mirtazapine, but not by other antagonists that were tested. These data suggest a potential therapeutic benefit for mirtazapine in the treatment of methamphetamine addiction, and point to a possible role for the VP in the sensitization process to methamphetamine.

  4. Interleukin-17A and Toll-Like Receptor 3 Ligand Poly(I:C Synergistically Induced Neutrophil Chemoattractant Production by Bronchial Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Hirotaka Matsuzaki

    Full Text Available Chronic inflammatory airway diseases, such as bronchial asthma and chronic obstructive pulmonary disease, are common respiratory disorders worldwide. Exacerbations of these diseases are frequent and worsen patients' respiratory condition and overall health. However, the mechanisms of exacerbation have not been fully elucidated. Recently, it was reported that interleukin (IL-17A might play an important role in neutrophilic inflammation, which is characteristic of such exacerbations, through increased production of neutrophil chemoattractants. Therefore, we hypothesized that IL-17A was involved in the pathogenesis of acute exacerbation, due to viral infection in chronic inflammatory airway diseases. In this study, we assessed chemokine production by bronchial epithelial cells and investigated the underlying mechanisms. Comprehensive chemokine analysis showed that, compared with poly(I:C alone, co-stimulation of BEAS-2B cells with IL-17A and poly(I:C strongly induced production of such neutrophil chemoattractants as CXC chemokine ligand (CXCL8, growth-related oncogene (GRO, and CXCL1. Co-stimulation synergistically induced CXCL8 and CXCL1 mRNA and protein production by BEAS-2B cells and normal human bronchial epithelial cells. Poly(I:C induced chemokine expression by BEAS-2B cells mainly via Toll-like receptor 3/TIR-domain-containing adapter-inducing interferon-β-mediated signals. The co-stimulation with IL-17A and poly(I:C markedly activated the p38 and extracellular-signal-regulated kinase 1/2 pathway, compared with poly(I:C, although there was little change in nuclear factor-κB translocation into the nucleus or the transcriptional activities of nuclear factor-κB and activator protein 1. IL-17A promoted stabilization of CXCL8 mRNA in BEAS-2B cells treated with poly(I:C. In conclusion, IL-17A appears to be involved in the pathogenesis of chronic inflammatory airway disease exacerbation, due to viral infection by promoting release of neutrophil

  5. The role of CD154-CD40 versus CD28-B7 costimulatory pathways in regulating allogeneic Th1 and Th2 responses in vivo

    DEFF Research Database (Denmark)

    Kishimoto, K; Dong, V M; Issazadeh-Navikas, Shohreh

    2000-01-01

    We used signal transducer and activator of transcription 4 (STAT4) and STAT6 gene knockout (-/-) mice as recipients of fully mismatched cardiac allografts to study the role of T-cell costimulatory pathways in regulating allogeneic T-helper 1 (Th1) versus Th2 responses in vivo. STAT4(-/-) mice have...... impaired Th1 responses, whereas STAT6(-/-) mice do not generate normal Th2 responses. Cardiac allografts from C57BL/6 mice were transplanted into normal wild-type (WT), STAT4(-/-), and STAT6(-/-) BALB/c recipients. STAT4(-/-) and STAT6(-/-) mice rejected their grafts with the same tempo as untreated WT....... Furthermore, there was a similar differential effect of CD28-B7 versus CD154-CD40 blockade in inhibiting immune responses in animals immunized with ovalbumin and complete Freund's adjuvant. These novel data indicate that Th1 and Th2 cells are differentially regulated by CD28-B7 versus CD154-CD40 costimulation...

  6. Ligand-induced changes in the conformational stability and flexibility of glutamate dehydrogenase and their role in catalysis and regulation.

    Science.gov (United States)

    Wacker, Sarah A; Bradley, Michael J; Marion, Jimmy; Bell, Ellis

    2010-10-01

    Bovine glutamate dehydrogenase (GDH) is allosterically regulated and requires substrate-induced subunit interactions for maximum catalytic activity. Steady-state and presteady-state kinetics indicate that the rate-limiting step depends on the nature of the substrate and are likely associated with conformational fluctuations necessary for optimal hydride transfer. Deuterated glutamate shows a steady-state isotope effect but no effect on the presteady-state burst rate, demonstrating that conformational effects are rate limiting for hydride transfer while product release is overall rate limiting for glutamate. Guanidine hydrochloride unfolding, heat inactivation, and differential scanning calorimetry demonstrate the effects of alternative substrates, glutamate and norvaline, on conformational stability. Glutamate has little effect on overall stability, whereas norvaline markedly stabilizes the protein. Limited proteolysis demonstrates that glutamate had a variety of effects on local flexibility, whereas norvaline significantly decreased conformational fluctuations that allow protease cleavage. Dynamic light scattering suggests that norvaline stabilizes all interfaces in the hexamer, whereas glutamate had little effect on trimer-trimer interactions. The substrate glutamate exhibits negative cooperativity and complex allosteric regulation but has only minor effects on global GDH stability, while promoting certain local conformational fluctuations. In contrast, the substrate norvaline does not show negative cooperativity or allow allosteric regulation. Instead, norvaline significantly stabilizes the enzyme and markedly slows or prevents local conformational fluctuations that are likely to be important for cooperative effects and to determine the overall rate of hydride transfer. This suggests that homotropic allosteric regulation by the enzymatic substrate involves changes in both global stability and local flexibility of the protein.

  7. Galectin-2 induces a proinflammatory, anti-arteriogenic phenotype in monocytes and macrophages.

    Directory of Open Access Journals (Sweden)

    Cansu Yıldırım

    Full Text Available Galectin-2 is a monocyte-expressed carbohydrate-binding lectin, for which increased expression is genetically determined and associated with decreased collateral arteriogenesis in obstructive coronary artery disease patients. The inhibiting effect of galectin-2 on arteriogenesis was confirmed in vivo, but the mechanism is largely unknown. In this study we aimed to explore the effects of galectin-2 on monocyte/macrophage phenotype in vitro and vivo, and to identify the receptor by which galectin-2 exerts these effects. We now show that the binding of galectin-2 to different circulating human monocyte subsets is dependent on monocyte surface expression levels of CD14. The high affinity binding is blocked by an anti-CD14 antibody but not by carbohydrates, indicating a specific protein-protein interaction. Galectin-2 binding to human monocytes modulated their transcriptome by inducing proinflammatory cytokines and inhibiting pro-arteriogenic factors, while attenuating monocyte migration. Using specific knock-out mice, we show that galectin-2 acts through the CD14/toll-like receptor (TLR-4 pathway. Furthermore, galectin-2 skews human macrophages to a M1-like proinflammatory phenotype, characterized by a reduced motility and expression of an anti-arteriogenic cytokine/growth factor repertoire. This is accompanied by a switch in surface protein expression to CD40-high and CD206-low (M1. In a murine model we show that galectin-2 administration, known to attenuate arteriogenesis, leads to increased numbers of CD40-positive (M1 and reduced numbers of CD206-positive (M2 macrophages surrounding actively remodeling collateral arteries. In conclusion galectin-2 is the first endogenous CD14/TLR4 ligand that induces a proinflammatory, non-arteriogenic phenotype in monocytes/macrophages. Interference with CD14-Galectin-2 interaction may provide a new intervention strategy to stimulate growth of collateral arteries in genetically compromised cardiovascular

  8. Low anticoagulant heparin targets multiple sites of inflammation, suppresses heparin-induced thrombocytopenia, and inhibits interaction of RAGE with its ligands.

    Science.gov (United States)

    Rao, Narayanam V; Argyle, Brian; Xu, Xiaoyu; Reynolds, Paul R; Walenga, Jeanine M; Prechel, Margaret; Prestwich, Glenn D; MacArthur, Robert B; Walters, Bradford B; Hoidal, John R; Kennedy, Thomas P

    2010-07-01

    While heparin has been used almost exclusively as a blood anticoagulant, important literature demonstrates that it also has broad anti-inflammatory activity. Herein, using low anti-coagulant 2-O,3-O-desulfated heparin (ODSH), we demonstrate that most of the anti-inflammatory pharmacology of heparin is unrelated to anticoagulant activity. ODSH has low affinity for anti-thrombin III, low anti-Xa, and anti-IIa anticoagulant activities and does not activate Hageman factor (factor XII). Unlike heparin, ODSH does not interact with heparin-platelet factor-4 antibodies present in patients with heparin-induced thrombocytopenia and even suppresses platelet activation in the presence of activating concentrations of heparin. Like heparin, ODSH inhibits complement activation, binding to the leukocyte adhesion molecule P-selectin, and the leukocyte cationic granular proteins azurocidin, human leukocyte elastase, and cathepsin G. In addition, ODSH and heparin disrupt Mac-1 (CD11b/CD18)-mediated leukocyte adhesion to the receptor for advanced glycation end products (RAGE) and inhibit ligation of RAGE by its many proinflammatory ligands, including the advanced glycation end-product carboxymethyl lysine-bovine serum albumin, the nuclear protein high mobility group box protein-1 (HMGB-1), and S100 calgranulins. In mice, ODSH is more effective than heparin in reducing selectin-mediated lung metastasis from melanoma and inhibits RAGE-mediated airway inflammation from intratracheal HMGB-1. In humans, 50% inhibitory concentrations of ODSH for these anti-inflammatory activities can be achieved in the blood without anticoagulation. These results demonstrate that the anticoagulant activity of heparin is distinct from its anti-inflammatory actions and indicate that 2-O and 3-O sulfate groups can be removed to reduce anticoagulant activity of heparin without impairing its anti-inflammatory pharmacology.

  9. Association of soluble Tumor necrosis factor-Related Apoptosis-Inducing Ligand (TRAIL with central adiposity and low-density lipoprotein cholesterol.

    Directory of Open Access Journals (Sweden)

    Gloria Brombo

    Full Text Available OBJECTIVE: Tumor necrosis factor-Related Apoptosis-Inducing Ligand (TRAIL, in addition to having a prognostic value in patients with cardiovascular disease, seems to interact with adiposity, insulin resistance and other cardiovascular risk factors. However, the results of previous clinical studies, focused on the association of TRAIL with selected metabolic or anthropometric indices were inconclusive. The aim of this study was to further investigate how soluble TRAIL concentrations independently correlate with major cardiovascular risk factors, including lipid, glycemic and anthropometric features. MATERIALS/METHODS: We examined the associations between serum soluble TRAIL concentrations, measured by ELISA, and lipid, glycemic and anthropometric features in 199 subjects recruited at our Metabolic Outpatient Clinic. RESULTS: Soluble TRAIL concentrations had a significant and direct correlation with total cholesterol (p = 0.046, LDL-cholesterol (p = 0.032, triglycerides (p = 0.01, body mass index (p = 0.046, waist circumference (p = 0.008, fat mass (p = 0.056 and insulin (p = 0.046 and an inverse correlation with HDL-cholesterol (p = 0.02. In multivariable regression analyses adjusted for potential confounders (age, gender, C-reactive protein, HDL-cholesterol, triglycerides, waist circumference, and insulin, TRAIL levels continued to have an independent correlation with LDL-cholesterol and waist circumference (r(2 = 0.04. CONCLUSIONS: Serum TRAIL levels were weakly but significantly and independently associated with waist circumference, a marker of visceral adiposity, and with LDL-cholesterol. Further studies are needed to clarify the biological basis of these relationships.

  10. Association of soluble Tumor necrosis factor-Related Apoptosis-Inducing Ligand (TRAIL) with central adiposity and low-density lipoprotein cholesterol.

    Science.gov (United States)

    Brombo, Gloria; Volpato, Stefano; Secchiero, Paola; Passaro, Angelina; Bosi, Cristina; Zuliani, Giovanni; Zauli, Giorgio

    2013-01-01

    Tumor necrosis factor-Related Apoptosis-Inducing Ligand (TRAIL), in addition to having a prognostic value in patients with cardiovascular disease, seems to interact with adiposity, insulin resistance and other cardiovascular risk factors. However, the results of previous clinical studies, focused on the association of TRAIL with selected metabolic or anthropometric indices were inconclusive. The aim of this study was to further investigate how soluble TRAIL concentrations independently correlate with major cardiovascular risk factors, including lipid, glycemic and anthropometric features. We examined the associations between serum soluble TRAIL concentrations, measured by ELISA, and lipid, glycemic and anthropometric features in 199 subjects recruited at our Metabolic Outpatient Clinic. Soluble TRAIL concentrations had a significant and direct correlation with total cholesterol (p = 0.046), LDL-cholesterol (p = 0.032), triglycerides (p = 0.01), body mass index (p = 0.046), waist circumference (p = 0.008), fat mass (p = 0.056) and insulin (p = 0.046) and an inverse correlation with HDL-cholesterol (p = 0.02). In multivariable regression analyses adjusted for potential confounders (age, gender, C-reactive protein, HDL-cholesterol, triglycerides, waist circumference, and insulin), TRAIL levels continued to have an independent correlation with LDL-cholesterol and waist circumference (r(2) = 0.04). Serum TRAIL levels were weakly but significantly and independently associated with waist circumference, a marker of visceral adiposity, and with LDL-cholesterol. Further studies are needed to clarify the biological basis of these relationships.

  11. Periodontal ligament cells under mechanical stress induce osteoclastogenesis by receptor activator of nuclear factor kappaB ligand up-regulation via prostaglandin E2 synthesis.

    Science.gov (United States)

    Kanzaki, Hiroyuki; Chiba, Mirei; Shimizu, Yoshinobu; Mitani, Hideo

    2002-02-01

    Previously, we discovered that periodontal ligament (PDL) cells not only support osteoclastogenesis through cell-to-cell contact, but also inhibit the formation of tartrate-resistant acid phosphatase-positive (TRAP+) multinucleated cells by a producing soluble factor(s). Furthermore, PDL cells express both receptor activator of nuclear factor kappaB ligand (RANKL) and osteoprotegerin (OPG) messenger RNA (mRNA). Clinically, "ankylosed teeth," which lack periodontal ligament, cannot be moved with orthodontic tooth treatment. From this, we hypothesized that PDL cells under mechanical stress should play a pivotal role in osteoclast formation during orthodontic tooth movement. This study examined how mechanical stress affects the osteoclastogenesis-supporting activity of PDL cells. PDL cells were compressed continuously and then cocultured with peripheral blood mononuclear cells (PBMCs) for 4 weeks. PDL cells under mechanical stress up-regulated osteoclastogenesis from PBMCs. Furthermore, the expression of RANKL mRNA and protein in PDL cells increased with compressive force in parallel with the change in the number of osteoclasts. In addition, cyclo-oxygenase 2 (COX-2) mRNA expression was induced by compressive force, and indomethacin inhibited the RANKL up-regulation resulting from compressive force. PDL cells under compressive force exhibited significantly increased prostaglandin E2 (PGE2) production in comparison with control PDL cells. Exogenous PGE2 treatment increased RANKL mRNA expression in PDL cells. Interestingly, OPG expression remained constant throughout compressive force or PGE2 treatment. In conclusion, compressive force up-regulated RANKL expression in PDL cells. Furthermore, RANKL up-regulation in mechanically stressed PDL cells was dependent on PGE2.

  12. Human Langerhans cells control Th cells via programmed death-ligand 1 in response to bacterial stimuli and nickel-induced contact allergy.

    Directory of Open Access Journals (Sweden)

    Manuel Hitzler

    Full Text Available Langerhans cells (LCs are suspected to initiate inflammatory immune responses to contact allergens and pathogenic bacteria. In chronic infectious diseases, programmed death ligand (PD-L 1 exhibits both inhibitory and costimulatory functions on T cell-mediated activation and tolerance. Here, we investigated the effects of contact allergens and bacterial stimuli on PD-L1 expression in LCs and the effects of altered PD-L1 expression on cytokine release of subsequently cocultured T cells. Monocyte-derived LCs (MoLCs, LCs, and skin sections of patients suffering from allergic contact dermatitis were challenged with nickel and then analyzed for PD-L1 expression by confocal laser scanning microscopy and flow cytometry. In blocking experiments, we found that the release of Th cell specific cytokines was dependent on both stimulation of LCs and inhibition of PD-L1-PD-1 interactions. Stimulation with peptidoglycan (PGN or lipopolysaccharide (LPS and blockage of PD-L1 with a specific antibody triggered the release of high levels of IL-17, IL-22, TNF-α, and IFN-γ in CD4(+T cells. If nickel was used as a stimulus, blockage of PD-L1 led to high amounts of TNF-α and IL-22. A closer look revealed PD-L1-dependent upregulation of IL-17 secretion in FACS-sorted CCR6(+/CCR4(+ T memory cells. In the presence of anti-PD-L1, PGN induced secretion of IFN-γ and IL-17 in total CCR6(+ cells, while nickel triggered secretion of IFN-γ and IL-17 exclusively in CCR6(+/CCR4(+ cells. Our findings suggest that PD-L1 on LCs plays a crucial role in type IV allergic reactions and in response to bacterial stimuli by controlling the nature of inflammatory Th cell responses.

  13. Human Langerhans cells control Th cells via programmed death-ligand 1 in response to bacterial stimuli and nickel-induced contact allergy.

    Science.gov (United States)

    Hitzler, Manuel; Majdic, Otto; Heine, Guido; Worm, Margitta; Ebert, Grit; Luch, Andreas; Peiser, Matthias

    2012-01-01

    Langerhans cells (LCs) are suspected to initiate inflammatory immune responses to contact allergens and pathogenic bacteria. In chronic infectious diseases, programmed death ligand (PD-L) 1 exhibits both inhibitory and costimulatory functions on T cell-mediated activation and tolerance. Here, we investigated the effects of contact allergens and bacterial stimuli on PD-L1 expression in LCs and the effects of altered PD-L1 expression on cytokine release of subsequently cocultured T cells. Monocyte-derived LCs (MoLCs), LCs, and skin sections of patients suffering from allergic contact dermatitis were challenged with nickel and then analyzed for PD-L1 expression by confocal laser scanning microscopy and flow cytometry. In blocking experiments, we found that the release of Th cell specific cytokines was dependent on both stimulation of LCs and inhibition of PD-L1-PD-1 interactions. Stimulation with peptidoglycan (PGN) or lipopolysaccharide (LPS) and blockage of PD-L1 with a specific antibody triggered the release of high levels of IL-17, IL-22, TNF-α, and IFN-γ in CD4(+)T cells. If nickel was used as a stimulus, blockage of PD-L1 led to high amounts of TNF-α and IL-22. A closer look revealed PD-L1-dependent upregulation of IL-17 secretion in FACS-sorted CCR6(+)/CCR4(+) T memory cells. In the presence of anti-PD-L1, PGN induced secretion of IFN-γ and IL-17 in total CCR6(+) cells, while nickel triggered secretion of IFN-γ and IL-17 exclusively in CCR6(+)/CCR4(+) cells. Our findings suggest that PD-L1 on LCs plays a crucial role in type IV allergic reactions and in response to bacterial stimuli by controlling the nature of inflammatory Th cell responses.

  14. Suppression of glucose-6-phosphate-isomerase induced arthritis by oral administration of transgenic rice seeds expressing altered peptide ligands of glucose-6-phosphate-isomerase.

    Science.gov (United States)

    Hirota, Tomoya; Tsuboi, Hiroto; Iizuka-Koga, Mana; Takahashi, Hiroyuki; Asashima, Hiromitsu; Yokosawa, Masahiro; Kondo, Yuya; Ohta, Masaru; Wakasa, Yuhya; Matsumoto, Isao; Takaiwa, Fumio; Sumida, Takayuki

    2017-05-01

    To investigate the effects of transgenic rice seeds expressing the altered peptide ligand (APL) of human glucose-6-phosphate-isomerase (hGPI 325-339 ) in mice model of GPI-induced arthritis (GIA). We generated transgenic rice expressing T-cell epitope of hGPI 325-339 and APL12 contained in the seed endosperm. The transgenic rice seeds were orally administered prophylactically before the induction of GIA. The severity of arthritis and titers of serum anti-GPI antibodies were evaluated. We examined for IL-17 production in splenocytes and inguinal lymph node (iLN) cells, and analyzed the expression levels of functional molecules in splenocytes. Prophylactic treatment of GIA mice with APL12 transgenic (APL12-TG) rice seeds significantly reduced the severity of arthritis and titers of serum anti-GPI antibodies compared with non-transgenic (Non-TG) rice-treated mice. APL12-TG and hGPI 325-339 transgenic (hGPI 325-339 -TG) rice seeds improved the histopathological arthritis scores and decreased IL-17 production compared with non-TG rice-treated mice. APL12-TG rice-treated GIA mice showed upregulation of Foxp3 and GITR protein in CD4  +  CD25  +  Foxp3 +  cells in the spleen compared with non-TG rice- and hGPI 325-339 -TG rice-treated mice. APL12-TG rice seeds improved the severity of GIA through a decrease in production of IL-17 and anti-GPI antibodies via upregulation of Foxp3 and GITR expression on Treg cells in spleen.

  15. Increased Serum B Cell Activating Factor and a Proliferation-inducing Ligand Are Associated with Interstitial Lung Disease in Patients with Juvenile Dermatomyositis.

    Science.gov (United States)

    Kobayashi, Norimoto; Kobayashi, Ichiro; Mori, Masaaki; Sato, Shinji; Iwata, Naomi; Shigemura, Tomonari; Agematsu, Kazunaga; Yokota, Shumpei; Koike, Kenichi

    2015-12-01

    Rapidly progressive interstitial lung disease (RP-ILD) is an intractable and fatal complication of juvenile dermatomyositis (JDM). This study evaluated serum levels of B cell activating factor (BAFF) and a proliferation-inducing ligand (APRIL) in JDM patients with complicating ILD, and their association with ILD phenotypes, clinical variables, and anti-melanoma differentiation-associated gene 5 (MDA5). We measured the levels of BAFF, APRIL, and anti-MDA5 in the sera of 23 JDM patients with ILD [8 in the RP-ILD group and 15 in the chronic ILD (C-ILD) group], 17 JDM patients without ILD (non-ILD group), and 10 age-matched controls, using the ELISA method. ILD was identified by high-resolution computed tomography. Serum BAFF titers were significantly higher in the JDM patients with RP-ILD versus those with C-ILD (p = 0.011) and in healthy controls (p = 0.0004). The C-ILD group had significantly higher levels of BAFF versus controls (p ≤ 0.0001). Serum APRIL was markedly elevated in the RP-ILD group as compared with the C-ILD group (p = 0.003) and controls (p = 0.006). In patients with ILD, both BAFF and APRIL levels were correlated with serum Krebs von den Lungen-6 and interleukin 18. Subjects with high titer anti-MDA5 (> 200 U) had higher levels of BAFF and APRIL than those with low titer anti-MDA5 (< 100 U; p = 0.019 and p = 0.0029, respectively), which may have been due to a relationship between RP-ILD and high anti-MDA5 titer. Our findings of markedly elevated levels of BAFF and APRIL in patients with RP-ILD JDM suggest the potential importance of these cytokines in the diagnosis and treatment of RP-ILD accompanying JDM.

  16. A Comparison of the Anorectic Effect and Safety of the Alpha2-Adrenoceptor Ligands Guanfacine and Yohimbine in Rats with Diet-Induced Obesity.

    Directory of Open Access Journals (Sweden)

    Magdalena Dudek

    Full Text Available The search for drugs with anorectic activity, acting within the adrenergic system has attracted the interest of researchers. Partial α2-adrenoceptor agonists might offer the potential for effective and safe treatment of obesity. We compared the effectiveness and safety of α2-adrenoceptor ligands in reducing body mass. We also analyzed if antagonist and partial agonists of α2-adrenoceptor--yohimbine and guanfacine--act similarly, and determined which course of action is connected with anorectic activity. We tested intrinsic activity and effect on the lipolysis of these compounds in cell cultures, evaluated their effect on meal size, body weight in Wistar rats with high-fat diet-induced obesity, and determined their effect on blood pressure, heart rate, lipid profile, spontaneous locomotor activity, core temperature and glucose, as well as glycerol and cortisol levels. Both guanfacine and yohimbine showed anorectic activity. Guanfacine was much more effective than yohimbine. Both significantly reduced the amount of intraperitoneal adipose tissue and had a beneficial effect on lipid profiles. Decreased response of α2A-adrenoceptors and partial stimulation of α2B-receptors seem to be responsible for the anorectic action of guanfacine. The stimulation of α1-adrenoceptors by guanfacine is responsible for cardiovascular side effects but may also be linked with improved anorexic effect. α1-adrenoceptor blockade is connected with the side effects of yohimbine, but it is also associated with the improvement of lipid profiles. Guanfacine has been approved by the Food and Drug Administration (FDA to treat hypertension and conduct disorder, but as it reduces body weight, it is worth examining its effectiveness and safety in models of obesity.

  17. A new crystal form of human tear lipocalin reveals high flexibility in the loop region and induced fit in the ligand cavity

    Energy Technology Data Exchange (ETDEWEB)

    Breustedt, Daniel A.; Chatwell, Lorenz; Skerra, Arne, E-mail: skerra@wzw.tum.de [Munich Center for Integrated Protein Science, CIPS-M, and Lehrstuhl für Biologische Chemie, Technische Universität München, 85350 Freising-Weihenstephan (Germany)

    2009-10-01

    The crystal structure of tear lipocalin determined in space group P2{sub 1} revealed large structural deviations from the previously solved X-ray structure in space group C2, especially in the loop region and adjoining parts of the β-barrel which give rise to the ligand-binding site. These findings illustrate a novel mechanism for promiscuity in ligand recognition by the lipocalin protein family. Tear lipocalin (TLC) with the bound artificial ligand 1,4-butanediol has been crystallized in space group P2{sub 1} with four protein molecules in the asymmetric unit and its X-ray structure has been solved at 2.6 Å resolution. TLC is a member of the lipocalin family that binds ligands with diverse chemical structures, such as fatty acids, phospholipids and cholesterol as well as microbial siderophores and the antibiotic rifampin. Previous X-ray structural analysis of apo TLC crystallized in space group C2 revealed a rather large bifurcated ligand pocket and a partially disordered loop region at the entrace to the cavity. Analysis of the P2{sub 1} crystal form uncovered major conformational changes (i) in β-strands B, C and D, (ii) in loops 1, 2 and 4 at the open end of the β-barrel and (iii) in the extended C-terminal segment, which is attached to the β-barrel via a disulfide bridge. The structural comparison indicates high conformational plasticity of the loop region as well as of deeper parts of the ligand pocket, thus allowing adaptation to ligands that differ vastly in size and shape. This illustrates a mechanism for promiscuity in ligand recognition which may also be relevant for some other physiologically important members of the lipocalin protein family.

  18. A new crystal form of human tear lipocalin reveals high flexibility in the loop region and induced fit in the ligand cavity

    International Nuclear Information System (INIS)

    Breustedt, Daniel A.; Chatwell, Lorenz; Skerra, Arne

    2009-01-01

    The crystal structure of tear lipocalin determined in space group P2 1 revealed large structural deviations from the previously solved X-ray structure in space group C2, especially in the loop region and adjoining parts of the β-barrel which give rise to the ligand-binding site. These findings illustrate a novel mechanism for promiscuity in ligand recognition by the lipocalin protein family. Tear lipocalin (TLC) with the bound artificial ligand 1,4-butanediol has been crystallized in space group P2 1 with four protein molecules in the asymmetric unit and its X-ray structure has been solved at 2.6 Å resolution. TLC is a member of the lipocalin family that binds ligands with diverse chemical structures, such as fatty acids, phospholipids and cholesterol as well as microbial siderophores and the antibiotic rifampin. Previous X-ray structural analysis of apo TLC crystallized in space group C2 revealed a rather large bifurcated ligand pocket and a partially disordered loop region at the entrace to the cavity. Analysis of the P2 1 crystal form uncovered major conformational changes (i) in β-strands B, C and D, (ii) in loops 1, 2 and 4 at the open end of the β-barrel and (iii) in the extended C-terminal segment, which is attached to the β-barrel via a disulfide bridge. The structural comparison indicates high conformational plasticity of the loop region as well as of deeper parts of the ligand pocket, thus allowing adaptation to ligands that differ vastly in size and shape. This illustrates a mechanism for promiscuity in ligand recognition which may also be relevant for some other physiologically important members of the lipocalin protein family

  19. Attractant- and Disulfide-Induced Conformational Changes in the Ligand Binding Domain of the Chemotaxis Aspartate Receptor: A 19F NMR Study†

    Science.gov (United States)

    Danielson, Mark A.; Biemann, Hans-Peter; Koshland, Daniel E.

    2010-01-01

    The isolated ligand binding domain of the chemotaxis aspartate receptor is the focus of the present study, which both (a) identifies structural regions involved in the attractant-induced conformational change and (b) investigates the kinetic parameters of attractant binding. To analyze the attractant-induced conformational change within the homodimeric domain, 19F NMR is used to monitor six para-fluorophenylalanine (4-F-Phe) positions within each identical subunit of the homodimer. The binding of one molecule of aspartate to the homodimer perturbs three of the 4-F-Phe resonances significantly: 4-F-Phe150 in the attractant binding site, 4-F-Phe107 located 26 Å from the site, and 4-F-Phe180 at a distance of 40 Å from the site. Comparison of the frequency shifts triggered by aspartate and glutamate reveals that these attractants generate different conformations in the vicinity of the attractant site but trigger indistinguishable long-range conformational effects at distant positions. This long-range conformational change is specific for attractant binding, since formation of the Cys36–Cys36′ disulfide bond or the nonphysiological binding of 1,10-phenanthroline to an aromatic pocket distal to the attractant site each yield conformational changes which are significantly more localized. The attractant-triggered perturbations detected at 4-F-Phe107 and 4-F-Phe180 indicate that the structural change includes an intrasubunit component communicated through the domain to its C-terminal region, which, in the full-length receptor, continues through the membrane as the second membrane-spanning helix. It would thus appear that the transmembrane signal is transmitted through this helix. The 19F NMR results also reveal the association rate constant for aspartate binding to the isolated periplasmic domain (kon ~ 109 M−1 s−1), enabling deduction of the dissociation rate constant (k off ~ 103 s−1). Aspartate binding thus approaches the diffusion-controlled limit. The

  20. Human innate responses and adjuvant activity of TLR ligands in vivo in mice reconstituted with a human immune system.

    Science.gov (United States)

    Cheng, Liang; Zhang, Zheng; Li, Guangming; Li, Feng; Wang, Li; Zhang, Liguo; Zurawski, Sandra M; Zurawski, Gerard; Levy, Yves; Su, Lishan

    2017-10-27

    TLR ligands (TLR-Ls) represent a class of novel vaccine adjuvants. However, their immunologic effects in humans remain poorly defined in vivo. Using a humanized mouse model with a functional human immune system, we investigated how different TLR-Ls stimulated human innate immune response in vivo and their applications as vaccine adjuvants for enhancing human cellular immune response. We found that splenocytes from humanized mice showed identical responses to various TLR-Ls as human PBMCs in vitro. To our surprise, various TLR-Ls stimulated human cytokines and chemokines differently in vivo compared to that in vitro. For example, CpG-A was most efficient to induce IFN-α production in vitro. In contrast, CpG-B, R848 and Poly I:C stimulated much more IFN-α than CpG-A in vivo. Importantly, the human innate immune response to specific TLR-Ls in humanized mice was different from that reported in C57BL/6 mice, but similar to that reported in nonhuman primates. Furthermore, we found that different TLR-Ls distinctively activated and mobilized human plasmacytoid dendritic cells (pDCs), myeloid DCs (mDCs) and monocytes in different organs. Finally, we showed that, as adjuvants, CpG-B, R848 and Poly I:C can all enhance antigen specific CD4 + T cell response, while only R848 and Poly I:C induced CD8 + cytotoxic T cells response to a CD40-targeting HIV vaccine in humanized mice, correlated with their ability to activate human mDCs but not pDCs. We conclude that humanized mice serve as a highly relevant model to evaluate and rank the human immunologic effects of novel adjuvants in vivo prior to testing in humans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Adenoviral vaccination combined with CD40 stimulation and CTLA-4 blockage can lead to complete tumor regression in a murine melanoma model

    DEFF Research Database (Denmark)

    Sørensen, Maria Rathmann; Holst, Peter J; Steffensen, Maria Abildgaard

    2010-01-01

    that the delay in tumor growth can be converted to complete regression and long-term survival in 30-40% of the mice by a booster vaccination plus combinational treatment with agonistic anti-CD40 monoclonal antibodies (mAb) and anti-CTLA-4 mAb. Regarding the mechanism underlying the improved clinical effect......Therapeutic vaccination with replication deficient adenovirus expressing a viral antigen linked to invariant chain was recently found to markedly delay the growth of B16.F10 melanomas expressing the same antigen; however, complete regression of the tumors was never observed. Here we show....... These results indicate that even with a strong tumor vaccine candidate, combinatorial treatment may be required to obtain clinically relevant results....

  2. A phase 1b clinical trial of the CD40-activating antibody CP-870,893 in combination with cisplatin and pemetrexed in malignant pleural mesothelioma.

    Science.gov (United States)

    Nowak, A K; Cook, A M; McDonnell, A M; Millward, M J; Creaney, J; Francis, R J; Hasani, A; Segal, A; Musk, A W; Turlach, B A; McCoy, M J; Robinson, B W S; Lake, R A

    2015-12-01

    Data from murine models suggest that CD40 activation may synergize with cytotoxic chemotherapy. We aimed to determine the maximum tolerated dose (MTD) and toxicity profile and to explore immunological biomarkers of the CD40-activating antibody CP-870,893 with cisplatin and pemetrexed in patients with malignant pleural mesothelioma (MPM). Eligible patients had confirmed MPM, ECOG performance status 0-1, and measurable disease. Patients received cisplatin 75 mg/m(2) and pemetrexed 500 mg/m(2) on day 1 and CP-870,893 on day 8 of a 21-day cycle for maximum 6 cycles with up to 6 subsequent cycles single-agent CP-870,893. Immune cell subset changes were examined weekly by flow cytometry. Fifteen patients were treated at three dose levels. The MTD of CP-870,893 was 0.15 mg/kg, and was exceeded at 0.2 mg/kg with one grade 4 splenic infarction and one grade 3 confusion and hyponatraemia. Cytokine release syndrome (CRS) occurred in most patients (80%) following CP-870,893. Haematological toxicities were consistent with cisplatin and pemetrexed chemotherapy. Six partial responses (40%) and 9 stable disease (53%) as best response were observed. The median overall survival was 16.5 months; the median progression-free survival was 6.3 months. Three patients survived beyond 30 months. CD19+ B cells decreased over 6 cycles of chemoimmunotherapy (P CP-870,893 with cisplatin and pemetrexed is safe and tolerable at 0.15 mg/kg, although most patients experience CRS. While objective response rates are similar to chemotherapy alone, three patients achieved long-term survival. ACTRN12609000294257. © The Author 2015. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Li+-ligand binding energies and the effect of ligand fluorination on the binding energies

    Science.gov (United States)

    Bauschlicher, Charles W.

    2018-02-01

    The Li+-ligand binding energies are computed for seven ligands and their perfluoro analogs using Density Functional Theory. The bonding is mostly electrostatic in origin. Thus the size of the binding energy tends to correlate with the ligand dipole moment, however, the charge-induced dipole contribution can be sufficiently large to affect the dipole-binding energy correlation. The perfluoro species are significantly less strongly bound than their parents, because the electron withdrawing power of the fluorine reduces the ligand dipole moment.

  4. A new TPE-based tetrapodal ligand and its Ln(iii) complexes: multi-stimuli responsive AIE (aggregation-induced emission)/ILCT(intraligand charge transfer)-bifunctional photoluminescence and NIR emission sensitization.

    Science.gov (United States)

    Zhu, Yi-Xuan; Wei, Zhang-Wen; Pan, Mei; Wang, Hai-Ping; Zhang, Jian-Yong; Su, Cheng-Yong

    2016-01-21

    A tetrapodal zwitterionic-type ligand featuring both AIE (aggregation-induced emission) and ILCT (intraligand charge transfer) properties, namely 1,1',1'',1'''-(4,4',4'',4'''-(ethene-1,1,2,2-tetrayl)tetrakis(benzene-4,1-diyl))tetrakis(methylene)tetrapyridin-4(1H)-one (TPE-4PO) has been designed and applied to the assembly of lanthanide complexes LIFM-21(Ln) (Ln = Sm, Eu, Gd, Tb and Dy). Apart from sensitization of NIR emission of Sm(3+) and Dy(3+), the resulting ligand and lanthanide complexes show both AIE and ILCT-related photoluminescence behaviors. The photo-response of this system to different aggregation states, solvents' polarity and mechanical grinding was demonstrated by distinguishable emission intensities and colours.

  5. Metal-Ion Induced In Situ Ligand Oxidation for Self-Assembled Clusters: from Bis(5-(2-pyridine-2-yl)-1,2,4-triazole-3-yl)methane to Alcohol or Ketone.

    Science.gov (United States)

    Lin, Wei-Quan; Peng, Yuan-Yuan; Tong, Lang; Jia, Jian-Hua; Liu, Jun-Liang; Chen, Yan-Cong; Chen, Wen-Bin; Tong, Ming-Liang

    2017-09-05

    Hydrothermal reactions of metal nitrates and ligand bis(5-(pyridine-2-yl)-1,2,4-triazol-3-yl)methane (H 2 L 1 ) gave three cluster compounds, {Cr 2 }, {Zn 12 } and {Fe 8 }. Notably, methylene group of H 2 L 1 was in situ oxidized either to hydroxymethylated (L 2 -O) 3- in the metallo-ring {Zn 12 } or to a rigid carbonylated (L 3 =O) 2- in the screw-type {Fe 8 }. In light of comparative experimental results, NO 3 - was deduced to be of a catalytic role in the ligand oxidation. Metal ion could be regarded as an "induced" tool for clusters generation in self-assembly process. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Platelet-Associated CD40/CD154 Mediates Remote Tissue Damage After Mesenteric Ischemia/Reperfusion Injury

    Science.gov (United States)

    2012-02-27

    et al. (2007) In vivo interactions of platelets and leucocytes with the endothelium in murine antigen- induced arthritis: the role of P-selectin. Scand...inflammatory bowel disease. Inflamm Bowel Dis 10: 361 372. 36. Irving PM, Macey MG, Feakins RM, Knowles CH, Frye JN, et al. (2008) Platelet- leucocyte

  7. Sigma-1 and Sigma-2 receptor ligands induce apoptosis and autophagy but have opposite effect on cell proliferation in uveal melanoma.

    Science.gov (United States)

    Longhitano, Lucia; Castracani, Carlo Castruccio; Tibullo, Daniele; Avola, Roberto; Viola, Maria; Russo, Giuliano; Prezzavento, Orazio; Marrazzo, Agostino; Amata, Emanuele; Reibaldi, Michele; Longo, Antonio; Russo, Andrea; Parrinello, Nunziatina Laura; Volti, Giovanni Li

    2017-10-31

    Uveal melanoma is the most common primary intraocular tumor in adults, with about 1200-1500 new cases occurring per year in the United States. Metastasis is a frequent occurrence in uveal melanoma, and outcomes are poor once distant spread occurs and no clinically significant chemotherapeutic protocol is so far available. The aim of the present study was to test the effect of various σ 1 and σ 2 receptor ligands as a possible pharmacological strategy for this rare tumor. Human uveal melanoma cells (92.1) were treated with various concentrations of different σ 2 ligands (haloperidol and haloperidol metabolite II) and σ 1 ligand ((+)-pentazocine) at various concentrations (1, 10 and 25 μM) and time points (0, 4 h, 8 h, 24 h and 48 h). Cell proliferation and migration were evaluated respectively by continuous cell monitoring by xCELLigence analysis, clonogenic assay and wound healing. Apoptosis and autophagy were also measured by cytofluorimetric and microscopy analysis. Our results showed that σ 2 receptor ligands significantly reduced cell proliferation whereas (+)-pentazocine exhibited opposite results. All tested ligands showed significant decrease in cell migration. Interestingly, both σ 1 and σ 2 receptor ligands showed significant increase of autophagy and apoptosis at all concentrations. Taken all together these results suggest that sigma receptors mediates opposite biological effects but they also share common pharmacological effect on apoptosis and autophagy in uveal melanoma. In conclusion, these data provide the first evidence that sigma receptors may represent a "druggable" target to develop new chemotherapic agent for uveal melanoma.

  8. Reversible oxidation state change in germanium(tetraphenylporphyrin) induced by a dative ligand: aromatic GeII(TPP) and antiaromatic GeIV(TPP)(pyridine)2.

    Science.gov (United States)

    Cissell, Julie A; Vaid, Thomas P; Yap, Glenn P A

    2007-06-27

    Treatment of GeCl2(dioxane) with Li2(TPP)(OEt2)2 (TPP = tetraphenylporphyrin) in THF yields Ge(TPP), the first free Ge(II) porphyrin complex. In pyridine Ge(TPP) is converted to Ge(TPP)(py)2, an antiaromatic Ge(IV) complex, whereas in benzene the reaction is reversed, and pyridine dissociates from Ge(TPP)(py)2 to form Ge(TPP). That reversible reaction represents an unusual, if not unique, example of an oxidation-state change in a metal induced by coordination of a dative ligand. UV-vis and 1H NMR spectroscopy show that Ge(TPP) is an aromatic Ge(II) porphyrin complex, while the 1H NMR spectrum of Ge(TPP)(py)2 clearly indicates the presence of a strong paratropic ring current, characteristic of an antiaromatic compound. Both Ge(TPP) and Ge(TPP)(py)2 have been crystallographically characterized, and the antiaromaticity of Ge(TPP)(py)2 leads to alternating short and long C-C bonds along the 20-carbon periphery of its porphine ring system. Coordination of pyridine to Ge(TPP) greatly increases its reducing ability: the Ge(TPP)0/2+ redox potential is about +0.2 V, while the Ge(TPP)(py)2(0/+) redox potential is -1.24 V (both vs. ferrocene). The equilibrium constant of the reaction Ge(TPP) + 2 py = Ge(TPP)(py)2 in C6D6 is 22 M-2. The germanium complex of the more electron-withdrawing tetrakis[3,5-bis(trifluoromethyl)phenyl]porphyrin, Ge(TArFP), and its pyridine adduct Ge(TArFP)(py)2 were synthesized. The equilibrium constant of the reaction Ge(TArFP) + 2 py = Ge(TArFP)(py)2 in C6F6/C6D6 is 2.3 x 10(4) M-2. Density functional theory calculations are consistent with the experimental observation that M(TPP)(py)2 formation from M(TPP) and pyridine is most favorable for M=Si, borderline for Ge, and unfavorable for Sn.

  9. Light-Induced Copper(II) Coordination by a Bicyclic Tetraaza Chelator through a Ligand-to-Metal Charge-Transfer Reaction

    DEFF Research Database (Denmark)

    Holm-Jørgensen, Jacob Rørdam; Jensen, Mikael; Bjerrum, Morten J.

    2011-01-01

    To enable utilization of the broad potential of copper isotopes in nuclear medicine, rapid and robust chelation of the copper is required. Bowl adamanzanes (bicyclic tetraaza ligands) can form kinetically stable copper complexes, but they are usually formed at low rates unless high pH values...... coordinated amine groups) at pH above 6. These findings are supported by pH titrations of mixtures of Cu2+ and [24.31]adz in water. Irradiation of this complex in the ligand-to-metal charge-transfer (LMCT) band by a diode-array spectrophotometer leads to photodeprotonation and subsequently to formation...

  10. Ligands in PSI structures

    International Nuclear Information System (INIS)

    Kumar, Abhinav; Chiu, Hsiu-Ju; Axelrod, Herbert L.; Morse, Andrew; Elsliger, Marc-André; Wilson, Ian A.; Deacon, Ashley

    2010-01-01

    A survey of the types and frequency of ligands that are bound to PSI structures is analyzed as well as their utility in functional annotation of previously uncharacterized proteins. Approximately 65% of PSI structures report some type of ligand(s) that is bound in the crystal structure. Here, a description is given of how such ligands are handled and analyzed at the JCSG and a survey of the types, variety and frequency of ligands that are observed in the PSI structures is also compiled and analyzed, including illustrations of how these bound ligands have provided functional clues for annotation of proteins with little or no previous experimental characterization. Furthermore, a web server was developed as a tool to mine and analyze the PSI structures for bound ligands and other identifying features

  11. Deprotonation induced ligand-to-metal electron transfer: Synthesis of a mixed-valence Rh(-I,I) dinuclear compound and its reaction with dioxygen

    NARCIS (Netherlands)

    Tejel, C.; Ciriano, M.A.; del Río, M.P.; van den Bruele, F.J.; Hetterscheid, D.G.H.; Tsichlis i Spithas, N.; de Bruin, B.

    2008-01-01

    Treatment of bis(2-picolyl)amine (bpa) with [{Rh(nbd)(mu-OMe))(2)] leads to unexpected and unique redox asymmetric dinuclear Rh-I, Rh+I complex [{Rh(ndb)}(2)(bpa-2H)] (2) with a pi-coordinating imine bound to a tetrahedral low valent rhodate(-I). Mono-oxygenation of the deprotonated bpa ligand in 2

  12. Metal-Induced Thiophene Ring Opening and CC Bond Formation To Produce Unique Hexa-1,3,5-trienediyl-Coupled Non-Innocent Ligand Chelates

    Czech Academy of Sciences Publication Activity Database

    Ehret, F.; Bubrin, M.; Záliš, Stanislav; Priego, J. L.; Jiménez-Aparicio, R.; Kaim, W.

    2015-01-01

    Roč. 21, č. 43 (2015), s. 15163-15166 ISSN 1521-3765 R&D Projects: GA MŠk LD14129 Grant - others:COST(XE) CM1202 Institutional support: RVO:61388955 Keywords : mixed valence * non-innosent ligand * ruthenium Subject RIV: CF - Physical ; Theoretical Chemistry

  13. Ebselen Is a Potential Anti-Osteoporosis Agent by Suppressing Receptor Activator of Nuclear Factor Kappa-B Ligand-Induced Osteoclast Differentiation In vitro and Lipopolysaccharide-Induced Inflammatory Bone Destruction In vivo.

    Science.gov (United States)

    Baek, Jong Min; Kim, Ju-Young; Yoon, Kwon-Ha; Oh, Jaemin; Lee, Myeung Su

    2016-01-01

    Ebselen is a non-toxic seleno-organic drug with anti-inflammatory and antioxidant properties that is currently being examined in clinical trials to prevent and treat various diseases, including atherosclerosis, stroke, and cancer. However, no reports are available for verifying the pharmacological effects of ebselen on major metabolic bone diseases such as osteoporosis. In this study, we observed that ebselen suppressed the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells in an osteoblast/osteoclast co-culture by regulating the ratio of receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin secreted by osteoblasts. In addition, ebselen treatment in the early stage of osteoclast differentiation inhibited RANKL-dependent osteoclastogenesis by decreasing the phosphorylation of IκB, PI3K, and Akt in early signaling pathways and by subsequently inducing c-Fos and nuclear factor of activated T-cells c1. Further, ebselen induced apoptosis of osteoclasts in the late stage of osteoclast differentiation. In addition, ebselen treatment suppressed filamentous actin ring formation and bone resorption activity of mature osteoclasts. Reflecting these in vitro effects, administration of ebselen recovered bone loss and its µ-CT parameters in lipopolysaccharide-mediated mouse model. Histological analysis confirmed that ebselen prevented trabecular bone matrix degradation and osteoclast formation in the bone tissues. Finally, it was proved that the anti-osteoclastogenic action of ebselen is achieved through targeting N-methyl-D-aspartate (NMDA) receptor. These results indicate that ebselen is a potentially safe drug for treating metabolic bone diseases such as osteoporosis.

  14. Ru-Os dyads based on a mixed bipyridine-terpyridine bridging ligand: modulation of the rate of energy transfer and pH-induced luminescence switching in the infrared domain.

    Science.gov (United States)

    Bar, Manoranjan; Maity, Dinesh; Deb, Sourav; Das, Shyamal; Baitalik, Sujoy

    2017-10-03

    A series of heterobimetallic complexes of compositions [(bpy/phen) 2 Ru(dipy-Hbzim-tpy)Os (tpy-PhCH 3 /H 2 pbbzim)] 4+ (bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, tpy-PhCH 3 = 4'-(4-methylphenyl)-2,2':6',2''-terpyridine and H 2 pbbzim = 2,6-bis(benzimidazole-2-yl)pyridine)), derived from a heteroditopic bpy-tpy bridging ligand, were synthesized and thoroughly characterized in this work. The heterometallic complexes exhibit two successive one-electron reversible metal-centered oxidations corresponding to Os II /Os III at lower potential and Ru II /Ru III at higher potential. All the four dyads exhibit very intense, ligand centered absorption bands in the UV region and moderately intense MLCT bands in the visible region. The dyads also show intense infrared emission with the emission maximum spanning between 734 nm and 775 nm with reasonably long room temperature lifetimes varying between 30 ns and 104 ns. Both steady state and time resolved luminescence spectroscopic investigations indicate that efficient and fast intramolecular energy transfer from the 3 MLCT state of the Ru(ii) center to the Os-center takes place in all the four dyads. In addition, the rate of energy transfer was found to depend on the terminal ligand on the Os-site. Due to the presence of a number of imidazole NH protons in the dyads, significant modulation of both the ground and excited state properties of the complexes was made possible by varying the pH of the solution. By varying the terminal ligand, pH-induced "on-off", "off-off-on" and "on-off-on" emission switching of the complexes was nicely demonstrated in the infrared region.

  15. A new CdIIcoordination polymer with a self-penetrating architecture induced by the molecular conformation of a rigid bithiophene ligand.

    Science.gov (United States)

    Ji, Ning Ning; Shi, Zhi Qiang; Hu, Hai Liang

    2018-02-01

    The design and synthesis of coordination polymers with a self-penetrating architecture has attracted much interest not only due to their interesting structures but also due to their potential applications. 5,5'-Bis(pyridin-4-yl)-2,2'-bithiophene (bpbp), as a conjugated bithiophene ligand, can exhibit trans and cis conformations and this can lead to the construction of a self-penetrating architecture. In addition, the semi-rigid ancillary ligand 4,4'-oxybis(benzoic acid) (H 2 oba) can adopt different coordination modes, resulting in coordination polymers with high-dimensional skeletons. A new Cd II coordination polymer based on mixed ligands, namely poly[diaquapentakis[μ-5,5'-bis(pyridin-4-yl)-2,2'-bithiophene-κ 2 N:N']bis(nitrato-κ 2 O,O')tetrakis(μ 3 -4,4'-oxydibenzoato)-κ 10 O:O,O':O'',O''';κ 6 O:O':O''-pentacadmium(II)], [Cd 5 (C 14 H 14 O 5 ) 4 (NO 3 ) 2 (C 18 H 12 N 2 S 2 ) 5 (H 2 O) 2 ] n , (I), has been synthesized under solvothermal conditions and characterized by single-crystal X-ray diffraction, IR spectroscopy and elemental analysis. Single-crystal X-ray diffraction indicates that there are three crystallographically independent Cd II cations, three bpbp ligands, two deprotonated oba 2- ligands, one nitrate ligand and one coordinated water molecule in the asymmetric unit. One Cd II centre is seven-coordinated, exhibiting a distorted {CdN 2 O 5 } pentagonal bipyramidal geometry, while the other two Cd centres are both six-coordinated, showing slightly distorted {CdN 2 O 4 } octahedral geometries. The most interesting feature is the co-existence of trans and cis conformations in a single net, allowing structural interpenetration via self-threading and yet the expected self-penetrating structure was obtained. Topological analysis shows that the whole three-dimensional framework can be classified as a 3-nodal (4,6,6)-c net with Schläfli symbol {6 13 .8 2 } 2 {6 6 }, which is a new topology. Furthermore, the luminescence properties of (I) were examined

  16. Autocrine signal transmission with extracellular ligand degradation

    International Nuclear Information System (INIS)

    Muratov, C B; Posta, F; Shvartsman, S Y

    2009-01-01

    Traveling waves of cell signaling in epithelial layers orchestrate a number of important processes in developing and adult tissues. These waves can be mediated by positive feedback autocrine loops, a mode of cell signaling where binding of a diffusible extracellular ligand to a cell surface receptor can lead to further ligand release. We formulate and analyze a biophysical model that accounts for ligand-induced ligand release, extracellular ligand diffusion and ligand–receptor interaction. We focus on the case when the main mode for ligand degradation is extracellular and analyze the problem with the sharp threshold positive feedback nonlinearity. We derive expressions that link the speed of propagation and other characteristics of traveling waves to the parameters of the biophysical processes, such as diffusion rates, receptor expression level, etc. Analyzing the derived expressions we found that traveling waves in such systems can exhibit a number of unusual properties, e.g. non-monotonic dependence of the speed of propagation on ligand diffusivity. Our results for the fully developed traveling fronts can be used to analyze wave initiation from localized perturbations, a scenario that frequently arises in the in vitro models of epithelial wound healing, and guide future modeling studies of cell communication in epithelial layers

  17. Human beta-defensin-2 and -3 enhance pro-inflammatory cytokine expression induced by TLR ligands via ATP-release in a P2X7R dependent manner.

    Science.gov (United States)

    Wanke, Daniela; Mauch-Mücke, Katrin; Holler, Ernst; Hehlgans, Thomas

    2016-11-01

    Our previous results indicate that HBD2 and HBD3 are chemotactic for a broad spectrum of leukocytes in a CCR6- and CCR2-dependent manner. In this study we report that pre-stimulation of primary human macrophages or THP-1 cells with HBD2 or HBD3 results in a synergistic, enhanced expression of pro-inflammatory cytokines and chemokines induced by TLR ligand re-stimulation. Experiments using specific inhibitors of the ATP-gated channel receptor P2X7 or its functional ligand ATP, suggest that the enhanced expression of pro-inflammatory cytokines and chemokines seems to be mediated by P2X7R. Furthermore, our data provide evidence that beta-defensins do not directly interact with P2X7R but rather induce the release of intracellular ATP. Interference with ATP release abrogated the synergistic effect mediated by HBD2 and HBD3 pre-stimulation in THP-1 cells. However, extracellular ATP alone seems not to be sufficient to elicit the enhanced synergistic effect on cytokine and chemokine expression observed by pre-stimulation of primary human macrophages or THP-1 cells with HBD2 or HBD3. Collectively, our findings provide new insights into the molecular mechanisms how HBD2 and HBD3 interact with cells of myeloid origin and demonstrate their immuno-modulating functions during innate immune responses. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Up regulation of serum tumor necrosis factor-related apoptosis inducing ligand in juvenile-onset systemic lupus erythematosus: relations with disease activity, antibodies to double -stranded DNA, nephritis and neutropenia.

    Science.gov (United States)

    Ezzat, Mohamed H M; El-Gammasy, Tarek M A; Shaheen, Kareem Y A; El-Mezdawi, Ramzi A M; Youssef, Mervat S M

    2013-06-01

    Apoptosis is induced by binding of death receptor ligands, members of the tumor necrosis factor (TNF) superfamily, to their cognate receptors. It is suggested that TNF-related apoptosis inducing ligand (TRAIL) is involved in pathogenesis of juvenile-onset systemic lupus erythematosus (JSLE). This study aimed to assess TRAIL concentrations in sera of JSLE children and to determine their potential relationship with disease activity, anti-double-stranded DNA (anti-dsDNA) levels, neutropenia and renal involvement. Circulating levels of TRAIL were measured by enzyme-linked immunosorbent assay (ELISA) in serum samples obtained from 40 JSLE patients (20 with active and 20 with inactive disease) and 20 controls. The mean (SEM) serum TRAIL concentration in JSLE was 1750.7 (440.2) pg/mL. Serum TRAIL concentrations in patients were higher than those in controls (P nephritis compared to classes I and II nephritis (1970 [512] vs. 1330 [331] pg/mL; P lupus nephritis. © 2013 The Authors International Journal of Rheumatic Diseases © 2013 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  19. Deciphering ligand specificity of a Clostridium thermocellum family 35 carbohydrate binding module (CtCBM35 for gluco- and galacto- substituted mannans and its calcium induced stability.

    Directory of Open Access Journals (Sweden)

    Arabinda Ghosh

    Full Text Available This study investigated the role of CBM35 from Clostridium thermocellum (CtCBM35 in polysaccharide recognition. CtCBM35 was cloned into pET28a (+ vector with an engineered His6 tag and expressed in Escherichia coli BL21 (DE3 cells. A homogenous 15 kDa protein was purified by immobilized metal ion chromatography (IMAC. Ligand binding analysis of CtCBM35 was carried out by affinity electrophoresis using various soluble ligands. CtCBM35 showed a manno-configured ligand specific binding displaying significant association with konjac glucomannan (Ka = 14.3×10(4 M(-1, carob galactomannan (Ka = 12.4×10(4 M(-1 and negligible association (Ka = 12 µM(-1 with insoluble mannan. Binding of CtCBM35 with polysaccharides which was calcium dependent exhibited two fold higher association in presence of 10 mM Ca(2+ ion with konjac glucomannan (Ka = 41×10(4 M(-1 and carob galactomannan (Ka = 30×10(4 M(-1. The polysaccharide binding was further investigated by fluorescence spectrophotometric studies. On binding with carob galactomannan and konjac glucomannan the conformation of CtCBM35 changed significantly with regular 21 nm peak shifts towards lower quantum yield. The degree of association (K a with konjac glucomannan and carob galactomannan, 14.3×10(4 M(-1 and 11.4×10(4 M(-1, respectively, corroborated the findings from affinity electrophoresis. The association of CtCBM35with konjac glucomannan led to higher free energy of binding (ΔG -25 kJ mole(-1 as compared to carob galactomannan (ΔG -22 kJ mole(-1. On binding CtCBM35 with konjac glucomannan and carob galactomannan the hydrodynamic radius (RH as analysed by dynamic light scattering (DLS study, increased to 8 nm and 6 nm, respectively, from 4.25 nm in absence of ligand. The presence of 10 mM Ca(2+ ions imparted stiffer orientation of CtCBM35 particles with increased RH of 4.52 nm. Due to such stiffer orientation CtCBM35 became more thermostable and its melting temperature was

  20. Soaking suggests "alternative facts": Only co-crystallization discloses major ligand-induced interface rearrangements of a homodimeric tRNA-binding protein indicating a novel mode-of-inhibition.

    Directory of Open Access Journals (Sweden)

    Frederik Rainer Ehrmann

    Full Text Available For the efficient pathogenesis of Shigella, the causative agent of bacillary dysentery, full functionality of tRNA-guanine transglycosylase (TGT is mandatory. TGT performs post-transcriptional modifications of tRNAs in the anticodon loop taking impact on virulence development. This suggests TGT as a putative target for selective anti-shigellosis drug therapy. Since bacterial TGT is only functional as homodimer, its activity can be inhibited either by blocking its active site or by preventing dimerization. Recently, we discovered that in some crystal structures obtained by soaking the full conformational adaptation most likely induced in solution upon ligand binding is not displayed. Thus, soaked structures may be misleading and suggest irrelevant binding modes. Accordingly, we re-investigated these complexes by co-crystallization. The obtained structures revealed large conformational rearrangements not visible in the soaked complexes. They result from spatial perturbations in the ribose-34/phosphate-35 recognition pocket and, consequently, an extended loop-helix motif required to prevent access of water molecules into the dimer interface loses its geometric integrity. Thermodynamic profiles of ligand binding in solution indicate favorable entropic contributions to complex formation when large conformational adaptations in the dimer interface are involved. Native MS titration experiments reveal the extent to which the homodimer is destabilized in the presence of each inhibitor. Unexpectedly, one ligand causes a complete rearrangement of subunit packing within the homodimer, never observed in any other TGT crystal structure before. Likely, this novel twisted dimer is catalytically inactive and, therefore, suggests that stabilizing this non-productive subunit arrangement may be used as a further strategy for TGT inhibition.

  1. Auxiliary ligands induced two new Zn(II) compounds with the structural variations from 2D layer to 3D framework: Syntheses, structures and photoluminescent properties

    Science.gov (United States)

    Yu, Yuanyuan

    2017-12-01

    Two new Zn(II) compounds, [Zn2(L)(2,2‧-bipy)2(H2O)2]n (1) and [Zn2(L)(phen)2(H2O)]n (2) (H4L = 3-(2‧,4‧-dicarboxylphenoxy)phthalic acid, 2,2‧-bipy = 2,2-bipyridine, phen = 1,10-phenanthroline), were successfully obtained via the solvothermal reactions of semi-rigid V-shaped tetracarboxylic acid together with 2,2‧-bipy or phen as the auxiliary ligand. These two compounds were structurally characterized by single crystal X-ray diffraction analyses, elemental analyses, powder X-ray diffraction and thermogravimetric analyses. Compound 1 features a 2D layered structure and these 2D layer motifs further stacked into a 3D supramolecular framework via relatively weak Van der Waals interactions. Compound 2 features a 3D framework with 4-connected mog topology. The structural difference between the two compounds indicates that the N-containing auxiliary ligands play an important role in directing the final frameworks. Moreover, the luminescent properties of these two compounds were also investigated in the solid state at ambient temperature.

  2. Preassembly and ligand-induced restructuring of the chains of the IFN-gamma receptor complex: the roles of Jak kinases, Stat1 and the receptor chains.

    Science.gov (United States)

    Krause, Christopher D; Lavnikova, Natasha; Xie, Junxia; Mei, Erwen; Mirochnitchenko, Olga V; Jia, Yiwei; Hochstrasser, Robin M; Pestka, Sidney

    2006-01-01

    We previously demonstrated using noninvasive technologies that the interferon-gamma (IFN-gamma) receptor complex is preassembled (1). In this report we determined how the receptor complex is preassembled and how the ligand-mediated conformational changes occur. The interaction of Stat1 with IFN-gammaR1 results in a conformational change localized to IFN-gammaR1. Jak1 but not Jak2 is required for the two chains of the IFN-gamma receptor complex (IFN-gammaR1 and IFN-gammaR2) to interact; however, the presence of both Jak1 and Jak2 is required to see any ligand-dependant conformational change. Two IFN-gammaR2 chains interact through species-specific determinants in their extracellular domains. Finally, these determinants also participate in the interaction of IFN-gammaR2 with IFN-gammaR1. These results agree with a detailed model of the IFN-gamma receptor that requires the receptor chains to be pre-associated constitutively for the receptor to be active.

  3. Ciliary neurotrophic factor (CNTF) plus soluble CNTF receptor ? increases cyclooxygenase-2 expression, PGE2 release and interferon-?-induced CD40 in murine microglia

    OpenAIRE

    Lin, Hsiao-Wen; Jain, Mohit Raja; Li, Hong; Levison, Steven W

    2009-01-01

    Abstract Background Ciliary neurotrophic factor (CNTF) has been regarded as a potent trophic factor for motor neurons. However, recent studies have shown that CNTF exerts effects on glial cells as well as neurons. For instance, CNTF stimulates astrocytes to secrete FGF-2 and rat microglia to secrete glial cell line-derived neurotrophic factor (GDNF), which suggest that CNTF exerts effects on astrocytes and microglia to promote motor neuron survival indirectly. As CNTF is structurally related ...

  4. Datasets for the validation of the "in vivo" siRNA-silencing of CD40 and for the detection of new markers of atherosclerosis progression in ApoE-deficient mice

    Directory of Open Access Journals (Sweden)

    Miguel Hueso

    2016-12-01

    Full Text Available Data presented in this Data in Brief article correspond to the article "in vivo" silencing of CD40 reduces progression of experimental atherogenesis through a NFκB/miR-125b axis and reveals new potential mediators in the pathogenesis of atherosclerosis" (M. Hueso, L. De Ramon, E. Navarro, E. Ripoll, J.M. Cruzado, J.M. Grinyo, J. Torras, 2016 [1]. Here, we describe the validation of the silencing of CD40 expression with a specific siRNA in ApoE−/− mouse aortas, and its systemic effects on splenic lymphocytic subpopulations as well as on the infiltration of aortic intima by F4/80+, galectin-3+ macrophages or by NF-κB+ cells. We also show the output of a Gene Ontology and TLDA analysis which allowed the detection of potential mediators of atherosclerosis progression. We provide the scientific community with a set of genes whose expression is increased during atherosclerosis progression but downregulated upon CD40 silencing.

  5. Comparison of in vivo binding properties of the 18-kDa translocator protein (TSPO) ligands [18F]PBR102 and [18F]PBR111 in a model of excitotoxin-induced neuroinflammation

    International Nuclear Information System (INIS)

    Callaghan, P.D.; Gregoire, M.C.; Wimberley, C.A.; Rahardjo, G.L.; Berghofer, P.J.; Zahra, D.; Pham, T.Q.; Jackson, T.; Wyatt, N.; Greguric, I.; Howell, N.R.; Loc'h, C.; Bourdier, T.; Mattner, F.; Katsifis, A.; Siegele, R.; Pastuovic, Z.

    2015-01-01

    The in vivo binding parameters of the novel imidazopyridine TSPO ligand [ 18 F]PBR102 were assessed and compared with those of [ 18 F]PBR111 in a rodent model of neuroinflammation. The validity of the key assumptions of the simplified reference tissue model (SRTM) for estimation of binding potential (BP) was determined, with validation against a two-tissue compartment model (2TC). Acute neuroinflammation was assessed 7 days after unilateral stereotaxic administration of (R,S)-α-amino-3-hydroxy-5-methyl-4-isoxazolopropionique (AMPA) in anaesthetized adult Wistar rats. Anaesthetized rats were implanted with a femoral arterial cannula then injected with a low mass of [ 18 F]PBR102 or [ 18 F]PBR111 and dynamic images were acquired over 60 min using an INVEON PET/CT camera. Another population of rats underwent the same PET protocol after pretreatment with a presaturating mass of the same unlabelled tracer (1 mg/kg) to assess the validity of the reference region for SRTM analysis. Arterial blood was sampled during imaging, allowing pharmacokinetic determination of radiotracer concentrations. Plasma activity concentration-time curves were corrected for unchanged tracer based on metabolic characterization experiments in a separate cohort of Wistar rats. The stability of neuroinflammation in both imaging cohorts was assessed by [ 125 I] CLINDE TSPO quantitative autoradiography, OX42/GFAP immunohistochemistry, Fluoro-Jade C histology, and elemental mapping using microparticle-induced x-ray emission spectroscopy. The BP of each ligand were assessed in the two cohorts of lesioned animals using both SRTM and a 2TC with arterial parent compound concentration, coupled with the results from the presaturation cohort for comparison and validation of the SRTM. The BPs of [ 18 F]PBR102 [ 18 F]PBR111 were equivalent, with improved signal-to-noise ratio and sensitivity compared with [ 11 C]PK11195. The presaturation study showed differences in the volume of distribution between the

  6. Electrochemically induced FTIR difference spectroscopy in the mid- to far infrared (200 microm) domain: a new setup for the analysis of metal-ligand interactions in redox proteins.

    Science.gov (United States)

    Berthomieu, Catherine; Marboutin, Laure; Dupeyrat, François; Bouyer, Pierre

    2006-07-01

    We report the setup of an electrochemical cell with chemical-vapor deposition diamond windows and the use of a Bruker 66 SX FTIR spectrometer equipped with DTGS and Si-bolometer detectors and KBr and mylar beam splitters, to record on the same sample, FTIR difference spectra corresponding to the structural changes associated with the change in redox state of active sites in proteins in the whole 1800-50 cm(-1) region. With cytochrome c we show that reliable reduced-minus-oxidized FTIR difference spectra are obtained, which correspond to single molecular vibrations. Redox-sensitive IR modes of the cytochrome c are detected until 140 cm(-1) with a good signal to noise. This new setup is promising to analyze the infrared spectral region where metal-ligand vibrations are expected to contribute and to extend the analysis of vibrational properties to metal sites or redox states not accessible to (resonance) Raman spectroscopy. (c) 2006 Wiley Periodicals, Inc.

  7. Inhibition of NF-κB Pathway and Modulation of MAPK Signaling Pathways in Glioblastoma and Implications for Lovastatin and Tumor Necrosis Factor-Related Apoptosis Inducing Ligand (TRAIL Combination Therapy.

    Directory of Open Access Journals (Sweden)

    Pi Chu Liu

    Full Text Available Glioblastoma is a common malignant brain tumor and it is refractory to therapy because it usually contains a mixture of cell types. The tumor necrosis factor-related apoptosis inducing ligand (TRAIL has been shown to induce apoptosis in a range of tumor cell types. Previously, we found that two human glioblastoma cell lines are resistant to TRAIL, while lovastatin sensitizes these glioblastoma cells to TRAIL-induced cell death. In this study, we investigated the mechanisms underlying the TRAIL-induced apoptosis in human glioblastoma cell lines by lovastatin. Furthermore, we have confirmed the anti-tumor effect of combination therapy with lovastatin and TRAIL in the subcutaneous brain tumor model. We showed that lovastatin significantly up-regulated the expression of death receptor 5 (DR5 in glioblastoma cell lines as well as in tumor-bearing mice with peri-tumoral administration of lovastatin. Further study in glioblastoma cell lines suggested that lovastatin treatment could inhibit NF-κB and Erk/MAPK pathways but activates JNK pathway. These results suggest that lovastatin sensitizes TRAIL-induced apoptosis by up-regulation of DR5 level via NF-κB inactivation, but also directly induces apoptosis by dysregulation of MAPK pathway. Our in vivo study showed that local peri-tumoral co-injection of lovastatin and TRAIL substantially reduced tumor growth compared with single injection of lovastatin or TRAIL in subcutaneous nude mice model. This study suggests that combined treatment of lovastatin and TRAIL is a promising therapeutic strategy to TRAIL-resistant glioblastoma.

  8. Irradiation enhances the tumor tropism and therapeutic potential of tumor necrosis factor-related apoptosis-inducing ligand-secreting human umbilical cord blood-derived mesenchymal stem cells in glioma therapy.

    Science.gov (United States)

    Kim, Seong Muk; Oh, Ji Hyeon; Park, Soon A; Ryu, Chung Heon; Lim, Jung Yeon; Kim, Dal-Soo; Chang, Jong Wook; Oh, Wonil; Jeun, Sin-Soo

    2010-12-01

    Irradiation is a standard therapy for gliomas and many other cancers. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is one of the most promising candidates for cancer gene therapy. Here, we show that tumor irradiation enhances the tumor tropism of human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) and the therapeutic effect of TRAIL delivered by UCB-MSCs. The sequential treatment with irradiation followed by TRAIL-secreting UCB-MSCs (MSC-TRAIL) synergistically enhanced apoptosis in either TRAIL-sensitive or TRAIL-resistant glioma cells by upregulating the death receptor 5 and by inducing caspase activation. Migration assays showed greater MSC migration toward irradiated glioma cells and the tumor site in glioma-bearing mice compared with unirradiated tumors. Irradiated glioma cells had increased expression of interleukin-8 (IL-8), which leads to the upregulation of the IL-8 receptor on MSCs. This upregulation, which is involved in the migratory capacity of UCB-MSCs, was confirmed by siRNA inhibition and an antibody-neutralizing assay. In vivo survival experiments in orthotopic xenografted mice showed that MSC-based TRAIL gene delivery to irradiated tumors had greater therapeutic efficacy than a single treatment. These results suggest that clinically relevant tumor irradiation increases the therapeutic efficacy of MSC-TRAIL by increasing tropism of MSCs and TRAIL-induced apoptosis, which may be a more useful strategy for cancer gene therapy.

  9. Chronic nicotine-induced changes in gene expression of delta and kappa-opioid receptors and their endogenous ligands in the mesocorticolimbic system of the rat.

    Science.gov (United States)

    Ugur, Muzeyyen; Kaya, Egemen; Gozen, Oguz; Koylu, Ersin O; Kanit, Lutfiye; Keser, Aysegul; Balkan, Burcu

    2017-09-01

    Delta and kappa opioid receptors (DOR and KOR, respectively) and their endogenous ligands, proenkephalin (PENK) and prodynorphin (PDYN)-derived opioid peptides are proposed as important mediators of nicotine reward. This study investigated the regulatory effect of chronic nicotine treatment on the gene expression of DOR, KOR, PENK and PDYN in the mesocorticolimbic system. Three groups of rats were injected subcutaneously with nicotine at doses of 0.2, 0.4, or 0.6 mg/kg/day for 6 days. Rats were decapitated 1 hr after the last dose on day six, as this timing coincides with increased dopamine release in the mesocorticolimbic system. mRNA levels in the ventral tegmental area (VTA), lateral hypothalamic area (LHA), amygdala (AMG), dorsal striatum (DST), nucleus accumbens, and medial prefrontal cortex were measured by quantitative real-time PCR. Our results showed that nicotine upregulated DOR mRNA in the VTA at all of the doses employed, in the AMG at the 0.4 and 0.6 mg/kg doses, and in the DST at the 0.4 mg/kg dose. Conversely, PDYN mRNA was reduced in the LHA with 0.6 mg/kg nicotine and in the AMG with 0.4 mg/kg nicotine. KOR mRNA was also decreased in the DST with 0.6 mg/kg nicotine. Nicotine did not regulate PENK mRNA in any brain region studied. © 2017 Wiley Periodicals, Inc.

  10. CD4(+) T cell-mediated protection against a lethal outcome of systemic infection with vesicular stomatitis virus requires CD40 ligand expression, but not IFN-gamma or IL-4

    DEFF Research Database (Denmark)

    Andersen, C; Jensen, T; Nansen, A

    1999-01-01

    . Taken together, these results underscore that B cells are essential in preventing early infection of the CNS, but T cells are required for long-term survival. CD4(+) T cells are most efficient in this context and the key function is to provide cognate help to B cells. However, if CD4(+) cell function......To investigate the mechanism(s) whereby T cells protect against a lethal outcome of systemic infection with vesicular stomatitis virus, mice with targeted defects in genes central to T cell function were tested for resistance to i.v. infection with this virus. Our results show that mice lacking...

  11. Olefin Metathesis Mediated By: - Schiff Base Ru-Alkylidenes -Ru-Alkylidenes Bearing Unsymmetrical NH Ligands

    Science.gov (United States)

    Monsaert, Stijn; Voort, Pascal Van Der; Ledoux, Nele; Allaert, Bart; Drozdzak, Renata; Verpoort, Francis

    The classic Grubbs second-generation complex 2 was modified through 1. The introduction of a bidentate Schiff base ligand 2. Changes in the amino side groups of the NHC ligand Representative olefin metathesis test reactions show the effects induced by the ligand modifications and demonstrate some interesting new properties of the described catalysts. catalysts.

  12. Apoptosis induced by penta-acetyl geniposide in C6 glioma cells is associated with JNK activation and Fas ligand induction

    International Nuclear Information System (INIS)

    Peng, C.-H.; Tseng, T.-H.; Huang, C.-N.; Hsu, S.-P.; Wang, C.-J.

    2005-01-01

    In our previous study, penta-acetyl geniposide ((AC) 5 GP) is suggested to induce tumor cell apoptosis through the specific activation of PKCδ. However, the downstream signal pathway of PKCδ has not yet been investigated. It was shown that JNK may play an important role in the regulation of apoptosis and could be a possible downstream signal of PKCδ isoforms. In the present study, we investigate whether JNK is involved in (AC) 5 GP induced apoptosis. The result reveals that (AC) 5 GP induces JNK activation and c-Jun phosphorylation thus stimulating the expression of Fas-L and Fas. Using SP600125 to block JNK activation shows that (AC) 5 GP-mediated apoptosis and related proteins expression are attenuated. Furthermore, we find that the (AC) 5 GP induces apoptosis through the activation of JNK/Jun/Fas L/Fas/caspase 8/caspase 3, a mitochondria-independent pathway. The JNK pathway is suggested to be the downstream signal of PKCδ, since rottlerin impedes (AC) 5 GP-induced JNK activation. Therefore, (AC) 5 GP mediates cell death via activation of PKCδ/JNK/FasL cascade signaling

  13. Receptor Activator of Nuclear Factor Kappa-B Ligand-Induced Local Osteoporotic Canine Mandible Model for the Evaluation of Peri-Implant Bone Regeneration.

    Science.gov (United States)

    Chang, Ah Ryum; Cho, Tae Hyung; Hwang, Soon Jung

    2017-11-01

    The canine mandible is useful for studying bone regeneration after dental implant placement. However, it is limited in investigations of peri-implant osteogenesis under osteoporotic conditions due to the insignificant osteoporotic effect of ovariectomy. This study aimed at establishing a local osteoporotic model without ovariectomy by using receptor activator of nuclear factor kappa-B ligand (RANKL) in a canine mandible model. This new model was used to evaluate the effects of injectable β-tricalcium phosphate (TCP) microsphere bone grafts on peri-implant bone regeneration under osteoporotic conditions with combinations of recombinant human bone morphogenetic protein-2 (rhBMP-2). A local osteoporotic canine mandible model was designed by creating a hole in the mandibular alveolar bone, then implanting a collagen sponge soaked with 20, 40, or 60 μg RANKL into the hole, and leaving it for 2 weeks. After the establishment of the dose for maximum osteoporotic bone loss at 40 μg of RANKL, the main surgery was performed. RANKL-soaked collagen sponges were removed, and dental implants were placed with bone grafts in five groups: implant only, TCP, and TCP + rhBMP-2 at 5, 15, and 45 μg. Peri-implant bone generation was determined by radiologic and histologic evaluations at 6 weeks after dental implant placement. On performing micro-computed tomography analysis, the group with TCP + 5 μg rhBMP-2 showed the highest bone volume than the other groups and a 22% increase (p osteoporotic canine mandible model was useful for peri-implant bone regeneration under osteoporotic conditions such as those found in geriatric patients. The injectable β-TCP bone grafts used in this study were effective in peri-implant bone generation under osteoporotic conditions, and their efficiency was enhanced at 5 μg BMP-2 compared with higher concentrations of BMP-2.

  14. Involvement of the Fas/Fas ligand pathway in activation-induced cell death of mycobacteria-reactive human gamma delta T cells: a mechanism for the loss of gamma delta T cells in patients with pulmonary tuberculosis.

    Science.gov (United States)

    Li, B; Bassiri, H; Rossman, M D; Kramer, P; Eyuboglu, A F; Torres, M; Sada, E; Imir, T; Carding, S R

    1998-08-01

    Although the identity of T cells involved in the protection against Mycobacterium tuberculosis (Mtb) in humans remain unknown, patients with pulmonary tuberculosis (TB) have reduced numbers of Mtb-reactive, V gamma 9+/V delta 2+ T cells in their blood and lungs. Here we have determined whether this gamma deltaT loss is a consequence of Mtb Ag-mediated activation-induced cell death (AICD). Using a DNA polymerase-mediated dUTP nick translation labeling assay, 5% or less of freshly isolated CD4+ alpha beta or gamma delta T cells from normal healthy individuals and TB patients were apoptotic. However, during culture Mtb Ags induced apoptosis in a large proportion of V gamma 9+V delta 2+ peripheral blood T cells from healthy subjects (30-45%) and TB patients (55-68%); this was increased further in the presence of IL-2. By contrast, anti-CD3 did not induce any significant level of apoptosis in gamma delta T cells from healthy subjects or TB patients. Mtb Ag stimulation rapidly induced Fas and Fas ligand (FasL) expression by gamma delta T cells, and in the presence of metalloproteinase-inhibitors >70% of gamma delta T cells were FasL+. Blockade of Fas-FasL interactions reduced the level of Mtb-mediated gamma delta T cell apoptosis by 75 to 80%. Collectively, these findings demonstrate that Mtb-reactive gamma delta T cells are more susceptible to AICD and that the Fas-FasL pathways of apoptosis is involved. AICD of gamma delta T cells, therefore, provides an explanation for the loss of Mtb-reactive T cells during mycobacterial infection.

  15. T-cell receptor activator of nuclear factor-κB ligand/osteoprotegerin imbalance is associated with HIV-induced bone loss in patients with higher CD4+ T-cell counts.

    Science.gov (United States)

    Titanji, Kehmia; Vunnava, Aswani; Foster, Antonina; Sheth, Anandi N; Lennox, Jeffrey L; Knezevic, Andrea; Shenvi, Neeta; Easley, Kirk A; Ofotokun, Ighovwerha; Weitzmann, M Neale

    2018-04-24

    Higher incidence of osteopenia and osteoporosis underlie increased rates of fragility fracture in HIV infection. B cells are a major source of osteoprotegerin (OPG), an inhibitor of the key osteoclastogenic cytokine receptor activator of nuclear factor-κB ligand (RANKL). We previously showed that higher B-cell RANKL/OPG ratio contributes to HIV-induced bone loss. T-cell OPG production in humans, however, remains undefined and the contribution of T-cell OPG and RANKL to HIV-induced bone loss has not been explored. We investigated T-cell OPG and RANKL production in ART-naive HIV-infected and uninfected individuals in relation to indices of bone loss in a cross-sectional study. T-cell RANKL and OPG production was determined by intracellular staining and flow cytometry, and plasma levels of bone resorption markers were determined by ELISA. We demonstrate for the first time in-vivo human T-cell OPG production, which was significantly lower in HIV-infected individuals and was coupled with moderately higher T-cell RANKL production, resulting in a significantly higher T-cell RANKL/OPG ratio. T-cell RANKL/OPG ratio correlated significantly with BMD-derived z-scores at the hip, lumbar spine and femur neck in HIV-infected individuals with CD4 T-cell counts at least 200 cells/μl but not in those with lower counts. Our data suggest that T cells may be a physiologically relevant source of OPG and T-cell RANKL/OPG imbalance is associated with HIV-induced bone loss in CD4 T-cell-sufficient patients. Both B and T lymphocytes may thus contribute to HIV-induced bone loss.

  16. Identification of specific sites in the third intracellular loop and carboxyl terminus of the Bombyx mori PBAN receptor crucial for ligand-induced internalization

    Science.gov (United States)

    Sex pheromone production in most moths is mediated by the pheromone biosynthesis activating neuropeptide receptor (PBANR). Similar to other rhodopsin-like G protein-coupled receptors, the silkmoth Bombyx mori PBANR (BmPBANR) undergoes agonist-induced internalization. Despite interest in developing...

  17. TLR ligands, but not modulators of histone modifiers, can induce the complex immune response pattern of endotoxin tolerance in mammary epithelial cells

    Science.gov (United States)

    Günther, Juliane; Petzl, Wolfram; Zerbe, Holm; Schuberth, Hans-Joachim

    2016-01-01

    Excessive stimulation of the TLR4 axis through LPS reduces the expression of some cytokine genes in immune cells, while stimulating the expression of immune defense genes during a subsequent bacterial infection. This endotoxin tolerance (ET) is mediated via epigenetic mechanisms. Priming the udder of cows with LPS was shown to induce ET in mammary epithelial cells (MEC), thereby protecting the udder against reinfection for some time. Seeking alternatives to LPS priming we tried to elicit ET by priming MEC with either lipopeptide (Pam2CSK4) via the TLR2/6 axis or inhibitors of histone-modifying enzymes. Pre-incubation of MEC with Pam2CSK4 enhanced baseline and induced expression of bactericidal (β-defensin; SLPI) and membrane protecting factors (SAA3, TGM3), while reducing the expression of cytokine- and chemokine-encoding genes (TNF, IL1β) after a subsequent pathogen challenge, the latter, however, not as efficiently as after LPS priming. Pre-treating MEC with various inhibitors of histone H3 modifiers (for demethylation, acetylation or deacetylation) all failed to induce any of the protective factors and only resulted in some dampening of cytokine gene expression after the re-challenge. Hence, triggering immune functions via the TLR axis, but not through those histone modifiers, induced the beneficial phenomenon of ET in MEC. PMID:27913794

  18. Angiotensin II type 2 receptor ligand PD123319 attenuates hyperoxia-induced lung and heart injury at a low dose in newborn rats

    NARCIS (Netherlands)

    Wagenaar, Gerry T M; Sengers, Rozemarijn M A; Laghmani, El Houari; Chen, Xueyu; Lindeboom, Melissa P H A; Roks, Anton J M; Folkerts, Gert; Walther, Frans J

    2014-01-01

    Intervening in angiotensin (Ang)-II type 2 receptor (AT2) signaling may have therapeutic potential for bronchopulmonary dysplasia (BPD) by attenuating lung inflammation and preventing arterial hypertension (PAH)-induced right ventricular hypertrophy (RVH). We first investigated the role of AT2

  19. Rasagiline prevents apoptosis induced by PK11195, a ligand of the outer membrane translocator protein (18 kDa), in SH-SY5Y cells through suppression of cytochrome c release from mitochondria.

    Science.gov (United States)

    Naoi, Makoto; Maruyama, Wakako; Yi, Hong

    2013-11-01

    Rasagiline protects neuronal cells from cell death caused by various lines of insults. Its neuroprotective function is due to suppression of mitochondrial apoptosis signaling and induction of neuroprotective genes, including Bcl-2 and neurotrophic factors. Rasagiline inhibits the mitochondrial membrane permeabilization, an initial stage in apoptosis, but the mechanism has been elusive. In this paper, it was investigated how rasagiline regulates mitochondrial death cascade in apoptosis induced in SH-SY5Y cells by PK11195, a ligand of the outer membrane translocator protein of 18 kDa. Rasagiline prevented release of cytochrome c (Cyt-c), and the following caspase 3 activation, ATP depletion and apoptosis, but did not inhibit the mitochondrial membrane potential collapse, in contrast to Bcl-2 overexpression. Rasagiline stabilized the mitochondrial contact site and suppressed Cyt-c release into cytoplasm, which should be the critical point for the regulation of apoptosis. Monoamine oxidase was not associated with anti-apoptotic activity of rasagiline in PK11195-induced apoptosis.

  20. Agonistic anti-CD40 promotes early development and increases the incidence of severe thyroid epithelial cell hyperplasia (TEC H/P) in CD4−/− mice

    Science.gov (United States)

    Yu, Shiguang; Downey, Edward F; Braley-Mullen, Helen

    2013-01-01

    IFN-γ−/−NOD.H-2h4 mice develop thyroid epithelial cell hyperplasia (TEC H/P) characterised by abnormal proliferation of thyrocytes and infiltration of thyroids by CD4+ and CD8+ T cells, macrophages and dendritic cells. CD8+ T cells from mice with severe TEC H/P transfer similar lesions to SCID recipients, whereas CD4+ T cells transfer mild TEC H/P. CD4− and CD8− deficient IFN-γ−/−NOD.H-2h4 mice were generated to determine if CD4+ T cells were required for initial activation of the CD8+ T cells that transfer TEC H/P. After 6–8 months on NaI water, only 2 of 60 CD8−/− mice developed severe TEC H/P, whereas 31 of 101 CD4−/− mice developed severe TEC H/P and fibrosis comparable in severity to that of IFN-γ−/− mice. However, splenocytes from CD4−/− mice with severe TEC H/P did not effectively transfer severe TEC H/P to SCID recipients. When CD4−/− donors were given agonistic anti-CD40 mAb, most developed severe TEC H/P and their cells transferred severe TEC H/P to SCID recipients. These results indicate that agonistic anti-CD40 can provide an important signal for activation of autoreactive CD8+ T cells that transfer severe TEC H/P. Therefore, targeting or blocking CD40 could provide effective therapy for diseases involving hyperplasia and fibrosis mediated by CD8+ T cells. PMID:25400914

  1. Sterically demanding iminopyridine ligands

    NARCIS (Netherlands)

    Irrgang, Torsten; Keller, Sandra; Maisel, Heidi; Kretschmer, Winfried; Kempe, Rhett

    Two sterically demanding iminopyridine ligands, (2,6-diisopropylphenyl)[6-(2,4,6-triisopropylphenyl)pyridin-2-ylmeth- ylene]amine and (2,6-diisopropylphenyl)]6-(2,6-dimethylphenyl)pyridin-2-ylmethylene]amine, were prepared by a two-step process: first, condensation of 6-bromopyridine-2-carbaldehyde

  2. A biochemical mechanism for resistance of intervertebral discs to metastatic cancer: Fas ligand produced by disc cells induces apoptotic cell death of cancer cells.

    Science.gov (United States)

    Park, Jong-Beom; Lee, Jin-Kyung; Cho, Sung-Tae; Park, Eun-Young; Riew, K Daniel

    2007-09-01

    Metastatic spinal cancer is characterized by the maintenance of normal disc structure until the vertebral body is severely destroyed by cancer cells. Anatomic features of the discs have been thought to be the main factor which confer the discs their resistance to metastatic cancer. However, little is known about the biochemical mechanism to prevent or attenuate the local infiltration of cancer cells into the discs. The purpose of this study was to investigate whether Fas ligand (FasL) produced by disc cells can kill Fas-bearing breast cancer cells by Fas and FasL interaction. Two human breast cancer cells (MCF-7 and MDA-MB-231) were obtained and cultured (1 x 10(6) cells/well), and the expression of Fas was investigated by western blot analysis. Annulus fibrosus cells were isolated and cultured, and the presence of FasL was quantified in the supernatants of three different numbers of annulus fibrosus cells (1x, 2x, and 4 x 10(6) cells/well) by ELISA assay. The MCF-7 and MDA-MB-231 cancer cells were cultured with supernatants of annulus fibrosus cells for 48 h. As controls, MCF-7 and MDA-MB-231 cancer cells were also cultured by themselves for 48 h. Finally, we determined and quantified the apoptosis rates of MCF-7 and MDA-MB-231 cancer cells by Annexin V-FITC and PI and TUNEL at 48 h, respectively. The expression of Fas was identified in MCF-7 and MDA-MB-231 cancer cells. The mean concentrations of FasL in supernatants of annulus fibrosus cells (1x, 2x, and 4 x 10(6) cells/well) were 10.8, 29.6, and 56.4 pg/mL, respectively. After treatment with the supernatant of three different numbers of annulus fibrosus cells, the mean apoptosis rate of MCF-7 cancer cells was increased (2.8%, P cancer cells was also increased (5.7%, P cancer cells. Our results demonstrate that Fas-bearing cancer cells undergo apoptosis by FasL produced by disc cells, which may be considered as a potential biochemical explanation for the disc's resistance to metastatic cancer.

  3. Modeling HIV-1 Induced Neuroinflammation in Mice: Role of Platelets in Mediating Blood-Brain Barrier Dysfunction.

    Directory of Open Access Journals (Sweden)

    Letitia D Jones

    Full Text Available The number of HIV-1 positive individuals developing some form of HIV-associated neurocognitive disorder (HAND is increasing. In these individuals, the integrity of the blood-brain barrier (BBB is compromised due to an increase in exposure to pro-inflammatory mediators, viral proteins, and virus released from infected cells. It has been shown that soluble CD40L (sCD40L is released upon platelet activation and is an important mediator of the pathogenesis of HAND but the underlying mechanisms are unclear, emphasizing the need of an effective animal model. Here, we have utilized a novel animal model in which wild-type (WT mice were infected with EcoHIV; a derivative of HIV-1 that contains a substitution of envelope protein gp120 with that of gp80 derived from murine leukemia virus-1 (MuLV-1. As early as two-weeks post-infection, EcoHIV led to increased permeability of the BBB associated with decreased expression of tight junction protein claudin-5, in CD40L and platelet activation-dependent manner. Treatment with an antiplatelet drug, eptifibatide, in EcoHIV-infected mice normalized BBB function, sCD40L release and platelet activity, thus implicating platelet activation and platelet-derived CD40L in virally induced BBB dysfunction. Our results also validate and underscore the importance of EcoHIV infection mouse model as a tool to explore therapeutic targets for HAND.

  4. Comparison of in vivo binding properties of the 18-kDa translocator protein (TSPO) ligands [{sup 18}F]PBR102 and [{sup 18}F]PBR111 in a model of excitotoxin-induced neuroinflammation

    Energy Technology Data Exchange (ETDEWEB)

    Callaghan, P.D.; Gregoire, M.C. [Australian Nuclear Science and Technology Organisation, ANSTO LifeSciences, Kirrawee DC, NSW (Australia); University of Sydney, Brain and Mind Research Institute, Sydney (Australia); University of Sydney, Discipline of Medical Radiation Sciences, Sydney (Australia); Wimberley, C.A.; Rahardjo, G.L.; Berghofer, P.J.; Zahra, D. [Australian Nuclear Science and Technology Organisation, ANSTO LifeSciences, Kirrawee DC, NSW (Australia); University of Sydney, Brain and Mind Research Institute, Sydney (Australia); Pham, T.Q.; Jackson, T.; Wyatt, N.; Greguric, I.; Howell, N.R.; Loc' h, C. [Australian Nuclear Science and Technology Organisation, ANSTO LifeSciences, Kirrawee DC, NSW (Australia); Bourdier, T.; Mattner, F.; Katsifis, A. [Australian Nuclear Science and Technology Organisation, ANSTO LifeSciences, Kirrawee DC, NSW (Australia); Royal Prince Alfred Hospital, Department of Molecular Imaging, Sydney (Australia); Siegele, R.; Pastuovic, Z. [Institute for Environmental Research, Centre for Accelerator Science, ANSTO, Sydney (Australia)

    2015-01-15

    The in vivo binding parameters of the novel imidazopyridine TSPO ligand [{sup 18}F]PBR102 were assessed and compared with those of [{sup 18}F]PBR111 in a rodent model of neuroinflammation. The validity of the key assumptions of the simplified reference tissue model (SRTM) for estimation of binding potential (BP) was determined, with validation against a two-tissue compartment model (2TC). Acute neuroinflammation was assessed 7 days after unilateral stereotaxic administration of (R,S)-α-amino-3-hydroxy-5-methyl-4-isoxazolopropionique (AMPA) in anaesthetized adult Wistar rats. Anaesthetized rats were implanted with a femoral arterial cannula then injected with a low mass of [{sup 18}F]PBR102 or [{sup 18}F]PBR111 and dynamic images were acquired over 60 min using an INVEON PET/CT camera. Another population of rats underwent the same PET protocol after pretreatment with a presaturating mass of the same unlabelled tracer (1 mg/kg) to assess the validity of the reference region for SRTM analysis. Arterial blood was sampled during imaging, allowing pharmacokinetic determination of radiotracer concentrations. Plasma activity concentration-time curves were corrected for unchanged tracer based on metabolic characterization experiments in a separate cohort of Wistar rats. The stability of neuroinflammation in both imaging cohorts was assessed by [{sup 125}I] CLINDE TSPO quantitative autoradiography, OX42/GFAP immunohistochemistry, Fluoro-Jade C histology, and elemental mapping using microparticle-induced x-ray emission spectroscopy. The BP of each ligand were assessed in the two cohorts of lesioned animals using both SRTM and a 2TC with arterial parent compound concentration, coupled with the results from the presaturation cohort for comparison and validation of the SRTM. The BPs of [{sup 18}F]PBR102 [{sup 18}F]PBR111 were equivalent, with improved signal-to-noise ratio and sensitivity compared with [{sup 11}C]PK11195. The presaturation study showed differences in the volume

  5. Ligand induced change of β2 adrenergic receptor from active to inactive conformation and its implication for the closed/open state of the water channel: insight from molecular dynamics simulation, free energy calculation and Markov state model analysis.

    Science.gov (United States)

    Bai, Qifeng; Pérez-Sánchez, Horacio; Zhang, Yang; Shao, Yonghua; Shi, Danfeng; Liu, Huanxiang; Yao, Xiaojun

    2014-08-14

    The reported crystal structures of β2 adrenergic receptor (β2AR) reveal that the open and closed states of the water channel are correlated with the inactive and active conformations of β2AR. However, more details about the process by which the water channel states are affected by the active to inactive conformational change of β2AR remain illusive. In this work, molecular dynamics simulations are performed to study the dynamical inactive and active conformational change of β2AR induced by inverse agonist ICI 118,551. Markov state model analysis and free energy calculation are employed to explore the open and close states of the water channel. The simulation results show that inverse agonist ICI 118,551 can induce water channel opening during the conformational transition of β2AR. Markov state model (MSM) analysis proves that the energy contour can be divided into seven states. States S1, S2 and S5, which represent the active conformation of β2AR, show that the water channel is in the closed state, while states S4 and S6, which correspond to the intermediate state conformation of β2AR, indicate the water channel opens gradually. State S7, which represents the inactive structure of β2AR, corresponds to the full open state of the water channel. The opening mechanism of the water channel is involved in the ligand-induced conformational change of β2AR. These results can provide useful information for understanding the opening mechanism of the water channel and will be useful for the rational design of potent inverse agonists of β2AR.

  6. Analysis of macromolecules, ligands and macromolecule-ligand complexes

    Science.gov (United States)

    Von Dreele, Robert B [Los Alamos, NM

    2008-12-23

    A method for determining atomic level structures of macromolecule-ligand complexes through high-resolution powder diffraction analysis and a method for providing suitable microcrystalline powder for diffraction analysis are provided. In one embodiment, powder diffraction data is collected from samples of polycrystalline macromolecule and macromolecule-ligand complex and the refined structure of the macromolecule is used as an approximate model for a combined Rietveld and stereochemical restraint refinement of the macromolecule-ligand complex. A difference Fourier map is calculated and the ligand position and points of interaction between the atoms of the macromolecule and the atoms of the ligand can be deduced and visualized. A suitable polycrystalline sample of macromolecule-ligand complex can be produced by physically agitating a mixture of lyophilized macromolecule, ligand and a solvent.

  7. Liganded thyroid hormone receptor inhibits phorbol 12-O-tetradecanoate-13-acetate-induced enhancer activity via firefly luciferase cDNA.

    Directory of Open Access Journals (Sweden)

    Hiroko Misawa

    Full Text Available Thyroid hormone receptor (TR belongs to the nuclear hormone receptor (NHR superfamily and regulates the transcription of its target genes in a thyroid hormone (T3-dependent manner. While the detail of transcriptional activation by T3 (positive regulation has been clarified, the mechanism of T3-dependent repression (negative regulation remains to be determined. In addition to naturally occurring negative regulations typically found for the thyrotropin β gene, T3-bound TR (T3/TR is known to cause artificial negative regulation in reporter assays with cultured cells. For example, T3/TR inhibits the transcriptional activity of the reporter plasmids harboring AP-1 site derived from pUC/pBR322-related plasmid (pUC/AP-1. Artificial negative regulation has also been suggested in the reporter assay with firefly luciferase (FFL gene. However, identification of the DNA sequence of the FFL gene using deletion analysis was not performed because negative regulation was evaluated by measuring the enzymatic activity of FFL protein. Thus, there remains the possibility that the inhibition by T3 is mediated via a DNA sequence other than FFL cDNA, for instance, pUC/AP-1 site in plasmid backbone. To investigate the function of FFL cDNA as a transcriptional regulatory sequence, we generated pBL-FFL-CAT5 by ligating FFL cDNA in the 5' upstream region to heterologous thymidine kinase promoter in pBL-CAT5, a chloramphenicol acetyl transferase (CAT-based reporter gene, which lacks pUC/AP-1 site. In kidney-derived CV1 and choriocarcinoma-derived JEG3 cells, pBL-FFL-CAT5, but not pBL-CAT5, was strongly activated by a protein kinase C activator, phorbol 12-O-tetradecanoate-13-acetate (TPA. TPA-induced activity of pBL-FFL-CAT5 was negatively regulated by T3/TR. Mutation of nt. 626/640 in FFL cDNA attenuated the TPA-induced activation and concomitantly abolished the T3-dependent repression. Our data demonstrate that FFL cDNA sequence mediates the TPA-induced transcriptional

  8. Ferulic Acid Induces Th1 Responses by Modulating the Function of Dendritic Cells and Ameliorates Th2-Mediated Allergic Airway Inflammation in Mice

    Directory of Open Access Journals (Sweden)

    Chen-Chen Lee

    2015-01-01

    Full Text Available This study investigated the immunomodulatory effects of ferulic acid (FA on antigen-presenting dendritic cells (DCs in vitro and its antiallergic effects against ovalbumin- (OVA- induced Th2-mediated allergic asthma in mice. The activation of FA-treated bone marrow-derived DCs by lipopolysaccharide (LPS stimulation induced a high level of interleukin- (IL- 12 but reduced the expression levels of the proinflammatory cytokines IL-1β, IL-6, and tumor necrosis factor- (TNF- α. Compared to control-treated DCs, FA significantly enhanced the expressions of Notch ligand Delta-like 4 (Dll4, MHC class II, and CD40 molecules by these DCs. Furthermore, these FA-treated DCs enhanced T-cell proliferation and Th1 cell polarization. In animal experiments, oral administration of FA reduced the levels of OVA-specific immunoglobulin E (IgE and IgG1 and enhanced IgG2a antibody production in serum. It also ameliorated airway hyperresponsiveness and attenuated eosinophilic pulmonary infiltration in dose-dependent manners. In addition, FA treatment inhibited the production of eotaxin, Th2 cytokines (IL-4, IL-5, and IL-13, and proinflammatory cytokines but promoted the Th1 cytokine interferon- (IFN- γ production in bronchoalveolar lavage fluid (BALF and the culture supernatant of spleen cells. These findings suggest that FA exhibits an antiallergic effect via restoring Th1/Th2 imbalance by modulating DCs function in an asthmatic mouse model.

  9. The α7 nicotinic acetylcholine receptor ligands methyllycaconitine, NS6740 and GTS-21 reduce lipopolysaccharide-induced TNF-α release from microglia

    DEFF Research Database (Denmark)

    Thomsen, Morten Skøtt; Mikkelsen, Jens D

    2012-01-01

    The anti-inflammatory properties of, particularly the α7, nicotinic acetylcholine receptors (nAChRs) in the peripheral immune system are well documented. There are also reports of anti-inflammatory actions of nicotine in the CNS, but it is unclear, whether this is due to activation or inhibition...... of nAChRs. Here we investigate the mechanisms behind α7 nAChR-mediated modulation of TNF-α release. We show that α7 nAChR agonists or positive allosteric modulators do not affect LPS-induced release of the pro-inflammatory cytokine TNF-α from cultured microglia. This suggests that classical activation...... of, i.e. ion-flux through, the α7 nAChR does not reduce TNF-α release from activated microglia. Contrarily, the α7 nAChR antagonist methyllycaconitine and the weak (...

  10. Intraperitoneal administration of a tumor-associated antigen SART3, CD40L, and GM-CSF gene-loaded polyplex micelle elicits a vaccine effect in mouse tumor models.

    Directory of Open Access Journals (Sweden)

    Kouichi Furugaki

    Full Text Available Polyplex micelles have demonstrated biocompatibility and achieve efficient gene transfection in vivo. Here, we investigated a polyplex micelle encapsulating genes encoding the tumor-associated antigen squamous cell carcinoma antigen recognized by T cells-3 (SART3, adjuvant CD40L, and granulocyte macrophage colony-stimulating factor (GM-CSF as a DNA vaccine platform in mouse tumor models with different types of major histocompatibility antigen complex (MHC. Intraperitoneally administrated polyplex micelles were predominantly found in the lymph nodes, spleen, and liver. Compared with mock controls, the triple gene vaccine significantly prolonged the survival of mice harboring peritoneal dissemination of CT26 colorectal cancer cells, of which long-term surviving mice showed complete rejection when re-challenged with CT26 tumors. Moreover, the DNA vaccine inhibited the growth and metastasis of subcutaneous CT26 and Lewis lung tumors in BALB/c and C57BL/6 mice, respectively, which represent different MHC haplotypes. The DNA vaccine highly stimulated both cytotoxic T lymphocyte and natural killer cell activities, and increased the infiltration of CD11c+ DCs and CD4+/CD8a+ T cells into tumors. Depletion of CD4+ or CD8a+ T cells by neutralizing antibodies deteriorated the anti-tumor efficacy of the DNA vaccine. In conclusion, a SART3/CD40L+GM-CSF gene-loaded polyplex micelle can be applied as a novel vaccine platform to elicit tumor rejection immunity regardless of the recipient MHC haplotype.

  11. Regulation mechanisms of the FLT3-ligand after irradiation

    International Nuclear Information System (INIS)

    Prat-Lepesant, M.

    2005-06-01

    The hematopoietic compartment is one of the most severely damaged after chemotherapy, radiotherapy or accidental irradiations. Whatever its origin, the resulting damage to the bone marrow remains difficult to evaluate. Thus, it would be of great interest to get a biological indicator of residual hematopoiesis in order to adapt the treatment to each clinical situation. Recent results indicated that the plasma Flt3 ligand concentration was increased in patients suffering from either acquired or induced aplasia, suggesting that Flt3 ligand might be useful as a biological indicator of bone marrow status. We thus followed in a mouse model as well as in several clinical situations the variations in plasma Flt3 ligand concentration, after either homogeneous or heterogeneous irradiations. These variations were correlated to the number of hematopoietic progenitors and to other parameters such as duration and depth of pancytopenia. The results indicated that the concentration of Flt3 ligand in the blood reflects the bone marrow status, and that the follow-up of plasma Flt3 ligand concentration could give predictive information about the bone marrow function and the duration and severity of pancytopenia and thrombocytopenia. Nevertheless, the clinical use of Flt3 ligand as a biological indicator of bone marrow damage require the knowledge of the mechanisms regulating the variations in plasma Flt3 ligand concentration. We thus developed a study in the mouse model. The results indicated that the variations in plasma Flt3 ligand variations were not solely due to a balance between its production by lymphoid cells and its consumption by hematopoietic cells. Moreover, we showed that T lymphocytes are not the main regulator of plasma Flt3 ligand concentration as previously suggested, and that other cell types, possibly including bone marrow stromal cells, might be strongly implicated. These results also suggest that the Flt3 ligand is a main systemic regulator of hematopoiesis

  12. Radiobiology with DNA ligands

    International Nuclear Information System (INIS)

    Weinreich, R.; Argentini, M.; Guenther, I.; Koziorowski, J.; Larsson, B.; Nievergelt-Egido, M.C.; Salt, C.; Wyer, L.; Dos Santos, D.F.; Hansen, H.J.

    1997-01-01

    The paper deals with the following topics: labelling of DNA ligands and other tumour-affinic compounds with 4.15-d 124 I, radiotoxicity of Hoechst 33258 and 33342 and of iodinated Hoechst 33258 in cell cultures, preparation of 76 Br-, 123 I-, and 221 At-labelled 5-halo-2'-deoxyuridine, chemical syntheses of boron derivatives of Hoechst 33258.III., Gadolinium neutron capture therapy

  13. Therapeutic androgen receptor ligands

    Science.gov (United States)

    Allan, George F.; Sui, Zhihua

    2003-01-01

    In the past several years, the concept of tissue-selective nuclear receptor ligands has emerged. This concept has come to fruition with estrogens, with the successful marketing of drugs such as raloxifene. The discovery of raloxifene and other selective estrogen receptor modulators (SERMs) has raised the possibility of generating selective compounds for other pathways, including androgens (that is, selective androgen receptor modulators, or SARMs). PMID:16604181

  14. Neuronal and glial cell type-specific promoters within adenovirus recombinants restrict the expression of the apoptosis-inducing molecule Fas ligand to predetermined brain cell types, and abolish peripheral liver toxicity.

    Science.gov (United States)

    Morelli, A E; Larregina, A T; Smith-Arica, J; Dewey, R A; Southgate, T D; Ambar, B; Fontana, A; Castro, M G; Lowenstein, P R

    1999-03-01

    Gene therapy using Fas ligand (FasL) for treatment of tumours and protection of transplant rejection is hampered because of the systemic toxicity of FasL. In the present study, recombinant replication-defective adenovirus vectors (RAds) encoding FasL under the control of either the neuronal-specific neuronal-specific enolase (NSE) promoter or the astrocyte-specific glial fibrillary acidic protein (GFAP) promoter have been constructed. The cell type-specific expression of FasL in both neurons and glial cells in primary cultures, and in neuronal and glial cell lines is demonstrated. Furthermore, transgene expression driven by the neuronal and glial promoter was not detected in fibroblastic or epithelial cell lines. Expression of FasL driven by a major immediate early human cytomegalovirus promoter (MIEhCMV) was, however, achieved in all cells tested. As a final test of the stringency of transgene-specific expression, the RAds were injected directly into the bloodstream of mice. The RAds encoding FasL under the control of the non-cell type-specific MIEhCMV promoter induced acute generalized liver haemorrhage with hepatocyte apoptosis, while the RAds containing the NSE or GFAP promoter sequences were completely non-toxic. This demonstrates the specificity of transgene expression, enhanced safety during systemic administration, and tightly regulated control of transgene expression of highly cytotoxic gene products, encoded within transcriptionally targeted RAds.

  15. Evaluation of preventive and therapeutic activity of novel non-steroidal anti-inflammatory drug, CG100649, in colon cancer: Increased expression of TNF-related apoptosis-inducing ligand receptors enhance the apoptotic response to combination treatment with TRAIL.

    Science.gov (United States)

    Woo, Jong Kyu; Kang, Ju-Hee; Jang, Yeong-Su; Ro, Seonggu; Cho, Joong Myung; Kim, Hwan-Mook; Lee, Sang-Jin; Oh, Seung Hyun

    2015-04-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) have been suggested as the potential new class of preventive or therapeutic antitumor agents. The aim of the present study was to evaluate the antitumor activity of the novel NSAID, CG100649. CG100649 is a novel NSAID dual inhibitor for COX-2 and carbonic anhydrase (CA)-I/-II. In the present study, we investigated the alternative mechanism by which CG100649 mediated suppression of the colon cancer growth and development. The anchorage‑dependent and -independent clonogenic assay showed that CG100649 inhibited the clonogenicity of human colon cancer cells. The flow cytometric analysis showed that CG100649 induced the G2/M cell cycle arrest in colon cancer cells. Animal studies showed that CG100649 inhibited the tumor growth in colon cancer xenograft in nude mice. Furthermore, quantitative PCR and FACS analysis demonstrated that CG100649 upregulated the expression of TNF-related apoptosis-inducing ligand (TRAIL) receptors (DR4 and DR5) but decreased the expression of decoy receptors (DcR1 and DcR2) in colon cancer cells. The results showed that CG100649 treatment sensitized TRAIL‑mediated growth suppression and apoptotic cell death. The combination treatment resulted in significant repression of the intestinal polyp formation in APCmin/+ mice. Our data clearly demonstrated that CG100649 contains preventive and therapeutic activity for colon cancer. The present study may be useful for identification of the potential benefit of the NSAID CG100649, for the achievement of a better treatment response in colon cancer.

  16. Binding of receptor for advanced glycation end products (RAGE) ligands is not sufficient to induce inflammatory signals: lack of activity of endotoxin-free albumin-derived advanced glycation end products.

    Science.gov (United States)

    Valencia, J V; Mone, M; Koehne, C; Rediske, J; Hughes, T E

    2004-05-01

    Activation of the receptor for advanced glycation end products (RAGE) reportedly triggers cellular responses implicated in the pathogenesis of diabetes, such as increasing vascular cell adhesion molecule-1 (VCAM-1) expression on vascular endothelial cells and inducing TNF-alpha secretion by mononuclear cells. The objective of this study was to evaluate whether RAGE binding affinity of AGE-BSAs and cellular activation correlate. To produce AGEs with varying glycation, bovine albumin AGEs were prepared with 500 mmol/l of glucose, fructose or ribose at times of incubation from 1 to 12 weeks. In addition, AGE-BSA was generated using either glyoxylic acid or glycolaldehyde. Cellular binding of the AGE-BSAs and the effect on endothelial cell VCAM-1 expression were studied in RAGE-expressing human microvascular endothelial cell line-4 cells. Induction of TNF-alpha secretion was assessed using RAGE-expressing human peripheral blood mononuclear cells (PBMCs). Cellular binding of the different AGE preparations correlated well with RAGE affinity. Interestingly, we found that the AGE preparations, which were essentially endotoxin free (RAGE binding affinity, AGE concentration or incubation time. In contrast, the reported RAGE ligand S100b was confirmed to induce VCAM-1 expression on endothelial cells and TNF-alpha secretion by PBMCs after 24 h of treatment. The results of this study suggest that AGE modification and high RAGE binding affinity are not sufficient to generate pro-inflammatory signalling molecules. Thus, RAGE binding affinity of AGE-BSAs does not seem to correlate with cellular activation. Our findings using AGEs with strong RAGE-binding properties indicate that AGEs may not uniformly play a role in cellular activation.

  17. Regulation mechanisms of the FLT3-ligand after irradiation; Mecanismes de regulation du FLT3-ligand apres irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Prat-Lepesant, M

    2005-06-15

    The hematopoietic compartment is one of the most severely damaged after chemotherapy, radiotherapy or accidental irradiations. Whatever its origin, the resulting damage to the bone marrow remains difficult to evaluate. Thus, it would be of great interest to get a biological indicator of residual hematopoiesis in order to adapt the treatment to each clinical situation. Recent results indicated that the plasma Flt3 ligand concentration was increased in patients suffering from either acquired or induced aplasia, suggesting that Flt3 ligand might be useful as a biological indicator of bone marrow status. We thus followed in a mouse model as well as in several clinical situations the variations in plasma Flt3 ligand concentration, after either homogeneous or heterogeneous irradiations. These variations were correlated to the number of hematopoietic progenitors and to other parameters such as duration and depth of pancytopenia. The results indicated that the concentration of Flt3 ligand in the blood reflects the bone marrow status, and that the follow-up of plasma Flt3 ligand concentration could give predictive information about the bone marrow function and the duration and severity of pancytopenia and thrombocytopenia. Nevertheless, the clinical use of Flt3 ligand as a biological indicator of bone marrow damage require the knowledge of the mechanisms regulating the variations in plasma Flt3 ligand concentration. We thus developed a study in the mouse model. The results indicated that the variations in plasma Flt3 ligand variations were not solely due to a balance between its production by lymphoid cells and its consumption by hematopoietic cells. Moreover, we showed that T lymphocytes are not the main regulator of plasma Flt3 ligand concentration as previously suggested, and that other cell types, possibly including bone marrow stromal cells, might be strongly implicated. These results also suggest that the Flt3 ligand is a main systemic regulator of hematopoiesis

  18. Effects of the expression level of epidermal growth factor receptor on the ligand-induced restructuring of focal adhesions: a QCM-D study.

    Science.gov (United States)

    Garcia, Marcela P; Shahid, Ammar; Chen, Jennifer Y; Xi, Jun

    2013-02-01

    Epidermal growth factor receptor (EGFR) plays a major role in cell migration and invasion and is considered to be the primary source of activation of various malignant tumors. To gain insight into how elevated levels of EGFR influence cellular function, particularly cell motility, we used a quartz crystal microbalance with dissipation monitoring (QCM-D) to examine restructuring of focal adhesions in MCF-10A cells induced by epidermal growth factor. Engineered cells that overexpress epidermal growth factor receptor (EGFR) exhibited a very different kinetic profile from wildtype MCF-10A cells that have a lower level of EGFR with a higher rate for the initial disassembly of focal adhesion and a much lower rate for the later reassembly of focal adhesions. It is conceivable that these effects exhibited by EGFR-overexpressing cells may promote the initiation and maintenance of a more favorable adhesion state for cell migration. This study has demonstrated the capability of the dissipation monitoring function of the QCM-D to quantitatively assess kinetic aspects of cellular processes with a high temporal resolution and sensitivity.

  19. Structure and characterization of a class 3B proline utilization A: Ligand-induced dimerization and importance of the C-terminal domain for catalysis.

    Science.gov (United States)

    Korasick, David A; Gamage, Thameesha T; Christgen, Shelbi; Stiers, Kyle M; Beamer, Lesa J; Henzl, Michael T; Becker, Donald F; Tanner, John J

    2017-06-09

    The bifunctional flavoenzyme proline utilization A (PutA) catalyzes the two-step oxidation of proline to glutamate using separate proline dehydrogenase (PRODH) and l-glutamate-γ-semialdehyde dehydrogenase active sites. Because PutAs catalyze sequential reactions, they are good systems for studying how metabolic enzymes communicate via substrate channeling. Although mechanistically similar, PutAs vary widely in domain architecture, oligomeric state, and quaternary structure, and these variations represent different structural solutions to the problem of sequestering a reactive metabolite. Here, we studied PutA from Corynebacterium freiburgense (CfPutA), which belongs to the uncharacterized 3B class of PutAs. A 2.7 Å resolution crystal structure showed the canonical arrangement of PRODH, l-glutamate-γ-semialdehyde dehydrogenase, and C-terminal domains, including an extended interdomain tunnel associated with substrate channeling. The structure unexpectedly revealed a novel open conformation of the PRODH active site, which is interpreted to represent the non-activated conformation, an elusive form of PutA that exhibits suboptimal channeling. Nevertheless, CfPutA exhibited normal substrate-channeling activity, indicating that it isomerizes into the active state under assay conditions. Sedimentation-velocity experiments provided insight into the isomerization process, showing that CfPutA dimerizes in the presence of a proline analog and NAD + These results are consistent with the morpheein model of enzyme hysteresis, in which substrate binding induces conformational changes that promote assembly of a high-activity oligomer. Finally, we used domain deletion analysis to investigate the function of the C-terminal domain. Although this domain contains neither catalytic residues nor substrate sites, its removal impaired both catalytic activities, suggesting that it may be essential for active-site integrity. © 2017 by The American Society for Biochemistry and Molecular

  20. The SARS Coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor.

    Directory of Open Access Journals (Sweden)

    Rinki Minakshi

    2009-12-01

    Full Text Available The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV is reported to cause apoptosis of infected cells and several of its proteins including the 3a accessory protein, are pro-apoptotic. Since the 3a protein localizes to the endoplasmic reticulum (ER-Golgi compartment, its role in causing ER stress was investigated in transiently transfected cells. Cells expressing the 3a proteins showed ER stress based on activation of genes for the ER chaperones GRP78 and GRP94. Since ER stress can cause differential modulation of the unfolded protein response (UPR, which includes the inositol-requiring enzyme 1 (IRE-1, activating transcription factor 6 (ATF6 and PKR-like ER kinase (PERK pathways, these were individually tested in 3a-expressing cells. Only the PERK pathway was found to be activated in 3a-expressing cells based on (1 increased phosphorylation of eukaryotic initiation factor 2 alpha (eIF2alpha and inhibitory effects of a dominant-negative form of eIF2alpha on GRP78 promoter activity, (2 increased translation of activating transcription factor 4 (ATF4 mRNA, and (3 ATF4-dependent activation of the C/EBP homologous protein (CHOP gene promoter. Activation of PERK affects innate immunity by suppression of type 1 interferon (IFN signaling. The 3a protein was found to induce serine phosphorylation within the IFN alpha-receptor subunit 1 (IFNAR1 degradation motif and to increase IFNAR1 ubiquitination. Confocal microscopic analysis showed increased translocation of IFNAR1 into the lysosomal compartment and flow cytometry showed reduced levels of IFNAR1 in 3a-expressing cells. These results provide further mechanistic details of the pro-apoptotic effects of the SARS-CoV 3a protein, and suggest a potential role for it in attenuating interferon responses and innate immunity.

  1. Combination of monoclonal antibodies with DST inhibits accelerated rejection mediated by memory T cells to induce long-lived heart allograft acceptance in mice.

    Science.gov (United States)

    Shao, Wei; Chen, Jibing; Dai, Helong; Peng, Yuanzheng; Wang, Feng; Xia, Junjie; Thorlacius, Henrik; Zhu, Qi; Qi, Zhongquan

    2011-08-30

    Donor-reactive memory T cells mediated accelerated rejection is known as a barrier to the survival of transplanted organs. We investigated the combination of different monoclonal antibodies (mAbs) and donor-specific transfusion (DST) in memory T cells-based adoptive mice model. In the presence of donor-reactive memory T cells, the mean survival time (MST) of grafts in the anti-CD40L/LFA-1/DST group was 49.8d. Adding anti-CD44/CD70 mAbs to anti-CD40L/LFA-1/DST treatment. The MST was more than 100 d (MST>100 d). Compared with anti-CD40L/LFA-1/DST group, anti-CD40L/LFA-1/CD44/CD70/DST group notably reduced the expansion of memory T cells, enhanced the proportion of CD4+Foxp3+ regulatory T cells (Tregs) and suppressed donor-specific responses. Our data suggest that anti-CD40L/LFA-1/CD44/CD70mAbs and DST can synergistically inhibit accelerated rejection mediated by memory T cells to induce long-lived heart allograft acceptance in mice. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Bexarotene ligand pharmaceuticals.

    Science.gov (United States)

    Hurst, R E

    2000-12-01

    Bexarotene (LGD-1069), from Ligand, was the first retinoid X receptor (RXR)-selective, antitumor retinoid to enter clinical trials. The company launched the drug for the treatment of cutaneous T-cell lymphoma (CTCL), as Targretin capsules, in the US in January 2000 [359023]. The company filed an NDA for Targretin capsules in June 1999, and for topical gel in December 1999 [329011], [349982] specifically for once-daily oral administration for the treatment of patients with early-stage CTCL who have not tolerated other therapies, patients with refractory or persistent early stage CTCL and patients with refractory advanced stage CTCL. The FDA approved Targretin capsules at the end of December 1999 for once-daily oral treatment of all stages of CTCL in patients refractory to at least one prior systemic therapy, at an initial dose of 300 mg/m2/day. After an NDA was submitted in December 1999 for Targretin gel, the drug received Priority Review status for use as a treatment of cutaneous lesions in patients with stage IA, IB or IIA CTCL [354836]. The FDA issued an approvable letter in June 2000, and granted marketing clearance for CTCL in the same month [370687], [372768], [372769], [373279]. Ligand had received Orphan Drug designation for this indication [329011]. At the request of the FDA, Ligand agreed to carry out certain post-approval phase IV and pharmacokinetic studies [351604]. The company filed an MAA with the EMEA for Targretin Capsules to treat lymphoma in November 1999 [348944]. The NDA for Targretin gel is based on a multicenter phase III trial that was conducted in the US, Canada, Europe and Australia involving 50 patients and a multicenter phase I/II clinical program involving 67 patients. Targretin gel was evaluated for the treatment of patients with early stage CTCL (IA-IIA) who were refractory to, intolerant to, or reached a response plateau for at least 6 months on at least two prior therapies. Efficacy results exceeded the protocol-defined response

  3. Effect of Wenhua Juanbi Recipe () on expression of receptor activator of nuclear factor kappa B ligand, osteoprotegerin, and tumor necrosis factor receptor superfamily member 14 in rats with collagen-induced arthritis.

    Science.gov (United States)

    Liu, Xi-de; Wang, Yun-Qing; Cai, Long; Ye, Li-Hong; Wang, Fang; Feng, Ying-Ying

    2017-03-01

    To study the effect of Wenhua Juanbi Recipe (, WJR) on expression of receptor activator of nuclear factor kappa B ligand (RANKL), osteoprotegerin (OPG), and tumor necrosis factor receptor superfamily member 14 (TNFRSF14, also known as LIGHT) in rats with collagen-induced arthritis (CIA). CIA rats were generated by subcutaneous injection of bovine collagen type-II at the tail base. Sixty CIA rats were randomly assigned (10 animals/group) to: model, methotrexate (MTX)-treated (0.78 mg/kg body weight), and WJR-treated (22.9 g/kg) groups. Healthy normal rats (n=10) were used as the normal control. Treatments or saline were administered once daily by oral gavage. Rats were sacrifificed at day 28 post-treatment and knee synovium and peripheral blood serum were collected. Toe swelling degree and expression of RANKL, OPG, and LIGHT were determined by Western blot and immunohistochemistry. Compared with the normal group, toe swelling degree was signifificantly increased in the model group (P<0.01). After treatment, toe swelling degree decreased signifificantly in the WJR and MTX groups compared with the model group (P<0.01). Compared with the normal group, expression of RANKL and LIGHT were signifificantly increased and OPG signifificantly decreased in peripheral blood and synovium of the model group (P<0.01). Conversely, RANKL and LIGHT expression were signifificantly reduced and OPG increased in the WJR and MTX groups compared with the model group (P<0.01). No statistically significant difference existed between WJR and MTX groups. WJR likely acts by reducing RANKL expression and increasing OPG expression, thus inhibiting RANKL/RANK interaction and reducing LIGHT expression, thereby inhibiting osteoclast formation/activation to block bone erosion.

  4. Fourier transform infrared spectroscopy study of ligand photodissociation and migration in inducible nitric oxide synthase [v1; ref status: indexed, http://f1000r.es/4ta

    Directory of Open Access Journals (Sweden)

    Michael Horn

    2014-11-01

    Full Text Available Inducible nitric oxide synthase (iNOS is a homodimeric heme enzyme that catalyzes the formation of nitric oxide (NO from dioxygen and L-arginine (L-Arg in a two-step process. The produced NO can either diffuse out of the heme pocket into the surroundings or it can rebind to the heme iron and inhibit enzyme action. Here we have employed Fourier transform infrared (FTIR photolysis difference spectroscopy at cryogenic temperatures, using the carbon monoxide (CO and NO stretching bands as local probes of the active site of iNOS. Characteristic changes were observed in the spectra of the heme-bound ligands upon binding of the cofactors. Unlike photolyzed CO, which becomes trapped in well-defined orientations, as indicated by sharp photoproduct bands, photoproduct bands of NO photodissociated from the ferric heme iron were not visible, indicating that NO does not reside in the protein interior in a well-defined location or orientation. This may be favorable for NO release from the enzyme during catalysis because it reduces self-inhibition. Moreover, we used temperature derivative spectroscopy (TDS with FTIR monitoring to explore the dynamics of NO and carbon monoxide (CO inside iNOS after photodissociation at cryogenic temperatures. Only a single kinetic photoproduct state was revealed, but no secondary docking sites as in hemoglobins. Interestingly, we observed that intense illumination of six-coordinate ferrous iNOSoxy-NO ruptures the bond between the heme iron and the proximal thiolate to yield five-coordinate ferric iNOSoxy-NO, demonstrating the strong trans effect of the heme-bound NO.

  5. Fourier transform infrared spectroscopy study of ligand photodissociation and migration in inducible nitric oxide synthase [v2; ref status: indexed, http://f1000r.es/4w9

    Directory of Open Access Journals (Sweden)

    Michael Horn

    2014-12-01

    Full Text Available Inducible nitric oxide synthase (iNOS is a homodimeric heme enzyme that catalyzes the formation of nitric oxide (NO from dioxygen and L-arginine (L-Arg in a two-step process. The produced NO can either diffuse out of the heme pocket into the surroundings or it can rebind to the heme iron and inhibit enzyme action. Here we have employed Fourier transform infrared (FTIR photolysis difference spectroscopy at cryogenic temperatures, using the carbon monoxide (CO and NO stretching bands as local probes of the active site of iNOS. Characteristic changes were observed in the spectra of the heme-bound ligands upon binding of the cofactors. Unlike photolyzed CO, which becomes trapped in well-defined orientations, as indicated by sharp photoproduct bands, photoproduct bands of NO photodissociated from the ferric heme iron were not visible, indicating that NO does not reside in the protein interior in a well-defined location or orientation. This may be favorable for NO release from the enzyme during catalysis because it reduces self-inhibition. Moreover, we used temperature derivative spectroscopy (TDS with FTIR monitoring to explore the dynamics of NO and carbon monoxide (CO inside iNOS after photodissociation at cryogenic temperatures. Only a single kinetic photoproduct state was revealed, but no secondary docking sites as in hemoglobins. Interestingly, we observed that intense illumination of six-coordinate ferrous iNOSoxy-NO ruptures the bond between the heme iron and the proximal thiolate to yield five-coordinate ferric iNOSoxy-NO, demonstrating the strong trans effect of the heme-bound NO.

  6. Ligand Depot: a data warehouse for ligands bound to macromolecules.

    Science.gov (United States)

    Feng, Zukang; Chen, Li; Maddula, Himabindu; Akcan, Ozgur; Oughtred, Rose; Berman, Helen M; Westbrook, John

    2004-09-01

    Ligand Depot is an integrated data resource for finding information about small molecules bound to proteins and nucleic acids. The initial release (version 1.0, November, 2003) focuses on providing chemical and structural information for small molecules found as part of the structures deposited in the Protein Data Bank. Ligand Depot accepts keyword-based queries and also provides a graphical interface for performing chemical substructure searches. A wide variety of web resources that contain information on small molecules may also be accessed through Ligand Depot. Ligand Depot is available at http://ligand-depot.rutgers.edu/. Version 1.0 supports multiple operating systems including Windows, Unix, Linux and the Macintosh operating system. The current drawing tool works in Internet Explorer, Netscape and Mozilla on Windows, Unix and Linux.

  7. Melatonin: functions and ligands.

    Science.gov (United States)

    Singh, Mahaveer; Jadhav, Hemant R

    2014-09-01

    Melatonin is a chronobiotic substance that acts as synchronizer by stabilizing bodily rhythms. Its synthesis occurs in various locations throughout the body, including the pineal gland, skin, lymphocytes and gastrointestinal tract (GIT). Its synthesis and secretion is controlled by light and dark conditions, whereby light decreases and darkness increases its production. Thus, melatonin is also known as the 'hormone of darkness'. Melatonin and analogs that bind to the melatonin receptors are important because of their role in the management of depression, insomnia, epilepsy, Alzheimer's disease (AD), diabetes, obesity, alopecia, migraine, cancer, and immune and cardiac disorders. In this review, we discuss the mechanism of action of melatonin in these disorders, which could aid in the design of novel melatonin receptor ligands. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Aconitum pseudo-laeve var. erectum Inhibits Receptor Activator of Nuclear Factor Kappa-B Ligand-Induced Osteoclastogenesis via the c-Fos/nuclear Factor of Activated T-Cells, Cytoplasmic 1 Signaling Pathway and Prevents Lipopolysaccharide-Induced Bone Loss in Mice

    Directory of Open Access Journals (Sweden)

    Jong Min Baek

    2014-08-01

    Full Text Available Aconitum pseudo-laeve var. erectum (APE has been widely shown in herbal medicine to have a therapeutic effect on inflammatory conditions. However, there has been no evidence on whether the extract of APE is involved in the biological bone metabolism process, particularly osteoclast-mediated bone resorption. In this study, we confirmed that the administration of APE could restore normal skeletal conditions in a murine model of lipopolysaccharide (LPS-induced bone loss via a decrease in the receptor activator of nuclear factor kappa-B ligand (RANKL/osteoprotegerin (OPG ratio and osteoclast number. We then investigated the effect of APE on the RANKL-induced formation and function of osteoclasts to elucidate its underlying molecular mechanisms. APE suppressed the formation of tartrate-resistant acid phosphatase (TRAP-positive cells, as well as the bone-resorbing activity of mature osteoclasts. Furthermore, APE attenuated nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1 and c-Fos without affecting any early signal pathway of osteoclastogenesis. Subsequently, APE significantly downregulated the expression of various genes exclusively expressed in osteoclasts. These results demonstrate that APE restores LPS-induced bone loss through a decrease of the serum RANKL/OPG ratio, and inhibits osteoclast differentiation and function, suggesting the promise of APE as a potential cure for various osteoclast-associated bone diseases.

  9. Reversible Size Control of Silver Nanoclusters via Ligand-exchange

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa

    2015-05-21

    The properties of atomically monodisperse noble metal nanoclusters (NCs) are intricately intertwined with their precise molecular formula. The vast majority of size-specific NC syntheses start from the reduction of the metal salt and thiol ligand mixture. Only in gold was it recently shown that ligand-exchange could induce the growth of NCs from one atomically precise species to another; a process of yet unknown reversibility. Here, we present a process for the ligand-exchange-induced growth of atomically precise silver NCs, in a biphasic liquid-liquid system, which is particularly of interest because of its complete reversibility and ability to occur at room temperature. We explore this phenomenon in-depth using Ag35(SG)18 [SG= glutathionate] and Ag44(4-FTP)30 [4-FTP= 4-fluorothiophenol] as model systems. We show that the ligand-exchange conversion of Ag35(SG)18 into Ag44(4-FTP)30 is rapid (< 5 min) and direct, while the reverse process proceeds slowly through intermediate cluster sizes. We adapt a recently developed theory of reverse Ostwald ripening to model the NCs’ interconvertibility. The model’s predictions are in good agreement with the experimental observations, and they highlight the importance of small changes in the ligand-metal binding energy in determining the final equilibrium NC size. Based on the insight provided by this model, we demonstrated experimentally that by varying the choice of ligands, ligand-exchange can be used to obtain different sized NCs. The findings in this work establish ligand-exchange as a versatile tool for tuning cluster sizes.

  10. Kaempferol Sensitizes Human Ovarian Cancer Cells-OVCAR-3 and SKOV-3 to Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL)-Induced Apoptosis via JNK/ERK-CHOP Pathway and Up-Regulation of Death Receptors 4 and 5.

    Science.gov (United States)

    Zhao, Yingmei; Tian, Binqiang; Wang, Yong; Ding, Haiying

    2017-10-26

    BACKGROUND Ovarian cancer is the most common gynecological malignancies in women, with high mortality rates worldwide. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor (TNF) superfamily which preferentially induces apoptosis of cancer cells. However, acquired resistance to TRAIL hampers its therapeutic application. Identification of compounds that sensitize cancer cells to TRAIL is vital in combating resistance to TRAIL. The effect of kaempferol, a flavonoid enhancing TRAIL-induced apoptosis in ovarian cancer cells, was investigated in this study. MATERIAL AND METHODS The cytotoxic effects of TRAIL (25 ng/mL) and kaempferol (20-100 µM) on human ovarian cancer cells OVCAR-3 and SKOV-3 were assessed. Effect of kaempferol on the expression patterns of cell survival proteins (Bcl-xL, Bcl-2, survivin, XIAP, c-FLIP) and apoptotic proteins (caspase-3, caspase-8, caspase-9, Bax) were studied. The influence of kaempferol on expression of DR4 and DR5 death receptors on the cell surface and protein and mRNA levels was also analyzed. Apoptosis following silencing of DR5 and CHOP by small interfering RNA (siRNA), and activation of MAP kinases were analyzed as well. RESULTS Kaempferol enhanced apoptosis and drastically up-regulated DR4, DR5, CHOP, JNK, ERK1/2, p38 and apoptotic protein expression with decline in the expression of anti-apoptotic proteins. Further transfection with siRNA specific to CHOP and DR5 indicated the involvement of CHOP in DR5 up-regulation and also the contribution of DR5 in kaempferol-enhanced TRAIL-induced apoptosis. CONCLUSIONS Kaempferol sensitized ovarian cancer cells to TRAIL-induced apoptosis via up-regulation of DR4 and DR5 through ERK/JNK/CHOP pathways.

  11. Late First-Row Transition-Metal Complexes Containing a 2-Pyridylmethyl Pendant-Armed 15-Membered Macrocyclic Ligand. Field-Induced Slow Magnetic Relaxation in a Seven-Coordinate Cobalt(II) Compound.

    Science.gov (United States)

    Antal, Peter; Drahoš, Bohuslav; Herchel, Radovan; Trávníček, Zdeněk

    2016-06-20

    The 2-pyridylmethyl N-pendant-armed heptadentate macrocyclic ligand {3,12-bis(2-methylpyridine)-3,12,18-triaza-6,9-dioxabicyclo[12.3.1]octadeca-1,14,16-triene = L} and [M(L)](ClO4)2 complexes, where M = Mn(II) (1), Fe(II) (2), Co(II) (3), Ni(II) (4), and Cu(II) (5), were prepared and thoroughly characterized, including elucidation of X-ray structures of all the compounds studied. The complexes 1-5 crystallize in non-centrosymmetric Sohncke space groups as racemic compounds. The coordination numbers of 7, 6 + 1, and 5 were found in complexes 1-3, 4, and 5, respectively, with a distorted pentagonal bipyramidal (1-4) or square pyramidal (5) geometry. On the basis of the magnetic susceptibility experiments, a large axial zero-field splitting (ZFS) was found for 2, 3, and 4 (D(Fe) = -7.4(2) cm(-1), D(Co) = 34(1) cm(-1), and D(Ni) = -12.8(1) cm(-1), respectively) together with a rhombic ZFS (E/D = 0.136(3)) for 4. Despite the easy plane anisotropy (D > 0, E/D = 0) in 3, the slow relaxation of the magnetization below 8 K was observed and analyzed either with Orbach relaxation mechanism (the relaxation time τ0 = 9.90 × 10(-10) s and spin reversal barrier Ueff = 24.3 K (16.9 cm(-1))) or with Raman relaxation mechanism (C = 2.12 × 10(-5) and n = 2.84). Therefore, compound 3 enlarges the small family of field-induced single-molecule magnets with pentagonal-bipyramidal chromophore. The cyclic voltammetry in acetonitrile revealed reversible redox processes in 1-3 and 5, except for the Ni(II) complex 4, where a quasi-reversible process was dominantly observed. Presence of the two 2-pyridylmethyl pendant arms in L with a stronger σ-donor/π-acceptor ability had a great impact on the properties of all the complexes (1-5), concretely: (i) strong pyridine-metal bonds provided slight axial compression of the coordination sphere, (ii) substantial changes in magnetic anisotropy, and (iii) stabilization of lower oxidation states.

  12. Glutamate receptor ligands

    DEFF Research Database (Denmark)

    Guldbrandt, Mette; Johansen, Tommy N; Frydenvang, Karla Andrea

    2002-01-01

    Homologation and substitution on the carbon backbone of (S)-glutamic acid [(S)-Glu, 1], as well as absolute stereochemistry, are structural parameters of key importance for the pharmacological profile of (S)-Glu receptor ligands. We describe a series of methyl-substituted 2-aminoadipic acid (AA...... or slightly lower potencies than (S)-AA [e.g., EC(50) = 76 microM for (2S,4S)-4-methyl-AA (5a) as compared to EC(50) = 35 microM for (S)-AA]. The position of the methyl substituent had a profound effect on the observed pharmacology, whereas the absolute stereochemistry at the methylated carbon atom had a very......) analogs, and the synthesis, stereochemistry, and enantiopharmacology of 3-methyl-AA (4a-d), 4-methyl-AA (5a-d), 5-methyl-AA (6a-d), and (E)-Delta(4)-5-methyl-AA (7a and 7b) are reported. The compounds were resolved using chiral HPLC and the configurational assignments of the enantiomers were based on X...

  13. NKG2D and Its Ligands: “One for All, All for One”

    Directory of Open Access Journals (Sweden)

    Alessandra Zingoni

    2018-03-01

    Full Text Available The activating receptor NKG2D is peculiar in its capability to bind to numerous and highly diversified MHC class I-like self-molecules. These ligands are poorly expressed on normal cells but can be induced on damaged, transformed or infected cells, with the final NKG2D ligand expression resulting from multiple levels of regulation. Although redundant molecular mechanisms can converge in the regulation of all NKG2D ligands, different stimuli can induce specific cellular responses, leading to the expression of one or few ligands. A large body of evidence demonstrates that NK cell activation can be triggered by different NKG2D ligands, often expressed on the same cell, suggesting a functional redundancy of these molecules. However, since a number of evasion mechanisms can reduce membrane expression of these molecules both on virus-infected and tumor cells, the co-expression of different ligands and/or the presence of allelic forms of the same ligand guarantee NKG2D activation in various stressful conditions and cell contexts. Noteworthy, NKG2D ligands can differ in their ability to down-modulate NKG2D membrane expression in human NK cells supporting the idea that NKG2D transduces different signals upon binding various ligands. Moreover, whether proteolytically shed and exosome-associated soluble NKG2D ligands share with their membrane-bound counterparts the same ability to induce NKG2D-mediated signaling is still a matter of debate. Here, we will review recent studies on the NKG2D/NKG2D ligand biology to summarize and discuss the redundancy and/or diversity in ligand expression, regulation, and receptor specificity.

  14. Ligand binding and thermostability of different allosteric states of the insulin zinc-hexamer

    DEFF Research Database (Denmark)

    Huus, Kasper; Havelund, Svend; Olsen, Helle B

    2006-01-01

    The influence of ligand binding and conformation state on the thermostability of hexameric zinc-insulin was studied by differential scanning calorimetry (DSC). The insulin hexamer exists in equilibrium between the forms T6, T3R3, and R6. Phenolic ligands induce and stabilize the T3R3- and R6-stat...

  15. Production of the soluble human Fas ligand by Dictyostelium discoideum cultivated on a synthetic medium

    NARCIS (Netherlands)

    Lu, Y.H.; Knol, J.C.; Linskens, M.H.K.; Friehs, K.; van Haastert, P. J. M.; Flaschel, E.

    2004-01-01

    Human Fas ligand (hFasL) is of considerable interest since it is a type II transmembrane glycoprotein that induces programmed cell death, or apoptosis. In this study Dictyostelium discoideum was used to produce a soluble form of the human Fas ligand. The recombinant cells were adapted to a modified

  16. A Simple Ligand for Lanthanide Energy Transfer Luminescence in ...

    African Journals Online (AJOL)

    NJD

    induced electron transfer (P.E.T.) fluorescent-based sensor that responds to the presence of Mg2+ ions by ... phenol tetraacetic acid (bapta).12,13 Owing to the similarity of the structures of bapta and apta, we decided to .... The protonation state can have a profound effect on the ability of the ligand to facilitate the formation of ...

  17. Novel olfactory ligands via terpene synthases.

    Science.gov (United States)

    Touchet, Sabrina; Chamberlain, Keith; Woodcock, Christine M; Miller, David J; Birkett, Michael A; Pickett, John A; Allemann, Rudolf K

    2015-05-01

    A synthetic biology approach to the rational design of analogues of olfactory ligands by providing unnatural substrates for the enzyme synthesising (S)-germacrene D, an olfactory ligand acting as a plant derived insect repellent, to produce novel ligands is described as a viable alternative to largely unsuccessful ligand docking studies. (S)-14,15-Dimethylgermacrene D shows an unexpected reversal in behavioural activity.

  18. An Analysis of Central Residues Between Ligand-Bound and Ligand-Free Protein Structures Based on Network Approach.

    Science.gov (United States)

    Amala, Arumugam; Emerson, Isacc Arnold

    2017-08-01

    Depiction of protein structures as networks of interacting residues has enabled us to understand the structure and function of the protein. Previous investigations on closeness centrality have identified protein functional sites from three- dimensional structures. It is well recognized that ligand binding to a receptor protein induces a wide range of structural changes. An interesting question is how central residues function during conformational changes triggered during ligand binding? The aim of this study is to comprehend at what extent central residues change during ligand binding to receptor proteins. To determine this, we examined 37 pairs of protein structures consisting of ligand-bound and ligand-free forms. These protein structures were modelled as an undirected network and significant central residues were obtained using residue centrality measures. In addition to these, the basic network parameters were also analysed. On analysing the residue centrality measures, we observed that 60% of central residues were common in both the ligand-bound and ligand-free states. The geometry of the central residues revealed that they were situated closer to the protein center of the mass. Finally, we demonstrated the effectiveness of central residues in amino acids substitutions and in the evolution itself. The closeness centrality was also analyzed among different protein domain sizes and the values gradually declined from single-domains to multi-domain proteins suggesting that the network has potential for hierarchical organization. Betweenness centrality measure was also used to determine the central residues and 31% of these residues were common between the holo/apo states. Findings reveal that central residues play a significant role in determining the functional properties of proteins. These results have implications in predicting binding/active site residues, specifically in the context of drug designing, if additional information concerning ligand binding is

  19. Weakening of Carbide–Platinum Bonds as a Probe for Ligand Donor Strengths

    DEFF Research Database (Denmark)

    Reinholdt, Anders; Bendix, Jesper

    2017-01-01

    Functionalization of the terminal ruthenium carbide ligand in (Cy3P)2Cl2Ru≡C: with platinum and a range of ligands provides {Ru≡C−Pt−L} fragments with trans geometries. The bridging carbide exhibits chemical shifts and coupling constants to platinum, which are highly responsive to the degree of w...... of weakening of the RuC−Pt linkage induced by the trans ligands, making the terminal ruthenium carbide complex a sensitive probe for the electron donating abilities of other ligands.......Functionalization of the terminal ruthenium carbide ligand in (Cy3P)2Cl2Ru≡C: with platinum and a range of ligands provides {Ru≡C−Pt−L} fragments with trans geometries. The bridging carbide exhibits chemical shifts and coupling constants to platinum, which are highly responsive to the degree...

  20. IL-2-Mediated In Vivo Expansion of Regulatory T Cells Combined with CD154–CD40 Co-Stimulation Blockade but Not CTLA-4 Ig Prolongs Allograft Survival in Naive and Sensitized Mice

    Directory of Open Access Journals (Sweden)

    Dela Golshayan

    2017-04-01

    Full Text Available In recent years, regulatory T cells (Treg-based immunotherapy has emerged as a promising strategy to promote operational tolerance after solid organ transplantation (SOT. However, a main hurdle for the therapeutic use of Treg in transplantation is their low frequency, particularly in non-lymphopenic hosts. We aimed to expand Treg directly in vivo and determine their efficacy in promoting donor-specific tolerance, using a stringent experimental model. Administration of the IL-2/JES6-1 immune complex at the time of transplantation resulted in significant expansion of donor-specific Treg, which suppressed alloreactive T cells. IL-2-mediated Treg expansion in combination with short-term CD154–CD40 co-stimulation blockade, but not CTLA-4 Ig or rapamycin, led to tolerance to MHC-mismatched skin grafts in non-lymphopenic mice, mainly by hindering alloreactive CD8+ effector T cells and the production of alloantibodies. Importantly, this treatment also allowed prolonged survival of allografts in the presence of either donor-specific or cross-reactive memory cells. However, late rejection occurred in sensitized hosts, partly mediated by activated B cells. Overall, these data illustrate the potential but also some important limitations of Treg-based therapy in clinical SOT as well as the importance of concomitant immunomodulatory strategies in particular in sensitized hosts.

  1. The role of Fas ligand protein in the oxidative stress induced by azoxymethane on crypt colon of rats O papel da proteína ligante Fas no estresse oxidativo induzido pelo azoximetano em criptas do colo de ratos

    Directory of Open Access Journals (Sweden)

    Luiz Antonio Maksoud Bussuan

    2010-12-01

    Full Text Available PURPOSE: To study the protein Fas ligand (FasL on the expression of apoptosis, using a model of oxidative stress induced by azoxymethane (AOM, in the crypt of colon in rats. METHODS: Wistar rats (n=14 were assigned into two groups: control (n=7 and AOM (n=7. A single subcutaneous administration of AOM (5mg/kg or saline solution was performed at the beginning of third week and after three hours samples of proximal colon were collected. The expression of FasL was quantified (Software ImageLab in percentage of areas in the top, base and all crypt. Results were expressed as mean ± sd (Shapiro-Wilks test and t Student test (p OBJETIVO: Avaliar o marcador de apoptose Fas ligante (FasL em um modelo de estresse oxidativo induzido pelo azoximetano (AOM na cripta de cólon em ratos. MÉTODOS: 14 ratos Wistar foram distribuídos em dois grupos: controle (n=7 e AOM (n=7. A AOM (5mg/kg ou solução salina foi aplicada via subcutânea e a coleta de amostras de colo proximal ocorreu 3 horas após. A FasL foi quantificada pelo percentual de áreas no topo, base e toda a cripta. Os resultados foram submetidos aos testes de Shapiro-Wilks e t de Student (p < 0,05. RESULTADOS: No grupo GC, não houve diferença significativa entre a expressão da FasL no topo (10,75 ± 3,33 e base (11,14 ± 3,53 da cripta (p=0,34293740. No grupo AOM não houve diferença significativa entre a expressão da FasL no topo (8,86 ± 4,19 e base (8,99 ± 4,08 e cripta (p=0,78486003. No grupo GC (10,95 ± 3,43 e AOM (8,92 ± 4,13, houve uma diferença significativa da expressão da FasL (p=0,026466821. Redução significativa na expressão da FasL ocorreu nos em GC (10,75 ± 3,33 e AOM (8,86 ± 4,19 no topo da cripta (p = 0,00003755*. Foi observada diminuição significativa em GC (11,14 ± 3,53 e AOM (8,99 ± 4,08 na base da cripta (p=0,00000381**. CONCLUSÃO: Azoximetano induziu o estresse oxidativo identificado pela diminuição significativa da expressão da FasL, embora não haja

  2. Using chemical shift perturbation to characterise ligand binding.

    Science.gov (United States)

    Williamson, Mike P

    2013-08-01

    Chemical shift perturbation (CSP, chemical shift mapping or complexation-induced changes in chemical shift, CIS) follows changes in the chemical shifts of a protein when a ligand is added, and uses these to determine the location of the binding site, the affinity of the ligand, and/or possibly the structure of the complex. A key factor in determining the appearance of spectra during a titration is the exchange rate between free and bound, or more specifically the off-rate koff. When koff is greater than the chemical shift difference between free and bound, which typically equates to an affinity Kd weaker than about 3μM, then exchange is fast on the chemical shift timescale. Under these circumstances, the observed shift is the population-weighted average of free and bound, which allows Kd to be determined from measurement of peak positions, provided the measurements are made appropriately. (1)H shifts are influenced to a large extent by through-space interactions, whereas (13)Cα and (13)Cβ shifts are influenced more by through-bond effects. (15)N and (13)C' shifts are influenced both by through-bond and by through-space (hydrogen bonding) interactions. For determining the location of a bound ligand on the basis of shift change, the most appropriate method is therefore usually to measure (15)N HSQC spectra, calculate the geometrical distance moved by the peak, weighting (15)N shifts by a factor of about 0.14 compared to (1)H shifts, and select those residues for which the weighted shift change is larger than the standard deviation of the shift for all residues. Other methods are discussed, in particular the measurement of (13)CH3 signals. Slow to intermediate exchange rates lead to line broadening, and make Kd values very difficult to obtain. There is no good way to distinguish changes in chemical shift due to direct binding of the ligand from changes in chemical shift due to allosteric change. Ligand binding at multiple sites can often be characterised, by

  3. Ligand-specific conformational changes in the alpha1 glycine receptor ligand-binding domain

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Lynch, Joseph W

    2009-01-01

    , and by the antagonist, strychnine. Voltage-clamp fluorometry involves labeling introduced cysteines with environmentally sensitive fluorophores and inferring structural rearrangements from ligand-induced fluorescence changes. In the inner beta-sheet, we labeled residues in loop 2 and in binding domain loops D and E....... At each position, strychnine and glycine induced distinct maximal fluorescence responses. The pre-M1 domain responded similarly; at each of four labeled positions glycine produced a strong fluorescence signal, whereas strychnine did not. This suggests that glycine induces conformational changes...... in the inner beta-sheet and pre-M1 domain that may be important for activation, desensitization, or both. In contrast, most labeled residues in loops C and F yielded fluorescence changes identical in magnitude for glycine and strychnine. A notable exception was H201C in loop C. This labeled residue responded...

  4. The chemistry of separations ligand degradation by organic radical cations

    International Nuclear Information System (INIS)

    Mezyk, S.P.; Horne, G.P.; Mincher, B.J.; Zalupski, P.R.; Cook, A.R.; Wishart, J.F.

    2016-01-01

    Solvent based extractions of used nuclear fuel use designer ligands in an organic phase extracting ligand complexed metal ions from an acidic aqueous phase. These extractions will be performed in highly radioactive environments, and the radiation chemistry of all these complexing agents and their diluents will play a major role in determining extraction efficiency, separation factors, and solvent-recycle longevity. Although there has been considerable effort in investigating ligand damage occurring in acidic water radiolysis conditions, only minimal fundamental kinetic and mechanistic data has been reported for the degradation of extraction ligands in the organic phase. Extraction solvent phases typically use normal alkanes such as dodecane, TPH, and kerosene as diluents. The radiolysis of such diluents produce a mixture of radical cations (R .+ ), carbon-centered radicals (R . ), solvated electrons, and molecular products such as hydrogen. Typically, the radical species will preferentially react with the dissolved oxygen present to produce relatively inert peroxyl radicals. This isolates the alkane radical cation species, R .+ as the major radiolytically-induced organic species that can react with, and degrade, extraction agents in this phase. Here we report on our recent studies of organic radical cation reactions with 2 ligands: CMPO and TODGA. Elucidating these parameters, and combining them with the known acidic aqueous phase chemistry, will allow a full, fundamental, understanding of the impact of radiation on solvent extraction based separation processes to be achieved. (authors)

  5. Rosetta Ligand docking with flexible XML protocols.

    Science.gov (United States)

    Lemmon, Gordon; Meiler, Jens

    2012-01-01

    RosettaLigand is premiere software for predicting how a protein and a small molecule interact. Benchmark studies demonstrate that 70% of the top scoring RosettaLigand predicted interfaces are within 2Å RMSD from the crystal structure [1]. The latest release of Rosetta ligand software includes many new features, such as (1) docking of multiple ligands simultaneously, (2) representing ligands as fragments for greater flexibility, (3) redesign of the interface during docking, and (4) an XML script based interface that gives the user full control of the ligand docking protocol.

  6. Ligand binding affinity and changes in the lateral diffusion of receptor for advanced glycation endproducts (RAGE).

    Science.gov (United States)

    Syed, Aleem; Zhu, Qiaochu; Smith, Emily A

    2016-12-01

    The effect of ligand on the lateral diffusion of receptor for advanced glycation endproducts (RAGE), a receptor involved in numerous pathological conditions, remains unknown. Single particle tracking experiments that use quantum dots specifically bound to hemagglutinin (HA)-tagged RAGE (HA-RAGE) are reported to elucidate the effect of ligand binding on HA-RAGE diffusion in GM07373 cell membranes. The ligand used in these studies is methylglyoxal modified-bovine serum albumin (MGO-BSA) containing advanced glycation end products modifications. The binding affinity between soluble RAGE and MGO-BSA increases by 1.8 to 9.7-fold as the percent primary amine modification increases from 24 to 74% and with increasing negative charge on the MGO-BSA. Ligand incubation affects the HA-RAGE diffusion coefficient, the radius of confinement, and duration of confinement. There is, however, no correlation between MGO-BSA ligand binding affinity with soluble RAGE and the extent of the changes in HA-RAGE lateral diffusion. The ligand induced changes to HA-RAGE lateral diffusion do not occur when cholesterol is depleted from the cell membrane, indicating the mechanism for ligand-induced changes to HA-RAGE diffusion is cholesterol dependent. The results presented here serve as a first step in unraveling how ligand influences RAGE lateral diffusion. Copyright © 2016. Published by Elsevier B.V.

  7. Dienogest inhibits C-C motif chemokine ligand 20 expression in human endometriotic epithelial cells.

    Science.gov (United States)

    Mita, Shizuka; Nakakuki, Masanori; Ichioka, Masayuki; Shimizu, Yutaka; Hashiba, Masamichi; Miyazaki, Hiroyasu; Kyo, Satoru

    2017-07-01

    C-C motif chemokine ligand 20 is thought to contribute to the development of endometriosis by recruiting Th17 lymphocytes into endometriotic foci. The present study investigated the effects of dienogest, a progesterone receptor agonist used to treat endometriosis, on C-C motif chemokine ligand 20 expression by endometriotic cells. Effects of dienogest on mRNA expression and protein secretion of C-C motif chemokine ligand 20 induced by interleukin 1β were assessed in three immortalized endometriotic epithelial cell lines, parental cells (EMosis-CC/TERT1), and stably expressing human progesterone receptor isoform A (EMosis-CC/TERT1/PRA+) or isoform B (EMosis-CC/TERT1/PRA-/PRB+). Dienogest markedly inhibited interleukin 1β-stimulated C-C motif chemokine ligand 20 mRNA expression and protein secretion in EMosis-CC/TERT1/PRA-/PRB+, which was abrogated by the progesterone receptor antagonist RU486. In EMosis-CC/TERT1/PRA+, dienogest slightly inhibited C-C motif chemokine ligand 20 mRNA and protein. In EMosis-CC/TERT1, dienogest slightly inhibited C-C motif chemokine ligand 20 mRNA, but had no effect on C-C motif chemokine ligand 20 protein. Dienogest inhibited interleukin 1β-induced up-regulation of C-C motif chemokine ligand 20 in endometriotic epithelial cells, mainly mediated by progesterone receptor B. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Quantitative chemogenomics: machine-learning models of protein-ligand interaction.

    Science.gov (United States)

    Andersson, Claes R; Gustafsson, Mats G; Strömbergsson, Helena

    2011-01-01

    Chemogenomics is an emerging interdisciplinary field that lies in the interface of biology, chemistry, and informatics. Most of the currently used drugs are small molecules that interact with proteins. Understanding protein-ligand interaction is therefore central to drug discovery and design. In the subfield of chemogenomics known as proteochemometrics, protein-ligand-interaction models are induced from data matrices that consist of both protein and ligand information along with some experimentally measured variable. The two general aims of this quantitative multi-structure-property-relationship modeling (QMSPR) approach are to exploit sparse/incomplete information sources and to obtain more general models covering larger parts of the protein-ligand space, than traditional approaches that focuses mainly on specific targets or ligands. The data matrices, usually obtained from multiple sparse/incomplete sources, typically contain series of proteins and ligands together with quantitative information about their interactions. A useful model should ideally be easy to interpret and generalize well to new unseen protein-ligand combinations. Resolving this requires sophisticated machine-learning methods for model induction, combined with adequate validation. This review is intended to provide a guide to methods and data sources suitable for this kind of protein-ligand-interaction modeling. An overview of the modeling process is presented including data collection, protein and ligand descriptor computation, data preprocessing, machine-learning-model induction and validation. Concerns and issues specific for each step in this kind of data-driven modeling will be discussed. © 2011 Bentham Science Publishers

  9. THERMODYNAMIC ASSESSMENT OF ANIONIC LIGANDS ...

    African Journals Online (AJOL)

    DJFLEX

    2010-06-30

    Jun 30, 2010 ... The presence of the ligands (ethylenediaminettraacetic acid, EDTA, enthylenediamine, en,and chloride ion, Cl-) generally improved the sorption capacity for the adsorbent, the best being. Cl- at optimum pH of 2.0 (for Co2+) and 5.0 (for Ni2+ and Cd2+). The thermodynamic studies reveal that the adsorption.

  10. Th cells promote CTL survival and memory via acquired pMHC-I and endogenous IL-2 and CD40L signaling and by modulating apoptosis-controlling pathways.

    Directory of Open Access Journals (Sweden)

    Channakeshava Sokke Umeshappa

    Full Text Available Involvement of CD4(+ helper T (Th cells is crucial for CD8(+ cytotoxic T lymphocyte (CTL-mediated immunity. However, CD4(+ Th's signals that govern CTL survival and functional memory are still not completely understood. In this study, we assessed the role of CD4(+ Th cells with acquired antigen-presenting machineries in determining CTL fates. We utilized an adoptive co-transfer into CD4(+ T cell-sufficient or -deficient mice of OTI CTLs and OTII Th cells or Th cells with various gene deficiencies pre-stimulated in vitro by ovalbumin (OVA-pulsed dendritic cell (DCova. CTL survival was kinetically assessed in these mice using FITC-anti-CD8 and PE-H-2K(b/OVA257-264 tetramer staining by flow cytometry. We show that by acting via endogenous CD40L and IL-2, and acquired peptide-MHC-I (pMHC-I complex signaling, CD4(+ Th cells enhance survival of transferred effector CTLs and their differentiation into the functional memory CTLs capable of protecting against highly-metastasizing tumor challenge. Moreover, RT-PCR, flow cytometry and Western blot analysis demonstrate that increased survival of CD4(+ Th cell-helped CTLs is matched with enhanced Akt1/NF-κB activation, down-regulation of TRAIL, and altered expression profiles with up-regulation of prosurvival (Bcl-2 and down-regulation of proapoptotic (Bcl-10, Casp-3, Casp-4, Casp-7 molecules. Taken together, our results reveal a previously unexplored mechanistic role for CD4(+ Th cells in programming CTL survival and memory recall responses. This knowledge could also aid in the development of efficient adoptive CTL cancer therapy.

  11. Chemokine-Ligands/Receptors: Multiplayers in Traumatic Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Friederike Knerlich-Lukoschus

    2015-01-01

    Full Text Available Spinal cord injury (SCI results in complex posttraumatic sequelae affecting the whole neuraxis. Due to its involvement in varied neuromodulatory processes, the chemokine-ligand/receptor-network is a key element of secondary lesion cascades induced by SCI. This review will provide a synopsis of chemokine-ligand/receptor-expression along the whole neuraxis after traumatic spinal cord (sc insults on basis of recent in vivo and in vitro findings in a SCI paradigm of thoracic force-defined impact lesions (Infinite Horizon Impactor in adult rats. Analyses of chemokine-ligand/receptor-expression at defined time points after sc lesion of different severity grades or sham operation revealed that these inflammatory mediators are induced in distinct anatomical sc regions and in thalamic nuclei, periaqueductal grey, and hippocampal structures in the brain. Cellular and anatomical expression profiles together with colocalization/expression of neural stem/progenitor cell markers in adult sc stem cells niches or with pain-related receptors and mediators in dorsal horns, dorsal columns, and pain-processing brain areas support the notion that chemokines are involved in distinct cascades underlying clinical posttraumatic impairments and syndromes. These aspects and their implication in concepts of tailored SCI treatment are reviewed in the context of the recent literature on chemokine-ligand/receptor involvement in complex secondary lesion cascades.

  12. Effects of size and ligand density on the chirality transfer from chiral-ligand-capped nanoparticles to nematic liquid crystals

    Science.gov (United States)

    Mori, Taizo; Sharma, Anshul; Nemati, Ahlam; Bergquist, Leah; Hegmann, Torsten

    2017-08-01

    Studies of chiroptical effects of chiral ligand-capped gold nanoparticles (Au NPs) are a fascinating and rapidly evolving field in nanomaterial research with promising applications of such chiral metal NPs in catalysis and metamaterials as well as chiral sensing and separation. The aim of our studies was to seek out a system that not only allows the detection and understanding of Au NP chirality but also permits visualization and ranking — considering size, shape and nature as well as density of the ligand shell — of the extent of chirality transfer to a surrounding medium. Nematic liquid crystal (N-LC) phases are an ideal platform to examine these effects, exhibiting characteristic defect textures upon doping with a chiral additive. To test this, we synthesized series of Au NPs capped with two structurally different chiral ligands and studied well-dispersed mixtures in two nematic liquid crystal hosts. Induced circular dichroism (ICD) spectropolarimetry and polarized light optical microscopy (POM) confirmed that all Au NPs induce chiral nematic (N*-LC) phases, and measurements of the helical pitch as well as calculation of the helical twisting power (HTP) in various cell geometries allowed for an insightful ranking of the efficiency of chirality transfer of all Au NPs as well as their free ligands.

  13. -Pincer Ligand Family through Ligand Post-Modification

    KAUST Repository

    Huang, Mei-Hui

    2017-10-02

    A series of air-stable nickel complexes containing triazine-based PN3P-pincer ligands were synthesized and fully characterized. Complex 3 contains a de-aromatized central triazine ring from the deprotonation of one of the N–H arms. With a post-modification strategy, the Me-PN3P*NiCl complex (3) could be converted into a new class of diimine–traizine PN3P-pincer nickel complexes.

  14. Chelating ligands for nanocrystals' surface functionalization

    NARCIS (Netherlands)

    Querner, Claudia; Reiss, Peter; Bleuse, Joël; Pron, Adam

    2004-01-01

    A new family of ligands for the surface functionalization of CdSe nanocrystals is proposed, namely alkyl or aryl derivatives of carbodithioic acids (R-C(S)SH). The main advantages of these new ligands are as follows: they nearly quantitatively exchange the initial surface ligands (TOPO) in very mild

  15. Alternative Affinity Ligands for Immunoglobulins.

    Science.gov (United States)

    Kruljec, Nika; Bratkovič, Tomaž

    2017-08-16

    The demand for recombinant therapeutic antibodies and Fc-fusion proteins is expected to increase in the years to come. Hence, extensive efforts are concentrated on improving the downstream processing. In particular, the development of better-affinity chromatography matrices, supporting robust time- and cost-effective antibody purification, is warranted. With the advances in molecular design and high-throughput screening approaches from chemical and biological combinatorial libraries, novel affinity ligands representing alternatives to bacterial immunoglobulin (Ig)-binding proteins have entered the scene. Here, we review the design, development, and properties of diverse classes of alternative antibody-binding ligands, ranging from engineered versions of Ig-binding proteins, to artificial binding proteins, peptides, aptamers, and synthetic small-molecular-weight compounds. We also provide examples of applications for the novel affinity matrices in chromatography and beyond.

  16. Ligand binding by PDZ domains

    DEFF Research Database (Denmark)

    Chi, Celestine N.; Bach, Anders; Strømgaard, Kristian

    2012-01-01

    The postsynaptic density protein-95/disks large/zonula occludens-1 (PDZ) protein domain family is one of the most common protein-protein interaction modules in mammalian cells, with paralogs present in several hundred human proteins. PDZ domains are found in most cell types, but neuronal proteins...... as pathological conditions have been reviewed recently. In this review, we focus on the molecular details of how PDZ domains bind their protein ligands and their potential as drug targets in this context....

  17. Bitopic Ligands and Metastable Binding Sites

    DEFF Research Database (Denmark)

    Fronik, Philipp; Gaiser, Birgit I; Sejer Pedersen, Daniel

    2017-01-01

    of orthosteric binding sites. Bitopic ligands have been employed to address the selectivity problem by combining (linking) an orthosteric ligand with an allosteric modulator, theoretically leading to high-affinity subtype selective ligands. However, it remains a challenge to identify suitable allosteric binding...... that have been reported to date, this type of bitopic ligands would be composed of two identical pharmacophores. Herein, we outline the concept of bitopic ligands, review metastable binding sites, and discuss their potential as a new source of allosteric binding sites....

  18. Radioiodinated ligands for dopamine receptors

    International Nuclear Information System (INIS)

    Kung, H.F.

    1994-01-01

    The dopamine receptor system is important for normal brain function; it is also the apparent action site for various neuroleptic drugs for the treatment of schizophrenia and other metal disorders. In the past few years radioiodinated ligands for single photon emission tomography (SPECT) have been successfully developed and tested in humans: [ 123 I]TISCH for D1 dopamine receptors; [ 123 I]IBZM, epidepride, IBF and FIDA2, four iodobenzamide derivatives, for D2/D3 dopamine receptors. In addition, [ 123 I]β-CIT (RTI-55) and IPT, cocaine derivatives, for the dopamine reuptake site are potentially useful for diagnosis of loss of dopamine neurons. The first iodinated ligand, (R)trans-7-OH-PIPAT, for D3 dopamine receptors, was synthesized and characterized with cloned cell lines (Spodoptera frugiperda, Sf9) expressing the D2 and D3 dopamine receptors and with rat basal forebrain membrane preparations. Most of the known iodobenzamides displayed similar potency in binding to both D2 and D3 dopamine receptors expressed in the cell lines. Initial studies appear to suggest that by fine tuning the structures it may be possible to develop agents specific for D2 and D3 dopamine receptors. It is important to investigate D2/D3 selectivity for this series of potent ligands

  19. Tumor targeting via integrin ligands

    Directory of Open Access Journals (Sweden)

    Udaya Kiran eMarelli

    2013-08-01

    Full Text Available Selective and targeted delivery of drugs to tumors is a major challenge for an effective cancer therapy and also to overcome the side effects associated with current treatments. Overexpression of various receptors on tumor cells is a characteristic structural and biochemical aspect of tumors and distinguishes them from physiologically normal cells. This abnormal feature is therefore suitable for selectively directing anticancer molecules to tumors by using ligands that can preferentially recognize such receptors. Several subtypes of integrin receptors that are crucial for cell adhesion, cell signaling, cell viability and motility have been shown to have an upregulated expression on cancer cells. Thus, ligands that recognize specific integrin subtypes represent excellent candidates to be conjugated to drugs or drug carrier systems and be targeted to tumors. In this regard, integrins recognizing the RGD cell adhesive sequence have been extensively targeted for tumor specific drug delivery. Here we review key recent examples on the presentation of RGD-based integrin ligands by means of distinct drug delivery systems, and discuss the prospects of such therapies to specifically target tumor cells.

  20. Staphylococcal enterotoxins modulate interleukin 2 receptor expression and ligand-induced tyrosine phosphorylation of the Janus protein-tyrosine kinase 3 (Jak3) and signal transducers and activators of transcription (Stat proteins)

    DEFF Research Database (Denmark)

    Nielsen, M; Svejgaard, A; Röpke, C

    1995-01-01

    . In addition, SE can induce an interleukin-2 (IL-2) nonresponsive state and apoptosis. Here, we show that SE induce dynamic changes in the expression of and signal transduction through the IL-2 receptor (IL-2R) beta and gamma chains (IL-2R beta and IL-2R gamma) in human antigen-specific CD4+ T-cell lines. Thus...

  1. The pro-inflammatory effects of platelet contamination in plasma and mitigation strategies for avoidance

    Science.gov (United States)

    Bercovitz, R. S.; Kelher, M. R.; Khan, S. Y.; Land, K. J.; Berry, T. H.; Silliman, C. C.

    2013-01-01

    Background and Objectives Plasma and platelet concentrates are disproportionately implicated in transfusion-related acute lung injury (TRALI). Platelet-derived pro-inflammatory mediators, including soluble CD40 ligand (sCD40L), accumulate during storage. We hypothesized that platelet contamination induces sCD40L generation that causes neutrophil [polymorphonuclear leucocyte (PMN)] priming and PMN-mediated cytotoxicity. Materials and Methods Plasma was untreated, centrifuged (12 500 g) or separated from leucoreduced whole blood (WBLR) prior to freezing. Platelet counts and sCD40L concentrations were measured 1–5 days post-thaw. The plasma was assayed for PMN priming activity and was used in a two-event in vitro model of PMN-mediated human pulmonary microvascular endothelial cell (HMVEC) cytotoxicity. Results Untreated plasma contained 42 ± 4.2 × 103/μl platelets, which generated sCD40L accumulation (1.6-eight-fold vs. controls). Priming activity and HMVEC cytotoxicity were directly proportional to sCD40L concentration. WBLR and centrifugation reduced platelet and sCD40L contamination, abrogating the pro-inflammatory potential. Conclusion Platelet contamination causes sCD40L accumulation in stored plasma that may contribute to TRALI. Platelet reduction is potentially the first TRALI mitigation effort in plasma manufacturing. PMID:22092073

  2. Acetylcholine receptors and cholinergic ligands: biochemical and genetic aspects in Torpedo californica and Drosophila melanogaster

    International Nuclear Information System (INIS)

    Rosenthal, L.S.

    1987-01-01

    This study evaluates the biochemical and genetic aspects of the acetylcholine receptor proteins and cholinergic ligands in Drosophila melanogaster and Torpedo californica. Included are (1) a comparative study of nicotinic ligand-induced cation release from acetylcholine receptors isolated from Torpedo californica and from Drosophila melanogaster, (2) solution studies of the cholinergic ligands, nikethamide and ethamivan, aimed at measuring internal molecular rotational barriers in solvents of different polarity; and (3) the isolation and characterization of the gene(s) for the acetylcholine receptor in Drosophila melasogaster. Acetylcholine receptor proteins isolated from Drosphila melanogaster heads were found to behave kinetically similar (with regards to cholinergic ligand-induced 155 Eu: 3+ displacement from prelabeled proteins) to receptor proteins isolated from Torpedo californica electric tissue, providing additional biochemical evidence for the existence of a Drosophila acetylcholine receptor

  3. Contrasting roles for TLR ligands in HIV-1 pathogenesis.

    Directory of Open Access Journals (Sweden)

    Beda Brichacek

    2010-09-01

    Full Text Available The first line of a host's response to various pathogens is triggered by their engagement of cellular pattern recognition receptors (PRRs. Binding of microbial ligands to these receptors leads to the induction of a variety of cellular factors that alter intracellular and extracellular environment and interfere directly or indirectly with the life cycle of the triggering pathogen. Such changes may also affect any coinfecting microbe. Using ligands to Toll-like receptors (TLRs 5 and 9, we examined their effect on human immunodeficiency virus (HIV-1 replication in lymphoid tissue ex vivo. We found marked differences in the outcomes of such treatment. While flagellin (TLR5 agonist treatment enhanced replication of CC chemokine receptor 5 (CCR 5-tropic and CXC chemokine receptor 4 (CXCR4-tropic HIV-1, treatment with oligodeoxynucleotide (ODN M362 (TLR9 agonist suppressed both viral variants. The differential effects of these TLR ligands on HIV-1 replication correlated with changes in production of CC chemokines CCL3, CCL4, CCL5, and of CXC chemokines CXCL10, and CXCL12 in the ligand-treated HIV-1-infected tissues. The nature and/or magnitude of these changes were dependent on the ligand as well as on the HIV-1 viral strain. Moreover, the tested ligands differed in their ability to induce cellular activation as evaluated by the expression of the cluster of differentiation markers (CD 25, CD38, CD39, CD69, CD154, and human leukocyte antigen D related (HLA-DR as well as of a cell proliferation marker, Ki67, and of CCR5. No significant effect of the ligand treatment was observed on apoptosis and cell death/loss in the treated lymphoid tissue ex vivo. Our results suggest that binding of microbial ligands to TLRs is one of the mechanisms that mediate interactions between coinfected microbes and HIV-1 in human tissues. Thus, the engagement of appropriate TLRs by microbial molecules or their mimetic might become a new strategy for HIV therapy or prevention.

  4. Molecular dynamics simulations suggest ligand's binding to nicotinamidase/pyrazinamidase.

    Science.gov (United States)

    Zhang, Ji-Long; Zheng, Qing-Chuan; Li, Zheng-Qiang; Zhang, Hong-Xing

    2012-01-01

    The research on the binding process of ligand to pyrazinamidase (PncA) is crucial for elucidating the inherent relationship between resistance of Mycobacterium tuberculosis and PncA's activity. In the present study, molecular dynamics (MD) simulation methods were performed to investigate the unbinding process of nicotinamide (NAM) from two PncA enzymes, which is the reverse of the corresponding binding process. The calculated potential of mean force (PMF) based on the steered molecular dynamics (SMD) simulations sheds light on an optimal binding/unbinding pathway of the ligand. The comparative analyses between two PncAs clearly exhibit the consistency of the binding/unbinding pathway in the two enzymes, implying the universality of the pathway in all kinds of PncAs. Several important residues dominating the pathway were also determined by the calculation of interaction energies. The structural change of the proteins induced by NAM's unbinding or binding shows the great extent interior motion in some homologous region adjacent to the active sites of the two PncAs. The structure comparison substantiates that this region should be very important for the ligand's binding in all PncAs. Additionally, MD simulations also show that the coordination position of the ligand is displaced by one water molecule in the unliganded enzymes. These results could provide the more penetrating understanding of drug resistance of M. tuberculosis and be helpful for the development of new antituberculosis drugs.

  5. Molecular dynamics simulations suggest ligand's binding to nicotinamidase/pyrazinamidase.

    Directory of Open Access Journals (Sweden)

    Ji-Long Zhang

    Full Text Available The research on the binding process of ligand to pyrazinamidase (PncA is crucial for elucidating the inherent relationship between resistance of Mycobacterium tuberculosis and PncA's activity. In the present study, molecular dynamics (MD simulation methods were performed to investigate the unbinding process of nicotinamide (NAM from two PncA enzymes, which is the reverse of the corresponding binding process. The calculated potential of mean force (PMF based on the steered molecular dynamics (SMD simulations sheds light on an optimal binding/unbinding pathway of the ligand. The comparative analyses between two PncAs clearly exhibit the consistency of the binding/unbinding pathway in the two enzymes, implying the universality of the pathway in all kinds of PncAs. Several important residues dominating the pathway were also determined by the calculation of interaction energies. The structural change of the proteins induced by NAM's unbinding or binding shows the great extent interior motion in some homologous region adjacent to the active sites of the two PncAs. The structure comparison substantiates that this region should be very important for the ligand's binding in all PncAs. Additionally, MD simulations also show that the coordination position of the ligand is displaced by one water molecule in the unliganded enzymes. These results could provide the more penetrating understanding of drug resistance of M. tuberculosis and be helpful for the development of new antituberculosis drugs.

  6. Synergistic Effects of PPARγ Ligands and Retinoids in Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Masahito Shimizu

    2008-01-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs are members of the nuclear receptor superfamily. The activation of PPARs by their specific ligands is regarded as one of the promising strategies to inhibit cancer cell growth. However, recent clinical trials targeting several common cancers showed no beneficial effect when PPAR ligands are used as a monotherapy. Retinoid X receptors (RXRs, which play a critical role in normal cell proliferation as a master regulator for nuclear receptors, preferentially form heterodimers with PPARs. A malfunction of RXRα due to phosphorylation by the Ras/MAPK signaling pathway is associated with the development of certain types of human malignancies. The activation of PPARγ/RXR heterodimer by their respective ligands synergistically inhibits cell growth, while inducing apoptosis in human colon cancer cells when the phosphorylation of RXRα was inhibited. We herein review the synergistic antitumor effects produced by the combination of the PPAR, especially PPARγ, ligands plus other agents, especially retinoids, in a variety of human cancers. We also focus on the phosphorylation of RXRα because the inhibition of RXRα phosphorylation and the restoration of its physiological function may activate PPAR/RXR heterodimer and, therefore, be a potentially effective and critical strategy for the inhibition of cancer cell growth.

  7. Drug-induced caspase 8 upregulation sensitises cisplatin-resistant ovarian carcinoma cells to rhTRAIL-induced apoptosis

    NARCIS (Netherlands)

    Duiker, E. W.; Meijer, A.; van der Bilt, A. R. M.; Meersma, G. J.; Kooi, N.; van der Zee, A. G. J.; de Vries, E. G.; de Jong, S.

    2011-01-01

    BACKGROUND: Drug resistance is a major problem in ovarian cancer. Triggering apoptosis using death ligands such as tumour necrosis factor-related apoptosis inducing ligand (TRAIL) might overcome chemoresistance. METHODS: We investigated whether acquired cisplatin resistance affects sensitivity to

  8. Decreased Affinity of Recombinant Human Tumor Necrosis Factor-related Apoptosis-inducing Ligand (rhTRAIL) D269H/E195R to Osteoprotegerin (OPG) Overcomes TRAIL Resistance Mediated by the Bone Microenvironment

    NARCIS (Netherlands)

    Bosman, Matthieu C. J.; Reis, C.R.; Schuringa, Jan J.; Vellenga, Edo; Quax, Wim J.

    2014-01-01

    The bone marrow microenvironment provides important signals for the survival and proliferation of hematopoietic and malignant cells. In multiple myeloma, plasma cells are surrounded by stromal cells including osteoblasts. These stromal cells protect multiple myeloma cells from apoptosis induced by

  9. Tetrapyrroles as Endogenous TSPO Ligands in Eukaryotes and Prokaryotes: Comparisons with Synthetic Ligands

    Directory of Open Access Journals (Sweden)

    Leo Veenman

    2016-06-01

    Full Text Available The 18 kDa translocator protein (TSPO is highly 0conserved in eukaryotes and prokaryotes. Since its discovery in 1977, numerous studies established the TSPO’s importance for life essential functions. For these studies, synthetic TSPO ligands typically are applied. Tetrapyrroles present endogenous ligands for the TSPO. Tetrapyrroles are also evolutionarily conserved and regulate multiple functions. TSPO and tetrapyrroles regulate each other. In animals TSPO-tetrapyrrole interactions range from effects on embryonic development to metabolism, programmed cell death, response to stress, injury and disease, and even to life span extension. In animals TSPOs are primarily located in mitochondria. In plants TSPOs are also present in plastids, the nuclear fraction, the endoplasmic reticulum, and Golgi stacks. This may contribute to translocation of tetrapyrrole intermediates across organelles’ membranes. As in animals, plant TSPO binds heme and protoporphyrin IX. TSPO-tetrapyrrole interactions in plants appear to relate to development as well as stress conditions, including salt tolerance, abscisic acid-induced stress, reactive oxygen species homeostasis, and finally cell death regulation. In bacteria, TSPO is important for switching from aerobic to anaerobic metabolism, including the regulation of photosynthesis. As in mitochondria, in bacteria TSPO is located in the outer membrane. TSPO-tetrapyrrole interactions may be part of the establishment of the bacterial-eukaryote relationships, i.e., mitochondrial-eukaryote and plastid-plant endosymbiotic relationships.

  10. SU-8-Induced Strong Bonding of Polymer Ligands to Flexible Substrates via in Situ Cross-Linked Reaction for Improved Surface Metallization and Fast Fabrication of High-Quality Flexible Circuits.

    Science.gov (United States)

    Hu, Mingjun; Guo, Qiuquan; Zhang, Tengyuan; Zhou, Shaolin; Yang, Jun

    2016-02-01

    On account of in situ cross-linked reaction of epoxy SU-8 with poly(4-vinylpyridine) (P4VP) and its strong reactive bonding ability with different pretreated substrates, we developed a simple universal one-step solution-based coating method for fast surface modification of various objects. Through this method, a layer of P4VP molecules with controllable thickness can be tethered tightly onto substrates with the assistance of SU-8. P4VP molecules possess a lot of pyridine ligands to immobilize transitional metal ions that can behave as the catalyst of electroless copper plating for surface metallization while functioning as the adhesion-promoting layer between the substrate and deposited metal. Attributed to interpenetrated entanglement of P4VP molecules and as-deposited metal, ultrathick (>7 μm) strongly adhesive high-quality copper layer can be formed on flexible substrates without any delamination. Then through laser printer to print toner mask, a variety of designed circuits can be easily fabricated on modified flexible PET substrate.

  11. Ligand-independent activation of the glucocorticoid receptor by ursodeoxycholic acid: Repression of IFN-{gamma}-induced MHC class II gene expression via a glucocorticoid receptor-dependent pathway

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Hirotoshi; Makino, Yuichi; Miura, Takanori [Asahikawa Medical College (Japan)] [and others

    1996-02-15

    The therapeutic effectiveness of ursodeoxycholic acid (UDCA) for various autoimmune liver diseases strongly indicates that UDCA possesses immunomodulatory activities. Experimental evidence also supports this notion, since, for example, UDCA has been shown to suppress secretion of IL-2, IL-4, and IFN-{gamma} from activated T lymphocytes, and Ig production from B lymphocytes. To investigate the mechanical background of UDCA-mediated immunomodulation, we asked whether UDCA interacts with the intracellular signal transduction pathway, especially whether it is involved in immunosuppressive glucocorticoid hormone action. For this purpose, we used a cloned Chinese hamster ovary cell line, CHOpMTGR, in which glucocorticoid receptor cDNA was stably integrated. In immunocytochemical analysis, we found that treatment with UDCA promoted the nuclear translocation of the glucocorticoid receptor in a ligand-independent fashion, which was further confirmed by immunoprecipitation assays. Moreover, the translocated glucocorticoid receptor demonstrated sequence-specific DNA binding activity. Transient transfection experiments revealed that treatment of the cells with UDCA marginally enhanced glucocorticoid-responsive gene expression. We also showed that UDCA suppressed IFN-{gamma}-mediated induction of MHC class II gene expression via the glucocorticoid receptor-mediated pathway. Together, UDCA-dependent promotion of translocation of the glucocorticoid receptor may be associated with, at least in part, its immunomodulatory action through glucocorticoid receptor-mediated gene regulation. 68 refs., 8 figs.

  12. Ligand photo-isomerization triggers conformational changes in iGluR2 ligand binding domain.

    Directory of Open Access Journals (Sweden)

    Tino Wolter

    Full Text Available Neurological glutamate receptors bind a variety of artificial ligands, both agonistic and antagonistic, in addition to glutamate. Studying their small molecule binding properties increases our understanding of the central nervous system and a variety of associated pathologies. The large, oligomeric multidomain membrane protein contains a large and flexible ligand binding domains which undergoes large conformational changes upon binding different ligands. A recent application of glutamate receptors is their activation or inhibition via photo-switchable ligands, making them key systems in the emerging field of optochemical genetics. In this work, we present a theoretical study on the binding mode and complex stability of a novel photo-switchable ligand, ATA-3, which reversibly binds to glutamate receptors ligand binding domains (LBDs. We propose two possible binding modes for this ligand based on flexible ligand docking calculations and show one of them to be analogues to the binding mode of a similar ligand, 2-BnTetAMPA. In long MD simulations, it was observed that transitions between both binding poses involve breaking and reforming the T686-E402 protein hydrogen bond. Simulating the ligand photo-isomerization process shows that the two possible configurations of the ligand azo-group have markedly different complex stabilities and equilibrium binding modes. A strong but slow protein response is observed after ligand configuration changes. This provides a microscopic foundation for the observed difference in ligand activity upon light-switching.

  13. Latent Membrane Protein 1 (LMP1) and LMP2A Collaborate To Promote Epstein-Barr Virus-Induced B Cell Lymphomas in a Cord Blood-Humanized Mouse Model but Are Not Essential.

    Science.gov (United States)

    Ma, Shi-Dong; Tsai, Ming-Han; Romero-Masters, James C; Ranheim, Erik A; Huebner, Shane M; Bristol, Jillian A; Delecluse, Henri-Jacques; Kenney, Shannon C

    2017-04-01

    Epstein-Barr virus (EBV) infection is associated with B cell lymphomas in humans. The ability of EBV to convert human B cells into long-lived lymphoblastoid cell lines (LCLs) in vitro requires the collaborative effects of EBNA2 (which hijacks Notch signaling), latent membrane protein 1 (LMP1) (which mimics CD40 signaling), and EBV-encoded nuclear antigen 3A (EBNA3A) and EBNA3C (which inhibit oncogene-induced senescence and apoptosis). However, we recently showed that an LMP1-deleted EBV mutant induces B cell lymphomas in a newly developed cord blood-humanized mouse model that allows EBV-infected B cells to interact with CD4 T cells (the major source of CD40 ligand). Here we examined whether the EBV LMP2A protein, which mimics constitutively active B cell receptor signaling, is required for EBV-induced lymphomas in this model. We find that the deletion of LMP2A delays the onset of EBV-induced lymphomas but does not affect the tumor phenotype or the number of tumors. The simultaneous deletion of both LMP1 and LMP2A results in fewer tumors and a further delay in tumor onset. Nevertheless, the LMP1/LMP2A double mutant induces lymphomas in approximately half of the infected animals. These results indicate that neither LMP1 nor LMP2A is absolutely essential for the ability of EBV to induce B cell lymphomas in the cord blood-humanized mouse model, although the simultaneous loss of both LMP1 and LMP2A decreases the proportion of animals developing tumors and increases the time to tumor onset. Thus, the expression of either LMP1 or LMP2A may be sufficient to promote early-onset EBV-induced tumors in this model. IMPORTANCE EBV causes human lymphomas, but few models are available for dissecting how EBV causes lymphomas in vivo in the context of a host immune response. We recently used a newly developed cord blood-humanized mouse model to show that EBV can cooperate with human CD4 T cells to cause B cell lymphomas even when a major viral transforming protein, LMP1, is deleted

  14. Ruthenium Cumulenylidene Complexes Bearing Heteroscorpionate Ligands

    OpenAIRE

    Strinitz, Frank

    2014-01-01

    In previous work of the BURZLAFF group, the design of suitable N,N,O ligands for a wide variety of applications ranging from catalysis to bioinorganic model compounds has been extensively investigated. Especially the methyl substituted bis(3,5-dimethylpyrazol-1-yl) acetate (bdmpza) ligand has shown manifold chemistry, comparable to the anionic cyclopentadienyl (Cp) and hydridotris(pyrazol-1-yl)borato (Tp) ligand. In the first part of this thesis the new tricarbonylmanganese(I) complexes be...

  15. Development of immobilized ligands for actinide separations

    International Nuclear Information System (INIS)

    Paine, R.T.

    1994-01-01

    Primary goals during this grant period were to (1) synthesize new bifunctional chelating ligands, (2) characterize the structural features of the Ln and An coordination complexes formed by these ligands, (3) use structural data to iteratively design new classes of multifunctional ligands, and (4) explore additional routes for attachment of key ligands to solid supports that could be useful for chromatographic separations. Some highlights of recently published work as well as a summary of submitted, unpublished and/or still in progress research are outlined

  16. Programmed death-1 & its ligands: promising targets for cancer immunotherapy.

    Science.gov (United States)

    Shrimali, Rajeev K; Janik, John E; Abu-Eid, Rasha; Mkrtichyan, Mikayel; Khleif, Samir N

    2015-01-01

    Novel strategies for cancer treatment involving blockade of immune inhibitors have shown significant progress toward understanding the molecular mechanism of tumor immune evasion. The preclinical findings and clinical responses associated with programmed death-1 (PD-1) and PD-ligand pathway blockade seem promising, making these targets highly sought for cancer immunotherapy. In fact, the anti-PD-1 antibodies, pembrolizumab and nivolumab, were recently approved by the US FDA for the treatment of unresectable and metastatic melanoma resistant to anticytotoxic T-lymphocyte antigen-4 antibody (ipilimumab) and BRAF inhibitor. Here, we discuss strategies of combining PD-1/PD-ligand interaction inhibitors with other immune checkpoint modulators and standard-of-care therapy to break immune tolerance and induce a potent antitumor activity, which is currently a research area of key scientific pursuit.

  17. Understanding ligand effects in gold clusters using mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Grant E.; Laskin, Julia

    2016-01-01

    This review summarizes recent research on the influence of phosphine ligands on the size, stability, and reactivity of gold clusters synthesized in solution. Sub-nanometer clusters exhibit size- and composition-dependent properties that are unique from those of larger nanoparticles. The highly tunable properties of clusters and their high surface-to-volume ratio make them promising candidates for a variety of technological applications. However, because “each-atom-counts” toward defining cluster properties it is critically important to develop robust synthesis methods to efficiently prepare clusters of predetermined size. For decades phosphines have been known to direct the size-selected synthesis of gold clusters. Despite the preparation of numerous species it is still not understood how different functional groups at phosphine centers affect the size and properties of gold clusters. Using electrospray ionization mass spectrometry (ESI-MS) it is possible to characterize the effect of ligand substitution on the distribution of clusters formed in solution at defined reaction conditions. In addition, ligand exchange reactions on preformed clusters may be monitored using ESI-MS. Collision induced dissociation (CID) may also be employed to obtain qualitative insight into the fragmentation of mixed ligand clusters and the relative binding energies of differently substituted phosphines. Quantitative ligand binding energies and cluster stability may be determined employing surface induced dissociation (SID) in a custom-built Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS). Rice-Ramsperger-Kassel-Marcus (RRKM) based modeling of the SID data allows dissociation energies and entropy values to be extracted that may be compared with the results of high-level theoretical calculations. The charge reduction and reactivity of atomically precise gold clusters, including partially ligated species generated in the gas-phase by in source CID, on well

  18. Understanding ligand effects in gold clusters using mass spectrometry.

    Science.gov (United States)

    Johnson, Grant E; Laskin, Julia

    2016-06-21

    This review summarizes recent research on the influence of phosphine ligands on the size, stability, and reactivity of gold clusters synthesized in solution. Sub-nanometer clusters exhibit size- and composition-dependent properties that are unique from those of larger nanoparticles. The highly tunable properties of clusters and their high surface-to-volume ratio make them promising candidates for a variety of technological applications. However, because "each-atom-counts" toward defining cluster properties it is critically important to develop robust synthesis methods to efficiently prepare clusters of predetermined size. For decades phosphines have been known to direct the size-selected synthesis of gold clusters. Despite the preparation of numerous species it is still not understood how different functional groups at phosphine centers affect the size and properties of gold clusters. Using electrospray ionization mass spectrometry (ESI-MS) it is possible to characterize the effect of ligand substitution on the distribution of clusters formed in solution at defined reaction conditions. In addition, ligand exchange reactions on preformed clusters may be monitored using ESI-MS. Collision induced dissociation (CID) may also be employed to obtain qualitative insight into the fragmentation of mixed ligand clusters and the relative binding energies of differently substituted phosphines. Quantitative ligand binding energies and cluster stability may be determined employing surface induced dissociation (SID) in a custom-built Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS). Rice-Ramsperger-Kassel-Marcus (RRKM) based modeling of the SID data allows dissociation energies and entropy values to be extracted. The charge reduction and reactivity of atomically precise gold clusters, including partially ligated species generated in the gas-phase by in source CID, on well-defined surfaces may be explored using ion soft landing (SL) in a custom

  19. Macrocyclic ligands for uranium complexation

    Energy Technology Data Exchange (ETDEWEB)

    Potts, K.T.

    1991-04-01

    A highly preorganized 24-macrocycle containing biuret, thiobiuret and pyridine subunits has been prepared by high dilution ring-closure procedures. Intermediate products to this macrocycle have been utilized to extend this synthetic route to include further representatives where solubility and stability will be influenced by substituent variation. A 1:1 complex has been formed from uranyl acetate and a quinquepyridine derivative, this representing a new type of ligand for the uranyl ion. A very convenient synthetic procedure that will allow the incorporation of these macrocycles into polymeric systems has been developed for the introduction of a vinyl substituent into the 4-position of the pyridine ring. Using triflate, vinyltributyltin and Pd{sup 0} chemistry, this procedure should make a variety of substituted 4-vinylpyridines available for the first time. 3 refs.

  20. Macrocyclic ligands for uranium complexation

    International Nuclear Information System (INIS)

    Potts, K.T.

    1991-04-01

    A highly preorganized 24-macrocycle containing biuret, thiobiuret and pyridine subunits has been prepared by high dilution ring-closure procedures. Intermediate products to this macrocycle have been utilized to extend this synthetic route to include further representatives where solubility and stability will be influenced by substituent variation. A 1:1 complex has been formed from uranyl acetate and a quinquepyridine derivative, this representing a new type of ligand for the uranyl ion. A very convenient synthetic procedure that will allow the incorporation of these macrocycles into polymeric systems has been developed for the introduction of a vinyl substituent into the 4-position of the pyridine ring. Using triflate, vinyltributyltin and Pd 0 chemistry, this procedure should make a variety of substituted 4-vinylpyridines available for the first time. 3 refs

  1. Structural basis for PPAR partial or full activation revealed by a novel ligand binding mode

    Science.gov (United States)

    Capelli, Davide; Cerchia, Carmen; Montanari, Roberta; Loiodice, Fulvio; Tortorella, Paolo; Laghezza, Antonio; Cervoni, Laura; Pochetti, Giorgio; Lavecchia, Antonio

    2016-10-01

    The peroxisome proliferator-activated receptors (PPARs) are nuclear receptors involved in the regulation of the metabolic homeostasis and therefore represent valuable therapeutic targets for the treatment of metabolic diseases. The development of more balanced drugs interacting with PPARs, devoid of the side-effects showed by the currently marketed PPARγ full agonists, is considered the major challenge for the pharmaceutical companies. Here we present a structure-based virtual screening approach that let us identify a novel PPAR pan-agonist with a very attractive activity profile and its crystal structure in the complex with PPARα and PPARγ, respectively. In PPARα this ligand occupies a new pocket whose filling is allowed by the ligand-induced switching of the F273 side chain from a closed to an open conformation. The comparison between this pocket and the corresponding cavity in PPARγ provides a rationale for the different activation of the ligand towards PPARα and PPARγ, suggesting a novel basis for ligand design.

  2. Attenuated apoptosis response to Fas-ligand in active ulcerative colitis

    DEFF Research Database (Denmark)

    Seidelin, J.B.; Nielsen, Ole Haagen

    2008-01-01

    BACKGROUND: From mainly carcinoma cell line studies, apoptosis has been thought to play a major role in the pathogenesis of ulcerative colitis (UC). Apoptosis has been suggested to be due to a Fas ligand / Fas receptor interaction, but has never been studied in cells from patients with active UC....... The aim was to investigate both the spontaneous and the cell death receptor ligand-induced apoptosis in UC. METHODS: Twenty patients with UC and 16 control subjects who underwent routine colonoscopy either for the control or surveillance of their disease or where the diagnosis of irritable bowel syndrome...... was subsequently reached were included. Cultures of isolated colonic crypts were obtained from biopsies and cultured for 4 to 16 hours with Fas ligand or Fas ligand and costimulation with interferon-gamma (IFN-gamma). Control experiments were performed on HT29 cells. Apoptosis was assessed by independent methods...

  3. Ligand based pharmacophore modelling of anticancer histone ...

    African Journals Online (AJOL)

    USER

    2010-06-21

    Jun 21, 2010 ... HDAC ligands (Chen et al., 2008b). The knowledge of common properties of the binding group is essential for the determination of the type of inhibitor binding the target. Major goal of modern drug design is identification and development of new ligands with high affinity of binding toward a given protein.

  4. Organometallic chemistry of chiral diphosphazane ligands ...

    Indian Academy of Sciences (India)

    Unknown

    1. Introduction. Diphosphazanes constitute a class of versatile short-bite bidentate P-donor ligands that have given rise to a varied and extensive transition metal organometallic chemistry. The organometallic chemistry of diphosphazane ligands with almost every transition metal in the periodic table is well documented1–3.

  5. Cofactor-Controlled Chirality of Tropoisomeric Ligand

    NARCIS (Netherlands)

    Théveau, L.; Bellini, R.; Dydio, P.; Szabo, Z.; van der Werf, A.; Sander, R.A.; Reek, J.N.H.; Moberg, C.

    2016-01-01

    A new tropos ligand with an integrated anion receptor receptor site has been prepared. Chiral carboxylate and phosphate anions that bind in the anion receptor unit proved capable of stabilizing chiral conformations of the achiral flexible bidentate biaryl phosphite ligand, as shown by variable

  6. Ligand modification for mono- and biphasic oxosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Haerter, P.; Herrmann, W.A.; Baskakov, D. [Technische Univ. Muenchen (Germany). Dept. Chemie

    2006-07-01

    The use of aqueous/organic biphasic systems has attracted huge interest in catalytic reactions by transition metal complexes. [1,2,3] The biphasic systems have benefits in catalyst separation and recycling, and the reduction or elimination of organic solvents is also advantageous for the development of economical and environmentally friendly processes. The key for such biphasic catalysis is the use of water soluble phosphines as ligands. Since the launch of the commercial propylene hydroformylation process by Ruhrchemie/Rhone-Poulenc, sulfonated ligands such as TPPTS (1), and BINAS (2) have been widely used as ligands in hydroformylation, hydrogenation and related reactions catalyzed by transition metals. One of the draw backs of ligands 1 and 2 are corrosive production conditions and therefore unfavorable costs. With the synthesis of aminoacid based trishydroxymethylphosphine derivatives (THMP-aminoacid) we introduce to our knowledge a new group of water soluble and cheap to produce ligands [8]. The properties of catalysts based on these compounds in the hydroformylation reaction of propene are discussed in comparison to normally used catalyst systems. In a second part the performance of catalysts containing NHC-ligands in the hydroformylation of 1-octene is discussed [9]. These investigations show, that the activity can be influenced by the electron donating ability of the NHC ligand. Sterical variations on the NHC ligands have no effect on the selectivity performance of the the catalysts. (orig.)

  7. Organometallic chemistry of chiral diphosphazane ligands ...

    Indian Academy of Sciences (India)

    Unknown

    organometallic chemistry of diphosphazane ligands with almost every transition metal in the periodic table is well documented1–3. A very attractive feature of diphosphazane ligands is that 'chirality' can be incorporated at the phosphorus centres as well as at the substituents attached to the nitrogen and the two phosphorus ...

  8. Ligand sphere conversions in terminal carbide complexes

    DEFF Research Database (Denmark)

    Morsing, Thorbjørn Juul; Reinholdt, Anders; Sauer, Stephan P. A.

    2016-01-01

    Metathesis is introduced as a preparative route to terminal carbide complexes. The chloride ligands of the terminal carbide complex [RuC(Cl)2(PCy3)2] (RuC) can be exchanged, paving the way for a systematic variation of the ligand sphere. A series of substituted complexes, including the first exam...

  9. Conformational dynamics of L-lysine, L-arginine, L-ornithine binding protein reveals ligand-dependent plasticity.

    Science.gov (United States)

    Silva, Daniel-Adriano; Domínguez-Ramírez, Lenin; Rojo-Domínguez, Arturo; Sosa-Peinado, Alejandro

    2011-07-01

    The molecular basis of multiple ligand binding affinity for amino acids in periplasmic binding proteins (PBPs) and in the homologous domain for class C G-protein coupled receptors is an unsolved question. Here, using unrestrained molecular dynamic simulations, we studied the ligand binding mechanism present in the L-lysine, L-arginine, L-ornithine binding protein. We developed an analysis based on dihedral angles for the description of the conformational changes upon ligand binding. This analysis has an excellent correlation with each of the two main movements described by principal component analysis (PCA) and it's more convenient than RMSD measurements to describe the differences in the conformational ensembles observed. Furthermore, an analysis of hydrogen bonds showed specific interactions for each ligand studied as well as the ligand interaction with the aromatic residues Tyr-14 and Phe-52. Using uncharged histidine tautomers, these interactions are not observed. On the basis of these results, we propose a model in which hydrogen bond interactions place the ligand in the correct orientation to induce a cation-π interaction with Tyr-14 and Phe-52 thereby stabilizing the closed state. Our results also show that this protein adopts slightly different closed conformations to make available specific hydrogen bond interactions for each ligand thus, allowing a single mechanism to attain multiple ligand specificity. These results shed light on the experimental evidence for ligand-dependent conformational plasticity not explained by the previous crystallographic data. Copyright © 2011 Wiley-Liss, Inc.

  10. Biomimetic affinity ligands for protein purification.

    Science.gov (United States)

    Sousa, Isabel T; Taipa, M Angela

    2014-01-01

    The development of sophisticated molecular modeling software and new bioinformatic tools, as well as the emergence of data banks containing detailed information about a huge number of proteins, enabled the de novo intelligent design of synthetic affinity ligands. Such synthetic compounds can be tailored to mimic natural biological recognition motifs or to interact with key surface-exposed residues on target proteins and are designated as "biomimetic ligands." A well-established methodology for generating biomimetic or synthetic affinity ligands integrates rational design with combinatorial solid-phase synthesis and screening, using the triazine scaffold and analogues of amino acids side chains to create molecular diversity.Triazine-based synthetic ligands are nontoxic, low-cost, highly stable compounds that can replace advantageously natural biological ligands in the purification of proteins by affinity-based methodologies.

  11. Correcting ligands, metabolites, and pathways

    Directory of Open Access Journals (Sweden)

    Vriend Gert

    2006-11-01

    Full Text Available Abstract Background A wide range of research areas in bioinformatics, molecular biology and medicinal chemistry require precise chemical structure information about molecules and reactions, e.g. drug design, ligand docking, metabolic network reconstruction, and systems biology. Most available databases, however, treat chemical structures more as illustrations than as a datafield in its own right. Lack of chemical accuracy impedes progress in the areas mentioned above. We present a database of metabolites called BioMeta that augments the existing pathway databases by explicitly assessing the validity, correctness, and completeness of chemical structure and reaction information. Description The main bulk of the data in BioMeta were obtained from the KEGG Ligand database. We developed a tool for chemical structure validation which assesses the chemical validity and stereochemical completeness of a molecule description. The validation tool was used to examine the compounds in BioMeta, showing that a relatively small number of compounds had an incorrect constitution (connectivity only, not considering stereochemistry and that a considerable number (about one third had incomplete or even incorrect stereochemistry. We made a large effort to correct the errors and to complete the structural descriptions. A total of 1468 structures were corrected and/or completed. We also established the reaction balance of the reactions in BioMeta and corrected 55% of the unbalanced (stoichiometrically incorrect reactions in an automatic procedure. The BioMeta database was implemented in PostgreSQL and provided with a web-based interface. Conclusion We demonstrate that the validation of metabolite structures and reactions is a feasible and worthwhile undertaking, and that the validation results can be used to trigger corrections and improvements to BioMeta, our metabolite database. BioMeta provides some tools for rational drug design, reaction searches, and

  12. Chemistry of marine ligands and siderophores.

    Science.gov (United States)

    Vraspir, Julia M; Butler, Alison

    2009-01-01

    Marine microorganisms are presented with unique challenges to obtain essential metal ions required to survive and thrive in the ocean. The production of organic ligands to complex transition metal ions is one strategy to both facilitate uptake of specific metals, such as iron, and to mitigate the potential toxic effects of other metal ions, such as copper. A number of important trace metal ions are complexed by organic ligands in seawater, including iron, cobalt, nickel, copper, zinc, and cadmium, thus defining the speciation of these metal ions in the ocean. In the case of iron, siderophores have been identified and structurally characterized. Siderophores are low molecular weight iron-binding ligands produced by marine bacteria. Although progress has been made toward the identity of in situ iron-binding ligands, few compounds have been identified that coordinate the other trace metals. Deciphering the chemical structures and production stimuli of naturally produced organic ligands and the organisms they come from is fundamental to understanding metal speciation and bioavailability. The current evidence for marine ligands, with an emphasis on siderophores, and discussion of the importance and implications of metal-binding ligands in controlling metal speciation and cycling within the world's oceans are presented.

  13. Band structure engineering of monolayer MoS₂ by surface ligand functionalization for enhanced photoelectrochemical hydrogen production activity.

    Science.gov (United States)

    Pan, Jing; Wang,