WorldWideScience

Sample records for cd1d-dependent antagonist inhibits

  1. A CD1d-dependent lipid antagonist to NKT cells ameliorates atherosclerosis in ApoE-/- mice by reducing lesion necrosis and inflammation.

    Science.gov (United States)

    Li, Yi; Kanellakis, Peter; Hosseini, Hamid; Cao, Anh; Deswaerte, Virginie; Tipping, Peter; Toh, Ban-Hock; Bobik, Alex; Kyaw, Tin

    2016-02-01

    Atherosclerosis-related deaths from heart attacks and strokes remain leading causes of global mortality, despite the use of lipid-lowering statins. Thus, there is an urgent need to develop additional therapies. Reports that NKT cells promote atherosclerosis and an NKT cell CD1d-dependent lipid antagonist (DPPE-PEG350, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N[methoxy(polyethyleneglycol)-350]) reduces allergen-induced inflammation led us to investigate its therapeutic potential in preventing the development and progression of experimental atherosclerosis. DPPE-PEG350 was administered to hyperlipidaemic ApoE(-/-) mice with/without established atherosclerosis. Atherosclerosis and immune cells were assessed in the aortic sinus lesions. Lesion expression of monocyte chemoattractant protein-1 (MCP-1) and vascular cell adhesion protein-1 (VCAM-1) responsible for inflammatory immune cell recruitment as well as mRNA expression of IFNγ and its plasma levels were investigated. Necrotic cores and lesion smooth muscle and collagen contents important in plaque stability were determined as were plasma lipid levels. DPPE-PEG350 reduced atherosclerosis development and delayed progression of established atherosclerosis without affecting plasma lipids. CD4 and CD8 T cells and B cells in atherosclerotic lesions were decreased in DPPE-PEG350-treated mice. Lesion MCP-1 and VCAM-1 protein expression and necrotic core size were reduced without affecting lesion smooth muscle and collagen content. IFNγ and lymphocytes were unaffected by the treatment. The attenuation of progression of established atherosclerosis together with reduced development of atherosclerosis in hyperlipidaemic mice by the NKT antagonist, without affecting NKT cell or other lymphocyte numbers, suggests that targeting lesion inflammation via CD1d-dependent activation of NKT cells using DPPE-PEG350 has a therapeutic potential in treating atherosclerosis. Published on behalf of the European Society of

  2. CD1d-dependent NKT cells play a protective role in acute and chronic arthritis models by ameliorating antigen-specific Th1 responses

    DEFF Research Database (Denmark)

    Teige, Anna; Bockermann, Robert; Hasan, Maruf

    2010-01-01

    -induced arthritis (AIA) and collagen-induced arthritis (CIA), to evaluate acute and chronic arthritis in CD1d knockout mice and mice depleted of NK1.1(+) cells. CD1d-deficient mice developed more severe AIA compared with wild-type littermates, with a higher degree of inflammation and proteoglycan depletion. Chronic...... arthritis in CIA was also worse in the absence of CD1d-dependent NKTs. Elevated levels of Ag-specific IFN-gamma production accompanied these findings rather than changes in IL-17alpha. Depletion of NK1.1(+) cells supported these findings in AIA and CIA. This report provides support for CD1d-dependent NKTs...

  3. CD1d-dependent expansion of NKT follicular helper cells in vivo and in vitro is a product of cellular proliferation and differentiation.

    Science.gov (United States)

    Rampuria, Pragya; Lang, Mark L

    2015-05-01

    NKT follicular helper cells (NKTfh cells) are a recently discovered functional subset of CD1d-restricted NKT cells. Given the potential for NKTfh cells to promote specific antibody responses and germinal center reactions, there is much interest in determining the conditions under which NKTfh cells proliferate and/or differentiate in vivo and in vitro. We confirm that NKTfh cells expressing the canonical semi-invariant Vα14 TCR were CXCR5(+)/ICOS(+)/PD-1(+)/Bcl6(+) and increased in number following administration of the CD1d-binding glycolipid α-galactosylceramide (α-GC) to C57Bl/6 mice. We show that the α-GC-stimulated increase in NKTfh cells was CD1d-dependent since the effect was diminished by reduced CD1d expression. In vivo and in vitro treatment with α-GC, singly or in combination with IL-2, showed that NKTfh cells increased in number to a greater extent than total NKT cells, but proliferation was near-identical in both populations. Acquisition of the NKTfh phenotype from an adoptively transferred PD-1-depleted cell population was also evident, showing that peripheral NKT cells differentiated into NKTfh cells. Therefore, the α-GC-stimulated, CD1d-dependent increase in peripheral NKTfh cells is a result of cellular proliferation and differentiation. These findings advance our understanding of the immune response following immunization with CD1d-binding glycolipids. © The Japanese Society for Immunology. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. IL-1 Receptor Antagonist Inhibits Early Granulation Formation.

    Science.gov (United States)

    Nicolli, Elizabeth A; Ghosh, Ankona; Haft, Sunny; Frank, Renee; Saunders, Cecil James; Cohen, Noam; Mirza, Natasha

    2016-04-01

    Using a functional model of airway granulation tissue in laryngotracheal stenosis, we investigated changes in histopathology and inflammatory markers within granulation tissue in response to an interleukin-1 receptor antagonist (IL-1Ra). This study allows us to further delineate the immune response to wound healing and potentially identify treatment markers. Laryngotracheal complexes (LTCs) of donor mice underwent direct airway injury. The LTCs were transplanted into subcutaneous tissue of recipient mice in 2 groups: IL-1Ra treated and untreated. The IL-1Ra-treated arm received daily intraperitoneal injections of IL-1Ra for 3 weeks. The LTCs were then harvested. Granulation formation was measured. The mRNA expression of transforming growth factor (TGF) beta and IL-1 was quantified using real-time reverse transcript polymerase chain reaction. There were statistically significant differences in lamina propria thickness. There were no statistically significant changes in mRNA expression of TGF-β and IL-1β between the treated and untreated specimens. Using a previously described murine model, we delineate inflammatory markers that can be targeted for potential therapy. While the levels of inflammatory markers do not change significantly, the lamina propria thickness shows that the effects of IL-1 have been inhibited. The early use of the IL-1Ra will inhibit the efficacy of IL-1 in the inflammatory cascade and can prevent early granulation formation. © The Author(s) 2015.

  5. XIAP Antagonist Embelin Inhibited Proliferation of Cholangiocarcinoma Cells

    Science.gov (United States)

    Wehrkamp, Cody J.; Gutwein, Ashley R.; Natarajan, Sathish Kumar; Phillippi, Mary Anne; Mott, Justin L.

    2014-01-01

    Cholangiocarcinoma cells are dependent on antiapoptotic signaling for survival and resistance to death stimuli. Recent mechanistic studies have revealed that increased cellular expression of the E3 ubiquitin-protein ligase X-linked inhibitor of apoptosis (XIAP) impairs TRAIL- and chemotherapy-induced cytotoxicity, promoting survival of cholangiocarcinoma cells. This study was undertaken to determine if pharmacologic antagonism of XIAP protein was sufficient to sensitize cholangiocarcinoma cells to cell death. We employed malignant cholangiocarcinoma cell lines and used embelin to antagonize XIAP protein. Embelin treatment resulted in decreased XIAP protein levels by 8 hours of treatment with maximal effect at 16 hours in KMCH and Mz-ChA-1 cells. Assessment of nuclear morphology demonstrated a concentration-dependent increase in nuclear staining. Interestingly, embelin induced nuclear morphology changes as a single agent, independent of the addition of TNF-related apoptosis inducing ligand (TRAIL). However, caspase activity assays revealed that increasing embelin concentrations resulted in slight inhibition of caspase activity, not activation. In addition, the use of a pan-caspase inhibitor did not prevent nuclear morphology changes. Finally, embelin treatment of cholangiocarcinoma cells did not induce DNA fragmentation or PARP cleavage. Apoptosis does not appear to contribute to the effects of embelin on cholangiocarcinoma cells. Instead, embelin caused inhibition of cell proliferation and cell cycle analysis indicated that embelin increased the number of cells in S and G2/M phase. Our results demonstrate that embelin decreased proliferation in cholangiocarcinoma cell lines. Embelin treatment resulted in decreased XIAP protein expression, but did not induce or enhance apoptosis. Thus, in cholangiocarcinoma cells the mechanism of action of embelin may not be dependent on apoptosis. PMID:24603802

  6. XIAP antagonist embelin inhibited proliferation of cholangiocarcinoma cells.

    Directory of Open Access Journals (Sweden)

    Cody J Wehrkamp

    Full Text Available Cholangiocarcinoma cells are dependent on antiapoptotic signaling for survival and resistance to death stimuli. Recent mechanistic studies have revealed that increased cellular expression of the E3 ubiquitin-protein ligase X-linked inhibitor of apoptosis (XIAP impairs TRAIL- and chemotherapy-induced cytotoxicity, promoting survival of cholangiocarcinoma cells. This study was undertaken to determine if pharmacologic antagonism of XIAP protein was sufficient to sensitize cholangiocarcinoma cells to cell death. We employed malignant cholangiocarcinoma cell lines and used embelin to antagonize XIAP protein. Embelin treatment resulted in decreased XIAP protein levels by 8 hours of treatment with maximal effect at 16 hours in KMCH and Mz-ChA-1 cells. Assessment of nuclear morphology demonstrated a concentration-dependent increase in nuclear staining. Interestingly, embelin induced nuclear morphology changes as a single agent, independent of the addition of TNF-related apoptosis inducing ligand (TRAIL. However, caspase activity assays revealed that increasing embelin concentrations resulted in slight inhibition of caspase activity, not activation. In addition, the use of a pan-caspase inhibitor did not prevent nuclear morphology changes. Finally, embelin treatment of cholangiocarcinoma cells did not induce DNA fragmentation or PARP cleavage. Apoptosis does not appear to contribute to the effects of embelin on cholangiocarcinoma cells. Instead, embelin caused inhibition of cell proliferation and cell cycle analysis indicated that embelin increased the number of cells in S and G2/M phase. Our results demonstrate that embelin decreased proliferation in cholangiocarcinoma cell lines. Embelin treatment resulted in decreased XIAP protein expression, but did not induce or enhance apoptosis. Thus, in cholangiocarcinoma cells the mechanism of action of embelin may not be dependent on apoptosis.

  7. Alteramide B is a microtubule antagonist of inhibiting Candida albicans.

    Science.gov (United States)

    Ding, Yanjiao; Li, Yaoyao; Li, Zhenyu; Zhang, Juanli; Lu, Chunhua; Wang, Haoxin; Shen, Yuemao; Du, Liangcheng

    2016-10-01

    Alteramide B (ATB), isolated from Lysobacter enzymogenes C3, was a new polycyclic tetramate macrolactam (PTM). ATB exhibited potent inhibitory activity against several yeasts, particularly Candida albicans SC5314, but its antifungal mechanism is unknown. The structure of ATB was established by extensive spectroscopic analyses, including high-resolution mass spectrometry, 1D- and 2D-NMR, and CD spectra. Flow cytometry, fluorescence microscope, transmission electron microscope, molecular modeling, overexpression and site-directed mutation studies were employed to delineate the anti-Candida molecular mechanism of ATB. ATB induced apoptosis in C. albicans through inducing reactive oxygen species (ROS) production by disrupting microtubules. Molecular dynamics studies revealed the binding patterns of ATB to the β-tubulin subunit. Overexpression of the wild type and site-directed mutants of the β-tubulin gene (TUBB) changed the sensitivity of C. albicans to ATB, confirming the binding of ATB to β-tubulin, and indicating that the binding sites are L215, L217, L273, L274 and R282. In vivo, ATB significantly improved the survival of the candidiasis mice and reduced fungal burden. The molecular mechanism underlying the ATB-induced apoptosis in C. albicans is through inhibiting tubulin polymerization that leads to cell cycle arrest at the G2/M phase. The identification of ATB and the study of its activity provide novel mechanistic insights into the mode of action of PTMs against the human pathogen. This study shows that ATB is a new microtubule inhibitor and a promising anti-Candida lead compound. The results also support β-tubulin as a potential target for anti-Candida drug discovery. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Inhibition of tolerance to spinal morphine antinociception by low doses of opioid receptor antagonists.

    Science.gov (United States)

    McNaull, Benjamin; Trang, Tuan; Sutak, Maaja; Jhamandas, Khem

    2007-04-10

    Ultra-low doses of opioid receptor antagonists inhibit development of chronic spinal morphine tolerance. As this phenomenon mechanistically resembles acute tolerance, the present study examined actions of opioid receptor antagonists on acute spinal morphine tolerance. In adult rats, administration of three intrathecal injections of morphine (15 microg) at 90 min intervals produced a significant decline of the antinociceptive effect and loss of agonist potency in both the tail-flick and paw-pressure tests. These reduced responses, indicative of acute tolerance, were blocked by co-injection of morphine (15 microg) with naltrexone (NTX, 0.05 ng), D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTAP, 0.001 ng), naltrindole (0.06 ng), or nor-binaltorphimine (0.1 ng). Repeated injections of CTAP, naltrindole, or nor-binaltorphimine without morphine elicited a delayed weak antinociceptive response which was blocked by a high dose of naltrexone (2 microg). In another set of experiments, administration of low dose spinal (0.05 ng) or systemic (0.01 microg/kg) morphine produced a sustained thermal hyperalgesia. This response was blocked by opioid receptor antagonists at doses inhibiting development of acute morphine tolerance. Lastly, an acute spinal injection of morphine (15 microg) with naltrexone (0.05 ng) produced a sustained analgesic response; this was antagonized by adenosine receptor antagonist, 8-phenyltheophylline (3 microg). The results show that ultra-low doses of opioid receptor antagonists block acute tolerance to morphine. This effect may result from blockade of opioid excitatory effects that produce a latent hyperalgesia that then contributes to induction of tolerance. The sustained antinociception produced by combination of morphine with an opioid receptor antagonist shows dependency on the adenosine receptor activity.

  9. 5-HT2B Receptor Antagonists Inhibit Fibrosis and Protect from RV Heart Failure

    Directory of Open Access Journals (Sweden)

    Wiebke Janssen

    2015-01-01

    Full Text Available Objective. The serotonin (5-HT pathway was shown to play a role in pulmonary hypertension (PH, but its functions in right ventricular failure (RVF remain poorly understood. The aim of the current study was to investigate the effects of Terguride (5-HT2A and 2B receptor antagonist or SB204741 (5-HT2B receptor antagonist on right heart function and structure upon pulmonary artery banding (PAB in mice. Methods. Seven days after PAB, mice were treated for 14 days with Terguride (0.2 mg/kg bid or SB204741 (5 mg/kg day. Right heart function and remodeling were assessed by right heart catheterization, magnetic resonance imaging (MRI, and histomorphometric methods. Total secreted collagen content was determined in mouse cardiac fibroblasts isolated from RV tissues. Results. Chronic treatment with Terguride or SB204741 reduced right ventricular fibrosis and showed improved heart function in mice after PAB. Moreover, 5-HT2B receptor antagonists diminished TGF-beta1 induced collagen synthesis of RV cardiac fibroblasts in vitro. Conclusion. 5-HT2B receptor antagonists reduce collagen deposition, thereby inhibiting right ventricular fibrosis. Chronic treatment prevented the development and progression of pressure overload-induced RVF in mice. Thus, 5-HT2B receptor antagonists represent a valuable novel therapeutic approach for RVF.

  10. 5-HT2A receptor antagonists inhibit hepatic stellate cell activation and facilitate apoptosis.

    Science.gov (United States)

    Kim, Dong Chan; Jun, Dae Won; Kwon, Young Il; Lee, Kang Nyeong; Lee, Hang Lak; Lee, Oh Young; Yoon, Byung Chul; Choi, Ho Soon; Kim, Eun Kyung

    2013-04-01

    5-hydroxytryptamine (5-HT) receptors are upregulated in activated hepatic stellate cells (HSCs), and are therefore thought to play an important role in their activation. The aim of this study was to determine whether 5-HT2A receptor antagonists affect the activation or apoptosis of HSCs in vitro and/or in vivo. For the in vitro experiments, the viability, apoptosis and wound healing ability of LX-2 cells were examined after treatment with various 5-HT2A receptor antagonists. Levels of HSC activation markers (procollagen type I, α-SMA, TGF-β and Smad 2/3) were measured. For in vivo experiments, rats were divided into three groups: (i) a control group, (ii) a disease group, in which cirrhosis was induced by thioacetamide (iii) a treatment group, in which cirrhosis was induced and a 5-HT2A receptor antagonist (sarpogrelate, 30 mg/kg) was administered. 5-HT2A , but not 5-HT2B receptor mRNA increased with time upon HSC activation. 5-HT2A receptor antagonists (ketanserin and sarpogrelate) inhibited viability and wound healing in LX-2 cells and induced apoptosis. Expression of α-SMA and procollagen type I was also inhibited. In the in vivo study, lobular inflammation was reduced in the sarpogrelate-treated group, but there was only slight and statistically insignificant attenuation of periportal fibrosis. Expression of α-SMA, TGF-β and Smad 2/3 was also reduced in the treatment group. 5-HT2A receptor antagonists can reduce inflammation and the activation of HSCs in this cirrhotic model. © 2013 John Wiley & Sons A/S.

  11. CysLT(1)R antagonists inhibit tumor growth in a xenograft model of colon cancer.

    Science.gov (United States)

    Savari, Sayeh; Liu, Minghui; Zhang, Yuan; Sime, Wondossen; Sjölander, Anita

    2013-01-01

    The expression of the inflammatory G-protein coupled receptor CysLT1R has been shown to be upregulated in colon cancer patients and associated with poor prognosis. The present study investigated the correlation between CysLT1R and colon cancer development in vivo using CysLT1R antagonists (ZM198,615 or Montelukast) and the nude mouse xenograft model. Two drug administration regimens were established. The first regimen was established to investigate the importance of CysLT1R in tumor initiation. Nude mice were inoculated with 50 µM CysLT1R antagonist-pretreated HCT-116 colon cancer cells and received continued treatment (5 mg/kg/day, intraperitoneally). The second regimen aimed to address the role of CysLT1R in tumor progression. Nude mice were inoculated with non-pretreated HCT-116 cells and did not receive CysLT1R antagonist treatment until recordable tumor appearance. Both regimens resulted in significantly reduced tumor size, attributed to changes in proliferation and apoptosis as determined by reduced Ki-67 levels and increased levels of p21(WAF/Cip1) (Pcolon cancer cell line HCT-116 and CysLT1R antagonists. In addition to significant reductions in cell proliferation, adhesion and colony formation, we observed induction of cell cycle arrest and apoptosis in a dose-dependent manner. The ability of Montelukast to inhibit growth of human colon cancer xenograft was further validated by using two additional colon cancer cell lines, SW-480 and HT-29. Our results demonstrate that CysLT1R antagonists inhibit growth of colon cancer xenografts primarily by reducing proliferation and inducing apoptosis of the tumor cells.

  12. P2X1 Receptor Antagonists Inhibit HIV-1 Fusion by Blocking Virus-Coreceptor Interactions

    Science.gov (United States)

    Giroud, Charline; Marin, Mariana; Hammonds, Jason; Spearman, Paul

    2015-01-01

    ABSTRACT HIV-1 Env glycoprotein-mediated fusion is initiated upon sequential binding of Env to CD4 and the coreceptor CXCR4 or CCR5. Whereas these interactions are thought to be necessary and sufficient to promote HIV-1 fusion, other host factors can modulate this process. Previous studies reported potent inhibition of HIV-1 fusion by selective P2X1 receptor antagonists, including NF279, and suggested that these receptors play a role in HIV-1 entry. Here we investigated the mechanism of antiviral activity of NF279 and found that this compound does not inhibit HIV-1 fusion by preventing the activation of P2X1 channels but effectively blocks the binding of the virus to CXCR4 or CCR5. The notion of an off-target effect of NF279 on HIV-1 fusion is supported by the lack of detectable expression of P2X1 receptors in cells used in fusion experiments and by the fact that the addition of ATP or the enzymatic depletion of ATP in culture medium does not modulate viral fusion. Importantly, NF279 fails to inhibit HIV-1 fusion with cell lines and primary macrophages when added at an intermediate stage downstream of Env-CD4-coreceptor engagement. Conversely, in the presence of NF279, HIV-1 fusion is arrested downstream of CD4 binding but prior to coreceptor engagement. NF279 also antagonizes the signaling function of CCR5, CXCR4, and another chemokine receptor, as evidenced by the suppression of calcium responses elicited by specific ligands and by recombinant gp120. Collectively, our results demonstrate that NF279 is a dual HIV-1 coreceptor inhibitor that interferes with the functional engagement of CCR5 and CXCR4 by Env. IMPORTANCE Inhibition of P2X receptor activity suppresses HIV-1 fusion and replication, suggesting that P2X signaling is involved in HIV-1 entry. However, mechanistic experiments conducted in this study imply that P2X1 receptor is not expressed in target cells or involved in viral fusion. Instead, we found that inhibition of HIV-1 fusion by a specific P2X1

  13. Maintenance therapy with oxytocin antagonists for inhibiting preterm birth after threatened preterm labour.

    Science.gov (United States)

    Papatsonis, Dimitri N M; Flenady, Vicki; Liley, Helen G

    2013-10-13

    In some women, an episode of preterm labour settles and does not result in immediate preterm birth. Subsequent treatment with tocolytic agents such as oxytocin receptor antagonists may then have the potential to prevent the recurrence of preterm labour, prolonging gestation, and preventing the adverse consequences of prematurity for the infant. To assess the effects of maintenance therapy with oxytocin antagonists administered by any route after an episode of preterm labour in order to delay or prevent preterm birth. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (31 July 2013), sought ongoing and unpublished trials by contacting experts in the field and searched the reference lists of relevant articles. Randomised controlled trials comparing oxytocin antagonists with any alternative tocolytic agent, placebo or no treatment, used for maintenance therapy after an episode of preterm labour. We used the standard methods of The Cochrane Collaboration and the Cochrane Pregnancy and Childbirth Group. Two review authors independently undertook evaluation of methodological quality and extracted trial data. This review includes one trial of 513 women. When compared with placebo, atosiban did not reduce preterm birth before 37 weeks (risk ratio (RR) 0.89; 95% confidence intervals (CI) 0.71 to 1.12), 32 weeks (RR 0.85; 95% CI 0.47 to 1.55), or 28 weeks (RR 0.75; 95% CI 0.28 to 2.01). No difference was shown in neonatal morbidity, or perinatal mortality. There is insufficient evidence to support the use of oxytocin receptor antagonists to inhibit preterm birth after a period of threatened or actual preterm labour. Any future trials using oxytocin antagonists or other drugs as maintenance therapy for preventing preterm birth should examine a variety of important infant outcome measures, including reduction of neonatal morbidity and mortality, and long-term infant follow-up. Future research should also focus on the pathophysiological pathways that

  14. Betulinic acid is a PPARγ antagonist that improves glucose uptake, promotes osteogenesis and inhibits adipogenesis.

    Science.gov (United States)

    Brusotti, Gloria; Montanari, Roberta; Capelli, Davide; Cattaneo, Giulia; Laghezza, Antonio; Tortorella, Paolo; Loiodice, Fulvio; Peiretti, Franck; Bonardo, Bernadette; Paiardini, Alessandro; Calleri, Enrica; Pochetti, Giorgio

    2017-07-18

    PPAR antagonists are ligands that bind their receptor with high affinity without transactivation activity. Recently, they have been demonstrated to maintain insulin-sensitizing and antidiabetic properties, and they serve as an alternative treatment for metabolic diseases. In this work, an affinity-based bioassay was found to be effective for selecting PPAR ligands from the dried extract of an African plant (Diospyros bipindensis). Among the ligands, we identified betulinic acid (BA), a compound already known for its anti-inflammatory, anti-tumour and antidiabetic properties, as a PPARγ and PPARα antagonist. Cell differentiation assays showed that BA inhibits adipogenesis and promotes osteogenesis; either down-regulates or does not affect the expression of a series of adipogenic markers; and up-regulates the expression of osteogenic markers. Moreover, BA increases basal glucose uptake in 3T3-L1 adipocytes. The crystal structure of the complex of BA with PPARγ sheds light, at the molecular level, on the mechanism by which BA antagonizes PPARγ, and indicates a unique binding mode of this antagonist type. The results of this study show that the natural compound BA could be an interesting and safe candidate for the treatment of type 2 diabetes and bone diseases.

  15. Cd1d-dependent regulation of bacterial colonization in the intestine of mice

    Science.gov (United States)

    Nieuwenhuis, Edward E.S.; Matsumoto, Tetsuya; Lindenbergh, Dicky; Willemsen, Rob; Kaser, Arthur; Simons-Oosterhuis, Ytje; Brugman, Sylvia; Yamaguchi, Keizo; Ishikawa, Hiroki; Aiba, Yuji; Koga, Yasuhiro; Samsom, Janneke N.; Oshima, Kenshiro; Kikuchi, Mami; Escher, Johanna C.; Hattori, Masahira; Onderdonk, Andrew B.; Blumberg, Richard S.

    2009-01-01

    The accumulation of certain species of bacteria in the intestine is involved in both tissue homeostasis and immune-mediated pathologies. The host mechanisms involved in controlling intestinal colonization with commensal bacteria are poorly understood. We observed that under specific pathogen–free or germ-free conditions, intragastric administration of Pseudomonas aeruginosa, E. coli, Staphylococcus aureus, or Lactobacillus gasseri resulted in increased colonization of the small intestine and bacterial translocation in mice lacking Cd1d, an MHC class I–like molecule, compared with WT mice. In contrast, activation of Cd1d-restricted T cells (NKT cells) with α-galactosylceramide caused diminished intestinal colonization with the same bacterial strains. We also found prominent differences in the composition of intestinal microbiota, including increased adherent bacteria, in Cd1d–/– mice in comparison to WT mice under specific pathogen–free conditions. Germ-free Cd1d–/– mice exhibited a defect in Paneth cell granule ultrastructure and ability to degranulate after bacterial colonization. In vitro, NKT cells were shown to induce the release of lysozyme from intestinal crypts. Together, these data support a role for Cd1d in regulating intestinal colonization through mechanisms that include the control of Paneth cell function. PMID:19349688

  16. Smoothened antagonist GDC-0449 (Vismodegib) inhibits proliferation and triggers apoptosis in colon cancer cell lines.

    Science.gov (United States)

    Wu, Chuanqing; Hu, Shaobo; Cheng, Ji; Wang, Guobin; Tao, Kaixiong

    2017-05-01

    The sonic hedgehog (Shh) pathway has been proven to be involved in embryonic development and cancer growth. GDC-0449, an antagonist of the hedgehog signaling receptor Smoothened (Smo), was recently approved by the US Food and Drug Administration as a prescription for skin basal cell carcinoma. However, the efficacy of GDC-0449 in the treatment of colon cancer and other malignancies, such as basal cell carcinoma and pancreatic cancer, has remained to be proven. The present study assessed the effect of GDC-0449 on the colon cancer cell lines Caco-2 and Ht-29. A Cell Counting Kit-8 assay was applied to assess the cell proliferation rate and apoptosis was tested by flow cytometry. Reverse-transcription quantitative PCR and western blot analysis were used for analyzing expression levels of target genes. Cell proliferation was inhibited, while apoptosis was increased by GDC-0449, whereas the expression of B-cell lymphoma 2 (Bcl-2), a downstream target of Shh signaling, was decreased. Consistent with the inhibition of Gli1 expression, the cancer stem cell markers CD44 and ALDH were decreased in the presence of GDC-0449. In conclusion, GDC-0449 was shown to inhibit the replication of colon cancer cells and trigger apoptosis through downregulating Bcl-2. This may also influence the stemness of cancer stem cells as indicated by the decreased stem cell surface markers.

  17. Dopamine receptor antagonist thioridazine inhibits tumor growth in a murine breast cancer model.

    Science.gov (United States)

    Yin, Tao; He, Sisi; Shen, Guobo; Ye, Tinghong; Guo, Fuchun; Wang, Yongsheng

    2015-09-01

    Neuropsychological factors have been shown to influence tumor progression and therapeutic response. The present study investigated the effect of the dopamine receptor antagonist thioridazine on murine breast cancer. The anti‑tumor efficacy of thioridazine was assessed using a murine breast cancer model. Cell apoptosis and proliferation were analyzed in vitro using flow cytometry (FCM) and the MTT assay, respectively. Western blot analysis was performed to assess Akt, phosphorylated (p)‑Akt, signal transducer and activator of transcription (STAT) 3, p‑STAT3 and p‑p65 in tumor cells following treatment with thioridazine. The Ki67 index and the number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)‑positive apoptotic cells were assessed in the tumor sections. Thioridazine was found to reduce tumor growth, inhibit tumor cell proliferation and induce apoptosis in a dose‑ and time‑dependent manner in vitro. Thioridazine was also found to markedly inhibit tumor proliferation and induce tumor cell apoptosis in vivo as shown by the lower Ki67 index and increase in TUNEL‑positive cells. In addition, thioridazine was observed to inhibit the activation of the canonical nuclear factor κ‑light‑chain‑enhancer of activated B cells pathway and exert anti‑tumor effects by remodeling the tumor stroma, as well as inhibit angiogenesis in the tumor microenvironment. In conclusion, thioridazine was found to significantly inhibit breast tumor growth and the potential for thioridazine to be used in cancer therapy may be re‑evaluated and investigated in clinical settings.

  18. GABAB Receptor Antagonist CGP46381 Inhibits Form-Deprivation Myopia Development in Guinea Pigs

    Directory of Open Access Journals (Sweden)

    Zhen-Ying Cheng

    2015-01-01

    Full Text Available The aim was to investigate the effects of the GABAB receptor antagonist, CGP46381, on form-deprivation myopia (FDM in guinea pigs. Twenty-four guinea pigs had monocular visual deprivation induced using a diffuser for 11 days (day 14 to 25. The deprived eyes were treated with daily subconjunctival injections (100 μl of either 2% CGP46381, 0.2% CGP46381, or saline or received no injection. The fellow eyes were left untreated. Another six animals received no treatment. At the start and end of the treatment period, ocular refractions were measured using retinoscopy and vitreous chamber depth (VCD and axial length (AL using A-scan ultrasound. All of the deprived eyes developed relative myopia (treated versus untreated eyes, P0.05. Subconjunctival injections of CGP46381 inhibit FDM development in guinea pigs in a dose-dependent manner.

  19. GABAB receptor antagonist CGP46381 inhibits form-deprivation myopia development in guinea pigs.

    Science.gov (United States)

    Cheng, Zhen-Ying; Wang, Xu-Ping; Schmid, Katrina L; Han, Yu-Fei; Han, Xu-Guang; Tang, Hong-Wei; Tang, Xin

    2015-01-01

    The aim was to investigate the effects of the GABAB receptor antagonist, CGP46381, on form-deprivation myopia (FDM) in guinea pigs. Twenty-four guinea pigs had monocular visual deprivation induced using a diffuser for 11 days (day 14 to 25). The deprived eyes were treated with daily subconjunctival injections (100 μl) of either 2% CGP46381, 0.2% CGP46381, or saline or received no injection. The fellow eyes were left untreated. Another six animals received no treatment. At the start and end of the treatment period, ocular refractions were measured using retinoscopy and vitreous chamber depth (VCD) and axial length (AL) using A-scan ultrasound. All of the deprived eyes developed relative myopia (treated versus untreated eyes, P 0.05). Subconjunctival injections of CGP46381 inhibit FDM development in guinea pigs in a dose-dependent manner.

  20. Inhibition of [11C]mirtazapine binding by alpha2-adrenoceptor antagonists studied by positron emission tomography in living porcine brain

    DEFF Research Database (Denmark)

    Smith, Donald F; Dyve, Suzan; Minuzzi, Luciano

    2006-01-01

    Inhibition of [11C]mirtazapine binding by alpha2-adrenoceptor antagonists studied by positron emission tomography in living porcine brain......Inhibition of [11C]mirtazapine binding by alpha2-adrenoceptor antagonists studied by positron emission tomography in living porcine brain...

  1. Purinergic receptor antagonists inhibit odorant-mediated CREB phosphorylation in sustentacular cells of mouse olfactory epithelium.

    LENUS (Irish Health Repository)

    Dooley, Ruth

    2012-02-01

    BACKGROUND: Extracellular nucleotides have long been known to play neuromodulatory roles and to be involved in intercellular signalling. In the olfactory system, ATP is released by olfactory neurons, and exogenous ATP can evoke an increase in intracellular calcium concentration in sustentacular cells, the nonneuronal supporting cells of the olfactory epithelium. Here we investigate the hypothesis that olfactory neurons communicate with sustentacular cells via extracellular ATP and purinergic receptor activation. RESULTS: Here we show that exposure of mice to a mixture of odorants induced a significant increase in the levels of the transcription factor CREB phosphorylated at Ser-133 in the nuclei of both olfactory sensory neurons and sustentacular cells. This activation was dependent on adenylyl cyclase III-mediated olfactory signaling and on activation of P2Y purinergic receptors on sustentacular cells. Purinergic receptor antagonists inhibited odorant-dependent CREB phosphorylation specifically in the nuclei of the sustentacular cells. CONCLUSION: Our results point to a possible role for extracellular nucleotides in mediating intercellular communication between the neurons and sustentacular cells of the olfactory epithelium in response to odorant exposure. Maintenance of extracellular ionic gradients and metabolism of noxious chemicals by sustentacular cells may therefore be regulated in an odorant-dependent manner by olfactory sensory neurons.

  2. Metabolites produced by antagonistic microbes inhibit the principal avocado pathogens in vitro

    Directory of Open Access Journals (Sweden)

    Sara Ramírez R.

    2015-04-01

    Full Text Available The demand for Hass avocado in the global market exceeds the supply by over 50%. Colombia has a remarkable advantage as a producer in the region due to its high yields. However, the productivity of this crop can be seriously affected by diseases such as root rot, caused by Phytophthora cinnamomi, postharvest body rot and stem end rot, caused by Colletotrichum sp. and Phomopsis sp., respectively. The potential of 76 bacterial isolates obtained from avocado rhizosphere to produce inhibitory metabolites against avocado's pathogens was evaluated. The antagonistic effect of the rhizobacteria against P. cinnamomi, Colletotrichum sp. and Phomopsis sp. was tested through dual cultures. Thirty-six percent of the tested isolates presented inhibition halos against P. cinnamomi, 36% against Colletotrichum sp. and 67% against Phomopsis sp. Additionally, three isolates were selected for fermentation tests using different broth cultures. The extracts obtained from fermentations in the minimal medium of isolates ARP5.1 and AED06 showed inhibitory activity against the evaluated pathogens, but this effect was not observed with the AED26 extract. The media supplemented with copper chloride did not enhance activity of the extracts. These results suggest that using microbial metabolic extracts is a viable alternative for controlling avocado pathogens in vitro.

  3. P2X-Receptor Antagonists Inhibit the Interaction of S. aureus Hemolysin A with Membranes

    Directory of Open Access Journals (Sweden)

    Markus Schwiering

    2017-10-01

    Full Text Available The pore forming hemolysin A, Hla, is a major virulence factor of Staphylococcus aureus. Apparently, 1–2 pore(s per cell suffice(s to cause cell death. Accumulated experimental evidence points towards a major role of ATP-gated purinergic receptors (P2XR for hemolysis caused by Hla, complement and other pore forming proteins, presumably by increasing membrane permeability. Indeed, in experiments employing rabbit erythrocytes, inhibitory concentrations of frequently employed P2XR-antagonists were in a similar range as previously reported for erythrocytes of other species and other toxins. However, Hla-dependent hemolysis was not enhanced by extracellular ATP, and oxidized adenosinetriphosphate (oxATP had only a minor inhibitory effect. Unexpectedly, P2XR-inhibitors also prevented Hla-induced lysis of pure lipid membranes, demonstrating that the inhibition did not even depend on the presence of P2XR. Fluorescence microscopy and gel-electrophoresis clearly revealed that P2XR-inhibitors interfere with binding and subsequent oligomerisation of Hla with membranes. Similar results were obtained employing HaCaT-cells. Furthermore, calorimetric data and hemolysis experiments with Hla pre-treated with pyridoxal phosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS showed that this compound directly binds to Hla. Our results call for a critical re-assessment of the appealing concept, which suggests that P2XR are general amplifiers of damage by pore-forming proteins.

  4. NPS 2143, a selective calcium-sensing receptor antagonist inhibits lipopolysaccharide-induced pulmonary inflammation.

    Science.gov (United States)

    Lee, Jae-Won; Park, Hyun Ah; Kwon, Ok-Kyoung; Park, Ji-Won; Lee, Gilhye; Lee, Hee Jae; Lee, Seung Jin; Oh, Sei-Ryang; Ahn, Kyung-Seop

    2017-10-01

    NPS 2143, a novel and selective antagonist of calcium-sensing receptor (CaSR) has been reported to possess anti-inflammatory activity. In the present study, we examined the protective effect of NPS 2143 on lipopolysaccharide (LPS)-induced acute lung injury (ALI). NPS 2143 pretreatment significantly inhibited the influx of inflammatory cells and the expression of monocyte chemoattractant protein-1 (MCP-1) in the lung of mice with LPS-induced ALI. NPS 2143 decreased the levels of neutrophil elastase (NE) and protein concentration in the bronchoalveolar lavage fluid (BALF). NPS 2143 also reduced the production of inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the BALF and serum. In addition, NPS 2143 attenuated the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and increased the activation of AMP-activated protein kinase (AMPK) in the lung. NPS 2143 also downregulated the activation of nuclear factor-kappa B (NF-κB) in the lung. In LPS-stimulated H292 airway epithelial cells, NPS 2143 attenuated the releases of IL-6 and MCP-1. Furthermore, NPS 2143 upregulated the activation of AMPK and downregulated the activation of NF-κB. These results suggest that NPS 2143 could be potential agent for the treatment of inflammatory diseases including ALI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Purinergic receptor antagonists inhibit odorant-mediated CREB phosphorylation in sustentacular cells of mouse olfactory epithelium

    Directory of Open Access Journals (Sweden)

    Hatt Hanns

    2011-08-01

    Full Text Available Abstract Background Extracellular nucleotides have long been known to play neuromodulatory roles and to be involved in intercellular signalling. In the olfactory system, ATP is released by olfactory neurons, and exogenous ATP can evoke an increase in intracellular calcium concentration in sustentacular cells, the nonneuronal supporting cells of the olfactory epithelium. Here we investigate the hypothesis that olfactory neurons communicate with sustentacular cells via extracellular ATP and purinergic receptor activation. Results Here we show that exposure of mice to a mixture of odorants induced a significant increase in the levels of the transcription factor CREB phosphorylated at Ser-133 in the nuclei of both olfactory sensory neurons and sustentacular cells. This activation was dependent on adenylyl cyclase III-mediated olfactory signaling and on activation of P2Y purinergic receptors on sustentacular cells. Purinergic receptor antagonists inhibited odorant-dependent CREB phosphorylation specifically in the nuclei of the sustentacular cells. Conclusion Our results point to a possible role for extracellular nucleotides in mediating intercellular communication between the neurons and sustentacular cells of the olfactory epithelium in response to odorant exposure. Maintenance of extracellular ionic gradients and metabolism of noxious chemicals by sustentacular cells may therefore be regulated in an odorant-dependent manner by olfactory sensory neurons.

  6. Purinergic receptor antagonists inhibit odorant-mediated CREB phosphorylation in sustentacular cells of mouse olfactory epithelium

    LENUS (Irish Health Repository)

    Dooley, Ruth

    2011-08-22

    Abstract Background Extracellular nucleotides have long been known to play neuromodulatory roles and to be involved in intercellular signalling. In the olfactory system, ATP is released by olfactory neurons, and exogenous ATP can evoke an increase in intracellular calcium concentration in sustentacular cells, the nonneuronal supporting cells of the olfactory epithelium. Here we investigate the hypothesis that olfactory neurons communicate with sustentacular cells via extracellular ATP and purinergic receptor activation. Results Here we show that exposure of mice to a mixture of odorants induced a significant increase in the levels of the transcription factor CREB phosphorylated at Ser-133 in the nuclei of both olfactory sensory neurons and sustentacular cells. This activation was dependent on adenylyl cyclase III-mediated olfactory signaling and on activation of P2Y purinergic receptors on sustentacular cells. Purinergic receptor antagonists inhibited odorant-dependent CREB phosphorylation specifically in the nuclei of the sustentacular cells. Conclusion Our results point to a possible role for extracellular nucleotides in mediating intercellular communication between the neurons and sustentacular cells of the olfactory epithelium in response to odorant exposure. Maintenance of extracellular ionic gradients and metabolism of noxious chemicals by sustentacular cells may therefore be regulated in an odorant-dependent manner by olfactory sensory neurons.

  7. Cyclosporin H, Boc-MLF and Boc-FLFLF are antagonists that preferentially inhibit activity triggered through the formyl peptide receptor.

    Science.gov (United States)

    Stenfeldt, Anna-Lena; Karlsson, Jennie; Wennerås, Christine; Bylund, Johan; Fu, Huamei; Dahlgren, Claes

    2007-12-01

    In order to properly interpret receptor inhibition experiments, the precise receptor specificities of the employed antagonists are of crucial importance. Lately, a great number of agonists for various formyl peptide receptors have been identified using a selection of antagonists. However, some confusion exists as to the precise receptor specificities of many of these antagonists. We have investigated the effects of formyl peptide receptor family antagonists on the neutrophil response induced by agonists for the formyl peptide receptor (FPR) and the formyl peptide receptor like 1 (FPRL1). To determine FPR- and FPRL1-specific interactions, these antagonists should not be used at used at concentrations above 10 microM. Signaling through FPR was inhibited by low concentrations of the antagonists cyclosporin H, Boc-MLF (also termed Boc-1), and Boc-FLFLFL (also termed Boc-2), while higher concentrations also partly inhibited the signaling through FPRL1. The antagonist WRWWWW (WRW(4)) specifically inhibited the signaling through FPRL1 at low concentrations but at high concentrations also partly the signaling through FPR. Based on the difference in potency of cyclosporin H and the two Boc-peptides, we suggest using cyclosporin H as a specific inhibitor for FPR. To specifically inhibit the FPRL1 response the antagonist WRW(4) should be used.

  8. Inhibition by Isoptin (a calcium antagonist) of the mitogenic stimulation of lymphocytes prior to the S-phase

    International Nuclear Information System (INIS)

    Blitstein-Willinger, E.; Diamantstein, T.

    1978-01-01

    Isoptin (α-isopropyl-α-(N-methyl-N-homoveratryl) -γ-amino-propyl-3,4-dimethoxyphenylacetonitril-hydrochloride) - a calcium antagonist - inhibited mitogenic stimulation of lymphocytes. Isoptin acted prior to the S-phase of the cell cycle but did not prevent the early events involved in triggering of cell mitosis. The drug seems to be a good tool for studying the relevance of the 'early events' assumed to be involved in lymphocyte stimulation. (author)

  9. Bicyclams, selective antagonists of the human chemokine receptor CXCR4, potently inhibit feline immunodeficiency virus replication

    NARCIS (Netherlands)

    Horzinek, M.C.; Egberink, H.F.; Clercq, E. de; Vliet, A.L.W. van; Balzarini, J.; Bridger, G.J.; Henson, G.; Schols, D.

    1999-01-01

    Bicyclams are low-molecular-weight anti-human immunodeficiency virus (HIV) agents that have been shown to act as potent and selective CXC chemokine receptor 4 (CXCR4) antagonists. Here, we demonstrate that bicyclams are potent inhibitors of feline immunodeficiency virus (FIV) replication when

  10. Fasitibant chloride, a kinin B2 receptor antagonist, and dexamethasone interact to inhibit carrageenan-induced inflammatory arthritis in rats

    Science.gov (United States)

    Valenti, Claudio; Giuliani, Sandro; Cialdai, Cecilia; Tramontana, Manuela; Maggi, Carlo Alberto

    2012-01-01

    BACKGROUND AND PURPOSE Bradykinin, through the kinin B2 receptor, is involved in inflammatory processes related to arthropathies. B2 receptor antagonists inhibited carrageenan-induced arthritis in rats in synergy with anti-inflammatory steroids. The mechanism(s) underlying this drug interaction was investigated. EXPERIMENTAL APPROACH Drugs inhibiting inflammatory mediators released by carrageenan were injected, alone or in combination, into the knee joint of pentobarbital anaesthetized rats 30 min before intra-articular administration of carrageenan. Their effects on the carrageenan-induced inflammatory responses (joint pain, oedema and neutrophil recruitment) and release of inflammatory mediators (prostaglandins, IL-1β, IL-6 and the chemokine GRO/CINC-1), were assessed after 6 h. KEY RESULTS The combination of fasitibant chloride (MEN16132) and dexamethasone was more effective than each drug administered alone in inhibiting knee joint inflammation and release of inflammatory mediators. Fasitibant chloride, MK571, atenolol, des-Arg9-[Leu8]-bradykinin (B2 receptor, leukotriene, catecholamine and B1 receptor antagonists, respectively) and dexketoprofen (COX inhibitor), reduced joint pain and, except for the latter, also diminished joint oedema. A combination of drugs inhibiting joint pain (fasitibant chloride, des-Arg9-[Leu8]-bradykinin, dexketoprofen, MK571 and atenolol) and oedema (fasitibant chloride, des-Arg9-[Leu8]-bradykinin, MK571 and atenolol) abolished the respective inflammatory response, producing inhibition comparable with that achieved with the combination of fasitibant chloride and dexamethasone. MK571 alone was able to block neutrophil recruitment. CONCLUSIONS AND IMPLICATIONS Bradykinin-mediated inflammatory responses to intra-articular carrageenan were not controlled by steroids, which were not capable of preventing bradykinin effects either by direct activation of the B2 receptor, or through the indirect effects mediated by release of eicosanoids

  11. Identification and Characterization of a Novel IL-4 Receptor α Chain (IL-4Rα Antagonist to Inhibit IL-4 Signalling

    Directory of Open Access Journals (Sweden)

    Nayyar Ahmed

    2015-05-01

    Full Text Available Background/Aims: In recent times, allergy has become a financial, physical and psychological burden to the society as a whole. In allergic cascades, cytokine IL-4 binds to IL-4 receptor (IL-4R, consequently producing allergen-specific IgE antibodies by B cells. In addition, among other functions, IL-4 is also responsible for B and T cell proliferation and differentiation. Hence, characterization of novel antagonists that inhibit IL-4 signalling forms the overall aim of this study. Methods: Phage display was used to screen a random 12-mer synthetic peptide library with a human IL-4Rα to identify peptide candidates. Once identified, the peptides were commercially synthesized and used for in vitro immunoassays. Results: We have successfully used phage display to identify M13 phage clones that demonstrated specific binding to IL-4Rα. The peptide N1 was synthesized for use in ELISA, demonstrating significant binding to IL-4Rα and inhibiting interaction with cytokine IL-4. Furthermore, the peptide was tested in a transfected HEK-Blue IL-4 reporter cell line model, which produces alkaline phosphatase (AP. QUANTI-Blue, a substrate, breaks down in the presence of AP producing a blue coloration. Using this colorimetric analysis, >50% inhibition of IL-4 signalling was achieved. Conclusion: We have successfully identified and characterised a synthetic peptide antagonist against IL-4Rα, which effectively inhibits IL-4 interaction with the IL-4Rα in vitro. Since IL-4 interaction with IL-4Rα is a common pathway for many allergies, a prophylactic treatment can be devised by inhibiting this interaction for future treatment of allergies.

  12. The Antidepressant 5-HT2A Receptor Antagonists Pizotifen and Cyproheptadine Inhibit Serotonin-Enhanced Platelet Function

    Science.gov (United States)

    Lin, Olivia A.; Karim, Zubair A.; Vemana, Hari Priya; Espinosa, Enma V. P.; Khasawneh, Fadi T.

    2014-01-01

    There is considerable interest in defining new agents or targets for antithrombotic purposes. The 5-HT2A receptor is a G-protein coupled receptor (GPCR) expressed on many cell types, and a known therapeutic target for many disease states. This serotonin receptor is also known to regulate platelet function. Thus, in our FDA-approved drug repurposing efforts, we investigated the antiplatelet activity of cyproheptadine and pizotifen, two antidepressant 5-HT2A Receptor antagonists. Our results revealed that cyproheptadine and pizotifen reversed serotonin-enhanced ADP-induced platelet aggregation in vitro and ex vivo. And the inhibitory effects of these two agents were found to be similar to that of EMD 281014, a 5-HT2A Receptor antagonist under development. In separate experiments, our studies revealed that these 5-HT2A receptor antagonists have the capacity to reduce serotonin-enhanced ADP-induced elevation in intracellular calcium levels and tyrosine phosphorylation. Using flow cytometry, we also observed that cyproheptadine, pizotifen, and EMD 281014 inhibited serotonin-enhanced ADP-induced phosphatidylserine (PS) exposure, P-selectin expression, and glycoprotein IIb-IIIa activation. Furthermore, using a carotid artery thrombosis model, these agents prolonged the time for thrombotic occlusion in mice in vivo. Finally, the tail-bleeding time was investigated to assess the effect of cyproheptadine and pizotifen on hemostasis. Our findings indicated prolonged bleeding time in both cyproheptadine- and pizotifen-treated mice. Notably, the increases in occlusion and bleeding times associated with these two agents were comparable to that of EMD 281014, and to clopidogrel, a commonly used antiplatelet drug, again, in a fashion comparable to clopidogrel and EMD 281014. Collectively, our data indicate that the antidepressant 5-HT2A antagonists, cyproheptadine and pizotifen do exert antiplatelet and thromboprotective effects, but similar to clopidogrel and EMD 281014, their

  13. The antidepressant 5-HT2A receptor antagonists pizotifen and cyproheptadine inhibit serotonin-enhanced platelet function.

    Science.gov (United States)

    Lin, Olivia A; Karim, Zubair A; Vemana, Hari Priya; Espinosa, Enma V P; Khasawneh, Fadi T

    2014-01-01

    There is considerable interest in defining new agents or targets for antithrombotic purposes. The 5-HT2A receptor is a G-protein coupled receptor (GPCR) expressed on many cell types, and a known therapeutic target for many disease states. This serotonin receptor is also known to regulate platelet function. Thus, in our FDA-approved drug repurposing efforts, we investigated the antiplatelet activity of cyproheptadine and pizotifen, two antidepressant 5-HT2A Receptor antagonists. Our results revealed that cyproheptadine and pizotifen reversed serotonin-enhanced ADP-induced platelet aggregation in vitro and ex vivo. And the inhibitory effects of these two agents were found to be similar to that of EMD 281014, a 5-HT2A Receptor antagonist under development. In separate experiments, our studies revealed that these 5-HT2A receptor antagonists have the capacity to reduce serotonin-enhanced ADP-induced elevation in intracellular calcium levels and tyrosine phosphorylation. Using flow cytometry, we also observed that cyproheptadine, pizotifen, and EMD 281014 inhibited serotonin-enhanced ADP-induced phosphatidylserine (PS) exposure, P-selectin expression, and glycoprotein IIb-IIIa activation. Furthermore, using a carotid artery thrombosis model, these agents prolonged the time for thrombotic occlusion in mice in vivo. Finally, the tail-bleeding time was investigated to assess the effect of cyproheptadine and pizotifen on hemostasis. Our findings indicated prolonged bleeding time in both cyproheptadine- and pizotifen-treated mice. Notably, the increases in occlusion and bleeding times associated with these two agents were comparable to that of EMD 281014, and to clopidogrel, a commonly used antiplatelet drug, again, in a fashion comparable to clopidogrel and EMD 281014. Collectively, our data indicate that the antidepressant 5-HT2A antagonists, cyproheptadine and pizotifen do exert antiplatelet and thromboprotective effects, but similar to clopidogrel and EMD 281014, their

  14. The antidepressant 5-HT2A receptor antagonists pizotifen and cyproheptadine inhibit serotonin-enhanced platelet function.

    Directory of Open Access Journals (Sweden)

    Olivia A Lin

    Full Text Available There is considerable interest in defining new agents or targets for antithrombotic purposes. The 5-HT2A receptor is a G-protein coupled receptor (GPCR expressed on many cell types, and a known therapeutic target for many disease states. This serotonin receptor is also known to regulate platelet function. Thus, in our FDA-approved drug repurposing efforts, we investigated the antiplatelet activity of cyproheptadine and pizotifen, two antidepressant 5-HT2A Receptor antagonists. Our results revealed that cyproheptadine and pizotifen reversed serotonin-enhanced ADP-induced platelet aggregation in vitro and ex vivo. And the inhibitory effects of these two agents were found to be similar to that of EMD 281014, a 5-HT2A Receptor antagonist under development. In separate experiments, our studies revealed that these 5-HT2A receptor antagonists have the capacity to reduce serotonin-enhanced ADP-induced elevation in intracellular calcium levels and tyrosine phosphorylation. Using flow cytometry, we also observed that cyproheptadine, pizotifen, and EMD 281014 inhibited serotonin-enhanced ADP-induced phosphatidylserine (PS exposure, P-selectin expression, and glycoprotein IIb-IIIa activation. Furthermore, using a carotid artery thrombosis model, these agents prolonged the time for thrombotic occlusion in mice in vivo. Finally, the tail-bleeding time was investigated to assess the effect of cyproheptadine and pizotifen on hemostasis. Our findings indicated prolonged bleeding time in both cyproheptadine- and pizotifen-treated mice. Notably, the increases in occlusion and bleeding times associated with these two agents were comparable to that of EMD 281014, and to clopidogrel, a commonly used antiplatelet drug, again, in a fashion comparable to clopidogrel and EMD 281014. Collectively, our data indicate that the antidepressant 5-HT2A antagonists, cyproheptadine and pizotifen do exert antiplatelet and thromboprotective effects, but similar to clopidogrel and

  15. PAF receptor antagonist Ginkgolide B inhibits tumourigenesis and angiogenesis in colitis-associated cancer.

    Science.gov (United States)

    Sun, Lei; He, Zhen; Ke, Jia; Li, Senmao; Wu, Xianrui; Lian, Lei; He, Xiaowen; He, Xiaosheng; Hu, Jiancong; Zou, Yifeng; Wu, Xiaojian; Lan, Ping

    2015-01-01

    Platelet activating factor (PAF), a potent pro-inflammatory phospholipid, has been found to trigger tumor growth and angiogenesis through its G-protein coupled receptor (PAFR). This study was aimed to investigate the potential role of PAF in azoxymethane (AOM)/dextran sulfate sodium (DSS) induced colitis-associated cancer (CAC), using PAFR antagonist Ginkgolide B (GKB). We found GKB up-regulated serum level of PAF-AH activity. As assessed by disease activity index (DAI), histological injury scores, leukocytes infiltration, and expression of pro-inflammatory cytokines, GKB ameliorated colonic inflammation and decreased tumor number and load in mice. GKB also decreased expression of vascular endothelial growth factor (VEGF) and microvessel density (MVD) in tumor. These results suggest that PAFR antagonist might be a potential therapeutic strategy for CAC.

  16. A peptide antagonist of ErbB receptors, Inherbin3, induces neurite outgrowth from rat cerebellar granule neurons through ErbB1 inhibition

    DEFF Research Database (Denmark)

    Xu, Ruodan; Pankratova, Stanislava; Christiansen, Søren Hofman

    2013-01-01

    ErbB receptors not only function in cancer, but are also key developmental regulators in the nervous system. We previously identified an ErbB1 peptide antagonist, Inherbin3, that is capable of inhibiting tumor growth in vitro and in vivo. In this study, we found that inhibition of ErbB1 kinase...

  17. Smoothened antagonist GDC-0449 (Vismodegib) inhibits proliferation and triggers apoptosis in colon cancer cell lines

    OpenAIRE

    Wu, Chuanqing; Hu, Shaobo; Cheng, Ji; Wang, Guobin; Tao, Kaixiong

    2017-01-01

    The sonic hedgehog (Shh) pathway has been proven to be involved in embryonic development and cancer growth. GDC-0449, an antagonist of the hedgehog signaling receptor Smoothened (Smo), was recently approved by the US Food and Drug Administration as a prescription for skin basal cell carcinoma. However, the efficacy of GDC-0449 in the treatment of colon cancer and other malignancies, such as basal cell carcinoma and pancreatic cancer, has remained to be proven. The present study assessed the e...

  18. Increased central facilitation of antagonist reciprocal inhibition at the onset of dorsiflexion following explosive strength training

    DEFF Research Database (Denmark)

    Geertsen, Svend Sparre; Jensen, Jesper Lundbye; Nielsen, Jens Bo

    2008-01-01

    plantar flexors at the onset of dorsiflexion is larger the quicker the movement, it was hypothesized that DRI may be increased when subjects are trained to perform dorsiflexion movements as quickly as possible For this purpose, 14 healthy human subjects participated in explosive strength training...... of the ankle dorsiflexor muscles 3 times a week for 4 wk. Test sessions were conducted before, shortly after, and 2 wk after the training period. The rate of torque development measured at 30, 50, 100, and 200 ms after onset of voluntary explosive isometric dorsiflexion increased by 24-33% (P ... the training (P strength training to ensure efficient suppression of the antagonist muscles as the dorsiflexion movement becomes faster....

  19. 5-HT3 and 5-HT4 antagonists inhibit peristaltic contractions in guinea-pig distal colon by mechanisms independent of endogenous 5-HT

    Directory of Open Access Journals (Sweden)

    Tiong Cheng Sia

    2013-08-01

    Full Text Available Recent studies have shown that endogenous serotonin is not required for colonic peristalsis in vitro, nor gastrointestinal (GI transit in vivo. However, antagonists of 5-Hydroxytryptamine (5-HT receptors can inhibit peristalsis and GI-transit in mammals, including humans. This raises the question of how these antagonists inhibit GI-motility and transit, if depletion of endogenous 5-HT does not cause any significant inhibitory changes to either GI-motility or transit ? We investigated the mechanism by which 5-HT3 and 5-HT4 antagonists inhibit distension-evoked peristaltic contractions in guinea-pig distal colon. In control animals, repetitive peristaltic contractions of the circular muscle were evoked in response to fixed fecal pellet distension. Distension-evoked peristaltic contractions were unaffected in animals with mucosa and submucosal plexus removed, that were also treated with reserpine (to deplete neuronal 5-HT. In control animals, peristaltic contractions were blocked temporarily by ondansetron (1-10µM and SDZ-205-557 (1-10µM in many animals. Interestingly, after this temporary blockade, and whilst in the continued presence of these antagonists, peristaltic contractions recovered, with characteristics no different from controls. Surprisingly, similar effects were seen in mucosa-free preparations, which had no detectable 5-HT, as detected by mass spectrometry. In summary, distension-evoked peristaltic reflex contractions of the circular muscle layer of the guinea-pig colon can be inhibited temporarily, or permanently, in the same preparation by selective 5-HT3 and 5-HT4 antagonists, depending on the concentration of the antagonists applied. These effects also occur in preparations that lack any detectable 5-HT. We suggest caution should be exercised when interpreting the effects of 5-HT3 and 5-HT4 antagonists; and the role of endogenous 5-HT, in the generation of distension-evoked colonic peristalsis.

  20. The fungus-growing termite Macrotermes natalensis harbors bacillaene-producing Bacillus sp. that inhibit potentially antagonistic fungi.

    Science.gov (United States)

    Um, Soohyun; Fraimout, Antoine; Sapountzis, Panagiotis; Oh, Dong-Chan; Poulsen, Michael

    2013-11-19

    The ancient fungus-growing termite (Mactrotermitinae) symbiosis involves the obligate association between a lineage of higher termites and basidiomycete Termitomyces cultivar fungi. Our investigation of the fungus-growing termite Macrotermes natalensis shows that Bacillus strains from M. natalensis colonies produce a single major antibiotic, bacillaene A (1), which selectively inhibits known and putatively antagonistic fungi of Termitomyces. Comparative analyses of the genomes of symbiotic Bacillus strains revealed that they are phylogenetically closely related to Bacillus subtilis, their genomes have high homology with more than 90% of ORFs being 100% identical, and the sequence identities across the biosynthetic gene cluster for bacillaene are higher between termite-associated strains than to the cluster previously reported in B. subtilis. Our findings suggest that this lineage of antibiotic-producing Bacillus may be a defensive symbiont involved in the protection of the fungus-growing termite cultivar.

  1. Inhibition of CPU0213, a Dual Endothelin Receptor Antagonist, on Apoptosis via Nox4-Dependent ROS in HK-2 Cells

    Directory of Open Access Journals (Sweden)

    Qing Li

    2016-06-01

    Full Text Available Background/Aims: Our previous studies have indicated that a novel endothelin receptor antagonist CPU0213 effectively normalized renal function in diabetic nephropathy. However, the molecular mechanisms mediating the nephroprotective role of CPU0213 remain unknown. Methods and Results: In the present study, we first detected the role of CPU0213 on apoptosis in human renal tubular epithelial cell (HK-2. It was shown that high glucose significantly increased the protein expression of Bax and decreased Bcl-2 protein in HK-2 cells, which was reversed by CPU0213. The percentage of HK-2 cells that showed Annexin V-FITC binding was markedly suppressed by CPU0213, which confirmed the inhibitory role of CPU0213 on apoptosis. Given the regulation of endothelin (ET system to oxidative stress, we determined the role of redox signaling in the regulation of CPU0213 on apoptosis. It was demonstrated that the production of superoxide (O2-. was substantially attenuated by CPU0213 treatment in HK-2 cells. We further found that CPU0213 dramatically inhibited expression of Nox4 protein, which gene silencing mimicked the role of CPU0213 on the apoptosis under high glucose stimulation. We finally examined the role of CPU0213 on ET-1 receptors and found that high glucose-induced protein expression of endothelin A and B receptors was dramatically inhibited by CPU0213. Conclusion: Taken together, these results suggest that this Nox4-dependenet O2- production is critical for the apoptosis of HK-2 cells in high glucose. Endothelin receptor antagonist CPU0213 has an anti-apoptosis role through Nox4-dependent O2-.production, which address the nephroprotective role of CPU0213 in diabetic nephropathy.

  2. PAR1 antagonists inhibit thrombin-induced platelet activation whilst leaving the PAR4-mediated response intact.

    Science.gov (United States)

    Judge, Heather M; Jennings, Lisa K; Moliterno, David J; Hord, Edward; Ecob, Rosemary; Tricoci, Pierluigi; Rorick, Tyrus; Kotha, Jayaprakash; Storey, Robert F

    2015-01-01

    Thrombin-induced platelet activation is initiated by PAR1 and PAR4 receptors. Vorapaxar, a PAR1 antagonist, has been assessed in patients with acute coronary syndromes (ACS) and stable atherosclerotic disease in addition to standard-of-care treatment. In clinical trials, vorapaxar has been observed to reduce the frequency of ischaemic events in some subgroups though in others has increased the frequency of bleeding events. Among patients undergoing CABG surgery, which is associated with excess thrombin generation, bleeding was not increased. The aim of these studies was to investigate the effects of selective PAR1 antagonism on thrombin-induced platelet activation in patients receiving vorapaxar or placebo in the TRACER trial and to explore the roles of PAR1 and PAR4 in thrombin-induced platelet activation in healthy volunteers. ACS patients receiving vorapaxar or placebo in the TRACER trial were studied at baseline and 4 hours, 1 and 4 months during drug administration. Thrombin-induced calcium mobilisation in platelet-rich plasma was assessed by flow cytometry. In vitro studies were performed in healthy volunteers using the PAR1 antagonist SCH79797 or PAR4 receptor desensitisation. Vorapaxar treatment significantly inhibited thrombin-induced calcium mobilisation, leaving a residual, delayed response. These findings were consistent with calcium mobilisation mediated via the PAR4 receptor and were reproduced in vitro using SCH79797. PAR4 receptor desensitization, in combination with SCH79797, completely inhibited thrombin-induced calcium mobilisation confirming that the residual calcium mobilisation was mediated via PAR4. In conclusion vorapaxar selectively antagonises the PAR1-mediated component of thrombin-induced platelet activation, leaving the PAR4-mediated response intact, which may explain why vorapaxar is well tolerated in patients undergoing CABG surgery since higher thrombin levels in this setting may override the effects of PAR1 antagonism through PAR4

  3. Inhibition of common cold-induced aggravation of childhood asthma by leukotriene receptor antagonists.

    Science.gov (United States)

    Yoshihara, Shigemi; Fukuda, Hironobu; Abe, Toshio; Nishida, Mitsuhiro; Yamada, Yumi; Kanno, Noriko; Arisaka, Osamu

    2012-09-01

    Virus infection is an important risk factor for aggravation of childhood asthma. The objective of this study was to examine the effect of drugs on aggravation of asthma induced by a common cold. Asthma control was examined in a survey of 1,014 Japanese pediatric patients with bronchial asthma. The occurrence of common cold, asthma control, and drugs used for asthma control were investigated using a modified Childhood Asthma Control Test (C-ACT) for patients aged cold and aggravation of asthma were significantly higher in patients aged cold-induced aggravation was significantly less effective in patients aged cold, asthma control was significantly more effective for those treated with leukotriene receptor antagonists (LTRAs) compared to treatment without LTRAs. Asthma control did not differ between patients who did or did not take inhaled corticosteroids or long-acting β2 stimulants. These findings showed a high prevalence of common cold in younger patients with childhood asthma and indicated that common cold can induce aggravation of asthma. LTRAs are useful for long-term asthma control in very young patients who develop an asthma attack due to a common cold.

  4. Inhibition of tumor metastasis by a growth factor receptor bound protein 2 Src homology 2 domain-binding antagonist.

    Science.gov (United States)

    Giubellino, Alessio; Gao, Yang; Lee, Sunmin; Lee, Min-Jung; Vasselli, James R; Medepalli, Sampath; Trepel, Jane B; Burke, Terrence R; Bottaro, Donald P

    2007-07-01

    Metastasis, the primary cause of death in most forms of cancer, is a multistep process whereby cells from the primary tumor spread systemically and colonize distant new sites. Blocking critical steps in this process could potentially inhibit tumor metastasis and dramatically improve cancer survival rates; however, our understanding of metastasis at the molecular level is still rudimentary. Growth factor receptor binding protein 2 (Grb2) is a widely expressed adapter protein with roles in epithelial cell growth and morphogenesis, as well as angiogenesis, making it a logical target for anticancer drug development. We have previously shown that a potent antagonist of Grb2 Src homology-2 domain-binding, C90, blocks growth factor-driven cell motility in vitro and angiogenesis in vivo. We now report that C90 inhibits metastasis in vivo in two aggressive tumor models, without affecting primary tumor growth rate. These results support the potential efficacy of this compound in reducing the metastatic spread of primary solid tumors and establish a critical role for Grb2 Src homology-2 domain-mediated interactions in this process.

  5. Clopidogrel (Plavix®), a P2Y(12) receptor antagonist, inhibits bone cell function in vitro and decreases trabecular bone in vivo

    DEFF Research Database (Denmark)

    Syberg, Susanne; Brandao-Burch, Andrea; Patel, Jessal J

    2012-01-01

    Clopidogrel (Plavix®), a selective P2Y(12) receptor antagonist, is widely prescribed to reduce the risk of heart attack and stroke and acts via the inhibition of platelet aggregation. Accumulating evidence now suggests that extracellular nucleotides, signalling through P2 receptors, play...

  6. Inhibition of human immunodeficiency virus replication by a dual CCR5/CXCR4 antagonist

    DEFF Research Database (Denmark)

    Princen, Katrien; Hatse, Sigrid; Vermeire, Kurt

    2004-01-01

    Here we report that the N-pyridinylmethyl cyclam analog AMD3451 has antiviral activity against a wide variety of R5, R5/X4, and X4 strains of human immunodeficiency virus type 1 (HIV-1) and HIV-2 (50% inhibitory concentration [IC(50)] ranging from 1.2 to 26.5 microM) in various T-cell lines, CCR5...... at the virus entry stage. AMD3451 dose-dependently inhibited the intracellular Ca(2+) signaling induced by the CXCR4 ligand CXCL12 in T-lymphocytic cells and in CXCR4-transfected cells, as well as the Ca(2+) flux induced by the CCR5 ligands CCL5, CCL3, and CCL4 in CCR5-transfected cells. The compound did...... not interfere with chemokine-induced Ca(2+) signaling through CCR1, CCR2, CCR3, CCR4, CCR6, CCR9, or CXCR3 and did not induce intracellular Ca(2+) signaling by itself at concentrations up to 400 microM. In freshly isolated monocytes, AMD3451 inhibited the Ca(2+) flux induced by CXCL12 and CCL4...

  7. Fully human antagonistic antibodies against CCR4 potently inhibit cell signaling and chemotaxis.

    Directory of Open Access Journals (Sweden)

    Urs B Hagemann

    Full Text Available CC chemokine receptor 4 (CCR4 represents a potentially important target for cancer immunotherapy due to its expression on tumor infiltrating immune cells including regulatory T cells (Tregs and on tumor cells in several cancer types and its role in metastasis.Using phage display, human antibody library, affinity maturation and a cell-based antibody selection strategy, the antibody variants against human CCR4 were generated. These antibodies effectively competed with ligand binding, were able to block ligand-induced signaling and cell migration, and demonstrated efficient killing of CCR4-positive tumor cells via ADCC and phagocytosis. In a mouse model of human T-cell lymphoma, significant survival benefit was demonstrated for animals treated with the newly selected anti-CCR4 antibodies.For the first time, successful generation of anti- G-protein coupled chemokine receptor (GPCR antibodies using human non-immune library and phage display on GPCR-expressing cells was demonstrated. The generated anti-CCR4 antibodies possess a dual mode of action (inhibition of ligand-induced signaling and antibody-directed tumor cell killing. The data demonstrate that the anti-tumor activity in vivo is mediated, at least in part, through Fc-receptor dependent effector mechanisms, such as ADCC and phagocytosis. Anti-CC chemokine receptor 4 antibodies inhibiting receptor signaling have potential as immunomodulatory antibodies for cancer.

  8. Stereoselective inhibition of thromboxane-induced coronary vasoconstriction by 1,4-dihydropyridine calcium channel antagonists

    International Nuclear Information System (INIS)

    Eltze, M.; Boer, R.; Sanders, K.H.; Boss, H.; Ulrich, W.R.; Flockerzi, D.

    1990-01-01

    The biological activity of the (+)-S- and (-)-R-enantiomers of niguldipine, of the (-)-S- and (+)-R-enantiomers of felodipine and nitrendipine, and of rac-nisoldipine and rac-nimodipine was investigated in vitro and in vivo. Inhibition of coronary vasoconstriction due to the thromboxane A2 (TxA2)-mimetic U-46619 in guinea pig Langendorff hearts, displacement of (+)-[ 3 H]isradipine from calcium channel binding sites of guinea pig skeletal muscle T-tubule membranes, and blood pressure reduction in spontaneously hypertensive rats were determined. The enantiomers were obtained by stereoselective synthesis. Cross-contamination was less than 0.5% for both S- and R-enantiomers of niguldipine and nitrendipine and less than 1% for those of felodipine. From the doses necessary for a 50% inhibition of coronary vasoconstriction, stereoselectivity ratios for (+)-(S)-/(-)-(R)-niguldipine, (-)-(S)-/(+)-(R)-felodipine, and (-)-(S)-/(+)-(R)-nitrendipine of 28, 13, and 7, respectively, were calculated. The potency ratio rac-nisoldipine/rac-nimodipine was 3.5. Ratios obtained from binding experiments and antihypertensive activity were (+)-(S)-/(-)-(R)-niguldipine = 45 and 35, (-)-(S)-/(+)-(R)-felodipine = 12 and 13, (-)-(S)-/(+)-(R)-nitrendipine = 8 and 8, and rac-nisoldipine/rac-nimodipine = 8 and 7, respectively. Highly significant correlations were found between the in vitro potency of the substances to prevent U-46619-induced coronary vasoconstriction and their affinity for calcium channel binding sites as well as their antihypertensive activity

  9. Mevalonate Pathway Antagonist Inhibits Proliferation of Serous Tubal Intraepithelial Carcinoma and Ovarian Carcinoma in Mouse Models

    Science.gov (United States)

    Kobayashi, Yusuke; Kashima, Hiroyasu; Wu, Ren-Chin; Jung, Jin- Gyoung; Kuan, Jen-Chun; Gu, Jinghua; Xuan, Jianhua; Sokoll, Lori; Visvanathan, Kala; Shih, Ie-Ming; Wang, Tian-Li

    2015-01-01

    Purpose Statins are among the most frequently prescribed drugs because of their efficacy and low toxicity in treating hypercholesterolemia. Recently, statins have been reported to inhibit the proliferative activity of cancer cells, especially those with TP53 mutations. Since TP53 mutations occur in almost all of the ovarian high-grade serous carcinoma, we determined if statins suppressed tumor growth in animal models of ovarian cancer. Experimental Design Two ovarian cancer mouse models were employed. The first one was a genetically engineered model, mogp-TAg, in which the promoter of oviduct glycoprotein-1 was used to drive the expression of SV40 T-antigen in gynecologic tissues. These mice spontaneously develop serous tubal intraepithelial carcinomas (STICs), which are known as ovarian cancer precursor lesions. The second model was a xenograft tumor model in which human ovarian cancer cells were inoculated into immunocompromised mice. Mice in both models were treated with lovastatin, and effects on tumor growth were monitored. The molecular mechanisms underlying the anti-tumor effects of lovastatin were also investigated. Results Lovastatin significantly reduced the development of STICs in mogp-TAg mice and inhibited ovarian tumor growth in the mouse xenograft model. Knockdown of prenylation enzymes in the mevalonate pathway recapitulated the lovastatin-induced anti-proliferative phenotype. Transcriptome analysis indicated that lovastatin affected the expression of genes associated with DNA replication, Rho/PLC signaling, glycolysis, and cholesterol biosynthesis pathways, suggesting that statins have pleiotropic effects on tumor cells. Conclusion The above results suggest that repurposing statin drugs for ovarian cancer may provide a promising strategy to prevent and manage this devastating disease. PMID:26109099

  10. A RNA antagonist of hypoxia-inducible factor-1alpha, EZN-2968, inhibits tumor cell growth

    DEFF Research Database (Denmark)

    Greenberger, Lee M; Horak, Ivan D; Filpula, David

    2008-01-01

    Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that plays a critical role in angiogenesis, survival, metastasis, drug resistance, and glucose metabolism. Elevated expression of the alpha-subunit of HIF-1 (HIF-1alpha), which occurs in response to hypoxia or activation of growth factor...... the expression of HIF-1alpha mRNA. In vitro, in human prostate (15PC3, PC3, and DU145) and glioblastoma (U373) cells, EZN-2968 induced a potent, selective, and durable antagonism of HIF-1 mRNA and protein expression (IC(50), 1-5 nmol/L) under normoxic and hypoxic conditions associated with inhibition of tumor......-regulation of endogenous HIF-1alpha and vascular endothelial growth factor in the liver. The effect can last for days after administration of single dose of EZN-2968 and is associated with long residence time of locked nucleic acid in certain tissues. In efficacy studies, tumor reduction was found in nude mice implanted...

  11. Identification of small-molecule antagonists that inhibit an activator: coactivator interaction.

    Science.gov (United States)

    Best, Jennifer L; Amezcua, Carlos A; Mayr, Bernhard; Flechner, Lawrence; Murawsky, Christopher M; Emerson, Beverly; Zor, Tsaffrir; Gardner, Kevin H; Montminy, Marc

    2004-12-21

    Phosphorylation of the cAMP response element binding protein (CREB) at Ser-133 in response to hormonal stimuli triggers cellular gene expression via the recruitment of the histone acetylase coactivator paralogs CREB binding protein (CBP) and p300 to the promoter. The NMR structure of the CREB:CBP complex, using relevant interaction domains called KID and KIX, respectively, reveals a shallow hydrophobic groove on the surface of KIX that accommodates an amphipathic helix in phospho (Ser-133) KID. Using an NMR-based screening approach on a preselected small-molecule library, we identified several compounds that bind to different surfaces on KIX. One of these, KG-501 (2-naphthol-AS-E-phosphate), targeted a surface distal to the CREB binding groove that includes Arg-600, a residue that is required for the CREB:CBP interaction. When added to live cells, KG-501 disrupted the CREB: CBP complex and attenuated target gene induction in response to cAMP agonist. These results demonstrate the ability of small molecules to interfere with second-messenger signaling cascades by inhibiting specific protein-protein interactions in the nucleus.

  12. Dual orexin receptor antagonist 12 inhibits expression of proteins in neurons and glia implicated in peripheral and central sensitization.

    Science.gov (United States)

    Cady, R J; Denson, J E; Sullivan, L Q; Durham, P L

    2014-06-06

    Sensitization and activation of trigeminal nociceptors is implicated in prevalent and debilitating orofacial pain conditions including temporomandibular joint (TMJ) disorders. Orexins are excitatory neuropeptides that function to regulate many physiological processes and are reported to modulate nociception. To determine the role of orexins in an inflammatory model of trigeminal activation, the effects of a dual orexin receptor antagonist (DORA-12) on levels of proteins that promote peripheral and central sensitization and changes in nocifensive responses were investigated. In adult male Sprague-Dawley rats, mRNA for orexin receptor 1 (OX₁R) and receptor 2 (OX₂R) were detected in trigeminal ganglia and spinal trigeminal nucleus (STN). OX₁R immunoreactivity was localized primarily in neuronal cell bodies in the V3 region of the ganglion and in laminas I-II of the STN. Animals injected bilaterally with complete Freund's adjuvant (CFA) in the TMJ capsule exhibited increased expression of P-p38, P-ERK, and lba1 in trigeminal ganglia and P-ERK and lba1 in the STN at 2 days post injection. However, levels of each of these proteins in rats receiving daily oral DORA-12 were inhibited to near basal levels. Similarly, administration of DORA-12 on days 3 and 4 post CFA injection in the TMJ effectively inhibited the prolonged stimulated expression of protein kinase A, NFkB, and Iba1 in the STN on day 5 post injection. While injection of CFA mediated a nocifensive response to mechanical stimulation of the orofacial region at 2h and 3 and 5 days post injection, treatment with DORA-12 suppressed the nocifensive response on day 5. Somewhat surprisingly, nocifensive responses were again observed on day 10 post CFA stimulation in the absence of daily DORA-12 administration. Our results provide evidence that DORA-12 can inhibit CFA-induced stimulation of trigeminal sensory neurons by inhibiting expression of proteins associated with sensitization of peripheral and central

  13. Constitutively active 5-HT receptors: An explanation of how 5-HT antagonists inhibit gut motility in species where 5-HT is not a enteric neurotransmitter ?

    Directory of Open Access Journals (Sweden)

    Nick eSpencer

    2015-12-01

    Full Text Available Antagonists of 5-Hydroxytryptamine (5-HT receptors are well known to inhibit gastrointestinal (GI-motility and transit in a variety of mammals, including humans. Originally, these observations had been interpreted by many investigators (including us as evidence that endogenous 5-HT plays a major role in GI motility. This seemed a logical assumption. However, the story changed dramatically after recent studies revealed that 5-HT antagonists still blocked major GI motility patterns (peristalsis and colonic migrating motor complexes in segments of intestine depleted of all 5-HT. Then, these results were further supported by Dr. Gershons’ laboratory, which showed that genetic deletion of all genes that synthesizes 5-HT had minor, or no inhibitory effects on GI transit in vivo. If 5-HT was essential for GI motility patterns and transit, then one would expect major disruptions in motility and transit when 5-HT synthesis was genetically ablated. This does not occur. The inhibitory effects of 5-HT antagonists on GI motility clearly occur independently of any 5-HT in the gut. Evidence now suggests that 5-HT antagonists act on 5-HT receptors in the gut which are constitutively active, and don’t require 5-HT for their activation. This would explain a long-standing mystery of how 5-HT antagonists inhibit gut motility in species like mice, rats and humans where 5-HT is not an enteric neurotransmitter. Studies are now increasingly demonstrating that the presence of a neurochemical in enteric neurons does not mean they function as neurotransmitters. Caution should be exercised when interpreting any inhibitory effects of 5-HT antagonists on GI motility.

  14. A novel muscarinic antagonist R2HBJJ inhibits non-small cell lung cancer cell growth and arrests the cell cycle in G0/G1.

    Directory of Open Access Journals (Sweden)

    Nan Hua

    Full Text Available Lung cancers express the cholinergic autocrine loop, which facilitates the progression of cancer cells. The antagonists of mAChRs have been demonstrated to depress the growth of small cell lung cancers (SCLCs. In this study we intended to investigate the growth inhibitory effect of R2HBJJ, a novel muscarinic antagonist, on non-small cell lung cancer (NSCLC cells and the possible mechanisms. The competitive binding assay revealed that R2HBJJ had a high affinity to M3 and M1 AChRs. R2HBJJ presented a strong anticholinergic activity on carbachol-induced contraction of guinea-pig trachea. R2HBJJ markedly suppressed the growth of NSCLC cells, such as H1299, H460 and H157. In H1299 cells, both R2HBJJ and its leading compound R2-PHC displayed significant anti-proliferative activity as M3 receptor antagonist darifenacin. Exogenous replenish of ACh could attenuate R2HBJJ-induced growth inhibition. Silencing M3 receptor or ChAT by specific-siRNAs resulted in a growth inhibition of 55.5% and 37.9% on H1299 cells 96 h post transfection, respectively. Further studies revealed that treatment with R2HBJJ arrested the cell cycle in G0/G1 by down-regulation of cyclin D1-CDK4/6-Rb. Therefore, the current study reveals that NSCLC cells express an autocrine and paracrine cholinergic system which stimulates the growth of NSCLC cells. R2HBJJ, as a novel mAChRs antagonist, can block the local cholinergic loop by antagonizing predominantly M3 receptors and inhibit NSCLC cell growth, which suggest that M3 receptor antagonist might be a potential chemotherapeutic regimen for NSCLC.

  15. AT-406, an orally active antagonist of multiple inhibitor of apoptosis proteins, inhibits progression of human ovarian cancer.

    Science.gov (United States)

    Brunckhorst, Melissa K; Lerner, Dimitry; Wang, Shaomeng; Yu, Qin

    2012-07-01

    Ovarian carcinoma is the most deadly gynecological malignancy. Current chemotherapeutic drugs are only transiently effective and patients with advance disease often develop resistance despite significant initial responses. Mounting evidence suggests that anti-apoptotic proteins, including those of the inhibitor of apoptosis protein (IAP) family, play important roles in the chemoresistance. There has been a recent emergence of compounds that block the IAP functions. Here, we evaluated AT-406, a novel and orally active antagonist of multiple IAP proteins, in ovarian cancer cells as a single agent and in the combination with carboplatin for therapeutic efficacy and mechanism of action. We demonstrate that AT-406 has significant single agent activity in 60% of human ovarian cancer cell lines examined in vitro and inhibits ovarian cancer progression in vivo and that 3 out of 5 carboplatin-resistant cell lines are sensitive to AT-406, highlighting the therapeutic potential of AT-406 for patients with inherent or acquired platinum resistance. Additionally, our in vivo studies show that AT-406 enhances the carboplatin-induced ovarian cancer cell death and increases survival of the experimental mice, suggesting that AT-406 sensitizes the response of these cells to carboplatin. Mechanistically, we demonstrate that AT-406 induced apoptosis is correlated with its ability to down-regulate XIAP whereas AT-406 induces cIAP1 degradation in both AT-406 sensitive and resistance cell lines. Together, these results demonstrate, for the first time, the anti-ovarian cancer efficacy of AT-406 as a single agent and in the combination with carboplatin, suggesting that AT-406 has potential as a novel therapy for ovarian cancer patients, especially for patients exhibiting resistance to the platinum-based therapies.

  16. KPR-2579, a novel TRPM8 antagonist, inhibits acetic acid-induced bladder afferent hyperactivity in rats.

    Science.gov (United States)

    Aizawa, Naoki; Fujimori, Yoshikazu; Kobayashi, Jun-Ichi; Nakanishi, Osamu; Hirasawa, Hideaki; Kume, Haruki; Homma, Yukio; Igawa, Yasuhiko

    2018-02-21

    Transient receptor potential melastatin 8 (TRPM8) is proposed to be a promising therapeutic target for hypersensitive bladder disorders. We examined the effects of KPR-2579, a novel selective TRPM8 antagonist, on body temperature and on mechanosensitive bladder single-unit afferent activities (SAAs) provoked by intravesical acetic acid (AA) instillation in rats. Female Sprague-Dawley rats were used. Effects of cumulative intravenous (i.v.) administrations of KPR-2579 (0.03-1 mg/kg) on deep body temperature were investigated (N = 18). In separate animals, effects of bolus administration of KPR-2579 (0.03 or 0.3 mg/kg, i.v.) on bladder hyperactivity induced by intravesical instillation of 0.1% AA were investigated using cystometry (N = 57) in a conscious free-moving condition or urethane-anesthetized condition, and SAA measurements (N = 41) were performed in a urethane-anesthetized condition. KPR-2579 at any doses tested did not affect body temperature. In cystometry measurements, a high dose (0.3 mg/kg) of KPR-2579 counteracted the shortened intercontraction interval provoked by AA instillation. In SAA measurements, 48 single afferent fibers (n = 24 in each fiber) were isolated. AA instillations significantly increased the SAAs of C fibers, but not of Aδ fibers, in the presence of KPR-2579's vehicle and a low dose (0.03 mg/kg) of KPR-2579. Pretreatment with a high dose (0.3 mg/kg) of KPR-2579 significantly inhibited the AA-induced activation of C-fiber SAAs. The present results suggest that TRPM8 channels play a role in the AA-induced pathological activation of mechanosensitive bladder C fibers in rats. KRP-2579 may be a promising drug for hypersensitive bladder disorders. © 2018 Wiley Periodicals, Inc.

  17. The T-type calcium channel antagonist Z944 disrupts prepulse inhibition in both epileptic and non-epileptic rats.

    Science.gov (United States)

    Marks, Wendie N; Greba, Quentin; Cain, Stuart M; Snutch, Terrance P; Howland, John G

    2016-09-22

    The role of T-type calcium channels in brain diseases such as absence epilepsy and neuropathic pain has been studied extensively. However, less is known regarding the involvement of T-type channels in cognition and behavior. Prepulse inhibition (PPI) is a measure of sensorimotor gating which is a basic process whereby the brain filters incoming stimuli to enable appropriate responding in sensory rich environments. The regulation of PPI involves a network of limbic, cortical, striatal, pallidal and pontine brain areas, many of which show high levels of T-type calcium channel expression. Therefore, we tested the effects of blocking T-type calcium channels on PPI with the potent and selective T-type antagonist Z944 (0.3, 1, 3, 10mg/kg; i.p.) in adult Wistar rats and two related strains, the Genetic Absence Epilepsy Rats from Strasbourg (GAERS) and Non-Epileptic Control (NEC). PPI was tested using a protocol that varied prepulse intensity (3, 6, and 12dB above background) and prepulse-pulse interval (30, 50, 80, 140ms). Z944 decreased startle in the Wistar strain at the highest dose relative to lower doses. Z944 dose-dependently disrupted PPI in the Wistar and GAERS strains with the most potent effect observed with the higher doses. These findings suggest that T-type calcium channels contribute to normal patterns of brain activity that regulate PPI. Given that PPI is disrupted in psychiatric disorders, future experiments that test the specific brain regions involved in the regulation of PPI by T-type calcium channels may help inform therapeutic development for those suffering from sensorimotor gating impairments. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. β-Adrenergic receptor antagonists inhibit vasculogenesis of embryonic stem cells by downregulation of nitric oxide generation and interference with VEGF signalling.

    Science.gov (United States)

    Sharifpanah, Fatemeh; Saliu, Fatjon; Bekhite, Mohamed M; Wartenberg, Maria; Sauer, Heinrich

    2014-11-01

    The β-adrenoceptor antagonist Propranolol has been successfully used to treat infantile hemangioma. However, its mechanism of action is so far unknown. The hypothesis of this research was that β-adrenoceptor antagonists may interfere with endothelial cell differentiation of stem cells. Specifically, the effects of the non-specific β-adrenergic receptor (β-adrenoceptor) antagonist Propranolol, the β1-adrenoceptor-specific antagonist Atenolol and the β2-adrenoceptor-specific antagonist ICI118,551 on vasculogenesis of mouse embryonic stem (ES) cells were investigated. All three β-blockers dose-dependently downregulated formation of capillary structures in ES cell-derived embryoid bodies and decreased the expression of the vascular cell markers CD31 and VE-cadherin. Furthermore, β-blockers downregulated the expression of fibroblast growth factor-2 (FGF-2), hypoxia inducible factor-1α (HIF-1α), vascular endothelial growth factor 165 (VEGF165), VEGF receptor 2 (VEGF-R2) and phospho VEGF-R2, as well as neuropilin 1 (NRP1) and plexin-B1 which are essential modulators of embryonic angiogenesis with additional roles in vessel remodelling and arteriogenesis. Under conditions of β-adrenoceptor inhibition, the endogenous generation of nitric oxide (NO) as well as the phosphorylation of endothelial nitric oxide synthase (eNOS) was decreased in embryoid bodies, whereas an increase in NO generation was observed with the NO donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP). Consequently, vasculogenesis of ES cells was restored upon treatment of differentiating ES cells with β-adrenoceptor antagonists in the presence of NO donor. In summary, our data suggest that β-blockers impair vasculogenesis of ES cells by interfering with NO generation which could be the explanation for their anti-angiogenic effects in infantile hemangioma.

  19. GABAB antagonists

    DEFF Research Database (Denmark)

    Frydenvang, Karla Andrea; Hansen, J J; Krogsgaard-Larsen, P

    1994-01-01

    chromatographic techniques. The absolute stereochemistry of (-)-(R)-phaclofen was established by X-ray crystallographic analysis. (-)-(R)-Phaclofen was shown to inhibit the binding of [3H]-(R)-baclofen to GABAB receptor sites on rat cerebellar membranes (IC50 = 76 +/- 13 microM), whereas (+)-(S......)-baclofen and the antagonist (-)-(R)-phaclofen suggests that these ligands interact with the GABAB receptor sites in a similar manner. Thus, it may be concluded that the different pharmacological effects of these compounds essentially result from the different spatial and proteolytic properties of their acid groups....

  20. Characterization of cutaneous vascular permeability induced by platelet-activating factor in guinea pigs and rats and its inhibition by a platelet-activating factor receptor antagonist

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, S.B.; Li, C.L.; Lam, M.H.; Shen, T.Y.

    1985-06-01

    Mechanisms of platelet-activating factor (PAF)-induced increases of cutaneous vascular permeability in guinea pigs and in rats were further explored. PAF so far is the most potent vasoactive mediator, being more than 1000-fold more potent than histamine and bradykinin in both species. In guinea pigs, there is a time delay of 5 to 10 minutes before PAF action, whereas, in the rat, the increased vasopermeability occurs immediately following the intradermal PAF injection. Relative vasoactive potencies of PAF and several structure-related analogues in both species correlate very well with their relative inhibition of the binding of /sup 3/H-PAF to specific receptor sites on isolated rabbit platelet plasma membranes and their aggregatory abilities of rabbit platelets. Furthermore, the PAF-induced cutaneous vascular permeability is inhibitable by a competitive specific PAF receptor antagonist, kadsurenone, suggesting that binding of PAF to its specific receptor site is the first step to initiate its action of increased cutaneous vascular permeability. Several pure cyclooxygenase inhibitors, including indomethacin, diflunisal, and flurbiprofen, and the dual cyclooxygenase/lipoxygenase inhibitor, BW755C, but not the histamine antagonists, inhibit the PAF-induced vasopermeability in guinea pigs. The inhibition by indomethacin or BW755C can be fully reversed by coinjection intradermally with PAF and prostaglandin E1 but not leukotriene B4. Also, prostaglandin E1 but not leukotriene B4 enhances the guinea pig in vivo response to PAF in this model. However, in rats, none of the cyclooxygenase inhibitors, histamine antagonists, or BW755C inhibit the PAF effect of cutaneous phenomena.

  1. Characterization of cutaneous vascular permeability induced by platelet-activating factor in guinea pigs and rats and its inhibition by a platelet-activating factor receptor antagonist

    International Nuclear Information System (INIS)

    Hwang, S.B.; Li, C.L.; Lam, M.H.; Shen, T.Y.

    1985-01-01

    Mechanisms of platelet-activating factor (PAF)-induced increases of cutaneous vascular permeability in guinea pigs and in rats were further explored. PAF so far is the most potent vasoactive mediator, being more than 1000-fold more potent than histamine and bradykinin in both species. In guinea pigs, there is a time delay of 5 to 10 minutes before PAF action, whereas, in the rat, the increased vasopermeability occurs immediately following the intradermal PAF injection. Relative vasoactive potencies of PAF and several structure-related analogues in both species correlate very well with their relative inhibition of the binding of 3 H-PAF to specific receptor sites on isolated rabbit platelet plasma membranes and their aggregatory abilities of rabbit platelets. Furthermore, the PAF-induced cutaneous vascular permeability is inhibitable by a competitive specific PAF receptor antagonist, kadsurenone, suggesting that binding of PAF to its specific receptor site is the first step to initiate its action of increased cutaneous vascular permeability. Several pure cyclooxygenase inhibitors, including indomethacin, diflunisal, and flurbiprofen, and the dual cyclooxygenase/lipoxygenase inhibitor, BW755C, but not the histamine antagonists, inhibit the PAF-induced vasopermeability in guinea pigs. The inhibition by indomethacin or BW755C can be fully reversed by coinjection intradermally with PAF and prostaglandin E1 but not leukotriene B4. Also, prostaglandin E1 but not leukotriene B4 enhances the guinea pig in vivo response to PAF in this model. However, in rats, none of the cyclooxygenase inhibitors, histamine antagonists, or BW755C inhibit the PAF effect of cutaneous phenomena

  2. Skin-targeted inhibition of PPAR β/δ by selective antagonists to treat PPAR β/δ-mediated psoriasis-like skin disease in vivo.

    Directory of Open Access Journals (Sweden)

    Katrin Hack

    Full Text Available We have previously shown that peroxisome proliferator activating receptor ß/δ (PPAR β/δ is overexpressed in psoriasis. PPAR β/δ is not present in adult epidermis of mice. Targeted expression of PPAR β/δ and activation by a selective synthetic agonist is sufficient to induce an inflammatory skin disease resembling psoriasis. Several signalling pathways dysregulated in psoriasis are replicated in this model, suggesting that PPAR β/δ activation contributes to psoriasis pathogenesis. Thus, inhibition of PPAR β/δ might harbour therapeutical potential. Since PPAR β/δ has pleiotropic functions in metabolism, skin-targeted inhibition offer the potential of reducing systemic adverse effects. Here, we report that three selective PPAR β/δ antagonists, GSK0660, compound 3 h, and GSK3787 can be formulated for topical application to the skin and that their skin concentration can be accurately quantified using ultra-high performance liquid chromatography (UPLC/mass spectrometry. These antagonists show efficacy in our transgenic mouse model in reducing psoriasis-like changes triggered by activation of PPAR β/δ. PPAR β/δ antagonists GSK0660 and compound 3 do not exhibit systemic drug accumulation after prolonged application to the skin, nor do they induce inflammatory or irritant changes. Significantly, the irreversible PPAR β/δ antagonist (GSK3787 retains efficacy when applied topically only three times per week which could be of practical clinical usefulness. Our data suggest that topical inhibition of PPAR β/δ to treat psoriasis may warrant further exploration.

  3. A Novel Nociceptin Receptor Antagonist LY2940094 Inhibits Excessive Feeding Behavior in Rodents: A Possible Mechanism for the Treatment of Binge Eating Disorder.

    Science.gov (United States)

    Statnick, Michael A; Chen, Yanyun; Ansonoff, Michael; Witkin, Jeffrey M; Rorick-Kehn, Linda; Suter, Todd M; Song, Min; Hu, Charlie; Lafuente, Celia; Jiménez, Alma; Benito, Ana; Diaz, Nuria; Martínez-Grau, Maria Angeles; Toledo, Miguel A; Pintar, John E

    2016-02-01

    Nociceptin/orphanin FQ (N/OFQ), a 17 amino acid peptide, is the endogenous ligand of the ORL1/nociceptin-opioid-peptide (NOP) receptor. N/OFQ appears to regulate a variety of physiologic functions including stimulating feeding behavior. Recently, a new class of thienospiro-piperidine-based NOP antagonists was described. One of these molecules, LY2940094 has been identified as a potent and selective NOP antagonist that exhibited activity in the central nervous system. Herein, we examined the effects of LY2940094 on feeding in a variety of behavioral models. Fasting-induced feeding was inhibited by LY2940094 in mice, an effect that was absent in NOP receptor knockout mice. Moreover, NOP receptor knockout mice exhibited a baseline phenotype of reduced fasting-induced feeding, relative to wild-type littermate controls. In lean rats, LY2940094 inhibited the overconsumption of a palatable high-energy diet, reducing caloric intake to control chow levels. In dietary-induced obese rats, LY2940094 inhibited feeding and body weight regain induced by a 30% daily caloric restriction. Last, in dietary-induced obese mice, LY2940094 decreased 24-hour intake of a high-energy diet made freely available. These are the first data demonstrating that a systemically administered NOP receptor antagonist can reduce feeding behavior and body weight in rodents. Moreover, the hypophagic effect of LY2940094 is NOP receptor dependent and not due to off-target or aversive effects. Thus, LY2940094 may be useful in treating disorders of appetitive behavior such as binge eating disorder, food choice, and overeating, which lead to obesity and its associated medical complications and morbidity. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  4. ANG II type 1 receptor antagonist irbesartan inhibits coronary angiogenesis stimulated by chronic intermittent hypoxia in neonatal rats

    Czech Academy of Sciences Publication Activity Database

    Rakusan, K.; Chvojková, Zuzana; Oliviero, P.; Ošťádalová, Ivana; Kolář, František; Chassagne, C.; Samuel, J. L.; Ošťádal, Bohuslav

    2007-01-01

    Roč. 292, č. 3 (2007), H1237-H1244 ISSN 0363-6135 R&D Projects: GA MŠk 1M0510 Institutional research plan: CEZ:AV0Z50110509 Keywords : angiogenesis neonatal rat * ANG II type 1 receptor antagonist heart * ischemic tolerance Subject RIV: ED - Physiology Impact factor: 3.973, year: 2007

  5. An anti-CCR5 monoclonal antibody and small molecule CCR5 antagonists synergize by inhibiting different stages of human immunodeficiency virus type 1 entry

    International Nuclear Information System (INIS)

    Safarian, Diana; Carnec, Xavier; Tsamis, Fotini; Kajumo, Francis; Dragic, Tatjana

    2006-01-01

    HIV-1 coreceptors are attractive targets for novel antivirals. Here, inhibition of entry by two classes of CCR5 antagonists was investigated. We confirmed previous findings that HIV-1 isolates vary greatly in their sensitivity to small molecule inhibitors of CCR5-mediated entry, SCH-C and TAK-779. In contrast, an anti-CCR5 monoclonal antibody (PA14) similarly inhibited entry of diverse viral isolates. Sensitivity to small molecules was V3 loop-dependent and inversely proportional to the level of gp120 binding to CCR5. Moreover, combinations of the MAb and small molecules were highly synergistic in blocking HIV-1 entry, suggesting different mechanisms of action. This was confirmed by time course of inhibition experiments wherein the PA14 MAb and small molecules were shown to inhibit temporally distinct stages of CCR5 usage. We propose that small molecules inhibit V3 binding to the second extracellular loop of CCR5, whereas PA14 preferentially inhibits subsequent events such as CCR5 recruitment into the fusion complex or conformational changes in the gp120-CCR5 complex that trigger fusion. Importantly, our findings suggest that combinations of CCR5 inhibitors with different mechanisms of action will be central to controlling HIV-1 infection and slowing the emergence of resistant strains

  6. Histamine H1-receptor antagonists inhibit nuclear factor-kappaB and activator protein-1 activities via H1-receptor-dependent and -independent mechanisms.

    Science.gov (United States)

    Roumestan, C; Henriquet, C; Gougat, C; Michel, A; Bichon, F; Portet, K; Jaffuel, D; Mathieu, M

    2008-06-01

    Histamine H1-receptor antagonists are used to relieve the symptoms of an immediate allergic reaction. They have additional anti-inflammatory effects that could result from an inhibition of the transcription factors activator protein-1 (AP-1) and nuclear factor-kappa B (NF-kappaB). The implication of the H1-receptor in these effects is controversial. Diphenhydramine is a first-generation H1-receptor antagonist while mizolastine and desloratadine are second-generation compounds. Mizolastine is also an inhibitor of 5-lipoxygenase (5-LO), an enzyme that has been involved in NF-kappaB activation. We measured the ability of antihistamines to reverse histamine-induced smooth muscle contraction, an effect that involves the H1-receptor. We then investigated whether these drugs affect NF-kappaB and AP-1 activities in A549 lung epithelial cells, and whether this potential regulation involves H1-receptor and 5-LO. Muscle tone was measured on tracheal segments of guinea-pigs. The H1-receptor was overexpressed by transfection and detected by Western blotting and immunofluorescence microscopy. NF-kappaB and AP-1 activities were assessed by reporter gene assays in cells overexpressing or not overexpressing the H1-receptor. Production of regulated upon activation, normal T cell expressed andsecreted (RANTES), a chemokine whose expression is induced through NF-kappaB, was measured using an immunoassay. H1-receptor antagonists reversed histamine-induced contraction in a dose-dependent manner. Induction of AP-1 and NF-kappaB activities by histamine and the down-regulatory effect of antihistamines required overexpression of the H1-receptor. In contrast, when tumour necrosis factor-alpha and a phorbol ester were used to stimulate NF-kappaB and AP-1 activities, respectively, repression of these activities did not involve the H1-receptor. Indeed, repression was triggered only by a subset of H1-receptor antagonists and was not stronger after overexpression of the H1-receptor. Mizolastine

  7. Inhibition of A2A Adenosine Receptor Signaling in Cancer Cells Proliferation by the Novel Antagonist TP455

    Directory of Open Access Journals (Sweden)

    Stefania Gessi

    2017-12-01

    Full Text Available Several evidences indicate that the ubiquitous nucleoside adenosine, acting through A1, A2A, A2B, and A3 receptor (AR subtypes, plays crucial roles in tumor development. Adenosine has contrasting effects on cell proliferation depending on the engagement of different receptor subtypes in various tumors. The involvement of A2AARs in human A375 melanoma, as well as in human A549 lung and rat MRMT1 breast carcinoma proliferation has been evaluated in view of the availability of a novel A2AAR antagonist, with high affinity and selectivity, named as 2-(2-furanyl-N5-(2-methoxybenzyl[1,3]thiazolo[5,4-d]pyrimidine-5,7-diammine (TP455. Specifically, the signaling pathways triggered in the cancer cells of different origin and the antagonist effect of TP455 were investigated. The A2AAR protein expression was evaluated through receptor binding assays. Furthermore, the effect of A2AAR activation on cell proliferation at 24, 48 and 72 hours was studied. The selective A2AAR agonist 2-p-(2-carboxyethylphenethylamino-5′-N-ethylcarboxamidoadenosine hydrochloride (CGS21680, concentration-dependently induced cell proliferation in A375, A549, and MRMT1 cancer cells and the effect was potently antagonized by the A2AAR antagonist TP455, as well as by the reference A2AAR blocker 4-(2-[7-amino-2-(2-furyl[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethylphenol (ZM241385. As for the signaling pathway recruited in this response we demonstrated that, by using the specific inhibitors of signal transduction pathways, the effect of A2AAR stimulation was induced through phospholipase C (PLC and protein kinase C-delta (PKC-δ. In addition, we evaluated, through the AlphaScreen SureFire phospho(p protein assay, the kinases enrolled by A2AAR to stimulate cell proliferation and we found the involvement of protein kinase B (AKT, extracellular regulated kinases (ERK1/2, and c-Jun N-terminal kinases (JNKs. Indeed, we demonstrated that the CGS21680 stimulatory effect on kinases was

  8. Low-molecular weight fractions of Japanese soy sauce act as a RAGE antagonist via inhibition of RAGE trafficking to lipid rafts.

    Science.gov (United States)

    Munesue, Seiichi; Yamamoto, Yasuhiko; Urushihara, Ryouta; Inomata, Kouhei; Saito, Hidehito; Motoyoshi, So; Watanabe, Takuo; Yonekura, Hideto; Yamamoto, Hiroshi

    2013-12-01

    Advanced glycation end-products (AGE) have been implicated in aging and the pathogenesis of diabetic complications, inflammation, Alzheimer's disease, and cancer. AGE engage the cell surface receptor for AGE (RAGE), which in turn elicits intracellular signaling, leading to activation of NF-κB to cause deterioration of tissue homeostasis. AGE are not only formed within our bodies but are also derived from foods, endowing them with flavor. In the present study, we assessed the agonistic/antagonistic effects of food-derived AGE on RAGE signaling in a reporter assay system and found that low-molecular weight AGE can antagonize the action of AGE-BSA. Foods tested were Japanese soy sauce, coffee, cola, and red wine, all of which showed fluorescence characteristics of AGE. Soy sauce and coffee contained N(ε)-carboxymethyl-lysine (CML). Soy sauce, coffee, and red wine inhibited the RAGE ligand-induced activation of NF-κB, whereas cola had no effect on the ligand induction of NF-κB. The liquids were then fractionated into high-molecular weight (HMW) fractions and low-molecular weight (LMW) fractions. Soy sauce-, coffee-, and red wine-derived LMW fractions consistently inhibited the RAGE ligand induction of NF-κB, whereas the HMW fractions of these foods activated RAGE signaling. Using the LMW fraction of soy sauce as a model food-derived RAGE antagonist, we performed a plate-binding assay and found that the soy sauce LMW fractions competitively inhibited AGE-RAGE association. Further, this fraction significantly reduced AGE-dependent monocyte chemoattractant protein-1 (MCP-1) secretion from murine peritoneal macrophages. The LMF from soy sauce suppressed the AGE-induced RAGE trafficking to lipid rafts. These results indicate that small components in some, if not all, foods antagonize RAGE signaling and could exhibit beneficial effects on RAGE-related diseases.

  9. Reduced Maximal Inhibition in Phenotypic Susceptibility Assays Indicates that Viral Strains Resistant to the CCR5 Antagonist Maraviroc Utilize Inhibitor-Bound Receptor for Entry▿

    Science.gov (United States)

    Westby, Mike; Smith-Burchnell, Caroline; Mori, Julie; Lewis, Marilyn; Mosley, Michael; Stockdale, Mark; Dorr, Patrick; Ciaramella, Giuseppe; Perros, Manos

    2007-01-01

    Maraviroc is a CCR5 antagonist in clinical development as one of a new class of antiretrovirals targeting human immunodeficiency virus type 1 (HIV-1) coreceptor binding. We investigated the mechanism of HIV resistance to maraviroc by using in vitro sequential passage and site-directed mutagenesis. Serial passage through increasing maraviroc concentrations failed to select maraviroc-resistant variants from some laboratory-adapted and clinical isolates of HIV-1. However, high-level resistance to maraviroc was selected from three of six primary isolates passaged in peripheral blood lymphocytes (PBL). The SF162 strain acquired resistance to maraviroc in both treated and control cultures; all resistant variants were able to use CXCR4 as a coreceptor. In contrast, maraviroc-resistant virus derived from isolates CC1/85 and RU570 remained CCR5 tropic, as evidenced by susceptibility to the CCR5 antagonist SCH-C, resistance to the CXCR4 antagonist AMD3100, and an inability to replicate in CCR5 Δ32/Δ32 PBL. Strain-specific mutations were identified in the V3 loop of maraviroc-resistant CC1/85 and RU570. The envelope-encoding region of maraviroc-resistant CC1/85 was inserted into an NL4-3 background. This recombinant virus was completely resistant to maraviroc but retained susceptibility to aplaviroc. Reverse mutation of gp120 residues 316 and 323 in the V3 loop (numbering from HXB2) to their original sequence restored wild-type susceptibility to maraviroc, while reversion of either mutation resulted in a partially sensitive virus with reduced maximal inhibition (plateau). The plateaus are consistent with the virus having acquired the ability to utilize maraviroc-bound receptor for entry. This hypothesis was further corroborated by the observation that a high concentration of maraviroc blocks the activity of aplaviroc against maraviroc-resistant virus. PMID:17182681

  10. Reduced maximal inhibition in phenotypic susceptibility assays indicates that viral strains resistant to the CCR5 antagonist maraviroc utilize inhibitor-bound receptor for entry.

    Science.gov (United States)

    Westby, Mike; Smith-Burchnell, Caroline; Mori, Julie; Lewis, Marilyn; Mosley, Michael; Stockdale, Mark; Dorr, Patrick; Ciaramella, Giuseppe; Perros, Manos

    2007-03-01

    Maraviroc is a CCR5 antagonist in clinical development as one of a new class of antiretrovirals targeting human immunodeficiency virus type 1 (HIV-1) coreceptor binding. We investigated the mechanism of HIV resistance to maraviroc by using in vitro sequential passage and site-directed mutagenesis. Serial passage through increasing maraviroc concentrations failed to select maraviroc-resistant variants from some laboratory-adapted and clinical isolates of HIV-1. However, high-level resistance to maraviroc was selected from three of six primary isolates passaged in peripheral blood lymphocytes (PBL). The SF162 strain acquired resistance to maraviroc in both treated and control cultures; all resistant variants were able to use CXCR4 as a coreceptor. In contrast, maraviroc-resistant virus derived from isolates CC1/85 and RU570 remained CCR5 tropic, as evidenced by susceptibility to the CCR5 antagonist SCH-C, resistance to the CXCR4 antagonist AMD3100, and an inability to replicate in CCR5 Delta32/Delta32 PBL. Strain-specific mutations were identified in the V3 loop of maraviroc-resistant CC1/85 and RU570. The envelope-encoding region of maraviroc-resistant CC1/85 was inserted into an NL4-3 background. This recombinant virus was completely resistant to maraviroc but retained susceptibility to aplaviroc. Reverse mutation of gp120 residues 316 and 323 in the V3 loop (numbering from HXB2) to their original sequence restored wild-type susceptibility to maraviroc, while reversion of either mutation resulted in a partially sensitive virus with reduced maximal inhibition (plateau). The plateaus are consistent with the virus having acquired the ability to utilize maraviroc-bound receptor for entry. This hypothesis was further corroborated by the observation that a high concentration of maraviroc blocks the activity of aplaviroc against maraviroc-resistant virus.

  11. Pharmacological properties of S1RA, a new sigma-1 receptor antagonist that inhibits neuropathic pain and activity-induced spinal sensitization.

    Science.gov (United States)

    Romero, L; Zamanillo, D; Nadal, X; Sánchez-Arroyos, R; Rivera-Arconada, I; Dordal, A; Montero, A; Muro, A; Bura, A; Segalés, C; Laloya, M; Hernández, E; Portillo-Salido, E; Escriche, M; Codony, X; Encina, G; Burgueño, J; Merlos, M; Baeyens, J M; Giraldo, J; López-García, J A; Maldonado, R; Plata-Salamán, C R; Vela, J M

    2012-08-01

    The sigma-1 (σ(1) ) receptor is a ligand-regulated molecular chaperone that has been involved in pain, but there is limited understanding of the actions associated with its pharmacological modulation. Indeed, the selectivity and pharmacological properties of σ(1) receptor ligands used as pharmacological tools are unclear and the demonstration that σ(1) receptor antagonists have efficacy in reversing central sensitization-related pain sensitivity is still missing. The pharmacological properties of a novel σ(1) receptor antagonist (S1RA) were first characterized. S1RA was then used to investigate the effect of pharmacological antagonism of σ(1) receptors on in vivo nociception in sensitizing conditions and on in vitro spinal cord sensitization in mice. Drug levels and autoradiographic, ex vivo binding for σ(1) receptor occupancy were measured to substantiate behavioural data. Formalin-induced nociception (both phases), capsaicin-induced mechanical hypersensitivity and sciatic nerve injury-induced mechanical and thermal hypersensitivity were dose-dependently inhibited by systemic administration of S1RA. Occupancy of σ(1) receptors in the CNS was significantly correlated with the antinociceptive effects. No pharmacodynamic tolerance to the antiallodynic and antihyperalgesic effect developed following repeated administration of S1RA to nerve-injured mice. As a mechanistic correlate, electrophysiological recordings demonstrated that pharmacological antagonism of σ(1) receptors attenuated the wind-up responses in spinal cords sensitized by repetitive nociceptive stimulation. These findings contribute to evidence identifying the σ(1) receptor as a modulator of activity-induced spinal sensitization and pain hypersensitivity, and suggest σ(1) receptor antagonists as potential novel treatments for neuropathic pain. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  12. Pre-treatment with Toll-like receptor 4 antagonist inhibits lipopolysaccharide-induced preterm uterine contractility, cytokines, and prostaglandins in rhesus monkeys

    Science.gov (United States)

    Adams Waldorf, Kristina M.; Persing, David; Novy, Miles J.; Sadowsky, Drew W.; Gravett, Michael G.

    2009-01-01

    Intra-uterine infection, which occurs in the majority of early preterm births, triggers an immune response culminating in preterm labor. We hypothesized that blockade of lipopolysaccharide (LPS)-induced immune responses by a Toll-like receptor 4 antagonist (TLR4A) would prevent elevations in amniotic fluid (AF) cytokines, prostaglandins, and uterine contractility. Chronically catheterized rhesus monkeys at 128-147 days gestation received intra-amniotic infusions of either: 1) saline (n=6), 2) LPS (0.15-10μg; n=4), or 3) TLR4A pre-treatment with LPS (10 μg) one hour later (n=4). AF cytokines, prostaglandins, and uterine contractility were compared using oneway ANOVA with Bonferroni-adjusted pairwise comparisons. Compared to saline controls, LPS induced significant elevations in AF IL-8, TNF-α, PGE2, PGF2α, and uterine contractility (p<0.05). In contrast, TLR4A pre-treatment inhibited LPS-induced uterine activity and was associated with significantly lower AF IL-8, TNF-α, PGE2, and PGF2α versus LPS alone (p<0.05). Toll-like receptor antagonists, together with antibiotics, may delay or prevent infection-associated preterm birth. PMID:18187405

  13. Adenosine AA Receptor Antagonists Do Not Disrupt Rodent Prepulse Inhibition: An Improved Side Effect Profile in the Treatment of Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Carina J. Bleickardt

    2012-01-01

    Full Text Available Parkinson's disease (PD is characterized by loss of dopaminergic neurons in the substantia nigra. Current treatments for PD focus on dopaminergic therapies, including L-dopa and dopamine receptor agonists. However, these treatments induce neuropsychiatric side effects. Psychosis, characterized by delusions and hallucinations, is one of the most serious such side effects. Adenosine A2A receptor antagonism is a nondopaminergic treatment for PD with clinical and preclinical efficacy. The present studies assessed A2A antagonists SCH 412348 and istradefylline in rodent prepulse inhibition (PPI, a model of psychosis. Dopamine receptor agonists pramipexole (0.3–3 mg/kg, pergolide (0.3–3 mg/kg, and apomorphine (0.3–3 mg/kg significantly disrupted PPI; ropinirole (1–30 mg/kg had no effect; L-dopa (100–300 mg/kg disrupted rat but not mouse PPI. SCH 412348 (0.3–3 mg/kg did not disrupt rodent PPI; istradefylline (0.1–1 mg/kg marginally disrupted mouse but not rat PPI. These results suggest that A2A antagonists, unlike dopamine agonists, have an improved neuropsychiatric side effect profile.

  14. The small-molecule IAP antagonist AT406 inhibits pancreatic cancer cells in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yongsheng; Meng, Qinghua [Department of General Surgery, Jinan Central Hospital of Shandong University, Jinan (China); Chen, Bo [Department of Biliary and Pancreatic Surgery, East Hospital Affiliated to Tongji University in Shanghai, Shanghai (China); Shen, Haiyu; Yan, Bing [Department of General Surgery, Jinan Central Hospital of Shandong University, Jinan (China); Sun, Baoyou, E-mail: sunbaoyou_sdu@yeah.net [Department of General Surgery, Shandong Provincial Hospital Affiliated to Shandong University, No.9677 Jing-Shi Road, Jinan 250014 (China)

    2016-09-09

    In the present study, we tested the anti-pancreatic cancer activity by AT406, a small-molecule antagonist of IAP (inhibitor of apoptosis proteins). In established (Panc-1 and Mia-PaCa-2 lines) and primary human pancreatic cancer cells, treatment of AT406 significantly inhibited cell survival and proliferation. Yet, same AT406 treatment was non-cytotoxic to pancreatic epithelial HPDE6c7 cells. AT406 increased caspase-3/-9 activity and provoked apoptosis in the pancreatic cancer cells. Reversely, AT406′ cytotoxicity in these cells was largely attenuated with pre-treatment of caspase inhibitors. AT406 treatment caused degradation of IAP family proteins (cIAP1 and XIAP) and release of cytochrome C, leaving Bcl-2 unaffected in pancreatic cancer cells. Bcl-2 inhibition (by ABT-737) or shRNA knockdown dramatically sensitized Panc-1 cells to AT406. In vivo, oral administration of AT406 at well-tolerated doses downregulated IAPs (cIAP1/XIAP) and inhibited Panc-1 xenograft tumor growth in severe combined immunodeficient (SCID) nude mice. Together, our preclinical results suggest that AT406 could be further evaluated as a promising anti-pancreatic cancer agent. - Highlights: • AT406 is cytotoxic to established/primary human pancreatic cancer cells. • AT406 provokes caspase-dependent apoptosis in pancreatic cancer cells. • AT406 causes degradation of key IAPs and promotes cytochrome C release. • Bcl-2 inhibition or knockdown dramatically sensitizes Panc-1 cells to AT406. • Oral administration of AT406 inhibits Panc-1 tumor growth in SCID nude mice.

  15. The small-molecule IAP antagonist AT406 inhibits pancreatic cancer cells in vitro and in vivo

    International Nuclear Information System (INIS)

    Jiang, Yongsheng; Meng, Qinghua; Chen, Bo; Shen, Haiyu; Yan, Bing; Sun, Baoyou

    2016-01-01

    In the present study, we tested the anti-pancreatic cancer activity by AT406, a small-molecule antagonist of IAP (inhibitor of apoptosis proteins). In established (Panc-1 and Mia-PaCa-2 lines) and primary human pancreatic cancer cells, treatment of AT406 significantly inhibited cell survival and proliferation. Yet, same AT406 treatment was non-cytotoxic to pancreatic epithelial HPDE6c7 cells. AT406 increased caspase-3/-9 activity and provoked apoptosis in the pancreatic cancer cells. Reversely, AT406′ cytotoxicity in these cells was largely attenuated with pre-treatment of caspase inhibitors. AT406 treatment caused degradation of IAP family proteins (cIAP1 and XIAP) and release of cytochrome C, leaving Bcl-2 unaffected in pancreatic cancer cells. Bcl-2 inhibition (by ABT-737) or shRNA knockdown dramatically sensitized Panc-1 cells to AT406. In vivo, oral administration of AT406 at well-tolerated doses downregulated IAPs (cIAP1/XIAP) and inhibited Panc-1 xenograft tumor growth in severe combined immunodeficient (SCID) nude mice. Together, our preclinical results suggest that AT406 could be further evaluated as a promising anti-pancreatic cancer agent. - Highlights: • AT406 is cytotoxic to established/primary human pancreatic cancer cells. • AT406 provokes caspase-dependent apoptosis in pancreatic cancer cells. • AT406 causes degradation of key IAPs and promotes cytochrome C release. • Bcl-2 inhibition or knockdown dramatically sensitizes Panc-1 cells to AT406. • Oral administration of AT406 inhibits Panc-1 tumor growth in SCID nude mice.

  16. Short Communication: Inhibition of DC-SIGN-Mediated HIV-1 Infection by Complementary Actions of Dendritic Cell Receptor Antagonists and Env-Targeting Virus Inactivators.

    Science.gov (United States)

    Pustylnikov, Sergey; Dave, Rajnish S; Khan, Zafar K; Porkolab, Vanessa; Rashad, Adel A; Hutchinson, Matthew; Fieschi, Frank; Chaiken, Irwin; Jain, Pooja

    2016-01-01

    The DC-SIGN receptor on human dendritic cells interacts with HIV gp120 to promote both infection of antigen-presenting cells and transinfection of T cells. We hypothesized that in DC-SIGN-expressing cells, both DC-SIGN ligands such as dextrans and gp120 antagonists such as peptide triazoles would inhibit HIV infection with potential complementary antagonist effects. To test this hypothesis, we evaluated the effects of dextran (D66), isomaltooligosaccharides (D06), and several peptide triazoles (HNG156, K13, and UM15) on HIV infection of B-THP-1/DC-SIGN cells. In surface plasmon resonance competition assays, D66 (IC50 = 35.4 μM) and D06 (IC50 = 3.4 mM) prevented binding of soluble DC-SIGN to immobilized mannosylated bovine serum albumin (BSA). An efficacious dose-dependent inhibition of DC-SIGN-mediated HIV infection in both pretreatment and posttreatment settings was observed, as indicated by inhibitory potentials (EC50) [D66 (8 μM), D06 (48 mM), HNG156 (40 μM), UM15 (100 nM), and K13 (25 nM)]. Importantly, both dextrans and peptide triazoles significantly decreased HIV gag RNA levels [D66 (7-fold), D06 (13-fold), HNG156 (7-fold), K-13 (3-fold), and UM15 (6-fold)]. Interestingly, D06 at the highest effective concentration showed a 14-fold decrease of infection, while its combination with 50 μM HNG156 showed a 26-fold decrease. Hence, these compounds can combine to inactivate the viruses and suppress DC-SIGN-mediated virus-cell interaction that as shown earlier leads to dendritic cell HIV infection and transinfection dependent on the DC-SIGN receptor.

  17. A novel dopamine D3 receptor antagonist YQA14 inhibits methamphetamine self-administration and relapse to drug-seeking behaviour in rats.

    Science.gov (United States)

    Chen, Ying; Song, Rui; Yang, Ri-Fang; Wu, Ning; Li, Jin

    2014-11-15

    Growing preclinical evidence suggests that dopamine D3 receptor antagonists are promising for the treatment of addiction. We have previously reported a novel dopamine D3 receptor antagonist YQA14 with better pharmacokinetic behaviours and pharmacotherapeutic efficacy than other tested compounds in attenuating the reward and relapse of cocaine. In the present study, we investigated whether YQA14 can similarly inhibit methamphetamine self-administration and cue- or methamphetamine-trigged reinstatement of drug-seeking behaviour. The research illustrated that systemic administration of YQA14 (6.25-25mg/kg, i.p. 20min prior to methamphetamine) failed to alter methamphetamine (0.05mg/kg) self-administration under fixed-ratio 2. However, YQA14 (6.25-25mg/kg, i.p. 20min prior to methamphetamine) significantly and dose-dependently reduced methamphetamine self-administration under fixed-ratio 2 by a low dose (0.006, 0.0125, 0.025mg/kg) of methamphetamine and shifted the dose curve right and down. Further, YQA14 also lowered the break point under progressive-ratio reinforcement conditions in rats. Finally, YQA14 also significantly inhibited cue- or methamphetamine-triggered reinstatement of extinguished drug-seeking behaviour. Overall, our findings suggest that blockade of the dopamine D3 receptor by YQA14 attenuated the rewarding and incentive motivational effects of methamphetamine in rats and may have pharmacotherapeutic potential in the treatment of methamphetamine addiction. Thus, YQA14 deserves further investigation as a promising medication for the treatment of addiction. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Beta-adrenergic antagonist propranolol inhibits mammalian cell lysosome spreading and invasion by Trypanosoma cruzi metacyclic forms.

    Science.gov (United States)

    Macedo, Silene; Rodrigues, João Paulo Ferreira; Schenkman, Sergio; Yoshida, Nobuko

    The involvement of β-adrenergic receptor (β-AR) in host cell invasion by Trypanosoma cruzi metacyclic trypomastigote (MT) is not known. We examined whether isoproterenol, an agonist of β-AR, or nonselective β-blocker propranolol affected MT internalization mediated the stage-specific surface molecule gp82. Treatment of HeLa cells with propranolol significantly inhibited MT invasion whereas isoproterenol had no effect. Propranolol, but not isoproterenol, also inhibited the lysosome spreading required for gp82-dependent MT invasion. The effect of propranolol in inhibiting MT internalization was not due to the prevention of gp82 interaction with β-AR. It was mainly associated with its ability to impair lysosome spreading. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  19. The papain inhibitor (SPI) of Streptomyces mobaraensis inhibits bacterial cysteine proteases and is an antagonist of bacterial growth.

    Science.gov (United States)

    Zindel, Stephan; Kaman, Wendy E; Fröls, Sabrina; Pfeifer, Felicitas; Peters, Anna; Hays, John P; Fuchsbauer, Hans-Lothar

    2013-07-01

    A novel papain inhibitory protein (SPI) from Streptomyces mobaraensis was studied to measure its inhibitory effect on bacterial cysteine protease activity (Staphylococcus aureus SspB) and culture supernatants (Porphyromonas gingivalis, Bacillus anthracis). Further, growth of Bacillus anthracis, Staphylococcus aureus, Pseudomonas aeruginosa, and Vibrio cholerae was completely inhibited by 10 μM SPI. At this concentration of SPI, no cytotoxicity was observed. We conclude that SPI inhibits bacterial virulence factors and has the potential to become a novel therapeutic treatment against a range of unrelated pathogenic bacteria.

  20. Characterization of the muscarinic receptor subtype(s) mediating contraction of the guinea-pig lung strip and inhibition of acetylcholine release in the guinea-pig trachea with the selective muscarinic receptor antagonist tripitramine

    NARCIS (Netherlands)

    Roffel, A.F; Davids, J.H; Elzinga, C.R S; Wolf, D; Zaagsma, Hans; Kilbinger, H

    1 The muscarinic receptor subtypes mediating contraction of the guinea-pig lung strip and inhibition of the release of acetylcholine from cholinergic vagus nerve endings in the guinea-pig trachea in vitro have previously been characterized as M-2-like, i.e. having antagonist affinity profiles that

  1. MDM2 Antagonist Nutlin-3a Reverses Mitoxantrone Resistance by Inhibiting Breast Cancer Resistance Protein Mediated Drug Transport

    Science.gov (United States)

    Zhang, Fan; Throm, Stacy L.; Murley, Laura L.; Miller, Laura A.; Zatechka, D. Steven; Guy, R. Kiplin; Kennedy, Rachel; Stewart, Clinton F.

    2011-01-01

    Breast cancer resistance protein (BCRP; ABCG2), a clinical marker for identifying the side population (SP) cancer stem cell subgroup, affects intestinal absorption, brain penetration, hepatobiliary excretion, and multidrug resistance of many anti-cancer drugs. Nutlin-3a is currently under pre-clinical investigation in a variety of solid tumor and leukemia models as a p53 reactivation agent, and has been recently demonstrated to also have p53 independent actions in cancer cells. In the present study, we first report that nutlin-3a can inhibit the efflux function of BCRP. We observed that although the nutlin-3a IC50 did not differ between BCRP over-expressing and vector control cells, nutlin-3a treatment significantly potentiated the cells to treatment with the BCRP substrate mitoxantrone. Combination index calculations suggested synergism between nutlin-3a and mitoxantrone in cell lines over-expressing BCRP. Upon further investigation, it was confirmed that nutlin-3a increased the intracellular accumulation of BCRP substrates such as mitoxantrone and Hoechst 33342 in cells expressing functional BCRP without altering the expression level or localization of BCRP. Interestingly, nutlin-3b, considered virtually “inactive” in disrupting the MDM2/p53 interaction, reversed Hoechst 33342 efflux with the same potency as nutlin-3a. Intracellular accumulation and bi-directional transport studies using MDCKII cells suggested that nutlin-3a is not a substrate of BCRP. Additionally, an ATPase assay using Sf9 insect cell membranes over-expressing wild-type BCRP indicated that nutlin-3a inhibits BCRP ATPase activity in a dose-dependent fashion. In conclusion, our studies demonstrate that nutlin-3a inhibits BCRP efflux function, which consequently reverses BCRP-related drug resistance. PMID:21459080

  2. Dopamine D2 receptor radiotracers [11C](+)-PHNO and [3H]raclopride are indistinguishably inhibited by D2 agonists and antagonists ex vivo

    International Nuclear Information System (INIS)

    McCormick, Patrick N.; Kapur, Shitij; Seeman, Philip; Wilson, Alan A.

    2008-01-01

    Introduction: In vitro, the dopamine D2 receptor exists in two states, with high and low affinity for agonists. The high-affinity state is the physiologically active state thought to be involved in dopaminergic illnesses such as schizophrenia. The positron emission tomography radiotracer [ 11 C](+)-PHNO ([ 11 C](+)-4-propyl-3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4] oxazin-9-o l), being a D2 agonist, should selectively label the high-affinity state at tracer dose and therefore be more susceptible to competition by agonist as compared to the antagonist [ 3 H]raclopride, which binds to both affinity states. Methods: We tested this prediction using ex vivo dual-radiotracer experiments in conscious rats. D2 antagonists (haloperidol or clozapine), a partial agonist (aripiprazole), a full agonist [(-)-NPA] or the dopamine-releasing drug amphetamine (AMPH) were administered to rats prior to an intravenous coinjection of [ 11 C](+)-PHNO and [ 3 H]raclopride. Rats were sacrificed 60 min after radiotracer injection. Striatum, cerebellum and plasma samples were counted for 11 C and 3 H. The specific binding ratio {SBR, i.e., [%ID/g (striatum)-%ID/g (cerebellum)]/(%ID/g (cerebellum)} was used as the outcome measure. Results: In response to D2 antagonists, partial agonist or full agonist, [ 11 C](+)-PHNO and [ 3 H]raclopride SBRs responded indistinguishably in terms of both ED 50 and Hill slope (e.g., (-)-NPA ED 50 values are 0.027 and 0.023 mg/kg for [ 11 C](+)-PHNO and [ 3 H]raclopride, respectively). In response to AMPH challenge, [ 11 C](+)-PHNO and [ 3 H]raclopride SBRs were inhibited to the same degree. Conclusions: We have shown that the SBRs of [ 11 C](+)-PHNO- and [ 3 H]raclopride do not differ in their response to agonist challenge. These results do not support predictions of the in vivo binding behavior of a D2 agonist radiotracer and cast some doubt on the in vivo applicability of the D2 two-state model, as described by in vitro binding experiments

  3. Dopamine D2 receptor radiotracers [{sup 11}C](+)-PHNO and [{sup 3}H]raclopride are indistinguishably inhibited by D2 agonists and antagonists ex vivo

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Patrick N. [Institute of Medical Science, University of Toronto, Toronto, Ontario, M5S 1A8 (Canada)], E-mail: patrick.mccormick@camhpet.ca; Kapur, Shitij [Department of Psychiatry, University of Toronto, Toronto, Ontario, M5S 1A8 (Canada); PET Center, Center for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Seeman, Philip [Department of Psychiatry, University of Toronto, Toronto, Ontario, M5S 1A8 (Canada); Department of Pharmacology, University of Toronto, Toronto, Ontario, M5S 1A8 (Canada); Wilson, Alan A. [Department of Psychiatry, University of Toronto, Toronto, Ontario, M5S 1A8 (Canada); PET Center, Center for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada)

    2008-01-15

    Introduction: In vitro, the dopamine D2 receptor exists in two states, with high and low affinity for agonists. The high-affinity state is the physiologically active state thought to be involved in dopaminergic illnesses such as schizophrenia. The positron emission tomography radiotracer [{sup 11}C](+)-PHNO ([{sup 11}C](+)-4-propyl-3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4] oxazin-9-o l), being a D2 agonist, should selectively label the high-affinity state at tracer dose and therefore be more susceptible to competition by agonist as compared to the antagonist [{sup 3}H]raclopride, which binds to both affinity states. Methods: We tested this prediction using ex vivo dual-radiotracer experiments in conscious rats. D2 antagonists (haloperidol or clozapine), a partial agonist (aripiprazole), a full agonist [(-)-NPA] or the dopamine-releasing drug amphetamine (AMPH) were administered to rats prior to an intravenous coinjection of [{sup 11}C](+)-PHNO and [{sup 3}H]raclopride. Rats were sacrificed 60 min after radiotracer injection. Striatum, cerebellum and plasma samples were counted for {sup 11}C and {sup 3}H. The specific binding ratio {l_brace}SBR, i.e., [%ID/g (striatum)-%ID/g (cerebellum)]/(%ID/g (cerebellum){r_brace} was used as the outcome measure. Results: In response to D2 antagonists, partial agonist or full agonist, [{sup 11}C](+)-PHNO and [{sup 3}H]raclopride SBRs responded indistinguishably in terms of both ED{sub 50} and Hill slope (e.g., (-)-NPA ED{sub 50} values are 0.027 and 0.023 mg/kg for [{sup 11}C](+)-PHNO and [{sup 3}H]raclopride, respectively). In response to AMPH challenge, [{sup 11}C](+)-PHNO and [{sup 3}H]raclopride SBRs were inhibited to the same degree. Conclusions: We have shown that the SBRs of [{sup 11}C](+)-PHNO- and [{sup 3}H]raclopride do not differ in their response to agonist challenge. These results do not support predictions of the in vivo binding behavior of a D2 agonist radiotracer and cast some doubt on the in vivo

  4. Identification of a novel antagonist of the ErbB1 receptor capable of inhibiting migration of human glioblastoma cells

    DEFF Research Database (Denmark)

    Staberg, Mikkel; Riemer, Christian; Xu, Ruodan

    2013-01-01

    BACKGROUND: Receptors of the ErbB family are involved in the development of various cancers, and the inhibition of these receptors represents an attractive therapeutic concept. Upon ligand binding, ErbB receptors become activated as homo- or heterodimers, leading to the activation of downstream...... signaling cascades that result in the facilitation of cell proliferation and migration. A region of the extracellular part of the receptor, termed the 'dimerization arm', is important for the formation of receptor dimers and represents an attractive target for the design of ErbB inhibitors. METHODS: An Erb......B1 targeting peptide, termed Herfin-1, was designed based on a model of the tertiary structure of the EGF-EGFR ternary complex. The binding kinetics of this peptide were determined employing surface plasmon resonance analyses. ErbB1-4 expression and phosphorylation in human glioblastoma cell lines U...

  5. Combined treatment with a β3 -adrenergic receptor agonist and a muscarinic receptor antagonist inhibits detrusor overactivity induced by cold stress in spontaneously hypertensive rats.

    Science.gov (United States)

    Imamura, Tetsuya; Ogawa, Teruyuki; Minagawa, Tomonori; Nagai, Takashi; Suzuki, Toshiro; Saito, Tetsuichi; Yokoyama, Hitoshi; Nakazawa, Masaki; Ishizuka, Osamu

    2017-04-01

    This study determined if combined treatment with the muscarinic receptor (MR) antagonist solifenacin and the β 3 -adrenergic receptor (AR) agonist mirabegron could inhibit detrusor overactivity induced by cold stress in spontaneously hypertensive rats (SHRs). Thirty-two female 10-week-old SHRs were fed an 8% NaCl-supplemented diet for 4 weeks. Cystometric measurements of the unanesthetized, unrestricted rats were performed at room temperature (RT, 27 ± 2°C) for 20 min. The rats were then intravenously administered vehicle, 0.1 mg/kg solifenacin alone, 0.1 mg/kg mirabegron alone, or the combination of 0.1 mg/kg mirabegron and 0.1 mg/kg solifenacin (n = 8 each group). Five minutes later, the treated rats were exposed to low temperature (LT, 4 ± 2°C) for 40 min. Finally, the rats were returned to RT. After the cystometric investigations, the β 3 -ARs and M 3 -MRs expressed within the urinary bladders were analyzed. Just after transfer from RT to LT, vehicle-, solifenacin-, and mirabegron-treated SHRs exhibited detrusor overactivity that significantly decreased voiding interval and bladder capacity. However, treatment with the combination of solifenacin and mirabegron partially inhibited the cold stress-induced detrusor overactivity patterns. The decreases of voiding interval and bladder capacity in the combination-treated rats were significantly inhibited compared to other groups. Within the urinary bladders, there were no differences between expression levels of M 3 -MR and β 3 -AR mRNA. The tissue distribution of M 3 -MRs was similar to that of the β 3 -ARs. This study suggested that the combination of solifenacin and mirabegron act synergistically to inhibit the cold stress-induced detrusor overactivity in SHRs. Neurourol. Urodynam. 36:1026-1033, 2017. © 2016 The Authors. Neurourology and Urodynamics Published by Wiley Periodicals, Inc. © 2016 The Authors. Neurourology and Urodynamics Published by Wiley Periodicals, Inc.

  6. ACH-806, an NS4A antagonist, inhibits hepatitis C virus replication by altering the composition of viral replication complexes.

    Science.gov (United States)

    Yang, Wengang; Sun, Yongnian; Hou, Xiaohong; Zhao, Yongsen; Fabrycki, Joanne; Chen, Dawei; Wang, Xiangzhu; Agarwal, Atul; Phadke, Avinash; Deshpande, Milind; Huang, Mingjun

    2013-07-01

    Treatment of hepatitis C patients with direct-acting antiviral drugs involves the combination of multiple small-molecule inhibitors of distinctive mechanisms of action. ACH-806 (or GS-9132) is a novel, small-molecule inhibitor specific for hepatitis C virus (HCV). It inhibits viral RNA replication in HCV replicon cells and was active in genotype 1 HCV-infected patients in a proof-of-concept clinical trial (1). Here, we describe a potential mechanism of action (MoA) wherein ACH-806 alters viral replication complex (RC) composition and function. We found that ACH-806 did not affect HCV polyprotein translation and processing, the early events of the formation of HCV RC. Instead, ACH-806 triggered the formation of a homodimeric form of NS4A with a size of 14 kDa (p14) both in replicon cells and in Huh-7 cells where NS4A was expressed alone. p14 production was negatively regulated by NS3, and its appearance in turn was associated with reductions in NS3 and, especially, NS4A content in RCs due to their accelerated degradation. A previously described resistance substitution near the N terminus of NS3, where NS3 interacts with NS4A, attenuated the reduction of NS3 and NS4A conferred by ACH-806 treatment. Taken together, we show that the compositional changes in viral RCs are associated with the antiviral activity of ACH-806. Small molecules, including ACH-806, with this novel MoA hold promise for further development and provide unique tools for clarifying the functions of NS4A in HCV replication.

  7. T cell recognition of rat myelin basic protein as a TCR antagonist inhibits reciprocal activation of antigen-presenting cells and engenders resistance to experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Walker, M R; Mannie, M D

    2001-06-01

    The aim of this study was to assess whether T cell recognition of myelin basic protein (MBP) as a partially antagonistic self antigen regulates the reciprocal activation of professional antigen-presenting cells (APC). This study focused on the rat 3H3 T cell clone that recognized guinea pig (GP) MBP as a full agonist and self rat (R) MBP as a partial agonist. In cultures of 3H3 T cells and splenic APC, the agonist GPMBP elicited several responses by splenic APC, including production of nitric oxide, down-regulation of I-A, induction of B7.1 and B7.2, and prolongation of APC survival. RMBP stimulated a partial increase in production of nitric oxide, partially promoted survival of splenic APC, but did not alter expression of I-A, B7.1, or B7.2 on splenic APC. In the presence ofGPMBP, RMBP antagonized agonist-stimulated induction of B7 molecules, reversed the loss of I-A, and promoted the generation of I-A(+), costimulus-deficient APC. Furthermore, 3H3 T cells cultured with RMBP and irradiated splenocytes reduced the severity of EAE upon adoptive transfer into naive rat recipients subsequently challenged with an encephalitogenic dose of GPMBP/CFA. Overall, this study indicates that T cell receptor antagonism blocks T cell activation, inhibits feedback activation of splenic APC, and promotes T cell-dependent regulatory activities in EAE.

  8. A PAF receptor antagonist inhibits acute airway inflammation and late-phase responses but not chronic airway inflammation and hyperresponsiveness in a primate model of asthma

    Directory of Open Access Journals (Sweden)

    R. H. Gundel

    1992-01-01

    Full Text Available We have examined the effects of a PAF receptor antagonist, WEB 2170, on several indices of acute and chronic airway inflammation and associated changes in lung function in a primate model of allergic asthma. A single oral administration WEB 2170 provided dose related inhibition of the release of leukotriene C4 (LTC4 and prostaglandin D2 (PGD2 recovered and quantified in bronchoalveolar lavage (BAL fluid obtained during the acute phase response to inhaled antigen. In addition, oral WEB 2170 treatment in dual responder primates blocked the acute influx of neutrophils into the airways as well as the associated late-phase airway obstruction occurring 6 h after antigen inhalation. In contrast, a multiple dosing regime with WEB 2170 (once a day for 7 consecutive days failed to reduce the chronic airway inflammation (eosinophilic and associated airway hyperresponsiveness to inhaled methacholine that is characteristic of dual responder monkeys. Thus, we conclude that the generation of PAF following antigen inhalation contributes to the development of lipid mediators, acute airway inflammation and associated late-phase airway obstruction in dual responder primates; however, PAF does not play a significant role in the maintenance of chronic airway inflammation and associated airway hyperresponsiveness in this primate model.

  9. TSH-Mediated TNFα Production in Human Fibrocytes Is Inhibited by Teprotumumab, an IGF-1R Antagonist.

    Directory of Open Access Journals (Sweden)

    Hong Chen

    Full Text Available Fibrocytes (FC are bone marrow-derived progenitor cells that are more abundant and infiltrate the thyroid and orbit in Graves orbitopathy (GO. FCs express high levels of thyrotropin receptor (TSHR and insulin-like growth factor-1 receptor (IGF-1R. These receptors are physically and functionally associated, but their role in GO pathogenesis is not fully delineated. Treatment of FCs with thyroid stimulating hormone (TSH or M22 (activating antibody to TSHR induces the production of numerous cytokines, including tumor necrosis factor α (TNFα. Teprotumumab (TMB is a human monoclonal IGF-1R blocking antibody currently in clinical trial for GO and inhibits TSHR-mediated actions in FCs.To characterize the molecular mechanisms underlying TSH-induced TNFα production by FCs, and the role of IGF-1R blockade by TMB.FCs from healthy and GD patients were treated with combinations of TSH, M22, MG132 and AKTi (inhibitors of NF-κB and Akt, respectively, and TMB. TNFα protein production was measured by Luminex and flow cytometry. Messenger RNA expression was quantified by real time PCR.Treatment with TSH/M22 induced TNFα protein and mRNA production by FCs, both of which were reduced when FCs were pretreated with MG132 and AKTi (p<0.0001. TMB decreased TSH-induced TNFα protein production in circulating FCs from mean fluorescent index (MFI value of 2.92 to 1.91, and mRNA expression in cultured FCs from 141- to 52-fold expression (p<0.0001. TMB also decreased M22-induced TNFα protein production from MFI of 1.67 to 1.12, and mRNA expression from 6- to 3-fold expression (p<0.0001.TSH/M22 stimulates FC production of TNFα mRNA and protein. This process involves the transcription factor NF-κB and its regulator Akt. Blocking IGF-1R attenuates TSH/M22-induced TNFα production. This further delineates the interaction of TSHR and IGF1-R signaling pathways. By modulating the proinflammatory properties of FCs such as TNFα production, TMB may be a promising

  10. Inhibition of human prostate cancer cells proliferation by a selective alpha1-adrenoceptor antagonist labedipinedilol-A involves cell cycle arrest and apoptosis

    International Nuclear Information System (INIS)

    Liou, S.-F.; Lin, H.-H.; Liang, J.-C.; Chen, I.-J.; Yeh, J.-L.

    2009-01-01

    In this research, we conducted an in vitro analysis to evaluate the prostate cancer cells response to labedipinedilol-A in order to determine the effect of this selective α 1 -adrenoceptor antagonist to suppress prostate cancer cell growth by affecting cell proliferation and apoptosis. Here, we report that treatment of androgen-sensitive (LNCaP) and androgen-insensitive (PC-3) prostate cancer cells with labedipinedilol-A inhibited cell proliferation in concentration-dependent and time-dependent manners. Moreover, norepinephrine-stimulated proliferation of both cell lines are markedly inhibited by labedipinedilol-A. The probable involvement of α 1 -adrenoceptors in this cellular response is suggested. Labedipinedilol-A-induced growth inhibition was associated with G 0 /G 1 arrest, and G 2 /M arrest depending upon concentrations. Cell cycle blockade was associated with reduced amounts of cyclin D1/2, cyclin E, Cdk2, Cdk4, and Cdk6 and increased levels of the Cdk inhibitory proteins (Cip1/p21 and Kip1/p27). In addition, labedipinedilol-A also induced apoptosis in PC-3 cells, as determined by using Hoechst 33342 staining, DNA fragmentation, and Annexin V staining assay. Furthermore, labedipinedilol-A triggered the mitochondrial apoptotic pathway, as indicated by increasing the expression of Bax, but decreasing the level of Bcl-2, resulting in mitochondrial membrane potential loss, cytochrome c release, and activation of caspase-9 and -3. We further investigated the role of MAPK cascades in the anti-proliferative and apoptosis effects of labedipinedilol-A, and confirmed that labedipinedilol-A could activate JNK1/2 but not p38 in both cell lines. Unlike JNK1/2, however, labedipinedilol-A treatment resulted in down-regulation of phospho-ERK1/2 expression. We concluded that labedipinedilol-A possessed the growth-suppressive and apoptotic effects on LNCaP and PC-3 cells by its α 1 -adrenoceptor blockade, and the apoptotic effects of labedipinedilol-A primarily through

  11. Protein kinase A antagonist inhibits β-catenin nuclear translocation, c-Myc and COX-2 expression and tumor promotion in ApcMin/+ mice

    Directory of Open Access Journals (Sweden)

    Brudvik Kristoffer W

    2011-12-01

    Full Text Available Abstract Background The adenomatous polyposis coli (APC protein is part of the destruction complex controlling proteosomal degradation of β-catenin and limiting its nuclear translocation, which is thought to play a gate-keeping role in colorectal cancer. The destruction complex is inhibited by Wnt-Frz and prostaglandin E2 (PGE2 - PI-3 kinase pathways. Recent reports show that PGE2-induced phosphorylation of β-catenin by protein kinase A (PKA increases nuclear translocation indicating two mechanisms of action of PGE2 on β-catenin homeostasis. Findings Treatment of ApcMin/+ mice that spontaneously develop intestinal adenomas with a PKA antagonist (Rp-8-Br-cAMPS selectively targeting only the latter pathway reduced tumor load, but not the number of adenomas. Immunohistochemical characterization of intestines from treated and control animals revealed that expression of β-catenin, β-catenin nuclear translocation and expression of the β-catenin target genes c-Myc and COX-2 were significantly down-regulated upon Rp-8-Br-cAMPS treatment. Parallel experiments in a human colon cancer cell line (HCT116 revealed that Rp-8-Br-cAMPS blocked PGE2-induced β-catenin phosphorylation and c-Myc upregulation. Conclusion Based on our findings we suggest that PGE2 act through PKA to promote β-catenin nuclear translocation and tumor development in ApcMin/+ mice in vivo, indicating that the direct regulatory effect of PKA on β-catenin nuclear translocation is operative in intestinal cancer.

  12. Inhibition of Brain Swelling after Ischemia-Reperfusion by β-Adrenergic Antagonists: Correlation with Increased K+ and Decreased Ca2+ Concentrations in Extracellular Fluid

    Directory of Open Access Journals (Sweden)

    Dan Song

    2014-01-01

    Full Text Available Infarct size and brain edema following ischemia/reperfusion are reduced by inhibitors of the Na+, K+, 2Cl−, and water cotransporter NKCC1 and by β1-adrenoceptor antagonists. NKCC1 is a secondary active transporter, mainly localized in astrocytes, driven by transmembrane Na+/K+ gradients generated by the Na+,K+-ATPase. The astrocytic Na+,K+-ATPase is stimulated by small increases in extracellular K+ concentration and by the β-adrenergic agonist isoproterenol. Larger K+ increases, as occurring during ischemia, also stimulate NKCC1, creating cell swelling. This study showed no edema after 3 hr medial cerebral artery occlusion but pronounced edema after 8 hr reperfusion. The edema was abolished by inhibitors of specifically β1-adrenergic pathways, indicating failure of K+-mediated, but not β1-adrenoceptor-mediated, stimulation of Na+,K+-ATPase/NKCC1 transport during reoxygenation. Ninety percent reduction of extracellular Ca2+ concentration occurs in ischemia. Ca2+ omission abolished K+ uptake in normoxic cultures of astrocytes after addition of 5 mM KCl. A large decrease in ouabain potency on K+ uptake in cultured astrocytes was also demonstrated in Ca2+-depleted media, and endogenous ouabains are needed for astrocytic K+ uptake. Thus, among the ionic changes induced by ischemia, the decrease in extracellular Ca2+ causes failure of the high-K+-stimulated Na+,K+-ATPase/NKCC1 ion/water uptake, making β1-adrenergic activation the only stimulus and its inhibition effective against edema.

  13. Inhibition of tumor cell-induced platelet aggregation and lung metastasis by the oral GpIIb/IIIa antagonist XV454.

    Science.gov (United States)

    Amirkhosravi, Ali; Mousa, Shaker A; Amaya, Mildred; Blaydes, Susan; Desai, Hina; Meyer, Todd; Francis, John L

    2003-09-01

    Platelets are known to play a role in blood borne metastasis. Previous experimental studies have suggested that platelet GpIIb/IIIa may be a therapeutic target. However, the need for intravenous administration limits the potential application of current GpIIb/IIIa inhibitors to cancer therapy. The aim of the present study was to assess the efficacy of a novel, non-peptide oral GpIIb/IIIa antagonist (XV454) on tumor cell-induced platelet aggregation in vivo and on experimental metastasis. A Lewis lung carcinoma (LL2) mouse model of experimental metastasis was used in this study. XV454 (100 micro g) was administered intravenously (via tail vein) or orally (gavages) to 20 g mice. To determine the effect of XV454 on platelet aggregation, blood samples were collected by cardiac puncture 10 minutes after intravenous and 1-24 hrs after oral XV454, and platelet function was assessed by aggregometry, thrombelastography and the Platelet Function Analyzer (PFA100). The effect of XV454 on tumor cell-induced thrombocytopenia was determined 10 minutes after intravenous and 3 hrs after oral XV454 administration. Tumor cells (2 x 10(6)) were injected intravenously and 15 minutes after cell injection, platelet count was measured and compared to baseline (pre-injection) counts. To assess the effect on metastasis, XV454 was administered intravenous or orally 10 minutes and 3 hrs before tumor cell injection, respectively. Eighteen days later, surface lung tumor nodules were counted and the total lung tumor burden assessed. In a fourth group, in addition to the initial oral dose (before tumor cell injection), oral XV454 was given daily for the first week and three times in the second week. Administration of XV454 (5 mg/kg) completely inhibited platelet aggregation and this effect persisted for at least 24 hrs after oral delivery. Both intravenous and oral XV454 significantly inhibited tumor cell-induced thrombocytopenia (P < 0.01), the number of surface lung tumor nodules (80-85%; P

  14. The Combination of Marketed Antagonists of α1b-Adrenergic and 5-HT2A Receptors Inhibits Behavioral Sensitization and Preference to Alcohol in Mice: A Promising Approach for the Treatment of Alcohol Dependence.

    Science.gov (United States)

    Trovero, Fabrice; David, Sabrina; Bernard, Philippe; Puech, Alain; Bizot, Jean-Charles; Tassin, Jean-Pol

    2016-01-01

    Alcohol-dependence is a chronic disease with a dramatic and expensive social impact. Previous studies have indicated that the blockade of two monoaminergic receptors, α1b-adrenergic and 5-HT2A, could inhibit the development of behavioral sensitization to drugs of abuse, a hallmark of drug-seeking and drug-taking behaviors in rodents. Here, in order to develop a potential therapeutic treatment of alcohol dependence in humans, we have blocked these two monoaminergic receptors by a combination of antagonists already approved by Health Agencies. We show that the association of ifenprodil (1 mg/kg) and cyproheptadine (1 mg/kg) (α1-adrenergic and 5-HT2 receptor antagonists marketed as Vadilex ® and Periactine ® in France, respectively) blocks behavioral sensitization to amphetamine in C57Bl6 mice and to alcohol in DBA2 mice. Moreover, this combination of antagonists inhibits alcohol intake in mice habituated to alcohol (10% v/v) and reverses their alcohol preference. Finally, in order to verify that the effect of ifenprodil was not due to its anti-NMDA receptors property, we have shown that a combination of prazosin (0.5 mg/kg, an α1b-adrenergic antagonist, Mini-Press ® in France) and cyproheptadine (1 mg/kg) could also reverse alcohol preference. Altogether these findings strongly suggest that combined prazosin and cyproheptadine could be efficient as a therapy to treat alcoholism in humans. Finally, because α1b-adrenergic and 5-HT2A receptors blockade also inhibits behavioral sensitization to psychostimulants, opioids and tobacco, it cannot be excluded that this combination will exhibit some efficacy in the treatment of addiction to other abused drugs.

  15. The Combination of Marketed Antagonists of α1b-Adrenergic and 5-HT2A Receptors Inhibits Behavioral Sensitization and Preference to Alcohol in Mice: A Promising Approach for the Treatment of Alcohol Dependence.

    Directory of Open Access Journals (Sweden)

    Fabrice Trovero

    Full Text Available Alcohol-dependence is a chronic disease with a dramatic and expensive social impact. Previous studies have indicated that the blockade of two monoaminergic receptors, α1b-adrenergic and 5-HT2A, could inhibit the development of behavioral sensitization to drugs of abuse, a hallmark of drug-seeking and drug-taking behaviors in rodents. Here, in order to develop a potential therapeutic treatment of alcohol dependence in humans, we have blocked these two monoaminergic receptors by a combination of antagonists already approved by Health Agencies. We show that the association of ifenprodil (1 mg/kg and cyproheptadine (1 mg/kg (α1-adrenergic and 5-HT2 receptor antagonists marketed as Vadilex ® and Periactine ® in France, respectively blocks behavioral sensitization to amphetamine in C57Bl6 mice and to alcohol in DBA2 mice. Moreover, this combination of antagonists inhibits alcohol intake in mice habituated to alcohol (10% v/v and reverses their alcohol preference. Finally, in order to verify that the effect of ifenprodil was not due to its anti-NMDA receptors property, we have shown that a combination of prazosin (0.5 mg/kg, an α1b-adrenergic antagonist, Mini-Press ® in France and cyproheptadine (1 mg/kg could also reverse alcohol preference. Altogether these findings strongly suggest that combined prazosin and cyproheptadine could be efficient as a therapy to treat alcoholism in humans. Finally, because α1b-adrenergic and 5-HT2A receptors blockade also inhibits behavioral sensitization to psychostimulants, opioids and tobacco, it cannot be excluded that this combination will exhibit some efficacy in the treatment of addiction to other abused drugs.

  16. Involvement of PPAR-γ in the neuroprotective and anti-inflammatory effects of angiotensin type 1 receptor inhibition: effects of the receptor antagonist telmisartan and receptor deletion in a mouse MPTP model of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Garrido-Gil Pablo

    2012-02-01

    Full Text Available Abstract Background Several recent studies have shown that angiotensin type 1 receptor (AT1 antagonists such as candesartan inhibit the microglial inflammatory response and dopaminergic cell loss in animal models of Parkinson's disease. However, the mechanisms involved in the neuroprotective and anti-inflammatory effects of AT1 blockers in the brain have not been clarified. A number of studies have reported that AT1 blockers activate peroxisome proliferator-activated receptor gamma (PPAR γ. PPAR-γ activation inhibits inflammation, and may be responsible for neuroprotective effects, independently of AT1 blocking actions. Methods We have investigated whether oral treatment with telmisartan (the most potent PPAR-γ activator among AT1 blockers provides neuroprotection against dopaminergic cell death and neuroinflammation, and the possible role of PPAR-γ activation in any such neuroprotection. We used a mouse model of parkinsonism induced by the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP and co-administration of the PPAR-γ antagonist GW9662 to study the role of PPAR-γ activation. In addition, we used AT1a-null mice lesioned with MPTP to study whether deletion of AT1 in the absence of any pharmacological effect of AT1 blockers provides neuroprotection, and investigated whether PPAR-γ activation may also be involved in any such effect of AT1 deletion by co-administration of the PPAR-γ antagonist GW9662. Results We observed that telmisartan protects mouse dopaminergic neurons and inhibits the microglial response induced by administration of MPTP. The protective effects of telmisartan on dopaminergic cell death and microglial activation were inhibited by co-administration of GW9662. Dopaminergic cell death and microglial activation were significantly lower in AT1a-null mice treated with MPTP than in mice not subjected to AT1a deletion. Interestingly, the protective effects of AT1 deletion were also inhibited by co

  17. Inhibition of growth and reduction in tumorigenicity of UCI-107 ovarian cancer by antagonists of growth hormone-releasing hormone and vasoactive intestinal peptide.

    Science.gov (United States)

    Chatzistamou, I; Schally, A V; Varga, J L; Groot, K; Armatis, P; Bajo, A M

    2001-11-01

    To evaluate the tumor inhibitory activities of antagonists of growth hormone-releasing hormone (GH-RH) and vasoactive intestinal peptide (VIP) in UCI-107 human ovarian cancer model, and to investigate the role of the insulin-like growth factor (IGF) system in the response. In the present study we investigated the effects of GH-RH antagonist JV-1-36 and VIP antagonist JV-1-52, on the growth and tumorigenicity of UCI-107 ovarian cell carcinoma xenografted into nude mice. Studies on the effects of hGH-RH(1-29)NH2, IGF-I, IGF-II, JV-1-36, and JV-1-52 on the proliferation of UCI-107 cells cultured in vitro were also performed. After 22 days of therapy with JV-1-36 or JV-1-52 at the dose of 20 microg/day, the final volume of UCI-107 tumors was significantly (PUCI-107 cells in nude mice. All ten mice injected with cells treated with medium alone developed tumors within 23 days after cell inoculation, while only eight of ten and four of ten mice injected with cells exposed to JV-1-36 or JV-1-52, respectively, had tumors. In vitro exposure of UCI-107 cells to 5-35 ng/ml IGF-II produced a significant suppression in the rate of cell proliferation (P UCI-107 ovarian cell carcinoma by mechanisms that appear to involve direct effects on the cancer cells.

  18. Cytokine modulation by stress hormones and antagonist specific hormonal inhibition in rainbow trout (Oncorhynchus mykiss) and gilthead sea bream (Sparus aurata) head kidney primary cell culture.

    Science.gov (United States)

    Khansari, Ali Reza; Parra, David; Reyes-López, Felipe E; Tort, Lluís

    2017-09-01

    A tight interaction between endocrine and immune systems takes place mainly due to the key role of head kidney in both hormone and cytokine secretion, particularly under stress situations in which the physiological response promotes the synthesis and release of stress hormones which may lead into immunomodulation as side effect. Although such interaction has been previously investigated, this study evaluated for the first time the effect of stress-associated hormones together with their receptor antagonists on the expression of cytokine genes in head kidney primary cell culture (HKPCC) of the freshwater rainbow trout (Oncorhynchus mykiss) and the seawater gilthead sea bream (Sparus aurata). The results showed a striking difference when comparing the response obtained in trout and seabream. Cortisol and adrenocorticotropic hormone (ACTH) decreased the expression of immune-related genes in sea bream but not in rainbow trout and this cortisol effect was reverted by the antagonist mifepristone but not spironolactone. On the other hand, while adrenaline reduced the expression of pro-inflammatory cytokines (IL-1β, IL-6) in rainbow trout, the opposite effect was observed in sea bream showing an increased expression (IL-1β, IL-6). Interestingly, this effect was reverted by antagonist propranolol but not phentolamine. Overall, our results confirm the regional interaction between endocrine and cytokine messengers and a clear difference in the sensitivity to the hormonal stimuli between the two species. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. HIV-1 entry inhibition by small-molecule CCR5 antagonists: A combined molecular modeling and mutant study using a high-throughput assay

    International Nuclear Information System (INIS)

    Labrecque, Jean; Metz, Markus; Lau, Gloria; Darkes, Marilyn C.; Wong, Rebecca S.Y.; Bogucki, David; Carpenter, Bryon; Chen Gang; Li Tongshuang; Nan, Susan; Schols, Dominique; Bridger, Gary J.; Fricker, Simon P.; Skerlj, Renato T.

    2011-01-01

    Based on the attrition rate of CCR5 small molecule antagonists in the clinic the discovery and development of next generation antagonists with an improved pharmacology and safety profile is necessary. Herein, we describe a combined molecular modeling, CCR5-mediated cell fusion, and receptor site-directed mutagenesis approach to study the molecular interactions of six structurally diverse compounds (aplaviroc, maraviroc, vicriviroc, TAK-779, SCH-C and a benzyloxycarbonyl-aminopiperidin-1-yl-butane derivative) with CCR5, a coreceptor for CCR5-tropic HIV-1 strains. This is the first study using an antifusogenic assay, a model of the interaction of the gp120 envelope protein with CCR5. This assay avoids the use of radioactivity and HIV infection assays, and can be used in a high throughput mode. The assay was validated by comparison with other established CCR5 assays. Given the hydrophobic nature of the binding pocket several binding models are suggested which could prove useful in the rational drug design of new lead compounds.

  20. D1 and D2 antagonists reverse the effects of appetite suppressants on weight loss, food intake, locomotion, and rebalance spiking inhibition in the rat NAc shell

    Science.gov (United States)

    Kalyanasundar, B.; Perez, Claudia I.; Luna, Alvaro; Solorio, Jessica; Moreno, Mario G.; Elias, David; Simon, Sidney A.

    2015-01-01

    Obesity is a worldwide health problem that has reached epidemic proportions. To ameliorate this problem, one approach is the use of appetite suppressants. These compounds are frequently amphetamine congeners such as diethylpropion (DEP), phentermine (PHEN), and bupropion (BUP), whose effects are mediated through serotonin, norepinephrine, and dopaminergic pathways. The nucleus accumbens (NAc) shell receives dopaminergic inputs and is involved in feeding and motor activity. However, little is known about how appetite suppressants modulate its activity. Therefore, we characterized behavioral and neuronal NAc shell responses to short-term treatments of DEP, PHEN, and BUP. These compounds caused a transient decrease in weight and food intake while increasing locomotion, stereotypy, and insomnia. They evoked a large inhibitory imbalance in NAc shell spiking activity that correlated with the onset of locomotion and stereotypy. Analysis of the local field potentials (LFPs) showed that all three drugs modulated beta, theta, and delta oscillations. These oscillations do not reflect an aversive-malaise brain state, as ascertained from taste aversion experiments, but tracked both the initial decrease in weight and food intake and the subsequent tolerance to these drugs. Importantly, the appetite suppressant-induced weight loss and locomotion were markedly reduced by intragastric (and intra-NAc shell) infusions of dopamine antagonists SCH-23390 (D1 receptor) or raclopride (D2 receptor). Furthermore, both antagonists attenuated appetite suppressant-induced LFP oscillations and partially restored the imbalance in NAc shell activity. These data reveal that appetite suppressant-induced behavioral and neuronal activity recorded in the NAc shell depend, to various extents, on dopaminergic activation and thus point to an important role for D1/D2-like receptors (in the NAc shell) in the mechanism of action for these anorexic compounds. PMID:25972577

  1. Assay method for organic calcium antagonist drugs and a kit for such an assay

    International Nuclear Information System (INIS)

    Snyder, S. H.; Gould, R. J.

    1985-01-01

    A method for measuring the level of organic calcium antagonist drug in a body fluid comprises preparing a mixture of a radioactive calcium antagonist drug, a body fluid containing a calcium antagonist drug and a calcium antagonist receptor material, measuring the radioactivity of the radioactive calcium antagonist drug bound to said calcium antagonist receptor material and deriving the concentration of the calcium antagonist drug in the body fluid from a standard curve indicating the concentration of calcium antagonist drug versus inhibition of binding of said radioactive calcium antagonist drug to said receptor sites caused by the calcium antagonist drug in said body fluid. A kit for measuring the level of an organic calcium drug comprises a receptacle containing a radioactive calcium antagonist drug, a calcium antagonist receptor material and a standard amount of a nonradioactive calcium antagonist drug

  2. Thrombin-receptor antagonist vorapaxar in acute coronary syndromes

    DEFF Research Database (Denmark)

    Tricoci, Pierluigi; Huang, Zhen; Held, Claes

    2012-01-01

    Vorapaxar is a new oral protease-activated-receptor 1 (PAR-1) antagonist that inhibits thrombin-induced platelet activation.......Vorapaxar is a new oral protease-activated-receptor 1 (PAR-1) antagonist that inhibits thrombin-induced platelet activation....

  3. Inhibition of cellular proliferation and induction of apoptosis in human lung adenocarcinoma A549 cells by T-type calcium channel antagonist.

    Science.gov (United States)

    Choi, Doo Li; Jang, Sun Jeong; Cho, Sehyeon; Choi, Hye-Eun; Rim, Hong-Kun; Lee, Kyung-Tae; Lee, Jae Yeol

    2014-03-15

    The anti-proliferative and apoptotic activities of new T-type calcium channel antagonist, 6e (BK10040) on human lung adenocarcinoma A549 cells were investigated. The MTT assay results indicated that BK10040 was cytotoxic against human lung adenocarcinoma (A549) and pancreatic cancer (MiaPaCa2) cells in a dose-dependent manner with IC50 of 2.25 and 0.93μM, respectively, which is ca. 2-fold more potent than lead compound KYS05090 despite of its decreased T-type calcium channel blockade. As a mode of action for cytotoxic effect of BK10040 on lung cancer (A549) cells, this cancer cell death was found to have the typical features of apoptosis, as evidenced by the accumulation of positive cells for annexin V. In addition, BK10040 triggered the activations of caspases 3 and 9, and the cleavages of poly (ADP-ribose) polymerase (PARP). Moreover, the treatment with z-VAD-fmk (a broad spectrum caspase inhibitor) significantly prevented BK10040-induced apoptosis. Based on these results, BK10040 may be used as a potential therapeutic agent for human lung cancer via the potent apoptotic activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. T-type calcium channel antagonists, mibefradil and NNC-55-0396 inhibit cell proliferation and induce cell apoptosis in leukemia cell lines.

    Science.gov (United States)

    Huang, Weifeng; Lu, Chunjing; Wu, Yong; Ouyang, Shou; Chen, Yuanzhong

    2015-05-21

    T-type Ca(2+) channels are often aberrantly expressed in different human cancers and participate in the regulation of cell cycle progression, proliferation and death. RT-PCR, Q-PCR, western blotting and whole-cell patch-clamp recording were employed to assess the expression of T-type Ca(2+) channels in leukemia cell lines. The function of T-type Ca(2+) channels in leukemia cell growth and the possible mechanism of the effect of T-type Ca(2+) channel antagonists on cell proliferation and apoptosis were examined in T-lymphoma cell lines. We show that leukemia cell lines exhibited reduced cell growth when treated with T-type Ca(2+) channel inhibitors, mibefradil and NNC-55-0396 in a concentration-dependent manner. Mechanistically, these inhibitors played a dual role on cell viability: (i) blunting proliferation, through a halt in the progression to the G1-S phase; and (ii) promoting cell apoptosis, partially dependent on the endoplasmic reticulum Ca(2+) release. In addition, we observed a reduced phosphorylation of ERK1/2 in MOLT-4 cells in response to mibefradil and NNC-55-0396 treatment. These results indicate that mibefradil and NNC-55-0396 regulate proliferation and apoptosis in T-type Ca(2+) channel expressing leukemia cell lines and suggest a potential therapeutic target for leukemia.

  5. Reversible lysine-specific demethylase 1 antagonist HCI-2509 inhibits growth and decreases c-MYC in castration- and docetaxel-resistant prostate cancer cells.

    Science.gov (United States)

    Gupta, S; Weston, A; Bearrs, J; Thode, T; Neiss, A; Soldi, R; Sharma, S

    2016-12-01

    Lysine-specific demethylase 1 (LSD1 or KDM1A) overexpression correlates with poor survival and castration resistance in prostate cancer. LSD1 is a coregulator of ligand-independent androgen receptor signaling promoting c-MYC expression. We examined the antitumor efficacy of LSD1 inhibition with HCI-2509 in advanced stages of prostate cancer. Cell survival, colony formation, histone methylation, c-MYC level, c-MYC expression, cell cycle changes and in vivo efficacy were studied in castration-resistant prostate cancer cells upon treatment with HCI-2509. In vitro combination studies, using HCI-2509 and docetaxel, were performed to assess the synergy. Cell survival, colony formation, histone methylation and c-myc levels were studied in docetaxel-resistant prostate cancer cells treated with HCI-2509. HCI-2509 is cytotoxic and inhibits colony formation in castration-resistant prostate cancer cells. HCI-2509 treatment causes a dose-dependent increase in H3K9me2 (histone H3lysine 9) levels, a decrease in c-MYC protein, inhibition of c-MYC expression and accumulation in the G0/G1 phase of the cell cycle in these cells. PC3 xenografts in mice have a significant reduction in tumor burden upon treatment with HCI-2509 with no associated myelotoxicity or weight loss. More synergy is noted at sub-IC 50 (half-maximal inhibitory concentration) doses of docetaxel and HCI-2509 in PC3 cells than in DU145 cells. HCI-2509 has growth-inhibitory efficacy and decreases the c-myc level in docetaxel-resistant prostate cancer cells. LSD1 inhibition with HCI-2509 decreases the c-MYC level in poorly differentiated prostate cancer cell lines and has a therapeutic potential in castration- and docetaxel-resistant prostate cancer.

  6. GABAA receptor partial agonists and antagonists

    DEFF Research Database (Denmark)

    Krall, Jacob; Balle, Thomas; Krogsgaard-Larsen, Niels

    2015-01-01

    to the local temporal pattern of GABA impact, enabling phasic or tonic inhibition. Specific GABAAR antagonists are essential tools for physiological and pharmacological elucidation of the different type of GABAAR inhibition. However, distinct selectivity among the receptor subtypes (populations) has been shown...... antagonists and describes the development of potent antagonists from partial agonists originally derived from the potent GABAAR agonist muscimol. In this process, several heterocyclic aromatic systems have been used in combination with structural models in order to map the orthosteric binding site...... and to reveal structural details to be used for obtaining potency and subtype selectivity. The challenges connected to functional characterization of orthosteric GABAAR partial agonists and antagonists, especially with regard to GABAAR stoichiometry and alternative binding sites are discussed. GABAAR...

  7. Renin-angiotensin-aldosterone system inhibition: overview of the therapeutic use of angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, mineralocorticoid receptor antagonists, and direct renin inhibitors.

    Science.gov (United States)

    Mercier, Kelly; Smith, Holly; Biederman, Jason

    2014-12-01

    Angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) therapy in hypertensive diabetic patients with macroalbuminuria, microalbuminuria, or normoalbuminuria has been repeatedly shown to improve cardiovascular mortality and reduce the decline in glomerular filtration rate. Renin-angiotensin-aldosterone system (RAAS) blockade in normotensive diabetic patients with normoalbuminuria or microalbuminuria cannot be advocated at present. Dual RAAS inhibition with ACE inhibitors plus ARBs or ACE inhibitors plus direct renin inhibitors has failed to improve cardiovascular or renal outcomes but has predisposed patients to serious adverse events. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. An antagonist of the platelet-activating factor receptor inhibits adherence of both nontypeable Haemophilus influenzae and Streptococcus pneumoniae to cultured human bronchial epithelial cells exposed to cigarette smoke

    Directory of Open Access Journals (Sweden)

    Shukla SD

    2016-07-01

    cells. In silico analyses identified a binding pocket for PAF/WEB-2086 in the predicted PAFr structure.Conclusion: WEB-2086 represents an innovative class of candidate drugs for inhibiting PAFr-dependent lung infections caused by the main bacterial drivers of smoking-related COPD. Keywords: airway epithelium, NTHi, pneumococci, WEB-2086, platelet-activating factor receptor, PAFr antagonist

  9. A peptide antagonist of the ErbB1 receptor inhibits receptor activation, tumor cell growth and migration in vitro and xenograft tumor growth in vivo

    DEFF Research Database (Denmark)

    Xu, Ruodan; Povlsen, Gro Klitgaard; Soroka, Vladislav

    2010-01-01

    The epidermal growth factor family of receptor tyrosine kinases (ErbBs) plays essential roles in tumorigenesis and cancer disease progression, and therefore has become an attractive target for structure-based drug design. ErbB receptors are activated by ligand-induced homo- and heterodimerization......B1 phosphorylation, cell growth, and migration in two human tumor cell lines, A549 and HN5, expressing moderate and high ErbB1 levels, respectively. Furthermore, we show that Inherbin3 inhibits tumor growth in vivo and induces apoptosis in a tumor xenograft model employing the human non-small cell...... lung cancer cell line A549. The Inherbin3 peptide may be a useful tool for investigating the mechanisms of ErbB receptor homo- and heterodimerization. Moreover, the here described biological effects of Inherbin3 suggest that peptide-based targeting of ErbB receptor dimerization is a promising anti...

  10. Viral Inhibition of the IFN-Induced JAK/STAT Signalling Pathway: Development of Live Attenuated Vaccines by Mutation of Viral-Encoded IFN-Antagonists

    Directory of Open Access Journals (Sweden)

    Stephen B. Fleming

    2016-06-01

    Full Text Available The interferon (IFN induced anti-viral response is amongst the earliest and most potent of the innate responses to fight viral infection. The induction of the Janus kinase/signal transducer and activation of transcription (JAK/STAT signalling pathway by IFNs leads to the upregulation of hundreds of interferon stimulated genes (ISGs for which, many have the ability to rapidly kill viruses within infected cells. During the long course of evolution, viruses have evolved an extraordinary range of strategies to counteract the host immune responses in particular by targeting the JAK/STAT signalling pathway. Understanding how the IFN system is inhibited has provided critical insights into viral virulence and pathogenesis. Moreover, identification of factors encoded by viruses that modulate the JAK/STAT pathway has opened up opportunities to create new anti-viral drugs and rationally attenuated new generation vaccines, particularly for RNA viruses, by reverse genetics.

  11. Endothelial nitric oxide synthase-enhancing G-protein coupled receptor antagonist inhibits pulmonary artery hypertension by endothelin-1-dependent and endothelin-1-independent pathways in a monocrotaline model

    Directory of Open Access Journals (Sweden)

    Chung-Pin Liu

    2014-06-01

    Full Text Available This study investigates whether endothelin-1 (ET-1 mediates monocrotaline (MCT-induced pulmonary artery hypertension (PAH and right ventricular hypertrophy (RVH, and if so, whether the G-protein coupled receptor antagonist KMUP-1 (7-{2-[4-(2-chlorobenzenepiperazinyl]ethyl}-1,3-dimethylxanthine inhibits ET-1-mediated PA constriction and the aforementioned pathological changes. In a chronic rat model, intraperitoneal MCT (60 mg/kg induced PAH and increased PA medial wall thickening and RV/left ventricle + septum weight ratio on Day 21 after MCT injection. Treatment with sublingual KMUP-1 (2.5 mg/kg/day for 21 days prevented these changes and restored vascular endothelial nitric oxide synthase (eNOS immunohistochemical staining of lung tissues. Western blotting analysis demonstrated that KMUP-1 enhanced eNOS, soluble guanylate cyclase, and protein kinase G levels, and reduced ET-1 expression and inactivated Rho kinase II (ROCKII in MCT-treated lung tissue over long-term administration. In MCT-treated rats, KMUP-1 decreased plasma ET-1 on Day 21. KMUP-1 (3.6 mg/kg maximally appeared at 0.25 hours in the plasma and declined to basal levels within 24 hours after sublingual administration. In isolated PA of MCT-treated rats, compared with control and pretreatment with l-NG-nitroarginine methyl ester (100 μM, KMUP-1 (0.1–100 μM inhibited ET-1 (0.01 μM-induced vasoconstriction. Endothelium-denuded PA sustained higher contractility in the presence of KMUP-1. In a 24-hour culture of smooth muscle cells (i.e., PA smooth muscle cells or PASMCs, KMUP-1 (0.1–10 μM inhibited RhoA- and ET-1-induced RhoA activation. KMUP-1 prevented MCT-induced PAH, PA wall thickening, and RVH by enhancing eNOS and suppressing ET-1/ROCKII expression. In vitro, KMUP-1 inhibited ET-1-induced PA constriction and ET-1-dependent/independent RhoA activation of PASMCs. In summary, KMUP-1 attenuates ET-1-induced/ET-1-mediated PA constriction, and could thus aid in

  12. From the Cover: Glutamate antagonists limit tumor growth

    Science.gov (United States)

    Rzeski, Wojciech; Turski, Lechoslaw; Ikonomidou, Chrysanthy

    2001-05-01

    Neuronal progenitors and tumor cells possess propensity to proliferate and to migrate. Glutamate regulates proliferation and migration of neurons during development, but it is not known whether it influences proliferation and migration of tumor cells. We demonstrate that glutamate antagonists inhibit proliferation of human tumor cells. Colon adenocarcinoma, astrocytoma, and breast and lung carcinoma cells were most sensitive to the antiproliferative effect of the N-methyl-D-aspartate antagonist dizocilpine, whereas breast and lung carcinoma, colon adenocarcinoma, and neuroblastoma cells responded most favorably to the -amino-3-hydroxy-5-methyl-4-isoxazole-propionate antagonist GYKI52466. The antiproliferative effect of glutamate antagonists was Ca2+ dependent and resulted from decreased cell division and increased cell death. Morphological alterations induced by glutamate antagonists in tumor cells consisted of reduced membrane ruffling and pseudopodial protrusions. Furthermore, glutamate antagonists decreased motility and invasive growth of tumor cells. These findings suggest anticancer potential of glutamate antagonists.

  13. Reduction of periodontal pathogens adhesion by antagonistic strains.

    Science.gov (United States)

    Van Hoogmoed, C G; Geertsema-Doornbusch, G I; Teughels, W; Quirynen, M; Busscher, H J; Van der Mei, H C

    2008-02-01

    Periodontitis results from a shift in the subgingival microflora into a more pathogenic direction with Porphyromonas gingivalis, Prevotella intermedia, and Actinobacillus actinomycetemcomitans considered as periodontopathogens. In many cases, treatment procures only a temporary shift towards a less pathogenic microflora. An alternative treatment could be the deliberate colonization of pockets with antagonistic microorganisms to control the adhesion of periodontopathogens. The aim of this study was to identify bacterial strains that reduce adhesion of periodontopathogens to surfaces. Streptococcus sanguinis, Streptococcus crista, Streptococcus salivarius, Streptococcus mitis, Actinomyces naeslundii, and Haemophilus parainfluenzae were evaluated as potential antagonists against P. gingivalis ATCC 33277, P. intermedia ATCC 49046, and A. actinomycetemcomitans ATCC 43718 as periodontopathogens. Adhesion of periodontopathogens to the bottom plate of a parallel plate flow chamber was studied in the absence (control) and the presence of pre-adhering antagonistic strains up to a surface coverage of 5%. The largest reduction caused by antagonistic strains was observed for P. gingivalis. All antagonistic strains except S. crista ATCC 49999 inhibited the adhesion of P. gingivalis by at least 1.6 cells per adhering antagonist, with the largest significant reduction observed for A. naeslundii ATCC 51655 (3.8 cells per adhering antagonist). Adhering antagonists had a minimal effect on the adhesion of A. actinomycetemcomitans ATCC 43718. Intermediate but significant reductions were perceived for P. intermedia, most notably caused by S. mitis BMS. The adhesion of P. gingivalis was inhibited best by antagonistic strains, while S. mitis BMS appeared to be the most successful antagonist.

  14. Evaluation of antagonistic fungi against charcoal rot of sunflower ...

    African Journals Online (AJOL)

    In vitro, sensitivity of Macrophomina phaseolina (Tassi) Goid determined through inhibition zone technique to various antagonistic fungi viz., Aspergillus niger, Aspergillus flavus, Trichoderma viride, Trichoderma harzianum and Penicillium capsulatum amended into PDA medium. All the antagonists reduced the colony ...

  15. Carbon adaptation influence the antagonistic ability of ...

    African Journals Online (AJOL)

    Influences of carbon adaptation on antagonistic activities of three Pseudomonas aeruginosa strains V4, V7 and V10 against Fusarium oxysporum f. sp. melonis were determined in this study. Results from this study showed that the P. aeruginosa strains and their adapted strains significantly inhibited the growth of mycelium ...

  16. Antagonistic properties of microogranisms associated with cassava ...

    African Journals Online (AJOL)

    The antagonistic properties of indigenous microflora from cassava starch, flour and grated cassava were investigated using the conventional streak, novel ring and well diffusion methods. Antagonism was measured by zone of inhibition between the fungal plug and bacterial streak/ring. Bacillus species were more effective ...

  17. Synthetic peptide antagonists of glucagon

    International Nuclear Information System (INIS)

    Unson, C.G.; Andreu, D.; Gurzenda, E.M.; Merrifield, R.B.

    1987-01-01

    Several glucagon analogs were synthesized in an effort to find derivatives that would bind with high affinity to the glucagon receptor of rat liver membranes but would not activate membrane-bound adenylate cyclase and, therefore, would serve as antagonists of the hormone. Measurements on a series of glucagon/secretin hybrids indicated that replacement of Asp 9 in glucagon by Glu 9 , found in secretin, was the important sequence difference in the N terminus of the two hormones. Further deletion of His 1 and introduction of a C-terminal amide resulted in des-His 1 -[Glu 9 ]glucagon amide, which had a 40% binding affinity relative to that of native glucagon but caused no detectable adenylate cyclase activation in the rat liver membrane. This antagonist completely inhibited the effect of a concentration of glucagon that alone gave a full agonist response. It had an inhibition index of 12. The pA 2 was 7.2. An attempt was made to relate conformation with receptor binding. The peptides were synthesized by solid-phase methods and purified to homogeneity by reverse-phase high-performance liquid chromatography on C 18 -silica columns

  18. Respiratory Syncytial Virus Fusion Protein-Induced Toll-Like Receptor 4 (TLR4) Signaling Is Inhibited by the TLR4 Antagonists Rhodobacter sphaeroides Lipopolysaccharide and Eritoran (E5564) and Requires Direct Interaction with MD-2

    Science.gov (United States)

    Rallabhandi, Prasad; Phillips, Rachel L.; Boukhvalova, Marina S.; Pletneva, Lioubov M.; Shirey, Kari Ann; Gioannini, Theresa L.; Weiss, Jerrold P.; Chow, Jesse C.; Hawkins, Lynn D.; Vogel, Stefanie N.; Blanco, Jorge C. G.

    2012-01-01

    ABSTRACT Respiratory syncytial virus (RSV) is a leading cause of infant mortality worldwide. Toll-like receptor 4 (TLR4), a signaling receptor for structurally diverse microbe-associated molecular patterns, is activated by the RSV fusion (F) protein and by bacterial lipopolysaccharide (LPS) in a CD14-dependent manner. TLR4 signaling by LPS also requires the presence of an additional protein, MD-2. Thus, it is possible that F protein-mediated TLR4 activation relies on MD-2 as well, although this hypothesis has not been formally tested. LPS-free RSV F protein was found to activate NF-κB in HEK293T transfectants that express wild-type (WT) TLR4 and CD14, but only when MD-2 was coexpressed. These findings were confirmed by measuring F-protein-induced interleukin 1β (IL-1β) mRNA in WT versus MD-2−/− macrophages, where MD-2−/− macrophages failed to show IL-1β expression upon F-protein treatment, in contrast to the WT. Both Rhodobacter sphaeroides LPS and synthetic E5564 (eritoran), LPS antagonists that inhibit TLR4 signaling by binding a hydrophobic pocket in MD-2, significantly reduced RSV F-protein-mediated TLR4 activity in HEK293T-TLR4–CD14–MD-2 transfectants in a dose-dependent manner, while TLR4-independent NF-κB activation by tumor necrosis factor alpha (TNF-α) was unaffected. In vitro coimmunoprecipitation studies confirmed a physical interaction between native RSV F protein and MD-2. Further, we demonstrated that the N-terminal domain of the F1 segment of RSV F protein interacts with MD-2. These data provide new insights into the importance of MD-2 in RSV F-protein-mediated TLR4 activation. Thus, targeting the interaction between MD-2 and RSV F protein may potentially lead to novel therapeutic approaches to help control RSV-induced inflammation and pathology. PMID:22872782

  19. The kappa-opioid receptor antagonist nor-BNI inhibits cocaine and amphetamine, but not cannabinoid (WIN 52212-2), abstinence-induced withdrawal in planarians: an instance of 'pharmacologic congruence'.

    Science.gov (United States)

    Raffa, Robert B; Stagliano, Gregory W; Ross, Geoffrey; Powell, Jenay A; Phillips, Austin G; Ding, Zhe; Rawls, Scott M

    2008-02-08

    The broad applicability of receptor theory to diverse species, from invertebrates to mammals, provides evidence for the evolution in complexity of pharmacologic receptor diversification and of receptor-effector signal transduction mechanisms. However, pre-mammalian species have less receptor subtype differentiation, and thus, might share signal transduction pathways to a greater extent than do mammals, a phenomenon that we term 'pharmacologic congruence'. We have demonstrated previously that the lowest species considered to have a centralized nervous system, planarians, display both abstinence-induced and antagonist-precipitated withdrawal signs, indicative of the development of physical dependence. We report here: (1) amphetamine abstinence-induced withdrawal, and (2) the attenuation of cocaine and amphetamine, but not cannabinoid agonist (WIN 52212-2), abstinence-induced withdrawal by the opioid receptor antagonist naloxone and by the selective kappa-opioid receptor subtype antagonist nor-BNI (nor-Binaltorphimine), but not by the selective mu-opioid or the delta-opioid receptor subtype antagonists CTAP (D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2)) and naltrindole. These results provide evidence that the withdrawal from cocaine and amphetamine, but not cannabinoids, in planarians is mediated through a common nor-BNI-sensitive (kappa-opioid receptor-like) pathway.

  20. Predictions of in vivo prolactin levels from in vitro k I values of d 2 receptor antagonists using an agonist-antagonist interaction model

    NARCIS (Netherlands)

    Petersson, K.J.; Vermeulen, A.M.J.; Friberg, L.E.

    2013-01-01

    Prolactin elevation is a side effect of all currently available D2 receptor antagonists used in the treatment of schizophrenia. Prolactin elevation is the result of a direct antagonistic D2 effect blocking the tonic inhibition of prolactin release by dopamine. The aims of this work were to assess

  1. Inhibition of Intestinal OATP2B1 by the Calcium Receptor Antagonist Ronacaleret Results in a Significant Drug-Drug Interaction by Causing a 2-Fold Decrease in Exposure of Rosuvastatin.

    Science.gov (United States)

    Johnson, Marta; Patel, Dipal; Matheny, Christopher; Ho, May; Chen, Liangfu; Ellens, Harma

    2017-01-01

    Rosuvastatin is a widely prescribed antihyperlipidemic which undergoes limited metabolism, but is an in vitro substrate of multiple transporters [organic anion transporting polypeptide 1B1 (OATP1B1), OATP1B3, OATP1A2, OATP2B1, sodium-taurocholate cotransporting polypeptide, breast cancer resistance protein (BCRP), multidrug resistance protein 2 (MRP2), MRP4, organic anion transporter 3]. It is therefore frequently used as a probe substrate in clinical drug-drug interaction (DDI) studies to investigate transporter inhibition. Although each of these transporters is believed to play a role in rosuvastatin disposition, multiple pharmacogenetic studies confirm that OATP1B1 and BCRP play an important role in vivo. Ronacaleret, a drug-development candidate for treatment of osteoporosis (now terminated), was shown to inhibit OATP1B1 in vitro (IC 50 = 11 µM), whereas it did not inhibit BCRP. Since a DDI risk through inhibition of OATP1B1 could not be discharged, a clinical DDI study was performed with rosuvastatin before initiation of phase II trials. Unexpectedly, coadministration with ronacaleret decreased rosuvastatin exposure by approximately 50%, whereas time of maximal plasma concentration and terminal half-life remained unchanged, suggesting decreased absorption and/or enhanced first-pass elimination of rosuvastatin. Of the potential in vivo rosuvastatin transporter pathways, two might explain the observed results: intestinal OATP2B1 and hepatic MRP4. Further investigations revealed that ronacaleret inhibited OATP2B1 (in vitro IC 50 = 12 µM), indicating a DDI risk through inhibition of absorption. Ronacaleret did not inhibit MRP4, discharging the possibility of enhanced first-pass elimination of rosuvastatin (reduced basolateral secretion from hepatocytes into blood). Therefore, a likely mechanism of the observed DDI is inhibition of intestinal OATP2B1, demonstrating the in vivo importance of this transporter in rosuvastatin absorption in humans. Copyright © 2016

  2. About the use of antagonistic bacteria and fungi

    OpenAIRE

    Tilcher, R.; Schmidt, C.; Lorenz, D.; Wolf, G. A.

    2002-01-01

    Microorganisms isolated from the phylloplane of vine and cereal plants inhibiting different phytopathogenic fungi were tested as biological control agents against Plasmopara viticola (downy mildew of grapevine). Based on screening in vitro against Phytophthora infestans, P. parasitica, Pythium ultimum, Botrytis cinerea 62 bacterial isolates were selected for tests with Plasmopara viticola.. Antifungal bacterial strains were assayed for antagonistic activity towards the grapevine dieback fungu...

  3. Isolation of Fusarium fujikuroi antagonistic bacteria and cloning of its ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-01

    Dec 1, 2009 ... effects of volatile metabolites produced by antagonistic P. fluorescens found in the isolates inhibited growth of F. fujikuroi in vitro. ... secondary metabolites play critical roles in many aspects of bacterium-host interactions. ... Nocardia, Sorangium, Brevibacterium, and Burkholderia. (Mavrodi et al., 2006; ...

  4. Naloxone : actions of an antagonist

    NARCIS (Netherlands)

    Dorp, Eveline Louise Arianna van

    2009-01-01

    The opioid antagonist naloxone has a special place in pharmacology – it has no intrinsic action of its own, but it is able to save lives in the case of life threatening side-effects caused by other drugs. Naloxone is an antagonist for all opioid receptors, but most specifically for the μ-opioid

  5. A novel antagonistic role of natural compound icariin on neurotoxicity of amyloid β peptide

    Directory of Open Access Journals (Sweden)

    Jianhui Liu

    2015-01-01

    Interpretation & conclusions: The results indicated a novel antagonistic role of icariin in the neurotoxicity of Aβ1-42 via inhibiting its aggregation, suggesting that icariin might have potential therapeutic benefits to delay or modify the progression of AD.

  6. alpha2-Adrenoceptor antagonists reverse the 5-HT2 receptor antagonist suppression of head-twitch behavior in mice.

    Science.gov (United States)

    Matsumoto, K; Mizowaki, M; Thongpraditchote, S; Murakami, Y; Watanabe, H

    1997-03-01

    The alpha2-adrenoceptor agonist clonidine, as well as 5-HT2 receptor antagonists, reportedly suppress 5-HT2 receptor-mediated head-twitch behavior. We investigated the effect of alpha2-adrenoceptor antagonists on the suppressive action of 5-HT2 receptor antagonists in mice pretreated with the noradrenaline toxin 6-hydroxydopamine (6-OHDA) or the 5-HT synthesis inhibitor p-chlorophenylalanine (p-CPA). In normal mice, idazoxan (0.08-0.2 mg/kg, IP) or yohimbine (0.2-2.0 mg/kg, IP), both alpha2-adrenoceptor antagonists, had no effect on the head-twitch response caused by 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT; 16 mg/kg, IP), but idazoxan significantly enhanced the response at 0.5 mg/kg. On the other hand, these alpha2-adrenoceptor antagonists, at doses that had no effect on the basal number of head-twitches (idazoxan 0.2 mg/kg and yohimbine 0.5 mg/kg), significantly attenuated not only the suppressive effect of clonidine (0.01 mg/kg, IP) on head-twitch response but also that of the 5-HT2 receptor antagonist ritanserin (0.03 mg/kg, IP). Moreover, idazoxan (0.2 mg/kg) also significantly reversed the inhibition by 0.01 mg/kg (IP) ketanserin, a selective 5-HT2 receptor antagonist. Pretreatment with 6-OHDA plus nomifensine but not with p-CPA significantly attenuated the effect of idazoxan (0.2-0.5 mg/kg) on the ritanserin inhibition of the head-twitch response. Prazosin, an alpha1-adrenoceptor antagonist, dose-dependently suppressed the response, and the effect of prazosin (1.25 mg/kg) was significantly attenuated by 0.5 mg/kg idazoxan. These results indicate that endogenous noradrenaline is involved in the apparent antagonistic interaction between selective alpha2-adrenoceptor antagonists and 5-HT2 receptor antagonists in the head-twitch response, and suggest that noradrenaline stimulation of alpha1-adrenoceptors may be involved in this apparent antagonism.

  7. Antiallergic effects of H1-receptor antagonists.

    Science.gov (United States)

    Baroody, F M; Naclerio, R M

    2000-01-01

    The primary mechanism of antihistamine action in the treatment of allergic diseases is believed to be competitive antagonism of histamine binding to cellular receptors (specifically, the H1-receptors), which are present on nerve endings, smooth muscles, and glandular cells. This notion is supported by the fact that structurally unrelated drugs antagonize the H1-receptor and provide clinical benefit. However, H1-receptor antagonism may not be their sole mechanism of action in treating allergic rhinitis. On the basis of in vitro and animal experiments, drugs classified as H1-receptor antagonists have long been recognized to have additional pharmacological properties. Most first-generation H1-antihistamines have anticholinergic, sedative, local anaesthetic, and anti-5-HT effects, which might favourably affect the symptoms of the allergic response but also contribute to side-effects. These additional properties are not uniformly distributed among drugs classified as H1-receptor antagonists. Azatadine, for example, inhibits in vitro IgE-mediated histamine and leukotriene (LT) release from mast cells and basophils. In human challenge models, terfenadine, azatadine, and loratadine reduce IgE-mediated histamine release. Cetirizine reduces eosinophilic infiltration at the site of antigen challenge in the skin, but not the nose. In a nasal antigen challenge model, cetirizine pretreatment did not affect the levels of histamine and prostaglandin D2 recovered in postchallenge lavages, whereas the levels of albumin, N-tosyl-L-arginine methyl ester (TAME) esterase activity, and LTs were reduced. Terfenadine, cetirizine, and loratadine blocked allergen-induced hyperresponsiveness to methacholine. In view of the complexity of the pathophysiology of allergy, a number of H1 antagonists with additional properties are currently under development for allergic diseases. Mizolastine, a new H1-receptor antagonist, has been shown to have additional actions that should help reduce the

  8. Studies on antagonistic marine streptomycetes

    Digital Repository Service at National Institute of Oceanography (India)

    Chandramohan, D.; Nair, S.

    Sixty nine strains of Streptomyces sp. isolated from the sediments of Andaman and Nicobar islands (Bay of Bengal) were screened for their antagonistic property against a number of test cultures (Vibrio sp., Klebsiella sp., Escherichia coli, Shigella...

  9. Progesterone receptor isoforms, agonists and antagonists differentially reprogram estrogen signaling.

    Science.gov (United States)

    Singhal, Hari; Greene, Marianne E; Zarnke, Allison L; Laine, Muriel; Al Abosy, Rose; Chang, Ya-Fang; Dembo, Anna G; Schoenfelt, Kelly; Vadhi, Raga; Qiu, Xintao; Rao, Prakash; Santhamma, Bindu; Nair, Hareesh B; Nickisch, Klaus J; Long, Henry W; Becker, Lev; Brown, Myles; Greene, Geoffrey L

    2018-01-12

    Major roadblocks to developing effective progesterone receptor (PR)-targeted therapies in breast cancer include the lack of highly-specific PR modulators, a poor understanding of the pro- or anti-tumorigenic networks for PR isoforms and ligands, and an incomplete understanding of the cross talk between PR and estrogen receptor (ER) signaling. Through genomic analyses of xenografts treated with various clinically-relevant ER and PR-targeting drugs, we describe how the activation or inhibition of PR differentially reprograms estrogen signaling, resulting in the segregation of transcriptomes into separate PR agonist and antagonist-mediated groups. These findings address an ongoing controversy regarding the clinical utility of PR agonists and antagonists, alone or in combination with tamoxifen, for breast cancer management. Additionally, the two PR isoforms PRA and PRB, bind distinct but overlapping genomic sites and interact with different sets of co-regulators to differentially modulate estrogen signaling to be either pro- or anti-tumorigenic. Of the two isoforms, PRA inhibited gene expression and ER chromatin binding significantly more than PRB. Differential gene expression was observed in PRA and PRB-rich patient tumors and PRA-rich gene signatures had poorer survival outcomes. In support of antiprogestin responsiveness of PRA-rich tumors, gene signatures associated with PR antagonists, but not PR agonists, predicted better survival outcomes. The better patient survival associated with PR antagonists versus PR agonists treatments was further reflected in the higher in vivo anti-tumor activity of therapies that combine tamoxifen with PR antagonists and modulators. This study suggests that distinguishing common effects observed due to concomitant interaction of another receptor with its ligand (agonist or antagonist), from unique isoform and ligand-specific effects will inform the development of biomarkers for patient selection and translation of PR

  10. Progesterone receptor isoforms, agonists and antagonists differentially reprogram estrogen signaling

    Science.gov (United States)

    Singhal, Hari; Greene, Marianne E.; Zarnke, Allison L.; Laine, Muriel; Al Abosy, Rose; Chang, Ya-Fang; Dembo, Anna G.; Schoenfelt, Kelly; Vadhi, Raga; Qiu, Xintao; Rao, Prakash; Santhamma, Bindu; Nair, Hareesh B.; Nickisch, Klaus J.; Long, Henry W.; Becker, Lev; Brown, Myles; Greene, Geoffrey L.

    2018-01-01

    Major roadblocks to developing effective progesterone receptor (PR)-targeted therapies in breast cancer include the lack of highly-specific PR modulators, a poor understanding of the pro- or anti-tumorigenic networks for PR isoforms and ligands, and an incomplete understanding of the cross talk between PR and estrogen receptor (ER) signaling. Through genomic analyses of xenografts treated with various clinically-relevant ER and PR-targeting drugs, we describe how the activation or inhibition of PR differentially reprograms estrogen signaling, resulting in the segregation of transcriptomes into separate PR agonist and antagonist-mediated groups. These findings address an ongoing controversy regarding the clinical utility of PR agonists and antagonists, alone or in combination with tamoxifen, for breast cancer management. Additionally, the two PR isoforms PRA and PRB, bind distinct but overlapping genomic sites and interact with different sets of co-regulators to differentially modulate estrogen signaling to be either pro- or anti-tumorigenic. Of the two isoforms, PRA inhibited gene expression and ER chromatin binding significantly more than PRB. Differential gene expression was observed in PRA and PRB-rich patient tumors and PRA-rich gene signatures had poorer survival outcomes. In support of antiprogestin responsiveness of PRA-rich tumors, gene signatures associated with PR antagonists, but not PR agonists, predicted better survival outcomes. The better patient survival associated with PR antagonists versus PR agonists treatments was further reflected in the higher in vivo anti-tumor activity of therapies that combine tamoxifen with PR antagonists and modulators. This study suggests that distinguishing common effects observed due to concomitant interaction of another receptor with its ligand (agonist or antagonist), from unique isoform and ligand-specific effects will inform the development of biomarkers for patient selection and translation of PR

  11. The Cultivation of Antagonistic Bacteria in Irradiated Sludge for Biological Control of Soft Rot Erwinias : Screening of Antagonistic Bacteria for biological Control of Soft Rot Erwinias

    International Nuclear Information System (INIS)

    Sermkiattipong, Ng.; Sangsuk, L; Rattanapiriyakul, P; Dejsirilert, S.; Thaveechai, N.

    1998-01-01

    Pure cultures of 57 bacterial isolates for antagonistic activity screening were isolated from three areas of soft rot infested vegetable soil and 58 isolates were obtained from commercial seed compost and seed compost product of Division of Soil and Water Conservation, Department of Land Development. A total of 115 bacterial isolates were evaluated for antagonizing activity against Erwinia carotovora subsp. atroceptica in vitro. Out of them, 18 isolates were antagonists by showing zone of inhibition ranging from 1 to 17 mm by diameter. Most of antagonistic bacteria were identified as Bacillus spp. whereas only one isolate was Pseudomonas vesicularis

  12. Sequential metabolism of AMG 487, a novel CXCR3 antagonist, results in formation of quinone reactive metabolites that covalently modify CYP3A4 Cys239 and cause time-dependent inhibition of the enzyme.

    Science.gov (United States)

    Henne, Kirk R; Tran, Thuy B; VandenBrink, Brooke M; Rock, Dan A; Aidasani, Divesh K; Subramanian, Raju; Mason, Andrew K; Stresser, David M; Teffera, Yohannes; Wong, Simon G; Johnson, Michael G; Chen, Xiaoqi; Tonn, George R; Wong, Bradley K

    2012-07-01

    CYP3A4-mediated biotransformation of (R)-N-(1-(3-(4-ethoxyphenyl)-4-oxo-3,4-dihydropyrido[2,3-d]pyrimidin-2-yl)ethyl)-N-(pyridin-3-ylmethyl)-2-(4-(trifluoromethoxy)phenyl)acetamide (AMG 487) was previously shown to generate an inhibitory metabolite linked to dose- and time-dependent pharmacokinetics in humans. Although in vitro activity loss assays failed to demonstrate CYP3A4 time-dependent inhibition (TDI) with AMG 487, its M2 phenol metabolite readily produced TDI when remaining activity was assessed using either midazolam or testosterone (K(I) = 0.73-0.74 μM, k(inact) = 0.088-0.099 min(-1)). TDI investigations using an IC(50) shift method successfully produced inhibition attributable to AMG 487, but only when preincubations were extended from 30 to 90 min. The shift magnitude was ∼3× for midazolam activity, but no shift was observed for testosterone activity. Subsequent partition ratio determinations conducted for M2 using recombinant CYP3A4 showed that inactivation was a relatively inefficient process (r = 36). CYP3A4-mediated biotransformation of [(3)H]M2 in the presence of GSH led to identification of two new metabolites, M4 and M5, which shifted focus away from M2 being directly responsible for TDI. M4 (hydroxylated M2) was further metabolized to form reactive intermediates that, upon reaction with GSH, produced isomeric adducts, collectively designated M5. Incubations conducted in the presence of [(18)O]H(2)O confirmed incorporation of oxygen from O(2) for the majority of M4 and M5 formed (>75%). Further evidence of a primary role for M4 in CYP3A4 TDI was generated by protein labeling and proteolysis experiments, in which M4 was found to be covalently bound to Cys239 of CYP3A4. These investigations confirmed a primarily role for M4 in CYP3A4 inactivation, suggesting that a more complex metabolic pathway was responsible for generation of inhibitory metabolites affecting AMG 487 human pharmacokinetics.

  13. Synthesis and testing of tetrodotoxin and batrachotoxin antagonists. Annual report, 1 February 1988-31 January 1989

    Energy Technology Data Exchange (ETDEWEB)

    Toll, L.

    1990-02-12

    Compounds have been synthesized as potential antagonists to the neurotoxin batrachotoxin. The compounds synthesized have been examined for binding affinity at the bactrachotoxin binding site in rat brain, and for ability to inhibit veratridine-stimulated (22)NA+ uptake into neuroblastoma cells. The compounds ranged in affinity from 2.7 to 200 uM. The compounds also varied in their abilities to stimulate or inhibit (22)NA+. The two highest affinity compounds proved to be complete antagonists, competitively inhibiting both basal- and veratridine-stimulated (22)NA+uptake. We have also made some progress in the synthesis of potential antagonists to the neurotoxin tetrodotoxin.

  14. FGFR antagonist induces protective autophagy in FGFR1-amplified breast cancer cell

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yi [The School of Biomedical Sciences, Chengdu Medical College, Chengdu 610083 (China); Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu (China); Xie, Xiaoyan; Li, Xinyi; Wang, Peiqi [State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University (China); Jing, Qian; Yue, Jiaqi; Liu, Yang [The School of Biomedical Sciences, Chengdu Medical College, Chengdu 610083 (China); Cheng, Zhong [Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu (China); Li, Jingyi, E-mail: li--jingyi@hotmail.com [The School of Biomedical Sciences, Chengdu Medical College, Chengdu 610083 (China); Song, Haixing [The School of Biomedical Sciences, Chengdu Medical College, Chengdu 610083 (China); Li, Guoyu, E-mail: liguoyulisa@163.com [School of Pharmacy, Shihezi University, Shihezi 832003 (China); Liu, Rui, E-mail: liurui_scu@hotmail.com [State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University (China); Wang, Jinhui [School of Pharmacy, Shihezi University, Shihezi 832003 (China)

    2016-05-20

    Breast cancer, representing approximately 30% of all gynecological cancer cases diagnosed yearly, is a leading cause of cancer-related mortality for women. Amplification of FGFR1 is frequently observed in breast cancers and is associated with poor prognosis. Though FGFRs have long been considered as anti-cancer drug targets, and a cluster of FGFR antagonists are currently under clinical trials, the precise cellular responses under the treatment of FGFR antagonists remains unclear. Here, we show that PD166866, an FGFR1-selective inhibitor, inhibits proliferation and triggers anoikis in FGFR1-amplified breast cancer cell lines. Notably, we demonstrate that PD166866 induces autophagy in FGFR1-amplified breast cancer cell lines, while blockage of autophagy by Atg5 knockdown further enhances the anti-proliferative activities of PD166866. Moreover, mechanistic study reveals that PD166866 induces autophagy through repressing Akt/mTOR signaling pathway. Together, the present study provides new insights into the molecular mechanisms underlying the anti-tumor activities of FGFR antagonists, and may further assist the FGFRs-based drug discovery. -- Highlights: •FGFR1 antagonist inhibits cell viability in FGFR1-amplified breast cancer cells. •FGFR1 antagonist induces autophagy in FGFR1-amplified breast cancer cells. •FGFR1 antagonist-induced autophagy is protective. •FGFR1 antagonist induces autophagy by inhibiting Akt/mTOR pathway.

  15. FGFR antagonist induces protective autophagy in FGFR1-amplified breast cancer cell

    International Nuclear Information System (INIS)

    Chen, Yi; Xie, Xiaoyan; Li, Xinyi; Wang, Peiqi; Jing, Qian; Yue, Jiaqi; Liu, Yang; Cheng, Zhong; Li, Jingyi; Song, Haixing; Li, Guoyu; Liu, Rui; Wang, Jinhui

    2016-01-01

    Breast cancer, representing approximately 30% of all gynecological cancer cases diagnosed yearly, is a leading cause of cancer-related mortality for women. Amplification of FGFR1 is frequently observed in breast cancers and is associated with poor prognosis. Though FGFRs have long been considered as anti-cancer drug targets, and a cluster of FGFR antagonists are currently under clinical trials, the precise cellular responses under the treatment of FGFR antagonists remains unclear. Here, we show that PD166866, an FGFR1-selective inhibitor, inhibits proliferation and triggers anoikis in FGFR1-amplified breast cancer cell lines. Notably, we demonstrate that PD166866 induces autophagy in FGFR1-amplified breast cancer cell lines, while blockage of autophagy by Atg5 knockdown further enhances the anti-proliferative activities of PD166866. Moreover, mechanistic study reveals that PD166866 induces autophagy through repressing Akt/mTOR signaling pathway. Together, the present study provides new insights into the molecular mechanisms underlying the anti-tumor activities of FGFR antagonists, and may further assist the FGFRs-based drug discovery. -- Highlights: •FGFR1 antagonist inhibits cell viability in FGFR1-amplified breast cancer cells. •FGFR1 antagonist induces autophagy in FGFR1-amplified breast cancer cells. •FGFR1 antagonist-induced autophagy is protective. •FGFR1 antagonist induces autophagy by inhibiting Akt/mTOR pathway.

  16. Positive side effects of Ca antagonists for osteoarthritic joints?results of an in vivo pilot study

    OpenAIRE

    Daniilidis, Kiriakos; Georges, Philipp; Tibesku, Carsten O; Prehm, Peter

    2015-01-01

    Background We have shown previously that some calcium antagonists inhibit hyaluronan export, loss of proteoglycans, and degradation of collagen from osteoarthritic cartilage. Clinically approved calcium antagonists normally are prescribed for cardiac arrhythmia. In the present study, we compared the effect of these drugs on osteoarthritic patients which had received no medication and patients which were also diagnosed for cardiac arrhythmias and were treated with calcium antagonists. The effe...

  17. Effect of calmodulin antagonists on contraction and45Ca movements in rat aorta

    NARCIS (Netherlands)

    Wermelskirchen, D.; Koch, P.; Wilhelm, D.; Nebel, U.; Leidig, A.; Wilffert, B.; Peters, Thies

    1989-01-01

    To study the selectivity of calmodulin antagonists it was assumed that they should inhibit noradrenaline (NA)- and K+-induced contractions similarly without an accompanying inhibition of45Ca uptake. Therefore, in isolated rat aorta the effects of W-7, calmidazolium and trifluoperazine on contraction

  18. Construction, purification, and characterization of a chimeric TH1 antagonist

    Directory of Open Access Journals (Sweden)

    Javier-González Luís

    2006-05-01

    Full Text Available Abstract Background TH1 immune response antagonism is a desirable approach to mitigate some autoimmune and inflammatory reactions during the course of several diseases where IL-2 and IFN-γ are two central players. Therefore, the neutralization of both cytokines could provide beneficial effects in patients suffering from autoimmune or inflammatory illnesses. Results A chimeric antagonist that can antagonize the action of TH1 immunity mediators, IFN-γ and IL-2, was designed, engineered, expressed in E. coli, purified and evaluated for its in vitro biological activities. The TH1 antagonist molecule consists of the extracellular region for the human IFNγ receptor chain 1 fused by a four-aminoacid linker peptide to human 60 N-terminal aminoacid residues of IL-2. The corresponding gene fragments were isolated by RT-PCR and cloned in the pTPV-1 vector. E. coli (W3110 strain was transformed with this vector. The chimeric protein was expressed at high level as inclusion bodies. The protein was partially purified by pelleting and washing. It was then solubilized with strong denaturant and finally refolded by gel filtration. In vitro biological activity of chimera was demonstrated by inhibition of IFN-γ-dependent HLA-DR expression in Colo 205 cells, inhibition of IFN-γ antiproliferative effect on HEp-2 cells, and by a bidirectional effect in assays for IL-2 T-cell dependent proliferation: agonism in the absence versus inhibition in the presence of IL-2. Conclusion TH1 antagonist is a chimeric protein that inhibits the in vitro biological activities of human IFN-γ, and is a partial agonist/antagonist of human IL-2. With these attributes, the chimera has the potential to offer a new opportunity for the treatment of autoimmune and inflammatory diseases.

  19. Deoxycholic acid conjugates are muscarinic cholinergic receptor antagonists.

    Science.gov (United States)

    Raufman, Jean-Pierre; Chen, Ying; Zimniak, Piotr; Cheng, Kunrong

    2002-08-01

    In the course of examining the actions of major human bile acids on cholinergic receptors, we discovered that conjugates of lithocholic acid are partial muscarinic agonists. In the present communication, we report that conjugates of deoxycholic acid (DC) act as cholinergic muscarinic receptor antagonists. Chinese hamster ovary (CHO) cells expressing rat M3-muscarinic receptors were used to test bile acids for inhibition of radioligand [N- (3)H-methylscopolamine ((3)H-NMS)] binding; alteration of inositol phosphate (IP) formation; mitogen-activated protein (MAP) kinase phosphorylation and cell toxicity. We observed approximately 18.8, 30.3 and 37.1% inhibition of (3)H-NMS binding with DC and its glycine (DCG) and taurine (DCT) conjugates, respectively (all 100 micromol/l, p exclusion or lactate dehydrogenase release from CHO-M3 cells. We observed the following rank order of potency (IC(50) micromol/l) for inhibition of (3)H-NMS by muscarinic antagonists and bile acids: NMS (0.0004) > 4-DAMP (0.009) > atropine (0.012) > DCT (170) > DCG (250). None of the bile acids tested were hydrolyzed by recombinant cholinesterase. At concentrations achieved in human bile, DC derivatives are natural muscarinic antagonists. Copyright 2002 S. Karger AG, Basel

  20. Twisted gastrulation, a BMP antagonist, exacerbates podocyte injury.

    Directory of Open Access Journals (Sweden)

    Sachiko Yamada

    Full Text Available Podocyte injury is the first step in the progression of glomerulosclerosis. Previous studies have demonstrated the beneficial effect of bone morphogenetic protein 7 (Bmp7 in podocyte injury and the existence of native Bmp signaling in podocytes. Local activity of Bmp7 is controlled by cell-type specific Bmp antagonists, which inhibit the binding of Bmp7 to its receptors. Here we show that the product of Twisted gastrulation (Twsg1, a Bmp antagonist, is the central negative regulator of Bmp function in podocytes and that Twsg1 null mice are resistant to podocyte injury. Twsg1 was the most abundant Bmp antagonist in murine cultured podocytes. The administration of Bmp induced podocyte differentiation through Smad signaling, whereas the simultaneous administration of Twsg1 antagonized the effect. The administration of Bmp also inhibited podocyte proliferation, whereas simultaneous administration of Twsg1 antagonized the effect. Twsg1 was expressed in the glomerular parietal cells (PECs and distal nephron of the healthy kidney, and additionally in damaged glomerular cells in a murine model of podocyte injury. Twsg1 null mice exhibited milder hypoalbuminemia and hyperlipidemia, and milder histological changes while maintaining the expression of podocyte markers during podocyte injury model. Taken together, our results show that Twsg1 plays a critical role in the modulation of protective action of Bmp7 on podocytes, and that inhibition of Twsg1 is a promising means of development of novel treatment for podocyte injury.

  1. Excitatory amino acid receptor antagonists

    DEFF Research Database (Denmark)

    Johansen, T N; Frydenvang, Karla Andrea; Ebert, B

    1997-01-01

    We have previously shown that (RS)-2-amino-2-(5-tert-butyl-3-hydroxyisoxazol-4-yl)acetic acid (ATAA) is an antagonist at N-methyl-D-aspartic acid (NMDA) and (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors. We have now resolved ATAA via diastereomeric salt formation...

  2. ANTAGONISTIC POTENTIAL OF FLUORESCENT Pseudomonas ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    This study focused on the antagonistic potential of fluorescent Pseudomonas in vitro, and its inoculation effect on growth performance of Lycopersicon esculentum in Fusarium oxysporum and Rhizoctonia solani infested soil. Biochemical characteristics of fluorescent Pseudomonas showed that all ten isolates were positive ...

  3. The effect of H 1 and H 2 receptor antagonists on melanogenesis

    Directory of Open Access Journals (Sweden)

    Tag S Anbar

    2012-01-01

    Full Text Available Background: Histamine was found to stimulate melanogenesis in cultured human melanocytes specifically mediated by histamine H 2 receptors via protein kinase A activation. Based on this finding, the effect of topically applied H 2 antagonist on UVB-irradiated Guinea pigs′ skin was examined and found to be suppressive on the post-irradiation melanogenesis. Aims: In this study, we tried to explore the role of topically applied H 1 and H 2 receptor antagonists, in inhibition of UVB-induced melanization. Methods: The effect of topically applied H 1 and H 2 receptor antagonists in inhibition of melanization was done clinically and histochemically using Fontana Masson and DOPA reactions compared with placebo. Results: The post-irradiation pigmentation was found to be brownish/black instead of the original light brown color. This color change occurred below the shaved orange-red fur suggesting a switch of melanogenesis from pheomelanin to eumelanin. The induced pigmentation was suppressed by topically applied H 2 antagonist while both H 1 antagonist and vehicle had no effect. The microscopic examination showed that the keratinocytes in the H 2 antagonist-treated areas contained few melanosomes while the nearby dendrites are full of them. Conclusion: H 2 antagonists′ inhibition of UVB-induced pigmentation is not only due to suppression of melanization but also due to a specific action on melanosomes′ transfer.

  4. Characterization of a novel non-steroidal glucocorticoid receptor antagonist

    International Nuclear Information System (INIS)

    Li, Qun-Yi; Zhang, Meng; Hallis, Tina M.; DeRosier, Therese A.; Yue, Jian-Min; Ye, Yang; Mais, Dale E.; Wang, Ming-Wei

    2010-01-01

    Selective antagonists of the glucocorticoid receptor (GR) are desirable for the treatment of hypercortisolemia associated with Cushing's syndrome, psychic depression, obesity, diabetes, neurodegenerative diseases, and glaucoma. NC3327, a non-steroidal small molecule with potent binding affinity to GR (K i = 13.2 nM), was identified in a high-throughput screening effort. As a full GR antagonist, NC3327 greatly inhibits the dexamethasone (Dex) induction of marker genes involved in hepatic gluconeogenesis, but has a minimal effect on matrix metalloproteinase 9 (MMP-9), a GR responsive pro-inflammatory gene. Interestingly, the compound recruits neither coactivators nor corepressors to the GR complex but competes with glucocorticoids for the interaction between GR and a coactivator peptide. Moreover, NC3327 does not trigger GR nuclear translocation, but significantly blocks Dex-induced GR transportation to the nucleus, and thus appears to be a 'competitive' GR antagonist. Therefore, the non-steroidal compound, NC3327, may represent a new class of GR antagonists as potential therapeutics for a variety of cortisol-related endocrine disorders.

  5. Characterization of a novel non-steroidal glucocorticoid receptor antagonist

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qun-Yi; Zhang, Meng [The National Center for Drug Screening, Shanghai (China); State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai (China); Hallis, Tina M.; DeRosier, Therese A. [Cell Systems Division, Invitrogen, Madison, WI (United States); Yue, Jian-Min; Ye, Yang [State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai (China); Mais, Dale E. [The National Center for Drug Screening, Shanghai (China); MPI Research, Mattawan, MI (United States); Wang, Ming-Wei, E-mail: wangmw@mail.shcnc.ac.cn [The National Center for Drug Screening, Shanghai (China); State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai (China)

    2010-01-15

    Selective antagonists of the glucocorticoid receptor (GR) are desirable for the treatment of hypercortisolemia associated with Cushing's syndrome, psychic depression, obesity, diabetes, neurodegenerative diseases, and glaucoma. NC3327, a non-steroidal small molecule with potent binding affinity to GR (K{sub i} = 13.2 nM), was identified in a high-throughput screening effort. As a full GR antagonist, NC3327 greatly inhibits the dexamethasone (Dex) induction of marker genes involved in hepatic gluconeogenesis, but has a minimal effect on matrix metalloproteinase 9 (MMP-9), a GR responsive pro-inflammatory gene. Interestingly, the compound recruits neither coactivators nor corepressors to the GR complex but competes with glucocorticoids for the interaction between GR and a coactivator peptide. Moreover, NC3327 does not trigger GR nuclear translocation, but significantly blocks Dex-induced GR transportation to the nucleus, and thus appears to be a 'competitive' GR antagonist. Therefore, the non-steroidal compound, NC3327, may represent a new class of GR antagonists as potential therapeutics for a variety of cortisol-related endocrine disorders.

  6. The Effect of Antagonist Muscle Sensory Input on Force Regulation.

    Directory of Open Access Journals (Sweden)

    Tanya Onushko

    Full Text Available The purpose of this study was to understand how stretch-related sensory feedback from an antagonist muscle affects agonist muscle output at different contraction levels in healthy adults. Ten young (25.3 ± 2.4 years, healthy subjects performed constant isometric knee flexion contractions (agonist at 6 torque levels: 5%, 10%, 15%, 20%, 30%, and 40% of their maximal voluntary contraction. For half of the trials, subjects received patellar tendon taps (antagonist sensory feedback during the contraction. We compared error in targeted knee flexion torque and hamstring muscle activity, with and without patellar tendon tapping, across the 6 torque levels. At lower torque levels (5%, 10%, and 15%, subjects produced greater knee torque error following tendon tapping compared with the same torque levels without tendon tapping. In contrast, we did not find any difference in torque output at higher target levels (20%, 30%, and 40% between trials with and without tendon tapping. We also observed a load-dependent increase in the magnitude of agonist muscle activity after tendon taps, with no associated load-dependent increase in agonist and antagonist co-activation, or reflex inhibition from the antagonist tapping. The findings suggest that at relatively low muscle activity there is a deficiency in the ability to correct motor output after sensory disturbances, and cortical centers (versus sub-cortical are likely involved.

  7. Antagonistic activity of marine sponges associated Actinobacteria

    Directory of Open Access Journals (Sweden)

    Selvakumar Dharmaraj

    2016-06-01

    Full Text Available Objective: To focus on the isolation and preliminary characterization of marine sponges associated Actinobacteria particularly Streptomyces species and also their antagonistic activities against bacterial and fungal pathogens. Methods: The sponges were collected from Kovalam and Vizhinjam port of south-west coast of Kerala, India. Isolation of strains was carried out from sponge extracts using international Streptomyces project media. For preliminary identification of the strains, morphological (mycelial colouration, soluble pigments, melanoid pigmentation, spore morphology, nutritional uptake (carbon utilisation, amonoacids influence, sodium chloride tolerance, physiological (pH, temperature and chemotaxonomical characterization were done. Antimicrobial studies were also carried out for the selected strains. Results: With the help of the spicule structures, the collected marine sponges were identified as Callyspongia diffusa, Mycale mytilorum, Tedania anhelans and Dysidea fragilis. Nearly 94 strains were primarily isolated from these sponges and further they were sub-cultured using international Streptomyces project media. The strains exhibited different mycelial colouration (aerial and substrate, soluble and melanoid pigmentations. The strains possessed three types of sporophore morphology namely rectus flexibilis, spiral and retinaculiaperti. Among the 94 isolates, seven exhibited antibacterial and antifungal activities with maximal zone of inhibition of 30 mm. The nutritional, physiological and chemotaxonomical characteristic study helped in the conventional identification of the seven strains and they all suggest that the strains to be grouped under the genus Streptomyces. Conclusions: The present study clearly helps in the preliminary identification of the isolates associated with marine sponges. Antagonistic activities prove the production of antimicrobial metabolites against the pathogens. Marine sponges associated Streptomyces are

  8. Smac mimetics as IAP antagonists.

    Science.gov (United States)

    Fulda, Simone

    2015-03-01

    As the Inhibitor of Apoptosis (IAP) proteins are expressed at high levels in human cancers, they represent promising targets for therapeutic intervention. Small-molecule inhibitors of IAP proteins mimicking the endogenous IAP antagonist Smac, called Smac mimetics, neutralize IAP proteins and thereby promote the induction of cell death. Smac mimetics have been shown in preclinical models of human cancer to directly trigger cancer cell death or to sensitize for cancer cell death induced by a variety of cytotoxic stimuli. Smac mimetics are currently undergoing clinical evaluation in phase I/II trials, demonstrating that therapeutic targeting of IAP proteins has reached the clinical stage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Similarities and Distinctions in Actions of Surface-Directed and Classic Androgen Receptor Antagonists.

    Directory of Open Access Journals (Sweden)

    Ji Ho Suh

    Full Text Available The androgen receptor (AR surface-directed antagonist MJC13 inhibits AR function and proliferation of prostate cancer (PC cells. These effects are related to arrest of an AR/chaperone complex in the cytoplasm. Here, we compared MJC13 and classic AR antagonists such as flutamide and bicalutamide. Microarray analysis and confirmatory qRT-PCR reveals that MJC13 and flutamide inhibit dihydrotestosterone (DHT-dependent genes in LNCaP PC cells. Both compounds are equally effective on a genome wide basis and as effective as second generation AR antagonists (MDV3100, ARN-509 at selected genes. MJC13 inhibits AR binding to the prostate specific antigen (PSA promoter more strongly than flutamide, consistent with different mechanisms of action. Examination of efficacy of MJC13 in conditions that reflect aspects castrate resistant prostate cancer (CRPC reveals that it inhibits flutamide activation of an AR mutant (ART877A that emerges during flutamide withdrawal syndrome, but displays greatly restricted gene-specific activity in 22Rv1 cells that express a constitutively active truncated AR and is inactive against glucocorticoid receptor (GR, which can co-opt androgen-dependent signaling networks in CRPC. Importantly, MJC13 inhibits AR interactions with SRC2 and β-catenin in the nucleus and, unlike flutamide, strongly inhibits amplification of AR activity obtained with transfected SRC2 and β-catenin. MJC13 also inhibits DHT and β-catenin-enhanced cell division in LNCaP cells. Thus, a surface-directed antagonist can block AR activity in some conditions in which a classic antagonist fails and may display utility in particular forms of CRPC.

  10. Histamine H4 receptor antagonists are superior to traditional antihistamines in the attenuation of experimental pruritus.

    Science.gov (United States)

    Dunford, Paul J; Williams, Kacy N; Desai, Pragnya J; Karlsson, Lars; McQueen, Daniel; Thurmond, Robin L

    2007-01-01

    Histamine is a potent mediator of itch in humans, yet histamine H(1) receptor antagonists have been shown to be of limited use in the treatment of certain chronic pruritic diseases. The histamine H(4) receptor is a recently described histamine receptor, expressed on hematopoietic cells, linked to the pathology of allergy and asthma. The contribution of the novel histamine H(4) receptor to histaminergic and allergic pruritus was investigated. Histamine and a selective histamine H(4) receptor agonist caused scratching responses in mice, which were almost completely attenuated in histamine H(4) receptor knockout mice or by pretreatment with the selective histamine H(4) receptor antagonist, JNJ 7777120. Pruritus induced by allergic mechanisms was also potently inhibited with histamine H(4) receptor antagonist treatment or in histamine H(4) receptor knockout mice. In all cases, the inhibitory effect of histamine H(4) receptor antagonist was greater than those observed with histamine H(1) receptor antagonists. The histamine H(4) receptor-mediated pruritus was shown to be independent of mast cells or other hematopoietic cells and may result from actions on peripheral neurons. These results demonstrate that the histamine H(4) receptor is involved in pruritic responses in mice to a greater extent than the histamine H(1) receptor. Histamine H(4) receptor antagonists may have therapeutic utility for treating chronic pruritic diseases in humans where histamine H(1) receptor antagonists are not effective.

  11. Antiviral activity of formyl peptide receptor 2 antagonists against influenza viruses.

    Science.gov (United States)

    Courtin, Noémie; Fotso, Aurélien Fotso; Fautrad, Pierre; Mas, Floriane; Alessi, Marie-Christine; Riteau, Béatrice

    2017-07-01

    Influenza viruses are one of the most important respiratory pathogens worldwide, causing both epidemic and pandemic infections. The aim of the study was to evaluate the effect of FPR2 antagonists PBP10 and BOC2 on influenza virus replication. We determined that these molecules exhibit antiviral effects against influenza A (H1N1, H3N2, H6N2) and B viruses. FPR2 antagonists used in combination with oseltamivir showed additive antiviral effects. Mechanistically, the antiviral effect of PBP10 and BOC2 is mediated through early inhibition of virus-induced ERK activation. Finally, our preclinical studies showed that FPR2 antagonists protected mice from lethal infections induced by influenza, both in a prophylactic and therapeutic manner. Thus, FPR2 antagonists might be explored for novel treatments against influenza. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Antagonistic neural networks underlying differentiated leadership roles

    Science.gov (United States)

    Boyatzis, Richard E.; Rochford, Kylie; Jack, Anthony I.

    2014-01-01

    The emergence of two distinct leadership roles, the task leader and the socio-emotional leader, has been documented in the leadership literature since the 1950s. Recent research in neuroscience suggests that the division between task-oriented and socio-emotional-oriented roles derives from a fundamental feature of our neurobiology: an antagonistic relationship between two large-scale cortical networks – the task-positive network (TPN) and the default mode network (DMN). Neural activity in TPN tends to inhibit activity in the DMN, and vice versa. The TPN is important for problem solving, focusing of attention, making decisions, and control of action. The DMN plays a central role in emotional self-awareness, social cognition, and ethical decision making. It is also strongly linked to creativity and openness to new ideas. Because activation of the TPN tends to suppress activity in the DMN, an over-emphasis on task-oriented leadership may prove deleterious to social and emotional aspects of leadership. Similarly, an overemphasis on the DMN would result in difficulty focusing attention, making decisions, and solving known problems. In this paper, we will review major streams of theory and research on leadership roles in the context of recent findings from neuroscience and psychology. We conclude by suggesting that emerging research challenges the assumption that role differentiation is both natural and necessary, in particular when openness to new ideas, people, emotions, and ethical concerns are important to success. PMID:24624074

  13. Antagonistic Neural Networks Underlying Differentiated Leadership Roles

    Directory of Open Access Journals (Sweden)

    Richard Eleftherios Boyatzis

    2014-03-01

    Full Text Available The emergence of two distinct leadership roles, the task leader and the socio-emotional leader, has been documented in the leadership literature since the 1950’s. Recent research in neuroscience suggests that the division between task oriented and socio-emotional oriented roles derives from a fundamental feature of our neurobiology: an antagonistic relationship between two large-scale cortical networks -- the Task Positive Network (TPN and the Default Mode Network (DMN. Neural activity in TPN tends to inhibit activity in the DMN, and vice versa. The TPN is important for problem solving, focusing of attention, making decisions, and control of action. The DMN plays a central role in emotional self-awareness, social cognition, and ethical decision making. It is also strongly linked to creativity and openness to new ideas. Because activation of the TPN tends to suppress activity in the DMN, an over-emphasis on task oriented leadership may prove deleterious to social and emotional aspects of leadership. Similarly, an overemphasis on the DMN would result in difficulty focusing attention, making decisions and solving known problems. In this paper, we will review major streams of theory and research on leadership roles in the context of recent findings from neuroscience and psychology. We conclude by suggesting that emerging research challenges the assumption that role differentiation is both natural and necessary, in particular when openness to new ideas, people, emotions, and ethical concerns are important to success.

  14. Antagonistic neural networks underlying differentiated leadership roles.

    Science.gov (United States)

    Boyatzis, Richard E; Rochford, Kylie; Jack, Anthony I

    2014-01-01

    The emergence of two distinct leadership roles, the task leader and the socio-emotional leader, has been documented in the leadership literature since the 1950s. Recent research in neuroscience suggests that the division between task-oriented and socio-emotional-oriented roles derives from a fundamental feature of our neurobiology: an antagonistic relationship between two large-scale cortical networks - the task-positive network (TPN) and the default mode network (DMN). Neural activity in TPN tends to inhibit activity in the DMN, and vice versa. The TPN is important for problem solving, focusing of attention, making decisions, and control of action. The DMN plays a central role in emotional self-awareness, social cognition, and ethical decision making. It is also strongly linked to creativity and openness to new ideas. Because activation of the TPN tends to suppress activity in the DMN, an over-emphasis on task-oriented leadership may prove deleterious to social and emotional aspects of leadership. Similarly, an overemphasis on the DMN would result in difficulty focusing attention, making decisions, and solving known problems. In this paper, we will review major streams of theory and research on leadership roles in the context of recent findings from neuroscience and psychology. We conclude by suggesting that emerging research challenges the assumption that role differentiation is both natural and necessary, in particular when openness to new ideas, people, emotions, and ethical concerns are important to success.

  15. Effects of sigma(1) receptor ligand MS-377 on D(2) antagonists-induced behaviors.

    Science.gov (United States)

    Karasawa, Jun-ichi; Takahashi, Shinji; Takagi, Kaori; Horikomi, Kazutoshi

    2002-10-01

    (R)-(+)-1-(4-Chlorophenyl)-3-[4-(2-methoxyethyl)piperazin-1-yl]methyl-2-pyrrolidinone L-tartrate (MS-377) is a novel antipsychotic agent with selective and high affinity for sigma(1) receptor. The present study was carried out to clarify the interaction of MS-377 with dopamine D(2) receptor antagonists (D(2) antagonists) in concurrent administration, and then the involvement of sigma receptors in the interaction. The effects of MS-377 on haloperidol- or sultopride-induced inhibition of apomorphine-induced climbing behavior and catalepsy were investigated in mice and rats, respectively. In addition, the effects of (+)-SKF-10,047 and SA4503, both of which are sigma receptor agonists, and WAY-100,635, which is a 5-HT(1A) receptor antagonist, on the interaction due to the concurrent use were also investigated. MS-377 potentiated the inhibitory effects of haloperidol or sultopride on apomorphine-induced climbing behavior in a dose-dependent manner. In contrast, MS-377 did not affect the catalepsy induction by these drugs. The potentiation of the inhibitory effects of haloperidol or sultopride on apomorphine-induced climbing behavior by MS-377 was not inhibited by WAY-100,635, but was inhibited by (+)-SKF-10,047 and SA4503. These findings showed that MS-377 potentiates the efficacy of D(2) antagonists, but it does not deteriorate the adverse effect. Moreover, sigma(1) receptors are involved in this potentiation of the efficacy of D(2) antagonists by MS-377.

  16. Gonadotrophin-releasing hormone antagonists for assisted reproductive technology.

    Science.gov (United States)

    Al-Inany, Hesham G; Youssef, Mohamed A; Ayeleke, Reuben Olugbenga; Brown, Julie; Lam, Wai Sun; Broekmans, Frank J

    2016-04-29

    Gonadotrophin-releasing hormone (GnRH) antagonists can be used to prevent a luteinizing hormone (LH) surge during controlled ovarian hyperstimulation (COH) without the hypo-oestrogenic side-effects, flare-up, or long down-regulation period associated with agonists. The antagonists directly and rapidly inhibit gonadotrophin release within several hours through competitive binding to pituitary GnRH receptors. This property allows their use at any time during the follicular phase. Several different regimens have been described including multiple-dose fixed (0.25 mg daily from day six to seven of stimulation), multiple-dose flexible (0.25 mg daily when leading follicle is 14 to 15 mm), and single-dose (single administration of 3 mg on day 7 to 8 of stimulation) protocols, with or without the addition of an oral contraceptive pill. Further, women receiving antagonists have been shown to have a lower incidence of ovarian hyperstimulation syndrome (OHSS). Assuming comparable clinical outcomes for the antagonist and agonist protocols, these benefits would justify a change from the standard long agonist protocol to antagonist regimens. This is an update of a Cochrane review first published in 2001, and previously updated in 2006 and 2011. To evaluate the effectiveness and safety of gonadotrophin-releasing hormone (GnRH) antagonists compared with the standard long protocol of GnRH agonists for controlled ovarian hyperstimulation in assisted conception cycles. We searched the Cochrane Menstrual Disorders and Subfertility Group Trials Register (searched from inception to May 2015), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library, inception to 28 April 2015), Ovid MEDLINE (1966 to 28 April 2015), EMBASE (1980 to 28 April 2015), PsycINFO (1806 to 28 April 2015), CINAHL (to 28 April 2015) and trial registers to 28 April 2015, and handsearched bibliographies of relevant publications and reviews, and abstracts of major scientific meetings, for

  17. Bartonella quintana lipopolysaccharide (LPS): structure and characteristics of a potent TLR4 antagonist for in-vitro and in-vivo applications

    NARCIS (Netherlands)

    Malgorzata-Miller, G.; Heinbockel, L.; Brandenburg, K.; Meer, J.W.M. van der; Netea, M.G.; Joosten, L.A.B.

    2016-01-01

    The pattern recognition receptor TLR4 is well known as a crucial receptor during infection and inflammation. Several TLR4 antagonists have been reported to inhibit the function of TLR4. Both natural occurring antagonists, lipopolysaccharide (LPS) from Gram-negative bacteria as well as synthetic

  18. Frequent epigenetic inactivation of Wnt antagonist genes in breast cancer

    Science.gov (United States)

    Suzuki, H; Toyota, M; Caraway, H; Gabrielson, E; Ohmura, T; Fujikane, T; Nishikawa, N; Sogabe, Y; Nojima, M; Sonoda, T; Mori, M; Hirata, K; Imai, K; Shinomura, Y; Baylin, S B; Tokino, T

    2008-01-01

    Although mutation of APC or CTNNB1 (β-catenin) is rare in breast cancer, activation of Wnt signalling is nonetheless thought to play an important role in breast tumorigenesis, and epigenetic silencing of Wnt antagonist genes, including the secreted frizzled-related protein (SFRP) and Dickkopf (DKK) families, has been observed in various tumours. In breast cancer, frequent methylation and silencing of SFRP1 was recently documented; however, altered expression of other Wnt antagonist genes is largely unknown. In the present study, we found frequent methylation of SFRP family genes in breast cancer cell lines (SFRP1, 7 out of 11, 64%; SFRP2, 11 out of 11, 100%; SFRP5, 10 out of 11, 91%) and primary breast tumours (SFRP1, 31 out of 78, 40%; SFRP2, 60 out of 78, 77%; SFRP5, 55 out of 78, 71%). We also observed methylation of DKK1, although less frequently, in cell lines (3 out of 11, 27%) and primary tumours (15 out of 78, 19%). Breast cancer cell lines express various Wnt ligands, and overexpression of SFRPs inhibited cancer cell growth. In addition, overexpression of a β-catenin mutant and depletion of SFRP1 using small interfering RNA synergistically upregulated transcriptional activity of T-cell factor/lymphocyte enhancer factor. Our results confirm the frequent methylation and silencing of Wnt antagonist genes in breast cancer, and suggest that their loss of function contributes to activation of Wnt signalling in breast carcinogenesis. PMID:18283316

  19. Antagonistic action of Streptococcus salivarius and Streptococcus faecalis to Mycobacterium tuberculosis.

    Science.gov (United States)

    Darling, C L; Hart, G D

    1976-10-01

    Streptococcus salivarius and Streptococcus faecalis were found to inhibit the growth of Mycobacterium tuberculosis on Löwenstein-Jensen and Middlebrook 7H11 agars, but not on the latter medium when antibacterial drugs were added. S. faecalis was found to be more inhibitory than S. salivarius to 15 strains of M. tuberculosis. S. salivarius produced little or no inhibition of growth of Runyon group III organisms but was very antagonistic to Runyon group I mycobacteria.

  20. Regarding the unitary theory of agonist and antagonist action at presynaptic adrenoceptors.

    Science.gov (United States)

    Kalsner, S; Abdali, S A

    2001-06-01

    1. The linkage between potentiation of field stimulation-induced noradrenaline release and blockade of the presynaptic inhibitory effect of exogenous noradrenaline by a presynaptic antagonist was examined in superfused rabbit aorta preparations. 2. Rauwolscine clearly potentiated the release of noradrenaline in response to 100 pulses at 2 Hz but reduced the capacity of noradrenaline to inhibit transmitter release to a questionable extent, and then only when comparisons were made with untreated, rather then to rauwolscine-treated, controls. 3. Aortic preparations exposed for 60 min to rauwolscine followed by superfusion with antagonist-free Krebs for 60 min retained the potentiation of stimulation-induced transmitter release but no antagonism of the noradrenaline-induced inhibition could be detected at either of two noradrenaline concentrations when comparisons were made with rauwolscine treated controls. 4. Comparisons of the inhibitory effect of exogenous noradrenaline (1.8 x 10-6 M) on transmitter efflux in the presence and absence of rauwolscine pretreatment revealed that the antagonist enhanced rather than antagonized the presynaptic inhibition by noradrenaline. 5 It is concluded that the unitary hypothesis that asserts that antagonist enhancement of transmitter release and its blockade of noradrenaline induced inhibition are manifestations of a unitary event are not supportable.

  1. Antimicrobial activity of extracellular metabolites from antagonistic bacteria isolated from potato (Solanum phureja) crops

    OpenAIRE

    Sinar David Granada García; Antoni Rueda Lorza; Carlos Alberto Peláez

    2014-01-01

    Microorganisms for biological control are capable of producing active compounds that inhibit the development of phytopathogens, constituting a promising tool toob tain active principles that could replace synthetic pesticides. This study evaluatedtheability of severalpotentialbiocontrol microorganismsto produce active extracellular metabolites. In vitro antagonistic capability of 50 bacterial isolates from rhizospheric soils of "criolla" potato (Solanum phureja) was tested through dual cultur...

  2. Tetrahydro-4-quinolinamines identified as novel P2Y(1) receptor antagonists.

    Science.gov (United States)

    Morales-Ramos, Angel I; Mecom, John S; Kiesow, Terry J; Graybill, Todd L; Brown, Gregory D; Aiyar, Nambi V; Davenport, Elizabeth A; Kallal, Lorena A; Knapp-Reed, Beth A; Li, Peng; Londregan, Allyn T; Morrow, Dwight M; Senadhi, Shobha; Thalji, Reema K; Zhao, Steve; Burns-Kurtis, Cynthia L; Marino, Joseph P

    2008-12-01

    High-throughput screening of the GSK compound collection against the P2Y(1) receptor identified a novel series of tetrahydro-4-quinolinamine antagonists. Optimal substitution around the piperidine group was pivotal for ensuring activity. An exemplar analog from this series was shown to inhibit platelet aggregation.

  3. Benzofuran-substituted urea derivatives as novel P2Y(1) receptor antagonists.

    Science.gov (United States)

    Thalji, Reema K; Aiyar, Nambi; Davenport, Elizabeth A; Erhardt, Joseph A; Kallal, Lorena A; Morrow, Dwight M; Senadhi, Shobha; Burns-Kurtis, Cynthia L; Marino, Joseph P

    2010-07-15

    Benzofuran-substituted urea analogs have been identified as novel P2Y(1) receptor antagonists. Structure-activity relationship studies around the urea and the benzofuran moieties resulted in compounds having improved potency. Several analogs were shown to inhibit ADP-mediated platelet activation. 2010 Elsevier Ltd. All rights reserved.

  4. Anti-HIV Effect of Liposomes Bearing CXCR4 Receptor Antagonist ...

    African Journals Online (AJOL)

    Purpose: To evaluate lymphatic system targeting and inhibitory ability of N15P nano-liposomal preparation (naLipo-N15P) of CXCR4 receptor antagonist in HIV infection. Methods: Chemotactic and chemotaxic inhibition activity assays were used to analyze the biological activity of naLipo-N15P. The anti-HIV potential of ...

  5. New antagonist agents of neuropeptide y receptors

    Directory of Open Access Journals (Sweden)

    Ignacio Aldana

    2000-12-01

    Full Text Available In the CNS, NPY has been implicated in obesity and feeding, endocrine function and metabolism. Potent and selective rNPY antagonists will be able to probe the merits of this approach for the treatment of obesity. We report the synthesis and preliminary evaluation of some hydrazide derivatives as antagonists of rNPY.

  6. S179D prolactin: antagonistic agony!

    Science.gov (United States)

    Walker, Ameae M

    2007-09-30

    The aims of this review are three-fold: first, to collate what is known about the production and activities of phosphorylated prolactin (PRL), the latter largely, but not exclusively, as illustrated through the use of the molecular mimic, S179D PRL; second, to apply this and related knowledge to produce an updated model of prolactin-receptor interactions that may apply to other members of this cytokine super-family; and third, to promote a shift in the current paradigm for the development of clinically important growth antagonists. This third aim explains the title since, based on results with S179D PRL, it is proposed that agents which signal to antagonistic ends may be better therapeutics than pure antagonists-hence antagonistic agony. Since S179D PRL is not a pure antagonist, we have proposed the term selective prolactin receptor modulator (SPeRM) for this and like molecules.

  7. [Extracorporeal life support in calcium antagonist intoxication].

    Science.gov (United States)

    Groot, M W; Grewal, S; Meeder, H J; van Thiel, R J; den Uil, C A

    2017-01-01

    Intoxication with calcium antagonists is associated with poor outcome. Even mild calcium antagonist overdose may be fatal. A 51-year-old woman and a 51-year-old man came to the Accident and Emergency Department in severe shock after they had taken a calcium antagonist overdose. After extensive medicinal therapy had failed, they both needed extracorporeal life support (ECLS) as a bridge to recovery. In severe calcium antagonist overdose, the combination of vasoplegia and cardiac failure leads to refractory shock. ECLS temporarily supports the circulation and maintains organ perfusion. In this way ECLS functions as a bridge to recovery and may possibly save lives. Timely consultation with and referral to an ECLS centre is recommended in patients with calcium antagonist overdose.

  8. Discovery of novel N-aryl piperazine CXCR4 antagonists.

    Science.gov (United States)

    Zhao, Huanyu; Prosser, Anthony R; Liotta, Dennis C; Wilson, Lawrence J

    2015-11-01

    A novel series of CXCR4 antagonists with substituted piperazines as benzimidazole replacements is described. These compounds showed micromolar to nanomolar potency in CXCR4-mediated functional and HIV assays, namely inhibition of X4 HIV-1(IIIB) virus in MAGI-CCR5/CXCR4 cells and inhibition of SDF-1 induced calcium release in Chem-1 cells. Preliminary SAR investigations led to the identification of a series of N-aryl piperazines as the most potent compounds. Results show SAR that indicates type and position of the aromatic ring, as well as type of linker and stereochemistry are significant for activity. Profiling of several lead compounds showed that one (49b) reduced susceptibility towards CYP450 and hERG, and the best overall profile when considering both SDF-1 and HIV potencies (6-20 nM). Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Discovery, synthesis, selectivity modulation and DMPK characterization of 5-azaspiro[2.4]heptanes as potent orexin receptor antagonists.

    Science.gov (United States)

    Stasi, Luigi Piero; Artusi, Roberto; Bovino, Clara; Buzzi, Benedetta; Canciani, Luca; Caselli, Gianfranco; Colace, Fabrizio; Garofalo, Paolo; Giambuzzi, Silvia; Larger, Patrice; Letari, Ornella; Mandelli, Stefano; Perugini, Lorenzo; Pucci, Sabrina; Salvi, Matteo; Toro, PierLuigi

    2013-05-01

    Starting from a orexin 1 receptor selective antagonist 4,4-disubstituted piperidine series a novel potent 5-azaspiro[2.4]heptane dual orexin 1 and orexin 2 receptor antagonist class has been discovered. SAR and Pharmacokinetic optimization of this series is herein disclosed. Lead compound 15 exhibits potent activity against orexin 1 and orexin 2 receptors along with low cytochrome P450 inhibition potential, good brain penetration and oral bioavailability in rats. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Trichoderma viride Laccase Play a Crucial Role in Defense Mechanism against Antagonistic Organisms

    Directory of Open Access Journals (Sweden)

    Divya eLakshmanan

    2016-05-01

    Full Text Available Fungal laccases are involved in a variety of physiological functions such as delignification, morphogenesis and parasitism. In addition to these functions, we suggest that fungal laccases are involved in defense mechanisms. When the laccase secreting Trichoderma viride was grown in the presence of a range of microorganisms including bacteria and fungi, laccase secretion was enhanced in response to antagonistic organisms alone. In addition, growth of antagonistic microbes was restricted by the secreting fungi. Besides, our study for the first time shows the inability of the secreting fungi (T.viride to compete with antagonistic organism when laccase activity is inhibited, further emphasizing its involvement in rendering a survival advantage to the secreting organism. When laccase inhibitor was added to the media, the zone of inhibition exerted by the antagonist organism was more pronounced and consequently growth of T. viride was significantly restricted. Based on these observations we accentuate that, laccase plays an important role in defense mechanism and provides endurance to the organism when encountered with an antagonistic organism in its surrounding.

  11. Biological Control of Sclerotinia sclerotiorum in Lettuce Using Antagonistic Bacteria

    Directory of Open Access Journals (Sweden)

    Bong-Goan Chon

    2013-03-01

    Full Text Available To isolate antagonistic bacteria against sclerotinia rot of lettuce, caused by Sclerotinia sclerotiorum, soil samples were collected from the diseased greenhouse field in Namyangju city, Gyeong-gi province from 2007 to 2008. A total of 196 bacterial isolates were isolated using serial dilution method. In dual culture assay in vitro, 26 isolates showed more than 80% of inhibition rates of mycelial growth of S. sclerotiorum. Based on 16S rDNA sequence analysis, the 26 isolates were identified as Bacillus megaterium, B. cereus, B. subtilis, Arthrobacter nicotianae, A. ramosus, Pseudomonas filiscindens, Stenotrophomonas maltophilia, Brevibacterium frigoritolerans and Sphingobacterium faecium. The 26 isolates inhibited the mycelial growth of S. sclerotiorum up to 80% and the sclerotial germination 0−100%. In the greenhouse pot test of ten isolates conducted in summer, 2 isolates B. megaterium (DK6 and B. cereus (C210 showed control efficacy on sclerotia viability of S. sclerotiorum, 20% and 35%, respectively. In the greenhouse pot test in winter, the disease incidence of the control group was 80%, whereas those of 9 isolates among 26 were approximately 20%. From the result, the 9 isolates are expected as potentially antagonistic bacteria for biological control of sclerotinia rot of lettuce caused by S. sclerotiorum.

  12. Molecular mechanisms of 5-HT(3) and NK(1) receptor antagonists in prevention of emesis.

    Science.gov (United States)

    Rojas, Camilo; Raje, Mithun; Tsukamoto, Takashi; Slusher, Barbara S

    2014-01-05

    Nausea and vomiting are major side effects of chemotherapy and one key reason for non-compliance with cancer treatment. The introduction of 5-HT3 receptor antagonists in the 1990s was a major advance in the prevention of acute emesis, and highlighted the critical role of serotonin in the emetic response. The next major advance in the treatment of chemotherapy induced nausea and vomiting (CINV) occurred in 2003 with the introduction of aprepitant, a tachykinin 1 (NK1) receptor antagonist. Aprepitant not only reduced acute emesis but also helped in the reduction of delayed emesis. Also in 2003, palonosetron, a second generation 5-HT3 receptor antagonist became available. Unlike the first generation 5-HT3 receptor antagonists, palonosetron demonstrated efficacy in preventing both acute and delayed emesis. This review focuses on the mechanism of action of 5-HT3 and NK1 receptor antagonists in acute and delayed CINV prevention. We discuss first, the medicinal chemistry that led to the discovery of these antagonists to underline their common structural features. Second, we discuss their performance in the clinic and what it tells us about the emetic response. Finally, we present recent mechanistic studies that help provide a rationale for efficacy differences between palonosetron and other 5-HT3 receptor antagonists in the clinic. In vitro and in vivo experiments have shown that palonosetron can inhibit substance P-mediated responses, presumably through its unique interactions with the 5-HT3 receptor. The crossroads of acute and delayed emesis seem to include interactions among the 5-HT3 and NK1 receptor signaling pathways and inhibitions of these interactions could lead to improved treatment of CINV. © 2013 Elsevier B.V. All rights reserved.

  13. Opioid antagonists for alcohol dependence.

    Science.gov (United States)

    Rösner, Susanne; Hackl-Herrwerth, Andrea; Leucht, Stefan; Vecchi, Simona; Srisurapanont, Manit; Soyka, Michael

    2010-12-08

    Alcohol dependence belongs to the globally leading health risk factors. Therapeutic success of psychosocial programs for relapse prevention is moderate and could be increased by an adjuvant treatment with the opioid antagonists naltrexone and nalmefene. To determine the effectiveness and tolerability of opioid antagonists in the treatment of alcohol dependence. We searched the Cochrane Drugs and Alcohol Group (CDAG) Specialized Register, PubMed, EMBASE and CINAHL in January 2010 and inquired manufacturers and researchers for unpublished trials. All double-blind randomised controlled trials (RCTs) which compare the effects of naltrexone or nalmefene with placebo or active control on drinking-related outcomes. Two authors independently extracted outcome data. Trial quality was assessed by one author and cross-checked by a second author. Based on a total of 50 RCTs with 7793 patients, naltrexone reduced the risk of heavy drinking to 83% of the risk in the placebo group RR 0.83 (95% CI 0.76 to 0.90) and decreased drinking days by about 4%, MD -3.89 (95% CI -5.75 to -2.04). Significant effects were also demonstrated for the secondary outcomes of the review including heavy drinking days, MD - 3.25 (95% CI -5.51 to -0.99), consumed amount of alcohol, MD - 10.83 (95% CI -19.69 to -1.97) and gamma-glutamyltransferase, MD - 10.37 (95% CI -18.99 to -1.75), while effects on return to any drinking, RR 0.96 (95 CI 0.92 to 1.00) missed statistical significance. Side effects of naltrexone were mainly gastrointestinal problems (e.g. nausea: RD 0.10; 95% CI 0.07 to 0.13) and sedative effects (e.g. daytime sleepiness: RD 0.09; 95% CI 0.05 to 0.14). Based on a limited study sample, effects of injectable naltrexone and nalmefene missed statistical significance. Effects of industry-sponsored studies, RR 0.90 (95% CI 0.78 to 1.05) did not significantly differ from those of non-profit funded trials, RR 0.84 (95% CI 0.77 to 0.91) and the linear regression test did not indicate publication

  14. PXR antagonists and implication in drug metabolism

    Science.gov (United States)

    Mani, Sridhar; Dou, Wei; Redinbo, Matthew R.

    2013-01-01

    Adopted orphan nuclear receptor (NR), pregnane X receptor (PXR), plays a central role in the regulation of xeno- and endobiotic metabolism. Since the discovery of the functional role of PXR in 1998, there is evolving evidence for the role of PXR agonists in abrogating metabolic pathophysiology (e.g., cholestasis, hypercholesterolemia, and inflammation). However, more recently, it is clear that PXR is also an important mediator of adverse xeno- (e.g., enhances acetaminophen toxicity) and endobiotic (e.g., hepatic steatosis) metabolic phenotypes. Moreover, in cancer therapeutics, PXR activation can induce drug resistance, and there is growing evidence for tissue-specific enhancement of the malignant phenotype. Thus, in these instances, there may be a role for PXR antagonists. However, as opposed to the discovery efforts for PXR agonists, there are only a few antagonists described. The mode of action of these antagonists (e.g., sulforaphane) remains less clear. Our laboratory efforts have focused on this question. Since the original discovery of azoles analogs as PXR antagonists, we have preliminarily defined an important PXR antagonist pharmacophore and developed less-toxic PXR antagonists. In this review, we describe our published and unpublished findings on recent structure-function studies involving the azole chemical scaffold. Further work in the future is needed to fully define potent, more-selective PXR antagonists that may be useful in clinical application. PMID:23330542

  15. Antagonistic Activity of Lactobacillus reuteri Strains on the Adhesion Characteristics of Selected Pathogens.

    Science.gov (United States)

    Singh, Tejinder P; Kaur, Gurpreet; Kapila, Suman; Malik, Ravinder K

    2017-01-01

    Adhesion ability of probiotics is the key factor that decides their colonization in the gastrointestinal tract and potential to inhibit pathogens. Therefore, adhesion ability can be considered as a key determinant for probiotic efficacy. Presents study documents the antagonistic activity of viable/untreated, Lithium chloride (LiCl) treated or heat-killed forms of eight probiotic Lactobacillus reuteri strains on the adhesion characteristics of selected pathogens. All strains investigated were able to adhere to Caco-2 cells. L. reuteri strains tested were able to inhibit and displace ( P strain L. reuteri LR6 showed the strongest adhesion and pathogen inhibition ability among the eight L. reuteri strains tested. In addition, the abilities to inhibit and to displace adhered pathogens depended on both the probiotic and the pathogen strains tested suggesting the involvement of various mechanisms. The adhesion and antagonistic potential of the probiotic strains were significantly decreased upon exposure to 5 M LiCl, showing that surface molecules, proteinaceous in nature, are involved. The heat-killed forms of the probiotic L. reuteri strains also inhibited the attachment of selected pathogens to Caco-2 cells. In conclusion, in vitro assays showed that L. reuteri strains, as viable or heat-killed forms, are adherent to Caco-2 cells and are highly antagonistic to pathogens tested in which surface associated proteins play an important role.

  16. Identification of a nonbasic melanin hormone receptor 1 antagonist as an antiobesity clinical candidate.

    Science.gov (United States)

    Washburn, William N; Manfredi, Mark; Devasthale, Pratik; Zhao, Guohua; Ahmad, Saleem; Hernandez, Andres; Robl, Jeffrey A; Wang, Wei; Mignone, James; Wang, Zhenghua; Ngu, Khehyong; Pelleymounter, Mary Ann; Longhi, Daniel; Zhao, Rulin; Wang, Bei; Huang, Ning; Flynn, Neil; Azzara, Anthony V; Barrish, Joel C; Rohrbach, Kenneth; Devenny, James J; Rooney, Suzanne; Thomas, Michael; Glick, Susan; Godonis, Helen E; Harvey, Susan J; Cullen, Mary Jane; Zhang, Hongwei; Caporuscio, Christian; Stetsko, Paul; Grubb, Mary; Maxwell, Brad D; Yang, Hong; Apedo, Atsu; Gemzik, Brian; Janovitz, Evan B; Huang, Christine; Zhang, Lisa; Freeden, Chris; Murphy, Brian J

    2014-09-25

    Identification of MCHR1 antagonists with a preclinical safety profile to support clinical evaluation as antiobesity agents has been a challenge. Our finding that a basic moiety is not required for MCHR1 antagonists to achieve high affinity allowed us to explore structures less prone to off-target activities such as hERG inhibition. We report the SAR evolution of hydroxylated thienopyrimidinone ethers culminating in the identification of 27 (BMS-819881), which entered obesity clinical trials as the phosphate ester prodrug 35 (BMS-830216).

  17. Pathophysiology of the cysteinyl leukotrienes and effects of leukotriene receptor antagonists in asthma

    DEFF Research Database (Denmark)

    Bisgaard, H

    2001-01-01

    ciliary motility, which may hinder mucociliary clearance. Asthmatic patients demonstrate increased production of cysteinyl leukotrienes during naturally occurring asthma and acute asthma attacks as well as after allergen and exercise challenge. The leukotriene receptor antagonists montelukast, zafirlukast...... and pranlukast inhibit bronchoconstriction in asthmatic patients undergoing allergen, exercise, cold air or aspirin challenge. They attenuate the hallmarks of asthmatic inflammation, including eosinophilia in the airway mucosa and peripheral blood. Moreover, exhaled nitric oxide concentrations, another correlate...... of airway inflammation, are decreased during montelukast treatment in children. Cysteinyl leukotriene synthesis is not blocked by corticosteroid therapy. This important observation suggests that the leukotriene receptor antagonists represent a novel therapeutic approach, one that may provide benefits...

  18. Synthesis and testing of tetrodotoxin and batrachotoxin antagonists. Final report, 1 February 1986-15 September 1989

    Energy Technology Data Exchange (ETDEWEB)

    Toll, L.

    1990-03-12

    Compounds have been synthesized as potential antagonists to the neurotoxin batrachotoxin. The compounds synthesized have been examined for binding affinity at the batrachotoxin binding site in rat brain, and for ability to inhibit veratridine-stimulated (22)Na+ uptake into neuroblastoma cells. The compounds ranged in affinity from 2.7 to 200 micrometers. The compounds also varied in their abilities to stimulate or inhibit (22)Na+. The two highest affinity compounds proved to be complete antagonists, competitively inhibiting both basal- and veratridine-stimulated (22)Na+ uptake. Neither of these compounds protected against batrachotoxin-induced lethality in mice. We have also made some progress in the synthesis of potential antagonists to the neurotoxin tetrodotoxin.

  19. Calcium antagonists for aneurysmal subarachnoid haemorrhage

    NARCIS (Netherlands)

    Dorhout Mees, S. M.; Rinkel, G. J. E.; Feigin, V. L.; Algra, A.; van den Bergh, W. M.; Vermeulen, M.; van Gijn, J.

    2007-01-01

    BACKGROUND: Secondary ischaemia is a frequent cause of poor outcome in patients with subarachnoid haemorrhage (SAH). Its pathogenesis has been incompletely elucidated, but vasospasm probably is a contributing factor. Experimental studies have suggested that calcium antagonists can prevent or reverse

  20. Antagonist wear by polished zirconia crowns.

    Science.gov (United States)

    Hartkamp, Oliver; Lohbauer, Ulrich; Reich, Sven

    The aim of this in vivo study was to measure antagonist wear caused by polished monolithic posterior zirconia crowns over a 24-month period using the intraoral digital impression (IDI) technique. Thirteen zirconia crowns were placed in nine patients. The crowns and adjacent teeth were captured using an intraoral scanner (Lava C.O.S.). The corresponding antagonist teeth and the respective neighboring teeth were also scanned. Scanning was performed immediately after the restoration (baseline) as well as 12 and 24 months after crown placement. Geomagic Qualify software was used to superimpose the follow-up data sets onto the corresponding baseline data set, identify wear sites, and measure maximum vertical height loss in each individual wear site. Overall antagonist wear was then determined as the mean of wear rates measured in all of the individual antagonist units. In addition, wear rates in enamel and ceramic antagonists were analyzed as part of the scope of this study. The maximum mean wear with standard deviation (SD) in the overall sample with a total of nine patients, 13 antagonist units, and 98 evaluable wear sites was 86 ± 23 µm at 12 months, and 103 ± 39 µm at 24 months. The maximum mean wear in the enamel antagonist subgroup was 87 ± 41 µm at 12 months, and 115 ± 71 µm at 24 months; and in the ceramic antagonist subgroup 107 ± 22 µm at 12 months, and 120 ± 27 µm at 24 months. The wear rates determined in this study are comparable to those of existing studies. The IDI technique of wear analysis can be carried out in a practical manner and produces useful results.

  1. ANTAGONISTIC EFFECT OF FOUR FUNGAL ISOLATES TO GANODERMA BONINENSE, THE CAUSAL AGENT OF BASAL STEM ROT OF OIL PALM

    Directory of Open Access Journals (Sweden)

    OKKY SETYAWATI DHARMAPUTRA

    1990-01-01

    Full Text Available Four fungal isolates from soils obtained from three sites of the oil palm plantations in North Sumatra were found antagonistic to Ganoderma boninense, the causal agent of basal stem rot of oil palm. Penicillium citrinum inhibited the growth of the pathogen and formed a zone of inhibition on the agar media. Trichoderma harzianum BIO - 1 as well as BIO - 2 and T. viride not only repressed the growth of the pathogen but also caused lysis of the hyphae, and the colony was totally overgrown by the antagonists.

  2. Recent progress in the development of small-molecule glucagon receptor antagonists.

    Science.gov (United States)

    Sammons, Matthew F; Lee, Esther C Y

    2015-10-01

    The endocrine hormone glucagon stimulates hepatic glucose output via its action at the glucagon receptor (GCGr) in the liver. In the diabetic state, dysregulation of glucagon secretion contributes to abnormally elevated hepatic glucose output. The inhibition of glucagon-induced hepatic glucose output via antagonism of the GCGr using small-molecule ligands is a promising mechanism for improving glycemic control in the diabetic state. Clinical data evaluating the therapeutic potential of small-molecule GCGr antagonists is currently emerging. Recently disclosed clinical data demonstrates the potential efficacy and possible therapeutic limitations of small-molecule GCGr antagonists. Recent pre-clinical work on the development of GCGr antagonists is also summarized. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Secreted Wnt antagonists in leukemia: A road yet to be paved.

    Science.gov (United States)

    Pehlivan, Melek; Çalışkan, Ceyda; Yüce, Zeynep; Sercan, Hakki Ogun

    2018-03-28

    Wnt signaling has been a topic of research for many years for its diverse and fundamental functions in physiological (such as embryogenesis, organogenesis, proliferation, tissue repair and cellular differentiation) and pathological (carcinogenesis, congenital/genetic diseases, and tissue degeneration) processes. Wnt signaling pathway aberrations are associated with both solid tumors and hematological malignancies. Unregulated Wnt signaling observed in malignancies may be due to a wide spectrum of abnormalities, from mutations in the genes of key players to epigenetic modifications of Wnt antagonists. Of these, Wnt antagonists are gaining significant attention for their potential of being targets for treatment and inhibition of Wnt signaling. In this review, we discuss and summarize the significance of Wnt signaling antagonists in the pathogenesis and treatment of hematological malignancies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Effect of mineralocorticoid receptor antagonists on proteinuria and progression of chronic kidney disease

    DEFF Research Database (Denmark)

    Currie, Gemma; Taylor, Alison H M; Fujita, Toshiro

    2016-01-01

    BACKGROUND: Hypertension and proteinuria are critically involved in the progression of chronic kidney disease. Despite treatment with renin angiotensin system inhibition, kidney function declines in many patients. Aldosterone excess is a risk factor for progression of kidney disease. Hyperkalaemia...... is a concern with the use of mineralocorticoid receptor antagonists. We aimed to determine whether the renal protective benefits of mineralocorticoid antagonists outweigh the risk of hyperkalaemia associated with this treatment in patients with chronic kidney disease. METHODS: We conducted a meta......-analysis investigating renoprotective effects and risk of hyperkalaemia in trials of mineralocorticoid receptor antagonists in chronic kidney disease. Trials were identified from MEDLINE (1966-2014), EMBASE (1947-2014) and the Cochrane Clinical Trials Database. Unpublished summary data were obtained from investigators...

  5. The effect of beta-adrenoceptor antagonists on the alpha-adrenoceptor blockade produced by phenoxybenzamine.

    Science.gov (United States)

    Sankaranarayanan, A; Sharma, P L

    1977-05-01

    The effect of beta-adrenoceptor antagonists on the irreversible alpha-adrenoceptor blockade produced by phenoxybenzamine was studied in dogs. The pressor effects of adrenaline were revived after the inhibition by the alpha-receptor block by (+/-) propranolol, (-) INPEA, (+/-) MJ 1999 and (+/-) butoxamine. The enantiomers (+) propranolol and (+) INPEA were ineffective in this regard. (+/-) Practolol also did not revive the pressor effect of the amines. The alpha-receptor mediated effect of the amines, in the nictitating membrana-receptor blockade. It is concluded that (1) blockade of the peripheral (beta-2) receptors is essential for the revival of the pressor effects, (2) local anesthetic effect of the beta-antagonists is not involved. Further work using a series of doses of agonists and antagonists of alpha-and beta-receptors is indicated to clarify the nature of this drug-interaction.

  6. Bitter melon: antagonist to cancer.

    Science.gov (United States)

    Nerurkar, Pratibha; Ray, Ratna B

    2010-06-01

    The incidence of cancer is increasing worldwide, in spite of substantial progress in the development of anti-cancer therapies. One approach to control cancer could be its prevention by diet, which inhibits one or more neoplastic events and reduces cancer risk. Dietary compounds offer great potential in the fight against cancer by inhibiting the carcinogenesis process through the regulation of cell homeostasis and cell-death machineries. For centuries, Ayurveda (Indian traditional medicine) has recommended the use of bitter melon (Momordica charantia) as a functional food to prevent and treat diabetes and associated complications. It is noteworthy to mention that bitter melon extract has no-to-low side effects in animals as well as in humans. The anti-tumor activity of bitter melon has recently begun to emerge. This review focuses on recent advancements in cancer chemopreventive and anti-cancer efficacy of bitter melon and its active constituents. Several groups of investigators have reported that treatment of bitter-melon-related products in a number of cancer cell lines induces cell cycle arrest and apoptosis without affecting normal cell growth. Therefore, the effect of bitter melon should be beneficial for health, and use of the non-modified dietary product is cost effective.

  7. Identification of ligand-selective peptidic ActRIIB-antagonists using phage display technology

    Directory of Open Access Journals (Sweden)

    Kotaro Sakamoto

    2017-09-01

    Full Text Available ActRIIB (activin receptor type-2B is an activin receptor subtype constitutively expressed in the whole body, playing a role in cellular proliferation, differentiation, and metabolism. For its various physiological activities, ActRIIB interacts with activin and multiple other ligands including myostatin (MSTN, growth differentiation factor 11 (GDF11, and bone morphogenetic protein 9 (BMP9. Notably, the protein-protein interaction (PPI between ActRIIB and MSTN negatively controls muscular development. Therefore, this PPI has been targeted for effective treatment of muscle degenerative diseases such as muscular dystrophy and sarcopenia. Here, we report the identification of ligand-selective peptidic ActRIIB-antagonists by phage display technology. Our peptides bound to the extracellular domain of ActRIIB, inhibited PPIs between ActRIIB expressed on the cell surface and its ligands, and subsequently suppressed activation of Smad that serves as the downstream signal of the ActRIIB pathway. Interestingly, these peptidic antagonists displayed different ligand selectivities; the AR2mini peptide inhibited multiple ligands (activin A, MSTN, GDF11, and BMP9, AR9 inhibited MSTN and GDF11, while AR8 selectively inhibited MSTN. This is the first report of artificial peptidic ActRIIB-antagonists possessing ligand-selectivity.

  8. Central actions of a novel and selective dopamine antagonist

    International Nuclear Information System (INIS)

    Schulz, D.W.

    1985-01-01

    Receptors for the neurotransmitter dopamine traditionally have been divided into two subgroups: the D 1 class, which is linked to the stimulation of adenylate cyclase-activity, and the D 2 class which is not. There is much evidence suggesting that it is the D 2 class which is not. There is much evidence suggesting that it is the D 2 dopamine receptor that mediates the physiological and behavioral actions of dopamine in the intact animal. However, the benzazepine SCH23390 is a dopamine antagonist which has potent behavioral actions while displaying apparent neurochemical selectivity for the D 1 class of dopamine receptors. The purpose of this dissertation was to (1) confirm and characterize this selectivity, and (2) test certain hypothesis related to possible modes of action of SCH233390. The inhibition of adenylate cyclase by SCH23390 occurred via an action at the dopamine receptor only. A radiolabeled analog of SCH23390 displayed the receptor binding properties of a specific high-affinity ligand, and regional receptor densities were highly correlated with dopamine levels. The subcellular distribution of [ 3 H]-SCH23390 binding did not correspond completely with that of dopamine-stimulated adenylate cyclase. The neurochemical potency of SCH23390 as a D 1 receptor antagonist was preserved following parental administration. A variety of dopamine agonists and antagonists displayed a high correlation between their abilities to compete for [ 3 H]-SCH23390 binding in vitro and to act at an adenylate cyclase-linked receptor. Finally, the relative affinities of dopamine and SCH23390 for both D 1 receptors and [ 3 H]-SCH23390 binding sites were comparable. It is concluded that the behavioral effects of SCH23390 are mediated by actions at D 1 dopamine receptors only, and that the physiological importance of this class of receptors should be reevaluated

  9. Viability of D283 medulloblastoma cells treated with a histone deacetylase inhibitor combined with bombesin receptor antagonists.

    Science.gov (United States)

    Jaeger, Mariane; Ghisleni, Eduarda C; Fratini, Lívia; Brunetto, Algemir L; Gregianin, Lauro José; Brunetto, André T; Schwartsmann, Gilberto; de Farias, Caroline B; Roesler, Rafael

    2016-01-01

    Medulloblastoma (MB) comprises four distinct molecular subgroups, and survival remains particularly poor in patients with Group 3 tumors. Mutations and copy number variations result in altered epigenetic regulation of gene expression in Group 3 MB. Histone deacetylase inhibitors (HDACi) reduce proliferation, promote cell death and neuronal differentiation, and increase sensitivity to radiation and chemotherapy in experimental MB. Bombesin receptor antagonists potentiate the antiproliferative effects of HDACi in lung cancer cells and show promise as experimental therapies for several human cancers. Here, we examined the viability of D283 cells, which belong to Group 3 MB, treated with an HDACi alone or combined with bombesin receptor antagonists. D283 MB cells were treated with different doses of the HDACi sodium butyrate (NaB), the neuromedin B receptor (NMBR) antagonist BIM-23127, the gastrin releasing peptide receptor (GRPR) antagonist RC-3095, or combinations of NaB with each receptor antagonist. Cell viability was examined by cell counting. NaB alone or combined with receptor antagonists reduced cell viability at all doses tested. BIM-23127 alone did not affect cell viability, whereas RC-3095 at an intermediate dose significantly increased cell number. Although HDACi are promising agents to inhibit MB growth, the present results provide preliminary evidence that combining HDACi with bombesin receptor antagonists is not an effective strategy to improve the effects of HDACi against MB cells.

  10. Human muscle spindle sensitivity reflects the balance of activity between antagonistic muscles.

    Science.gov (United States)

    Dimitriou, Michael

    2014-10-08

    Muscle spindles are commonly considered as stretch receptors encoding movement, but the functional consequence of their efferent control has remained unclear. The "α-γ coactivation" hypothesis states that activity in a muscle is positively related to the output of its spindle afferents. However, in addition to the above, possible reciprocal inhibition of spindle controllers entails a negative relationship between contractile activity in one muscle and spindle afferent output from its antagonist. By recording spindle afferent responses from alert humans using microneurography, I show that spindle output does reflect antagonistic muscle balance. Specifically, regardless of identical kinematic profiles across active finger movements, stretch of the loaded antagonist muscle (i.e., extensor) was accompanied by increased afferent firing rates from this muscle compared with the baseline case of no constant external load. In contrast, spindle firing rates from the stretching antagonist were lowest when the agonist muscle powering movement (i.e., flexor) acted against an additional resistive load. Stepwise regressions confirmed that instantaneous velocity, extensor, and flexor muscle activity had a significant effect on spindle afferent responses, with flexor activity having a negative effect. Therefore, the results indicate that, as consequence of their efferent control, spindle sensitivity (gain) to muscle stretch reflects the balance of activity between antagonistic muscles rather than only the activity of the spindle-bearing muscle. Copyright © 2014 the authors 0270-6474/14/3413644-12$15.00/0.

  11. Structure-Based Design of a Periplasmic Binding Protein Antagonist that Prevents Domain Closure

    Energy Technology Data Exchange (ETDEWEB)

    Borrok, M. Jack; Zhu, Yimin; Forest, Katrina T.; Kiessling, Laura L.; (UW)

    2009-07-31

    Many receptors undergo ligand-induced conformational changes to initiate signal transduction. Periplasmic binding proteins (PBPs) are bacterial receptors that exhibit dramatic conformational changes upon ligand binding. These proteins mediate a wide variety of fundamental processes including transport, chemotaxis, and quorum sensing. Despite the importance of these receptors, no PBP antagonists have been identified and characterized. In this study, we identify 3-O-methyl-D-glucose as an antagonist of glucose/galactose-binding protein and demonstrate that it inhibits glucose chemotaxis in E. coli. Using small-angle X-ray scattering and X-ray crystallography, we show that this antagonist acts as a wedge. It prevents the large-scale domain closure that gives rise to the active signaling state. Guided by these results and the structures of open and closed glucose/galactose-binding protein, we designed and synthesized an antagonist composed of two linked glucose residues. These findings provide a blueprint for the design of new bacterial PBP inhibitors. Given the key role of PBPs in microbial physiology, we anticipate that PBP antagonists will have widespread uses as probes and antimicrobial agents.

  12. Antagonist pharmacology of desensitizing and non-desensitizing nicotinic acetylcholine receptors in cockroach neurons.

    Science.gov (United States)

    Salgado, Vincent L

    2016-09-01

    Two α-bungarotoxin-sensitive nicotinic acetylcholine (ACh) receptor subtypes in neurons of the American cockroach have been identified as desensitizing (nAChD) and selectively inhibitable with 100nM imidacloprid, and non-desensitizing (nAChN) and selectively inhibitable with 100pM methyllycaconitine. In this paper, the single-electrode voltage-clamp technique was used to measure concentration-response relations for the action of ACh and five antagonists on pharmacologically separated nAChD and nAChN receptors of acutely dissociated neurons from thoracic ganglia of the American cockroach. A dual bath and U-tube perfusion system was used to achieve rapid application of ACh in the continued presence of antagonists, which was essential to accurately measure inhibition by rapidly-reversible antagonists. ACh activated both receptors with an EC 50 of 7μM and the antagonist potencies were (nAChD/nAChN in nM): dihydro-β-erythroidine: 1.0/5.6, d-tubocurarine: 1000/34, condelphine: 0.39/0.65, phencyclidine: 74/980 and mecamylamine 47/1150. While each of these antagonists displayed some subtype selectivity, none are selective enough to be used as subtype-selective tools. These results bring to a total of 16 the number of nicotinic compounds that have been measured on nAChD and nAChN currents. Characterization of these receptors is important for understanding the role of nAChRs in the insect nervous system and the mechanism of action of insecticides. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Evodiamine as a novel antagonist of aryl hydrocarbon receptor

    International Nuclear Information System (INIS)

    Yu, Hui; Tu, Yongjiu; Zhang, Chun; Fan, Xia; Wang, Xi; Wang, Zhanli; Liang, Huaping

    2010-01-01

    Research highlights: → Evodiamine interacted with the AhR. → Evodiamine inhibited the specific binding of [ 3 H]-TCDD to the AhR. → Evodiamine acts as an antagonist of the AhR. -- Abstract: Evodiamine, the major bioactive alkaloid isolated from Wu-Chu-Yu, has been shown to interact with a wide variety of proteins and modify their expression and activities. In this study, we investigated the interaction between evodiamine and the aryl hydrocarbon receptor (AhR). Molecular modeling results revealed that evodiamine directly interacted with the AhR. Cytosolic receptor binding assay also provided the evidence that evodiamine could interact with the AhR with the K i value of 28.4 ± 4.9 nM. In addition, we observed that evodiamine suppressed the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced nuclear translocation of the AhR and the expression of CYP1A1 dose-dependently. These results suggested that evodiamine was able to bind to the AhR as ligand and exhibit antagonistic effects.

  14. Coronary dilation with nitrocompounds and calcium antagonists.

    Science.gov (United States)

    Jost, S; Rafflenbeul, W; Lichtlen, P R

    1990-01-01

    The vasodilatory effects of nitrocompounds and calcium antagonists on epicardial coronary arteries represent substantial antianginal mechanisms in the presence of coronary vasospasm or eccentric coronary stenoses. With high doses of nitrocompounds, angiographically normal coronary segments can be dilated by an average of approx. 30%, some coronary stenoses even by up to 100%, usually without severe reduction of blood pressure. With calcium antagonists, a similar extent of dilation of normal coronary arteries and eccentric stenoses can be obtained. Our own group demonstrated an average dilation of normal coronary arteries of about 20% after intravenous administration of dihydropyridine calcium antagonists; however, the average systolic blood pressure dropped below 100 mmHg after these compounds. Hence, although in isolated human coronary arteries high concentrations of calcium antagonists were shown to induce a considerably greater vasodilation than nitrocompounds, the early drop in blood pressure prohibits a higher dosage of calcium antagonists in vivo. In the presence of coronary artery disease, particularly when associated with coronary vasospasm, a combination of the two groups of compounds might be recommendable, since an addition of the effects of coronary vasomotor tone is likely. Furthermore, the antianginal effects of a reduction of preload and afterload are complementary.

  15. [Chitinolytic activity of Bacillus Cohn.--phytopathogenic fungus antagonist].

    Science.gov (United States)

    Aktuganov, G E; Melent'ev, A I; Kuz'mina, L Iu; Galimzianova, N F; Shirokov, A V

    2003-01-01

    Among the 70 tested Bacillus spp. strains antagonistic to phytopathogenic fungi, 19 were found to possess chitinolytic activity when grown on solid media with 0.5% colloidal chitin. The chitinolytic activity of almost all of these 19 strains grown in liquid cultures ranged from 0.1 to 0.3 U/ml. One of the 19 strains exhibited exochitinase activity. In addition to chitinase, two strains also produced chitosanase and one strain, beta-1,3-glucanase. No correlation was found between the antifungal activity of the bacillar strains studied and their ability to synthesize extracellular chitinase. Among the 19 chitinolytic strains, the correlation between these parameters was also low (r x,y = 0.45), although the enzymatic preparations of most of these strains inhibited the growth of the phytopathogenic fungus Helminthosporium sativum.

  16. Design of potent and specific integrin antagonists. Peptide antagonists with high specificity for glycoprotein IIb-IIIa.

    Science.gov (United States)

    Scarborough, R M; Naughton, M A; Teng, W; Rose, J W; Phillips, D R; Nannizzi, L; Arfsten, A; Campbell, A M; Charo, I F

    1993-01-15

    Members of the snake venon-derived, "disintegrin" peptide family containing the Arg-Gly-Asp (RGD) amino acid sequence are among the most potent inhibitors of the binding of adhesive proteins to platelet glycoprotein (GP) IIb-IIIa. However, GPIIb-IIIa antagonists containing the RGD sequence are not integrin specific and inhibit the adhesive functions of many other RGD-dependent integrins. The single disintegrin peptide, barbourin, containing a conservative amino acid substitution of Lys (K) for Arg (R) in the RGD sequence, is however, highly specific for GPIIb-IIIa. Using this information we have tested the hypothesis that both structural and conformational elements of barbourin are important for its high affinity and selectivity for platelet GPIIb-IIIa by synthesizing a series of conformationally constrained, disulfide-bridged peptides containing the KGD amino acid sequence. Incorporation of the KGD sequence into a cyclic peptide template, followed by systematic optimization of the cyclic ring size, optimization of secondary hydrophobic binding site interactions, and the derivatization of the lysyl side chain functionality of the KGD sequence has resulted in peptide analogs which display inhibitory potency and GPIIb-IIIa selectivity comparable to that of barbourin. This study demonstrates that the specificity and potency of the disintegrin family of antagonists, in particular barbourin, can be mimicked by small, conformationally restrained peptides.

  17. ETA-receptor antagonists or allosteric modulators?

    DEFF Research Database (Denmark)

    De Mey, Jo G R; Compeer, Matthijs G; Lemkens, Pieter

    2011-01-01

    . In resistance arteries, the long-lasting contractile effects can only be partly and reversibly relaxed by low-molecular-weight ET(A) antagonists (ERAs). However, the neuropeptide calcitonin-gene-related peptide selectively terminates binding of ET1 to ET(A). We propose that ET1 binds polyvalently to ET......(A) and that ERAs and the physiological antagonist allosterically reduce ET(A) functions. Combining the two-state model and the two-domain model of GPCR function and considering receptor activation beyond agonist binding might lead to better anti-endothelinergic drugs. Future studies could lead to compounds...

  18. Pathophysiology of the cysteinyl leukotrienes and effects of leukotriene receptor antagonists in asthma

    DEFF Research Database (Denmark)

    Bisgaard, H

    2001-01-01

    and pranlukast inhibit bronchoconstriction in asthmatic patients undergoing allergen, exercise, cold air or aspirin challenge. They attenuate the hallmarks of asthmatic inflammation, including eosinophilia in the airway mucosa and peripheral blood. Moreover, exhaled nitric oxide concentrations, another correlate...... of airway inflammation, are decreased during montelukast treatment in children. Cysteinyl leukotriene synthesis is not blocked by corticosteroid therapy. This important observation suggests that the leukotriene receptor antagonists represent a novel therapeutic approach, one that may provide benefits...

  19. Antagonistic Activity of Lactobacillus reuteri Strains on the Adhesion Characteristics of Selected Pathogens

    OpenAIRE

    Singh, Tejinder P.; Kaur, Gurpreet; Kapila, Suman; Malik, Ravinder K.

    2017-01-01

    Adhesion ability of probiotics is the key factor that decides their colonization in the gastrointestinal tract and potential to inhibit pathogens. Therefore, adhesion ability can be considered as a key determinant for probiotic efficacy. Presents study documents the antagonistic activity of viable/untreated, Lithium chloride (LiCl) treated or heat-killed forms of eight probiotic Lactobacillus reuteri strains on the adhesion characteristics of selected pathogens. All strains investigated were ...

  20. Sepsis Strengthens Antagonistic Actions of Neostigmine on Rocuronium in a Rat Model of Cecal Ligation and Puncture

    Directory of Open Access Journals (Sweden)

    Jin Wu

    2016-01-01

    Conclusions: Sepsis strengthened the antagonistic actions of neostigmine on Roc-depressed twitch tension of the diaphragm by inhibiting the activity of AChE in the NMJ. The reduced content of AChE might be one of the possible causes of the decreased AChE activity in the NMJ.

  1. The GABAA Antagonist DPP-4-PIOL Selectively Antagonises Tonic over Phasic GABAergic Currents in Dentate Gyrus Granule Cells

    DEFF Research Database (Denmark)

    Boddum, Kim; Frølund, Bente; Kristiansen, Uffe

    2014-01-01

    that phasic and tonic GABAA receptor currents can be selectively inhibited by the antagonists SR 95531 and the 4-PIOL derivative, 4-(3,3-diphenylpropyl)-5-(4-piperidyl)-3-isoxazolol hydrobromide (DPP-4-PIOL), respectively. In dentate gyrus granule cells, SR 95531 was found approximately 4 times as potent...

  2. Antagonistic activity Trichoderma harzianum Rifai on the causal agent of rice blast (Pyricularia grisea Sacc.

    Directory of Open Access Journals (Sweden)

    Ernesto Juniors Pérez Torres

    2017-10-01

    Full Text Available With the objective to evaluate the antagonistic activity of T. harzianum (strain A-34 on the causal agent of rice blast (P. grisea, were developed several in vitro experiments. It was evaluated the biocontrol mechanisms such as competition through mounted the percent inhibition of radial growth of hyphae of P. grisea from 24 to 240 hours and the antagonistic capacity. In addition, was evaluated micoparasitism to inclination the observation of events Microscopy winding, penetration, vacuolization, lysis, and antibiosis by observing 24 hours a confrontation between the hyphae of the phytopathogenic fungus and biological control agent. It was obtained at 120 hours 100 % inhibition of micelial growth of causal agent, what corresponded with the degree 1 of antagonistic capacity (scale and is recorded as a hyperparasitic action on P. grisea. It was evidenced an antibiotic effect of metabolites produced by T. harzianum (strain A-34 to 24 hours of confrontation, where there was time interaction between the hyphae of microorganisms with 14,3 % inhibition, also was evidence the micoparasitism events by penetration, vacuolization and lysis in the cells of phytopathogenic fungus. These results demonstrated the ability of T. harzianum (strain A-34 on causal agent of rice blast (P. grisea.

  3. [Identification and antagonistic activities of an endophytic bacterium MGP3 isolated from papaya fruit].

    Science.gov (United States)

    Shi, Jingying; Liu, Aiyuan; Li, Xueping; Chen, Weixin

    2011-09-01

    Postharvest decay resulted from anthracnose caused by pathogens Colletotrichum gloeosporioides and blight diseases caused by Phytophthora nicotianae leads to significant loss of papaya fruits. In order to reduce such loss, we isolated endophytic bacteria that may possess powerful antagonistic activities toward these pathogens for effective biological control of anthracnose and blight diseases. The methods of dilution and inhibition circle were used for isolating and screening endophytic bacteria from papaya fruit. Based on morphological, physiological and biochemical characteristics, and homology analysis of the partial sequence of 16S rDNA, an endophytic bacterium was identified. The colonization of the antagonistic endophyte in papaya was detected by inoculating suspension of strains in caudices of papaya plant after Rifampicin-resistant mutants (rif(r)) induction. The effects on diseases caused by Colletotrichum gloeosporioides and Phytophthora nicotianae were tested by preharvest and postharvest experiments. One of the endophytic bacteria named MGP3 was selected from the papaya pericarp and identified as Pseudomonas aeruginosa (Accession No. JF708186). This bacterium was able to colonize in the laminae, leafstalk or pericarp of papaya, and strongly inhibit 10 phytopathogens. In the postharvest experiment, MGP3 inhibited 50% anthracnose and 71% blight of harvested papaya fruits. The application of MGP3 at five preharvest stages of papaya significantly reduced latent infection rate of Colletotrichum gloeosporioides and disease index of anthracnose. Antagonistic endophytic bacterium MGP3 isolated from papaya fruit had potential application value as a biological control agent.

  4. Molecular requirements for inhibition of the chemokine receptor CCR8--probe-dependent allosteric interactions

    DEFF Research Database (Denmark)

    Rummel, Pia Cwarzko; Arfelt, K N; Baumann, L

    2012-01-01

    Here we present a novel series of CCR8 antagonists based on a naphthalene-sulfonamide structure. This structure differs from the predominant pharmacophore for most small-molecule CC-chemokine receptor antagonists, which in fact activate CCR8, suggesting that CCR8 inhibition requires alternative...

  5. CRTH2 antagonists in asthma: current perspectives

    Directory of Open Access Journals (Sweden)

    Singh D

    2017-12-01

    Full Text Available Dave Singh, Arjun Ravi, Thomas Southworth Division of Infection, Immunity and Respiratory Medicine, The Medicines Evaluation Unit, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, UK Abstract: Chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2 binds to prostaglandin D2. CRTH2 is expressed on various cell types including eosinophils, mast cells, and basophils. CRTH2 and prostaglandin D2 are involved in allergic inflammation and eosinophil activation. Orally administered CRTH2 antagonists are in clinical development for the treatment of asthma. The biology and clinical trial data indicate that CRTH2 antagonists should be targeted toward eosinophilic asthma. This article reviews the clinical evidence for CRTH2 involvement in asthma pathophysiology and clinical trials of CRTH2 antagonists in asthma. CRTH2 antagonists could provide a practical alternative to biological treatments for patients with severe asthma. Future perspectives for this class of drug are considered, including the selection of the subgroup of patients most likely to show a meaningful treatment response. Keywords: CRTH2, clinical trial, eosinophilic asthma, prostaglandin D2

  6. Calcium antagonists for aneurysmal subarachnoid haemorrhage

    NARCIS (Netherlands)

    Rinkel, G. J. E.; Feigin, V. L.; Algra, A.; van den Bergh, W. M.; Vermeulen, M.; van Gijn, J.

    2005-01-01

    BACKGROUND: Secondary ischaemia is a frequent cause of poor outcome in patients with subarachnoid haemorrhage (SAH). Its pathogenesis has not been elucidated yet, but may be related to vasospasm. Experimental studies have indicated that calcium antagonists can prevent or reverse vasospasm and have

  7. Cetirizine inhibits skin reactions but not mediator release in immediate and developing late-phase allergic cutaneous reactions. A double-blind, placebo-controlled study

    DEFF Research Database (Denmark)

    Nielsen, P N; Skov, P S; Poulsen, Lars K.

    2001-01-01

    Recent reports have indicated cetirizine, a potent H(1)-receptor antagonist, to possess a number of anti-inflammatory effects, e.g. inhibition of mast cell degranulation and inhibition of leucocyte migration and activation....

  8. Internalization of the chemokine receptor CCR4 can be evoked by orthosteric and allosteric receptor antagonists.

    Science.gov (United States)

    Ajram, Laura; Begg, Malcolm; Slack, Robert; Cryan, Jenni; Hall, David; Hodgson, Simon; Ford, Alison; Barnes, Ashley; Swieboda, Dawid; Mousnier, Aurelie; Solari, Roberto

    2014-04-15

    The chemokine receptor CCR4 has at least two natural agonist ligands, MDC (CCL22) and TARC (CCL17) which bind to the same orthosteric site with a similar affinity. Both ligands are known to evoke chemotaxis of CCR4-bearing T cells and also elicit CCR4 receptor internalization. A series of small molecule allosteric antagonists have been described which displace the agonist ligand, and inhibit chemotaxis. The aim of this study was to determine which cellular coupling pathways are involved in internalization, and if antagonists binding to the CCR4 receptor could themselves evoke receptor internalization. CCL22 binding coupled CCR4 efficiently to β-arrestin and stimulated GTPγS binding however CCL17 did not couple to β-arrestin and only partially stimulated GTPγS binding. CCL22 potently induced internalization of almost all cell surface CCR4, while CCL17 showed only weak effects. We describe four small molecule antagonists that were demonstrated to bind to two distinct allosteric sites on the CCR4 receptor, and while both classes inhibited agonist ligand binding and chemotaxis, one of the allosteric sites also evoked receptor internalization. Furthermore, we also characterize an N-terminally truncated version of CCL22 which acts as a competitive antagonist at the orthosteric site, and surprisingly also evokes receptor internalization without demonstrating any agonist activity. Collectively this study demonstrates that orthosteric and allosteric antagonists of the CCR4 receptor are capable of evoking receptor internalization, providing a novel strategy for drug discovery against this class of target. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  9. 4,5-Dihydro-1H-imidazol-2-yl)-[4-(4-isopropoxy-benzyl)-phenyl]-amine (RO1138452) is a selective, pseudo-irreversible orthosteric antagonist at the prostacyclin (IP)-receptor expressed by human airway epithelial cells: IP-receptor-mediated inhibition of CXCL9 and CXCL10 release.

    Science.gov (United States)

    Ayer, Linda M; Wilson, Sylvia M; Traves, Suzanne L; Proud, David; Giembycz, Mark A

    2008-02-01

    The extent to which the prostacyclin (IP) receptor regulates the release of two proinflammatory chemokines from human airway epithelial cells was investigated using the novel and competitive IP-receptor antagonist 4,5-dihydro-1H-imidazol-2-yl)-[4-(4-isopropoxy-benzyl)-phenyl]-amine (RO1138452). In BEAS-2B human airway epithelial cells, taprostene, a selective IP-receptor agonist, suppressed interferon-gamma-induced CXCL9 and CXCL10 release in a concentration-dependent manner. These effects were mimicked by 8-bromo-cAMP, and they were abolished in cells infected with an adenovirus vector encoding a highly selective inhibitor of cAMP-dependent protein kinase (PKA). RO1138452 blocked the inhibitory effect of taprostene on chemokine output in a manner inconsistent with surmountable competitive antagonism. Comparable results were obtained using primary cultures of human airway epithelial cells. The basis of the antagonism imposed by RO1138452 was studied further using BEAS-2B cells stably transfected with a cAMP-response element (CRE) luciferase reporter. On this output, RO1138452 also behaved insurmountably. Mechanistically, this could not be attributed to covalent receptor inactivation, allosterism, or a state of hemiequilibrium. Other studies established that the degree by which RO1138452 antagonized taprostene-induced CRE-dependent transcription was not reversed over a 20-h "washout" period. This pharmacological profile is consistent with the behavior of a pseudo-irreversible antagonist where dissociation from its cognate receptor is so slow that re-equilibration is not achieved at the time the response is measured. Collectively, these data provide compelling evidence that human airway epithelial cells express inhibitory IP-receptors linked to the activation of PKA. Moreover, contrary to existing literature, RO1138452 behaved pseudoirreversibly, emphasizing the need, in drug discovery, to screen potential new medicines in the target tissue(s) of interest.

  10. Isolation, identification, and biocontrol of antagonistic bacterium against Botrytis cinerea after tomato harvest

    Directory of Open Access Journals (Sweden)

    Jun-Feng Shi

    Full Text Available ABSTRACT Tomato is one of the most important vegetables in the world. Decay after harvest is a major issue in the development of tomato industry. Currently, the most effective method for controlling decay after harvest is storage of tomato at low temperature combined with usage of chemical bactericide; however, long-term usage of chemical bactericide not only causes pathogen resistance but also is harmful for human health and environment. Biocontrol method for the management of disease after tomato harvest has great practical significance. In this study, antagonistic bacterium B-6-1 strain was isolated from the surface of tomato and identified as Enterobacter cowanii based on morphological characteristics and physiological and biochemical features combined with sequence analysis of 16SrDNA and ropB gene and construction of dendrogram. Effects of different concentrations of antagonistic bacterium E. cowanii suspension on antifungal activity after tomato harvest were analyzed by mycelium growth rate method. Results revealed that antifungal activity was also enhanced with increasing concentrations of antagonistic bacterium; inhibitory rates of 1 × 105 colony-forming units (cfu/mL antagonistic bacterial solution on Fusarium verticillioides, Alternaria tenuissima, and Botrytis cinerea were 46.31%, 67.48%, and 75.67%, respectively. By using in vivo inoculation method, it was further confirmed that antagonistic bacterium could effectively inhibit the occurrence of B. cinerae after tomato harvest, biocontrol effect of 1 × 109 cfu/mL zymotic fluid reached up to 95.24%, and antagonistic bacterium E. cowanii has biocontrol potential against B. cinerea after harvest of fruits and vegetables.

  11. Effects of α-adrenoceptor antagonists on ABCG2/BCRP-mediated resistance and transport.

    Science.gov (United States)

    Takara, Kohji; Yamamoto, Kazuhiro; Matsubara, Mika; Minegaki, Tetsuya; Takahashi, Minoru; Yokoyama, Teruyoshi; Okumura, Katsuhiko

    2012-01-01

    Acquired resistance of cancer cells to various chemotherapeutic agents is known as multidrug resistance, and remains a critical factor in the success of cancer treatment. It is necessary to develop the inhibitors for multidrug resistance. The aim of this study was to examine the effects of eight α-adrenoceptor antagonists on ABCG2/BCRP-mediated resistance and transport. Previously established HeLa/SN100 cells, which overexpress ABCG2/BCRP but not ABCB1/MDR1, were used. The effects of the antagonists on sensitivity to mitoxantrone and the transport activity of Hoehst33342, both substrates for ABCG2/BCRP, were evaluated using the WST-1 assay and cellular kinetics, respectively. ABCG2/BCRP mRNA expression and the cell cycle were also examined by real-time RT-PCR and flow cytometry, respectively. Sensitivity to mitoxantrone was reversed by the α-adrenoceptor antagonists in a concentration-dependent manner, although such effects were also found in the parental HeLa cells. Levels of ABCG2/BCRP mRNA expression were not influenced by the antagonists. The transport activity of Hoechst33342 was decreased by doxazosin and prazosin, but unaffected by the other antagonists. In addition, doxazosin and prazosin increased the proportion of S phase cells in the cultures treated with mitoxantrone, whereas the other α-adrenoceptor antagonists increased the percentage of cells in G(2)/M phase. These findings suggested that doxazosin and prazosin reversed resistance mainly by inhibiting ABCG2/BCRP-mediated transport, but the others affected sensitivity to mitoxantrone via a different mechanism.

  12. Effects of α-adrenoceptor antagonists on ABCG2/BCRP-mediated resistance and transport.

    Directory of Open Access Journals (Sweden)

    Kohji Takara

    Full Text Available Acquired resistance of cancer cells to various chemotherapeutic agents is known as multidrug resistance, and remains a critical factor in the success of cancer treatment. It is necessary to develop the inhibitors for multidrug resistance. The aim of this study was to examine the effects of eight α-adrenoceptor antagonists on ABCG2/BCRP-mediated resistance and transport. Previously established HeLa/SN100 cells, which overexpress ABCG2/BCRP but not ABCB1/MDR1, were used. The effects of the antagonists on sensitivity to mitoxantrone and the transport activity of Hoehst33342, both substrates for ABCG2/BCRP, were evaluated using the WST-1 assay and cellular kinetics, respectively. ABCG2/BCRP mRNA expression and the cell cycle were also examined by real-time RT-PCR and flow cytometry, respectively. Sensitivity to mitoxantrone was reversed by the α-adrenoceptor antagonists in a concentration-dependent manner, although such effects were also found in the parental HeLa cells. Levels of ABCG2/BCRP mRNA expression were not influenced by the antagonists. The transport activity of Hoechst33342 was decreased by doxazosin and prazosin, but unaffected by the other antagonists. In addition, doxazosin and prazosin increased the proportion of S phase cells in the cultures treated with mitoxantrone, whereas the other α-adrenoceptor antagonists increased the percentage of cells in G(2/M phase. These findings suggested that doxazosin and prazosin reversed resistance mainly by inhibiting ABCG2/BCRP-mediated transport, but the others affected sensitivity to mitoxantrone via a different mechanism.

  13. Antagonist-Elicited Cannabis Withdrawal in Humans

    Science.gov (United States)

    Gorelick, David A.; Goodwin, Robert S.; Schwilke, Eugene; Schwope, David M.; Darwin, William D.; Kelly, Deanna L.; McMahon, Robert P.; Liu, Fang; Ortemann-Renon, Catherine; Bonnet, Denis; Huestis, Marilyn A.

    2013-01-01

    Cannabinoid CB1 receptor antagonists have potential therapeutic benefits, but antagonist-elicited cannabis withdrawal has not been reported in humans. Ten male daily cannabis smokers received 8 days of increasingly frequent 20-mg oral Δ9-tetrahydrocannabinol (THC) dosages (40–120 mg/d) around-the-clock to standardize cannabis dependence while residing on a closed research unit. On the ninth day, double-blind placebo or 20- (suggested therapeutic dose) or 40-mg oral rimonabant, a CB1-cannabinoid receptor antagonist, was administered. Cannabis withdrawal signs and symptoms were assessed before and for 23.5 hours after rimonabant. Rimonabant, THC, and 11-hydroxy-THC plasma concentrations were quantified by mass spectrometry. The first 6 subjects received 20-mg rimonabant (1 placebo); the remaining 4 subjects received 40-mg rimonabant (1 placebo). Fourteen subjects enrolled; 10 completed before premature termination because of withdrawal of rimonabant from clinical development. Three of 5 subjects in the 20-mg group, 1 of 3 in the 40-mg group, and none of 2 in the placebo group met the prespecified withdrawal criterion of 150% increase or higher in at least 3 visual analog scales for cannabis withdrawal symptoms within 3 hours of rimonabant dosing. There were no significant associations between visual analog scale, heart rate, or blood pressure changes and peak rimonabant plasma concentration, area-under-the-rimonabant-concentration-by-time curve (0–8 hours), or peak rimonabant/THC or rimonabant/(THC + 11-hydroxy-THC) plasma concentration ratios. In summary, prespecified criteria for antagonist-elicited cannabis withdrawal were not observed at the 20- or 40-mg rimonabant doses. These data do not preclude antagonist-elicited withdrawal at higher rimonabant doses. PMID:21869692

  14. Antagonist-elicited cannabis withdrawal in humans.

    Science.gov (United States)

    Gorelick, David A; Goodwin, Robert S; Schwilke, Eugene; Schwope, David M; Darwin, William D; Kelly, Deanna L; McMahon, Robert P; Liu, Fang; Ortemann-Renon, Catherine; Bonnet, Denis; Huestis, Marilyn A

    2011-10-01

    Cannabinoid CB1 receptor antagonists have potential therapeutic benefits, but antagonist-elicited cannabis withdrawal has not been reported in humans. Ten male daily cannabis smokers received 8 days of increasingly frequent 20-mg oral Δ⁹-tetrahydrocannabinol (THC) dosages (40-120 mg/d) around-the-clock to standardize cannabis dependence while residing on a closed research unit. On the ninth day, double-blind placebo or 20- (suggested therapeutic dose) or 40-mg oral rimonabant, a CB1-cannabinoid receptor antagonist, was administered. Cannabis withdrawal signs and symptoms were assessed before and for 23.5 hours after rimonabant. Rimonabant, THC, and 11-hydroxy-THC plasma concentrations were quantified by mass spectrometry. The first 6 subjects received 20-mg rimonabant (1 placebo); the remaining 4 subjects received 40-mg rimonabant (1 placebo). Fourteen subjects enrolled; 10 completed before premature termination because of withdrawal of rimonabant from clinical development. Three of 5 subjects in the 20-mg group, 1 of 3 in the 40-mg group, and none of 2 in the placebo group met the prespecified withdrawal criterion of 150% increase or higher in at least 3 visual analog scales for cannabis withdrawal symptoms within 3 hours of rimonabant dosing. There were no significant associations between visual analog scale, heart rate, or blood pressure changes and peak rimonabant plasma concentration, area-under-the-rimonabant-concentration-by-time curve (0-8 hours), or peak rimonabant/THC or rimonabant/(THC + 11-hydroxy-THC) plasma concentration ratios. In summary, prespecified criteria for antagonist-elicited cannabis withdrawal were not observed at the 20- or 40-mg rimonabant doses. These data do not preclude antagonist-elicited withdrawal at higher rimonabant doses.

  15. Combining elements from two antagonists of formyl peptide receptor 2 generates more potent peptidomimetic antagonists

    DEFF Research Database (Denmark)

    Skovbakke, Sarah Line; Holdfeldt, Andre; Nielsen, Christina

    2017-01-01

    Structural optimization of a peptidomimetic antagonist of formyl peptide receptor 2 (FPR2) was explored by an approach involving combination of elements from the two most potent FPR2 antagonists described: a Rhodamine B-conjugated 10-residue gelsonin-derived peptide (i.e., PBP10, Rh......B-QRLFQVKGRR-OH) and the palmitoylated α-peptide/β-peptoid hybrid Pam-(Lys-βNspe)6-NH2. This generated an array of hybrid compounds from which a new subclass of receptor-selective antagonists was identified. The most potent representatives displayed activity in the low nanomolar range. The resulting stable and potent FPR2-selective...... antagonists (i.e., RhB-(Lys-βNphe)n-NH2; n = 4–6) are expected to become valuable tools in further elucidation of the physiological role of FPR2 in health and disease....

  16. The alpha7 nicotinic acetylcholine receptor-selective antagonist, methyllycaconitine, partially protects against beta-amyloid1-42 toxicity in primary neuron-enriched cultures.

    Science.gov (United States)

    Martin, Shelley E; de Fiebre, Nancy Ellen C; de Fiebre, Christopher M

    2004-10-01

    Studies have suggested that the neuroprotective actions of alpha7 nicotinic agonists arise from activation of receptors and not from the extensive desensitization which rapidly follows activation. Here, we report that the alpha7-selective nicotinic antagonist, methyllycaconitine (MLA), protects against beta-amyloid-induced neurotoxicity; whereas the alpha4beta2-selective antagonist, dihydro-beta-erythroidine, does not. These findings suggest that neuroprotective actions of alpha7-acting agents arise from receptor inhibition/desensitization and that alpha7 antagonists may be useful neuroprotective agents.

  17. Internal image anti-idiotypic antibody: A new strategy for the development a new category of prolactin receptor (PRLR) antagonist.

    Science.gov (United States)

    Lan, Hainan; Hong, Pan; Li, Ruonan; L, Suo; Anshan, Shan; Li, Steven; Zheng, Xin

    2017-07-01

    Over the past decades, a number of prolactin receptor (PRLR) antagonists have been developed, which can be divided into two categories, PRLR analogue and anti-PRLR antibody. However, until now, there have been no commercially available PRLR antagonists. Here, we described a new approach for the preparation of PRLR antagonist, namely internal image anti-idiotypic antibody strategy. The hybridoma technique was used to generate anti-idiotypic antibodies to PRL. Competitive ELISA, competitive receptor-binding analysis and immunofluorescence assay (IFA) were then used to screen and characterize anti-idiotypic antibodies to PRL. One internal image anti-idiotypic antibody, termed MG7, was obtained. A series of experiments demonstrated that MG7 behaved as a typical internal image anti-idiotypic antibody (Ab2β). MG7 exhibited effective antagonistic activity, which not only inhibited PRL binding to PRLR in a dose-dependent manner but also inhibited PRLR-mediated intracellular signalling. Furthermore, MG7 also blocked Nb2 cell proliferation induced by PRL. The current study suggests that MG7 has the potential application in the PRL/PRLR-related studies in future. In addition, this work also suggests that the internal image anti-idiotypic antibody may represent a novel strategy for the development of PRLR antagonist. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Similarities and differences between calcium antagonists: pharmacological aspects

    NARCIS (Netherlands)

    van Zwieten, P. A.; Pfaffendorf, M.

    1993-01-01

    Characteristics of three different calcium antagonist groups: Most important calcium antagonists used to treat cardiovascular disease belong to one of three main groups, phenylalkylamines, dihydropyridines and benzothiazepines. The best known drug in each group is verapamil, nifedipine and

  19. Protective effects of calcium antagonists in different organs and tissues

    NARCIS (Netherlands)

    van Zwieten, P. A.

    1993-01-01

    The therapeutic efficacy of calcium antagonists in ischemic disorders of various tissues is attributed to vasodilator and antivasoconstrictor activities. A direct, energy-conserving, antiischemic effect of certain calcium antagonists has been claimed repeatedly by basic scientists. The clinical

  20. Cetirizine inhibits skin reactions but not mediator release in immediate and developing late-phase allergic cutaneous reactions. A double-blind, placebo-controlled study

    DEFF Research Database (Denmark)

    Nielsen, P N; Skov, P S; Poulsen, Lars K.

    2001-01-01

    Recent reports have indicated cetirizine, a potent H(1)-receptor antagonist, to possess a number of anti-inflammatory effects, e.g. inhibition of mast cell degranulation and inhibition of leucocyte migration and activation.......Recent reports have indicated cetirizine, a potent H(1)-receptor antagonist, to possess a number of anti-inflammatory effects, e.g. inhibition of mast cell degranulation and inhibition of leucocyte migration and activation....

  1. Streptomycetes and micromycetes as perspective antagonists of fungal phytopathogens.

    Science.gov (United States)

    Postolaky, O; Syrbu, T; Poiras, N; Baltsat, K; Maslobrod, S; Boortseva, S

    2012-01-01

    Among natural factors that permanently influence on the plants, the soil microorganisms play a special role for the growing of plants as habitants of their rhizosphere. Mainly they are the representatives of actinomycetes genus Streptomyces and fungal genus Penicillium and their metabolic products stimulate plant growth and inhibit the growth of pathogenic fungi and bacteria. The aim of our study was to determine the antagonism of actinomycetes and micromycetes isolated from soils of R. Moldova against the fungal pathogens of agricultural plants. The strains were isolated from 5 types of chernozem (black soil) from central zone of R. Moldova, with different concentration of humus. Most of micromycetes and streptomycetes were isolated from soil sample 1 (monoculture of maize) and soil sample 2 (Poltava road border) with similar humus content (2.4-2.6%). The antifungal activity of micromycetes strains was occurring mostly against Fusarium solani and Thelaviopsis basicola, at streptomycetes against Alternaria alternata and Botrytis cinerea. It was revealed the strains completely inhibit the growth of Alt. alternata (streptomycetes strains 23, 33, 37), B. cinerea (Streptomyces sp. 17), and F. solani (Penicillium sp. 104). Our results allow to consider the actinomycetes Streptomyces sp.9, Streptomyces sp. 12, Streptomyces sp. 17, Streptomyces sp. 37 Streptomyces sp. 66 and micromycetes Penicillium sp. 5, Penicillium sp. 65, Penicillium sp. 104 isolated from soils of R. Moldova, as prospective strains-antagonists against the phytopathogenic fungus, the causative agents of agricultural plants deseasis.

  2. Examination of chlorpromazine and other amphipathic drugs on the activity of lipopolysaccharide antagonists, E5564 and E5531.

    Science.gov (United States)

    Yang, H; Daun, J M; Rose, J R; Christ, W J; Gusovsky, F; Chow, J C

    2000-01-01

    The synthetic antagonists of lipopolysaccharide (LPS), E5531 and E5564, are analogs of the lipid A portion of LPS that not only lack agonistic activity but also inhibit the biological effects of LPS both in vitro and in vivo. The effects of LPS and these synthetic antagonists have been localized to the recently described Toll-like receptor 4 (TLR4). A recent report indicated that the naturally occurring LPS antagonist Rhodobacter sphaeroides LPS loses its antagonist properties and gains pro-inflammatory qualities in the presence of chlorpromazine and other amphipathic drugs. To determine whether these reported actions occur with our chemically defined LPS antagonists, we examined the effects of chlorpromazine, fluphenazine, trifluoperazine, and lidocaine on the antagonism elicited by RsLPS and E5531 in U373 cells, which produce IL-6 in response to LPS. We also tested the effects of these amphipathic molecules on the LPS-neutralizing activity of RsLPS and E5564 on LPS-induced TNF-alpha release in human whole blood. The results indicate that neither chlorpromazine, fluphenazine, trifluoperazine nor lidocaine alter the activity of E5531 or E5564 in an in vitro cell system or human whole blood. Furthermore, chlorpromazine did not affect the antagonistic activity of RsLPS or E5564 on IL-6 generation by peripheral blood mononuclear cells. Thus, based on these data, our purified synthetic LPS-antagonists do not appear to lose their antagonistic properties and/or become agonists in the presence of amphipathic agents or drugs.

  3. A SOCS1/3 antagonist peptide protects mice against lethal infection with influenza A virus

    Directory of Open Access Journals (Sweden)

    Chulbul M. Ahmed

    2015-11-01

    Full Text Available We have developed an antagonist to suppressor of cytokine signaling 1 (SOCS1, pJAK2(1001-1013, that corresponds to the activation loop of the Janus kinase JAK2, which is the binding site for the kinase inhibitory region (KIR of SOCS1. Internalized pJAK2(1001-1013 inhibits SOCS1 and SOCS3. SOCS1 has been shown to be an influenza virus induced virulence factor that enhances infection of cells. The antagonist was protective in cell culture and in influenza virus PR8 lethally infected C57BL/6 mice. The SOCS antagonist also prevented adverse morbidity as assessed by parameters such as weight loss and drop in body temperature and showed potent induction of both the cellular and humoral immune responses to the influenza virus candidate universal antigen matrix protein 2 (M2e. The SOCS antagonist thus protected mice against lethal influenza virus infection and possessed potent adjuvancy against the M2e candidate influenza virus universal vaccine antigen.

  4. Modulation of in vivo immunoglobulin production by endogenous histamine and H1R and H2R agonists and antagonists.

    Science.gov (United States)

    Tripathi, Trivendra; Shahid, Mohammad; Khan, Haris M; Negi, Mahendra Pal Singh; Siddiqui, Mashiatullah; Khan, Rahat A

    2010-01-01

    The present study was designed to delineate the immunomodulatory role of histamine receptors (H1R and H2R) and their antibody generation in a rabbit model. Six groups containing 18 rabbits each received either vehicle (sterile distilled water, 1 ml/kg x b.i.d), histamine (100 μg/kg x b.i.d.), H1R agonist (HTMT, 10 μg/kg x b.i.d.), H2R agonist (amthamine, 10 μg/kg x b.i.d.), H1R antagonist (pheniramine, 10 mg/kg x b.i.d.) or H2R antagonist (ranitidine, 10 mg/kg x b.i.d.). All animals were subsequently immunized with an intravenous injection of sheep red blood cells (SRBC). Estimations of total serum immunoglobulins (Igs), immunoglobulin M (IgM) and immunoglobulin G (IgG) were performed by ELISA and hemagglutination assay (HA) at days 0 (pre-immunization), 7, 14, 21, 28 and 58 (post-immunization). Both the ELISA and the HA showed similar production of Igs, IgM and IgG but the results were found comparatively more significant by ELISA as opposed to HA. Results showed that histamine could influence a detectable antibody response to SRBC early (i.e., at day 7), which lasted until day 58. Immunomodulatory processes showed suppression of an Ig generation in the H1R-antagonist group with enhancement in the H2R-antagonist group. The H1R-agonist group showed an increased Ig production in comparison to the H2R-agonist group. The IgM production was inhibited in the H1R-antagonist group as compared to the H2R-antagonist group, and it was also suppressed in H1R-agonist group as compared to H2R-agonist group. IgG production was inhibited in the H1R-antagonist group as opposed to the H2R-antagonist group. In contrast, the H1R-agonist group increased IgG production as compared to the H2R-agonist group. All the results were found to be statistically significant (p < 0.05 or p < 0.01). In conclusion, histamine and its receptor (H1R and H2R) agonists enhance antibody production by triggering the histamine receptors (H1R and H2R), and both the H1R antagonist and the H2R antagonist

  5. Identification of Receptor Ligands and Receptor Subtypes Using Antagonists in a Capillary Electrophoresis Single-Cell Biosensor Separation System

    Science.gov (United States)

    Fishman, Harvey A.; Orwar, Owe; Scheller, Richard H.; Zare, Richard N.

    1995-08-01

    A capillary electrophoresis system with single-cell biosensors as a detector has been used to separate and identify ligands in complex biological samples. The power of this procedure was significantly increased by introducing antagonists that inhibited the cellular response from selected ligand-receptor interactions. The single-cell biosensor was based on the ligand-receptor binding and G-protein-mediated signal transduction pathways in PC12 and NG108-15 cell lines. Receptor activation was measured as increases in cytosolic free calcium ion concentration by using fluorescence microscopy with the intracellular calcium ion indicator fluo-3 acetoxymethyl ester. Specifically, a mixture of bradykinin (BK) and acetylcholine (ACh) was fractionated and the components were identified by inhibiting the cellular response with icatibant (HOE 140), a selective antagonist to the BK B_2 receptor subtype (B_2BK), and atropine, an antagonist to muscarinic ACh receptor subtypes. Structurally related forms of BK were also identified based on inhibiting B_2BK receptors. Applications of this technique include identification of endogenous BK in a lysate of human hepatocellular carcinoma cells (Hep G2) and screening for bioactivity of BK degradation products in human blood plasma. The data demonstrate that the use of antagonists with a single-cell biosensor separation system aids identification of separated components and receptor subtypes.

  6. 20-Aminosteroids as a novel class of selective and complete androgen receptor antagonists and inhibitors of prostate cancer cell growth.

    Science.gov (United States)

    Fousteris, Manolis A; Schubert, Undine; Roell, Daniela; Roediger, Julia; Bailis, Nikolaos; Nikolaropoulos, Sotiris S; Baniahmad, Aria; Giannis, Athanassios

    2010-10-01

    Here, the synthesis and the evaluation of novel 20-aminosteroids on androgen receptor (AR) activity is reported. Compounds 11 and 18 of the series inhibit both the wild type and the T877A mutant AR-mediated transactivation indicating AR antagonistic function. Interestingly, minor structural changes such as stereoisomers of the amino lactame moiety exhibit preferences for antagonism among wild type and mutant AR. Other tested nuclear receptors are only weakly or not affected. In line with this, the prostate cancer cell growth of androgen-dependent but not of cancer cells lacking expression of the AR is inhibited. Further, the expression of the prostate specific antigen used as a diagnostic marker is also repressed. Finally steroid 18 enhances cellular senescence that might explain in part the growth inhibition mediated by this derivative. Steroids 11 and 18 are the first steroids that act as complete AR antagonists and exhibit AR specificity. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Functionalized Congeners of P2Y1 Receptor Antagonists:

    Energy Technology Data Exchange (ETDEWEB)

    de Castro, Sonia [National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health; Maruoka, Hiroshi [National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health; Hong, Kunlun [ORNL; Kilbey, II, S Michael [ORNL; Costanzi, Stefano [National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health; Hechler, Béatrice [University of Strasbourg; Gachet, Christian [EFS-Alsace, Strasbourg, France; Harden, T. Kendall [University of North Carolina School of Medicine; Jacobson, Kenneth A. [National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health

    2010-01-01

    The P2Y{sub 1} receptor is a prothrombotic G protein-coupled receptor (GPCR) activated by ADP. Preference for the North (N) ring conformation of the ribose moiety of adenine nucleotide 3',5'-bisphosphate antagonists of the P2Y{sub 1} receptor was established by using a ring-constrained methanocarba (a bicyclo[3.1.0]hexane) ring as a ribose substitute. A series of covalently linkable N{sup 6}-methyl-(N)-methanocarba-2'-deoxyadenosine-3',5'-bisphosphates containing extended 2-alkynyl chains was designed, and binding affinity at the human (h) P2Y{sub 1} receptor determined. The chain of these functionalized congeners contained hydrophilic moieties, a reactive substituent, or biotin, linked via an amide. Variation of the chain length and position of an intermediate amide group revealed high affinity of carboxylic congener 8 (K{sub i} 23 nM) and extended amine congener 15 (K{sub i} 132 nM), both having a 2-(1-pentynoyl) group. A biotin conjugate 18 containing an extended {epsilon}-aminocaproyl spacer chain exhibited higher affinity than a shorter biotinylated analogue. Alternatively, click coupling of terminal alkynes of homologous 2-dialkynyl nucleotide derivatives to alkyl azido groups produced triazole derivatives that bound to the P2Y{sub 1} receptor following deprotection of the bisphosphate groups. The preservation of receptor affinity of the functionalized congeners was consistent with new P2Y{sub 1} receptor modeling and ligand docking. Attempted P2Y{sub 1} antagonist conjugation to PAMAM dendrimer carriers by amide formation or palladium-catalyzed reaction between an alkyne on the dendrimer and a 2-iodopurine-derivatized nucleotide was unsuccessful. A dialkynyl intermediate containing the chain length favored in receptor binding was conjugated to an azide-derivatized dendrimer, and the conjugate inhibited ADP-promoted human platelet aggregation. This is the first example of attaching a strategically functionalized P2Y receptor

  8. Antagonistic parent-offspring co-adaptation.

    Directory of Open Access Journals (Sweden)

    Mathias Kölliker

    2010-01-01

    Full Text Available In species across taxa, offspring have means to influence parental investment (PI. PI thus evolves as an interacting phenotype and indirect genetic effects may strongly affect the co-evolutionary dynamics of offspring and parental behaviors. Evolutionary theory focused on explaining how exaggerated offspring solicitation can be understood as resolution of parent-offspring conflict, but the evolutionary origin and diversification of different forms of family interactions remains unclear.In contrast to previous theory that largely uses a static approach to predict how "offspring individuals" and "parental individuals" should interact given conflict over PI, we present a dynamic theoretical framework of antagonistic selection on the PI individuals obtain/take as offspring and the PI they provide as parents to maximize individual lifetime reproductive success; we analyze a deterministic and a stochastic version of this dynamic framework. We show that a zone for equivalent co-adaptation outcomes exists in which stable levels of PI can evolve and be maintained despite fast strategy transitions and ongoing co-evolutionary dynamics. Under antagonistic co-adaptation, cost-free solicitation can evolve as an adaptation to emerging preferences in parents.We show that antagonistic selection across the offspring and parental life-stage of individuals favors co-adapted offspring and parental behavior within a zone of equivalent outcomes. This antagonistic parent-offspring co-adaptation does not require solicitation to be costly, allows for rapid divergence and evolutionary novelty and potentially explains the origin and diversification of the observed provisioning forms in family life.

  9. Antagonist potential of Trichoderma indigenous isolates for ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... Full Length Research Paper. Antagonist potential of Trichoderma indigenous isolates for biological control of Phytophthora palmivora the causative agent of black pod disease on cocoa (Theobroma cacao L.) in Côte d'Ivoire. J. Mpika1,4*, I. B. Kébé1, A. E. Issali2, F.K. N'Guessan1, S. Druzhinina3, ...

  10. Medicinal Chemistry of Competitive Kainate Receptor Antagonists

    Science.gov (United States)

    2010-01-01

    Kainic acid (KA) receptors belong to the group of ionotropic glutamate receptors and are expressed throughout in the central nervous system (CNS). The KA receptors have been shown to be involved in neurophysiological functions such as mossy fiber long-term potentiation (LTP) and synaptic plasticity and are thus potential therapeutic targets in CNS diseases such as schizophrenia, major depression, neuropathic pain and epilepsy. Extensive effort has been made to develop subtype-selective KA receptor antagonists in order to elucidate the physiological function of each of the five subunits known (GluK1−5). However, to date only selective antagonists for the GluK1 subunit have been discovered, which underlines the strong need for continued research in this area. The present review describes the structure−activity relationship and pharmacological profile for 10 chemically distinct classes of KA receptor antagonists comprising, in all, 45 compounds. To the medicinal chemist this information will serve as reference guidance as well as an inspiration for future effort in this field. PMID:22778857

  11. The sexually antagonistic genes of Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Paolo Innocenti

    2010-03-01

    Full Text Available When selective pressures differ between males and females, the genes experiencing these conflicting evolutionary forces are said to be sexually antagonistic. Although the phenotypic effect of these genes has been documented in both wild and laboratory populations, their identity, number, and location remains unknown. Here, by combining data on sex-specific fitness and genome-wide transcript abundance in a quantitative genetic framework, we identified a group of candidate genes experiencing sexually antagonistic selection in the adult, which correspond to 8% of Drosophila melanogaster genes. As predicted, the X chromosome is enriched for these genes, but surprisingly they represent only a small proportion of the total number of sex-biased transcripts, indicating that the latter is a poor predictor of sexual antagonism. Furthermore, the majority of genes whose expression profiles showed a significant relationship with either male or female adult fitness are also sexually antagonistic. These results provide a first insight into the genetic basis of intralocus sexual conflict and indicate that genetic variation for fitness is dominated and maintained by sexual antagonism, potentially neutralizing any indirect genetic benefits of sexual selection.

  12. Pharmacological analysis of calcium antagonist receptors

    International Nuclear Information System (INIS)

    Reynolds, I.J.

    1987-01-01

    This work focuses on two aspects of the action of calcium antagonist drugs, namely, the interaction of drugs with receptors for verapamil-like calcium antagonists, and the interactions of drugs with voltage-sensitive calcium fluxes in rat brain synaptosomes. From binding studies I have found that the ligand of choice for labeling the verapamil receptor is (-)[ 3 H]desmethoxy-verapamil. This drug labels potently, reversibly and stereoselectively two receptors in membranes prepared from rat brain and rabbit skeletal muscle tissues. In equilibrium studies dihydropyridine calcium antagonists interact in a non-competitive fashion, while many non-DHPs are apparently competitive. In-depth kinetic studies in skeletal muscle membranes indicate that the two receptors are linked in a negative heterotropic fashion, and that low-affinity binding of (-) [ 3 H]desmethoxy-verapamil may be to the diltiazem receptor. However, these studies were not able to distinguish between the hypothesis that diltiazem binds to spatially separate, allosterically coupled receptors, and the hypothesis that diltiazem binds to a subsite of the verapamil receptor

  13. NMDA Receptor Antagonists for Treatment of Depression

    Directory of Open Access Journals (Sweden)

    Zeynep Ates-Alagoz

    2013-04-01

    Full Text Available Depression is a psychiatric disorder that affects millions of people worldwide. Individuals battling this disorder commonly experience high rates of relapse, persistent residual symptoms, functional impairment, and diminished well-being. Medications have important utility in stabilizing moods and daily functions of many individuals. However, only one third of patients had considerable improvement with a standard antidepressant after 2 months and all patients had to deal with numerous side effects. The N-methyl-d-aspartate (NMDA receptor family has received special attention because of its critical role in psychiatric disorders. Direct targeting of the NMDA receptor could result in more rapid antidepressant effects. Antidepressant-like effects of NMDA receptor antagonists have been demonstrated in different animal models. MK-801 (a use-dependent channel blocker, and CGP 37849 (an NMDA receptor antagonist have shown antidepressant properties in preclinical studies, either alone or combined with traditional antidepressants. A recent development is use of ketamine clinically for refractory depression. The purpose of this review is to examine and analyze current literature on the role of NMDA receptor antagonists for treatment of depression and whether this is a feasible route in drug discovery.

  14. CD1d deficiency inhibits the development of abdominal aortic aneurysms in LDL receptor deficient mice.

    Directory of Open Access Journals (Sweden)

    Gijs H M van Puijvelde

    Full Text Available An abdominal aortic aneurysm (AAA is a dilatation of the abdominal aorta leading to serious complications and mostly to death. AAA development is associated with an accumulation of inflammatory cells in the aorta including NKT cells. An important factor in promoting the recruitment of these inflammatory cells into tissues and thereby contributing to the development of AAA is angiotensin II (Ang II. We demonstrate that a deficiency in CD1d dependent NKT cells under hyperlipidemic conditions (LDLr-/-CD1d-/- mice results in a strong decline in the severity of angiotensin II induced aneurysm formation when compared with LDLr-/- mice. In addition, we show that Ang II amplifies the activation of NKT cells both in vivo and in vitro. We also provide evidence that type I NKT cells contribute to AAA development by inducing the expression of matrix degrading enzymes in vSMCs and macrophages, and by cytokine dependently decreasing vSMC viability. Altogether, these data prove that CD1d-dependent NKT cells contribute to AAA development in the Ang II-mediated aneurysm model by enhancing aortic degradation, establishing that therapeutic applications which target NKT cells can be a successful way to prevent AAA development.

  15. Discovery of Highly Potent Dual Orexin Receptor Antagonists via a Scaffold-Hopping Approach.

    Science.gov (United States)

    Heidmann, Bibia; Gatfield, John; Roch, Catherine; Treiber, Alexander; Tortoioli, Simone; Brotschi, Christine; Williams, Jodi T; Bolli, Martin H; Abele, Stefan; Sifferlen, Thierry; Jenck, François; Boss, Christoph

    2016-10-06

    Starting from suvorexant (trade name Belsomra), we successfully identified interesting templates leading to potent dual orexin receptor antagonists (DORAs) via a scaffold-hopping approach. Structure-activity relationship optimization allowed us not only to improve the antagonistic potency on both orexin 1 and orexin 2 receptors (Ox1 and Ox2, respectively), but also to increase metabolic stability in human liver microsomes (HLM), decrease time-dependent inhibition of cytochrome P450 (CYP) 3A4, and decrease P-glycoprotein (Pgp)-mediated efflux. Compound 80 c [{(1S,6R)-3-(6,7-difluoroquinoxalin-2-yl)-3,8-diazabicyclo[4.2.0]octan-8-yl}(4-methyl-[1,1'-biphenyl]-2-yl)methanone] is a potent and selective DORA that inhibits the stimulating effects of orexin peptides OXA and OXB at both Ox1 and Ox2. In calcium-release assays, 80 c was found to exhibit an insurmountable antagonistic profile at both Ox1 and Ox2, while displaying a sleep-promoting effect in rat and dog models, similar to that of the benchmark compound suvorexant. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Effects of matrix metalloproteinase inhibitor doxycycline and CD147 antagonist peptide-9 on gallbladder carcinoma cell lines.

    Science.gov (United States)

    Wang, Shihang; Liu, Chao; Liu, Xinjiang; He, Yanxin; Shen, Dongfang; Luo, Qiankun; Dong, Yuxi; Dong, Haifeng; Pang, Zhigang

    2017-10-01

    Gallbladder carcinoma is the most common and aggressive malignancy of the biliary tree and highly expresses CD147, which is closely related to disease prognosis in a variety of human cancers. Doxycycline exhibited anti-tumor properties in many cancer cells. CD147 antagonist peptide-9 is a polypeptide and can specifically bind to CD147. The effect of these two drugs on gallbladder cancer cells has not been studied. The aim of this study is to investigate the effect of doxycycline and antagonist peptide-9 on gallbladder carcinoma cells and the possible mechanism of inhibition on cancer cell of doxycycline. To investigate the effects of doxycycline and antagonist peptide-9 on gallbladder carcinoma cells (GBC-SD and SGC-996), cell proliferation, CD147 expression, and early-stage apoptosis rate were measured after treated with doxycycline. Matrix metalloproteinase-2 and matrix metalloproteinase-9 activities were measured after treated with different concentrations of doxycycline, antagonist peptide-9, and their combination. The results demonstrated that doxycycline inhibited cell proliferation, reduced CD147 expression level, and induced an early-stage apoptosis response in GBC-SD and SGC-996 cells. The matrix metalloproteinase-2 and matrix metalloproteinase-9 activities were inhibited by antagonist peptide-9 and doxycycline, and the inhibitory effects were enhanced by combined drugs in gallbladder carcinoma cell lines. Taken together, doxycycline showed inhibitory effects on gallbladder carcinoma cell lines and reduced the expression of CD147, and this may be the mechanism by which doxycycline inhibits cancer cells. This study provides new information and tries to implement the design of adjuvant therapy method for gallbladder carcinoma.

  17. Antagonistic Effects of Sodium Butyrate and N-(4-Hydroxyphenyl-retinamide on Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Rainer Kuefer

    2007-03-01

    Full Text Available Butyrates and retinoids are promising antineoplastic agents. Here we analyzed effects of sodium butyrate and N-(4-hydroxyphenyl-retinamide (4-HPR on prostate cancer cells as monotherapy or in combination in vitro and in vivo. Sodium butyrate and 4-HPR induced concentration-dependent growth inhibition in prostate cancer cells in vitro. The isobologram analysis revealed that sodium butyrate and 4-HPR administered together antagonize effects of each other. For the in vivo studies, a water-soluble complex (4-HPR with a cyclodextrin was created. A single dose of sodium butyrate and 4-HPR showed a peak level in chicken plasma within 30 minutes. Both compounds induced inhibition of proliferation and apoptosis in xenografts of the chicken chorioallantoic membrane. Analysis of the cytotoxic effects of the drugs used in combination demonstrated an antagonistic effect on inhibition of proliferation and on induction of apoptosis. Prolonged jun N-terminal kinase phosphorylation induced by sodium butyrate and 4-HPR was strongly attenuated when both compounds were used in combination. Both compounds induced inhibition of NF-κ,B. This effect was strongly antagonized in LNCaP cells when the compounds were used in combination. These results indicate that combinational therapies have to be carefully investigated due to potential antagonistic effects in the clinical setting despite promising results of a monotherapy.

  18. A novel antagonist of CRTH2 blocks eosinophil release from bone marrow, chemotaxis and respiratory burst

    DEFF Research Database (Denmark)

    Royer, J F; Schratl, P; Lorenz, S

    2007-01-01

    developed small molecule antagonist of CRTH2, Cay10471, on eosinophil function with respect to recruitment, respiratory burst and degranulation. METHODS: Chemotaxis of guinea pig bone marrow eosinophils and human peripheral blood eosinophils were determined using microBoyden chambers. Eosinophil release...... from bone marrow was investigated in the in situ perfused guinea pig hind limb preparation. Respiratory burst and degranulation were measured by flow cytometry. RESULTS: Cay10471 bound with high affinity to recombinant human and guinea pig CRTH2, but not DP, receptors. The antagonist prevented the PGD......(2)-induced release of eosinophils from guinea pig bone marrow, and inhibited the chemotaxis of guinea pig bone marrow eosinophils and human peripheral blood eosinophils. Pretreatment with PGD(2) primed eosinophils for chemotaxis towards eotaxin, and this effect was prevented by Cay10471. In contrast...

  19. Mineralocorticoid Receptor Antagonists-A New Sprinkle of Salt and Youth.

    Science.gov (United States)

    Stojadinovic, Olivera; Lindley, Linsey E; Jozic, Ivan; Tomic-Canic, Marjana

    2016-10-01

    Skin atrophy and impaired cutaneous wound healing are the recognized side effects of topical glucocorticoid (GC) therapy. Although GCs have high affinity for the glucocorticoid receptor, they also bind and activate the mineralocorticoid receptor. In light of this, one can speculate that some of the GC-mediated side effects can be remedied by blocking activation of the mineralocorticoid receptor. Indeed, according to Nguyen et al., local inhibition of the mineralocorticoid receptor via antagonists (spironolactone, canrenoate, and eplerenone) rescues GC-induced delayed epithelialization and accelerates wound closure in diabetic animals by targeting epithelial sodium channels and stimulating keratinocyte proliferation. These findings suggest that the use of mineralocorticoid receptor antagonists coupled with GC therapy may be beneficial in overcoming at least some of the GC-mediated side effects. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Drm/Gremlin, a BMP antagonist, defines the interbud region during feather development.

    Science.gov (United States)

    Bardot, Boris; Lecoin, Laure; Fliniaux, Ingrid; Huillard, Emmanuelle; Marx, Maria; Viallet, Jean P

    2004-01-01

    The pattern of feather buds in a tract is thought to result from the relative ratios between activator and inhibitor signals through a lateral inhibition process. We analyse the role of Drm/Gremlin, a BMPs antagonist expressed during feather pattern formation, in the dermal precursor, the dense dermis, the interbud dermis and in the posterior dermal condensation. We have altered the activity of Drm in embryonic chick skin using retroviral vectors expressing drm/ gremlin and bmps. We show that expression of endogenous drm is under the control of a feedback loop induced by the BMP pathway, and that overexpression of drm results in fusion between adjacent feather buds. We propose that endogenous BMP proteins induce drm expression in the interbud dermis. In turn, the Drm/Gremlin protein limits the inhibitory effect of BMPs, allowing the adjacent row of feathers to form. Thus, the balance between BMPs and its antagonist Drm would regulate the size and spacing of the buds.

  1. Evidence that diclofenac and celecoxib are thyroid hormone receptor beta antagonists.

    Science.gov (United States)

    Zloh, Mire; Perez-Diaz, Noelia; Tang, Leslie; Patel, Pryank; Mackenzie, Louise S

    2016-02-01

    Long term use of NSAIDs is linked to side effects such as gastric bleeding and myocardial infarction. Use of in silico methods and pharmacology to investigate the potential for NSAIDs diclofenac, celecoxib and naproxen to bind to nuclear receptors. In silico screening predicted that both diclofenac and celecoxib has the potential to bind to a number of different nuclear receptors; docking analysis confirmed a theoretical ability for diclofenac and celecoxib but not naproxen to bind to TRβ. Results from TRβ luciferase reporter assays confirmed that both diclofenac and celecoxib display TRβ antagonistic properties; celecoxib, IC50 3.6 × 10(-6)M, and diclofenac IC50 5.3 × 10(-6)M, comparable to the TRβ antagonist MLS (IC50 3.1 × 10(-6)M). In contrast naproxen, a cardio-sparing NSAID, lacked TRβ antagonist effects. In order to determine the effects of NSAIDs in whole organ in vitro, we used isometric wire myography to measure the changes to Triiodothyronine (T3) induced vasodilation of rat mesenteric arteries. Incubation of arteries in the presence of the TRβ antagonist MLS000389544 (10(-5)M), as well as diclofenac (10(-5)M) and celecoxib (10(-5)M) but not naproxen significantly inhibited T3 induced vasodilation compared to controls. These results highlight the benefits of computational chemistry methods used to retrospectively analyse well known drugs for side effects. Using in silico and in vitro methods we have shown that both celecoxib and diclofenac but not naproxen exhibit off-target TRβ antagonist behaviour, which may be linked to their detrimental side effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. [Effect of growth medium content on antagonistic characteristics of Bacillus pumilus].

    Science.gov (United States)

    Grin'ko, O M; Zverev, V V; Mikhaĭlova, N A

    2010-01-01

    To study the effect of growth medium content on antagonistic characteristics of "Pashkov" strain of B. pumilus. The following strains were used in the study: B. subtitlis 3H, B. subtitlis 534, B. subtitlis 1719, B. pumilus "Pashkov". Test strains from collection of Tarasevich State Institute for Standardization and Control of Medical Biological Preparations were used for determination of antagonistic activity. Growing of B. pumilus cultures on medium (No. 9, No. 5, VK-2, Spizeisen, and L-broth) was performed by periodic cultivation during 72 h in conditions of continuous aeration at 37 degrees C. Inhibiting effect of obtained samples was assessed on growth kinetics of test strains using microbiological analyzer with plan-table photometer "BIOSCREEN/iEMS--reader MF" (LabMetod, Finland). Expressed antagonistic characteristics were revealed during cultivation on media No. 9 and No. 5 with maximal expression on day 3. Addition of lactose to medium No. 9 resulted in increase of bacteriostatic effect (BSE) against both individual strains and all test strains--up to 16% in average. Selection of optimal concentrations of different components allowed to develop a new growth medium which provides maximal antagonistic activity in studied strain of B. pumilus. Effect of growth medium content on antagonistic characteristics against pathogenic and opportunistic bacteria was confirmed on the example of cultivation of spore-forming strain "Pashkov" of B. pumilus. Optimization of carbohydrate, salt and other components of growth medium allowed to increase up to 100% the BSE of "Pashkov" strain of B. pumilus against both individual and all test strains. This study opens perspectives for generation of compounds with directional probiotic effect.

  3. Calmodulin antagonists effect on Ca(2+ level in the mitochondria and cytoplasm of myometrium cells

    Directory of Open Access Journals (Sweden)

    S. G. Shlykov

    2015-10-01

    Full Text Available It is known that Са2+-dependent regulation of this cation exchange in mitochondria is carried out with participation of calmodulin. We had shown in a previous work using two experimental models: isolated mitochondria and intact myometrium cells, that calmodulin antagonists reduce the level of mitochondrial membrane polarization. The aim of this work was to investigate the influence of calmodulin antagonists on the level of ionized Са in mitochondria and cytoplasm of uterine smooth muscle cells using spectrofluorometry and confocal microscopy. It was shown that myometrium mitochondria, in the presence of АТР and MgCl2 in the incubation medium, accumulate Са ions in the matrix. Incubation of mitochondria in the presence of СССР inhibited cation accumulation, but did not cease it. Calmodulin antagonist such as trifluoperazine (100 µМ considerably increased the level of ionized Са in the mitochondrial matrix. Preliminary incubation of mitochondria with 100 µМ Са2+, before adding trifluoperazine to the incubation medium, partly prevented influence of the latter on the cation level in the matrix. Incubation of myometrium cells (primary culture with another calmodulin antagonist calmidazolium (10 µМ was accompanied by depolarization of mitochondrial membrane and an increase in the concentration of ionized Са in cytoplasm. Thus, using two models, namely, isolated mitochondria and intact myometrium cells, it has been shown that calmodulin antagonists cause depolarization of mitochondrial membranes and an increase of the ionized Са concentration in both the mitochondrial matrix and the cell cytoplasm.

  4. Combination decongestion therapy in hospitalized heart failure: loop diuretics, mineralocorticoid receptor antagonists and vasopressin antagonists.

    Science.gov (United States)

    Vaduganathan, Muthiah; Mentz, Robert J; Greene, Stephen J; Senni, Michele; Sato, Naoki; Nodari, Savina; Butler, Javed; Gheorghiade, Mihai

    2015-01-01

    Congestion is the most common reason for admissions and readmissions for heart failure (HF). The vast majority of hospitalized HF patients appear to respond readily to loop diuretics, but available data suggest that a significant proportion are being discharged with persistent evidence of congestion. Although novel therapies targeting congestion should continue to be developed, currently available agents may be utilized more optimally to facilitate complete decongestion. The combination of loop diuretics, natriuretic doses of mineralocorticoid receptor antagonists and vasopressin antagonists represents a regimen of currently available therapies that affects early and persistent decongestion, while limiting the associated risks of electrolyte disturbances, hemodynamic fluctuations, renal dysfunction and mortality.

  5. Investigation of orexin-2 selective receptor antagonists: Structural modifications resulting in dual orexin receptor antagonists.

    Science.gov (United States)

    Skudlarek, Jason W; DiMarco, Christina N; Babaoglu, Kerim; Roecker, Anthony J; Bruno, Joseph G; Pausch, Mark A; O'Brien, Julie A; Cabalu, Tamara D; Stevens, Joanne; Brunner, Joseph; Tannenbaum, Pamela L; Wuelfing, W Peter; Garson, Susan L; Fox, Steven V; Savitz, Alan T; Harrell, Charles M; Gotter, Anthony L; Winrow, Christopher J; Renger, John J; Kuduk, Scott D; Coleman, Paul J

    2017-03-15

    In an ongoing effort to explore the use of orexin receptor antagonists for the treatment of insomnia, dual orexin receptor antagonists (DORAs) were structurally modified, resulting in compounds selective for the OX 2 R subtype and culminating in the discovery of 23, a highly potent, OX 2 R-selective molecule that exhibited a promising in vivo profile. Further structural modification led to an unexpected restoration of OX 1 R antagonism. Herein, these changes are discussed and a rationale for selectivity based on computational modeling is proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Lactobacillus acidophilus antagonistic action against pathogenic strains inoculated in the fermented milk

    Directory of Open Access Journals (Sweden)

    Neila Mello Cortez

    2016-03-01

    Full Text Available With the present study aimed to evaluate the antagonistic action of Lactobacillus acidophilus front of Escherichia coli, Staphylococcus aureus and Listeria monocytogenes. In vitro tests were performed using Petri dishes with MRS agar and the milk fermented with Lactobacillus acidophilus also analyzed the chemistry and physical characteristics of the product during 35 days of storage under refrigeration. It has been observed in vitro formation of inhibition zones, ranging from 6 to 18 mm diameter, compared to the tested pathogens by lactic culture raises, indicating the possibility of producing organic acids, bacteriocins or other growth-inhibiting substances. In the fermented milk prepared, during storage, the probiotic micro-organism tested was able to inhibit the growth of E. coli O157: H7 and L. monocytogenes; and the log cycle reduction of S. aureus.

  7. Antagonistic Activity of Probiotic Organism Against Vibrio cholerae and Cryptococcus neoformans

    Directory of Open Access Journals (Sweden)

    Vidya, R.

    2010-01-01

    Full Text Available The microbes are useful in many ways in the modern world. Probiotics one of them, which refers to, acid adherence bacteria in the intestinal cells, are able to survive at low pH and produce large amount of lactic acid. The present investigation deals with the antagonistic activity of Lactobacillus acidophilus organism against pathogens. The organism was isolated from the curd sample. Identification of bacteria was done by various biochemical testing. The present study revealed that L. acidophilus inhibits Vibrio cholerae more efficiently than Streptococcus pneumoniae and Shigella dysentriae. When L. acidophilus and V. cholerae were grown together, L. acidophilus dominated the growth and competitively inhibited the growth of V. cholerae. L. acidophilus was also found to inhibit Cryptococcus neoformans.

  8. Evaluation of antagonistic activity of milk fermented with kefir grains of different origins

    Directory of Open Access Journals (Sweden)

    João Paulo Victorino Santos

    2013-10-01

    Full Text Available In this study, the potential of kefir grains, obtained from three different towns/cities in the Southeast Region of Brazil to inhibit the growth of the five pathogenic microorganisms was evaluated. The samples showed the growth inhibition from 42.80-69.15 for Staphylococcus aureus ATCC 6538, 30.73-59.89 for Escherichia coli ATCC 11229, 44.99-73.05 for Salmonela typhi ATCC 6539, 41.45-54.18 for Listeria monocytogenes ATCC 15313 and 70.38-86.80 for Bacillus cereus RIBO 1222-173-S4. These results indicated that the kefir grains evaluated had antagonistic activity toward the different pathogens tested. The ability to inhibit, although differently depending on the regional microbiota, indicated a potential for their use as a functional food.

  9. New trends in combined use of gonadotropin-releasing hormone antagonists with gonadotropins or pulsatile gonadotropin-releasing hormone in ovulation induction and assisted reproductive technologies.

    Science.gov (United States)

    Gordon, K; Danforth, D R; Williams, R F; Hodgen, G D

    1992-10-01

    The use of gonadotropin-releasing hormone agonists as adjunctive therapy with gonadotropins for ovulation induction in in vitro fertilization and other assisted reproductive technologies has become common clinical practice. With the recent advent of potent gonadotropin-releasing hormone antagonists free from the marked histamine-release effects that stymied earlier compounds, an attractive alternative method may be available. We have established the feasibility of combining gonadotropin-releasing hormone antagonist-induced inhibition of endogenous gonadotropins with exogenous gonadotropin therapy for ovulation induction in a nonhuman primate model. Here, the principal benefits to be gained from using the gonadotropin-releasing hormone antagonist rather than the gonadotropin-releasing hormone agonist are the immediate inhibition of pituitary gonadotropin secretion without the "flare effect," which brings greater safety and convenience for patients and the medical team and saves time and money. We have also recently demonstrated the feasibility of combining gonadotropin-releasing hormone antagonist with pulsatile gonadotropin-releasing hormone therapy for the controlled restoration of gonadotropin secretion and gonadal steroidogenesis culminating in apparently normal (singleton) ovulatory cycles. This is feasible only with gonadotropin-releasing hormone antagonists because, unlike gonadotropin-releasing hormone agonists, they achieve control of the pituitary-ovarian axis without down regulation of the gonadotropin-releasing hormone receptor system. This capacity to override gonadotropin-releasing hormone antagonist-induced suppression of pituitary-ovarian function may allow new treatment modalities to be employed for women who suffer from chronic hyperandrogenemia with polycystic ovarian disease.

  10. Pharmacological characterization of AZD5069, a slowly reversible CXC chemokine receptor 2 antagonist.

    Science.gov (United States)

    Nicholls, David J; Wiley, Katherine; Dainty, Ian; MacIntosh, Fraser; Phillips, Caroline; Gaw, Alasdair; Mårdh, Carina Kärrman

    2015-05-01

    In normal physiologic responses to injury and infection, inflammatory cells enter tissue and sites of inflammation through a chemotactic process regulated by several families of proteins, including inflammatory chemokines, a family of small inducible cytokines. In neutrophils, chemokines chemokine (CXC motif) ligand 1 (CXCL1) and CXCL8 are potent chemoattractants and activate G protein-coupled receptors CXC chemokine receptor 1 (CXCR1) and CXCR2. Several small-molecule antagonists of CXCR2 have been developed to inhibit the inflammatory responses mediated by this receptor. Here, we present the data describing the pharmacology of AZD5069 [N-(2-(2,3-difluorobenzylthio)-6-((2R,3S)-3,4-dihydroxybutan-2-yloxy)[2,4,5,6-(13)C4, 1,3-(15)N2]pyrimidin-4-yl)azetidine-1-sulfonamide,[(15)N2,(13)C4]N-(2-(2,3-difluoro-6-[3H]-benzylthio)-6-((2R,3S)-3,4-dihydroxybutan-2-yloxy)pyrimidin-4-yl)azetidine-1-sulfonamide], a novel antagonist of CXCR2. AZD5069 was shown to inhibit binding of radiolabeled CXCL8 to human CXCR2 with a pIC50 value of 9.1. Furthermore, AZD5069 inhibited neutrophil chemotaxis, with a pA2 of approximately 9.6, and adhesion molecule expression, with a pA2 of 6.9, in response to CXCL1. AZD5069 was a slowly reversible antagonist of CXCR2 with effects of time and temperature evident on the pharmacology and binding kinetics. With short incubation times, AZD5069 appeared to have an antagonist profile with insurmountable antagonism of calcium response curves. This behavior was also observed in vivo in an acute lipopolysaccharide-induced lung inflammation model. Altogether, the data presented here show that AZD5069 represents a novel, potent, and selective CXCR2 antagonist with potential as a therapeutic agent in inflammatory conditions. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  11. Amelioration of cold injury-induced cortical brain edema formation by selective endothelin ETB receptor antagonists in mice.

    Science.gov (United States)

    Michinaga, Shotaro; Nagase, Marina; Matsuyama, Emi; Yamanaka, Daisuke; Seno, Naoki; Fuka, Mayu; Yamamoto, Yui; Koyama, Yutaka

    2014-01-01

    Brain edema is a potentially fatal pathological condition that often occurs in stroke and head trauma. Following brain insults, endothelins (ETs) are increased and promote several pathophysiological responses. This study examined the effects of ETB antagonists on brain edema formation and disruption of the blood-brain barrier in a mouse cold injury model (Five- to six-week-old male ddY mice). Cold injury increased the water content of the injured cerebrum, and promoted extravasation of both Evans blue and endogenous albumin. In the injury area, expression of prepro-ET-1 mRNA and ET-1 peptide increased. Intracerebroventricular (ICV) administration of BQ788 (ETB antagonist), IRL-2500 (ETB antagonist), or FR139317 (ETA antagonist) prior to cold injury significantly attenuated the increase in brain water content. Bolus administration of BQ788, IRL-2500, or FR139317 also inhibited the cold injury-induced extravasation of Evans blue and albumin. Repeated administration of BQ788 and IRL-2500 beginning at 24 h after cold injury attenuated both the increase in brain water content and extravasation of markers. In contrast, FR139317 had no effect on edema formation when administrated after cold injury. Cold injury stimulated induction of glial fibrillary acidic protein-positive reactive astrocytes in the injured cerebrum. Induction of reactive astrocytes after cold injury was attenuated by ICV administration of BQ788 or IRL-2500. These results suggest that ETB receptor antagonists may be an effective approach to ameliorate brain edema formation following brain insults.

  12. Receptor residence time trumps drug-likeness and oral bioavailability in determining efficacy of complement C5a antagonists

    Science.gov (United States)

    Seow, Vernon; Lim, Junxian; Cotterell, Adam J.; Yau, Mei-Kwan; Xu, Weijun; Lohman, Rink-Jan; Kok, W. Mei; Stoermer, Martin J.; Sweet, Matthew J.; Reid, Robert C.; Suen, Jacky Y.; Fairlie, David P.

    2016-04-01

    Drug discovery and translation are normally based on optimizing efficacy by increasing receptor affinity, functional potency, drug-likeness (rule-of-five compliance) and oral bioavailability. Here we demonstrate that residence time of a compound on its receptor has an overriding influence on efficacy, exemplified for antagonists of inflammatory protein complement C5a that activates immune cells and promotes disease. Three equipotent antagonists (3D53, W54011, JJ47) of inflammatory responses to C5a (3nM) were compared for drug-likeness, receptor affinity and antagonist potency in human macrophages, and anti-inflammatory efficacy in rats. Only the least drug-like antagonist (3D53) maintained potency in cells against higher C5a concentrations and had a much longer duration of action (t1/2 ~ 20 h) than W54011 or JJ47 (t1/2 ~ 1-3 h) in inhibiting macrophage responses. The unusually long residence time of 3D53 on its receptor was mechanistically probed by molecular dynamics simulations, which revealed long-lasting interactions that trap the antagonist within the receptor. Despite negligible oral bioavailability, 3D53 was much more orally efficacious than W54011 or JJ47 in preventing repeated agonist insults to induce rat paw oedema over 24 h. Thus, residence time on a receptor can trump drug-likeness in determining efficacy, even oral efficacy, of pharmacological agents.

  13. Investigating Aging-Related Changes in the Coordination of Agonist and Antagonist Muscles Using Fuzzy Entropy and Mutual Information

    Directory of Open Access Journals (Sweden)

    Wenbo Sun

    2016-06-01

    Full Text Available Aging alters muscular coordination patterns. This study aimed to investigate aging-related changes in the coordination of agonist and antagonist muscles from two aspects, the activities of individual muscles and the inter-muscular coupling. Eighteen young subjects and 10 elderly subjects were recruited to modulate the agonist muscle activity to track a target during voluntary isometric elbow flexion and extension. Normalized muscle activation and fuzzy entropy (FuzzyEn were applied to depict the activities of biceps and triceps. Mutual information (MI was utilized to measure the inter-muscular coupling between biceps and triceps. The agonist activation decreased and the antagonist activation increased significantly during elbow flexion and extension with aging. FuzzyEn values of agonist electromyogram (EMG were similar between the two age groups. FuzzyEn values of antagonist EMG increased significantly with aging during elbow extension. MI decreased significantly with aging during elbow extension. These results indicated increased antagonist co-activation and decreased inter-muscular coupling with aging during elbow extension, which might result from the reduced reciprocal inhibition and the recruitment of additional cortical-spinal pathways connected to biceps. Based on FuzzyEn and MI, this study provided a comprehensive understanding of the mechanisms underlying the aging-related changes in the coordination of agonist and antagonist muscles.

  14. Receptor residence time trumps drug-likeness and oral bioavailability in determining efficacy of complement C5a antagonists

    Science.gov (United States)

    Seow, Vernon; Lim, Junxian; Cotterell, Adam J.; Yau, Mei-Kwan; Xu, Weijun; Lohman, Rink-Jan; Kok, W. Mei; Stoermer, Martin J.; Sweet, Matthew J.; Reid, Robert C.; Suen, Jacky Y.; Fairlie, David P.

    2016-01-01

    Drug discovery and translation are normally based on optimizing efficacy by increasing receptor affinity, functional potency, drug-likeness (rule-of-five compliance) and oral bioavailability. Here we demonstrate that residence time of a compound on its receptor has an overriding influence on efficacy, exemplified for antagonists of inflammatory protein complement C5a that activates immune cells and promotes disease. Three equipotent antagonists (3D53, W54011, JJ47) of inflammatory responses to C5a (3nM) were compared for drug-likeness, receptor affinity and antagonist potency in human macrophages, and anti-inflammatory efficacy in rats. Only the least drug-like antagonist (3D53) maintained potency in cells against higher C5a concentrations and had a much longer duration of action (t1/2 ~ 20 h) than W54011 or JJ47 (t1/2 ~ 1–3 h) in inhibiting macrophage responses. The unusually long residence time of 3D53 on its receptor was mechanistically probed by molecular dynamics simulations, which revealed long-lasting interactions that trap the antagonist within the receptor. Despite negligible oral bioavailability, 3D53 was much more orally efficacious than W54011 or JJ47 in preventing repeated agonist insults to induce rat paw oedema over 24 h. Thus, residence time on a receptor can trump drug-likeness in determining efficacy, even oral efficacy, of pharmacological agents. PMID:27094554

  15. Anaphylactic shock: catecholamine actions in the responses to opioid antagonists.

    Science.gov (United States)

    Amir, S

    1988-01-01

    The pathophysiological consequences of endorphin release in anaphylactic shock were investigated through pharmacological studies using opiate antagonists (naloxone, naltrexone, natrexone methyl bromide) as well as agonists (morphine, beta-endorphin). These studies suggest that induction of anaphylaxis provokes the release of endogenous opioids, possibly from the hypothalamus, which contribute to the shock process by stimulating opiate receptors in the CNS. The mechanism of pathophysiologic action of endorphin in anaphylaxis involves, at least in part, inhibition of the central component of the sympatho-adrenalmedullary system. This results in reduced effectiveness of the sympathetic system to physiologically reverse the circulatory effects of the toxic mediators of anaphylaxis. Naloxone, by blocking endorphin action at CNS opiate receptors located at autonomic regulatory centers (e.g. hypothalamus), reverses the sympatho-inhibitory effect of the endorphin peptides. This results in increased central sympathetic outflow to peripheral sympathetic neuroeffector mechanisms; it affords improved sympathetic compensatory responses and increases survival. TRH and DT gamma E physiologically oppose the action of endorphins upon the autonomic system. They stimulate central sympathetic mechanisms through their own receptor systems and increase outflow to peripheral sympathetic effectors. This also results in improved circulatory function and survival.

  16. [Vascular calcifications, the hidden side effects of vitamin K antagonists].

    Science.gov (United States)

    Bennis, Youssef; Vengadessane, Subashini; Bodeau, Sandra; Gras, Valérie; Bricca, Giampiero; Kamel, Saïd; Liabeuf, Sophie

    2016-09-01

    Despite the availability of new oral anticoagulants, vitamin K antagonists (VKA, such as fluindione, acenocoumarol or warfarin) remain currently the goal standard medicines for oral prevention or treatment of thromboembolic disorders. They inhibit the cycle of the vitamin K and its participation in the enzymatic gamma-carboxylation of many proteins. The VKA prevent the activation of the vitamin K-dependent blood clotting factors limiting thus the initiation of the coagulation cascade. But other proteins are vitamin K-dependent and also remain inactive in the presence of VKA. This is the case of matrix Gla-protein (MGP), a protein that plays a major inhibitory role in the development of vascular calcifications. Several experimental and epidemiological results suggest that the use of the VKA could promote the development of vascular calcifications increasing thus the cardiovascular risk. This risk seems to be higher in patients with chronic kidney disease or mellitus diabetes who are more likely to develop vascular calcifications, and may be due to a decrease of the MGP activity. This review aims at summarizing the data currently available making vascular calcifications the probably underestimated side effects of VKA. Copyright © 2016 Société française de pharmacologie et de thérapeutique. Published by Elsevier Masson SAS. All rights reserved.

  17. Diphenyl Purine Derivatives as Peripherally Selective Cannabinoid Receptor 1 Antagonists

    Science.gov (United States)

    Fulp, Alan; Bortoff, Katherine; Zhang, Yanan; Seltzman, Herbert; Mathews, James; Snyder, Rodney; Fennell, Tim; Maitra, Rangan

    2015-01-01

    Cannabinoid receptor 1 (CB1) antagonists are potentially useful for the treatment of several diseases. However, clinical development of several CB1 antagonists was halted due to central nervous system (CNS)-related side effects including depression and suicidal ideation in some users. Recently, studies have indicated that selective regulation of CB1 receptors in the periphery is a viable strategy for treating several important disorders. Past efforts to develop peripherally selective antagonists of CB1 have largely targeted rimonabant, an inverse agonist of CB1. Reported here are our efforts toward developing a peripherally selective CB1 antagonist based on the otenabant scaffold. Even though otenabant penetrates the CNS, it is unique among CB1 antagonists that have been clinically tested because it has properties that are normally associated with peripherally selective compounds. Our efforts have resulted in an orally absorbed compound that is a potent and selective CB1 antagonist with limited penetration into the CNS. PMID:23098108

  18. Hypocretin antagonists in insomnia treatment and beyond.

    Science.gov (United States)

    Ruoff, Chad; Cao, Michelle; Guilleminault, Christian

    2011-01-01

    Hypocretin neuropeptides have been shown to regulate transitions between wakefulness and sleep through stabilization of sleep promoting GABAergic and wake promoting cholinergic/monoaminergic neural pathways. Hypocretin also influences other physiologic processes such as metabolism, appetite, learning and memory, reward and addiction, and ventilatory drive. The discovery of hypocretin and its effect upon the sleep-wake cycle has led to the development of a new class of pharmacologic agents that antagonize the physiologic effects of hypocretin (i.e. hypocretin antagonists). Further investigation of these agents may lead to novel therapies for insomnia without the side-effect profile of currently available hypnotics (e.g. impaired cognition, confusional arousals, and motor balance difficulties). However, antagonizing a system that regulates the sleep-wake cycle while also influencing non-sleep physiologic processes may create an entirely different but equally concerning side-effect profile such as transient loss of muscle tone (i.e. cataplexy) and a dampened respiratory drive. In this review, we will discuss the discovery of hypocretin and its receptors, hypocretin and the sleep-wake cycle, hypocretin antagonists in the treatment of insomnia, and other implicated functions of the hypocretin system.

  19. Sexually antagonistic selection in human male homosexuality.

    Directory of Open Access Journals (Sweden)

    Andrea Camperio Ciani

    Full Text Available Several lines of evidence indicate the existence of genetic factors influencing male homosexuality and bisexuality. In spite of its relatively low frequency, the stable permanence in all human populations of this apparently detrimental trait constitutes a puzzling 'Darwinian paradox'. Furthermore, several studies have pointed out relevant asymmetries in the distribution of both male homosexuality and of female fecundity in the parental lines of homosexual vs. heterosexual males. A number of hypotheses have attempted to give an evolutionary explanation for the long-standing persistence of this trait, and for its asymmetric distribution in family lines; however a satisfactory understanding of the population genetics of male homosexuality is lacking at present. We perform a systematic mathematical analysis of the propagation and equilibrium of the putative genetic factors for male homosexuality in the population, based on the selection equation for one or two diallelic loci and Bayesian statistics for pedigree investigation. We show that only the two-locus genetic model with at least one locus on the X chromosome, and in which gene expression is sexually antagonistic (increasing female fitness but decreasing male fitness, accounts for all known empirical data. Our results help clarify the basic evolutionary dynamics of male homosexuality, establishing this as a clearly ascertained sexually antagonistic human trait.

  20. Sexually Antagonistic Selection in Human Male Homosexuality

    Science.gov (United States)

    Camperio Ciani, Andrea; Cermelli, Paolo; Zanzotto, Giovanni

    2008-01-01

    Several lines of evidence indicate the existence of genetic factors influencing male homosexuality and bisexuality. In spite of its relatively low frequency, the stable permanence in all human populations of this apparently detrimental trait constitutes a puzzling ‘Darwinian paradox’. Furthermore, several studies have pointed out relevant asymmetries in the distribution of both male homosexuality and of female fecundity in the parental lines of homosexual vs. heterosexual males. A number of hypotheses have attempted to give an evolutionary explanation for the long-standing persistence of this trait, and for its asymmetric distribution in family lines; however a satisfactory understanding of the population genetics of male homosexuality is lacking at present. We perform a systematic mathematical analysis of the propagation and equilibrium of the putative genetic factors for male homosexuality in the population, based on the selection equation for one or two diallelic loci and Bayesian statistics for pedigree investigation. We show that only the two-locus genetic model with at least one locus on the X chromosome, and in which gene expression is sexually antagonistic (increasing female fitness but decreasing male fitness), accounts for all known empirical data. Our results help clarify the basic evolutionary dynamics of male homosexuality, establishing this as a clearly ascertained sexually antagonistic human trait. PMID:18560521

  1. In vitro pharmacological characterization of vorapaxar, a novel platelet thrombin receptor antagonist.

    Science.gov (United States)

    Hawes, Brian E; Zhai, Ying; Hesk, David; Wirth, Mark; Wei, Huijun; Chintala, Madhu; Seiffert, Dietmar

    2015-09-05

    Vorapaxar is a novel protease-activated receptor-1 (PAR1) antagonist recently approved for the reduction of thrombotic cardiovascular events in patients with a history of myocardial infarction or with peripheral arterial disease. The present study provides a comprehensive in vitro pharmacological characterization of vorapaxar interaction with the PAR1 receptor on human platelets. Similar studies were performed with a metabolite of vorapaxar (M20). Vorapaxar and M20 were competitive PAR1 antagonists that demonstrated concentration-dependent, saturable, specific, and slowly reversible binding to the receptor present on intact human platelets. The affinities of vorapaxar and M20 for the PAR1 receptor were in the low nanomolar range, as determined by saturation-, kinetic- and competitive binding studies. The calculated Kd and Ki values for vorapaxar increased in the presence of plasma, indicating a decrease in the free fraction available for binding to the PAR1 receptor on human platelets. Vorapaxar was also evaluated in functional assays using thrombin or a PAR1 agonist peptide (SFLLRN). Vorapaxar and M20 completely blocked thrombin-stimulated PAR1/β-arrestin association in recombinant cells and abolished thrombin-stimulated calcium influx in washed human platelets and vascular smooth muscle cells. Moreover, vorapaxar and M20 inhibited PAR1 agonist peptide-mediated platelet aggregation in human platelet rich plasma with a steep concentration response relationship. Vorapaxar exhibited high selectivity for inhibition of PAR1 over other platelet GPCRs. In conclusion, vorapaxar is a potent PAR1 antagonist exhibiting saturable, reversible, selective binding with slow off-rate kinetics and effectively inhibits thrombin's PAR1-mediated actions on human platelets. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Screening of strains of soil micromycetes – antagonists of fungal and bacterial plant pathogens

    Directory of Open Access Journals (Sweden)

    O. A. Drehval

    2017-05-01

    Full Text Available The antagonistic activity of 23 strains of micromycetes belonging to different taxonomic groups, against phythopathogenic bacteria and fungi was studied. The antagonistic activity of the micromycetes was tested by agar diffusion (the method of blocks. For the determination of the influence of the micromycetes on plants, spring barley seeds were treated by cultural liquid of fungi (dilution 1 : 10 for 24 hours and germinated in Petri dishes on moist filter paper. Two strains Trichoderma longibrachiatum 17 and T. lignorum 14 showed the highest antagonistic activity against the phytopathogenic bacteria and fungi. T. longibrachiatum 17 actively suppressed the growth of fungi Fusarium oxysporum 54201, F. culmorum 50716, F. oxysporum 12, F. moniliforme 23, Cladosporium herbarum 16878, Alternaria alternata 16, Aspergillus niger 25 and bacteria Agrobacterium tumefaciens 8628, Xanthomonas campestris 8003b, Pectobacterium carotovorum 8982, Pseudomonas syringae pv. atrofaciens 8254, P. syringae pv. lachrymans 7595, zones inhibition of growth were 20.7–38.3 and 14.7–24.7 mm, respectively. The strain of T. lignorum 14 inhibited the growth of fungi F. culmorum 50716, C. herbarum 16878, F. moniliforme 23, A. alternata 16, A. niger 25 and bacteria A. tumefaciens 8628, P. carotovorum 8982, P. syringae pv. atrofaciens 8254, P. syringae pv. lachrymans 7595, zones of inhibition of growth were 14.0–38.7 and 12.3–23.3 mm, respectively. Treatment of spring barley seeds by T. longibrachiatum 17 cultural liquid showed a positive effect on seed germination, both strains T. longibrachiatum 17 and T. lignorum 14 increased the dry weight of the roots (by 17.5% and 22.0%, respectively and the stems (by 8.0% of spring barley plants compared with the water-treated controls. The results presented in this article indicate that the strains T. longibrachiatum 17 and T. lignorum 14 can be recommended as promising microbial agents to protect plants from fungal and

  3. Internalization of the chemokine receptor CCR4 can be evoked by orthosteric and allosteric receptor antagonists

    OpenAIRE

    Ajram, Laura; Begg, Malcolm; Slack, Robert; Cryan, Jenni; Hall, David; Hodgson, Simon; Ford, Alison; Barnes, Ashley; Swieboda, Dawid; Mousnier, Aurelie; Solari, Roberto

    2014-01-01

    The chemokine receptor CCR4 has at least two natural agonist ligands, MDC (CCL22) and TARC (CCL17) which bind to the same orthosteric site with a similar affinity. Both ligands are known to evoke chemotaxis of CCR4-bearing T cells and also elicit CCR4 receptor internalization. A series of small molecule allosteric antagonists have been described which displace the agonist ligand, and inhibit chemotaxis. The aim of this study was to determine which cellular coupling pathways are involved in in...

  4. In-vitro effect of estrogen-antagonist on motility and penetration ability of human spermatozoa.

    Science.gov (United States)

    Allag, I S; Rangari, K

    1997-08-01

    Antiestrogens affect spermatozoa through their action on Leydig and Sertoli cells. Direct effect of antiestrogens namely tamoxifen and centchroman in concentration of 1, 2.5, 5, 10 and 20 micrograms/ml in incubation medium was determined on motility and penetration ability of human spermatozoa. Motility (%) was invariably reduced after 15, 30 and 60 min. of incubation. Addition of 17 beta-estradiol to medium with antagonist caused inhibition of motility in dose related manner. The distance travelled by spermatozoa treated with tamoxifen or centchroman in media was reduced by 30% and addition of estradiol along with antiestrogen reduced it to 50% compared to that of untreated spermatozoa.

  5. AMD3465, a monomacrocyclic CXCR4 antagonist and potent HIV entry inhibitor

    DEFF Research Database (Denmark)

    Hatse, Sigrid; Princen, Katrien; De Clercq, Erik

    2005-01-01

    suggested that the bis-macrocyclic structure was a prerequisite for anti-HIV activity. Now, we report that the N-pyridinylmethylene cyclam AMD3465, which lacks the structural constraints mentioned above, fully conserves all the biological properties of AMD3100. Like AMD3100, AMD3465 blocked the cell surface......3100, AMD3465 was even 10-fold more effective as a CXCR4 antagonist, while showing no interaction whatsoever with CCR5. As expected, AMD3465 proved highly potent against X4 HIV strains (IC50: 1-10 nM), but completely failed to inhibit the replication of CCR5-using (R5) viruses. In conclusion, AMD3465...

  6. Zearalenone detoxification by zearalenone hydrolase is important for the antagonistic ability of Clonostachys rosea against mycotoxigenic Fusarium graminearum

    DEFF Research Database (Denmark)

    Kosawang, Chatchai; Karlsson, Magnus; Vélëz, Heriberto

    2014-01-01

    The fungus Clonostachys rosea is antagonistic against plant pathogens, including Fusarium graminearum, which produces the oestrogenic mycotoxin zearalenone (ZEA). ZEA inhibits other fungi, and C. rosea can detoxify ZEA through the enzyme zearalenone lactonohydrolase (ZHD101). As the relevance...... wheat seedlings against foot rot caused by the ZEA-producing F. graminearum. These data show that ZEA detoxification by ZHD101 is important for the biocontrol ability of C. rosea against F. graminearum....

  7. Diversity and Antagonistic Activity of Actinomycete Strains From Myristica Swamp Soils Against Human Pathogens

    Directory of Open Access Journals (Sweden)

    Varghese Rlnoy

    2014-05-01

    Full Text Available Under the present investigation Actinomycetes were isolated from the soils of Myristica swamps of southern Western Ghats and the antagonistic activity against different human bacterial pathogens was evaluated. Results of the present study revealed that Actinomycetes population in the soils of Myristica swamp was spatially and seasonally varied. Actinomycetes load was varied from 24×104 to 71×103, from 129×103 to 40×103 and from 31×104 to 84×103 in post monsoon, monsoon and pre monsoon respectively. A total of 23 Actinomycetes strains belonging to six genera were isolated from swamp soils. Identification of the isolates showed that most of the isolates belonged to the genus Streptomyces (11, followed by Nocardia (6, Micromonospora (3, Pseudonocardia (1, Streptosporangium (1, and Nocardiopsis (1. Antagonistic studies revealed that 91.3% of Actinomycete isolates were active against one or more tested pathogens, of that 56.52% exhibited activity against Gram negative and 86.95% showed activity against Gram positive bacteria. 39.13% isolates were active against all the bacterial pathogens selected and its inhibition zone diameter was also high. 69.5% of Actinomycetes were exhibited antibacterial activity against Listeria followed by Bacillus cereus (65.21%, Staphylococcus (60.86%, Vibrio cholera (52.17%, Salmonella (52.17% and E. coli (39.13%. The results indicate that the Myristica swamp soils of Southern Western Ghats might be a remarkable reserve of Actinomycetes with potential antagonistic activity.

  8. AM-37 and ST-36 Are Small Molecule Bombesin Receptor Antagonists

    Directory of Open Access Journals (Sweden)

    Terry W. Moody

    2017-07-01

    Full Text Available While peptide antagonists for the gastrin-releasing peptide receptor (BB2R, neuromedin B receptor (BB1R, and bombesin (BB receptor subtype-3 (BRS-3 exist, there is a need to develop non-peptide small molecule inhibitors for all three BBR. The BB agonist (BA1 binds with high affinity to the BB1R, BB2R, and BRS-3. In this communication, small molecule BBR antagonists were evaluated using human lung cancer cells. AM-37 and ST-36 inhibited binding to human BB1R, BB2R, and BRS-3 with similar affinity (Ki = 1.4–10.8 µM. AM-13 and AM-14 were approximately an order of magnitude less potent than AM-37 and ST-36. The ability of BA1 to elevate cytosolic Ca2+ in human lung cancer cells transfected with BB1R, BB2R, and BRS-3 was antagonized by AM-37 and ST-36. BA1 increased tyrosine phosphorylation of the EGFR and ERK in lung cancer cells, which was blocked by AM-37 and ST-36. AM-37 and ST-36 reduced the growth of lung cancer cells that have BBR. The results indicate that AM-37 and ST-36 function as small molecule BB receptor antagonists.

  9. An α4β1 integrin antagonist decreases airway inflammation in ovalbumin-exposed mice

    Science.gov (United States)

    Kenyon, Nicholas J.; Liu, Ruiwu; O’Roark, Erin M.; Huang, Wenzhe; Peng, Li; Lam, Kit S.

    2008-01-01

    Inhibition of the α4 subunit of both the α4β1 and α4β7 integrins has shown promise in decreasing airway inflammation and airway hyperresponsiveness in various animal models. We hypothesized that a novel, high-affinity α4β1 antagonist (LLP2A) would decrease the migration of eosinophils to the lung and ameliorate the airway hyperresponsiveness in a mouse model of ovalbumin-induced airway inflammation. To test this hypothesis, we administered LLP2A, or scrambled LLP2A (a negative control), prior to exposure of sensitized BALB/c mice to ovalbumin aerosol. We can partially prevent, or reverse, the airway inflammatory response, but not airways hyperresponsiveness, by treatment of mice with LLP2A, a synthetic peptidomimetic α4β1 antagonist LLP2A. Specifically engineered, PEGylated (PEG) formulations of this antagonist further reduce the airway inflammatory response to ovalbumin lbumin, presumably by improving the circulating half-life of the drug. PMID:19103195

  10. The Attractiveness of Opposites: Agonists and Antagonists.

    LENUS (Irish Health Repository)

    O'Brien, Tony

    2015-02-02

    ABSTRACT Opioid-induced bowel dysfunction, of which constipation is the most common aspect, is a major limiting factor in the use of opioids for pain management. The availability of an oral, long-acting formulation of oxycodone and naloxone represents a highly significant development in pain management. The combination of an opioid analgesic with an opioid antagonist offers reliable pain control with a significant reduction in the burden of opioid-induced constipation. This report is adapted from paineurope 2014; Issue 3, ©Haymarket Medical Publications Ltd, and is presented with permission. paineurope is provided as a service to pain management by Mundipharma International, LTD and is distributed free of charge to healthcare professionals in Europe. Archival issues can be accessed via the website: http:\\/\\/www.paineurope.com at which European health professionals can register online to receive copies of the quarterly publication.

  11. Calcium antagonists and the diabetic hypertensive patient

    DEFF Research Database (Denmark)

    Parving, H H; Rossing, P

    1993-01-01

    reduces albuminuria, delays the progression of nephropathy, and postpones renal insufficiency in diabetic nephropathy. Calcium antagonists and angiotensin converting enzyme inhibitors induce an acute increase in the glomerular filtration rate, renal plasma flow, and renal sodium excretion......Roughly 40% of all diabetic patients, whether insulin dependent or not, develop persistent albuminuria (over 300 mg/24 hr), a decrease in the glomerular filtration rate, and elevated blood pressure, ie, diabetic nephropathy. Diabetic nephropathy is the single most important cause of end stage renal...... disease in the Western world, and accounts for over a quarter of all end stage renal disease. It also is a major cause of the increased morbidity and mortality seen in diabetic patients; for example, the cost of end stage renal care in the United States currently exceeds +1.8 billion per year for diabetic...

  12. Nogo-66 receptor antagonist peptide (NEP1-40) administration promotes functional recovery and axonal growth after lateral funiculus injury in the adult rat

    NARCIS (Netherlands)

    Cao, Y.; Shumsky, J. S.; Sabol, M. A.; Kushner, R. A.; Strittmatter, S.; Hamers, F. P. T.; Lee, D. H. S.; Rabacchi, S. A.; Murray, M.

    2008-01-01

    Objective. The myelin protein Nogo inhibits axon regeneration by binding to its receptor (NgR) on axons. Intrathecal delivery of an NgR antagonist (NEP1-40) promotes growth of injured corticospinal axons and recovery of motor function following a dorsal hemisection. The authors used a similar design

  13. Design, Synthesis, and Biological Evaluation of Novel Tetrahydroprotoberberine Derivatives (THPBs) as Selective α1A-Adrenoceptor Antagonists.

    Science.gov (United States)

    Guo, Diliang; Li, Jing; Lin, Henry; Zhou, Yu; Chen, Ying; Zhao, Fei; Sun, Haifeng; Zhang, Dan; Li, Honglin; Shoichet, Brian K; Shan, Lei; Zhang, Weidong; Xie, Xin; Jiang, Hualiang; Liu, Hong

    2016-10-27

    A novel series of tetrahydroprotoberberine derivatives (THPBs) were designed, synthesized, and evaluated as selective α 1A -adrenergic receptors (AR) antagonists for the treatment of benign prostatic hyperplasia. On the basis of the pharmacophore model of the marketed drug silodosin, THPBs were modified by introducing an indole segment into their core scaffolds. In calcium assays, 7 out of 32 compounds displayed excellent antagonistic activities against α 1A -ARs, with IC 50 less than 250 nM. Among them, compound (S)-27 had the most potent biological activity; its IC 50 toward α 1A -AR was 12.8 ± 2.2 nM, which is 781 and 20 times more selective than that toward α 1B - and α 1D -AR, respectively. In the functional assay using isolated rat tissues, compound (S)-27 inhibited norepinephrine-induced urethra smooth muscle contraction potently (IC 50 = 0.5 ± 0.3 nM), without inhibiting the aortic contraction (IC 50 > 1000 nM), displaying a better tissue selectivity than the marketed drug silodosin. Additional results of preliminary safety studies (acute toxicity and hERG inhibition) and pharmacokinetics studies indicated the potential druggability for compound (S)-27 which is a promising lead for the development of selective α 1A -AR antagonists for the treatment of BPH.

  14. Effect of a Hypocretin/Orexin Antagonist on Neurocognitive Performance

    Science.gov (United States)

    2013-12-18

    Effectiveness Directorate, Biosciences and Protection Division, Warfighter Fatigue Countermeasures Branch. 35. Golden, C.J. (1978). Stroop Color and Word Test: A...0080 TITLE: Effect of a Hypocretin/Orexin Antagonist on Neurocognitive Performance PRINCIPAL INVESTIGATOR: Dr. Thomas Neylan...31August2013 4. TITLE AND SUBTITLE Effect of a Hypocretin/Orexin Antagonist on Neurocognitive Performance 5a. CONTRACT NUMBER W81XWH

  15. Using waste of Tofu production improved antagonistic activities of a ...

    African Journals Online (AJOL)

    Mrs. Hoa

    2012-10-04

    Oct 4, 2012 ... screened for their antagonistic activity against 10 races of Xoo causing rice bacterial blight disease. Three actinomycete strains ... antagonistic activity of VN10-A-44 against the Xoo pathogen and to make use of tofu waste for large- ..... vitamins and some essential amino acids which are very important for ...

  16. Calcium antagonists for ischemic stroke: a systematic review

    NARCIS (Netherlands)

    Horn, J.; Limburg, M.

    2001-01-01

    BACKGROUND AND PURPOSE: Stroke is a common disease, and many trials with calcium antagonists as possible neuroprotective agents have been conducted. The aim of this review is to determine whether calcium antagonists reduce the risk of death or dependency after acute ischemic stroke. METHODS: Acute

  17. Antagonistic and Bargaining Games in Optimal Marketing Decisions

    Science.gov (United States)

    Lipovetsky, S.

    2007-01-01

    Game theory approaches to find optimal marketing decisions are considered. Antagonistic games with and without complete information, and non-antagonistic games techniques are applied to paired comparison, ranking, or rating data for a firm and its competitors in the market. Mix strategy, equilibrium in bi-matrix games, bargaining models with…

  18. Interaction between Antagonist of Cannabinoid Receptor and Antagonist of Adrenergic Receptor on Anxiety in Male Rat

    Directory of Open Access Journals (Sweden)

    Alireza Komaki

    2014-07-01

    Full Text Available Introduction: Anxiety is among the most common and treatable mental disorders. Adrenergic and cannabinoid systems have an important role in the neurobiology of anxiety. The elevated plus-maze (EPM has broadly been used to investigate anxiolytic and anxiogenic compounds. The present study investigated the effects of intraperitoneal (IP injection of cannabinoid CB1 receptor antagonist (AM251 in the presence of alpha-1 adrenergic antagonist (Prazosin on rat behavior in the EPM. Methods: In this study, the data were obtained from male Wistar rat, which weighing 200- 250 g. Animal behavior in EPM were videotaped and saved in computer for 10 min after IP injection of saline, AM251 (0.3 mg/kg, Prazosin (0.3 mg/kg and AM251 + Prazosin, subsequently scored for conventional indices of anxiety. During the test period, the number of open and closed arms entries, the percentage of entries into the open arms of the EPM, and the spent time in open and closed arms were recorded. Diazepam was considered as a positive control drug with anxiolytic effect (0.3, 0.6, 1.2 mg/kg. Results: Diazepam increased the number of open arm entries and the percentage of spent time on the open arms. IP injection of AM251 before EPM trial decreased open arms exploration and open arm entry. Whereas, Prazosin increased open arms exploration and open arm entry. This study showed that both substances in simultaneous injection have conflicting effects on the responses of each of these two compounds in a single injection. Discussion: Injection of CB1 receptor antagonist may have an anxiogenic profile in rat, whereas adrenergic antagonist has an anxiolytic effect. Further investigations are essential for better understanding of anxiolytic and anxiogenic properties and neurobiological mechanisms of action and probable interactions of the two systems.

  19. Voluntary activation of ankle muscles is accompanied by subcortical facilitation of their antagonists

    DEFF Research Database (Denmark)

    Geertsen, Svend Sparre; Zuur, Abraham T.; Nielsen, Jens Bo

    2010-01-01

    Flexion and extension movements are organized reciprocally, so that extensor motoneurones in the spinal cord are inhibited when flexor muscles are active and vice versa. During and just prior to dorsiflexion of the ankle, soleus motoneurones are thus inhibited as evidenced by a depression......) or soleus muscle of the left ankle. TMS was applied to the hotspot of TA and soleus muscles on separate days. Stimuli were delivered prior to and at the beginning of contraction. Soleus MEPs were significantly facilitated when TMS was applied 50 ms prior to onset of plantar flexion. Surprisingly, soleus...... was increased prior to plantar flexion, but not prior to dorsiflexion. These findings suggest that voluntary contraction at the ankle is accompanied by preceding facilitation of antagonists by a subcortical motor programme. This may help to ensure that the direction of movement may be changed quickly...

  20. Facilitation of soleus but not tibialis anterior motor evoked potentials before onset of antagonist contraction

    DEFF Research Database (Denmark)

    Geertsen, Svend Sparre; Zuur, Abraham Theodore; Nielsen, Jens Bo

    2008-01-01

    Objective: It is well documented that corticospinal projections to motoneurons of one muscle inhibit antagonist motoneurons through collaterals to reciprocally organized spinal inhibitory interneurons. During and just prior to dorsiflexion of the ankle, soleus motoneurons are thus inhibited...... threshold was applied to the hotspot of TA and soleus muscles, respectively, prior to and at the beginning of the contraction. Peak to peak amplitudes of the MEPs were compared to MEPs elicited 100 ms prior to the auditory cue. Results: Soleus MEPs were facilitated when TMS was applied 50-75 ms prior...... to onset of plantar flexion. Surprisingly, soleus MEPs were also facilitated (although to a lesser extent) at a similar time in relation to the onset of dorsiflexion. TA MEPs were facilitated 50-75 ms prior to onset of dorsiflexion. Prior to plantar flexion the behavior of TA MEPs was different. In 3 out...

  1. Current position of 5HT3 antagonists and the additional value of NK1 antagonists; a new class of antiemetics

    NARCIS (Netherlands)

    R. de Wit (Ronald)

    2003-01-01

    textabstractThe advent of the 5HT3 receptor antagonists (5HT3 antagonists) in the 1990s and the combination with dexamethasone has resulted in acute emesis protection in 70% of patients receiving highly emetogenic chemotherapy. Despite complete protection in the acute phase, however, 40% of patients

  2. The Hypocretin/Orexin Antagonist Almorexant Promotes Sleep Without Impairment of Performance in Rats

    Directory of Open Access Journals (Sweden)

    Stephen R Morairty

    2014-01-01

    Full Text Available The hypocretin receptor (HcrtR antagonist almorexant (ALM has potent hypnotic actions but little is known about neurocognitive performance in the presence of ALM. HcrtR antagonists are hypothesized to induce sleep by disfacilitation of wake-promoting systems whereas GABAA receptor modulators such as zolpidem (ZOL induce sleep through general inhibition of neural activity. To test the hypothesis that less functional impairment results from HcrtR antagonist-induced sleep, we evaluated the performance of rats in the Morris Water Maze in the presence of ALM vs. ZOL. Performance in spatial reference memory (SRM and spatial working memory (SWM tasks were assessed during the dark period after equipotent sleep-promoting doses (100 mg/kg, po following undisturbed and sleep deprivation (SD conditions. ALM-treated rats were indistinguishable from vehicle (VEH-treated rats for all SRM performance measures (distance travelled, latency to enter, time within, and number of entries into, the target quadrant after both the undisturbed and 6 h SD conditions. In contrast, rats administered ZOL showed impairments in all parameters measured compared to VEH or ALM in the undisturbed conditions. Following SD, ZOL-treated rats also showed impairments in all measures. ALM-treated rats were similar to VEH-treated rats for all SWM measures (velocity, time to locate the platform and success rate at finding the platform within 60 s after both the undisturbed and SD conditions. In contrast, ZOL-treated rats showed impairments in velocity and in the time to locate the platform. Importantly, ZOL rats only completed the task 23-50% of the time while ALM and VEH rats completed the task 79-100% of the time. Thus, following equipotent sleep-promoting doses, ZOL impaired rats in both memory tasks while ALM rats performed at levels comparable to VEH rats. These results are consistent with the hypothesis that less impairment results from HcrtR antagonism than from GABAA

  3. Design, synthesis, and structure--activity-relationship of tetrahydrothiazolopyridine derivatives as potent smoothened antagonists.

    Science.gov (United States)

    Ma, Haikuo; Lu, Wenfeng; Sun, Zhijian; Luo, Lusong; Geng, Delong; Yang, Zhaohui; Li, Enqin; Zheng, Jiyue; Wang, Meiyu; Zhang, Hongjian; Yang, Shilin; Zhang, Xiaohu

    2015-01-07

    The Smoothened (Smo) receptor is an important component of the hedgehog (Hh) signaling pathway, which plays a critical role during embryonic development. In adults, Hh signaling is curtailed and has limited functions such as stem cell maintenance and tissue repair. However, aberrant activity of the Hh signaling in adults has been linked to numerous human cancers. Inhibition of Smo leads to the blockade of Hh signaling, and therefore represents a promising approach toward novel anticancer therapy. Through scaffold morphing of a few known Smo antagonists, a series of novel tetrahydrothiazolopyridine derivatives were developed. Compounds from this new scaffold demonstrated excellent Hh signaling inhibition which was comparable to or better than that of Vismodegib. Further, compound 30 exhibited a lower melting point and a moderately improved solubility compared with those of Vismodegib; compounds 11 and 30 showed good pharmacokinetic profiles with 34% and 77% oral bioavailability in rat, respectively. Collectively, these results strongly support further optimization of this novel scaffold to develop better Smo antagonists. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  4. Effect of SDF-1/Cxcr4 Signaling Antagonist AMD3100 on Bone Mineralization in Distraction Osteogenesis.

    Science.gov (United States)

    Xu, Jia; Chen, Yuanfeng; Liu, Yang; Zhang, Jinfang; Kang, Qinglin; Ho, Kiwai; Chai, Yimin; Li, Gang

    2017-06-01

    Distraction osteogenesis (DO) is a widely applied technique in orthopedics surgery, which involves rapid stem cell migration, homing, and differentiation. Interactions between the chemokine receptor Cxcr4 and its ligand, stromal derived factor-1 (SDF-1), regulate hematopoietic stem cell trafficking to the ischemic area and induce their subsequent differentiation. Here, we examined SDF-1 expression and further investigated the role of SDF-1/Cxcr4 signaling antagonist AMD3100 during bone regeneration in rat DO model. The results showed that expression levels of SDF-1 and osteogenic genes were higher in DO zones than in the fracture zones, and SDF-1 expression level was the highest at the termination of the distraction phase. Radiological, mechanical, and histological analyses demonstrated that the local administration of AMD3100 (400 μM) to DO rats significantly inhibited new bone formation. In the rat bone marrow mesenchymal stem cells culture, comparing to the group treated with osteogenic induction medium, AMD3100 supplement led to a considerable decrease in the expression of alkaline phosphatase and early osteogenic marker genes. However, the amount of calcium deposits in rat MSCs did not differ between the groups. Therefore, our study demonstrated that the DO process induced higher expression of SDF-1, which collated to rapid induction of callus formation. Local application of SDF-1/Cxcr4 signaling antagonist AMD3100 significantly inhibited bone mineralization and osteogenesis in DO, which may represent a potential therapeutic approach to the enhancement of bone consolidation in patients undergoing DO.

  5. Angiopoietin-1 mediates the proangiogenic activity of the bone morphogenic protein antagonist Drm.

    Science.gov (United States)

    Mitola, Stefania; Moroni, Emanuela; Ravelli, Cosetta; Andres, German; Belleri, Mirella; Presta, Marco

    2008-08-15

    Recent observations have shown that Drm, a member the Dan family of bone morphogenic protein (BMP) antagonists, induces endothelial cell (EC) sprouting in vitro and angiogenesis in vivo by interacting with signaling EC receptors in a BMP-independent manner. Here, recombinant Drm (rDrm) up-regulates angiopoientin-1 (Ang-1) expression in EC without affecting Ang-2 and Tie-2 receptor expression. Ang-1 up-regulation is mediated by the activation of the transcription factor NF-kappaB. Specific inhibition of Ang-1 activity by anti-Ang-1 antibodies, soluble Tie-2 receptor, or Ang-1 siRNA transfection significantly reduced the rDrm-mediated sprouting of EC in three-dimensional fibrin and type I collagen gels. In addition, Ang-1 antagonists inhibited the angiogenic activity exerted by rDrm in the chick embryo chorioallantoic membrane. Taken together, the data indicate that the proangiogenic activity of Drm is mediated by the activation of an Ang-1-dependent autocrine loop of stimulation in EC.

  6. Preliminary evidence that ketamine inhibits spreading depolarizations in acute human brain injury

    DEFF Research Database (Denmark)

    Sakowitz, Oliver W; Kiening, Karl L; Krajewski, Kara L

    2009-01-01

    , they cause or augment damage in the ischemic brain. A fraction of spreading depolarizations is abolished by N-methyl-d-aspartate receptor antagonists. Summary of Case- In 2 patients with severe acute brain injury (traumatic and spontaneous intracranial hemorrhage), spreading depolarizations were inhibited...... by the noncompetitive N-methyl-d-aspartate receptor antagonist ketamine. This restored electrocorticographic activity. CONCLUSIONS: These anecdotal electrocorticographic findings suggest that ketamine has an inhibitory effect on spreading depolarizations in humans. This is of potential interest for future...

  7. Pain-releasing action of platelet-activating factor (PAF) antagonists in neuropathic pain animal models and the mechanisms of action.

    Science.gov (United States)

    Motoyama, N; Morita, K; Kitayama, T; Shiraishi, S; Uezono, Y; Nishimura, F; Kanematsu, T; Dohi, T

    2013-09-01

    Platelet-activating factor (PAF) has been implicated in the pathology of neuropathic pain. Previous studies reported that PAF receptor (PAF-R) antagonists have varied anti-allodynia effects by route of administration and nerve injury models in rats. The present study elucidated the effectiveness of PAF antagonists against neuropathic pain in four different models of peripheral nerve injury and provided insights into the mode of anti-allodynia action. PAF antagonists, TCV-309, BN 50739 and WEB 2086 by intravenous (i.v.) and oral administration have potent and long-lasting anti-allodynia action in mice neuropathic pain models. Treatment with PAF antagonists before surgery delayed the initiation of allodynia until the effects of these treatments were abolished. Intrathecal (i.t.) injection of the PAF antagonists and siRNA against PAF receptor ameliorated allodynia. I.t. injection of the glycine receptor (GlyR)α3 siRNA reduced the anti-allodynia effect of PAF antagonists. This evidence suggests that the anti-allodynia effect of PAF antagonists is at least in part mediated by spinal relief of PAF-induced dysfunction of GlyRα3. An analysis of the mode of anti-allodynia action of TCV-309 in vivo revealed a competitive action against PAF shortly after the injection of TCV-309, converting to a non-competitive action later. The present results revealed the effectiveness in anti-allodynia of PAF antagonists in different nerve injury models, and the unique mode of action; long-lasting anti-allodynia effects mediated by spinal GlyRα3 with a competitive manner at the initial stage and the following non-competitive manner of inhibition. © 2013 European Federation of International Association for the Study of Pain Chapters.

  8. Cannabinoid receptor antagonists: pharmacological opportunities, clinical experience, and translational prognosis.

    Science.gov (United States)

    Janero, David R; Makriyannis, Alexandros

    2009-03-01

    The endogenous cannabinoid (CB) (endocannabinoid) signaling system is involved in a variety of (patho)physiological processes, primarily by virtue of natural, arachidonic acid-derived lipids (endocannabinoids) that activate G protein-coupled CB1 and CB2 receptors. A hyperactive endocannabinoid system appears to contribute to the etiology of several disease states that constitute significant global threats to human health. Consequently, mounting interest surrounds the design and profiling of receptor-targeted CB antagonists as pharmacotherapeutics that attenuate endocannabinoid transmission for salutary gain. Experimental and clinical evidence supports the therapeutic potential of CB1 receptor antagonists to treat overweight/obesity, obesity-related cardiometabolic disorders, and substance abuse. Laboratory data suggest that CB2 receptor antagonists might be effective immunomodulatory and, perhaps, anti-inflammatory drugs. One CB1 receptor antagonist/inverse agonist, rimonabant, has emerged as the first-in-class drug approved outside the United States for weight control. Select follow-on agents (taranabant, otenabant, surinabant, rosonabant, SLV-319, AVE1625, V24343) have also been studied in the clinic. However, rimonabant's market withdrawal in the European Union and suspension of rimonabant's, taranabant's, and otenabant's ongoing development programs have highlighted some adverse clinical side effects (especially nausea and psychiatric disturbances) of CB1 receptor antagonists/inverse agonists. Novel CB1 receptor ligands that are peripherally directed and/or exhibit neutral antagonism (the latter not affecting constitutive CB1 receptor signaling) may optimize the benefits of CB1 receptor antagonists while minimizing any risk. Indeed, CB1 receptor-neutral antagonists appear from preclinical data to offer efficacy comparable to or better than that of prototype CB1 receptor antagonists/inverse agonists, with less propensity to induce nausea. Continued

  9. Biological control of broad-leaved dock infestation in wheat using plant antagonistic bacteria under field conditions.

    Science.gov (United States)

    Abbas, Tasawar; Zahir, Zahir Ahmad; Naveed, Muhammad; Aslam, Zubair

    2017-06-01

    Conventional weed management systems have produced many harmful effects on weed ecology, human health and environment. Biological control of invasive weeds may be helpful to minimize these harmful effects and economic losses incurred to crops by weeds. In our earlier studies, plant antagonistic bacteria were obtained after screening a large number of rhizobacteria for production of phytotoxic substances and effects on wheat and its associated weeds under laboratory conditions. In this study, five efficient strains inhibitory to broad-leaved dock and non-inhibitory to wheat were selected and applied to broad-leaved dock co-seeded with wheat both in pot trial and chronically infested field trial. Effects of plant antagonistic bacteria on the weed and infested wheat were studied at tillering, booting and harvesting stage of wheat. The applied strains significantly inhibited the germination and growth of the weed to variable extent. Similarly, variable recovery in losses of grain and straw yield of infested wheat from 11.6 to 68 and 13 to 72.6% was obtained in pot trial while from 17.3 to 62.9 and 22.4 to 71.3% was obtained in field trial, respectively. Effects of plant antagonistic bacteria were also evident from the improvement in physiology and nutrient contents of infested wheat. This study suggests the use of these plant antagonistic bacteria to biologically control infestation of broad-leaved dock in wheat under field conditions.

  10. Accelerated habit formation following amphetamine exposure is reversed by D1, but enhanced by D2, receptor antagonists

    Directory of Open Access Journals (Sweden)

    Andrew John Dudley Nelson

    2013-05-01

    Full Text Available Repeated exposure to the psychostimulant amphetamine has been shown to disrupt goal-directed instrumental actions and promote the early and abnormal development of goal-insensitive habitual responding (Nelson and Killcross, 2006. To investigate the neuropharmacological specificity of this effect as well as restore goal-directed responding in animals with pre-training amphetamine exposure, animals were treated with the non-selective dopamine antagonist α-flupenthixol, the selective D1 antagonist SCH 23390 or the selective D2 antagonist eticlopride, prior to instrumental training (3 sessions. Subsequently, the reinforcer was paired with LiCL-induced gastric-malaise and animals were given a test of goal-sensitivity both in extinction and reacquisition. The effect of these dopaminergic antagonists on the sensitivity of lever press performance to outcome devaluation was assessed in animals with pre-training exposure to amphetamine (Experiments 1a-1c or in non-sensitized animals (Experiment 2. Both α-flupenthixol and SCH23390 reversed accelerated habit formation following amphetamine sensitization. However, eticlopride appeared to enhance this effect and render instrumental performance compulsive as these animals were unable to inhibit responding both in extinction and reacquisition, even though a consumption test confirmed they had acquired an aversion to the reinforcer. These findings demonstrate that amphetamine induced-disruption of goal-directed behaviour is mediated by activity at distinct dopamine receptor subtypes and may represent a putative model of the neurochemical processes involved in the loss of voluntary control over behaviour.

  11. Multiple Targeting Approaches on Histamine H3 Receptor Antagonists

    Directory of Open Access Journals (Sweden)

    Mohammad eKhanfar

    2016-05-01

    Full Text Available With the very recent market approval of pitolisant (Wakix®, the interest in clinical applications of novel multifunctional histamine H3 receptor antagonists has clearly increased. Since histamine H3 receptor antagonists in clinical development have been tested for a variety of different indications, the combination of pharmacological properties in one molecule for improved pharmacological effects and reduced unwanted side-effects is rationally based on the increasing knowledge on the complex neurotransmitter regulations. The polypharmacological approaches on histamine H3 receptor antagonists on different G-protein coupled receptors, transporters, enzymes as well as on NO-signaling mechanism are described, supported with some lead structures.

  12. Possible site of action of CGRP antagonists in migraine

    DEFF Research Database (Denmark)

    Tfelt-Hansen, Peer; Olesen, Jes

    2011-01-01

    The calcitonin gene-related peptide (CGRP) receptor antagonists olcegepant and telcagepant are very potent drugs. Both are effective in migraine but in doses much higher than would be predicted from receptor binding and other in vitro results. This could perhaps suggest an effect of CGRP antagoni......The calcitonin gene-related peptide (CGRP) receptor antagonists olcegepant and telcagepant are very potent drugs. Both are effective in migraine but in doses much higher than would be predicted from receptor binding and other in vitro results. This could perhaps suggest an effect of CGRP...... antagonists behind the blood-brain barrier (BBB), i.e. in the central nervous system (CNS)....

  13. Preclinical development of a novel class of CXCR4 antagonist impairing solid tumors growth and metastases.

    Directory of Open Access Journals (Sweden)

    Luigi Portella

    Full Text Available The CXCR4/CXCL12 axis plays a role in cancer metastases, stem cell mobilization and chemosensitization. Proof of concept for efficient CXCR4 inhibition has been demonstrated in stem cell mobilization prior to autologous transplantation in hematological malignancies. Nevertheless CXCR4 inhibitors suitable for prolonged use as required for anticancer therapy are not available. To develop new CXCR4 antagonists a rational, ligand-based approach was taken, distinct from the more commonly used development strategy. A three amino acid motif (Ar-Ar-X in CXCL12, also found in the reverse orientation (X-Ar-Ar in the vMIP-II inhibitory chemokine formed the core of nineteen cyclic peptides evaluated for inhibition of CXCR4-dependent migration, binding, P-ERK1/2-induction and calcium efflux. Peptides R, S and I were chosen for evaluation in in vivo models of lung metastases (B16-CXCR4 and KTM2 murine osteosarcoma cells and growth of a renal cells xenograft. Peptides R, S, and T significantly reduced the association of the 12G5-CXCR4 antibody to the receptor and inhibited CXCL12-induced calcium efflux. The four peptides efficiently inhibited CXCL12-dependent migration at concentrations as low as 10 nM and delayed CXCL12-mediated wound healing in PES43 human melanoma cells. Intraperitoneal treatment with peptides R, I or S drastically reduced the number of B16-CXCR4-derived lung metastases in C57/BL mice. KTM2 osteosarcoma lung metastases were also reduced in Balb/C mice following CXCR4 inhibition. All three peptides significantly inhibited subcutaneous growth of SN12C-EGFP renal cancer cells. A novel class of CXCR4 inhibitory peptides was discovered. Three peptides, R, I and S inhibited lung metastases and primary tumor growth and will be evaluated as anticancer agents.

  14. Effects of L-type Ca2+ channel antagonists on in vitro excystment of Paragonimus ohirai metacercariae induced by sodium cholate.

    Science.gov (United States)

    Ikeda, Teruaki

    2006-09-01

    The inhibitory effects of L-type Ca2+ channel antagonists on Na cholate-induced in vitro excystment (CIIE) of Paragonimus ohirai metacercariae were studied. At concentrations of 10 microM, nicardipine and nimodipine inhibited CIIE completely and by approximately 92%, respectively. Nitrendipine and (+/-)-verapamil inhibited CIIE by about one half and one third, respectively. Nifedipine and diltiazem did not inhibit CIIE significantly. At higher concentrations, nitrendipine at 20 microM completely inhibited CIIE, and (+/-)-verapamil at 40 microM inhibited CIIE by 93%. Nifedipine and diltiazem inhibited CIIE only slightly and little, respectively, even at 40 microM. Complete inhibition by nicardipine at 10 microM required preincubation of metacercariae with the antagonist for 15 min. The inhibitory effects of nicardipine and nimodipine were reversible, and most of the nimodipine-treated metacercariae could excyst within 1 h after being washed, but the nicardipine-treated ones started to excyst 1 h after washing. Nicardipine suppressed the active movement of encysted juveniles evoked by Na cholate, whereas nimodipine did not suppress this significantly. These results suggested that L-type Ca2+ channels appeared to be involved in CIIE of P. ohirai metacercariae and that the inhibitory effect of the channels was due primarily to factors other than the inhibition of muscular activity, probably involving the secretion and release of enzymes lytic against the metacercarial cyst wall.

  15. Antibacterial and antagonistic activity of selected traditional ...

    African Journals Online (AJOL)

    S.pneumonia was found to be the most susceptible bacteria for the methanol extract of the root of Ricinus communis with inhibition zones of 20mm and MIC of 25 mg/mL. However; S.tphyrium was the most resistant to all extracts of the selected plants with no inh bition zone. The methanol extracts of all plants were most ...

  16. Synthesis and Evaluation of Phenylxanthine Derivatives as Potential Dual A2AR Antagonists/MAO-B Inhibitors for Parkinson's Disease.

    Science.gov (United States)

    Wang, Xuebao; Han, Chao; Xu, Yong; Wu, Kaiqi; Chen, Shuangya; Hu, Mangsha; Wang, Luyao; Ye, Yun; Ye, Faqing

    2017-06-17

    The aim of this research was to prove the speculation that phenylxanthine (PX) derivatives possess adenosine A2A receptor (A2AR)-blocking properties and to screening and evaluate these PX derivatives as dual A2AR antagonists/MAO-B inhibitors for Parkinson's disease. To explore this hypothesis, two series of PX derivatives were prepared and their antagonism against A2AR and inhibition against MAO-B were determined in vitro. In order to evaluate further the antiparkinsonian properties, pharmacokinetic and haloperidol-induced catalepsy experiments were carried out in vivo. The PX-D and PX-E analogues acted as potent A2AR antagonists with Ki values ranging from 0.27 to 10 μM, and these analogues displayed relatively mild MAO-B inhibition potencies, with inhibitor dissociation constants (Ki values) ranging from 0.25 to 10 μM. Further, the compounds PX-D-P6 and PX-E-P8 displayed efficacious antiparkinsonian properties in haloperidol-induced catalepsy experiments, verifying that these two compounds were potent A2AR antagonists and MAO-B inhibitors. We conclude that PX-D and PX-E analogues are a promising candidate class of dual-acting compounds for treating Parkinson's disease.

  17. Targeting inhibitor of apoptosis proteins in combination with ErbB antagonists in breast cancer.

    Science.gov (United States)

    Foster, Fiona M; Owens, Thomas W; Tanianis-Hughes, Jolanta; Clarke, Robert B; Brennan, Keith; Bundred, Nigel J; Streuli, Charles H

    2009-01-01

    Inhibitor of apoptosis (IAPs) proteins are a family of proteins that can block apoptosis in normal cells and have been suggested to cause resistance to apoptosis in cancer. Overexpression of oncogenic receptor tyrosine kinases is common in breast cancer; in particular 20% of all cases show elevated Her2. Despite clinical success with the use of targeted therapies, such as Trastuzumab, only up to 35% of Her2-positive patients initially respond. We reasoned that IAP-mediated apoptosis resistance might contribute to this insensitivity to receptor tyrosine kinase therapy, in particular ErbB antagonists. Here we examine the levels of IAPs in breast cancer and evaluate whether targeting IAPs can enhance apoptosis in response to growth factor receptor antagonists and TRAIL. IAP levels were examined in a breast cancer cell line panel and in patient samples. IAPs were inhibited using siRNA or cell permeable mimetics of endogenous inhibitors. Cells were then exposed to TRAIL, Trastuzumab, Lapatinib, or Gefitinib for 48 hours. Examining nuclear morphology and staining for cleaved caspase 3 was used to score apoptosis. Proliferation was examined by Ki67 staining. Four members of the IAP family, Survivin, XIAP, cIAP1 and cIAP2, were all expressed to varying extents in breast cancer cell lines or tumours. MDAMB468, BT474 and BT20 cells all expressed XIAP to varying extents. Depleting the cells of XIAP overcame the intrinsic resistance of BT20 and MDAMB468 cells to TRAIL. Moreover, siRNA-based depletion of XIAP or use of a Smac mimetic to target multiple IAPs increased apoptosis in response to the ErbB antagonists, Trastuzumab, Lapatinib or Gefitinib in Her2-overexpressing BT474 cells, or Gefitinib in EGFR-overexpressing MDAMB468 cells. The novel findings of this study are that multiple IAPs are concomitantly expressed in breast cancers, and that, in combination with clinically relevant Her2 treatments, IAP antagonists promote apoptosis and reduce the cell turnover index of

  18. Tiotropium bromide inhibits human monocyte chemotaxis

    Directory of Open Access Journals (Sweden)

    Kurai M

    2012-08-01

    Full Text Available Tiotropium bromide (Spiriva® is used as a bronchodilator in chronic obstructive pulmonary disease (COPD. However, clinical evidence suggests that tiotropium bromide may improve COPD by mechanisms beyond bronchodilation. We hypothesized that tiotropium bromide may act as an anti-inflammatory agent by inhibiting monocyte chemotaxis, a process that plays an important role in the lung inflammation of COPD. To test this hypothesis monocytes were pretreated with tiotropium bromide prior to exposure to chemotactic agents and monocyte chemotactic activity (MCA was evaluated with a blind chamber technique. Tiotropium bromide inhibited MCA in a dose- and time- dependent manner (respectively, p< 0.01 by directly acting on the monocyte. Acetylcholine (ACh challenge increased MCA (p< 0.01, and tiotropium bromide effectively reduced (p< 0.01 the increase in MCA by ACh. The inhibition of MCA by tiotropium bromide was reversed by a muscarinic type 3 (M3-muscarinic receptor antagonist (p< 0.01, and was not effected by an M2 receptor antagonist. Furthermore, a selective M3 receptor agonist, cevimeline, and Gq protein stimulator, Pasteurella multocida toxin, significantly increased MCA (P < 0.01, and tiotropium bromide pretreatment reduced (p< 0.01 the increase in MCA induced by these agents. These results suggest that tiotropium might regulate monocyte chemotaxis, in part, by interfering with M3-muscarinic receptor coupled Gq protein signal transduction. These results provide new insight that an anti-cholinergic therapeutic may provide anti-inflammatory action in the pulmonary system.

  19. Evidence that Argos is an antagonistic ligand of the EGF receptor.

    Science.gov (United States)

    Vinós, J; Freeman, M

    2000-07-20

    Argos, the inhibitor of the Drosophila epidermal growth factor (EGF) receptor, remains the only known extracellular inhibitor of this family of receptors in any organism. The functional domain of Argos includes an atypical EGF domain and it is not clear whether it binds to the EGF receptor or if it acts via a distinct receptor to reduce Egfr activity indirectly. Here we present two lines of evidence that strongly suggest that Argos directly interacts with the EGF receptor. First, Argos is unable to inhibit a chimeric receptor that contains an extracellular domain from an unrelated RTK, indicating the need for the EGF receptor extracellular domain. Second, Argos can inhibit the Drosophila EGF receptor even when expressed in human cells, implying that no other Drosophila protein is necessary for inhibition. We also report that Argos and the Drosophila activating ligand, Spitz, can influence mammalian RTK activation, albeit in a cell-type specific manner. This includes the first evidence that Argos can inhibit signalling in mammalian cells, raising the possibility of engineering an effective human EGF receptor/ErbB antagonist. Oncogene (2000) 19, 3560 - 3562

  20. Effect of Flos carthami Extract and α1-Adrenergic Antagonists on the Porcine Proximal Ureteral Peristalsis

    Directory of Open Access Journals (Sweden)

    San-Yuan Wu

    2014-01-01

    Full Text Available Traditional Chinese medicine (TCM has been proposed to prevent urolithiasis. In China, Flos carthami (FC, also known as Carthamus tinctorius (Safflower; Chinese name: Hong Hua/紅花 has been used to treat urological diseases for centuries. We previously performed a screening and confirmed the in vivo antilithic effect of FC extract. Here, ex vivo organ bath experiment was further performed to study the effect of FC extract on the inhibition of phenylepinephrine (PE (10−4 and 10−3 M ureteral peristalsis of porcine ureters with several α1-adrenergic antagonists (doxazosin, tamsulosin, and terazosin as experimental controls. The results showed that doxazosin, tamsulosin, and terazosin dose (approximately 4.5 × 10−6 − 4.5 × 10−1 μg/mL dependently inhibited both 10−4 and 10−3 M PE-induced ureteral peristalsis. FC extract achieved 6.2% ± 10.1%, 21.8% ± 6.8%, and 24.0% ± 5.6% inhibitions of 10−4 M PE-induced peristalsis at doses of 5 × 103, 1 × 104, and 2 × 104 μg/mL, respectively, since FC extract was unable to completely inhibit PE-induced ureteral peristalsis, suggesting the antilithic effect of FC extract is related to mechanisms other than modulation of ureteral peristalsis.

  1. Practical recommendations for calcium channel antagonist poisoning.

    Science.gov (United States)

    Rietjens, S J; de Lange, D W; Donker, D W; Meulenbelt, J

    2016-02-01

    Calcium channel antagonists (CCAs) are widely used for different cardiovascular disorders. At therapeutic doses, CCAs have a favourable side effect profile. However, in overdose, CCAs can cause serious complications, such as severe hypotension and bradycardia. Patients in whom a moderate to severe intoxication is anticipated should be observed in a monitored setting for at least 12 hours if an immediate-release formulation is ingested, and at least 24 hours when a sustained-release formulation (or amlodipine) is involved, even if the patient is asymptomatic. Initial treatment is aimed at gastrointestinal decontamination and general supportive care, i.e., fluid resuscitation and correction of metabolic acidosis and electrolyte disturbances. In moderate to severe CCA poisoning, a combined medical strategy might be indispensable, such as administration of vasopressors, intravenous calcium and hyperinsulinaemia/euglycaemia therapy. Especially hyperinsulinaemia/euglycaemia therapy is an important first-line treatment in CCA-overdosed patients in whom a large ingestion is suspected. High-dose insulin, in combination with glucose, seems to be most effective when used early in the intoxication phase, even when the patient shows hardly any haemodynamic instability. Intravenous lipid emulsion therapy should only be considered in patients with life-threatening cardiovascular toxicity, such as refractory shock, which is unresponsive to conventional therapies. When supportive and specific pharmacological measures fail to adequately reverse refractory conditions in CCA overdose, the use of extracorporeal life support should be considered. The efficacy of these pharmacological and non-pharmacological interventions generally advocated in CCA poisoning needs further in-depth mechanistic foundation, in order to improve individualised treatment of CCA-overdosed patients.

  2. Characterization and design of antagonistic shape memory alloy actuators

    International Nuclear Information System (INIS)

    Georges, T; Brailovski, V; Terriault, P

    2012-01-01

    Antagonistic shape memory actuators use opposing shape memory alloy (SMA) elements to create devices capable of producing differential motion paths and two-way mechanical work in a very efficient manner. There is no requirement for additional bias elements to ‘re-arm’ the actuators and allow repetitive actuation. The work generation potential of antagonistic shape memory actuators is determined by specific SMA element characteristics and their assembly conditions. In this study, the selected SMA wires are assembled in antagonistic configuration and characterized using a dedicated test bench to evaluate their stress–strain characteristics as a function of the number of cycles. Using these functional characteristics, a so-called ‘working envelope’ is built to assist in the design of such an actuator. Finally, the test bench is used to simulate a real application of an antagonistic actuator (case study). (paper)

  3. A SELECTIVE ANTAGONIST OF MINERALOCORTICOID RECEPTOR EPLERENONE IN CARDIOLOGY PRACTICE

    Directory of Open Access Journals (Sweden)

    B. B. Gegenava

    2015-01-01

    Full Text Available The role of aldosterone in pathophysiological processes is considered. The effects of the selective antagonist of mineralocorticoid receptor eplerenone are analyzed. The advantages of eplerenone compared with spironolactone are discussed.

  4. Development of KGF Antagonist as a Breast Cancer Therapeutic

    National Research Council Canada - National Science Library

    Sugimoto, Yasuro

    2003-01-01

    .... We were able to show some potential intracellular KGFR target small molecules whereas extracellular target synthetic peptide antagonist was not able to do during this period We also added a new...

  5. Recent Development of Non-Peptide GnRH Antagonists

    Directory of Open Access Journals (Sweden)

    Feng-Ling Tukun

    2017-12-01

    Full Text Available The decapeptide gonadotropin-releasing hormone, also referred to as luteinizing hormone-releasing hormone with the sequence (pGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH2 plays an important role in regulating the reproductive system. It stimulates differential release of the gonadotropins FSH and LH from pituitary tissue. To date, treatment of hormone-dependent diseases targeting the GnRH receptor, including peptide GnRH agonist and antagonists are now available on the market. The inherited issues associate with peptide agonists and antagonists have however, led to significant interest in developing orally active, small molecule, non-peptide antagonists. In this review, we will summarize all developed small molecule GnRH antagonists along with the most recent clinical data and therapeutic applications.

  6. Complications of TNF-α antagonists and iron homeostasis

    Science.gov (United States)

    TNF-α is a central regulator of inflammation and its blockade downregulates other proinflammatory cytokines, chemokines, and growth factors. Subsequently, TNF-α antagonists are currently used in treatment regimens directed toward several inflammatory diseases. Despite a beneficia...

  7. Tricyclic pharmacophore-based molecules as novel integrin alpha(v)beta3 antagonists. Part 2: synthesis of potent alpha(v)beta3/alpha(IIb)beta3 dual antagonists.

    Science.gov (United States)

    Ishikawa, Minoru; Kubota, Dai; Yamamoto, Mikio; Kuroda, Chizuko; Iguchi, Maki; Koyanagi, Akihiro; Murakami, Shoichi; Ajito, Keiichi

    2006-04-01

    We synthesized 4-aminopiperidine derivatives of our prototype integrin alpha(v)beta3 antagonist 1 in an attempt to increase the activity and water solubility. Introduction of one or two hydrophilic moieties into the central aromatic ring and/or the benzene ring at the C-terminus of 1 increased water solubility and enhanced inhibition of cell adhesion. The results of a structure-activity relationships (SAR) study indicated that the torsion angle between the central aromatic ring and the piperidine ring, and the acidity at the sulfonamide moiety, might be important for alpha(v)beta3 receptor binding activity. Some of these compounds are novel and potent alpha(v)beta3/alpha(IIb)beta3 dual antagonists with acceptable water solubility and a satisfactory early absorption, distribution, metabolism, excretion, and toxicity (ADMET) profile.

  8. Enhanced Chronic Pain Management Utilizing Chemokine Receptor Antagonists

    Science.gov (United States)

    2016-08-01

    AWARD NUMBER: W81XWH-15 1-0252 TITLE: Enhanced Chronic Pain Management Utilizing Chemokine Receptor Antagonists PRINCIPAL INVESTIGATOR...14 Jul 2016 4. TITLE AND SUBTITLE Enhanced Chronic Pain Management Utilizing Chemokine Receptor Antagonists 5a. CONTRACT NUMBER 5b. GRANT...Center for Substance Abuse Research Lewis Katz School of Medicine at Temple University 3500 N, Broad Street Philadelphia, PA 19140 AND ADDRESS(ES) 8

  9. Interleukin-2 receptor antagonists as induction therapy after heart transplantation

    DEFF Research Database (Denmark)

    Møller, Christian H; Gustafsson, Finn; Gluud, Christian

    2008-01-01

    About half of the transplantation centers use induction therapy after heart transplantation. Interleukin-2 receptor antagonists (IL-2Ras) are used increasingly for induction therapy. We conducted a systematic review of randomized trials assessing IL-2Ras.......About half of the transplantation centers use induction therapy after heart transplantation. Interleukin-2 receptor antagonists (IL-2Ras) are used increasingly for induction therapy. We conducted a systematic review of randomized trials assessing IL-2Ras....

  10. PD 102807, a novel muscarinic M4 receptor antagonist, discriminates between striatal and cortical muscarinic receptors coupled to cyclic AMP.

    Science.gov (United States)

    Olianas, M C; Onali, P

    1999-01-01

    In membranes of Chinese hamster ovary cells expressing the cloned human M1-M4 muscarinic receptor subtypes, PD 102807, a novel M4 selective antagonist, was found to counteract the M4 receptor-induced stimulation of [35S]-GTPgammaS binding to membrane G proteins with a pK(B) of 7.40, a value which was 63-, 33- and 10-fold higher than those displayed at M1 (pK(B) = 5.60), M2 (pK(B) = 5.88) and M3 (pK(B) = 6.39) receptor subtypes, respectively. In rat striatal membranes, PD 102807 antagonized the muscarinic inhibition of dopamine (DA) D1 receptor-stimulated adenylyl cyclase with a pK(B) value of 7.36. In contrast, in membranes of rat frontal cortex, PD 102807 displayed lower potencies in antagonizing either the muscarinic facilitation of corticotropin releasing hormone (CRH)-stimulated adenylyl cyclase (pK(B) = 5.79) or inhibition of Ca2+/calmodulin (Ca2+/CaM)-stimulated enzyme activity (pK(B) = 5.95). In each response investigated, PD 102807 interacted with muscarinic receptors in a manner typical of a simple competitive antagonist. These data provide additional evidence that PD 102807 is a M4-receptor preferring antagonist and that this compound can discriminate the striatal muscarinic receptors inhibiting DA D1 receptor activity from the cortical receptors mediating the potentiation of CRH receptor signalling and the inhibition of Ca2+/CaM-stimulated adenylyl cyclase activity.

  11. Platelet-activating factor (PAF)-antagonists of natural origin.

    Science.gov (United States)

    Singh, Preeti; Singh, Ishwari Narayan; Mondal, Sambhu Charan; Singh, Lubhan; Garg, Vipin Kumar

    2013-01-01

    Presently herbal medicines are being used by about 80% of the world population for primary health care as they stood the test of time for their safety, efficacy, cultural acceptability and lesser side effects. The discovery of platelet activating factor antagonists (PAF antagonists) during these decades are going on with different framework, but the researchers led their efficiency in studying in vitro test models. Since it is assumed that PAF play a central role in etiology of many diseases in humans such as asthma, neuronal damage, migraine, cardiac diseases, inflammatory, headache etc. Present days instinctively occurring PAF antagonist exists as a specific grade of therapeutic agents for the humans against these and different diseases either laid hold of immunological or non-immunological types. Ginkgolide, cedrol and many other natural PAF antagonists such as andrographolide, α-bulnesene, cinchonine, piperine, kadsurenone, different Piper species' natural products and marine origin plants extracts or even crude drugs having PAF antagonist properties are being used currently against different inflammatory pathologies. This review is an attempt to summarize the data on PAF and action of natural PAF antagonists on it, which were evaluated by in vivo and in vitro assays. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Inhibition of substance P-mediated responses in NG108-15 cells by netupitant and palonosetron exhibit synergistic effects.

    Science.gov (United States)

    Stathis, Marigo; Pietra, Claudio; Rojas, Camilo; Slusher, Barbara S

    2012-08-15

    Netupitant is a potent and selective NK(1) receptor antagonist under development in combination with a fixed dose of palonosetron for the prevention of chemotherapy induced nausea and vomiting. Palonosetron is a 5-HT(3) receptor antagonist approved for both the prevention of acute and delayed chemotherapy induced nausea and vomiting after moderately emetogenic chemotherapy. Accumulating evidence suggests that substance P (SP), a ligand acting largely on tachykinin (NK(1)) receptors, is the dominant mediator of delayed emesis. Interestingly, palonosetron does not bind to the NK(1) receptor so that the mechanism behind palonosetron's unique efficacy against delayed emesis is not clear. Palonosetron exhibits a distinct ability among 5-HT(3) receptor antagonists to inhibit crosstalk between NK(1) and 5-HT(3) receptor signaling pathways. The objective of the current work was to determine if palonosetron's ability to inhibit receptor signaling crosstalk would influence netupitant's inhibition of the SP-mediated response when the two drugs are dosed together. We first studied the inhibition of SP-induced Ca(2+) mobilization in NG108-15 cells by palonosetron, ondansetron and granisetron. Unexpectedly, in the absence of serotonin, palonosetron inhibited the SP-mediated dose response 15-fold; ondansetron and granisetron had no effect. Netupitant also dose-dependently inhibited the SP response as expected from an NK1 receptor antagonist. Importantly, when both palonosetron and netupitant were present, they exhibited an enhanced inhibition of the SP response compared to either of the two antagonists alone. The results further confirm palonosetron's unique pharmacology among 5-HT(3) receptor antagonists and suggest that it can enhance the prevention of delayed emesis provided by NK(1) receptor antagonists. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Preliminary Structure-Activity Relationship on Theonellasterol, a New Chemotype of FXR Antagonist, from the Marine Sponge Theonella swinhoei

    Directory of Open Access Journals (Sweden)

    Stefano Fiorucci

    2012-11-01

    Full Text Available Using theonellasterol as a novel FXR antagonist hit, we prepared a series of semi-synthetic derivatives in order to gain insight into the structural requirements for exhibiting antagonistic activity. These derivatives are characterized by modification at the exocyclic carbon-carbon double bond at C-4 and at the hydroxyl group at C-3 and were prepared from theonellasterol using simple reactions. Pharmacological investigation showed that the introduction of a hydroxyl group at C-4 as well as the oxidation at C-3 with or without concomitant modification at the exomethylene functionality preserve the ability of theonellasterol to inhibit FXR transactivation caused by CDCA. Docking analysis showed that the placement of these molecules in the FXR-LBD is well stabilized when on ring A functional groups, able to form hydrogen bonds and π interactions, are present.

  14. BQ-869, a novel NMDA receptor antagonist, protects against excitotoxicity and attenuates cerebral ischemic injury in stroke.

    Science.gov (United States)

    Yu, Guo; Wu, Fei; Wang, Er-Song

    2015-01-01

    Stroke is one of the three diseases that cause human death in current world, and it is the common, frequently occurring disease in the middle-old ages. NMDA receptors mediate glutamate-induced cell death when intensely or chronically activated, which is an important cause of neuronal cell death after acute injuries. Here, we demonstrated that BQ-869, a potent NMDA receptor antagonist, blocked NMDA receptor in concentration-dependent and dose-dependent manner, attenuated NMDA-induced Ca(2+) influx, inhabited NMDAR-mEPSC in hippocampal pyramidal neurons, improved athletic ability of rats with MACO, decreased infarction size in focal cerebral ischemia rats and reduced stroke mortality. Taken together, our data demonstrate the neuroprotective effect of BQ-869 might be through inhibiting NMDA-mediated excitotoxicity. These findings indicate that BQ-869 is the most potent antagonist of NMDA receptors, and provide new insights with potential therapeutic applications for the treatment of stroke.

  15. Neuroprotective and memory-related actions of novel alpha-7 nicotinic agents with different mixed agonist/antagonist properties.

    Science.gov (United States)

    Meyer, E M; Tay, E T; Zoltewicz, J A; Meyers, C; King, M A; Papke, R L; De Fiebre, C M

    1998-03-01

    The goals of this study were to develop compounds that were selective and highly efficacious agonists at alpha-7 receptors, while varying in antagonist activity; and to test the hypothesis that these compounds had memory-related and neuroprotective actions associated with both agonist and antagonist alpha-7 receptor activities. Three compounds were identified; E,E-3-(cinnamylidene)anabaseine (3-CA), E,E-3-(2-methoxycinnamylidene) anabaseine (2-MeOCA) and E,E-3-(4-methoxycinnamylidene) anabaseine (4-MeOCA) each displaced [125I]alpha-bungarotoxin binding from rat brain membranes and activated rat alpha-7 receptors in a Xenopus oocyte expression system fully efficaciously. The potency series for binding and receptor activation was 2-MeOCA > 4-MeOCA = 3-CA and 2-MeOCA = 3-CA > 4-MeOCA, respectively. No compound significantly activated oocyte-expressed alpha-4beta-2 receptors. Although each cinnamylidene-anabaseine caused a long-term inhibition of alpha-7 receptors, as measured by ACh-application 5 min later, this inhibition ranged considerably, from less than 20% (3-CA) to 90% (2-MeOCA) at an identical concentration (10 microM). These compounds improved passive avoidance behavior in nucleus basalis lesioned rats, with 2-MeOCA most potent in this respect. In contrast, only 3-CA was neuroprotective against neurite loss during nerve growth factor deprivation in differentiated rat pheochromocytoma (PC12) cells. Choline, an efficacious alpha-7 agonist without antagonist activity, was also protective in this model. These results suggest that the neurite-protective action of alpha-7 receptor agonists may be more sensitive to potential long-term antagonist properties than acute behavioral actions are.

  16. Vitamin K antagonist use and mortality in dialysis patients.

    Science.gov (United States)

    Voskamp, Pauline W M; Rookmaaker, Maarten B; Verhaar, Marianne C; Dekker, Friedo W; Ocak, Gurbey

    2018-01-01

    The risk-benefit ratio of vitamin K antagonists for different CHA2DS2-VASc scores in patients with end-stage renal disease treated with dialysis is unknown. The aim of this study was to investigate the association between vitamin K antagonist use and mortality for different CHA2DS2-VASc scores in a cohort of end-stage renal disease patients receiving dialysis treatment. We prospectively followed 1718 incident dialysis patients. Hazard ratios were calculated for all-cause and cause-specific (stroke, bleeding, cardiovascular and other) mortality associated with vitamin K antagonist use. Vitamin K antagonist use as compared with no vitamin K antagonist use was associated with a 1.2-fold [95% confidence interval (95% CI) 1.0-1.5] increased all-cause mortality risk, a 1.5-fold (95% CI 0.6-4.0) increased stroke mortality risk, a 1.3-fold (95% CI 0.4-4.2) increased bleeding mortality risk, a 1.2-fold (95% CI 0.9-1.8) increased cardiovascular mortality risk and a 1.2-fold (95% CI 0.8-1.6) increased other mortality risk after adjustment. Within patients with a CHA2DS2-VASc score ≤1, vitamin K antagonist use was associated with a 2.8-fold (95% CI 1.0-7.8) increased all-cause mortality risk as compared with no vitamin K antagonist use, while vitamin K antagonist use within patients with a CHA2DS2-VASc score ≥2 was not associated with an increased mortality risk after adjustment. Vitamin K antagonist use was not associated with a protective effect on mortality in the different CHA2DS2-VASc scores in dialysis patients. The lack of knowledge on the indication for vitamin K antagonist use could lead to confounding by indication. © The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  17. Novel CXCR3/CXCR7-Directed Biological Antagonist for Inhibition of Breast Cancer Progression

    Science.gov (United States)

    2012-09-01

    to regulate cell functions including: proliferation, survival, membrane trafficking and cytoskeletal structures (Cantrell, 2001). Src activity is...the role of CXCR4 in BrCa progression. 4 Figure 2. CXCR7 (G protein-independent) cell-signaling pathways. The GPCR , CXCR7 is hypothesized to...transcriptional and/or -translational modification of chemokine receptors may occur, which would not doubt effect their function . Receptor expression

  18. Novel synthetic antagonists of canonical Wnt signaling inhibit colorectal cancer cell growth

    Czech Academy of Sciences Publication Activity Database

    Waaler, J.; Machoň, Ondřej; von Kries, J.P.; Wilson, S.R.; Lundenes, E.; Wedlich, D.; Gradl, D.; Paulsen, J.E.; Machoňová, O.; Dembinski, J.L.; Dinh, H.; Krauss, S.

    2011-01-01

    Roč. 71, č. 1 (2011), s. 197-205 ISSN 0008-5472 Institutional research plan: CEZ:AV0Z50520514 Keywords : beta catenin * cyclooxygenase-2 inhibitor * transcription Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.856, year: 2011

  19. Metabolites produced by antagonistic microbes inhibit the principal avocado pathogens in vitro

    OpenAIRE

    Sara Ramírez R.; Julián David Arias M.; Juan Carlos Bedoya; Ever Antoni Rueda L.; Claudia Yaneth Sánchez; Sinar David Granada G.

    2015-01-01

    The demand for Hass avocado in the global market exceeds the supply by over 50%. Colombia has a remarkable advantage as a producer in the region due to its high yields. However, the productivity of this crop can be seriously affected by diseases such as root rot, caused by Phytophthora cinnamomi, postharvest body rot and stem end rot, caused by Colletotrichum sp. and Phomopsis sp., respectively. The potential of 76 bacterial isolates obtained from avocado rhizosphere to produce inhibitory met...

  20. Inhibition of Common Cold-Induced Aggravation of Childhood Asthma by Leukotriene Receptor Antagonists

    Directory of Open Access Journals (Sweden)

    Shigemi Yoshihara

    2012-01-01

    Conclusions: : These findings showed a high prevalence of common cold in younger patients with childhood asthma and indicated that common cold can induce aggravation of asthma. LTRAs are useful for long-term asthma control in very young patients who develop an asthma attack due to a common cold.

  1. Bacteria in oral secretions of an endophytic insect inhibit antagonistic fungi

    Science.gov (United States)

    Yasmin J. Cardoza; Kier D. Klepzig; Kenneth F. Raffa

    2006-01-01

    1. Colonisation of host trees by an endophytic herbivore, the spruce beetle, Dendroctonus rufipennis , is accompanied by invasion of its galleries by a number of fungal species. Four of these associated species were identified as Leptographium abietinum , Aspergillus fumigatus , Aspergillus nomius , and ...

  2. Inhibition of Common Cold-Induced Aggravation of Childhood Asthma by Leukotriene Receptor Antagonists

    OpenAIRE

    Shigemi Yoshihara; Hironobu Fukuda; Toshio Abe; Mitsuhiro Nishida; Yumi Yamada; Noriko Kanno; Osamu Arisaka

    2012-01-01

    Background: : Virus infection is an important risk factor for aggravation of childhood asthma. The objective of this study was to examine the effect of drugs on aggravation of asthma induced by a common cold. Methods: : Asthma control was examined in a survey of 1,014 Japanese pediatric patients with bronchial asthma. The occurrence of common cold, asthma control, and drugs used for asthma control were investigated using a modified Childhood Asthma Control Test (C-ACT) for patients aged

  3. Histamine H3-receptor antagonists inhibit gastroprotection by (R)-α-methylhistamine in the rat

    OpenAIRE

    Morini, Giuseppina; Grandi, Daniela; Stark, Holger; Schunack, Walter

    2000-01-01

    (R)-α-methylhistamine, a selective agonist of histamine H3 receptors, is capable of protecting the gastric mucosa against differently acting damaging agents. The objective of the present study was to determine whether H3 receptors mediate its protective action in the rat.Gastric mucosal lesions were induced intragastrically (i.g.) by 0.6 N HCl, 1 ml rat−1. (R)-α-methylhistamine, 100 mg kg−1 i.g., substantially reduced the severity of macroscopically and histologically assessed damage caused b...

  4. Studies of the voltage-sensitive calcium channels in smooth muscle, neuronal, and cardiac tissues using 1,4-dihydropyridine calcium channel antagonists and activators

    Energy Technology Data Exchange (ETDEWEB)

    Wei, X.

    1988-01-01

    This study describes the investigation of the voltage-sensitive Ca{sup +} channels in vascular and intestinal smooth muscle, chick neural retina cells and neonatal rat cardiac myocytes using 1,4-dihydropyridine Ca{sup 2+} channel antagonists and activators. In rat aorta, the tumor promoting phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA) produced Ca{sup 2+}-dependent contractile responses. The responses to TPA were blocked by the Ca{sup 2+} channel antagonists. The effects of the enantiomers of Bay K 8644 and 202-791 were characterized in both rat tail artery and guinea pig ileal longitudinal smooth muscle preparations using pharmacologic and radioligand binding assays. The (S)-enantiomers induced contraction and potentiated the responses to K{sup +} depolarization. The (R)-enantiomers inhibited the tension responses to K{sup +}. All the enantiomers inhibited specific ({sup 3}H)nitrendipine binding. The pharmacologic activities of both activator and antagonist ligands correlated on a 1:1 basis with the binding affinities. In chick neural retina cells the (S)-enantiomers of Bay K 8644 and 202-791 enhanced Ca{sup 2+} influx. In contrast, the (R)-enantiomers inhibited Ca{sup 2+} influx. The enantiomers of Bay K 8644 and 202-791 inhibited specific ({sup 3}H)PN 200-110 binding competitively. Binding of 1,4-dihydropyridines was characterized in neonatal rat heart cells.

  5. CRF Receptor Antagonist Astressin-B Reverses and Prevents Alopecia in CRF Over-Expressing Mice

    Science.gov (United States)

    Rivier, Jean; Rivier, Catherine; Craft, Noah; Stenzel-Poore, Mary P.; Taché, Yvette

    2011-01-01

    Corticotropin-releasing factor (CRF) signaling pathways are involved in the stress response, and there is growing evidence supporting hair growth inhibition of murine hair follicle in vivo upon stress exposure. We investigated whether the blockade of CRF receptors influences the development of hair loss in CRF over-expressing (OE)-mice that display phenotypes of Cushing's syndrome and chronic stress, including alopecia. The non-selective CRF receptors antagonist, astressin-B (5 µg/mouse) injected peripherally once a day for 5 days in 4–9 months old CRF-OE alopecic mice induced pigmentation and hair re-growth that was largely retained for over 4 months. In young CRF-OE mice, astressin-B prevented the development of alopecia that occurred in saline-treated mice. Histological examination indicated that alopecic CRF-OE mice had hair follicle atrophy and that astressin-B revived the hair follicle from the telogen to anagen phase. However, astressin-B did not show any effect on the elevated plasma corticosterone levels and the increased weights of adrenal glands and visceral fat in CRF-OE mice. The selective CRF2 receptor antagonist, astressin2-B had moderate effect on pigmentation, but not on hair re-growth. The commercial drug for alopecia, minoxidil only showed partial effect on hair re-growth. These data support the existence of a key molecular switching mechanism triggered by blocking peripheral CRF receptors with an antagonist to reset hair growth in a mouse model of alopecia associated with chronic stress. PMID:21359208

  6. CRF receptor antagonist astressin-B reverses and prevents alopecia in CRF over-expressing mice.

    Directory of Open Access Journals (Sweden)

    Lixin Wang

    2011-02-01

    Full Text Available Corticotropin-releasing factor (CRF signaling pathways are involved in the stress response, and there is growing evidence supporting hair growth inhibition of murine hair follicle in vivo upon stress exposure. We investigated whether the blockade of CRF receptors influences the development of hair loss in CRF over-expressing (OE-mice that display phenotypes of Cushing's syndrome and chronic stress, including alopecia. The non-selective CRF receptors antagonist, astressin-B (5 µg/mouse injected peripherally once a day for 5 days in 4-9 months old CRF-OE alopecic mice induced pigmentation and hair re-growth that was largely retained for over 4 months. In young CRF-OE mice, astressin-B prevented the development of alopecia that occurred in saline-treated mice. Histological examination indicated that alopecic CRF-OE mice had hair follicle atrophy and that astressin-B revived the hair follicle from the telogen to anagen phase. However, astressin-B did not show any effect on the elevated plasma corticosterone levels and the increased weights of adrenal glands and visceral fat in CRF-OE mice. The selective CRF₂ receptor antagonist, astressin₂-B had moderate effect on pigmentation, but not on hair re-growth. The commercial drug for alopecia, minoxidil only showed partial effect on hair re-growth. These data support the existence of a key molecular switching mechanism triggered by blocking peripheral CRF receptors with an antagonist to reset hair growth in a mouse model of alopecia associated with chronic stress.

  7. Dopamine receptor antagonists as new mode-of-action insecticide leads for control of Aedes and Culex mosquito vectors.

    Science.gov (United States)

    Nuss, Andrew B; Ejendal, Karin F K; Doyle, Trevor B; Meyer, Jason M; Lang, Emma G; Watts, Val J; Hill, Catherine A

    2015-03-01

    New mode-of-action insecticides are sought to provide continued control of pesticide resistant arthropod vectors of neglected tropical diseases (NTDs). We previously identified antagonists of the AaDOP2 D1-like dopamine receptor (DAR) from the yellow fever mosquito, Aedes aegypti, with toxicity to Ae. aegypti larvae as leads for novel insecticides. To extend DAR-based insecticide discovery, we evaluated the molecular and pharmacological characteristics of an orthologous DAR target, CqDOP2, from Culex quinquefasciatus, the vector of lymphatic filariasis and West Nile virus. CqDOP2 has 94.7% amino acid identity to AaDOP2 and 28.3% identity to the human D1-like DAR, hD1. CqDOP2 and AaDOP2 exhibited similar pharmacological responses to biogenic amines and DAR antagonists in cell-based assays. The antagonists amitriptyline, amperozide, asenapine, chlorpromazine and doxepin were between 35 to 227-fold more selective at inhibiting the response of CqDOP2 and AaDOP2 in comparison to hD1. Antagonists were toxic to both C. quinquefasciatus and Ae. aegypti larvae, with LC50 values ranging from 41 to 208 μM 72 h post-exposure. Orthologous DOP2 receptors identified from the African malaria mosquito, Anopheles gambiae, the sand fly, Phlebotomus papatasi and the tsetse fly, Glossina morsitans, had high sequence similarity to CqDOP2 and AaDOP2. DAR antagonists represent a putative new insecticide class with activity against C. quinquefasciatus and Ae. aegypti, the two most important mosquito vectors of NTDs. There has been limited change in the sequence and pharmacological properties of the DOP2 DARs of these species since divergence of the tribes Culicini and Aedini. We identified antagonists selective for mosquito versus human DARs and observed a correlation between DAR pharmacology and the in vivo larval toxicity of antagonists. These data demonstrate that sequence similarity can be predictive of target potential. On this basis, we propose expanded insecticide discovery around

  8. Dopamine Receptor Antagonists as New Mode-of-Action Insecticide Leads for Control of Aedes and Culex Mosquito Vectors

    Science.gov (United States)

    Nuss, Andrew B.; Ejendal, Karin F. K.; Doyle, Trevor B.; Meyer, Jason M.; Lang, Emma G.; Watts, Val J.; Hill, Catherine A.

    2015-01-01

    Background New mode-of-action insecticides are sought to provide continued control of pesticide resistant arthropod vectors of neglected tropical diseases (NTDs). We previously identified antagonists of the AaDOP2 D1-like dopamine receptor (DAR) from the yellow fever mosquito, Aedes aegypti, with toxicity to Ae. aegypti larvae as leads for novel insecticides. To extend DAR-based insecticide discovery, we evaluated the molecular and pharmacological characteristics of an orthologous DAR target, CqDOP2, from Culex quinquefasciatus, the vector of lymphatic filariasis and West Nile virus. Methods/Results CqDOP2 has 94.7% amino acid identity to AaDOP2 and 28.3% identity to the human D1-like DAR, hD1. CqDOP2 and AaDOP2 exhibited similar pharmacological responses to biogenic amines and DAR antagonists in cell-based assays. The antagonists amitriptyline, amperozide, asenapine, chlorpromazine and doxepin were between 35 to 227-fold more selective at inhibiting the response of CqDOP2 and AaDOP2 in comparison to hD1. Antagonists were toxic to both C. quinquefasciatus and Ae. aegypti larvae, with LC50 values ranging from 41 to 208 μM 72 h post-exposure. Orthologous DOP2 receptors identified from the African malaria mosquito, Anopheles gambiae, the sand fly, Phlebotomus papatasi and the tsetse fly, Glossina morsitans, had high sequence similarity to CqDOP2 and AaDOP2. Conclusions DAR antagonists represent a putative new insecticide class with activity against C. quinquefasciatus and Ae. aegypti, the two most important mosquito vectors of NTDs. There has been limited change in the sequence and pharmacological properties of the DOP2 DARs of these species since divergence of the tribes Culicini and Aedini. We identified antagonists selective for mosquito versus human DARs and observed a correlation between DAR pharmacology and the in vivo larval toxicity of antagonists. These data demonstrate that sequence similarity can be predictive of target potential. On this basis, we propose

  9. Slow Receptor Dissociation Kinetics Differentiate Macitentan from Other Endothelin Receptor Antagonists in Pulmonary Arterial Smooth Muscle Cells

    Science.gov (United States)

    Gatfield, John; Mueller Grandjean, Celia; Sasse, Thomas; Clozel, Martine; Nayler, Oliver

    2012-01-01

    Two endothelin receptor antagonists (ERAs), bosentan and ambrisentan, are currently approved for the treatment of pulmonary arterial hypertension (PAH), a devastating disease involving an activated endothelin system and aberrant contraction and proliferation of pulmonary arterial smooth muscle cells (PASMC). The novel ERA macitentan has recently concluded testing in a Phase III morbidity/mortality clinical trial in PAH patients. Since the association and dissociation rates of G protein-coupled receptor antagonists can influence their pharmacological activity in vivo, we used human PASMC to characterize inhibitory potency and receptor inhibition kinetics of macitentan, ambrisentan and bosentan using calcium release and inositol-1-phosphate (IP1) assays. In calcium release assays macitentan, ambrisentan and bosentan were highly potent ERAs with Kb values of 0.14 nM, 0.12 nM and 1.1 nM, respectively. Macitentan, but not ambrisentan and bosentan, displayed slow apparent receptor association kinetics as evidenced by increased antagonistic potency upon prolongation of antagonist pre-incubation times. In compound washout experiments, macitentan displayed a significantly lower receptor dissociation rate and longer receptor occupancy half-life (ROt1/2) compared to bosentan and ambrisentan (ROt1/2∶17 minutes versus 70 seconds and 40 seconds, respectively). Because of its lower dissociation rate macitentan behaved as an insurmountable antagonist in calcium release and IP1 assays, and unlike bosentan and ambrisentan it blocked endothelin receptor activation across a wide range of endothelin-1 (ET-1) concentrations. However, prolongation of the ET-1 stimulation time beyond ROt1/2 rendered macitentan a surmountable antagonist, revealing its competitive binding mode. Bosentan and ambrisentan behaved as surmountable antagonists irrespective of the assay duration and they lacked inhibitory activity at high ET-1 concentrations. Thus, macitentan is a competitive ERA with

  10. Slow receptor dissociation kinetics differentiate macitentan from other endothelin receptor antagonists in pulmonary arterial smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    John Gatfield

    Full Text Available Two endothelin receptor antagonists (ERAs, bosentan and ambrisentan, are currently approved for the treatment of pulmonary arterial hypertension (PAH, a devastating disease involving an activated endothelin system and aberrant contraction and proliferation of pulmonary arterial smooth muscle cells (PASMC. The novel ERA macitentan has recently concluded testing in a Phase III morbidity/mortality clinical trial in PAH patients. Since the association and dissociation rates of G protein-coupled receptor antagonists can influence their pharmacological activity in vivo, we used human PASMC to characterize inhibitory potency and receptor inhibition kinetics of macitentan, ambrisentan and bosentan using calcium release and inositol-1-phosphate (IP(1 assays. In calcium release assays macitentan, ambrisentan and bosentan were highly potent ERAs with K(b values of 0.14 nM, 0.12 nM and 1.1 nM, respectively. Macitentan, but not ambrisentan and bosentan, displayed slow apparent receptor association kinetics as evidenced by increased antagonistic potency upon prolongation of antagonist pre-incubation times. In compound washout experiments, macitentan displayed a significantly lower receptor dissociation rate and longer receptor occupancy half-life (ROt(1/2 compared to bosentan and ambrisentan (ROt(1/2:17 minutes versus 70 seconds and 40 seconds, respectively. Because of its lower dissociation rate macitentan behaved as an insurmountable antagonist in calcium release and IP(1 assays, and unlike bosentan and ambrisentan it blocked endothelin receptor activation across a wide range of endothelin-1 (ET-1 concentrations. However, prolongation of the ET-1 stimulation time beyond ROt(1/2 rendered macitentan a surmountable antagonist, revealing its competitive binding mode. Bosentan and ambrisentan behaved as surmountable antagonists irrespective of the assay duration and they lacked inhibitory activity at high ET-1 concentrations. Thus, macitentan is a competitive

  11. Early Illustrations of Geste Antagoniste in Cervical and Generalized Dystonia

    Directory of Open Access Journals (Sweden)

    Emmanuel Broussolle

    2015-09-01

    Full Text Available Background: Geste antagoniste, or sensory trick, is a voluntary maneuver that temporarily reduces the severity of dystonic postures or movements. We present a historical review of early reports and illustrations of geste antagoniste.Results: In 1894, Brissaud described this phenomenon in Paris in patients with torticollis. He noted that a violent muscular contraction could be reversed by a minor voluntary action. He considered the improvement obtained by what he called “simple mannerisms, childish behaviour or fake pathological movements” was proof of the psychogenic origin of what he named mental torticollis. This concept was supported by photographical illustrations of the patients. The term geste antagoniste was used by Brissaud’s pupils, Meige and Feindel, in their 1902 monograph on movement disorders. Other reports and illustrations of this sign were published in Europe between 1894 and 1906. Although not mentioned explicitly, geste antagoniste was also illustrated in a case report of generalized dystonia in Oppenheim’s 1911 seminal description of dystonia musculorum deformans in Berlin.Discussion: Brissaud-Meige’s misinterpretation of the geste antagoniste unfortunately anchored the psychogenic origin of dystonia for decades. In New York, Herz brought dystonia back into the realm of organic neurology in 1944. Thereafter, it was given prominence by other authors, notably Fahn and Marsden in the 1970–1980s. Nowadays, neurologists routinely investigate for geste antagoniste when a dystonic syndrome is suspected, because it provides a further argument in favor of dystonia. The term alleviating maneuver was proposed in 2014 to replace sensory trick or geste antagoniste. This major sign is now part of the motor phenomenology of the 2013 Movement Disorder Society’s classification of dystonia.

  12. Effect of dopamine D3 antagonists on PPI in DBA/2J mice or PPI deficit induced by neonatal ventral hippocampal lesions in rats.

    Science.gov (United States)

    Zhang, Min; Ballard, Michael E; Kohlhaas, Kathy L; Browman, Kaitlin E; Jongen-Rêlo, Ana-Lucia; Unger, Liliane V; Fox, Gerard B; Gross, Gerhard; Decker, Michael W; Drescher, Karla U; Rueter, Lynne E

    2006-07-01

    Schizophrenic patients typically exhibit impairment of sensorimotor gating, which can be modeled in animal models such as the test of prepulse inhibition of startle response (PPI) in rodents. It has been found that antipsychotics enhanced PPI in DBA mice and reversed the PPI deficit induced by neonatal ventral hippocampal (NVH) lesions in rats. However, the relative involvement of D(3) and D(2) receptors in these effects is unknown since all antipsychotics are D(2)/D(3) antagonists with limited binding preference at D(2) receptors. Therefore, in the current study, we investigated the influence of several dopamine antagonists with higher selectivity at D(3) vs D(2) receptors on PPI in DBA/2J mice and in NVH-lesioned rats. The PPI in DBA/2J mice was enhanced by the nonselective D(2)/D(3) antagonists, haloperidol at 0.3-3 mg/kg, or risperidone at 0.3-1 mg/kg, while PPI-enhancing effects were observed after the administration of higher doses of the preferential D(3)/D(2) antagonist, BP 897 at 8 mg/kg, and the selective D(3) antagonists, SB 277011 at 30 mg/kg and A-437203 at 30 mg/kg. No effect was observed following the treatment with the selective D(3) antagonist, AVE 5997 up to 30 mg/kg. The PPI deficits induced by NVH lesions were reversed by haloperidol but not by the more selective D(3) antagonists, A-437203 and AVE 5997. BP 897 enhanced PPI nonselectivity, that is, in both lesioned and nonlesioned rats. In summary, the present study indicates that PPI-enhancing effects induced by antipsychotics in DBA/2J mice and in NVH-lesioned rats are unlikely to be mediated by D(3) receptors.

  13. Penicillium expansum versus antagonist yeasts and patulin degradation in vitro

    Directory of Open Access Journals (Sweden)

    Alexandre Rodrigo Coelho

    2007-07-01

    Full Text Available Taking into account the preliminary antagonistic/biodegradation property showed by Pichia membranifaciens and Sporobolomyces roseus, which decreased the initial patulin concentration of 588.4 to 290.0 µg/mL, ability of P. ohmeri 158 in biocontrol against Penicillium expansum and patulin decrease in vitro was performed. The culture supernatant of P. ohmeri 158 was effective against 66.17% micelial growth, indicating antibiosis related with the killer phenomenon. The initial patulin concentration of 223 µg in the presence of P. ohmeri 158 cells was decreased over 83% of the original concentration, when incubated at 25ºC/2 days and > 99% after 5 days incubation time, with undetectable patulin level after 15 days. The initial pH 4.0 decreased to pH 3.3 along 15 days experiment, suggesting that patulin decrease was an active process and a consequence of yeast metabolism. The results suggested that P. ohmeri 158 could be a promising alternative for the inhibition of P. expansum growth and patulin degradation.Considerando o antagonismo e degradação de patulina detectados em Pichia membranifaciens e Sporobolomyces roseus no estudo preliminar, este trabalho avaliou o efeito antagônico de Pichia ohmeri 158 no desenvolvimento de Penicillium expansum e a degradação de patulina "in vitro". O sobrenadante do cultivo de P. ohmeri 158 inibiu 66,17% do desenvolvimento micelial, indicando antibiose relacionada ao fator killer. A concentração inicial de patulina (223 µg na presença de células íntegras de P. ohmeri foi reduzida em mais de 83% após dois dias de incubação a 25ºC e superior a 99% após 5 dias, com níveis indetectáveis no 15º dia. O decréscimo do pH 4,0 inicial para pH 3,3 sugeriu que a eliminação de patulina é um processo ativo e uma conseqüência do metabolismo da levedura. Os resultados obtidos concluem que P. ohmeri 158 é uma alternativa promissora na inibição do desenvolvimento de P. expansum e na degradação de

  14. "Synthesis and smooth muscle Calcium channel antagonist effect of Alkyl, Aminoalkyl 1,4-Dihydro-2,6-Dimethyl-4-Nitroimidazole-3,5 Pyridine Dicarboxylates "

    Directory of Open Access Journals (Sweden)

    Miri R

    2001-08-01

    Full Text Available The discovery that 1,4-dihydropyridine (DHP class of calcium channel antagonist inhibits the Ca+² influx represented a major therapeutic advance in the treatment of cardiovascular diseases such as hypertension, angina pectoris and other spastic smooth muscle disorders. A novel class of calcium channel antagonist of flunarizine containing arylpiperazinyl moiety has recently been reported. It was therefore of interest to determine the effect that selected C-3 substituents contained amino alkyl and arylpiperazine, in conjunction with a C-4 1-methyl-5-nitro-2-imidazolyl substituents on calcium channel antagonist activity. The unsymmetrical analogues were prepared by a procedure reported by Meyer in which 1-methyl-5-nitro-imidazol-2-carboxaldehyde was reacted with acetoacetic esters and alkyl 3-aminocrotonate. In vitro calcium channel antagonist activities were determined by the use of high K+ contraction of guinea pig ileal longitudinal smooth muscle. All compounds exhibited comparable calcium channel antagonist activity (IC50=10^-9 to 10^-11 M against reference drug nifedipine (IC50=2.75±0.36 x 10^-10 M.

  15. The effect of opioid antagonists on synergism between dexketoprofen and tramadol.

    Science.gov (United States)

    Zegpi, C; Gonzalez, C; Pinardi, G; Miranda, H F

    2009-10-01

    The antinociceptive activity of dexketoprofen was studied in mice using the formalin assay for orofacial pain. The interaction between dexketoprofen and co-administered tramadol was studied using isobolographic analysis. The intraperitoneal administration of dexketoprofen or tramadol, showed dose-dependent antinociceptive activity in both phases of the assay. When administered together, the interaction was mildly synergistic during the first phase, and antagonistic in the second phase. Selective opioid receptor antagonists where used in order to measure the analgesic activity of tramadol in other regions of the CNS. The co-administration of dexketoprofen and tramadol, with previous administration of naltrexone, showed high synergistic activity during the first phase, and less but still synergistic during the second. When using naltrindole, the interaction was mildly more synergistic than the mixture dexketoprofen+tramadol during both phases. Using norbinaltorphimine, the interaction was synergistic in both phases, more marked in the second. These results suggest that the opioid activity of tramadol has an inhibiting effect in antinociceptive activity of the interaction between dexketoprofen and tramadol during the inflammatory (late) stages of pain.

  16. Reprogramming antitumor immunity against chemoresistant ovarian cancer by a CXCR4 antagonist-armed viral oncotherapy

    Directory of Open Access Journals (Sweden)

    Marcin P Komorowski

    2016-01-01

    Full Text Available Ovarian cancer remains the most lethal gynecologic malignancy owing to late detection, intrinsic and acquired chemoresistance, and remarkable heterogeneity. Here, we explored approaches to inhibit metastatic growth of murine and human ovarian tumor variants resistant to paclitaxel and carboplatin by oncolytic vaccinia virus expressing a CXCR4 antagonist to target the CXCL12 chemokine/CXCR4 receptor signaling axis alone or in combination with doxorubicin. The resistant variants exhibited augmented expression of the hyaluronan receptor CD44 and CXCR4 along with elevated Akt and ERK1/2 activation and displayed an increased susceptibility to viral infection compared with the parental counterparts. The infected cultures were more sensitive to doxorubicin-mediated killing both in vitro and in tumor-challenged mice. Mechanistically, the combination treatment increased apoptosis and phagocytosis of tumor material by dendritic cells associated with induction of antitumor immunity. Targeting syngeneic tumors with this regimen increased intratumoral infiltration of antitumor CD8+ T cells. This was further enhanced by reducing the immunosuppressive network by the virally-delivered CXCR4 antagonist, which augmented antitumor immune responses and led to tumor-free survival. Our results define novel strategies for treatment of drug-resistant ovarian cancer that increase immunogenic cell death and reverse the immunosuppressive tumor microenvironment, culminating in antitumor immune responses that control metastatic tumor growth.

  17. Antimicrobial activity of extracellular metabolites from antagonistic bacteria isolated from potato (Solanum phureja crops

    Directory of Open Access Journals (Sweden)

    Sinar David Granada García

    2014-09-01

    Full Text Available Microorganisms for biological control are capable of producing active compounds that inhibit the development of phytopathogens, constituting a promising tool toob tain active principles that could replace synthetic pesticides. This study evaluatedtheability of severalpotentialbiocontrol microorganismsto produce active extracellular metabolites. In vitro antagonistic capability of 50 bacterial isolates from rhizospheric soils of "criolla" potato (Solanum phureja was tested through dual culture in this plant with different plant pathogenic fungi and bacteria. Isolates that showed significantly higher antagonistic activity were fermented in liquid media and crude extracts from the supernatants had their biological activities assessed by optical density techniques. Inhibitory effecton tested pathogens was observed for concentrations between 0.5% and 1% of crude extracts. There was a correlation between the antimicrobial activity of extracts and the use of nutrient-rich media in bacteria fermentation. Using a bioguided method, a peptidic compound, active against Fusarium oxysporum, was obtained from the 7ANT04 strain (Pyrobaculum sp.. Analysis by nuclear magnetic resonance and liquid chromatography coupled to mass detector evidenced an 11-amino acid compound. Bioinformatic software using raw mass data confirmed the presence of a cyclic peptide conformed by 11 mostly non-standard amino acids.

  18. Potent Antagonistic Activity of Egyptian Lactobacillus plantarum against multiresistant and Virulent Food-associated Pathogens

    Directory of Open Access Journals (Sweden)

    Lamiaa eAl-Madboly

    2015-05-01

    Full Text Available Recent years have showed a growing interest to replace the administration of antibiotics with the application of probiotics. The aim of our investigation was to screen for promising strains with broad antimicrobial activity and also more resistant to the challenges met in the gastrointestinal tract. In our study, only 32 out of the 50 (64% probiotic isolates showed antagonistic activity against certain major extensively and pandrug-resistant Gram-positive and -negative food-borne pathogens. Fifteen L. plantarum isolates had a broad antibacterial spectrum. Among these isolates, only five presented potent antibacterial activity relative to previous studies. The recorded inhibition zone diameter ranged from 25 to 44 mm. Pronounced cell-free supernatant activities (6400-25600 AU/ml were commonly detected at the end of the logarithmic phase at 37°C. A marked increase in the range of activity (12800-51200 AU/ml was recorded after the addition of 0.9% NaCl to the media. Moreover, subjecting these isolates to different stressors, including high temperature, low pH, and different concentrations of bile and NaCl, revealed different responses, and only two out of the five L. plantarum isolates showed marked resistance to all of the stress factors. This study highlights the intense and broad antagonistic activity induced by L. plantarum against various food associated pathogens, and their ability to resist different stressors suggests that they can be used in the food and pharmaceutical industry.

  19. Antagonistic interactions between psychrotrophic cultivable bacteria isolated from Antarctic sponges: a preliminary analysis.

    Science.gov (United States)

    Mangano, Santina; Michaud, Luigi; Caruso, Consolazione; Brilli, Matteo; Bruni, Vivia; Fani, Renato; Lo Giudice, Angelina

    2009-01-01

    The present work was aimed at studying antagonistic interactions existing among cultivable bacteria associated with the Antarctic sponges Anoxycalyx joubini and Lissodendoryx nobilis. Overall, bacterial isolates were affiliated with the alpha- and gamma-Proteobacteria (17.3 and 65.3%, respectively), the CFB group of Bacteroidetes (10.7%) and the Actinobacteria (6.7%) by 16S rDNA sequencing. The two sponges harbored microorganisms belonging to different species/genera and previously retrieved from polar marine environments. Antagonistic interactions, assayed by the cross-streak method and statistically analyzed using the "network theory" approach, were checked among isolates associated with the same sponge as well as between isolates retrieved from the two sponge species ("cross-niche inhibition"). Results suggest that antagonism could play a significant role in shaping bacterial communities within sponge tissues. Data from this study confirm previous observations on the antibacterial activity of Antarctic microorganisms and represent a baseline for further investigation of both the ecological role and biotechnological exploitation of Antarctic sponge-associated bacteria.

  20. MDM2 antagonist Nutlin-3a potentiates antitumour activity of cytotoxic drugs in sarcoma cell lines

    Directory of Open Access Journals (Sweden)

    Lothe Ragnhild A

    2011-05-01

    Full Text Available Abstract Background Frequent failure and severe side effects of current sarcoma therapy warrants new therapeutic approaches. The small-molecule MDM2 antagonist Nutlin-3a activates the p53 pathway and efficiently induces apoptosis in tumours with amplified MDM2 gene and overexpression of MDM2 protein. However, the majority of human sarcomas have normal level of MDM2 and the therapeutic potential of MDM2 antagonists in this group is still unclear. We have investigated if Nutlin-3a could be employed to augment the response to traditional therapy and/or reduce the genotoxic burden of chemotherapy. Methods A panel of sarcoma cell lines with different TP53 and MDM2 status were treated with Nutlin-3a combined with Doxorubicin, Methotrexate or Cisplatin, and their combination index determined. Results Clear synergism was observed when Doxorubicin and Nutlin-3a were combined in cell lines with wild-type TP53 and amplified MDM2, or with Methotrexate in both MDM2 normal and amplified sarcoma cell lines, allowing for up to tenfold reduction of cytotoxic drug dose. Interestingly, Nutlin-3a seemed to potentiate the effect of classical drugs as Doxorubicin and Cisplatin in cell lines with mutated TP53, but inhibited the effect of Methotrexate. Conclusion The use of Nutlin in combination with classical sarcoma chemotherapy shows promising preclinical potential, but since clear biomarkers are still lacking, clinical trials should be followed up with detailed tumour profiling.

  1. Antagonistic effects of Bacillus cereus strain B-02 on morphology, ultrastructure and cytophysiology of Botrytis cinerea.

    Science.gov (United States)

    Li, Feng-Xia; Ma, Hui-Quan; Liu, Jing; Zhang, Chao

    2012-01-01

    The study on antagonistic mechanism of biocontrol strains gives the premise and basis for efficient and stable biological control. This study aimes to overcome of biocontrol agent in aspects of complicated and diversified mode of action, short-lasting and unstable efficacy in the production processes. This study elucidated the antagonistic mechanism of Bacillus cereus strain B-02 on Botrytis cinerea by detecting changes in morphology, ultrastructure and physiology in affected hyphae of Botrytis cinerea. Which provided certain theoretical and practical significance for biological control of gray mould caused by B. cinerea. B. cereus strain B-02 isolated from tomato rhizosphere mightily suppressed gray mold in tomato caused by B. cinerea. Spore germination and hyphal growth of B. cinerea were inhibited by B. cereus strain B-02. Changes of cell morphology such as distortion, shrinking and swelling were observed by SEM. TEM observation further indicated the ultrastructural alterations of hyphae, including mitochondrion reduction, un-membranous inclusion in cytoplasm, considerable thickening of cell walls, and electronic density enhancement. LSCM observation revealed the fluorescence intensity of nucleus DNA, mitochondrion DNA and reactive oxygen radical in treated hyphae were all stronger than control and the difference was significant (P cinerea were likely due to a combination of abnormal synthesis of nucleus DNA and mitochondrion DNA and multifarious ultrastructural alterations in hyphal cell.

  2. Synergism of ochratoxin B and calcium-channel antagonist verapamil caused mitochondrial dysfunction.

    Science.gov (United States)

    Chatopadhyay, Pronobesh; Tariang, Banlumlang; Agnihotri, Amit; Veer, Vijay

    2014-09-01

    We examined the mechanism by which the ochratoxin B induced interaction with calcium-channel antagonist verapamil and mitochondrial dysfunction of the rat trachea in vitro experiment. The tracheas were cut into 2-3 mm wide rings and suspended in a tissue bath. Isometric tension was continuously measured with an isometric force transducer connected to a computer-based data acquisition system. Verapamil (1 × 10(-6) M) produced a concentration-dependent contraction response in rat's tracheal rings pre-contracted by acetylcholine. Incubation of rat's tracheal rings with the ochratoxin B significantly potentiated the contraction responses of verapamil. Verapamil and OTB accelerate the overloading of Ca(2+) in tracheal smooth muscle contributes the tissue toxicity as shown in electron microscopy and mitochondrial enzymes, through a mechanism that could involve perturbations of Ca(2+) homeostasis. These results proved that ochratoxin B is a potential vasoconstrictor mycotoxin with the presence of calcium-channel antagonist. In conclusion, disturbance of Ca(2+) homeostasis caused by OTA and plays a significant role in produces toxicity through mitochondrial enzyme inhibition.

  3. Antagonistic properties of two recombinant strains of Streptomyces melanosporofaciens obtained by intraspecific protoplast fusion.

    Science.gov (United States)

    Agbessi, S; Beauséjour, J; Déry, C; Beaulieu, C

    2003-08-01

    Intraspecific protoplast fusion was used to produce stable prototrophic recombinants of Streptomyces melanosporofaciens EF-76, a biocontrol agent of plant disease producing geldanamycin. Two recombinant strains (FP-54 and FP-60) that differed with regard to their antagonistic properties against Bacillus cereus ATCC 14579, Streptomyces scabies EF-35 and Phytophthora fragariae var. rubi 390 were characterized. FP-60 lost the ability to inhibit the in vitro growth of these microbial strains while FP-54 exhibited higher antagonistic activities against them. FP-60 was deficient in geldanamycin biosynthesis whereas FP-54 was shown to produce, in addition to geldanamycin, at least two other antimicrobial compounds that were absent in the culture supernatants of strain EF-76. Like the wild-type strain EF-76, strain FP-54 reduced common scab symptoms on potato tuber but no significant difference was observed between the disease index attributed to tubers treated with strain EF-76 or with strain FP-54. Strain FP-60 showed no protective effect against common scab. The disease index of tubers treated with this recombinant was worse than the index associated with potato tubers from control treatments.

  4. X-ray structures define human P2X3 receptor gating cycle and antagonist action

    Science.gov (United States)

    Mansoor, Steven E.; Lü, Wei; Oosterheert, Wout; Shekhar, Mrinal; Tajkhorshid, Emad; Gouaux, Eric

    2016-10-01

    P2X receptors are trimeric, non-selective cation channels activated by ATP that have important roles in the cardiovascular, neuronal and immune systems. Despite their central function in human physiology and although they are potential targets of therapeutic agents, there are no structures of human P2X receptors. The mechanisms of receptor desensitization and ion permeation, principles of antagonism, and complete structures of the pore-forming transmembrane domains of these receptors remain unclear. Here we report X-ray crystal structures of the human P2X3 receptor in apo/resting, agonist-bound/open-pore, agonist-bound/closed-pore/desensitized and antagonist-bound/closed states. The open state structure harbours an intracellular motif we term the ‘cytoplasmic cap’, which stabilizes the open state of the ion channel pore and creates lateral, phospholipid-lined cytoplasmic fenestrations for water and ion egress. The competitive antagonists TNP-ATP and A-317491 stabilize the apo/resting state and reveal the interactions responsible for competitive inhibition. These structures illuminate the conformational rearrangements that underlie P2X receptor gating and provide a foundation for the development of new pharmacological agents.

  5. Bacillus amyloliquefaciens G1: A Potential Antagonistic Bacterium against Eel-Pathogenic Aeromonas hydrophila

    Directory of Open Access Journals (Sweden)

    Haipeng Cao

    2011-01-01

    Full Text Available Recent studies have revealed that the use of probiotics is an alternative to control marine aeromonas. However, few probiotics are available against Aeromonas hydrophila infections in eels. In the present study, a potential antagonistic strain G1 against the eel-pathogenic A. hydrophila was isolated from sediment underlying brackish water. Its extracellular products with antibacterial activities were shown to be stable under wide range of pH, temperature, and proteinase K. It was initially identified as Bacillus amyloliquefaciens using API identification kits and confirmed to be B. amyloliquefaciens strain (GenBank accession number DQ422953 by phylogenetic analysis. In addition, it was shown to be safe for mammalians, had a wide anti-A. hydrophila spectrum, and exhibited significant effects on inhibiting the growth of the eel-pathogenic A. hydrophila both in vitro and in vivo. To the best of our knowledge, this is the first report on a promising antagonistic Bacillus amyloliquefaciens strain from brackish water sediment against eel-pathogenic A. hydrophila.

  6. Pyrazole antagonists of the CB1 receptor with reduced brain penetration.

    Science.gov (United States)

    Fulp, Alan; Zhang, Yanan; Bortoff, Katherine; Seltzman, Herbert; Snyder, Rodney; Wiethe, Robert; Amato, George; Maitra, Rangan

    2016-03-01

    Type 1 cannabinoid receptor (CB1) antagonists might be useful for treating obesity, liver disease, metabolic syndrome, and dyslipidemias. Unfortunately, inhibition of CB1 in the central nervous system (CNS) produces adverse effects, including depression, anxiety and suicidal ideation in some patients, which led to withdrawal of the pyrazole inverse agonist rimonabant (SR141716A) from European markets. Efforts are underway to produce peripherally selective CB1 antagonists to circumvent CNS-associated adverse effects. In this study, novel analogs of rimonabant (1) were explored in which the 1-aminopiperidine group was switched to a 4-aminopiperidine, attached at the 4-amino position (5). The piperidine nitrogen was functionalized with carbamates, amides, and sulfonamides, providing compounds that are potent inverse agonists of hCB1 with good selectivity for hCB1 over hCB2. Select compounds were further studied using in vitro models of brain penetration, oral absorption and metabolic stability. Several compounds were identified with predicted minimal brain penetration and good metabolic stability. In vivo pharmacokinetic testing revealed that inverse agonist 8c is orally bioavailable and has vastly reduced brain penetration compared to rimonabant. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. GLP-1 receptor antagonist as a potential probe for pancreatic β-cell imaging

    International Nuclear Information System (INIS)

    Mukai, Eri; Toyoda, Kentaro; Kimura, Hiroyuki; Kawashima, Hidekazu; Fujimoto, Hiroyuki; Ueda, Masashi; Temma, Takashi; Hirao, Konomu; Nagakawa, Kenji; Saji, Hideo; Inagaki, Nobuya

    2009-01-01

    We examined exendin(9-39), an antagonist of glucagon-like peptide-1 (GLP-1) receptor (GLP-1R), as a potential probe for imaging of pancreatic β-cells. To evaluate in vitro receptor specificity, binding assay was performed using dispersed mouse islet cells. Binding assay showed competitive inhibition of [ 125 I]BH-exendin(9-39) binding by non-radioactive exendin(9-39). To assess in vivo selectivity, the biodistribution was evaluated by intravenous administration of [ 125 I]BH-exendin(9-39) to mice. Radioactivity of harvested pancreas reached highest levels at 60 and 120 min among organs examined except lung. Pre-administration of excess non-radioactive exendin(9-39) remarkably and specifically blocked the radioactivity of pancreas. After [ 125 I]BH-exendin(9-39) injection into transgenic mice with pancreatic β-cells expressing GFP, fluorescent and radioactive signals of sections of pancreas were evaluated with an image analyzer. Imaging analysis showed that the fluorescent GFP signals and the radioactive signals were correspondingly located. Thus, the GLP-1R antagonist exendin(9-39) may serve as a useful probe for pancreatic β-cell imaging.

  8. Antagonistic spindle motors and MAPs regulate metaphase spindle length and chromosome segregation.

    Science.gov (United States)

    Syrovatkina, Viktoriya; Fu, Chuanhai; Tran, Phong T

    2013-12-02

    Metaphase describes a phase of mitosis where chromosomes are attached and oriented on the bipolar spindle for subsequent segregation at anaphase. In diverse cell types, the metaphase spindle is maintained at characteristic constant length [1-3]. Metaphase spindle length is proposed to be regulated by a balance of pushing and pulling forces generated by distinct sets of spindle microtubules (MTs) and their interactions with motors and MT-associated proteins (MAPs). Spindle length is further proposed to be important for chromosome segregation fidelity, as cells with shorter- or longer-than-normal metaphase spindles, generated through deletion or inhibition of individual mitotic motors or MAPs, showed chromosome segregation defects. To test the force-balance model of spindle length control and its effect on chromosome segregation, we applied fast microfluidic temperature control with live-cell imaging to monitor the effect of deleting or switching off different combinations of antagonistic force contributors in the fission yeast metaphase spindle. We show that the spindle midzone proteins kinesin-5 cut7p and MT bundler ase1p contribute to outward-pushing forces and that the spindle kinetochore proteins kinesin-8 klp5/6p and dam1p contribute to inward-pulling forces. Removing these proteins individually led to aberrant metaphase spindle length and chromosome segregation defects. Removing these proteins in antagonistic combination rescued the defective spindle length and in some combinations also partially rescued chromosome segregation defects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Antipathy of Trichoderma against Sclerotium rolfsii Sacc.: Evaluation of Cell Wall-Degrading Enzymatic Activities and Molecular Diversity Analysis of Antagonists.

    Science.gov (United States)

    Hirpara, Darshna G; Gajera, Harsukh P; Hirpara, Hitesh Z; Golakiya, Balubhai A

    2017-01-01

    The fungus Trichoderma is a teleomorph of the Hypocrea genus and associated with biological control of plant diseases. The microscopic, biochemical, and molecular characterization of Trichoderma was carried out and evaluated for in vitro antagonistic activity against the fungal pathogen Sclerotium rolfsii causing stem rot disease in groundnut. In total, 11 isolates of Trichoderma were examined for antagonism at 6 and 12 days after inoculation (DAI). Out of 11, T. virens NBAII Tvs12 evidenced the highest (87.91%) growth inhibition of the test pathogen followed by T. koningii MTCC 796 (67.03%), T. viride NBAII Tv23 (63.74%), and T. harzianum NBAII Th1 (60.44%). Strong mycoparasitism was observed in the best antagonist Tvs12 strain during 6-12 DAI. The specific activity of cell wall-degrading enzymes - chitinase and β-1,3-glucanase - was positively correlated with growth inhibition of the test pathogen. In total, 18 simple sequence repeat (SSR) polymorphisms were reported to amplify 202 alleles across 11 Trichoderma isolates. The average polymorphism information content for SSR markers was found to be 0.80. The best antagonist Tvs 12 was identified with 7 unique SSR alleles amplified by 5 SSR markers. Clustering patterns of 11 Trichoderma strains showed the best antagonist T. virens NBAII Tvs 12 outgrouped with a minimum 3% similarity from the rest of Trichoderma. © 2017 S. Karger AG, Basel.

  10. Inhibitory effect of a histamine 4 receptor antagonist on CCL17 and CCL22 production by monocyte-derived Langerhans cells in patients with atopic dermatitis.

    Science.gov (United States)

    Miyano, Kyohei; Matsushita, Sho; Tsuchida, Tetsuya; Nakamura, Koichiro

    2016-09-01

    We examined the inhibitory effect of a histamine 4 receptor (H4R) antagonist (JNJ7777120) on CCL17 and CCL22 chemokine production by human monocyte-derived Langerhans cells (MoLC) in patients with atopic dermatitis (AD) and healthy controls (HC). We confirmed the significantly higher production of both CCL17 and CCL22 in the MoLC of AD patients compared with HC. The H4R antagonist significantly inhibited the production of both CCL17 and CCL22 in the MoLC of AD patients. With regard to TLR2-signaled enhancement, peptidoglycan (PGN)-enhanced production of CCL17 and CCL22 by MoLC was inhibited by the H4R. Immunoblotting analysis demonstrated that phosphorylated p38 mitogen-activated protein kinase was induced by PGN and that this enhancement was attenuated by the application of the H4R antagonist. These data indicate that H4 signaling modulates the production of T-helper 2 chemokine in MoLC and contributes to chronic inflammation in AD patients. Our data suggest a possible novel therapeutic approach using a H4R antagonist in the treatment of patients with AD. © 2016 Japanese Dermatological Association.

  11. P2Y12-ADP receptor antagonists: Days of future and past.

    Science.gov (United States)

    Laine, Marc; Paganelli, Franck; Bonello, Laurent

    2016-05-26

    Antiplatelet therapy is the cornerstone of the therapeutic arsenal in coronary artery disease. Thanks to a better understanding in physiology, pharmacology and pharmacogenomics huge progress were made in the field of platelet reactivity inhibition thus allowing the expansion of percutaneous coronary intervention. Stent implantation requires the combination of two antiplatelet agents acting in a synergistic way. Asprin inhibit the cyclo-oxygenase pathway of platelet activation while clopidogrel is a P2Y12 adenosine diphosphate (ADP)-receptor antagonist. This dual antiplatelet therapy has dramatically improved the prognosis of stented patients. However, due to pharmacological limitations of clopidogrel (interindividual variability in its biological efficacy, slow onset of action, mild platelet reactivity inhibition) ischemic recurrences remained high following stent implantation especially in acute coronary syndrome patients. Thus, more potent P2Y12-ADP receptor inhibitors were developped including prasugrel, ticagrelor and more recently cangrelor to overcome these pitfalls. These new agents reduced the rate of thrombotic events in acute coronary syndrome patients at the cost of an increased bleeding risk. The abundance in antiplatelet agents allow us to tailor our strategy based on the thrombotic/bleeding profile of each patient. Recently, the ACCOAST trial cast a doubt on the benefit of pre treatment in non-ST segment elevation acute coronary syndrome. The aim of the present review is to summarize the results of the main studies dealing with antiplatelet therapy in stented/acute coronary syndromes patients.

  12. US -endorphin-(1-27) is a naturally occurring antagonist to etorphine-induced analgesia

    Energy Technology Data Exchange (ETDEWEB)

    Nicolas, P.; Li, C.H.

    1985-05-01

    The potent opioid peptide US -endorphin is found in the brain and pituitary with two related fragments, US -endorphin-(1-27) and US -endorphin-(1-26). The fragments, retain substantial opioid-receptor binding activity but are virtually inactive analgesically. US -Endorphin-(1-27) inhibits US -endorphin-induced and etorphine-induced analgesia when coinjected intracerebroventricularly into mice. Antagonism by competition at the same site(s) is suggested from parallel shifts of the dose-response curves of etorphine or US -endorphin in the presence of US -endorphin-(1-27). Its potency is 4-5 times greater than that of the opiate antagonist naloxone. US -Endorphin-(1-26) does not antagonize the antinociceptive action of etorphine or US -endorphin in doses up to 500 pmol per animal.

  13. Enhanced bradycardia induced by beta-adrenoceptor antagonists in rats pretreated with isoniazid.

    Science.gov (United States)

    Vidrio, H; Sánchez-Salvatori, M A; Medina, M

    1998-12-01

    High doses of isoniazid increase hypotension induced by vasodilators and change the accompanying reflex tachycardia to bradycardia, an interaction attributed to decreased synthesis of brain gamma-aminobutyric acid (GABA). In the present study, the possible enhancement by isoniazid of bradycardia induced by beta-adrenoceptor antagonists was determined in rats anaesthetised with chloralose-urethane. Isoniazid significantly increased bradycardia after propranolol, pindolol, labetalol and atenolol, as well as after clonidine, but not after hexamethonium or carbachol. Enhancement was not observed in rats pretreated with methylatropine or previously vagotomised. These results are compatible with interference by isoniazid with GABAergic inhibition of cardiac parasympathetic tone. Such interference could be exerted centrally, possibly at the nucleus ambiguus, or peripherally at the sinus node.

  14. Effect of beta-adrenergic antagonists on bioluminescence control in three species of brittlestars (Echinodermata: Ophiuroidea).

    Science.gov (United States)

    Dupont, S; Mallefet, J; Vanderlinden, C

    2004-05-01

    The role of adrenaline in the nervous control of bioluminescence in three brittlestar species, Amphiura filiformis, Amphipholis squamata, and Ophiopsila aranea, was assessed by testing two different beta-adrenergic antagonists (propranolol and labetalol) over a wide concentration range (10(-10)-10(-3)M). We compared the effects of analogues (active vs. inactive) of the same substance (L- and D-enantiomers of propranolol). Propranolol presented both specific and nonspecific effects: (i) nonspecific effects were observed at the higher concentrations tested (10(-4) and 10(-3)M) in all three species; (ii) specific effects were detected only at the lower concentrations tested (10(-6)-10(-5)M). In A. squamata, the involvement of adrenaline in the nervous control of luminescence is supported by propranolol and labetolol specific inhibition. The neuropharmacological implications of nonspecific effects, the involvement of adrenaline and the interspecific differences in the brittlestar nervous control of bioluminescence are discussed.

  15. Antagonistic action of Lactobacillus spp. against Staphylococcus aureus in cheese from Mompox - Colombia

    Directory of Open Access Journals (Sweden)

    Piedad M. Montero Castillo

    2015-06-01

    Full Text Available In the food industry, food preservation techniquesthat do not use chemical products are becoming more common.Therefore, the aim of this research was to evaluate the antagonisticactivity (antibiosis of lactic-acid bacterial strains againstpathogenic microorganisms. Lactic-acid bacterial strains wereisolated from layered cheese and a commercial product (yogurt;and the same was done with pathogenic bacteria solely fromlayered cheese. The lactic-acid bacterial strains were identified asspecies from the Lactobacilli family, while the pathogenic bacteriafrom layered cheese were identified as Micrococcaceae familyspecies (Staphylococcus aureus. Subsequently, in the sameculture medium, bacteria of each species were sowed in order todetermine the inhibitory activity ability of the Lactic Acid Bacteria(BAL As a result, the highly antagonistic activity of the Lactobacilli(inhibition halos were larger than 0.5 centimeters in diameteragainst isolated pathogenic microorganisms was demonstrated.

  16. Serotonin antagonists fail to alter MDMA self-administration in rats.

    Science.gov (United States)

    Schenk, Susan; Foote, Jason; Aronsen, Dane; Bukholt, Natasha; Highgate, Quenten; Van de Wetering, Ross; Webster, Jeremy

    2016-09-01

    Acute exposure to ±3,4-methylenedioxymethamphetamine (MDMA) preferentially increases release of serotonin (5-HT), and a role of 5-HT in many of the behavioral effects of acute exposure to MDMA has been demonstrated. A role of 5-HT in MDMA self-administration in rats has not, however, been adequately determined. Therefore, the present study measured the effect of pharmacological manipulation of some 5-HT receptor subtypes on self-administration of MDMA. Rats received extensive experience with self-administered MDMA prior to tests with 5-HT ligands. Doses of the 5-HT1A antagonist, WAY 100635 (0.1-1.0mg/kg), 5-HT1B antagonist, GR 127935 (1.0-3.0mg/kg), and the 5-HT2A antagonist, ketanserin (1.0-3.0mg/kg) that have previously been shown to decrease self-administration of other psychostimulants and that decreased MDMA-produced hyperactivity in the present study did not alter MDMA self-administration. Experimenter-administered injections of MDMA (10.0mg/kg, ip) reinstated extinguished drug-taking behavior, but this also was not decreased by any of the antagonists. In contrast, both WAY 100635 and ketanserin, but not GR 127935, decreased cocaine-produced drug seeking in rats that had been trained to self-administered cocaine. The 5-HT1A agonist, 8-OH-DPAT (0.1-1.0mg/kg), but not the 5-HT1B/1A agonist, RU 24969 (0.3-3.0mg/kg), decreased drug-seeking produced by the reintroduction of a light stimulus that had been paired with self-administered MDMA infusions. These findings suggest a limited role of activation of 5-HT1A, 5-HT1B or 5-HT2 receptor mechanisms in MDMA self-administration or in MDMA-produced drug-seeking following extinction. The data suggest, however, that 5-HT1A agonists inhibit cue-induced drug-seeking following extinction of MDMA self-administration and might, therefore, be useful adjuncts to therapies to limit relapse to MDMA use. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Rational design of an auxin antagonist of the SCF(TIR1) auxin receptor complex.

    Science.gov (United States)

    Hayashi, Ken-ichiro; Neve, Joshua; Hirose, Masakazu; Kuboki, Atsuhito; Shimada, Yukihisa; Kepinski, Stefan; Nozaki, Hiroshi

    2012-03-16

    The plant hormone auxin is a master regulator of plant growth and development. By regulating rates of cell division and elongation and triggering specific patterning events, indole 3-acetic acid (IAA) regulates almost every aspect of plant development. The perception of auxin involves the formation of a ternary complex consisting of an F-box protein of the TIR1/AFB family of auxin receptors, the auxin molecule, and a member the Aux/IAA family of co-repressor proteins. In this study, we identified a potent auxin antagonist, α-(phenylethyl-2-oxo)-IAA, as a lead compound for TIR1/AFB receptors by in silico virtual screening. This molecule was used as the basis for the development of a more potent TIR1 antagonist, auxinole (α-[2,4-dimethylphenylethyl-2-oxo]-IAA), using a structure-based drug design approach. Auxinole binds TIR1 to block the formation of the TIR1-IAA-Aux/IAA complex and so inhibits auxin-responsive gene expression. Molecular docking analysis indicates that the phenyl ring in auxinole would strongly interact with Phe82 of TIR1, a residue that is crucial for Aux/IAA recognition. Consistent with this predicted mode of action, auxinole competitively inhibits various auxin responses in planta. Additionally, auxinole blocks auxin responses of the moss Physcomitrella patens, suggesting activity over a broad range of species. Our works not only substantiates the utility of chemical tools for plant biology but also demonstrates a new class of small molecule inhibitor of protein-protein interactions common to mechanisms of perception of other plant hormones, such as jasmonate, gibberellin, and abscisic acid.

  18. Root Bending Is Antagonistically Affected by Hypoxia and ERF-Mediated Transcription via Auxin Signaling.

    Science.gov (United States)

    Eysholdt-Derzsó, Emese; Sauter, Margret

    2017-09-01

    When plants encounter soil water logging or flooding, roots are the first organs to be confronted with reduced gas diffusion resulting in limited oxygen supply. Since roots do not generate photosynthetic oxygen, they are rapidly faced with oxygen shortage rendering roots particularly prone to damage. While metabolic adaptations to low oxygen conditions, which ensure basic energy supply, have been well characterized, adaptation of root growth and development have received less attention. In this study, we show that hypoxic conditions cause the primary root to grow sidewise in a low oxygen environment, possibly to escape soil patches with reduced oxygen availability. This growth behavior is reversible in that gravitropic growth resumes when seedlings are returned to normoxic conditions. Hypoxic root bending is inhibited by the group VII ethylene response factor (ERFVII) RAP2.12, as rap2.12-1 seedlings show exaggerated primary root bending. Furthermore, overexpression of the ERFVII member HRE2 inhibits root bending, suggesting that primary root growth direction at hypoxic conditions is antagonistically regulated by hypoxia and hypoxia-activated ERFVIIs. Root bending is preceded by the establishment of an auxin gradient across the root tip as quantified with DII-VENUS and is synergistically enhanced by hypoxia and the auxin transport inhibitor naphthylphthalamic acid. The protein abundance of the auxin efflux carrier PIN2 is reduced at hypoxic conditions, a response that is suppressed by RAP2.12 overexpression, suggesting antagonistic control of auxin flux by hypoxia and ERFVII. Taken together, we show that hypoxia triggers an escape response of the primary root that is controlled by ERFVII activity and mediated by auxin signaling in the root tip. © 2017 American Society of Plant Biologists. All Rights Reserved.

  19. Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yi; Qin, Ling; Ortiz Zacarías, Natalia V.; de Vries, Henk; Han, Gye Won; Gustavsson, Martin; Dabros, Marta; Zhao, Chunxia; Cherney, Robert J.; Carter, Percy; Stamos, Dean; Abagyan, Ruben; Cherezov, Vadim; Stevens, Raymond C.; IJzerman, Adriaan P.; Heitman, Laura H.; Tebben, Andrew; Kufareva, Irina; Handel , Tracy M. (Vertex Pharm); (Leiden-MC); (USC); (BMS); (UCSD)

    2016-12-07

    CC chemokine receptor 2 (CCR2) is one of 19 members of the chemokine receptor subfamily of human class A G-protein-coupled receptors. CCR2 is expressed on monocytes, immature dendritic cells, and T-cell subpopulations, and mediates their migration towards endogenous CC chemokine ligands such as CCL2 (ref. 1). CCR2 and its ligands are implicated in numerous inflammatory and neurodegenerative diseases2 including atherosclerosis, multiple sclerosis, asthma, neuropathic pain, and diabetic nephropathy, as well as cancer3. These disease associations have motivated numerous preclinical studies and clinical trials4 (see http://www.clinicaltrials.gov) in search of therapies that target the CCR2–chemokine axis. To aid drug discovery efforts5, here we solve a structure of CCR2 in a ternary complex with an orthosteric (BMS-681 (ref. 6)) and allosteric (CCR2-RA-[R]7) antagonist. BMS-681 inhibits chemokine binding by occupying the orthosteric pocket of the receptor in a previously unseen binding mode. CCR2-RA-[R] binds in a novel, highly druggable pocket that is the most intracellular allosteric site observed in class A G-protein-coupled receptors so far; this site spatially overlaps the G-protein-binding site in homologous receptors. CCR2-RA-[R] inhibits CCR2 non-competitively by blocking activation-associated conformational changes and formation of the G-protein-binding interface. The conformational signature of the conserved microswitch residues observed in double-antagonist-bound CCR2 resembles the most inactive G-protein-coupled receptor structures solved so far. Like other protein–protein interactions, receptor–chemokine complexes are considered challenging therapeutic targets for small molecules, and the present structure suggests diverse pocket epitopes that can be exploited to overcome obstacles in drug design.

  20. First Irish birth following IVF therapy using antagonist protocol.

    LENUS (Irish Health Repository)

    Mocanu, E V

    2012-02-01

    BACKGROUND: During in vitro fertilization (IVF), the prevention of a premature LH surge was traditionally achieved using a gonadotrophin releasing hormone agonist (GnRH-a), and more recently, a GnRH antagonist. AIMS: We report a case of a 37 year old treated using the GnRH antagonist in a second completed cycle of IVF. METHODS: IVF was performed for primary infertility of 5-year duration due to frozen pelvis secondary to endometriosis. RESULTS: Following controlled ovarian hyperstimulation, oocyte recovery and fertilization, cleavage and transfer of two zygotes, a pregnancy established. A twin gestation was diagnosed at 7-weeks scan and pregnancy ended with the delivery of twin girls by emergency caesarean section. CONCLUSION: This is a first report of a delivery following IVF using the antagonist protocol in Ireland. Such therapy is patient friendly and its use should be introduced on a larger scale in clinical practice.

  1. Histamine-2 receptor antagonists as immunomodulators: new therapeutic views?

    DEFF Research Database (Denmark)

    Nielsen, Hans Jørgen

    1996-01-01

    of proliferation and angiogenesis. Specific histamine receptors have been identified on the surface of bone marrow cells, immune competent cells, endothelial cells, fibroblasts, and also on malignant cells. This has prompted research in regulation by specific histamine receptor agonists and antagonists. Results...... from such studies are currently accumulating and suggest that the histamine-2 receptor antagonists have potential beneficial effects in the treatment of certain malignant, autoimmune and skin diseases, either alone or in combination with other drugs. The beneficial effect of histamine-2 receptor...... antagonists as adjuvant single drugs to reduce trauma-, blood transfusion- and sepsis-induced immunosuppression has led to research in combined treatment regimens in major surgery, particularly, of patients operated on for malignant diseases....

  2. GnRH antagonist versus long agonist protocols in IVF

    DEFF Research Database (Denmark)

    Lambalk, C B; Banga, F R; Huirne, J A

    2017-01-01

    was not the only variable between the compared study arms. OBJECTIVE AND RATIONALE: The aim of the current study was to compare GnRH antagonist protocols versus standard long agonist protocols in couples undergoing IVF or ICSI, while accounting for various patient populations and treatment schedules. SEARCH......BACKGROUND: Most reviews of IVF ovarian stimulation protocols have insufficiently accounted for various patient populations, such as ovulatory women, women with polycystic ovary syndrome (PCOS) or women with poor ovarian response, and have included studies in which the agonist or antagonist...... METHODS: The Cochrane Menstrual Disorders and Subfertility Review Group specialized register of controlled trials and Pubmed and Embase databases were searched from inception until June 2016. Eligible trials were those that compared GnRH antagonist protocols and standard long GnRH agonist protocols...

  3. ANTAGONISTIC BACTERIA AGAINST SCHIZOPHYLLUM COMMUNE FR. IN PENINSULAR MALAYSIA

    Directory of Open Access Journals (Sweden)

    ANTARJO DIKIN

    2006-01-01

    Full Text Available Schizophyllum commune Fr., is one of the important fungi, causes brown germ and seed rot of oil palm. Biodiversity of antagonistic bacteria from oil palm plantations in Peninsular Malaysia is expected to support in development of biopesticide. Isolation with liquid assay and screening antagonistic bacteria using dual culture assay were carried out in the bioexploration. A total of 265 bacterial isolates from plant parts of oil palm screened 52 antagonistic bacterial isolates against 5. commune. Bacterial isolates were identified by using Biolog* Identification System i.e. Bacillus macroccanus, B. thermoglucosidasius, Burkholderia cepacia, B. gladioli, B. multivorans, B pyrrocinia, B. spinosa, Corynebacterium agropyri, C. misitidis, Enterobacter aerogenes, Microbacterium testaceum, Pseudomonas aeruginosa, P. citronellolis, Rhodococcus rhodochrous, Serratia ficaria, Serratia sp., S. marcescens, Staphylococcus sciuri, Sternotrophomonas maltophilia.

  4. Histamine H4 receptor antagonists: the new antihistamines?

    Science.gov (United States)

    Fung-Leung, Wai-Ping; Thurmond, Robin L; Ling, Ping; Karlsson, Lars

    2004-11-01

    Antihistamines (histamine H1 receptor antagonists) are a mainstay treatment for atopic allergy, yet they are only partially effective in relieving the symptoms of the disease. They also have very limited value for the treatment of asthma, despite the well-characterized bronchoconstrictory effects of histamine. The recent discovery of a fourth histamine receptor (H4), and the realization that it is exclusively expressed on hematopoietic cell types that are most implicated in the development and symptomatology of allergy and asthma, suggests that pharmacological targeting of the H4 receptor, either alone or in combination with H1 receptor antagonists, may prove useful for treating both allergy and asthma. Here we review the known biology associated with the H4 receptor, as well the effects of a highly selective H1 receptor antagonist.

  5. Antagonism of acetylcholine by adrenaline antagonists

    Science.gov (United States)

    Benfey, B. G.; Grillo, S. A.

    1963-01-01

    Phenoxybenzamine antagonized the inhibitory action of acetylcholine on the guinea-pig isolated atrium. The antagonism was slow in onset, very slowly reversible, and could be overcome by increased concentrations of acetylcholine. In contrast, atropine inhibited the action of acetylcholine quickly, and the effect disappeared soon after withdrawal. The pA10 of phenoxybenzamine (2 hr of contact) was 6.8, and that of atropine (30 min of contact) was 8.4. In the presence of atropine phenoxybenzamine did not exert a slowly reversible antagonism, and the dose-ratio of acetylcholine returned to normal soon after withdrawal of both drugs. Phenoxybenzamine also antagonized acetylcholine in the guinea-pig isolated ileum, but with higher concentrations acetylcholine did not overcome the antagonism. The pA10 (60 min of contact) was 6.6. The pA10 of chlorpromazine in the atrium (2 hr of contact) and ileum (60 min of contact) was 5.9. Phentolamine, 2-diethylaminomethylbenzo-1,4-dioxan hydrochloride (883 F), and yohimbine antagonized acetylcholine in the atrium and ileum but required higher concentrations than chlorpromazine. PMID:13967429

  6. Inhibitory effects of calmodulin antagonists on urinary enzyme excretion in rats after nephrotoxic doses of mercuric chloride

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, S.D. Jr.; Cox, J.L.; Giles, R.C. Jr.

    1985-03-01

    Prochlorperazine, a phenothiazine antiemetic, has been reported to protect rats against mercuric chloride (HgCl/sub 2/)-induced nephrotoxicity. Mercuric ion and 12 other divalent metal ions of toxicologic importance inhibit the activity of calmodulin, a ubiquitous intracellular calcium receptor and regulatory protein, at physiologically relevant concentrations. Phenothiazines, including prochlorperazine, are reversible calmodulin antagonists, and as such they interact with divalent calcium at the level of calmodulin. It was of interest therefore to evaluate the comparative effects of several phenothiazines on HgCl/sub 2/-induced nephrotoxicity in rats.

  7. Clinical Development of Histamine H4Receptor Antagonists.

    Science.gov (United States)

    Thurmond, Robin L; Venable, Jennifer; Savall, Brad; La, David; Snook, Sandra; Dunford, Paul J; Edwards, James P

    2017-01-01

    The discovery of the histamine H 4 receptor (H 4 R) provided a new avenue for the exploration of the physiological role of histamine, as well as providing a new drug target for the development of novel antihistamines. The first step in this process was the identification of selective antagonists to help unravel the pharmacology of the H 4 R relative to other histamine receptors. The discovery of the selective H 4 R antagonist JNJ 7777120 was vital for showing a role for the H 4 R in inflammation and pruritus. While this compound has been very successful as a tool for understanding the function of the receptor, it has drawbacks, including a short in vivo half-life and hypoadrenocorticism toxicity in rats and dogs, that prevented advancing it into clinical studies. Further research let to the discovery of JNJ 39758979, which, similar to JNJ 7777120, was a potent and selective H 4 R antagonist and showed anti-inflammatory and anti-pruritic activity preclinically. JNJ 39758979 advanced into human clinical studies and showed efficacy in reducing experimental pruritus and in patients with atopic dermatitis. However, development of this compound was terminated due to the occurrence of drug-induced agranulocytosis. This was overcome by developing another H 4 R antagonist with a different chemical structure, toreforant, that does not appear to have this side effect. Toreforant has been tested in clinical studies in patients with rheumatoid arthritis, asthma, or psoriasis. In conclusions there have been many H 4 R antagonists reported in the literature, but only a few have been studied in humans underscoring the difficulty in finding ligands with all of the properties necessary for testing in the clinic. Nevertheless, the clinical data to date suggests that H 4 R antagonists can be beneficial in treating atopic dermatitis and pruritus.

  8. Endothelin receptor antagonists influence cardiovascular morphology in uremic rats.

    Science.gov (United States)

    Nabokov, A V; Amann, K; Wessels, S; Münter, K; Wagner, J; Ritz, E

    1999-02-01

    In is generally held that renal failure results in blood pressure (BP)-independent structural changes of the myocardium and the vasculature. The contribution, if any, of endothelin (ET) to these changes has been unknown. We morphometrically studied random samples of the left ventricle myocardium and small intramyocardial arteries in subtotally (5/6) nephrectomized (SNx) male Sprague-Dawley rats treated with either the selective ETA receptor antagonist BMS182874 (30 mg/kg/day) or the nonselective ETA/ETB receptor antagonist Ro46-2005 (30 mg/kg/day) in comparison with either sham-operated rats, untreated SNx, or SNx rats treated with the angiotensin-converting enzyme inhibitor trandolapril (0.1 mg/kg/day). Eight weeks later, systolic BP was lower in trandolapril-treated SNx compared with untreated SNx animals. No decrease in BP was seen following either ET receptor antagonist at the dose used. A significantly increased volume density of the myocardial interstitium was found in untreated SNx rats as compared with sham-operated controls. Such interstitial expansion was prevented by trandolapril and either ET receptor antagonist. SNx caused a substantial increase in the wall thickness of small intramyocardial arteries. The increase was prevented by trandolapril or BMS182874 treatment. The arteriolar wall:lumen ratio was significantly lower in all treated groups when compared with untreated SNx. In contrast, only trandolapril, but not the ET receptor antagonists, attenuated thickening of the aortic media in SNx animals. The ETA-selective and ETA/ETB-nonselective receptor antagonists appear to prevent development of myocardial fibrosis and structural changes of small intramyocardial arteries in experimental chronic renal failure. This effect is independent of systemic BP.

  9. Discovery of Tertiary Sulfonamides as Potent Liver X Receptor Antagonists

    Energy Technology Data Exchange (ETDEWEB)

    Zuercher, William J.; Buckholz†, Richard G.; Campobasso, Nino; Collins, Jon L.; Galardi, Cristin M.; Gampe, Robert T.; Hyatt, Stephen M.; Merrihew, Susan L.; Moore, John T.; Oplinger, Jeffrey A.; Reid, Paul R.; Spearing, Paul K.; Stanley, Thomas B.; Stewart, Eugene L.; Willson, Timothy M. (GSKNC)

    2010-08-12

    Tertiary sulfonamides were identified in a HTS as dual liver X receptor (LXR, NR1H2, and NR1H3) ligands, and the binding affinity of the series was increased through iterative analogue synthesis. A ligand-bound cocrystal structure was determined which elucidated key interactions for high binding affinity. Further characterization of the tertiary sulfonamide series led to the identification of high affinity LXR antagonists. GSK2033 (17) is the first potent cell-active LXR antagonist described to date. 17 may be a useful chemical probe to explore the cell biology of this orphan nuclear receptor.

  10. Interleukin-1-receptor antagonist in type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Larsen, Claus M; Faulenbach, Mirjam; Vaag, Allan

    2007-01-01

    BACKGROUND: The expression of interleukin-1-receptor antagonist is reduced in pancreatic islets of patients with type 2 diabetes mellitus, and high glucose concentrations induce the production of interleukin-1beta in human pancreatic beta cells, leading to impaired insulin secretion, decreased cell...... proliferation, and apoptosis. METHODS: In this double-blind, parallel-group trial involving 70 patients with type 2 diabetes, we randomly assigned 34 patients to receive 100 mg of anakinra (a recombinant human interleukin-1-receptor antagonist) subcutaneously once daily for 13 weeks and 36 patients to receive...

  11. EVALUATION OF PHOSPHATE SOLUBILIZING MICROORGANISMS (PSMs FROM RHIZOSPHERE SOIL OF DIFFERENT CROP PLANTS AND ITS ANTAGONISTIC ACTIVITY

    Directory of Open Access Journals (Sweden)

    Samikan Krishnakumar

    2014-04-01

    Full Text Available Indigenous rhizosphere soil samples were collected during study period (October 2011 – March 2012 of different crop plant from Thiruvannamalai District, Tamilnadu, India for the enumeration of Phosphate solubilizing microorganisms (PSMs. Efficient phosphate solubilizing bacteria, fungi and heterotrophic bacteria were enumerated. Maximum heterotrophic bacterial populations (19.4 X105, phosphate solubilizing bacteria (4.7 X 105 were recorded in the month of February and phosphate solubilizing fungi (3.9 X 102 were documented in the month of December in rhizosphere soil of ground nut. Minimum bacterial populations (14.3 X 105 were observed in rhizosphere soil of chilli in the month of March. Lowest phosphate solubilizing bacteria (1.2 X105 and phosphate solubilzing fungi (1.2 X 102 were observed in rhizosphere soil of paddy during the month of October. Phosphate solubilizing bacteria Pseudomonassp. - BS1, Bacillus sp. – BS2, Micrococcus sp. – BS3 and fungi Aspergillus sp. – FS1, Penicillium sp. – FS2.and Trichoderma sp. – FS3 were identified. Pseudomonas sp. - BS1. exhibited maximum solubilizing efficiency (SE and solubilizing index (SI of 300.0 and 4.0 respectively. In fungi Aspergillus sp. – FS1 showed a maximum solubilizing efficiency (SE and solubilizing index(SI of 283.3 and 3.8 respectively. Antagonistic activity of P-solubilizing Pseudomonassp. - BS1 was deliberated against selected fungal plant pathogens. Among pathogens studied Aspergillus sp. showed a maximum inhibition activity (16 mm and minimum activity (12 mm was observed against Fusarium sp. Moreover inhibition efficiency (IE and inhibition index (II of Pseudomonas sp. - BS1. also calculated base on the antagonistic activity. Aspergillus sp. exhibited highest inhibition efficiency and inhibition index of 166.6 and 3.6 respectively.

  12. Evaluation of the effect of the specific CCR1 antagonist CP-481715 on the clinical and cellular responses observed following epicutaneous nickel challenge in human subjects

    DEFF Research Database (Denmark)

    Borregaard, Jeanett; Skov, Lone; Wang, Lisy

    2008-01-01

    BACKGROUND: The CC-chemokine receptor-1 (CCR1) is thought to be involved in recruitment of inflammatory cells in allergic contact dermatitis (ACD). CP-481715 is a specific antagonist of CCR1. OBJECTIVES: To determine the inhibitory effects of CP-418 715 in ACD by evaluating the clinical signs....... CONCLUSIONS: Blocking of CCR1 only partly inhibited clinical manifestations of ACD. Several chemokine receptors are likely relevant for the cellular influx observed in ACD lesions....

  13. Filamentous fungi isolated from grape marc as antagonists of Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    Jovičić-Petrović Jelena P.

    2016-01-01

    Full Text Available In this paper we report on the isolation and identification of three filamentous fungi from grape marc, and antifungal effect of their cell-free culture filtrates on the growth of Botrytis cinerea, causal agent of gray mold. Grape marc is a waste material that has been used as soil amendment in sustainable agriculture. Isolates originating from grape marc were identified on the basis of morphological features and internal transcribed spacer rDNA or β-tubulin gene sequencing. The presence of three different species, Penicillium paneum, Penicillium chrysogenum and Aspergillus fumigatus has been detected expressing different effect on the growth of B. cinerea. The effect of crude culture filtrates of selected fungi on B. cinerea growth was tested. Heat sensitivity of the established inhibition effect was examined by autoclaving the crude culture filtrate prior to testing. Additional aim was to determine whether antifungal effect was influenced by previous exposure to B. cinerea in dual liquid cultures. Crude culture filtrate of A. fumigatus K16/2 showed the lowest suppression of B. cinerea growth. A maximal percentage inhibition achieved within the study was 38.2%, 39.8% and 23.8 for crude filtrates of P. paneum K7/1, P. chrysogenum K11/1 and A. fumigatus K16/2, respectively. Presence of B. cinerea in dual liquid culture induced significant increase in antifungal capacity of the culture filtrates in comparison to pure culture filtrates of the chosen isolates. The antifungal activity of all of the isolates’ culture filtrates retained after heat treatment suggesting the presence of some thermostable antifungal metabolites. The results indicate the complexity and specificity of the interaction between filamentous fungi and B. cinerea. Grape marc is a good source for isolation od B. cinerea fungal antagonists and their antifungal metabolites. Specificity of fungal-fungal interactions suggests that further research on the antagonistic mechanisms and

  14. Synthesis and characterization of a selective peptide antagonist of neuropeptide Y vascular postsynaptic receptors.

    Science.gov (United States)

    Lew, M. J.; Murphy, R.; Angus, J. A.

    1996-01-01

    1. A cyclic dimeric nonapeptide neuropeptide Y (NPY) receptor antagonist, 1229U91, was synthesized by Fmoc chemistry and dimerised in solution. Its effects were assayed in mesenteric arteries from rats and mice, and in rat vas deferens. 2. Mesenteric arteries were cannulated and pressurised to 55 mmHg and the external diameters continuously measured. NPY, PYY, Leu31Pro34NPY and NPY(13-36) each caused concentration-related contractions with the order of potency PYY > or = Leu31Pro34NPY = NPY > NPY (13-36), consistent with the Y1 receptor subtype. 3. 1229U91 had no agonist activity in the arteries but caused a concentration-related rightward shift of NPY (mouse arteries) or Leu31Pro34NPY (rat) concentration-response curves. The antagonism was competitive with pKBS of 7.69 +/- 0.15 and 7.47 +/- 0.13 in the mouse and rat arteries, respectively. 4. Sympathetic nerves in the vas deferens were stimulated with a single electrical field pulse every 20 s and the twitch responses recorded. NPY, PYY, Leu31Pro34NPY and NPY(13-36) inhibited the twitches with the order of potency PYY > NPY > NPY(13-36) >> Leu31Pro34NPY, consistent with the Y2 receptor subtype. 5. 1229U91 inhibited the vas deferens twitch with a shallow concentration-response curve and a time-course of inhibition distinct from that of NPY. 1229U91 (30 microM) did not cause a rightward shift of the NPY concentration-response curve. 1229U91 is at least 5 orders of magnitude less potent in the vas deferens than in rat brain Y2 binding assays reported by others, suggesting that the brain and vas deferens Y2 receptors are different. 6. It is concluded that 1229U91 is a competitive antagonist of NPY Y1 vascular receptors and has additional properties that inhibit the electrically evoked twitch of the rat vas deferens. PMID:8732289

  15. Paradoxical effects of the opioid antagonist naltrexone on morphine analgesia, tolerance, and reward in rats.

    Science.gov (United States)

    Powell, Kelly J; Abul-Husn, Noura S; Jhamandas, Asha; Olmstead, Mary C; Beninger, Richard J; Jhamandas, Khem

    2002-02-01

    Opioid agonists such as morphine have been found to exert excitatory and inhibitory receptor-mediated effects at low and high doses, respectively. Ultra-low doses of opioid antagonists (naloxone and naltrexone), which selectively inhibit the excitatory effects, have been reported to augment systemic morphine analgesia and inhibit the development of tolerance/physical dependence. This study investigated the site of action of the paradoxical effects of naltrexone and the generality of this effect. The potential of ultra-low doses of naltrexone to influence morphine-induced analgesia was investigated in tests of nociception. Administration of intrathecal (0.05 and 0.1 ng) or systemic (10 ng/kg i.p.) naltrexone augmented the antinociception produced by an acute submaximal dose of intrathecal (5 microg) or systemic (7.5 mg/kg i.p.) morphine in the tail-flick test. Chronic intrathecal (0.005 and 0.05 ng) or systemic (10 ng/kg) naltrexone combined with morphine (15 microg i.t.; 15 mg/kg i.p.) over a 7-day period inhibited the decline in morphine antinociception and prevented the loss of morphine potency. In animals rendered tolerant to intrathecal (15 microg) or systemic (15 mg/kg) morphine, administration of naltrexone (0.05 ng i.t.; 10 and 50 ng/kg i.p.) significantly restored the antinociceptive effect and potency of morphine. Thus, in ultra-low doses, naltrexone paradoxically enhances morphine analgesia and inhibits or reverses tolerance through a spinal action. The potential of naltrexone to influence morphine-induced reward was also investigated using a place preference paradigm. Systemic administration of ultra-low doses of naltrexone (16.7, 20.0, and 25.0 ng/kg) with morphine (1.0 mg/kg) extended the duration of the morphine-induced conditioned place preference. These effects of naltrexone on morphine-induced reward may have implications for chronic treatment with agonist-antagonist combinations.

  16. Plant growth-promoting rhizobacteria associated with avocado display antagonistic activity against Phytophthora cinnamomi through volatile emissions.

    Science.gov (United States)

    Méndez-Bravo, Alfonso; Cortazar-Murillo, Elvis Marian; Guevara-Avendaño, Edgar; Ceballos-Luna, Oscar; Rodríguez-Haas, Benjamín; Kiel-Martínez, Ana L; Hernández-Cristóbal, Orlando; Guerrero-Analco, José A; Reverchon, Frédérique

    2018-01-01

    Rhizobacteria associated with crops constitute an important source of potentially beneficial microorganisms with plant growth promoting activity or antagonistic effects against phytopathogens. In this study, we evaluated the plant growth promoting activity of 11 bacterial isolates that were obtained from the rhizosphere of healthy avocado trees and from that of avocado trees having survived root rot infestations. Seven bacterial isolates, belonging to the genera Bacillus, Pseudomonas and Arthrobacter, promoted in vitro growth of Arabidopsis thaliana. These isolates were then tested for antagonistic activity against Phytophthora cinnamomi, in direct dual culture assays. Two of those rhizobacterial isolates, obtained from symptomatic-declining trees, displayed antagonistic activity. Isolate A8a, which is closely related to Bacillus acidiceler, was also able to inhibit P. cinnamomi growth in vitro by 76% through the production of volatile compounds. Solid phase microextraction (SPME) and analysis by gas chromatography coupled with mass spectrometry (GC-MS) allowed to tentatively identify the main volatiles emitted by isolate A8a as 2,3,5-trimethylpyrazine, 6,10-dimethyl-5,9-undecadien-2-one and 3-amino-1,3-oxazolidin-2-one. These volatile compounds have been reported to show antifungal activity when produced by other bacterial isolates. These results confirm the significance of rhizobacteria and suggest that these bacteria could be used for biocontrol of soil borne oomycetes through their volatiles emissions.

  17. Identification and Optimization of Benzimidazole Sulfonamides as Orally Bioavailable Sphingosine 1-Phosphate Receptor 1 Antagonists with in Vivo Activity.

    Science.gov (United States)

    Hennessy, Edward J; Oza, Vibha; Adam, Ammar; Byth, Kate; Castriotta, Lillian; Grewal, Gurmit; Hamilton, Geraldine A; Kamhi, Victor M; Lewis, Paula; Li, Danyang; Lyne, Paul; Öster, Linda; Rooney, Michael T; Saeh, Jamal C; Sha, Li; Su, Qibin; Wen, Shengua; Xue, Yafeng; Yang, Bin

    2015-09-10

    We report here a novel series of benzimidazole sulfonamides that act as antagonists of the S1P1 receptor, identified by exploiting an understanding of the pharmacophore of a high throughput screening (HTS)-derived series of compounds described previously. Lead compound 2 potently inhibits S1P-induced receptor internalization in a cell-based assay (EC50 = 0.05 μM), but has poor physical properties and metabolic stability. Evolution of this compound through structure-activity relationship development and property optimization led to in vivo probes such as 4. However, this compound was unexpectedly found to be a potent CYP3A inducer in human hepatocytes, and thus further chemistry efforts were directed at addressing this liability. By employing a pregnane X receptor (PXR) reporter gene assay to prioritize compounds for further testing in human hepatocytes, we identified lipophilicity as a key molecular property influencing the likelihood of P450 induction. Ultimately, we have identified compounds such as 46 and 47, which demonstrate the desired S1P1 antagonist activity while having greatly reduced risk of CYP3A induction in humans. These compounds have excellent oral bioavailability in preclinical species and exhibit pharmacodynamic effects of S1P1 antagonism in several in vivo models following oral dosing. Relatively modest antitumor activity was observed in multiple xenograft models, however, suggesting that selective S1P1 antagonists would have limited utility as anticancer therapeutics as single agents.

  18. Transmitters and pathways mediating inhibition of spinal itch-signaling neurons by scratching and other counterstimuli.

    Directory of Open Access Journals (Sweden)

    Tasuku Akiyama

    Full Text Available Scratching relieves itch, but the underlying neural mechanisms are poorly understood. We presently investigated a role for the inhibitory neurotransmitters GABA and glycine in scratch-evoked inhibition of spinal itch-signaling neurons in a mouse model of chronic dry skin itch. Superficial dorsal horn neurons ipsilateral to hindpaw dry skin treatment exhibited a high level of spontaneous firing that was significantly attenuated by cutaneous scratching, pinch and noxious heat. Scratch-evoked inhibition was nearly abolished by spinal delivery of the glycine antagonist, strychnine, and was markedly attenuated by respective GABA(A and GABA(B antagonists bicuculline and saclofen. Scratch-evoked inhibition was also significantly attenuated (but not abolished by interruption of the upper cervical spinal cord, indicating the involvement of both segmental and suprasegmental circuits that engage glycine- and GABA-mediated inhibition of spinal itch-signaling neurons by noxious counterstimuli.

  19. The antiproliferative action of [D-Arg(1), D-Phe(5), D-Trp(7,9), LEU(11)] substance P analogue antagonist against small-cell- and non-small-cell lung cancer cells could be due to the pharmacological profile of its tachykinin receptor antagonist.

    Science.gov (United States)

    Munoz, M; Recio, S; Rosso, M; Redondo, M; Covenas, R

    2015-06-01

    It is known that in human lung cancer samples, both small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC) cells express the neurokinin-1 (NK-1) receptor; that after binding to the NK-1 receptor the peptide substance P (SP) elicits tumour cell proliferation and an antiapoptotic effect. By contrast, it has been demonstrated that non-peptide NK-1 receptor antagonists, after binding to the NK-1 receptor and hence by blocking the SP action in SCLC/NSCLC, exert an antiproliferative action (inhibit lung cancer cell proliferation and induce the death of tumour cells by apoptosis). It is also known that SP peptide NK-1 receptor antagonists also called SP analogue antagonists (broad-spectrum GPCR antagonists, broad-spectrum neuropeptide antagonists or synthetic analogues of SP), also exert antiproliferative actions against SCLC/NSCLC. However, the underlying mechanisms involved in this antiproliferative action remain unknown. By using competition assays with SP, here we demonstrate that the antiproliferative action exerted by the [D-Arg(1), D-Phe(5), D-Trp(7,9), Leu(11)] SP analogue on human H-69 SCLC and COR-L23 NSCLC cell lines, occurs at least through the NK-1 receptor.

  20. Indications for the use of parenteral H2-receptor antagonists.

    Science.gov (United States)

    Thompson, J C; Walker, J P

    1984-11-19

    Development of acute mucosal ulceration is a complex series of catabolic interactions. Hospitalized patients with duodenal or gastric ulcer, pathologic gastric hypersecretory states (such as Zollinger-Ellison syndrome), gastric outlet obstruction, esophagitis, severe gastritis or duodenitis, sepsis, trauma (particularly head injury or burns), and some patients receiving high-dose corticosteroids are at risk of developing acute stress ulcers. Treatment should be initiated as soon as the patient is identified as being at risk, because measures designed to prevent bleeding or perforation are more effective than those designed to stop bleeding once it supervenes and the cascade of multiple organ failure commences. The presence of acid will trigger the onset of this condition; however, ulceration will not occur if the intraluminal pH can be maintained above 5 by periodic antacid treatment or by H2-receptor blockade. The dosing regimen of antacid or of H2-receptor antagonist should not be fixed, but should be sufficient to keep the gastric pH higher than 5. Antagonists administered via a nasogastric tube are the first line of defense, but 30 to 50 percent of the most ill patients will also be treated parenterally with H2-receptor antagonists. Parenteral H2-receptor blockade therapy is indicated in these patients when the risk of acute or continued ulceration of esophageal, gastric, or duodenal mucosa is high and the oral administration of medication is either not possible or the response to such therapy is unreliable. Parenteral H2-receptor antagonists are rarely administered alone.

  1. Bronchoprotection with a leukotriene receptor antagonist in asthmatic preschool children

    DEFF Research Database (Denmark)

    Bisgaard, H; Nielsen, K G

    2000-01-01

    We hypothesized that a leukotriene receptor antagonist (LTRA) could provide bronchoprotection against the cold, dry air-induced response in asthmatic preschool children. In a randomized, double-blind, placebo-controlled crossover study, we examined the effect of the specific LTRA montelukast at 5...

  2. Manumycin from a new Streptomyces strain shows antagonistic ...

    African Journals Online (AJOL)

    Manumycin from a new Streptomyces strain shows antagonistic effect against methicillin-resistant Staphylococcus aureus (MRSA)/vancomycin-resistant enterococci (VRE) strains from Korean Hospitals. Yun Hee Choi, Seung Sik Cho, Jaya Ram Simkhada, Chi Nam Seong, Hyo Jeong Lee, Hong Seop Moon, Jin Cheol Yoo ...

  3. Diversity, distribution, and antagonistic activities of rhizobacteria of Panax notoginseng

    Directory of Open Access Journals (Sweden)

    Ze-Yan Fan

    2016-04-01

    Conclusion: The results suggest that diverse bacteria exist in the P. notoginseng rhizosphere soil, with differences in community in the same field, and antagonistic isolates may be good potential biological control agent for the notoginseng root-rot diseases caused by F. oxysporum, Fusarium solani, and Panax herbarum.

  4. Antagonistic effect of brevicin on Gram positive and Gram negative ...

    African Journals Online (AJOL)

    B. Senthil Kumar

    phylogenetic tree was constructed, based on evolutionary distances that were calculated by following the distance matrix method, using the Phylip package. Preparation and analysis of crude extract of protein (CEP) for their antagonistic activity against food borne pathogens. 24 h old MRS broth culture was prepared and ...

  5. Neuroprotection by NMDA receptor antagonists in a variety of neuropathologies.

    Science.gov (United States)

    Palmer, G C

    2001-09-01

    Because of adverse reactions, early efforts to introduce high affinity competitive or use-dependent NMDA receptor antagonists into patients suffering from stroke, head trauma or epilepsy met with failure. Later it was discovered that both low affinity use-dependent NMDA receptor antagonists and compounds with selective affinity for the NR2B receptor subunit met the criteria for safe administration into patients. Furthermore, these low affinity antagonists exhibit significant mechanistic differences from their higher affinity counterparts. Success of the latter is attested to the ability of the following low affinity compounds to be marketed: 1) Cough suppressant-dextromethorphan (available for decades); 2) Parkinson's disease--amantadine, memantine and budipine; 3) Dementia--memantine; and 4) Epilepsy--felbamate. Moreover, Phase III clinical trials are ongoing with remacemide for epilepsy and Huntington's disease and head trauma for HU-211. A host of compounds are or were under evaluation for the possible treatment of stroke, head trauma, hyperalgesia and various neurodegenerative disorders. Despite the fact that other drugs with associated NMDA receptor mechanisms have reached clinical status, this review focuses only on those competitive and use-dependent NMDA receptor antagonists that reached clinical trails. The ensuing discussions link the in vivo pharmacological investigations that led to the success/mistakes/ failures for eventual testing of promising compounds in the clinic.

  6. Epiminocyclohepta[b]indole analogs as 5-HT6 antagonists

    DEFF Research Database (Denmark)

    Henderson, Alan J; Guzzo, Peter R; Ghosh, Animesh

    2012-01-01

    A new series of epiminocyclohepta[b]indoles with potent 5-HT(6) antagonist activity were discovered and optimized using in vitro protocols. One compound from this series was progressed to advanced pharmacokinetic (PK) studies followed by 5-HT(6) receptor occupancy studies. The compound was found ...

  7. Sympatho-inhibitory properties of various AT1 receptor antagonists

    NARCIS (Netherlands)

    Balt, Jippe C.; Mathy, Marie-Jeanne; Pfaffendorf, Martin; van Zwieten, Peter A.

    2002-01-01

    It is well known that angiotensin II (Ang II) can facilitate the effects of sympathetic neurotransmission. In the present study, using various experimental models, we investigated the inhibitory effects of several Ang II subtype 1 receptor (AT1) antagonists on this Ang II-induced facilitation. We

  8. Management of hyperkalaemia consequent to mineralocorticoid-receptor antagonist therapy

    NARCIS (Netherlands)

    Roscioni, Sara S.; de Zeeuw, Dick; Bakker, Stephan J. L.; Lambers Heerspink, Hiddo J.

    2012-01-01

    Mineralocorticoid-receptor antagonists (MRAs) reduce blood pressure and albuminuria in patients treated with angiotensin-converting-enzyme inhibitors or angiotensin-II-receptor blockers. The use of MRAs, however, is limited by the occurrence of hyperkalaemia, which frequently occurs in patients

  9. Calcium antagonists: a ready prescription for treating infectious diseases?

    Science.gov (United States)

    Clark, Kevin B; Eisenstein, Edward M; Krahl, Scott E

    2013-01-01

    Emergence of new and medically resistant pathogenic microbes continues to escalate toward worldwide public health, wild habitat, and commercial crop and livestock catastrophes. Attempts at solving this problem with sophisticated modern biotechnologies, such as smart vaccines and microbicidal and microbistatic drugs that precisely target parasitic bacteria, fungi, and protozoa, remain promising without major clinical and industrial successes. However, discovery of a more immediate, broad spectrum prophylaxis beyond conventional epidemiological approaches might take no longer than the time required to fill a prescription at your neighborhood pharmacy. Findings from a growing body of research suggest calcium antagonists, long approved and marketed for various human cardiovascular and neurological indications, may produce safe, efficacious antimicrobial effects. As a general category of drugs, calcium antagonists include compounds that disrupt passage of Ca(2+) molecules across cell membranes and walls, sequestration and mobilization of free intracellular Ca(2+), and downstream binding proteins and sensors of Ca(2+)-dependent regulatory pathways important for proper cell function. Administration of calcium antagonists alone at current therapeutically relevant doses and schedules, or with synergistic compounds and additional antimicrobial medications, figures to enhance host immunoprotection by directly altering pathogen infection sequences, life cycles, homeostasis, antibiotic tolerances, and numerous other infective, survival, and reproductive processes. Short of being miracle drugs, calcium antagonists are welcome old drugs with new tricks capable of controlling some of the most virulent and pervasive global infectious diseases of plants, animals, and humans, including Chagas' disease, malaria, and tuberculosis.

  10. Role of muscarinic receptor antagonists in urgency and nocturia

    NARCIS (Netherlands)

    Michel, Martin C.; de La Rosette, Jean J. M. C. H.

    2005-01-01

    The overactive bladder (OAB) syndrome is defined as urgency, with or without urgency incontinence, usually accompanied by frequency and nocturia. Muscarinic receptor antagonists are the most established form of treatment for OAB, but until recently their effectiveness was only confirmed for symptoms

  11. How Hybrid Organizations Turn Antagonistic Assets into Complementarities

    DEFF Research Database (Denmark)

    Hockerts, Kai

    2015-01-01

    This article focuses on people excluded from traditional markets as employees, producers, or consumers on the grounds that they lack the appropriate skills. It describes the processes through which these perceived liabilities can be overcome by so-called hybrid organizations. Hybrids pursue expli...... for complementarities, and by creating demands for antagonistic assets, or by using partnerships....

  12. Effects of calcium antagonists on hypertension and diastolic function ...

    African Journals Online (AJOL)

    Calcium antagonists are known to decrease blood pressure acutely and chronically in hypertensive patients with hypertensive heart disease, and also to improve their systolic function. However, disorders of diastolic function may occur early in hypertensive heart disease. The improvement of diastolic function by nifedipine ...

  13. Contrasting effects of intralocus sexual conflict on sexually antagonistic coevolution

    NARCIS (Netherlands)

    Pennell, Tanya M; de Haas, Freek J H; Morrow, Edward H; van Doorn, G Sander

    2016-01-01

    Evolutionary conflict between the sexes can induce arms races in which males evolve traits that are detrimental to the fitness of their female partners, and vice versa. This interlocus sexual conflict (IRSC) has been proposed as a cause of perpetual intersexual antagonistic coevolution with

  14. Effect of Three Calmodulin Antagonists on Subpopulations of CD44 ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research is indexed by Science Citation Index (SciSearch), Scopus,. International Pharmaceutical ... cancer stem cells. It is not known, however, whether targeting CD44 can alter the fate of cancer stem cells themselves. In this study, the effect of the calmodulin antagonists (N-(10-.

  15. Effects of alpha(1)-adrenoceptor antagonists on male sexual function

    NARCIS (Netherlands)

    van Dijk, Marleen M.; de La Rosette, Jean J. M. C. H.; Michel, Martin C.

    2006-01-01

    alpha(1)-Adrenoceptor antagonists such as alfuzosin, doxazosin, tamsulosin and terazosin are first-line agents for the treatment of lower urinary tract symptoms suggestive of benign prostatic hyperplasia (BPH), but are only second-line agents (doxazosin and terazosin only) for the treatment of

  16. The Effect of Sympathetic Antagonists on the Antidepressant Action ...

    African Journals Online (AJOL)

    Alprazolam is an anti-anxiety drug shown to be effective in the treatment of depression. In this study, the effect of sympathetic receptor antagonists on alprazolam–induced antidepressant action was studied using a mouse model of forced swimming behavioral despair. The interaction of three sympathetic receptor ...

  17. Evaluation of antagonistic fungi against charcoal rot of sunflower ...

    African Journals Online (AJOL)

    user

    Results showed reduction in disease incidence of charcoal rot on sunflower cultivar G-66 with antagonist, A. flavus (100%) followed by A. niger (64.86%) P. capsulatum (63.79%) and T. viride (31.89%) over control. Decrease in disease incidence over control was 100% where seed was treated with combination of A. niger ...

  18. Non-NMDA receptor antagonist-induced drinking in rat

    Science.gov (United States)

    Xu, Z.; Johnson, A. K.

    1998-01-01

    Glutamate has been implicated in the central control of mechanisms that maintain body fluid homeostasis. The present studies demonstrate that intracerebroventricular (i.c.v.) injections of the non-N-methyl-d-aspartate (NMDA) receptor antagonists 6, 7-dinitroquinoxaline-2,3-dione (DNQX) and 6-cyano-7-nitroquinoxaline-2,3 dione (CNQX) induce drinking in rats. The dipsogenic effect of i.c.v. DNQX was antagonized by the non-NMDA receptor agonist alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA). The water intake induced by DNQX was also blocked by pretreatment with a NMDA receptor antagonist, MK-801, but not by angiotensin type 1 (AT1) or acetylcholine muscarinic receptor antagonists (losartan and atropine). The results indicate that non-NMDA receptors may exert a tonic inhibitory effect within brain circuits that control dipsogenic activity and that functional integrity of NMDA receptors may be required for the non-NMDA receptor antagonists to induce water intake. Copyright 1998 Published by Elsevier Science B.V.

  19. NK-1 receptor antagonists as anti-cancer drugs

    Indian Academy of Sciences (India)

    The substance P (SP)/neurokinin (NK)-1 receptor system plays an important role in cancer. SP promotes the proliferation of tumour cells, angiogenesis and the migration of tumour cells. We review the involvement of SP, the NK-1 receptor and NK-1 receptor antagonists in cancer. Tumour cells overexpress NK-1 receptors, ...

  20. Antagonistic bioactivity of endophytic strains isolated from Salvia ...

    African Journals Online (AJOL)

    The antibiotic-producing potential of endophytic populations from medical plant of Salvia miltiorrhiza was examined. A total of 63 isolates was screened against five fungal and three bacterial species for the production of antimicrobial compounds. It showed that more isolates was antagonistic to fungi than to bacteria.

  1. Voltage-Gated Calcium Channel Antagonists and Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Bruce Lyeth

    2013-06-01

    Full Text Available Traumatic brain injury (TBI is a leading cause of death and disability in the United States. Despite more than 30 years of research, no pharmacological agents have been identified that improve neurological function following TBI. However, several lines of research described in this review provide support for further development of voltage gated calcium channel (VGCC antagonists as potential therapeutic agents. Following TBI, neurons and astrocytes experience a rapid and sometimes enduring increase in intracellular calcium ([Ca2+]i. These fluxes in [Ca2+]i drive not only apoptotic and necrotic cell death, but also can lead to long-term cell dysfunction in surviving cells. In a limited number of in vitro experiments, both L-type and N-type VGCC antagonists successfully reduced calcium loads as well as neuronal and astrocytic cell death following mechanical injury. In rodent models of TBI, administration of VGCC antagonists reduced cell death and improved cognitive function. It is clear that there is a critical need to find effective therapeutics and rational drug delivery strategies for the management and treatment of TBI, and we believe that further investigation of VGCC antagonists should be pursued before ruling out the possibility of successful translation to the clinic.

  2. Antagonistic potential of fluorescent Pseudomonas and its impact on ...

    African Journals Online (AJOL)

    This study focused on the antagonistic potential of fluorescent Pseudomonas in vitro, and its inoculation effect on growth performance of Lycopersicon esculentum in Fusarium oxysporum and Rhizoctonia solani infested soil. Biochemical characteristics of fluorescent Pseudomonas showed that all ten isolates were positive ...

  3. Vasopressin receptor antagonists: pharmacological tools and potential therapeutic agents

    NARCIS (Netherlands)

    Streefkerk, J. O.; van Zwieten, P. A.

    2006-01-01

    The present survey deals with the development and applications of non-peptidergic vasopressin receptor antagonists. The existence of at least three vasopressin receptors (V(1), V(2) and V(3) respectively) is firmly established. V(1)-receptors play a relevant role in the regulation of vascular tone,

  4. Screening and Mechanism of Trapping Ligand Antagonist Peptide ...

    African Journals Online (AJOL)

    Purpose: The aim of the present study was to develop peptide H9 as an efficient antagonist of human cytomegalovirus (HCMV) chemokine receptor US28. Methods: US28 gene was amplified from HCMV, and a stable expression system was constructed using NIH/3T3 cells. Interaction between peptide H9 and receptor ...

  5. Antagonistic activity of selected strains of Bacillus thuringiensis ...

    African Journals Online (AJOL)

    The aim of this work was to determine, in vitro, the antagonistic effectiveness of 60 strains of Bacillus thuringiensis against damping-off and root and stem rot caused by Rhizoctonia solani. The strains were obtained from the International Collection of Entomopathogenic Bacillus at the FCB-UANL. During the in vitro dual ...

  6. A novel urotensin II receptor antagonist, KR-36996, improved cardiac function and attenuated cardiac hypertrophy in experimental heart failure.

    Science.gov (United States)

    Oh, Kwang-Seok; Lee, Jeong Hyun; Yi, Kyu Yang; Lim, Chae Jo; Park, Byung Kil; Seo, Ho Won; Lee, Byung Ho

    2017-03-15

    Urotensin II and its receptor are thought to be involved in various cardiovascular diseases such as heart failure, pulmonary hypertension and atherosclerosis. Since the regulation of the urotensin II/urotensin II receptor offers a great potential for therapeutic strategies related to the treatment of cardiovascular diseases, the study of selective and potent antagonists for urotensin II receptor is more fascinating. This study was designed to determine the potential therapeutic effects of a newly developed novel urotensin II receptor antagonist, N-(1-(3-bromo-4-(piperidin-4-yloxy)benzyl)piperidin-4-yl)benzo[b]thiophene-3-carboxamide (KR-36996), in experimental models of heart failure. KR-36996 displayed a high binding affinity (Ki=4.44±0.67nM) and selectivity for urotensin II receptor. In cell-based study, KR-36996 significantly inhibited urotensin II-induced stress fiber formation and cellular hypertrophy in H9c2 UT cells. In transverse aortic constriction-induced cardiac hypertrophy model in mice, the daily oral administration of KR-36996 (30mg/kg) for 14 days significantly decreased left ventricular weight by 40% (Pheart failure model in rats, repeated echocardiography and hemodynamic measurements demonstrated remarkable improvement of the cardiac performance by KR-36996 treatment (25 and 50mg/kg/day, p.o.) for 12 weeks. Moreover, KR-36996 decreased interstitial fibrosis and cardiomyocyte hypertrophy in the infarct border zone. These results suggest that potent and selective urotensin II receptor antagonist could efficiently attenuate both cardiac hypertrophy and dysfunction in experimental heart failure. KR-36996 may be useful as an effective urotensin II receptor antagonist for pharmaceutical or clinical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Cultivable bacteria populations associated with leaves of banana and plantain plants and their antagonistic activity against Mycosphaerella fijiensis.

    Science.gov (United States)

    Ceballos, Isabel; Mosquera, Sandra; Angulo, Mónica; Mira, John J; Argel, Luz Edith; Uribe-Velez, Daniel; Romero-Tabarez, Magally; Orduz-Peralta, Sergio; Villegas, Valeska

    2012-10-01

    Mycosphaerella fijiensis is the etiological agent of Black Sigatoka, a fungal disease that affects production of banana and plantain crops in tropical regions. The sizes of cultivable epiphytic and endophytic bacterial populations, aerobic endospore forming bacteria (AEFB), and antagonist bacteria against M. fijiensis isolated from three Musa spp. cultivars from Urabá (Colombia) were studied, in order to find a suitable screening strategy to isolate antagonistic bacteria. Most of the variability found in the epiphytic and endophytic bacterial community sizes among fruit trees was explained by the cultivar differences. We found population sizes ranging from 1.25 × 10(3) to 9.64 × 10(5) CFU/g of fresh leaf and found that 44 % of total cultivable bacteria belong to the AEFB group. We isolated 648 AEFB from three different cultivars and assessed their antagonistic activity against M. fijiensis using the cell-free supernatant obtained from bacterial liquid cultures in three different in vitro assays. Five percent of those bacteria showed higher percent inhibition than the positive control Bacillus subtilis UA321 has (percent inhibition = 84 ± 5) in the screening phase. Therefore, they were selected as antagonistic bacteria against the pathogen. The strains with the highest percentage of antagonism were found in older leaves for the three cultivars, given support to recommend this group of leaves for future samplings. Some of these isolated bacteria affected the mycelium and ascospores morphology of the fungus. They also presented in vitro characteristics related to a successful colonization of the phylloplane such as indolic compounds, surfactant production, and biofilm formation, which makes them possible, potential candidates as biological control agents.

  8. A protease-activated receptor-1 antagonist protects against podocyte injury in a mouse model of nephropathy

    Directory of Open Access Journals (Sweden)

    Yu Guan

    2017-10-01

    Full Text Available The kidney expresses protease-activated receptor-1 (PAR-1. PAR-1 is known as a thrombin receptor, but its role in kidney injury is not well understood. In this study, we examined the contribution of PAR-1 to kidney glomerular injury and the effects of its inhibition on development of nephropathy. Mice were divided into 3 groups: control, doxorubicin + vehicle (15 mg/kg doxorubicin and saline and doxorubicin + Q94 (doxorubicin at 15 mg/kg and the PAR-1 antagonist Q94 at 5 mg/kg/d groups. Where indicated, doxorubicin was administered intravenously and PAR-1 antagonist or saline vehicle by subcutaneous osmotic mini-pump. PAR-1 expression was increased in glomeruli of mice treated with doxorubicin. Q94 treatment significantly suppressed the increased albuminuria in these nephropathic mice. Pathological analysis showed that Q94 treatment significantly attenuated periodic acid–Schiff and desmin staining, indicators of podocyte injury, and also decreased glomerular levels of podocin and nephrin. Furthermore, thrombin increased intracellular calcium levels in podocytes. This increase was suppressed by Q94 and Rox4560, a transient receptor potential cation channel (TRPC3/6 antagonist. In addition, both Q94 and Rox4560 suppressed the doxorubicin-induced increase in activities of caspase-9 and caspase-3 in podocytes. These data suggested that PAR-1 contributes to development of podocyte and glomerular injury and that PAR-1 antagonists have therapeutic potential. Keywords: Protease-activated receptor-1, Podocyte, Transient receptor potential cation channel, Kidney injury

  9. Ultra-low dose cannabinoid antagonist AM251 enhances cannabinoid anticonvulsant effects in the pentylenetetrazole-induced seizure in mice.

    Science.gov (United States)

    Gholizadeh, Shervin; Shafaroodi, Hamed; Ghasemi, Mehdi; Bahremand, Arash; Sharifzadeh, Mohammad; Dehpour, Ahmad Reza

    2007-11-01

    Several lines of evidence suggest that cannabinoid compounds are anticonvulsant since they have inhibitory effects at micromolar doses, which are mediated by activated receptors coupling to Gi/o proteins. Surprisingly, both the analgesic and anticonvulsant effects of opioids are enhanced by ultra-low doses (nanomolar to picomolar) of the opioid antagonist naltrexone and as opioid and cannabinoid systems interact, it has been shown that ultra-low dose naltrexone also enhances cannabinoid-induced antinociception. However, regarding the seizure modulating properties of both classes of receptors this study investigated whether ultra-low dose cannabinoid antagonist AM251 influences cannabinoid anticonvulsant effects. The clonic seizure threshold (CST) was tested in separate groups of male NMRI mice following injection of vehicle, the cannabinoid selective agonist arachidonyl-2-chloroethylamide (ACEA) and ultra-low doses of the cannabinoid CB1 antagonist AM251 and a combination of ACEA and AM251 doses in a model of clonic seizure induced by pentylenetetrazole (PTZ). Systemic administration of ultra-low doses of AM251 (10 fg/kg-100 ng/kg) significantly potentiated the anticonvulsant effect of ACEA at 0.5 and 1 mg/kg. Moreover, inhibition of cannabinoid induced excitatory signaling by AM251 (100 pg/kg) unmasked a strong anticonvulsant effect for very low doses of ACEA (100 ng/kg-100 microg/kg), suggesting that a presumed inhibitory component of cannabinoid receptor signaling can exert strong seizure-protective effects even at very low levels of cannabinoid receptor activation. A similar potentiation by AM251 (100 pg/kg and 1 ng/kg) of anticonvulsant effects of non-effective dose of ACEA (0.5 and 1 mg/kg) was also observed in the generalized tonic-clonic model of seizure. The present data suggest that ultra-low doses of cannabinoid receptor antagonists may provide a potent strategy to modulate seizure susceptibility, especially in conjunction with very low doses of

  10. Tonic inhibition by orphanin FQ/nociceptin of noradrenaline neurotransmission in the amygdala

    NARCIS (Netherlands)

    Kawahara, Y; Hesselink, M.B.; van Scharrenburg, G; Westerink, B.H.C.

    2004-01-01

    The present microdialysis study investigated whether nociceptin/orphanin FQ exerts a tonic inhibition of the release of noradrenaline in the basolateral nucleus of the amygdala in awake rats. The non-peptide competitive nociceptin/orphanin FQ (N/OFQ) peptide receptor antagonist J-113397 (20 mg/kg

  11. Central inhibition of initiation of swallowing by systemic administration of diazepam and baclofen in anaesthetized rats.

    Science.gov (United States)

    Tsujimura, Takanori; Sakai, Shogo; Suzuki, Taku; Ujihara, Izumi; Tsuji, Kojun; Magara, Jin; Canning, Brendan J; Inoue, Makoto

    2017-05-01

    Dysphagia is caused not only by neurological and/or structural damage but also by medication. We hypothesized memantine, dextromethorphan, diazepam, and baclofen, all commonly used drugs with central sites of action, may regulate swallowing function. Swallows were evoked by upper airway (UA)/pharyngeal distension, punctate mechanical stimulation using a von Frey filament, capsaicin or distilled water (DW) applied topically to the vocal folds, and electrical stimulation of a superior laryngeal nerve (SLN) in anesthetized rats and were documented by recording electromyographic activation of the suprahyoid and thyrohyoid muscles and by visualizing laryngeal elevation. The effects of intraperitoneal or topical administration of each drug on swallowing function were studied. Systemic administration of diazepam and baclofen, but not memantine or dextromethorphan, inhibited swallowing evoked by mechanical, chemical, and electrical stimulation. Both benzodiazepines and GABA A receptor antagonists diminished the inhibitory effects of diazepam, whereas a GABA B receptor antagonist diminished the effects of baclofen. Topically applied diazepam or baclofen had no effect on swallowing. These data indicate that diazepam and baclofen act centrally to inhibit swallowing in anesthetized rats. NEW & NOTEWORTHY Systemic administration of diazepam and baclofen, but not memantine or dextromethorphan, inhibited swallowing evoked by mechanical, chemical, and electrical stimulation. Both benzodiazepines and GABA A receptor antagonists diminished the inhibitory effects of diazepam, whereas a GABA B receptor antagonist diminished the effects of baclofen. Topical applied diazepam or baclofen was without effect on swallowing. Diazepam and baclofen act centrally to inhibit swallowing in anesthetized rats. Copyright © 2017 the American Physiological Society.

  12. Screening for actinomyces isolated from soil with the ability to inhibit ...

    African Journals Online (AJOL)

    Screening for actinomyces isolated from soil with the ability to inhibit Xanthomonas oryzae pv. oryzae causing rice bacterial blight disease in Vietnam. ... We replaced soybean meal with tofu waste in antibiotic producing medium to improve antagonistic activity of VN10-A-44 against the Xoo pathogen and to make use of tofu ...

  13. The combination of glutamate receptor antagonist MK-801 with tamoxifen and its active metabolites potentiates their antiproliferative activity in mouse melanoma K1735-M2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Mariana P.C. [Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354 Coimbra (Portugal); Laboratory of Biochemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra (Portugal); Nunes-Correia, Isabel [Center for Neuroscience and Cell Biology, Flow Cytometry Unit, University of Coimbra, 3000-354 Coimbra (Portugal); Santos, Armanda E., E-mail: aesantos@ci.uc.pt [Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354 Coimbra (Portugal); Laboratory of Biochemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra (Portugal); Custódio, José B.A. [Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354 Coimbra (Portugal); Laboratory of Biochemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra (Portugal)

    2014-02-15

    Recent reports suggest that N-methyl-D-aspartate receptor (NMDAR) blockade by MK-801 decreases tumor growth. Thus, we investigated whether other ionotropic glutamate receptor (iGluR) antagonists were also able to modulate the proliferation of melanoma cells. On the other hand, the antiestrogen tamoxifen (TAM) decreases the proliferation of melanoma cells, and is included in combined therapies for melanoma. As the efficacy of TAM is limited by its metabolism, we investigated the effects of the NMDAR antagonist MK-801 in combination with TAM and its active metabolites, 4-hydroxytamoxifen (OHTAM) and endoxifen (EDX). The NMDAR blockers MK-801 and memantine decreased mouse melanoma K1735-M2 cell proliferation. In contrast, the NMDAR competitive antagonist APV and the AMPA and kainate receptor antagonist NBQX did not affect cell proliferation, suggesting that among the iGluR antagonists only the NMDAR channel blockers inhibit melanoma cell proliferation. The combination of antiestrogens with MK-801 potentiated their individual effects on cell biomass due to diminished cell proliferation, since it decreased the cell number and DNA synthesis without increasing cell death. Importantly, TAM metabolites combined with MK-801 promoted cell cycle arrest in G1. Therefore, the data obtained suggest that the activity of MK-801 and antiestrogens in K1735-M2 cells is greatly enhanced when used in combination. - Highlights: • MK-801 and memantine decrease melanoma cell proliferation. • The combination of MK-801 with antiestrogens inhibits melanoma cell proliferation. • These combinations greatly enhance the effects of the compounds individually. • MK-801 combined with tamoxifen active metabolites induces cell cycle arrest in G1. • The combination of MK-801 and antiestrogens is an innovative strategy for melanoma.

  14. Selective Serotonin Reuptake Inhibitor and Substance P Antagonist Enhancement of Natural Killer Cell Innate Immunity in Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome

    Science.gov (United States)

    Evans, Dwight L.; Lynch, Kevin G.; Benton, Tami; Dubé, Benoit; Gettes, David R.; Tustin, Nancy B.; Lai, Jian Ping; Metzger, David; Douglas, Steven D.

    2010-01-01

    Background Natural killer (NK) cells play an important role in innate immunity and are involved in the host defense against human immunodeficiency virus (HIV) infection. This study examines the potential role of three underlying regulatory systems that have been under investigation in central nervous system research as well as immune and viral research: serotonin, neurokinin, and glucocorticoid systems. Methods Fifty-one HIV-seropositive subjects were recruited to achieve a representative sample of depressed and nondepressed women. The effects of a selective serotonin reuptake inhibitor (SSRI), a substance P (SP) antagonist, and a glucocorticoid antagonist on NK cell function were assessed in a series of ex vivo experiments of peripheral blood mononuclear cells from each HIV-seropositive subject. Results Natural killer cell cytolytic activity was significantly increased by the SSRI citalopram and by the substance P antagonist CP-96345 relative to control conditions; the glucocorticoid antagonist, RU486, showed no effect on NK cytotoxicity. Our results suggest that the effects of the three agents did not differ as a function of depression. Conclusions Our findings provide evidence that NK cell function in HIV infection may be enhanced by serotonin reuptake inhibition and by substance P antagonism. It remains to be determined if HIV-related impairment in not only NK cytolytic activity but also NK noncytolytic activity can be improved by an SSRI or an SP antagonist. Clinical studies are warranted to address these questions and the potential roles of serotonergic agents and SP antagonists in improving NK cell immunity, delaying HIV disease progression, and extending survival with HIV infection. PMID:17945197

  15. INHIBITION IN SPEAKING PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Isna Humaera

    2015-09-01

    Full Text Available The most common problem encountered by the learner in the language acquisition process is learner inhibition. Inhibition refers to a temperamental tendency to display wariness, fearfulness, or restrain in response to unfamiliar people, objects, and situations. There are some factors that cause inhibition, such as lack of motivation, shyness, self-confidence, self-esteem, and language ego. There are also levels of inhibition, it refers to kinds of inhibition and caused of inhibition itself. Teacher can support their students to reduce their inhibition effect by many ways, one of them by creating good classroom management including establishing good rapport between teacher and learners.

  16. Protective Effects of Glutamine Antagonist 6-Diazo-5-Oxo-l-Norleucine in Mice with Alphavirus Encephalomyelitis

    Science.gov (United States)

    Manivannan, Sivabalan; Baxter, Victoria K.; Schultz, Kimberly L. W.; Slusher, Barbara S.

    2016-01-01

    ABSTRACT Inflammation is a necessary part of the response to infection but can also cause neuronal injury in both infectious and autoimmune diseases of the central nervous system (CNS). A neurovirulent strain of Sindbis virus (NSV) causes fatal paralysis in adult C57BL/6 mice during clearance of infectious virus from the CNS, and the virus-specific immune response is implicated as a mediator of neuronal damage. Previous studies have shown that survival is improved in T-cell-deficient mice and in mice with pharmacological inhibition of the inflammatory response and glutamate excitotoxicity. Because glutamine metabolism is important in the CNS for the generation of glutamate and in the immune system for lymphocyte proliferation, we tested the effect of the glutamine antagonist DON (6-diazo-5-oxo-l-norleucine) on the outcome of NSV infection in mice. DON treatment for 7 days from the time of infection delayed the onset of paralysis and death. Protection was associated with reduced lymphocyte proliferation in the draining cervical lymph nodes, decreased leukocyte infiltration into the CNS, lower levels of inflammatory cytokines, and delayed viral clearance. In vitro studies showed that DON inhibited stimulus-induced proliferation of lymphocytes. When in vivo treatment with DON was stopped, paralytic disease developed along with the inflammatory response and viral clearance. These studies show that fatal NSV-induced encephalomyelitis is immune mediated and that antagonists of glutamine metabolism can modulate the immune response and protect against virus-induced neuroinflammatory disease. IMPORTANCE Encephalomyelitis due to infection with mosquito-borne alphaviruses is an important cause of death and of long-term neurological disability in those who survive infection. This study demonstrates the role of the virus-induced immune response in the generation of neurological disease. DON, a glutamine antagonist, inhibited the proliferation of lymphocytes in response to

  17. Protective Effects of Glutamine Antagonist 6-Diazo-5-Oxo-l-Norleucine in Mice with Alphavirus Encephalomyelitis.

    Science.gov (United States)

    Manivannan, Sivabalan; Baxter, Victoria K; Schultz, Kimberly L W; Slusher, Barbara S; Griffin, Diane E

    2016-10-15

    Inflammation is a necessary part of the response to infection but can also cause neuronal injury in both infectious and autoimmune diseases of the central nervous system (CNS). A neurovirulent strain of Sindbis virus (NSV) causes fatal paralysis in adult C57BL/6 mice during clearance of infectious virus from the CNS, and the virus-specific immune response is implicated as a mediator of neuronal damage. Previous studies have shown that survival is improved in T-cell-deficient mice and in mice with pharmacological inhibition of the inflammatory response and glutamate excitotoxicity. Because glutamine metabolism is important in the CNS for the generation of glutamate and in the immune system for lymphocyte proliferation, we tested the effect of the glutamine antagonist DON (6-diazo-5-oxo-l-norleucine) on the outcome of NSV infection in mice. DON treatment for 7 days from the time of infection delayed the onset of paralysis and death. Protection was associated with reduced lymphocyte proliferation in the draining cervical lymph nodes, decreased leukocyte infiltration into the CNS, lower levels of inflammatory cytokines, and delayed viral clearance. In vitro studies showed that DON inhibited stimulus-induced proliferation of lymphocytes. When in vivo treatment with DON was stopped, paralytic disease developed along with the inflammatory response and viral clearance. These studies show that fatal NSV-induced encephalomyelitis is immune mediated and that antagonists of glutamine metabolism can modulate the immune response and protect against virus-induced neuroinflammatory disease. Encephalomyelitis due to infection with mosquito-borne alphaviruses is an important cause of death and of long-term neurological disability in those who survive infection. This study demonstrates the role of the virus-induced immune response in the generation of neurological disease. DON, a glutamine antagonist, inhibited the proliferation of lymphocytes in response to infection, prevented the

  18. Identification of Peptidic Antagonists of Vascular Endothelial Growth Factor Receptor 1 by Scanning the Binding Epitopes of Its Ligands.

    Science.gov (United States)

    Wang, Lei; Zhou, Lingyu; Reille-Seroussi, Marie; Gagey-Eilstein, Nathalie; Broussy, Sylvain; Zhang, Tianyu; Ji, Lili; Vidal, Michel; Liu, Wang-Qing

    2017-08-10

    Cancer angiogenesis is mainly initiated by vascular endothelial growth factors (VEGFs). On the basis of the reported crystal structures of three natural ligands (VEGF-A, -B, and PlGF) with the major receptors VEGFR-1 and VEGFR-2, we scanned receptor-binding epitopes of these ligands by designing linear and cyclic peptides with the aim to disrupt the VEGF-A/VEGFR-1 interaction, which is implicated in cancer development. The ability of peptides to inhibit this interaction was evaluated by an ELISA-based assay. Several peptides, especially those mimicking loop 1 (L1) of these ligands that binds primarily to domain D3 of VEGFRs, have demonstrated higher inhibition for VEGF-A/VEGFR-1 binding. They have also shown inhibitory effects on VEGF-induced tube formation in HUVECs (human umbilical vein endothelial cells). These results validate the domain D3 of VEGFRs as an efficient target for the design of VEGFR antagonists.

  19. Metabotropic glutamate receptor antagonists but not NMDA antagonists affect conditioned taste aversion acquisition in the parabrachial nucleus of rats

    Czech Academy of Sciences Publication Activity Database

    Valeš, Karel; Zach, P.; Bielavská, Edita

    2006-01-01

    Roč. 169, č. 1 (2006), s. 50-57 ISSN 0014-4819 R&D Projects: GA MŠk(CZ) 1M0517 Institutional research plan: CEZ:AV0Z5011922 Keywords : learning * microdialysis * glutamate antagonists Subject RIV: FH - Neurology Impact factor: 1.959, year: 2006

  20. Identification of an endogenous alpha-adrenergic receptor antagonist: studies on its possible role in endocrine and cardiovascular function

    International Nuclear Information System (INIS)

    Dunbar, J.C.; Wider, M.; House, F.; Campbell, R.

    1986-01-01

    The concept of α and β adrenergic receptors that are regulated by epinephrine or norepinephrine (NE) is well established. The reported receptor antagonists have been synthetic. A peptide extracted from the duodenal mucosa with α-2 antagonist properties has been identified. It specifically inhibits 3 H-yohimbine binding (α-2) but not 3 H dihydroalprenolol (β) binding in whole brain membranes. Partially purified preparations of the alpha receptor binding inhibitor (ABI) were tested for endocrine pancreatic and cardiovascular effects. When isolated islets were incubated in the presence of ABI with and without NE, ABI along did not alter insulin secretion but completely reversed the NE suppression of glucose stimulated insulin release. Glucagon secretion by these same islets was enhanced by ABI and augmented the stimulatory effect of NE. Intravenous (I.V.) infusion of ABI increased serum insulin in the presence of NE and decreased the serum glucose response to a glucose load. Infusion of ABI into the 4th ventricle, or I.V. resulted in a decrease (50-60%) in systolic and diastolic blood pressure as well as a decrease (10-20%) in heart rate. From these studies the authors conclude that a duodenal peptide with the capacity to inhibit α-2 agonist binding may play a role in endocrine and cardiovascular functions

  1. Biocontrol of Fusarium graminearum Growth and Deoxynivalenol Production in Wheat Kernels with Bacterial Antagonists

    Directory of Open Access Journals (Sweden)

    Cuijuan Shi

    2014-01-01

    Full Text Available Fusarium graminearum is the main causal pathogen affecting small-grain cereals, and it produces deoxynivalenol, a kind of mycotoxin, which displays a wide range of toxic effects in human and animals. Bacterial strains isolated from peanut shells were investigated for their activities against F. graminearum by dual-culture plate and tip-culture assays. Among them, twenty strains exhibited potent inhibition to the growth of F. graminearum, and the inhibition rates ranged from 41.41% to 54.55% in dual-culture plate assay and 92.70% to 100% in tip-culture assay. Furthermore, eighteen strains reduced the production of deoxynivalenol by 16.69% to 90.30% in the wheat kernels assay. Finally, the strains with the strongest inhibitory activity were identified by morphological, physiological, biochemical methods and also 16S rDNA and gyrA gene analysis as Bacillus amyloliquefaciens. The current study highlights the potential application of antagonistic microorganisms and their metabolites in the prevention of fungal growth and mycotoxin production in wheat kernels. As a biological strategy, it might avoid safety problems and nutrition loss which always caused by physical and chemical strategies.

  2. Structure-activity studies on 1,4-dihydropyridine calcium channel antagonists and activators

    Energy Technology Data Exchange (ETDEWEB)

    Joslyn, A.F.

    1986-01-01

    Four series of 1,4-dihydropyridine Ca{sup 2+} channel antagonists related to mifedipine were synthesized by a modified Hantzsch procedure to determine the effects of ester (C{sub 3} = CO{sub 2}Me, C{sub 5} = CO{sub 2}R) and phenyl (C{sub 4}) substituents on pharmacological and radioligand binding ((H)nitrendipine) activities in guinea pig ileal longitudinal smooth muscle. Two series of Ca{sup 2+} channel activator 1,4-dihydropyridines, BAY K 8644 (C{sub 3} = NO{sub 2}, C{sub 5} = CO{sub 2}Me) and CGP 28392 (C{sub 2,3} = lactone, C{sub 5} = CO{sub 2}Me) were biochemically evaluated by inhibition of ({sup 3}H)nitrendipine binding in guinea pig ileal longitudinal smooth muscle membranes to establish fundamental structure-activity requirements. A homologous series of bis-1,4-dihydropyridines were synthesized, pharmacologically and biochemically evaluated in an attempt to explore the distribution of the 1,4-dihydropyridine receptor in guinea pig ileal longitudinal smooth muscle membranes. Several potential affinity labels including ester substituted 3- and 4-fluorosulfonyl benzoyl and isothiocyanate derivatives were synthesized and evaluated by inhibition of ({sup 3}H)nitrendipine binding.

  3. Pharmacological profiling an abundantly expressed schistosome serotonergic GPCR identifies nuciferine as a potent antagonist

    Directory of Open Access Journals (Sweden)

    John D. Chan

    2016-12-01

    Full Text Available 5-hydroxytryptamine (5-HT is a key regulator of muscle contraction in parasitic flatworms. In Schistosoma mansoni, the myoexcitatory action of 5-HT is effected through activation of a serotonergic GPCR (Sm.5HTRL, prioritizing pharmacological characterization of this target for anthelmintic drug discovery. Here, we have examined the effects of several aporphine alkaloids on the signaling activity of a heterologously expressed Sm.5HTRL construct using a cAMP biosensor assay. Four structurally related natural products – nuciferine, D-glaucine, boldine and bulbocapnine – were demonstrated to block Sm.5HTRL evoked cAMP generation with the potency of GPCR blockade correlating well with the ability of each drug to inhibit contractility of schistosomule larvae. Nuciferine was also effective at inhibiting both basal and 5-HT evoked motility of adult schistosomes. These data advance our understanding of structure-affinity relationships at Sm.5HTRL, and demonstrate the effectiveness of Sm.5HTRL antagonists as hypomotility-evoking drugs across different parasite life cycle stages.

  4. Kinetic profiling an abundantly expressed planarian serotonergic GPCR identifies bromocriptine as a perdurant antagonist

    Directory of Open Access Journals (Sweden)

    John D. Chan

    2016-12-01

    Full Text Available The diversity and uniqueness of flatworm G protein coupled receptors (GPCRs provides impetus for identifying ligands useful as tools for studying flatworm biology, or as therapeutics for treating diseases caused by parasitic flatworm infections. To catalyse this discovery process, technologies optimized for mammalian GPCR high throughput screening need be transposed for screening flatworm GPCRs. Here, we demonstrate the utility of a genetically encoded cAMP biosensor for resolving the properties of an abundantly expressed planarian serotonergic GPCR (S7.1R. Application of this methodology resolved the real time kinetics of GPCR modulation by ligands and demonstrated a marked difference in the kinetic action of antagonists at S7.1R. Notably, bromocriptine caused a protracted inhibition of S7.1R activity in vitro and a protracted paralysis of planarian movement, replicating the effect of S7.1R in vivo RNAi. The lengthy inhibition of function caused by bromocriptine at this abundantly expressed GPCR provides a useful tool to ablate serotonergic signaling in vivo, and is a noteworthy feature for exploitation as an anthelmintic vulnerability.

  5. Antagonistic control of social versus repetitive self-grooming behaviors by separable amygdala neuronal subsets.

    Science.gov (United States)

    Hong, Weizhe; Kim, Dong-Wook; Anderson, David J

    2014-09-11

    Animals display a range of innate social behaviors that play essential roles in survival and reproduction. While the medial amygdala (MeA) has been implicated in prototypic social behaviors such as aggression, the circuit-level mechanisms controlling such behaviors are not well understood. Using cell-type-specific functional manipulations, we find that distinct neuronal populations in the MeA control different social and asocial behaviors. A GABAergic subpopulation promotes aggression and two other social behaviors, while neighboring glutamatergic neurons promote repetitive self-grooming, an asocial behavior. Moreover, this glutamatergic subpopulation inhibits social interactions independently of its effect to promote self-grooming, while the GABAergic subpopulation inhibits self-grooming, even in a nonsocial context. These data suggest that social versus repetitive asocial behaviors are controlled in an antagonistic manner by inhibitory versus excitatory amygdala subpopulations, respectively. These findings provide a framework for understanding circuit-level mechanisms underlying opponency between innate behaviors, with implications for their perturbation in psychiatric disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. DIHYDROPYRIDINE CALCIUM ANTAGONISTS: DATA OF EVIDENCE BASED MEDICINE AND RECOM-MENDATIONS ON PRACTICAL USE

    Directory of Open Access Journals (Sweden)

    S. Y. Martsevich

    2007-01-01

    Full Text Available The classification of calcium antagonists is presented. There were considered the results of large randomized trials, which were devoted to study of influence of dihydropyridine calcium antagonists on the risk of cardiovascular complications. The place of dihydropyridine calcium antagonists in modern recommendations on treatment of arterial hypertension and ischemic heart disease is defined. The clinical importance of differences between various presentations of dihy-dropyridine calcium antagonists is stressed.

  7. DIHYDROPYRIDINE CALCIUM ANTAGONISTS: DATA OF EVIDENCE BASED MEDICINE AND RECOM-MENDATIONS ON PRACTICAL USE

    Directory of Open Access Journals (Sweden)

    S. Y. Martsevich

    2015-12-01

    Full Text Available The classification of calcium antagonists is presented. There were considered the results of large randomized trials, which were devoted to study of influence of dihydropyridine calcium antagonists on the risk of cardiovascular complications. The place of dihydropyridine calcium antagonists in modern recommendations on treatment of arterial hypertension and ischemic heart disease is defined. The clinical importance of differences between various presentations of dihy-dropyridine calcium antagonists is stressed.

  8. 5-HT1A receptor antagonists reduce food intake and body weight by reducing total meals with no conditioned taste aversion.

    Science.gov (United States)

    Dill, M Joelle; Shaw, Janice; Cramer, Jeff; Sindelar, Dana K

    2013-11-01

    Serotonin acts through receptors controlling several physiological functions, including energy homeostasis regulation and food intake. Recent experiments demonstrated that 5-HT1A receptor antagonists reduce food intake. We sought to examine the microstructure of feeding with 5-HT1A receptor antagonists using a food intake monitoring system. We also examined the relationship between food intake, inhibition of binding and pharmacokinetic (PK) profiles of the antagonists. Ex vivo binding revealed that, at doses used in this study to reduce food intake, inhibition of binding of a 5-HT1A agonist by ~40% was reached in diet-induced obese (DIO) mice with a trend for higher binding in DIO vs. lean animals. Additionally, PK analysis detected levels from 2 to 24h post-compound administration. Male DIO mice were administered 5-HT1A receptor antagonists LY439934 (10 or 30 mg/kg, p.o.), WAY100635 (3 or 10mg/kg, s.c.), SRA-333 (10 or 30 mg/kg, p.o.), or NAD-299 (3 or 10mg/kg, s.c.) for 3 days and meal patterns were measured. Analyses revealed that for each antagonist, 24-h food intake was reduced through a specific decrease in the total number of meals. Compared to controls, meal number was decreased 14-35% in the high dose. Average meal size was not changed by any of the compounds. The reduction in food intake reduced body weight 1-4% compared to Vehicle controls. Subsequently, a conditioned taste aversion (CTA) assay was used to determine whether the feeding decrease might be an indicator of aversion, nausea, or visceral illness caused by the antagonists. Using a two bottle preference test, it was found that none of the compounds produced a CTA. The decrease in food intake does not appear to be a response to nausea or malaise. These results indicate that 5-HT1A receptor antagonist suppresses feeding, specifically by decreasing the number of meals, and induce weight loss without an aversive side effect. © 2013 Elsevier Inc. All rights reserved.

  9. How microelectrode array-based chick forebrain neuron biosensors respond to glutamate NMDA receptor antagonist AP5 and GABAA receptor antagonist musimol

    Directory of Open Access Journals (Sweden)

    Serena Y. Kuang

    2016-09-01

    Full Text Available We have established a long-term, stable primary chick forebrain neuron (FBN culture on a microelectrode array platform as a biosensor system for neurotoxicant screening and for neuroelectrophysiological studies for multiple purposes. This paper reports some of our results, which characterize the biosensor pharmacologically. Dose-response experiments were conducted using NMDA receptor antagonist AP5 and GABAA receptor agonist musimol (MUS. The chick FBN biosensor (C-FBN-biosensor responds to the two agents in a pattern similar to that of rodent counterparts; the estimated EC50s (the effective concentration that causes 50% inhibition of the maximal effect are 2.3 μM and 0.25 μM, respectively. Intercultural and intracultural reproducibility and long-term reusability of the C-FBN-biosensor are addressed and discussed. A phenomenon of sensitization of the biosensor that accompanies intracultural reproducibility in paired dose-response experiments for the same agent (AP5 or MUS is reported. The potential application of the C-FBN-biosensor as an alternative to rodent biosensors in shared sensing domains (NMDA receptor and GABAA receptor is suggested. Keywords: Biosensor, Microelectrode array, Neurotoxicity, Chick forebrain neuron, AP5, Musimol

  10. Bartonella quintana lipopolysaccharide (LPS): structure and characteristics of a potent TLR4 antagonist for in-vitro and in-vivo applications

    Science.gov (United States)

    Malgorzata-Miller, Gosia; Heinbockel, Lena; Brandenburg, Klaus; van der Meer, Jos W. M.; Netea, Mihai G.; Joosten, Leo A. B.

    2016-01-01

    The pattern recognition receptor TLR4 is well known as a crucial receptor during infection and inflammation. Several TLR4 antagonists have been reported to inhibit the function of TLR4. Both natural occurring antagonists, lipopolysaccharide (LPS) from Gram-negative bacteria as well as synthetic compounds based on the lipid A structure of LPS have been described as potent inhibitors of TLR4. Here, we have examined the characteristics of a natural TLR4 antagonist, isolated from Bartonella quintana bacterium by elucidating its chemical primary structure. We have found that this TLR4 antagonist is actually a lipooligosaccharide (LOS) instead of a LPS, and that it acts very effective, with a high inhibitory activity against triggering by the LPS-TLR4 system in the presence of a potent TLR4 agonist (E. coli LPS). Furthermore, we demonstrate that B. quintana LPS is not inactivated by polymyxin B, a classical cyclic cationic polypeptide antibiotic that bind the lipid A part of LPS, such as E. coli LPS. Using a murine LPS/D-galactosamine endotoxaemia model we showed that treatment with B. quintana LPS could improve the survival rate significantly. Since endogenous TLR4 ligands have been associated with several inflammatory- and immune-diseases, B. quintana LPS might be a novel therapeutic strategy for TLR4-driven pathologies. PMID:27670746

  11. Antagonistic activity of dairy lactobacilli against gram-foodborne pathogens - doi: 10.4025/actascitechnol.v36i1.18776

    Directory of Open Access Journals (Sweden)

    Marco Geria

    2014-01-01

    Full Text Available Thirty-five strains of lactic acid bacteria were isolated from artisanal raw milk cheese, presumptively identified and tested against one dairy Escherichia coli strain. Six lactobacilli, exhibiting antagonistic activity, were identified at the species level and their action was evaluated against four strains of Gram-foodborne pathogens (Escherichia coli O26, Escherichia coli O157:H7, Salmonella spp. 1023, and Salmonella Typhimurium and the control strain Escherichia coli ATCC 45922. The antagonistic activity was determined by spot method and the inhibition zones were measured by Autodesk AutoCAD 2007. Three strains, all Lactobacillus paracasei, were active against all the pathogens; the other strains, all Lactobacillus plantarum, showed antagonistic activity against some pathogens. This study highlights the intense and different antagonistic activity induced by lactobacilli against various foodborne pathogens thus demonstrating that using selected lactic acid bacteria strains as adjunct cultures could be an effective strategy to prevent the development of foodborne pathogens in artisanal raw milk cheeses, and thus improving their safety.

  12. Effects of ONO-6950, a novel dual cysteinyl leukotriene 1 and 2 receptors antagonist, in a guinea pig model of asthma.

    Science.gov (United States)

    Yonetomi, Yasuo; Sekioka, Tomohiko; Kadode, Michiaki; Kitamine, Tetsuya; Kamiya, Akihiro; inoue, Atsuto; Nakao, Takafumi; Nomura, Hiroaki; Murata, Masayuki; Nakao, Shintaro; Nambu, Fumio; Fujita, Manabu; Nakade, Shinji; Kawabata, Kazuhito

    2015-10-15

    We assessed in this study the anti-asthmatic effects of ONO-6950, a novel cysteinyl leukotriene 1 (CysLT1) and 2 (CysLT2) receptors dual antagonist, in normal and S-hexyl glutathione (S-hexyl GSH)-treated guinea pigs, and compared these effects to those of montelukast, a CysLT1 selective receptor antagonist. Treatment with S-hexyl GSH reduced animals LTC4 metabolism, allowing practical evaluation of CysLT2 receptor-mediated airway response. ONO-6950 antagonized intracellular calcium signaling via human and guinea pig CysLT1 and CysLT2 receptors with IC50 values of 1.7 and 25 nM, respectively (human receptors) and 6.3 and 8.2 nM, respectively (guinea pig receptors). In normal guinea pigs, both ONO-6950 (1 or 0.3 mg/kg, p.o.) and the CysLT1 receptor antagonist montelukast (0.3 or 0.1 mg/kg, p.o.) fully attenuated CysLT1-mediated bronchoconstriction and airway vascular hyperpermeability induced by LTD4. On the other hand, in S-hexyl GSH-treated guinea pigs ONO-6950 at 3 mg/kg, p.o. or more almost completely inhibited bronchoconstriction and airway vascular hyperpermeability elicited by LTC4, while montelukast showed only partial or negligible inhibition of these airway responses. In ovalbumin sensitized guinea pigs, treatment with S-hexyl GSH on top of pyrilamine and indomethacin rendered antigen-induced bronchoconstriction sensitive to both CysLT1 and CysLT2 receptor antagonists. ONO-6950 strongly inhibited this asthmatic response to the level attained by combination therapy with montelukast and BayCysLT2RA, a selective CysLT2 receptor antagonist. These results clearly demonstrate that ONO-6950 is an orally active dual CysLT1/LT2 receptor antagonist that may provide a novel therapeutic option for patients with asthma. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Opioid antagonists with minimal sedation for opioid withdrawal.

    Science.gov (United States)

    Gowing, Linda; Ali, Robert; White, Jason M

    2017-05-29

    Managed withdrawal is a necessary step prior to drug-free treatment or as the endpoint of long-term substitution treatment. To assess the effects of opioid antagonists plus minimal sedation for opioid withdrawal. Comparators were placebo as well as more established approaches to detoxification, such as tapered doses of methadone, adrenergic agonists, buprenorphine and symptomatic medications. We updated our searches of the following databases to December 2016: CENTRAL, MEDLINE, Embase, PsycINFO and Web of Science. We also searched two trials registers and checked the reference lists of included studies for further references to relevant studies. We included randomised and quasi-randomised controlled clinical trials along with prospective controlled cohort studies comparing opioid antagonists plus minimal sedation versus other approaches or different opioid antagonist regimens for withdrawal in opioid-dependent participants. We used standard methodological procedures expected by Cochrane. Ten studies (6 randomised controlled trials and 4 prospective cohort studies, involving 955 participants) met the inclusion criteria for the review. We considered 7 of the 10 studies to be at high risk of bias in at least one of the domains we assessed.Nine studies compared an opioid antagonist-adrenergic agonist combination versus a treatment regimen based primarily on an alpha 2 -adrenergic agonist (clonidine or lofexidine). Other comparisons (placebo, tapered doses of methadone, buprenorphine) made by included studies were too diverse for any meaningful analysis. This review therefore focuses on the nine studies comparing an opioid antagonist (naltrexone or naloxone) plus clonidine or lofexidine versus treatment primarily based on clonidine or lofexidine.Five studies took place in an inpatient setting, two studies were in outpatients with day care, two used day care only for the first day of opioid antagonist administration, and one study described the setting as outpatient

  14. Aerial Warfare: A Volatile Dialogue between the Plant Pathogen Verticillium longisporum and Its Antagonist Paenibacillus polymyxa

    Directory of Open Access Journals (Sweden)

    Daria Rybakova

    2017-07-01

    Full Text Available Verticillium wilt caused by Verticillium spp. results in severe yield losses in a broad range of crops. Verticillium outbreaks are challenging to control, and exacerbated by increases in soil temperatures and drought associated with global warming. Employing natural antagonists as biocontrol agents offers a promising approach to addressing this challenge. Paenibacillus polymyxa Sb3-1 was proven to reduce the growth of Verticillium longisporum during in vitro experiments and was shown to promote the growth of oilseed rape seedlings infested with V. longisporum. Our novel approach combined in vitro and in planta methods with the study of the mode of interaction between Sb3-1 and V. longisporum EVL43 via their volatile organic compounds (VOCs. Volatile and soluble substances, produced by both microorganisms as a reaction to one another's VOCs, were detected by using both gas and liquid chromatography-mass spectrometry. P. polymyxa Sb3-1 continually produced antimicrobial and plant growth promoting VOCs, such as 2-nonanone and 3-hydroxy-2-butanone. Several other antimicrobial volatile substances, such as isoamyl acetate and durenol, were downregulated. The general metabolic activity of Sb3-1, including protein and DNA biotransformations, was upregulated upon contact with EVL43 VOCs. V. longisporum increased its production of antimicrobial substances, such as 1-butanol, and downregulated its metabolic activities upon exposure to Sb3-1 VOCs. Additionally, several stress response substances such as arabitol and protein breakdown products (e.g., L-Isoleucyl-L-glutamic acid, were increased in the co-incubated samples. The results obtained depict an ongoing dialog between these microorganisms resulting in growth inhibition, the slowing down of metabolism, and the cell death of V. longisporum due to contact with the P. polymyxa Sb3-1 VOCs. Moreover, the results indicate that VOCs make a substantial contribution to the interaction between pathogens and

  15. Purification and sequencing of radish seed calmodulin antagonists phosphorylated by calcium-dependent protein kinase.

    Science.gov (United States)

    Polya, G M; Chandra, S; Condron, R

    1993-02-01

    A family of radish (Raphanus sativus) calmodulin antagonists (RCAs) was purified from seeds by extraction, centrifugation, batch-wise elution from carboxymethyl-cellulose, and high performance liquid chromatography (HPLC) on an SP5PW cation-exchange column. This RCA fraction was further resolved into three calmodulin antagonist polypeptides (RCA1, RCA2, and RCA3) by denaturation in the presence of guanidinium HCl and mercaptoethanol and subsequent reverse-phase HPLC on a C8 column eluted with an acetonitrile gradient in the presence of 0.1% trifluoroacetic acid. The RCA preparation, RCA1, RCA2, RCA3, and other radish seed proteins are phosphorylated by wheat embryo Ca(2+)-dependent protein kinase (CDPK). The RCA preparation contains other CDPK substrates in addition to RCA1, RCA2, and RCA3. The RCA preparation, RCA1, RCA2, and RCA3 inhibit chicken gizzard calmodulin-dependent myosin light chain kinase assayed with a myosin-light chain-based synthetic peptide substrate (fifty percent inhibitory concentrations of RCA2 and RCA3 are about 7 and 2 microM, respectively). N-terminal sequencing by sequential Edman degradation of RCA1, RCA2, and RCA3 revealed sequences having a high homology with the small subunit of the storage protein napin from Brassica napus and with related proteins. The deduced amino acid sequences of RCA1, RCA2, RCA3, and RCA3' (a subform of RCA3) have agreement with average molecular masses from electrospray mass spectrometry of 4537, 4543, 4532, and 4560 kD, respectively. The only sites for serine phosphorylation are near or at the C termini and hence adjacent to the sites of proteolytic precursor cleavage.

  16. New opioid receptor antagonist: Naltrexone-14-O-sulfate synthesis and pharmacology.

    Science.gov (United States)

    Zádor, Ferenc; Király, Kornél; Váradi, András; Balogh, Mihály; Fehér, Ágnes; Kocsis, Dóra; Erdei, Anna I; Lackó, Erzsébet; Zádori, Zoltán S; Hosztafi, Sándor; Noszál, Béla; Riba, Pál; Benyhe, Sándor; Fürst, Susanna; Al-Khrasani, Mahmoud

    2017-08-15

    Opioid antagonists, naloxone and naltrexone have long been used in clinical practice and research. In addition to their low selectivity, they easily pass through the blood-brain barrier. Quaternization of the amine group in these molecules, (e.g. methylnaltrexone) results in negligible CNS penetration. In addition, zwitterionic compounds have been reported to have limited CNS access. The current study, for the first time gives report on the synthesis and the in vitro [competition binding, G-protein activation, isolated mouse vas deferens (MVD) and mouse colon assay] pharmacology of the zwitterionic compound, naltrexone-14-O-sulfate. Naltrexone, naloxone, and its 14-O-sulfate analogue were used as reference compounds. In competition binding assays, naltrexone-14-O-sulfate showed lower affinity for µ, δ or κ opioid receptor than the parent molecule, naltrexone. However, the μ/κ opioid receptor selectivity ratio significantly improved, indicating better selectivity. Similar tendency was observed for naloxone-14-O-sulfate when compared to naloxone. Naltrexone-14-O-sulfate failed to activate [ 35 S]GTPγS-binding but inhibit the activation evoked by opioid agonists (DAMGO, Ile 5,6 deltorphin II and U69593), similarly to the reference compounds. Schild plot constructed in MVD revealed that naltrexone-14-O-sulfate acts as a competitive antagonist. In mouse colon, naltrexone-14-O-sulfate antagonized the inhibitory effect of morphine with lower affinity compared to naltrexone and higher affinity when compared to naloxone or naloxone-14-O-sulfate. In vivo (mouse tail-flick test), subcutaneously injected naltrexone-14-O-sulfate antagonized morphine's antinociception in a dose-dependent manner, indicating it's CNS penetration, which was unexpected from such zwitter ionic structure. Future studies are needed to evaluate it's pharmacokinetic profile. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. In vitro and in vivo pharmacological characterization of the novel NK₁ receptor selective antagonist Netupitant.

    Science.gov (United States)

    Rizzi, Anna; Campi, Barbara; Camarda, Valeria; Molinari, Stefano; Cantoreggi, Sergio; Regoli, Domenico; Pietra, Claudio; Calo', Girolamo

    2012-09-01

    The novel NK(1) receptor ligand Netupitant has been characterized in vitro and in vivo. In calcium mobilization studies CHO cells expressing the human NK receptors responded to a panel of agonists with the expected order of potency. In CHO NK(1) cells Netupitant concentration-dependently antagonized the stimulatory effects of substance P (SP) showing insurmountable antagonism (pK(B) 8.87). In cells expressing NK(2) or NK(3) receptors Netupitant was inactive. In the guinea pig ileum Netupitant concentration-dependently depressed the maximal response to SP (pK(B) 7.85) and, in functional washout experiments, displayed persistent (up to 5h) antagonist effects. In mice the intrathecal injection of SP elicited the typical scratching, biting and licking response that was dose-dependently inhibited by Netupitant given intraperitoneally in the 1-10mg/kg dose range. In gerbils, foot tapping behavior evoked by the intracerebroventricular injection of a NK(1) agonist was dose-dependently counteracted by Netupitant given intraperitoneally (ID(50) 1.5mg/kg) or orally (ID(50) 0.5mg/kg). In time course experiments in gerbils Netupitant displayed long lasting effects. In all the assays Aprepitant elicited similar effects as Netupitant. These results suggest that Netupitant behaves as a brain penetrant, orally active, potent and selective NK(1) antagonist. Thus this molecule can be useful for investigating the NK(1) receptor role in the control of central and peripheral functions. Netupitant has clinical potential in conditions such as chemotherapy induced nausea and vomiting, in which the blockade of NK(1) receptors has been demonstrated valuable for patients. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Definition of critical periods for Hedgehog pathway antagonist-induced holoprosencephaly, cleft lip, and cleft palate.

    Directory of Open Access Journals (Sweden)

    Galen W Heyne

    Full Text Available The Hedgehog (Hh signaling pathway mediates multiple spatiotemporally-specific aspects of brain and face development. Genetic and chemical disruptions of the pathway are known to result in an array of structural malformations, including holoprosencephaly (HPE, clefts of the lip with or without cleft palate (CL/P, and clefts of the secondary palate only (CPO. Here, we examined patterns of dysmorphology caused by acute, stage-specific Hh signaling inhibition. Timed-pregnant wildtype C57BL/6J mice were administered a single dose of the potent pathway antagonist vismodegib at discrete time points between gestational day (GD 7.0 and 10.0, an interval approximately corresponding to the 15th to 24th days of human gestation. The resultant pattern of facial and brain dysmorphology was dependent upon stage of exposure. Insult between GD7.0 and GD8.25 resulted in HPE, with peak incidence following exposure at GD7.5. Unilateral clefts of the lip extending into the primary palate were also observed, with peak incidence following exposure at GD8.875. Insult between GD9.0 and GD10.0 resulted in CPO and forelimb abnormalities. We have previously demonstrated that Hh antagonist-induced cleft lip results from deficiency of the medial nasal process and show here that CPO is associated with reduced growth of the maxillary-derived palatal shelves. By defining the critical periods for the induction of HPE, CL/P, and CPO with fine temporal resolution, these results provide a mechanism by which Hh pathway disruption can result in "non-syndromic" orofacial clefting, or HPE with or without co-occurring clefts. This study also establishes a novel and tractable mouse model of human craniofacial malformations using a single dose of a commercially available and pathway-specific drug.

  19. Functioning of peripheral Ia pathways in infants with typical development: responses in antagonist muscle pairs.

    Science.gov (United States)

    Teulier, Caroline; Ulrich, Beverly D; Martin, Bernard

    2011-02-01

    In muscle responses of proprioceptive origin, including the stretch/tendon reflex (T-reflex), the corresponding reciprocal excitation and irradiation to distant muscles have been described from newborn infants to older adults. However, the functioning of other responses mediated primarily by Ia-afferents has not been investigated in infants. Understanding the typical development of these multiple pathways is critical to determining potential problems in their development in populations affected by neurological disease, such as spina bifida or cerebral palsy. Hence, the goal of the present study was to quantify the excitability of Ia-mediated responses in lower limb muscles of infants with typical development. These responses were elicited by mechanical stimulation applied to the distal tendons of the gastrocnemius-soleus (GS), tibialis anterior (TA) and quadriceps (QAD) muscles of both legs in twelve 2- to 10-month-old infants and recorded simultaneously in antagonist muscle pairs by surface EMG. Tendon taps alone elicited responses in either, both or neither muscle. The homonymous response (T-reflex) was less frequent in the TA than the GS or QAD muscle. An 80 Hz vibration superimposed on tendon taps induced primarily an inhibition of monosynaptic responses; however, facilitation also occurred in either muscle of the recorded pair. These responses were not influenced significantly by age or gender. Vibration alone produced a tonic reflex response in the vibrated muscle (TVR) and/or the antagonist muscle (AVR). However, for the TA muscle the TVR was more frequently elicited in older than younger infants. High variability was common to all responses. Overall, the random distribution and inconsistency of muscle responses suggests that the gain of Ia-mediated feedback is unstable. We propose that during infancy the central nervous system needs to learn to set stable feedback gain, or destination of proprioceptive assistance, based on their use during functional

  20. The effect of the leukotriene antagonist pranlukast on pediatric acute otitis media.

    Science.gov (United States)

    Nakamura, Yoshihisa; Hamajima, Yuki; Suzuki, Motohiko; Esaki, Shinichi; Yokota, Makoto; Oshika, Masanori; Takagi, Ippei; Yasui, Keiko; Miyamoto, Naoya; Sugiyama, Kazuko; Nakayama, Meiho; Murakami, Shingo

    2016-08-01

    Conventional treatment for acute otitis media mainly targets bacteria with antibiotics, neglecting to control for mediators of inflammation. Mediators of inflammation, such as leukotrienes, have been identified in patients with acute otitis media (AOM) or subsequent secretory otitis media (SOM). They can cause functional eustachian tube dysfunction or increase mucous in the middle ear, causing persistent SOM following AOM. The objective of the present study was to evaluate whether or not administration of pranlukast, a widely used leukotriene C4, D4, and E4 antagonist, together with antibiotics could inhibit the progression to SOM. Children with AOM, who were from two to 12 years old, were randomly divided into two groups as follows: a control group in which 50 patients received antibiotic-based conventional treatment according to guidelines for treating AOM proposed by the Japan Otological Society (version 2006); and a pranlukast group, in which 52 patients were administered pranlukast for up to 28 days as well as given conventional treatment. Cases were regarded as persistent SOM when a tympanogram was type B or C2 four weeks after treatment was initiated. Two patients in the pranlukast group and 3 patients in the control group were excluded because they relapsed AOM within 28 days after initial treatment. Therefore, the analysis included 50 and 47 subjects in the pranlukast and control groups, respectively. The percentage of patients diagnosed with persistent SOM (22.0%) was significantly smaller in the pranlukast group compared with the control group (44.7%) (p = 0.018, chi-squared test). The results indicate that combined treatment of AOM with antibiotics and a leukotriene antagonist to control inflammation is useful for preventing progression to persistent SOM. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Antagonist effect of interferon-γ aerosol inhalation on pulmonary remodeling after γ-ray irradiation

    International Nuclear Information System (INIS)

    Li Ming; Song Liangwen; Wang Shaoxia; Diao Ruiying; Xu Xinping; Luo Qingliang

    2008-01-01

    Objective: To observe the antagonistic effect of interferon-y aerosol inhalation on pulmonary remodeling after γ-ray irradiation, and explore its mechanisms. Methods: The Wistar rats were randomly divided into irradiation control group and irradiation + Interferon-γ antagonist group, which proceeded IFN-γ aerosol inhalation 3 days before 20 Gy 60 Co γ-ray irradiation, then were sacrificed at 10, 20, 30 days after irradiation. Conventional histopathological sections of lung tissue were prepared, which were stained immunohistochemically for α-SMA and Sirius red. The contents of collagen IV were determined by Western blot. The expression of MMP-2, MMP-9 and TIMP-1 in lung homogenate was detected by ELISA. Results: The widen degrees of interalveolar septum, the deposition of collagen I, III, and the expression of α-SMA decreased significantly in IFN-γ treatment group as compared with those in the irradiation control group. The expression of collagen IV appeared an elevation trend, but this phenomenon attenuated after IFN-γ was used. The levels of MMP-2 and TIMP-1 decreased 10 days after administration with IFN-γ but the opposite trend appeared for MMP- 9. The expression of MMP-2, MMP-9 and TIMP-1 decreased 30 days after administration with IFN-γ. Conclusion: IFN-γ is effective in alleviating pulmonary injuries induced by irradiation in rats, possibly by decreasing the expression of TIMP-1 to relieve the inhibition to MMP-9, then degrading collagen IV to antagonize remodeling after lung injury. (authors)

  2. Identification and characterization of a selective allosteric antagonist of human P2X4 receptor channels.

    Science.gov (United States)

    Ase, Ariel R; Honson, Nicolette S; Zaghdane, Helmi; Pfeifer, Tom A; Séguéla, Philippe

    2015-04-01

    P2X4 is an ATP-gated nonselective cation channel highly permeable to calcium. There is increasing evidence that this homomeric purinoceptor, which is expressed in several neuronal and immune cell types, is involved in chronic pain and inflammation. The current paucity of unambiguous pharmacological tools available to interrogate or modulate P2X4 function led us to pursue the search for selective antagonists. In the high-throughput screen of a compound library, we identified the phenylurea BX430 (1-(2,6-dibromo-4-isopropyl-phenyl)-3-(3-pyridyl)urea, molecular weight = 413), with antagonist properties on human P2X4-mediated calcium uptake. Patch-clamp electrophysiology confirmed direct inhibition of P2X4 currents by extracellular BX430, with submicromolar potency (IC50 = 0.54 µM). BX430 is highly selective, having virtually no functional impact on all other P2X subtypes, namely, P2X1-P2X3, P2X5, and P2X7, at 10-100 times its IC50. Unexpected species differences were noticed, as BX430 is a potent antagonist of zebrafish P2X4 but has no effect on rat and mouse P2X4 orthologs. The concentration-response curve for ATP on human P2X4 in the presence of BX430 shows an insurmountable blockade, indicating a noncompetitive allosteric mechanism of action. Using a fluorescent dye uptake assay, we observed that BX430 also effectively suppresses ATP-evoked and ivermectin-potentiated membrane permeabilization induced by P2X4 pore dilation. Finally, in single-cell calcium imaging, we validated its selective inhibitory effects on native P2X4 channels at the surface of human THP-1 cells that were differentiated into macrophages. In summary, this ligand provides a novel molecular probe to assess the specific role of P2X4 in inflammatory and neuropathic conditions, where ATP signaling has been shown to be dysfunctional. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  3. Tactical Approaches to Interconverting GPCR Agonists and Antagonists.

    Science.gov (United States)

    Dosa, Peter I; Amin, Elizabeth Ambrose

    2016-02-11

    There are many reported examples of small structural modifications to GPCR-targeted ligands leading to major changes in their functional activity, converting agonists into antagonists or vice versa. These shifts in functional activity are often accompanied by negligible changes in binding affinity. The current perspective focuses on outlining and analyzing various approaches that have been used to interconvert GPCR agonists, partial agonists, and antagonists in order to achieve the intended functional activity at a GPCR of therapeutic interest. An improved understanding of specific structural modifications that are likely to alter the functional activity of a GPCR ligand may be of use to researchers designing GPCR-targeted drugs and/or probe compounds, specifically in cases where a particular ligand exhibits good potency but not the preferred functional activity at the GPCR of choice.

  4. Are peripheral opioid antagonists the solution to opioid side effects?

    LENUS (Irish Health Repository)

    Bates, John J

    2012-02-03

    Opioid medication is the mainstay of therapy for severe acute and chronic pain. Unfortunately, the side effects of these medications can affect patient comfort and safety, thus limiting their proven therapeutic potential. Whereas the main analgesic effects of opioids are centrally mediated, many of the common side effects are mediated via peripheral receptors. Novel peripheral opioid antagonists have been recently introduced that can block the peripheral actions of opioids without affecting centrally mediated analgesia. We review the clinical and experimental evidence of their efficacy in ameliorating opioid side effects and consider what further information might be useful in defining their role. IMPLICATIONS: The major analgesic effects of opioid medication are mediated within the brain and spinal cord. Many of the side effects of opioids are caused by activation of receptors outside these areas. Recently developed peripherally restricted opioid antagonists have the ability to block many opioid side effects without affecting analgesia.

  5. In-silico guided discovery of novel CCR9 antagonists

    Science.gov (United States)

    Zhang, Xin; Cross, Jason B.; Romero, Jan; Heifetz, Alexander; Humphries, Eric; Hall, Katie; Wu, Yuchuan; Stucka, Sabrina; Zhang, Jing; Chandonnet, Haoqun; Lippa, Blaise; Ryan, M. Dominic; Baber, J. Christian

    2018-03-01

    Antagonism of CCR9 is a promising mechanism for treatment of inflammatory bowel disease, including ulcerative colitis and Crohn's disease. There is limited experimental data on CCR9 and its ligands, complicating efforts to identify new small molecule antagonists. We present here results of a successful virtual screening and rational hit-to-lead campaign that led to the discovery and initial optimization of novel CCR9 antagonists. This work uses a novel data fusion strategy to integrate the output of multiple computational tools, such as 2D similarity search, shape similarity, pharmacophore searching, and molecular docking, as well as the identification and incorporation of privileged chemokine fragments. The application of various ranking strategies, which combined consensus and parallel selection methods to achieve a balance of enrichment and novelty, resulted in 198 virtual screening hits in total, with an overall hit rate of 18%. Several hits were developed into early leads through targeted synthesis and purchase of analogs.

  6. Interleukin-1-receptor antagonist in type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Larsen, Claus M; Faulenbach, Mirjam; Vaag, Allan

    2007-01-01

    BACKGROUND: The expression of interleukin-1-receptor antagonist is reduced in pancreatic islets of patients with type 2 diabetes mellitus, and high glucose concentrations induce the production of interleukin-1beta in human pancreatic beta cells, leading to impaired insulin secretion, decreased cell...... proliferation, and apoptosis. METHODS: In this double-blind, parallel-group trial involving 70 patients with type 2 diabetes, we randomly assigned 34 patients to receive 100 mg of anakinra (a recombinant human interleukin-1-receptor antagonist) subcutaneously once daily for 13 weeks and 36 patients to receive......, and the body-mass index were similar in the two study groups. Symptomatic hypoglycemia was not observed, and there were no apparent drug-related serious adverse events. CONCLUSIONS: The blockade of interleukin-1 with anakinra improved glycemia and beta-cell secretory function and reduced markers of systemic...

  7. Non-imidazole histamine NO-donor H3-antagonists.

    Science.gov (United States)

    Tosco, Paolo; Bertinaria, Massimo; Di Stilo, Antonella; Cena, Clara; Fruttero, Roberta; Gasco, Alberto

    2005-01-01

    Recently a series of H3-antagonists related to Imoproxifan was realised (I); in these products the oxime substructure of the lead was constrained in NO-donor furoxan systems and in the corresponding furazan derivatives. In this paper, a new series of compounds derived from I by substituting the imidazole ring with the ethoxycarbonylpiperazino moiety present in the non-imidazole H3-ligand A-923 is described. For all the products synthesis and preliminary pharmacological characterisation, as well as their hydrophilic-lipophilic balance, are reported. The imidazole ring replacement generally results in a decreased H3-antagonist activity with respect to the analogues of series I and, in some cases, induces relaxing effects on the electrically contracted guinea-pig ileum, probably due to increased affinity for other receptor systems.

  8. Potential Clinical Implications of the Urotensin II Receptor Antagonists

    Directory of Open Access Journals (Sweden)

    Emilie Kane

    2011-07-01

    Full Text Available Urotensin-II (UII, which binds to its receptor UT, plays an important role in the heart, kidneys, pancreas, adrenal gland and CNS. In the vasculature, it acts as a potent endothelium-independent vasoconstrictor and endothelium-dependent vasodilator. In disease states, this constriction-dilation equilibrium is disrupted. There is an upregulation of the UII system in heart disease, metabolic syndrome and kidney failure. The increase in UII release and UT expression suggest that UII system may be implicated in the pathology and pathogenesis of these diseases by causing an increase in ACAT-1 activity leading to SMC proliferation and foam cell infiltration, insulin resistance (DMII, as well as inflammation, high blood pressure and plaque formation. Recently, UT antagonists such as SB-611812, palosuran, and most recently a piperazino-isoindolinone based antagonist have been developed in the hope of better understanding the UII system and treating its associated diseases.

  9. State Estimation For An Agonistic-Antagonistic Muscle System

    OpenAIRE

    Nguyen, Thang; Warner, Holly; La, Hung; Mohammadi, Hanieh; Simon, Dan; Richter, Hanz

    2017-01-01

    Research on assistive technology, rehabilitation, and prosthesis requires the understanding of human machine interaction, in which human muscular properties play a pivotal role. This paper studies a nonlinear agonistic-antagonistic muscle system based on the Hill muscle model. To investigate the characteristics of the muscle model, the problem of estimating the state variables and activation signals of the dual muscle system is considered. In this work, parameter uncertainty and unknown input...

  10. Histamine-2 receptor antagonists as immunomodulators: new therapeutic views?

    DEFF Research Database (Denmark)

    Nielsen, Hans Jørgen

    1996-01-01

    Considerable evidence has emerged to suggest that histamine participates in the regulation of the inflammatory response, immune reaction, coagulation cascade, and cardiovascular function. Furthermore, histamine may play a major role in the growth of normal and malignant tissue as a regulator...... antagonists as adjuvant single drugs to reduce trauma-, blood transfusion- and sepsis-induced immunosuppression has led to research in combined treatment regimens in major surgery, particularly, of patients operated on for malignant diseases....

  11. Chitinolytic Enterobacter agglomerans Antagonistic to Fungal Plant Pathogens

    OpenAIRE

    Chernin, L.; Ismailov, Z.; Haran, S.; Chet, I.

    1995-01-01

    Three Enterobacter agglomerans strains which produce and excrete proteins with chitinolytic activity were found while screening soil-borne bacteria antagonistic to fungal plant pathogens. The chitinolytic activity was induced when the strains were grown in the presence of colloidal chitin as the sole carbon source. It was quantitated by using assays with chromogenic p-nitrophenyl analogs of disaccharide, trisaccharide, and tetrasaccharide derivatives of N-acetylglucosamine. A set of three flu...

  12. ANTIHYPERTENSIVE TREATMENT IN ELDERLY PATIENTS WITH DIHYDROPYRIDINE CALCIUM ANTAGONISTS

    OpenAIRE

    Y. A. Karpov; V. V. Buza

    2006-01-01

    The proofs of necessity of active arterial hypertension (AH) treatment in elderly patients are given. Peculiarities of pathogenesis of AH in elderly patients, connected predominantly with loss of big arteries elasticity and reasoning widely spread of isolated systolic AH in these patients, are discussed. Advantages of dihydropyridine calcium antagonists (DPCA) for AH treatment in elderly patients are proved, safety of treatment with DPCA is discussed. Data of clinical studies is analyzed. Ana...

  13. Renoprotective effects of calcium antagonists on kidney disease

    OpenAIRE

    Mochammad Sja'bani, Mochammad Sja'bani

    2015-01-01

    There has been a growing number of evidence that calcium antagonists provide a salutary effects in preserving kidneys against acute renal ischemia in patients at increasing risk. Their beneficial effects on cellular and mitochondrial calcium may explain the effects on renal hemodynamics and metabolics. It seems, that they do not directly vasodilate kidney vessels but alter the response towards vasoconstrictor agents. This effect may mediate diuretic and natriuretic effect of calcium antagonis...

  14. The opioid receptor antagonist, naloxone, protects spinal motor neurons in a murine model of alphavirus encephalomyelitis

    Science.gov (United States)

    Prow, Natalie A.; Irani, David N.

    2007-01-01

    Spread of neuroadapted Sindbis virus (NSV) to motor neurons (MN) of the spinal cord (SC) causes severe hind limb weakness in C57BL/6 mice and models the paralysis that can accompany alphavirus and flavivirus encephalomyelitis in humans. The fate of spinal MN dictates the severity of NSV-induced paralysis, and recent data suggest that MN damage can occur indirectly via the actions of activated microglial cells. Because the opioid receptor antagonist, naloxone (NAL), blocks microglial-mediated neurodegeneration in other models, we examined its effects during NSV infection. Drug treatment prevented paralysis and enhanced the survival of MN without altering NSV tropism, replication, or clearance from SC tissue. Further studies showed that NAL most effectively inhibited paralysis in a 72-hour window after NSV challenge, suggesting that the drug inhibits an early event in SC pathogenesis. Histochemical studies demonstrated that NAL blocked early microglial activation in SC tissue sections, and protein assays showed that the early induction of pathogenic IL-1β was blunted in SC homogenates. Finally, loss of glutamate transporter-1 (GLT-1) expression in SC, an astrocyte glutamate reuptake protein responsible for lowering toxic extracellular levels of glutamate and preventing MN damage, was reversed by NAL treatment. This GLT-1 loss proved to be highly IL-1β-dependent. Taken together, these data suggest that NAL is neuroprotective in the SC by inhibiting microglial activation that, in turn, maintains normal astrocyte glutamate homeostasis. We propose that drugs targeting such microglial responses may have therapeutic benefit in humans with related viral infections. PMID:17459376

  15. Glutamate receptor antagonists with the potential for migraine treatment.

    Science.gov (United States)

    Ferrari, Anna; Rustichelli, Cecilia; Baraldi, Carlo

    2017-12-01

    Preclinical, clinical, and other (e.g., genetic) evidence support the concept that migraine susceptibility may at least partially result from a glutamatergic system disorder. Therefore, the receptors of the glutamatergic system are considered relatively new targets for investigational drugs to treat migraine. Investigational and established glutamate receptor antagonists (GluRAs) have been shown to possess antinociceptive properties in preclinical models of trigeminovascular nociception and have been evaluated in clinical trials. This review focuses on preclinical and clinical studies of GluRAs for the treatment of migraine. Areas covered: A PubMed database search (from 1987 to December 2016) and a review of published studies on GluRAs in migraine were conducted. Expert opinion: All published clinical trials of investigational GluRAs have been unsuccessful in establishing benefit for acute migraine treatment. Clinical trial results contrast with the preclinical data, suggesting that glutamate (Glu) does not play a decisive role after the attack has already been triggered. These antagonists may instead be useful for migraine prophylaxis. Improving patient care requires further investigating and critically analyzing the role of Glu in migraine, designing experimental models to study more receptors and their corresponding antagonists, and identifying biomarkers to facilitate trials designed to target specific subgroups of migraine patients.

  16. Non-genetic inheritance and the patterns of antagonistic coevolution

    Directory of Open Access Journals (Sweden)

    Mostowy Rafal

    2012-06-01

    Full Text Available Abstract Background Antagonistic species interactions can lead to coevolutionary genotype or phenotype frequency oscillations, with important implications for ecological and evolutionary processes. However, direct empirical evidence of such oscillations is rare. The rarity of observations is generally attributed to inherent difficulties of ecological and evolutionary long-term studies, to weak or absent interaction between species, or to the absence of negative frequency-dependence. Results Here, we show that another factor – non-genetic inheritance, mediated for example by epigenetic mechanisms – can completely eliminate oscillations in the presence of such negative frequency dependence, even if only a small fraction of offspring are affected. We analytically derive the threshold value of this fraction at which the dynamics change from oscillatory to stable, and investigate how selection, mutation and generation times differences between the two species affect the threshold value. These results strongly suggest that the lack of phenotype frequency oscillations should not be attributed to the lack of strong interactions between antagonistic species. Conclusions Given increasing evidence of non-genetic effects on the outcomes of antagonistic species interactions, we suggest that these effects should be incorporated into ecological and evolutionary models of interacting species.

  17. Histamine H1 antagonists and clinical characteristics of febrile seizures

    Directory of Open Access Journals (Sweden)

    Zolaly MA

    2012-03-01

    Full Text Available Mohammed A ZolalyDepartment of Pediatrics, College of Medicine, Taibah University, Al-Madinah Al-Munawarah, Kingdom of Saudi ArabiaBackground: The purpose of this study was to determine whether seizure susceptibility due to antihistamines is provoked in patients with febrile seizures.Methods: The current descriptive study was carried out from April 2009 to February 2011 in 250 infants and children who visited the Madinah Maternity and Children's Hospital as a result of febrile convulsions. They were divided into two groups according to administration of antihistamines at the onset of fever.Results: Detailed clinical manifestations were compared between patients with and without administration of antihistamines. The time from fever detection to seizure onset was significantly shorter in the antihistamine group than that in the nonantihistamine group, and the duration of seizures was significantly longer in the antihistamine group than in the nonantihistamine group. No significant difference was found in time from fever detection to seizure onset or seizure duration between patients who received a first-generation antihistamine and those who received a second-generation antihistamine.Conclusion: Due to their central nervous system effects, H1 antagonists should not be administered to patients with febrile seizures and epilepsy. Caution should be exercised regarding the use of histamine H1 antagonists in young infants, because these drugs could potentially disturb the anticonvulsive central histaminergic system.Keywords: antihistamine, nonantihistamine, histamine H1 antagonist, febrile seizures

  18. Tachykinin NK2 receptor antagonists. A patent review (2006 - 2010).

    Science.gov (United States)

    Altamura, Maria

    2012-01-01

    Tachykinins are endogenous peptide neurotransmitters, acting through the NK1, NK2 and NK3 receptors, at central and peripheral level. At peripheral level, they are involved in contraction of smooth muscle, secretion of water and ion from epithelia, as well as modulation of visceral pain sensitivity. Tachykinin NK2 receptor antagonists have the potential to be useful in the treatment of various gastrointestinal, genitourinary and CNS diseases. In this review, an overview of the patenting activity in the last 5 years is provided. Patents from different companies and research groups are discussed for their novelty and evaluated in relation to proposed indications and clinical studies. Relevant biological data are also presented. Patents claiming new therapeutic indications are included in a dedicated section. Although there is still no tachykinin NK2 receptor antagonist approved for use in human therapy, research in the field is still proposing new compounds and possible uses. A number of candidates are being evaluated in Phase II clinical studies, in indications ranging from gastrointestinal disorders to inflammatory diseases. The results of these studies will indicate the role of tachykinin NK2 receptor antagonists in human therapy.

  19. [Necrotic leg ulcer revealing vasculitis induced by vitamin K antagonists].

    Science.gov (United States)

    Chabli, H; Hocar, O; Akhdari, N; Amal, S; Hakkou, M; Hamdaoui, A

    2015-12-01

    Vitamin K antagonists are widely used in thromboembolic diseases. Hemorrhagic complications related to drug overdose represent their main side effect. We report a rare side effect, a severe and unexpected type of skin vasculitis - necrotic leg ulcer - induced by vitamin K antagonist. A 63-year-old female with a history of diabetes developed hyperalgesic necrotic ulcerations on the lower limbs one month after starting an acenocoumarol-based treatment for ischemic heart disease. Histological examination revealed lymphocytic vasculitis with fibrinoid necrosis. Etiological explorations searching for vasculitis were negative. In the absence of a precise etiology, drug-induced ulcer was suspected. Low molecular weight heparin was prescribed to replace acenocoumarol. The lesions slowly resolved with topical treatment. The chronological criteria and the negativity of etiological explorations allowed the diagnosis of vitamin K antagonist-induced necrotic skin ulcer. Clinicians should be aware of this rare complication induced by oral anticoagulants because of its practical therapeutic implications. This is the first case of necrotic leg ulcer induced by acenocoumarol corresponding histologically to necrotising lymphocytic vasculitis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  20. Correlated EMG Oscillations between Antagonists during Cocontraction in Men.

    Science.gov (United States)

    Yoshitake, Yasuhide; Kanehisa, Hiroaki; Shinohara, Minoru

    2017-03-01

    The purpose of this study was to determine the modulation of common low-frequency oscillations in pools of motor units across antagonistic muscles because of the difference in the activation level of pools of spinal motor neurons and the presence of neuromuscular fatigue during intended cocontraction. Ten healthy young men (21.8 ± 1.5 yr) performed intended steady cocontractions of elbow flexors and extensors at maximal and a submaximal (10% of maximal EMG) effort. The submaximal cocontraction was repeated after sustained maximal contraction of elbow flexors. Surface EMG was recorded from the biceps brachii and triceps brachii muscles. Correlated EMG oscillations between the antagonistic muscles were quantified by the cross-correlation function (CCF) using rectified EMG for the EMG for the 3- to 15-Hz bands. The positive CCF peak in rectified EMG EMG, a negative CCF peak (i.e., out-of-phase oscillations) during submaximal cocontraction was smaller compared with maximal cocontraction but increased after the sustained contraction. Across subjects, the degree of reduction in maximal EMG amplitude after the sustained contraction was correlated with the amount of change in the CCF peak in EMG oscillations between antagonistic muscles occur during intended cocontraction, and 2) the magnitude of these correlated oscillations increases with the activation level of pools of spinal motor neurons and neuromuscular fatigue.

  1. The IL-6 receptor super-antagonist Sant7 enhances antiproliferative and apoptotic effects induced by dexamethasone and zoledronic acid on multiple myeloma cells.

    Science.gov (United States)

    Tassone, Pierfrancesco; Galea, Eulalia; Forciniti, Samantha; Tagliaferri, Pierosandro; Venuta, Salvatore

    2002-10-01

    Interleukin-6 (IL-6) is the major growth and survival factor for multiple myeloma (MM), and has been shown to protect MM cells from apoptosis induced by a variety of agents. IL-6 receptor antagonists, which prevent the assembly of functional IL-6 receptor complexes, inhibit cell proliferation and induce apoptosis in MM cells. We have investigated whether the IL-6 receptor super-antagonist Sant7 might enhance the antiproliferative and apoptotic effects induced by the combination of dexamethasone (Dex) and zoledronic acid (Zln) on human MM cell lines and primary cells from MM patients. Here we show that each of these compounds individually induced detectable antiproliferative effects on MM cells. Sant7 significantly enhanced growth inhibition and apoptosis induced by Dex and Zln on both MM cell lines and primary MM cells. These results indicate that overcoming IL-6 mediated cell resistance by Sant7 potentiates the effect of glucocorticoides and bisphosphonates on MM cell growth and survival, providing a rationale for therapies including IL-6 antagonists in MM.

  2. Up-regulation of reciprocal inhibition by explosive strength training

    DEFF Research Database (Denmark)

    Geertsen, Svend Sparre; Jensen, Jesper Lundbye; Nielsen, Jens Bo

    At the onset of dorsiflexion disynaptic reciprocal inhibition (DRI) of soleus motoneurones is increased in order to prevent activation of the antagonistic plantarflexors. This is caused by descending facilitation of transmission in the DRI pathway. Since the risk of eliciting stretch reflexes...... in the ankle plantarflexors at the onset of dorsiflexion is larger the quicker the movement, we hypothesized that DRI may be up-regulated when subjects are trained to perform dorsiflexion movements as quickly as possible.   For this purpose, 15 healthy human subjects (7 male, 8 female) with an average age...... by 6% before the training and by 22% after the training, which was a statistically significant difference (pregulated in healthy subjects following explosive strength training in order to ensure efficient suppression of the antagonist...

  3. Versatile Antagonistic Activities of Soil-Borne Bacillus spp. and Pseudomonas spp. against Phytophthora infestans and Other Potato Pathogens

    Directory of Open Access Journals (Sweden)

    Simon Caulier

    2018-02-01

    Full Text Available The world potato is facing major economic losses due to disease pressure and environmental concerns regarding pesticides use. This work aims at addressing these two issues by isolating indigenous bacteria that can be integrated into pest management strategies. More than 2,800 strains of Bacillus-like and Pseudomonas-like were isolated from several soils and substrates associated with potato agro-systems in Belgium. Screenings for antagonistic activities against the potato pathogens Alternaria solani, Fusarium solani (BCCM-MUCL 5492, Pectobacterium carotovorum (ATCC 15713, Phytophthora infestans (CRA-W10022 and Rhizoctonia solani (BCCM-MUCL 51929 were performed, allowing the selection of 52 Bacillus spp. and eight Pseudomonas spp. displaying growth inhibition of at least 50% under in vitro conditions, particularly against P. infestans. All 60 bacterial isolates were identified based on 16S rRNA gene sequencing and further characterized for the production of potential bio-active secondary metabolites. The antagonistic activities displayed by the selected strains indicated that versatile metabolites can be produced by the strains. For instance, the detection of genes involved bacilysin biosynthesis was correlated with the strong antagonism of Bacillus pumilus strains toward P. infestans, whereas the production of both bio-surfactants and siderophores might explain the high antagonistic activities against late blight. Greenhouse assays with potato plants were performed with the most effective strains (seven Bacillus spp. and four Pseudomonas spp. in order to evaluate their in vivo antagonistic effect against P. infestans. Based on these results, four strains (Bacillus amyloliquefaciens 17A-B3, Bacillus subtilis 30B-B6, Pseudomonas brenneri 43R-P1 and Pseudomonas protegens 44R-P8 were retained for further evaluation of their protection index against P. infestans in a pilot field trial. Interestingly, B. subtilis 30B-B6 was shown to significantly

  4. Biased small-molecule ligands for selective inhibition of HIV-1 cell entry via CCR5

    DEFF Research Database (Denmark)

    Berg, Christian; Spiess, Katja; von Lüttichau, Hans Rudolf

    2016-01-01

    Since the discovery of HIV's use of CCR5 as the primary coreceptor in fusion, the focus on developing small-molecule receptor antagonists for inhibition hereof has only resulted in one single drug, Maraviroc. We therefore investigated the possibility of using small-molecule CCR5 agonists as HIV-1...... fusion inhibitors. A virus-free cell-based fusion reporter assay, based on mixing "effector cells" (expressing HIV Env and luciferase activator) with "target cells" (expressing CD4, CCR5 wild type or a selection of well-described mutations, and luciferase reporter), was used as fusion readout. Receptor...... expression was evaluated by ELISA and fluorescence microscopy. On CCR5 WT, Maraviroc and Aplaviroc inhibited fusion with high potencies (EC 50 values of 91 and 501 nM, respectively), whereas removal of key residues for both antagonists (Glu283Ala) or Maraviroc alone (Tyr251Ala) prevented fusion inhibition...

  5. Lloviu virus VP24 and VP35 proteins function as innate immune antagonists in human and bat cells

    International Nuclear Information System (INIS)

    Feagins, Alicia R.; Basler, Christopher F.

    2015-01-01

    Lloviu virus (LLOV) is a new member of the filovirus family that also includes Ebola virus (EBOV) and Marburg virus (MARV). LLOV has not been cultured; however, its genomic RNA sequence indicates the coding capacity to produce homologs of the EBOV and MARV VP24, VP35, and VP40 proteins. EBOV and MARV VP35 proteins inhibit interferon (IFN)-alpha/beta production and EBOV VP35 blocks activation of the antiviral kinase PKR. The EBOV VP24 and MARV VP40 proteins inhibit IFN signaling, albeit by different mechanisms. Here we demonstrate that LLOV VP35 suppresses Sendai virus induced IFN regulatory factor 3 (IRF3) phosphorylation, IFN-α/β production, and PKR phosphorylation. Additionally, LLOV VP24 blocks tyrosine phosphorylated STAT1 binding to karyopherin alpha 5 (KPNA5), STAT1 nuclear accumulation, and IFN-induced gene expression. LLOV VP40 lacks detectable IFN antagonist function. These activities parallel EBOV IFN inhibitory functions. EBOV and LLOV VP35 and VP24 proteins also inhibit IFN responses in bat cells. These data suggest that LLOV infection will block innate immune responses in a manner similar to EBOV. - Highlights: • Lloviu virus (LLOV) is a new member of the filovirus family. • LLOV VP35 blocks IRF3 phosphorylation, IFN-α/β production and PKR phosphorylation. • LLOV VP24 inhibits IFN responses by targeting phospho-STAT1 KPNA interaction. • Infection by LLOV may block innate immune responses in a manner similar to EBOV.

  6. Lloviu virus VP24 and VP35 proteins function as innate immune antagonists in human and bat cells

    Energy Technology Data Exchange (ETDEWEB)

    Feagins, Alicia R.; Basler, Christopher F., E-mail: chris.basler@mssm.edu

    2015-11-15

    Lloviu virus (LLOV) is a new member of the filovirus family that also includes Ebola virus (EBOV) and Marburg virus (MARV). LLOV has not been cultured; however, its genomic RNA sequence indicates the coding capacity to produce homologs of the EBOV and MARV VP24, VP35, and VP40 proteins. EBOV and MARV VP35 proteins inhibit interferon (IFN)-alpha/beta production and EBOV VP35 blocks activation of the antiviral kinase PKR. The EBOV VP24 and MARV VP40 proteins inhibit IFN signaling, albeit by different mechanisms. Here we demonstrate that LLOV VP35 suppresses Sendai virus induced IFN regulatory factor 3 (IRF3) phosphorylation, IFN-α/β production, and PKR phosphorylation. Additionally, LLOV VP24 blocks tyrosine phosphorylated STAT1 binding to karyopherin alpha 5 (KPNA5), STAT1 nuclear accumulation, and IFN-induced gene expression. LLOV VP40 lacks detectable IFN antagonist function. These activities parallel EBOV IFN inhibitory functions. EBOV and LLOV VP35 and VP24 proteins also inhibit IFN responses in bat cells. These data suggest that LLOV infection will block innate immune responses in a manner similar to EBOV. - Highlights: • Lloviu virus (LLOV) is a new member of the filovirus family. • LLOV VP35 blocks IRF3 phosphorylation, IFN-α/β production and PKR phosphorylation. • LLOV VP24 inhibits IFN responses by targeting phospho-STAT1 KPNA interaction. • Infection by LLOV may block innate immune responses in a manner similar to EBOV.

  7. Identification of rat brain muscarinic M4 receptors coupled to cyclic AMP using the selective antagonist muscarinic toxin 3.

    Science.gov (United States)

    Olianas, M C; Adem, A; Karlsson, E; Onali, P

    1998-09-18

    In membranes of olfactory tubercle and striatum, the selective muscarinic M4 receptor antagonist muscarinic toxin 3 completely antagonized the acetylcholine-induced inhibition of forskolin- and dopamine D1 receptor-stimulated cyclic AMP formation with Ki values of 7 and 4 nM, respectively. In olfactory bulb, where acetylcholine stimulated basal adenylyl cyclase activity and inhibited forskolin-stimulated enzyme activity, muscarinic toxin 3 caused a partial antagonism of both acetylcholine effects with high potencies (Ki values = 4-6 nM). In frontal cortex, muscarinic toxin 3 counteracted the acetylcholine-induced potentiation of corticotropin-releasing hormone-stimulated cyclic AMP with a Ki of 58 nM, which is close to the toxin affinity for the muscarinic M1 receptor. In the same brain region, the acetylcholine inhibition of forskolin-stimulated enzyme activity was not affected by muscarinic toxin 3. In microdissected regions of the hippocampus, a significant portion (33-48%) of the acetylcholine inhibition of forskolin-stimulated adenylyl cyclase activity was blocked by muscarinic toxin 3 with Ki values (6-8 nM) consistent with the involvement of muscarinic M4 receptors. These data show that muscarinic toxin 3 discriminates between adenylyl cyclase-coupled muscarinic receptors and demonstrate the utility of the toxin in identifying the relative contribution by the muscarinic M4 receptor subtype.

  8. Antagonistic activity of isolated lactic acid bacteria from Pliek U against gram-negative bacteria Escherichia coli ATCC 25922

    Science.gov (United States)

    Kiti, A. A.; Jamilah, I.; Rusmarilin, H.

    2017-09-01

    Lactic acid bacteria (LAB) is one group of microbes that has many benefits, notably in food and health industries sector. LAB plays an important role in food fermentation and it has bacteriostatic effect against the growth of pathogenic microorganisms. The research related LAB continued to be done to increase the diversity of potential isolates derived from nature which is indigenous bacteria for biotechnological purposes. This study was aimed to isolate and characterize LAB derived from pliek u sample and to examine the potency to inhibits Escherichia coli ATCC 25922 bacteria growth. A total of 5 isolates were isolated and based on morphological and physiological characteristics of the fifth bacteria, they are allegedly belonging to the genus Bacillus. Result of antagonistic test showed that the five isolates could inhibits the growth of E. coli ATCC 25922. The highest inhibition zone is 8.5 mm was shown by isolates NQ2, while the lowest inhibition is 1.5 mm was shown by isolates NQ3.

  9. Abiotic conditions affect floral antagonists and mutualists of Impatiens capensis (Balsaminaceae).

    Science.gov (United States)

    Soper Gorden, Nicole L; Adler, Lynn S

    2013-04-01

    While the effect of abiotic factors on leaf herbivory is well known, the relative importance of abiotic conditions influencing both mutualists and antagonists is less well understood. Species interactions could enhance or reduce the direct effects of abiotic factors, depending on how mutualists and antagonists respond to abiotic conditions. We manipulated soil nutrients and shade in a factorial design and measured soil moisture in the annual Impatiens capensis. We then measured interactions with mutualists (two pollinating species) and antagonists (herbivores, florivores, nectar thieves, and flower bud gallers), as well as plant growth, floral rewards, and plant reproduction. Fertilizer increased plant growth, floral attractiveness, mutualist and antagonist interactions, and plant reproduction. Shade had no effects, and soil moisture was negatively associated with plant growth and reproduction. All effects were additive. Mutualist and antagonist floral interactions both increased on fertilized plants, but antagonists increased at a greater rate, leading to a larger ratio of antagonist to mutualist interactions on fertilized plants. Despite having more antagonists, fertilized plants still had significantly higher reproduction, suggesting higher tolerance to antagonists. Abiotic effects can have consistent effects on antagonists and mutualists, and on both floral and leaf antagonists. However, tolerance to antagonisms increased in favorable conditions. Thus, the direct positive effects of favorable abiotic conditions on plants outweighed negative indirect effects via increased antagonisms, which may lead to selection to grow in high-nutrient microsites in spite of increased herbivory.

  10. Cross-reactivity of acid-sensing ion channel and Na+–H+ exchanger antagonists with nicotinic acetylcholine receptors

    Science.gov (United States)

    Santos-Torres, Julio; Ślimak, Marta A; Auer, Sebastian; Ibañez-Tallon, Inés

    2011-01-01

    Abstract Nicotinic acetylcholine receptors (nAChRs) are widely distributed throughout the mammalian central and peripheral nervous systems, where they contribute to neuronal excitability and synaptic communication. It has been reported that nAChRs are modulated by BK channels and that BK channels, in turn, are inhibited by acid-sensing ion channels (ASICs). Here we investigate the possible functional interaction between these channels in medial habenula (MHb) neurones. We report that selective antagonists of large-conductance calcium-activated potassium channels and ASIC1a channels, paxilline and psalmotoxin 1, respectively, did not induce detectable changes in nicotine-evoked currents. In contrast, the non-selective ASIC and Na+–H+ exchanger (NHE1) antagonists, amiloride and its analogues, suppressed nicotine-evoked responses in MHb neurones of wild-type and ASIC2 null mice, excluding a possible involvement of ASIC2 in the nAChR inhibition by amiloride. Zoniporide, a more selective inhibitor of NHE1, reversibly inhibited α3β4-, α7- and α4-containing (*) nAChRs in Xenopus oocytes and in brain slices, as well as in PS120 cells deficient in NHE1 and virally transduced with nAChRs, suggesting a generalized effect of zoniporide in most neuronal nAChR subtypes. Independently from nAChR antagonism, zoniporide profoundly blocked synaptic transmission onto MHb neurones without affecting glutamatergic and GABA receptors. Taken together, these results indicate that amiloride and zoniporide, which are clinically used to treat hypertension and cardiovascular disease, have an inhibitory effect on neuronal nAChRs when used experimentally at high doses. The possible cross-reactivity of these compounds with nAChRs in vivo will require further investigation. PMID:21911609

  11. Transcriptional and Antagonistic Responses of Biocontrol Strain Lysobacter enzymogenes OH11 to the Plant Pathogenic Oomycete Pythium aphanidermatum

    Directory of Open Access Journals (Sweden)

    Yangyang Zhao

    2017-06-01

    Full Text Available Lysobacter enzymogenes is a ubiquitous, beneficial, plant-associated bacterium emerging as a novel biological control agent. It has the potential to become a new source of antimicrobial secondary metabolites such as the Heat-Stable Antifungal Factor (HSAF, which is a broad-spectrum antimycotic with a novel mode of action. However, very little information about how L. enzymogenes detects and responds to fungi or oomycetes has been reported. An in vitro confrontation bioassay between the pathogenic oomycete Pythium aphanidermatum and the biocontrol bacterial strain L. enzymogenes OH11 was used to analyze the transcriptional changes in the bacteria that were induced by the oomycetes. Analysis was performed at three time points of the interaction, starting before inhibition zone formation until inhibition zone formation. A L. enzymogenes OH11 DNA microarray was constructed for the analysis. Microarray analysis indicated that a wide range of genes belonging to 14 diverse functions in L. enzymogenes were affected by P. aphanidermatum as critical antagonistic effects occurred. L. enzymogenes detected and responded to the presence of P. aphanidermatum early, but alteration of gene expression typically occurred after inhibition zone formation. The presence of P. aphanidermatum increased the twitching motility and HSAF production in L. enzymogenes. We also performed a contact interaction between L. enzymogenes and P. aphanidermatum, and found that HSAF played a critical role in the interaction. Our experiments demonstrated that L. enzymogenes displayed transcriptional and antagonistic responses to P. aphanidermatum in order to gain advantages in the competition with this oomycete. This study revealed new insights into the interactions between bacteria and oomycete.

  12. Miraxanthin-V, Liriodenin and Chitranone are Hepcidin Antagonist In silico for Iron Deficiency Anemia

    Science.gov (United States)

    Yotriana, S.; Suselo, YH; Muthmainah; Indarto, D.

    2018-03-01

    Anemia is one of the greatest nutrition problem in the world that is commonly found in children, pregnant women and reproductive women. This disorder is predominantly caused by iron deficiency. Hepcidin, a hepatic hormone, regulates iron metabolism and high serum levels of this hormone are detected in patients with iron deficiency anemia (IDA). Anticalin is a sintetic compound which is able to interacts with hepcidin leading to inhibition of ferroportin-hepcidin binding complexes but its therapeutic effects are still under investigation. Indonesia has various herbal plants which are potentially developed to treat some human diseases. Therefore, the purpose of this study was to identify phytochemicals derived from Indonesian plants that is able to inhibit hepcidin-ferroportin interaction. A bioinformatics study with molecular docking method was used in this study. Three-dimensional structures of human hepcidin and anticalin were obtained from the Protein Data Bank (ID: 1M4F and 4QAE respectively). Because their molecular size was big, each molecule was cut into 2 parts of its binding sites. All phytochemicals structures were obtained from HerbalDB and PubChem NCBI database. Truncated anticalin/phytochemicals were molecularly docked with truncated hepcidin by using AutoDock Vina 1.1.2. and their interactions were visualized using PyMol 1.3. Truncated Anticalin had -4.6 and -4.2 kcal/mol binding affinity to truncated human hepcidin. Truncated anticalin 1 was bound to Cys13, Cys14, Arg16 and Ser17 residues in truncated hepcidin 1 while truncated anticalin 2 was at Cy23 and Lys24 residues in truncated hepcidin 2. Miraxanthine-V, Liriodenin and Chitranone had lower binding affinity (-4.8±0.77, -4.7±0.33 and -5.01±0.30 kcal/mol respectively) than that of anticalin and occupied binding sites as same as anticalin did. There are three phytochemicals that potentially become hepcidin antagonists in silico. In vitro assays are required for verification of the antagonist

  13. Fast Silencing Reveals a Lost Role for Reciprocal Inhibition in Locomotion

    Science.gov (United States)

    Moult, Peter R.; Cottrell, Glen A.; Li, Wen-Chang

    2013-01-01

    Summary Alternating contractions of antagonistic muscle groups during locomotion are generated by spinal “half-center” networks coupled in antiphase by reciprocal inhibition. It is widely thought that reciprocal inhibition only coordinates the activity of these muscles. We have devised two methods to rapidly and selectively silence neurons on just one side of Xenopus tadpole spinal cord and hindbrain, which generate swimming rhythms. Silencing activity on one side led to rapid cessation of activity on the other side. Analyses reveal that this resulted from the depression of reciprocal inhibition connecting the two sides. Although critical neurons in intact tadpoles are capable of pacemaker firing individually, an effect that could support motor rhythms without inhibition, the swimming network itself requires ∼23 min to regain rhythmic activity after blocking inhibition pharmacologically, implying some homeostatic changes. We conclude therefore that reciprocal inhibition is critical for the generation of normal locomotor rhythm. PMID:23312521

  14. P2X-selective purinergic antagonists are strong inhibitors of HIV-1 fusion during both cell-to-cell and cell-free infection.

    Science.gov (United States)

    Swartz, Talia H; Esposito, Anthony M; Durham, Natasha D; Hartmann, Boris M; Chen, Benjamin K

    2014-10-01

    Human immunodeficiency virus type 1 (HIV-1) infection is chronic and presently still incurable. Antiretroviral drugs effectively suppress replication; however, persistent activation of inflammatory pathways remains a key cause of morbidity. Recent studies proposed that purinergic signaling is required for HIV-1 infection. Purinergic receptors are distributed throughout a wide variety of tissue types and detect extracellular ATP as a danger signal released from dying cells. We have explored how these pathways are involved in the transmission of HIV-1 from cell to cell through virological synapses. Infection of CD4+ T lymphocytes with HIV-1 in the presence of an inhibitor of P2X receptors effectively inhibited HIV-1 infection through both cell-free and cell-to-cell contact in a dose-dependent manner. Inhibition of direct cell-to-cell infection did not affect the formation of virological synapses or the subsequent cell-to-cell transfer of HIV-1. During both cell-free and cell-to-cell CD4+ T lymphocyte infection, purinergic antagonists blocked infection at the level of viral membrane fusion. During cell-to-cell transmission, we observed CXCR4 colocalization with the newly internalized virus particles within target lymphocytes and found that the purinergic antagonists did not impair the recruitment of the coreceptor CXCR4 to the site of Gag internalization in the target cell. In a screen of a library of purinergic antagonists, we found that the most potent inhibitors of HIV-1 fusion were those that target P2X receptors, while P2Y-selective receptor antagonists or adenosine receptor antagonists were ineffective. Our results suggest that P2X receptors may provide a therapeutic target and that purinergic antagonists may have potent activity against viral infection of CD4+ T lymphocytes by both cell-free and cell-to-cell transmission. This study identifies purinergic antagonists to be potent inhibitors of HIV-1 cell-free and cell-to-cell-mediated infection and provides a

  15. The Screening and the Use of Antagonists for Biological Control of Anthracnose of Chilli at Pre-and Post-Harvesting

    International Nuclear Information System (INIS)

    Piadiang, Nattaya

    2006-09-01

    A total of 301 of isolates of microorganism were isolated from pepper leaves and fruit skin, including fungi bacteria and yeast. They were tested inhibition of mycelia l growth of Colletotrichum gloeosporioides, a causal agent of anthracnose, on potato dextrose agar (PDA). The result showed that 145 isolate inhibited the growth of mycelia l by 45-70 %. The selected high efficiency antagonists were tested for potential reduce anthracnose lesion development on detected pepper fruit. The selected four isolate antagonists including Y18, YFm1, YFm2 and AC2-1 were finding suitable method test for control of anthracnose disease. The results show that application of antagonistic microorganism before inoculation of C. gloeosporiodes was superior in disease controlling than inoculation regardless the use of pathogen inoculation procedures. Antagonist Y18, YFm1 and YFm2 were test ability in greenhouse, in was found that three isolates have high efficiency for control anthracnose disease. Under field condition, spraying cell suspension of Y18, YFm2 and Yfm1 on pepper fruit before inoculation C. gloeosporioides and cover with plastic bag. 14 day after treatment it was found that Y18, YFm2, YFm1 and control had percentage of fruit disease by 33.33, 40.7, 73.4 and 100 % respectively. When study ability of three isolate in field at found anthracnose disease revealed that Y18 and YFm2 could control of C. gloesporiodides within 12 day after treatment. Addition, YFm2 could control of C. gloeosporidide in field at not found anthracnose high efficiency. The efficiency test of YFm2 for anthracnose controlling on chilli fruit for export were kept at 13 degree C for 18 days. YFm2 showed 100 % control of anthracnose with satisfactory firmness of chilli friut.

  16. Influenza A virus does not encode a tetherin antagonist with Vpu-like activity and induces IFN-dependent tetherin expression in infected cells.

    Directory of Open Access Journals (Sweden)

    Michael Winkler

    Full Text Available The interferon-induced host cell factor tetherin inhibits release of human immunodeficiency virus (HIV from the plasma membrane of infected cells and is counteracted by the HIV-1 protein Vpu. Influenza A virus (FLUAV also buds from the plasma membrane and is not inhibited by tetherin. Here, we investigated if FLUAV encodes a functional equivalent of Vpu for tetherin antagonism. We found that expression of the FLUAV protein NS1, which antagonizes the interferon (IFN response, did not block the tetherin-mediated restriction of HIV release, which was rescued by Vpu. Similarly, tetherin-mediated inhibition of HIV release was not rescued by FLUAV infection. In contrast, FLUAV infection induced tetherin expression on target cells in an IFN-dependent manner. These results suggest that FLUAV escapes the antiviral effects of tetherin without encoding a tetherin antagonist with Vpu-like activity.

  17. Aryl Hydrocarbon Receptor Antagonists Mitigate the Effects of Dioxin on Critical Cellular Functions in Differentiating Human Osteoblast-Like Cells

    Directory of Open Access Journals (Sweden)

    Chawon Yun

    2018-01-01

    Full Text Available The inhibition of bone healing in humans is a well-established effect associated with cigarette smoking, but the underlying mechanisms are still unclear. Recent work using animal cell lines have implicated the aryl hydrocarbon receptor (AhR as a mediator of the anti-osteogenic effects of cigarette smoke, but the complexity of cigarette smoke mixtures makes understanding the mechanisms of action a major challenge. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD, dioxin is a high-affinity AhR ligand that is frequently used to investigate biological processes impacted by AhR activation. Since there are dozens of AhR ligands present in cigarette smoke, we utilized dioxin as a prototype ligand to activate the receptor and explore its effects on pro-osteogenic biomarkers and other factors critical to osteogenesis using a human osteoblast-like cell line. We also explored the capacity for AhR antagonists to protect against dioxin action in this context. We found dioxin to inhibit osteogenic differentiation, whereas co-treatment with various AhR antagonists protected against dioxin action. Dioxin also negatively impacted cell adhesion with a corresponding reduction in the expression of integrin and cadherin proteins, which are known to be involved in this process. Similarly, the dioxin-mediated inhibition of cell migration correlated with reduced expression of the chemokine receptor CXCR4 and its ligand, CXCL12, and co-treatment with antagonists restored migratory capacity. Our results suggest that AhR activation may play a role in the bone regenerative response in humans exposed to AhR activators, such as those present in cigarette smoke. Given the similarity of our results using a human cell line to previous work done in murine cells, animal models may yield data relevant to the human setting. In addition, the AhR may represent a potential therapeutic target for orthopedic patients who smoke cigarettes, or those who are exposed to secondhand smoke or other

  18. Does protein binding modulate the effect of angiotensin II receptor antagonists?

    Directory of Open Access Journals (Sweden)

    Marc P Maillard

    2001-03-01

    Full Text Available IntroductionAngiotensin II AT 1-receptor antagonists are highly bound to plasma proteins (≥ 99%. With some antagonists, such as DuP-532, the protein binding was such that no efficacy of the drug could be demonstrated clinically. Whether protein binding interferes with the efficacy of other antagonists is not known. We have therefore investigated in vitro how plasma proteins may affect the antagonistic effect of different AT1-receptor antagonists.MethodsA radio-receptor binding assay was used to analyse the interaction between proteins and the ability of various angiotensin II (Ang II antagonists to block AT1-receptors. In addition, the Biacore technology, a new technique which enables the real-time monitoring of binding events between two molecules, was used to evaluate the dissociation rate constants of five AT1-receptor antagonists from human serum albumin.ResultsThe in vitro AT 1-antagonistic effects of different Ang II receptor antagonists were differentially affected by the presence of human plasma, with rightward shifts of the IC50 ranging from one to several orders of magnitude. The importance of the shift correlates with the dissociation rate constants of these drugs from albumin. Our experiments also show that the way that AT1-receptor antagonists bind to proteins differs from one compound to another. These results suggest that the interaction with plasma proteins appears to modulate the efficacy of some Ang II antagonists.ConclusionAlthough the high binding level of Ang II receptor antagonist to plasma proteins appears to be a feature common to this class of compounds, the kinetics and characteristics of this binding is of great importance. With some antagonists, protein binding interferes markedly with their efficacy to block AT1-receptors.

  19. A selective and potent CXCR3 antagonist SCH 546738 attenuates the development of autoimmune diseases and delays graft rejection

    Directory of Open Access Journals (Sweden)

    Jenh Chung-Her

    2012-01-01

    Full Text Available Abstract Background The CXCR3 receptor and its three interferon-inducible ligands (CXCL9, CXCL10 and CXCL11 have been implicated as playing a central role in directing a Th1 inflammatory response. Recent studies strongly support that the CXCR3 receptor is a very attractive therapeutic target for treating autoimmune diseases, such as rheumatoid arthritis, multiple sclerosis and psoriasis, and to prevent transplant rejection. We describe here the in vitro and in vivo pharmacological characterizations of a novel and potent small molecule CXCR3 antagonist, SCH 546738. Results In this study, we evaluated in vitro pharmacological properties of SCH 546738 by radioligand receptor binding and human activated T cell chemotaxis assays. In vivo efficacy of SCH 546738 was determined by mouse collagen-induced arthritis, rat and mouse experimental autoimmune encephalomyelitis, and rat cardiac transplantation models. We show that SCH 546738 binds to human CXCR3 with a high affinity of 0.4 nM. In addition, SCH 546738 displaces radiolabeled CXCL10 and CXCL11 from human CXCR3 with IC50 ranging from 0.8 to 2.2 nM in a non-competitive manner. SCH 546738 potently and specifically inhibits CXCR3-mediated chemotaxis in human activated T cells with IC90 about 10 nM. SCH 546738 attenuates the disease development in mouse collagen-induced arthritis model. SCH 546738 also significantly reduces disease severity in rat and mouse experimental autoimmune encephalomyelitis models. Furthermore, SCH 546738 alone achieves dose-dependent prolongation of rat cardiac allograft survival. Most significantly, SCH 546738 in combination with CsA supports permanent engraftment. Conclusions SCH 546738 is a novel, potent and non-competitive small molecule CXCR3 antagonist. It is efficacious in multiple preclinical disease models. These results demonstrate that therapy with CXCR3 antagonists may serve as a new strategy for treatment of autoimmune diseases, including rheumatoid arthritis and

  20. A selective, non-peptide CRF receptor 1 antagonist prevents sodium lactate-induced acute panic-like responses.

    Science.gov (United States)

    Shekhar, Anantha; Johnson, Philip L; Fitz, Stephanie D; Nakazato, Atsuro; Chaki, Shigeyuki; Steckler, Thomas; Schmidt, Mark

    2011-04-01

    Corticotropin releasing factor (CRF) is implicated in a variety of stress-related disorders such as depression and anxiety, and blocking CRF receptors is a putative strategy for treating such disorders. Using a well-studied animal model of panic, we tested the efficacy of JNJ19567470/CRA5626, a selective, non-peptidergic CRF type 1 receptor (CRF1) antagonist (3, 10 and 40 mg/kg intraperitoneal injection), in preventing the sodium lactate (NaLac)-induced panic-like behavioural and cardiovascular responses. Adult male rats with chronic reduction of GABA levels (by inhibition of GABA synthesis with l-allyglycine, a glutamic acid decarboxylase inhibitor) in the dorsomedial/perifornical hypothalamus are highly anxious and exhibit physiological and behavioural responses to intravenous NaLac infusions similar to patients with panic disorder. These 'panic-prone' rats pre-treated with vehicle injections displayed NaLac-induced increases in autonomic responses (i.e. tachycardia and hypertensive responses), anxiety-like behaviour in the social interaction test, and flight-like increases in locomotor activity. However, systemically injecting such panic-prone rats with the highest dose of CRF1 receptor antagonist prior to NaLac infusions blocked all NaLac-induced behaviour and cardiovascular responses. These data suggest that selective CRF1 receptor antagonists could be a novel target for developing anti-panic drugs that are as effective as benzodiazepines in acute treatment of a panic attack without the deleterious side-effects (e.g. sedation and cognitive impairment) associated with benzodiazepines.

  1. Antagonistic Activity of Probiotic Bacteria Isolated from Traditional Dairy Products against E. coli O157:H7

    Directory of Open Access Journals (Sweden)

    Maryam Rahimpour Hesari

    2017-10-01

    Full Text Available Background:    Probiotics are living microorganisms that have useful effects on health of digestive system when acquired in a defined dosage. E. coli O157:H7 is known as one of the most important agents of diarrhea in developing countries. Therefore, attention to the treatment of such gastrointestinal disease is essential. The aim of this study was to determine antagonistic activity of food born lactobacilli against E. coli O157:H7.Methods:     Lactobacilli were isolated from traditional dairy products (yogurt and buttermilk samples. Then, they were characterized using biochemical and molecular tests. Bifidobacterium bifidum PTCC 1644 was obtained from the microbial collection of Iranian Research Organization for Science and Technology in Lyophilized form. Similarly, E. coli O157:H7 PTCC12900 was obtained from faculty of veterinary medicine university of Tehran. The antagonistic activity of probiotics supernatants against E. coli O157:H7 was investigated using the disk diffusion agar, well diffusion agar and pour plate methods.Results:   The isolates were characterized as Lactobacillus plantarum and Lactobacillus fermentum. All isolates showed antagonistic activities against E. coli O157:H7 in all of the three methods, where the activity of L. plantarum and B. bidifum PTCC 1644 was greater than that of L. fermentum. Conclusion:   Metabolites produced by the probiotic bacteria are able to inhibit the growth of E. coli O157:H7. This can be an important solution for the prevention and treatment of E. coli O157:H7 infection and ultimately improve human health.

  2. The role of endothelin-1 and endothelin receptor antagonists in allergic rhinitis inflammation: ovalbumin-induced rat model.

    Science.gov (United States)

    Tatar, A; Yayla, M; Kose, D; Halici, Z; Yoruk, O; Polat, E

    2016-09-01

    Desloratadine is a biologically active metabolite of loratadine which is indicated for the treatment of allergic rhinitis. Bosentan is a dual endothelin receptor antagonist used to treatment of pulmonary artery hypertension (PAH). In this study, we aimed to determine the role of endothelins in allergic rhinitis (AR) and the effects of endothelin receptor antagonists in AR rat models through comparison with desloratadine. In total, 20 adult Sprague-Dawley rats were used in this study. An ovalbumin-induced allergic rhinitis model was formed in three study groups except for the control group. Bosentan (100 mg/kg/day) was given to the bosentan-treated group for 7 days and desloratadine (10 mg/kg/day) was administered to the antihistaminic-treated group for 7 days. Nasal symptom scorings and histopathological examinations of the nasal tissues were carried out. Serum IgE levels and ET-1 and TNF-alpha mRNA expression levels were analysed. Between group comparisons for nasal symptoms, histopathological analysis, and molecular analyses were performed with a one-way ANOVA and Duncans multiple comparison tests. Significance was accepted at p smaller than 0.05. Bosentan inhibited nasal symptom more significantly than desloratadine. The IgE level, ET-1 and TNF-alpha mRNA expression levels statistically increased in the allergic rhinitis group when compared to other groups. Conversely, the bosentan-treatment group showed a significant recovery from the same parameters. The deterioration in histopathological parameters reached the highest levels in the allergic rhinitis group. The histopathological findings were close to those of the control group in the bosentan and antihistaminic-treated group. ET-1 is one of the mediators that impact AR development and ET-1 antagonists can be useful for symptom control and for decreasing allergic inflammation in AR patients.

  3. Antiproliferative effect of growth hormone-releasing hormone (GHRH antagonist on ovarian cancer cells through the EGFR-Akt pathway

    Directory of Open Access Journals (Sweden)

    Varga Jozsef

    2010-05-01

    Full Text Available Abstract Background Antagonists of growth hormone-releasing hormone (GHRH are being developed for the treatment of various human cancers. Methods MTT assay was used to test the proliferation of SKOV3 and CaOV3. The splice variant expression of GHRH receptors was examined by RT-PCR. The expression of protein in signal pathway was examined by Western blotting. siRNA was used to block the effect of EGFR. Results In this study, we investigated the effects of a new GHRH antagonist JMR-132, in ovarian cancer cell lines SKOV3 and CaOV3 expressing splice variant (SV1 of GHRH receptors. MTT assay showed that JMR-132 had strong antiproliferative effects on SKOV3 and CaOV3 cells in both a time-dependent and dose-dependent fashion. JMR-132 also induced the activation and increased cleaved caspase3 in a time- and dose-dependent manner in both cell lines. In addition, JMR-132 treatments decreased significantly the epidermal growth factor receptor (EGFR level and the phosphorylation of Akt (p-Akt, suggesting that JMR-132 inhibits the EGFR-Akt pathway in ovarian cancer cells. More importantly, treatment of SKOV3 and CaOV3 cells with 100 nM JMR-132 attenuated proliferation and the antiapoptotic effect induced by EGF in both cell lines. After the knockdown of the expression of EGFR by siRNA, the antiproliferative effect of JMR-132 was abolished in SKOV3 and CaOV3 cells. Conclusions The present study demonstrates that the inhibitory effect of the GHRH antagonist JMR-132 on proliferation is due, in part, to an interference with the EGFR-Akt pathway in ovarian cancer cells.

  4. Control of wilt and rot pathogens of tomato by antagonistic pink pigmented facultative methylotrophic Delftia lacustris and Bacillus spp.

    Directory of Open Access Journals (Sweden)

    Veeranan Janahiraman

    2016-11-01

    Full Text Available The studies on the biocontrol potential of pink pigmented facultative methylotrophic (PPFM bacteria other than the genus Methylobacterium are scarce. In the present study, we report three facultative methylotrophic isolates; PPO-1, PPT-1 and PPB-1, respectively identified as Delftia lacustris, Bacillus subtilis and Bacillus cereus by 16S rRNA gene sequence analysis. Hemolytic activity was tested to investigate the potential pathogenicity of isolates to plants and humans, the results indicates that the isolates PPO-1, PPT-1 and PPB-1 are not pathogenic strains. Under in vitro conditions, D. lacustris PPO-1, B. subtilis PPT-1 and B. cereus PPB-1 showed direct antagonistic effect by inhibiting the mycelial growth of fungal pathogens; Fusarium oxysporum f. sp. lycopersici (2.15, 2.05 and 1.95 cm, Sclerotium rolfsii (2.14, 2.04 and1.94 cm, Pythium ultimum (2.12, 2.02 and 1.92cm, and Rhizoctonia solani (2.18, 2.08 and 1.98 cm and also produced volatile inhibitory compounds. Under plant growth chamber condition methylotrophic bacterial isolates; D. lacustris PPO-1, B. subtilis PPT-1 and B. cereus PPB-1 significantly reduced the disease incidence of tomato. Under greenhouse condition, D. lacustris PPO-1, B. subtilis PPT-1 and B. cereus PPB-1 inoculated tomato plants, when challenged with F. oxysporum f. sp. lycopersici, S. rolfsii, P. ultimum and R. solani, increased the pathogenesis related proteins (β-1, 3-glucanase and chitinase and defense enzymes (phenylalanine ammonia lyase, peroxidase, polyphenol oxidase, and catalase on day 5 after inoculation. In the current study, we first report the facultative methylotrophy in pink pigmented Delftia lacustris, B. subtilis, and B. cereus and their antagonistic potential against fungal pathogens. Direct antagonistic and ISR effects of these isolates against fungal pathogens of tomato evidenced their possible use as a biocontrol agent.

  5. Protection from fatal viral encephalomyelitis: AMPA receptor antagonists have a direct effect on the inflammatory response to infection

    Science.gov (United States)

    Greene, Ivorlyne P.; Lee, Eun-Young; Prow, Natalie; Ngwang, Brownhilda; Griffin, Diane E.

    2008-01-01

    Neuronal cell death during fatal acute viral encephalomyelitis can result from damage caused by virus replication, glutamate excitotoxicity, and the immune response. A neurovirulent strain of the alphavirus Sindbis virus (NSV) causes fatal encephalomyelitis associated with motor neuron death in adult C57BL/6 mice that can be prevented by treatment with the prototypic noncompetitive α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) glutamate receptor antagonist GYKI 52466 [Nargi-Aizenman J, et al. (2004) Ann Neurol 55:541–549]. To determine the mechanism of protection, NSV-infected mice were treated with 7-acetyl-5-(4-aminophenyl)-8(R)-methyl-8,9-dihydro-7H-1,3-dioxolo-(4,5-h)-benzodiazepine (talampanel), a potent, orally available member of the 2,3 benzodiazepine class of noncompetitive AMPA glutamate receptor antagonists. Talampanel-treated mice were protected from NSV-induced paralysis and death. Examination of the brain during infection showed significantly less mononuclear cell infiltration and no increase in astrocyte expression of glial fibrillary acidic protein in treated mice compared with untreated mice. Lack of CNS inflammation was attributable to failure of treated mice to induce activation and proliferation of lymphocytes in secondary lymphoid tissue in response to infection. Antibody responses to NSV were also suppressed by talampanel treatment, and virus clearance was delayed. These studies reveal a previously unrecognized effect of AMPA receptor antagonists on the immune response and suggest that prevention of immune-mediated damage, in addition to inhibition of excitotoxicity, is a mechanism by which these drugs protect from death of motor neurons caused by viral infection. PMID:18296635

  6. Interactions of CB1 and mGlu5 receptor antagonists in food intake, anxiety and memory models in rats.

    Science.gov (United States)

    Varga, Balázs; Kassai, Ferenc; Gyertyán, István

    2012-12-01

    CB(1) receptor antagonists proved to be effective anti-obesity drugs, however, their depressive and anxiogenic effects became also evident. Finding solution to overcome these psychiatric side effects is still in focus of research. Based on the available clinical and preclinical results we hypothesized that the combination of CB(1) and mGlu(5) receptor antagonisms may result in a pharmacological intervention, where the anxiolytic mGlu(5) receptor inhibition may counteract the anxiogenic psychiatric side effects of CB(1) antagonism, while CB(1) antagonism may ameliorate the memory impairing effect of mGlu(5) receptor antagonism. Further, the two components will synergistically interact in blocking food-intake and reducing obesity. For testing the interaction of mGlu(5) and CB(1) receptor antagonism MTEP [3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pridine; SIB-1757, 6-methyl-2-(phenylazo)-3-pyridinol)] (mGlu(5) antagonist) and rimonabant [(5-(4-Chlorophenyl)-1-(2,4-dichloro-phenyl)-4-methyl-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide)hydrochloride] (CB(1) antagonist) were used. All experiments were carried out in rats. Effects of the compounds on anxiety were tested in two foot shock induced ultrasonic vocalization paradigms, appetite suppression was assessed in the food intake test, while memory effects were tested in a context conditioned ultrasonic vocalization setup. MTEP abolished the anxiogenic effect of rimonabant, while there was an additive cooperation in suppressing appetite. However, rimonabant did not ameliorate the memory impairing effect of MTEP. By combination of CB(1) and mGluR5 antagonism, anxiety related side effects might be attenuated, appetite suppression maintained, nevertheless, the possible emergence of unwanted memory impairments can overshadow its therapeutic success. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. PPADS: an antagonist at endothelial P2Y-purinoceptors but not P2U-purinoceptors.

    Science.gov (United States)

    Brown, C; Tanna, B; Boarder, M R

    1995-11-01

    1. Bovine aortic endothelial (BAE) cells contain two co-existing receptors for extracellular ATP, the P2Y and P2U-purinoceptors. Here we have determined whether the proposed P2X-purinoceptor antagonist, pyridoxalphosphate-6-azophenyl-2', 4'-disulphonic acid (PPADS) could distinguish between these two receptor subtypes. 2. Cells labelled with myo-[2-3H]-inositol were stimulated with increasing concentrations of either the P2Y-agonist, 2MeSATP, or the P2U-agonist, UTP in the absence or presence of 30 microM PPADS. The accumulation of total [3H]-inositol (poly)phosphates mediated by 2MeSATP was markedly attenuated by PPADS, whereas the response to UTP was not significantly affected. 3. Stimulation of BAE cells with increasing concentrations of ATP showed a reduced response in the presence of 10 microM PPADS, but this effect of the antagonist was not significant. By contrast, inhibition of the response to ADP was profound and highly significant. 4. These observations show that PPADS is not a selective P2X-purinoceptor antagonist, but is able to distinguish between P2Y- and P2YU-purinoceptors in BAE cells, and indicate that this compound may provide a useful tool in the study of multiple subtypes of P2-purinoceptors. Furthermore the results are consistent with the hypothesis that ATP interacts with both receptor subtypes, but that the action of ADP is primarily at the P2Y-purinoceptor in these endothelial cells.

  8. A trimeric structural fusion of an antagonistic tumor necrosis factor-α mutant enhances molecular stability and enables facile modification.

    Science.gov (United States)

    Inoue, Masaki; Ando, Daisuke; Kamada, Haruhiko; Taki, Shintaro; Niiyama, Mayumi; Mukai, Yohei; Tadokoro, Takashi; Maenaka, Katsumi; Nakayama, Taisuke; Kado, Yuji; Inoue, Tsuyoshi; Tsutsumi, Yasuo; Tsunoda, Shin-Ichi

    2017-04-21

    Tumor necrosis factor-α (TNF) exerts its biological effect through two types of receptors, p55 TNF receptor (TNFR1) and p75 TNF receptor (TNFR2). An inflammatory response is known to be induced mainly by TNFR1, whereas an anti-inflammatory reaction is thought to be mediated by TNFR2 in some autoimmune diseases. We have been investigating the use of an antagonistic TNF mutant (TNFR1-selective antagonistic TNF mutant (R1antTNF)) to reveal the pharmacological effect of TNFR1-selective inhibition as a new therapeutic modality. Here, we aimed to further improve and optimize the activity and behavior of this mutant protein both in vitro and in vivo Specifically, we examined a trimeric structural fusion of R1antTNF, formed via the introduction of short peptide linkers, as a strategy to enhance bioactivity and molecular stability. By comparative analysis with R1antTNF, the trimeric fusion, referred to as single-chain R1antTNF (scR1antTNF), was found to retain in vitro molecular properties of receptor selectivity and antagonistic activity but displayed a marked increase in thermal stability. The residence time of scR1antTNF in vivo was also significantly prolonged. Furthermore, molecular modification using polyethylene glycol (PEG) was easily controlled by limiting the number of reactive sites. Taken together, our findings show that scR1antTNF displays enhanced molecular stability while maintaining biological activity compared with R1antTNF. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Sexually antagonistic "zygotic drive" of the sex chromosomes.

    Directory of Open Access Journals (Sweden)

    William R Rice

    2008-12-01

    Full Text Available Genomic conflict is perplexing because it causes the fitness of a species to decline rather than improve. Many diverse forms of genomic conflict have been identified, but this extant tally may be incomplete. Here, we show that the unusual characteristics of the sex chromosomes can, in principle, lead to a previously unappreciated form of sexual genomic conflict. The phenomenon occurs because there is selection in the heterogametic sex for sex-linked mutations that harm the sex of offspring that does not carry them, whenever there is competition among siblings. This harmful phenotype can be expressed as an antagonistic green-beard effect that is mediated by epigenetic parental effects, parental investment, and/or interactions among siblings. We call this form of genomic conflict sexually antagonistic "zygotic drive", because it is functionally equivalent to meiotic drive, except that it operates during the zygotic and postzygotic stages of the life cycle rather than the meiotic and gametic stages. A combination of mathematical modeling and a survey of empirical studies is used to show that sexually antagonistic zygotic drive is feasible, likely to be widespread in nature, and that it can promote a genetic "arms race" between the homo- and heteromorphic sex chromosomes. This new category of genomic conflict has the