WorldWideScience

Sample records for cd1c bypasses lysosomes

  1. CD1c-Related DCs that Express CD207/Langerin, but Are Distinguishable from Langerhans Cells, Are Consistently Present in Human Tonsils

    Science.gov (United States)

    De Monte, Anne; Olivieri, Charles-Vivien; Vitale, Sébastien; Bailleux, Sonanda; Castillo, Laurent; Giordanengo, Valérie; Maryanski, Janet L.; Segura, Elodie; Doglio, Alain

    2016-01-01

    Several subsets of dendritic cells (DCs) are present in the oropharyngeal tonsillar tissues and are thought to behave as major actors in development and regulation of immunity by acting as a first line of recognition for airborne and alimentary antigens. We previously discovered in human adult tonsils infected with Epstein–Barr virus (EBV), a subset of DCs that expressed langerin/CD207, a lectin usually recognized as a hallmark of epidermal Langerhans cells (LCs). In the present study, we analyzed the content of several child and adult tonsils in order to characterize in more detail the phenotype of these tonsillar CD207-expressing DCs (tCD207 DCs) and to compare it with that of other human DC subsets. We showed that all the human tonsils studied (n = 12) contained significant proportions of tCD207 DCs among tonsillar cells expressing HLA-DR. Moreover, the presence of tCD207 DCs in tonsils from young children free of EBV infection indicated that these cells could be established early in the tonsil independently of EBV infection. We also showed that tCD207 DCs, that were found mainly located within the tonsillar lymphoid stroma, were distinguishable from LCs by the level of expression of CD1a and EpCAM, and also from human inflammatory DCs by the lack of CD1a, CD206, and CD14 expression. Detailed analysis of cell surface DC markers showed that tCD207 DCs were unrelated to CD141+ DCs or macrophages, but defined a subtype of tonsillar DCs closely related to myeloid resident CD1c DCs. Since it was established that blood CD1c myeloid DCs exhibit plasticity and are capable of expressing CD207 notably in the presence of inflammatory cytokines, it is tempting to speculate that CD207+ CD1c+ DCs may play a specific immune role. PMID:27252701

  2. The awesome lysosome

    OpenAIRE

    Ballabio, Andrea

    2016-01-01

    In the early 50s, Christian De Duve identified a new cellular structure, the lysosome, defined as the cell's “suicide bag” (de Duve, 2005). Sixty years later, it is clear that the lysosome greatly exceeded the expectations of its discoverer. Over 50 different types of lysosomal storage diseases have been identified, each due to the deficiency or malfunction of a specific lysosomal protein. In addition, an important role of the lysosome has been unveiled in several common human diseases, such ...

  3. Proteomics of the Lysosome

    OpenAIRE

    Lübke, Torben; Lobel, Peter; Sleat, David

    2008-01-01

    Defects in lysosomal function have been associated with numerous monogenic human diseases typically classified as lysosomal storage diseases. However, there is increasing evidence that lysosomal proteins are also involved in more widespread human diseases including cancer and Alzheimer disease. Thus, there is a continuing interest in understanding the cellular functions of the lysosome and an emerging approach to this is the identification of its constituent proteins by proteomic analyses. To...

  4. Lysosome Transport as a Function of Lysosome Diameter

    OpenAIRE

    Debjyoti Bandyopadhyay; Austin Cyphersmith; Zapata, Jairo A.; Y Joseph Kim; Payne, Christine K.

    2014-01-01

    Lysosomes are membrane-bound organelles responsible for the transport and degradation of intracellular and extracellular cargo. The intracellular motion of lysosomes is both diffusive and active, mediated by motor proteins moving lysosomes along microtubules. We sought to determine how lysosome diameter influences lysosome transport. We used osmotic swelling to double the diameter of lysosomes, creating a population of enlarged lysosomes. This allowed us to directly examine the intracellular ...

  5. Lysosomes, cholesterol and atherosclerosis

    OpenAIRE

    Jerome, W. Gray

    2010-01-01

    Cholesterol-engorged macrophage foam cells are a critical component of the atherosclerotic lesion. Reducing the sterol deposits in lesions reduces clinical events. Sterol accumulations within lysosomes have proven to be particularly hard to mobilize out of foam cells. Moreover, excess sterol accumulation in lysosomes has untoward effects, including a complete disruption of lysosome function. Recently, we demonstrated that treatment of sterol-engorged macrophages in culture with triglyceride-c...

  6. Targeting the lysosome in cancer

    OpenAIRE

    Piao, Shengfu; Amaravadi, Ravi K.

    2015-01-01

    Lysosomes are membrane-bound intracellular organelles that receive macromolecules delivered by endocytosis, phagocytosis, and autophagy for degradation and recycling. Over the last decade, advances in lysosome research have established a broad role for the lysosome in the pathophysiology of disease. In this review, we highlight the recent discoveries in lysosome biology, with an emphasis on their implications for cancer therapy. We focus on targeting the lysosome in cancer by exploring lysoso...

  7. TFEB regulates lysosomal proteostasis.

    Science.gov (United States)

    Song, Wensi; Wang, Fan; Savini, Marzia; Ake, Ashley; di Ronza, Alberto; Sardiello, Marco; Segatori, Laura

    2013-05-15

    Loss-of-function diseases are often caused by destabilizing mutations that lead to protein misfolding and degradation. Modulating the innate protein homeostasis (proteostasis) capacity may lead to rescue of native folding of the mutated variants, thereby ameliorating the disease phenotype. In lysosomal storage disorders (LSDs), a number of highly prevalent alleles have missense mutations that do not impair the enzyme's catalytic activity but destabilize its native structure, resulting in the degradation of the misfolded protein. Enhancing the cellular folding capacity enables rescuing the native, biologically functional structure of these unstable mutated enzymes. However, proteostasis modulators specific for the lysosomal system are currently unknown. Here, we investigate the role of the transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and function, in modulating lysosomal proteostasis in LSDs. We show that TFEB activation results in enhanced folding, trafficking and lysosomal activity of a severely destabilized glucocerebrosidase (GC) variant associated with the development of Gaucher disease (GD), the most common LSD. TFEB specifically induces the expression of GC and of key genes involved in folding and lysosomal trafficking, thereby enhancing both the pool of mutated enzyme and its processing through the secretory pathway. TFEB activation also rescues the activity of a β-hexosaminidase mutant associated with the development of another LSD, Tay-Sachs disease, thus suggesting general applicability of TFEB-mediated proteostasis modulation to rescue destabilizing mutations in LSDs. In summary, our findings identify TFEB as a specific regulator of lysosomal proteostasis and suggest that TFEB may be used as a therapeutic target to rescue enzyme homeostasis in LSDs. PMID:23393155

  8. Lysosomal Trafficking Regulator (LYST).

    Science.gov (United States)

    Ji, Xiaojie; Chang, Bo; Naggert, Jürgen K; Nishina, Patsy M

    2016-01-01

    Regulation of vesicle trafficking to lysosomes and lysosome-related organelles (LROs) as well as regulation of the size of these organelles are critical to maintain their functions. Disruption of the lysosomal trafficking regulator (LYST) results in Chediak-Higashi syndrome (CHS), a rare autosomal recessive disorder characterized by oculocutaneous albinism, prolonged bleeding, severe immunodeficiency, recurrent bacterial infection, neurologic dysfunction and hemophagocytic lympohistiocytosis (HLH). The classic diagnostic feature of the syndrome is enlarged LROs in all cell types, including lysosomes, melanosomes, cytolytic granules and platelet dense bodies. The most striking CHS ocular pathology observed is an enlargement of melanosomes in the retinal pigment epithelium (RPE), which leads to aberrant distribution of eye pigmentation, and results in photophobia and decreased visual acuity. Understanding the molecular function of LYST and identification of its interacting partners may provide therapeutic targets for CHS and other diseases associated with the regulation of LRO size and/or vesicle trafficking, such as asthma, urticaria and Leishmania amazonensis infections. PMID:26427484

  9. The Biogenesis of Lysosomes and Lysosome-Related Organelles

    Science.gov (United States)

    Luzio, J. Paul; Hackmann, Yvonne; Dieckmann, Nele M.G.; Griffiths, Gillian M.

    2014-01-01

    Lysosomes were once considered the end point of endocytosis, simply used for macromolecule degradation. They are now recognized to be dynamic organelles, able to fuse with a variety of targets and to be re-formed after fusion events. They are also now known to be the site of nutrient sensing and signaling to the cell nucleus. In addition, lysosomes are secretory organelles, with specialized machinery for regulated secretion of proteins in some cell types. The biogenesis of lysosomes and lysosome-related organelles is discussed, taking into account their dynamic nature and multiple roles. PMID:25183830

  10. The lysosome and neurodegenerative diseases

    Institute of Scientific and Technical Information of China (English)

    Lisha Zhang; Rui Sheng; Zhenghong Qin

    2009-01-01

    It has long been believed that the lysosome is an important digestive organelle. There is increasing evidence that the lysosome is also involved in pathogenesis of a variety of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Abnormal protein degradation and deposition induced by lysosoreal dysfunction may be the primary contributor to age-related neurodegeneration. In this review, the possible relationship between lysosome and various neurodegenerative diseases is described.

  11. Astrocytes and lysosomal storage diseases.

    Science.gov (United States)

    Rama Rao, K V; Kielian, T

    2016-05-26

    Lysosomal storage diseases (LSDs) encompass a wide range of disorders characterized by inborn errors of lysosomal function. The majority of LSDs result from genetic defects in lysosomal enzymes, although some arise from mutations in lysosomal proteins that lack known enzymatic activity. Neuropathological abnormalities are a feature of several LSDs and when severe, represent an important determinant in disease outcome. Glial dysfunction, particularly in astrocytes, is also observed in numerous LSDs and has been suggested to impact neurodegeneration. This review will discuss the potential role of astrocytes in LSDs and highlight the possibility of targeting glia as a beneficial strategy to counteract the neuropathology associated with LSDs. PMID:26037807

  12. Cancer-associated lysosomal changes

    DEFF Research Database (Denmark)

    Kallunki, T; Olsen, O D; Jaattela, Marja

    2013-01-01

    Rapidly dividing and invasive cancer cells are strongly dependent on effective lysosomal function. Accordingly, transformation and cancer progression are characterized by dramatic changes in lysosomal volume, composition and cellular distribution. Depending on one's point of view, the cancer......-targeting anti-cancer drugs. In this review we compile our current knowledge on cancer-associated changes in lysosomal composition and discuss the consequences of these alterations to cancer progression and the possibilities they can bring to cancer therapy.Oncogene advance online publication, 9 July 2012; doi...

  13. Lysosomal Adaptation: How the Lysosome Responds to External Cues

    OpenAIRE

    Settembre, C.; Ballabio, A

    2014-01-01

    Recent evidence indicates that the importance of the lysosome in cell metabolism and organism physiology goes far beyond the simple disposal of cellular garbage. This dynamic organelle is situated at the crossroad of the most important cellular pathways and is involved in sensing, signaling, and transcriptional mechanisms that respond to environmental cues, such as nutrients. Two main mediators of these lysosomal adaptation mechanisms are the mTORC1 kinase complex and the transcription factor...

  14. Mice Doubly-Deficient in Lysosomal Hexosaminidase A and Neuraminidase 4 Show Epileptic Crises and Rapid Neuronal Loss

    OpenAIRE

    Volkan Seyrantepe; Pablo Lema; Aurore Caqueret; Larbi Dridi; Samar Bel Hadj; Stephane Carpentier; Francine Boucher; Thierry Levade; Lionel Carmant; Gravel, Roy A; Edith Hamel; Pascal Vachon; Graziella Di Cristo; Michaud, Jacques L; Morales, Carlos R.

    2010-01-01

    Tay-Sachs disease is a severe lysosomal disorder caused by mutations in the HexA gene coding for the α-subunit of lysosomal β-hexosaminidase A, which converts G(M2) to G(M3) ganglioside. Hexa(-/-) mice, depleted of β-hexosaminidase A, remain asymptomatic to 1 year of age, because they catabolise G(M2) ganglioside via a lysosomal sialidase into glycolipid G(A2), which is further processed by β-hexosaminidase B to lactosyl-ceramide, thereby bypassing the β-hexosaminidase A defect. Since this by...

  15. The enlarged lysosomes in beigej cells result from decreased lysosome fission and not increased lysosome fusion

    OpenAIRE

    Durchfort, Nina; Verhoef, Shane; Vaughn, Michael B.; Shrestha, Rishna; Adam, Dieter; Kaplan, Jerry; Ward, Diane McVey

    2011-01-01

    Chediak-Higashi Syndrome is an autosomal recessive disorder that affects vesicle morphology. The Chs1/Lyst protein is a member of the BEACH family of proteins. The absence of Chs1/Lyst gives rise to enlarged lysosomes. Lysosome size is regulated by a balance between vesicle fusion and fission and can be reversibly altered by acidifying the cytoplasm using Acetate Ringer’s or by incubating with the drug vacuolin-1. We took advantage of these procedures to determine rates of lysosome fusion and...

  16. Coronary Artery Bypass

    Science.gov (United States)

    ... to 3 days in the Intensive Care Unit (ICU). Life After Bypass After bypass surgery, your doctor will recommend that you join a cardiac rehabilitation program. These programs help you make lifestyle changes ...

  17. Lysosomal cell death at a glance

    DEFF Research Database (Denmark)

    Aits, Sonja; Jaattela, Marja

    2013-01-01

    Lysosomes serve as the cellular recycling centre and are filled with numerous hydrolases that can degrade most cellular macromolecules. Lysosomal membrane permeabilization and the consequent leakage of the lysosomal content into the cytosol leads to so-called "lysosomal cell death". This form of...... cell death is mainly carried out by the lysosomal cathepsin proteases and can have necrotic, apoptotic or apoptosis-like features depending on the extent of the leakage and the cellular context. This article summarizes our current knowledge on lysosomal cell death with an emphasis on the upstream...

  18. Human recombinant lysosomal enzymes produced in microorganisms.

    Science.gov (United States)

    Espejo-Mojica, Ángela J; Alméciga-Díaz, Carlos J; Rodríguez, Alexander; Mosquera, Ángela; Díaz, Dennis; Beltrán, Laura; Díaz, Sergio; Pimentel, Natalia; Moreno, Jefferson; Sánchez, Jhonnathan; Sánchez, Oscar F; Córdoba, Henry; Poutou-Piñales, Raúl A; Barrera, Luis A

    2015-01-01

    Lysosomal storage diseases (LSDs) are caused by accumulation of partially degraded substrates within the lysosome, as a result of a function loss of a lysosomal protein. Recombinant lysosomal proteins are usually produced in mammalian cells, based on their capacity to carry out post-translational modifications similar to those observed in human native proteins. However, during the last years, a growing number of studies have shown the possibility to produce active forms of lysosomal proteins in other expression systems, such as plants and microorganisms. In this paper, we review the production and characterization of human lysosomal proteins, deficient in several LSDs, which have been produced in microorganisms. For this purpose, Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris, Yarrowia lipolytica, and Ogataea minuta have been used as expression systems. The recombinant lysosomal proteins expressed in these hosts have shown similar substrate specificities, and temperature and pH stability profiles to those produced in mammalian cells. In addition, pre-clinical results have shown that recombinant lysosomal enzymes produced in microorganisms can be taken-up by cells and reduce the substrate accumulated within the lysosome. Recently, metabolic engineering in yeasts has allowed the production of lysosomal enzymes with tailored N-glycosylations, while progresses in E. coli N-glycosylations offer a potential platform to improve the production of these recombinant lysosomal enzymes. In summary, microorganisms represent convenient platform for the production of recombinant lysosomal proteins for biochemical and physicochemical characterization, as well as for the development of ERT for LSD. PMID:26071627

  19. Clogging the enrichment bypass

    International Nuclear Information System (INIS)

    The issue that has come to be known as the bypass is the latest dispute in the continuing saga of uranium trade between the United States and the Commonwealth of Indepenent States. Bypass deals now being conducted by US utilities have drawn heavy criticism from the US Department of Commerce but are perfectly legal under the terms of the Suspension Agreements. Urged on by the United States Enrichment Corporation, the US DOC intends to stop, or at least severely restrict, bypass deals. Using a recent agreement with Kazakhstan as a case study, this article reviews the implications of such bypass deals

  20. Inhibitors of lysosomal cysteine proteases

    OpenAIRE

    Lyanna O. L.; Chorna V. I.

    2011-01-01

    The review is devoted to the inhibitors of cysteine proteinases which are believed to be very important in many biochemical processes of living organisms. They participate in the development and progression of numerous diseases that involve abnormal protein turnover. One of the main regulators of these proteinases is their specific inhibitors: cystatins. The aim of this review was to present current knowledge about endogenous inhibitors of lysosomal cysteine proteases and their synthetic anal...

  1. Inhibitors of lysosomal cysteine proteases

    Directory of Open Access Journals (Sweden)

    Lyanna O. L.

    2011-04-01

    Full Text Available The review is devoted to the inhibitors of cysteine proteinases which are believed to be very important in many biochemical processes of living organisms. They participate in the development and progression of numerous diseases that involve abnormal protein turnover. One of the main regulators of these proteinases is their specific inhibitors: cystatins. The aim of this review was to present current knowledge about endogenous inhibitors of lysosomal cysteine proteases and their synthetic analogs.

  2. Impaired lysosomal cobalamin transport in Alzheimer's disease.

    Science.gov (United States)

    Zhao, Hua; Li, Hongyun; Ruberu, Kalani; Garner, Brett

    2015-01-01

    Cobalamin (vitamin B12) is required for erythrocyte formation and DNA synthesis and it plays a crucial role in maintaining neurological function. As a coenzyme for methionine synthase and methylmalonyl-CoA mutase, cobalamin utilization depends on its efficient transit through the intracellular lysosomal compartment and subsequent delivery to the cytosol and mitochondria. Lysosomal function deteriorates in Alzheimer's disease (AD). Lysosomal acidification is defective in AD and lysosomal proteolysis is disrupted by AD-related presenilin 1 mutation. In this study, we propose that AD related lysosomal dysfunction may impair lysosomal cobalamin transport. The experiments use in vitro and in vivo models of AD to define how lysosomal dysfunction directly affects cobalamin utilization. SH-SY5Y-AβPP mutant cells were treated with a proteasome inhibitor to induce lysosomal amyloid-β accumulation. We metabolically labeled these cells with [57Co] cobalamin and isolated purified lysosomes, mitochondria, and cytosol fractions. The results indicated that proteasome inhibition was associated with lysosomal amyloid-β accumulation and a doubling of lysosomal [57Co] cobalamin levels. We also used AβPPxPS1 transgenic AD mice that were intraperitoneally injected with [57Co] cobalamin. The amount of [57Co] cobalamin in the major organs of these mice was measured and the subcellular [57Co] cobalamin distribution in the brain was assessed. The results demonstrated that lysosomal [57Co] cobalamin level was significantly increased by 56% in the AβPPxPS1 AD mouse brains as compared to wild type control mice. Together these data provide evidence that lysosomal cobalamin may be impaired in AD in association with amyloid-β accumulation. PMID:25125476

  3. Bypassing damaged nervous tissue

    CERN Document Server

    Shneider, M N

    2016-01-01

    We show the principal ability of bypassing damaged demyelinated portions of nervous tissue, thereby restoring its normal function for the passage of action potentials. We carry out a theoretical analysis on the basis of the synchronization mechanism of action potential propagation along a bundle of neurons, proposed recently in [1]. And we discuss the feasibility of implement a bypass to restore damaged nervous tissue and creating an artificial neuron network.

  4. Role of lysosomes in cancer therapy

    Directory of Open Access Journals (Sweden)

    Halaby R

    2015-09-01

    Full Text Available Reginald Halaby Department of Biology, Montclair State University, Montclair, NJ, USA Abstract: Lysosomes are acidic organelles that are involved in cellular digestion by endocytosis, phagocytosis, and autophagy. They contain more than 50 hydrolases that are capable of degrading all macromolecules. There is accumulating evidence that lysosomal enzymes can provoke apoptotic cell death. This has important implications for cancer, where proapoptotic genes are mutated and antiapoptotic genes are often overexpressed leading to chemoresistance. Lysosomes play a dual role in cancer development depending on their subcellular localization. When they are located extracellularly they can promote invasion, angiogenesis, and metastasis. However, when they are located intracellularly they can trigger apoptosis by leaking into the cytosol. In this review, we examine the pathways by which lysosomes can evoke both apoptosis and tumorigenesis. Although cancer cells have defects in their apoptotic machinery, they can still undergo lysosomal cell death. We offer several strategies to explain how targeting lysosomes can serve as a putative model for the development of novel anticancer agents. Furthermore, we propose that lysosomal cell death is an effective treatment against apoptosis-resistant cancer cells and thus holds great potential as a therapeutic strategy for circumventing apoptosis deficiency in tumors. Keywords: cathepsins, lysosomal membrane permeability, apoptosis, chemoresistance 

  5. A molecular mechanism to regulate lysosome motility for lysosome positioning and tubulation.

    Science.gov (United States)

    Li, Xinran; Rydzewski, Nicholas; Hider, Ahmad; Zhang, Xiaoli; Yang, Junsheng; Wang, Wuyang; Gao, Qiong; Cheng, Xiping; Xu, Haoxing

    2016-04-01

    To mediate the degradation of biomacromolecules, lysosomes must traffic towards cargo-carrying vesicles for subsequent membrane fusion or fission. Mutations of the lysosomal Ca(2+) channel TRPML1 cause lysosomal storage disease (LSD) characterized by disordered lysosomal membrane trafficking in cells. Here we show that TRPML1 activity is required to promote Ca(2+)-dependent centripetal movement of lysosomes towards the perinuclear region (where autophagosomes accumulate) following autophagy induction. ALG-2, an EF-hand-containing protein, serves as a lysosomal Ca(2+) sensor that associates physically with the minus-end-directed dynactin-dynein motor, while PtdIns(3,5)P2, a lysosome-localized phosphoinositide, acts upstream of TRPML1. Furthermore, the PtdIns(3,5)P2-TRPML1-ALG-2-dynein signalling is necessary for lysosome tubulation and reformation. In contrast, the TRPML1 pathway is not required for the perinuclear accumulation of lysosomes observed in many LSDs, which is instead likely to be caused by secondary cholesterol accumulation that constitutively activates Rab7-RILP-dependent retrograde transport. Ca(2+) release from lysosomes thus provides an on-demand mechanism regulating lysosome motility, positioning and tubulation. PMID:26950892

  6. Podocytes degrade endocytosed albumin primarily in lysosomes.

    Science.gov (United States)

    Carson, John M; Okamura, Kayo; Wakashin, Hidefumi; McFann, Kim; Dobrinskikh, Evgenia; Kopp, Jeffrey B; Blaine, Judith

    2014-01-01

    Albuminuria is a strong, independent predictor of chronic kidney disease progression. We hypothesize that podocyte processing of albumin via the lysosome may be an important determinant of podocyte injury and loss. A human urine derived podocyte-like epithelial cell (HUPEC) line was used for in vitro experiments. Albumin uptake was quantified by Western blot after loading HUPECs with fluorescein-labeled (FITC) albumin. Co-localization of albumin with lysosomes was determined by confocal microscopy. Albumin degradation was measured by quantifying FITC-albumin abundance in HUPEC lysates by Western blot. Degradation experiments were repeated using HUPECs treated with chloroquine, a lysosome inhibitor, or MG-132, a proteasome inhibitor. Lysosome activity was measured by fluorescence recovery after photo bleaching (FRAP). Cytokine production was measured by ELISA. Cell death was determined by trypan blue staining. In vivo, staining with lysosome-associated membrane protein-1 (LAMP-1) was performed on tissue from a Denys-Drash trangenic mouse model of nephrotic syndrome. HUPECs endocytosed albumin, which co-localized with lysosomes. Choloroquine, but not MG-132, inhibited albumin degradation, indicating that degradation occurs in lysosomes. Cathepsin B activity, measured by FRAP, significantly decreased in HUPECs exposed to albumin (12.5% of activity in controls) and chloroquine (12.8%), and declined further with exposure to albumin plus chloroquine (8.2%, p<0.05). Cytokine production and cell death were significantly increased in HUPECs exposed to albumin and chloroquine alone, and these effects were potentiated by exposure to albumin plus chloroquine. Compared to wild-type mice, glomerular staining of LAMP-1 was significantly increased in Denys-Drash mice and appeared to be most prominent in podocytes. These data suggest lysosomes are involved in the processing of endocytosed albumin in podocytes, and lysosomal dysfunction may contribute to podocyte injury and

  7. Bypass Flow Study

    International Nuclear Information System (INIS)

    The purpose of the fluid dynamics experiments in the MIR (Matched Index of-Refraction) flow system at Idaho National Laboratory (INL) is to develop benchmark databases for the assessment of Computational Fluid Dynamics (CFD) solutions of the momentum equations, scalar mixing, and turbulence models for the flow ratios between coolant channels and bypass gaps in the interstitial regions of typical prismatic standard fuel element (SFE) or upper reflector block geometries of typical Modular High-temperature Gas-cooled Reactors (MHTGR) in the limiting case of negligible buoyancy and constant fluid properties. The experiments use Particle Image Velocimetry (PIV) to measure the velocity fields that will populate the bypass flow study database.

  8. Bypass Flow Study

    Energy Technology Data Exchange (ETDEWEB)

    Richard Schultz

    2011-09-01

    The purpose of the fluid dynamics experiments in the MIR (Matched Index of-Refraction) flow system at Idaho National Laboratory (INL) is to develop benchmark databases for the assessment of Computational Fluid Dynamics (CFD) solutions of the momentum equations, scalar mixing, and turbulence models for the flow ratios between coolant channels and bypass gaps in the interstitial regions of typical prismatic standard fuel element (SFE) or upper reflector block geometries of typical Modular High-temperature Gas-cooled Reactors (MHTGR) in the limiting case of negligible buoyancy and constant fluid properties. The experiments use Particle Image Velocimetry (PIV) to measure the velocity fields that will populate the bypass flow study database.

  9. Nanoparticles restore lysosomal acidification defects: Implications for Parkinson and other lysosomal-related diseases.

    Science.gov (United States)

    Bourdenx, Mathieu; Daniel, Jonathan; Genin, Emilie; Soria, Federico N; Blanchard-Desce, Mireille; Bezard, Erwan; Dehay, Benjamin

    2016-03-01

    Lysosomal impairment causes lysosomal storage disorders (LSD) and is involved in pathogenesis of neurodegenerative diseases, notably Parkinson disease (PD). Strategies enhancing or restoring lysosomal-mediated degradation thus appear as tantalizing disease-modifying therapeutics. Here we demonstrate that poly(DL-lactide-co-glycolide) (PLGA) acidic nanoparticles (aNP) restore impaired lysosomal function in a series of toxin and genetic cellular models of PD, i.e. ATP13A2-mutant or depleted cells or glucocerebrosidase (GBA)-mutant cells, as well as in a genetic model of lysosomal-related myopathy. We show that PLGA-aNP are transported to the lysosome within 24 h, lower lysosomal pH and rescue chloroquine (CQ)-induced toxicity. Re-acidification of defective lysosomes following PLGA-aNP treatment restores lysosomal function in different pathological contexts. Finally, our results show that PLGA-aNP may be detected after intracerebral injection in neurons and attenuate PD-related neurodegeneration in vivo by mechanisms involving a rescue of compromised lysosomes. PMID:26761717

  10. Lysosomes and autophagy in aquatic animals.

    Science.gov (United States)

    Moore, Michael N; Kohler, Angela; Lowe, David; Viarengo, Aldo

    2008-01-01

    The lysosomal-autophagic system appears to be a common target for many environmental pollutants, as lysosomes accumulate many toxic metals and organic xenobiotics, which perturb normal function and damage the lysosomal membrane. In fact, autophagic reactions frequently involving reduced lysosomal membrane integrity or stability appear to be effective generic indicators of cellular well-being in eukaryotes: in social amoebae (slime mold), mollusks and fish, autophagy/membrane destabilization is correlated with many stress and toxicological responses and pathological reactions. Prognostic use of adverse lysosomal and autophagic reactions to environmental pollutants can be used for predicting cellular dysfunction and health in aquatic animals, such as shellfish and fish, which are extensively used as sensitive bioindicators in monitoring ecosystem health; and also represent a significant food resource for at least 20% of the global human population. Explanatory frameworks for prediction of pollutant impact on health have been derived encompassing a conceptual mechanistic model linking lysosomal damage and autophagic dysfunction with injury to cells and tissues. Methods are described for tracking in vivo autophagy of fluorescently labeled cytoplasmic proteins, measuring degradation of radiolabeled intracellular proteins and morphometric measurement of lysosomal/cytoplasmic volume ratio. Additional methods for the determination of lysosomal membrane stability in lower animals are also described, which can be applied to frozen tissue sections, protozoans and isolated cells in vivo. Experimental and simulated results have also indicated that nutritional deprivation (analogous in marine mussels to caloric restriction)-induced autophagy has a protective function against toxic effects mediated by reactive oxygen species (ROS). Finally, coupled measurement of lysosomal-autophagic reactions and simulation modelling is proposed as a practical toolbox for predicting toxic

  11. The Best Bypass Surgery Trial

    DEFF Research Database (Denmark)

    Møller, Christian H; Jensen, Birte Østergaard; Gluud, Christian; Perko, Mario J; Lund, Jens T; Andersen, Lars Willy; Madsen, Jan Kyst; Hughes, Pia; Steinbrüchel, Daniel A

    2007-01-01

    Recent trials suggest that off-pump coronary artery bypass grafting (OPCAB) reduces the risk of mortality and morbidity compared with conventional coronary artery bypass grafting (CCAB) using cardiopulmonary bypass. Patients with a moderate- to high-risk of complications after CCAB may have addit...

  12. Cardiopulmonary bypass in pregnancy.

    Science.gov (United States)

    Pomini, F; Mercogliano, D; Cavalletti, C; Caruso, A; Pomini, P

    1996-01-01

    The cardiopathic patient can sustain acute heart failure during pregnancy. In such cases, if open heart operation is necessary to save the patient's life, the fetus could be seriously compromised after exposure to cardiopulmonary bypass. From 1958 to 1992, 69 reports of cardiac operations during pregnancy with the aid of cardiopulmonary bypass have been published. Maternal mortality was 2.9%. Embryofetal mortality was 20.2%. Examining only the last 40 patients, maternal and embryofetal mortality were 0.0% and 12.5%, respectively. Embryofetal mortality was 24.0% when hypothermia was used, compared with 0.0% while operating in normothermia. Maternal mortality did not change. The use of hypothermia during cardiopulmonary bypass provoked uterine contractions in several patients. Hypothermia decreases O2 exchange through the placenta. Pump flow and mean arterial pressure during cardiopulmonary bypass seem to be the most important parameters that influence fetal oxygenation. We speculate that cardiac operation is not a contraindication to pregnancy prolongation. PMID:8561577

  13. Aortic valve bypass

    DEFF Research Database (Denmark)

    Lund, Jens T; Jensen, Maiken Brit; Arendrup, Henrik; Ihlemann, Nikolaj

    2013-01-01

    In aortic valve bypass (AVB) a valve-containing conduit is connecting the apex of the left ventricle to the descending aorta. Candidates are patients with symptomatic aortic valve stenosis rejected for conventional aortic valve replacement (AVR) or transcatheter aortic valve implantation (TAVI...

  14. Bypassing AMPK Phosphorylation

    OpenAIRE

    Viollet, Benoit; Foretz, Marc; Schlattner, Uwe

    2014-01-01

    AMP-activated protein kinase (AMPK) functions as a signaling hub to balance energy supply with demand. Phosphorylation of activation loop Thr172 has been considered as an essential step in AMPK activation. In this issue of Chemistry & Biology, Scott and colleagues show that the small molecule direct AMPK activator, A-769662, bypasses this phosphorylation event, and acts synergistically with AMP on naive AMPK.

  15. Lysosomal enlargement and lysosomal membrane destabilisation in mussel digestive cells measured by an integrative index

    International Nuclear Information System (INIS)

    Lysosomal responses (enlargement and membrane destabilisation) in mussel digestive cells are well-known environmental stress biomarkers in pollution effects monitoring in marine ecosystems. Presently, in laboratory and field studies, both responses were measured separately (in terms of lysosomal volume density - Vv - and labilisation period -LP) and combined (lysosomal response index - LRI) in order to contribute to their understanding and to develop an index useful for decisions makers. LRI integrates Vv and LP, which are not necessarily dependent lysosomal responses. It is unbiased and more sensitive than Vv and LP alone and diminishes background due to confounding factors. LRI provides a simple numerical index (consensus reference = 0; critical threshold = 1) directly related to the pollution impact degree. Moreover, LRI can be represented in a way that allows the interpretation of lysosomal responses, which is useful for environmental scientists. - Lysosomal responses to pollutants measured by an integrative index.

  16. Axillobifemoral bypass grafting

    Directory of Open Access Journals (Sweden)

    Davidović Lazar B.

    2004-01-01

    Full Text Available INTRODUCTION Axillo-femoral bypass (AxF means connecting the axillar and femoral artery with the graft that is placed subcutaneously [1]. Usually, this graft is connected with contralateral femoral artery via one accessory subcutaneous graft, and this connection is known as axillobifemoral bypass (AxFF. This extra-anatomic procedure is an alternative method to the standard reconstruction of aortoiliac region when there are contraindications for general or local reasons. OBJECTIVE The objective of this paper is to show early and late results of AxFF bypass grafting as well as to show the indications for AxFF bypass. METHODS The sample consisted of 37 patients. The procedure was performed in 28 patients who suffered from aortoiliac occlusive disease and who were at high risk due to the comorbidity- in one patient with the rupture of juxtarenal aneurysm of abdominal aorta; in five patients with aortoenteric fistula, in two patients with iatrogenic lesion of abdominal aorta and in one female patient with anus preternaturalis definitivus who was treated for rectovaginal fistula. Donor's right axillary artery was used in 26 cases (70.3%, and donor's left axillary artery was used in 9 cases (29.7%. Dacron graft was used in 34 patients and Polytetrafluo-roethlylene graft was used in three patients. Simultaneously, profundo-plastic was done in four patients and femoro-popliteal bypass was performed in three patients. In five patients who suffered from aortoenteric fistula, simultaneous intervention of gastrointerstinal system has been done, x2 test was used for statistical evaluation and life table method was used for verification of late graft patency. RESULTS The rate of early postoperative mortality was 13.5%. The causes of death were: sepsis -1, MOFS - 3, and infarct myocardium -1. The mean follow up period was 40.1 months, ranging from six months to 17 years. During the follow up period, an early graft thrombosis was identified in two and late graft

  17. Mice doubly-deficient in lysosomal hexosaminidase A and neuraminidase 4 show epileptic crises and rapid neuronal loss.

    Science.gov (United States)

    Seyrantepe, Volkan; Lema, Pablo; Caqueret, Aurore; Dridi, Larbi; Bel Hadj, Samar; Carpentier, Stephane; Boucher, Francine; Levade, Thierry; Carmant, Lionel; Gravel, Roy A; Hamel, Edith; Vachon, Pascal; Di Cristo, Graziella; Michaud, Jacques L; Morales, Carlos R; Pshezhetsky, Alexey V

    2010-09-01

    Tay-Sachs disease is a severe lysosomal disorder caused by mutations in the HexA gene coding for the α-subunit of lysosomal β-hexosaminidase A, which converts G(M2) to G(M3) ganglioside. Hexa(-/-) mice, depleted of β-hexosaminidase A, remain asymptomatic to 1 year of age, because they catabolise G(M2) ganglioside via a lysosomal sialidase into glycolipid G(A2), which is further processed by β-hexosaminidase B to lactosyl-ceramide, thereby bypassing the β-hexosaminidase A defect. Since this bypass is not effective in humans, infantile Tay-Sachs disease is fatal in the first years of life. Previously, we identified a novel ganglioside metabolizing sialidase, Neu4, abundantly expressed in mouse brain neurons. Now we demonstrate that mice with targeted disruption of both Neu4 and Hexa genes (Neu4(-/-);Hexa(-/-)) show epileptic seizures with 40% penetrance correlating with polyspike discharges on the cortical electrodes of the electroencephalogram. Single knockout Hexa(-/-) or Neu4(-/-) siblings do not show such symptoms. Further, double-knockout but not single-knockout mice have multiple degenerating neurons in the cortex and hippocampus and multiple layers of cortical neurons accumulating G(M2) ganglioside. Together, our data suggest that the Neu4 block exacerbates the disease in Hexa(-/-) mice, indicating that Neu4 is a modifier gene in the mouse model of Tay-Sachs disease, reducing the disease severity through the metabolic bypass. However, while disease severity in the double mutant is increased, it is not profound suggesting that Neu4 is not the only sialidase contributing to the metabolic bypass in Hexa(-/-) mice. PMID:20862357

  18. Mice doubly-deficient in lysosomal hexosaminidase A and neuraminidase 4 show epileptic crises and rapid neuronal loss.

    Directory of Open Access Journals (Sweden)

    Volkan Seyrantepe

    2010-09-01

    Full Text Available Tay-Sachs disease is a severe lysosomal disorder caused by mutations in the HexA gene coding for the α-subunit of lysosomal β-hexosaminidase A, which converts G(M2 to G(M3 ganglioside. Hexa(-/- mice, depleted of β-hexosaminidase A, remain asymptomatic to 1 year of age, because they catabolise G(M2 ganglioside via a lysosomal sialidase into glycolipid G(A2, which is further processed by β-hexosaminidase B to lactosyl-ceramide, thereby bypassing the β-hexosaminidase A defect. Since this bypass is not effective in humans, infantile Tay-Sachs disease is fatal in the first years of life. Previously, we identified a novel ganglioside metabolizing sialidase, Neu4, abundantly expressed in mouse brain neurons. Now we demonstrate that mice with targeted disruption of both Neu4 and Hexa genes (Neu4(-/-;Hexa(-/- show epileptic seizures with 40% penetrance correlating with polyspike discharges on the cortical electrodes of the electroencephalogram. Single knockout Hexa(-/- or Neu4(-/- siblings do not show such symptoms. Further, double-knockout but not single-knockout mice have multiple degenerating neurons in the cortex and hippocampus and multiple layers of cortical neurons accumulating G(M2 ganglioside. Together, our data suggest that the Neu4 block exacerbates the disease in Hexa(-/- mice, indicating that Neu4 is a modifier gene in the mouse model of Tay-Sachs disease, reducing the disease severity through the metabolic bypass. However, while disease severity in the double mutant is increased, it is not profound suggesting that Neu4 is not the only sialidase contributing to the metabolic bypass in Hexa(-/- mice.

  19. ErbB2-associated changes in the lysosomal proteome

    DEFF Research Database (Denmark)

    Nylandsted, Jesper; Becker, Andrea C; Bunkenborg, Jakob;

    2011-01-01

    Late endosomes and lysosomes (hereafter referred to as lysosomes) play an essential role in the turnover of cellular macromolecules and organelles. Their biochemical characterization has so far depended on purification methods based on either density gradient centrifugations or magnetic...... purification of iron-loaded organelles. Owing to dramatic changes in lysosomal density and stability associated with lysosomal diseases and cancer, these methods are not optimal for the comparison of normal and pathological lysosomes. Here, we introduce an efficient method for the purification of intact...... lysosomes by magnetic immunoprecipitation with antibodies against the vacuolar-type H(+) -ATPase. Quantitative MS-based proteomics analysis of the obtained lysosomal membranes identified 60 proteins, most of which have previously been associated with the lysosomal compartment. Interestingly, the lysosomal...

  20. Coronary Artery Bypass

    Directory of Open Access Journals (Sweden)

    Kadri Ceberut

    2011-01-01

    Full Text Available Ancient schwannoma is a rare variant of neural tumors though rarely seen in the thorax. The combination with coronary artery diseases is also rare. Here we describe a 66 year-old male who had undergone one-stage combined surgery for thoracic ancient schwannomas removal and coronary artery disease. The masses were, respectively, 13 cm in the middle mediastinum and 5 cm in diameter originating from the intercostal nerve. The tumors were successfully removed using sternotomy, and then a coronary artery bypass grafting was performed. Here we discuss this rare tumor in relation to the relevant literature.

  1. Spiritual Bypass: A Preliminary Investigation

    Science.gov (United States)

    Cashwell, Craig S.; Glosoff, Harriet L.; Hammond, Cheree

    2010-01-01

    The phenomenon of spiritual bypass has received limited attention in the transpersonal psychology and counseling literature and has not been subjected to empirical inquiry. This study examines the phenomenon of spiritual bypass by considering how spirituality, mindfulness, alexithymia (emotional restrictiveness), and narcissism work together to…

  2. Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion

    Institute of Scientific and Technical Information of China (English)

    Jing Zhou; Shi-Hao Tan; Valérie Nicolas; Chantal Bauvy; Nai-Di Yang; Jianbin Zhang; Yuan Xue

    2013-01-01

    Lysosome is a key subcellular organelle in the execution of the autophagic process and at present little is known whether lysosomal function is controlled in the process of autophagy.In this study,we first found that suppression of mammalian target of rapamycin (mTOR) activity by starvation or two mTOR catalytic inhibitors (PP242 and Torinl),but not by an allosteric inhibitor (rapamycin),leads to activation of lysosomal function.Second,we provided evidence that activation of lysosomal function is associated with the suppression of mTOR complex 1 (mTORC1),but not mTORC2,and the mTORC1 localization to lysosomes is not directly correlated to its regulatory role in lysosomal function.Third,we examined the involvement of transcription factor EB (TFEB) and demonstrated that TFEB activation following mTORC1 suppression is necessary but not sufficient for lysosomal activation.Finally,Atg5 or Atg7deletion or blockage of the autophagosome-lysosome fusion process effectively diminished lysosomal activation,suggesting that lysosomal activation occurring in the course of autophagy is dependent on antophagosome-lysosome fusion.Taken together,this study demonstrates that in the course of autophagy,lysosomal function is upregulated via a dual mechanism involving mTORC1 suppression and autophagosome-lysosome fusion.

  3. Screening and Optimization of Ligand Conjugates for Lysosomal Targeting

    OpenAIRE

    Meerovich, Igor; Koshkaryev, Alexander; Thekkedath, Ritesh; Torchilin, Vladimir P.

    2011-01-01

    The use of lysosome-targeted liposomes may significantly improve the delivery of therapeutic enzymes and chaperones into lysosomes for the treatment of lysosomal storage disorders. The aim of this research was to synthesize new potentially lysosomotropic ligands on a base of Neutral Red and rhodamine B and to study their ability to enhance specific lysosomal delivery of surface-modified liposomes loaded with a model compound, fluorescein isothiocyanate-dextran (FD). The delivery of these lipo...

  4. Purification of Lysosomes Using Supraparamagnetic Iron Oxide Nanoparticles (SPIONs).

    Science.gov (United States)

    Rofe, Adam P; Pryor, Paul R

    2016-04-01

    Lysosomes can be rapidly isolated from tissue culture cells using supraparamagnetic iron oxide particles (SPIONs). In this protocol, colloidal iron dextran (FeDex) particles, a type of SPION, are taken up by cultured mouse macrophage cells via the endocytic pathway. The SPIONs accumulate in lysosomes, the end point of the endocytic pathway, permitting the lysosomes to be isolated magnetically. The purified lysosomes are suitable for in vitro fusion assays or for proteomic analysis. PMID:27037068

  5. Lysosomal Signaling Molecules Regulate Longevity in Caenorhabditis elegans

    OpenAIRE

    Folick, Andrew; Oakley, Holly Doebbler; Yu, Yong; Armstrong, Eric H.; Kumari, Manju; Sanor, Lucas; Moore, David D.; Ortlund, Eric A.; Zechner, Rudolf; Wang, Meng C.

    2015-01-01

    Lysosomes are crucial cellular organelles for human health that function in digestion and recycling of extracellular and intracellular macromolecules. We describe a signaling role for lysosomes that affects aging. In the worm, Caenorhabditis elegans, the lysosomal acid lipase LIPL-4 triggered nuclear translocalization of a lysosomal lipid chaperone LBP-8, consequently promoting longevity by activating the nuclear hormone receptors NHR-49 and NHR-80. We used high-throughput metabolomic analysi...

  6. Promotion of Proapoptotic Signals by Lysosomal Photodamage.

    Science.gov (United States)

    Kessel, David; Reiners, John J

    2015-01-01

    We previously reported that low-level lysosomal photodamage enhanced the efficacy of subsequent mitochondrial photodamage, resulting in a substantial promotion of apoptotic cell death. We now extend our analysis of the sequential PDT protocol to include two additional lysosomal-targeting photosensitizers. These agents, because of enhanced permeability, are more potent than the agent (N-aspartyl chlorin E6, NPe6) used in the initial study. Addition of the cell-permeable cysteine protease inhibitor E-64d and calcium chelator BAPTA-AM almost completely suppressed sequential PDT-induced loss of mitochondrial membrane potential and activation of procaspases-3 and -7. These inhibitors did not, however, suppress the proapoptotic effect of a BH3 mimetic or mitochondrial photodamage. Knockdowns of ATG7 or ATG5, proteins normally associated with autophagy, suppressed photodamage induced by the sequential PDT protocol. These effects appear to be independent of the autophagic process as pharmacological inhibition of autophagy offered no such protection. Effects of ATG7 and ATG5 knockdowns may reflect the role that ATG7 plays in regulating lysosome permeability, and the likelihood that a proteolytic fragment of ATG5 amplifies mitochondrial proapoptotic processes. Our results suggest that low-dose photodamage that sequentially targets lysosomes and mitochondria may offer significant advantages over the use of single photosensitizers. PMID:25873082

  7. Transport of Lysosome-Related Organelles

    NARCIS (Netherlands)

    Jordens, Ingrid

    2005-01-01

    Many intracellular compartments, including (MHC class II-containing) lysosomes, melanosomes and phagosomes, move along microtubules in a bi-directional manner due to the alternating activities of the plus-end directed kinesin motor and the minus-end directed dynein-dynactin motor. However, it is lar

  8. Close encounters of the lysosome/peroxisome kind

    OpenAIRE

    Jin, Yui; Strunk, Bethany S.; Weisman, Lois S.

    2015-01-01

    Lysosomes provide a major source for cellular cholesterol; however, most of this cholesterol is trafficked to the plasma membrane via unknown mechanisms. In this issue of Cell, Chu et al. identify an unexpected role for peroxisomes in the transport of cholesterol from the lysosome to the plasma membrane via a lysosome-peroxisome membrane contact site.

  9. Lysosome-targeted stress reveals increased stability of lipofuscin-containing lysosomes

    OpenAIRE

    Stroikin, Yuri; Mild, Hanna; Johansson, Uno; Roberg, Karin; Öllinger, Karin

    2008-01-01

    Cellular ageing is associated with accumulation of undegradable intralysosomal material, called lipofuscin. In order to accelerate the lipofuscin-accumulation, confluent, growth arrested human fibroblasts were cultured under hyperoxic conditions. To provide a better insight into the effects of lipofuscin on cellular functions, we compared lysosomal stability in control and lipofuscin-loaded human fibroblasts under conditions of lysosome-targeted stress induced by exposure to either the lysoso...

  10. A Proteolytic Cascade Controls Lysosome Rupture and Necrotic Cell Death Mediated by Lysosome-Destabilizing Adjuvants

    OpenAIRE

    Jürgen Brojatsch; Heriberto Lima; Alak K Kar; Jacobson, Lee S.; Stefan M Muehlbauer; Kartik Chandran; Felipe Diaz-Griffero

    2014-01-01

    Recent studies have linked necrotic cell death and proteolysis of inflammatory proteins to the adaptive immune response mediated by the lysosome-destabilizing adjuvants, alum and Leu-Leu-OMe (LLOMe). However, the mechanism by which lysosome-destabilizing agents trigger necrosis and proteolysis of inflammatory proteins is poorly understood. The proteasome is a cellular complex that has been shown to regulate both necrotic cell death and proteolysis of inflammatory proteins. We found that the p...

  11. Neuroinflammatory paradigms in lysosomal storage diseases

    Directory of Open Access Journals (Sweden)

    Megan Elizabeth Bosch

    2015-10-01

    Full Text Available Lysosomal storage diseases (LSDs include approximately 70 distinct disorders that collectively account for 14% of all inherited metabolic diseases. LSDs are caused by mutations in various enzymes/proteins that disrupt lysosomal function, which impairs macromolecule degradation following endosome-lysosome and phagosome-lysosome fusion and autophagy, ultimately disrupting cellular homeostasis. LSDs are pathologically typified by lysosomal inclusions composed of a heterogeneous mixture of various proteins and lipids that can be found throughout the body. However, in many cases the CNS is dramatically affected, which may result from heightened neuronal vulnerability based on their post-mitotic state. Besides intrinsic neuronal defects, another emerging factor common to many LSDs is neuroinflammation, which may negatively impact neuronal survival and contribute to neurodegeneration. Microglial and astrocyte activation is a hallmark of many LSDs that affect the CNS, which often precedes and predicts regions where eventual neuron loss will occur. However, the timing, intensity, and duration of neuroinflammation may ultimately dictate the impact on CNS homeostasis. For example, a transient inflammatory response following CNS insult/injury can be neuroprotective, as glial cells attempt to remove the insult and provide trophic support to neurons. However, chronic inflammation, as seen in several LSDs, can promote neurodegeneration by creating a neurotoxic environment due to elevated levels of cytokines, chemokines, and pro-apoptotic molecules. Although neuroinflammation has been reported in several LSDs, the cellular basis and mechanisms responsible for eliciting neuroinflammatory pathways are just beginning to be defined. This review highlights the role of neuroinflammation in select LSDs and its potential contribution to neuron loss.

  12. Pigeon monocyte/macrophage lysosomes during beta VLDL uptake. Induction of acid phosphatase activity. A model for complex arterial lysosomes.

    OpenAIRE

    Jones, N L; Jerome, W. G.; Lewis, J. C.

    1991-01-01

    Lysosomes have long been implicated as a factor contributing to the progression and complication of atherosclerosis. The authors' laboratory previously has shown that lysosomal ultrastructure in arterial macrophage foam cells is altered as primary lysosomes give rise to large pleiomorphic organelles on lipid accumulation during lesion progression. To further explore the subcellular alterations in lysosomes and associated organelles during foam cell formation, three-dimensional (3D) intermedia...

  13. Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion

    OpenAIRE

    ZHOU, JING; Tan, Shi-Hao; Nicolas, Valérie; Bauvy, Chantal; Yang, Nai-Di; Zhang, Jianbin; Xue,Yuan; Codogno, Patrice; Shen, Han-Ming

    2013-01-01

    Lysosome is a key subcellular organelle in the execution of the autophagic process and at present little is known whether lysosomal function is controlled in the process of autophagy. In this study, we first found that suppression of mammalian target of rapamycin (mTOR) activity by starvation or two mTOR catalytic inhibitors (PP242 and Torin1), but not by an allosteric inhibitor (rapamycin), leads to activation of lysosomal function. Second, we provided evidence that activation of lysosomal f...

  14. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB

    OpenAIRE

    Settembre C; Zoncu R; Medina DL; Vetrini F; Erdin S; Huynh T; Ferron M; Karsenty G; Vellard MC; Facchinetti V; Sabatini DM; Ballabio A.

    2012-01-01

    The lysosome plays a key role in cellular homeostasis by controlling both cellular clearance and energy production to respond to environmental cues. However, the mechanisms mediating lysosomal adaptation are largely unknown. Here, we show that the Transcription Factor EB (TFEB), a master regulator of lysosomal biogenesis, colocalizes with master growth regulator mTOR complex 1 (mTORC1) on the lysosomal membrane. When nutrients are present, phosphorylation of TFEB by mTORC1 inhibits TFEB activ...

  15. Cardiopulmonary bypass in pregnancy

    Directory of Open Access Journals (Sweden)

    Mukul Chandra Kapoor

    2014-01-01

    Full Text Available Cardiac surgery carried out on cardiopulmonary bypass (CPB in a pregnant woman is associated with poor neonatal outcomes although maternal outcomes are similar to cardiac surgery in non-pregnant women. Most adverse maternal and fetal outcomes from cardiac surgery during pregnancy are attributed to effects of CPB. The CPB is associated with utero-placental hypoperfusion due to a number of factors, which may translate into low fetal cardiac output, hypoxia and even death. Better maternal and fetal outcomes may be achieved by early pre-operative optimization of maternal cardiovascular status, use of perioperative fetal monitoring, optimization of CPB, delivery of a viable fetus before the operation and scheduling cardiac surgery on an elective basis during the second trimester.

  16. Mechanisms of Dendritic Cell Lysosomal Killing of Cryptococcus

    Science.gov (United States)

    Hole, Camaron R.; Bui, Hoang; Wormley, Floyd L.; Wozniak, Karen L.

    2012-10-01

    Cryptococcus neoformans is an opportunistic pulmonary fungal pathogen that disseminates to the CNS causing fatal meningitis in immunocompromised patients. Dendritic cells (DCs) phagocytose C. neoformans following inhalation. Following uptake, cryptococci translocate to the DC lysosomal compartment and are killed by oxidative and non-oxidative mechanisms. DC lysosomal extracts kill cryptococci in vitro; however, the means of antifungal activity remain unknown. Our studies determined non-oxidative antifungal activity by DC lysosomal extract. We examined DC lysosomal killing of cryptococcal strains, anti-fungal activity of purified lysosomal enzymes, and mechanisms of killing against C. neoformans. Results confirmed DC lysosome fungicidal activity against all cryptococcal serotypes. Purified lysosomal enzymes, specifically cathepsin B, inhibited cryptococcal growth. Interestingly, cathepsin B combined with its enzymatic inhibitors led to enhanced cryptococcal killing. Electron microscopy revealed structural changes and ruptured cryptococcal cell walls following treatment. Finally, additional studies demonstrated that osmotic lysis was responsible for cryptococcal death.

  17. Heart bypass surgery - minimally invasive

    Science.gov (United States)

    ... MIDCAB; Robot assisted coronary artery bypass; RACAB; Keyhole heart surgery ... To perform this surgery: The heart surgeon will make a 3- to 5-inch-long surgical cut in the left part of your chest between your ribs ...

  18. Lysosome: regulator of lipid degradation pathways

    OpenAIRE

    Settembre, Carmine; Ballabio, Andrea

    2014-01-01

    Autophagy is a catabolic pathway that has a fundamental role in the adaptation to fasting and primarily relies on the activity of the endolysosomal system, to which the autophagosome targets substrates for degradation. Recent studies have revealed that the lysosomal–autophagic pathway plays an important part in the early steps of lipid degradation. In this review, we discuss the transcriptional mechanisms underlying co-regulation between lysosome, autophagy, and other steps of lipid catabolis...

  19. Ultraviolet induced lysosome activity in corneal epithelium

    International Nuclear Information System (INIS)

    A 5.000 W Xe-Hg high pressure lamp and a double monochromator were used to produce a 3.3 nm half-bandpass ultraviolet radiation at 295 nm. Pigmented rabbit eyes were irradiated with radiant exposures from 140 Jm-2 to 10.000 Jm-2 and evaluated by slit-lamp biomicroscopy, light and electron microscopy. Corneal threshold (Hsub(c) was 200 Jm-2 and lens threshold (Hsub(L)) was 7.500 Jm-2. The most repeatable and reliable corneal response to these levels of UV was the development of corneal epithelial granules. Histological changes included a loss of superficial epithelial cells and selective UV induced autolysis of the wing cells. It is suggested that the biomicroscopically observed granules are the clinical manifestation of the secondary lysosomes revealed by light and electron microscopy. It is proposed that UV breaks down the primary lysosome membranes to release hydrolytic enzymes which in turn form the secondary lysosomes during autolysis. Extreme levels of radiant exposure at 295 nm result in indiscriminate destruction of all layers of the corneal epithelium, but the posterior cornea was spared. (orig.)

  20. The Role of Microscopy in Understanding Atherosclerotic Lysosomal Lipid Metabolism

    Science.gov (United States)

    Gray Jerome, W.; Yancey, Patricia G.

    2003-02-01

    Microscopy has played a critical role in first identifying and then defining the role of lysosomes in formation of atherosclerotic foam cells. We review the evidence implicating lysosomal lipid accumulation as a factor in the pathogenesis of atherosclerosis with reference to the role of microscopy. In addition, we explore mechanisms by which lysosomal lipid engorgement occurs. Low density lipoproteins which have become modified are the major source of lipid for foam cell formation. These altered lipoproteins are taken into the cell via receptor-mediated endocytosis and delivered to lysosomes. Under normal conditions, lipids from these lipoproteins are metabolized and do not accumulate in lysosomes. In the atherosclerotic foam cell, this normal metabolism is inhibited so that cholesterol and cholesteryl esters accumulate in lysosomes. Studies of cultured cells incubated with modified lipoproteins suggests this abnormal metabolism occurs in two steps. Initially, hydrolysis of lipoprotein cholesteryl esters occurs normally, but the resultant free cholesterol cannot exit the lysosome. Further lysosomal cholesterol accumulation inhibits hydrolysis, producing a mixture of cholesterol and cholesteryl esters within swollen lysosomes. Various lipoprotein modifications can produce this lysosomal engorgement in vitro and it remains to be seen which modifications are most important in vivo.

  1. Bypass Rewiring and Robustness of Complex Networks

    CERN Document Server

    Park, Junsang

    2016-01-01

    A concept of bypass rewiring is introduced and random bypass rewiring is analytically and numerically investigated with simulations. Our results show that bypass rewiring makes networks robust against removal of nodes including random failures and attacks. Especially, random bypass rewiring connects all nodes except the removed nodes on an even degree infinite network and makes the percolation threshold $0$ for arbitrary occupation probabilities. In our example, the even degree network is more robust than the original network with random bypass rewiring while the original network is more robust than the even degree networks without random bypass. We propose a greedy bypass rewiring algorithm which guarantees the maximum size of the largest component at each step, assuming which node will be removed next is unknown. The simulation result shows that the greedy bypass rewiring algorithm improves the robustness of the autonomous system of the Internet under attacks more than random bypass rewiring.

  2. The late endosome/lysosome-anchored p18-mTORC1 pathway controls terminal maturation of lysosomes

    International Nuclear Information System (INIS)

    Highlights: ► p18 is a membrane adaptor that anchors mTORC1 to late endosomes/lysosomes. ► We examine the role of the p18-mTORC1 pathway in lysosome biogenesis. ► The loss of p18 causes accumulation of intact late endosomes by arresting lysosome maturation. ► Inhibition of mTORC1 activity with rapamycin phenocopies the defects of p18 loss. ► The p18-mTORC1 pathway plays crucial roles in the terminal maturation of lysosomes. -- Abstract: The late endosome/lysosome membrane adaptor p18 (or LAMTOR1) serves as an anchor for the mammalian target of rapamycin complex 1 (mTORC1) and is required for its activation on lysosomes. The loss of p18 causes severe defects in cell growth as well as endosome dynamics, including membrane protein transport and lysosome biogenesis. However, the mechanisms underlying these effects on lysosome biogenesis remain unknown. Here, we show that the p18-mTORC1 pathway is crucial for terminal maturation of lysosomes. The loss of p18 causes aberrant intracellular distribution and abnormal sizes of late endosomes/lysosomes and an accumulation of late endosome specific components, including Rab7, RagC, and LAMP1; this suggests that intact late endosomes accumulate in the absence of p18. These defects are phenocopied by inhibiting mTORC1 activity with rapamycin. Loss of p18 also suppresses the integration of late endosomes and lysosomes, resulting in the defective degradation of tracer proteins. These results suggest that the p18-mTORC1 pathway plays crucial roles in the late stages of lysosomal maturation, potentially in late endosome–lysosome fusion, which is required for processing of various macromolecules.

  3. The late endosome/lysosome-anchored p18-mTORC1 pathway controls terminal maturation of lysosomes

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Yusuke; Nada, Shigeyuki; Mori, Shunsuke; Soma-Nagae, Taeko; Oneyama, Chitose [Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Okada, Masato, E-mail: okadam@biken.osaka-u.ac.jp [Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer p18 is a membrane adaptor that anchors mTORC1 to late endosomes/lysosomes. Black-Right-Pointing-Pointer We examine the role of the p18-mTORC1 pathway in lysosome biogenesis. Black-Right-Pointing-Pointer The loss of p18 causes accumulation of intact late endosomes by arresting lysosome maturation. Black-Right-Pointing-Pointer Inhibition of mTORC1 activity with rapamycin phenocopies the defects of p18 loss. Black-Right-Pointing-Pointer The p18-mTORC1 pathway plays crucial roles in the terminal maturation of lysosomes. -- Abstract: The late endosome/lysosome membrane adaptor p18 (or LAMTOR1) serves as an anchor for the mammalian target of rapamycin complex 1 (mTORC1) and is required for its activation on lysosomes. The loss of p18 causes severe defects in cell growth as well as endosome dynamics, including membrane protein transport and lysosome biogenesis. However, the mechanisms underlying these effects on lysosome biogenesis remain unknown. Here, we show that the p18-mTORC1 pathway is crucial for terminal maturation of lysosomes. The loss of p18 causes aberrant intracellular distribution and abnormal sizes of late endosomes/lysosomes and an accumulation of late endosome specific components, including Rab7, RagC, and LAMP1; this suggests that intact late endosomes accumulate in the absence of p18. These defects are phenocopied by inhibiting mTORC1 activity with rapamycin. Loss of p18 also suppresses the integration of late endosomes and lysosomes, resulting in the defective degradation of tracer proteins. These results suggest that the p18-mTORC1 pathway plays crucial roles in the late stages of lysosomal maturation, potentially in late endosome-lysosome fusion, which is required for processing of various macromolecules.

  4. Aging. Lysosomal signaling molecules regulate longevity in Caenorhabditis elegans.

    Science.gov (United States)

    Folick, Andrew; Oakley, Holly D; Yu, Yong; Armstrong, Eric H; Kumari, Manju; Sanor, Lucas; Moore, David D; Ortlund, Eric A; Zechner, Rudolf; Wang, Meng C

    2015-01-01

    Lysosomes are crucial cellular organelles for human health that function in digestion and recycling of extracellular and intracellular macromolecules. We describe a signaling role for lysosomes that affects aging. In the worm Caenorhabditis elegans, the lysosomal acid lipase LIPL-4 triggered nuclear translocalization of a lysosomal lipid chaperone LBP-8, which promoted longevity by activating the nuclear hormone receptors NHR-49 and NHR-80. We used high-throughput metabolomic analysis to identify several lipids in which abundance was increased in worms constitutively overexpressing LIPL-4. Among them, oleoylethanolamide directly bound to LBP-8 and NHR-80 proteins, activated transcription of target genes of NHR-49 and NHR-80, and promoted longevity in C. elegans. These findings reveal a lysosome-to-nucleus signaling pathway that promotes longevity and suggest a function of lysosomes as signaling organelles in metazoans. PMID:25554789

  5. Neuraminidase-1 contributes significantly to the degradation of neuronal B-series gangliosides but not to the bypass of the catabolic block in Tay–Sachs mouse models

    OpenAIRE

    Timur, Z.K.; Akyildiz Demir, S.; Marsching, C.; Sandhoff, R.; Seyrantepe, V.

    2015-01-01

    Tay–Sachs disease is a severe lysosomal storage disorder caused by mutations in the HEXA gene coding for α subunit of lysosomal β-Hexosaminidase A enzyme, which converts GM2 to GM3 ganglioside. HexA−/− mice, depleted of the β-Hexosaminidase A iso-enzyme, remain asymptomatic up to 1 year of age because of a metabolic bypass by neuraminidase(s). These enzymes remove a sialic acid residue converting GM2 to GA2, which is further degraded by the still intact β-Hexosaminidase B iso-enzyme into lact...

  6. Chinese hamster ovary cell lysosomes rapidly exchange contents

    OpenAIRE

    1987-01-01

    We have used cell fusion to address the question of whether macromolecules are rapidly exchanged between lysosomes. Donor cell lysosomes were labeled by the long-term internalization of the fluid- phase pinocytic markers, invertase (sucrase), Lucifer Yellow, FITC- conjugated dextran, or Texas red-conjugated dextran. Recipient cells contained lysosomes swollen by long-term internalization of dilute sucrose or marked by an overnight FITC-dextran uptake. Cells were incubated for 1 or 2 h in mark...

  7. Inhibition of macrophage phagosome-lysosome fusion by Salmonella typhimurium.

    OpenAIRE

    Buchmeier, N A; Heffron, F

    1991-01-01

    Salmonella typhimurium-infected macrophages were examined by electron microscopy to determine whether intracellular survival of S. typhimurium is associated with failure of bacteria containing phagosomes to fuse with secondary lysosomes. S. typhimurium 14028 actively inhibited phagosome-lysosome fusion and appeared to preferentially divide within unfused phagocytic vesicles. In comparison with Escherichia coli, S. typhimurium inhibited phagosome-lysosome fusion in peritoneal macrophages, J774...

  8. A lysosome-centered view of nutrient homeostasis.

    Science.gov (United States)

    Mony, Vinod K; Benjamin, Shawna; O'Rourke, Eyleen J

    2016-04-01

    Lysosomes are highly acidic cellular organelles traditionally viewed as sacs of enzymes involved in digesting extracellular or intracellular macromolecules for the regeneration of basic building blocks, cellular housekeeping, or pathogen degradation. Bound by a single lipid bilayer, lysosomes receive their substrates by fusing with endosomes or autophagosomes, or through specialized translocation mechanisms such as chaperone-mediated autophagy or microautophagy. Lysosomes degrade their substrates using up to 60 different soluble hydrolases and release their products either to the cytosol through poorly defined exporting and efflux mechanisms or to the extracellular space by fusing with the plasma membrane. However, it is becoming evident that the role of the lysosome in nutrient homeostasis goes beyond the disposal of waste or the recycling of building blocks. The lysosome is emerging as a signaling hub that can integrate and relay external and internal nutritional information to promote cellular and organismal homeostasis, as well as a major contributor to the processing of energy-dense molecules like glycogen and triglycerides. Here we describe the current knowledge of the nutrient signaling pathways governing lysosomal function, the role of the lysosome in nutrient mobilization, and how lysosomes signal other organelles, distant tissues, and even themselves to ensure energy homeostasis in spite of fluctuations in energy intake. At the same time, we highlight the value of genomics approaches to the past and future discoveries of how the lysosome simultaneously executes and controls cellular homeostasis. PMID:27050453

  9. Lysosomal Targeting with Stable and Sensitive Fluorescent Probes (Superior LysoProbes): Applications for Lysosome Labeling and Tracking during Apoptosis

    OpenAIRE

    Xin Chen; Yue Bi; Tianyang Wang; Pengfei Li; Xin Yan; Shanshan Hou; Catherine E. Bammert; Jingfang Ju; K. Michael Gibson; Pavan, William J.; Lanrong Bi

    2015-01-01

    Intracellular pH plays an important role in the response to cancer invasion. We have designed and synthesized a series of new fluorescent probes (Superior LysoProbes) with the capacity to label acidic organelles and monitor lysosomal pH. Unlike commercially available fluorescent dyes, Superior LysoProbes are lysosome-specific and are highly stable. The use of Superior LysoProbes facilitates the direct visualization of the lysosomal response to lobaplatin elicited in human chloangiocarcinoma (...

  10. Technology Solutions Case Study: Preventing Thermal Bypass

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-10-01

    This project highlights the importance of continuous air barriers in full alignment with insulation to prevent thermal bypasses and achieve high energy performance, and recommends use of ENERGY STAR's Thermal Bypass Inspection Checklist.

  11. Nonselective digital subtraction angiography of aortocoronary bypasses

    International Nuclear Information System (INIS)

    Intra-arterial DSA was performed on 225 patients with a total of 552 coronary bypasses (515 aorto-coronary venous bypasses and 37 internal mammary artery bypasses). Four hundred and ninety-five bypasses were examined in the four weeks following surgery; of these, 428 (85.9%) were patent. Demonstration of the distal anastomosis was obtained in 40.4% of bypasses of the right anterior interventricular artery and in 36.1% of the right coronary artery, at least in their proximal parts. Bypasses of smaller branches showed filling in 12.8 to 19.2%. Because of the unsatisfactory demonstration of distal vessels by non-selective intra-arterial DSA, this method is suitable only for showing the patency of a bypass in the postoperative phase, but should not be used for investigating cardiac signs and symptoms following a bypass examination. (orig.)

  12. Presenilin 1 Maintains Lysosomal Ca2+ Homeostasis via TRPML1 by Regulating vATPase-Mediated Lysosome Acidification

    Directory of Open Access Journals (Sweden)

    Ju-Hyun Lee

    2015-09-01

    Full Text Available Presenilin 1 (PS1 deletion or Alzheimer’s disease (AD-linked mutations disrupt lysosomal acidification and proteolysis, which inhibits autophagy. Here, we establish that this phenotype stems from impaired glycosylation and instability of vATPase V0a1 subunit, causing deficient lysosomal vATPase assembly and function. We further demonstrate that elevated lysosomal pH in Presenilin 1 knockout (PS1KO cells induces abnormal Ca2+ efflux from lysosomes mediated by TRPML1 and elevates cytosolic Ca2+. In WT cells, blocking vATPase activity or knockdown of either PS1 or the V0a1 subunit of vATPase reproduces all of these abnormalities. Normalizing lysosomal pH in PS1KO cells using acidic nanoparticles restores normal lysosomal proteolysis, autophagy, and Ca2+ homeostasis, but correcting lysosomal Ca2+ deficits alone neither re-acidifies lysosomes nor reverses proteolytic and autophagic deficits. Our results indicate that vATPase deficiency in PS1 loss-of-function states causes lysosomal/autophagy deficits and contributes to abnormal cellular Ca2+ homeostasis, thus linking two AD-related pathogenic processes through a common molecular mechanism.

  13. Multimodality imaging of coronary artery bypass grafts

    OpenAIRE

    Salm, Liesbeth Pauline

    2006-01-01

    This thesis describes multiple imaging modalities to examine coronary artery bypass grafts, and the research which was performed to further develop noninvasive imaging techniques to detect stenoses in native coronary arteries and bypass grafts in patients who experienced recurrent chest pain after coronary artery bypass grafting (CABG).

  14. Interventions in Infrainguinal Bypass Grafts

    International Nuclear Information System (INIS)

    The interventional radiologist plays an important role in the detection and prevention of infrainguinal bypass failure. Early detection and evaluation of flow-limiting lesions effectively preserve graft (venous bypass and polyester or expanded polytetrafluoroethylene bypass) patency by identifying stenoses before occlusion occurs. Delay in treatment of the at-risk graft may result in graft failure and a reduced chance of successful revascularization. For this reason, surveillance protocols form an important part of follow-up after infrainguinal bypass surgery. As well as having an understanding of the application of imaging techniques including ultrasound, MR angiography, CT angiography and digital subtraction angiography, the interventional radiologist should have detailed knowledge of the minimally invasive therapeutic options. Percutaneous transluminal angioplasty (PTA), or alternatively cutting balloon angioplasty, is the interventional treatment of choice in prevention of graft failure and occlusion. Further alternatives include metallic stent placement, fibrinolysis, and mechanical thrombectomy. Primary assisted patency rates following PTA can be up to 65% at 5 years. When the endovascular approach is unsuccessful, these therapeutic options are complemented by surgical procedures including vein patch revision, jump grafting, or placement of a new graft

  15. Engaging the lysosomal compartment to combat B cell malignancies

    DEFF Research Database (Denmark)

    Gronbaek, K.; Jaattela, M.

    2009-01-01

    generation of therapeutic anti-CD20 mAbs. In this issue of the JCI, Ivanov and colleagues identify the lysosomal compartment as a target for type II mAbs (see the related article beginning on page 2143). These data encourage the further clinical development of type II mAbs as well as other lysosome...

  16. 溶酶体贮积病%Lysosomal storage disorders

    Institute of Scientific and Technical Information of China (English)

    Yong QU

    2006-01-01

    Lysosomal storage disorders (LSDs) are genetic defects caused by lysosomal hydrolase deficiencies. These deficiencies lead to substrate accumulation affecting cells, tissues and organs. Detecting abnormal compound excretion and deficient enzymes assist diagnosis of these disorders for treatment and prevention. This mini review summarizes clinical presentations and diagnostic workup of LSDs and updates the new development in the area.

  17. Lysosomal phospholipids from rat liver after treatment with different drugs.

    Science.gov (United States)

    Tjiong, H B; Lepthin, J; Debuch, H

    1978-01-01

    Rats were treated with 5 different drugs p-ethoxyacetanilide (I), indometacin (II) and nor-amidopyrine-methanesulfonate (III), O,O'-bis(diethylaminoethyl)hexestrol(IV) and choloroquine (V) for 3 - 4 weeks. Liver cell fractions were isolated by discontinuous gradient centrifugation and the specific activity of acid phosphatase was determined in each. Lysosomal fractions contained widely varying amounts of this marker enzyme, indicating that the concentration of lysosomes within these fractions differed. The amounts and patterns of phospholipids reflected this fact. Since we assumed bis(monoacylglycero)phosphate [(MAG)2-P; synonym:lysobisphosphatidic acid] is a marker lipid for secondary lysosomes, we expected and found significant quantities of this acidic phospholipid only in those lysosomal fractions which were also rich in acid phosphatase activity. 12% of the lysosomal phospholipids from animals receiving the hexestrol derivative (IV), and 19% of those from the chloroquine (V) experiment were present as (MAG)2P. The fatty acid compositions of this lysosomal phospholipid were not the same in all lysosome fractions. The more (MAG)2P present in the lysosomes, the more unsaturated are the fatty acids. Thus, after treatment with chloroquine, more than 90% of the fatty acids from (MAG)2P are unsaturated; C22:6 represents about 70% of the total. PMID:627402

  18. Homotypic Lysosome Fusion in Macrophages: Analysis Using an In Vitro Assay

    OpenAIRE

    Diane M Ward; Jonathan D Leslie; Kaplan, Jerry

    1997-01-01

    Lysosomes are dynamic structures capable of fusing with endosomes as well as other lysosomes. We examined the biochemical requirements for homotypic lysosome fusion in vitro using lysosomes obtained from rabbit alveolar macrophages or the cultured macrophage-like cell line, J774E. The in vitro assay measures the formation of a biotinylated HRP–avidin conjugate, in which biotinylated HRP and avidin were accumulated in lysosomes by receptor-mediated endocytosis. We determined that lysosome fusi...

  19. Lysosomal Dysfunction Caused by Cellular Accumulation of Silica Nanoparticles.

    Science.gov (United States)

    Schütz, Irene; Lopez-Hernandez, Tania; Gao, Qi; Puchkov, Dmytro; Jabs, Sabrina; Nordmeyer, Daniel; Schmudde, Madlen; Rühl, Eckart; Graf, Christina M; Haucke, Volker

    2016-07-01

    Nanoparticles (NPs) are widely used as components of drugs or cosmetics and hold great promise for biomedicine, yet their effects on cell physiology remain poorly understood. Here we demonstrate that clathrin-independent dynamin 2-mediated caveolar uptake of surface-functionalized silica nanoparticles (SiNPs) impairs cell viability due to lysosomal dysfunction. We show that internalized SiNPs accumulate in lysosomes resulting in inhibition of autophagy-mediated protein turnover and impaired degradation of internalized epidermal growth factor, whereas endosomal recycling proceeds unperturbed. This phenotype is caused by perturbed delivery of cargo via autophagosomes and late endosomes to SiNP-filled cathepsin B/L-containing lysosomes rather than elevated lysosomal pH or altered mTOR activity. Given the importance of autophagy and lysosomal protein degradation for cellular proteostasis and clearance of aggregated proteins, these results raise the question of beneficial use of NPs in biomedicine and beyond. PMID:27226546

  20. Transformation-associated changes in sphingolipid metabolism sensitize cells to lysosomal cell death induced by inhibitors of acid sphingomyelinase

    DEFF Research Database (Denmark)

    Petersen, Nikolaj H T; Olsen, Ole D; Groth-Pedersen, Line;

    2013-01-01

    Lysosomal membrane permeabilization and subsequent cell death may prove useful in cancer treatment, provided that cancer cell lysosomes can be specifically targeted. Here, we identify acid sphingomyelinase (ASM) inhibition as a selective means to destabilize cancer cell lysosomes. Lysosome...

  1. Lysosomal Storage Causes Cellular Dysfunction in Mucolipidosis II Skin Fibroblasts*

    Science.gov (United States)

    Otomo, Takanobu; Higaki, Katsumi; Nanba, Eiji; Ozono, Keiichi; Sakai, Norio

    2011-01-01

    Mucolipidosis II (ML-II) is a fatal inherited metabolic disease caused by deficiency of GlcNAc-phosphotransferase, which plays a role in generating the mannose 6-phosphate recognition marker on lysosomal enzymes. In ML-II, many lysosomal acid hydrolases are mistargeted out of cells, and lysosomes become filled with undigested substrates, which explains inclusion cell disease as an alternative name for this disease. In this study, we revealed various cellular phenotypes in ML-II skin fibroblasts. We quantitated phospholipid and cholesterol within cells and showed ∼2-fold accumulation in ML-II as compared with normal cells. Lysosomal pH of ML-II cells was higher than that of normal cells (5.29 ± 0.08 versus 4.79 ± 0.10, p < 0.001). The proliferated lysosomes in ML-II cells were accumulated ∼3-fold in amount as compared with normal cells. Intracellular logistics including endocytosis and mannose 6-phosphate receptor recycling were impaired in ML-II cells. To confirm whether these ML-II cellular phenotypes derive from deficient lysosomal acid hydrolases within lysosomes, we performed supplementation of lysosomal enzymes using a partially purified total enzyme mixture, which was derived from the conditioned culture medium of normal skin fibroblasts after NH4Cl treatment. This supplementation corrected all of the previously described ML-II phenotypes. In addition, the autophagic and mitochondrial impairment that we have previously reported improved, and inclusion bodies disappeared on electron micrography following total lysosomal enzyme supplementation. Our results indicate that various cellular phenotypes in ML-II are caused by the deficiency of many lysosomal enzymes and massive accumulation of undigested substrates. PMID:21846724

  2. Intraarterial digital subtraction angiography of aortofemoral bypasses

    International Nuclear Information System (INIS)

    In a retrospective study, 214 digital subtraction angiography (DSA) examinations of aortofemoral and femorocrural bypasses were reviewed. In 90% of cases intravenous DSA was diagnostic for aortofemoral bypasses, and in 95% of cases intrarterial DSA angiograms of excellent image quality were obtained. In 82% arterial stenoses proximal to the bypass, in 62% stenoses distal to the bypass, and in only 15% stenoses involving the bypass itself could be detected. In 54% the bypass was regularly perfused. In 26% a complete occlusion could be seen. All angiograms were obtained after infusion of the low-osmolar nonionic contrast medium Iopromide, 150mg/ml. All examinations were painless, and no heat-induced motion artifacts were registered. No disturbances of vital signs were observed. DSA with a nonionic low-osmolarity contrast medium (Iopromide) is a safe and reliable technique for the examination of all surgical aortofemoral bypasses

  3. Diagnosing lysosomal storage disorders: mucopolysaccharidosis type I.

    Science.gov (United States)

    Johnson, Britt A; Dajnoki, Angela; Bodamer, Olaf A

    2015-01-01

    Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disorder due to deficiency of alpha iduronidase (IDUA). Progressive storage of dermatan and heparan sulfate throughout the body lead to a multiorgan presentation including short stature, dysostosis multiplex, corneal clouding, hearing loss, coarse facies, hepatosplenomegaly, and intellectual disability. Diagnosis of MPS I is based on IDUA enzyme analysis in leukocytes or dried blood spots (DBS) followed by molecular confirmation of the IDUA gene mutations in individuals with low enzyme activity. The advent of mass spectrometry methods for enzyme analysis in DBS has enabled high-throughput screening for MPS I in symptomatic individuals and newborn infants. The following unit provides the detailed analytical protocol for measurement of IDUA activity in DBS using tandem mass spectrometry. PMID:25599668

  4. Cyclodextrin induces calcium-dependent lysosomal exocytosis.

    Directory of Open Access Journals (Sweden)

    Fannie W Chen

    Full Text Available Cyclodextrins (CDs have long been used to manipulate cellular cholesterol levels both in vitro and in vivo, but their direct effects at a cellular level are not well characterized. Recently, CDs have garnered much interest because of their ability to clear stored cholesterol from Niemann Pick Type C (NPC cells and markedly prolong the life of NPC1 disease mice. Here, we investigate the hypothesis that treatment with 2-hydroxypropyl- β-cyclodextrin (HPB-CD stimulates lysosomal exocytosis in a calcium-enhanced manner. We propose that this exocytosis is the mechanism by which HPB-CD ameliorates the endolysosomal cholesterol storage phenotype in NPC cells. These findings have significant implications for the use of HPB-CD in biochemical assays and data interpretation as well as for their use for the treatment for NPC and other disorders.

  5. Bypass materials in vascular surgery

    Directory of Open Access Journals (Sweden)

    Willich, Stephan N.

    2006-03-01

    Full Text Available Introduction: Arteriosclerotic changes can lead to circulatory disturbances in various areas of the human vascular system. In addition to pharmacological therapy and the management of risk factors (e. g. hypertension, diabetes, lipid metabolism disorders, and lifestyle, surgical interventions also play an important role in the treatment of arteriosclerosis. Long-segment arterial occlusions, in particular, can be treated successfully with bypass sur-gery. A number of different materials are available for this type of operation, such as autologous vein or pros-thetic grafts comprised of polytetrafluoroethylene (PTFE or Dacron®. Prosthetic materials are used especially in the treatment of peripheral artery disease, such as in aortoiliac or femoropopliteal bypass surgery. The present report will thus focus on this area in order to examine the effectiveness of different bypass materials. Among the efforts being made to refine the newly introduced DRG system in Germany, analysing the different bypass materials used in vascular surgery is particularly important. Indeed, in its current version the German DRG system does not distinguish between bypass materials in terms of reimbursement rates. Differences in cost structures are thus of especial interest to hospitals in their budget calculations, whereas both private and statutory health insurance funds are primarily interested in long-term results and their costs. Objectives: The goal of this HTA is to compare the different bypass materials used in vascular surgery in terms of their medical efficiency and cost-effectiveness, as well as with regard to their ethical, social and legal implications. In addition, this report aims to point out the areas in which further medical, epidemiological and health economic research is still needed. Methods: Relevant publications were identified by means of a structured search of databases accessed through the German Institute of Medical Documentation and Information

  6. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity

    Directory of Open Access Journals (Sweden)

    Stern Stephan T

    2012-06-01

    Full Text Available Abstract The study of the potential risks associated with the manufacture, use, and disposal of nanoscale materials, and their mechanisms of toxicity, is important for the continued advancement of nanotechnology. Currently, the most widely accepted paradigms of nanomaterial toxicity are oxidative stress and inflammation, but the underlying mechanisms are poorly defined. This review will highlight the significance of autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Most endocytic routes of nanomaterial cell uptake converge upon the lysosome, making the lysosomal compartment the most common intracellular site of nanoparticle sequestration and degradation. In addition to the endo-lysosomal pathway, recent evidence suggests that some nanomaterials can also induce autophagy. Among the many physiological functions, the lysosome, by way of the autophagy (macroautophagy pathway, degrades intracellular pathogens, and damaged organelles and proteins. Thus, autophagy induction by nanoparticles may be an attempt to degrade what is perceived by the cell as foreign or aberrant. While the autophagy and endo-lysosomal pathways have the potential to influence the disposition of nanomaterials, there is also a growing body of literature suggesting that biopersistent nanomaterials can, in turn, negatively impact these pathways. Indeed, there is ample evidence that biopersistent nanomaterials can cause autophagy and lysosomal dysfunctions resulting in toxicological consequences.

  7. Presence of detergent-resistant microdomains in lysosomal membranes.

    Science.gov (United States)

    Taute, Antje; Wätzig, Kristin; Simons, Brigitte; Lohaus, Christiane; Meyer, Helmut; Hasilik, Andrej

    2002-10-18

    We examined the association of acetyl-CoA:alpha-glucosaminide N-acetyltransferase, a lysosomal enzyme participating in the degradation of heparan sulfate with other components of the lysosomal membrane. We prepared lysosomal membranes from human placenta and treated them with zwitterionic and non-ionic detergents. Membrane proteins were solubilized either in the presence of CHAPS at room temperature or of Triton X-100 at 4 degrees C. The CHAPS-containing extract was subjected to gel filtration in a column with the nominal size exclusion of 0.6 MDa. Under these conditions the enzyme fractionated near the void volume. To examine the association of the enzyme with detergent-resistant lipid microdomains, the extract that had been prepared with Triton X-100 was subjected to flotation in a density gradient medium. After centrifugation, a major portion of the activity of the acetyltransferase was found at the top of the gradient along with the bulk of alkaline phosphatase. Alkaline phosphatase is a glycosylphosphatidylinositol-anchored protein; possibly a contaminant in the lysosomal fraction originating from the plasma membrane and adventitiously an internal control for the flotation in the gradient. In contrast, acetyltransferase is a genuine lysosomal protein that obligatorily spans the membrane since it transfers acetyl residues from acetyl-CoA in cytosol to glucosaminyl residues in heparan sulfate fragments in the lysosomal matrix. To our knowledge this is the first report on association of a lysosomal membrane protein with detergent-resistant membrane microdomains or rafts. PMID:12379211

  8. Mini cardiopulmonary bypass: Anesthetic considerations

    OpenAIRE

    Alsatli, Raed A.

    2012-01-01

    This review article is going to elaborate on the description, components, and advantages of mini-cardiopulmonary bypass (mini-CPB), with special reference to the anesthetic management and fast track anesthesia with mini-CPB. There are several clinical advantages of mini-CPB like, reduced inflammatory reaction to the pump, reduced need for allogenic blood transfusion and lower incidence of postoperative neurological complications. There are certainly important points that have to be considered...

  9. Epicardial ultrasound in coronary artery bypass surgery

    OpenAIRE

    Budde, R.P.J.

    2005-01-01

    Chapter 1 Coronary artery bypass surgery (CABG) is traditionally performed via a median sternotomy approach on cardiopulmonary bypass (arrested heart). Since the mid 1990ties, beating heart, minimally invasive and even totally endoscopic CABG are (re)explored. In all approaches to CABG, the surgeon may face several intraoperative difficulties: 1. Localization of the target coronary artery for bypass grafting. 2. Selection of the optimal anastomotic site on the target coronary artery. 3. Asses...

  10. Gene therapy for lysosomal storage disorders: a good start.

    Science.gov (United States)

    Biffi, Alessandra

    2016-04-15

    Lysosomal storage disorders (LSDs) are a heterogeneous group of inherited diseases with a collective frequency of ∼1 in 7000 births, resulting from the deficiency in one or more enzymes or transporters that normally reside within the lysosomes. Pathology results from the progressive accumulation of uncleaved lipids, glycoproteins and/or glycosaminoglycans in the lysosomes and secondary damages that affect the brain, viscera, bones and connective tissues. Most treatment modalities developed for LSD, including gene therapy (GT), are based on the lysosome-specific cross-correction mechanism, by which close proximity of normal cells leads to the correction of the biochemical consequences of enzymatic deficiency within the neighboring cells. Here, GT efforts addressing these disorders are reviewed with an up-to-date discussion of their impact on the LSD disease phenotype in animal models and patients. PMID:26604151

  11. Secondary Lysosomal Changes in Liver in Preclinical Drug Development

    Institute of Scientific and Technical Information of China (English)

    Vincent P. Meador; D. V. M.; Ph. D.; Diplomate ACVP

    2005-01-01

    @@ Lysosomes are intracytoplasmic membrane-bound organelles that function to degrade intracellular substances by enzymatic digestion. They occur normally in all cells, being especially prominent in phagocytic cells of the reticuloendothelial system.

  12. Quantitative modeling of selective lysosomal targeting for drug design

    DEFF Research Database (Denmark)

    Trapp, Stefan; Rosania, G.; Horobin, R.W.;

    2008-01-01

    Lysosomes are acidic organelles and are involved in various diseases, the most prominent is malaria. Accumulation of molecules in the cell by diffusion from the external solution into cytosol, lysosome and mitochondrium was calculated with the Fick–Nernst–Planck equation. The cell model considers...... the diffusion of neutral and ionic molecules across biomembranes, protonation to mono- or bivalent ions, adsorption to lipids, and electrical attraction or repulsion. Based on simulation results, high and selective accumulation in lysosomes was found for weak mono- and bivalent bases with intermediate...... to high log K ow. These findings were validated with experimental results and by a comparison to the properties of antimalarial drugs in clinical use. For ten active compounds, nine were predicted to accumulate to a greater extent in lysosomes than in other organelles, six of these were in the...

  13. Acidic nanoparticles are trafficked to lysosomes and restore an acidic lysosomal pH and degradative function to compromised ARPE-19 cells.

    Directory of Open Access Journals (Sweden)

    Gabriel C Baltazar

    Full Text Available Lysosomal enzymes function optimally in acidic environments, and elevation of lysosomal pH can impede their ability to degrade material delivered to lysosomes through autophagy or phagocytosis. We hypothesize that abnormal lysosomal pH is a key aspect in diseases of accumulation and that restoring lysosomal pH will improve cell function. The propensity of nanoparticles to end up in the lysosome makes them an ideal method of delivering drugs to lysosomes. This study asked whether acidic nanoparticles could traffic to lysosomes, lower lysosomal pH and enhance lysosomal degradation by the cultured human retinal pigmented epithelial cell line ARPE-19. Acidic nanoparticles composed of poly (DL-lactide-co-glycolide (PLGA 502 H, PLGA 503 H and poly (DL-lactide (PLA colocalized to lysosomes of ARPE-19 cells within 60 min. PLGA 503 H and PLA lowered lysosomal pH in cells compromised by the alkalinizing agent chloroquine when measured 1 hr. after treatment, with acidification still observed 12 days later. PLA enhanced binding of Bodipy-pepstatin-A to the active site of cathepsin D in compromised cells. PLA also reduced the cellular levels of opsin and the lipofuscin-like autofluorescence associated with photoreceptor outer segments. These observations suggest the acidification produced by the nanoparticles was functionally effective. In summary, acid nanoparticles lead to a rapid and sustained lowering of lysosomal pH and improved degradative activity.

  14. Importance of lysosomal cysteine proteases in lung disease

    OpenAIRE

    Chapman Harold A; Wolters Paul J

    2000-01-01

    Abstract The human lysosomal cysteine proteases are a family of 11 proteases whose members include cathepsins B, C, H, L, and S. The biology of these proteases was largely ignored for decades because of their lysosomal location and the belief that their function was limited to the terminal degradation of proteins. In the past 10 years, this view has changed as these proteases have been found to have specific functions within cells. This review highlights some of these functions, specifically ...

  15. A Lysosome-Targeting AIEgen for Autophagy Visualization.

    Science.gov (United States)

    Leung, Chris Wai Tung; Wang, Zhiming; Zhao, Engui; Hong, Yuning; Chen, Sijie; Kwok, Ryan Tsz Kin; Leung, Anakin Chun Sing; Wen, Rongsen; Li, Bingshi; Lam, Jacky Wing Yip; Tang, Ben Zhong

    2016-02-18

    In this work, a morpholine-functionalized aggregation-induced emission luminogen (AIEgen), AIE-LysoY, is reported for lysosomal imaging and autophagy visualization. To attain outstanding imaging contrast, AIE-LysoY is equipped with excited state intramolecular proton transfer (ESIPT) characteristic. AIE-LysoY provides a new platform for lysosome visualization with good biocompatibility, large Stokes shift, superior signal-to-noise ratio, and high photostability. PMID:26688031

  16. Extracellular Acidification Alters Lysosomal Trafficking in Human Breast Cancer Cells

    OpenAIRE

    Kristine Glunde; Sandra E. Guggino; Meiyappan Solaiyappan; Pathak, Arvind P.; Yoshitaka Ichikawa; Bhujwalla, Zaver M.

    2003-01-01

    Cancer cells invade by secreting degradative enzymes, which are sequestered in lysosomal vesicles. In this study, the impact of an acidic extracellular environment on lysosome size, number, and distance from the nucleus in human mammary epithelial cells (HMECs) and breast cancer cells of different degrees of malignancy was characterized because the physiological microenvironment of tumors is frequently characterized by extracellular acidity. An acidic extracellular pH (pHe) resulted in a dist...

  17. Lysosomal function in macromolecular homeostasis and bioenergetics in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Zhang Jianhua

    2010-04-01

    Full Text Available Abstract The pathological changes occurring in Parkinson's and several other neurodegenerative diseases are complex and poorly understood, but all clearly involve protein aggregation. Also frequently appearing in neurodegeneration is mitochondrial dysfunction which may precede, coincide or follow protein aggregation. These observations led to the concept that protein aggregation and mitochondrial dysfunction either arise from the same etiological factors or are interactive. Understanding the mechanisms and regulation of processes that lead to protein aggregation or mitochondrial dysfunction may therefore contribute to the design of better therapeutics. Clearance of protein aggregates and dysfunctional organelles is dependent on macroautophagy which is the process through which aged or damaged proteins and organelles are first degraded by the lysosome and then recycled. The macroautophagy-lysosomal pathway is essential for maintaining protein and energy homeostasis. Not surprisingly, failure of the lysosomal system has been implicated in diseases that have features of protein aggregation and mitochondrial dysfunction. This review summarizes 3 major topics: 1 the current understanding of Parkinson's disease pathogenesis in terms of accumulation of damaged proteins and reduction of cellular bioenergetics; 2 evolving insights into lysosomal function and biogenesis and the accumulating evidence that lysosomal dysfunction may cause or exacerbate Parkinsonian pathology and finally 3 the possibility that enhancing lysosomal function may provide a disease modifying therapy.

  18. Lysosomal trafficking functions of mucolipin-1 in murine macrophages

    Directory of Open Access Journals (Sweden)

    Dang Hope

    2007-12-01

    Full Text Available Abstract Background Mucolipidosis Type IV is currently characterized as a lysosomal storage disorder with defects that include corneal clouding, achlorhydria and psychomotor retardation. MCOLN1, the gene responsible for this disease, encodes the protein mucolipin-1 that belongs to the "Transient Receptor Potential" family of proteins and has been shown to function as a non-selective cation channel whose activity is modulated by pH. Two cell biological defects that have been described in MLIV fibroblasts are a hyperacidification of lysosomes and a delay in the exit of lipids from lysosomes. Results We show that mucolipin-1 localizes to lysosomal compartments in RAW264.7 mouse macrophages that show subcompartmental accumulations of endocytosed molecules. Using stable RNAi clones, we show that mucolipin-1 is required for the exit of lipids from these compartments, for the transport of endocytosed molecules to terminal lysosomes, and for the transport of the Major Histocompatibility Complex II to the plasma membrane. Conclusion Mucolipin-1 functions in the efficient exit of molecules, destined for various cellular organelles, from lysosomal compartments.

  19. Lysosomes from rabbit type II cells catabolize surfactant lipids.

    Science.gov (United States)

    Rider, E D; Ikegami, M; Pinkerton, K E; Peake, J L; Jobe, A H

    2000-01-01

    The role of a lysosome fraction from rabbit type II cells in surfactant dipalmitoylphosphatidylcholine (DPPC) catabolism was investigated in vivo using radiolabeled DPPC and dihexadecylphosphatidylcholine (1, 2-dihexadecyl-sn-glycero-3-phosphocholine; DEPC), a phospholipase A(1)- and A(2)-resistant analog of DPPC. Freshly isolated type II cells were gently disrupted by shearing, and lysosomes were isolated with Percoll density gradients (density range 1.0591-1.1457 g/ml). The lysosome fractions were relatively free of contaminating organelles as determined by electron microscopy and organelle marker enzymes. After intratracheal injection of rabbits with [(3)H]DPPC and [(14)C]DEPC associated with a trace amount of natural rabbit surfactant, the degradation-resistant DEPC accumulated 16-fold compared with DPPC in lysosome fractions at 15 h. Lysosomes can be isolated from freshly isolated type II cells, and lysosomes from type II cells are the primary catabolic organelle for alveolar surfactant DPPC following reuptake by type II cells in vivo. PMID:10645892

  20. Glucosamine-Bound Near-Infrared Fluorescent Probes with Lysosomal Specificity for Breast Tumor Imaging1

    OpenAIRE

    Li, Cong; Greenwood, Tiffany R; Glunde, Kristine

    2008-01-01

    Noninvasive imaging of lysosomes will be useful 1) to elucidate the role of lysosomal parameters in cancer, 2) to diagnose malignant lesions, and 3) to evaluate future lysosome-targeted anticancer therapies. Lysosome-specific labeling of glucosamine-bound near-infrared (NIR) fluorescent probes, IR-1 and IR-2, but not control probe IR-15 without the glucosamine moiety, was observed by fluorescence microscopy in human breast epithelial cell lines. Lysosome labeling and tumor specificity of thes...

  1. Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation

    OpenAIRE

    Rong, Yueguang; McPhee, Christina K; Deng, Shuangshen; Huang, Lei; Chen, Lilian; Liu, Mei; Tracy, Kirsten; Baehrecke, Eric H.; Yu, Li; Lenardo, Michael J.

    2011-01-01

    Autophagy is a conserved cellular process to degrade and recycle cytoplasmic components. During autophagy, lysosomes fuse with an autophagosome to form an autolysosome. Sequestered components are degraded by lysosomal hydrolases and presumably released into the cytosol by lysosomal efflux permeases. Following starvation-induced autophagy, lysosome homeostasis is restored by autophagic lysosome reformation (ALR) requiring activation of the “target of rapamycin” (TOR) kinase. Spinster (Spin) en...

  2. Glucosamine-Bound Near-Infrared Fluorescent Probes with Lysosomal Specificity for Breast Tumor Imaging

    OpenAIRE

    Cong Li; Greenwood, Tiffany R; Kristine Glunde

    2008-01-01

    Noninvasive imaging of lysosomes will be useful 1) to elucidate the role of lysosomal parameters in cancer, 2) to diagnose malignant lesions, and 3) to evaluate future lysosome-targeted anticancer therapies. Lysosome-specific labeling of glucosamine-bound near-infrared (NIR) fluorescent probes, IR-1 and IR-2, but not control probe IR-15 without the glucosamine moiety, was observed by fluorescence microscopy in human breast epithelial cell lines. Lysosome labeling and tumor specificity of thes...

  3. Gene Therapy for Lysosomal Storage Diseases (LSDs) in Large Animal Models

    OpenAIRE

    Haskins, Mark

    2009-01-01

    Lysosomal storage diseases (LSDs) are inherited metabolic disorders caused by deficient activity of a single lysosomal enzyme or other defects resulting in deficient catabolism of large substrates in lysosomes. There are more than 40 forms of inherited LSDs known to occur in humans, with an aggregate incidence estimated at 1 in 7,000 live births. Clinical signs result from the inability of lysosomes to degrade large substrates; because most lysosomal enzymes are ubiquitously expressed, a defi...

  4. TECAB - Totally Endoscopic Coronary Artery Bypass

    Medline Plus

    Full Text Available ... And the bypass vessel is the so-called “internal mammary artery.” That’s an artery, as opposed to ... you very much. -- while I’m preparing the internal mammary artery for bypass. Good. All right. We ...

  5. Epicardial ultrasound in coronary artery bypass surgery

    NARCIS (Netherlands)

    Budde, R.P.J.

    2005-01-01

    Chapter 1 Coronary artery bypass surgery (CABG) is traditionally performed via a median sternotomy approach on cardiopulmonary bypass (arrested heart). Since the mid 1990ties, beating heart, minimally invasive and even totally endoscopic CABG are (re)explored. In all approaches to CABG, the surgeo

  6. TECAB - Totally Endoscopic Coronary Artery Bypass

    Medline Plus

    Full Text Available ... as doctors use for this operation is “TECAB,” meaning “Totally Endoscopic Coronary Artery Bypass.” This procedure will ... make sure his vessels are able for bypass, meaning doing the CT angiograph for the peripheral arteries. ...

  7. Atrial fibrillation post cardiac bypass surgery

    OpenAIRE

    Mostafa, Ashraf; EL-Haddad, Mohamed A.; Shenoy, Maithili; Tuliani, Tushar

    2012-01-01

    Atrial fibrillation occurs in 5-40% patients after coronary artery bypass graft surgery. Atrial fibrillation increases mortality and morbidity in the post-operative period. We sought to conduct a comprehensive review of literature focusing on pathophysiology, risk factors, prevention and treatment of post coronary artery bypass graft atrial fibrillation.

  8. TECAB - Totally Endoscopic Coronary Artery Bypass

    Medline Plus

    Full Text Available ... going to thread that up to the patient’s bypass graft using X-ray, and there you are. So what we’re going to do is manipulate this catheter into actually the artery that leads to the arm, the subclavian, which is where the bypass comes off. Let me just saw it for ...

  9. Membrane proteins of dense lysosomes from Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    In this work membrane proteins from lysosomes were studied in order to gain more information on the biogenesis and intracellular sorting of this class of membrane proteins. Membrane proteins were isolated from a purified population of lysosomes. These proteins were then examined for various co- and post-translational modifications which could serve as potential intracellular sorting signals. Biochemical analysis using marker enzymatic activities detected no plasma membrane, Golgi, endoplasmic reticulum, peroxisomes, mitochondria, or cytosol. Analysis after incorporation of [3H]thymidine or [3H]uridine detected no nuclei or ribosomes. A fraction containing integral membrane proteins was obtained from the dense lysosomes by extraction with Triton X-114. Twenty-three polypeptides which incorporated both [35S]methionine and [3H]leucine were detected by SDS PAGE in this membrane fraction, and ranged in molecular weight from 30-130 kDa. After incorporation by cells of various radioactive metabolic precursors, the membrane fraction from dense lysosomes was examined and was found to be enriched in mannose, galactose, fucose, palmitate, myristate, and sulfate, but was depleted in phosphate. The membrane fraction from dense lysosomes was then analyzed by SDS PAGE to determine the apparent molecular weights of modified polypepties

  10. LAMP proteins are required for fusion of lysosomes with phagosomes.

    Science.gov (United States)

    Huynh, Kassidy K; Eskelinen, Eeva-Liisa; Scott, Cameron C; Malevanets, Anatoly; Saftig, Paul; Grinstein, Sergio

    2007-01-24

    Lysosome-associated membrane proteins 1 and 2 (LAMP-1 and LAMP-2) are delivered to phagosomes during the maturation process. We used cells from LAMP-deficient mice to analyze the role of these proteins in phagosome maturation. Macrophages from LAMP-1- or LAMP-2-deficient mice displayed normal fusion of lysosomes with phagosomes. Because ablation of both the lamp-1 and lamp-2 genes yields an embryonic-lethal phenotype, we were unable to study macrophages from double knockouts. Instead, we reconstituted phagocytosis in murine embryonic fibroblasts (MEFs) by transfection of FcgammaIIA receptors. Phagosomes formed by FcgammaIIA-transfected MEFs obtained from LAMP-1- or LAMP-2- deficient mice acquired lysosomal markers. Remarkably, although FcgammaIIA-transfected MEFs from double-deficient mice ingested particles normally, phagosomal maturation was arrested. LAMP-1 and LAMP-2 double-deficient phagosomes acquired Rab5 and accumulated phosphatidylinositol 3-phosphate, but failed to recruit Rab7 and did not fuse with lysosomes. We attribute the deficiency to impaired organellar motility along microtubules. Time-lapse cinematography revealed that late endosomes/lysosomes as well as phagosomes lacking LAMP-1 and LAMP-2 had reduced ability to move toward the microtubule-organizing center, likely precluding their interaction with each other. PMID:17245426

  11. In situ bypass og diabetes

    DEFF Research Database (Denmark)

    Jensen, Leif Panduro; Schroeder, T V; Lorentzen, J E

    1993-01-01

    From 1986 through to 1990 a total of 483 in situ bypass procedures were performed in 444 patients. Preoperative risk-factors were equally distributed among diabetic (DM) and non-diabetic (NDM) patients, except for smoking habits (DM:48%, NDM:64%, p = 0.002) and cardiac disease (DM:45%, NDM:29%, p...... = 0.005). Critical limb-ischaemia was more often present in diabetic than non-diabetic patients (DM:57%, NDM:36%, p = 0.0002). Diabetic patients had a significantly lower distal anastomosis than non-diabetic patients (p = 0.00001). There were no differences among diabetic and non-diabetic patients...... regarding three years primary and secondary patency (58% and 64% respectively), and regarding major amputations. However, the rate of minor amputations was higher in insulin-dependent compared with non-insulin-dependent diabetics, who in turn had a higher rate than non-diabetics (p

  12. Genetic Coding Variant in GPR65 Alters Lysosomal pH and Links Lysosomal Dysfunction with Colitis Risk.

    Science.gov (United States)

    Lassen, Kara G; McKenzie, Craig I; Mari, Muriel; Murano, Tatsuro; Begun, Jakob; Baxt, Leigh A; Goel, Gautam; Villablanca, Eduardo J; Kuo, Szu-Yu; Huang, Hailiang; Macia, Laurence; Bhan, Atul K; Batten, Marcel; Daly, Mark J; Reggiori, Fulvio; Mackay, Charles R; Xavier, Ramnik J

    2016-06-21

    Although numerous polymorphisms have been associated with inflammatory bowel disease (IBD), identifying the function of these genetic factors has proved challenging. Here we identified a role for nine genes in IBD susceptibility loci in antibacterial autophagy and characterized a role for one of these genes, GPR65, in maintaining lysosome function. Mice lacking Gpr65, a proton-sensing G protein-coupled receptor, showed increased susceptibly to bacteria-induced colitis. Epithelial cells and macrophages lacking GPR65 exhibited impaired clearance of intracellular bacteria and accumulation of aberrant lysosomes. Similarly, IBD patient cells and epithelial cells expressing an IBD-associated missense variant, GPR65 I231L, displayed aberrant lysosomal pH resulting in lysosomal dysfunction, impaired bacterial restriction, and altered lipid droplet formation. The GPR65 I231L polymorphism was sufficient to confer decreased GPR65 signaling. Collectively, these data establish a role for GPR65 in IBD susceptibility and identify lysosomal dysfunction as a potentially causative element in IBD pathogenesis with effects on cellular homeostasis and defense. PMID:27287411

  13. Secondary coolant purification system with demineralizer bypass

    International Nuclear Information System (INIS)

    Apparatus and method are provided for a nuclear stream supply system for adequately controlling the chemistry of the secondary coolant. The invention includes means for the addition of volatile chemicals, a full flow condensate demineralizer, continuous blowdown capability, radiation detection means, a condensate demineralizer bypass line, and an auxiliary demineralizer bypass line, and an auxiliary demineralizer sized to handle full blowdown flow. The auxiliary demineralizer is cut into the system and the steam generator feedwater flow is bypassed around the full flow condensate demineralizer whenever radioactivity is detected in the secondary coolant

  14. The endoplasmic reticulum, not the pH gradient, drives calcium refilling of lysosomes.

    Science.gov (United States)

    Garrity, Abigail G; Wang, Wuyang; Collier, Crystal Md; Levey, Sara A; Gao, Qiong; Xu, Haoxing

    2016-01-01

    Impaired homeostasis of lysosomal Ca(2+) causes lysosome dysfunction and lysosomal storage diseases (LSDs), but the mechanisms by which lysosomes acquire and refill Ca(2+) are not known. We developed a physiological assay to monitor lysosomal Ca(2+) store refilling using specific activators of lysosomal Ca(2+) channels to repeatedly induce lysosomal Ca(2+) release. In contrast to the prevailing view that lysosomal acidification drives Ca(2+) into the lysosome, inhibiting the V-ATPase H(+) pump did not prevent Ca(2+) refilling. Instead, pharmacological depletion or chelation of Endoplasmic Reticulum (ER) Ca(2+) prevented lysosomal Ca(2+) stores from refilling. More specifically, antagonists of ER IP3 receptors (IP3Rs) rapidly and completely blocked Ca(2+) refilling of lysosomes, but not in cells lacking IP3Rs. Furthermore, reducing ER Ca(2+) or blocking IP3Rs caused a dramatic LSD-like lysosome storage phenotype. By closely apposing each other, the ER may serve as a direct and primary source of Ca(2+)for the lysosome. PMID:27213518

  15. A Rab3a-dependent complex essential for lysosome positioning and plasma membrane repair.

    Science.gov (United States)

    Encarnação, Marisa; Espada, Lília; Escrevente, Cristina; Mateus, Denisa; Ramalho, José; Michelet, Xavier; Santarino, Inês; Hsu, Victor W; Brenner, Michael B; Barral, Duarte; Vieira, Otília V

    2016-06-20

    Lysosome exocytosis plays a major role in resealing plasma membrane (PM) disruptions. This process involves two sequential steps. First, lysosomes are recruited to the periphery of the cell and then fuse with the damaged PM. However, the trafficking molecular machinery involved in lysosome exocytosis and PM repair (PMR) is poorly understood. We performed a systematic screen of the human Rab family to identify Rabs required for lysosome exocytosis and PMR. Rab3a, which partially localizes to peripheral lysosomes, was one of the most robust hits. Silencing of Rab3a or its effector, synaptotagmin-like protein 4a (Slp4-a), leads to the collapse of lysosomes to the perinuclear region and inhibition of PMR. Importantly, we have also identified a new Rab3 effector, nonmuscle myosin heavy chain IIA, as part of the complex formed by Rab3a and Slp4-a that is responsible for lysosome positioning at the cell periphery and lysosome exocytosis. PMID:27325790

  16. A non-conserved miRNA regulates lysosomal function and impacts on a human lysosomal storage disorder

    DEFF Research Database (Denmark)

    Frankel, Lisa B; Di Malta, Chiara; Wen, Jiayu;

    2014-01-01

    Sulfatases are key enzymatic regulators of sulfate homeostasis with several biological functions including degradation of glycosaminoglycans (GAGs) and other macromolecules in lysosomes. In a severe lysosomal storage disorder, multiple sulfatase deficiency (MSD), global sulfatase activity...... is deficient due to mutations in the sulfatase-modifying factor 1 (SUMF1) gene, encoding the essential activator of all sulfatases. We identify a novel regulatory layer of sulfate metabolism mediated by a microRNA. miR-95 depletes SUMF1 protein levels and suppresses sulfatase activity, causing the disruption...

  17. Your diet after gastric bypass surgery

    Science.gov (United States)

    ... low-fat or nonfat hard cheeses, cottage cheese, milk, and yogurt. After gastric bypass surgery, your body will not absorb some important vitamins and minerals. You will need to take these vitamins and ...

  18. TECAB - Totally Endoscopic Coronary Artery Bypass

    Medline Plus

    Full Text Available ... perfect bypass. We are often asked how you learn this. Important question. Hours and hours of suturing ... OR-Live” makes it easy for you to learn more. Just click on the “Request information” button ...

  19. TECAB - Totally Endoscopic Coronary Artery Bypass

    Medline Plus

    Full Text Available ... Artery Bypass June 10, 2009 Welcome to the University of Maryland Medical Center in Baltimore, where you ... to Maryland. Welcome to Baltimore. Welcome to the University of Maryland Medical Center here in OR-26. ...

  20. TECAB - Totally Endoscopic Coronary Artery Bypass

    Medline Plus

    Full Text Available ... on for coronary surgery. A very durable bypass running here and supplying the chest wall with blood. ... case the branch, the typical branch that is running between the two heart chambers is located more ...

  1. TECAB - Totally Endoscopic Coronary Artery Bypass

    Medline Plus

    Full Text Available ... is pulsating behind the fascia. Here is some muscle. Here we have the apex or tip of ... tissue. It then turns into the transverse thoracic muscle here. This bypass vessel has an extremely long ...

  2. TECAB - Totally Endoscopic Coronary Artery Bypass

    Medline Plus

    Full Text Available ... sure that we preserve this bypass vessel very well in order to achieve this. So I go ... French quick-draw Venus cardiac visions cannula as well, which will draw back, go to the heart- ...

  3. Types of Coronary Artery Bypass Grafting

    Science.gov (United States)

    ... best option for you based on your needs. Traditional Coronary Artery Bypass Grafting Traditional CABG is used when at least one major ... Grafting This type of CABG is similar to traditional CABG because the chest bone is opened to ...

  4. Exhaust gas bypass valve control for thermoelectric generator

    Science.gov (United States)

    Reynolds, Michael G; Yang, Jihui; Meisner, Greogry P.; Stabler, Francis R.; De Bock, Hendrik Pieter Jacobus; Anderson, Todd Alan

    2012-09-04

    A method of controlling engine exhaust flow through at least one of an exhaust bypass and a thermoelectric device via a bypass valve is provided. The method includes: determining a mass flow of exhaust exiting an engine; determining a desired exhaust pressure based on the mass flow of exhaust; comparing the desired exhaust pressure to a determined exhaust pressure; and determining a bypass valve control value based on the comparing, wherein the bypass valve control value is used to control the bypass valve.

  5. Phrenic Nerve Injury during Coronary Artery Bypass

    OpenAIRE

    Guinn, Gene A.; Beall, Arthur C.; Lamki, Neela; Heibig, Jacques; Thornby, John

    1990-01-01

    After coronary artery bypass, some patients have diaphragmatic elevation, usually on the left side. To test our hypothesis that this phenomenon is due to phrenic nerve injury resulting from either 1) dissection of the proximal portion of the left internal mammary artery or 2) topical cooling of the heart with icy slush, we performed the following 2-part study. First, we reviewed our hospital records of 99 coronary artery bypass patients, 55 of whom had received left internal mammary artery gr...

  6. Plasma Membrane Repair Is Regulated Extracellularly by Proteases Released from Lysosomes

    OpenAIRE

    Castro-Gomes, Thiago; Corrotte, Matthias; Tam, Christina; Andrews, Norma W.

    2016-01-01

    Eukaryotic cells rapidly repair wounds on their plasma membrane. Resealing is Ca2+-dependent, and involves exocytosis of lysosomes followed by massive endocytosis. Extracellular activity of the lysosomal enzyme acid sphingomyelinase was previously shown to promote endocytosis and wound removal. However, whether lysosomal proteases released during cell injury participate in resealing is unknown. Here we show that lysosomal proteases regulate plasma membrane repair. Extracellular proteolysis is...

  7. The Role of Oxidized Cholesterol in Diabetes-Induced Lysosomal Dysfunction in the Brain

    OpenAIRE

    Sims-Robinson, Catrina; Bakeman, Anna; Rosko, Andrew; Glasser, Rebecca; Eva L Feldman

    2015-01-01

    Abnormalities in lysosomal function have been reported in diabetes, aging, and age-related degenerative diseases. These lysosomal abnormalities are an early manifestation of neurodegenerative diseases and often precede the onset of clinical symptoms such as learning and memory deficits; however, the mechanism underlying lysosomal dysfunction is not known. In the current study, we investigated the mechanism underlying lysosomal dysfunction in the cortex and hippocampi, key structures involved ...

  8. Host cell invasion by trypanosomes requires lysosomes and microtubule/kinesin-mediated transport

    OpenAIRE

    1996-01-01

    Invasion of mammalian cells by the protozoan parasite Trypanosoma cruzi occurs by an actin-independent mechanism distinct from phagocytosis. Clusters of host lysosomes are observed at the site of parasite attachment, and lysosomal markers are detected in the vacuolar membrane at early stages of the entry process. These observations led to the hypothesis that the trypanosomes recruit host lysosomes to their attachment site, and that lysosomal fusion serves as a source of membrane to form the p...

  9. An experimental study of nerve bypass graft

    Institute of Scientific and Technical Information of China (English)

    XU Jie; LI Xue-shi

    2008-01-01

    Objective: To study the use of a nerve "bypass" graft as a possible alternative to neurolysis or segmental resection with interposition grafting in the treatment of neuroma-in-continuity. Methods: A sciatic nerve crush injury model was established in the Sprague-Dawley rat by compression with a straight hemostatic forceps. Epineurial windows were created proximal and distal to the injury site. An 8-mm segment of radial nerve was harvested and coaptated to the sciatic nerve at the epineurial window sites proximal and distal to the compressed segment (bypass group). A sciatic nerve crush injury without bypass served as a control. Nerve conduction studies were performed over an 8-week period. Sciatic nerves were then harvested and studied under transmission electron microscopy. Myelinated axon counts were obtained. Results: Nerve conduction velocity was significantly faster in the bypass group than in the control group at 8 weeks (63.57 m/s±5.83 m/s vs. 54.88 m/s±4.79m/s, P<0.01). Myelinated axon counts in distal segments were found more in the experimental sciatic nerve than in the control sciatic nerve. Significant axonal growth was noted in the bypass nerve segment itself. Conclusion: Nerve bypass may serve to augment peripheral axonal growth while avoiding further loss of the native nerve.

  10. Lysosomal Cholesterol Accumulation Sensitizes To Acetaminophen Hepatotoxicity by Impairing Mitophagy

    Science.gov (United States)

    Baulies, Anna; Ribas, Vicent; Núñez, Susana; Torres, Sandra; Alarcón-Vila, Cristina; Martínez, Laura; Suda, Jo; Ybanez, Maria D.; Kaplowitz, Neil; García-Ruiz, Carmen; Fernández-Checa, Jose C.

    2015-01-01

    The role of lysosomes in acetaminophen (APAP) hepatotoxicity is poorly understood. Here, we investigated the impact of genetic and drug-induced lysosomal cholesterol (LC) accumulation in APAP hepatotoxicity. Acid sphingomyelinase (ASMase)−/− mice exhibit LC accumulation and higher mortality after APAP overdose compared to ASMase+/+ littermates. ASMase−/− hepatocytes display lower threshold for APAP-induced cell death and defective fusion of mitochondria-containing autophagosomes with lysosomes, which decreased mitochondrial quality control. LC accumulation in ASMase+/+ hepatocytes caused by U18666A reproduces the susceptibility of ASMase−/− hepatocytes to APAP and the impairment in the formation of mitochondria-containing autolysosomes. LC extraction by 25-hydroxycholesterol increased APAP-mediated mitophagy and protected ASMase−/− mice and hepatocytes against APAP hepatotoxicity, effects that were reversed by chloroquine to disrupt autophagy. The regulation of LC by U18666A or 25-hydroxycholesterol did not affect total cellular sphingomyelin content or its lysosomal distribution. Of relevance, amitriptyline-induced ASMase inhibition in human hepatocytes caused LC accumulation, impaired mitophagy and increased susceptibility to APAP. Similar results were observed upon glucocerebrosidase inhibition by conduritol β-epoxide, a cellular model of Gaucher disease. These findings indicate that LC accumulation determines susceptibility to APAP hepatotoxicity by modulating mitophagy, and imply that genetic or drug-mediated ASMase disruption sensitizes to APAP-induced liver injury. PMID:26657973

  11. Structure of human saposin A at lysosomal pH

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Chris H.; Read, Randy J.; Deane, Janet E., E-mail: jed55@cam.ac.uk [University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY (United Kingdom)

    2015-06-27

    A 1.8 Å resolution structure of the sphingolipid activator protein saposin A has been determined at pH 4.8, the physiologically relevant lysosomal pH for hydrolase enzyme activation and lipid-transfer activity. The saposins are essential cofactors for the normal lysosomal degradation of complex glycosphingolipids by acid hydrolase enzymes; defects in either saposin or hydrolase function lead to severe metabolic diseases. Saposin A (SapA) activates the enzyme β-galactocerebrosidase (GALC), which catalyzes the breakdown of β-d-galactocerebroside, the principal lipid component of myelin. SapA is known to bind lipids and detergents in a pH-dependent manner; this is accompanied by a striking transition from a ‘closed’ to an ‘open’ conformation. However, previous structures were determined at non-lysosomal pH. This work describes a 1.8 Å resolution X-ray crystal structure determined at the physiologically relevant lysosomal pH 4.8. In the absence of lipid or detergent at pH 4.8, SapA is observeed to adopt a conformation closely resembling the previously determined ‘closed’ conformation, showing that pH alone is not sufficient for the transition to the ‘open’ conformation. Structural alignments reveal small conformational changes, highlighting regions of flexibility.

  12. The frequency of lysosomal storage diseases in The Netherlands

    NARCIS (Netherlands)

    Poorthuis, BJHM; Wevers, RA; Kleijer, WJ; Groener, JEM; de Jong, JGN; van Weely, S; Niezen-Koning, KE; van Diggelen, OP

    1999-01-01

    We have calculated the relative frequency and the birth prevalence of lysosomal storage diseases (LSDs) in The Netherlands based on all 963 enzymatically confirmed cases diagnosed during the period 1970-1996. The combined birth prevalence for all LSDs is 14 per 100,000 live births. Glycogenosis type

  13. Clinical, biochemical and genetic heterogeneity in lysosomal storage diseases

    NARCIS (Netherlands)

    A.J.J. Reuser (Arnold)

    1977-01-01

    textabstractThe history of lysosomal storage diseases dates back to the end of the last century when the first clinical reports appeared of patients suffering from these genetic, metabolic disorders (Tay, 1881; Gaucher, 1882; Sachs, 1887; Fabry, 1898). About seventy years wouid pass before the term

  14. Neuronopathic Lysosomal Storage Diseases: Clinical and Pathologic Findings

    Science.gov (United States)

    Prada, Carlos E.; Grabowski, Gregory A.

    2013-01-01

    Background: The lysosomal--autophagocytic system diseases (LASDs) affect multiple body systems including the central nervous system (CNS). The progressive CNS pathology has its onset at different ages, leading to neurodegeneration and early death. Methods: Literature review provided insight into the current clinical neurological findings,…

  15. Lysosomal Exocytosis in Schwann Cells Contributes to Axon Remyelination

    Institute of Scientific and Technical Information of China (English)

    GANG CHEN; ZHIJUN ZHANG; ZHONGYA WEI; QIONG CHENG; XIA LI; WEI LI; SHUMIN DUAN; XIAOSONG GU

    2012-01-01

    Myelin biogenesis is a complex process involving coordinated exocytosis, endocytosis, mRNA transport, and cytoskeletal dynamics. Although abnormalities of myelin are common in lysosomal storage diseases, our understanding of the role of lysosomes in the formation and maintenance of myelin is still limited. Here, we show that late endosomes/lysosomes in Schwann cells contain abundant myelin protein P0, which accounts for over half the total protein of compact myelin in the peripheral nervous system and exhibit Ca2+-dependent exocytosis in response to various stimuli. Downregulation of Rab27a, a small GTPase required for the trafficking of the secretory lysosomes to the plasma membrane, largely blocked lysosomal exocytosis in Schwann cells and reduced the remyelination of regenerated sciatic nerve. These findings highlight a novel role for lysosomes in Schwann cells and suggest that the regulated lysosome exocytosis in Schwann cells may have important physiological and pathological significance in the peripheral nervous%髓鞘形成是一个包括协同性的胞吐、内吞、mRNA转运和细胞骨架的动态变化的复杂过程.尽管髓鞘的异常在溶酶体贮积症中很常见,但对溶酶体在髓鞘形成和维持中所扮演的角色仍不清楚.本文发现Schwann细胞中的晚期内涵体/溶酶体包含大量的髓鞘蛋白P0,含量占超过一半的外周神经系统中的致密髓鞘的总蛋白并且在不同的刺激下表现出Ca2+依赖性的胞吐作用.Rab27a(一种将分泌溶酶体运输至细胞膜的小GTP酶)下调,极大地阻碍了Schwann细胞中的溶酶体胞吐作用,减少了再生坐骨神经的髓鞘形成.这些发现强调了Schwann细胞中溶酶体的新角色,提示调节Schwann细胞中的溶酶体胞吐作用在外周神经系统中有很重要的生理和病理意义.

  16. Protective effect of enterosgel on rat liver lysosomes during cytostatic treatment.

    Science.gov (United States)

    Grek, O R; Mishenina, S V; Pupyshev, A B

    2002-10-01

    Polychemotherapy with a complex of cytostatics (cyclophosphamide, doxorubicin, vincristine, prednisolone) induces progressive damage to hepatocyte membranes, which manifested in labilization of lysosomes and activation of lysosomal enzymes and serum transaminases. Enterosgel stabilized liver lysosomes and reduced manifestation of hepatocyte cytolysis. PMID:12533758

  17. Lysosome size, motility and stress response regulated by fronto-temporal dementia modifier TMEM106B.

    Science.gov (United States)

    Stagi, Massimiliano; Klein, Zoe A; Gould, Travis J; Bewersdorf, Joerg; Strittmatter, Stephen M

    2014-07-01

    Fronto-temporal lobar degeneration with TDP-43 (FTLD-TDP) is a fatal neurodegeneration. TMEM106B variants are linked to FTLD-TDP risk, and TMEM106B is lysosomal. Here, we focus on neuronal TMEM106B, and demonstrate co-localization and traffic with lysosomal LAMP-1. pH-sensitive reporters demonstrate that the TMEM106B C-terminus is lumenal. The TMEM106B N-terminus interacts with endosomal adaptors and other TMEM106 proteins. TMEM106B knockdown reduces neuronal lysosomal number and diameter by STED microscopy, and overexpression enlarges LAMP-positive structures. Reduction of TMEM106B increases axonally transported lysosomes, while TMEM106B elevation inhibits transport and yields large lysosomes in the soma. TMEM106B overexpression alters lysosomal stress signaling, causing a translocation of the mTOR-sensitive transcription factor, TFEB, to neuronal nuclei. TMEM106B loss-of-function delays TFEB translocation after Torin-1-induced stress. Enlarged TMEM106B-overexpressing lysosomes maintain organelle integrity longer after lysosomal photodamage than do control lysosomes, while small TMEM106B-knockdown lysosomes are more sensitive to illumination. Thus, neuronal TMEM106B plays a central role in regulating lysosomal size, motility and responsiveness to stress, highlighting the possible role of lysosomal biology in FTLD-TDP. PMID:25066864

  18. Glycolipid-dependent sorting of melanosomal from lysosomal membrane proteins by lumenal determinants

    NARCIS (Netherlands)

    Groux-Degroote, S.; Dijk, S.M. van; Wolthoorn, J.; Neumann, S.; Theos, A.C.; Mazière, A.M. de; Klumperman, J.; Meer, G. van; Sprong, H.

    2008-01-01

    Melanosomes are lysosome-related organelles that coexist with lysosomes in mammalian pigment cells. Melanosomal and lysosomal membrane proteins share similar sorting signals in their cytoplasmic tail, raising the question how they are segregated. We show that in control melanocytes, the melanosomal

  19. Enrichment and analysis of secretory lysosomes from lymphocyte populations

    Directory of Open Access Journals (Sweden)

    Leippe Matthias

    2009-07-01

    Full Text Available Abstract Background In specialized cells, such as mast cells, macrophages, T lymphocytes and Natural Killer cells in the immune system and for instance melanocytes in the skin, secretory lysosomes (SL have evolved as bifunctional organelles that combine degradative and secretory properties. Mutations in lysosomal storage, transport or sorting molecules are associated with severe immunodeficiencies, autoimmunity and (partial albinism. In order to analyze the function and content of secretory lysosomes in different cell populations, an efficient enrichment of these organelles is mandatory. Results Based on a combination of differential and density gradient centrifugation steps, we provide a protocol to enrich intact SL from expanded hematopoietic cells, here T lymphocytes and Natural Killer cells. Individual fractions were initially characterized by Western blotting using antibodies against an array of marker proteins for intracellular compartments. As indicated by the presence of LAMP-3 (CD63 and FasL (CD178, we obtained a selective enrichment of SL in one of the resulting organelle fractions. The robustness and reproducibility of the applied separation protocol was examined by a high-resolution proteome analysis of individual SL preparations of different donors by 2D difference gel electrophoresis (2D-DIGE. Conclusion The provided protocol is readily applicable to enrich and isolate intact secretory vesicles from individual cell populations. It can be used to compare SL of normal and transformed cell lines or primary cell populations from healthy donors and patients with lysosomal storage or transport diseases, or from corresponding mutant mice. A subsequent proteome analysis allows the characterization of molecules involved in lysosomal maturation and cytotoxic effector function at high-resolution.

  20. Leaky lysosomes in lung transplant macrophages: azithromycin prevents oxidative damage

    Directory of Open Access Journals (Sweden)

    Persson H L

    2012-09-01

    Full Text Available Abstract Background Lung allografts contain large amounts of iron (Fe, which inside lung macrophages may promote oxidative lysosomal membrane permeabilization (LMP, cell death and inflammation. The macrolide antibiotic azithromycin (AZM accumulates 1000-fold inside the acidic lysosomes and may interfere with the lysosomal pool of Fe. Objective Oxidative lysosomal leakage was assessed in lung macrophages from lung transplant recipients without or with AZM treatment and from healthy subjects. The efficiency of AZM to protect lysosomes and cells against oxidants was further assessed employing murine J774 macrophages. Methods Macrophages harvested from 8 transplant recipients (5 without and 3 with ongoing AZM treatment and 7 healthy subjects, and J774 cells pre-treated with AZM, a high-molecular-weight derivative of the Fe chelator desferrioxamine or ammonium chloride were oxidatively stressed. LMP, cell death, Fe, reduced glutathione (GSH and H-ferritin were assessed. Results Oxidant challenged macrophages from transplants recipients without AZM exhibited significantly more LMP and cell death than macrophages from healthy subjects. Those macrophages contained significantly more Fe, while GSH and H-ferritin did not differ significantly. Although macrophages from transplant recipients treated with AZM contained both significantly more Fe and less GSH, which would sensitize cells to oxidants, these macrophages resisted oxidant challenge well. The preventive effect of AZM on oxidative LMP and J774 cell death was 60 to 300 times greater than the other drugs tested. Conclusions AZM makes lung transplant macrophages and their lysososomes more resistant to oxidant challenge. Possibly, prevention of obliterative bronchiolitis in lung transplants by AZM is partly due to this action.

  1. Fusion of lysosomes with secretory organelles leads to uncontrolled exocytosis in the lysosomal storage disease mucolipidosis type IV.

    Science.gov (United States)

    Park, Soonhong; Ahuja, Malini; Kim, Min Seuk; Brailoiu, G Cristina; Jha, Archana; Zeng, Mei; Baydyuk, Maryna; Wu, Ling-Gang; Wassif, Christopher A; Porter, Forbes D; Zerfas, Patricia M; Eckhaus, Michael A; Brailoiu, Eugen; Shin, Dong Min; Muallem, Shmuel

    2016-02-01

    Mutations in TRPML1 cause the lysosomal storage disease mucolipidosis type IV (MLIV). The role of TRPML1 in cell function and how the mutations cause the disease are not well understood. Most studies focus on the role of TRPML1 in constitutive membrane trafficking to and from the lysosomes. However, this cannot explain impaired neuromuscular and secretory cells' functions that mediate regulated exocytosis. Here, we analyzed several forms of regulated exocytosis in a mouse model of MLIV and, opposite to expectations, we found enhanced exocytosis in secretory glands due to enlargement of secretory granules in part due to fusion with lysosomes. Preliminary exploration of synaptic vesicle size, spontaneous mEPSCs, and glutamate secretion in neurons provided further evidence for enhanced exocytosis that was rescued by re-expression of TRPML1 in neurons. These features were not observed in Niemann-Pick type C1. These findings suggest that TRPML1 may guard against pathological fusion of lysosomes with secretory organelles and suggest a new approach toward developing treatment for MLIV. PMID:26682800

  2. Brain microvascular function during cardiopulmonary bypass

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, H.R.; Husum, B.; Waaben, J.; Andersen, K.; Andersen, L.I.; Gefke, K.; Kaarsen, A.L.; Gjedde, A.

    1987-11-01

    Emboli in the brain microvasculature may inhibit brain activity during cardiopulmonary bypass. Such hypothetical blockade, if confirmed, may be responsible for the reduction of cerebral metabolic rate for glucose observed in animals subjected to cardiopulmonary bypass. In previous studies of cerebral blood flow during bypass, brain microcirculation was not evaluated. In the present study in animals (pigs), reduction of the number of perfused capillaries was estimated by measurements of the capillary diffusion capacity for hydrophilic tracers of low permeability. Capillary diffusion capacity, cerebral blood flow, and cerebral metabolic rate for glucose were measured simultaneously by the integral method, different tracers being used with different circulation times. In eight animals subjected to normothermic cardiopulmonary bypass, and seven subjected to hypothermic bypass, cerebral blood flow, cerebral metabolic rate for glucose, and capillary diffusion capacity decreased significantly: cerebral blood flow from 63 to 43 ml/100 gm/min in normothermia and to 34 ml/100 gm/min in hypothermia and cerebral metabolic rate for glucose from 43.0 to 23.0 mumol/100 gm/min in normothermia and to 14.1 mumol/100 gm/min in hypothermia. The capillary diffusion capacity declined markedly from 0.15 to 0.03 ml/100 gm/min in normothermia but only to 0.08 ml/100 gm/min in hypothermia. We conclude that the decrease of cerebral metabolic rate for glucose during normothermic cardiopulmonary bypass is caused by interruption of blood flow through a part of the capillary bed, possibly by microemboli, and that cerebral blood flow is an inadequate indicator of capillary blood flow. Further studies must clarify why normal microvascular function appears to be preserved during hypothermic cardiopulmonary bypass.

  3. "Orpheus" cardiopulmonary bypass simulation system.

    Science.gov (United States)

    Morris, Richard W; Pybus, David A

    2007-12-01

    In this paper we describe a high-fidelity perfusion simulation system intended for use in the training and continuing education of perfusionists. The system comprises a hydraulic simulator, an electronic interface unit and a controlling computer with associated real-time computer models. It is designed for use within an actual operating theatre, or within a specialized simulation facility. The hydraulic simulator can be positioned on an operating table and physically connected to the circuit of the institutional heart-lung machine. The institutional monitoring system is used to display the arterial and central venous pressures, the ECG and the nasopharyngeal temperature using appropriate connections. The simulator is able to reproduce the full spectrum of normal and abnormal events that may present during the course of cardiopulmonary bypass. The system incorporates a sophisticated blood gas model that accurately predicts the behavior of a modern, hollow-fiber oxygenator. Output from this model is displayed in the manner of an in-line blood gas electrode and is updated every 500 msecs. The perfusionist is able to administer a wide variety of drugs during a simulation session including: vasoconstrictors (metaraminol, epinephrine and phenylephrine), a vasodilator (sodium nitroprusside), chronotropes (epinephrine and atropine), an inotrope (epinephrine) and modifiers of coagulation (heparin and protamine). Each drug has a pharmacokinetic profile based on a three-compartment model plus an effect compartment. The simulation system has potential roles in the skill training of perfusionists, the development of crisis management protocols, the certification and accreditation of perfusionists and the evaluation of new perfusion equipment and/or techniques. PMID:18293807

  4. Rab7 and Arl8 GTPases are necessary for lysosome tubulation in macrophages.

    Science.gov (United States)

    Mrakovic, Amra; Kay, Jason G; Furuya, Wendy; Brumell, John H; Botelho, Roberto J

    2012-12-01

    Lysosomes provide a niche for molecular digestion and are a convergence point for endocytic trafficking, phagosome maturation and autophagy. Typically, lysosomes are small, globular organelles that appear punctate under the fluorescence microscope. However, activating agents like phorbol esters transform macrophage lysosomes into tubular lysosomes (TLs), which have been implicated in retention of pinocytic uptake and phagosome maturation. Moreover, dendritic cells exposed to lipopolysaccharides (LPSs) convert their punctate class II major histocompatibility complex compartment, a lysosome-related organelle, into a tubular network that is thought to be involved in antigen presentation. Other than a requirement for microtubules and kinesin, little is known about the molecular mechanisms that drive lysosome tubulation. Here, we show that macrophage cell lines readily form TLs after LPS exposure, with a requirement for the Rab7 GTPase and its effectors RILP (Rab7-interacting lysosomal protein) and FYCO1 (coiled-coil domain-containing protein 1), which respectively modulate the dynein and kinesin microtubule motor proteins. We also show that Arl8B, a recently identified lysosomal GTPase, and its effector SKIP, are also important for TL biogenesis. Finally, we reveal that TLs are significantly more motile than punctate lysosomes within the same LPS-treated cells. Therefore, we identify the first molecular regulators of lysosome tubulation and we show that TLs represent a more dynamic lysosome population. PMID:22909026

  5. The Role of Oxidized Cholesterol in Diabetes-Induced Lysosomal Dysfunction in the Brain.

    Science.gov (United States)

    Sims-Robinson, Catrina; Bakeman, Anna; Rosko, Andrew; Glasser, Rebecca; Feldman, Eva L

    2016-05-01

    Abnormalities in lysosomal function have been reported in diabetes, aging, and age-related degenerative diseases. These lysosomal abnormalities are an early manifestation of neurodegenerative diseases and often precede the onset of clinical symptoms such as learning and memory deficits; however, the mechanism underlying lysosomal dysfunction is not known. In the current study, we investigated the mechanism underlying lysosomal dysfunction in the cortex and hippocampi, key structures involved in learning and memory, of a type 2 diabetes (T2D) mouse model, the leptin receptor deficient db/db mouse. We demonstrate for the first time that diabetes leads to destabilization of lysosomes as well as alterations in the protein expression, activity, and/or trafficking of two lysosomal enzymes, hexosaminidase A and cathepsin D, in the hippocampus of db/db mice. Pioglitazone, a thiazolidinedione (TZD) commonly used in the treatment of diabetes due to its ability to improve insulin sensitivity and reverse hyperglycemia, was ineffective in reversing the diabetes-induced changes on lysosomal enzymes. Our previous work revealed that pioglitazone does not reverse hypercholesterolemia; thus, we investigated whether cholesterol plays a role in diabetes-induced lysosomal changes. In vitro, cholesterol promoted the destabilization of lysosomes, suggesting that lysosomal-related changes associated with diabetes are due to elevated levels of cholesterol. Since lysosome dysfunction precedes neurodegeneration, cognitive deficits, and Alzheimer's disease neuropathology, our results may provide a potential mechanism that links diabetes with complications of the central nervous system. PMID:25976368

  6. Abnormal autophagy, ubiquitination, inflammation and apoptosis are dependent upon lysosomal storage and are useful biomarkers of mucopolysaccharidosis VI

    OpenAIRE

    Tessitore, Alessandra; Pirozzi, Marinella; Auricchio, Alberto

    2009-01-01

    Background Lysosomal storage diseases are characterized by intracellular accumulation of metabolites within lysosomes. Recent evidence suggests that lysosomal storage impairs autophagy resulting in accumulation of polyubiquitinated proteins and dysfunctional mitochondria, ultimately leading to apoptosis. We studied the relationship between lysosome storage and impairment of different intracellular pathways and organelle function in mucopolysaccharidosis VI, which is characterized by accumulat...

  7. Zinc Chelation Mediates the Lysosomal Disruption without Intracellular ROS Generation

    Science.gov (United States)

    Matias, Andreza Cândido; Manieri, Tânia Maria; Cerchiaro, Giselle

    2016-01-01

    We report the molecular mechanism for zinc depletion caused by TPEN (N,N,N′,N′-Tetrakis(2-pyridylmethyl)ethylenediamine) in neuroblastoma cells. The activation of p38 MAP kinase and subsequently caspase 3 is not due to or followed by redox imbalance or ROS generation, though these are commonly observed in literature. We found that TPEN is not responsible for ROS generation and the mechanism involves essentially lysosomal disruption caused by intracellular zinc depletion. We also observed a modest activation of Bax and no changes in the Bcl-2 proteins. As a result, we suggest that TPEN causes intracellular zinc depletion which can influence the breakdown of lysosomes and cell death without ROS generation. PMID:27123155

  8. A genetic model with specifically impaired autophagosome–lysosome fusion

    OpenAIRE

    Takáts, Szabolcs; Juhász, Gábor

    2013-01-01

    Yeast studies identified the evolutionarily conserved core ATG genes responsible for autophagosome formation. However, the SNARE-dependent machinery involved in autophagosome fusion with the vacuole in yeast is not conserved. We recently reported that the SNARE complex consisting of Syx17 (Syntaxin 17), ubisnap (SNAP-29) and Vamp7 is required for the fusion of autophagosomes with late endosomes and lysosomes in Drosophila. Syx17 mutant flies are viable but exhibit neuronal dysfunction, locomo...

  9. The Use of Lysosomotropic Dyes to Exclude Lysosomal Membrane Permeabilization.

    Science.gov (United States)

    Repnik, Urška; Česen, Maruša Hafner; Turk, Boris

    2016-01-01

    Progressive lowering of pH is characteristic for the endocytic pathway and enables efficient degradation of molecules by hydrolytic enzymes at its distal end. The existence of the proton gradient over the endosomal/lysosomal membranes depends on the action of the vacuolar ATPase (v-ATPase). During lysosomal membrane permeabilization (LMP), protons leak through the destabilized membrane, resulting in loss of the pH gradient. Here, we present a protocol showing how this effect can be detected by staining cells with lysosomotropic dyes, which accumulate in acidic organelles after protonation. During LMP, cells lose the ability to retain these dyes and therefore appear pale. Among the most commonly used lysosomotropic dyes are LysoTracker reagents and acridine orange. Cells can be analyzed with a fluorescence microscope; however, flow-cytometric analysis enables fast, objective, and reliable evaluation of differences between samples. Advantages of the technique include the fact that sample preparation is relatively simple and can be scaled-up to test several different compounds or conditions. However, as we will discuss, cells treated with v-ATPase inhibitors also lose the pH gradient across lysosomal membranes and cannot be stained with lysosomotropic dyes, although this is not accompanied by LMP. Therefore, merely observing loss of staining is not in itself a proof of LMP. PMID:27140914

  10. Dynamic Cerebral Autoregulation after Cardiopulmonary Bypass

    DEFF Research Database (Denmark)

    Christiansen, Claus Behrend; Berg, Ronan M G; Plovsing, Ronni;

    2016-01-01

    Background Cerebral hemodynamic disturbances in the peri- or postoperative period may contribute to postoperative cognitive dysfunction (POCD) in patients undergoing coronary artery bypass grafting (CABG) with cardiopulmonary bypass (CPB). We therefore examined dynamic cerebral autoregulation (d......CA) post-CPB and changes in neurocognitive function in patients that had undergone CABG. Materials and Methods We assessed dCA by transfer function analysis of spontaneous oscillations between arterial blood pressure and middle cerebral artery blood flow velocity measured by transcranial Doppler ultrasound...

  11. Coronary artery bypass surgery without cardiopulmonary bypass: short- and mid-term results.

    Science.gov (United States)

    Mishra, Y; Mehta, Y; Kohli, V M; Kohli, V; Mairal, M; Mishra, A; Bapna, R K; Trehan, N

    1997-01-01

    From March 1994 to April 1997, 433 patients had undergone coronary artery bypass grafting without cardiopulmonary bypass in our institute. Sixty-eight patients had various organ dysfunctions and/or aortic atheroma or calcification and were regarded as high risk for cardiopulmonary bypass. In 277 patients surgery was performed through midline sternotomy, while in 156 minithoracotomy approach was used. In 361 patients single coronary artery bypass grafting was done, and in 72 two-coronary arteries were bypassed. In 63 patients who had graftable vessels in anterior wall and diffusely diseased ungraftable vessels in posterolateral and/or inferior wall, transmyocardial laser revascularisation was also done along with coronary artery bypass grafting to achieve complete myocardial revascularisation. Nine patients in this series were also subjected to simultaneous carotid endarterectomy along with myocardial revascularisation. In two patients complementary percutaneous transluminal coronary angioplasty of left circumflex coronary artery was done five days after minithoracotomy and left internal mammary artery to left anterior descending coronary artery bypass grafting. Forty-two cases were extubated in operating room. Average blood loss was 260 ml. Six patients were reexplored for postoperative bleeding. Seven patients had perioperative myocardial infarction. One developed neurological complication. Hospital mortality was 2.3 percent (10/433 cases) and four deaths were due to malignant ventricular arrhythmias. Nine patients developed chest wound complications. Average hospital stay after operation was six days, 423 patients were discharged from hospital and all of them were asymptomatic. During three years follow-up (range 3 to 38 months) there were three known cardiac deaths. Ninety percent (391) patients reported to the follow-up clinic and 91 percent of them were angina-free. In patients who were subjected to transmyocardial laser revascularisation along with coronary

  12. Robot-Assisted Minimally Invasive Coronary Artery Bypass Surgery Operation

    Science.gov (United States)

    ROBOT-ASSISTED MINIMALLY INVASIVE CORONARY ARTERY BYPASS SURGERY OPERATION PINNACLEHEALTH HARRISBURG HOSPITAL HARRISBURG, PA 00:00:08 ... Hospital campus. We are going to witness a robot-assisted minimally invasive coronary artery bypass surgery operation. ...

  13. Robot-Assisted Minimally Invasive Coronary Artery Bypass Surgery Operation

    Medline Plus

    Full Text Available ROBOT-ASSISTED MINIMALLY INVASIVE CORONARY ARTERY BYPASS SURGERY OPERATION PINNACLEHEALTH HARRISBURG HOSPITAL HARRISBURG, PA 00:00:08 ... Hospital campus. We are going to witness a robot-assisted minimally invasive coronary artery bypass surgery operation. ...

  14. 21 CFR 870.4350 - Cardiopulmonary bypass oxygenator.

    Science.gov (United States)

    2010-04-01

    ... bypass oxygenator. (a) Identification. A cardiopulmonary bypass oxygenator is a device used to exchange gases between blood and a gaseous environment to satisfy the gas exchange needs of a patient during...

  15. Coronary Artery Bypass Graft Surgery (Beyond the Basics)

    Science.gov (United States)

    ... for people with coronary heart disease is called "percutaneous coronary intervention" (PCI), or "stenting." This involves using a flexible ... artery disease: Coronary artery bypass graft surgery versus percutaneous coronary intervention Coronary artery bypass grafting in patients with cerebrovascular ...

  16. Chinese hamster ovary cell lysosomes retain pinocytized horseradish peroxidase and in situ-radioiodinated proteins

    International Nuclear Information System (INIS)

    We used Chinese hamster ovary cells, a cell line of fibroblastic origin, to investigate whether lysosomes are an exocytic compartment. To label lysosomal contents, Chinese hamster ovary cells were incubated with the solute marker horseradish peroxidase. After an 18-h uptake period, horseradish peroxidase was found in lysosomes by cell fractionation in Percoll gradients and by electron microscope cytochemistry. Over a 24-h period, lysosomal horseradish peroxidase was quantitatively retained by Chinese hamster ovary cells and inactivated with a t 1/2 of 6 to 8 h. Lysosomes were radioiodinated in situ by soluble lactoperoxidase internalized over an 18-h uptake period. About 70% of the radioiodine incorporation was pelleted at 100,000 X g under conditions in which greater than 80% of the lysosomal marker enzyme beta-hexosaminidase was released into the supernatant. By one-dimensional electrophoresis, about 18 protein species were present in the lysosomal membrane fraction, with radioiodine incorporation being most pronounced into species of 70,000 to 75,000 daltons. After a 30-min or 2-h chase at 37 degrees C, radioiodine that was incorporated into lysosomal membranes and contents was retained in lysosomes. These observations indicate that lysosomes labeled by fluid-phase pinocytosis are a terminal component of endocytic pathways in fibroblasts

  17. MCOLN1 is a ROS sensor in lysosomes that regulates autophagy

    Science.gov (United States)

    Zhang, Xiaoli; Cheng, Xiping; Yu, Lu; Yang, Junsheng; Calvo, Raul; Patnaik, Samarjit; Hu, Xin; Gao, Qiong; Yang, Meimei; Lawas, Maria; Delling, Markus; Marugan, Juan; Ferrer, Marc; Xu, Haoxing

    2016-01-01

    Cellular stresses trigger autophagy to remove damaged macromolecules and organelles. Lysosomes ‘host' multiple stress-sensing mechanisms that trigger the coordinated biogenesis of autophagosomes and lysosomes. For example, transcription factor (TF)EB, which regulates autophagy and lysosome biogenesis, is activated following the inhibition of mTOR, a lysosome-localized nutrient sensor. Here we show that reactive oxygen species (ROS) activate TFEB via a lysosomal Ca2+-dependent mechanism independent of mTOR. Exogenous oxidants or increasing mitochondrial ROS levels directly and specifically activate lysosomal TRPML1 channels, inducing lysosomal Ca2+ release. This activation triggers calcineurin-dependent TFEB-nuclear translocation, autophagy induction and lysosome biogenesis. When TRPML1 is genetically inactivated or pharmacologically inhibited, clearance of damaged mitochondria and removal of excess ROS are blocked. Furthermore, TRPML1's ROS sensitivity is specifically required for lysosome adaptation to mitochondrial damage. Hence, TRPML1 is a ROS sensor localized on the lysosomal membrane that orchestrates an autophagy-dependent negative-feedback programme to mitigate oxidative stress in the cell. PMID:27357649

  18. Lysosomal Dysfunction and α-Synuclein Aggregation in Parkinson's Disease: Diagnostic Links.

    Science.gov (United States)

    Moors, Tim; Paciotti, Silvia; Chiasserini, Davide; Calabresi, Paolo; Parnetti, Lucilla; Beccari, Tommaso; van de Berg, Wilma D J

    2016-06-01

    Lysosomal impairment is increasingly recognized as a central event in the pathophysiology of PD. Genetic associations between lysosomal storage disorders, including Gaucher disease and PD, highlight common risk factors and pathological mechanisms. Because the autophagy-lysosomal system is involved in the intralysosomal hydrolysis of dysfunctional proteins, lysosomal impairment may contribute to α-synuclein aggregation in PD. The degradation of α-synuclein is a complex process involving different proteolytic mechanisms depending on protein burden, folding, posttranslational modifications, and yet unknown factors. In this review, evidence for lysosomal dysfunction in PD and its intimate relationship with α-synuclein aggregation are discussed, after which the question of whether lysosomal proteins may serve as diagnostic biomarkers for PD is addressed. Changes in lysosomal enzymes, such as reduced glucocerebrosidase and cathepsin levels, have been observed in affected brain regions in PD patients. The detection of lysosomal proteins in CSF may provide a read-out of lysosomal dysfunction in PD and holds promise for the development of diagnostic PD biomarkers. Initial PD biomarker studies demonstrated altered lysosomal enzyme activities in CSF of PD patients when compared with controls. However, CSF lysosomal enzyme activities alone could not discriminate between PD patients and controls. The combination of CSF lysosomal markers with α-synuclein species and indicators of mitochondrial dysfunction, inflammation, and other pathological proteins in PD may be able to facilitate a more accurate diagnosis of PD. Further CSF biomarker studies are needed to investigate the utility of CSF lysosomal proteins as measures of disease state and disease progression in PD. © 2016 International Parkinson and Movement Disorder Society. PMID:26923732

  19. Principles of lysosomal membrane digestion: stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids.

    Science.gov (United States)

    Kolter, Thomas; Sandhoff, Konrad

    2005-01-01

    Sphingolipids and glycosphingolipids are membrane components of eukaryotic cell surfaces. Their constitutive degradation takes place on the surface of intra-endosomal and intra-lysosomal membrane structures. During endocytosis, these intra-lysosomal membranes are formed and prepared for digestion by a lipid-sorting process during which their cholesterol content decreases and the concentration of the negatively charged bis(monoacylglycero)phosphate (BMP)--erroneously also called lysobisphosphatidic acid (LBPA)--increases. Glycosphingolipid degradation requires the presence of water-soluble acid exohydrolases, sphingolipid activator proteins, and anionic phospholipids like BMP. The lysosomal degradation of sphingolipids with short hydrophilic head groups requires the presence of sphingolipid activator proteins (SAPs). These are the saposins (Saps) and the GM2 activator protein. Sphingolipid activator proteins are membrane-perturbing and lipid-binding proteins with different specificities for the bound lipid and the activated enzyme-catalyzed reaction. Their inherited deficiency leads to sphingolipid- and membrane-storage diseases. Sphingolipid activator proteins not only facilitate glycolipid digestion but also act as glycolipid transfer proteins facilitating the association of lipid antigens with immunoreceptors of the CD1 family. PMID:16212488

  20. Obstructive and enteropathic syndromes after jejunoileal bypass surgery

    International Nuclear Information System (INIS)

    Small bowel bypass procedures for morbid obesity have been associated with many postoperative complications. With the use of the Scott procedure, the bypassed or excluded small bowel segment has recently been the focus of 2 syndromes - 'bypass enteritis' and 'defunctioned bowel syndrome'. We describe these postoperative complications and present their significant radiologic features. (orig.)

  1. Obstructive and enteropathic syndromes after jejunoileal bypass surgery

    Energy Technology Data Exchange (ETDEWEB)

    Karasick, D.; Karasick, S.

    1981-05-15

    Small bowel bypass procedures for morbid obesity have been associated with many postoperative complications. With the use of the Scott procedure, the bypassed or excluded small bowel segment has recently been the focus of 2 syndromes - 'bypass enteritis' and 'defunctioned bowel syndrome'. We describe these postoperative complications and present their significant radiologic features.

  2. Outcomes after off-pump coronary bypass surgery

    NARCIS (Netherlands)

    Dijk, Diederik van

    2002-01-01

    The complications associated with in coronary artery bypass surgery (CABG) using cardiopulmonary bypass (CPB) have led to a renewed interest in coronary bypass surgery on the beating heart. The primary objective of the Octopus Study was to compare cognitive outcome between patients randomized to off

  3. 21 CFR 870.4390 - Cardiopulmonary bypass pump tubing.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass pump tubing. 870.4390... bypass pump tubing. (a) Identification. A cardiopulmonary bypass pump tubing is polymeric tubing which is used in the blood pump head and which is cyclically compressed by the pump to cause the blood to...

  4. 21 CFR 870.4240 - Cardiopulmonary bypass heat exchanger.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass heat exchanger. 870.4240... bypass heat exchanger. (a) Identification. A cardiopulmonary bypass heat exchanger is a device, consisting of a heat exchange system used in extracorporeal circulation to warm or cool the blood...

  5. 21 CFR 870.4250 - Cardiopulmonary bypass temperature controller.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass temperature controller. 870... Cardiopulmonary bypass temperature controller. (a) Identification. A cardiopulmonary bypass temperature controller is a device used to control the temperature of the fluid entering and leaving a heat exchanger....

  6. TECAB - Totally Endoscopic Coronary Artery Bypass

    Medline Plus

    Full Text Available ... completely endoscopic coronary artery bypass grafting procedure using robotics. We call this operation a “TECAB,” “Totally Endoscopic ... scrub nurse, also a lot of experience with robotics now. And Dr. Atiq Rahman, fellow here for ...

  7. TECAB - Totally Endoscopic Coronary Artery Bypass

    Medline Plus

    Full Text Available ... bypass graft to the LAD. We have a real long-term option. 4 So again, this is under T guidance. Anesthesia tells me that I am in the descending thoracic aorta. That means I’m on the right track. Once that is done then we sequentially ...

  8. Analysis and testing of electrorheological bypass dampers

    Science.gov (United States)

    Lindler, Jason E.; Wereley, Norman M.

    1998-06-01

    We experimentally validate nonlinear quasi-steady electrorheological (ER) and magnetorheological (MR) damper models, using an idealized Bingham plastic shear flow mechanism, for the flow mode of damper operation. An electrorheological valve or bypass damper was designed, and fabricated using predominantly commercial off-the-shelf hydraulic components. Both the hydraulic cylinder and the bypass duct have cylindrical geometry, and damping forces are developed in the annular bypass via Poiseuille (flow mode) flow. Damper models assume parallel plate geometry. Three nondimensional groups are used for damper analysis, namely, the Bingham number, Bi, the nondimensional plug thickness, (delta) , and the area coefficient defined as the ratio of the piston head area, A(rho ), to the cross-sectional area of the annular bypass, Ad. In the flow mode case, the damping coefficient, which is defined as the ratio of equivalent viscous damping of the Bingham plastic material, Ceq, to the Newtonian viscous damping, C, is a function of the nondimensional plug thickness only. The damper was tested using a mechanical damper dynamometer for sinusoidal stroke of 2 inches, over a range of frequencies below 0.63 Hz. The damping coefficient vs. nondimensional plug thickness diagram was experimentally validated using these data over a range of damper shaft velocities and applied electric field. Because the behaviors of ER and MR fluid are qualitatively similar, these ER damper modeling results may be extended to analysis of flow mode MR dampers.

  9. TECAB - Totally Endoscopic Coronary Artery Bypass

    Medline Plus

    Full Text Available ... is in place right now. There’s usually some slack or redundancy in the balloon once we initially ... go on bypass, and then it’s without any slack in the right position, and we can inflate ...

  10. Phlegmonous Gastritis Following Coronary Bypass Surgery

    OpenAIRE

    Radhi, J; Kamouna, M; Nyssen, J.

    1999-01-01

    Phlegmonous gastritis is a rare, rapidly progressive and potentially fatal gastric bacterial infection. A case of phlegmonous gastritis following a coronary bypass surgery is described. This condition was not diagnosed premortem due to the nonspecific nature of the gastrointestinal symptoms. Upper gastrointestinal endoscopy may be of value in establishing the diagnosis in emergencies with culture of gastric aspirate and biopsy.

  11. TECAB - Totally Endoscopic Coronary Artery Bypass

    Medline Plus

    Full Text Available ... coronary artery bypass grafting procedure using robotics. We call this operation a “TECAB,” “Totally Endoscopic Coronary Artery ... see 2 the heart beating behind what we call the “pericardium,” the sack where the heart is ...

  12. Is a fully heparin-bonded cardiopulmonary bypass circuit superior to a standard cardiopulmonary bypass circuit?

    OpenAIRE

    Mahmood, Sarah; Bilal, Haris; Zaman, Mahvash; Tang, Augustine

    2012-01-01

    A best-evidence topic in cardiac surgery was written according to a structured protocol. The question addressed was ‘Is a fully heparin bonded cardiopulmonary bypass circuit superior to a standard cardiopulmonary bypass circuit?’ Altogether more than 792 papers were found using the reported search, of which 13 represented the best evidence to answer the clinical question. The authors, journal, date and country of publication, patient group studied, study type, relevant outcomes and results of...

  13. Expression of the lysosomal-associated membrane protein-1 (LAMP-1) in astrocytomas

    DEFF Research Database (Denmark)

    Jensen, Stine S; Aaberg-Jessen, Charlotte; Christensen, Karina G;

    2013-01-01

    Targeting of lysosomes is a novel therapeutic anti-cancer strategy for killing the otherwise apoptosis-resistant cancer cells. Such strategies are urgently needed for treatment of brain tumors, especially the glioblastoma, which is the most frequent and most malignant type. The aim of the present...... study was to investigate the presence of lysosomes in astrocytic brain tumors focussing also on the therapy resistant tumor stem cells. Expression of the lysosomal marker LAMP-1 (lysosomal-associated membrane protein-1) was investigated by immunohistochemistry in 112 formalin fixed paraffin embedded...... individual tumor grades. LAMP-1/GFAP showed pronounced co-expression and LAMP-1/CD133 was co-expressed as well suggesting that tumor cells including the proposed tumor stem cells contain lysosomes. The results suggest that high amounts of lysosomes are present in glioblastomas and in the proposed tumor stem...

  14. Effect of glutamate on lysosomal membrane permeabilization in primary cultured cortical neurons

    OpenAIRE

    Yan, Min; Zhu, Wenbo; Zheng, Xiaoke; Li, Yuan; TANG, LIPENG; LU, BINGZHENG; Chen, WenLi; Qiu, Pengxin; Leng, Tiandong; Lin, Suizhen; Yan, Guangmei; Yin, Wei

    2016-01-01

    Glutamate is the principal neurotransmitter in the central nervous system. Glutamate-mediated excitotoxicity is the predominant cause of cerebral damage. Recent studies have shown that lysosomal membrane permeabilization (LMP) is involved in ischemia-associated neuronal death in non-human primates. This study was designed to investigate the effect of glutamate on lysosomal stability in primary cultured cortical neurons. Glutamate treatment for 30 min induced the permeabilization of lysosomal ...

  15. Lysosomal-specific Cholesterol Reduction by Biocleavable Polyrotaxanes for Ameliorating Niemann-Pick Type C Disease

    OpenAIRE

    Atsushi Tamura; Nobuhiko Yui

    2014-01-01

    Niemann-Pick type C (NPC) disease is an autosomal recessive lysosomal trafficking disorder, in which the cholesterols are abnormally accumulated in lysosomes. Recently, the β-cyclodextrin (CD) derivatives are revealed to show therapeutic effect for NPC disease through the removal of accumulated cholesterols in lysosomes. Herein, to enhance the therapeutic effect and reduce the toxicity of β-CD derivatives, biocleavable Pluronic/β-CD-based polyrotaxanes (PRXs) bearing terminal disulfide linkag...

  16. Imidazoacridinone-dependent lysosomal photodestruction: a pharmacological Trojan horse approach to eradicate multidrug-resistant cancers

    OpenAIRE

    Adar, Y.; M. ; Stark; Bram, E E; Nowak-Sliwinska, P.; Bergh, van den, H.; Szewczyk, G.; Sarna, T.; Skladanowski, A.; Griffioen, A W; Assaraf, Y.G.

    2012-01-01

    Multidrug resistance (MDR) remains a primary hindrance to curative cancer therapy. Thus, introduction of novel strategies to overcome MDR is of paramount therapeutic significance. Sequestration of chemotherapeutics in lysosomes is an established mechanism of drug resistance. Here, we show that MDR cells display a marked increase in lysosome number. We further demonstrate that imidazoacridinones (IAs), which are cytotoxic fluorochromes, undergo a dramatic compartmentalization in lysosomes beca...

  17. Virulent Brucella abortus Prevents Lysosome Fusion and Is Distributed within Autophagosome-Like Compartments

    OpenAIRE

    Pizarro-Cerdá, Javier; Moreno, Edgardo; Sanguedolce, Veronique; Mege, Jean-Louis; Gorvel, Jean-Pierre

    1998-01-01

    Virulent and attenuated Brucella abortus strains attach to and penetrate nonprofessional phagocytic HeLa cells. Compared to pathogenic Brucella, the attenuated strain 19 hardly replicates within cells. The majority of the strain 19 bacteria colocalized with the lysosome marker cathepsin D, suggesting that Brucella-containing phagosomes had fused with lysosomes, in which they may have degraded. The virulent bacteria prevented lysosome-phagosome fusion and were found distributed in the perinucl...

  18. Phagosome-lysosome fusion is a calcium-independent event in macrophages

    OpenAIRE

    1996-01-01

    Phagosome-lysosome membrane fusion is a highly regulated event that is essential for intracellular killing of microorganisms. Functionally, it represents a form of polarized regulated secretion, which is classically dependent on increases in intracellular ionized calcium ([Ca2+]i). Indeed, increases in [Ca2+]i are essential for phagosome- granule (lysosome) fusion in neutrophils and for lysosomal fusion events that mediate host cell invasion by Trypanosoma cruzi trypomastigotes. Since several...

  19. FLCN Maintains the Leucine Level in Lysosome to Stimulate mTORC1

    OpenAIRE

    Wu, Xiaochun; Zhao, Lingling; Chen, Zhi; Ji, Xin; Qiao, Xianfeng; Jin, Yaping; Liu, Wei

    2016-01-01

    The intracellular amino acid pool within lysosome is a signal that stimulates the nutrient-sensing mTORC1 signalling pathway. The signal transduction cascade has garnered much attention, but little is known about the sequestration of the signalling molecules within the lysosome. Using human HEK293 cells as a model, we found that suppression of the BHD syndrome gene FLCN reduced the leucine level in lysosome, which correlated with decreased mTORC1 activity. Both consequences could be reversed ...

  20. Disruption of Lysosome Function Promotes Tumor Growth and Metastasis in Drosophila *

    OpenAIRE

    Chi, Congwu; Zhu, Huanhu; Han, Min; Zhuang, Yuan; Wu, Xiaohui; Xu, Tian

    2010-01-01

    Lysosome function is essential to many physiological processes. It has been suggested that deregulation of lysosome function could contribute to cancer. Through a genetic screen in Drosophila, we have discovered that mutations disrupting lysosomal degradation pathway components contribute to tumor development and progression. Loss-of-function mutations in the Class C vacuolar protein sorting (VPS) gene, deep orange (dor), dramatically promote tumor overgrowth and invasion of the RasV12 cells....

  1. Deviant Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP)-mediated Ca2+ Signaling upon Lysosome Proliferation*

    OpenAIRE

    Dickinson, G. D.; Churchill, G. C.; Brailoiu, E; Patel, S.

    2010-01-01

    Accumulating evidence suggests that the endolysosomal system is a novel intracellular Ca2+ pool mobilized by the second messenger, nicotinic acid adenine dinucleotide phosphate (NAADP). Although lysosomes in neurons are known to proliferate in numerous neurodegenerative diseases and during the normal course of aging, little is known concerning the effect of lysosomal proliferation on Ca2+ homeostasis. Here, we induce proliferation of lysosomes in primary cultures of rat hippocampal neurons an...

  2. Role of lysosome rupture in controlling Nlrp3 signaling and necrotic cell death

    OpenAIRE

    Lima, Jr., Heriberto; Jacobson, Lee S.; Goldberg, Michael F.; Chandran, Kartik; Diaz-Griffero, Felipe; Lisanti, Michael P; Brojatsch, Jürgen

    2013-01-01

    The Nod-like receptor, Nlrp3, has been linked to inflammatory diseases and adjuvant-mediated immune responses. A wide array of structurally diverse agents does not interact directly with Nlrp3, but is thought to activate the Nlrp3 inflammasome by inducing a common upstream signal, such as lysosome rupture. To test the connection between lysosome integrity and Nlrp3 signaling, we analyzed inflammasome activation following stimulation of murine macrophages with lysosome-destabilizing agents and...

  3. Coordinated host responses during pyroptosis: caspase-1-dependent lysosome exocytosis and inflammatory cytokine maturation

    OpenAIRE

    Bergsbaken, Tessa; Fink, Susan L.; den Hartigh, Andreas B.; Loomis, Wendy P.; Cookson, Brad T.

    2011-01-01

    Activation of caspase-1 leads to pyroptosis, a program of cell death characterized by cell lysis and inflammatory cytokine release. Caspase-1 activation triggered by multiple NLRs (NLRC4, NLRP1b, or NLRP3) leads to loss of lysosomes via their fusion with the cell surface, or lysosome exocytosis. Active caspase-1 increased cellular membrane permeability and intracellular calcium levels, which facilitated lysosome exocytosis and release of host antimicrobial factors and microbial products. Lyso...

  4. Signals for the lysosome: a control center for cellular clearance and energy metabolism

    OpenAIRE

    Settembre, Carmine; Fraldi, Alessandro; Medina, Diego L.; Ballabio, Andrea

    2013-01-01

    For a long time lysosomes were considered merely to be cellular “incinerators” involved in the degradation and recycling of cellular waste. However, there is now compelling evidence indicating that lysosomes have a much broader function and that they are involved in fundamental processes such as secretion, plasma membrane repair, signaling and energy metabolism. Furthermore, the essential role of lysosomes in the autophagic pathway puts these organelles at the crossroads of several cellular p...

  5. Cathepsin inhibition-induced lysosomal dysfunction enhances pancreatic beta-cell apoptosis in high glucose.

    Directory of Open Access Journals (Sweden)

    Minjeong Jung

    Full Text Available Autophagy is a lysosomal degradative pathway that plays an important role in maintaining cellular homeostasis. We previously showed that the inhibition of autophagy causes pancreatic β-cell apoptosis, suggesting that autophagy is a protective mechanism for the survival of pancreatic β-cells. The current study demonstrates that treatment with inhibitors and knockdown of the lysosomal cysteine proteases such as cathepsins B and L impair autophagy, enhancing the caspase-dependent apoptosis of INS-1 cells and islets upon exposure to high concentration of glucose. Interestingly, treatment with cathepsin B and L inhibitors prevented the proteolytic processing of cathepsins B, D and L, as evidenced by gradual accumulation of the respective pro-forms. Of note, inhibition of aspartic cathepsins had no effect on autophagy and cell viability, suggesting the selective role of cathepsins B and L in the regulation of β-cell autophagy and apoptosis. Lysosomal localization of accumulated pro-cathepsins in the presence of cathepsin B and L inhibitors was verified via immunocytochemistry and lysosomal fractionation. Lysotracker staining indicated that cathepsin B and L inhibitors led to the formation of severely enlarged lysosomes in a time-dependent manner. The abnormal accumulation of pro-cathepsins following treatment with inhibitors of cathepsins B and L suppressed normal lysosomal degradation and the processing of lysosomal enzymes, leading to lysosomal dysfunction. Collectively, our findings suggest that cathepsin defects following the inhibition of cathepsin B and L result in lysosomal dysfunction and consequent cell death in pancreatic β-cells.

  6. Glucosamine-Bound Near-Infrared Fluorescent Probes with Lysosomal Specificity for Breast Tumor Imaging

    Directory of Open Access Journals (Sweden)

    Cong Li

    2008-04-01

    Full Text Available Noninvasive imaging of lysosomes will be useful 1 to elucidate the role of lysosomal parameters in cancer, 2 to diagnose malignant lesions, and 3 to evaluate future lysosome-targeted anticancer therapies. Lysosome-specific labeling of glucosamine-bound near-infrared (NIR fluorescent probes, IR-1 and IR-2, but not control probe IR-15 without the glucosamine moiety, was observed by fluorescence microscopy in human breast epithelial cell lines. Lysosome labeling and tumor specificity of these NIR probes were investigated by dynamic optical imaging and immunofluorescence staining in human breast tumor xenografts. IR-1 and IR-2 demonstrated faster lysosome labeling rates in highly aggressive MDA-MB-231 and MDA-MB-435 cells compared with less aggressive MCF-7 and nontumorigenic MCF-12A cells. IR-1 and IR-2, but not IR-15, accumulated in human MDA-MB-231, MDA-MB-435, and MCF-7 breast tumor xenografts in vivo. IR-2 demonstrated the highest maximum fluorescence and tumor/normal tissue ratios in all tumor models. Specific lysosome labeling from IR-2 in vivo was validated by colocalization of the NIR fluorescence with CD63 immunofluorescence in tumor sections. IR-1 and IR-2 demonstrated high lysosome-labeling ability and breast tumor-targeting specificity in vitro and in vivo. They are promising for diagnosing malignant lesions and may provide a means for evaluating and monitoring future lysosome-targeted anticancer therapies.

  7. Reporter Assay for Endo/Lysosomal Escape of Toxin-Based Therapeutics

    Directory of Open Access Journals (Sweden)

    Roger Gilabert-Oriol

    2014-05-01

    Full Text Available Protein-based therapeutics with cytosolic targets are capable of exhibiting their therapeutic effect once they have escaped from the endosomes or lysosomes. In this study, the reporters—horseradish peroxidase (HRP, Alexa Fluor 488 (Alexa and ricin A-chain (RTA—were investigated for their capacity to monitor the endo/lysosomal escape of the ribosome-inactivating protein, saporin. The conjugates—saporin-HRP, Alexasaporin and saporin-KQ-RTA—were constructed, and the endo/lysosomal escape of these conjugates alone (lack of endo/lysosomal release or in combination with certain structurally-specific triterpenoidal saponins (efficient endo/lysosomal escape was characterized. HRP failed in reporting the endo/lysosomal escape of saporin. Contrastingly, Alexa Fluor 488 successfully allowed the report of the process at a toxin concentration of 1000 nM. In addition, single endo/lysosome analysis facilitated the determination of the amount of Alexasaporin released from each vesicle. RTA was also successful in reporting the endo/lysosomal escape of the enzymatically inactive mutant, saporin-KQ, but in this case, the sensitivity of the method reached a toxin concentration of 10 nM. In conclusion, the simultaneous usage of Alexa Fluor 488 and RTA as reporters may provide the possibility of monitoring the endo/lysosomal escape of protein-based therapeutics in the concentration range of 10–1000 nM.

  8. Lysosomal sphingomyelinase is not solicited for apoptosis signaling.

    Science.gov (United States)

    Bezombes, C; Ségui, B; Cuvillier, O; Bruno, A P; Uro-Coste, E; Gouazé, V; Andrieu-Abadie, N; Carpentier, S; Laurent, G; Salvayre, R; Jaffrézou, J P; Levade, T

    2001-02-01

    Stress-induced activation of an acidic sphingomyelinase leading to generation of ceramide, an important lipid mediator, has been associated with apoptosis; however, the implication of this hydrolase has been questioned. The present study aimed at re-evaluating the role of this lysosomal enzyme in apoptosis initiated by different apoptotic inducers. The sensitivity of a series of acid sphingomyelinase-deficient cell lines derived from Niemann-Pick disease patients to stress-induced apoptosis was investigated. We have now shown that stress stimuli, such as anthracyclines, ionizing radiation, and Fas ligation trigger similar apoptotic hallmarks in normal and acid sphingomyelinase-deficient cell lines. Retrovirus-mediated gene correction of enzyme deficiency in Niemann-Pick cells does not modify response to apoptosis. Ceramide production is comparable in normal and Niemann-Pick cells, and increased activity of neutral sphingomyelinase is observed. Thus, our findings cast serious doubts that lysosomal sphingomyelinase activation is responsible for stress-induced apoptosis of cultured cells. PMID:11156942

  9. Efficiency Biliopancreatic bypass surgery in bulimia nervosa

    OpenAIRE

    Yu I Yashkov; D K Bekuzarov; A V Nikol'skiy

    2008-01-01

    A clinical significance in the treatment of bulimia nervosa patients with morbid obesity had already been raised [10, 13], but we did not find publications on the effectiveness of bariatric surgery in these cases. There is also information about the possibility of applying the operation bilio-pancreatic bypass, effective in patients with morbid obesity with uncontrolled eating behavior for the treatment of patients with anorexia BILIM not suffering from morbid obesity. In this article the dat...

  10. Analgesic Treatment in Laparoscopic Gastric Bypass Surgery

    DEFF Research Database (Denmark)

    Andersen, Lars P H; Werner, Mads U; Rosenberg, Jacob;

    2014-01-01

    This review aimed to present an overview of the randomized controlled trials investigating analgesic regimens used in laparoscopic Roux-en-Y gastric bypass (LRYGB) surgery. Literature search was performed in PubMed and EMBASE databases in August 2013 in accordance to PRISMA guidelines. The...... literature search identified nine studies eligible for inclusion. The administration of nonsteroidal anti-inflammatory drugs, local anesthetics (intraperitoneally or subfascially/subcutaneously), transversus abdominis plane block, dexmedetomidine, and ketamine may improve analgesia compared to placebo...

  11. Conduits for Coronary Bypass: Vein Grafts

    OpenAIRE

    Barner, Hendrick B.; Farkas, Emily A.

    2012-01-01

    The saphenous vein has been the principal conduit for coronary bypass grafting from the beginning, circa 1970. This report briefly traces this history and concomitantly presents one surgeons experience and personal views on use of the vein graft. As such it is not exhaustive but meant to be practical with a modest number of references. The focus is that of providing guidance and perspective which may be at variance with that of others and recognizing that there may be many ways to accomplish ...

  12. Conduits for Coronary Bypass: Internal Thoracic Artery

    OpenAIRE

    Barner, Hendrick B.

    2012-01-01

    This second report in the series on coronary artery bypass presents the authors experience and personal views on the internal thoracic artery (ITA) which date to 1966. There has been a very gradual evolution in the acceptance of this conduit which was initially compared with the saphenous vein and viewed as an improbable alternative to it. As is common with concepts and techniques which are 'outside the box' there was skepticism and criticism of this new conduit which was more difficult and t...

  13. Atypical complications of gastric bypass surgery

    International Nuclear Information System (INIS)

    Although gastric bypass surgery continues to grow in popularity for weight loss and weight maintenance in the morbidly obese, there has been little attention given to the imaging of complications associated with these surgeries. The purpose of our study is to demonstrate the variety of gastric bypass surgery complications that can be identified radiographically, with attention to the more unusual complications. This study was performed with institutional Internal Review Board approval. We performed a 5-year retrospective review of all patients who had undergone gastric bypass surgery, had complications of the surgery, and had studies performed in our department to image these complications. These studies consisted of contrast fluoroscopy and CT. We identified the more common complications of anastomotic stenoses and anastomotic leaks. We also identified six unusual complications as follow: (1) internal herniation through the small bowel mesentery, (2) internal herniation through the transverse mesocolon, (3) external herniation through the abdominal wall incision, (4) enterocutaneous fistulas, (5) antiperistaltic construction of the Roux-en-Y, and (6) incorrect anstomoses of the Roux limbs resulting in a Roux-en-O configuration. Our findings show that a thorough understanding of expected postoperative bowel configuration is essential in the evaluation of these patients. In addition, fluoroscopic evaluation should assess not only anatomy, but also motility

  14. Vein harvesting and techniques for infrainguinal bypass.

    Science.gov (United States)

    Albäck, Anders; Saarinen, Eva; Venermo, Maarit

    2016-04-01

    In order to achieve good long term results after bypass surgery, alongside with good inflow and outflow arteries, the bypass graft material also has an important role. The best patency and limb salvage rates are achieved with autologous vein. If great saphenous vein is not available, acceptable long-term results can be achieved with arm veins and lesser saphenous vein. The quality and size of the vein are important. A small-caliber vein, increased wall thickness, postphlebitic changes and varicosities are associated with a risk of early failure. Preoperative vein mapping with ultrasound reduces readmissions and postoperative surgical site infections. During the mapping, the vein to be used and its main tributaries are marked with a permanent marker pen. To reduce wound complication rates we recommend bridged incisions in vein harvesting. Endoscopic vein harvesting seems to have no benefit compared to open techniques in lower limb bypasses, and has been associated with higher risk of primary patency loss at one year. With deep tunneling of the graft the problems caused by wound infection can be avoided. PMID:26837257

  15. Patient's Perception About Coronary Artery Bypass Grafting

    Directory of Open Access Journals (Sweden)

    Kelminda Maria Bulhões Mendonça

    2015-10-01

    Full Text Available ABSTRACT OBJECTIVE: The diagnosis of coronary artery disease referred for heart surgery has an important psychological component. The purpose of this study was to access the difficulties experienced by individuals awaiting coronary artery bypass grafting and to determine strategies that facilitate adaptation to a new lifestyle, modified by the disease. METHODS: A qualitative, exploratory study involving patients admitted to a university teaching hospital in the city of Salvador, Bahia, Brazil, awaiting coronary artery bypass grafting. Semi-structured interviews were performed in accordance with a previously defined script based on the study objective. Each transcription was read in its entirety to verify the representativeness, homogeneity and pertinence of the data obtained (pre-analysis, followed by separation of categories of analysis. RESULTS: The descriptions of this study show that patients admitted to the completion of coronary artery bypass grafting experience a wide range of psychological difficulties, considering that surgery acquires interpretations that vary according to individuals' subjectivity. The patients recognized the benefit of being able to discuss their feelings as a means of diminishing their fear and anxiety. CONCLUSION: Helping patients find resources to confront more positively the daily hospitalization is an important aspect for the health care professionals who assist them. This goal can be achieved through modification of the biomedical model of care for a biopsychosocial view. The investment of time and attention is of fundamental importance and aims to overcome existing deficiencies that interfere with the outcome of patients after cardiac surgery.

  16. Polarized secretion of lysosomal enzymes: co-distribution of cation- independent mannose-6-phosphate receptors and lysosomal enzymes along the osteoclast exocytic pathway

    OpenAIRE

    1988-01-01

    The osteoclast is a polarized cell which secretes large amounts of newly synthesized lysosomal enzymes into an apical extracellular lacuna where bone resorption takes place. Using immunocytochemical techniques, we have localized the cation-independent mannose-6-phosphate (Man6P) receptor and lysosomal enzymes in this cell type in order to determine the expression and distribution of this receptor and its ligands. The results demonstrate that the osteoclast expresses large amounts of immunorea...

  17. NEW EMBO MEMBER’S REVIEW: Lysosomal cysteine proteases: facts and opportunities

    OpenAIRE

    Turk, Vito; Turk, Boris; Turk, Dušan

    2001-01-01

    From their discovery in the first half of the 20th century, lysosomal cysteine proteases have come a long way: from being the enzymes non-selectively degrading proteins in lysosomes to being those responsible for a number of important cellular processes. Some of the features and roles of their structures, specificity, regulation and physiology are discussed.

  18. Plasma Membrane Repair Is Regulated Extracellularly by Proteases Released from Lysosomes.

    Directory of Open Access Journals (Sweden)

    Thiago Castro-Gomes

    Full Text Available Eukaryotic cells rapidly repair wounds on their plasma membrane. Resealing is Ca(2+-dependent, and involves exocytosis of lysosomes followed by massive endocytosis. Extracellular activity of the lysosomal enzyme acid sphingomyelinase was previously shown to promote endocytosis and wound removal. However, whether lysosomal proteases released during cell injury participate in resealing is unknown. Here we show that lysosomal proteases regulate plasma membrane repair. Extracellular proteolysis is detected shortly after cell wounding, and inhibition of this process blocks repair. Conversely, surface protein degradation facilitates plasma membrane resealing. The abundant lysosomal cysteine proteases cathepsin B and L, known to proteolytically remodel the extracellular matrix, are rapidly released upon cell injury and are required for efficient plasma membrane repair. In contrast, inhibition of aspartyl proteases or RNAi-mediated silencing of the lysosomal aspartyl protease cathepsin D enhances resealing, an effect associated with the accumulation of active acid sphingomyelinase on the cell surface. Thus, secreted lysosomal cysteine proteases may promote repair by facilitating membrane access of lysosomal acid sphingomyelinase, which promotes wound removal and is subsequently downregulated extracellularly by a process involving cathepsin D.

  19. Plasma Membrane Repair Is Regulated Extracellularly by Proteases Released from Lysosomes.

    Science.gov (United States)

    Castro-Gomes, Thiago; Corrotte, Matthias; Tam, Christina; Andrews, Norma W

    2016-01-01

    Eukaryotic cells rapidly repair wounds on their plasma membrane. Resealing is Ca(2+)-dependent, and involves exocytosis of lysosomes followed by massive endocytosis. Extracellular activity of the lysosomal enzyme acid sphingomyelinase was previously shown to promote endocytosis and wound removal. However, whether lysosomal proteases released during cell injury participate in resealing is unknown. Here we show that lysosomal proteases regulate plasma membrane repair. Extracellular proteolysis is detected shortly after cell wounding, and inhibition of this process blocks repair. Conversely, surface protein degradation facilitates plasma membrane resealing. The abundant lysosomal cysteine proteases cathepsin B and L, known to proteolytically remodel the extracellular matrix, are rapidly released upon cell injury and are required for efficient plasma membrane repair. In contrast, inhibition of aspartyl proteases or RNAi-mediated silencing of the lysosomal aspartyl protease cathepsin D enhances resealing, an effect associated with the accumulation of active acid sphingomyelinase on the cell surface. Thus, secreted lysosomal cysteine proteases may promote repair by facilitating membrane access of lysosomal acid sphingomyelinase, which promotes wound removal and is subsequently downregulated extracellularly by a process involving cathepsin D. PMID:27028538

  20. The Octyl Ester of Ginsenoside Rh2 Induces Lysosomal Membrane Permeabilization via Bax Translocation

    Directory of Open Access Journals (Sweden)

    Fang Chen

    2016-04-01

    Full Text Available Ginsenoside Rh2 is a potential pharmacologically active metabolite of ginseng. Previously, we have reported that an octyl ester derivative of ginsenoside Rh2 (Rh2-O, has been confirmed to possess higher bioavailability and anticancer effect than Rh2 in vitro. In order to better assess the possibility that Rh2-O could be used as an anticancer compound, the underlying mechanism was investigated in this study. The present results revealed that lysosomal destabilization was involved in the early stage of cell apoptosis in HepG2 cells induced by Rh2-O. Rh2-O could induce an early lysosomal membrane permeabilization with the release of lysosomal protease cathepsins to the cytosol in HepG2 cells. The Cat B inhibitor (leu and Cat D inhibitor (pepA inhibited Rh2-O-induced HepG2 apoptosis as well as tBid production and Δφm depolarization, indicating that lysosomal permeabilization occurred upstream of mitochondrial dysfunction. In addition, Rh2-O induced a significant increase in the protein levels of DRAM1 and Bax (p < 0.05 in lysosomes of HepG2 cells. Knockdown of Bax partially inhibited Rh2-O-induced Cat D release from lysosomes. Thus it was concluded that Rh2-O induced apoptosis of HepG2 cells through activation of the lysosomal-mitochondrial apoptotic pathway involving the translocation of Bax to the lysosome.

  1. The Octyl Ester of Ginsenoside Rh2 Induces Lysosomal Membrane Permeabilization via Bax Translocation.

    Science.gov (United States)

    Chen, Fang; Zhang, Bing; Sun, Yong; Xiong, Zeng-Xing; Peng, Han; Deng, Ze-Yuan; Hu, Jiang-Ning

    2016-01-01

    Ginsenoside Rh2 is a potential pharmacologically active metabolite of ginseng. Previously, we have reported that an octyl ester derivative of ginsenoside Rh2 (Rh2-O), has been confirmed to possess higher bioavailability and anticancer effect than Rh2 in vitro. In order to better assess the possibility that Rh2-O could be used as an anticancer compound, the underlying mechanism was investigated in this study. The present results revealed that lysosomal destabilization was involved in the early stage of cell apoptosis in HepG2 cells induced by Rh2-O. Rh2-O could induce an early lysosomal membrane permeabilization with the release of lysosomal protease cathepsins to the cytosol in HepG2 cells. The Cat B inhibitor (leu) and Cat D inhibitor (pepA) inhibited Rh2-O-induced HepG2 apoptosis as well as tBid production and Δφm depolarization, indicating that lysosomal permeabilization occurred upstream of mitochondrial dysfunction. In addition, Rh2-O induced a significant increase in the protein levels of DRAM1 and Bax (p < 0.05) in lysosomes of HepG2 cells. Knockdown of Bax partially inhibited Rh2-O-induced Cat D release from lysosomes. Thus it was concluded that Rh2-O induced apoptosis of HepG2 cells through activation of the lysosomal-mitochondrial apoptotic pathway involving the translocation of Bax to the lysosome. PMID:27120618

  2. Lysosomal and autophagic reactions as predictive indicators of environmental impact in aquatic animals.

    Science.gov (United States)

    Moore, Michael N; Allen, J Icarus; McVeigh, Allan; Shaw, Jenny

    2006-01-01

    The lysosomal-autophagic system appears to be a common target for many environmental pollutants as lysosomes accumulate many toxic metals and organic xenobiotics, which perturb normal function and damage the lysosomal membrane. In fact, lysosomal membrane integrity or stability appears to be an effective generic indicator of cellular well-being in eukaryotes: in bivalve molluscs and fish, stability is correlated with many toxicological responses and pathological reactions. Prognostic use of adverse lysosomal and autophagic reactions to environmental pollutants has been explored in relation to predicting cellular dysfunction and health in marine mussels, which are extensively used as sensitive bioindicators in monitoring ecosystem health. Derivation of explanatory frameworks for prediction of pollutant impact on health is a major goal; and we have developed a conceptual mechanistic model linking lysosomal damage and autophagic dysfunction with injury to cells and tissues. This model has also complemented the creation of a cell-based computational model for molluscan hepatopancreatic cells that simulates lysosomal, autophagic and other cellular reactions to pollutants. Experimental and simulated results have also indicated that nutritional deprivation-induced autophagy has a protective function against toxic effects mediated by reactive oxygen species (ROS). Finally, coupled measurement of lysosomal-autophagic reactions and modelling is proposed as a practical toolbox for predicting toxic environmental risk. PMID:16874099

  3. The FTLD risk factor TMEM106B and MAP6 control dendritic trafficking of lysosomes

    NARCIS (Netherlands)

    Schwenk, B.M.; Lang, C.M.; Hogl, S.; Tahirovic, S.; Orozco, D.; Rentzsch, K.; Lichtenthaler, S.F.; Hoogenraad, Casper; Capell, A.; Haass, C.; Edbauer, D.

    2014-01-01

    TMEM106B is a major risk factor for frontotemporal lobar degeneration with TDP‐43 pathology. TMEM106B localizes to lysosomes, but its function remains unclear. We show that TMEM106B knockdown in primary neurons affects lysosomal trafficking and blunts dendritic arborization. We identify microtubule‐

  4. Imidazoacridinone-dependent lysosomal photodestruction: a pharmacological Trojan horse approach to eradicate multidrug-resistant cancers.

    Science.gov (United States)

    Adar, Y; Stark, M; Bram, E E; Nowak-Sliwinska, P; van den Bergh, H; Szewczyk, G; Sarna, T; Skladanowski, A; Griffioen, A W; Assaraf, Y G

    2012-01-01

    Multidrug resistance (MDR) remains a primary hindrance to curative cancer therapy. Thus, introduction of novel strategies to overcome MDR is of paramount therapeutic significance. Sequestration of chemotherapeutics in lysosomes is an established mechanism of drug resistance. Here, we show that MDR cells display a marked increase in lysosome number. We further demonstrate that imidazoacridinones (IAs), which are cytotoxic fluorochromes, undergo a dramatic compartmentalization in lysosomes because of their hydrophobic weak base nature. We hence developed a novel photoactivation-based pharmacological Trojan horse approach to target and eradicate MDR cancer cells based on photo-rupture of IA-loaded lysosomes and tumor cell lysis via formation of reactive oxygen species. Illumination of IA-loaded cells resulted in lysosomal photodestruction and restoration of parental cell drug sensitivity. Lysosomal photodestruction of MDR cells overexpressing the key MDR efflux transporters ABCG2, ABCB1 or ABCC1 resulted in 10- to 52-fold lower IC(50) values of various IAs, thereby restoring parental cell sensitivity. Finally, in vivo application of this photodynamic therapy strategy after i.v. injection of IAs in human ovarian tumor xenografts in the chorioallantoic membrane model revealed selective destruction of tumors and their associated vasculature. These findings identify lysosomal sequestration of IAs as an Achilles heel of MDR cells that can be harnessed to eradicate MDR tumor cells via lysosomal photodestruction. PMID:22476101

  5. Taking Out TB–Lysosomal Trafficking and Mycobactericidal Ubiquitin-Derived Peptides

    OpenAIRE

    Purdy, Georgiana E.

    2011-01-01

    Tuberculosis remains a significant global health concern. The hallmark of Mycobacterium tuberculosis pathogenicity is its ability to infect resting macrophages and establish an intracellular niche. Activated and autophagic macrophages control mycobacterial infections through bactericidal mechanisms ranging from reactive oxygen and nitrogen intermediates to the delivery of the bacterium to the acidified, hydrolytically active lysosome. The mycobactericidal activity of the lysosome is due in pa...

  6. Taking out TB – A role for lysosomal ubiquitin-derived peptides

    OpenAIRE

    Georgiana ePurdy

    2011-01-01

    Tuberculosis remains a significant global health concern. The hallmark of Mycobacterium tuberculosis pathogenicity is its ability to infect resting macrophages and establish an intracellular niche. Activated and autophagic macrophages control mycobacterial infections through bactericidal mechanisms ranging from reactive oxygen and nitrogen intermediates to the delivery of the bacterium to the acidified, hydrolytically active lysosome. The mycobactericidal activity of the lysosome is due in pa...

  7. Lysosome stabilization in slices of rat liver when incubated with vitamin A excess

    International Nuclear Information System (INIS)

    An organ culture of slices of livers from adult rats was used to study effect of vitamin A (all-trans retinol) on lysosome stability. Lysosomes were purified by centrifugation in Percoll gradients. Preparations were monitored by electron microscopy and evaluated by morphometry and assays of marker enzymes. Enrichments relative to homogenates and crude pellets were estimated from latent (triton X-100) acid p-nitrophenylphosphatase specific activities. Lysosomes prepared from unincubated slices were enriched 50-fold in latent acid phosphatase relative to homogenates. In contrast, lysosomes prepared from slices incubated for 30 min in PBS alone were enriched only 20-fold. When 25 μg/ml retinol was included in the incubation medium, enrichments of 40-fold were obtained. The integrity of the slices was monitored by electron microscopy and their viability was confirmed by a sustained uptake and incorporation of [3H]leucine into protein (up to 2 h in culture). The loss of lysosomes from homogenates of slices incubated in the absence of retinol was accompanied by a loss of acid phosphatase from the lysosomal pellet to the supernatant during purification. Addition of retinol to slices just prior to homogenization was without effect. The results demonstrate a stabilizing influence of vitamin A on lysosomes during incubation of licer slices. The findings contrast earlier reports of retinol-induced lysosome fragility in other in vitro systems

  8. The stereochemical configuration of lysosomal phosphatidylcholine and phosphatidylethanolamine: comparison with lysobisphosphatidic acid.

    Science.gov (United States)

    Joutti, A; Renkonen, O

    1979-02-01

    Lysosomal phosphatidylcholine and phosphatidylethanolamine were isolated from liver of rats treated with Triton WR 1339 and from cultured BHK-cells. Stereochemical analysis proved that these lipids, in contrast to the lysosomal lysobisphosphatidic acid, were derivatives of sn-glycero-3-phosphate. PMID:438662

  9. Non-inhibitory antibodies impede lysosomal storage reduction during enzyme replacement therapy of a lysosomal storage disease.

    Science.gov (United States)

    Matzner, Ulrich; Matthes, Frank; Weigelt, Cecilia; Andersson, Claes; Eistrup, Carl; Fogh, Jens; Gieselmann, Volkmar

    2008-04-01

    Enzyme replacement therapy is a treatment option for several lysosomal storage disorders. We reported previously that treatment of a knockout mouse model of the sphingolipid storage disease metachromatic leukodystrophy (MLD) by intravenous injection of recombinant human arylsulfatase A (rhASA) reduces sulfatide storage and improves nervous system pathology and function. Here, we show that treated mice can develop anti-rhASA antibodies, which impede sulfatide clearance without inhibiting enzyme activity. The neutralizing effect of antibodies was reproduced in cell culture models of MLD by demonstrating that mouse immune serum reduces the ability of rhASA to clear sulfatide from cultured ASA-deficient Schwann and kidney cells. We show that reduced clearance is due to an antibody-mediated blockade of mannose 6-phosphate receptor-dependent enzyme uptake, retargeting of rhASA from sulfatide-storing cells to macrophages, intracellular misrouting of rhASA, and reduction of enzyme stability. Induction of immunotolerance to rhASA by transgenic expression of an active site mutant of human ASA restores sulfatide clearance in mice. The data indicate that the influence of non-inhibitory antibodies must be more intensively considered in evaluating the therapeutic efficacy of enzyme replacement in lysosomal storage disorders in general and in patients without cross-reacting material specifically. PMID:18360747

  10. Lysosomal ATP imaging in living cells by a water-soluble cationic polythiophene derivative.

    Science.gov (United States)

    Huang, Bing-Huan; Geng, Zhi-Rong; Ma, Xiao-Yan; Zhang, Cui; Zhang, Zhi-Yang; Wang, Zhi-Lin

    2016-09-15

    Lysosomes in astrocytes and microglia can release ATP as the signaling molecule for the cells through ca(2+)-dependent exocytosis in response to various stimuli. At present, fluorescent probes that can detect ATP in lysosomes have not been reported. In this work, we have developed a new water-soluble cationic polythiophene derivative that can be specifically localized in lysosomes and can be utilized as a fluorescent probe to sense ATP in cells. PEMTEI exhibits high selectivity and sensitivity to ATP at physiological pH values and the detection limit of ATP is as low as 10(-11)M. The probe has low cytotoxicity, good permeability and high photostability in living cells and has been applied successfully to real-time monitoring of the change in concentrations of ATP in lysosomes though fluorescence microscopy. We also demonstrated that lysosomes in Hela cells can release ATP through Ca(2+)-dependent exocytosis in response to drug stimuli. PMID:27131993

  11. Dynamic Experimental Study of a Multi—bypass Pulse Tube Refrigerator with Two—bypass Tubes

    Institute of Scientific and Technical Information of China (English)

    YonglinJu; ChaoWang; 等

    1998-01-01

    A dynamic experimental apparatus to measure the instantaneous velocity and pressure in the multibypass pulse tube refrigerator(MPTR) was designed and constructed.Some important experimental results of the instantaneous measurements of the velocity and the pressure in the MPTR with twobypass tubes during actual operation are prsented.The effects of the middle-bypass version on the dynamic pressure and mass flow rate at the cold end of the pulse tube are ev aluated from experimental measurements.DC-flow phenomena are observed in this MPTR.The reasons of the multi-bypass version improved the performance of pulse tube refrigertor are given.

  12. Potential pitfalls and solutions for use of fluorescent fusion proteins to study the lysosome.

    Directory of Open Access Journals (Sweden)

    Ling Huang

    Full Text Available Use of fusion protein tags to investigate lysosomal proteins can be complicated by the acidic, protease-rich environment of the lysosome. Potential artifacts include degradation or release of the tag and acid quenching of fluorescence. Tagging can also affect protein folding, glycosylation and/or trafficking. To specifically investigate the use of fluorescent tags to reveal lysosomal localization, we tested mCherry derivatives as C-terminal tags for Niemann-Pick disease type C protein 2 (NPC2, a luminal lysosomal protein. Full-length mCherry was released from the NPC2 chimera while deletion of the 11 N-terminal residues of mCherry generated a cleavage-resistant (cr fluorescent variant. Insertion of proline linkers between NPC2 and crmCherry had little effect while Gly-Ser linkers promoted cleavage. The NPC2-crmCherry fusion was targeted to the lysosome and restored function in NPC2-deficient cells. Fusion of crmCherry to known and candidate lysosomal proteins revealed that the linkers had different effects on lysosomal localization. Direct fusion of crmCherry impaired mannose 6-phosphorylation and lysosomal targeting of the lysosomal protease tripeptidyl peptidase I (TPP1, while insertion of linkers corrected the defects. Molecular modeling suggested structural bases for the effects of different linkers on NPC2 and TPP1 fusion proteins. While mCherry fusion proteins can be useful tools for studying the lysosome and related organelles, our findings underscore the potential artifacts associated with such applications.

  13. Identification of cytoskeleton-associated proteins essential for lysosomal stability and survival of human cancer cells.

    Science.gov (United States)

    Groth-Pedersen, Line; Aits, Sonja; Corcelle-Termeau, Elisabeth; Petersen, Nikolaj H T; Nylandsted, Jesper; Jäättelä, Marja

    2012-01-01

    Microtubule-disturbing drugs inhibit lysosomal trafficking and induce lysosomal membrane permeabilization followed by cathepsin-dependent cell death. To identify specific trafficking-related proteins that control cell survival and lysosomal stability, we screened a molecular motor siRNA library in human MCF7 breast cancer cells. SiRNAs targeting four kinesins (KIF11/Eg5, KIF20A, KIF21A, KIF25), myosin 1G (MYO1G), myosin heavy chain 1 (MYH1) and tropomyosin 2 (TPM2) were identified as effective inducers of non-apoptotic cell death. The cell death induced by KIF11, KIF21A, KIF25, MYH1 or TPM2 siRNAs was preceded by lysosomal membrane permeabilization, and all identified siRNAs induced several changes in the endo-lysosomal compartment, i.e. increased lysosomal volume (KIF11, KIF20A, KIF25, MYO1G, MYH1), increased cysteine cathepsin activity (KIF20A, KIF25), altered lysosomal localization (KIF25, MYH1, TPM2), increased dextran accumulation (KIF20A), or reduced autophagic flux (MYO1G, MYH1). Importantly, all seven siRNAs also killed human cervix cancer (HeLa) and osteosarcoma (U-2-OS) cells and sensitized cancer cells to other lysosome-destabilizing treatments, i.e. photo-oxidation, siramesine, etoposide or cisplatin. Similarly to KIF11 siRNA, the KIF11 inhibitor monastrol induced lysosomal membrane permeabilization and sensitized several cancer cell lines to siramesine. While KIF11 inhibitors are under clinical development as mitotic blockers, our data reveal a new function for KIF11 in controlling lysosomal stability and introduce six other molecular motors as putative cancer drug targets. PMID:23071517

  14. Renal tubular acidosis secondary to jejunoileal bypass for morbid obesity

    DEFF Research Database (Denmark)

    Schaffalitzky de Muckadell, O B; Ladefoged, Jens; Thorup, Jørgen Mogens

    1985-01-01

    Renal handling of acid and base was studied in patients with persistent metabolic acidosis 3-9 years after jejunoileal bypass for morbid obesity. Excretion of acid was studied before and after intravenous infusion of NH4Cl and excretion of bicarbonate after infusion of NaHCO3. Bypass patients...... groups. Fractional loss of bicarbonate in urine was higher in controls than in bypass patients. The renal impairment is classified as distal renal tubular acidosis....

  15. Magnetic resonance angiographic assessment after extracranial-intracranial bypass surgery.

    OpenAIRE

    Praharaj, S S; Coulthard, A; Gholkar, A; English, P; Mendelow, A D

    1996-01-01

    Extracranial-intracranial (EC-IC) bypass operation may be performed to augment the distal cerebral circulation. The bypass patency is usually assessed postoperatively with conventional cerebral angiography. Six patients are reported in whom the bypass patency was assessed using magnetic resonance angiography (MRA): Two had intracavernous carotid aneurysms, three had base of skull tumours encompassing the internal carotid artery, and one had occlusion of the right internal carotid artery with ...

  16. Outcomes after off-pump coronary bypass surgery

    OpenAIRE

    van Dijk, Diederik

    2002-01-01

    The complications associated with in coronary artery bypass surgery (CABG) using cardiopulmonary bypass (CPB) have led to a renewed interest in coronary bypass surgery on the beating heart. The primary objective of the Octopus Study was to compare cognitive outcome between patients randomized to off-pump or on-pump CABG. In chapter 2, the literature suggesting that CABG may impair cognitive function is systematically reviewed and chapter 3 describes in detail the rationale and design of the O...

  17. Extra-intracranial standard bypass in the elderly

    DEFF Research Database (Denmark)

    Sandow, Nora; von Weitzel-Mudersbach, Paul; Rosenbaum, Sverre;

    2013-01-01

    Patients with chronic atherosclerotic vessel occlusion and cerebrovascular hemodynamic insufficiency may benefit from extra-intracranial (EC-IC) bypass surgery. Due to demographic changes, an increasing number of elderly patients presents with cerebrovascular hemodynamic insufficiency. So far......, little data for EC-IC bypass surgery in elderly patients suffering occlusive cerebrovascular disease are available. We therefore designed a retrospective study to address the question whether EC-IC bypass is a safe and efficient treatment in a patient cohort ≥70 years....

  18. Jejunioleal Bypass Procedures in Morbid Obesity: Preoperative Psychological Findings

    Science.gov (United States)

    Webb, Warren W.; And Others

    1976-01-01

    Seventy patients who averaged 155 percent overweight and requested jejunioleal bypass surgery as a treatment intervention for morbid obesity were studied preoperatively for prominent psychological characteristics. (Author)

  19. Hormonal and metabolic responses of fetal lamb during cardiopulmonary bypass

    Institute of Scientific and Technical Information of China (English)

    苏肇伉; 周成斌; 张海波; 祝忠群

    2003-01-01

    Objective To study the hormonal and metabolic responses of fetal lamb during cardiopulmonary bypass.Methods Six pregnant ewes underwent fetal cardiopulmonary bypasses with artificial oxygenators and roller pumps for 30 minutes, which maintained the blood gas value at the fetal physiological level. The fetal blood pressure, heart rate, pH value and blood lactate levels were monitored. The levels of catecholamine, cortisol and insulin were measured pre-bypass and then again 30 minutes later. The blood glucose and free fatty acid levels were monitored continuously during the bypass. Fetal hepatic PAS staining was also carried out.Results There were no changes before and during the bypass in fetal blood pressure, heart rate and blood gas. However, pH values decreased and blood lactate levels increased (P<0.05). The fetal catecholamine and cortisol levels increased significantly (P<0.01), while the levels of insulin did not change. The blood glucose and free fatty acid levels increased at the beginning of the bypass (P<0.01), and then gradually slowed down during the bypass. The fetal hepatic PAS staining showed that hepatic glycogen was consumed in large amounts. After 30 minutes of bypass, the fetal lamb would not survive more than 1 hour.Conclusion The fetal lamb has a strong negative reaction to cardiopulmonary bypass.

  20. Cardiac Bypass Pump Flow Management via NIRS Monitoring

    OpenAIRE

    Macnab, Andrew J.; Gagnon, Roy E.; Gagnon, Faith A.; Blackstock, Derek; LeBlanc, Jacques G.

    2003-01-01

    During cardiac surgery, bypass pumps rely on pressure monitors to evaluate flow. We studied whether it would be possible to optimize pump flow by monitoring changes in cerebral cytochrome a,a3 using NIRS to maintain cyt redox status at its pre-bypass level. Method: 18 healthy 7–45 kg swine were placed on bypass for repeated cycles of cooling and re-warming from 36 to 15 to 36°C in 3°C steps. Between each cycle, the swine's bypass pump blood flow rate was adjusted to restore cytochrome redox s...

  1. Obstetrical and neonatal outcomes in women following gastric bypass

    DEFF Research Database (Denmark)

    Berlac, Janne Foss; Skovlund, Charlotte Wessel; Lidegaard, Ojvind

    2014-01-01

    OBJECTIVE: To assess obstetrical and neonatal outcomes in women following gastric bypass, compared with adipose women without surgery and with a normal weight control population. DESIGN: Historical controlled cohort study. SETTING: Denmark. POPULATION: All women undergoing gastric bypass during the...... period 1996-2011, and subsequently giving birth. METHODS AND MAIN OUTCOME MEASURES: Obstetrical and neonatal outcomes in women without gastric bypass matched on age, parity, plurality, year, and body mass index, and normal weight women. RESULTS: In 415 women giving birth after gastric bypass we found...

  2. Diagnosing Lysosomal Storage Disorders: The GM2 Gangliosidoses.

    Science.gov (United States)

    Hall, Patricia; Minnich, Sara; Teigen, Claire; Raymond, Kimiyo

    2014-01-01

    The GM2 gangliosidoses are a group of autosomal recessive lysosomal storage disorders caused by defective β-hexosaminidase. There are three clinical conditions in this group: Tay-Sachs disease (TSD), Sandhoff disease (SD), and hexosaminidase activator deficiency. The three conditions are clinically indistinguishable. TSD and SD have been identified with infantile, juvenile, and adult onset forms. The activator deficiency is only known to present with infantile onset. Diagnosis of TSD and SD is based on decreased hexosaminidase activity and a change in the percentage of activity between isoforms. There are no biochemical tests currently available for activator deficiency. This unit provides a detailed procedure for identifying TSD and SD in affected individuals and carriers from leukocyte samples, the most robust sample type available. PMID:25271840

  3. A novel melano-lysosome in the retinal epithelium of rhesus monkeys.

    Science.gov (United States)

    Gouras, Peter; Brown, Kristy; Ivert, Lena; Neuringer, Martha

    2011-12-01

    The large phagocytic load that confronts the retinal pigment epithelium (RPE) is thought to play a possible role in the pathogenesis of age related macular degeneration (AMD) that afflicts both humans and monkeys. Our knowledge of how RPE degrades phagosomes and other intra-cellular material by lysosomal action is still rudimentary. In this paper we examine organelles that play a role in this process, melanosome, lysosomes and phagosomes, in the RPE of young and old rhesus monkeys in order to better understand lysosomal autophagy and heterophagy in the RPE and its possible role in AMD. We used electron microscopy to detect and describe the characteristics of melanosomes and lysosome-like organelles in the macular RPE of rhesus monkeys (Macaca mulatta) that were 1, 6, 24, 24, 26 and 35 years of age. The measurements include the number, shape and size of these organelles located in the basal, middle and apical regions of RPE cells. Phaagosomes were also examined but not counted or measured for size or shape because of their rarity. Melanosomes were homogeneously dark with a circular or elliptical shape and decreased in number with age. Smaller melanosomes were more common at the basal side of the RPE. Among the small melanosomes, we found an organelle that was losing melanin in varying degrees; in some cases was nearly devoid of melanin. Because of the melanin loss, we considered this organelle to be a unique type of autophagic melano-lysosome, which we called a Type 1 lysosome. We found another organelle, more canonically lysosomal, which we called a Type 2 lysosome. This organelle was composed of a light matrix containing melanosomes in various stages of degradation. Type 2 lysosomes without melanosomes were rare. Type 2 lysosomes increased while Type 1 decreased in number with age. Phagosomes were rare in both young and old monkeys. They made close contact with Type 2 lysosomes which we considered responsible for their degradation. Melanosomes are being lost from

  4. Hemodynamics Simulation of Stenosed Coronary Bypass Graft

    Institute of Scientific and Technical Information of China (English)

    LIU You-jun; QIAO Aike; DU Jian-jun

    2005-01-01

    By means of FEM, the physiological blood flow in coronary bypass graft is simulated. The stenosis in coronary artery is involved in the graft model,and the deformation of graft end to allow the surgical suture with a smaller diameter coronary is taken into consideration. The flow pattern, secondary flow and wall shear stress in the vicinity of anastomosis are analyzed. It is shown that a zone of low wall stress and high wall stress gradient exists downstream the toe. The floor opposed to the anastomosis is an area of high wall stress and high wall stress gradient. Both the toe downstream and the anastomosis bottom floor are prone to intimal hyperplasia.

  5. Flow characteristics in narrowed coronary bypass graft

    Science.gov (United States)

    Bernad, S. I.; Bosioc, A.; Bernad, E. S.; Petre, I.; Totorean, A. F.

    2016-06-01

    Tortuous saphenous vein graft (SVG) hemodynamics was investigated using computational fluid dynamics (CFD) techniques. Computed tomography (CT) technology is used for non-invasive bypass graft assessment 7 days after surgery. CT investigation shown two regions with severe shape remodelling first is an elbow type contortion and second is a severe curvature with tortuous area reduction. In conclusion, the helical flow induced by vessel torsion may stabilize the blood flow in the distal part of the SVG, reducing the flow disturbance and suppressing the flow separation, but in the distal end of the graft, promote the inflammatory processes in the vessels.

  6. Work on the Geneva motorway bypass

    CERN Multimedia

    État de Genève, DCTI, Direction du génie civil

    2006-01-01

    Work on the airport section of the Geneva motorway bypass is continuing and will require the temporary closure of two sliproads allowing traffic to make a U-turn near the airport and the Palexpo exhibition centre. The sliproads on the French and Lausanne sides will be closed until autumn 2006. U-turns will still be possible via clearly marked deviations. For further information: www.autoroute-aeroport.ch We would like to thank you in advance for your understanding. Civil Engineering Department, DCTI, State of Geneva

  7. Impossible Airway Requiring Venovenous Bypass for Tracheostomy

    Directory of Open Access Journals (Sweden)

    Johnathan Gardes

    2012-01-01

    Full Text Available The elective surgical airway is the definitive management for a tracheal stenotic lesion that is not a candidate for tracheal resection, or who has failed multiple-tracheal dilations. This case report details the management of a patient who has failed an elective awake tracheostomy secondary to the inability to be intubated as well as severe scar tissue at the surgical site. A combination of regional anesthesia and venovenous bypass is used to facilitate the surgical airway management of this patient. Cerebral oximetry and a multidisciplinary team approach aid in early detection of an oxygenation issue, as well as the emergent intervention that preserved this patient’s life.

  8. Indications and Outcomes of Prophylactic and Therapeutic Extracranial-to-intracranial Arterial Bypass for Cerebral Revascularization

    Directory of Open Access Journals (Sweden)

    Emre Gazyakan, MD, MSc

    2015-04-01

    Conclusions: The collaboration of neurosurgeons and plastic surgeons in performing EC-IC bypass can result in excellent outcomes with a high bypass patency rate and few complications, particularly for prophylactic EC-IC bypass.

  9. Limited and selective transfer of plasma membrane glycoproteins to membrane of secondary lysosomes

    International Nuclear Information System (INIS)

    Radioactive galactose, covalently bound to cell surface glycoconjugates on mouse macrophage cells, P388D1, was used as a membrane marker to study the composition, and the kinetics of exchange, of plasma membrane-derived constituents in the membrane of secondary lysosomes. Secondary lysosomes were separated from endosomes and plasma membrane by self-forming Percoll density gradients. Horseradish peroxidase, taken up by fluid-phase pinocytosis, served as a vesicle contents marker to monitor transfer of endosomal contents into secondary lysosomes. Concurrently, the fraction of plasma membrane-derived label of secondary lysosomes increased by first order kinetics from 4 PAGE, labeled molecules of M/sub r/ 160-190 kD were depleted and of the M/sub r/ 100-120 kD were enriched in lysosome membrane compared with the relative composition of label on the cell surface. No corresponding selectivity was observed for the degradation of label, with all M/sub r/ classes being affected to the same relative extent. The results indicate that endocytosis-derived transfer of plasma membrane constitutents to secondary lysosomes is a limited and selective process, and that only ∼1% of internalized membrane is recycled via a membrane pool of secondary lysosomes

  10. Proteolytic activity within Lysosomes and turnover of pinocytic vesicles: a kinetic analysis

    International Nuclear Information System (INIS)

    Degradation of exogenous [125I] ribonuclease by renal lysosomes follows first-order kinetics in ribonuclease concentration. To demonstrate this, it was necessary to apply corrections for the presence of labeled but digestively inactive particles, either pinocytic vesicles or lysosomes damaged during preparation. Such kinetics were not observed under conditions favoring lysosmal breakdown, i.e., in isotonic KCl, or in the absence of EDTA. The kinetic analysis allows determination of half-times for lysosomal protein digestion. This facilitates comparison of different lysosome preparations, or of in vitro degradation rates with results of in vivo metabolism studies. Degradation of [125I] ribonuclease showed a half-time of about 11 and one-half minutes in isotonic sucrose or saline media. This is less than the half-time for decrease of kidney radioactivity in vivo after uptake of [125I] ribonuclease. The proportion of exogenous labeled protein contained within secondary lysosomes was determined as a function of time after injection of ribonuclease to monitor transfer of the protein from pinocytic vesicles to lysosomes. Ribonuclease molecules remained in pinocytic vesicles for approximately three minutes after uptake, before passage into the lysosomes

  11. Chlamydia species-dependent differences in the growth requirement for lysosomes.

    Directory of Open Access Journals (Sweden)

    Scot P Ouellette

    Full Text Available Genome reduction is a hallmark of obligate intracellular pathogens such as Chlamydia, where adaptation to intracellular growth has resulted in the elimination of genes encoding biosynthetic enzymes. Accordingly, chlamydiae rely heavily on the host cell for nutrients yet their specific source is unclear. Interestingly, chlamydiae grow within a pathogen-defined vacuole that is in close apposition to lysosomes. Metabolically-labeled uninfected host cell proteins were provided as an exogenous nutrient source to chlamydiae-infected cells, and uptake and subsequent labeling of chlamydiae suggested lysosomal degradation as a source of amino acids for the pathogen. Indeed, Bafilomycin A1 (BafA1, an inhibitor of the vacuolar H(+/ATPase that blocks lysosomal acidification and functions, impairs the growth of C. trachomatis and C. pneumoniae, and these effects are especially profound in C. pneumoniae. BafA1 induced the marked accumulation of material within the lysosomal lumen, which was due to the inhibition of proteolytic activities, and this response inhibits chlamydiae rather than changes in lysosomal acidification per se, as cathepsin inhibitors also inhibit the growth of chlamydiae. Finally, the addition of cycloheximide, an inhibitor of eukaryotic protein synthesis, compromises the ability of lysosomal inhibitors to block chlamydial growth, suggesting chlamydiae directly access free amino acids in the host cytosol as a preferred source of these nutrients. Thus, chlamydiae co-opt the functions of lysosomes to acquire essential amino acids.

  12. Tubular lysosome morphology and distribution within macrophages depend on the integrity of cytoplasmic microtubules

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, J.; Bushnell, A.; Silverstein, S.C.

    1987-04-01

    Pinocytosis of the fluorescent dye lucifer yellow labels elongated, membrane-bound tubular organelles in several cell types, including cultured human monocytes, thioglycolate-elicited mouse peritoneal macrophages, and the macrophage-like cell line J774.2. These tubular structures can be identified as lysosomes by acid phosphatase histochemistry and immunofluorescence localization of cathepsin L. The abundance of tubular lysosomes is markedly increased by treatment with phorbol 12-myristate 13-acetate. When labeled by pinocytosis of microperoxidase and examined by electron microscopic histochemistry, the tubular lysosomes have an outside diameter of approx. = 75 nm and a length of several micrometers; they radiate from the cell's centrosphere in alignment with cytoplasmic microtubules and intermediate filaments. Incubation of phorbol myristate acetate-treated macrophages at 4/sup 0/C or in medium containing 5 ..mu..M colchicine or nocodazole at 37/sup 0/C leads to disassembly of microtubules and fragmentation of the tubular lysosomes. Return of the cultures to 37/sup 0/C or removal of nocodazole from the medium leads to reassembly of microtubules and the reappearance of tubular lysosomes within 10-20 min. The authors conclude that microtubules are essential for the maintenance of tubular lysosome morphology and that, in macrophages, a significant proportion of the lysosomal compartment is contained within these tubular structures.

  13. Tubular lysosome morphology and distribution within macrophages depend on the integrity of cytoplasmic microtubules

    International Nuclear Information System (INIS)

    Pinocytosis of the fluorescent dye lucifer yellow labels elongated, membrane-bound tubular organelles in several cell types, including cultured human monocytes, thioglycolate-elicited mouse peritoneal macrophages, and the macrophage-like cell line J774.2. These tubular structures can be identified as lysosomes by acid phosphatase histochemistry and immunofluorescence localization of cathepsin L. The abundance of tubular lysosomes is markedly increased by treatment with phorbol 12-myristate 13-acetate. When labeled by pinocytosis of microperoxidase and examined by electron microscopic histochemistry, the tubular lysosomes have an outside diameter of ≅ 75 nm and a length of several micrometers; they radiate from the cell's centrosphere in alignment with cytoplasmic microtubules and intermediate filaments. Incubation of phorbol myristate acetate-treated macrophages at 40C or in medium containing 5 μM colchicine or nocodazole at 370C leads to disassembly of microtubules and fragmentation of the tubular lysosomes. Return of the cultures to 370C or removal of nocodazole from the medium leads to reassembly of microtubules and the reappearance of tubular lysosomes within 10-20 min. The authors conclude that microtubules are essential for the maintenance of tubular lysosome morphology and that, in macrophages, a significant proportion of the lysosomal compartment is contained within these tubular structures

  14. Action of low-energy monochromatic coherent light on the stability of retinal lysosomes

    Science.gov (United States)

    Metelitsina, Irina P.; Leus, N. F.

    1995-05-01

    The data had been obtained during the experiment in vitro by irradiation of solubilized lysosomal enzymes, retinal homogenates and native lysosomes enabled us to conclude that the laser beam ((lambda) equals 632.8 nm, power density from 0.1 to 15.0 mWt/cm2) acts on the level of membranous structures of lysosomes. During irradiation of rabbits eyes in vitro with an unfocused laser beam (power density on the cornea aur face from 0.01 to 15.0 mWt/cm2 was shown, that low-energy, ranged from 0.01 to 1.0 mWt/cm2 promotes stabilization of lysosomal membranes. Irradiation with laser beam of 8.0 mWt/cm2 and more power induces destabilization of lysosomal membranes. We have also shown that vitamins A and E effecting membranotropic on lysosomes may be corrected by low-energy radiation of helium-neon laser. It is substantiated experimentally that the stabilizing effect of vitamin E may be intensified in case of the combined action of laser radiation on lysosomes. The labilizing effect of vitamin A on membranes of organelles, as was studied, may be weakened by application of laser radiation of low intensities.

  15. Triptolide induces lysosomal-mediated programmed cell death in MCF-7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Owa C

    2013-09-01

    Full Text Available Chie Owa, Michael E Messina Jr, Reginald HalabyDepartment of Biology, Montclair State University, Montclair, NJ, USABackground: Breast cancer is a major cause of death; in fact, it is the most common type, in order of the number of global deaths, of cancer in women worldwide. This research seeks to investigate how triptolide, an extract from the Chinese herb Tripterygium wilfordii Hook F, induces apoptosis in MCF-7 human breast cancer cells. Accumulating evidence suggests a role for lysosomal proteases in the activation of apoptosis. However, there is also some controversy regarding the direct participation of lysosomal proteases in activation of key apoptosis-related caspases and release of mitochondrial cytochrome c. In the present study, we demonstrate that triptolide induces an atypical, lysosomal-mediated apoptotic cell death in MCF-7 cells because they lack caspase-3.Methods: MCF-7 cell death was characterized via cellular morphology, chromatin condensation, 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide colorimetric cell growth inhibition assay and the expression levels of proapoptotic proteins. Acridine orange and LysoTracker® staining were performed to visualize lysosomes. Lysosomal enzymatic activity was monitored using an acid phosphatase assay and western blotting of cathepsin B protein levels in the cytosolic fraction, which showed increased enzymatic activity in drug-treated cells.Results: These experiments suggest that triptolide-treated MCF-7 cells undergo atypical apoptosis and that, during the early stages, lysosomal enzymes leak into the cytosol, indicating lysosomal membrane permeability.Conclusion: Our results suggest that further studies are warranted to investigate triptolide's potential as an anticancer therapeutic agent.Keywords: triptolide, MCF-7 breast cancer cells, apoptosis, lysosomes, lysosomal membrane permeabilization (LMP

  16. Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner.

    Directory of Open Access Journals (Sweden)

    Christine Burkard

    2014-11-01

    Full Text Available Enveloped viruses need to fuse with a host cell membrane in order to deliver their genome into the host cell. While some viruses fuse with the plasma membrane, many viruses are endocytosed prior to fusion. Specific cues in the endosomal microenvironment induce conformational changes in the viral fusion proteins leading to viral and host membrane fusion. In the present study we investigated the entry of coronaviruses (CoVs. Using siRNA gene silencing, we found that proteins known to be important for late endosomal maturation and endosome-lysosome fusion profoundly promote infection of cells with mouse hepatitis coronavirus (MHV. Using recombinant MHVs expressing reporter genes as well as a novel, replication-independent fusion assay we confirmed the importance of clathrin-mediated endocytosis and demonstrated that trafficking of MHV to lysosomes is required for fusion and productive entry to occur. Nevertheless, MHV was shown to be less sensitive to perturbation of endosomal pH than vesicular stomatitis virus and influenza A virus, which fuse in early and late endosomes, respectively. Our results indicate that entry of MHV depends on proteolytic processing of its fusion protein S by lysosomal proteases. Fusion of MHV was severely inhibited by a pan-lysosomal protease inhibitor, while trafficking of MHV to lysosomes and processing by lysosomal proteases was no longer required when a furin cleavage site was introduced in the S protein immediately upstream of the fusion peptide. Also entry of feline CoV was shown to depend on trafficking to lysosomes and processing by lysosomal proteases. In contrast, MERS-CoV, which contains a minimal furin cleavage site just upstream of the fusion peptide, was negatively affected by inhibition of furin, but not of lysosomal proteases. We conclude that a proteolytic cleavage site in the CoV S protein directly upstream of the fusion peptide is an essential determinant of the intracellular site of fusion.

  17. Combined effects of thermal stress and Cd on lysosomal biomarkers and transcription of genes encoding lysosomal enzymes and HSP70 in mussels, Mytilus galloprovincialis

    Energy Technology Data Exchange (ETDEWEB)

    Izagirre, Urtzi; Errasti, Aitzpea; Bilbao, Eider; Múgica, María; Marigómez, Ionan, E-mail: ionan.marigomez@ehu.es

    2014-04-01

    Highlights: • Thermal stress and Cd caused lysosomal enlargement and membrane destabilisation. • hex, gusb and ctsl but not hsp70 were up-regulated at elevated temperature but down-regulated by Cd. • Thermal stress influenced lysosomal responses to Cd exposure. • The presence of Cd jeopardised responsiveness against thermal stress. - Abstract: In estuaries and coastal areas, intertidal organisms may be subject to thermal stress resulting from global warming, together with pollution. In the present study, the combined effects of thermal stress and exposure to Cd were investigated in the endo-lysosomal system of digestive cells in mussels, Mytilus galloprovincialis. Mussels were maintained for 24 h at 18 °C and 26 °C seawater temperature in absence and presence of 50 μg Cd/L seawater. Cadmium accumulation in digestive gland tissue, lysosomal structural changes and membrane stability were determined. Semi-quantitative PCR was applied to reveal the changes elicited by the different experimental conditions in hexosaminidase (hex), β-glucuronidase (gusb), cathepsin L (ctsl) and heat shock protein 70 (hsp70) gene transcription levels. Thermal stress provoked lysosomal enlargement whilst Cd-exposure led to fusion of lysosomes. Both thermal stress and Cd-exposure caused lysosomal membrane destabilisation. hex, gusb and ctsl genes but not hsp70 gene were transcriptionally up-regulated as a result of thermal stress. In contrast, all the studied genes were transcriptionally down-regulated in response to Cd-exposure. Cd bioaccumulation was comparable at 18 °C and 26 °C seawater temperatures but interactions between thermal stress and Cd-exposure were remarkable both in lysosomal biomarkers and in gene transcription. hex, gusb and ctsl genes, reacted to elevated temperature in absence of Cd but not in Cd-exposed mussels. Therefore, thermal stress resulting from global warming might influence the use and interpretation of lysosomal biomarkers in marine pollution

  18. Efficiency Biliopancreatic bypass surgery in bulimia nervosa

    Directory of Open Access Journals (Sweden)

    Yu I Yashkov

    2008-06-01

    Full Text Available A clinical significance in the treatment of bulimia nervosa patients with morbid obesity had already been raised [10, 13], but we did not find publications on the effectiveness of bariatric surgery in these cases. There is also information about the possibility of applying the operation bilio-pancreatic bypass, effective in patients with morbid obesity with uncontrolled eating behavior for the treatment of patients with anorexia BILIM not suffering from morbid obesity. In this article the data of clinical observation of a small sample of patients. As a result, the treatment of these patients found that severe nervous BILIM can be seen as a latent form of morbid obesity. The choice of treatment should depend not only on the initial body weight of the patient, but also on the severity of the nervous BILIM. Unsuccessful attempts at organized-balanced, conservative treatment of patients with severe bulimia nervosa may be considered a variant of surgical treatment, while bilio-pancreatic bypass surgery is considered as the most preferred operation, compared with the installation of the gastric balloon and others. All candidates for surgical treatment of obesity must identify clinical signs of bulimia nervosa, as this may influence the choice of method of operation. Further study of the role of hyperinsulinemia, secretion of ghrelin, leptin, intestinal peptide may contribute to the elucidation of the true causes of bulimia nervosa, probably has a similar origin with morbid obesity.

  19. A Two-Photon Fluorescent Probe for Lysosomal Thiols in Live Cells and Tissues

    Science.gov (United States)

    Fan, Jiangli; Han, Zhichao; Kang, Yao; Peng, Xiaojun

    2016-01-01

    Lysosome-specific fluorescent probes are exclusive to elucidate the functions of lysosomal thiols. Moreover, two-photon microscopy offers advantages of less phototoxicity, better three dimensional spatial localization, deeper penetration depth and lower self-absorption. However, such fluorescent probes for thiols are still rare. In this work, an efficient two-photon fluorophore 1,8-naphthalimide-based probe conjugating a 2,4-dinitrobenzenesulfonyl chloride and morpholine was designed and synthesized, which exhibited high selectivity and sensitivity towards lysosomal thiols by turn-on fluorescence method quantitatively and was successfully applied to the imaging of thiols in live cells and tissues by two-photon microscopy. PMID:26794434

  20. Biliary copper excretion by hepatocyte lysosomes in the rat. Major excretory pathway in experimental copper overload.

    OpenAIRE

    Gross, J B; Myers, B M; Kost, L J; Kuntz, S M; LaRusso, N F

    1989-01-01

    We investigated the hypothesis that lysosomes are the main source of biliary copper in conditions of hepatic copper overload. We used a rat model of oral copper loading and studied the relationship between the biliary output of copper and lysosomal hydrolases. Male Sprague-Dawley rats were given tap water with or without 0.125% copper acetate for up to 36 wk. Copper loading produced a 23-fold increase in the hepatic copper concentration and a 30-65% increase in hepatic lysosomal enzyme activi...

  1. Expression of the lysosomal-associated membrane protein-1 (LAMP-1) in astrocytomas

    DEFF Research Database (Denmark)

    Jensen, Stine Skov; Christensen, Karina; Aaberg-Jessen, Charlotte;

    aim of this study was to investigate the immunohistochemical expression of LAMP-1, a membrane bound protein in lysosomes, in formalin fixed paraffin embedded tumor tissue from 23 diffuse astrocytomas, 17 anaplastic astrocytomas and 72 glioblastomas. The LAMP-1 expression was scored and compared with......Targeting lysosomes is a novel approach in cancer therapy providing a possible way of killing the otherwise apoptosis-resistant cancer cells. Recent research has thus shown that lysosome targeting compounds induce cell death in a cervix cancer cell line. Tumor stem cells in glioblastomas have...

  2. A Two-Photon Fluorescent Probe for Lysosomal Thiols in Live Cells and Tissues

    Science.gov (United States)

    Fan, Jiangli; Han, Zhichao; Kang, Yao; Peng, Xiaojun

    2016-01-01

    Lysosome-specific fluorescent probes are exclusive to elucidate the functions of lysosomal thiols. Moreover, two-photon microscopy offers advantages of less phototoxicity, better three dimensional spatial localization, deeper penetration depth and lower self-absorption. However, such fluorescent probes for thiols are still rare. In this work, an efficient two-photon fluorophore 1,8-naphthalimide-based probe conjugating a 2,4-dinitrobenzenesulfonyl chloride and morpholine was designed and synthesized, which exhibited high selectivity and sensitivity towards lysosomal thiols by turn-on fluorescence method quantitatively and was successfully applied to the imaging of thiols in live cells and tissues by two-photon microscopy.

  3. 21 CFR 870.4420 - Cardiopulmonary bypass cardiotomy return sucker.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass cardiotomy return sucker. 870.4420 Section 870.4420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Surgical Devices § 870.4420 Cardiopulmonary bypass cardiotomy...

  4. 46 CFR 56.20-20 - Valve bypasses.

    Science.gov (United States)

    2010-10-01

    ... (incorporated by reference; see 46 CFR 56.01-2). (b) Pipe for bypasses should be at least Schedule 80 seamless... 46 Shipping 2 2010-10-01 2010-10-01 false Valve bypasses. 56.20-20 Section 56.20-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND...

  5. Reverse bias protected solar array with integrated bypass battery

    Science.gov (United States)

    Landis, Geoffrey A (Inventor)

    2012-01-01

    A method for protecting the photovoltaic cells in a photovoltaic (PV) array from reverse bias damage by utilizing a rechargeable battery for bypassing current from a shaded photovoltaic cell or group of cells, avoiding the need for a bypass diode. Further, the method mitigates the voltage degradation of a PV array caused by shaded cells.

  6. Dacron or PTFE for above-knee femoropopliteal bypass. a multicenter randomised study

    DEFF Research Database (Denmark)

    Jensen, L P; Lepäntalo, M; Fossdal, J E; Røder, Ole Christian; Jensen, B S; Madsen, M S; Grenager, O; Fasting, H; Myhre, H O; Baekgaard, N; Nielsen, O M; Helgstrand, U; Schroeder, T V

    2007-01-01

    To compare polytetrafluorethylene (PTFE) and polyester grafts (Dacron) for above knee femoropopliteal bypass.......To compare polytetrafluorethylene (PTFE) and polyester grafts (Dacron) for above knee femoropopliteal bypass....

  7. Roles of CUP-5, the Caenorhabditis elegans orthologue of human TRPML1, in lysosome and gut granule biogenesis

    Directory of Open Access Journals (Sweden)

    Fares Hanna

    2010-06-01

    Full Text Available Abstract Background CUP-5 is a Transient Receptor Potential protein in C. elegans that is the orthologue of mammalian TRPML1. Loss of TRPML1 results in the lysosomal storage disorder Mucolipidosis type IV. Loss of CUP-5 results in embryonic lethality and the accumulation of enlarged yolk granules in developing intestinal cells. The embryonic lethality of cup-5 mutants is rescued by mutations in mrp-4, which is required for gut granule differentiation. Gut granules are intestine-specific lysosome-related organelles that accumulate birefringent material. This link between CUP-5 and gut granules led us to determine the roles of CUP-5 in lysosome and gut granule biogenesis in developing intestinal cells. Results We show that CUP-5 protein localizes to lysosomes, but not to gut granules, in developing intestinal cells. Loss of CUP-5 results in defects in endo-lysosomal transport in developing intestinal cells of C. elegans embryos. This ultimately leads to the appearance of enlarged terminal vacuoles that show defective lysosomal degradation and that have lysosomal and endosomal markers. In contrast, gut granule biogenesis is normal in the absence of CUP-5. Furthermore, loss of CUP-5 does not result in inappropriate fusion or mixing of content between lysosomes and gut granules. Conclusions Using an in vivo model of MLIV, we show that there is a defect in lysosomal transport/biogenesis that is earlier than the presumed function of TRPML1 in terminal lysosomes. Our results indicate that CUP-5 is required for the biogenesis of lysosomes but not of gut granules. Thus, cellular phenotypes in Mucolipidosis type IV are likely not due to defects in lysosome-related organelle biogenesis, but due to progressive defects in lysosomal transport that lead to severe lysosomal dysfunction.

  8. Purification of the lysosomal sialic acid transporter. Functional characteristics of a monocarboxylate transporter

    NARCIS (Netherlands)

    A.C. Havelaar (Adrie); G.M.S. Mancini (Grazia); C.E.M.T. Beerens (Cecile); R.M. Souren; F.W. Verheijen (Frans)

    1998-01-01

    textabstractSialic acid and glucuronic acid are monocarboxylated monosaccharides, which are normally present in sugar side chains of glycoproteins, glycolipids, and glycosaminoglycans. After degradation of these compounds in lysosomes, the free monosaccharides are relea

  9. uPARAP/endo180 directs lysosomal delivery and degradation of collagen IV

    DEFF Research Database (Denmark)

    Kjøller, Lars; Engelholm, Lars H; Høyer-Hansen, Maria;

    2004-01-01

    transmembrane glycoprotein urokinase plasminogen activator receptor-associated protein (uPARAP/endo180) directs collagen IV for lysosomal delivery and degradation. In wild-type fibroblasts, fluorescently labeled collagen IV was first internalized into vesicular structures with diffuse fluorescence eventually...... appearing uniformly within the wild-type cells after longer incubation times. In these cells, some collagen-containing vesicles were identified as lysosomes by staining for LAMP-1. In contrast, collagen IV remained extracellular and associated with fiber-like structures on uPARAP/endo180-deficient...... fibroblasts. Blocking lysosomal cysteine proteases with the inhibitor E64d resulted in strong accumulation of collagen IV in lysosomes in wild-type cells, but only very weak intracellular fluorescence accumulation in uPARAP/endo180-deficient fibroblasts. We conclude that uPARAP/endo180 is critical for...

  10. Frontotemporal dementia caused by CHMP2B mutation is characterised by neuronal lysosomal storage pathology

    DEFF Research Database (Denmark)

    Clayton, Emma L.; Mizielinska, Sarah; Edgar, James R.;

    2015-01-01

    Mutations in the charged multivesicular body protein 2B (CHMP2B) cause frontotemporal dementia (FTD). We report that mice which express FTD-causative mutant CHMP2B at physiological levels develop a novel lysosomal storage pathology characterised by large neuronal autofluorescent aggregates. The...... human CHMP2B mutation brain than in neurodegenerative disease or age-matched control brains. These data suggest that lysosomal storage pathology is the major neuronal pathology in FTD caused by CHMP2B mutation. Recent evidence suggests that two other genes associated with FTD, GRN and TMEM106B are...... important for lysosomal function. Our identification of lysosomal storage pathology in FTD caused by CHMP2B mutation now provides evidence that endolysosomal dysfunction is a major degenerative pathway in FTD....

  11. Lysosome associated membrane proteins maintain pancreatic acinar cell homeostasis : LAMP-2 deficient mice develop pancreatitis

    NARCIS (Netherlands)

    Mareninova, Olga A; Sendler, Matthias; Malla, Sudarshan Ravi; Yakubov, Iskandar; French, Samuel W; Tokhtaeva, Elmira; Vagin, Olga; Oorschot, Viola; Lüllmann-Rauch, Renate; Blanz, Judith; Dawson, David; Klumperman, Judith; Lerch, Markus M; Mayerle, Julia; Gukovsky, Ilya; Gukovskaya, Anna S

    2015-01-01

    BACKGROUND & AIMS: The pathogenic mechanism of pancreatitis is poorly understood. Recent evidence implicates defective autophagy in pancreatitis responses; however, the pathways mediating impaired autophagy in pancreas remain largely unknown. Here, we investigate the role of lysosome associated memb

  12. Lysosomal acid lipase: At the crossroads of normal and atherogenic cholesterol metabolism

    Directory of Open Access Journals (Sweden)

    Joshua A Dubland

    2015-02-01

    Full Text Available Unregulated cellular uptake of apolipoprotein B-containing lipoproteins in the arterial intima leads to the formation of foam cells in atherosclerosis. Lysosomal acid lipase (LAL plays a crucial role in both lipoprotein lipid catabolism and excess lipid accumulation as it is the primary enzyme that hydrolyzes cholesteryl esters derived from both low density lipoprotein (LDL and modified forms of LDL. Evidence suggests that as atherosclerosis progresses, accumulation of excess free cholesterol in lysosomes leads to impairment of LAL activity, resulting in accumulation of cholesteryl esters in the lysosome as well as the cytosol in foam cells. Impaired metabolism and release of cholesterol from lysosomes can lead to downstream defects in ATP-binding cassette transporter A1 regulation, needed to offload excess cholesterol from plaque foam cells. This review focuses on the role LAL plays in normal cholesterol metabolism and how the associated changes in its enzymatic activity may ultimately contribute to atherosclerosis progression.

  13. Oral small molecule therapy for lysosomal storage diseases.

    Science.gov (United States)

    Weinreb, Neal J

    2013-11-01

    For more than 20 years, "enzyme replacement therapy" (ERT) has been the prevalent treatment approach for lysosomal storage disorders (LSDs). Unfortunately, ERT, as currently administered, is ineffective for primary neuronopathic LSDs. For LSDs whose major disease burden is non-neurological, ERT efficacy is limited by uneven tissue distribution and penetration, immunological intolerance, and disturbed intracellular homeostasis associated with persistent mutant enzymes that are not "replaced" by ERT. Many of these limitations might be circumvented by oral, low molecular weight pharmaceuticals that address relevant LSD pathophysiology and distribute widely in steady state concentrations in all cells and body tissues including the CNS. Two oral small molecule drugs (miglustat and cysteamine) are currently approved for clinical use and two (eliglustat and migalastat) are in advanced stage clinical trials. Several others are in early stages of clinical or pre-clinical investigation. This article reviews current knowledge of small molecule treatment for LSDs including approaches such as substrate synthesis inhibition, pharmacological chaperones, and proteostasis modification. PMID:24380126

  14. Less Is More: Substrate Reduction Therapy for Lysosomal Storage Disorders

    Directory of Open Access Journals (Sweden)

    Maria Francisca Coutinho

    2016-07-01

    Full Text Available Lysosomal storage diseases (LSDs are a group of rare, life-threatening genetic disorders, usually caused by a dysfunction in one of the many enzymes responsible for intralysosomal digestion. Even though no cure is available for any LSD, a few treatment strategies do exist. Traditionally, efforts have been mainly targeting the functional loss of the enzyme, by injection of a recombinant formulation, in a process called enzyme replacement therapy (ERT, with no impact on neuropathology. This ineffectiveness, together with its high cost and lifelong dependence is amongst the main reasons why additional therapeutic approaches are being (and have to be investigated: chaperone therapy; gene enhancement; gene therapy; and, alternatively, substrate reduction therapy (SRT, whose aim is to prevent storage not by correcting the original enzymatic defect but, instead, by decreasing the levels of biosynthesis of the accumulating substrate(s. Here we review the concept of substrate reduction, highlighting the major breakthroughs in the field and discussing the future of SRT, not only as a monotherapy but also, especially, as complementary approach for LSDs.

  15. Saposin C-LBPA interaction in late-endosomes/lysosomes

    International Nuclear Information System (INIS)

    Acidic phospholipids and saposins associations are involved in the degradation process of glycosphingolipids/sphingolipids in late endosomes/lysosomes. In this report, we showed the colocalization of saposin C and lysobisphosphatidic acid (LBPA) in human fibroblasts by using cytoimmunofluorescence analysis. This colocalization pattern was not seen with other saposins. Large numbers of saposins A, B, and D illustrated the staining patterns that differ from LBPA. In addition, ingested anti-LBPA antibody altered the location of saposin C in human wild-type fibroblasts. In vitro assays demonstrated that saposin C at nM concentrations induced membrane fusion of LBPA containing phospholipid vesicles. Under the same condition, other saposins had no fusion induction on these vesicles. These results suggested a specific interaction between saposin C and LBPA. Total saposin-deficient fibroblasts showed a massive accumulation of multivesicular bodies (MVBs) by electron microscopic analysis. No significant increase of MVBs was found in saposins A and B deficient cells. Interestingly, the accumulated MVBs were significantly reduced by loading saposin C alone into the total saposin-deficient cells. Therefore, we propose that saposin C-LBPA interaction plays a role in the regulation of MVB formation in cells

  16. Saposin C-LBPA interaction in late-endosomes/lysosomes.

    Science.gov (United States)

    Chu, Zhengtao; Witte, David P; Qi, Xiaoyang

    2005-02-15

    Acidic phospholipids and saposins associations are involved in the degradation process of glycosphingolipids/sphingolipids in late endosomes/lysosomes. In this report, we showed the colocalization of saposin C and lysobisphosphatidic acid (LBPA) in human fibroblasts by using cytoimmunofluorescence analysis. This colocalization pattern was not seen with other saposins. Large numbers of saposins A, B, and D illustrated the staining patterns that differ from LBPA. In addition, ingested anti-LBPA antibody altered the location of saposin C in human wild-type fibroblasts. In vitro assays demonstrated that saposin C at nM concentrations induced membrane fusion of LBPA containing phospholipid vesicles. Under the same condition, other saposins had no fusion induction on these vesicles. These results suggested a specific interaction between saposin C and LBPA. Total saposin-deficient fibroblasts showed a massive accumulation of multivesicular bodies (MVBs) by electron microscopic analysis. No significant increase of MVBs was found in saposins A and B deficient cells. Interestingly, the accumulated MVBs were significantly reduced by loading saposin C alone into the total saposin-deficient cells. Therefore, we propose that saposin C-LBPA interaction plays a role in the regulation of MVB formation in cells. PMID:15652344

  17. Lysosomal exocytosis in response to subtle membrane damage following nanosecond pulse exposure

    Science.gov (United States)

    Dalzell, Danielle R.; Roth, Caleb C.; Bernhard, Joshua A.; Payne, Jason A.; Wilmink, Gerald J.; Ibey, Bennett L.

    2011-03-01

    The cellular response to subtle membrane damage following exposure to nanosecond electric pulses (nsEP) is not well understood. Recent work has shown that when cells are exposed to nsEP, ion permeable nanopores ( 2nm) created by longer micro and millisecond duration pulses. Macroscopic damage to a plasma membrane by a micropipette has been shown to cause internal vesicles (lysosomes) to undergo exocytosis to repair membrane damage, a calcium mediated process called lysosomal exocytosis. Formation of large pores in the plasma membrane by electrical pulses has been shown to elicit lysosomal exocytosis in a variety of cell types. Our research objective is to determine whether lysosomal exocytosis will occur in response to nanopores formed by exposure to nsEP. In this paper we used propidium iodide (PI) and Calcium Green-1 AM ester (CaGr) to differentiate between large and small pores formed in CHO-K1 cells following exposure to either 1 or 20, 600-ns duration electrical pulses at 16.2 kV/cm. This information was compared to changes in membrane organization observed by increases in FM1-43 fluorescence, both in the presence and absence of calcium ions in the outside buffer. In addition, we monitored the real time migration of lysosomes within the cell using Cellular Lights assay to tag LAMP-1, a lysosomal membrane protein. Both 1 and 20 pulses elicited a large influx of extracellular calcium, while little PI uptake was observed following a single pulse exposure. Statistically significant increases in FM1-43 fluorescence were seen in samples containing calcium suggesting that calcium-triggered membrane repair may be occurring. Lastly, density of lysosomes within cells, specifically around the nucleus, appeared to change rapidly upon nsEP stimulation suggesting lysosomal migration.

  18. Exosome Secretion Ameliorates Lysosomal Storage of Cholesterol in Niemann-Pick Type C Disease*

    OpenAIRE

    STRAUSS, K; C. GOEBEL; Runz, H.; Mobius, W.; Weiss, S; Feussner, I.; M. Simons; A. Schneider

    2010-01-01

    Niemann-Pick type C1 disease is an autosomal-recessive lysosomal storage disorder. Loss of function of the npc1 gene leads to abnormal accumulation of free cholesterol and sphingolipids within the late endosomal and lysosomal compartments resulting in progressive neurodegeneration and dysmyelination. Here, we show that oligodendroglial cells secrete cholesterol by exosomes when challenged with cholesterol or U18666A, which induces late endosomal cholesterol accumulation. Up-regulation of exos...

  19. Vitamin A-deficiency and its effects on the lysosomal enzymes of fish.

    Science.gov (United States)

    Harikumar, P; Kakati, R; Goswami, U C

    1996-01-01

    The effect of vitamin A-deficiency on the structural integrity of lysosomes in the skeletal muscle and skin of Heteropneustes fossilis, a dehydroretinol-rich freshwater siluroid used in pisciculture, has been evaluated. Dietary stress was found to cause enhanced release of acid hydrolases from both skeletal muscle and skin tissues. The results indicate that the regulation of lysosomal membrane stability in these tissues is a function of vitamin A. PMID:8843982

  20. Analysis of lysosomal membrane proteins exposed to melanin in HeLa cells

    OpenAIRE

    Bang, Seung Hyuck; Park, Dong Jun; Kim, Yang-Hoon; Min, Jiho

    2016-01-01

    Objectives There have been developed to use targeting ability for antimicrobial, anticancerous, gene therapy and cosmetics through analysis of various membrane proteins isolated from cell organelles. Methods It was examined about the lysosomal membrane protein extracted from lysosome isolated from HeLa cell treated by 100 ppm melanin for 24 hours in order to find associated with targeting ability to melanin using by 2-dimensional electrophoresis. Results The result showed 14 up-regulated (1.5...

  1. Streptococcus oralis Induces Lysosomal Impairment of Macrophages via Bacterial Hydrogen Peroxide.

    Science.gov (United States)

    Okahashi, Nobuo; Nakata, Masanobu; Kuwata, Hirotaka; Kawabata, Shigetada

    2016-07-01

    Streptococcus oralis, an oral commensal, belongs to the mitis group of streptococci and occasionally causes opportunistic infections, such as bacterial endocarditis and bacteremia. Recently, we found that the hydrogen peroxide (H2O2) produced by S. oralis is sufficient to kill human monocytes and epithelial cells, implying that streptococcal H2O2 is a cytotoxin. In the present study, we investigated whether streptococcal H2O2 impacts lysosomes, organelles of the intracellular digestive system, in relation to cell death. S. oralis infection induced the death of RAW 264 macrophages in an H2O2-dependent manner, which was exemplified by the fact that exogenous H2O2 also induced cell death. Infection with either a mutant lacking spxB, which encodes pyruvate oxidase responsible for H2O2 production, or Streptococcus mutans, which does not produce H2O2, showed less cytotoxicity. Visualization of lysosomes with LysoTracker revealed lysosome deacidification after infection with S. oralis or exposure to H2O2, which was corroborated by acridine orange staining. Similarly, fluorescent labeling of lysosome-associated membrane protein-1 gradually disappeared during infection with S. oralis or exposure to H2O2 The deacidification and the following induction of cell death were inhibited by chelating iron in lysosomes. Moreover, fluorescent staining of cathepsin B indicated lysosomal destruction. However, treatment of infected cells with a specific inhibitor of cathepsin B had negligible effects on cell death; instead, it suppressed the detachment of dead cells from the culture plates. These results suggest that streptococcal H2O2 induces cell death with lysosomal destruction and then the released lysosomal cathepsins contribute to the detachment of the dead cells. PMID:27113357

  2. Oxidative Stress and Autophagy in the Regulation of Lysosome-Dependent Neuron Death

    OpenAIRE

    Pivtoraiko, Violetta N.; Stone, Sara L; Roth, Kevin A.; Shacka, John J

    2009-01-01

    Lysosomes critically regulate the pH-dependent catabolism of extracellular and intracellular macromolecules delivered from the endocytic/heterophagy and autophagy pathways, respectively. The importance of lysosomes to cell survival is underscored not only by their unique ability effectively to degrade metalloproteins and oxidatively damaged macromolecules, but also by the distinct potential for induction of both caspase-dependent and -independent cell death with a compromise in the integrity ...

  3. Apolipoprotein L-I Promotes Trypanosome Lysis by Forming Pores in Lysosomal Membranes

    Science.gov (United States)

    Pérez-Morga, David; Vanhollebeke, Benoit; Paturiaux-Hanocq, Françoise; Nolan, Derek P.; Lins, Laurence; Homblé, Fabrice; Vanhamme, Luc; Tebabi, Patricia; Pays, Annette; Poelvoorde, Philippe; Jacquet, Alain; Brasseur, Robert; Pays, Etienne

    2005-07-01

    Apolipoprotein L-I is the trypanolytic factor of human serum. Here we show that this protein contains a membrane pore-forming domain functionally similar to that of bacterial colicins, flanked by a membrane-addressing domain. In lipid bilayer membranes, apolipoprotein L-I formed anion channels. In Trypanosoma brucei, apolipoprotein L-I was targeted to the lysosomal membrane and triggered depolarization of this membrane, continuous influx of chloride, and subsequent osmotic swelling of the lysosome until the trypanosome lysed.

  4. The HOPS complex mediates autophagosome–lysosome fusion through interaction with syntaxin 17

    OpenAIRE

    Jiang, Peidu; Nishimura, Taki; Sakamaki, Yuriko; Itakura, Eisuke; Hatta, Tomohisa; Natsume, Tohru; Mizushima, Noboru

    2014-01-01

    Membrane fusion is generally controlled by Rabs, soluble N-ethylmaleimide–sensitive factor attachment protein receptors (SNAREs), and tethering complexes. Syntaxin 17 (STX17) was recently identified as the autophagosomal SNARE required for autophagosome–lysosome fusion in mammals and Drosophila. In this study, to better understand the mechanism of autophagosome–lysosome fusion, we searched for STX17-interacting proteins. Immunoprecipitation and mass spectrometry analysis identified vacuolar p...

  5. Activation of macrophages by lymphokines: enhancement of phagosome-lysosome fusion and killing of Coccidioides immitis.

    OpenAIRE

    Beaman, L; Benjamini, E; Pappagianis, D

    1983-01-01

    Previously, it was shown that arthroconidia of Coccidioides immitis appear to inhibit phagosome-lysosome fusion and survive within normal mouse peritoneal macrophages. However, when these macrophages are exposed to antigen-stimulated T lymphocytes from immune mice, activation occurs, leading to enhanced phagosome-lysosome fusion and killing of C. immitis. Results indicate that the activation of macrophages can be effected after incubation with soluble lymphocyte product(s) (lymphokines). The ...

  6. Cryptococcus neoformans-induced macrophage lysosome damage crucially contributes to fungal virulence1

    OpenAIRE

    Davis, Michael J.; Eastman, Alison J.; Qiu, Yafeng; Gregorka, Brian; Kozel, Thomas R.; Osterholzer, John J.; Curtis, Jeffrey L; Swanson, Joel A.; Michal A Olszewski

    2015-01-01

    Upon ingestion by macrophages, Cryptococcus neoformans (Cn) can survive and replicate intracellularly unless the macrophages become classically activated. The mechanism enabling intracellular replication is not fully understood; neither are the mechanisms which allow classical activation to counteract replication. Cn-induced lysosome damage was observed in infected murine bone marrow-derived macrophages, increased with time and required yeast viability. To demonstrate lysosome damage in the i...

  7. EGFRvIII escapes down-regulation due to impaired internalization and sorting to lysosomes

    DEFF Research Database (Denmark)

    Grandal, Michael V; Zandi, Roza; Pedersen, Mikkel W;

    2007-01-01

    . Moreover, internalized EGFRvIII is recycled rather than delivered to lysosomes. EGFRvIII binds the ubiquitin ligase c-Cbl via Grb2, whereas binding via phosphorylated tyrosine residue 1045 seems to be limited. Despite c-Cbl binding, the receptor fails to become effectively ubiquitinylated. Thus, our...... results suggest that the long lifetime of EGFRvIII is caused by inefficient internalization and impaired sorting to lysosomes due to lack of effective ubiquitinylation....

  8. Distinct Lysosome Phenotypes Influence Inflammatory Function in Peritoneal and Bone Marrow-Derived Macrophages

    OpenAIRE

    Kassandra Weber; Schilling, Joel D.

    2014-01-01

    Lysosomes play a critical role in the degradation of both extracellular and intracellular material. These dynamic organelles also contribute to nutrient sensing and cell signaling pathways. Macrophages represent a heterogeneous group of phagocytic cells that contribute to tissue homeostasis and inflammation. Recently, there has been a renewed interest in understanding the role of macrophage autophagy and lysosome function in health and disease. Thioglycollate-elicited peritoneal and bone marr...

  9. Effects of ethanol and protein deficiency on pancreatic digestive and lysosomal enzymes.

    OpenAIRE

    Apte, M V; Wilson, J. S.; Korsten, M A; McCaughan, G W; Haber, P S; Pirola, R. C.

    1995-01-01

    The pathogenesis of alcoholic pancreatitis is not fully understood. An increase in pancreatic digestive and lysosomal enzyme synthesis because of ethanol consumption could contribute to the development of pancreatic injury in alcoholics. This study aimed, firstly, to determine the effect of ethanol on the content and messenger RNA levels of pancreatic digestive enzymes and on the messenger RNA level of the lysosomal enzyme cathepsin B, and secondly, to examine the influence of concomitant pro...

  10. Comparative study on lysosomal accumulation of 67Ga and 111In in Morris hepatoma 7316A

    International Nuclear Information System (INIS)

    Intracellular localization of 67Ga and 111In was investigated in Morris hepatoma 7316A and in normal Buffalo rat liver cells by a cell fractionation method at 48 hr after an intraperitoneal injection of the nuclides. Lysosomal fractions of the tumor and normal liver cells had the highest relative specific radioactivities of the nuclides (p 67Ga (p 67Ga seemed to indicate that 67Ga determines lysosomal functions of tumor cells more precisely than 111In

  11. Extracellular Acidification Alters Lysosomal Trafficking in Human Breast Cancer Cells1

    OpenAIRE

    Glunde, Kristine; Sandra E. Guggino; Solaiyappan, Meiyappan; Pathak, Arvind P.; Ichikawa, Yoshitaka; Bhujwalla, Zaver M.

    2003-01-01

    Cancer cells invade by secreting degradative enzymes, which are sequestered in lysosomal vesicles. In this study, the impact of an acidic extracellular environment on lysosome size, number, and distance from the nucleus in human mammary epithelial cells (HMECs) and breast cancer cells of different degrees of malignancy was characterized because the physiological microenvironment of tumors is frequently characterized by extracellular acidity. An acidic extracellular pH (pHe) resulted in a dist...

  12. Rumen bypass nutrients: Manipulation and implications

    International Nuclear Information System (INIS)

    The feeds available for ruminants in developing countries are either agro-industrial by-products or specially grown forage crops. Many of these feeds are low in protein and require supplementation with non-protein N (NPN) to maintain efficient rumen function and digestibility. The principles for utilizing high energy, low protein feeds by ruminants are discussed in relation to the supply of NPN, the establishment of efficient rumen function, maximizing feed intake by means of supplements, and increasing total energy and protein intake by using supplements which bypass the rumen. To illustrate it the application of these principles to feeding systems based on molasses, chopped whole sugar cane and derinded sugar cane is discussed. The implications of the principles in increasing the feeding value of straw are also discussed. (author)

  13. Emergent cardiopulmonary bypass during pectus excavatum repair

    Directory of Open Access Journals (Sweden)

    Ryan Craner

    2013-01-01

    Full Text Available Pectus excavatum is a chest wall deformity that produces significant cardiopulmonary disability and is typically seen in younger patients. Minimally invasive repair of pectus excavatum or Nuss procedure has become a widely accepted technique for adult and pediatric patients. Although it is carried out through a thoracoscopic approach, the procedure is associated with a number of potential intraoperative and post-operative complications. We present a case of cardiac perforation requiring emergent cardiopulmonary bypass in a 29-year-old male with Marfan syndrome and previous mitral valve repair undergoing a Nuss procedure for pectus excavatum. This case illustrates the importance of vigilance and preparation by the surgeons, anesthesia providers as well as the institution to be prepared with resources to handle the possible complications. This includes available cardiac surgical backup, perfusionist support and adequate blood product availability.

  14. Current status of coronary artery bypass surgery

    Institute of Scientific and Technical Information of China (English)

    CHEN Xin

    2009-01-01

    @@ Surgical revascularization for atherosclerotic heart disease, also called coronary artery bypass grafting (CABG), was first performed in 1962, and is one of the great achievements in medicine. Relief of angina, improvement of exercise tolerance, and the realization of survival benefit have been documented.1 CABG has been used in multi-vessel disease and left main stenosis for over 40 years.2 In the last two decades the mortality of CABG has decreased to less than 2% despite an aging population with increased risk factors. However, percutaneous coronary intervention (PCI), especially with drug-eluting stents, has been challenging CABG, While PCI has improved, CABG has also progressed with better peri-operative management, a higher use of arterial grafting, off-pump surgery, and improved techniques with minimally invasive surgical options.3,4

  15. Innovative Double Bypass Engine for Increased Performance

    Science.gov (United States)

    Manoharan, Sanjivan

    Engines continue to grow in size to meet the current thrust requirements of the civil aerospace industry. Large engines pose significant transportation problems and require them to be split in order to be shipped. Thus, large amounts of time have been spent in researching methods to increase thrust capabilities while maintaining a reasonable engine size. Unfortunately, much of this research has been focused on increasing the performance and efficiencies of individual components while limited research has been done on innovative engine configurations. This thesis focuses on an innovative engine configuration, the High Double Bypass Engine, aimed at increasing fuel efficiency and thrust while maintaining a competitive fan diameter and engine length. The 1-D analysis was done in Excel and then compared to the results from Numerical Propulsion Simulation System (NPSS) software and were found to be within 4% error. Flow performance characteristics were also determined and validated against their criteria.

  16. Hypoglycaemia after gastric bypass: mechanisms and treatment.

    Science.gov (United States)

    Ritz, P; Vaurs, C; Barigou, M; Hanaire, H

    2016-03-01

    Hypoglycaemia after gastric bypass can be severe, but is uncommon, and is sometimes only revealed through monitoring glucose concentrations. The published literature is limited by the heterogeneity of the criteria used for diagnosis, arguing in favour of the Whipple triad with a glycaemia threshold of 55 mg/dl as the diagnostic reference. Women who lost most of their excess weight after gastric bypass, long after the surgery was performed, and who did not have diabetes before surgery are at the greatest risk. In this context, hypoglycaemia results from hyperinsulinism, which is either generated by pancreas anomalies (nesidioblastosis) and/or caused by an overstimulation of β cells by incretins, mainly glucagon-like peptide-1 (GLP-1). Glucose absorption is both accelerated and increased because of the direct communication between the gastric pouch and the jejunum. This is a post-surgical exaggeration of a natural adaptation that is seen in patients who have not undergone surgery in whom glucose is infused directly into the jejunum. There is not always a correspondence between symptoms and biological traits; however, hyperinsulinism is constant if hypoglycaemia is severe and there are neuroglucopenic symptoms. The treatment relies firstly on changes in eating habits, splitting food intake into five to six daily meals, slowing gastric emptying, reducing the glycaemic load and glycaemic index of foods, using fructose and avoiding stress at meals. Pharmacological treatment with acarbose is efficient, but other drugs still need to be validated in a greater number of subjects (insulin, glucagon, calcium channel blockers, somatostatin analogues and GLP-1 analogues). Lastly, if the surgical option has to be used, the benefits (efficient symptom relief) and the risks (weight regain, diabetes) should be weighed carefully. PMID:26508374

  17. CFD Analysis of Core Bypass Phenomena

    International Nuclear Information System (INIS)

    The U.S. Department of Energy is exploring the potential for the VHTR which will be either of a prismatic or a pebble-bed type. One important design consideration for the reactor core of a prismatic VHTR is coolant bypass flow which occurs in the interstitial regions between fuel blocks. Such gaps are an inherent presence in the reactor core because of tolerances in manufacturing the blocks and the inexact nature of their installation. Furthermore, the geometry of the graphite blocks changes over the lifetime of the reactor because of thermal expansion and irradiation damage. The existence of the gaps induces a flow bias in the fuel blocks and results in unexpected increase of maximum fuel temperature. Traditionally, simplified methods such as flow network calculations employing experimental correlations are used to estimate flow and temperature distributions in the core design. However, the distribution of temperature in the fuel pins and graphite blocks as well as coolant outlet temperatures are strongly coupled with the local heat generation rate within fuel blocks which is not uniformly distributed in the core. Hence, it is crucial to establish mechanistic based methods which can be applied to the reactor core thermal hydraulic design and safety analysis. Computational Fluid Dynamics (CFD) codes, which have a capability of local physics based simulation, are widely used in various industrial fields. This study investigates core bypass flow phenomena with the assistance of commercial CFD codes and establishes a baseline for evaluation methods. A one-twelfth sector of the hexagonal block surface is modeled and extruded down to whole core length of 10.704m. The computational domain is divided vertically with an upper reflector, a fuel section and a lower reflector. Each side of the one-twelfth grid can be set as a symmetry boundary

  18. CFD Analysis of Core Bypass Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Richard W. Johnson; Hiroyuki Sato; Richard R. Schultz

    2010-03-01

    The U.S. Department of Energy is exploring the potential for the VHTR which will be either of a prismatic or a pebble-bed type. One important design consideration for the reactor core of a prismatic VHTR is coolant bypass flow which occurs in the interstitial regions between fuel blocks. Such gaps are an inherent presence in the reactor core because of tolerances in manufacturing the blocks and the inexact nature of their installation. Furthermore, the geometry of the graphite blocks changes over the lifetime of the reactor because of thermal expansion and irradiation damage. The existence of the gaps induces a flow bias in the fuel blocks and results in unexpected increase of maximum fuel temperature. Traditionally, simplified methods such as flow network calculations employing experimental correlations are used to estimate flow and temperature distributions in the core design. However, the distribution of temperature in the fuel pins and graphite blocks as well as coolant outlet temperatures are strongly coupled with the local heat generation rate within fuel blocks which is not uniformly distributed in the core. Hence, it is crucial to establish mechanistic based methods which can be applied to the reactor core thermal hydraulic design and safety analysis. Computational Fluid Dynamics (CFD) codes, which have a capability of local physics based simulation, are widely used in various industrial fields. This study investigates core bypass flow phenomena with the assistance of commercial CFD codes and establishes a baseline for evaluation methods. A one-twelfth sector of the hexagonal block surface is modeled and extruded down to whole core length of 10.704m. The computational domain is divided vertically with an upper reflector, a fuel section and a lower reflector. Each side of the sector grid can be set as a symmetry boundary

  19. CFD Analysis of Core Bypass Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Richard W. Johnson; Hiroyuki Sato; Richard R. Schultz

    2009-11-01

    The U.S. Department of Energy is exploring the potential for the VHTR which will be either of a prismatic or a pebble-bed type. One important design consideration for the reactor core of a prismatic VHTR is coolant bypass flow which occurs in the interstitial regions between fuel blocks. Such gaps are an inherent presence in the reactor core because of tolerances in manufacturing the blocks and the inexact nature of their installation. Furthermore, the geometry of the graphite blocks changes over the lifetime of the reactor because of thermal expansion and irradiation damage. The existence of the gaps induces a flow bias in the fuel blocks and results in unexpected increase of maximum fuel temperature. Traditionally, simplified methods such as flow network calculations employing experimental correlations are used to estimate flow and temperature distributions in the core design. However, the distribution of temperature in the fuel pins and graphite blocks as well as coolant outlet temperatures are strongly coupled with the local heat generation rate within fuel blocks which is not uniformly distributed in the core. Hence, it is crucial to establish mechanistic based methods which can be applied to the reactor core thermal hydraulic design and safety analysis. Computational Fluid Dynamics (CFD) codes, which have a capability of local physics based simulation, are widely used in various industrial fields. This study investigates core bypass flow phenomena with the assistance of commercial CFD codes and establishes a baseline for evaluation methods. A one-twelfth sector of the hexagonal block surface is modeled and extruded down to whole core length of 10.704m. The computational domain is divided vertically with an upper reflector, a fuel section and a lower reflector. Each side of the one-twelfth grid can be set as a symmetry boundary

  20. Wilson Disease Protein ATP7B Utilizes Lysosomal Exocytosis to Maintain Copper Homeostasis

    Science.gov (United States)

    Polishchuk, Elena V.; Concilli, Mafalda; Iacobacci, Simona; Chesi, Giancarlo; Pastore, Nunzia; Piccolo, Pasquale; Paladino, Simona; Baldantoni, Daniela; van IJzendoorn, Sven C.D.; Chan, Jefferson; Chang, Christopher J.; Amoresano, Angela; Pane, Francesca; Pucci, Piero; Tarallo, Antonietta; Parenti, Giancarlo; Brunetti-Pierri, Nicola; Settembre, Carmine; Ballabio, Andrea; Polishchuk, Roman S.

    2014-01-01

    Summary Copper is an essential yet toxic metal and its overload causes Wilson disease, a disorder due to mutations in copper transporter ATP7B. To remove excess copper into the bile, ATP7B traffics toward canalicular area of hepatocytes. However, the trafficking mechanisms of ATP7B remain elusive. Here, we show that, in response to elevated copper, ATP7B moves from the Golgi to lysosomes and imports metal into their lumen. ATP7B enables lysosomes to undergo exocytosis through the interaction with p62 subunit of dynactin that allows lysosome translocation toward the canalicular pole of hepatocytes. Activation of lysosomal exocytosis stimulates copper clearance from the hepatocytes and rescues the most frequent Wilson-disease-causing ATP7B mutant to the appropriate functional site. Our findings indicate that lysosomes serve as an important intermediate in ATP7B trafficking, whereas lysosomal exocytosis operates as an integral process in copper excretion and hence can be targeted for therapeutic approaches to combat Wilson disease. PMID:24909901

  1. An efficient ratiometric fluorescent probe for tracking dynamic changes in lysosomal pH.

    Science.gov (United States)

    Wang, Qianqian; Zhou, Liyi; Qiu, Liping; Lu, Danqing; Wu, Yongxiang; Zhang, Xiao-Bing

    2015-08-21

    Lysosomes are acidic organelles (approximately pH 4.5-5.5) and tracking the changes in lysosomal pH is of great biological importance. To address this issue, quite a few of fluorescent probes have been developed. However, few of these probes can realize the tracking of dynamic changes in lysosomal pH. Herein, we report a new lysosome-targeted ratiometric fluorescent probe (FR-Lys) by hybridizing morpholine with a xanthane derivative and an o-hydroxy benzoxazole group. In this probe, the morpholine group serves as a targeting unit for lysosome, the xanthane derivative exhibits a pH-modulated open/close reaction of the spirocycle, while the o-hydroxy benzoxazole moiety shows a pH modulated excited-state intramolecular proton transfer (ESIPT) process. Such a design affords the probe a ratiometric fluorescence response towards pH with pH values ranging from 4.0 to 6.3. The response of the probe to pH was fast and reversible with high selectivity. Moreover, this probe possesses further advantages such as easy synthesis, high photostability and low cytotoxicity. These features are favorable for tracking dynamic pH changes in biosystems. It was then applied for dynamic imaging pH changes in lysosomes with satisfactory results. PMID:26107774

  2. Alongshore sediment bypassing as a control on river mouth morphodynamics

    Science.gov (United States)

    Nienhuis, Jaap H.; Ashton, Andrew D.; Nardin, William; Fagherazzi, Sergio; Giosan, Liviu

    2016-04-01

    River mouths, shoreline locations where fluvial and coastal sediments are partitioned via erosion, trapping, and redistribution, are responsible for the ultimate sedimentary architecture of deltas and, because of their dynamic nature, also pose great management and engineering challenges. To investigate the interaction between fluvial and littoral processes at wave-dominated river mouths, we modeled their morphologic evolution using the coupled hydrodynamic and morphodynamic model Delft3D-SWAN. Model experiments replicate alongshore migration of river mouths, river mouth spit development, and eventual spit breaching, suggesting that these are emergent phenomena that can develop even under constant fluvial and wave conditions. Furthermore, we find that sediment bypassing of a river mouth develops though feedbacks between waves and river mouth morphology, resulting in either continuous bypassing pathways or episodic bar bypassing pathways. Model results demonstrate that waves refracting into the river mouth bar create a zone of low alongshore sediment transport updrift of the river mouth, which reduces sediment bypassing. Sediment bypassing, in turn, controls the river mouth migration rate and the size of the river mouth spit. As a result, an intermediate amount of river discharge maximizes river mouth migration. The fraction of alongshore sediment bypassing can be predicted from the balance between the jet and the wave momentum flux. Quantitative comparisons show a match between our modeled predictions of river mouth bypassing and migration rates observed in natural settings.

  3. TFEB activation promotes the recruitment of lysosomal glycohydrolases β-hexosaminidase and β-galactosidase to the plasma membrane

    International Nuclear Information System (INIS)

    Highlights: •TFEB activation promotes the increase of Hex and Gal activities. •The increase of Hex and Gal activities is related to transcriptional regulation. •TFEB promotes the recruitment of mature Hex and Gal on cell surface. -- Abstract: Lysosomes are membrane-enclosed organelles containing acid hydrolases. They mediate a variety of physiological processes, such as cellular clearance, lipid homeostasis, energy metabolism and pathogen defence. Lysosomes can secrete their content through a process called lysosome exocytosis in which lysosomes fuse with the plasma membrane realising their content into the extracellular milieu. Lysosomal exocytosis is not only responsible for the secretion of lysosomal enzymes, but it also has a crucial role in the plasma membrane repair. Recently, it has been demonstrated that lysosome response to the physiologic signals is regulated by the transcription factor EB (TFEB). In particular, lysosomal secretion is transcriptionally regulated by TFEB which induces both the docking and fusion of lysosomes with the plasma membrane. In this work we demonstrated that TFEB nuclear translocation is accompanied by an increase of mature glycohydrolases β-hexosaminidase and β-galactosidase on cell surface. This evidence contributes to elucidate an unknown TFEB biological function leading the lysosomal glycohydrolases on plasma membrane

  4. TFEB activation promotes the recruitment of lysosomal glycohydrolases β-hexosaminidase and β-galactosidase to the plasma membrane

    Energy Technology Data Exchange (ETDEWEB)

    Magini, Alessandro [Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia (Italy); Department of Medical and Biological Sciences (DSMB), University of Udine, Udine (Italy); Polchi, Alice; Urbanelli, Lorena [Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia (Italy); Cesselli, Daniela; Beltrami, Antonio [Department of Medical and Biological Sciences (DSMB), University of Udine, Udine (Italy); Tancini, Brunella [Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia (Italy); Emiliani, Carla, E-mail: carla.emiliani@unipg.it [Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia (Italy)

    2013-10-18

    Highlights: •TFEB activation promotes the increase of Hex and Gal activities. •The increase of Hex and Gal activities is related to transcriptional regulation. •TFEB promotes the recruitment of mature Hex and Gal on cell surface. -- Abstract: Lysosomes are membrane-enclosed organelles containing acid hydrolases. They mediate a variety of physiological processes, such as cellular clearance, lipid homeostasis, energy metabolism and pathogen defence. Lysosomes can secrete their content through a process called lysosome exocytosis in which lysosomes fuse with the plasma membrane realising their content into the extracellular milieu. Lysosomal exocytosis is not only responsible for the secretion of lysosomal enzymes, but it also has a crucial role in the plasma membrane repair. Recently, it has been demonstrated that lysosome response to the physiologic signals is regulated by the transcription factor EB (TFEB). In particular, lysosomal secretion is transcriptionally regulated by TFEB which induces both the docking and fusion of lysosomes with the plasma membrane. In this work we demonstrated that TFEB nuclear translocation is accompanied by an increase of mature glycohydrolases β-hexosaminidase and β-galactosidase on cell surface. This evidence contributes to elucidate an unknown TFEB biological function leading the lysosomal glycohydrolases on plasma membrane.

  5. Seasonal Variation of Climatological Bypassing Flows around the Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    LI Qiang; ZHANG Renhe

    2012-01-01

    The present study investigated diagnostically the seasonal variation of the bypassing flows caused by the splitting effect of the Tibetan Plateau (TP).The relationships among the splitting bypassing flows around the TP to precipitation in China,the westerly jet stream,and the thermal status over the TP are revealed.The bypassing flows occur from the 1st to the 22nd pentad and from the 59th to the 73rd pentad,respectively,and they disappear from the 29th to the 58th pentad.They are strongest in winter from the 1st to the 22nd pentad and from the 59th to the 73rd pentad,respectively.During the rebuilding of the bypassing flows from mid-October to mid-February,they are the main cause of precipitation over southeastern China.The enhancement of the bypassing flow intensity in March cau cause the precipitation to increase in the early stage of the persistent spring rain over southeastern China.From winter to summer,the seasonal transition of the bypassing flows in the lower troposphere precedes that of the westerly jet stream axis in the upper troposphere to the west of the TP by ~4 pentads,while from summer to winter lags by ~4 pentads.The seasonal variation of the thermal status over the TP plays an important role in the bypassing flows around the TP.The strengthening of the heating over the TP weakens the bypassing flows,and the increase in cooling over the TP is related to the rebuilding and strengthening of the bypassing flows.

  6. Membrane cholesterol regulates lysosome-plasma membrane fusion events and modulates Trypanosoma cruzi invasion of host cells.

    Directory of Open Access Journals (Sweden)

    Bárbara Hissa

    Full Text Available BACKGROUND: Trypomastigotes of Trypanosoma cruzi are able to invade several types of non-phagocytic cells through a lysosomal dependent mechanism. It has been shown that, during invasion, parasites trigger host cell lysosome exocytosis, which initially occurs at the parasite-host contact site. Acid sphingomyelinase released from lysosomes then induces endocytosis and parasite internalization. Lysosomes continue to fuse with the newly formed parasitophorous vacuole until the parasite is completely enclosed by lysosomal membrane, a process indispensable for a stable infection. Previous work has shown that host membrane cholesterol is also important for the T. cruzi invasion process in both professional (macrophages and non-professional (epithelial phagocytic cells. However, the mechanism by which cholesterol-enriched microdomains participate in this process has remained unclear. METHODOLOGY/PRINCIPAL FINDING: In the present work we show that cardiomyocytes treated with MβCD, a drug able to sequester cholesterol from cell membranes, leads to a 50% reduction in invasion by T. cruzi trypomastigotes, as well as a decrease in the number of recently internalized parasites co-localizing with lysosomal markers. Cholesterol depletion from host membranes was accompanied by a decrease in the labeling of host membrane lipid rafts, as well as excessive lysosome exocytic events during the earlier stages of treatment. Precocious lysosomal exocytosis in MβCD treated cells led to a change in lysosomal distribution, with a reduction in the number of these organelles at the cell periphery, and probably compromises the intracellular pool of lysosomes necessary for T. cruzi invasion. CONCLUSION/SIGNIFICANCE: Based on these results, we propose that cholesterol depletion leads to unregulated exocytic events, reducing lysosome availability at the cell cortex and consequently compromise T. cruzi entry into host cells. The results also suggest that two different pools of

  7. Glucose Modulation Induces Lysosome Formation and Increases Lysosomotropic Drug Sequestration via the P-Glycoprotein Drug Transporter.

    Science.gov (United States)

    Seebacher, Nicole A; Lane, Darius J R; Jansson, Patric J; Richardson, Des R

    2016-02-19

    Pgp is functional on the plasma membrane and lysosomal membrane. Lysosomal-Pgp can pump substrates into the organelle, thereby trapping certain chemotherapeutics (e.g. doxorubicin; DOX). This mechanism serves as a "safe house" to protect cells against cytotoxic drugs. Interestingly, in contrast to DOX, lysosomal sequestration of the novel anti-tumor agent and P-glycoprotein (Pgp) substrate, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), induces lysosomal membrane permeabilization. This mechanism of lysosomal-Pgp utilization enhances cytotoxicity to multidrug-resistant cells. Consequently, Dp44mT has greater anti-tumor activity in drug-resistant relative to non-Pgp-expressing tumors. Interestingly, stressors in the tumor microenvironment trigger endocytosis for cell signaling to assist cell survival. Hence, this investigation examined how glucose variation-induced stress regulated early endosome and lysosome formation via endocytosis of the plasma membrane. Furthermore, the impact of glucose variation-induced stress on resistance to DOX was compared with Dp44mT and its structurally related analogue, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC). These studies showed that glucose variation-induced stress-stimulated formation of early endosomes and lysosomes. In fact, through the process of fluid-phase endocytosis, Pgp was redistributed from the plasma membrane to the lysosomal membrane via early endosome formation. This lysosomal-Pgp actively transported the Pgp substrate, DOX, into the lysosome where it became trapped as a result of protonation at pH 5. Due to increased lysosomal DOX trapping, Pgp-expressing cells became more resistant to DOX. In contrast, cytotoxicity of Dp44mT and DpC was potentiated due to more lysosomes containing functional Pgp under glucose-induced stress. These thiosemicarbazones increased lysosomal membrane permeabilization and cell death. This mechanism has critical implications for drug-targeting in

  8. Coronary bypass using bilateral internal mammary arteries in an achondroplast.

    Science.gov (United States)

    Alassal, Mohamed Abdulwahab; Youssef, Mostafa; Koudieh, Mohammed

    2015-01-01

    Coronary bypass grafting for ischemic heart disease in achondroplastic dwarfs is very rare. Shortage of veins and inadequate vein quality may cause difficulties during surgery. Only 2 cases of coronary bypass surgery in an achondroplastic dwarf, in which the left internal mammary artery and vein grafts were used, have been reported. We describe the case of a 55-year-old male achondroplastic dwarf who had triple-vessel coronary disease and underwent successful coronary bypass surgery using one saphenous vein graft and bilateral internal mammary artery grafts. The anatomic and surgical challenges in achondroplasia are highlighted. PMID:24887865

  9. Percutaneous transluminal angioplasty after bypass operations on the lower extremities

    International Nuclear Information System (INIS)

    To prevent bypass thrombosis, percutaneous transluminal angioplasty (PTA) was performed on 32 stenoses in 25 patients following vascular surgery. Seventeen patients showed 23 stenoses at the level of the anastomoses or in the bypass itself; 8 patients exhibited 9 stenoses proximal or distal to the bypass. Twenty-two patients underwent successful PTA and showed an increase in the ankle/arm Doppler index from 0.38±0.13 to 0.76±0.11 after PTA. The long-term patency rates at 6, 12 and 24 months were 75%, 57% and 39%, respectively. The reason for three unsuccessful PTAs are discussed. (orig.)

  10. Off-pump versus on-pump coronary artery bypass grafting for ischaemic heart disease

    DEFF Research Database (Denmark)

    Møller, Christian H; Penninga, Luit; Wetterslev, Jørn; Steinbrüchel, Daniel A; Gluud, Christian

    2012-01-01

    Coronary artery bypass grafting (CABG) is performed both without and with cardiopulmonary bypass, referred to as off-pump and on-pump CABG respectively. However, the preferable technique is unclear.......Coronary artery bypass grafting (CABG) is performed both without and with cardiopulmonary bypass, referred to as off-pump and on-pump CABG respectively. However, the preferable technique is unclear....

  11. Apicoaortic Valve Conduit for a Patient with Aortic Valve Stenosis and Patent Coronary Bypass Grafts Using Cardiopulmonary Bypass.

    Science.gov (United States)

    Shackelford, Anthony G; Relle, Margaret A; Lombardi, Sarah A

    2015-12-01

    In adults over 65 years of age, aortic valve stenosis has been found to be present in 2-9% within this group. Furthermore, aortic valve replacements in patients whom have had a previous coronary artery bypass grafting surgery have a mortality rate as high as 18%. A non-conventional effective surgical approach of bypassing the aortic valve by inserting an apicoaortic valve conduit (AVC) connecting the left ventricular apex to the descending thoracic aorta has been previously documented. We describe the case of a successful implantation of an AVC in a 64-year-old Caucasian male using cardiopulmonary bypass. PMID:26834287

  12. Neuraminidase-1 contributes significantly to the degradation of neuronal B-series gangliosides but not to the bypass of the catabolic block in Tay–Sachs mouse models

    Directory of Open Access Journals (Sweden)

    Z.K. Timur

    2015-09-01

    Full Text Available Tay–Sachs disease is a severe lysosomal storage disorder caused by mutations in the HEXA gene coding for α subunit of lysosomal β-Hexosaminidase A enzyme, which converts GM2 to GM3 ganglioside. HexA−/− mice, depleted of the β-Hexosaminidase A iso-enzyme, remain asymptomatic up to 1 year of age because of a metabolic bypass by neuraminidase(s. These enzymes remove a sialic acid residue converting GM2 to GA2, which is further degraded by the still intact β-Hexosaminidase B iso-enzyme into lactosylceramide. A previously identified ganglioside metabolizing neuraminidase, Neu4, is abundantly expressed in the mouse brain and has activity against gangliosides like GM2 in vitro. Neu4−/− mice showed increased GD1a and decreased GM1 ganglioside in the brain suggesting the importance of the Neu4 in ganglioside catabolism. Mice with targeted disruption of both HexA and Neu4 genes showed accumulating GM2 ganglioside and epileptic seizures with 40% penetrance, indicating that the neuraminidase Neu4 is a modulatory gene, but may not be the only neuraminidase contributing to the metabolic bypass in HexA−/− mice. Therefore, we elucidated the biological role of neuraminidase-1 in ganglioside degradation in mouse. Analysis of HexA−/−Neu1−/− and HexA−/−Neu4−/−Neu1−/− mice models showed significant contribution of neuraminidase-1 on B-series ganglioside degradation in the brain. Therefore, we speculate that other neuraminidase/neuraminidases such as Neu2 and/or Neu3 might be also involved in the ganglioside degradation pathway in HexA−/− mice.

  13. Advances in Weight Loss Surgery: The Fully Robotic Gastric Bypass

    Medline Plus

    Full Text Available ... to check their blood sugar several times a day. Other problems that patients with morbid obesity have ... a lap band and he’s discharged the next day. With the gastric bypass, the patient comes in ...

  14. Advances in Weight Loss Surgery: The Fully Robotic Gastric Bypass

    Medline Plus

    Full Text Available ... and are morbidly obese have higher incidents of heart problems. The other things that we see are ... used for multiple surgical procedures. It’s used for heart procedures, the CABG, coronary artery bypass, valve procedures, ...

  15. Advances in Weight Loss Surgery: The Fully Robotic Gastric Bypass

    Medline Plus

    Full Text Available ... the gastric bypass Roux-en-Y is a superior procedure than the lap band. That given, we ... of the robot has been shown to be superior to the laparoscopic cases, that this will also ...

  16. Advances in Weight Loss Surgery: The Fully Robotic Gastric Bypass

    Medline Plus

    Full Text Available ... Anthony Gonzalez, and welcome to South Miami Hospital. We’re here for a live webcast, a fully robotic gastric bypass, as I mentioned, we’re in the operating room at South Miami ...

  17. Severe hypoglycaemia post-gastric bypass requiring partial pancreatectomy

    DEFF Research Database (Denmark)

    Patti, M E; McMahon, G; Mun, E C;

    2005-01-01

    AIMS/HYPOTHESIS: Postprandial hypoglycaemia following gastric bypass for obesity is considered a late manifestation of the dumping syndrome and can usually be managed with dietary modification. We investigated three patients with severe postprandial hypoglycaemia and hyperinsulinaemia unresponsive...

  18. Advances in Weight Loss Surgery: The Fully Robotic Gastric Bypass

    Medline Plus

    Full Text Available ... you a detailed account of how the operation works. During that time, I’d like to answer ... you’ll understand it. Basically, the gastric bypass works on two different principals for weight loss, one ...

  19. Advances in Weight Loss Surgery: The Fully Robotic Gastric Bypass

    Medline Plus

    Full Text Available ... The feet are in this direction. And the robot is brought and docked over the patient’s body ... this location where I will be using the robot to perform this fully robotic gastric bypass. So ...

  20. Advances in Weight Loss Surgery: The Fully Robotic Gastric Bypass

    Medline Plus

    Full Text Available ... Health South Florida Miami, FL May 20, 2010 I am Dr. Anthony Gonzalez, and welcome to South ... live webcast, a fully robotic gastric bypass, as I mentioned, we’re in the operating room at ...

  1. Robot-Assisted Minimally Invasive Coronary Artery Bypass Surgery Operation

    Medline Plus

    Full Text Available ... needs to be bypassed. So I feel more confident that I can go ahead and start taking ... more so as people become more familiar and confident with their skills. 00:39:31 JOHN PENNOCK, ...

  2. Alveolar proteinosis lung lavage using partial cardiopulmonary bypass.

    OpenAIRE

    Freedman, A P; Pelias, A; Johnston, R F; Goel, I P; Hakki, H I; Oslick, T; Shinnick, J P

    1981-01-01

    An adult case of pulmonary alveolar proteinosis presented with an arterial oxygen tension of 27 mmHg (3.6 kPa) while breathing air. Dangerous hypoxaemia during lung lavage was avoided by using partial cardiopulmonary bypass.

  3. Advances in Weight Loss Surgery: The Fully Robotic Gastric Bypass

    Medline Plus

    Full Text Available ... Loss Surgery: The Fully Robotic Gastric Bypass Baptist Health South Florida Miami, FL May 20, 2010 I ... study in 1991 at the National Institute of Health in Washington, D.C. And what they looked ...

  4. Antiplatelet therapy at the time of coronary artery bypass grafting

    DEFF Research Database (Denmark)

    Kremke, Michael; Jensen, Mariann Tang; Bak, Mikkel; Kristensen, Katrine Lawaetz; Hindsholm, Karsten; Andreasen, Jan Jesper; Hjortdal, Vibeke; Jakobsen, Carl-Johan

    2013-01-01

    OBJECTIVES: The purpose of this multicentre cohort study was to examine the relationship between antiplatelet therapy (APT) at the time of coronary artery bypass grafting (CABG) and postoperative bleeding complications, transfusion requirements and adverse cardiovascular events. METHODS: A matched...

  5. Advances in Weight Loss Surgery: The Fully Robotic Gastric Bypass

    Medline Plus

    Full Text Available ... later, there was laparoscopic gastric bypass surgery. The learning curve, which is the time that it takes for the surgeon to learn surgery from open to laparoscopic, used to be ...

  6. Advances in Weight Loss Surgery: The Fully Robotic Gastric Bypass

    Medline Plus

    Full Text Available ... Loss Surgery: The Fully Robotic Gastric Bypass Baptist Health South Florida Miami, FL May 20, 2010 I ... robotic prostatectomy, which is probably the standard of care today for prostate cancer. This is our eighth ...

  7. Advances in Weight Loss Surgery: The Fully Robotic Gastric Bypass

    Medline Plus

    Full Text Available Advances in Weight Loss Surgery: The Fully Robotic Gastric Bypass Baptist Health South Florida Miami, FL May 20, 2010 I am Dr. Anthony Gonzalez, and welcome to South Miami Hospital. We’ ...

  8. Advances in Weight Loss Surgery: The Fully Robotic Gastric Bypass

    Medline Plus

    Full Text Available ... gastrectomy. Another question is, “Does gastric bypass eliminate diabetes?” The morbidly obese patients that we see are those patients that have diabetes mellitus type II, and that’s diabetes associated with ...

  9. Advances in Weight Loss Surgery: The Fully Robotic Gastric Bypass

    Medline Plus

    Full Text Available ... of reinforce this. This has been a really beautiful case. There’s really no bleeding, even though we ... on BAPTISTHEALTH.NET and joining us for this beautiful fully robotic gastric bypass. I hope that Dr. ...

  10. Association of sex with patency of femorodistal bypass grafts

    DEFF Research Database (Denmark)

    Watson, H R; Schroeder, T V; Simms, M H;

    2000-01-01

    There is evidence for superior patency in infra-inguinal bypass procedures in men compared to women. A large, prospectively planned series was investigated in order to confirm this finding and to determine the origin of this difference in outcome....

  11. Advances in Weight Loss Surgery: The Fully Robotic Gastric Bypass

    Medline Plus

    Full Text Available ... we have an added dimension, and the depth perception is incredible and just aids the surgery a ... later, there was laparoscopic gastric bypass surgery. The learning curve, which is the time that it takes ...

  12. Advances in Weight Loss Surgery: The Fully Robotic Gastric Bypass

    Medline Plus

    Full Text Available ... gastric bypass. So without further adieu, let me send you out, right outside our doors to my ... everything else that’s going into it, it will send the same signal to the brain that you’ ...

  13. Robot-Assisted Minimally Invasive Coronary Artery Bypass Surgery Operation

    Medline Plus

    Full Text Available ... Harrisburg Hospital campus. We are going to witness a robot-assisted minimally invasive coronary artery bypass surgery ... you're starting to do and maybe give a little background on the patient's condition? 00:00: ...

  14. Advances in Weight Loss Surgery: The Fully Robotic Gastric Bypass

    Medline Plus

    Full Text Available ... later, there was laparoscopic gastric bypass surgery. The learning curve, which is the time that it takes ... that you can do it proficiently; however the learning curve with robotic surgery is much shorter. In ...

  15. Collider bypass diode thermal simulations and measurements for the SSCL

    Energy Technology Data Exchange (ETDEWEB)

    Rostamzadeh, C.; Tool, G.

    1993-05-01

    Warm bypass diodes will be used as a component of a quench protection system to bypass an exponentially decaying current of 36 sec. time constant and peak current of 7000 A. Temperature excursions due to approximately 252 Kilo Ampere Sec. are studied using ANSYS, a finite element analysis program. A parabolic current waveform of similar energy but higher MIITs (1058 MIIT) was applied to the bypass circuit and temperature excursion was measured at various locations. The procedure of current waveform generation and thermal measurements is illustrated in this paper. A comparison of simulation technique with actual measurements confirms the accuracy of the bypass diode assembly model. This assembly is installed at the SSC half-cell string test facility and results are extremely encouraging.

  16. Advances in Weight Loss Surgery: The Fully Robotic Gastric Bypass

    Medline Plus

    Full Text Available ... done in two dimensions. Here we have an added dimension, and the depth perception is incredible and ... just a restrictive type of procedure. There’s no combined procedure like with the gastric bypass. So the ...

  17. Advances in Weight Loss Surgery: The Fully Robotic Gastric Bypass

    Medline Plus

    Full Text Available ... operative procedure, the live procedure, you’ll understand it. Basically, the gastric bypass works on two different ... a small portion of the stomach and divide it from the rest of the stomach, and that’s ...

  18. Value of Optical Bypass in Packet Ring Networks

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This paper firstly examines the value of optical bypass scheme in packet ring networks. An Integer Linear Program (ILP) formulation is presented and analytical results under different traffic patterns are given.

  19. Normoxic and Hyperoxic Cardiopulmonary Bypass in Congenital Heart Disease

    OpenAIRE

    2014-01-01

    Cyanotic congenital heart disease comprises a diverse spectrum of anatomical pathologies. Common to all, however, is chronic hypoxia before these lesions are operated upon when cardiopulmonary bypass is initiated. A range of functional and structural adaptations take place in the chronically hypoxic heart, which, whilst protective in the hypoxic state, are deleterious when the availability of oxygen to the myocardium is suddenly improved. Conventional cardiopulmonary bypass delivers hyperoxic...

  20. Electrical failure during cardiopulmonary bypass: a critical moment.

    Science.gov (United States)

    Durukan, Ahmet Baris; Gurbuz, Hasan Alper; Ozcelik, Gokhan; Yorgancioglu, Cem

    2016-06-01

    Electrical failure during cardiopulmonary bypass is a crisis situation for the cardiac surgical team. Fortunately, it has a low incidence with low morbidity and mortality rates. Notwithstanding, institutional preventative and management measures should be taken. Here, we report a case of electrical failure during cardiopulmonary bypass, which was successfully managed during the surgery, allowing the patient to recover uneventfully. These unwanted complications can only be managed by promoting awareness and putting in place strategies against them. PMID:27516788

  1. Bypass flow computations on the LOFA transient in a VHTR

    International Nuclear Information System (INIS)

    Bypass flow in the prismatic gas-cooled very high temperature reactor (VHTR) is not intentionally designed to occur, but is present in the gaps between graphite blocks. Previous studies of the bypass flow in the core indicated that the cooling provided by flow in the bypass gaps had a significant effect on temperature and flow distributions for normal operating conditions. However, the flow and heat transports in the core are changed significantly after a Loss of Flow Accident (LOFA). This study aims to study the effect and role of the bypass flow after a LOFA in terms of the temperature and flow distributions and for the heat transport out of the core by natural convection of the coolant for a 1/12 symmetric section of the active core which is composed of images and mirror images of two sub-region models. The two sub-region models, 9 × 1/12 and 15 × 1/12 symmetric sectors of the active core, are employed as the CFD flow models using computational grid systems of 70.2 million and 117 million nodes, respectively. It is concluded that the effect of bypass flow is significant for the initial conditions and the beginning of LOFA, but the bypass flow has little effect after a long period of time in the transient computation of natural circulation. -- Highlights: • Effect of with/without bypass flow through gaps between hexagonal blocks is studied. • Role of natural convection by the bypass flow after a loss of flow accident. • Two regions of the one-twelfth symmetric sector of the active core are in CFD models. • 70.2 million cell mesh employed for CFD computations with 15 and 9 × 1/12 sectors. • The reference model is based on modular high temperature gas-cooled reactor (MHTGR)

  2. Controllability and Operability Analysis of Heat Exchanger Networks Including Bypasses

    OpenAIRE

    Hernández, S; Balcazar-López, L.; Sánchez-Márquez, J. A.; González-García, G.

    2010-01-01

    In this paper, the influence of bypasses in heat exchanger networks on theoretical control properties and closed-loop behavior was investigated. According to theoretical control properties obtained using the singular value decomposition technique, the presence of bypasses increases flexibility of the heat exchanger network. This result was corroborated using closed-loop dynamic simulations using a proportional integral controller and a proportional integral controller with dynamic estimati...

  3. Coronary artery bypass grafting in an achondroplastic dwarf.

    OpenAIRE

    Balaguer, J M; Perry, D; Crowley, J; Moran, J. M.

    1995-01-01

    To our knowledge, coronary bypass for complications of coronary artery disease in achondroplasia has not previously been described. Achondroplasia, in and of itself, is not a contraindication to coronary bypass. Although the anatomic reserve of saphenous vein is less in achondroplastic dwarfs than in people of normal stature, that vessel and the internal mammary artery can be harvested in routine fashion. A 60-year-old woman with several risk factors for coronary artery disease underwent succ...

  4. Intracellular targeting of peroxiredoxin 6 to lysosomal organelles requires MAPK activity and binding to 14-3-3ε

    OpenAIRE

    Sorokina, Elena M.; Feinstein, Sheldon I.; Zhou, Suiping; Fisher, Aron B.

    2011-01-01

    Peroxiredoxin 6 (Prdx6), a bifunctional protein with GSH peroxidase and lysosomal-type phospholipase A2 activities, has been localized to both cytosolic and acidic compartments (lamellar bodies and lysosomes) in lung alveolar epithelium. We postulate that Prdx6 subcellular localization affects the balance between the two activities. Immunostaining localized Prdx6 to lysosome-related organelles in the MLE12 and A549 alveolar epithelial cell lines. Inhibition of trafficking by brefeldin A indic...

  5. Lack of lysosomal fusion with phagosomes containing Ehrlichia risticii in P388D1 cells: abrogation of inhibition with oxytetracycline.

    OpenAIRE

    Wells, M Y; Rikihisa, Y

    1988-01-01

    Fusion of lysosomes with phagosomes containing Ehrlichia risticii, an obligate intracellular parasite, was evaluated in P388D1 murine macrophagelike cells. Lysosomes in cells ranging in infectivity from 30 to 70% were labeled cytochemically with acid phosphatase or via endocytosis of thorium dioxide or cationized ferritin to document phagosome-lysosome (P-L) fusion in untreated cells and cells treated with oxytetracycline. Regardless of the marker used, P-L fusion was generally not observed i...

  6. Protective effect of squalene on certain lysosomal hydrolases and free amino acids in isoprenaline-induced myocardial infarction in rats

    DEFF Research Database (Denmark)

    Farvin, Sabeena; Surendraraj, A.; Anandan, R.

    2010-01-01

    This study was aimed to evaluate the preventive role of squalene on free amino acids and lysosomal alterations in experimentally induced myocardial infarction in rats. The levels of lysosomal enzymes (beta-glucuronidase, beta-galactosidase, beta-glucosidase, acid phosphatase and cathepsin D) in...... plasma and lysosomal fractions, hydroxyproline content and free amino acids in heart tissue were determined. Isoprenaline administration to rats resulted in decreased stability of the membranes which was reflected by significantly (p...

  7. Lysosome fusion to the cell membrane is mediated by the dysferlin C2A domain in coronary arterial endothelial cells

    OpenAIRE

    Han, Wei-Qing; Xia, Min; Xu, Ming; Krishna M Boini; Ritter, Joseph K.; Li, Ning-Jun; Li, Pin-Lan

    2012-01-01

    Dysferlin has recently been reported to participate in cell membrane repair in muscle and other cells through lysosome fusion. Given that lysosome fusion is a crucial mechanism that leads to membrane raft clustering, the present study attempted to determine whether dysferlin is involved in this process and its related signalling, and explores the mechanism underlying dysferlin-mediated lysosome fusion in bovine coronary arterial endothelial cells (CAECs). We found that dysferlin is clustered ...

  8. Bypass Selection for Control of Heat Exchanger Network

    Institute of Scientific and Technical Information of China (English)

    SUN Lin; LUO Xionglin; HOU Benquan; BAI Yujie

    2013-01-01

    Considering the flexibility and controllability of heat exchanger networks (HENs),bypasses are widely used for effective control of process stream target temperatures.However,the optimal location for the bypass is generally difficult to design with the trade-off between controllability and capital investments.In this paper,based on the steady-state model of heat exchanger networks the optimal bypass location was firstly selected by iteratively calculating the non-square Relative Gain Array (ns-RGA).To simplify the calculation process,rules of bypass selection were also proposed.In order to evaluate this method,then,the structural controllability of heat exchanger networks was analyzed.With both the consideration of the controllability and capital investments,the bypasses locations were finally selected.A case study on the HEN in Crude Distillation Unit was presented in which the ns-RGA and structural controllability were used to select bypasses and also to evaluate the results.

  9. Depletion of kinesin 5B affects lysosomal distribution and stability and induces peri-nuclear accumulation of autophagosomes in cancer cells

    DEFF Research Database (Denmark)

    Cardoso, Carla M P; Groth-Pedersen, Line; Høyer-Hansen, Maria;

    2009-01-01

    BACKGROUND: Enhanced lysosomal trafficking is associated with metastatic cancer. In an attempt to discover cancer relevant lysosomal motor proteins, we compared the lysosomal proteomes from parental MCF-7 breast cancer cells with those from highly invasive MCF-7 cells that express an active form of...... the ErbB2 (DeltaN-ErbB2). METHODOLOGY/PRINCIPAL FINDINGS: Mass spectrometry analysis identified kinesin heavy chain protein KIF5B as the only microtubule motor associated with the lysosomes in MCF-7 cells, and ectopic DeltaN-ErbB2 enhanced its lysosomal association. KIF5B associated with lysosomes...... also in HeLa cervix carcinoma cells as analyzed by subcellular fractionation. The depletion of KIF5B triggered peripheral aggregations of lysosomes followed by lysosomal destabilization, and cell death in HeLa cells. Lysosomal exocytosis in response to plasma membrane damage as well as fluid phase...

  10. Evidence for lysosomal exocytosis and release of aggrecan-degrading hydrolases from hypertrophic chondrocytes, in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Edward R. Bastow

    2012-02-01

    The abundant proteoglycan, aggrecan, is resorbed from growth plate cartilage during endochondral bone ossification, yet mice with genetically-ablated aggrecan-degrading activity have no defects in bone formation. To account for this apparent anomaly, we propose that lysosomal hydrolases degrade extracellular, hyaluronan-bound aggrecan aggregates in growth plate cartilage, and that lysosomal hydrolases are released from hypertrophic chondrocytes into growth plate cartilage via Ca2+-dependent lysosomal exocytosis. In this study we confirm that hypertrophic chondrocytes release hydrolases via lysosomal exocytosis in vitro and we show in vivo evidence for lysosomal exocytosis in hypertrophic chondrocytes during skeletal development. We show that lysosome-associated membrane protein 1 (LAMP1 is detected at the cell surface following in vitro treatment of epiphyseal chondrocytes with the calcium ionophore, ionomycin. Furthermore, we show that in addition to the lysosomal exocytosis markers, cathepsin D and β-hexosaminidase, ionomycin induces release of aggrecan- and hyaluronan-degrading activity from cultured epiphyseal chondrocytes. We identify VAMP-8 and VAMP7 as v-SNARE proteins with potential roles in lysosomal exocytosis in hypertrophic chondrocytes, based on their colocalisation with LAMP1 at the cell surface in secondary ossification centers in mouse tibiae. We propose that resorbing growth plate cartilage involves release of destructive hydrolases from hypertrophic chondrocytes, via lysosomal exocytosis.

  11. Variations in dietary intake after bypass surgery for obesity. Possible relation to development of fatty liver after jejunoileal bypass

    Energy Technology Data Exchange (ETDEWEB)

    Rogus, J.; Blumenthal, S.A.

    1981-01-01

    Consumption of nutrients and food energy was compared, with concomitant chemical and radiologic measurements of hepatic fat content, preoperatively and postoperatively in 25 patients who underwent gastric or jejunoileal bypass for obesity. Patients in the two operative groups ingested similar quantities of food before surgery. After surgery, caloric intake from all sources decreased in both groups but to a significantly greater extent in the gastric bypass patients. During the first six months postoperatively, the 13 gastric bypass patients showed no changes in hepatic fat content, whereas substantial increases in liver fat uniformly occurred in the 12 patients who had jejunoileal bypasses. It is suggested that dietary carbohydrate may have contributed to the accretion of liver fat in these 12 patients.

  12. Burn-induced stimulation of lysosomal enzyme synthesis in skeletal muscle

    International Nuclear Information System (INIS)

    A localized burn injury to a rat hindlimb results in atrophy of soleus muscle (in the absence of cellular damage) which is attributable to an increase in muscle protein breakdown. Previous work has shown that lysosomal enzyme activities (cathepsins B, H, L, and D) are elevated in muscle from the burned leg by 50% to 100%. There is no change in endogenous neutral protease activity (+/- Ca++). The increase in protease activity can not be attributed to changes in endogenous protease inhibitors. The latency [(Triton X100 treated - control)/triton treated] of lysosomal enzymes is approximately 50% and is not altered by burn injury. The rate of sucrose uptake is also not altered by burn. These experiments suggest that the rate of substrate supply to the lysosomal apparatus via endocytosis or autophagocytosis is not altered by burn. When muscles are preincubated with 3H-phenylalanine or 3H-mannose burn increased incorporation into protein of the fraction containing lysosomes by 100%. Preincubation in the presence of tunicamycin (an inhibitor of glycoprotein synthesis) inhibited incorporation of both labels into a microsomal fraction of the muscle from the burned leg, but has little effect on incorporation in the control muscle. These findings are consistent with the hypothesis that the burn-induced increase in protein breakdown is caused by an increase in lysosomal protease synthesis

  13. TNFα Post-Translationally Targets ZnT2 to Accumulate Zinc in Lysosomes.

    Science.gov (United States)

    Hennigar, Stephen R; Kelleher, Shannon L

    2015-10-01

    Mammary epithelial cells undergo widespread lysosomal-mediated cell death (LCD) during early mammary gland involution. Recently, we demonstrated that tumor necrosis factor-α (TNFα), a cytokine released during early involution, redistributes the zinc (Zn) transporter ZnT2 to accumulate Zn in lysosomes and activate LCD and involution. The objective of this study is to determine how TNFα retargets ZnT2 to lysosomes. We tested the hypothesis that TNFα signaling dephosphorylates ZnT2 to uncover a highly conserved dileucine motif (L294L) in the C-terminus of ZnT2, allowing adaptor protein complex-3 (AP-3) to bind and traffic ZnT2 to lysosomes. Confocal micrographs showed that TNFα redistributed wild-type (WT) ZnT2 from late endosomes (Pearson's coefficient = 0.202 ± 0.05 and 0.097 ± 0.03; Pwomen with variation in the C-terminus of ZnT2 may be at risk for inadequate involution and breast disease due the inability to traffic ZnT2 to lysosomes. PMID:25808614

  14. Lysosomes and apoptosis%溶酶体与细胞凋亡

    Institute of Scientific and Technical Information of China (English)

    赵凯; 卫涛涛

    2011-01-01

    在特定条件下,包括活性氧、鞘氨醇、细胞凋亡效应因子Bax等在内的多种刺激因子均可诱发溶酶体膜通透,之后溶酶体内含的蛋白酶(如组织蛋白酶等)及其他水解酶从溶酶体释放至胞浆中,通过剪切效应分子、激活包括凋亡酶在内的其他水解酶而启动细胞凋亡程序的执行.简要概括了引发溶酶体膜通透的可能机制及溶酶体参与细胞凋亡的主要途径.%In certain conditions, lysosomal membrane permeabilization could be induced by a broad array of stimuli including reactive oxygen species (ROS), sphingosine, and some endogenous cell death effector proteins such as Bax. As a consequence of LMP, lysosomal proteases (such as cathepsins) and other hydrolases were released from the lysosomal lumen to the cytosol, where they lead to apoptosis by the activation apoptotic cascades. This review describes the possible molecular mechanisms underlying the occurrence of lysosomal membrane permeabilization and the consequent lysosome-mediated apoptosis.

  15. Cathepsin B launches an apoptotic exit effort upon cell death-associated disruption of lysosomes.

    Science.gov (United States)

    de Castro, M A G; Bunt, G; Wouters, F S

    2016-01-01

    The release of cathepsin proteases from disrupted lysosomes results in lethal cellular autodigestion. Lysosomal disruption-related cell death is highly variable, showing both apoptotic and necrotic outcomes. As the substrate spectrum of lysosomal proteases encompasses the apoptosis-regulating proteins of the Bcl-2 family, their degradation could influence the cell death outcome upon lysosomal disruption. We used Förster resonance energy transfer (FRET)-based biosensors to image the real-time degradation of the Bcl-2-family members, Bcl-xl, Bax and Bid, in living cells undergoing lysosomal lysis and identified an early chain of proteolytic events, initiated by the release of cathepsin B, which directs cells toward apoptosis. In this apoptotic exit strategy, cathepsin B's proteolytic activity results in apoptosis-inducing Bid and removes apoptosis-preventing Bcl-xl. Cathepsin B furthermore appears to degrade a cystein protease that would otherwise have eliminated apoptosis-supporting Bax, indirectly keeping cellular levels of the Bax protein up. The concerted effort of these three early events shifts the balance of cell fate away from necrosis and toward apoptosis. PMID:27551506

  16. Not nanocarbon but dispersant induced abnormality in lysosome in macrophages in vivo

    Science.gov (United States)

    Yudasaka, Masako; Zhang, Minfang; Matsumura, Sachiko; Yuge, Ryota; Ichihashi, Toshinari; Irie, Hiroshi; Shiba, Kiyotaka; Iijima, Sumio

    2015-05-01

    The properties of nanocarbons change from hydrophobic to hydrophilic as a result of coating them with dispersants, typically phospholipid polyethylene glycols, for biological studies. It has been shown that the dispersants remain attached to the nanocarbons when they are injected in mice and influence the nanocarbons’ biodistribution in vivo. We show in this report that the effects of dispersants also appear at the subcellular level in vivo. Carbon nanohorns (CNHs), a type of nanocarbon, were dispersed with ceramide polyethylene glycol (CPEG) and intravenously injected in mice. Histological observations and electron microscopy with energy dispersive x-ray analysis revealed that, in liver and spleen, the lysosome membranes were damaged, and the nanohorns formed a complex with hemosiderin in the lysosomes of the macrophages. It is inferred that the lysosomal membrane was damaged by sphigosine generated as a result of CPEG decomposition, which changed the intra lysosomal conditions, inducing the formation of the CPEG-CNH and hemosiderin complex. For comparison, when glucose was used instead of CPEG, neither the nanohorn-hemosiderin complex nor lysosomal membrane damage was found. Our results suggest that surface functionalization can control the behavior of nancarbons in cells in vivo and thereby improve their suitability for medical applications.

  17. Cytochemical localisation of lysosomal enzymes and acidic mucopolysaccharides in the salivary glands of Aplysia depilans (Opisthobranchia).

    Science.gov (United States)

    Lobo-da-Cunha, A

    2002-04-01

    Three types of secretory cells were reported in the salivary glands of Aplysia depilans: granular cells, vacuolated cells and mucocytes. To improve the characterisation of these cells, cytochemical methods for the detection of lysosomal enzymes and acidic mucopolysaccharides were applied. In granular cells, acid phosphatase and arylsulphatase were present in small lysosomes and in some secretory granules. The secretory granules could have received these enzymes after fusion with the small lysosomes that were frequently found very close to them. These cells were not stained with colloidal iron because they do not contain acidic mucopolysaccharides. In vacuolated cells, acid phosphatase and arylsulphatase were detected in lysosomes but not in the secretory vacuoles. Colloidal iron staining revealed the presence of acidic mucopolysaccharides in the vacuoles and in the Golgi apparatus of these cells. In mucocytes, lysosomes were very rare, but the secretion of these cells was very rich in acidic mucopolysaccharides. The filamentous network within the secretory vesicles was completely covered with iron particles, but practically no particles were observed over the granular masses attached to the membrane of the vesicles. Iron particles were also found in the trans-face cisternae of the U-shaped Golgi stacks, but were not seen in the cis-face cisternae or in the rough endoplasmic reticulum. PMID:12117284

  18. Elimination of paternal mitochondria through the lysosomal degradation pathway in C. elegans.

    Science.gov (United States)

    Zhou, Qinghua; Li, Haimin; Xue, Ding

    2011-12-01

    In mammals, the inheritance of mitochondrion and its DNA (mtDNA) is strictly maternal, despite the fact that a sperm can inject up to 100 functional mitochondria into the oocyte during fertilization. The mechanisms responsible for the elimination of the paternal mitochondria remain largely unknown. We report here that this paternal mitochondrial elimination process is conserved in Caenorhabditis elegans, and that the lysosomal pathway actively participates in this process. Molecular and cell biological analyses indicate that in wild-type animals paternal mitochondria and mtDNA are destroyed within two hours after fertilization. In animals with compromised lysosomes, paternal mitochondria persist until late embryonic stages. Therefore, the lysosomal pathway plays an important role in degrading paternal mitochondria introduced into the oocyte during fertilization. Our study indicates that C. elegans is an excellent animal model for understanding and dissecting this conserved biological process critical for animal development and reproduction. PMID:22105480

  19. Involvement of the endosomal-lysosomal system correlates with regional pathology in Creutzfeldt-Jakob disease

    DEFF Research Database (Denmark)

    Kovács, Gábor G; Gelpi, Ellen; Ströbel, Thomas;

    2007-01-01

    The endosomal-lysosomal system (ELS) has been suggested to play a role in the pathogenesis of prion diseases. The purpose of this study was to examine how experimental observations can be translated to human neuropathology and whether alterations of the ELS relate to neuropathologic changes....... Combined with stereologic techniques, we examined components of the ELS in human sporadic Creutzfeldt-Jakob disease brains. We immunostained for the early endosomal marker Rab5 and lysosomal enzymes cathepsin D and B. We determined neuron-specific changes in their expression and correlated these with the......-immunoreactive lysosomes. The intraneuronal distribution of cathepsin D and B diverges between Purkinje cells and frontal cortical neurons in sporadic Creutzfeldt-Jakob disease brains. We demonstrated focal intra- and perineuronal colocalization of cathepsin D and PrP. Our results indicate that effects in the ELS...

  20. Elimination of paternal mitochondria through the lysosomal degradation pathway in C.elegans

    Institute of Scientific and Technical Information of China (English)

    Qinghua Zhou; Haimin Li; Ding Xue

    2011-01-01

    In mammals,the inheritance of mitochondrion and its DNA (mtDNA) is strictly maternal,despite the fact that a sperm can inject up to 100 functional mitochondria into the oocyte during fertilization.The mechanisms responsible for the elimination of the paternal mitochondria remain largely unknown.We report here that this paternal mitochondrial elimination process is conserved in Caenorhabditis elegans,and that the lysosomal pathway actively participates in this process.Molecular and cell biological analyses indicate that in wild-type animals paternal mitoehondria and mtDNA are destroyed within two hours after fertilization.In animals with compromised lysosomes,paternal mitochondria persist until late embryonic stages.Therefore,the lysosomal pathway plays an important role in degrading paternal mitochondria introduced into the oocyte during fertilization.Our study indicates that C.elegans is an excellent animal model for understanding and dissecting this conserved biological process critical for animal development and reproduction.

  1. The inactivation of the sortilin gene leads to a partial disruption of prosaposin trafficking to the lysosomes

    International Nuclear Information System (INIS)

    Lysosomes are intracellular organelles which contain enzymes and activator proteins involved in the digestion and recycling of a variety of cellular and extracellular substances. We have identified a novel sorting receptor, sortilin, which is involved in the lysosomal trafficking of the sphingolipid activator proteins, prosaposin and GM2AP, and the soluble hydrolases cathepsin D, cathepsin H, and acid sphingomyelinase. Sortilin belongs to a growing family of receptors with homology to the yeast Vps10 protein, which acts as a lysosomal sorting receptor for carboxypeptidase Y. In this study we examined the effects of the sortilin gene inactivation in mice. The inactivation of this gene did not yield any noticeable lysosomal pathology. To determine the existence of an alternative receptor complementing the sorting function of sortilin, we quantified the concentration of prosaposin in the lysosomes of the nonciliated epithelial cells lining the efferent ducts. These cells were chosen because they express sortilin and have a large number of lysosomes containing prosaposin. In addition, the nonciliated cells are known to endocytose luminal prosaposin that is synthesized and secreted by Sertoli cells into the seminiferous luminal fluids. Consequently, the nonciliated cells are capable of targeting both exogenous and endogenous prosaposin to the lysosomes. Using electron microscope immunogold labeling and quantitative analysis, our results demonstrate that inactivation of the sortilin gene produces a significant decrease of prosaposin in the lysosomes. When luminal prosaposin was excluded from the efferent ducts, the level of prosaposin in lysosomes was even lower in the mutant mice. Nonetheless, a significant amount of prosaposin continues to reach the lysosomal compartment. These results strongly suggest the existence of an alternative receptor that complements the function of sortilin and explains the lack of lysosomal storage disorders in the sortilin-deficient mice.

  2. Comparison of five peptide vectors for improved brain delivery of the lysosomal enzyme arylsulfatase A.

    Science.gov (United States)

    Böckenhoff, Annika; Cramer, Sandra; Wölte, Philipp; Knieling, Simeon; Wohlenberg, Claudia; Gieselmann, Volkmar; Galla, Hans-Joachim; Matzner, Ulrich

    2014-02-26

    Enzyme replacement therapy (ERT) is a treatment option for lysosomal storage disorders (LSDs) caused by deficiencies of soluble lysosomal enzymes. ERT depends on receptor-mediated transport of intravenously injected recombinant enzyme to lysosomes of patient cells. The blood-brain barrier (BBB) prevents efficient transfer of therapeutic polypeptides from the blood to the brain parenchyma and thus hinders effective treatment of LSDs with CNS involvement. We compared the potential of five brain-targeting peptides to promote brain delivery of the lysosomal enzyme arylsulfatase A (ASA). Fusion proteins between ASA and the protein transduction domain of the human immunodeficiency virus TAT protein (Tat), an Angiopep peptide (Ang-2), and the receptor-binding domains of human apolipoprotein B (ApoB) and ApoE (two versions, ApoE-I and ApoE-II) were generated. All ASA fusion proteins were enzymatically active and targeted to lysosomes when added to cultured cells. In contrast to wild-type ASA, which is taken up by mannose-6-phosphate receptors, all chimeric proteins were additionally endocytosed via mannose-6-phosphate-independent routes. For ASA-Ang-2, ASA-ApoE-I, and ASA-ApoE-II, uptake was partially due to the low-density lipoprotein receptor-related protein 1. Transendothelial transfer in a BBB cell culture model was elevated for ASA-ApoB, ASA-ApoE-I, and ASA-ApoE-II. Brain delivery was, however, increased only for ASA-ApoE-II. ApoE-II was also superior to wild-type ASA in reducing lysosomal storage in the CNS of ASA-knock-out mice treated by ERT. Therefore, the ApoE-derived peptide appears useful to treat metachromatic leukodystrophy and possibly other neurological disorders more efficiently. PMID:24573272

  3. Cytosolic peroxidases protect the lysosome of bloodstream African trypanosomes from iron-mediated membrane damage.

    Directory of Open Access Journals (Sweden)

    Corinna Hiller

    2014-04-01

    Full Text Available African trypanosomes express three virtually identical non-selenium glutathione peroxidase (Px-type enzymes which preferably detoxify lipid-derived hydroperoxides. As shown previously, bloodstream Trypanosoma brucei lacking the mitochondrial Px III display only a weak and transient proliferation defect whereas parasites that lack the cytosolic Px I and Px II undergo extremely fast lipid peroxidation and cell lysis. The phenotype can completely be rescued by supplementing the medium with the α-tocopherol derivative Trolox. The mechanism underlying the rapid cell death remained however elusive. Here we show that the lysosome is the origin of the cellular injury. Feeding the px I-II knockout parasites with Alexa Fluor-conjugated dextran or LysoTracker in the presence of Trolox yielded a discrete lysosomal staining. Yet upon withdrawal of the antioxidant, the signal became progressively spread over the whole cell body and was completely lost, respectively. T. brucei acquire iron by endocytosis of host transferrin. Supplementing the medium with iron or transferrin induced, whereas the iron chelator deferoxamine and apo-transferrin attenuated lysis of the px I-II knockout cells. Immunofluorescence microscopy with MitoTracker and antibodies against the lysosomal marker protein p67 revealed that disintegration of the lysosome precedes mitochondrial damage. In vivo experiments confirmed the negligible role of the mitochondrial peroxidase: Mice infected with px III knockout cells displayed only a slightly delayed disease development compared to wild-type parasites. Our data demonstrate that in bloodstream African trypanosomes, the lysosome, not the mitochondrion, is the primary site of oxidative damage and cytosolic trypanothione/tryparedoxin-dependent peroxidases protect the lysosome from iron-induced membrane peroxidation. This process appears to be closely linked to the high endocytic rate and distinct iron acquisition mechanisms of the infective

  4. Annular MHD Physics for Turbojet Energy Bypass

    Science.gov (United States)

    Schneider, Steven J.

    2011-01-01

    The use of annular Hall type MHD generator/accelerator ducts for turbojet energy bypass is evaluated assuming weakly ionized flows obtained from pulsed nanosecond discharges. The equations for a 1-D, axisymmetric MHD generator/accelerator are derived and numerically integrated to determine the generator/accelerator performance characteristics. The concept offers a shockless means of interacting with high speed inlet flows and potentially offers variable inlet geometry performance without the complexity of moving parts simply by varying the generator loading parameter. The cycle analysis conducted iteratively with a spike inlet and turbojet flying at M = 7 at 30 km altitude is estimated to have a positive thrust per unit mass flow of 185 N-s/kg. The turbojet allowable combustor temperature is set at an aggressive 2200 deg K. The annular MHD Hall generator/accelerator is L = 3 m in length with a B(sub r) = 5 Tesla magnetic field and a conductivity of sigma = 5 mho/m for the generator and sigma= 1.0 mho/m for the accelerator. The calculated isentropic efficiency for the generator is eta(sub sg) = 84 percent at an enthalpy extraction ratio, eta(sub Ng) = 0.63. The calculated isentropic efficiency for the accelerator is eta(sub sa) = 81 percent at an enthalpy addition ratio, eta(sub Na) = 0.62. An assessment of the ionization fraction necessary to achieve a conductivity of sigma = 1.0 mho/m is n(sub e)/n = 1.90 X 10(exp -6), and for sigma = 5.0 mho/m is n(sub e)/n = 9.52 X 10(exp -6).

  5. A dual-site two-photon fluorescent probe for visualizing lysosomes and tracking lysosomal hydrogen sulfide with two different sets of fluorescence signals in the living cells and mouse liver tissues.

    Science.gov (United States)

    Liu, Yong; Meng, Fangfang; He, Longwei; Liu, Keyin; Lin, Weiying

    2016-05-19

    Herein, we have developed a novel dual-site two-photon fluorescent probe as the first paradigm of the probes, which can concurrently report lysosomes and lysosomal H2S with two different sets of fluorescence signals in the living cells and tissues. PMID:27159054

  6. An adenosine triphosphate-dependent calcium uptake pump in human neutrophil lysosomes.

    OpenAIRE

    Klemper, M S

    1985-01-01

    Regulation of the cytosolic free calcium concentration is important to neutrophil function. In these studies, an ATP-dependent calcium uptake pump has been identified in human neutrophil lysosomes. This energy-dependent Ca++ uptake pump has a high affinity for Ca++ (Michaelis constant [Km] Ca++ = 107 nM) and a maximum velocity (Vmax) of 5.3 pmol/mg of protein per min. ATP was the only nucleotide that supported Ca++ uptake by lysosomes. The Km for ATP was 177 microM. ATP-dependent Ca++ uptake ...

  7. Three-layer poly(methyl methacrylate) microsystem for analysis of lysosomal enzymes for diagnostic purposes

    DEFF Research Database (Denmark)

    Kwapiszewski, Radoslaw; Kwapiszewska, Karina; Kutter, Jörg P;

    2015-01-01

    Lysosomal storage diseases are chronic, progressive and typically have a devastating impact on the patient and the family. The diagnosis of these diseases is still a challenge, however, even for trained specialists. Accurate diagnostic methods and high-throughput tools that could be readily...... incorporated into existing screening laboratories are urgently required. We propose a new method for measuring the activity of lysosomal enzymes using a microfluidic device. The principle of the method is the fluorometric determination of a protonated form of 4-methylumbelliferone directly in the enzymatic...

  8. Inhibition of Endosome-Lysosome System Acidification Enhances Porcine Circovirus 2 Infection of Porcine Epithelial Cells▿

    OpenAIRE

    Misinzo, Gerald; Delputte, Peter; Nauwynck, Hans

    2007-01-01

    Recently, Misinzo et al. (G. Misinzo, P. Meerts, M. Bublot, J. Mast, H. M. Weingartl, and H. J. Nauwynck, J. Gen. Virol. 86:2057-2068, 2005) reported that inhibiting endosome-lysosome system acidification reduced porcine circovirus 2 (PCV2) infection of monocytic 3D4/31 cells. The present study examined the effect of inhibiting endosome-lysosome system acidification in epithelial cells, since epithelial cells support PCV2 infection in vivo and are used in culturing PCV2 in vitro. Ammonium chl...

  9. Minimally invasive coronary artery bypass grafting: initial Connecticut experience.

    Science.gov (United States)

    Tellides, G; Maragh, M R; Smith, J M; Kopf, G S; Ezekowitz, M; Remetz, M; Elefteriades, J A

    1997-03-01

    We report the initial Connecticut experience with minimally invasive coronary artery bypass grafting. This procedure allows bypass grafting to the left anterior descending coronary artery utilizing the internal mammary artery as the conduit. The procedure is minimally invasive because it is performed through a mini-thoracotomy incision in the fourth anterior intercostal space and it is conducted without the use of cardiopulmonary bypass. The procedure has been applied to 13 patients operated between February and October 1996. All but one patient selected were poor candidates for conventional coronary artery bypass surgery because of advanced age (6), chronic renal failure/dialysis/kidney transplant (4), redo status with vulnerable grafts (1), severe peripheral vascular disease (6), severe chronic obstructive pulmonary disease (4). All patients survived operation and were discharged in good condition. Mean postoperative intubation time was seven hours and mean hospital stay was 4.5 days despite the very high pre-existing comorbidity of these patients. All patients are alive at the current follow-up time. Two patients required a conventional bypass procedure for occlusion of the minimally invasive graft, the first because of diffuse disease in the target artery and the second attributable to the technical limitations of minimally invasive coronary artery bypass grafting; both tolerated the subsequent procedure well. All patients are now angina-free. All four grafts studied by routine postoperative angiography were widely patent. Routine post-operative exercise nuclear imaging was normal in an additional patient. This procedure of minimally invasive coronary artery bypass grafting offers significant advantages compared to the conventional bypass procedure (short hospital stay, quick recovery, and, especially, avoidance of cerebrovascular accidents caused by the heart-lung machine). This minimally invasive procedure is expected to apply to a growing percentage of

  10. Cocaine induces a mixed lysosomal lipidosis in cultured fibroblasts, by inactivation of acid sphingomyelinase and inhibition of phospholipase A1

    International Nuclear Information System (INIS)

    This paper reports that cocaine may induce a lysosomal storage disorder. Indeed, culture of Rat-1 fibroblasts with 250-500 μM cocaine induced after 2-3 days a major accumulation in lysosomes of electron-dense lamellar structures. By subcellular fractionation, this was reflected by a selective decrease of the buoyant density of several lysosomal enzymes, indicating lysosomal lipid overload. Biochemical analysis confirmed an increased cellular content of major phospholipids and sphingomyelin, but not of cholesterol. Cocaine, a membrane-permeant weak base, is concentrated by acidotropic sequestration, because its accumulation was abrogated by the proton ionophore, monensin and the vacuolar ATPase inhibitor, bafilomycin A1. At its estimated lysosomal concentration, cocaine almost completely inhibited phospholipase A1 activity on liposomes. Cell incubation with cocaine, but not with its inactive metabolite, benzoylecgonine, rapidly inactivated acid sphingomyelinase, as reflected by a 10-fold decrease in Vmax with identical Km. Acid sphingomyelinase inactivation was fully prevented by the thiol proteinases inhibitors, leupeptin and E64, indicating that cocaine induces selective sphingomyelinase proteolysis. Upon cocaine removal, acid sphingomyelinase activity was rapidly restored, pointing to its fast turnover. In contrast, the cellular content of several other lysosomal hydrolases was increased up to 2-fold. Together, these data show that acidotropic accumulation of cocaine in lysosomes rapidly inhibits acid phospholipase A1 and inactivates acid sphingomyelinase, which can explain induction of a mixed lysosomal lipidosis

  11. The influence of the type of sulphate bond and degree of sulphation of glycosaminoglycans on their interaction with lysosomal enzymes.

    Science.gov (United States)

    Avila, J L

    1978-01-01

    Significant differences occur between the interaction of several sulphated glycosaminoglycans with a particular lysosomal protein, leading to inhibition in the case of lysosomal enzymes. The order of strength of inhibition at pH4 was: heparin greater than chondroitin 4-sulphate = chondroitin 6-sulphate greater than dermatan sulphate. PMID:656058

  12. First-Generation Antipsychotic Haloperidol Alters the Functionality of the Late Endosomal/Lysosomal Compartment in Vitro.

    Science.gov (United States)

    Canfrán-Duque, Alberto; Barrio, Luis C; Lerma, Milagros; de la Peña, Gema; Serna, Jorge; Pastor, Oscar; Lasunción, Miguel A; Busto, Rebeca

    2016-01-01

    First- and second-generation antipsychotics (FGAs and SGAs, respectively), have the ability to inhibit cholesterol biosynthesis and also to interrupt the intracellular cholesterol trafficking, interfering with low-density lipoprotein (LDL)-derived cholesterol egress from late endosomes/lysosomes. In the present work, we examined the effects of FGA haloperidol on the functionality of late endosomes/lysosomes in vitro. In HepG2 hepatocarcinoma cells incubated in the presence of 1,1'-dioctadecyl-3,3,3,3'-tetramethylindocarbocyanineperchlorate (DiI)-LDL, treatment with haloperidol caused the enlargement of organelles positive for late endosome markers lysosome-associated membrane protein 2 (LAMP-2) and LBPA (lysobisphosphatidic acid), which also showed increased content of both free-cholesterol and DiI derived from LDL. This indicates the accumulation of LDL-lipids in the late endosomal/lysosomal compartment caused by haloperidol. In contrast, LDL traffic through early endosomes and the Golgi apparatus appeared to be unaffected by the antipsychotic as the distribution of both early endosome antigen 1 (EEA1) and coatomer subunit β (β-COP) were not perturbed. Notably, treatment with haloperidol significantly increased the lysosomal pH and decreased the activities of lysosomal protease and β-d-galactosidase in a dose-dependent manner. We conclude that the alkalinization of the lysosomes' internal milieu induced by haloperidol affects lysosomal functionality. PMID:26999125

  13. Infiltration and Bypass Flow of Cracking Puddled Soils

    Directory of Open Access Journals (Sweden)

    M.J. Islam

    2004-01-01

    Full Text Available A study of infiltration and bypass flow was conducted in a wet soil bin with three different soils treatments (sandy loam, clay loam and clay soil to determine the swelling behaviour of cracking puddled soils by watering and its impact on bypass flow. Infiltration rate for the soils was recorded after puddling the soils. Then the puddled soils were allowed to dry for a period of up to 15 days. After that the plots were rewetted in order to observe the swelling and bypass behaviour of cracked soils. From this study it is observed that the infiltration rates of puddled soils were very low (0.03-0.05 mm h-1 mainly due to the puddling effect. The study indicates that cracks on puddled soils at 15th day�s of drying are effectively irreversible. The maximum bypass flow was recorded for the clay loam soil. During the first day, the flow rate was extremely high at 313 mm h-1. But this higher rate gradually reduced from the second day and onwards. The bypass flow rate for the clay loam and clay soil was almost same. The study reveals that it is not possible to swell up shrinkage cracks on puddled soils by watering alone. Re-working of the soil is necessary to seal the cracks.

  14. The influence of core bypass flow during SBLOCA

    International Nuclear Information System (INIS)

    Many parameters affect the behaviour of a NPP during a Small Break Loss of Coolant Accident (SBLOCA). The bypass flow between the core side and the downcomer is one of them. Different PWRs have different values of core bypass flow. In spite of the complexity of the real situation in the primary system during SBLOCA, some fundamental details of the phenomena can be explained with simplified mathematical models, which relate on basic parameters of the primary coolant. These models define the conditions for loop seal clearance and final results are confirmed with measured values. The analysis presented in the paper refers to Bethsy Test 9.1.b SB LOCA scenario, with variation of core bypass flow. Basic RELAP5 input model calculation results show very good agreement with the experimental data. The core liquid level depression before loop seal clearance is lower in case of smaller core bypass flow. This affects the fuel clad temperature because of different heat transfer mechanisms. Time of loop seal clearance is delayed with larger core bypass flow and consequently lower differential pressure between downcomer and core. (author)

  15. Photovoltaic-module bypass-diode encapsulation. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    1983-06-20

    The design and processing techniques necessary to incorporate bypass diodes within the module encapsulant are presented in this annual report. A comprehensive survey of available pad-mounted PN junction and Schottky diodes led to the selection of Semicon PN junction diode cells for this application. Diode junction-to-heat spreader thermal resistance measurements, performed on a variety of mounted diode chip types and sizes, have yielded values which are consistently below 1/sup 0/C per watt, but show some instability when thermally cycled over the temperature range from -40 to 150/sup 0/C. Based on the results of a detailed thermal analysis, which covered the range of bypass currents from 2 to 20 amperes, three representative experimental modules, each incorporating integral bypass diode/heat spreader assemblies of various sizes, were designed and fabricated. Thermal testing of these modules has enabled the formation of a recommended heat spreader plate sizing relationship. The production cost of three encapsulated bypass diode/heat spreader assemblies were compared with similarly rated externally-mounted packaged diodes. An assessment of bypass diode reliability, which relies heavily on rectifying diode failure rate data, leads to the general conclusion that, when proper designed and installed, these devices will improve the overall reliability of a terrestrial array over a 20 year design lifetime.

  16. Role of lysosomal enzymes released by alveolar macrophages in the pathogenesis of the acute phase of hypersensitivity pneumonitis

    Directory of Open Access Journals (Sweden)

    J. L. Pérez-Arellano

    1995-01-01

    Full Text Available Hydrolytic enzymes are the major constituents of alveolar macrophages (AM and have been shown to be involved in many aspects of the inflammatory pulmonary response. The aim of this study was to evaluate the role of lysosomal enzymes in the acute phase of hypersensitivity pneumonitis (HPs. An experimental study on AM lysosomal enzymes of an HP-guinea-pig model was performed. The results obtained both in vivo and in vitro suggest that intracellular enzymatic activity decrease is, at least partly, due to release of lysosomal enzymes into the medium. A positive but slight correlation was found between extracellular lysosomal activity and four parameters of lung lesion (lung index, bronchoalveolar fluid total (BALF protein concentration, BALF LDH and BALF alkaline phosphatase activities. All the above findings suggest that the AM release of lysosomal enzymes during HP is a factor involved, although possibly not the only one, in the pulmonary lesions appearing in this disease.

  17. In Vivo Evidence for Lysosome Depletion and Impaired Autophagic Clearance in Hereditary Spastic Paraplegia Type SPG11.

    Directory of Open Access Journals (Sweden)

    Rita-Eva Varga

    2015-08-01

    Full Text Available Hereditary spastic paraplegia (HSP is characterized by a dying back degeneration of corticospinal axons which leads to progressive weakness and spasticity of the legs. SPG11 is the most common autosomal-recessive form of HSPs and is caused by mutations in SPG11. A recent in vitro study suggested that Spatacsin, the respective gene product, is needed for the recycling of lysosomes from autolysosomes, a process known as autophagic lysosome reformation. The relevance of this observation for hereditary spastic paraplegia, however, has remained unclear. Here, we report that disruption of Spatacsin in mice indeed causes hereditary spastic paraplegia-like phenotypes with loss of cortical neurons and Purkinje cells. Degenerating neurons accumulate autofluorescent material, which stains for the lysosomal protein Lamp1 and for p62, a marker of substrate destined to be degraded by autophagy, and hence appears to be related to autolysosomes. Supporting a more generalized defect of autophagy, levels of lipidated LC3 are increased in Spatacsin knockout mouse embryonic fibrobasts (MEFs. Though distinct parameters of lysosomal function like processing of cathepsin D and lysosomal pH are preserved, lysosome numbers are reduced in knockout MEFs and the recovery of lysosomes during sustained starvation impaired consistent with a defect of autophagic lysosome reformation. Because lysosomes are reduced in cortical neurons and Purkinje cells in vivo, we propose that the decreased number of lysosomes available for fusion with autophagosomes impairs autolysosomal clearance, results in the accumulation of undegraded material and finally causes death of particularly sensitive neurons like cortical motoneurons and Purkinje cells in knockout mice.

  18. A Requirement for Bid for Induction of Apoptosis by Photodynamic Therapy with a Lysosome- but not a Mitochondrion-Targeted Photosensitizer

    OpenAIRE

    Chiu, Song-mao; Xue, Liang-Yan; Lam, Minh; Rodriguez, Myriam E.; Zhang, Ping; Kenney, Malcolm E.; Nieminen, Anna-Liisa; Oleinick, Nancy L.

    2010-01-01

    Photodynamic therapy (PDT) with lysosome-targeted photosensitizers induces the intrinsic pathway of apoptosis via the cleavage and activation of the BH3-only protein Bid by proteolytic enzymes released from photo-disrupted lysosomes. To investigate the role of Bid in apoptosis induction and the role of damaged lysosomes on cell killing by lysosome-targeted PDT, we compared the responses of wild type and Bid-knock-out murine embryonic fibroblasts toward a mitochondrion/endoplasmic reticulum-bi...

  19. uPARAP/endo180 directs lysosomal delivery and degradation of collagen IV

    DEFF Research Database (Denmark)

    Kjøller, Lars; Engelholm, Lars H; Høyer-Hansen, Maria; Danø, Keld; Bugge, Thomas H; Behrendt, Niels

    2004-01-01

    fibroblasts. Blocking lysosomal cysteine proteases with the inhibitor E64d resulted in strong accumulation of collagen IV inlysosomes in wild-type cells, but only very weak intracellular fluorescence accumulation in uPARAP/endo180-deficient fibroblasts. We conclude that uPARAP/endo180 is critical for targeted...

  20. Diagnosing lysosomal storage diseases in a Brazilian non-newborn population by tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    Guilherme Dotto Brand

    2013-11-01

    Full Text Available OBJECTIVES: High-throughput mass spectrometry methods have been developed to screen newborns for lysosomal storage disorders, allowing the implementation of newborn screening pilot studies in North America and Europe. It is currently feasible to diagnose Pompe, Fabry, Gaucher, Krabbe, and Niemann-Pick A/B diseases, as well as mucopolysaccharidosis I, by tandem mass spectrometry in dried blood spots, which offers considerable technical advantages compared with standard methodologies. We aimed to investigate whether the mass spectrometry methodology for lysosomal storage disease screening, originally developed for newborns, can also discriminate between affected patients and controls of various ages. METHODS: A total of 205 control individuals were grouped according to age and subjected to mass spectrometry quantification of lysosomal α-glucosidase, β-glucocerebrosidase, α-galactosidase, acid sphingomyelinase, galactocerebrosidase, and α−L-iduronidase activities. Additionally, 13 affected patients were analyzed. RESULTS: The median activities for each enzyme and each age group were determined. Enzyme activities were significantly lower in individuals aged older than 18 years compared with those in newborns. Affected patients presented enzymatic activities corresponding to less than 20% of the age-matched controls. CONCLUSIONS: Our data indicate that the mass spectrometry methodology can be used for the screening of lysosomal storage diseases in non-newborn patients. However, for some diseases, such as Fabry and mucopolysaccharidosis I, a combination of biochemical and clinical data may be necessary to achieve accurate diagnoses.

  1. Gallium and Functionalized-Porphyrins Combine to Form Potential Lysosome-Specific Multimodal Bioprobes.

    Science.gov (United States)

    Pan, Jie; Harriss, Bethany I; Chan, Chi-Fai; Jiang, Lijun; Tsoi, Tik-Hung; Long, Nicholas J; Wong, Wing-Tak; Wong, Wai-Kwok; Wong, Ka-Leung

    2016-07-18

    A water-soluble bimetallic normal ("cold") and radiochemical ("hot") gallium-porphyrin-ruthenium-bipyridine complex (GaporRu-1) has been synthesized by microwave methodology in short reaction times with good (>85%) yields. (68)GaporRu-1 is demonstrated to be a potential multimodal and functional bioprobe for positron emission tomography (PET), lysosome specific optical imaging, and photodynamic therapy. PMID:27355871

  2. Prion infection impairs lysosomal degradation capacity by interfering with rab7 membrane attachment in neuronal cells.

    Science.gov (United States)

    Shim, Su Yeon; Karri, Srinivasarao; Law, Sampson; Schatzl, Hermann M; Gilch, Sabine

    2016-01-01

    Prions are proteinaceous infectious particles which cause fatal neurodegenerative disorders in humans and animals. They consist of a mostly β-sheeted aggregated isoform (PrP(Sc)) of the cellular prion protein (PrP(c)). Prions replicate autocatalytically in neurons and other cell types by inducing conformational conversion of PrP(c) into PrP(Sc). Within neurons, PrP(Sc) accumulates at the plasma membrane and in vesicles of the endocytic pathway. To better understand the mechanisms underlying neuronal dysfunction and death it is critical to know the impact of PrP(Sc) accumulation on cellular pathways. We have investigated the effects of prion infection on endo-lysosomal transport. Our study demonstrates that prion infection interferes with rab7 membrane association. Consequently, lysosomal maturation and degradation are impaired. Our findings indicate a mechanism induced by prion infection that supports stable prion replication. We suggest modulation of endo-lysosomal vesicle trafficking and enhancement of lysosomal maturation as novel targets for the treatment of prion diseases. PMID:26865414

  3. Lysosomal-associated transmembrane protein 5 (LAPTM5 is a molecular partner of CD1e.

    Directory of Open Access Journals (Sweden)

    Catherine Angénieux

    Full Text Available The CD1e protein participates in the presentation of lipid antigens in dendritic cells. Its transmembrane precursor is transported to lysosomes where it is cleaved into an active soluble form. In the presence of bafilomycin, which inhibits vacuolar ATPase and consequently the acidification of endosomal compartments, CD1e associates with a 27 kD protein. In this work, we identified this molecular partner as LAPTM5. The latter protein and CD1e colocalize in trans-Golgi and late endosomal compartments. The quantity of LAPTM5/CD1e complexes increases when the cells are treated with bafilomycin, probably due to the protection of LAPTM5 from lysosomal proteases. Moreover, we could demonstrate that LAPTM5/CD1e association occurs under physiological conditions. Although LAPTM5 was previously shown to act as a platform recruiting ubiquitin ligases and facilitating the transport of receptors to lysosomes, we found no evidence that LATPM5 controls either CD1e ubiquitination or the generation of soluble lysosomal CD1e proteins. Notwithstanding these last observations, the interaction of LAPTM5 with CD1e and their colocalization in antigen processing compartments both suggest that LAPTM5 might influence the role of CD1e in the presentation of lipid antigens.

  4. (-)-Oleocanthal rapidly and selectively induces cancer cell death via lysosomal membrane permeabilization

    Science.gov (United States)

    LeGendre, Onica; Breslin, Paul AS; Foster, David A

    2015-01-01

    (-)-Oleocanthal (OC), a phenolic compound present in extra-virgin olive oil (EVOO), has been implicated in the health benefits associated with diets rich in EVOO. We investigated the effect of OC on human cancer cell lines in culture and found that OC induced cell death in all cancer cells examined as rapidly as 30 minutes after treatment in the absence of serum. OC treatment of non-transformed cells suppressed their proliferation but did not cause cell death. OC induced both primary necrotic and apoptotic cell death via induction of lysosomal membrane permeabilization (LMP). We provide evidence that OC promotes LMP by inhibiting acid sphingomyelinase (ASM) activity, which destabilizes the interaction between proteins required for lysosomal membrane stability. The data presented here indicate that cancer cells, which tend to have fragile lysosomal membranes compared to non-cancerous cells, are susceptible to cell death induced by lysosomotropic agents. Therefore, targeting lysosomal membrane stability represents a novel approach for the induction of cancer-specific cell death. PMID:26380379

  5. Identification of cytoskeleton-associated proteins essential for lysosomal stability and survival of human cancer cells

    DEFF Research Database (Denmark)

    Groth-Pedersen, Line; Aits, Sonja; Corcelle-Termeau, Elisabeth;

    2012-01-01

    Microtubule-disturbing drugs inhibit lysosomal trafficking and induce lysosomal membrane permeabilization followed by cathepsin-dependent cell death. To identify specific trafficking-related proteins that control cell survival and lysosomal stability, we screened a molecular motor siRNA library in...... human MCF7 breast cancer cells. SiRNAs targeting four kinesins (KIF11/Eg5, KIF20A, KIF21A, KIF25), myosin 1G (MYO1G), myosin heavy chain 1 (MYH1) and tropomyosin 2 (TPM2) were identified as effective inducers of non-apoptotic cell death. The cell death induced by KIF11, KIF21A, KIF25, MYH1 or TPM2 si......, MYH1, TPM2), increased dextran accumulation (KIF20A), or reduced autophagic flux (MYO1G, MYH1). Importantly, all seven siRNAs also killed human cervix cancer (HeLa) and osteosarcoma (U-2-OS) cells and sensitized cancer cells to other lysosome-destabilizing treatments, i.e. photo-oxidation, siramesine...

  6. Lysosome triggered near-infrared fluorescence imaging of cellular trafficking processes in real time.

    Science.gov (United States)

    Grossi, Marco; Morgunova, Marina; Cheung, Shane; Scholz, Dimitri; Conroy, Emer; Terrile, Marta; Panarella, Angela; Simpson, Jeremy C; Gallagher, William M; O'Shea, Donal F

    2016-01-01

    Bioresponsive NIR-fluorophores offer the possibility for continual visualization of dynamic cellular processes with added potential for direct translation to in vivo imaging. Here we show the design, synthesis and lysosome-responsive emission properties of a new NIR fluorophore. The NIR fluorescent probe design differs from typical amine functionalized lysosomotropic stains with off/on fluorescence switching controlled by a reversible phenol/phenolate interconversion. Emission from the probe is shown to be highly selective for the lysosomes in co-imaging experiments using a HeLa cell line expressing the lysosomal-associated membrane protein 1 fused to green fluorescent protein. The responsive probe is capable of real-time continuous imaging of fundamental cellular processes such as endocytosis, lysosomal trafficking and efflux in 3D and 4D. The advantage of the NIR emission allows for direct translation to in vivo tumour imaging, which is successfully demonstrated using an MDA-MB-231 subcutaneous tumour model. This bioresponsive NIR fluorophore offers significant potential for use in live cellular and in vivo imaging, for which currently there is a deficit of suitable molecular fluorescent tools. PMID:26927507

  7. Osteoclasts derive from hematopoietic stem cells according to marker, giant lysosomes of beige mice

    International Nuclear Information System (INIS)

    To ascertain the origin of multinucleated osteoclasts from hematopoietic stem cells, giant lysosomes peculiar to cells of beige mice (bg bg) were used as marker cells of that provenance. Radiation chimeras were established reciprocally between bg bg mice and osteopetrotic mi mi mice with defective osteoclasts. As a result, all the derivative cells of the hematopoietic stem cell would depend on the donor's cell line, whereas osteogenesis would remain the province of the host. It was affirmed in the chimeras mi mi/bg bg that the osteopetrosis was cured within six weeks. Thereafter the definitive osteoclasts of the chimeras contained giant lysosomes attributable to the beige cell line. However, the cure was well advanced before donor osteoclasts were prominent, for which several reasons are offered. In the mouse chimeras, bg bg/mi mi, there was a delay of some six weeks before osteopetrosis became evident, histologically before radiologically, at the major metaphyseal growth centers. During the period one to two months after establishment, osteoclasts appeared to be a mixture of two cell lines according to quantitative assessments for giant lysosomes. Assessments consisted of measurements of the percentage area of osteoclasts occupied by lysosomes over 1 micrometer diameter. The means were 0.018% +/- 0.008% for nonbeige stock and 2.09% +/- 0.58% for beige stock

  8. Decreased T2 signal in the thalami may be a sign of lysosomal storage disease

    International Nuclear Information System (INIS)

    Lysosomal disorders are rare and are caused by genetically transmitted lysosomal enzyme deficiencies. A decreased T2 signal in the thalamus has occasionally been reported. Because the finding of bilateral abnormal signal intensity of the thalamus on T2-weighted images has not been systematically reviewed, and its value as a diagnostic tool critically evaluated, we carried out a systematic review of the literature. Articles in English with 30 trios of keywords were collected from PubMed. Exclusion criteria were lack of conventional T2-weighted images in the protocol and not being a human study. Finally, 111 articles were included. The thalamus was considered affected only if mentioned in the text or in the figure legends. Some 117 patients with various lysosomal diseases and five patients with ceruloplasmin deficiency were reported to have a bilateral decrease in T2 signal intensity. At least one article reported a bilateral decrease in signal intensity of the thalami on T2-weighted images in association with GM1 and GM2 gangliosidosis and with Krabbe's disease, aspartylglucosaminuria, mannosidosis, fucosidosis, and mucolipidosis IV. Furthermore, thalamic alteration was a consistent finding in several types of neuronal ceroid lipofuscinosis (NCL) including CLN1 (infantile NCL), CLN2 (classic late infantile NCL), CLN3 (juvenile NCL), CLN5 (Finnish variant late infantile NCL), and CLN7 (Turkish variant late infantile NCL). A decrease in T2 signal intensity in the thalami seems to be a sign of lysosomal disease. (orig.)

  9. Inhibition of lysosomal protease cathepsin D reduces renal fibrosis in murine chronic kidney disease.

    Science.gov (United States)

    Fox, Christopher; Cocchiaro, Pasquale; Oakley, Fiona; Howarth, Rachel; Callaghan, Krystena; Leslie, Jack; Luli, Saimir; Wood, Katrina M; Genovese, Federica; Sheerin, Neil S; Moles, Anna

    2016-01-01

    During chronic kidney disease (CKD) there is a dysregulation of extracellular matrix (ECM) homeostasis leading to renal fibrosis. Lysosomal proteases such as cathepsins (Cts) regulate this process in other organs, however, their role in CKD is still unknown. Here we describe a novel role for cathepsins in CKD. CtsD and B were located in distal and proximal tubular cells respectively in human disease. Administration of CtsD (Pepstatin A) but not B inhibitor (Ca074-Me), in two mouse CKD models, UUO and chronic ischemia reperfusion injury, led to a reduction in fibrosis. No changes in collagen transcription or myofibroblasts numbers were observed. Pepstatin A administration resulted in increased extracellular urokinase and collagen degradation. In vitro and in vivo administration of chloroquine, an endo/lysosomal inhibitor, mimicked Pepstatin A effect on renal fibrosis. Therefore, we propose a mechanism by which CtsD inhibition leads to increased collagenolytic activity due to an impairment in lysosomal recycling. This results in increased extracellular activity of enzymes such as urokinase, triggering a proteolytic cascade, which culminates in more ECM degradation. Taken together these results suggest that inhibition of lysosomal proteases, such as CtsD, could be a new therapeutic approach to reduce renal fibrosis and slow progression of CKD. PMID:26831567

  10. Current molecular genetics strategies for the diagnosis of lysosomal storage disorders.

    Science.gov (United States)

    Giugliani, Roberto; Brusius-Facchin, Ana-Carolina; Pasqualim, Gabriela; Leistner-Segal, Sandra; Riegel, Mariluce; Matte, Ursula

    2016-01-01

    Lysosomal storage disorders (LSDs) are a group of almost 50 monogenic diseases characterized by mutations causing deficiency of lysosomal enzymes or non-enzyme proteins involved in transport across the lysosomal membrane, protein maturation or lysosomal biogenesis. Usually, affected patients are normal at birth and have a progressive and severe disease with high morbidity and reduced life expectancy. The overall incidence of LSDs is usually estimated as 1:5000, but newborn screening studies are indicating that it could be much higher. Specific therapies were already developed for selected LSDs, making the timely and correct diagnosis very important for successful treatment and also for genetic counseling. In most LSD cases the biochemical techniques provide a reliable diagnosis. However, the identification of pathogenic mutations by genetic analysis is being increasingly recommended to provide additional information. In this paper we discuss the conventional methods for genetic analysis used in the LSDs [restriction fragment length polymorphism (RFLP), amplification-refractory mutation system (ARMS), single strand conformation polymorphism (SSCP), denaturing high performance liquid chromatography (dHPLC), real-time polymerase chain reaction, high resolution melting (HRM), multiplex ligation-dependent probe amplification (MLPA), Sanger sequencing] and also the newer approaches [massive parallel sequencing, array comparative genomic hybridization (CGH)]. PMID:26567866

  11. Dietary protein deficiency reduces lysosomal and nonlysosomal ATP-dependent proteolysis in muscle

    Science.gov (United States)

    Tawa, N. E. Jr; Kettelhut, I. C.; Goldberg, A. L.

    1992-01-01

    When rats are fed a protein deficient (PD) diet for 7 days, rates of proteolysis in skeletal muscle decrease by 40-50% (N. E. Tawa, Jr., and A. L. Goldberg. Am. J. Physiol. 263 (Endocrinol. Metab. 26): E317-325, 1992). To identify the underlying biochemical adaptations, we measured different proteolytic processes in incubated muscles. The capacity for intralysosomal proteolysis, as shown by sensitivity to methylamine or lysosomal protease inhibitors, fell 55-75% in muscles from PD rats. Furthermore, extracts of muscles of PD rats showed 30-70% lower activity of many lysosomal proteases, including cathepsins B, H, and C, and carboxypeptidases A and C, as well as other lysosomal hydrolases. The fall in cathepsin B and proteolysis was evident by 3 days on the PD diet, and both returned to control levels 3 days after refeeding of the normal diet. In muscles maintained under optimal conditions, 80-90% of protein breakdown occurs by nonlysosomal pathways. In muscles of PD rats, this ATP-dependent process was also 40-60% slower. Even though overall proteolysis decreased in muscles of PD rats, their capacity for Ca(2+)-dependent proteolysis increased (by 66%), as did the activity of the calpains (+150-250%). Thus the lysosomal and the ATP-dependent processes decrease coordinately and contribute to the fall in muscle proteolysis in PD animals.

  12. AP-3 and Rabip4' coordinately regulate spatial distribution of lysosomes.

    Directory of Open Access Journals (Sweden)

    Viorica Ivan

    Full Text Available The RUN and FYVE domain proteins rabip4 and rabip4' are encoded by RUFY1 and differ in a 108 amino acid N-terminal extension in rabip4'. Their identical C terminus binds rab5 and rab4, but the function of rabip4s is incompletely understood. We here found that silencing RUFY1 gene products promoted outgrowth of plasma membrane protrusions, and polarized distribution and clustering of lysosomes at their tips. An interactor screen for proteins that function together with rabip4' yielded the adaptor protein complex AP-3, of which the hinge region in the β3 subunit bound directly to the FYVE domain of rabip4'. Rabip4' colocalized with AP-3 on a tubular subdomain of early endosomes and the extent of colocalization was increased by a dominant negative rab4 mutant. Knock-down of AP-3 had an ever more dramatic effect and caused accumulation of lysosomes in protrusions at the plasma membrane. The most peripheral lysosomes were localized beyond microtubules, within the cortical actin network. Our results uncover a novel function for AP-3 and rabip4' in regulating lysosome positioning through an interorganellar pathway.

  13. Septins promote macropinosome maturation and traffic to the lysosome by facilitating membrane fusion.

    Science.gov (United States)

    Dolat, Lee; Spiliotis, Elias T

    2016-08-29

    Macropinocytosis, the internalization of extracellular fluid and material by plasma membrane ruffles, is critical for antigen presentation, cell metabolism, and signaling. Macropinosomes mature through homotypic and heterotypic fusion with endosomes and ultimately merge with lysosomes. The molecular underpinnings of this clathrin-independent endocytic pathway are largely unknown. Here, we show that the filamentous septin GTPases associate preferentially with maturing macropinosomes in a phosphatidylinositol 3,5-bisphosphate-dependent manner and localize to their contact/fusion sites with macropinosomes/endosomes. Septin knockdown results in large clusters of docked macropinosomes, which persist longer and exhibit fewer fusion events. Septin depletion and overexpression down-regulates and enhances, respectively, the delivery of fluid-phase cargo to lysosomes, without affecting Rab5 and Rab7 recruitment to macropinosomes/endosomes. In vitro reconstitution assays show that fusion of macropinosomes/endosomes is abrogated by septin immunodepletion and function-blocking antibodies and is induced by recombinant septins in the absence of cytosol and polymerized actin. Thus, septins regulate fluid-phase cargo traffic to lysosomes by promoting macropinosome maturation and fusion with endosomes/lysosomes. PMID:27551056

  14. Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes

    DEFF Research Database (Denmark)

    Gannagé, Monique; Dormann, Dorothee; Albrecht, Randy;

    2009-01-01

    demonstrate that influenza A virus inhibits macroautophagy, a cellular process known to be manipulated by diverse pathogens. Influenza A virus infection causes accumulation of autophagosomes by blocking their fusion with lysosomes, and one viral protein, matrix protein 2, is necessary and sufficient for this...

  15. Phototoxic effects of lysosome-associated genetically encoded photosensitizer KillerRed

    Science.gov (United States)

    Serebrovskaya, Ekaterina O.; Ryumina, Alina P.; Boulina, Maria E.; Shirmanova, Marina V.; Zagaynova, Elena V.; Bogdanova, Ekaterina A.; Lukyanov, Sergey A.; Lukyanov, Konstantin A.

    2014-07-01

    KillerRed is a unique phototoxic red fluorescent protein that can be used to induce local oxidative stress by green-orange light illumination. Here we studied phototoxicity of KillerRed targeted to cytoplasmic surface of lysosomes via fusion with Rab7, a small GTPase that is known to be attached to membranes of late endosomes and lysosomes. It was found that lysosome-associated KillerRed ensures efficient light-induced cell death similar to previously reported mitochondria- and plasma membrane-localized KillerRed. Inhibitory analysis demonstrated that lysosomal cathepsins play an important role in the manifestation of KillerRed-Rab7 phototoxicity. Time-lapse monitoring of cell morphology, membrane integrity, and nuclei shape allowed us to conclude that KillerRed-Rab7-mediated cell death occurs via necrosis at high light intensity or via apoptosis at lower light intensity. Potentially, KillerRed-Rab7 can be used as an optogenetic tool to direct target cell populations to either apoptosis or necrosis.

  16. Lysosome vs. mitochondrion as photosensitizer binding site: how does the tortoise overtake the hare?

    Science.gov (United States)

    Oleinick, Nancy L.; Azizuddin, Kashif; Chiu, Song-mao; Joseph, Sheeba; Rodriguez, Myriam E.; Xue, Liang-yan; Zhang, Ping; Kenney, Malcolm E.; Lam, Minh; Nieminen, Anna-Liisa

    2008-02-01

    Pc 4, a photosensitizer first synthesized at Case Western Reserve University and now in clinical trial at University Hospitals Case Medical Center, has been shown to bind preferentially and with high affinity to mitochondrial and endoplasmic reticulum membranes. Upon photoirradiation of Pc 4-loaded cells, membrane components, especially the anti-apoptotic protein Bcl-2, are photodamaged. Apoptosis, as indicated by activation of caspase-3 and cleavage of poly(ADP-ribose) polymerase, is triggered by the initial photodamage. A series of analogues of Pc 4 has been synthesized containing two axial ligands, one identical to the single ligand of Pc 4 and the other either the same as the Pc 4 ligand or bearing one or more hydroxyl groups. The hydroxyl-bearing axial ligands reduce the aggregation of the Pc in polar environments and direct the Pc's to lysosomes. Photoirradiation of cells that have taken up these Pc's into their lysosomes is 4-6 times more efficient at killing cells, as defined by loss of clonogenicity, than with Pc 4. Whereas PDT with Pc 4 photodamages Bcl-2 and Bcl-xL over the same dose response range as for cell killing, PDT with Pc 181 or the other lysosome-localizing Pc's causes much less photodamage to Bcl-2 relative to cell killing. Furthermore, in the case of the lysosome-bound Pc's, little or no caspase-3-dependent apoptosis is observed.

  17. Lysosome triggered near-infrared fluorescence imaging of cellular trafficking processes in real time

    Science.gov (United States)

    Grossi, Marco; Morgunova, Marina; Cheung, Shane; Scholz, Dimitri; Conroy, Emer; Terrile, Marta; Panarella, Angela; Simpson, Jeremy C.; Gallagher, William M.; O'Shea, Donal F.

    2016-01-01

    Bioresponsive NIR-fluorophores offer the possibility for continual visualization of dynamic cellular processes with added potential for direct translation to in vivo imaging. Here we show the design, synthesis and lysosome-responsive emission properties of a new NIR fluorophore. The NIR fluorescent probe design differs from typical amine functionalized lysosomotropic stains with off/on fluorescence switching controlled by a reversible phenol/phenolate interconversion. Emission from the probe is shown to be highly selective for the lysosomes in co-imaging experiments using a HeLa cell line expressing the lysosomal-associated membrane protein 1 fused to green fluorescent protein. The responsive probe is capable of real-time continuous imaging of fundamental cellular processes such as endocytosis, lysosomal trafficking and efflux in 3D and 4D. The advantage of the NIR emission allows for direct translation to in vivo tumour imaging, which is successfully demonstrated using an MDA-MB-231 subcutaneous tumour model. This bioresponsive NIR fluorophore offers significant potential for use in live cellular and in vivo imaging, for which currently there is a deficit of suitable molecular fluorescent tools. PMID:26927507

  18. Sorting Nexin 11 Regulates Lysosomal Degradation of Plasma Membrane TRPV3.

    Science.gov (United States)

    Li, Caiyue; Ma, Wenbo; Yin, Shikui; Liang, Xin; Shu, Xiaodong; Pei, Duanqing; Egan, Terrance M; Huang, Jufang; Pan, Aihua; Li, Zhiyuan

    2016-05-01

    The trafficking of ion channels to/from the plasma membrane is considered an important mechanism for cellular activity and an interesting approach for disease therapies. The transient receptor potential vanilloid 3 (TRPV3) ion channel is widely expressed in skin keratinocytes, and its trafficking mechanism to/from the plasma membrane is unknown. Here, we report that the vesicular trafficking protein sorting nexin 11 (SNX11) downregulates the level of the TRPV3 plasma membrane protein. Overexpression of SNX11 causes a decrease in the level of TRPV3 current and TRPV3 plasma membrane protein in TRPV3-transfected HEK293T cells. Subcellular localizations and western blots indicate that SNX11 interacts with TRPV3 and targets it to lysosomes for degradation, which is blocked by the lysosomal inhibitors chloroquine and leupeptin. Both TRPV3 and SNX11 are highly expressed in HaCaT cells. We show that TRPV3 agonists-activated Ca(2+) influxes and the level of native TRPV3 total protein in HaCaT cells are decreased by overexpression of SNX11 and increased by knockdown of SNX11. Our findings reveal that SNX11 promotes the trafficking of TRPV3 from the plasma membrane to lysosomes for degradation via protein-protein interactions, which demonstrates a previously unknown function of SNX11 as a regulator of TRPV3 trafficking from the plasma membrane to lysosomes. PMID:26818531

  19. Melanoma cell lysosome secretory burst neutralizes the CTL-mediated cytotoxicity at the lytic synapse

    Science.gov (United States)

    Khazen, Roxana; Müller, Sabina; Gaudenzio, Nicolas; Espinosa, Eric; Puissegur, Marie-Pierre; Valitutti, Salvatore

    2016-01-01

    Human melanoma cells express various tumour antigens that are recognized by CD8+ cytotoxic T lymphocytes (CTLs) and elicit tumour-specific responses in vivo. However, natural and therapeutically enhanced CTL responses in melanoma patients are of limited efficacy. The mechanisms underlying CTL effector phase failure when facing melanomas are still largely elusive. Here we show that, on conjugation with CTL, human melanoma cells undergo an active late endosome/lysosome trafficking, which is intensified at the lytic synapse and is paralleled by cathepsin-mediated perforin degradation and deficient granzyme B penetration. Abortion of SNAP-23-dependent lysosomal trafficking, pH perturbation or impairment of lysosomal proteolytic activity restores susceptibility to CTL attack. Inside the arsenal of melanoma cell strategies to escape immune surveillance, we identify a self-defence mechanism based on exacerbated lysosome secretion and perforin degradation at the lytic synapse. Interfering with this synaptic self-defence mechanism might be useful in potentiating CTL-mediated therapies in melanoma patients. PMID:26940455

  20. Full turbine bypass system for nuclear power plant

    International Nuclear Information System (INIS)

    With the increase in the weight of electric power network, vigilant watch is kept on the toughness of nuclear power plants against disturbances on the side of the network. Basically speaking, it is desirable that reactors continue operation even in case the station is removed from the network due to an outside disturbance. In order to meet this requirement, the application of a full-load turbine bypass system for 1,100-MW-class nuclear power plants has been planned; the development of system components was advanced; the reliability of the full-load turbine bypass system was confirmed through simulation tests. The process of development is outlined here. (author)

  1. Lower leg electrical impedance after distal bypass surgery

    DEFF Research Database (Denmark)

    Belanger, G K; Bolbjerg, M L; Heegaard, N H; Wiik, A; Schroeder, T V; Secher, N H

    1998-01-01

    Electrical impedance was determined in 13 patients following distal bypass surgery to evaluate lower leg oedema as reflected by its circumference. Tissue injury was assessed by the plasma concentration of muscle enzymes. After surgery, the volume of the control lower leg increased from 1250 (816...... concentration of troponin I (n = 8). In conclusion, tissue injury was reflected by increases in muscle enzymes in plasma. We found an inverse correlation between lower leg electrical impedance and volume, but the deviation in electrical impedance was approximately twice that of the leg volume. Electrical...... impedance appears to be a useful method for the evaluation of lower leg oedema after distal bypass surgery....

  2. Divertor bypass in the Alcator C-Mod tokamak

    Science.gov (United States)

    Pitcher, C. S.; LaBombard, B.; Danforth, R.; Pina, W.; Silveira, M.; Parkin, B.

    2001-01-01

    The Alcator C-Mod divertor bypass has for the first time allowed in situ variations to the mechanical baffle design in a tokamak. The design utilizes small coils which interact with the ambient magnetic field inside the vessel to provide the torque required to control small flaps of a Venetian blind geometry. Plasma physics experiments with the bypass have revealed the importance of the divertor baffling to maintain high divertor gas pressures. These experiments have also indicated that the divertor baffling has only a limited effect on the main chamber pressure in C-Mod.

  3. Surgical cartographic navigation system for endoscopic bypass grafting.

    Science.gov (United States)

    Voruganti, Arun; Mayoral, Rafael; Jacobs, Stephan; Grunert, Ronny; Moeckel, Hendrik; Korb, Werner

    2007-01-01

    Endoscopic bypass grafting with the da Vinci system is still challenging and needs high level of experience and skill of the surgeon. Therefore, it is necessary to support the surgeon with enhanced vision and augmented reality. The augmentation of the patient model into the view of the endoscope is a direct approach to enhance support. The results of a preclinical study are shown in this paper. The method applied is suitable for endoscopic bypass grafting and in general applicable to minimal invasive surgery. The system was designed as an open architecture to facilitate easy transfer of the methodology into other surgical domain applications. PMID:18002243

  4. Managing the Inflammatory Response after Cardiopulmonary Bypass : Review of the Studies in Animal Models

    NARCIS (Netherlands)

    Liguori, Gabriel Romero; Kanas, Alexandre Fligelman; Moreira, Luiz Felipe Pinho

    2014-01-01

    OBJECTIVE: To review studies performed in animal models that evaluated therapeutic interventions to inflammatory response and microcirculatory changes after cardiopulmonary bypass. METHODS: It was used the search strategy ("Cardiopulmonary Bypass" (MeSH)) and ("Microcirculation" (MeSH) or "Inflammat

  5. Contrast-enhanced cardiac MRI before coronary artery bypass surgery: impact of myocardial scar extent on bypass flow

    International Nuclear Information System (INIS)

    The aim of the study was to relate the extent of myocardial late gadolinium enhancement (LGE) in cardiac MRI to intraoperative graft flow in patients undergoing coronary artery bypass graft (CABG) surgery. Thirty-three CAD patients underwent LGE MRI before surgery using an inversion-recovery GRE sequence (turboFLASH). Intraoperative graft flow in Doppler ultrasonography was compared with the scar extent in each coronary vessel territory. One hundred and fourteen grafts were established supplying 86 of the 99 vessel territories. A significant negative correlation was found between scar extent and graft flow (r = -0.4, p -1; p < 0.0001). In summary, the extent of myocardial scar as defined by contrast-enhanced MRI predicts coronary bypass graft flow. Beyond the probability of functional recovery, preoperative MRI might add value to surgery planning by predicting midterm bypass graft patency. (orig.)

  6. Digestion of thyroglobulin with purified thyroid lysosomes: preferential release of iodoamino acids

    International Nuclear Information System (INIS)

    [131I]Thyroglobulin [( 131I]Tg), prepared by either enzymatic iodination of human goiter Tg in vitro or isolation from the thyroids of rats previously injected with 131I, was digested with a solubilized enzyme mixture prepared from purified hog thyroid lysosomes. The digestion was performed at 37 C for 24 h under nitrogen at pH 5.0 in the presence of 4 mM dithiothreitol. Under these conditions the release of free [131I] iodoamino acids (MIT, DIT, T4, and T3) was quantitatively very similar to that observed with a standard pronase digestion procedure. To determine whether other amino acids in Tg were released as quantitatively as the iodoamino acids, free amino acids in the lysosomal digest were measured, and total free amino acid release was compared with a similar analysis performed after digestion of [131I]Tg with 6 N HCl. Total amino acid release was much less complete than iodoamino acid release, indicating preferential release of iodoamino acids from Tg by lysosomal digestion. Analysis of the lysosomal digest by HPLC on a size exclusion column indicated that Tg was degraded to peptides with a mol wt less than 4000. Assuming that the in vitro lysosomal digestion system represents a valid model for the physiological proteolytic system that degrades Tg, the results of the present study suggest that a substantial portion of the Tg in the thyroid is not degraded to free amino acids and that peptide fragments of Tg are normally present in the thyroid. In such a case, the fate and possible physiological activity of these fragments require further elucidation

  7. Campylobacter jejuni cell lysates differently target mitochondria and lysosomes on HeLa cells.

    Science.gov (United States)

    Canonico, B; Campana, R; Luchetti, F; Arcangeletti, M; Betti, M; Cesarini, E; Ciacci, C; Vittoria, E; Galli, L; Papa, S; Baffone, W

    2014-08-01

    Campylobacter jejuni is the most common cause of bacterial gastroenteritis in humans. The synthesis of cytolethal distending toxin appears essential in the infection process. In this work we evaluated the sequence of lethal events in HeLa cells exposed to cell lysates of two distinct strains, C. jejuni ATCC 33291 and C. jejuni ISS3. C. jejuni cell lysates (CCLys) were added to HeLa cell monolayers which were analysed to detect DNA content, death features, bcl-2 and p53 status, mitochondria/lysosomes network and finally, CD54 and CD59 alterations, compared to cell lysates of C. jejuni 11168H cdtA mutant. We found mitochondria and lysosomes differently targeted by these bacterial lysates. Death, consistent with apoptosis for C. jejuni ATCC 33291 lysate, occurred in a slow way (>48 h); concomitantly HeLa cells increase their endolysosomal compartment, as a consequence of toxin internalization besides a simultaneous and partial lysosomal destabilization. C. jejuni CCLys induces death in HeLa cells mainly via a caspase-dependent mechanism although a p53 lysosomal pathway (also caspase-independent) seems to appear in addition. In C. jejuni ISS3-treated cells, the p53-mediated oxidative degradation of mitochondrial components seems to be lost, inducing the deepest lysosomal alterations. Furthermore, CD59 considerably decreases, suggesting both a degradation or internalisation pathway. CCLys-treated HeLa cells increase CD54 expression on their surface, because of the action of lysate as its double feature of toxin and bacterial peptide. In conclusion, we revealed that C. jejuni CCLys-treated HeLa cells displayed different features, depending on the particular strain. PMID:24880782

  8. The GATOR2 Component Wdr24 Regulates TORC1 Activity and Lysosome Function

    Science.gov (United States)

    Cai, Weili; Wei, Youheng; Jarnik, Michal; Reich, John; Lilly, Mary A.

    2016-01-01

    TORC1 is a master regulator of metabolism in eukaryotes that responds to multiple upstream signaling pathways. The GATOR complex is a newly defined upstream regulator of TORC1 that contains two sub-complexes, GATOR1, which inhibits TORC1 activity in response to amino acid starvation and GATOR2, which opposes the activity of GATOR1. While the GATOR1 complex has been implicated in a wide array of human pathologies including cancer and hereditary forms of epilepsy, the in vivo relevance of the GATOR2 complex remains poorly understood in metazoans. Here we define the in vivo role of the GATOR2 component Wdr24 in Drosophila. Using a combination of genetic, biochemical, and cell biological techniques we demonstrate that Wdr24 has both TORC1 dependent and independent functions in the regulation of cellular metabolism. Through the characterization of a null allele, we show that Wdr24 is a critical effector of the GATOR2 complex that promotes the robust activation of TORC1 and cellular growth in a broad array of Drosophila tissues. Additionally, epistasis analysis between wdr24 and genes that encode components of the GATOR1 complex revealed that Wdr24 has a second critical function, the TORC1 independent regulation of lysosome dynamics and autophagic flux. Notably, we find that two additional members of the GATOR2 complex, Mio and Seh1, also have a TORC1 independent role in the regulation of lysosome function. These findings represent a surprising and previously unrecognized function of GATOR2 complex components in the regulation of lysosomes. Consistent with our findings in Drosophila, through the characterization of a wdr24-/- knockout HeLa cell line we determined that Wdr24 promotes lysosome acidification and autophagic flux in mammalian cells. Taken together our data support the model that Wdr24 is a key effector of the GATOR2 complex, required for both TORC1 activation and the TORC1 independent regulation of lysosomes. PMID:27166823

  9. Secretory Lysosomes and Diseases%分泌型溶酶体与疾病

    Institute of Scientific and Technical Information of China (English)

    王俊伟; 周逸蒋; 竺可青

    2011-01-01

    The classical lysosomes contain a variety of hydrolytic enzymes and lipase to decompose proteins and membrane structures and considered as the cellular terminus digestive organelle. The secretory lysosomes are dicovered in certain cell types with the functions of both intracellular digestion and regulatory exocytosis. Rab27a plays a central role in the regulation of the exocytosis of lysosomal proteins. The exocytosis-related gene mutations, particularly in the regulatory proteins, can cause a variety of immune deficiency phenotypes. The ATP released from the astrocytes lysosomes can be used as the transmission signal between neurons and glial cells. The secretory lysosomes also get involved in the invasion and metastasis of cancer cells.%传统意义的溶酶体被认为是细胞内消化途径的终点站,是含有多种水解酶和脂肪酶的细胞器,可以消化蛋白以及膜结构等.某些特殊类型的细胞中存在分泌型溶酶体,它既有胞内消化的功能,又有调节分泌功能.在调节溶酶体胞吐的蛋白质中,Rab27a蛋白起到了核心作用.相关基因特别是控制胞吐的基因突变,可造成各种免疫缺陷综合症.星型胶质细胞溶酶体胞吐释放ATP,在神经元和胶质细胞之间传递信息.分泌型溶酶体还参与了肿瘤细胞浸润、转移的过程.

  10. Natural headland sand bypassing; towards identifying and modelling the mechanisms and processes

    OpenAIRE

    Bin Ab Razak, M.S.

    2015-01-01

    Natural headland sand bypassing: Towards identifying and modelling the mechanisms and processes contributes to the understanding of the mechanisms and processes of sand bypassing in artificial and non-artificial coastal environments through a numerical modelling study. Sand bypassing processes in general are a relevant but poorly understood topic. This study attempts to link the theory and physics of sand bypassing processes which is significantly important in definition of coastal sedimentar...

  11. Coronary artery bypass graft in a patient with Fabry's disease.

    Science.gov (United States)

    Osada, Hiroaki; Kanemitsu, Naoki; Kyogoku, Masahisa

    2016-01-01

    Fabry's disease is a lysosomal storage disease characterized by intracellular accumulation of ceramide trihexoside resulting from alpha-galactosidase A deficiency. While the heart is often involved, coronary artery disease and its management in Fabry's disease patients are extremely rare clinical entities. We report a case of a 72-year-old man with left main disease in Fabry's disease with special consideration of the arterial wall pathology. PMID:27131517

  12. 21 CFR 870.4370 - Roller-type cardiopulmonary bypass blood pump.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Roller-type cardiopulmonary bypass blood pump. 870... Roller-type cardiopulmonary bypass blood pump. (a) Identification. A roller-type cardiopulmonary bypass blood pump is a device that uses a revolving roller mechanism to pump the blood through...

  13. 21 CFR 870.4360 - Nonroller-type cardiopulmonary bypass blood pump.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nonroller-type cardiopulmonary bypass blood pump... Nonroller-type cardiopulmonary bypass blood pump. (a) Identification. A nonroller-type cardiopulmonary bypass blood pump is a device that uses a method other than revolving rollers to pump the blood...

  14. 21 CFR 870.4410 - Cardiopulmonary bypass in-line blood gas sensor.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass in-line blood gas sensor... Cardiopulmonary bypass in-line blood gas sensor. (a) Identification. A cardiopulmonary bypass in-line blood gas sensor is a transducer that measures the level of gases in the blood. (b) Classification. Class...

  15. 21 CFR 870.4260 - Cardiopulmonary bypass arterial line blood filter.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass arterial line blood filter... Cardiopulmonary bypass arterial line blood filter. (a) Identification. A cardiopulmonary bypass arterial line blood filter is a device used as part of a gas exchange (oxygenator) system to filter...

  16. First-Generation Antipsychotic Haloperidol Alters the Functionality of the Late Endosomal/Lysosomal Compartment in Vitro

    Science.gov (United States)

    Canfrán-Duque, Alberto; Barrio, Luis C.; Lerma, Milagros; de la Peña, Gema; Serna, Jorge; Pastor, Oscar; Lasunción, Miguel A.; Busto, Rebeca

    2016-01-01

    First- and second-generation antipsychotics (FGAs and SGAs, respectively), have the ability to inhibit cholesterol biosynthesis and also to interrupt the intracellular cholesterol trafficking, interfering with low-density lipoprotein (LDL)-derived cholesterol egress from late endosomes/lysosomes. In the present work, we examined the effects of FGA haloperidol on the functionality of late endosomes/lysosomes in vitro. In HepG2 hepatocarcinoma cells incubated in the presence of 1,1′-dioctadecyl-3,3,3,3′-tetramethylindocarbocyanineperchlorate (DiI)-LDL, treatment with haloperidol caused the enlargement of organelles positive for late endosome markers lysosome-associated membrane protein 2 (LAMP-2) and LBPA (lysobisphosphatidic acid), which also showed increased content of both free-cholesterol and DiI derived from LDL. This indicates the accumulation of LDL-lipids in the late endosomal/lysosomal compartment caused by haloperidol. In contrast, LDL traffic through early endosomes and the Golgi apparatus appeared to be unaffected by the antipsychotic as the distribution of both early endosome antigen 1 (EEA1) and coatomer subunit β (β-COP) were not perturbed. Notably, treatment with haloperidol significantly increased the lysosomal pH and decreased the activities of lysosomal protease and β-d-galactosidase in a dose-dependent manner. We conclude that the alkalinization of the lysosomes’ internal milieu induced by haloperidol affects lysosomal functionality. PMID:26999125

  17. Lysosome-associated membrane proteins (LAMPs) regulate intracellular positioning of mitochondria in MC3T3-E1 cells.

    Science.gov (United States)

    Rajapakshe, Anupama R; Podyma-Inoue, Katarzyna A; Terasawa, Kazue; Hasegawa, Katsuya; Namba, Toshimitsu; Kumei, Yasuhiro; Yanagishita, Masaki; Hara-Yokoyama, Miki

    2015-02-01

    The intracellular positioning of both lysosomes and mitochondria meets the requirements of degradation and energy supply, which are respectively the two major functions for cellular maintenance. The positioning of both lysosomes and mitochondria is apparently affected by the nutrient status of the cells. However, the mechanism coordinating the positioning of the organelles has not been sufficiently elucidated. Lysosome-associated membrane proteins-1 and -2 (LAMP-1 and LAMP-2) are highly glycosylated proteins that are abundant in lysosomal membranes. In the present study, we demonstrated that the siRNA-mediated downregulation of LAMP-1, LAMP-2 or their combination enhanced the perinuclear localization of mitochondria, in the pre-osteoblastic cell line MC3T3-E1. On the other hand, in the osteocytic cell line MLO-Y4, in which both the lysosomes and mitochondria originally accumulate in the perinuclear region and mitochondria also fill dendrites, the effect of siRNA of LAMP-1 or LAMP-2 was barely observed. LAMPs are not directly associated with mitochondria, and there do not seem to be any accessory molecules commonly required to recruit the motor proteins to lysosomes and mitochondria. Our results suggest that LAMPs may regulate the positioning of lysosomes and mitochondria. A possible mechanism involving the indirect and context-dependent action of LAMPs is discussed. PMID:25246127

  18. First-Generation Antipsychotic Haloperidol Alters the Functionality of the Late Endosomal/Lysosomal Compartment in Vitro

    Directory of Open Access Journals (Sweden)

    Alberto Canfrán-Duque

    2016-03-01

    Full Text Available First- and second-generation antipsychotics (FGAs and SGAs, respectively, have the ability to inhibit cholesterol biosynthesis and also to interrupt the intracellular cholesterol trafficking, interfering with low-density lipoprotein (LDL-derived cholesterol egress from late endosomes/lysosomes. In the present work, we examined the effects of FGA haloperidol on the functionality of late endosomes/lysosomes in vitro. In HepG2 hepatocarcinoma cells incubated in the presence of 1,1′-dioctadecyl-3,3,3,3′-tetramethylindocarbocyanineperchlorate (DiI-LDL, treatment with haloperidol caused the enlargement of organelles positive for late endosome markers lysosome-associated membrane protein 2 (LAMP-2 and LBPA (lysobisphosphatidic acid, which also showed increased content of both free-cholesterol and DiI derived from LDL. This indicates the accumulation of LDL-lipids in the late endosomal/lysosomal compartment caused by haloperidol. In contrast, LDL traffic through early endosomes and the Golgi apparatus appeared to be unaffected by the antipsychotic as the distribution of both early endosome antigen 1 (EEA1 and coatomer subunit β (β-COP were not perturbed. Notably, treatment with haloperidol significantly increased the lysosomal pH and decreased the activities of lysosomal protease and β-d-galactosidase in a dose-dependent manner. We conclude that the alkalinization of the lysosomes’ internal milieu induced by haloperidol affects lysosomal functionality.

  19. Numerical modelling of bypass transition in turbine cascades

    Czech Academy of Sciences Publication Activity Database

    Louda, P.; Příhoda, Jaromír; Kozel, K.

    Budapest: Budapest University of Technology and Economics, 2015. [International Conference on Fluid Flow Technologies /16./. Budapest (HU), 01.09.2015-04.09.2015] R&D Projects: GA ČR GAP101/12/1271 Institutional support: RVO:61388998 Keywords : 3D turbine cascade * bypass transition model * EARSM turbulence model Subject RIV: BK - Fluid Dynamics

  20. Emergency bypass post percutaneous atrial ablation: a case report.

    LENUS (Irish Health Repository)

    Hargrove, M

    2010-11-01

    A 34-year-old male undergoing percutaneous atrial ablation procedure for paroxysmal fibrillation required emergency sternotomy for cardiac tamponade. The patient had been anticoagulated and had received plavix and aspirin prior to and during the ablation procedure. Seven units of red cell concentrate had been transfused in the cardiac catherisation laboratory. On arrival in theatre, the patient was hypotensive, but was awake on induction of anaesthesia. No recordable blood pressure with non-invasive monitoring was observed. A sternotomy was immediately performed and, on evacuation of the pericardium, a bleeding site was not visible. The patient was commenced on cardiopulmonary bypass. Bleeding site was identified and the defect closed. The patient was weaned from cardiopulmonary bypass with minimal inotropic support and made an uneventful recovery. Bypass time was 38 minutes. A literature review showed a 1% incidence of post-ablation bleeding(1). The incidence of reverting to bypass for such an event has not been reported previously. During these procedures, it might be wise to have the cardiothoracic team notified while atrial ablation procedures are being performed in the cardiac catheterization laboratory.

  1. Advances in Weight Loss Surgery: The Fully Robotic Gastric Bypass

    Medline Plus

    Full Text Available ... doing robotic gastric bypasses, we would do a hybrid. We would do part of it laparoscopically and ... if they’re using the robot, it’s a hybrid procedure. But now we’re doing them fully ...

  2. Advances in Weight Loss Surgery: The Fully Robotic Gastric Bypass

    Medline Plus

    Full Text Available ... that we see are those patients that have diabetes mellitus type II, and that’s diabetes associated with obesity. And there’s no question that ... The other question is, “Does gastric bypass eliminate diabetes and does the sleeve?” It’s not the type of -- it’s not actually the type of procedure ...

  3. Cycling firing method for bypass operation of bridge converters

    Science.gov (United States)

    Zabar, Zivan

    1982-01-01

    The bridge converter comprises a number of switching elements and an electronic logic system which regulated the electric power levels by controlling the firing, i.e., the initiation of the conduction period of the switching elements. Cyclic firing of said elements allows the direct current to bypass the alternating current system with high power factor and negligible losses.

  4. Thermal Reliability Study of Bypass Diodes in Photovoltaic Modules (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.; Wohlgemuth, J.; Kurtz, S.

    2013-05-01

    This paper presents the result of high-temperature durability and thermal cycling testing and analysis for the selected diodes to study the detail of the thermal design and relative long-term reliability of the bypass diodes used to limit the detrimental effects of module hot-spot susceptibility.

  5. A device for a noninvasive evaluation of coronary bypass grafts.

    Science.gov (United States)

    McInerney, J J; Lamser, D G; Herr, M D

    1994-01-01

    A new device is presented for evaluating the patency of coronary bypass grafts. Bypass grafts are located within the chest cavity using a Compton backscatter imaging (CBI) technique that creates frontal plane tomographic images. The tomographic image pixels are mapped into computer memory and displayed. A display pointer is used to mark the position of the bypass graft. The computer uses that information to subsequently position a radiation detector, such that it "looks" at the location of the bypass graft within the closed chest. The patency of the graft is then evaluated by monitoring an X-ray induced iodine fluorescence transient in the graft, subsequent to a peripheral intravenous contrast injection. This imaging and graft evaluation device is relatively inexpensive and its application does not require cutdowns or catheterization. The associated radiation dose is 1/10 to 1/50 of that associated with alternative X-ray graft patency evaluation techniques. Preliminary testing has been performed on mechanical and animal models. PMID:18218544

  6. Integral bypass diodes in an amorphous silicon alloy photovoltaic module

    Science.gov (United States)

    Hanak, J. J.; Flaisher, H.

    1991-01-01

    Thin-film, tandem-junction, amorphous silicon (a-Si) photovoltaic modules were constructed in which a part of the a-Si alloy cell material is used to form bypass protection diodes. This integral design circumvents the need for incorporating external, conventional diodes, thus simplifying the manufacturing process and reducing module weight.

  7. Pathophysiology and treatment of edema following femoropopliteal bypass surgery

    NARCIS (Netherlands)

    te Slaa, A.; Dolmans, D. E. J. G. J.; Ho, G. H.; Moll, F. L.; van der Laan, L.

    2012-01-01

    Substantial lower-limb edema affects the majority of patients who undergo peripheral bypass surgery. Edema has impairing effects on the microvascular and the macrovascular circulation, causes discomfort and might delay the rehabilitation process of the patient. However, the pathophysiology of this e

  8. Clinical benefit of steroid use in patients undergoing cardiopulmonary bypass

    DEFF Research Database (Denmark)

    Whitlock, Richard P; Chan, Simon; Devereaux, P J;

    2008-01-01

    We sought to establish the efficacy and safety of prophylactic steroids in adult patients undergoing cardiopulmonary bypass (CPB). We performed a meta-analysis of randomized trials reporting the effects of prophylactic steroids on clinical outcomes after CPB. Outcomes examined were mortality, myo...

  9. Turbulent spots detection during boundary layer by-pass transition

    Czech Academy of Sciences Publication Activity Database

    Jonáš, Pavel; Elsner, W.; Mazur, Oton; Uruba, Václav; Wysocki, M.

    -, č. 80 (2009), s. 16-19. ISSN N R&D Projects: GA AV ČR(CZ) IAA200760614; GA MŠk MEB050810 Institutional research plan: CEZ:AV0Z20760514 Keywords : turbulent spot * boundary layer * by-pass transition * turbulent spot detection Subject RIV: BK - Fluid Dynamics

  10. Bypassing of a barrier by dissociated and superlattice dislocations

    DEFF Research Database (Denmark)

    Bhushan, Karihaloo

    1975-01-01

    Very simple procedures are used to calculate the upper and lower bounds for the applied stress required for the leading extended (superlattice) dislocation in a group of n coplanar screw dislocations of like sign with Burgers vector b to bypass a noncoplanar perfect screw dislocation with Burgers...... vector mb (m...

  11. A device for a noninvasive evaluation of coronary bypass grafts

    International Nuclear Information System (INIS)

    A new device is presented for evaluating the patency of coronary bypass grafts. Bypass grafts are located within the chest cavity using a Compton Backscatter Imaging (CBI) technique that creates frontal plane tomographic images. The tomographic image pixels are mapped into computer memory and displayed. A display pointer is used to mark the position of the bypass graft. The computer uses that information to subsequently position a radiation detector, such that it looks at the location of the bypass graft within the closed chest. The patency of the graft is then evaluated by monitoring an X-ray induced iodine fluorescence transient in the graft, subsequent to a peripheral intravenous contrast injection. This imaging and graft evaluation device is relatively inexpensive and its application does not require cutdowns or catheterization. The associated radiation dose is 1/10 to 1/50 of that associated with alternative X-ray graft patency evaluation techniques. Preliminary testing has been performed on mechanical and animal models

  12. Simulation and Analysis of the bypass Influences on Tire Noise

    Directory of Open Access Journals (Sweden)

    Haichao Zhou

    2014-01-01

    Full Text Available It is a well-known scientific fact that circumferential groove exists great influence on tire noise. Increasing the void can help the rubber blocks to penetrate faster into the underlying water film and improve anti-skid performance, but which gives way to an increased air pumping noise. Therefore, the structure parameters of circumferential grooves play large influence on tire performance. The goal of this present study is using the bypass to change the grooves design and analysis the influence of bypass on tire noise and offer the tire designer a better approach to improve tire comfort ability. By virtual of numerical simulation method, the influence of bypass structure parameters, such as the width of junction pipe, the volume of resonance cavity, on tire noise were analyzed in this study. The result shows that the circumferential grooves with bypass not only bring down pipe resonance noise of circumferential grooves but also decrease far-field radiated noise of tire. Besides, with a certain resonant cavity, the width of junction pipeline between the circumferential grooves and the resonance cavity plays an important role in the improvement of tire noise. Simulation results are in reasonable agreement with experimental results.

  13. Robot-Assisted Minimally Invasive Coronary Artery Bypass Surgery Operation

    Medline Plus

    Full Text Available ... PINNACLEHEALTH HARRISBURG HOSPITAL HARRISBURG, PA 00:00:08 JOHN PENNOCK, MD: Welcome this evening to PinnacleHealth Harrisburg ... artery bypass surgery operation. My name is Dr. John Pennock. I'm going to introduce you shortly ...

  14. NLRP3 inflammasome signaling is activated by low-level lysosome disruption but inhibited by extensive lysosome disruption: roles for K+ efflux and Ca2+ influx.

    Science.gov (United States)

    Katsnelson, Michael A; Lozada-Soto, Kristen M; Russo, Hana M; Miller, Barbara A; Dubyak, George R

    2016-07-01

    Nucleotide-binding domain, leucine-rich-repeat-containing family, pyrin domain-containing 3 (NLRP3) is a cytosolic protein that nucleates assembly of inflammasome signaling platforms, which facilitate caspase-1-mediated IL-1β release and other inflammatory responses in myeloid leukocytes. NLRP3 inflammasomes are assembled in response to multiple pathogen- or environmental stress-induced changes in basic cell physiology, including the destabilization of lysosome integrity and activation of K(+)-permeable channels/transporters in the plasma membrane (PM). However, the quantitative relationships between lysosome membrane permeabilization (LMP), induction of increased PM K(+) permeability, and activation of NLRP3 signaling are incompletely characterized. We used Leu-Leu-O-methyl ester (LLME), a soluble lysosomotropic agent, to quantitatively track the kinetics and extent of LMP in relation to NLRP3 inflammasome signaling responses (ASC oligomerization, caspase-1 activation, IL-1β release) and PM cation fluxes in murine bone marrow-derived dendritic cells (BMDCs). Treatment of BMDCs with submillimolar (≤1 mM) LLME induced slower and partial increases in LMP that correlated with robust NLRP3 inflammasome activation and K(+) efflux. In contrast, supramillimolar (≥2 mM) LLME elicited extremely rapid and complete collapse of lysosome integrity that was correlated with suppression of inflammasome signaling. Supramillimolar LLME also induced dominant negative effects on inflammasome activation by the canonical NLRP3 agonist nigericin; this inhibition correlated with an increase in NLRP3 ubiquitination. LMP elicited rapid BMDC death by both inflammasome-dependent pyroptosis and inflammasome-independent necrosis. LMP also triggered Ca(2+) influx, which attenuated LLME-stimulated NLRP3 inflammasome signaling but potentiated LLME-induced necrosis. Taken together, these studies reveal a previously unappreciated signaling network that defines the coupling between LMP, changes

  15. Invariant Natural Killer T cells are not affected by lysosomal storage in patients with Niemann-Pick disease type C

    OpenAIRE

    Speak, Anneliese O; Platt, Nicholas; Salio, Mariolina; te Vruchte, Danielle Taylor; Smith, David A.; Shepherd, Dawn; Veerapen, Natacha; Besra, Gurdyal; Yanjanin, Nicole M.; Simmons, Louise; Imrie, Jackie; Wraith, James E.; Lachmann, Robin; Hartung, Ralf; Runz, Heiko

    2012-01-01

    Invariant Natural Killer T (iNKT) cells are a specialised subset of T cells that are restricted to the MHC class I like molecule, CD1d. The ligands for iNKT cells are lipids, with the canonical superagonist being α-galactosylceramide, a non-mammalian glycosphingolipid. Trafficking of CD1d through the lysosome is required for the development of murine iNKT cells. Niemann-Pick type C (NPC) disease is a lysosomal storage disorder caused by dysfunction in either of two lysosomal proteins, NPC1 or...

  16. Reoperations for occluded arterial bypasses in the lower limbs

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Background We reviewed the outcomes of reoperations for 29 patients (30 limbs) who had undergone occluded arterial bypass in the lower limbs from May 1996 to September 2005. Methods The 30 lower limbs of the 29 patients with arteriosclerotic obstruction received 44 reoperations, including thrombectomy alone (group T, 27) and inflow or outflow reconstruction plus thrombectomy (group C, 17). Among the 17 operations in group C, 17.6% (3/17) were inflow reconstructions involving the axillary-femoral (1), aorta-iliac (1) and aorta-femoral (1) arteries, and 76.4% (13/17) outflow reconstructions involving the femoral-popliteal bypass-tibial (8), femoral-tibial (1), femoral-popliteal bypass-popliteal arteries below the knee (2), and the femoral-popliteal bypass-tibial-peroneal trunk (2). One patient (1 limb) underwent both inflow and outflow reconstructions with an iliac arterial stent and a graft-popliteal anastomosis patch. Polytetrafluoroethylene (PTFE) grafts were used in the inflow or outflow reconstructions abve the knee. Autovenous grafts or autovenously combined PTFE grafts were used in the outflow reconstructions below the knee. Results The percentages of Fontaine stage III and IV before primary operation and reoperation were 60% (18/30) and 86.7% (26/30), respectively (P0.05). Among 42 reoperations, 19 failed within 1 month in groups T (16) and C (3) (P0.05). The rate of limb salvage was 64.29% (18/28). Conclusions The percentages of Fontaine stage III and IV before reoperation may be much higher than those before primary operation. Thrombectomy plus inflow/outflow reconstruction creates patency better than thrombectomy alone for re-occluded bypass.

  17. Silymarin and vitamin E reduce amiodarone-induced lysosomal phospholipidosis in rats

    International Nuclear Information System (INIS)

    Several antioxidants have been shown to reduce lysosomal phospholipidosis, which is a potential mechanism of amiodarone toxicity, and prevent amiodarone toxicity by antioxidant and/or non-antioxidant mechanisms. The aim of this study was to test whether the co-administration of two structurally different antioxidants vitamin E and silymarin with amiodarone can reduce amiodarone-induced lysosomal phospholipidosis, and if yes, by reducing the tissue concentration of amiodarone and desethylamiodarone or by their antioxidant action. To this end, male Fischer 344 rats were treated by gavage once a day for 3 weeks and randomly assigned to the following four experimental groups: 1, control; 2, amiodarone (150 mg/(kg per day)); 3, amiodarone (150 mg/(kg per day)) plus vitamin E (100 mg/(kg per day)); 4, amiodarone (150 mg/(kg per day)) plus silymarin (60 mg/(kg per day)) treated groups. Total plasma phospholipid (PL), liver-conjugated diene, thiobarbituric acid reactive substances (TBARSs), amiodarone and desethylamiodarone concentrations were determined and the extent of lysosomal phospholipidosis in the liver was estimated by a semi-quantitative electron microscopic method. Amiodarone treatment increased significantly the liver-conjugated diene (P<0.001), TBARS (P=0.012), plasma total PL (P<0.001) concentrations compared with control. Antioxidants combined with amiodarone significantly decreased the liver-conjugated diene (P<0.001 for both), TBARS (P=0.016 for vitamin E, P=0.053 borderline for silymarin) and plasma total PL (P=0.058 borderline for vitamin E, P<0.01 for silymarin) concentrations compared with amiodarone treatment alone. Silymarin significantly (P=0.021) reduced liver amiodarone, but only tended to decrease desethylamiodarone concentration; however, vitamin E failed to do so. Amiodarone treatment increased lysosomal phospholipidosis (P<0.001) estimated by semi-quantitative electron microscopic method and both antioxidants combined with amiodarone reduced

  18. Lamellar granule biogenesis: a role for ceramide glucosyltransferase, lysosomal enzyme transport, and the Golgi.

    Science.gov (United States)

    Madison, K C; Sando, G N; Howard, E J; True, C A; Gilbert, D; Swartzendruber, D C; Wertz, P W

    1998-08-01

    Although lamellar granules are critical to the formation of the epidermal permeability barrier and are a known marker of late keratinocyte differentiation, very little is known about the physiologic regulators of lamellar granule assembly and extrusion. Ceramide glucosyltransferase (CGT), the enzyme responsible for the synthesis of lamellar granule glucosylceramides (GlcCer; the precursors of the stratum corneum ceramides), is localized to the Golgi apparatus in other cell types. We have found that CGT is induced during keratinocyte culture differentiation coincident with increased GlcCer content and the appearance of lamellar granules. In this study we show that the differentiation-related CGT induction is likely mediated at the transcriptional level. In addition, all-trans retinoic acid, a well-known inhibitor of keratinocyte differentiation, prevents the appearance of lamellar granules and decreases culture CGT activity and GlcCer content without affecting sphingomyelin or total lipid content, indicating a specific inhibition of this enzymatic pathway. These data show a direct relationship between CGT activity and epidermal differentiation, suggesting that regulation of CGT expression is a critical part of epidermal barrier generation. The differentiation dependence of CGT activity, the key role of this Golgi-localized enzyme in epidermal GlcCer synthesis, and our previous finding that ceramides are converted to GlcCer in the Golgi apparatus in keratinocyte cultures, strongly suggest a Golgi origin for lamellar granules. In contrast to CGT, the activity of the lysosomal enzymes acid lipase and glucocerebrosidase is less clearly related to epidermal differentiation and the appearance of lamellar granules, although both enzymes show striking colocalization and enrichment in a subcellular lamellar granule fraction derived from pig epidermis. Acid lipase activity in the lamellar granule fraction was found to contain primarily a small lysosomal form of the enzyme

  19. Effects of pH and Iminosugar Pharmacological Chaperones on Lysosomal Glycosidase Structure and Stability

    Energy Technology Data Exchange (ETDEWEB)

    Lieberman, Raquel L.; D’aquino, J. Alejandro; Ringe, Dagmar; Petsko, Gregory A.; (Harvard-Med); (Brandeis)

    2009-06-05

    Human lysosomal enzymes acid-{beta}-glucosidase (GCase) and acid-{alpha}-galactosidase ({alpha}-Gal A) hydrolyze the sphingolipids glucosyl- and globotriaosylceramide, respectively, and mutations in these enzymes lead to the lipid metabolism disorders Gaucher and Fabry disease, respectively. We have investigated the structure and stability of GCase and {alpha}-Gal A in a neutral-pH environment reflective of the endoplasmic reticulum and an acidic-pH environment reflective of the lysosome. These details are important for the development of pharmacological chaperone therapy for Gaucher and Fabry disease, in which small molecules bind mutant enzymes in the ER to enable the mutant enzyme to meet quality control requirements for lysosomal trafficking. We report crystal structures of apo GCase at pH 4.5, at pH 5.5, and in complex with the pharmacological chaperone isofagomine (IFG) at pH 7.5. We also present thermostability analysis of GCase at pH 7.4 and 5.2 using differential scanning calorimetry. We compare our results with analogous experiments using {alpha}-Gal A and the chaperone 1-deoxygalactonijirimycin (DGJ), including the first structure of {alpha}-Gal A with DGJ. Both GCase and {alpha}-Gal A are more stable at lysosomal pH with and without their respective iminosugars bound, and notably, the stability of the GCase-IFG complex is pH sensitive. We show that the conformations of the active site loops in GCase are sensitive to ligand binding but not pH, whereas analogous galactose- or DGJ-dependent conformational changes in {alpha}-Gal A are not seen. Thermodynamic parameters obtained from {alpha}-Gal A unfolding indicate two-state, van't Hoff unfolding in the absence of the iminosugar at neutral and lysosomal pH, and non-two-state unfolding in the presence of DGJ. Taken together, these results provide insight into how GCase and {alpha}-Gal A are thermodynamically stabilized by iminosugars and suggest strategies for the development of new pharmacological

  20. Transport of radiolabelled glycoprotein to cell surface and lysosome-like bodies of absorptive cells in cultured small-intestinal tissue from normal subjects and patients with a lysosomal storage disease

    International Nuclear Information System (INIS)

    The transport of 3H-fucose and 3H-glucosamine-labelled glycoproteins in the absorptive cells of cultured human small-intestinal tissue was investigated with light- and electron-microscopical autoradiography. The findings showed that these glycoproteins were completed in the Golgi apparatus and transported in small vesicular structures to the apical cytoplasm of these cells. Since this material arrived in the cell coat on the microvilli and in the lysosome-like bodies simultaneously, a crinophagic function of these organelles in the regulation of the transport or secretion of cell-coat material was supported. In the absorptive cells of patients with fucosidosis or Hunter's type of lysosomal storage disease, a similar transport of cell-coat material to the lysosome-like bodies and a congenital defect of a lysosomal hydrolase normally involved in the degradation of cell-coat material, can explain the accumulation of this material in the dense bodies. (orig.)

  1. Lysosome-associated miniSOG as a photosensitizer for mammalian cells.

    Science.gov (United States)

    Ryumina, Alina P; Serebrovskaya, Ekaterina O; Staroverov, Dmitry B; Zlobovskaya, Olga A; Shcheglov, Alexander S; Lukyanov, Sergey A; Lukyanov, Konstantin A

    2016-01-01

    Genetically encoded photosensitizers represent a promising optogenetic tool for the induction of light-controlled oxidative stress strictly localized to a selected intracellular compartment. Here we tested the phototoxic effects of the flavin-containing phototoxic protein miniSOG targeted to the cytoplasmic surfaces of late endosomes and lysosomes by fusion with Rab7. In HeLa Kyoto cells stably expressing miniSOG-Rab7, we demonstrated a high level of cell death upon blue-light illumination. Pepstatin A completely abolished phototoxicity of miniSOG-Rab7, showing a key role for cathepsin D in this model. Using a far-red fluorescence sensor for caspase-3, we observed caspase-3 activation during miniSOG-Rab7-mediated cell death. We conclude that upon illumination, miniSOG-Rab7 induces lysosomal membrane permeabilization (LMP) and leakage of cathepsins into the cytosol, resulting in caspase-dependent apoptosis. PMID:27528074

  2. Activity of lysosomal and mitochondrial ferments in serum and liver tissue at controlled and treated by leukotitin animals

    International Nuclear Information System (INIS)

    In this chapter author describes the experiments on rats and gives the information on activity of lysosomal and mitochondrial ferments in serum and liver tissue at controlled and treated by leukotitin animals

  3. The Possible "Proton Sponge " Effect of Polyethylenimine (PEI) Does Not Include Change in Lysosomal pH

    DEFF Research Database (Denmark)

    Søndergaard, Rikke Vicki; Mattebjerg, Maria Ahlm; Henriksen, Jonas Rosager;

    2013-01-01

    Polycations such as polyethylenimine (PEI) are used in many novel nonviral vector designs and there are continuous efforts to increase our mechanistic understanding of their interactions with cells. Even so, the mechanism of polyplex escape from the endosomal/lysosomal pathway after internalization...... is still elusive. The "proton sponge " hypothesis remains the most generally accepted mechanism, although it is heavily debated. This hypothesis is associated with the large buffering capacity of PEI and other polycations, which has been interpreted to cause an increase in lysosomal pH even though no...... conclusive proof has been provided. In the present study, we have used a nanoparticle pH sensor that was developed for pH measurements in the endosomal/lysosomal pathway. We have carried out quantitative measurements of lysosomal pH as a function of PEI content and correlate the results to the "proton sponge...

  4. Mucopolysaccharidosis IIIB, a lysosomal storage disease, triggers a pathogenic CNS autoimmune response

    OpenAIRE

    Popovich Phillip G; Divers Erin; DiRosario Julianne; Killedar Smruti; McCarty Douglas M; Fu Haiyan

    2010-01-01

    Abstract Background Recently, using a mouse model of mucopolysaccharidosis (MPS) IIIB, a lysosomal storage disease with severe neurological deterioration, we showed that MPS IIIB neuropathology is accompanied by a robust neuroinflammatory response of unknown consequence. This study was to assess whether MPS IIIB lymphocytes are pathogenic. Methods Lymphocytes from MPS IIIB mice were adoptively transferred to naïve wild-type mice. The recipient animals were then evaluated for signs of disease ...

  5. Streptozotocin-induced diabetes mellitus affects lysosomal enzymes in rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Peres, G.B. [Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Bioquímica, São Paulo, SP, Brasil, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Juliano, M.A. [Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Biofísica, São Paulo, SP, Brasil, Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Aguiar, J.A.K.; Michelacci, Y.M. [Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Bioquímica, São Paulo, SP, Brasil, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil)

    2014-05-09

    It has been previously shown that dextran sulfate administered to diabetic rats accumulates in the liver and kidney, and this could be due to a malfunction of the lysosomal digestive pathway. The aim of the present study was to evaluate the expression and activities of lysosomal enzymes that act upon proteins and sulfated polysaccharides in the livers of diabetic rats. Diabetes mellitus was induced by streptozotocin in 26 male Wistar rats (12 weeks old), while 26 age-matched controls received only vehicle. The livers were removed on either the 10{sup th} or the 30{sup th} day of the disease, weighed, and used to evaluate the activity, expression, and localization of lysosomal enzymes. A 50-60% decrease in the specific activities of cysteine proteases, especially cathepsin B, was observed in streptozotocin-induced diabetes mellitus. Expression (mRNA) of cathepsins B and L was also decreased on the 10{sup th}, but not on the 30{sup th} day. Sulfatase decreased 30% on the 30{sup th} day, while glycosidases did not vary (or presented a transitory and slight decrease). There were no apparent changes in liver morphology, and immunohistochemistry revealed the presence of cathepsin B in hepatocyte granules. The decrease in sulfatase could be responsible for the dextran sulfate build-up in the diabetic liver, since the action of sulfatase precedes glycosidases in the digestive pathway of sulfated polysaccharides. Our findings suggest that the decreased activities of cathepsins resulted from decreased expression of their genes, and not from general lysosomal failure, because the levels of glycosidases were normal in the diabetic liver.

  6. WASH is required for lysosomal recycling and efficient autophagic and phagocytic digestion

    OpenAIRE

    King, Jason S.; Gueho, Aurélie; Hagedorn, Monica; Gopaldass, Navin Andréw; Leuba, Florence; Soldati, Thierry; Insall, Robert H.

    2013-01-01

    Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) is an important regulator of vesicle trafficking. By generating actin on the surface of intracellular vesicles, WASH is able to directly regulate endosomal sorting and maturation. We report that, in Dictyostelium, WASH is also required for the lysosomal digestion of both phagocytic and autophagic cargo. Consequently, Dictyostelium cells lacking WASH are unable to grow on many bacteria or to digest their own cytoplasm to survive starva...

  7. Relative acidic compartment volume as a lysosomal storage disorder–associated biomarker

    OpenAIRE

    te Vruchte, Danielle; Speak, Anneliese O; Wallom, Kerri L.; Al Eisa, Nada; Smith, David A.; Hendriksz, Christian J.; Simmons, Louise; Lachmann, Robin H.; Cousins, Alison; Hartung, Ralf; Mengel, Eugen; Runz, Heiko; Beck, Michael; Amraoui, Yasmina; Imrie, Jackie

    2014-01-01

    Lysosomal storage disorders (LSDs) occur at a frequency of 1 in every 5,000 live births and are a common cause of pediatric neurodegenerative disease. The relatively small number of patients with LSDs and lack of validated biomarkers are substantial challenges for clinical trial design. Here, we evaluated the use of a commercially available fluorescent probe, Lysotracker, that can be used to measure the relative acidic compartment volume of circulating B cells as a potentially universal bioma...

  8. Streptozotocin-induced diabetes mellitus affects lysosomal enzymes in rat liver

    International Nuclear Information System (INIS)

    It has been previously shown that dextran sulfate administered to diabetic rats accumulates in the liver and kidney, and this could be due to a malfunction of the lysosomal digestive pathway. The aim of the present study was to evaluate the expression and activities of lysosomal enzymes that act upon proteins and sulfated polysaccharides in the livers of diabetic rats. Diabetes mellitus was induced by streptozotocin in 26 male Wistar rats (12 weeks old), while 26 age-matched controls received only vehicle. The livers were removed on either the 10th or the 30th day of the disease, weighed, and used to evaluate the activity, expression, and localization of lysosomal enzymes. A 50-60% decrease in the specific activities of cysteine proteases, especially cathepsin B, was observed in streptozotocin-induced diabetes mellitus. Expression (mRNA) of cathepsins B and L was also decreased on the 10th, but not on the 30th day. Sulfatase decreased 30% on the 30th day, while glycosidases did not vary (or presented a transitory and slight decrease). There were no apparent changes in liver morphology, and immunohistochemistry revealed the presence of cathepsin B in hepatocyte granules. The decrease in sulfatase could be responsible for the dextran sulfate build-up in the diabetic liver, since the action of sulfatase precedes glycosidases in the digestive pathway of sulfated polysaccharides. Our findings suggest that the decreased activities of cathepsins resulted from decreased expression of their genes, and not from general lysosomal failure, because the levels of glycosidases were normal in the diabetic liver

  9. Mechanism of the lysosomal membrane enzyme acetyl coenzyme A: alpha-glucosaminide N-acetyltransferase

    International Nuclear Information System (INIS)

    Acetyl-CoA:α-glucosaminide N-acetyltransferase is a lysosomal membrane enzyme, deficient in the genetic disease Sanfilippo C syndrome. The enzyme catalyzes the transfer of an acetyl group from cytoplasmic acetyl-CoA to terminal α-glucosamine residues of heparan sulfate within the organelle. The reaction mechanism was examined using high purified lysosomal membranes from rat liver and human fibroblasts. The N-acetyltransferase reaction is optimal above pH 5.5 and a 2-3 fold stimulation of activity is observed in the presence of 0.1% taurodeoxycholate. Double reciprocal analysis and product inhibition studies indicate that the enzyme works by a Di-Iso Ping Pong Bi Bi mechanism. The binding of acetyl-CoA to the enzyme is measured by exchange label from [3H]CoA to acetyl-CoA, and is optimal at pH's above 7.0. The acetyl-enzyme intermediate is formed by incubating membranes with [3H]acetyl-CoA. The acetyl group can be transferred to glucosamine, forming [3H]N-acetylglucosamine; the transfer is optimal between pH 4 and 5. Lysosomal membranes from Sanfilippo C fibroblasts confirm that these half reactions carried out by the N-acetyltransferase. The enzyme is inactivated by N-bromosuccinimide and diethylpyrocarbonate, indicating that a histidine is involved in the reaction. These results suggest that the histidine residue is at the active site of the enzyme. The properties of the N-acetyltransferase in the membrane, the characterization of the enzyme kinetics, the chemistry of a histidine mediated acetylation and the pH difference across the lysosomal membrane all support a transmembrane acetylation mechanism

  10. Phagosome-lysosome fusion inhibited by algal symbionts of Hydra viridis

    OpenAIRE

    1982-01-01

    Certain species of Chlorella live within the digestive cells of the fresh water cnidarian Hydra viridis. When introduced into the hydra gut, these symbiotic algae are phagocytized by digestive cells but avoid host digestion and persist at relatively constant numbers within host cells. In contrast, heat-killed symbionts are rapidly degraded after phagocytosis. Live symbionts appear to persist because host lysosomes fail to fuse with phagosomes containing live symbionts. Neither acid phosphatas...

  11. C. elegans BLOC-1 functions in trafficking to lysosome-related gut granules.

    Directory of Open Access Journals (Sweden)

    Greg J Hermann

    Full Text Available The human disease Hermansky-Pudlak syndrome results from defective biogenesis of lysosome-related organelles (LROs and can be caused by mutations in subunits of the BLOC-1 complex. Here we show that C. elegans glo-2 and snpn-1, despite relatively low levels of amino acid identity, encode Pallidin and Snapin BLOC-1 subunit homologues, respectively. BLOC-1 subunit interactions involving Pallidin and Snapin were conserved for GLO-2 and SNPN-1. Mutations in glo-2 and snpn-1,or RNAi targeting 5 other BLOC-1 subunit homologues in a genetic background sensitized for glo-2 function, led to defects in the biogenesis of lysosome-related gut granules. These results indicate that the BLOC-1 complex is conserved in C. elegans. To address the function of C. elegans BLOC-1, we assessed the intracellular sorting of CDF-2::GFP, LMP-1, and PGP-2 to gut granules. We validated their utility by analyzing their mislocalization in intestinal cells lacking the function of AP-3, which participates in an evolutionarily conserved sorting pathway to LROs. BLOC-1(- intestinal cells missorted gut granule cargo to the plasma membrane and conventional lysosomes and did not have obviously altered function or morphology of organelles composing the conventional lysosome protein sorting pathway. Double mutant analysis and comparison of AP-3(- and BLOC-1(- phenotypes revealed that BLOC-1 has some functions independent of the AP-3 adaptor complex in trafficking to gut granules. We discuss similarities and differences of BLOC-1 activity in the biogenesis of gut granules as compared to mammalian melanosomes, where BLOC-1 has been most extensively studied for its role in sorting to LROs. Our work opens up the opportunity to address the function of this poorly understood complex in cell and organismal physiology using the genetic approaches available in C. elegans.

  12. Elimination of paternal mitochondria through the lysosomal degradation pathway in C. elegans

    OpenAIRE

    Zhou, Qinghua; Li, Haimin; Xue, Ding

    2011-01-01

    In mammals, the inheritance of mitochondrion and its DNA (mtDNA) is strictly maternal, despite the fact that a sperm can inject up to 100 functional mitochondria into the oocyte during fertilization. The mechanisms responsible for the elimination of the paternal mitochondria remain largely unknown. We report here that this paternal mitochondrial elimination process is conserved in Caenorhabditis elegans, and that the lysosomal pathway actively participates in this process. Molecular and cell ...

  13. Autophagy Induction Protects Against 7-Oxysterol-induced Cell Death via Lysosomal Pathway and Oxidative Stress

    OpenAIRE

    Xi-Ming Yuan; Nargis Sultana; Nabeel Siraj; Ward, Liam J.; Bijar Ghafouri; Wei Li

    2016-01-01

    7-Oxysterols are major toxic components in oxidized low-density lipoprotein and human atheroma lesions, which cause lysosomal membrane permeabilization (LMP) and cell death. Autophagy may function as a survival mechanism in this process. Here, we investigated whether 7-oxysterols mixed in an atheroma-relevant proportion induce autophagy, whether autophagy induction influences 7-oxysterol-mediated cell death, and the underlying mechanisms, by focusing on cellular lipid levels, oxidative stress...

  14. Streptozotocin-induced diabetes mellitus affects lysosomal enzymes in rat liver

    Directory of Open Access Journals (Sweden)

    G.B. Peres

    2014-06-01

    Full Text Available It has been previously shown that dextran sulfate administered to diabetic rats accumulates in the liver and kidney, and this could be due to a malfunction of the lysosomal digestive pathway. The aim of the present study was to evaluate the expression and activities of lysosomal enzymes that act upon proteins and sulfated polysaccharides in the livers of diabetic rats. Diabetes mellitus was induced by streptozotocin in 26 male Wistar rats (12 weeks old, while 26 age-matched controls received only vehicle. The livers were removed on either the 10th or the 30th day of the disease, weighed, and used to evaluate the activity, expression, and localization of lysosomal enzymes. A 50-60% decrease in the specific activities of cysteine proteases, especially cathepsin B, was observed in streptozotocin-induced diabetes mellitus. Expression (mRNA of cathepsins B and L was also decreased on the 10th, but not on the 30th day. Sulfatase decreased 30% on the 30th day, while glycosidases did not vary (or presented a transitory and slight decrease. There were no apparent changes in liver morphology, and immunohistochemistry revealed the presence of cathepsin B in hepatocyte granules. The decrease in sulfatase could be responsible for the dextran sulfate build-up in the diabetic liver, since the action of sulfatase precedes glycosidases in the digestive pathway of sulfated polysaccharides. Our findings suggest that the decreased activities of cathepsins resulted from decreased expression of their genes, and not from general lysosomal failure, because the levels of glycosidases were normal in the diabetic liver.

  15. Lysosomal trafficking of β-catenin induced by the tea polyphenol epigallocatechin-3-gallate

    International Nuclear Information System (INIS)

    β-Catenin is a cadherin-binding protein involved in cell-cell adhesion, which also functions as a transcriptional activator when complexed in the nucleus with members of the T-cell factor (TCF)/lymphoid enhancer factor (LEF) family of proteins. There is considerable interest in mechanisms that down-regulate β-catenin, since this provides an avenue for the prevention of colorectal and other cancers in which β-catenin is frequently over-expressed. We show here that physiologically relevant concentrations of the tea polyphenol epigallocatechin-3-gallate (EGCG) inhibited β-catenin/TCF-dependent reporter activity in human embryonic kidney 293 cells transfected with wild type or mutant β-catenins, and there was a corresponding decrease in β-catenin protein levels in the nuclear, cytosolic and membrane-associated fractions. However, β-catenin accumulated as punctate aggregates in response to EGCG treatment, including in human colon cancer cells over-expressing β-catenin endogenously. Confocal microscopy studies revealed that the aggregated β-catenin in HEK293 cells was extra-nuclear and co-localized with lysosomes, suggesting that EGCG activated a pathway involving lysosomal trafficking of β-catenin. Lysosomal inhibitors leupeptin and transepoxysuccinyl-L-leucylamido(4-guanido)butane produced an increase in β-catenin protein in total cell lysates, without a concomitant increase in β-catenin transcriptional activity. These data provide the first evidence that EGCG facilitates the trafficking of β-catenin into lysosomes, presumably as a mechanism for sequestering β-catenin and circumventing further nuclear transport and activation of β-catenin/TCF/LEF signaling

  16. Defective lysosomal targeting of activated fibroblast growth factor receptor 3 in achondroplasia

    OpenAIRE

    Cho, Jay Y.; Guo, Changsheng; Torello, Monica; Lunstrum, Gregory P.; Iwata, Tomoko; Deng, Chuxia; Horton, William A.

    2003-01-01

    Mutations of fibroblast growth factor receptor 3 (FGFR3) are responsible for achondroplasia (ACH) and related dwarfing conditions in humans. The pathogenesis involves constitutive activation of FGFR3, which inhibits proliferation and differentiation of growth plate chondrocytes. Here we report that activating mutations in FGFR3 increase the stability of the receptor. Our results suggest that the mutations disrupt c-Cbl-mediated ubiquitination that serves as a targeting signal for lysosomal de...

  17. New biotechnological and nanomedicine strategies for treatment of lysosomal storage disorders

    OpenAIRE

    Muro, Silvia

    2010-01-01

    This review discusses the multiple bio- and nano-technological strategies developed in the last few decades for treatment of a group of fatal genetic diseases, termed lysosomal storage disorders. Some basic foundation on the biomedical causes and social and clinical relevance of these diseases is provided. Several treatment modalities, from those currently available to novel therapeutic approaches under development, are also discussed; these include gene and cell therapies, substrate reductio...

  18. PHOSPHATIDYLINOSITOL 3,5-BISPHOSPHATE IS AN ESSENTIAL REGULATOR OF LYSOSOME MORPHOLOGY

    OpenAIRE

    Asanuma, Ken; Takasuga, Shunsuke; Sasaki, Junko; Sasaki, Takehiko

    2013-01-01

    Phosphoinositides are lipid second messengers that act as key players in endosomal membrane trafficking, and mutations in several phosphatases that metabolize these lipids cause severe genetic diseases. We previously reported that type III phosphatidylinositol phosphate kinase (PIPKIII) is a critical regulator of lysosome size. However, the lipid products that mediate PIPKIII function have not been well characterized. Using a series of phosphoinositide phosphatase expression vectors, we show ...

  19. Alteration of Dynein Function Affects α-Synuclein Degradation via the Autophagosome-Lysosome Pathway

    OpenAIRE

    Da Li; Ji-Jun Shi; Cheng-Jie Mao; Sha Liu; Jian-Da Wang; Jing Chen; Fen Wang; Ya-Ping Yang; Wei-Dong Hu; Li-Fang Hu; Chun-Feng Liu

    2013-01-01

    Growing evidence suggests that dynein dysfunction may be implicated in the pathogenesis of neurodegeneration. It plays a central role in aggresome formation, the delivery of autophagosome to lysosome for fusion and degradation, which is a pro-survival mechanism essential for the bulk degradation of misfolded proteins and damaged organells. Previous studies reported that dynein dysfuntion was associated with aberrant aggregation of α-synuclein, which is a major component of inclusion bodies in...

  20. OXIDATIVE STRESS TRIGGERS CA2+-DEPENDENT LYSOSOME TRAFFICKING AND ACTIVATION OF ACID SPHINGOMYELINASE

    OpenAIRE

    Li, Xiang; Gulbins, Erich; Zhang, Yang

    2012-01-01

    Recent studies demonstrate that rapid translocation of the acid sphingomyelinase (ASM), a lysosomal hydrolase, to the outer leaflet of the cell membrane and concomitant release of ceramide constitute a common cellular signaling cascade to various stimuli including CD95 ligation, UV-irradiation, bacterial and viral infections. Reactive oxygen species (ROS) were shown to play a crucial role in regulating this signaling cascade at least for some bacterial infections and UV-irradiation. However, ...

  1. Possible Existence of Lysosome-Like Organella within Mitochondria and Its Role in Mitochondrial Quality Control

    OpenAIRE

    Yuji Miyamoto; Noriaki Kitamura; Yasuyuki Nakamura; Manabu Futamura; Takafumi Miyamoto; Masaki Yoshida; Masaya Ono; Shizuko Ichinose; Hirofumi Arakawa

    2011-01-01

    The accumulation of unhealthy mitochondria results in mitochondrial dysfunction, which has been implicated in aging, cancer, and a variety of degenerative diseases. However, the mechanism by which mitochondrial quality is regulated remains unclear. Here, we show that Mieap, a novel p53-inducible protein, induces intramitochondrial lysosome-like organella that plays a critical role in mitochondrial quality control. Mieap expression is directly regulated by p53 and is frequently lost in human c...

  2. Protein breakdown in muscle wasting: Role of autophagy-lysosome and ubiquitin-proteasome

    OpenAIRE

    Sandri, Marco

    2013-01-01

    Skeletal muscle adapts its mass as consequence of physical activity, metabolism and hormones. Catabolic conditions or inactivity induce signaling pathways that regulate the process of muscle loss. Muscle atrophy in adult tissue occurs when protein degradation rates exceed protein synthesis. Two major protein degradation pathways, the ubiquitin-proteasome and the autophagy-lysosome systems, are activated during muscle atrophy and variably contribute to the loss of muscle mass. These degradatio...

  3. Vacuolin-1 potently and reversibly inhibits autophagosome-lysosome fusion by activating RAB5A

    OpenAIRE

    Lu, Yingying; Dong, Shichen; Hao, Baixia; Li, Chang; Zhu, Kaiyuan; Guo, Wenjing; Wang, Qian; Cheung, King-Ho; Wong, Connie WM; Wu, Wu-Tian; Markus, Huss; Yue, Jianbo

    2014-01-01

    Autophagy is a catabolic lysosomal degradation process essential for cellular homeostasis and cell survival. Dysfunctional autophagy has been associated with a wide range of human diseases, e.g., cancer and neurodegenerative diseases. A large number of small molecules that modulate autophagy have been widely used to dissect this process and some of them, e.g., chloroquine (CQ), might be ultimately applied to treat a variety of autophagy-associated human diseases. Here we found that vacuolin-1...

  4. Pancreatic duct obstruction in rabbits causes digestive zymogen and lysosomal enzyme colocalization.

    OpenAIRE

    Saluja, A; Saluja, M; Villa, A.; Leli, U; Rutledge, P.; Meldolesi, J.; Steer, M.

    1989-01-01

    The pancreatic duct of anesthetized rabbits was cannulated and, in some animals, flow of pancreatic exocrine secretions was blocked by raising the cannula to a vertical position. Blockage for 3-7 h caused a rapid and significant rise in serum amylase activity and an increase in amylase activity within the pancreas. The concentration of lysosomal enzymes in the pancreas was not altered but they became redistributed among subcellular fractions and, as a result, an increased amount was recovered...

  5. A Review of Gene Therapy in Canine and Feline Models of Lysosomal Storage Disorders

    OpenAIRE

    Bradbury, Allison M.; Gurda, Brittney L.; Casal, Margret L.; Ponder, Katherine P; Vite, Charles H.; Haskins, Mark E.

    2015-01-01

    Lysosomal storage disorders (LSDs) are inherited diseases that result from the intracellular accumulation of incompletely degraded macromolecules. The majority of LSDs affect both the peripheral and central nervous systems and are not effectively treated by enzyme replacement therapy, substrate reduction therapy, or bone marrow transplantation. Advances in adeno-associated virus and retroviral vector development over the past decade have resurged gene therapy as a promising therapeutic interv...

  6. The role of lysosomal proteolytic enzymes in invasion and dissemination of malignant melanoma

    International Nuclear Information System (INIS)

    Preoperative chemo- and radiation therapy was followed by a decrease in lysosomal cathepsins activity in metastatic lymph nodes which, however, did not reach the level established for intact lymph nodes. The pathogenetic role of proteolytic endopeptidases in invasion and sissemination of malignant melanoma is discussed as well as the value of their level measurement for assessing metastatic potential of tumor and prognosis of disease of disease on the basis of tumor site, degree of invasion regional lymph node status

  7. LYST controls the biogenesis of the endosomal compartment required for secretory lysosome function.

    Science.gov (United States)

    Sepulveda, Fernando E; Burgess, Agathe; Heiligenstein, Xavier; Goudin, Nicolas; Ménager, Mickaël M; Romao, Maryse; Côte, Marjorie; Mahlaoui, Nizar; Fischer, Alain; Raposo, Graça; Ménasché, Gaël; de Saint Basile, Geneviève

    2015-02-01

    Chediak-Higashi syndrome (CHS) is caused by mutations in the gene encoding LYST protein, the function of which remains poorly understood. Prominent features of CHS include defective secretory lysosome exocytosis and the presence of enlarged, lysosome-like organelles in several cell types. In order to get further insight into the role of LYST in the biogenesis and exocytosis of cytotoxic granules, we analyzed cytotoxic T lymphocytes (CTLs) from patients with CHS. Using confocal microscopy and correlative light electron microscopy, we showed that the enlarged organelle in CTLs is a hybrid compartment that contains proteins components from recycling-late endosomes and lysosomes. Enlargement of cytotoxic granules results from the progressive clustering and then fusion of normal-sized endolysosomal organelles. At the immunological synapse (IS) in CHS CTLs, cytotoxic granules have limited motility and appear docked while nevertheless unable to degranulate. By increasing the expression of effectors of lytic granule exocytosis, such as Munc13-4, Rab27a and Slp3, in CHS CTLs, we were able to restore the dynamics and the secretory ability of cytotoxic granules at the IS. Our results indicate that LYST is involved in the trafficking of the effectors involved in exocytosis required for the terminal maturation of perforin-containing vesicles into secretory cytotoxic granules. PMID:25425525

  8. A Contiguous Compartment Functions as Endoplasmic Reticulum and Endosome/Lysosome in Giardia lamblia▿ †

    Science.gov (United States)

    Abodeely, Marla; DuBois, Kelly N.; Hehl, Adrian; Stefanic, Sasa; Sajid, Mohammed; deSouza, Wanderley; Attias, Marcia; Engel, Juan C.; Hsieh, Ivy; Fetter, Richard D.; McKerrow, James H.

    2009-01-01

    The dynamic evolution of organelle compartmentalization in eukaryotes and how strictly compartmentalization is maintained are matters of ongoing debate. While the endoplasmic reticulum (ER) is classically envisioned as the site of protein cotranslational translocation, it has recently been proposed to have pluripotent functions. Using transfected reporter constructs, organelle-specific markers, and functional enzyme assays, we now show that in an early-diverging protozoan, Giardia lamblia, endocytosis and subsequent degradation of exogenous proteins occur in the ER or in an adjacent and communicating compartment. The Giardia endomembrane system is simple compared to those of typical eukaryotes. It lacks peroxisomes, a classical Golgi apparatus, and canonical lysosomes. Giardia orthologues of mammalian lysosomal proteases function within an ER-like tubulovesicular compartment, which itself can dynamically communicate with clathrin-containing vacuoles at the periphery of the cell to receive endocytosed proteins. These primitive characteristics support Giardia's proposed early branching and could serve as a model to study the compartmentalization of endocytic and lysosomal functions into organelles distinct from the ER. This system also may have functional similarity to the retrograde transport of toxins and major histocompatibility complex class I function in the ER of mammals. PMID:19749174

  9. A contiguous compartment functions as endoplasmic reticulum and endosome/lysosome in Giardia lamblia.

    Science.gov (United States)

    Abodeely, Marla; DuBois, Kelly N; Hehl, Adrian; Stefanic, Sasa; Sajid, Mohammed; DeSouza, Wanderley; Attias, Marcia; Engel, Juan C; Hsieh, Ivy; Fetter, Richard D; McKerrow, James H

    2009-11-01

    The dynamic evolution of organelle compartmentalization in eukaryotes and how strictly compartmentalization is maintained are matters of ongoing debate. While the endoplasmic reticulum (ER) is classically envisioned as the site of protein cotranslational translocation, it has recently been proposed to have pluripotent functions. Using transfected reporter constructs, organelle-specific markers, and functional enzyme assays, we now show that in an early-diverging protozoan, Giardia lamblia, endocytosis and subsequent degradation of exogenous proteins occur in the ER or in an adjacent and communicating compartment. The Giardia endomembrane system is simple compared to those of typical eukaryotes. It lacks peroxisomes, a classical Golgi apparatus, and canonical lysosomes. Giardia orthologues of mammalian lysosomal proteases function within an ER-like tubulovesicular compartment, which itself can dynamically communicate with clathrin-containing vacuoles at the periphery of the cell to receive endocytosed proteins. These primitive characteristics support Giardia's proposed early branching and could serve as a model to study the compartmentalization of endocytic and lysosomal functions into organelles distinct from the ER. This system also may have functional similarity to the retrograde transport of toxins and major histocompatibility complex class I function in the ER of mammals. PMID:19749174

  10. Lack of the Lysosomal Membrane Protein, GLMP, in Mice Results in Metabolic Dysregulation in Liver.

    Directory of Open Access Journals (Sweden)

    Xiang Yi Kong

    Full Text Available Ablation of glycosylated lysosomal membrane protein (GLMP, formerly known as NCU-G1 has been shown to cause chronic liver injury which progresses into liver fibrosis in mice. Both lysosomal dysfunction and chronic liver injury can cause metabolic dysregulation. Glmp gt/gt mice (formerly known as Ncu-g1gt/gt mice were studied between 3 weeks and 9 months of age. Body weight gain and feed efficiency of Glmp gt/gt mice were comparable to wild type siblings, only at the age of 9 months the Glmp gt/gt siblings had significantly reduced body weight. Reduced size of epididymal fat pads was accompanied by hepatosplenomegaly in Glmp gt/gt mice. Blood analysis revealed reduced levels of blood glucose, circulating triacylglycerol and non-esterified fatty acids in Glmp gt/gt mice. Increased flux of glucose, increased de novo lipogenesis and lipid accumulation were detected in Glmp gt/gt primary hepatocytes, as well as elevated triacylglycerol levels in Glmp gt/gt liver homogenates, compared to hepatocytes and liver from wild type mice. Gene expression analysis showed an increased expression of genes involved in fatty acid uptake and lipogenesis in Glmp gt/gt liver compared to wild type. Our findings are in agreement with the metabolic alterations observed in other mouse models lacking lysosomal proteins, and with alterations characteristic for advanced chronic liver injury.

  11. Inhibitor screening of pharmacological chaperones for lysosomal β-glucocerebrosidase by capillary electrophoresis.

    Science.gov (United States)

    Shanmuganathan, Meera; Britz-McKibbin, Philip

    2011-03-01

    Pharmacological chaperones (PCs) represent a promising therapeutic strategy for treatment of lysosomal storage disorders based on enhanced stabilization and trafficking of mutant protein upon orthosteric and/or allosteric binding. Herein, we introduce a simple yet reliable enzyme assay using capillary electrophoresis (CE) for inhibitor screening of PCs that target the lysosomal enzyme, β-glucocerebrosidase (GCase). The rate of GCase-catalyzed hydrolysis of the synthetic substrate, 4-methylumbelliferyl-β-D: -glucopyranoside was performed using different classes of PCs by CE with UV detection under standardized conditions. The pH and surfactant dependence of inhibitor binding on recombinant GCase activity was also examined. Enzyme inhibition studies were investigated for five putative PCs including isofagomine (IFG), ambroxol, bromhexine, diltiazem, and fluphenazine. IFG was confirmed as a potent competitive inhibitor of recombinant GCase with half-maximal inhibitory concentration (IC(50)) of 47.5 ± 0.1 and 4.6 ± 1.4 nM at pH 5.2 and pH 7.2, respectively. In contrast, the four other non-carbohydrate amines were demonstrated to function as mixed-type inhibitors with high micromolar activity at neutral pH relative to acidic pH conditions reflective of the lysosome. CE offers a convenient platform for characterization of PCs as a way to accelerate the clinical translation of previously approved drugs for oral treatment of rare genetic disorders, such as Gaucher disease. PMID:21286689

  12. Chylomicron remnant model emulsions induce intracellular cholesterol accumulation and cell death due to lysosomal destabilization.

    Science.gov (United States)

    Wakita, Kyoko; Morita, Shin-ya; Okamoto, Naoko; Takata, Eriko; Handa, Tetsurou; Nakano, Minoru

    2015-05-01

    Chylomicron remnants, which carry dietary fats and cholesterol, play a role in promoting atherosclerosis. Chylomicron remnants are characterized by high cholesterol content at the surface, different from low-density lipoproteins (LDLs) containing high amounts of esterified cholesterol (CE) in the core. We prepared cholesterol-rich emulsions (TO-PC/cholesterol emulsions) as models for chylomicron remnants and compared their effects on J774 macrophages with acetylated-LDL (ac-LDL). Internalization of TO-PC/cholesterol emulsions into macrophages reduced cell viability, whereas ac-LDL did not. Surprisingly, there was no difference in intracellular free cholesterol content between cells incubated with TO-PC/cholesterol emulsions and with ac-LDL. Furthermore, cholesterol in TO-PC/cholesterol emulsions and ac-LDL both were internalized into J774 macrophages; however, incubation with TO-PC/cholesterol emulsions induced leakage of lysosomal protease, cathepsin-L, to cytosol, which was not observed for incubation with ac-LDL. Inhibition of the activity of cathepsin-L recovered the viability of macrophages that ingested TO-PC/cholesterol emulsions. We suggest an alternative fate of cholesterol-rich emulsions taken up by macrophages, which is different from other atherogenic lipoproteins rich in CE; internalization of TO-PC/cholesterol emulsions into macrophages induces rapid free cholesterol accumulation in lysosomes and cell death due to lysosomal destabilization. PMID:25661161

  13. Cerebrospinal Fluid from Sporadic Amyotrophic Lateral Sclerosis Patients Induces Mitochondrial and Lysosomal Dysfunction.

    Science.gov (United States)

    Sharma, Aparna; Varghese, Anu Mary; Vijaylakshmi, Kalyan; Sumitha, Rajendrarao; Prasanna, V K; Shruthi, S; Chandrasekhar Sagar, B K; Datta, Keshava K; Gowda, Harsha; Nalini, Atchayaram; Alladi, Phalguni Anand; Christopher, Rita; Sathyaprabha, Talakad N; Raju, Trichur R; Srinivas Bharath, M M

    2016-05-01

    In our laboratory, we have developed (1) an in vitro model of sporadic Amyotrophic Lateral Sclerosis (sALS) involving exposure of motor neurons to cerebrospinal fluid (CSF) from sALS patients and (2) an in vivo model involving intrathecal injection of sALS-CSF into rat pups. In the current study, we observed that spinal cord extract from the in vivo sALS model displayed elevated reactive oxygen species (ROS) and mitochondrial dysfunction. Quantitative proteomic analysis of sub-cellular fractions from spinal cord of the in vivo sALS model revealed down-regulation of 35 mitochondrial proteins and 4 lysosomal proteins. Many of the down-regulated mitochondrial proteins contribute to alterations in respiratory chain complexes and organellar morphology. Down-regulated lysosomal proteins Hexosaminidase, Sialidase and Aryl sulfatase also displayed lowered enzyme activity, thus validating the mass spectrometry data. Proteomic analysis and validation by western blot indicated that sALS-CSF induced the over-expression of the pro-apoptotic mitochondrial protein BNIP3L. In the in vitro model, sALS-CSF induced neurotoxicity and elevated ROS, while it lowered the mitochondrial membrane potential in rat spinal cord mitochondria in the in vivo model. Ultra structural alterations were evident in mitochondria of cultured motor neurons exposed to ALS-CSF. These observations indicate the first line evidence that sALS-CSF mediated mitochondrial and lysosomal defects collectively contribute to the pathogenesis underlying sALS. PMID:26646005

  14. [Structuro-functional changes in dog liver and regional lymph node lysosomes in toxic hepatitis].

    Science.gov (United States)

    Borodin, Iu I; Korolenko, T A; Malygin, A E; Pupyshev, A B; Sharaĭkina, E O

    1978-10-01

    Structural and functional changes in the dog liver and regional lymph nodes lysosomes were studied during toxic hepatitis induced by CCl4 administration (single and repeated). Total activity of lysosomal enzymes (acid RNA-ase and beta-galactosidase) was higher in the regional lymph nodes than in the liver, reflecting the barrier, protective function of the organ. During acute toxic hepatitis the specific activities of acid RNA-ase and cathepsin D displayed a sharp rise. No normalization of the indices under study occurred during the observation period (from 8 to 30 days). At the same time there was a rise of the regional lymph node weight and an elevation of the relative macrophage and neutrophil content in the sinuses. The increased activity of the lysosome enzymes in the regional lymph nodes in injury of the liver was connected with greater functional load on the lymph nodes effecting hydrolysis of biopolymeres which penetrated into the regional lymphatic node with the lymph. PMID:708870

  15. Rotenone Upregulates Alpha-Synuclein and Myocyte Enhancer Factor 2D Independently from Lysosomal Degradation Inhibition

    Directory of Open Access Journals (Sweden)

    Gessica Sala

    2013-01-01

    Full Text Available Dysfunctions of chaperone-mediated autophagy (CMA, the main catabolic pathway for alpha-synuclein, have been linked to the pathogenesis of Parkinson’s disease (PD. Since till now there is limited information on how PD-related toxins may affect CMA, in this study we explored the effect of mitochondrial complex I inhibitor rotenone on CMA substrates, alpha-synuclein and MEF2D, and effectors, lamp2A and hsc70, in a human dopaminergic neuroblastoma SH-SY5Y cell line. Rotenone induced an upregulation of alpha-synuclein and MEF2D protein levels through the stimulation of their de novo synthesis rather than through a reduction of their CMA-mediated degradation. Moreover, increased MEF2D transcription resulted in higher nuclear protein levels that exert a protective role against mitochondrial dysfunction and oxidative stress. These results were compared with those obtained after lysosome inhibition with ammonium chloride. As expected, this toxin induced the cytosolic accumulation of both alpha-synuclein and MEF2D proteins, as the result of the inhibition of their lysosome-mediated degradation, while, differently from rotenone, ammonium chloride decreased MEF2D nuclear levels through the downregulation of its transcription, thus reducing its protective function. These results highlight that rotenone affects alpha-synuclein and MEF2D protein levels through a mechanism independent from lysosomal degradation inhibition.

  16. Role of Nanotechnology for Enzyme Replacement Therapy in Lysosomal Diseases. A Focus on Gaucher's Disease.

    Science.gov (United States)

    Martín-Banderas, L; Holgado, M A; Durán-Lobato, M; Infante, J J; Álvarez-Fuentes, J; Fernández-Arévalo, M

    2016-01-01

    Lysosomal storage diseases (LSDs) comprise a group of rare inherited chronic syndromes that cause deficiency of specific native enzymes within the lysosomes. The macromolecular compounds that are usually catabolized by lysosomal enzymes are accumulated within these organelles, causing progressive damage to tissues, skeleton and organs and, in several cases, the central nervous system (CNS). The damage caused by substrate accumulation finally results in physical deterioration, functional impairment and potential death. Up to date, the most promising therapy for most LSDs is enzyme-replacement therapy (ERT), which provides patients with the corresponding active enzyme. However, these enzymes do not have enough stability in blood, the treatment must be therefore periodically administrated by i.v. infusion under medical supervision, and immunogenicity issues are frequent. In addition, affected areas within the CNS, where the blood-brain barrier (BBB) is a major obstacle, cannot be reached by the enzymes. Nanotechnology can provide useful carriers to successfully protect and preserve enzymes, and transport them through the BBB towards brain locations. Several strategies based on targeting specific receptors on the BBB have led to nanoparticles that successfully carry sensitive molecules to the brain. Then, the main LSDs are described and a thorough review of nanotechnology strategies for brain delivery studied up to date is presented. PMID:26860997

  17. BNIP3 and NIX mediate Mieap-induced accumulation of lysosomal proteins within mitochondria.

    Directory of Open Access Journals (Sweden)

    Yasuyuki Nakamura

    Full Text Available Mieap, a p53-inducible protein, controls mitochondrial quality by repairing unhealthy mitochondria. During repair, Mieap induces the accumulation of intramitochondrial lysosomal proteins (designated MALM for Mieap-induced accumulation of lysosome-like organelles within mitochondria by interacting with NIX, leading to the elimination of oxidized mitochondrial proteins. Here, we report that an additional mitochondrial outer membrane protein, BNIP3, is also involved in MALM. BNIP3 interacts with Mieap in a reactive oxygen species (ROS-dependent manner via the BH3 domain of BNIP3 and the coiled-coil domains of Mieap. The knockdown of endogenous BNIP3 expression severely inhibited MALM. Although the overexpression of either BNIP3 or NIX did not cause a remarkable change in the mitochondrial membrane potential (MMP, the co-expression of all three exogenous proteins, Mieap, BNIP3 and NIX, caused a dramatic reduction in MMP, implying that the physical interaction of Mieap, BNIP3 and NIX at the mitochondrial outer membrane may regulate the opening of a pore in the mitochondrial double membrane. This effect was not related to cell death. These results suggest that two mitochondrial outer membrane proteins, BNIP3 and NIX, mediate MALM in order to maintain mitochondrial integrity. The physical interaction of Mieap, BNIP3 and NIX at the mitochondrial outer membrane may play a critical role in the translocation of lysosomal proteins from the cytoplasm to the mitochondrial matrix.

  18. Prevention of lysosomal storage diseases and derivation of mutant stem cell lines by preimplantation genetic diagnosis.

    Science.gov (United States)

    Altarescu, Gheona; Beeri, Rachel; Eiges, Rachel; Epsztejn-Litman, Silvina; Eldar-Geva, Talia; Elstein, Deborah; Zimran, Ari; Margalioth, Ehud J; Levy-Lahad, Ephrat; Renbaum, Paul

    2012-01-01

    Preimplantation genetic diagnosis (PGD) allows birth of unaffected children for couples at risk for a genetic disorder. We present the strategy and outcome of PGD for four lysosomal storage disorders (LSD): Tay-Sachs disease (TSD), Gaucher disease (GD), Fabry disease (FD), and Hunter syndrome (HS), and subsequent development of stem cell lines. For each disease, we developed a family-specific fluorescent multiplex single-cell PCR protocol that included the familial mutation and informative markers surrounding the mutation. Embryo biopsy and PGD analysis were performed on either oocytes (polar bodies one and two) or on single blastomeres from a six-cell embryo. We treated twenty families carrying mutations in these lysosomal storage disorders, including 3 couples requiring simultaneous analysis for two disorders (TSD/GD, TSD/balanced Robertsonian translocation 45XYder(21;14), and HS/oculocutaneus albinism). These analyses led to an overall pregnancy rate/embryo transfer of 38% and the birth of 20 unaffected children from 17 families. We have found that PGD for lysosomal disorders is a safe and effective method to prevent birth of affected children. In addition, by using mutant embryos for the derivation of stem cell lines, we have successfully established GD and HS hESC lines for use as valuable models in LSD research. PMID:23320174

  19. Lysosomal storage of oligosaccharide and glycosphingolipid in imino sugar treated cells.

    Science.gov (United States)

    Boomkamp, Stephanie D; Rountree, J S Shane; Neville, David C A; Dwek, Raymond A; Fleet, George W J; Butters, Terry D

    2010-04-01

    Sandhoff and Tay-Sachs disease are autosomal recessive GM2 gangliosidoses where a deficiency of lysosomal beta-hexosaminidase results in storage of glycoconjugates. Imino sugar (2-acetamido-1,4-imino-1,2,4-trideoxy-L-arabinitol) inhibition of beta-hexosaminidase in murine RAW264.7 macrophage-like cells led to lysosomal storage of glycoconjugates that were characterised structurally using fluorescence labelling of the free or glycolipid-derived oligosaccharides followed by HPLC and mass spectrometry. Stored glycoconjugates were confirmed as containing non-reducing GlcNAc or GalNAc residues resulting from the incomplete degradation of N-linked glycoprotein oligosaccharide and glycolipids, respectively. When substrate reduction therapeutics N-butyl-deoxynojirimycin (NB-DNJ) or N-butyldeoxygalactonojirimycin (NB-DGJ) were applied to the storage phenotype cells, an increase in glucosylated and galactosylated oligosaccharide species was observed due to endoplasmic reticulum alpha-glucosidases and lysosomal beta-galactosidase inhibition, respectively. Hexosaminidase inhibition triggered a tightly regulated cytokine-mediated inflammatory response that was normalised using imino sugars NB-DNJ and NB-DGJ, which restored the GM2 ganglioside storage burden but failed to reduce the levels of GA2 glycolipid or glycoprotein-derived N-linked oligosaccharides. Using a chemically induced gangliosidosis phenotype that can be modulated with substrate lowering drugs, the critical role of GM2 ganglioside in the progression of inflammatory disease is also demonstrated. PMID:20186478

  20. Prevention of Lysosomal Storage Diseases and Derivation of Mutant Stem Cell Lines by Preimplantation Genetic Diagnosis

    Directory of Open Access Journals (Sweden)

    Gheona Altarescu

    2012-01-01

    Full Text Available Preimplantation genetic diagnosis (PGD allows birth of unaffected children for couples at risk for a genetic disorder. We present the strategy and outcome of PGD for four lysosomal storage disorders (LSD: Tay-Sachs disease (TSD, Gaucher disease (GD, Fabry disease (FD, and Hunter syndrome (HS, and subsequent development of stem cell lines. For each disease, we developed a family-specific fluorescent multiplex single-cell PCR protocol that included the familial mutation and informative markers surrounding the mutation. Embryo biopsy and PGD analysis were performed on either oocytes (polar bodies one and two or on single blastomeres from a six-cell embryo. We treated twenty families carrying mutations in these lysosomal storage disorders, including 3 couples requiring simultaneous analysis for two disorders (TSD/GD, TSD/balanced Robertsonian translocation 45XYder(21;14, and HS/oculocutaneus albinism. These analyses led to an overall pregnancy rate/embryo transfer of 38% and the birth of 20 unaffected children from 17 families. We have found that PGD for lysosomal disorders is a safe and effective method to prevent birth of affected children. In addition, by using mutant embryos for the derivation of stem cell lines, we have successfully established GD and HS hESC lines for use as valuable models in LSD research.

  1. Inflammatory cytokine response to Bacillus anthracis peptidoglycan requires phagocytosis and lysosomal trafficking.

    Science.gov (United States)

    Iyer, Janaki K; Khurana, Taruna; Langer, Marybeth; West, Christopher M; Ballard, Jimmy D; Metcalf, Jordan P; Merkel, Tod J; Coggeshall, K Mark

    2010-06-01

    During advanced stages of inhalation anthrax, Bacillus anthracis accumulates at high levels in the bloodstream of the infected host. This bacteremia leads to sepsis during late-stage anthrax; however, the mechanisms through which B. anthracis-derived factors contribute to the pathology of infected hosts are poorly defined. Peptidoglycan, a major component of the cell wall of Gram-positive bacteria, can provoke symptoms of sepsis in animal models. We have previously shown that peptidoglycan of B. anthracis can induce the production of proinflammatory cytokines by cells in human blood. Here, we show that biologically active peptidoglycan is shed from an active culture of encapsulated B. anthracis strain Ames in blood. Peptidoglycan is able to bind to surfaces of responding cells, and internalization of peptidoglycan is required for the production of inflammatory cytokines. We also show that the peptidoglycan traffics to lysosomes, and lysosomal function is required for cytokine production. We conclude that peptidoglycan of B. anthracis is initially bound by an unknown extracellular receptor, is phagocytosed, and traffics to lysosomes, where it is degraded to a product recognized by an intracellular receptor. Binding of the peptidoglycan product to the intracellular receptor causes a proinflammatory response. These findings provide new insight into the mechanism by which B. anthracis triggers sepsis during a critical stage of anthrax disease. PMID:20308305

  2. Cellular uptake of saposin (SAP) precursor and lysosomal delivery by the low density lipoprotein receptor-related protein (LRP).

    OpenAIRE

    Hiesberger, T; Hüttler, S; Rohlmann, A; Schneider, W; Sandhoff, K.; Herz, J.

    1998-01-01

    Sphingolipid activator proteins SAP-A, -B, -C and -D (also called saposins) are generated by proteolytic processing from a 73 kDa precursor and function as obligatory activators of lysosomal enzymes involved in glycosphingolipid metabolism. Although the SAP precursor can be recognized by the mannose-6-phosphate (M-6-P) receptor and shuttled directly from the secretory pathway to the lysosome, a substantial fraction of newly synthesized precursor is secreted from the cell where it may particip...

  3. Crystal structures of native and inhibited forms of human cathepsin D: implications for lysosomal targeting and drug design.

    OpenAIRE

    Baldwin, E. T.; Bhat, T N; Gulnik, S; Hosur, M. V.; Sowder, R C; Cachau, R.E.; Collins, J.; A. M. Silva; Erickson, J. W.

    1993-01-01

    Cathepsin D (EC 3.4.23.5) is a lysosomal protease suspected to play important roles in protein catabolism, antigen processing, degenerative diseases, and breast cancer progression. Determination of the crystal structures of cathepsin D and a complex with pepstatin at 2.5 A resolution provides insights into inhibitor binding and lysosomal targeting for this two-chain, N-glycosylated aspartic protease. Comparison with the structures of a complex of pepstatin bound to rhizopuspepsin and with a h...

  4. Starch Binding Domain-containing Protein 1 Plays a Dominant Role in Glycogen Transport to Lysosomes in Liver.

    Science.gov (United States)

    Sun, Tao; Yi, Haiqing; Yang, Chunyu; Kishnani, Priya S; Sun, Baodong

    2016-08-01

    A small portion of cellular glycogen is transported to and degraded in lysosomes by acid α-glucosidase (GAA) in mammals, but it is unclear why and how glycogen is transported to the lysosomes. Stbd1 has recently been proposed to participate in glycogen trafficking to lysosomes. However, our previous study demonstrated that knockdown of Stbd1 in GAA knock-out mice did not alter lysosomal glycogen storage in skeletal muscles. To further determine whether Stbd1 participates in glycogen transport to lysosomes, we generated GAA/Stbd1 double knock-out mice. In fasted double knock-out mice, glycogen accumulation in skeletal and cardiac muscles was not affected, but glycogen content in liver was reduced by nearly 73% at 3 months of age and by 60% at 13 months as compared with GAA knock-out mice, indicating that the transport of glycogen to lysosomes was suppressed in liver by the loss of Stbd1. Exogenous expression of human Stbd1 in double knock-out mice restored the liver lysosomal glycogen content to the level of GAA knock-out mice, as did a mutant lacking the Atg8 family interacting motif (AIM) and another mutant that contains only the N-terminal 24 hydrophobic segment and the C-terminal starch binding domain (CBM20) interlinked by an HA tag. Our results demonstrate that Stbd1 plays a dominant role in glycogen transport to lysosomes in liver and that the N-terminal transmembrane region and the C-terminal CBM20 domain are critical for this function. PMID:27358407

  5. Distinct Mechanisms of Ferritin Delivery to Lysosomes in Iron-Depleted and Iron-Replete Cells ▿

    OpenAIRE

    Asano, Takeshi; Komatsu, Masaaki; Yamaguchi-Iwai, Yuko; Ishikawa, Fuyuki; Mizushima, Noboru; Iwai, Kazuhiro

    2011-01-01

    Ferritin is a cytosolic protein that stores excess iron, thereby protecting cells from iron toxicity. Ferritin-stored iron is believed to be utilized when cells become iron deficient; however, the mechanisms underlying the extraction of iron from ferritin have yet to be fully elucidated. Here, we demonstrate that ferritin is degraded in the lysosome under iron-depleted conditions and that the acidic environment of the lysosome is crucial for iron extraction from ferritin and utilization by ce...

  6. Repetitive stimulation of autophagy-lysosome machinery by intermittent fasting preconditions the myocardium to ischemia-reperfusion injury

    OpenAIRE

    Godar, Rebecca J.; Ma, Xiucui; Liu, Haiyan; Murphy, John T.; Carla J Weinheimer; Kovacs, Attila; Seth D Crosby; Saftig, Paul; Diwan, Abhinav

    2015-01-01

    Autophagy, a lysosomal degradative pathway, is potently stimulated in the myocardium by fasting and is essential for maintaining cardiac function during prolonged starvation. We tested the hypothesis that intermittent fasting protects against myocardial ischemia-reperfusion injury via transcriptional stimulation of the autophagy-lysosome machinery. Adult C57BL/6 mice subjected to 24-h periods of fasting, every other day, for 6 wk were protected from in-vivo ischemia-reperfusion injury on a fe...

  7. First-Generation Antipsychotic Haloperidol Alters the Functionality of the Late Endosomal/Lysosomal Compartment in Vitro

    OpenAIRE

    Alberto Canfrán-Duque; Barrio, Luis C.; Milagros Lerma; Gema de la Peña; Jorge Serna; Oscar Pastor; Lasunción, Miguel A.; Rebeca Busto

    2016-01-01

    First- and second-generation antipsychotics (FGAs and SGAs, respectively), have the ability to inhibit cholesterol biosynthesis and also to interrupt the intracellular cholesterol trafficking, interfering with low-density lipoprotein (LDL)-derived cholesterol egress from late endosomes/lysosomes. In the present work, we examined the effects of FGA haloperidol on the functionality of late endosomes/lysosomes in vitro. In HepG2 hepatocarcinoma cells incubated in the presence of 1,1′-dioctadecyl...

  8. Visualization of cholesterol deposits in lysosomes of Niemann-Pick type C fibroblasts using recombinant perfringolysin O

    OpenAIRE

    Kwiatkowska, Katarzyna; Marszałek–Sadowska, Ewelina; Traczyk, Gabriela; Koprowski, Piotr; Musielak, Małgorzata; Ługowska, Agnieszka; Kulma, Magdalena; Grzelczyk, Anna; Sobota, Andrzej

    2014-01-01

    Background Niemann-Pick disease type C (NPC) is caused by defects in cholesterol efflux from lysosomes due to mutations of genes coding for NPC1 and NPC2 proteins. As a result, massive accumulation of unesterified cholesterol in late endosomes/lysosomes is observed. At the level of the organism these cholesterol metabolism disorders are manifested by progressive neurodegeneration and hepatosplenomegaly. Until now filipin staining of cholesterol deposits in cells has been widely used for NPC d...

  9. ESCRT-Dependent Cell Death in a Caenorhabditis elegans Model of the Lysosomal Storage Disorder Mucolipidosis Type IV.

    Science.gov (United States)

    Huynh, Julie M; Dang, Hope; Munoz-Tucker, Isabel A; O'Ketch, Marvin; Liu, Ian T; Perno, Savannah; Bhuyan, Natasha; Crain, Allison; Borbon, Ivan; Fares, Hanna

    2016-02-01

    Mutations in MCOLN1, which encodes the cation channel protein TRPML1, result in the neurodegenerative lysosomal storage disorder Mucolipidosis type IV. Mucolipidosis type IV patients show lysosomal dysfunction in many tissues and neuronal cell death. The ortholog of TRPML1 in Caenorhabditis elegans is CUP-5; loss of CUP-5 results in lysosomal dysfunction in many tissues and death of developing intestinal cells that results in embryonic lethality. We previously showed that a null mutation in the ATP-Binding Cassette transporter MRP-4 rescues the lysosomal defect and embryonic lethality of cup-5(null) worms. Here we show that reducing levels of the Endosomal Sorting Complex Required for Transport (ESCRT)-associated proteins DID-2, USP-50, and ALX-1/EGO-2, which mediate the final de-ubiquitination step of integral membrane proteins being sequestered into late endosomes, also almost fully suppresses cup-5(null) mutant lysosomal defects and embryonic lethality. Indeed, we show that MRP-4 protein is hypo-ubiquitinated in the absence of CUP-5 and that reducing levels of ESCRT-associated proteins suppresses this hypo-ubiquitination. Thus, increased ESCRT-associated de-ubiquitinating activity mediates the lysosomal defects and corresponding cell death phenotypes in the absence of CUP-5. PMID:26596346

  10. Azadirachtin-induced apoptosis involves lysosomal membrane permeabilization and cathepsin L release in Spodoptera frugiperda Sf9 cells.

    Science.gov (United States)

    Wang, Zheng; Cheng, Xingan; Meng, Qianqian; Wang, Peidan; Shu, Benshui; Hu, Qiongbo; Hu, Meiying; Zhong, Guohua

    2015-07-01

    Azadirachtin as a kind of botanical insecticide has been widely used in pest control. We previously reported that azadirachtin could induce apoptosis of Spodoptera litura cultured cell line Sl-1, which involves in the up-regulation of P53 protein. However, the detailed mechanism of azadirachtin-induced apoptosis is not clearly understood in insect cultured cells. The aim of the present study was to address the involvement of lysosome and lysosomal protease in azadirachtin-induced apoptosis in Sf9 cells. The result confirmed that azadirachtin indeed inhibited proliferation and induced apoptosis. The lysosomes were divided into different types as time-dependent manner, which suggested that changes of lysosomes were necessarily physiological processes in azadirachtin-induced apoptosis in Sf9 cells. Interestingly, we noticed that azadirachtin could trigger lysosomal membrane permeabilization and cathepsin L releasing to cytosol. Z-FF-FMK (a cathepsin L inhibitor), but not CA-074me (a cathepsin B inhibitor), could effectively hinder the apoptosis induced by azadirachtin in Sf9 cells. Meanwhile, the activity of caspase-3 could also be inactivated by the inhibition of cathepsin L enzymatic activity induced by Z-FF-FMK. Taken together, our findings suggest that azadirachtin could induce apoptosis in Sf9 cells in a lysosomal pathway, and cathepsin L plays a pro-apoptosis role in this process through releasing to cytosol and activating caspase-3. PMID:25849458

  11. Iron-Mediated Lysosomal Membrane Permeabilization in Ethanol-Induced Hepatic Oxidative Damage and Apoptosis: Protective Effects of Quercetin

    Directory of Open Access Journals (Sweden)

    Yanyan Li

    2016-01-01

    Full Text Available Iron, in its free ferrous states, can catalyze Fenton reaction to produce OH∙, which is recognized as a crucial role in the pathogenesis of alcoholic liver diseases (ALD. As a result of continuous decomposition of iron-containing compounds, lysosomes contain a pool of redox-active iron. To investigate the important role of intralysosomal iron in alcoholic liver injury and the potential protection of quercetin, male C57BL/6J mice fed by Lieber De Carli diets containing ethanol (30% of total calories were cotreated by quercetin or deferoxamine (DFO for 15 weeks and ethanol-incubated mice primary hepatocytes were pretreated with FeCl3, DFO, and bafilomycin A1 at their optimal concentrations and exposure times. Chronic ethanol consumption caused an evident increase in lysosomal redox-active iron accompanying sustained oxidative damage. Iron-mediated ROS could trigger lysosomal membrane permeabilization (LMP and subsequent mitochondria apoptosis. The hepatotoxicity was attenuated by reducing lysosomal iron while being exacerbated by escalating lysosomal iron. Quercetin substantially alleviated the alcoholic liver oxidative damage and apoptosis by decreasing lysosome iron and ameliorating iron-mediated LMP, which provided a new prospective of the use of quercetin against ALD.

  12. A six-membered-ring incorporated Si-rhodamine for imaging of copper(ii) in lysosomes.

    Science.gov (United States)

    Wang, Baogang; Cui, Xiaoyan; Zhang, Zhiqiang; Chai, Xiaoyun; Ding, Hao; Wu, Qiuye; Guo, Zhongwu; Wang, Ting

    2016-07-12

    The regulation of copper homeostasis in lysosomes of living cells is closely related to various physiological and pathological processes. Thus, it is of urgent need to develop a fluorescent probe for selectively and sensitively monitoring the location and concentration of lysosomal Cu(2+). Herein, a six-membered ring, thiosemicarbazide, was incorporated into a Si-rhodamine (SiR) scaffold for the first time, affording a SiR-based fluorescent probe SiRB-Cu. Through the effective Cu(2+)-triggered ring-opening process, the probe exhibits fast NIR chromogenic and fluorogenic responses to Cu(2+) within 2 min as the result of formation of a highly fluorescent product SiR-NCS. Compared with a five-membered ring, the expanded ring retains great tolerance to H(+), ensuring the superior sensitivity with a detection limit as low as 7.7 nM and 200-fold enhancement of relative fluorescence in the presence of 1.0 equiv. of Cu(2+) in pH = 5.0 solution, the physiological pH of lysosome. Moreover, the thiosemicarbazide moiety acts not only as the chelating and reactive site, but also as an efficient lysosome-targeting group, leading to the proactive accumulation of the probe into lysosomes. Taking advantage of these distinct properties, SiRB-Cu provides a functional probe suitable for imaging exogenous and endogenous lysosomal Cu(2+) with high imaging contrast and fidelity. PMID:27314426

  13. Glycemic control and outcome related to cardiopulmonary bypass.

    Science.gov (United States)

    Thiessen, Steven; Vanhorebeek, Ilse; Van den Berghe, Greet

    2015-06-01

    Perioperative hyperglycemia, aggravated by cardiopulmonary bypass, is associated with adverse outcome in adult and pediatric patients. Whereas hyperglycemia was originally perceived as an adaptive response to surgical stress, it is now clear that glycemic control is a strategy to reduce adverse outcomes after cardiac surgery and cardiopulmonary bypass. The optimal blood glucose target, whether or not glycemic control should be initiated already intraoperatively, and whether or not perioperative glucose administration affects the impact of glycemic control on ischemia-reperfusion damage remain open questions. Hypoglycemia, the risk of which is increased with glycemic control, is also associated with adverse outcomes. However, it remains controversial whether brief episodes of hypoglycemia, rapidly corrected during glycemic control, have adverse effects on outcome. This review gives an overview of the currently available literature on glycemic control during and after cardiac surgery and focuses on the indicated open questions about this intervention for this specific patient population. PMID:26060029

  14. Arteriovenous fistulas aggravate the hemodynamic effect of vein bypass stenoses

    DEFF Research Database (Denmark)

    Nielsen, T G; Djurhuus, C; Pedersen, Erik Morre; Laustsen, J; Hasenkam, J M; Schroeder, Torben Veith

    1996-01-01

    PURPOSE: The purpose of this study was to assess the impact of arteriovenous fistulas combined with varying degrees of stenosis on distal bypass hemodynamics and Doppler spectral parameters. METHODS: In an in vitro flow model bypass stenoses causing 30%, 55%, and 70% diameter reduction were induced...... the systolic pressure drop from 31% to 48% and had significant impact on all waveform parameters. CONCLUSIONS: Distal arteriovenous fistulas enhance pressure loss across stenoses and affect downstream velocity waveform configuration. The presence of a combined fistula and a stenosis mimics the distal...... 10 cm upstream of a fistula with low outflow resistance. Flow and intraluminal pressure were measured proximal to the stenosis and downstream of the fistula. The waveform parameters peak systolic velocity, end-diastolic velocity, pulsatility index, and pulse rise time were determined from midstream...

  15. Analyses of 1/15 scale Creare bypass transient experiments

    International Nuclear Information System (INIS)

    RELAP4 analyses of several 1/15 scale Creare H-series bypass transient experiments have been done to investigate the effect of using different downcomer nodalizations, physical scales, slip models, and vapor fraction donoring methods. Most of the analyses were thermal equilibrium calculations performed with RELAP4/MOD5, but a few such calculations were done with RELAP4/MOD6 and RELAP4/MOD7, which contain improved slip models. In order to estimate the importance of nonequilibrium effects, additional analyses were performed with TRAC-PD2, RELAP5 and the nonequilibrium option of RELAP4/MOD7. The purpose of these studies was to determine whether results from Westinghouse's calculation of the Creare experiments, which were done with a UHI-modified version of SATAN, were sufficient to guarantee SATAN would be conservative with respect to ECC bypass in full-scale plant analyses

  16. Outflow distribution at the distal anastomosis of infrainguinal bypass grafts.

    Science.gov (United States)

    Fisher, R K; How, T V; Bakran, A; Brennan, J A; Harris, P L

    2004-03-01

    Outflow distribution at the distal anastomosis of infrainguinal bypass grafts remains unquantified in vivo, but is likely to influence flow patterns and haemodynamics, thereby impacting upon graft patency. This study measured the ratio of distal to proximal outflow in 30 patients undergoing infrainguinal bypass for lower limb ischaemia, using a flow probe and a transit-time ultrasonic flow meter. The mean outflow distribution was approximately 75% distal to 25% proximal, with above knee anastomoses having a greater proportion of distal flow (84%) compared to below knee grafts (73%). These in vivo flow characteristics differ significantly from those used in theoretical models studying flow phenomena (50:50 and/or 100:0), and should be incorporated into future research. PMID:14757463

  17. Bilateral Internal Thoracic Artery Configuration for Coronary Artery Bypass Surgery

    Science.gov (United States)

    Boodhwani, Munir; Hanet, Claude; de Kerchove, Laurent; Navarra, Emiliano; Astarci, Parla; Noirhomme, Philippe; El Khoury, Gebrine

    2016-01-01

    Background— Bilateral internal thoracic arteries (BITA) have demonstrated superior patency and improved survival in patients undergoing coronary artery bypass grafting. However, the optimal configuration for BITA utilization and its effect on long-term outcome remains uncertain. Methods and Results— We randomly assigned 304 patients undergoing coronary artery bypass grafting using BITA to either in situ or Y grafting configurations. The primary end point was 3-year angiographic patency. Secondary end points included major adverse cardiac and cerebrovascular events (ie, death from any cause, stroke, myocardial infarction, or repeat revascularization) at 7 years. More coronary targets were able to be revascularized using internal thoracic arteries in patients randomized to Y grafting versus in situ group (3.2±0.8 versus 2.4±0.5 arteries/patient; PURL: http://www.clinicaltrials.gov. Unique identifier: NCT01666366. PMID:27406988

  18. Inhibitory effect of mTOR activator MHY1485 on autophagy: suppression of lysosomal fusion.

    Directory of Open Access Journals (Sweden)

    Yeon Ja Choi

    Full Text Available Autophagy is a major degradative process responsible for the disposal of cytoplasmic proteins and dysfunctional organelles via the lysosomal pathway. During the autophagic process, cells form double-membraned vesicles called autophagosomes that sequester disposable materials in the cytoplasm and finally fuse with lysosomes. In the present study, we investigated the inhibition of autophagy by a synthesized compound, MHY1485, in a culture system by using Ac2F rat hepatocytes. Autophagic flux was measured to evaluate the autophagic activity. Autophagosomes were visualized in Ac2F cells transfected with AdGFP-LC3 by live-cell confocal microscopy. In addition, activity of mTOR, a major regulatory protein of autophagy, was assessed by western blot and docking simulation using AutoDock 4.2. In the result, treatment with MHY1485 suppressed the basal autophagic flux, and this inhibitory effect was clearly confirmed in cells under starvation, a strong physiological inducer of autophagy. The levels of p62 and beclin-1 did not show significant change after treatment with MHY1485. Decreased co-localization of autophagosomes and lysosomes in confocal microscopic images revealed the inhibitory effect of MHY1485 on lysosomal fusion during starvation-induced autophagy. These effects of MHY1485 led to the accumulation of LC3II and enlargement of the autophagosomes in a dose- and time-dependent manner. Furthermore, MHY1485 induced mTOR activation and correspondingly showed a higher docking score than PP242, a well-known ATP-competitive mTOR inhibitor, in docking simulation. In conclusion, MHY1485 has an inhibitory effect on the autophagic process by inhibition of fusion between autophagosomes and lysosomes leading to the accumulation of LC3II protein and enlarged autophagosomes. MHY1485 also induces mTOR activity, providing a possibility for another regulatory mechanism of autophagy by the MHY compound. The significance of this study is the finding of a novel

  19. Access pricing, bypass and universal service in post

    OpenAIRE

    Armstrong, Mark

    2006-01-01

    A postal regulator typically faces two issues which make the design of efficient access pricing especially difficult and which complicate the process of liberalizing the industry. First, universal service obligations, together with the presence of fixed costs, require retail prices to depart from the underlying marginal costs of the incumbent provider. Second, competing firms may be able to bypass the incumbent’s delivery network. Within a simple and stylized framework, this note ...

  20. Effects of Deep Breathing Exercises after Coronary Artery Bypass Surgery

    OpenAIRE

    Westerdahl, Elisabeth

    2004-01-01

    Deep breathing exercises are widely used in the postoperative care to prevent or reduce pulmonary complications, but no scientific evidence for the efficacy has been found after coronary artery bypass grafting (CABG) surgery. The aim of the thesis was to describe postoperative pulmonary function and to evaluate the efficacy of deep breathing exercises performed with or without a blow bottle device for positive expiratory pressure (PEP) 10 cmH2O or an inspiratory resistance-positive expirator...

  1. An Efficient Bypassing Void Routing Algorithm for Wireless Sensor Network

    OpenAIRE

    2015-01-01

    Since the sensor node’s distribution in a wireless sensor network (WSN) is irregular, geographic routing protocols using the greedy algorithm can cause local minima problem. This problem may fail due to routing voids and lead to failure of data transmission. Based on the virtual coordinate mapping, this paper proposes an efficient bypassing void routing protocol to solve the control packet overhead and transmission delay in routing void of WSN, which is called EBVRPVCM. The basic idea is to t...

  2. Constitutive modeling of coronary artery bypass graft with incorporated torsion

    Czech Academy of Sciences Publication Activity Database

    Horný, L.; Chlup, Hynek; Žitný, R.; Adámek, T.

    2009-01-01

    Roč. 49, č. 2 (2009), s. 273-277. ISSN 0543-5846 R&D Projects: GA ČR(CZ) GA106/08/0557 Institutional research plan: CEZ:AV0Z20760514 Keywords : coronary artery bypass graft * constitutive model * digital image correlation Subject RIV: BJ - Thermodynamics Impact factor: 0.439, year: 2009 http:// web .tuke.sk/sjf-kamam/mmams2009/contents.pdf

  3. Coronary Artery Bypass Surgery - Multiple Languages: MedlinePlus

    Science.gov (United States)

    ... Chinese - Simplified (简体中文) Chinese - Traditional (繁體中文) French (français) Hindi (हिन्दी) Japanese (日本語) Korean (한국어) Russian (Русский) ... coronarien - français (French) Bilingual PDF Health Information Translations Hindi (हिन्दी) Coronary Artery Bypass Surgery हिन्दी ( ...

  4. CULTURAL DIAGNOSIS AND BYPASSING; THE EFFECT ON SUCCESSFUL INTERNATIONALIZATION

    OpenAIRE

    Andrews Adugudaa Akolaa

    2012-01-01

    Globalization and its effect on business continue to propel firms to look beyond local markets for opportunities for market development and as a source of growth. However, Cultural differences in various markets continue to exert enormous pressure on international market operations as a result of cultural bypassing or misdiagnosis and this requires international marketers to undertake robust cultural analysis to ensure successful market servicing strategies. This paper reviews and discusses t...

  5. Adherence to treatment after coronary bypass surgery: Psychological aspects

    OpenAIRE

    Maria V. Iakovleva

    2016-01-01

    Poor adherence to treatment is a problem of great importance and striking magnitude. Its consequences are increased health care costs and poor health outcomes. It defined the objective of this research, which is the study of psychological characteristics of patients with different degrees of adherence to rehabilitation treatment after coronary bypass surgery. Ninety male and female patients with CHD, aged 46---71, were examined. The study was carried out using the questionnaire of wa...

  6. Successful cardiopulmonary bypass in diabetics with anaphylactoid reactions to protamine.

    OpenAIRE

    Walker, W. S.; Reid, K G; Hider, C F; Davidson, I. A.; Boulton, F. E.; Yap, P L

    1984-01-01

    Two insulin dependent diabetics with previous anaphylactic like (anaphylactoid) reactions to protamine underwent successful cardiopulmonary bypass for coronary artery surgery. Platelet concentrates instead of protamine were used to neutralise their systemic heparinisation. In both cases the anaphylactoid reactions first became apparent after administration of protamine sulphate at the end of cardiac catheterisation. These cases show that adverse reactions to protamine need not be a contraindi...

  7. Immunocytochemical features of obstructed saphenous vein coronary artery bypass grafts.

    OpenAIRE

    Brody, J I; Pickering, N J; Fink, G B

    1989-01-01

    The peroxidase-immunoperoxidase immunocytochemical method was used on 27 saphenous vein coronary artery bypass grafts, which had been resected because of recurrent angina, to identify in situ cellular and humoral elements possibly associated with graft occlusion. Immunostaining was performed on paraffin wax embedded control saphenous vein and graft sections incubated directly with primary antibodies against von Willebrand antigen (vWFAg), fibronectin, fibrinogen, leucocyte common antigen (LCA...

  8. Factors influencing early results of femoro-femoral crossover bypass

    Directory of Open Access Journals (Sweden)

    Đorić Predrag

    2011-01-01

    Full Text Available Introduction. Femoro-femoral crossover bypass is an extraanatomic reconstruction used for revascularization of lower limb with contralatateral femoral artery as an inflow vessel, and the graft placed in the suprapubic region. We perform this procedure when anatomic reconstruction is not possible or is contraindicated. Objective. To analyze the influence of different risk factors on early patency of femoro-femoral crossover bypass. Methods. This retrospective study analyzed the results of 88 femoro-femoral bypass grafting during an 11-year period. There were 66 (75% males and 22 (25% females of average age 64.93 years (42-79 years. In 76 patients the operations were performed due to critical limb ischemia. Revascularization was urgent in 12 patients, while 76 patients were elective. Dacron prosthesis was used in 81 patients, while PTFE was used in 7 patients. Statistical analysis was made by logistic regression. Results. During hospitalisation the graft remained patent in 82 patients, and graft thrombosis occurred in 6 patients. Limb salvage rate was 90.91%. Early morbidity rate (within the first post-operative month was 13.64%, while early mortality rate was 4.55%. Using logistic regression we established that early graft patency was statistically more significant in males (p<0.05. Age (p=0.07 and hypertension (p=0.08 appeared to be predicting influence of the graft patency on the border of the accepted statistical significance level. Conclusion. Femoro-femoral crossover bypass is a good alternative for revascularization in high risk patients for standard anatomic reconstructions due to comorbid conditions or local problems.

  9. A review of 155 extra-anatomic bypass grafts.

    OpenAIRE

    Foster, M.C.; Mikulin, T; Hopkinson, B R; Makin, G. S.

    1986-01-01

    Extra-anatomic bypass grafting has been used as treatment for patients with aorto-iliac disease who were considered unfit for aortic surgery. Eighty five percent of the patients had ischaemic pain at rest or skin necrosis. One hundred and three femorofemoral (FF) grafts, 40 axillounifemoral and 12 axillobifemoral grafts were performed. Femoropopliteal extension grafts were performed in 39 cases. The three year cumulative graft patency rate was 69% for FF grafts and 48% for both types of axill...

  10. Geschlechtsspezifische Aspekte psychosozialer Variablen bei aortokoronarer Bypass-Operation

    OpenAIRE

    Dunkel, Anne

    2012-01-01

    Following coronary artery bypass graft (CABG) surgery women display not only higher mortality rates, but also report more restrictions in terms of health-related quality of life (HRQoL). So far, the causes for this gender gap could not be fully explained by clinical variables. Therefore, the aim of the present study was to analyze the role of psychosocial variables during recovery following CABG. Six specific problems concerning perioperative gender differences in HRQoL, depression, social su...

  11. Isopentenyl diphosphate (IPP)-bypass mevalonate pathways for isopentenol production.

    Science.gov (United States)

    Kang, Aram; George, Kevin W; Wang, George; Baidoo, Edward; Keasling, Jay D; Lee, Taek Soon

    2016-03-01

    Branched C5 alcohols are promising biofuels with favorable combustion properties. A mevalonate (MVA)-based isoprenoid biosynthetic pathway for C5 alcohols was constructed in Escherichia coli using genes from several organisms, and the pathway was optimized to achieve over 50% theoretical yield. Although the MVA pathway is energetically less efficient than the native methylerythritol 4-phosphate (MEP) pathway, implementing the MVA pathway in bacterial hosts such as E. coli is advantageous due to its lack of endogenous regulation. The MVA and MEP pathways intersect at isopentenyl diphosphate (IPP), the direct precursor to isoprenoid-derived C5 alcohols and initial precursor to longer chain terpenes, which makes independent regulation of the pathways difficult. In pursuit of the complete "decoupling" of the MVA pathway from native cellular regulation, we designed novel IPP-bypass MVA pathways for C5 alcohol production by utilizing promiscuous activities of two enzymes, phosphomevalonate decarboxylase (PMD) and an E. coli-endogenous phosphatase (AphA). These bypass pathways have reduced energetic requirements, are further decoupled from intrinsic regulation, and are free from IPP-related toxicity. In addition to these benefits, we demonstrate that reduced aeration rate has less impact on the bypass pathway than the original MVA pathway. Finally, we showed that performance of the bypass pathway was primarily determined by the activity of PMD. We designed PMD mutants with improved activity and demonstrated titer increases in the mutant strains. These modified pathways would be a good platform for industrial production of isopentenol and related chemicals such as isoprene. PMID:26708516

  12. Simulation and Analysis of the bypass Influences on Tire Noise

    OpenAIRE

    Haichao Zhou; Guolin Wang; Jian Yang; Shizhou Ying

    2014-01-01

    It is a well-known scientific fact that circumferential groove exists great influence on tire noise. Increasing the void can help the rubber blocks to penetrate faster into the underlying water film and improve anti-skid performance, but which gives way to an increased air pumping noise. Therefore, the structure parameters of circumferential grooves play large influence on tire performance. The goal of this present study is using the bypass to change the grooves design and analysis the influe...

  13. Efficacy of Intravenous Acetaminophen after Coronary Artery Bypass Graft Surgery

    OpenAIRE

    Leick AM; Ratliff PD; Shely RN; Lester WC; Short MR

    2015-01-01

    In recent years, a multimodal approach to post-operative pain control consisting of opioid and non-opioid agents administered simultaneously has been used to provide synergistic effects and reduce opioid-related adverse effects. This is a retrospective, cohort study involving coronary artery bypass graft surgery patients who received scheduled intravenous IV acetaminophen 1gm every 6 hours for 4 doses starting at surgery end time with opioids administered as needed versus opioids as monother...

  14. Early chest tube removal after coronary artery bypass graft surgery

    Directory of Open Access Journals (Sweden)

    Mohsen Mirmohammad-Sadeghi

    2009-01-01

    Full Text Available Background: There is no clear data about the optimum time for chest tube removal after coronary artery bypass surgery. Aim: The aim of this study was to assess the impact of the chest tube removal time following coronary artery bypass grafting surgery on the clinical outcome of the patients. Material and Methods: An analysis of data from 307 patients was performed. The patients were randomized into two groups: in group 1 (N=107 chest tubes were removed within the first 24 hours after surgery, whereas in group 2 (N=200, chest tubes were removed in the second 24 hours after surgery. Demographics, lactate and pH at the beginning, during and after the operation, creatinine, left ventricular ejection fraction, inotropic drugs administration, length of ICU stay, and mortality data were collected. Respiratory rate and pain level was assessed. Results: In these surgeries, the mean± standard deviation for the aortic clamping time was 49.18±17.59 minutes and cardiopulmonary bypass time was 78.39±25.12 minutes. The amount of heparin consumed by the second group was higher (P <0.001 which could be considered as an important factor in increasing the drainage time after the surgery (P =0.047. The pain level evaluated 24 hours post-operation was lower in the first group, and the difference in the pain level between the 2 groups evaluated 30 hours post-operation was significant (P=0.016. The mean time of intensive care unit stay was longer in the second group but it was not statistically significant. Conclusion: Early extracting of chest tubes after coronary artery bypass graft surgery when there is no significant drainage can lead to pain reduction and consuming oxygen is an effective measure after surgery toward healing; it doesn′t increase the risk of creation of plural effusion and pericardial effusion.

  15. Assessing Patient bypass Behavior Using Taxi Trip Origin–Destination (OD Data

    Directory of Open Access Journals (Sweden)

    Gege Yang

    2016-09-01

    Full Text Available Many patients prefer to use the best hospitals even if there are one or more other hospitals closer to their homes; this behavior is called “hospital bypass behavior”. Because this behavior can be problematic in urban areas, it is important that it be reduced. In this paper, the taxi GPS data of Beijing and Suzhou were used to measure hospital bypass behavior. The “bypass behavior index” (BBI represents the bypass behavior for each hospital. The results indicated that the mean hospital bypass trip distance value ranges from 5.988 km to 9.754 km in Beijing and from 4.168 km to 10.283 km in Suzhou. In general, the bypass shares of both areas show a gradually increasing trend. The following hospitals exhibited significant patient bypass behavior: the 301 Hospital, Beijing Children’s Hospital, the Second Affiliated Hospital of Soochow University and the Suzhou Hospital of Traditional Chinese Medicine. The hospitals’ reputation, transport accessibility and spatial distribution were found to be the main factors affecting patient bypass behavior. Although the hospital bypass phenomena generally appeared to be more pronounced in Beijing, the bypass trip distances between hospitals were found to be more significant in Suzhou.

  16. Modulation method of scroll compressor based on suction gas bypass

    International Nuclear Information System (INIS)

    The air conditioners and heat pumps tend to work in much mild environments and part load situations rather than provide the rated full capacity under severe rated testing conditions. Both the capacity and inner compression ratio of the compressor should be regulated according to the working condition for higher energy efficiency and occupants’ comfort. A potential modulating technology of the scroll compressor, suction gas bypass, is investigated in this paper. The principle and operation method are illuminated and the adaptability is validated by experiments and simulations. As a conclusion, an appropriate suction gas bypass can reduce the inner compression loss of the scroll compressor under over compression conditions, enhance the system COP and also largely decrease the heating/cooling capacity of the refrigeration/heat pump system. - Highlights: ► Suction gas bypass (SGB) is an effective regulating method of scroll compressor. ► SGB reduces the inner compression loss under over compression conditions. ► SGB largely decreases the heating/cooling capacity of the refrigeration system.

  17. Percutaneous mechanical thrombectomy for treatment of acute femoropopliteal bypass occlusion

    Directory of Open Access Journals (Sweden)

    Lichtenberg M

    2012-05-01

    Full Text Available Michael Lichtenberg1, Matthias Käunicke1, Birgit Hailer1,21Cardiovascular Clinic, Vascular Center, Katholisches Klinikum Essen, Germany; 2University of Witten/Herdecke, GermanyAbstract: Acute and subacute ischemia of the legs in acute and subacute femoropopliteal bypass occlusion is a dramatic situation that endangers the survival of the limbs, depending on the severity of the ischemia. Different therapy options like percutaneous mechanical thrombectomy procedures, which include rotational thrombectomy, have become available in recent years, in addition to local lysis and surgical thrombectomy. Surgical thrombectomy using the Fogarty catheter technique, in particular, shows an increased incidence of perioperative complications but only small technical success rates in randomized trials. On the other hand, local lysis is associated with increased costs due to resource-consuming measures, such as intensive monitoring and repeat angiographies, in addition to bleeding complications. In the past, further development of the Straub Rotarex® system as an endovascular therapy option has demonstrated good success leading to amputation-free survival in multiple studies. At the same time, a low rate of complications with use has been documented. Most examinations have been conducted in the thigh. To date, there are little investigational data on its use in acutely and subacutely occluded femoropopliteal bypasses. In this paper, the current study-based significance of the Rotarex system for this indication is analyzed based on the existing literature and the authors' own experiences with 22 patients.Keywords: acute limb ischemia, femoropopliteal bypass, local lysis, rotational thrombectomy

  18. Ileal loop interposition:an alternative biliar y bypass technique

    Institute of Scientific and Technical Information of China (English)

    Felipe JF Coimbra; Alessandro L Diniz; Heber SC Ribeiro; Wilson L Costa Jr.; Eduardo NP Lima; André L Montagnini

    2010-01-01

    BACKGROUND: Obstructive jaundice is a common condition in advanced digestive cancer. Palliative procedures can improve quality of life and allow patients to attempt a systemic treatment. Bilioenteric anastomosis is still the procedure of choice for patients in many centers. When a surgical bypass is not possible, biliary drainage can be done by placing endoscopic or transparietal stents, which are less durable methods even when an expandable stent is employed. METHODS: A 47-year-old male with an excellent clinical status and a previous cholecystectomy and an exploratory laparotomy for advanced gastric cancer was referred with obstructive jaundice. A preoperative CT scan showed a dilated bile duct and a small mass at the distal hepatic hilum. No other signs of metastasis were found. A surgical bilioenteric anastomosis was indicated. At surgery, a distal choledochal obstruction and a mesenteric retraction by a lymph node mass prevented the jejunum to ascend for a bilioenteric anastomosis. Surgically, an alternative bilioenteric bypass was performed by means of an ileal loop interposition between the bile duct and the jejunum. RESULT: The recovery of the patient was uneventful and his bilirubin levels normalized after one week. The patient was then referred for systemic chemotherapy. CONCLUSIONS: This alternative biliary bypass can be safely and easily performed, and may be a good alternative for patients already referred for surgery because of a better life expectancy and when the jejunum is not an alternative.

  19. Laparoscopic gastric bypass to robotic gastric bypass: time and cost commitment involved in training and transitioning an academic surgical practice.

    Science.gov (United States)

    Lyn-Sue, Jerome R; Winder, Josh S; Kotch, Shannon; Colello, Jacob; Docimo, Salvatore

    2016-06-01

    The Roux-en-Y gastric bypass is the gold standard procedure for weight loss. This relatively complex procedure has excellent outcomes when performed via laparoscopy. The advent of the DaVinci robotic platform has been a technological advancement. Our goal is to provide information regarding the cost, time commitment, and advantages of transitioning an LRYGB program to an RRYGB program in an academic setting. We retrospectively reviewed the last 25 laparoscopic gastric bypass procedures and the first 25 robotic gastric bypass procedures performed by a single surgeon. We compared clinical outcomes and focused on time and hospital cost during this transition phase. There was no significant demographic difference between the groups. The mean age was 41.7 (RRYGB) years vs 43.4 (LRYGM) years. The mean BMI were similar between groups, 45.3 vs 46.5 kg/m(2) for RRYGB and LRYGB. No anastomotic leaks or mortalities were noted. There was one anastomotic stricture in both groups. Excess weight loss was similar in both groups at 1 year. There was a significant increase in operative time with RRYGB, mean 241 min vs mean 174 min (p = 0.0005). Operative time fell by 25 min after the first 10 cases. The hospital cost was also increased with RRYGB mean $5922 vs $4395 (p = 0.03). Transitioning from a laparoscopic to a robotic practice can be done safely, however, the initial operative times were longer and the hospital cost was higher for robotic gastric bypass. We hope in the future that these will decrease after overcoming the learning and as the technology becomes widespread. PMID:26983848

  20. Passage of downstream migrant American eels through an airlift-assisted deep bypass

    Science.gov (United States)

    Haro, Alexander J.; Watten, Barnaby J.; Noreika, John

    2016-01-01

    Traditional downstream guidance and bypass facilities for anadromous fishes (i.e., surface bypasses, surface guidance structures, and behavioral barriers) have frequently been ineffective for anguillid eels. Because eels typically spend the majority of their time near the bottom in the vicinity of intake structures, deep bypass structures with entrances near the bottom hold promise for increased effectiveness, thereby aiding in the recovery of this important species. A new design of a deep bypass system that uses airlift technology (the Conte Airlift Bypass) to induce flow in a bypass pipe was tested in a simulated intake entrance environment under controlled laboratory conditions. Water velocities of 0.9–1.5 m s−1 could be generated at the bypass entrance (opening with 0.073 m2 area), with corresponding flows through the bypass pipe of 0.07–0.11 m3 s−1. Gas saturation and hydrostatic pressure within the bypass pipe did not vary appreciably from a control (no air) condition under tested airflows. Migratory silver-phase American eels (Anguilla rostrata) tested during dark conditions readily located, entered, and passed through the bypass; initial avoidance rates (eels approaching but not entering the bypass entrance) were lower at higher entrance velocities. Eels that investigated the bypass pipe entrance tended to enter headfirst, but those that then exited the pipe upstream did so more frequently at lower entrance velocities. Eels appeared to swim against the flow while being transported downstream through the pipe; median transit times through the bypass for each test velocity ranged from 5.8 to 12.2 s, with transit time decreasing with increasing entrance velocity. Eels did not show strong avoidance of the vertical section of the pipe which contained injected air. No mortality or injury of bypassed eels was observed, and individual eels repeatedly passed through the bypass at rates of up to 40 passes per hour, suggesting that individuals do not