WorldWideScience

Sample records for cd11b-expressing isolectin-binding proinflammatory

  1. Immunomodulatory effect of exo-polysaccharides from submerged cultured Cordyceps sinensis: enhancement of cytokine synthesis, CD11b expression, and phagocytosis.

    Science.gov (United States)

    Kuo, Mei-Chun; Chang, Chien-Yu; Cheng, Tso-Lin; Wu, Ming-Jiuan

    2007-06-01

    Cordyceps sinensis is widely used as a traditional medicine for treatment of a wide variety of diseases or to maintain health. The immunomodulatory activity of polysaccharides prepared from submerged cultured C. sinensis BCRC36421 was investigated in human peripheral blood. Results demonstrated that Fr. A (exo-polysaccharides, 0.025 approximately 0.1 mg/ml) induced the production of tumor necrosis factor alpha (TNF-alpha), interleukin (IL)-6, and IL-10 dose-dependently. Fr. A, as low as 0.025 mg/ml, could significantly augment surface expression of CD11b in monocytes and polymorphonuclear neutrophils. Functional assay revealed that Fr. A (0.05 mg/ml) also elevated phagocytosis in monocytes and PMN. On the other hand, Fr. B (intracellular polysaccharides) only moderately induced TNF-alpha release, CD11b expression, and phagocytosis at the same concentrations. Our results indicate that the immunomodulatory components of submerged cultured C. sinensis mainly reside in the culture filtrate.

  2. Granulocyte and monocyte CD11b expression during plasma separation is dependent on complement factor 5 (C5) - an ex vivo study with blood from a C5-deficient individual.

    Science.gov (United States)

    Hardersen, Randolf; Enebakk, Terje; Christiansen, Dorte; Bergseth, Grethe; Brekke, Ole-Lars; Mollnes, Tom Eirik; Lappegård, Knut Tore; Hovland, Anders

    2018-04-01

    The aim of the study was to investigate the role of complement factor 5 (C5) in reactions elicited by plasma separation using blood from a C5-deficient (C5D) individual, comparing it to C5-deficient blood reconstituted with C5 (C5DR) and blood from healthy donors. Blood was circulated through an ex vivo plasma separation model. Leukocyte CD11b expression and leukocyte-platelet conjugates were measured by flow cytometry during a 30-min period. Other markers were assessed during a 240-min period. Granulocyte and monocyte CD11b expression did not increase in C5D blood during plasma separation. In C5DR samples granulocytes CD11b expression, measured by mean fluorescence intensity (MFI), increased from 10481 ± 6022 (SD) to 62703 ± 4936, and monocytes CD11b expression changed from 13837 ± 7047 to 40063 ± 713. Granulocyte-platelet conjugates showed a 2.5-fold increase in the C5DR sample compared to the C5D sample. Monocyte-platelet conjugates increased independently of C5. In the C5D samples, platelet count decreased from 210 × 10 9 /L (201-219) (median and range) to 51 × 10 9 /L (50-51), and C3bc increased from 14 CAU/mL (21-7) to 198 CAU/mL (127-269), whereas TCC formation was blocked during plasma separation. In conclusion, up-regulation of granulocyte and monocyte CD11b during plasma separation was C5-dependent. The results also indicate C5 dependency in granulocyte-platelet conjugates formation. © 2018 APMIS. Published by John Wiley & Sons Ltd.

  3. d(− Lactic Acid-Induced Adhesion of Bovine Neutrophils onto Endothelial Cells Is Dependent on Neutrophils Extracellular Traps Formation and CD11b Expression

    Directory of Open Access Journals (Sweden)

    Pablo Alarcón

    2017-08-01

    Full Text Available Bovine ruminal acidosis is of economic importance as it contributes to reduced milk and meat production. This phenomenon is mainly attributed to an overload of highly fermentable carbohydrate, resulting in increased d(− lactic acid levels in serum and plasma. Ruminal acidosis correlates with elevated acute phase proteins in blood, along with neutrophil activation and infiltration into various tissues leading to laminitis and aseptic polysynovitis. Previous studies in bovine neutrophils indicated that d(− lactic acid decreased expression of L-selectin and increased expression of CD11b to concentrations higher than 6 mM, suggesting a potential role in neutrophil adhesion onto endothelia. The two aims of this study were to evaluate whether d(− lactic acid influenced neutrophil and endothelial adhesion and to trigger neutrophil extracellular trap (NET production (NETosis in exposed neutrophils. Exposure of bovine neutrophils to 5 mM d(− lactic acid elevated NET release compared to unstimulated neutrophil negative controls. Moreover, this NET contains CD11b and histone H4 citrullinated, the latter was dependent on PAD4 activation, a critical enzyme in DNA decondensation and NETosis. Furthermore, NET formation was dependent on d(− lactic acid plasma membrane transport through monocarboxylate transporter 1 (MCT1. d(− lactic acid enhanced neutrophil adhesion onto endothelial sheets as demonstrated by in vitro neutrophil adhesion assays under continuous physiological flow conditions, indicating that cell adhesion was a NET- and a CD11b/ICAM-1-dependent process. Finally, d(− lactic acid was demonstrated for the first time to trigger NETosis in a PAD4- and MCT1-dependent manner. Thus, d(− lactic acid-mediated neutrophil activation may contribute to neutrophil-derived pro-inflammatory processes, such as aseptic laminitis and/or polysynovitis in animals suffering acute ruminal acidosis.

  4. d(−) Lactic Acid-Induced Adhesion of Bovine Neutrophils onto Endothelial Cells Is Dependent on Neutrophils Extracellular Traps Formation and CD11b Expression

    OpenAIRE

    Pablo Alarcón; Carolina Manosalva; Carolina Manosalva; Ivan Conejeros; María D. Carretta; Tamara Muñoz-Caro; Liliana M. R. Silva; Anja Taubert; Carlos Hermosilla; María A. Hidalgo; Rafael A. Burgos

    2017-01-01

    Bovine ruminal acidosis is of economic importance as it contributes to reduced milk and meat production. This phenomenon is mainly attributed to an overload of highly fermentable carbohydrate, resulting in increased d(−) lactic acid levels in serum and plasma. Ruminal acidosis correlates with elevated acute phase proteins in blood, along with neutrophil activation and infiltration into various tissues leading to laminitis and aseptic polysynovitis. Previous studies in bovine neutrophils indic...

  5. INDUCTION OF LOW-DENSITY AND UP-REGULATION OF CD11B EXPRESSION OF NEUTROPHILS AND EOSINOPHILS BY DEXTRAN SEDIMENTATION AND CENTRIFUGATION

    NARCIS (Netherlands)

    DIJKHUIZEN, B; DEMONCHY, JGR; GERRITSEN, J; KAUFFMAN, HF

    1994-01-01

    Neutrophils and eosinophils circulating in an activated state are of low density. However, purification procedures such as dextran sedimentation and centrifugation may influence the density and function of cells. In the present study we have evaluated the effect of dextran sedimentation and

  6. CIRCULATING CD11B EXPRESSION CORRELATES WITH THE NEUTROPHIL RESPONSE AND AIRWAY MCD-14 EXPRESSION IS ENHANCED FOLLOWING OZONE EXPOSURE IN HUMANS

    Science.gov (United States)

    We recently reported that baseline expression of circulating CD11b is associated with the magnitude of the neutrophil response following inhaled endotoxin. In this study, we examined whether circulating CD11b plays a similar role in the inflammatory response following inhaled ozo...

  7. Alcoholism: a systemic proinflammatory condition.

    Science.gov (United States)

    González-Reimers, Emilio; Santolaria-Fernández, Francisco; Martín-González, María Candelaria; Fernández-Rodríguez, Camino María; Quintero-Platt, Geraldine

    2014-10-28

    Excessive ethanol consumption affects virtually any organ, both by indirect and direct mechanisms. Considerable research in the last two decades has widened the knowledge about the paramount importance of proinflammatory cytokines and oxidative damage in the pathogenesis of many of the systemic manifestations of alcoholism. These cytokines derive primarily from activated Kupffer cells exposed to Gram-negative intestinal bacteria, which reach the liver in supra-physiological amounts due to ethanol-mediated increased gut permeability. Reactive oxygen species (ROS) that enhance the inflammatory response are generated both by activation of Kupffer cells and by the direct metabolic effects of ethanol. The effects of this increased cytokine secretion and ROS generation lie far beyond liver damage. In addition to the classic consequences of endotoxemia associated with liver cirrhosis that were described several decades ago, important research in the last ten years has shown that cytokines may also induce damage in remote organs such as brain, bone, muscle, heart, lung, gonads, peripheral nerve, and pancreas. These effects are even seen in alcoholics without significant liver disease. Therefore, alcoholism can be viewed as an inflammatory condition, a concept which opens the possibility of using new therapeutic weapons to treat some of the complications of this devastating and frequent disease. In this review we examine some of the most outstanding consequences of the altered cytokine regulation that occurs in alcoholics in organs other than the liver.

  8. Proinflammatory Cytokines as Regulators of Vaginal Microbiota.

    Science.gov (United States)

    Kremleva, E A; Sgibnev, A V

    2016-11-01

    It was shown that IL-1β, IL-8, and IL-6 in concentrations similar to those in the vagina of healthy women stimulated the growth of normal microflora (Lactobacillus spp.) and suppressed the growth and biofilm production by S. aureus and E. coli. On the contrary, these cytokines in higher concentrations typical of vaginal dysbiosis suppressed normal microflora and stimulated the growth of opportunistic microorganisms. TGF-β1 in both doses produced a stimulating effects on study vaginal microsymbionts. It is hypothesized that pro-inflammatory cytokines serve as the molecules of interspecies communication coordinating the interactions of all components of the vaginal symbiotic system.

  9. Proinflammatory cytokines in open versus laparoscopic cholecystectomy

    International Nuclear Information System (INIS)

    Abu-Eshy, Saeed A.; Al-Rofaidi, Abdallah A.; Al-Faki, Ahmed S.; Ghalib, Hashim W.; Moosa, Riyadh A.; Sadik, Ali A.; Salati, Mohammad I.

    2002-01-01

    Laparoscopic cholecystectomy, a minimal access surgery, is fast replacing open cholecystectomy and is being associated with less trauma. The objective of this study was to compare the proinflammatory cytokine levels in both laparoscopic cholecystectomy and open cholecystectomy. This study was carried out at Aseer Central Hospital, Aseer region, Abha Private Hospital and the College of Medicine and Medical Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia, during the time period October 1998 through to November 2000. Sixty-one patients were included in the study, 27 of them had laparoscopic cholecystectomy and 34 had open cholecystectomy. Cytokines [Interleukin-6 Interleukin-1b, Tumor necrosis factor -a and Interleukin- 8] were measured in blood samples collected from the patients before, at and 24 hours post surgery, using commercially available kits. Interleukin-6 levels were significantly increased at 24 hours post surgery in the open cholecystectomy group of patients compared to the laparoscopic cholecystectomy group (P<0.04). No differences were found in the other cytokines levels (Interleukin-1b, tumor necrosis factor -a and Interleukin-8) between the open cholecystectomy and laparoscopic cholecystectomy groups. Laparoscopic cholecystectomy, a minimal access surgery, is associated with lower levels of the proinflammatory interleukin-6 cytokine compared to open cholecystectomy. (author)

  10. Photoperiodic Regulation of Behavioral Responsiveness to Proinflammatory Cytokines

    OpenAIRE

    Wen, Jarvi C.; Prendergast, Brian J.

    2007-01-01

    Symptoms of bacterial infection include decreases in body mass (cachexia), induction of depressive-like hedonic tone (anhedonia), decreases in food intake (anorexia), and increases in body temperature (fever). Recognition of bacteria by the innate immune system triggers the release of proinflammatory cytokines which induce these sickness behaviors via central and peripheral substrates. In Siberian hamsters, exposure to short day lengths decreases both the production of proinflammatory cytokin...

  11. Proinflammatory cytokine levels in patients with conversion disorder.

    Science.gov (United States)

    Tiyekli, Utkan; Calıyurt, Okan; Tiyekli, Nimet Dilek

    2013-06-01

    It was aimed to evaluate the relationship between proinflammatory cytokine levels and conversion disorder both commonly known as stress regulated. Baseline proinflammatory cytokine levels-[Tumour necrosis factor alpha (TNF-α), Interleukin-1 beta (IL-1β), Interleukin-6 (IL-6)]-were evaluated with enzyme-linked immunosorbent assay in 35 conversion disorder patients and 30 healthy controls. Possible changes in proinflammatory cytokine levels were evaluated again, after their acute phase in conversion disorder patients. Statistically significant decreased serum TNF-α levels were obtained in acute phase of conversion disorder. Those levels increased after acute conversion phase. There were no statistically significant difference observed between groups in serum IL-1β and (IL-6) levels. Stress associated with conversion disorder may suppress immune function in acute conversion phase and may have diagnostic and therapeutic value.

  12. Cancer as a Proinflammatory Environment: Metastasis and Cachexia

    Science.gov (United States)

    Inácio Pinto, Nelson; Carnier, June; Oyama, Lila M.; Otoch, Jose Pinhata; Alcântara, Paulo Sergio; Tokeshi, Flavio; Nascimento, Claudia M.

    2015-01-01

    The development of the syndrome of cancer cachexia and that of metastasis are related with a poor prognostic for cancer patients. They are considered multifactorial processes associated with a proinflammatory environment, to which tumour microenvironment and other tissues from the tumour bearing individuals contribute. The aim of the present review is to address the role of ghrelin, myostatin, leptin, HIF, IL-6, TNF-α, and ANGPTL-4 in the regulation of energy balance, tumour development, and tumoural cell invasion. Hypoxia induced factor plays a prominent role in tumour macro- and microenvironment, by modulating the release of proinflammatory cytokines. PMID:26508818

  13. Cancer as a Proinflammatory Environment: Metastasis and Cachexia

    Directory of Open Access Journals (Sweden)

    Nelson Inácio Pinto

    2015-01-01

    Full Text Available The development of the syndrome of cancer cachexia and that of metastasis are related with a poor prognostic for cancer patients. They are considered multifactorial processes associated with a proinflammatory environment, to which tumour microenvironment and other tissues from the tumour bearing individuals contribute. The aim of the present review is to address the role of ghrelin, myostatin, leptin, HIF, IL-6, TNF-α, and ANGPTL-4 in the regulation of energy balance, tumour development, and tumoural cell invasion. Hypoxia induced factor plays a prominent role in tumour macro- and microenvironment, by modulating the release of proinflammatory cytokines.

  14. Dysregulated proinflammatory and fibrogenic phenotype of fibroblasts in cystic fibrosis.

    Directory of Open Access Journals (Sweden)

    François Huaux

    Full Text Available Morbi-mortality in cystic fibrosis (CF is mainly related to chronic lung infection and inflammation, uncontrolled tissue rearrangements and fibrosis, and yet the underlying mechanisms remain largely unknown. We evaluated inflammatory and fibrosis responses to bleomycin in F508del homozygous and wild-type mice, and phenotype of fibroblasts explanted from mouse lungs and skin. The effect of vardenafil, a cGMP-specific phosphodiesterase type 5 inhibitor, was tested in vivo and in culture. Responses of proinflammatory and fibrotic markers to bleomycin were enhanced in lungs and skin of CF mice and were prevented by treatment with vardenafil. Purified lung and skin fibroblasts from CF mice proliferated and differentiated into myofibroblasts more prominently and displayed higher sensitivity to growth factors than those recovered from wild-type littermates. Under inflammatory stimulation, mRNA and protein expression of proinflammatory mediators were higher in CF than in wild-type fibroblasts, in which CFTR expression reached similar levels to those observed in other non-epithelial cells, such as macrophages. Increased proinflammatory responses in CF fibroblasts were reduced by half with submicromolar concentrations of vardenafil. Proinflammatory and fibrogenic functions of fibroblasts are upregulated in CF and are reduced by vardenafil. This study provides compelling new support for targeting cGMP signaling pathway in CF pharmacotherapy.

  15. Tenocytes, pro-inflammatory cytokines and leukocytes: a relationship?

    OpenAIRE

    Al-Sadi, Onays; Schulze-Tanzil, Gundula; Kohl, Benjamin; Lohan, Anke; Lemke, Marion; Ertel, Wolfgang; John, Thilo

    2012-01-01

    Leukocyte derived pro-inflammatory mediators could be involved in tendon healing and scar formation. Hence, the effect of autologous leukocytes (PBMCs, peripheral blood mononuclear cells and neutrophils) on primary rabbit Achilles tenocytes gene expression was tested in insert assisted co-cultures.

  16. Aqueous proinflammatory cytokines in acute primary angle-closure eyes

    Directory of Open Access Journals (Sweden)

    Yao-Ming Liu

    2017-05-01

    Full Text Available AIM: To evaluate changes of proinflammatory cytokines in aqueous humor of patients with acute primary angle-closure (APAC and age-related cataracts. METHODS: Twenty eyes of 20 APAC patients and 15 eyes of 15 age-related cataract patients were included in this cross-sectional study. Aqueous humor samples were collected prospectively. The levels of 20 proinflammatory cytokines were evaluated in the aqueous humor of the APAC and cataract patients using the multiplex bead immunoassay technique. Clinical data were collected for correlation analysis. RESULTS: Seven of the 20 proinflammatory cytokines included in the magnetic bead panel were detectable in both APAC eyes and cataract eyes: interleukin (IL-10, IL-12, IL-15, IL-21, IL-6, chemokine (C-C motif ligand 20, and tumor necrosis factor alpha (TNF-α. IL-27 was only detectable in APAC eyes. Compared with the cataract eyes, the APAC eyes had significantly elevated concentrations of IL-12 (P=0.036, IL-15 (P=0.001, IL-6 (P=0.012, and IL-27 (only detectable in APAC eyes. Age was positively correlated with IL-12 (P=0.022 and IL-6 (P=0.037, and time elapsed between APAC onset and aqueous humor samples collection was positively correlated with IL-15 (P=0.037, IL-27 (P=0.040, and TNF-α (P=0.042. CONCLUSION: Several proinflammatory cytokines including IL-12,IL-15, IL-6 and IL-27, were elevated in the APAC eyes and may be implicated in its pathologic mechanism.

  17. The Pro-inflammatory Effects of Glucocorticoids in the Brain

    Science.gov (United States)

    Duque, Erica de Almeida; Munhoz, Carolina Demarchi

    2016-01-01

    Glucocorticoids are a class of steroid hormones derived from cholesterol. Their actions are mediated by the glucocorticoid and mineralocorticoid receptors, members of the superfamily of nuclear receptors, which, once bound to their ligands, act as transcription factors that can directly modulate gene expression. Through protein–protein interactions with other transcription factors, they can also regulate the activity of many genes in a composite or tethering way. Rapid non-genomic signaling was also demonstrated since glucocorticoids can act through membrane receptors and activate signal transduction pathways, such as protein kinases cascades, to modulate other transcriptions factors and activate or repress various target genes. By all these different mechanisms, glucocorticoids regulate numerous important functions in a large variety of cells, not only in the peripheral organs but also in the central nervous system during development and adulthood. In general, glucocorticoids are considered anti-inflammatory and protective agents due to their ability to inhibit gene expression of pro-inflammatory mediators and other possible damaging molecules. Nonetheless, recent studies have uncovered situations in which these hormones can act as pro-inflammatory agents depending on the dose, chronicity of exposure, and the structure/organ analyzed. In this review, we will provide an overview of the conditions under which these phenomena occur, a discussion that will serve as a basis for exploring the mechanistic foundation of glucocorticoids pro-inflammatory gene regulation in the brain. PMID:27445981

  18. DMPD: Post-transcriptional regulation of proinflammatory proteins. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15075353 Post-transcriptional regulation of proinflammatory proteins. Anderson P, P...l) (.csml) Show Post-transcriptional regulation of proinflammatory proteins. PubmedID 15075353 Title Post-tr...anscriptional regulation of proinflammatory proteins. Authors Anderson P, Phillip

  19. The molecular basis for development of proinflammatory autoantibodies to progranulin.

    Science.gov (United States)

    Thurner, Lorenz; Fadle, Natalie; Regitz, Evi; Kemele, Maria; Klemm, Philipp; Zaks, Marina; Stöger, Elisabeth; Bette, Birgit; Carbon, Gabi; Zimmer, Vincent; Assmann, Gunter; Murawski, Niels; Kubuschok, Boris; Held, Gerhard; Preuss, Klaus-Dieter; Pfreundschuh, Michael

    2015-07-01

    Recently we identified in a wide spectrum of autoimmune diseases frequently occurring proinflammatory autoantibodies directed against progranulin, a direct inhibitor of TNFR1 & 2 and of DR3. In the present study we investigated the mechanisms for the breakdown of self-tolerance against progranulin. Isoelectric focusing identified a second, differentially electrically charged progranulin isoform exclusively present in progranulin-antibody-positive patients. Alkaline phosphatase treatment revealed this additional progranulin isoform to be hyperphosphorylated. Subsequently Ser81, which is located within the epitope region of progranulin-antibodies, was identified as hyperphosphorylated serine residue by site directed mutagenesis of candidate phosphorylation sites. Hyperphosphorylated progranulin was detected exclusively in progranulin-antibody-positive patients during the courses of their diseases. The occurrence of hyperphosphorylated progranulin preceded seroconversions of progranulin-antibodies, indicating adaptive immune response. Utilizing panels of kinase and phosphatase inhibitors, PKCβ1 was identified as the relevant kinase and PP1 as the relevant phosphatase for phosphorylation and dephosphorylation of Ser81. In contrast to normal progranulin, hyperphosphorylated progranulin interacted exclusively with inactivated (pThr320) PP1, suggesting inactivated PP1 to cause the detectable occurrence of phosphorylated Ser81 PGRN. Investigation of possible functional alterations of PGRN due to Ser81 phosphorylation revealed, that hyperphosphorylation prevents the interaction and thus direct inhibition of TNFR1, TNFR2 and DR3, representing an additional direct proinflammatory effect. Finally phosphorylation of Ser81 PGRN alters the conversion pattern of PGRN. In conclusion, inactivated PP1 induces hyperphosphorylation of progranulin in a wide spectrum of autoimmune diseases. This hyperphosphorylation prevents direct inhibition of TNFR1, TNFR2 and DR3 by PGRN, alters the

  20. The Hierarchy of Proinflammatory Cytokines in Ocular Inflammation.

    Science.gov (United States)

    Da Cunha, A P; Zhang, Q; Prentiss, M; Wu, X Q; Kainz, V; Xu, Y Y; Vrouvlianis, J; Li, H; Rangaswamy, N; Leehy, B; McGee, T L; Bell, C L; Bigelow, C E; Kansara, V; Medley, Q; Huang, Q; Wu, H Y

    2018-04-01

    The concept of tissue-dependent cytokine hierarchy has been demonstrated in a number of diseases, but it has not been investigated in ophthalmic diseases. Here, we evaluated the functional hierarchy of interleukin-1β (IL-1β), IL-6, IL-17A, and tumor necrosis factor (TNF) in the induction of ocular inflammation. We delivered adeno-associated virus (AAV) vectors expressing IL-1β, IL-6, IL-17A, or TNF intravitreally in naïve C57/BL6 mice and compared and contrasted the inflammatory effects in the eye 5 weeks after AAV-mediated gene transfer. We also used an in vitro human system to test the effect of cytokines on barrier function. We found that IL-1β had the highest ability to initiate ocular inflammation. The continuous overexpression of IL-1β resulted in a significant upregulation of additional proinflammatory mediators in the eye. Using scanning laser ophthalmoscope and optical coherence tomography imaging techniques, we showed that a low dose of AAVIL-1β was sufficient and was as pathogenic as a high dose of TNF in inducing vascular leakage, retinal degeneration, and cellular infiltration. Furthermore, only a marginal increase in IL-1β was enough to cause cellular infiltration, thus confirming the highly pathogenic nature of IL-1β in the eye. Contrary to our expectation, IL-6 or IL-17A had minimal or no effect in the eye. To examine the clinical relevance of our findings, we used an impedance assay to show that IL-1β alone or TNF alone was able to cause primary human retinal endothelial cell barrier dysfunction in vitro. Again, IL-6 alone or IL-17A alone had no effect on barrier function; however, in the presence of IL-1β or TNF, IL-17A but not IL-6 may provide additive proinflammatory effects. Our studies demonstrate the existence of a functional hierarchy of proinflammatory cytokines in the eye, and we show that IL-1β is the most pathogenic when it is continuously expressed in the eye.

  1. Proinflammatory effects of cookstove emissions on human bronchial epithelial cells.

    Science.gov (United States)

    Hawley, B; Volckens, J

    2013-02-01

    Approximately half of the world's population uses biomass fuel for indoor cooking and heating. This form of combustion typically occurs in open fires or primitive stoves. Human exposure to emissions from indoor biomass combustion is a global health concern, causing an estimated 1.5 million premature deaths each year. Many 'improved' stoves have been developed to address this concern; however, studies that examine exposure-response with cleaner-burning, more efficient stoves are few. The objective of this research was to evaluate the effects of traditional and cleaner-burning stove emissions on an established model of the bronchial epithelium. We exposed well-differentiated, normal human bronchial epithelial cells to emissions from a single biomass combustion event using either a traditional three-stone fire or one of two energy-efficient stoves. Air-liquid interface cultures were exposed using a novel, aerosol-to-cell deposition system. Cellular expression of a panel of three pro-inflammatory markers was evaluated at 1 and 24 h following exposure. Cells exposed to emissions from the cleaner-burning stoves generated significantly fewer amounts of pro-inflammatory markers than cells exposed to emissions from a traditional three-stone fire. Particulate matter emissions from each cookstove were substantially different, with the three-stone fire producing the largest concentrations of particles (by both number and mass). This study supports emerging evidence that more efficient cookstoves have the potential to reduce respiratory inflammation in settings where solid fuel combustion is used to meet basic domestic needs. Emissions from more efficient, cleaner-burning cookstoves produced less inflammation in well-differentiated bronchial lung cells. The results support evidence that more efficient cookstoves can reduce the health burden associated with exposure to indoor pollution from the combustion of biomass. © 2012 John Wiley & Sons A/S.

  2. Macrophage elastase (MMP-12: a pro-inflammatory mediator?

    Directory of Open Access Journals (Sweden)

    Soazig Nénan

    2005-03-01

    Full Text Available As many metalloproteinases (MMPs, macrophage elastase (MMP-12 is able to degrade extracellular matrix components such as elastin and is involved in tissue remodeling processes. Studies using animal models of acute and chronic pulmonary inflammatory diseases, such as pulmonary fibrosis and chronic obstrutive pulmonary disease (COPD, have given evidences that MMP-12 is an important mediator of the pathogenesis of these diseases. However, as very few data regarding the direct involvement of MMP-12 in inflammatory process in the airways were available, we have instilled a recombinant form of human MMP-12 (rhMMP-12 in mouse airways. Hence, we have demonstrated that this instillation induced a severe inflammatory cell recruitment characterized by an early accumulation of neutrophils correlated with an increase in proinflammatory cytokines and in gelatinases and then by a relatively stable recruitment of macrophages in the lungs over a period of ten days. Another recent study suggests that resident alveolar macrophages and recruited neutrophils are not involved in the delayed macrophage recruitment. However, epithelial cells could be one of the main targets of rhMMP-12 in our model. We have also reported that a corticoid, dexamethasone, phosphodiesterase 4 inhibitor, rolipram and a non-selective MMP inhibitor, marimastat could reverse some of these inflammatory events. These data indicate that our rhMMP-12 model could mimic some of the inflammatory features observed in COPD patients and could be used for the pharmacological evaluation of new anti-inflammatory treatment. In this review, data demonstrating the involvement of MMP-12 in the pathogenesis of pulmonary fibrosis and COPD as well as our data showing a pro-inflammatory role for MMP-12 in mouse airways will be summarized.

  3. Proinflammatory Cytokine Responses in Extra-Respiratory Tissues During Severe Influenza

    NARCIS (Netherlands)

    Short, Kirsty R; Veeris, Rebecca; Leijten, Lonneke M; van den Brand, Judith M; Jong, Victor L; Stittelaar, Koert J; Osterhaus, Ab D M E|info:eu-repo/dai/nl/074960172; Andeweg, Arno C; van Riel, Debby

    2017-01-01

    Severe influenza is often associated with disease manifestations outside the respiratory tract. While proinflammatory cytokines can be detected in the lungs and blood of infected patients, the role of extra-respiratory organs in the production of proinflammatory cytokines is unknown. Here, we show

  4. Proinflammatory Cytokine Responses in Extra-Respiratory Tissues during Severe Influenza

    NARCIS (Netherlands)

    Short, Kirsty R.; Veeris, Rebecca; Leijten, Lonneke M.; van den Brand, Judith M A; Jong, Victor L.; Stittelaar, Koert; Osterhaus, Ab D.M.E.; Andeweg, Arno C; Van Riel, Debby

    2017-01-01

    Severe influenza is often associated with disease manifestations outside the respiratory tract. While proinflammatory cytokines can be detected in the lungs and blood of infected patients, the role of extra-respiratory organs in the production of proinflammatory cytokines is unknown. Here, we show

  5. Improved Metabolic Control in Diabetes, HSP60, and Proinflammatory Mediators

    Directory of Open Access Journals (Sweden)

    Claudio Blasi

    2012-01-01

    Full Text Available The diabetes-atherosclerosis relationship remains to be fully defined. Repeated prolonged hyperglycemia, increased ROS production and endothelial dysfunction are important factors. One theory is that increased blood levels of heat shock protein (HSP60 are proinflammatory, through activation of innate immunity, and contribute to the progression of vascular disease. It was hypothesized that improvement of diabetes control in patients presenting with metabolic syndrome would lower HSP60, and anti-HSP60 antibody levels and decrease inflammatory markers. Paired sera of 17 Italian patients, before and after intensive treatment, were assayed for cytokines, HSP60 and anti-HSP60 antibodies. As expected, intensive treatment was associated with a decrease in HgbA1C (P<0.001 and BMI (P<0.001. After treatment, there was a significant decrease in IL-6 (P<0.05. HSP60 levels were before treatment −6.9+1.9, after treatment −7.1+2.0 ng/mL (P=ns. Overall HSP60 concentrations were lower than published reports. Anti-HSP60 antibody titers were high and did not decrease with treatment. In conclusion, improvement of diabetic control did not alter HSP60 concentrations or antiHSP60 antibody titers, but led to a reduction of IL-6 levels.

  6. The Staphyloccous aureus Eap protein activates expression of proinflammatory cytokines.

    Science.gov (United States)

    Scriba, Thomas J; Sierro, Sophie; Brown, Eric L; Phillips, Rodney E; Sewell, Andrew K; Massey, Ruth C

    2008-05-01

    The extracellular adhesion protein (Eap) secreted by the major human pathogen Staphylococcus aureus is known to have several effects on human immunity. We have recently added to knowledge of these roles by demonstrating that Eap enhances interactions between major histocompatibility complex molecules and human leukocytes. Several studies have indicated that Eap can induce cytokine production by human peripheral blood mononuclear cells (PBMCs). To date, there has been no rigorous attempt to identify the breadth of cytokines produced by Eap stimulation or to identify the cell subsets that respond. Here, we demonstrate that Eap induces the secretion of the proinflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-alpha) by CD14(+) leukocytes (monocytes and macrophages) within direct ex vivo PBMC populations (note that granulocytes are also CD14(+) but are largely depleted from PBMC preparations). Anti-intercellular adhesion molecule 1 (CD54) antibodies inhibited this induction and implicated a role for this known Eap binding protein in cellular activation. IL-6 and TNF-alpha secretion by murine cells exposed to Eap was also observed. The activation of CD14(+) cells by Eap suggests that it could play a significant role in both septic shock and fever, two of the major pathological features of S. aureus infections.

  7. Alterations in adhesion molecules, pro-inflammatory cytokines and cell-derived microparticles contribute to intima-media thickness and symptoms in postmenopausal women.

    Science.gov (United States)

    Figueroa-Vega, Nicté; Moreno-Frías, Carmen; Malacara, Juan Manuel

    2015-01-01

    Menopause, the cessation of menses, occurs with estrogens decline, low-grade inflammation, and impaired endothelial function, contributing to atherosclerotic risk. Intima-media thickness (IMT) is an early subclinical biomarker of atherosclerosis. Inflammation may have a role on symptoms: hot flashes, anxiety, and depressive mood, which also are related to endothelial dysfunction, increased IMT and cardiovascular risk. In this study we compared several inflammatory markers in early vs. late postmenopausal women and studied the association of IMT and symptoms with these markers in the full sample. In a cross-sectional design including 60 women (53.1 ± 4.4 years old) at early and late postmenopause, we evaluated the expression of CD62L, ICAM-1, PSGL-1, CD11b, CD11c, and IL-8R on PBMC by flow cytometry. Serum soluble ICAM-1, sVCAM-1, sCD62E, sCD62P, CXCL8, IL-1β, IL-6, and TNF-α levels were quantified by ELISA. Plasma levels of microparticles (MPs) were determined by FACS. Finally, carotid intima-media thickness (IMT) was measured by ultrasound. We observed that ICAM-1 expression by lymphocytes and serum sVCAM-1 levels were augmented at late postmenopause. Late postmenopause women with severe hot flashes had increased expression of CD62L and IL-8R on neutrophils. By multivariate analysis, the carotid IMT was strongly associated with membrane-bound TNF-α, CD11b expression, Annexin V(+) CD3(+) MPs, LPS-induced NO production, HDL-cholesterol and age. Depressive mood was associated negatively with PSGL-1 and positively with LPS-induced NO. Finally, Log(AMH) levels were associated with carotid IMT, IL-8R expression and time since menopause. IMT and depressive mood were the main clinical features related to vascular inflammation. Aging, hormonal changes and obesity were also related to endothelial dysfunction. These findings provide further evidence for a link between estrogen deficiency and low-grade inflammation in endothelial impairment in mature women.

  8. Alterations in adhesion molecules, pro-inflammatory cytokines and cell-derived microparticles contribute to intima-media thickness and symptoms in postmenopausal women.

    Directory of Open Access Journals (Sweden)

    Nicté Figueroa-Vega

    Full Text Available Menopause, the cessation of menses, occurs with estrogens decline, low-grade inflammation, and impaired endothelial function, contributing to atherosclerotic risk. Intima-media thickness (IMT is an early subclinical biomarker of atherosclerosis. Inflammation may have a role on symptoms: hot flashes, anxiety, and depressive mood, which also are related to endothelial dysfunction, increased IMT and cardiovascular risk. In this study we compared several inflammatory markers in early vs. late postmenopausal women and studied the association of IMT and symptoms with these markers in the full sample. In a cross-sectional design including 60 women (53.1 ± 4.4 years old at early and late postmenopause, we evaluated the expression of CD62L, ICAM-1, PSGL-1, CD11b, CD11c, and IL-8R on PBMC by flow cytometry. Serum soluble ICAM-1, sVCAM-1, sCD62E, sCD62P, CXCL8, IL-1β, IL-6, and TNF-α levels were quantified by ELISA. Plasma levels of microparticles (MPs were determined by FACS. Finally, carotid intima-media thickness (IMT was measured by ultrasound. We observed that ICAM-1 expression by lymphocytes and serum sVCAM-1 levels were augmented at late postmenopause. Late postmenopause women with severe hot flashes had increased expression of CD62L and IL-8R on neutrophils. By multivariate analysis, the carotid IMT was strongly associated with membrane-bound TNF-α, CD11b expression, Annexin V(+ CD3(+ MPs, LPS-induced NO production, HDL-cholesterol and age. Depressive mood was associated negatively with PSGL-1 and positively with LPS-induced NO. Finally, Log(AMH levels were associated with carotid IMT, IL-8R expression and time since menopause. IMT and depressive mood were the main clinical features related to vascular inflammation. Aging, hormonal changes and obesity were also related to endothelial dysfunction. These findings provide further evidence for a link between estrogen deficiency and low-grade inflammation in endothelial impairment in mature women.

  9. Iodinated contrast media alter immune responses in pro-inflammatory states.

    LENUS (Irish Health Repository)

    O'Donnell, David H

    2010-07-01

    Hypertonic saline causes a transient elevation of blood osmolality and has been shown to alter cellular inflammatory responses in pro-inflammatory states. Intravascular administration of iodine contrast media also causes a transient elevation of blood osmolarity.

  10. Pro-inflammatory cytokine single nucleotide polymorphisms in Kawasaki disease.

    Science.gov (United States)

    Assari, Raheleh; Aghighi, Yahya; Ziaee, Vahid; Sadr, Maryam; Rahmani, Farzaneh; Rezaei, Arezou; Sadr, Zeinab; Moradinejad, Mohammad Hassan; Raeeskarami, Seyed Reza; Rezaei, Nima

    2016-07-25

    Kawasaki disease (KD) is a systemic vasculitis of children associated with cardiovascular sequelae. Proinflammatory cytokines play a major role in KD pathogenesis. However, their role is both influenced and modified by regulatory T-cells. IL-1 gene cluster, IL-6 and TNF-α polymorphisms have shown significant associations with some vasculitides. Herein we investigated their role in KD. Fifty-five patients with KD who were randomly selected from referrals to the main pediatric hospital were enrolled in this case-control study. Single nucleotide polymorphisms (SNPs) of the following genes were assessed in patients and 140 healthy subjects as control group: IL-1α at -889 (rs1800587), IL-1β at -511 (rs16944), IL-1β at +3962 (rs1143634), IL-1R at Pst-I 1970 (rs2234650), IL-1RN/A at Mspa-I 11100 (rs315952), TNF-α at -308 (rs1800629), TNF-α at -238, IL-6 at -174 (rs1800795) and IL-6 at +565. Twenty-one percent of the control group had A allele at TNF-α -238 while only 8% of KD patients had A allele at this position (P = 0.003, OR [95%CI] = 0.32 [0.14-0.71]). Consistently, TNF-α genotype GG at -238 had significant association with KD (OR [95% CI] = 4.31 [1.79-10.73]). Most controls carried the CG genotype at IL-6 -174 (n = 93 [66.9%]) while GG genotype was the most common genotype (n = 27 [49%]) among patients. Carriers of the GG haplotype at TNF-α (-308, -238) were significantly more prevalent among the KD group. No association was found between IL-1 gene cluster, allelic or haplotypic variants and KD. TNF-α GG genotype at -238 and GG haplotype at positions -308 and -238 were associated with KD in an Iranian population. © 2016 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.

  11. Fisetin Inhibits Hyperglycemia-Induced Proinflammatory Cytokine Production by Epigenetic Mechanisms

    OpenAIRE

    Hye Joo Kim; Seong Hwan Kim; Jung-Mi Yun

    2012-01-01

    Diabetes is characterized by a proinflammatory state, and several inflammatory processes have been associated with both type 1 and type 2 diabetes and the resulting complications. High glucose levels induce the release of proinflammatory cytokines. Fisetin, a flavonoid dietary ingredient found in the smoke tree (Cotinus coggygria), and is also widely distributed in fruits and vegetables. Fisetin is known to exert anti-inflammatory effects via inhibition of the NF-?B signaling pathway. In this...

  12. Proinflammatory cytokine levels in fibromyalgia patients are independent of body mass index

    OpenAIRE

    Hernandez, Maria E; Becerril, Enrique; Perez, Mayra; Leff, Philippe; Anton, Benito; Estrada, Sergio; Estrada, Iris; Sarasa, Manuel; Serrano, Enrique; Pavon, Lenin

    2010-01-01

    Abstract Background Fibromyalgia (FM) is characterized by chronic, widespread muscular pain and tenderness and is generally associated with other somatic and psychological symptoms. Further, circulatory levels of proinflammatory cytokines (IL-1β, TNF-α, and IL-6) may be altered in FM patients, possibly in association with their symptoms. Recently, rises in BMI have been suggested to contribute to increased circulating levels of proinflammatory cytokines in FM patients. Our aim was to measure ...

  13. Cancer Associated Fibroblasts express pro-inflammatory factors in human breast and ovarian tumors

    Energy Technology Data Exchange (ETDEWEB)

    Erez, Neta, E-mail: netaerez@post.tau.ac.il [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Glanz, Sarah [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Raz, Yael [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Department of Obstetrics and Gynecology, LIS Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel); Avivi, Camilla [Department of Pathology, Sheba Medical Center, Tel Hashomer, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel); Barshack, Iris [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Department of Pathology, Sheba Medical Center, Tel Hashomer, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel)

    2013-08-02

    Highlights: •CAFs in human breast and ovarian tumors express pro-inflammatory factors. •Expression of pro-inflammatory factors correlates with tumor invasiveness. •Expression of pro-inflammatory factors is associated with NF-κb activation in CAFs. -- Abstract: Inflammation has been established in recent years as a hallmark of cancer. Cancer Associated Fibroblasts (CAFs) support tumorigenesis by stimulating angiogenesis, cancer cell proliferation and invasion. We previously demonstrated that CAFs also mediate tumor-enhancing inflammation in a mouse model of skin carcinoma. Breast and ovarian carcinomas are amongst the leading causes of cancer-related mortality in women and cancer-related inflammation is linked with both these tumor types. However, the role of CAFs in mediating inflammation in these malignancies remains obscure. Here we show that CAFs in human breast and ovarian tumors express high levels of the pro-inflammatory factors IL-6, COX-2 and CXCL1, previously identified to be part of a CAF pro-inflammatory gene signature. Moreover, we show that both pro-inflammatory signaling by CAFs and leukocyte infiltration of tumors are enhanced in invasive ductal carcinoma as compared with ductal carcinoma in situ. The pro-inflammatory genes expressed by CAFs are known NF-κB targets and we show that NF-κB is up-regulated in breast and ovarian CAFs. Our data imply that CAFs mediate tumor-promoting inflammation in human breast and ovarian tumors and thus may be an attractive target for stromal-directed therapeutics.

  14. Cancer Associated Fibroblasts express pro-inflammatory factors in human breast and ovarian tumors

    International Nuclear Information System (INIS)

    Erez, Neta; Glanz, Sarah; Raz, Yael; Avivi, Camilla; Barshack, Iris

    2013-01-01

    Highlights: •CAFs in human breast and ovarian tumors express pro-inflammatory factors. •Expression of pro-inflammatory factors correlates with tumor invasiveness. •Expression of pro-inflammatory factors is associated with NF-κb activation in CAFs. -- Abstract: Inflammation has been established in recent years as a hallmark of cancer. Cancer Associated Fibroblasts (CAFs) support tumorigenesis by stimulating angiogenesis, cancer cell proliferation and invasion. We previously demonstrated that CAFs also mediate tumor-enhancing inflammation in a mouse model of skin carcinoma. Breast and ovarian carcinomas are amongst the leading causes of cancer-related mortality in women and cancer-related inflammation is linked with both these tumor types. However, the role of CAFs in mediating inflammation in these malignancies remains obscure. Here we show that CAFs in human breast and ovarian tumors express high levels of the pro-inflammatory factors IL-6, COX-2 and CXCL1, previously identified to be part of a CAF pro-inflammatory gene signature. Moreover, we show that both pro-inflammatory signaling by CAFs and leukocyte infiltration of tumors are enhanced in invasive ductal carcinoma as compared with ductal carcinoma in situ. The pro-inflammatory genes expressed by CAFs are known NF-κB targets and we show that NF-κB is up-regulated in breast and ovarian CAFs. Our data imply that CAFs mediate tumor-promoting inflammation in human breast and ovarian tumors and thus may be an attractive target for stromal-directed therapeutics

  15. Proinflammatory Cytokines in Prostate Cancer Development and Progression Promoted by High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Hua Xu

    2015-01-01

    Full Text Available Background. We aimed to examine whether proinflammatory cytokines participated in prostate cancer (PCa development and progression promoted by high-fat diet (HFD. Methods. TRAMP (transgenic adenocarcinoma mouse prostate mice were randomly divided into two groups: normal diet group and HFD group. Mortality rate and tumor formation rate were examined. TRAMP mice were sacrificed and sampled on the 20th, 24th, and 28th week, respectively. Levels of proinflammatory cytokines, including IL-1α, IL-1β, IL-6, and TNF-α, were tested by FlowCytomix. Prostate tissue of TRAMP mice was used for histology study. Results. A total of 13 deaths of TRAMP mice were observed, among which 3 (8.33% were from the normal diet group and 10 (27.78% from the HFD group. The mortality rate of TRAMP mice from HFD group was significantly higher than that of normal diet group (P=0.032. Tumor formation rate at 20th week of age of HFD group was significantly higher than that of normal diet group (P=0.045. Proinflammatory cytokines levels, including IL-1α, IL-1β, IL-6, and TNF-α, were significantly higher in HFD TRAMP mice. Conclusions. HFD could promote TRAMP mouse PCa development and progression with elevated proinflammatory cytokines levels. Proinflammatory cytokines could contribute to PCa development and progression promoted by HFD.

  16. Effects of transcutaneous electrical nerve stimulation (TENS) on proinflammatory cytokines: protocol for systematic review.

    Science.gov (United States)

    Almeida, Tábata Cristina do Carmo; Figueiredo, Francisco Winter Dos Santos; Barbosa Filho, Valter Cordeiro; de Abreu, Luiz Carlos; Fonseca, Fernando Luiz Affonso; Adami, Fernando

    2017-07-11

    Pain reduction can be achieved by lowering proinflammatory cytokine levels in the blood. Transcutaneous electrical nerve stimulation (TENS) is a non-invasive physiotherapeutic resource for pain management, but evidence on the effectiveness of this device at reducing proinflammatory cytokines in the blood is unclear. This study systematically reviews the literature on the effect of TENS on proinflammatory cytokines. A systematic review protocol was developed based on searches of articles in six electronic databases and references of retrieved articles, contact with authors, and repositories of clinical trials. Eligibility criteria: publication in peer-reviewed journals, randomized clinical trials, use of TENS in the experimental group, and pre- and post-measurements of proinflammatory cytokines in the blood. Selection of the studies and extraction of the data will be carried out by two reviewers independently. Characteristics of the study, participants, interventions and outcomes were extracted and described. Assessments were performed on the risk of bias, level of evidence and the size of the intervention effect in the studies, according to GRADE guidelines and the Cochrane Handbook for Systematic Reviews. Clinical and statistical assessments compared the effects of the interventions (meta-analysis), taking into consideration any influencing characteristics of the studies (e.g., methods and application sites). We anticipate that this review will strengthen evidence-based knowledge of the effect of TENS on proinflammatory cytokines and, as a result, direct new studies to benefit patients with specific pathologies. PROSPERO, CRD42017060379 .

  17. Proinflammatory cytokine levels in fibromyalgia patients are independent of body mass index

    Directory of Open Access Journals (Sweden)

    Estrada Iris

    2010-06-01

    Full Text Available Abstract Background Fibromyalgia (FM is characterized by chronic, widespread muscular pain and tenderness and is generally associated with other somatic and psychological symptoms. Further, circulatory levels of proinflammatory cytokines (IL-1β, TNF-α, and IL-6 may be altered in FM patients, possibly in association with their symptoms. Recently, rises in BMI have been suggested to contribute to increased circulating levels of proinflammatory cytokines in FM patients. Our aim was to measure the circulatory levels of proinflammatory cytokines to determine the influence of BMI on these levels in FM patients and healthy volunteers (HVs. In Spanish FM patients (n = 64 and HVs (n = 25, we measured BMI and serum concentrations of proinflammatory cytokines by capture ELISA. Findings There were significant differences in BMI levels between FM patients (26.40 ± 4.46 and HVs (23.64 ± 3.45 and significant increase in IL-6 in FM patients (16.28 ± 8.13 vs 0.92 ± 0.32 pg/ml (P Conclusions Our analysis in FM patients of BMI as a covariate of proinflammatory cytokines levels showed that serum TNF-α and IL-6 levels are independent of BMI. Further studies are necessary to dissect these findings and their implication in future therapeutic approaches for FM patients.

  18. Proinflammatory cytokine levels in fibromyalgia patients are independent of body mass index.

    Science.gov (United States)

    Hernandez, Maria E; Becerril, Enrique; Perez, Mayra; Leff, Philippe; Anton, Benito; Estrada, Sergio; Estrada, Iris; Sarasa, Manuel; Serrano, Enrique; Pavon, Lenin

    2010-06-03

    Fibromyalgia (FM) is characterized by chronic, widespread muscular pain and tenderness and is generally associated with other somatic and psychological symptoms. Further, circulatory levels of proinflammatory cytokines (IL-1beta, TNF-alpha, and IL-6) may be altered in FM patients, possibly in association with their symptoms. Recently, rises in BMI have been suggested to contribute to increased circulating levels of proinflammatory cytokines in FM patients. Our aim was to measure the circulatory levels of proinflammatory cytokines to determine the influence of BMI on these levels in FM patients and healthy volunteers (HVs). In Spanish FM patients (n = 64) and HVs (n = 25), we measured BMI and serum concentrations of proinflammatory cytokines by capture ELISA. There were significant differences in BMI levels between FM patients (26.40 +/- 4.46) and HVs (23.64 +/- 3.45) and significant increase in IL-6 in FM patients (16.28 +/- 8.13 vs 0.92 +/- 0.32 pg/ml) (P BMI and TNF-alpha (F = 0.098, p = 0.75) or IL-6 (F = 0.221, p = 0.63) levels in FM patients. Our analysis in FM patients of BMI as a covariate of proinflammatory cytokines levels showed that serum TNF-alpha and IL-6 levels are independent of BMI. Further studies are necessary to dissect these findings and their implication in future therapeutic approaches for FM patients.

  19. The importance of balanced pro-inflammatory and anti-inflammatory mechanisms in diffuse lung disease

    Directory of Open Access Journals (Sweden)

    Strieter Robert

    2002-01-01

    Full Text Available Abstract The lung responds to a variety of insults in a remarkably consistent fashion but with inconsistent outcomes that vary from complete resolution and return to normal to the destruction of normal architecture and progressive fibrosis. Increasing evidence indicates that diffuse lung disease results from an imbalance between the pro-inflammatory and anti-inflammatory mechanisms, with a persistent imbalance that favors pro-inflammatory mediators dictating the development of chronic diffuse lung disease. This review focuses on the mediators that influence this imbalance.

  20. Induction of Chemokine Secretion and Monocyte Migration by Human Choroidal Melanocytes in Response to Proinflammatory Cytokines

    DEFF Research Database (Denmark)

    Jehs, Tina; Faber, Carsten; Udsen, Maja S.

    2016-01-01

    of 10 HCM donors induced a high initial level of monocyte migration, which decreased upon stimulation with either TCM or IFN-γ and TNF-α. The supernatants from three HCM donors initially showed a low level of monocyte attraction, which increased after exposure to proinflammatory cytokines. Direct...

  1. Retracted: Effects of pro-inflammatory cytokines on mineralization potential of rat dental pulp stem cells

    NARCIS (Netherlands)

    Yang, X.; Walboomers, X.F.; Bian, Z.; Jansen, J.A.; Fan, M.

    2011-01-01

    The following article from the Journal of Tissue Engineering and Regenerative Medicine, 'Effects of Pro-inflammatory Cytokines on Mineralization Potential of Rat Dental Pulp Stem Cells' by Yang X, Walboomers XF, Bian Z, Jansen JA, Fan M, published online on 11 July 2011 in Wiley Online Library

  2. Pro-inflammatory delipidizing cytokines reduce adiponectin secretion from human adipocytes without affecting adiponectin oligomerization

    NARCIS (Netherlands)

    Simons, Peter J.; van den Pangaart, Petra S.; Aerts, Johannes M. F. G.; Boon, Louis

    2007-01-01

    Adiponectin and, especially, its oligomeric complex composition have been suggested to be critical in determining insulin sensitivity. Pro-inflammatory cytokines play an important role in the development of insulin resistance in obesity and associated diseases. Therefore, we investigated the effect

  3. Chronic disruptions of circadian sleep regulation induce specific proinflammatory responses in the rat colon

    Czech Academy of Sciences Publication Activity Database

    Polidarová, Lenka; Houdek, Pavel; Sumová, Alena

    2017-01-01

    Roč. 34, č. 9 (2017), s. 1273-1287 ISSN 0742-0528 R&D Projects: GA ČR(CZ) GA14-07711S Institutional support: RVO:67985823 Keywords : aging * colon * constant light * melatonin * proinflammatory cytokine * Rgs16 * sleep disruption Subject RIV: ED - Physiology OBOR OECD: Physiology (including cytology) Impact factor: 2.562, year: 2016

  4. Efficient Maturation and Cytokine Production of Neonatal DCs Requires Combined Proinflammatory Signals

    Directory of Open Access Journals (Sweden)

    Doreen Krumbiegel

    2005-01-01

    Full Text Available Specific functional properties of dendritic cells (DCs have been suspected as being responsible for the impaired specific immune responses observed in human neonates. To analyze stimulatory requirements for the critical transition from immature, antigen-processing DCs to mature, antigen-presenting DCs, we investigated the effect of different proinflammatory mediators and antigens on phenotype and cytokine secretion of human neonatal DCs derived from hematopoietic progenitor cells (HPCs. Whereas single proinflammatory mediators were unable to induce the maturation of neonatal DCs, various combinations of IFNγ, CD40L, TNFα, LPS and antigens, induced the maturation of neonatal DCs documented by up-regulation of HLA-DR, CD83 and CD86. Combinations of proinflammatory mediators also increased cytokine secretion by neonatal DCs. Especially combined stimulation with LPS and IFNγ proved to be very efficient in inducing maturation and cytokine synthesis of neonatal DCs. In conclusion, neonatal DCs can be stimulated to express maturation as well as costimulatory surface molecules. However, induction of maturation requires combined stimulation with multiple proinflammatory signals.

  5. Flavonoids inhibit histamine release and expression of proinflammatory cytokines in mast cells.

    Science.gov (United States)

    Park, Hyo-Hyun; Lee, Soyoung; Son, Hee-Young; Park, Seung-Bin; Kim, Mi-Sun; Choi, Eun-Ju; Singh, Thoudam S K; Ha, Jeoung-Hee; Lee, Maan-Gee; Kim, Jung-Eun; Hyun, Myung Chul; Kwon, Taeg Kyu; Kim, Yeo Hyang; Kim, Sang-Hyun

    2008-10-01

    Mast cells participate in allergy and inflammation by secreting inflammatory mediators such as histamine and proinflammatory cytokines. Flavonoids are naturally occurring molecules with antioxidant, cytoprotective, and antiinflammatory actions. However, effect of flavonoids on the release of histamine and proinflammatory mediator, and their comparative mechanism of action in mast cells were not well defined. Here, we compared the effect of six flavonoids (astragalin, fisetin, kaempferol, myricetin, quercetin, and rutin) on the mast cell-mediated allergic inflammation. Fisetin, kaempferol, myricetin, quercetin, and rutin inhibited IgE or phorbol-12-myristate 13-acetate and calcium ionophore A23187 (PMACI)-mediated histamine release in RBL-2H3 cells. These five flavonoids also inhibited elevation of intracellular calcium. Gene expressions and secretion of proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha), interleukin (IL)-1beta, IL-6, and IL-8 were assessed in PMACI-stimulated human mast cells (HMC-1). Fisetin, quercetin, and rutin decreased gene expression and production of all the proinflammatory cytokines after PMACI stimulation. Myricetin attenuated TNF-alpha and IL-6 but not IL-1beta and IL-8. Fisetin, myricetin, and rutin suppressed activation of NF-kappaB indicated by inhibition of nuclear translocation of NF-kappaB, NF-kappaB/DNA binding, and NF-kappaB-dependent gene reporter assay. The pharmacological actions of these flavonoids suggest their potential activity for treatment of allergic inflammatory diseases through the down-regulation of mast cell activation.

  6. Involvement of Pro-Inflammatory Macrophages in Liver Pathology of Pirital Virus-Infected Syrian Hamsters

    Directory of Open Access Journals (Sweden)

    Corey L. Campbell

    2018-05-01

    Full Text Available New World arenaviruses cause fatal hemorrhagic disease in South America. Pirital virus (PIRV, a mammarenavirus hosted by Alston’s cotton rat (Sigmodon alstoni, causes a disease in Syrian golden hamsters (Mesocricetus auratus (biosafety level-3, BSL-3 that has many pathologic similarities to the South American hemorrhagic fevers (BSL-4 and, thus, is considered among the best small-animal models for human arenavirus disease. Here, we extend in greater detail previously described clinical and pathological findings in Syrian hamsters and provide evidence for a pro-inflammatory macrophage response during PIRV infection. The liver was the principal target organ of the disease, and signs of Kupffer cell involvement were identified in mortally infected hamster histopathology data. Differential expression analysis of liver mRNA revealed signatures of the pro-inflammatory response, hematologic dysregulation, interferon pathway and other host response pathways, including 17 key transcripts that were also reported in two non-human primate (NHP arenavirus liver-infection models, representing both Old and New World mammarenavirus infections. Although antigen presentation may differ among rodent and NHP species, key hemostatic and innate immune-response components showed expression parallels. Signatures of pro-inflammatory macrophage involvement in PIRV-infected livers included enrichment of Ifng, Nfkb2, Stat1, Irf1, Klf6, Il1b, Cxcl10, and Cxcl11 transcripts. Together, these data indicate that pro-inflammatory macrophage M1 responses likely contribute to the pathogenesis of acute PIRV infection.

  7. Atypical antipsychotics induce both proinflammatory and adipogenic gene expression in human adipocytes in vitro

    International Nuclear Information System (INIS)

    Sárvári, Anitta K.; Veréb, Zoltán; Uray, Iván P.; Fésüs, László; Balajthy, Zoltán

    2014-01-01

    Highlights: • Antipsychotics modulate the expression of adipogenic genes in human adipocytes. • Secretion of proinflammatory cytokine IL8 and MCP-1 is induced by antipsychotics. • Adipocyte-dependent inflammatory abnormality could develop during chronic treatment. • Infiltrated macrophages would further enhance proinflammatory cytokine production. - Abstract: Schizophrenia requires lifelong treatment, potentially causing systemic changes in metabolic homeostasis. In the clinical setting, antipsychotic treatment may differentially lead to weight gain among individual patients, although the molecular determinants of such adverse effects are currently unknown. In this study, we investigated changes in the expression levels of critical regulatory genes of adipogenesis, lipid metabolism and proinflammatory genes during the differentiation of primary human adipose-derived stem cells (ADSCs). These cells were isolated from patients with body mass indices <25 and treated with the second-generation antipsychotics olanzapine, ziprasidone, clozapine, quetiapine, aripiprazole and risperidone and the first-generation antipsychotic haloperidol. We found that antipsychotics exhibited a marked effect on key genes involved in the regulation of cell cycle, signal transduction, transcription factors, nuclear receptors, differentiation markers and metabolic enzymes. In particular, we observed an induction of the transcription factor NF-KB1 and NF-KB1 target genes in adipocytes in response to these drugs, including the proinflammatory cytokines TNF-α, IL-1β, IL-8 and MCP-1. In addition, enhanced secretion of both IL8 and MCP-1 was observed in the supernatant of these cell cultures. In addition to their remarkable stimulatory effects on proinflammatory gene transcription, three of the most frequently prescribed antipsychotic drugs, clozapine, quetiapine and aripiprazole, also induced the expression of essential adipocyte differentiation genes and the adipocyte hormones leptin

  8. Atypical antipsychotics induce both proinflammatory and adipogenic gene expression in human adipocytes in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Sárvári, Anitta K., E-mail: anittasarvari@med.unideb.hu [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Veréb, Zoltán, E-mail: jzvereb@gmail.com [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Uray, Iván P., E-mail: ipuray@mdanderson.org [Clinical Cancer Prevention Department, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Fésüs, László, E-mail: fesus@med.unideb.hu [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); MTA DE Apoptosis, Genomics and Stem Cell Research Group of the Hungarian Academy of Sciences (Hungary); Balajthy, Zoltán, E-mail: balajthy@med.unideb.hu [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary)

    2014-08-08

    Highlights: • Antipsychotics modulate the expression of adipogenic genes in human adipocytes. • Secretion of proinflammatory cytokine IL8 and MCP-1 is induced by antipsychotics. • Adipocyte-dependent inflammatory abnormality could develop during chronic treatment. • Infiltrated macrophages would further enhance proinflammatory cytokine production. - Abstract: Schizophrenia requires lifelong treatment, potentially causing systemic changes in metabolic homeostasis. In the clinical setting, antipsychotic treatment may differentially lead to weight gain among individual patients, although the molecular determinants of such adverse effects are currently unknown. In this study, we investigated changes in the expression levels of critical regulatory genes of adipogenesis, lipid metabolism and proinflammatory genes during the differentiation of primary human adipose-derived stem cells (ADSCs). These cells were isolated from patients with body mass indices <25 and treated with the second-generation antipsychotics olanzapine, ziprasidone, clozapine, quetiapine, aripiprazole and risperidone and the first-generation antipsychotic haloperidol. We found that antipsychotics exhibited a marked effect on key genes involved in the regulation of cell cycle, signal transduction, transcription factors, nuclear receptors, differentiation markers and metabolic enzymes. In particular, we observed an induction of the transcription factor NF-KB1 and NF-KB1 target genes in adipocytes in response to these drugs, including the proinflammatory cytokines TNF-α, IL-1β, IL-8 and MCP-1. In addition, enhanced secretion of both IL8 and MCP-1 was observed in the supernatant of these cell cultures. In addition to their remarkable stimulatory effects on proinflammatory gene transcription, three of the most frequently prescribed antipsychotic drugs, clozapine, quetiapine and aripiprazole, also induced the expression of essential adipocyte differentiation genes and the adipocyte hormones leptin

  9. Pro-inflammatory cytokines upregulate sympathoexcitatory mechanisms in the subfornical organ of the rat

    Science.gov (United States)

    Wei, Shun-Guang; Yu, Yang; Zhang, Zhi-Hua; Felder, Robert B.

    2015-01-01

    Our previous work indicated that the subfornical organ (SFO) is an important brain sensor of blood-borne pro-inflammatory cytokines, mediating their central effects on autonomic and cardiovascular function. However, the mechanisms by which SFO mediates the central effects of circulating pro-inflammatory cytokines remain unclear. We hypothesized that pro-inflammatory cytokines act within the SFO to upregulate the expression of excitatory and inflammatory mediators that drive sympathetic nerve activity. In urethane-anesthetized Sprague-Dawley rats, direct microinjection of TNF-α (25 ng) or IL-1β (25 ng) into SFO increased mean blood pressure, heart rate and renal sympathetic nerve activity within 15–20 minutes, mimicking the response to systemically administered pro-inflammatory cytokines. Pretreatment of SFO with microinjections of the angiotensin II type 1 receptor (AT1R) blocker losartan (1 µg), angiotensin-converting enzyme (ACE) inhibitor captopril (1 µg) or cyclooxygenase (COX)-2 inhibitor NS-398 (2 µg) attenuated those responses. Four hours after the SFO microinjection of TNF-α (25 ng) or IL-1β (25 ng), mRNA for ACE, AT1R, TNF-α and the p55 TNF-α receptor TNFR1, IL-1β and the IL-1R receptor, and COX-2 had increased in SFO, and mRNA for ACE, AT1R and COX-2 had increased downstream in the hypothalamic paraventricular nucleus. Confocal immunofluorescent images revealed that immunoreactivity for TNFR1 and the IL-1 receptor accessory protein, a subunit of the IL-1 receptor, co-localized with ACE, AT1R-like, COX-2 and prostaglandin E2 EP3 receptor immunoreactivity in SFO neurons. These data suggest that pro-inflammatory cytokines act within the SFO to upregulate the expression of inflammatory and excitatory mediators that drive sympathetic excitation. PMID:25776070

  10. Kruppel-like factor 2 (KLF2) regulates proinflammatory activation of monocytes

    Science.gov (United States)

    Das, Hiranmoy; Kumar, Ajay; Lin, Zhiyong; Patino, Willmar D.; Hwang, Paul M.; Feinberg, Mark W.; Majumder, Pradip K.; Jain, Mukesh K.

    2006-01-01

    The mechanisms regulating activation of monocytes remain incompletely understood. Herein we provide evidence that Kruppel-like factor 2 (KLF2) inhibits proinflammatory activation of monocytes. In vitro, KLF2 expression in monocytes is reduced by cytokine activation or differentiation. Consistent with this observation, KLF2 expression in circulating monocytes is reduced in patients with chronic inflammatory conditions such as coronary artery disease. Adenoviral overexpression of KLF2 inhibits the LPS-mediated induction of proinflammatory factors, cytokines, and chemokines and reduces phagocytosis. Conversely, short interfering RNA-mediated reduction in KLF2 increased inflammatory gene expression. Reconstitution of immunodeficient mice with KLF2-overexpressing monocytes significantly reduced carrageenan-induced acute paw edema formation. Mechanistically, KLF2 inhibits the transcriptional activity of both NF-κB and activator protein 1, in part by means of recruitment of transcriptional coactivator p300/CBP-associated factor. These observations identify KLF2 as a novel negative regulator of monocytic activation. PMID:16617118

  11. Prediabetes and prehypertension in disease free obese adults correlate with an exacerbated systemic proinflammatory milieu

    Directory of Open Access Journals (Sweden)

    Johnson William D

    2010-07-01

    Full Text Available Abstract Background Obesity is a pro-inflammatory state frequently associated with widespread metabolic alterations that include insulin resistance and deregulation of blood pressure (BP. This cascade of events in some measure explains the susceptibility of obese adults for co-morbid conditions like diabetes mellitus and hypertension. Hypothesis We hypothesized that an elevated systemic proinflammatory burden correlates with dysglycemia and deregulated blood pressure. Methods We analyzed the screening anthropometric and laboratory measures from healthy disease free obese adults (n = 35; women (W 27, men (M 8 in a weight loss study. Results Healthy obese normoglycemic (fasting serum glucose: FSG Conclusions In otherwise healthy disease free obese adults, a higher degree of systemic inflammation is associated with prediabetes and prehypertension.

  12. Tumour-Derived Interleukin-1 Beta Induces Pro-inflammatory Response in Human Mesenchymal Stem Cells

    DEFF Research Database (Denmark)

    Alajez, Nehad M; Al-toub, Mashael; Almusa, Abdulaziz

    ’ secreted factors as represented by a panel of human cancer cell lines (breast (MCF7 and MDA-MB-231); prostate (PC-3); lung (NCI-H522); colon (HT-29) and head & neck (FaDu)) on the biological characteristics of MSCs. Background Over the past several years, significant amount of research has emerged......, the goal of this study was to assess the cellular and molecular changes in MSCs in response to secreted factors present in conditioned media (CM) from a panel of human tumor cell lines covering a spectrum of human cancers (Breast, Prostate, Lung, colon, and head and neck). Research Morphological changes...... with bipolar processes. In association with phenotypic changes, genome-wide gene expression and bioinformatics analysis revealed an enhanced pro-inflammatory response of those MSCs. Pharmacological inhibitions of FAK and MAPKK severely impaired the pro-inflammatory response of MSCs to tumor CM (~80-99%, and 55...

  13. Polybrominated diphenyl ethers enhance the production of proinflammatory cytokines by the placenta.

    Science.gov (United States)

    Peltier, M R; Klimova, N G; Arita, Y; Gurzenda, E M; Murthy, A; Chawala, K; Lerner, V; Richardson, J; Hanna, N

    2012-09-01

    Polybrominated diphenyl ether(s) (PBDE) are ubiquitous environmental contaminants that bind and cross the placenta but their effects on pregnancy outcome are unclear. It is possible that environmental contaminants increase the risk of inflammation-mediated pregnancy complications such as preterm birth by promoting a proinflammatory environment at the maternal-fetal interface. We hypothesized that PBDE would reduce IL-10 production and enhance the production of proinflammatory cytokines associated with preterm labor/birth by placental explants. Second-trimester placental explants were cultured in either vehicle (control) or 2 μM PBDE mixture of congers 47, 99 and 100 for 72 h. Cultures were then stimulated with 10(6) CFU/ml heat-killed Escherichia coli for a final 24 h incubation and conditioned medium was harvested for quantification of cytokines and PGE(2). COX-2 content and viability of the treated tissues were then quantified by tissue ELISA and MTT reduction activity, respectively. PBDE pre-treatment reduced E. coli-stimulated IL-10 production and significantly increased E. coli-stimulated IL-1β secretion. PBDE exposure also increased basal and bacteria-stimulated COX-2 expression. Basal, but not bacteria-stimulated PGE(2), was also enhanced by PBDE exposure. No effect of PBDE on viability of the explants cultures was detected. In summary, pre-exposure of placental explants to congers 47, 99, and 100 enhanced the placental proinflammatory response to infection. This may increase the risk of infection-mediated preterm birth by lowering the threshold for bacteria to stimulate a proinflammatory response(s). Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Globular adiponectin induces a pro-inflammatory response in human astrocytic cells

    International Nuclear Information System (INIS)

    Wan, Zhongxiao; Mah, Dorrian; Simtchouk, Svetlana; Klegeris, Andis; Little, Jonathan P.

    2014-01-01

    Highlights: • Adiponectin receptors are expressed in human astrocytes. • Globular adiponectin induces secretion of IL-6 and MCP-1 from cultured astrocytes. • Adiponectin may play a pro-inflammatory role in astrocytes. - Abstract: Neuroinflammation, mediated in part by activated brain astrocytes, plays a critical role in the development of neurodegenerative disorders, including Alzheimer’s disease (AD). Adiponectin is the most abundant adipokine secreted from adipose tissue and has been reported to exert both anti- and pro-inflammatory effects in peripheral tissues; however, the effects of adiponectin on astrocytes remain unknown. Shifts in peripheral concentrations of adipokines, including adiponectin, could contribute to the observed link between midlife adiposity and increased AD risk. The aim of the present study was to characterize the effects of globular adiponectin (gAd) on pro-inflammatory cytokine mRNA expression and secretion in human U373 MG astrocytic cells and to explore the potential involvement of nuclear factor (NF)-κB, p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK)1/2, c-Jun N-terminal kinase (JNK) and phosphatidylinositide 3-kinases (PI3 K) signaling pathways in these processes. We demonstrated expression of adiponectin receptor 1 (adipoR1) and adipoR2 in U373 MG cells and primary human astrocytes. gAd induced secretion of interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1, and gene expression of IL-6, MCP-1, IL-1β and IL-8 in U373 MG cells. Using specific inhibitors, we found that NF-κB, p38MAPK and ERK1/2 pathways are involved in gAd-induced induction of cytokines with ERK1/2 contributing the most. These findings provide evidence that gAd may induce a pro-inflammatory phenotype in human astrocytes

  15. Gene array analysis of PD-1H overexpressing monocytes reveals a pro-inflammatory profile

    Directory of Open Access Journals (Sweden)

    Preeti Bharaj

    2018-02-01

    Full Text Available We have previously reported that overexpression of Programmed Death -1 Homolog (PD-1H in human monocytes leads to activation and spontaneous secretion of multiple pro inflammatory cytokines. Here we evaluate changes in monocytes gene expression after enforced PD-1H expression by gene array. The results show that there are significant alterations in 51 potential candidate genes that relate to immune response, cell adhesion and metabolism. Genes corresponding to pro-inflammatory cytokines showed the highest upregulation, 7, 3.2, 3.0, 5.8, 4.4 and 3.1 fold upregulation of TNF-α, IL-1 β, IFN-α, γ, λ and IL-27 relative to vector control. The data are in agreement with cytometric bead array analysis showing induction of proinflammatory cytokines, IL-6, IL-1β and TNF-α by PD-1H. Other genes related to inflammation, include transglutaminase 2 (TG2, NF-κB (p65 and p50 and toll like receptors (TLR 3 and 4 were upregulated 5, 4.5 and 2.5 fold, respectively. Gene set enrichment analysis (GSEA also revealed that signaling pathways related to inflammatory response, such as NFκB, AT1R, PYK2, MAPK, RELA, TNFR1, MTOR and proteasomal degradation, were significantly upregulated in response to PD-1H overexpression. We validated the results utilizing a standard inflammatory sepsis model in humanized BLT mice, finding that PD-1H expression was highly correlated with proinflammatory cytokine production. We therefore conclude that PD-1H functions to enhance monocyte activation and the induction of a pro-inflammatory gene expression profile.

  16. A pro-inflammatory role for Th22 cells in Helicobacter pylori-associated gastritis.

    Science.gov (United States)

    Zhuang, Yuan; Cheng, Ping; Liu, Xiao-fei; Peng, Liu-sheng; Li, Bo-sheng; Wang, Ting-ting; Chen, Na; Li, Wen-hua; Shi, Yun; Chen, Weisan; Pang, Ken C; Zeng, Ming; Mao, Xu-hu; Yang, Shi-ming; Guo, Hong; Guo, Gang; Liu, Tao; Zuo, Qian-fei; Yang, Hui-jie; Yang, Liu-yang; Mao, Fang-yuan; Lv, Yi-pin; Zou, Quan-ming

    2015-09-01

    Helper T (Th) cell responses are critical for the pathogenesis of Helicobacter pylori-induced gastritis. Th22 cells represent a newly discovered Th cell subset, but their relevance to H. pylori-induced gastritis is unknown. Flow cytometry, real-time PCR and ELISA analyses were performed to examine cell, protein and transcript levels in gastric samples from patients and mice infected with H. pylori. Gastric tissues from interleukin (IL)-22-deficient and wild-type (control) mice were also examined. Tissue inflammation was determined for pro-inflammatory cell infiltration and pro-inflammatory protein production. Gastric epithelial cells and myeloid-derived suppressor cells (MDSC) were isolated, stimulated and/or cultured for Th22 cell function assays. Th22 cells accumulated in gastric mucosa of both patients and mice infected with H. pylori. Th22 cell polarisation was promoted via the production of IL-23 by dendritic cells (DC) during H. pylori infection, and resulted in increased inflammation within the gastric mucosa. This inflammation was characterised by the CXCR2-dependent influx of MDSCs, whose migration was induced via the IL-22-dependent production of CXCL2 by gastric epithelial cells. Under the influence of IL-22, MDSCs, in turn, produced pro-inflammatory proteins, such as S100A8 and S100A9, and suppressed Th1 cell responses, thereby contributing to the development of H. pylori-associated gastritis. This study, therefore, identifies a novel regulatory network involving H. pylori, DCs, Th22 cells, gastric epithelial cells and MDSCs, which collectively exert a pro-inflammatory effect within the gastric microenvironment. Efforts to inhibit this Th22-dependent pathway may therefore prove a valuable strategy in the therapy of H. pylori-associated gastritis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  17. Proinflammatory effects of exogenously administered IL-10 in experimental autoimmune orchitis

    DEFF Research Database (Denmark)

    Kaneko, Tetsushi; Itoh, Masahiro; Nakamura, Yoichi

    2003-01-01

    We studied the effects of exogenously administered recombinant murine interleukin (IL)-10 on the development of experimental autoimmune orchitis (EAO) in C3H/He mice. IL-10 significantly augments histological signs of EAO when administered for 6 consecutive days from days 15 to 20 after primary...... immunisations with testicular germ cells. These data demonstrate that IL-10, in addition to its well-known antiinflammatory property, also has proinflammatory functions capable of up-regulating testicular immunoinflammatory processes in vivo....

  18. Globular adiponectin induces a pro-inflammatory response in human astrocytic cells

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Zhongxiao; Mah, Dorrian; Simtchouk, Svetlana [School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC (Canada); Klegeris, Andis [Department of Biology, University of British Columbia Okanagan, Kelowna, BC (Canada); Little, Jonathan P., E-mail: jonathan.little@ubc.ca [School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC (Canada)

    2014-03-28

    Highlights: • Adiponectin receptors are expressed in human astrocytes. • Globular adiponectin induces secretion of IL-6 and MCP-1 from cultured astrocytes. • Adiponectin may play a pro-inflammatory role in astrocytes. - Abstract: Neuroinflammation, mediated in part by activated brain astrocytes, plays a critical role in the development of neurodegenerative disorders, including Alzheimer’s disease (AD). Adiponectin is the most abundant adipokine secreted from adipose tissue and has been reported to exert both anti- and pro-inflammatory effects in peripheral tissues; however, the effects of adiponectin on astrocytes remain unknown. Shifts in peripheral concentrations of adipokines, including adiponectin, could contribute to the observed link between midlife adiposity and increased AD risk. The aim of the present study was to characterize the effects of globular adiponectin (gAd) on pro-inflammatory cytokine mRNA expression and secretion in human U373 MG astrocytic cells and to explore the potential involvement of nuclear factor (NF)-κB, p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK)1/2, c-Jun N-terminal kinase (JNK) and phosphatidylinositide 3-kinases (PI3 K) signaling pathways in these processes. We demonstrated expression of adiponectin receptor 1 (adipoR1) and adipoR2 in U373 MG cells and primary human astrocytes. gAd induced secretion of interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1, and gene expression of IL-6, MCP-1, IL-1β and IL-8 in U373 MG cells. Using specific inhibitors, we found that NF-κB, p38MAPK and ERK1/2 pathways are involved in gAd-induced induction of cytokines with ERK1/2 contributing the most. These findings provide evidence that gAd may induce a pro-inflammatory phenotype in human astrocytes.

  19. Hemocyanins Stimulate Innate Immunity by Inducing Different Temporal Patterns of Proinflammatory Cytokine Expression in Macrophages.

    Science.gov (United States)

    Zhong, Ta-Ying; Arancibia, Sergio; Born, Raimundo; Tampe, Ricardo; Villar, Javiera; Del Campo, Miguel; Manubens, Augusto; Becker, María Inés

    2016-06-01

    Hemocyanins induce a potent Th1-dominant immune response with beneficial clinical outcomes when used as a carrier/adjuvant in vaccines and nonspecific immunostimulant in cancer. However, the mechanisms by which hemocyanins trigger innate immune responses, leading to beneficial adaptive immune responses, are unknown. This response is triggered by a proinflammatory signal from various components, of which macrophages are an essential part. To understand how these proteins influence macrophage response, we investigated the effects of mollusks hemocyanins with varying structural and immunological properties, including hemocyanins from Concholepas concholepas, Fissurella latimarginata, and Megathura crenulata (keyhole limpet hemocyanin), on cultures of peritoneal macrophages. Hemocyanins were phagocytosed and slowly processed. Analysis of this process showed differential gene expression along with protein levels of proinflammatory markers, including IL-1β, IL-6, IL-12p40, and TNF-α. An extended expression analysis of 84 cytokines during a 24-h period showed a robust proinflammatory response for F. latimarginata hemocyanin in comparison with keyhole limpet hemocyanin and C. concholepas hemocyanin, which was characterized by an increase in the transcript levels of M1 cytokines involved in leukocyte recruitment. These cytokine genes included chemokines (Cxcl1, Cxcl3, Cxcl5, Ccl2, and Ccl3), ILs (Il1b and Ifng), growth factors (Csf2 and Csf3), and TNF family members (Cd40lg). The protein levels of certain cytokines were increased. However, every hemocyanin maintains downregulated key M2 cytokine genes, including Il4 and Il5 Collectively, our data demonstrate that hemocyanins are able to trigger the release of proinflammatory factors with different patterns of cytokine expression, suggesting differential signaling pathways and transcriptional network mechanisms that lead to the activation of M1-polarized macrophages. Copyright © 2016 by The American Association of

  20. Proinflammatory gene polymorphisms are potentially associated with Korean non-Sjogren dry eye patients

    OpenAIRE

    Na, Kyung-Sun; Mok, Jee-Won; Kim, Ja Yeon; Joo, Choun-Ki

    2011-01-01

    Purpose To determine whether proinflammatory cytokine genes were potential susceptibility candidate genes for Korean patients with non-Sjogren dry eye, we investigated the association of the interleukin 1 beta (IL1B), interleukin 6 (IL6), and interleukin 6 receptor (IL6R) variations with this disease in Korean patients. Methods Genomic DNA was extracted from blood samples of unrelated non-Sjogren dry eye patients and healthy control individuals who visited the Eye Center and Health Promotion ...

  1. Fisetin Inhibits Hyperglycemia-Induced Proinflammatory Cytokine Production by Epigenetic Mechanisms

    Directory of Open Access Journals (Sweden)

    Hye Joo Kim

    2012-01-01

    Full Text Available Diabetes is characterized by a proinflammatory state, and several inflammatory processes have been associated with both type 1 and type 2 diabetes and the resulting complications. High glucose levels induce the release of proinflammatory cytokines. Fisetin, a flavonoid dietary ingredient found in the smoke tree (Cotinus coggygria, and is also widely distributed in fruits and vegetables. Fisetin is known to exert anti-inflammatory effects via inhibition of the NF-κB signaling pathway. In this study, we analyzed the effects of fisetin on proinflammatory cytokine secretion and epigenetic regulation, in human monocytes cultured under hyperglycemic conditions. Human monocytic (THP-1 cells were cultured under control (14.5 mmol/L mannitol, normoglycemic (NG, 5.5 mmol/L glucose, or hyperglycemic (HG, 20 mmol/L glucose conditions, in the absence or presence of fisetin. Fisetin was added (3–10 μM for 48 h. While the HG condition significantly induced histone acetylation, NF-κB activation, and proinflammatory cytokine (IL-6 and TNF-α release from THP-1 cells, fisetin suppressed NF-κB activity and cytokine release. Fisetin treatment also significantly reduced CBP/p300 gene expression, as well as the levels of acetylation and HAT activity of the CBP/p300 protein, which is a known NF-κB coactivator. These results suggest that fisetin inhibits HG-induced cytokine production in monocytes, through epigenetic changes involving NF-κB. We therefore propose that fisetin supplementation be considered for diabetes prevention.

  2. Histamine mediates the pro-inflammatory effect of latex of Calotropis procera in rats

    Directory of Open Access Journals (Sweden)

    Yatin M. Shivkar

    2003-01-01

    Full Text Available Introduction: Calotropis procera is known to produce contact dermatitis and the latex of this plant produces intense inflammation when injected locally. However, the precise mode of its pro-inflammatory effect is not known. In present study we have pharmacologically characterized the inflammation induced by latex of C. procera in a rat paw edema model and determined the role of histamine in latex-induced inflammation.

  3. Chitosan drives anti-inflammatory macrophage polarisation and pro-inflammatory dendritic cell stimulation

    Directory of Open Access Journals (Sweden)

    MI Oliveira

    2012-07-01

    Full Text Available Macrophages and dendritic cells (DC share the same precursor and play key roles in immunity. Modulation of their behaviour to achieve an optimal host response towards an implanted device is still a challenge. Here we compare the differentiation process and polarisation of these related cell populations and show that they exhibit different responses to chitosan (Ch, with human monocyte-derived macrophages polarising towards an anti-inflammatory phenotype while their DC counterparts display pro-inflammatory features. Macrophages and DC, whose interactions with biomaterials are frequently analysed using fully differentiated cells, were cultured directly on Ch films, rather than exposed to the polymer after complete differentiation. Ch was the sole stimulating factor and activated both macrophages and DC, without leading to significant T cell proliferation. After 10 d on Ch, macrophages significantly down-regulated expression of pro-inflammatory markers, CD86 and MHCII. Production of pro-inflammatory cytokines, particularly TNF-α, decreased with time for cells cultured on Ch, while anti-inflammatory IL-10 and TGF-β1, significantly increased. Altogether, these results suggest an M2c polarisation. Also, macrophage matrix metalloproteinase activity was augmented and cell motility was stimulated by Ch. Conversely, DC significantly enhanced CD86 expression, reduced IL-10 secretion and increased TNF-α and IL-1β levels. Our findings indicate that cells with a common precursor may display different responses, when challenged by the same biomaterial. Moreover, they help to further comprehend macrophage/DC interactions with Ch and the balance between pro- and anti-inflammatory signals associated with implant biomaterials. We propose that an overall pro-inflammatory reaction may hide the expression of anti-inflammatory cytokines, likely relevant for tissue repair/regeneration.

  4. Pro-inflammatory capacity of classically activated monocytes relates positively to muscle mass and strength.

    Science.gov (United States)

    Beenakker, Karel G M; Westendorp, Rudi G J; de Craen, Anton J M; Slagboom, Pieternella E; van Heemst, Diana; Maier, Andrea B

    2013-08-01

    In mice, monocytes that exhibit a pro-inflammatory profile enter muscle tissue after muscle injury and are crucial for clearance of necrotic tissue and stimulation of muscle progenitor cell proliferation and differentiation. The aim of this study was to test if pro-inflammatory capacity of classically activated (M1) monocytes relates to muscle mass and strength in humans. This study included 191 male and 195 female subjects (mean age 64.2 years (SD 6.4) and 61.9 ± 6.4, respectively) of the Leiden Longevity Study. Pro-inflammatory capacity of M1 monocytes was assessed by ex vivo stimulation of whole blood with Toll-like receptor (TLR) 4 agonist lipopolysaccharide (LPS) and TLR-2/1 agonist tripalmitoyl-S-glycerylcysteine (Pam₃Cys-SK₄), both M1 phenotype activators. Cytokines that stimulate M1 monocyte response (IFN-γ and GM-CSF) as well as cytokines that are secreted by M1 monocytes (IL-6, TNF-α, IL-12, and IL-1β) were measured. Analyses were adjusted for age, height, and body fat mass. Upon stimulation with LPS, the cytokine production capacity of INF-γ, GM-CSF, and TNF-α was significantly positively associated with lean body mass, appendicular lean mass and handgrip strength in men, but not in women. Upon stimulation with Pam₃Cys-SK₄, IL-6; TNF-α; and Il-1β were significantly positively associated with lean body mass and appendicular lean in women, but not in men. Taken together, this study shows that higher pro-inflammatory capacity of M1 monocytes upon stimulation is associated with muscle characteristics and sex dependent. © 2013 John Wiley & Sons Ltd and the Anatomical Society.

  5. Supplementation of xanthophylls decreased proinflammatory and increased anti-inflammatory cytokines in hens and chicks.

    Science.gov (United States)

    Gao, Yu-Yun; Xie, Qing-Mei; Jin, Ling; Sun, Bao-Li; Ji, Jun; Chen, Feng; Ma, Jing-Yun; Bi, Ying-Zuo

    2012-11-28

    The present study investigated the effects of xanthophylls (containing 40 % of lutein and 60 % of zeaxanthin) on proinflammatory cytokine (IL-1β, IL-6, interferon (IFN)-γ and lipopolysaccharide-induced TNF-α factor (LITAF)) and anti-inflammatory cytokine (IL-4 and IL-10) expression of breeding hens and chicks. In Expt 1, a total of 432 hens were fed diets supplemented with 0 (as the control group), 20 or 40 mg/kg xanthophylls (six replicates per treatment). The liver, duodenum, jejunum and ileum were sampled at 35 d of the trial. The results showed that both levels of xanthophyll addition decreased IL-1β mRNA in the liver and jejunum, IL-6 mRNA in the liver, IFN-γ mRNA in the jejunum and LITAF mRNA in the liver compared to the control group. Expt 2 was a 2 × 2 factorial design. Male chicks hatched from 0 or 40 mg/kg xanthophyll diet of hens were fed a diet containing either 0 or 40 mg/kg xanthophylls. The liver, duodenum, jejunum and ileum were collected at 0, 7, 14 and 21 d after hatching. The results showed that in ovo xanthophylls decreased proinflammatory cytokine expression (IL-1β, IL-6, IFN-γ and LITAF) in the liver, duodenum, jejunum and ileum and increased anti-inflammatory cytokine expression (IL-4 and IL-10) in the liver, jejunum and ileum mainly at 0-7 d after hatching. In ovo effects gradually vanished and dietary effects began to work during 1-2 weeks after hatching. Dietary xanthophylls modulated proinflammatory cytokines (IL-1β, IL-6 and IFN-γ) in the liver, duodenum, jejunum and ileum and anti-inflammatory cytokine (IL-10) in the liver and jejunum mainly from 2 weeks onwards. In conclusion, xanthophylls could regulate proinflammatory and anti-inflammatory cytokine expression in different tissues of hens and chicks.

  6. Murine Neonates Infected with Yersinia enterocolitica Develop Rapid and Robust Proinflammatory Responses in Intestinal Lymphoid Tissues

    Science.gov (United States)

    Siefker, David T.; Echeverry, Andrea; Brambilla, Roberta; Fukata, Masayuki; Schesser, Kurt

    2014-01-01

    Neonatal animals are generally very susceptible to infection with bacterial pathogens. However, we recently reported that neonatal mice are highly resistant to orogastric infection with Yersinia enterocolitica. Here, we show that proinflammatory responses greatly exceeding those in adults arise very rapidly in the mesenteric lymph nodes (MLN) of neonates. High-level induction of proinflammatory gene expression occurred in the neonatal MLN as early as 18 h postinfection. Marked innate phagocyte recruitment was subsequently detected at 24 h postinfection. Enzyme-linked immunosorbent spot assay (ELISPOT) analyses indicated that enhanced inflammation in neonatal MLN is contributed to, in part, by an increased frequency of proinflammatory cytokine-secreting cells. Moreover, both CD11b+ and CD11b− cell populations appeared to play a role in proinflammatory gene expression. The level of inflammation in neonatal MLN was also dependent on key bacterial components. Y. enterocolitica lacking the virulence plasmid failed to induce innate phagocyte recruitment. In contrast, tumor necrosis factor alpha (TNF-α) protein expression and neutrophil recruitment were strikingly higher in neonatal MLN after infection with a yopP-deficient strain than with wild-type Y. enterocolitica, whereas only modest increases occurred in adults. This hyperinflammatory response was associated with greater colonization of the spleen and higher mortality in neonates, while there was no difference in mortality among adults. This model highlights the dynamic levels of inflammation in the intestinal lymphoid tissues and reveals the protective (wild-type strain) versus harmful (yopP-deficient strain) consequences of inflammation in neonates. Moreover, these results reveal that the neonatal intestinal lymphoid tissues have great potential to rapidly mobilize innate components in response to infection with bacterial enteropathogens. PMID:24478090

  7. Anthocyanin prevents CD40-activated proinflammatory signaling in endothelial cells by regulating cholesterol distribution.

    Science.gov (United States)

    Xia, Min; Ling, Wenhua; Zhu, Huilian; Wang, Qing; Ma, Jing; Hou, Mengjun; Tang, Zhihong; Li, Lan; Ye, Qinyuan

    2007-03-01

    Intracellular tumor necrosis factor receptor-associated factors (TRAFs) translocation to lipid rafts is a key element in CD40-induced signaling. The purpose of this study was to investigate the influence of anthocyanin on CD40-mediated proinflammatory events in human endothelial cells and the underlying possible molecular mechanism. Treatment of endothelial cells with anthocyanin prevented from CD40-induced proinflammatory status, measured by production of IL-6, IL-8, and monocyte chemoattractant protein-1 through inhibiting CD40-induced nuclear factor-kappaB (NF-kappaB) activation. TRAF-2 played pivotal role in CD40-NF-kappaB pathway as TRAF-2 small interference RNA (siRNA) diminished CD40-induced NF-kappaB activation and inflammation. TRAF-2 overexpression increased CD40-mediated NF-kappaB activation. Moreover, TRAF-2 almost totally recruited to lipid rafts after stimulation by CD40 ligand and depletion of cholesterol diminished CD40-mediated NF-kappaB activation. Exposure to anthocyanin not only interrupted TRAF-2 recruitment to lipid rafts but also decreased cholesterol content in Triton X-100 insoluble lipid rafts. However, anthocyanin did not influence the interaction between CD40 ligand and CD40 receptor. Our findings suggest that anthocyanin protects from CD40-induced proinflammatory signaling by preventing TRAF-2 translocation to lipid rafts through regulation of cholesterol distribution, which thereby may represent a mechanism that would explain the anti-inflammatory response of anthocyanin.

  8. Ultraviolet Radiation and the Slug Transcription Factor Induce Proinflammatory and Immunomodulatory Mediator Expression in Melanocytes

    Directory of Open Access Journals (Sweden)

    Stephanie H. Shirley

    2012-01-01

    Full Text Available Despite extensive investigation, the precise contribution of the ultraviolet radiation (UVR component of sunlight to melanoma etiology remains unclear. UVR induces keratinocytes to secrete proinflammatory and immunomodulatory mediators that promote inflammation and skin tumor development; expression of the slug transcription factor in keratinocytes is required for maximal production of these mediators. In the present studies we examined the possibility that UVR-exposed melanocytes also produce proinflammatory mediators and that Slug is important in this process. Microarray studies revealed that both UVR exposure and Slug overexpression altered transcription of a variety of proinflammatory mediators by normal human melanocytes; some of these mediators are also known to stimulate melanocyte growth and migration. There was little overlap in the spectra of cytokines produced by the two stimuli. However IL-20 was similarly induced by both stimuli and the NFκB pathway appeared to be important in both circumstances. Further exploration of UVR-induced and Slug-dependent pathways of cytokine induction in melanocytes may reveal novel targets for melanoma therapy.

  9. Irradiation of existing atherosclerotic lesions increased inflammation by favoring pro-inflammatory macrophages

    International Nuclear Information System (INIS)

    Gabriels, Karen; Hoving, Saske; Gijbels, Marion J.; Pol, Jeffrey F.; Poele, Johannes A. te; Biessen, Erik A.; Daemen, Mat J.; Stewart, Fiona A.; Heeneman, Sylvia

    2014-01-01

    Background and purpose: Recent studies have shown an increased incidence of localized atherosclerosis and subsequent cardiovascular events in cancer patients treated with thoracic radiotherapy. We previously demonstrated that irradiation accelerated the development of atherosclerosis and predisposed to an inflammatory plaque phenotype in young hypercholesterolemic ApoE −/− mice. However, as older cancer patients already have early or advanced stages of atherosclerosis at the time of radiotherapy, we investigated the effects of irradiation on the progression of existing atherosclerotic lesions in vivo. Material and methods: ApoE −/− mice (28 weeks old) received local irradiation with 14 or 0 Gy (sham-treated) at the aortic arch and were examined after 4 and 12 weeks for atherosclerotic lesions, plaque size and phenotype. Moreover, we investigated the impact of irradiation on macrophage phenotype (pro- or anti-inflammatory) and function (efferocytotic capacity, i.e. clearance of apoptotic cells) in vitro. Results: Irradiation of existing lesions in the aortic arch resulted in smaller, macrophage-rich plaques with intraplaque hemorrhage and increased apoptosis. In keeping with the latter, in vitro studies revealed augmented polarization toward pro-inflammatory macrophages after irradiation and reduced efferocytosis by anti-inflammatory macrophages. In addition, considerably more lesions in irradiated mice were enriched in pro-inflammatory macrophages. Conclusions: Irradiation of existing atherosclerotic lesions led to smaller but more inflamed plaques, with increased numbers of apoptotic cells, most likely due to a shift toward pro-inflammatory macrophages in the plaque

  10. Identification of informative features for predicting proinflammatory potentials of engine exhausts.

    Science.gov (United States)

    Wang, Chia-Chi; Lin, Ying-Chi; Lin, Yuan-Chung; Jhang, Syu-Ruei; Tung, Chun-Wei

    2017-08-18

    The immunotoxicity of engine exhausts is of high concern to human health due to the increasing prevalence of immune-related diseases. However, the evaluation of immunotoxicity of engine exhausts is currently based on expensive and time-consuming experiments. It is desirable to develop efficient methods for immunotoxicity assessment. To accelerate the development of safe alternative fuels, this study proposed a computational method for identifying informative features for predicting proinflammatory potentials of engine exhausts. A principal component regression (PCR) algorithm was applied to develop prediction models. The informative features were identified by a sequential backward feature elimination (SBFE) algorithm. A total of 19 informative chemical and biological features were successfully identified by SBFE algorithm. The informative features were utilized to develop a computational method named FS-CBM for predicting proinflammatory potentials of engine exhausts. FS-CBM model achieved a high performance with correlation coefficient values of 0.997 and 0.943 obtained from training and independent test sets, respectively. The FS-CBM model was developed for predicting proinflammatory potentials of engine exhausts with a large improvement on prediction performance compared with our previous CBM model. The proposed method could be further applied to construct models for bioactivities of mixtures.

  11. Changes in proinflammatory cytokines and white matter in chronically stressed rats

    Directory of Open Access Journals (Sweden)

    Yang P

    2015-03-01

    Full Text Available Ping Yang,1 Zhenyong Gao,1 Handi Zhang,1 Zeman Fang,1 Cairu Wu,1 Haiyun Xu,1,2 Qing-Jun Huang1 1Mental Health Center, 2Department of Anatomy, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China Abstract: Although the pathogenesis of depression, an incapacitating psychiatric ailment, remains largely unknown, previous human and animal studies have suggested that both proinflammatory cytokines and altered oligodendrocytes play important roles in the condition. This study examined these two factors in the brains of rats following unpredictable chronic mild stress for 4 weeks, with the hypothesis that chronic stress may affect oligodendrocytes and elevate proinflammatory cytokines in the brain. After suffering unpredictable stressors for 4 weeks, the rats showed depression-like behaviors, including decreased locomotion in the open field, increased immobility time in the forced swim test, and decreased sucrose consumption and less sucrose preference when compared with controls. Immunohistochemical staining of brain sections showed higher immunoreactivity of proinflammatory cytokines in certain brain regions of stressed rats compared with controls; lower immunoreactivity of myelin basic protein and fewer mature oligodendrocytes were seen in the prefrontal cortex, but no demyelination was detected. These results are interpreted and discussed in the context of recent findings from human and animal studies. Keywords: cytokines, depression, myelination, oligodendrocytes, stress 

  12. A Proinflammatory Effect of the β-Glucan from Pleurotus cornucopiae Mushroom on Macrophage Action

    Directory of Open Access Journals (Sweden)

    Ken-ichiro Minato

    2017-01-01

    Full Text Available PCPS from P. citrinopileatus mushroom extract is a β-1,6-glucan possessing a proinflammatory effect on innate immune cells. The PCPS stimulated THP-1 macrophages to secrete significant levels of TNF. Moreover, the mRNA expressions of TNF and IL-1β were significantly enhanced by PCPS treatment. However, the PCPS did not induce to express both IL-12 and IL-10 mRNA in the macrophages. Next, the P. cornucopiae extract (containing mainly PCPS treatment against mice showed significant increases in TNF and IL-1β mRNA expressions in the peritoneal macrophages of them. In this study, the expression levels of IFNγ mRNA in the spleen were almost the same between the extract- (PCPS- treated group and control group. However, the expression of IL-4 mRNA showed a lower level in the extract-treated group than that in the control. Our results suggested that the PCPS could induce proinflammatory action in the immune response. In addition, the proinflammatory effect of the PCPS on THP-1 was enhanced by 5′-GMP-Na, while it was reduced by vitamin D2. These two compounds are majorly contained in the P. citrinopileatus mushroom. Therefore, these results suggested that the P. citrinopileatus mushroom might contain other immune regulative compounds, such as vitamin D2, as well as PCPS.

  13. Herpesviruses viral loads and levels of proinflammatory cytokines in apical periodontitis.

    Science.gov (United States)

    Jakovljevic, A; Knezevic, A; Nikolic, N; Soldatovic, I; Jovanovic, T; Milasin, J; Andric, M

    2018-07-01

    This study aimed to analyse Epstein-Barr virus (EBV) and human cytomegalovirus (HCMV) viral loads in symptomatic and asymptomatic apical periodontitis lesions, to determine levels of TNF-α, IL-1β and IL-6 in these lesions and to investigate a possible correlation between herpesviral copy numbers and levels of proinflammatory cytokines. A total of 100 samples of apical periodontitis were subjected to HCMV and EBV copy numbers analysis by nested polymerase chain reaction (PCR) and TaqMan real-time PCR. The concentrations of TNF-α, IL-1β and IL-6 were determined by ELISA method. SPSS software was used for statistical analysis. There were no significant differences in the occurrence of EBV and HCMV between symptomatic and asymptomatic periapical lesions (p = .686, p = .879, respectively). Only 12 of 74 EBV (16.2%) and four of 54 HCMV (13.5%) nested PCR-positive samples showed increased viral copy numbers above the limit of 125 copies/ml. There was no significant correlation between the levels of analysed proinflammatory cytokines and herpesviral copy numbers in our sample. The observed low viral loads point to a relatively rare occurrence of active EBV and HCMV infection in our sample. Latent herpesviral infection does not enhance the production of investigated proinflammatory cytokines. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. All rights reserved.

  14. Transferrin-derived synthetic peptide induces highly conserved pro-inflammatory responses of macrophages.

    Science.gov (United States)

    Haddad, George; Belosevic, Miodrag

    2009-02-01

    We examined the induction of macrophage pro-inflammatory responses by transferrin-derived synthetic peptide originally identified following digestion of transferrin from different species (murine, bovine, human N-lobe and goldfish) using elastase. The mass spectrometry analysis of elastase-digested murine transferrin identified a 31 amino acid peptide located in the N2 sub-domain of the transferrin N-lobe, that we named TMAP. TMAP was synthetically produced and shown to induce a number of pro-inflammatory genes by quantitative PCR. TMAP induced chemotaxis, a potent nitric oxide response, and TNF-alpha secretion in different macrophage populations; P338D1 macrophage-like cells, mouse peritoneal macrophages, mouse bone marrow-derived macrophages (BMDM) and goldfish macrophages. The treatment of BMDM cultures with TMAP stimulated the production of nine cytokines and chemokines (IL-6, MCP-5, MIP-1 alpha, MIP-1 gamma, MIP-2, GCSF, KC, VEGF, and RANTES) that was measured using cytokine antibody array and confirmed by Western blot. Our results indicate that transferrin-derived peptide, TMAP, is an immunomodulating molecule capable of inducing pro-inflammatory responses in lower and higher vertebrates.

  15. Intermittent fasting during Ramadan attenuates proinflammatory cytokines and immune cells in healthy subjects.

    Science.gov (United States)

    Faris, Mo'ez Al-Islam E; Kacimi, Safia; Al-Kurd, Ref'at A; Fararjeh, Mohammad A; Bustanji, Yasser K; Mohammad, Mohammad K; Salem, Mohammad L

    2012-12-01

    Intermittent fasting and caloric restriction have been shown to extend life expectancy and reduce inflammation and cancer promotion in animal models. It was hypothesized that intermittent prolonged fasting practiced during the month of Ramadan (RIF) could positively affect the inflammatory state. To investigate this hypothesis, a cross-sectional study was designed to investigate the impact of RIF on selected inflammatory cytokines and immune biomarkers in healthy subjects. Fifty (21 men and 29 women) healthy volunteers who practiced Ramadan fasting were recruited for the investigation of circulating proinflammatory cytokines (interleukin [IL]-1β, IL-6, and tumor necrosis factor α), immune cells (total leukocytes, monocytes, granulocytes, and lymphocytes), and anthropometric and dietary assessments. The investigations were conducted 1 week before Ramadan fasting, at the end of the third week of Ramadan, and 1 month after the cessation of Ramadan month. The proinflammatory cytokines IL-1β, IL-6, and tumor necrosis factor α; systolic and diastolic blood pressures; body weight; and body fat percentage were significantly lower (P fasting. Immune cells significantly decreased during Ramadan but still remained within the reference ranges. These results indicate that RIF attenuates inflammatory status of the body by suppressing proinflammatory cytokine expression and decreasing body fat and circulating levels of leukocytes. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Proinflammatory Soluble Interleukin-15 Receptor Alpha Is Increased in Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Ana Cecilia Machado Diaz

    2012-01-01

    Full Text Available Rheumatoid arthritis (RA is an autoimmune and inflammatory disease in which many cytokines have been implicated. In particular, IL-15 is a cytokine involved in the inflammatory processes and bone loss. The aim of this study was to investigate the existence in synovial fluid of soluble IL-15Rα, a private receptor subunit for IL-15 which may act as an enhancer of IL-15-induced proinflammatory cytokines. Soluble IL-15Rα was quantified by a newly developed enzyme-linked immunosorbent assay (ELISA in samples of synovial fluid from patients with RA and osteoarthritis (OA. The levels of IL-15Rα were significantly increased in RA patients compared to OA patients. Also, we studied the presence of membrane-bound IL-15 in cells from synovial fluids, another element necessary to induce pro-inflammatory cytokines through reverse signaling. Interestingly, we found high levels of IL-6 related to high levels of IL-15Rα in RA but not in OA. Thus, our results evidenced presence of IL-15Rα in synovial fluids and suggested that its pro-inflammatory effect could be related to induction of IL-6.

  17. LYATK1 potently inhibits LPS-mediated pro-inflammatory response

    International Nuclear Information System (INIS)

    Xi, Feng; Liu, Yuan; Wang, Xiujuan; Kong, Wei; Zhao, Feng

    2016-01-01

    Lipopolysaccharide (LPS)-primed monocytes/macrophages produce pro-inflammatory cytokines, which could lead to endotoxin shock. TGF-β-activated kinase1 (TAK1) activation is involved in the process. In the current study, we studied the potential effect of a selective TAK1 inhibitor, LYTAK1, on LPS-stimulated response both in vitro and in vivo. We demonstrated that LYTAK1 inhibited LPS-induced mRNA expression and production of several pro-inflammatory cytokines [interleukin 1β (IL-1β), tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6)] in RAW 264.7 macrophages. LYTAK1's activity was almost nullified with TAK1 shRNA-knockdown. Meanwhile, in both primary mouse bone marrow derived macrophages (BMDMs) and human peripheral blood mononuclear cells (PBMCs), LPS-induced pro-inflammatory cytokine production was again attenuated with LYTAK1 co-treatment. Molecularly, LYTAK1 dramatically inhibited LPS-induced TAK1-nuclear factor kappa B (NFκB) and mitogen-activated protein kinase (Erk, Jnk and p38) activation in RAW 264.7 cells, mouse BMDMs and human PBMCs. In vivo, oral administration of LYTAK1 inhibited LPS-induced activation of TAK1-NFκB-p38 in ex-vivo cultured PBMCs, and cytokine production and endotoxin shock in mice. Together, these results demonstrate that LYTAK1 inhibits LPS-induced production of several pro-inflammatory cytokines and endotoxin shock probably through blocking TAK1-regulated signalings. - Highlights: • LYTAK1 inhibits LPS-induced pro-inflammatory cytokine production in RAW 264.7 cells. • The effect by LYTAK1 is more potent than other known TAK1 inhibitors. • LYTAK1 inhibits LPS-induced cytokine production in primary macrophages/monocytes. • LYTAK1 inhibits LPS-induced TAK1-NFκB and MAPK activation in macrophages/monocytes. • LYTAK1 gavage inhibits LPS-induced endotoxin shock and cytokine production in mice.

  18. LYATK1 potently inhibits LPS-mediated pro-inflammatory response

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Feng [Department of Intensive Care Unit, Taixing People" ' s Hospital, Taixing, Jiangsu Province, 225400 (China); Liu, Yuan [Department of Ophthalmology, Nanjing First Hospital, Nanjing Medical University, Nanjing (China); Wang, Xiujuan; Kong, Wei [Department of Intensive Care Unit, Taixing People" ' s Hospital, Taixing, Jiangsu Province, 225400 (China); Zhao, Feng, E-mail: taixingzhaofeng163@163.com [Department of Intensive Care Unit, Taixing People" ' s Hospital, Taixing, Jiangsu Province, 225400 (China)

    2016-01-29

    Lipopolysaccharide (LPS)-primed monocytes/macrophages produce pro-inflammatory cytokines, which could lead to endotoxin shock. TGF-β-activated kinase1 (TAK1) activation is involved in the process. In the current study, we studied the potential effect of a selective TAK1 inhibitor, LYTAK1, on LPS-stimulated response both in vitro and in vivo. We demonstrated that LYTAK1 inhibited LPS-induced mRNA expression and production of several pro-inflammatory cytokines [interleukin 1β (IL-1β), tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6)] in RAW 264.7 macrophages. LYTAK1's activity was almost nullified with TAK1 shRNA-knockdown. Meanwhile, in both primary mouse bone marrow derived macrophages (BMDMs) and human peripheral blood mononuclear cells (PBMCs), LPS-induced pro-inflammatory cytokine production was again attenuated with LYTAK1 co-treatment. Molecularly, LYTAK1 dramatically inhibited LPS-induced TAK1-nuclear factor kappa B (NFκB) and mitogen-activated protein kinase (Erk, Jnk and p38) activation in RAW 264.7 cells, mouse BMDMs and human PBMCs. In vivo, oral administration of LYTAK1 inhibited LPS-induced activation of TAK1-NFκB-p38 in ex-vivo cultured PBMCs, and cytokine production and endotoxin shock in mice. Together, these results demonstrate that LYTAK1 inhibits LPS-induced production of several pro-inflammatory cytokines and endotoxin shock probably through blocking TAK1-regulated signalings. - Highlights: • LYTAK1 inhibits LPS-induced pro-inflammatory cytokine production in RAW 264.7 cells. • The effect by LYTAK1 is more potent than other known TAK1 inhibitors. • LYTAK1 inhibits LPS-induced cytokine production in primary macrophages/monocytes. • LYTAK1 inhibits LPS-induced TAK1-NFκB and MAPK activation in macrophages/monocytes. • LYTAK1 gavage inhibits LPS-induced endotoxin shock and cytokine production in mice.

  19. The influence of a subanaesthetic dose of ketamine on circulating pro-inflammatory cytokines and serotonin in brain reply

    Czech Academy of Sciences Publication Activity Database

    Horáček, J.; Tejkalová, H.; Novák, T.; Bubeníková-Valešová, V.; Páleníček, T.; Rambousek, L.; Růžičková, Šárka; Vaculín, Š.; Hoeschl, C.

    2011-01-01

    Roč. 41, č. 8 (2011), s. 1787-1789 ISSN 0033-2917 Institutional research plan: CEZ:AV0Z50520701 Keywords : serotonin * proinflammatory * cytokines Subject RIV: AN - Psychology Impact factor: 6.159, year: 2011

  20. Fusobacterium nucleatum-Induced Impairment of Autophagic Flux Enhances the Expression of Proinflammatory Cytokines via ROS in Caco-2 Cells.

    Directory of Open Access Journals (Sweden)

    Bin Tang

    Full Text Available Fusobacterium nucleatum (F. nucleatum plays a critical role in gastrointestinal inflammation. However, the exact mechanism by which F. nucleatum contributes to inflammation is unclear. In the present study, it was revealed that F. nucleatum could induce the production of proinflammatory cytokines (IL-8, IL-1β and TNF-α and reactive oxygen species (ROS in Caco-2 colorectal adenocarcinoma cells. Furthermore, ROS scavengers (NAC or Tiron could decrease the production of proinflammatory cytokines during F. nucleatum infection. In addition, we observed that autophagy is impaired in Caco-2 cells after F. nucleatum infection. The production of proinflammatory cytokines and ROS induced by F. nucleatum was enhanced with either autophagy pharmacologic inhibitors (3-methyladenine, bafilomycin A1 or RNA interference in essential autophagy genes (ATG5 or ATG12 in Caco-2 cells. Taken together, these results indicate that F. nucleatum-induced impairment of autophagic flux enhances the expression of proinflammatory cytokines via ROS in Caco-2 Cells.

  1. Impact of Work Task-Related Acute Occupational Smoke Exposures on Select Proinflammatory Immune Parameters in Wildland Firefighters

    Science.gov (United States)

    Objective: A repeated measures study was used to assess the effect of work tasks on select proinflammatory biomarkers in firefighters working at prescribed burns. Methods: Ten firefighters and two volunteers were monitored for particulate matter and carbon monoxide on workdays, ...

  2. Galectin-2 induces a proinflammatory, anti-arteriogenic phenotype in monocytes and macrophages.

    Directory of Open Access Journals (Sweden)

    Cansu Yıldırım

    Full Text Available Galectin-2 is a monocyte-expressed carbohydrate-binding lectin, for which increased expression is genetically determined and associated with decreased collateral arteriogenesis in obstructive coronary artery disease patients. The inhibiting effect of galectin-2 on arteriogenesis was confirmed in vivo, but the mechanism is largely unknown. In this study we aimed to explore the effects of galectin-2 on monocyte/macrophage phenotype in vitro and vivo, and to identify the receptor by which galectin-2 exerts these effects. We now show that the binding of galectin-2 to different circulating human monocyte subsets is dependent on monocyte surface expression levels of CD14. The high affinity binding is blocked by an anti-CD14 antibody but not by carbohydrates, indicating a specific protein-protein interaction. Galectin-2 binding to human monocytes modulated their transcriptome by inducing proinflammatory cytokines and inhibiting pro-arteriogenic factors, while attenuating monocyte migration. Using specific knock-out mice, we show that galectin-2 acts through the CD14/toll-like receptor (TLR-4 pathway. Furthermore, galectin-2 skews human macrophages to a M1-like proinflammatory phenotype, characterized by a reduced motility and expression of an anti-arteriogenic cytokine/growth factor repertoire. This is accompanied by a switch in surface protein expression to CD40-high and CD206-low (M1. In a murine model we show that galectin-2 administration, known to attenuate arteriogenesis, leads to increased numbers of CD40-positive (M1 and reduced numbers of CD206-positive (M2 macrophages surrounding actively remodeling collateral arteries. In conclusion galectin-2 is the first endogenous CD14/TLR4 ligand that induces a proinflammatory, non-arteriogenic phenotype in monocytes/macrophages. Interference with CD14-Galectin-2 interaction may provide a new intervention strategy to stimulate growth of collateral arteries in genetically compromised cardiovascular

  3. Atypical antipsychotics induce both proinflammatory and adipogenic gene expression in human adipocytes in vitro.

    Science.gov (United States)

    Sárvári, Anitta K; Veréb, Zoltán; Uray, Iván P; Fésüs, László; Balajthy, Zoltán

    2014-08-08

    Schizophrenia requires lifelong treatment, potentially causing systemic changes in metabolic homeostasis. In the clinical setting, antipsychotic treatment may differentially lead to weight gain among individual patients, although the molecular determinants of such adverse effects are currently unknown. In this study, we investigated changes in the expression levels of critical regulatory genes of adipogenesis, lipid metabolism and proinflammatory genes during the differentiation of primary human adipose-derived stem cells (ADSCs). These cells were isolated from patients with body mass indices <25 and treated with the second-generation antipsychotics olanzapine, ziprasidone, clozapine, quetiapine, aripiprazole and risperidone and the first-generation antipsychotic haloperidol. We found that antipsychotics exhibited a marked effect on key genes involved in the regulation of cell cycle, signal transduction, transcription factors, nuclear receptors, differentiation markers and metabolic enzymes. In particular, we observed an induction of the transcription factor NF-KB1 and NF-KB1 target genes in adipocytes in response to these drugs, including the proinflammatory cytokines TNF-α, IL-1β, IL-8 and MCP-1. In addition, enhanced secretion of both IL8 and MCP-1 was observed in the supernatant of these cell cultures. In addition to their remarkable stimulatory effects on proinflammatory gene transcription, three of the most frequently prescribed antipsychotic drugs, clozapine, quetiapine and aripiprazole, also induced the expression of essential adipocyte differentiation genes and the adipocyte hormones leptin and adiponectin, suggesting that both glucose and fat metabolism may be affected by these drugs. These data further suggest that antipsychotic treatments in patients alter the gene expression patterns in adipocytes in a coordinated fashion and priming them for a low-level inflammatory state. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Host transcription factors in the immediate pro-inflammatory response to the parasitic mite Psoroptes ovis.

    Directory of Open Access Journals (Sweden)

    Stewart T G Burgess

    Full Text Available BACKGROUND: Sheep scab, caused by infestation with the ectoparasitic mite Psoroptes ovis, results in the rapid development of cutaneous inflammation and leads to the crusted skin lesions characteristic of the disease. We described previously the global host transcriptional response to infestation with P. ovis, elucidating elements of the inflammatory processes which lead to the development of a rapid and profound immune response. However, the mechanisms by which this response is instigated remain unclear. To identify novel methods of intervention a better understanding of the early events involved in triggering the immune response is essential. The objective of this study was to gain a clearer understanding of the mechanisms and signaling pathways involved in the instigation of the immediate pro-inflammatory response. RESULTS: Through a combination of transcription factor binding site enrichment and pathway analysis we identified key roles for a number of transcription factors in the instigation of cutaneous inflammation. In particular, defined roles were elucidated for the transcription factors NF-kB and AP-1 in the orchestration of the early pro-inflammatory response, with these factors being implicated in the activation of a suite of inflammatory mediators. CONCLUSIONS: Interrogation of the host temporal response to P. ovis infestation has enabled the further identification of the mechanisms underlying the development of the immediate host pro-inflammatory response. This response involves key regulatory roles for the transcription factors NF-kB and AP-1. Pathway analysis demonstrated that the activation of these transcription factors may be triggered following a host LPS-type response, potentially involving TLR4-signalling and also lead to the intriguing possibility that this could be triggered by a P. ovis allergen.

  5. Induction of intestinal pro-inflammatory immune responses by lipoteichoic acid

    Directory of Open Access Journals (Sweden)

    Zadeh Mojgan

    2012-03-01

    Full Text Available Abstract Background The cellular and molecular mechanisms of inflammatory bowel disease are not fully understood; however, data indicate that uncontrolled chronic inflammation induced by bacterial gene products, including lipoteichoic acid (LTA, may trigger colonic inflammation resulting in disease pathogenesis. LTA is a constituent glycolipid of Gram-positive bacteria that shares many inflammatory properties with lipopolysaccharide and plays a critical role in the pathogenesis of severe inflammatory responses via Toll-like receptor 2. Accordingly, we elucidate the role of LTA in immune stimulation and induced colitis in vivo. Methods To better understand the molecular mechanisms utilized by the intestinal microbiota and their gene products to induce or subvert inflammation, specifically the effect(s of altered surface layer protein expression on the LTA-mediated pro-inflammatory response, the Lactobacillus acidophilus surface layer protein (Slp genes encoding SlpB and SlpX were deleted resulting in a SlpB- and SlpX- mutant that continued to express SlpA (assigned as NCK2031. Results Our data show profound activation of dendritic cells by NCK2031, wild-type L. acidophilus (NCK56, and purified Staphylococcus aureus-LTA. In contrary to the LTA-deficient strain NCK2025, the LTA-expressing strains NCK2031 and NCK56, as well as S. aureus-LTA, induce pro-inflammatory innate and T cell immune responses in vivo. Additionally, neither NCK2031 nor S. aureus-LTA supplemented in drinking water protected mice from DSS-colitis, but instead, induced significant intestinal inflammation resulting in severe colitis and tissue destruction. Conclusions These findings suggest that directed alteration of two of the L. acidophilus NCFM-Slps did not ameliorate LTA-induced pro-inflammatory signals and subsequent colitis.

  6. c-Myc is essential to prevent endothelial pro-inflammatory senescent phenotype.

    Directory of Open Access Journals (Sweden)

    Victoria Florea

    Full Text Available The proto-oncogene c-Myc is vital for vascular development and promotes tumor angiogenesis, but the mechanisms by which it controls blood vessel growth remain unclear. In the present work we investigated the effects of c-Myc knockdown in endothelial cell functions essential for angiogenesis to define its role in the vasculature. We provide the first evidence that reduction in c-Myc expression in endothelial cells leads to a pro-inflammatory senescent phenotype, features typically observed during vascular aging and pathologies associated with endothelial dysfunction. c-Myc knockdown in human umbilical vein endothelial cells using lentivirus expressing specific anti-c-Myc shRNA reduced proliferation and tube formation. These functional defects were associated with morphological changes, increase in senescence-associated-β-galactosidase activity, upregulation of cell cycle inhibitors and accumulation of c-Myc-deficient cells in G1-phase, indicating that c-Myc knockdown in endothelial cells induces senescence. Gene expression analysis of c-Myc-deficient endothelial cells showed that senescent phenotype was accompanied by significant upregulation of growth factors, adhesion molecules, extracellular-matrix components and remodeling proteins, and a cluster of pro-inflammatory mediators, which include Angptl4, Cxcl12, Mdk, Tgfb2 and Tnfsf15. At the peak of expression of these cytokines, transcription factors known to be involved in growth control (E2f1, Id1 and Myb were downregulated, while those involved in inflammatory responses (RelB, Stat1, Stat2 and Stat4 were upregulated. Our results demonstrate a novel role for c-Myc in the prevention of vascular pro-inflammatory phenotype, supporting an important physiological function as a central regulator of inflammation and endothelial dysfunction.

  7. An intervertebral disc whole organ culture system to investigate proinflammatory and degenerative disc disease condition.

    Science.gov (United States)

    Lang, Gernot; Liu, Yishan; Geries, Janna; Zhou, Zhiyu; Kubosch, David; Südkamp, Norbert; Richards, R Geoff; Alini, Mauro; Grad, Sibylle; Li, Zhen

    2018-04-01

    The aim of this study was to compare the effect of different disease initiators of degenerative disc disease (DDD) within an intervertebral disc (IVD) organ culture system and to understand the interplay between inflammation and degeneration in the early stage of DDD. Bovine caudal IVDs were cultured within a bioreactor for up to 11 days. Control group was cultured under physiological loading (0.02-0.2 MPa; 0.2 Hz; 2 hr/day) and high glucose (4.5 g/L) medium. Detrimental loading (0.32-0.5 MPa, 5 Hz; 2 hr/day) and low glucose (2 g/L) medium were applied to mimic the condition of abnormal mechanical stress and limited nutrition supply. Tumour necrosis factor alpha (TNF-α) was injected into the nucleus pulposus (100 ng per IVD) as a proinflammatory trigger. TNF-α combined with detrimental loading and low glucose medium up-regulated interleukin 1β (IL-1β), IL-6, and IL-8 gene expression in disc tissue, nitric oxide, and IL-8 release from IVD, which indicate a proinflammatory effect. The combined initiators up-regulated matrix metalloproteinase 1 gene expression, down-regulated gene expression of Type I collagen in annulus fibrosus and Type II collagen in nucleus pulposus, and reduced the cell viability. Furthermore, the combined initiators induced a degradative effect, as indicated by markedly higher glycosaminoglycan release into conditioned medium. The combination of detrimental dynamic loading, nutrient deficiency, and TNF-α intradiscal injection can synergistically simulate the proinflammatory and degenerative disease condition within DDD. This model will be of high interest to screen therapeutic agents in further preclinical studies for early intervention and treatment of DDD. Copyright © 2018 John Wiley & Sons, Ltd.

  8. Proinflammatory proteins in female and male patients with primary antiphospholipid syndrome: preliminary data.

    Science.gov (United States)

    Bećarević, Mirjana; Ignjatović, Svetlana

    2016-10-01

    The latest classification criteria for the diagnosis of the antiphospholipid syndrome (APS, an autoimmune disease characterized by thromboses, miscarriages and presence of antiphospholipid antibodies (Abs)) emphasized that thrombotic manifestations of APS should be without any signs of an inflammatory process. However, atherosclerosis (a chronic inflammatory response to the accumulation of lipoproteins in the walls of arteries) and APS are characterized by some similar features. We evaluated whether proinflammatory proteins were associated with the features of the primary APS (PAPS). PAPS patients without obstetric complications and with impaired lipid profile were included in the study. Antiphospholipid antibodies, TNF-alpha, and apo(a) were determined by ELISA. Complement components and hsCRP were measured by immunonephelometry. Decreased C3c was observed in female patients with increased titers of IgG anti-β2gpI (χ(2) = 3.939, P = 0.047) and in male patients with increased IgM anticardiolipin Abs (χ(2) = 4.286, P = 0.038). Pulmonary emboli were associated with interleukin (IL)-6 in male (χ(2) = 6.519, P = 0.011) and in female (χ(2) = 10.405, P = 0.001) patients. Cerebrovascular insults were associated with LDL-cholesterol (P = 0.05, 95 % CI: 1.003 - 12.739) in female and with apo(a) (P = 0.016, 95 % CI: 0.000-0.003) in male patients. Older female patients had increased LDL-cholesterol levels and frequency of myocardial infarctions. Proinflammatory proteins were associated with features of primary APS. No real gender differences in regard to proinflammatory protein levels were observed. Premenopausal state of female PAPS patients confers lower cardiovascular risk.

  9. NFAT5-Regulated Macrophage Polarization Supports the Proinflammatory Function of Macrophages and T Lymphocytes.

    Science.gov (United States)

    Tellechea, Mónica; Buxadé, Maria; Tejedor, Sonia; Aramburu, Jose; López-Rodríguez, Cristina

    2018-01-01

    Macrophages are exquisite sensors of tissue homeostasis that can rapidly switch between pro- and anti-inflammatory or regulatory modes to respond to perturbations in their microenvironment. This functional plasticity involves a precise orchestration of gene expression patterns whose transcriptional regulators have not been fully characterized. We had previously identified the transcription factor NFAT5 as an activator of TLR-induced responses, and in this study we explore its contribution to macrophage functions in different polarization settings. We found that both in classically and alternatively polarized macrophages, NFAT5 enhanced functions associated with a proinflammatory profile such as bactericidal capacity and the ability to promote Th1 polarization over Th2 responses. In this regard, NFAT5 upregulated the Th1-stimulatory cytokine IL-12 in classically activated macrophages, whereas in alternatively polarized ones it enhanced the expression of the pro-Th1 mediators Fizz-1 and arginase 1, indicating that it could promote proinflammatory readiness by regulating independent genes in differently polarized macrophages. Finally, adoptive transfer assays in vivo revealed a reduced antitumor capacity in NFAT5-deficient macrophages against syngeneic Lewis lung carcinoma and ID8 ovarian carcinoma cells, a defect that in the ID8 model was associated with a reduced accumulation of effector CD8 T cells at the tumor site. Altogether, detailed analysis of the effect of NFAT5 in pro- and anti-inflammatory macrophages uncovered its ability to regulate distinct genes under both polarization modes and revealed its predominant role in promoting proinflammatory macrophage functions. Copyright © 2017 by The American Association of Immunologists, Inc.

  10. LL-37 directs macrophage differentiation toward macrophages with a proinflammatory signature.

    Science.gov (United States)

    van der Does, Anne M; Beekhuizen, Henry; Ravensbergen, Bep; Vos, Tim; Ottenhoff, Tom H M; van Dissel, Jaap T; Drijfhout, Jan W; Hiemstra, Pieter S; Nibbering, Peter H

    2010-08-01

    The human cathelicidin LL-37 has broad-spectrum antimicrobial activity. It also participates at the interface of innate and adaptive immunity by chemoattracting immune effector cells, modulating the production of a variety of inflammatory mediators by different cell types, and regulating the differentiation of monocytes into dendritic cells. In this study, we investigated the effects of LL-37 on the differentiation of human monocytes into anti-inflammatory macrophages (MPhi-2; driven by M-CSF) versus proinflammatory macrophages (MPhi-1; driven by GM-CSF) as well as on fully differentiated MPhi-1 and MPhi-2. Results revealed that monocytes cultured with M-CSF in the presence of LL-37 resulted in macrophages displaying a proinflammatory signature, namely, low expression of CD163 and little IL-10 and profound IL-12p40 production on LPS stimulation. The effects of LL-37 on M-CSF-driven macrophage differentiation were dose- and time-dependent with maximal effects observed at 10 microg/ml when the peptide was present from the start of the cultures. The peptide enhanced the GM-CSF-driven macrophage differentiation. Exposure of fully differentiated MPhi-2 to LL-37 for 6 d resulted in macrophages that produced less IL-10 and more IL-12p40 on LPS stimulation than control MPhi-2. In contrast, LL-37 had no effect on fully differentiated MPhi-1. Peptide mapping using a set of 16 overlapping 22-mer peptides covering the complete LL-37 sequence revealed that the C-terminal portion of LL-37 is responsible for directing macrophage differentiation. Our results furthermore indicate that the effects of LL-37 on macrophage differentiation required internalization of the peptide. Together, we conclude that LL-37 directs macrophage differentiation toward macrophages with a proinflammatory signature.

  11. Proinflammatory gene polymorphisms are potentially associated with Korean non-Sjogren dry eye patients

    Science.gov (United States)

    Na, Kyung-Sun; Mok, Jee-Won; Kim, Ja Yeon

    2011-01-01

    Purpose To determine whether proinflammatory cytokine genes were potential susceptibility candidate genes for Korean patients with non-Sjogren dry eye, we investigated the association of the interleukin 1 beta (IL1B), interleukin 6 (IL6), and interleukin 6 receptor (IL6R) variations with this disease in Korean patients. Methods Genomic DNA was extracted from blood samples of unrelated non-Sjogren dry eye patients and healthy control individuals who visited the Eye Center and Health Promotion Center of St. Mary’s Hospital in Seoul, Korea. For screening genetic variations in proinflammatory cytokine genes, the 511 (rs16944) and 31 (rs1143627) positions in the promoter region of IL1B, rs1143634 in exon 5 of IL1B, rs1800795 of the IL6 promoter, and Asp358Ala (rs8192284) of IL6R were genotyped using the polymerase chain reaction, restriction fragment length polymorphisms, and direct sequencing. Results Among the polymorphisms, rs1143634 (F105F) in exon 5 of IL1B was significantly different between the patient and control groups. The frequency of the C/T genotype in dry eye patients was decreased relative to that of the control subjects (10.4% versus 3.9%, p=0.043, OR=3.337). For the IL6R gene, the genotypic and allelic distribution of rs8192284 was different between the dry eye patients and the controls: CC genotype (p=0.017, OR=2.12) and C allele (OR=1.26). Conclusions This is the first report of genetic variation screening of proinflammatory cytokine genes in Korean non-Sjogren dry eye patients. It is suggested that rs1143634 of IL1B and rs8192284 of IL6R act as susceptibility variations in Korean non-Sjogren dry eye patients. PMID:22128229

  12. High expression of arachidonate 15-lipoxygenase and proinflammatory markers in human ischemic heart tissue

    International Nuclear Information System (INIS)

    Magnusson, Lisa U.; Lundqvist, Annika; Asp, Julia; Synnergren, Jane; Johansson, Cecilia Thalén; Palmqvist, Lars; Jeppsson, Anders; Hultén, Lillemor Mattsson

    2012-01-01

    Highlights: ► We found a 17-fold upregulation of ALOX15 in the ischemic heart. ► Incubation of human muscle cells in hypoxia showed a 22-fold upregulation of ALOX15. ► We observed increased levels of proinflammatory markers in ischemic heart tissue. ► Suggesting a link between ischemia and inflammation in ischemic heart biopsies. -- Abstract: A common feature of the ischemic heart and atherosclerotic plaques is the presence of hypoxia (insufficient levels of oxygen in the tissue). Hypoxia has pronounced effects on almost every aspect of cell physiology, and the nuclear transcription factor hypoxia inducible factor-1α (HIF-1α) regulates adaptive responses to low concentrations of oxygen in mammalian cells. In our recent work, we observed that hypoxia increases the proinflammatory enzyme arachidonate 15-lipoxygenase (ALOX15B) in human carotid plaques. ALOX15 has recently been shown to be present in the human myocardium, but the effect of ischemia on its expression has not been investigated. Here we test the hypothesis that ischemia of the heart leads to increased expression of ALOX15, and found an almost 2-fold increase in HIF-1α mRNA expression and a 17-fold upregulation of ALOX15 mRNA expression in the ischemic heart biopsies from patients undergoing coronary bypass surgery compared with non ischemic heart tissue. To investigate the effect of low oxygen concentration on ALOX15 we incubated human vascular muscle cells in hypoxia and showed that expression of ALOX15 increased 22-fold compared with cells incubated in normoxic conditions. We also observed increased mRNA levels of proinflammatory markers in ischemic heart tissue compared with non-ischemic controls. In summary, we demonstrate increased ALOX15 in human ischemic heart biopsies. Furthermore we demonstrate that hypoxia increases ALOX15 in human muscle cells. Our results yield important insights into the underlying association between hypoxia and inflammation in the human ischemic heart disease.

  13. Irradiation induces a biphasic expression of pro-inflammatory cytokines in the lung

    International Nuclear Information System (INIS)

    Ruebe, C.E.; Wilfert, F.; Palm, J.; Burdak-Rothkamm, S.; Ruebe, C.; Koenig, J.; Liu Li; Schuck, A.; Willich, N.

    2004-01-01

    Background and purpose: the precise pathophysiological mechanisms of radiation-induced lung injury are poorly understood, but have been shown to correlate with dysregulation of different cytokines. The purpose of this study was to evaluate the time course of the pro-inflammatory cytokines tumor necrosis factor-(TNF-)α, interleukin-(IL)-1α and IL-6 after whole-lung irradiation. Material and methods: the thoraces of C57BL/6J mice were irradiated with 12 Gy. Treated and control mice were sacrificed at 0.5, 1, 3, 6, 12, 24, 48, 72 h, 1, 2, 4, 8, 16, and 24 weeks post irradiation (p.i.). Real-time multiplex RT-PCR (reverse transcriptase polmyerase chain reaction) was established to evaluate the expression of TNF-α, IL-1α and IL-6 in the lung tissue of the mice. For histological analysis, lung tissue sections were stained by hematoxylin and eosin. Results: multiplex RT-PCR analysis revealed a biphasic expression of these pro-inflammatory cytokines in the lung tissue after irradiation. After an initial increase at 1 h p.i. for TNF-α and at 6 h p.i. for IL-1α and IL-6, the mRNA expression of these pro-inflammatory cytokines returned to basal levels (48 h, 72 h, 1 week, 2 weeks p.i.). During the pneumonic phase, TNF-α, IL-1α and IL-6 were significantly elevated and revealed their maximum at 8 weeks p.i. Histopathologic evaluation of the lung sections obtained within 4 weeks p.i. revealed only minor lung damage in 5-30% of the lung tissue. By contrast, at 8, 16, and 24 weeks p.i., 70-90% of the lung tissue revealed histopathologically detectable organizing alveolitis. Conclusion: irradiation induces a biphasic expression of pro-inflammatory cytokines in the lung. The initial transitory cytokine response occurred within the first hours after lung irradiation with no detectable histopathologic alterations. The second, more persistent cytokine elevation coincided with the onset of histologically discernible organizing acute pneumonitis. (orig.)

  14. Phenolic excipients of insulin formulations induce cell death, pro-inflammatory signaling and MCP-1 release

    Directory of Open Access Journals (Sweden)

    Claudia Weber

    2015-01-01

    Insulin solutions displayed cytotoxic and pro-inflammatory potential caused by phenol or m-cresol. We speculate that during insulin pump therapy phenol and m-cresol might induce cell death and inflammatory reactions at the infusion site in vivo. Inflammation is perpetuated by release of MCP-1 by activated monocytic cells leading to enhanced recruitment of inflammatory cells. To minimize acute skin complications caused by phenol/m-cresol accumulation, a frequent change of infusion sets and rotation of the infusion site is recommended.

  15. Cervical cerclage placement decreases local levels of proinflammatory cytokines in patients with cervical insufficiency.

    Science.gov (United States)

    Monsanto, Stephany P; Daher, Silvia; Ono, Erika; Pendeloski, Karen Priscilla Tezotto; Trainá, Évelyn; Mattar, Rosiane; Tayade, Chandrakant

    2017-10-01

    Cervical insufficiency is characterized by premature, progressive dilation and shortening of the cervix during pregnancy. If left unattended, this can lead to the prolapse and rupture of the amniotic membrane, which usually results in midtrimester pregnancy loss or preterm birth. Previous studies have shown that proinflammatory cytokines such as interleukin-1β, interleukin-6, interleukin-8, and tumor necrosis factor alpha are up-regulated in normal parturition but are also associated with preterm birth. Studies evaluating such markers in patients with cervical insufficiency have evaluated only their diagnostic potential. Even fewer studies have studied them within the context of cerclage surgery. The objective of the study was to evaluate the impact of local and systemic inflammatory markers on the pathogenesis of cervical insufficiency and the effect of cerclage surgery on the local immune microenvironment of women with cervical insufficiency. We recruited 28 pregnant women (12-20 weeks' gestation) diagnosed with insufficiency and referred for cerclage surgery and 19 gestational age-matched normal pregnant women as controls. Serum and cervicovaginal fluid samples were collected before and after cerclage surgery and during a routine checkup for normal women and analyzed using a targeted 13-plex proinflammatory cytokine assay. Before surgery, patients with cervical insufficiency had higher levels of interleukin-1β, interleukin-6, interleukin-12, monocyte chemoattractant protein-1 and tumor necrosis factor alpha in cervicovaginal fluid compared to controls, but after surgery, these differences disappeared. No differences were found in serum of insufficiency versus control women. In patients with insufficiency, the levels of interleukin-1β, interleukin-6, interleukin-8, monocyte chemoattractant protein-1, and interferon gamma in cervicovaginal fluid declined significantly after cerclage compared with before intervention, but these changes were not detected in serum

  16. Irradiation induces a biphasic expression of pro-inflammatory cytokines in the lung

    Energy Technology Data Exchange (ETDEWEB)

    Ruebe, C.E.; Wilfert, F.; Palm, J.; Burdak-Rothkamm, S.; Ruebe, C. [Dept. of Radiotherapy - Radiooncology, Saarland Univ., Homburg/Saar (Germany); Koenig, J. [Inst. of Medical Biometrics, Epidemiology and Medical Informatics, Saarland Univ., Homburg/Saar (Germany); Liu Li [Dept. of Radiotherapy - Radiooncology, Saarland Univ., Homburg/Saar (Germany); Cancer Center, Union Hospital Tongji Medical Coll., Huazhong Univ. of Science and Technology, Wuhan (China); Schuck, A.; Willich, N. [Dept. of Radiotherapy - Radiooncology, Univ. of Muenster (Germany)

    2004-07-01

    Background and purpose: the precise pathophysiological mechanisms of radiation-induced lung injury are poorly understood, but have been shown to correlate with dysregulation of different cytokines. The purpose of this study was to evaluate the time course of the pro-inflammatory cytokines tumor necrosis factor-(TNF-){alpha}, interleukin-(IL)-1{alpha} and IL-6 after whole-lung irradiation. Material and methods: the thoraces of C57BL/6J mice were irradiated with 12 Gy. Treated and control mice were sacrificed at 0.5, 1, 3, 6, 12, 24, 48, 72 h, 1, 2, 4, 8, 16, and 24 weeks post irradiation (p.i.). Real-time multiplex RT-PCR (reverse transcriptase polmyerase chain reaction) was established to evaluate the expression of TNF-{alpha}, IL-1{alpha} and IL-6 in the lung tissue of the mice. For histological analysis, lung tissue sections were stained by hematoxylin and eosin. Results: multiplex RT-PCR analysis revealed a biphasic expression of these pro-inflammatory cytokines in the lung tissue after irradiation. After an initial increase at 1 h p.i. for TNF-{alpha} and at 6 h p.i. for IL-1{alpha} and IL-6, the mRNA expression of these pro-inflammatory cytokines returned to basal levels (48 h, 72 h, 1 week, 2 weeks p.i.). During the pneumonic phase, TNF-{alpha}, IL-1{alpha} and IL-6 were significantly elevated and revealed their maximum at 8 weeks p.i. Histopathologic evaluation of the lung sections obtained within 4 weeks p.i. revealed only minor lung damage in 5-30% of the lung tissue. By contrast, at 8, 16, and 24 weeks p.i., 70-90% of the lung tissue revealed histopathologically detectable organizing alveolitis. Conclusion: irradiation induces a biphasic expression of pro-inflammatory cytokines in the lung. The initial transitory cytokine response occurred within the first hours after lung irradiation with no detectable histopathologic alterations. The second, more persistent cytokine elevation coincided with the onset of histologically discernible organizing acute

  17. Impaired production of proinflammatory cytokines in response to lipopolysaccharide (LPS) stimulation in elderly humans

    DEFF Research Database (Denmark)

    Bruunsgaard, H.; Pedersen, Agnes Nadelmann; Schroll, M.

    1999-01-01

    following LPS stimulation, representing an ex vivo model of sepsis. Levels of tumour necrosis factor-alpha (TNF-alpha), IL-1 beta and IL-6 in whole blood supernatants were measured after in vitro LPS stimulation for 24 h in 168 elderly humans aged 81 years from the 1914 cohort in Glostrup, Denmark and in 91...... of proinflammatory cytokines compared with young men, but this difference was blurred by ageing. No relation was found between circulating plasma levels of TNF-alpha and levels after in vitro LPS stimulation. In conclusion, decreased production of TNF-alpha and IL-1 beta after exposure to LPS may reflect impaired...

  18. Decreased proinflammatory cytokine production by peripheral blood mononuclear cells from vitiligo patients following aspirin treatment

    International Nuclear Information System (INIS)

    Zailaie, Mohammad Z.

    2005-01-01

    Limited studies have shown that treatment of cells with aspirin modulates their cytokine production. Consequently, the aim of the present study is to investigate the pattern of important proinflammatory cytokines production by stimulated peripheral blood mononuclear cells (PBMC) from patients with active vitiligo following long-term treatment with low-dose oral aspirin. The study was conducted at the Vitiligo Unit, King Abdul-Aziz University Medical Center, Jeddah, Kingdom of Saudi Arabia between March and October 2003. Thirty-two patients (18 females and 14 males) with non-segmental vitiligo were divided into 2 equal groups, one group received a daily single dose of oral aspirin (300 mg) and the other group received placebo for a period of 12 weeks. The concentrations of interleukin (IL)-1beta, IL-6, IL-8 and tumor necrosis factor-alpha (TNF-alpha) were determined in the supernatant of isolated cultured PMBC after being stimulated with bacterial lipopolysaccharide (LPS), before the start of aspirin treatment and at end of treatment period. Cytokine levels were measured using the quantitative sandwich enzyme-linked immunosorbent assay (ELISA) technique, utilizing commercially available kits. The proinflammatory cytokine production by the PBMC of patients with active vitiligo was significantly increased compared to normal controls. Thus, the relative percentage increase in the production of IL-1beta, IL-6, IL-8 and TNF-alpha was: 39.4%, 110.5% (p<0.05), 91.5% (p<0.01), and 37% (p<0.05). At the end of treatment, proinflammatory cytokine production in the aspirin-treated group of active vitiligo patients was significantly decreased compared to the placebo group. Thus, the relative percentage decrease in the production of IL-1beta IL-6, IL-8 and TNF-alpha was: 42.5%, 45.2% (p<0.05), 30.8% (p<0.01), and 50.6% (p<0.05). The vitiligo activity was arrested in all aspirin-treated patients, while 2 patients demonstrated significant repigmentation.Chronic administration of

  19. Cellular Mechanics of Primary Human Cervical Fibroblasts: Influence of Progesterone and a Pro-inflammatory Cytokine.

    Science.gov (United States)

    Shukla, Vasudha; Barnhouse, Victoria; Ackerman, William E; Summerfield, Taryn L; Powell, Heather M; Leight, Jennifer L; Kniss, Douglas A; Ghadiali, Samir N

    2018-01-01

    The leading cause of neonatal mortality, pre-term birth, is often caused by pre-mature ripening/opening of the uterine cervix. Although cervical fibroblasts play an important role in modulating the cervix's extracellular matrix (ECM) and mechanical properties, it is not known how hormones, i.e., progesterone, and pro-inflammatory insults alter fibroblast mechanics, fibroblast-ECM interactions and the resulting changes in tissue mechanics. Here we investigate how progesterone and a pro-inflammatory cytokine, IL-1β, alter the biomechanical properties of human cervical fibroblasts and the fibroblast-ECM interactions that govern tissue-scale mechanics. Primary human fibroblasts were isolated from non-pregnant cervix and treated with estrogen/progesterone, IL-1β or both. The resulting changes in ECM gene expression, matrix remodeling, traction force generation, cell-ECM adhesion and tissue contractility were monitored. Results indicate that IL-1β induces a significant reduction in traction force and ECM adhesion independent of pre-treatment with progesterone. These cell level effects altered tissue-scale mechanics where IL-1β inhibited the contraction of a collagen gel over 6 days. Interestingly, progesterone treatment alone did not modulate traction forces or gel contraction but did result in a dramatic increase in cell-ECM adhesion. Therefore, the protective effect of progesterone may be due to altered adhesion dynamics as opposed to altered ECM remodeling.

  20. Medium-chain fatty acid-sensing receptor, GPR84, is a proinflammatory receptor.

    Science.gov (United States)

    Suzuki, Masakatsu; Takaishi, Sachiko; Nagasaki, Miyuki; Onozawa, Yoshiko; Iino, Ikue; Maeda, Hiroaki; Komai, Tomoaki; Oda, Tomiichiro

    2013-04-12

    G protein-coupled receptor 84 (GPR84) is a putative receptor for medium-chain fatty acids (MCFAs), whose pathophysiological roles have not yet been clarified. Here, we show that GPR84 was activated by MCFAs with the hydroxyl group at the 2- or 3-position more effectively than nonhydroxylated MCFAs. We also identified a surrogate agonist, 6-n-octylaminouracil (6-OAU), for GPR84. These potential ligands and the surrogate agonist, 6-OAU, stimulated [(35)S]GTP binding and accumulated phosphoinositides in a GPR84-dependent manner. The surrogate agonist, 6-OAU, internalized GPR84-EGFP from the cell surface. Both the potential ligands and 6-OAU elicited chemotaxis of human polymorphonuclear leukocytes (PMNs) and macrophages and amplified LPS-stimulated production of the proinflammatory cytokine IL-8 from PMNs and TNFα from macrophages. Furthermore, the intravenous injection of 6-OAU raised the blood CXCL1 level in rats, and the inoculation of 6-OAU into the rat air pouch accumulated PMNs and macrophages in the site. Our results indicate a proinflammatory role of GPR84, suggesting that the receptor may be a novel target to treat chronic low grade inflammation associated-disease.

  1. Edaravone protects endotoxin-induced liver injury by inhibiting apoptosis and reducing proinflammatory cytokines.

    Science.gov (United States)

    Zong, L; Yu, Q H; Du, Y X; Deng, X M

    2014-02-01

    Studies have shown that edaravone may prevent liver injury. This study aimed to investigate the effects of edaravone on the liver injury induced by D-galactosamine (GalN) and lipopolysaccharide (LPS) in female BALB/c mice. Edaravone was injected into mice 30 min before and 4 h after GalN/LPS injection. The survival rate was determined within the first 24 h. Animals were killed 8 h after GalN/LPS injection, and liver injury was biochemically and histologically assessed. Hepatocyte apoptosis was measured by TUNEL staining; proinflammatory cytokines [tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)] in the liver were assayed by ELISA; expression of caspase-8 and caspase-3 proteins was detected by Western blot assay; and caspase-3 activity was also determined. Results showed that GalN/LPS induced marked elevations in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Edaravone significantly inhibited elevation of serum AST and ALT, accompanied by an improvement in histological findings. Edaravone lowered the levels of TNF-α and IL-6 and reduced the number of TUNEL-positive cells. In addition, 24 h after edaravone treatment, caspase-3 activity and mortality were reduced. Edaravone may effectively ameliorate GalN/LPS-induced liver injury in mice by reducing proinflammatory cytokines and inhibiting apoptosis.

  2. Edaravone protects endotoxin-induced liver injury by inhibiting apoptosis and reducing proinflammatory cytokines

    Energy Technology Data Exchange (ETDEWEB)

    Zong, L. [Second Military Medical University, Changhai Hospital, Department of Anesthesiology, Shanghai, China, Department of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai (China); No. 82 Hospital of People' s Liberation Army, Department of Anesthesiology, Jiangsu, China, Department of Anesthesiology, No. 82 Hospital of People' s Liberation Army, Jiangsu (China); Yu, Q. H. [Second Military Medical University, Changhai Hospital, Department of Gastroenterology, Shanghai, China, Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai (China); Du, Y. X. [No. 82 Hospital of People' s Liberation Army, Department of Anesthesiology, Jiangsu, China, Department of Anesthesiology, No. 82 Hospital of People' s Liberation Army, Jiangsu (China); Deng, X. M. [Second Military Medical University, Changhai Hospital, Department of Anesthesiology, Shanghai, China, Department of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai (China)

    2014-03-03

    Studies have shown that edaravone may prevent liver injury. This study aimed to investigate the effects of edaravone on the liver injury induced by D-galactosamine (GalN) and lipopolysaccharide (LPS) in female BALB/c mice. Edaravone was injected into mice 30 min before and 4 h after GalN/LPS injection. The survival rate was determined within the first 24 h. Animals were killed 8 h after GalN/LPS injection, and liver injury was biochemically and histologically assessed. Hepatocyte apoptosis was measured by TUNEL staining; proinflammatory cytokines [tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)] in the liver were assayed by ELISA; expression of caspase-8 and caspase-3 proteins was detected by Western blot assay; and caspase-3 activity was also determined. Results showed that GalN/LPS induced marked elevations in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Edaravone significantly inhibited elevation of serum AST and ALT, accompanied by an improvement in histological findings. Edaravone lowered the levels of TNF-α and IL-6 and reduced the number of TUNEL-positive cells. In addition, 24 h after edaravone treatment, caspase-3 activity and mortality were reduced. Edaravone may effectively ameliorate GalN/LPS-induced liver injury in mice by reducing proinflammatory cytokines and inhibiting apoptosis.

  3. Edaravone protects endotoxin-induced liver injury by inhibiting apoptosis and reducing proinflammatory cytokines

    Directory of Open Access Journals (Sweden)

    L. Zong

    2014-03-01

    Full Text Available Studies have shown that edaravone may prevent liver injury. This study aimed to investigate the effects of edaravone on the liver injury induced by D-galactosamine (GalN and lipopolysaccharide (LPS in female BALB/c mice. Edaravone was injected into mice 30 min before and 4 h after GalN/LPS injection. The survival rate was determined within the first 24 h. Animals were killed 8 h after GalN/LPS injection, and liver injury was biochemically and histologically assessed. Hepatocyte apoptosis was measured by TUNEL staining; proinflammatory cytokines [tumor necrosis factor-α (TNF-α and interleukin-6 (IL-6] in the liver were assayed by ELISA; expression of caspase-8 and caspase-3 proteins was detected by Western blot assay; and caspase-3 activity was also determined. Results showed that GalN/LPS induced marked elevations in serum aspartate aminotransferase (AST and alanine aminotransferase (ALT. Edaravone significantly inhibited elevation of serum AST and ALT, accompanied by an improvement in histological findings. Edaravone lowered the levels of TNF-α and IL-6 and reduced the number of TUNEL-positive cells. In addition, 24 h after edaravone treatment, caspase-3 activity and mortality were reduced. Edaravone may effectively ameliorate GalN/LPS-induced liver injury in mice by reducing proinflammatory cytokines and inhibiting apoptosis.

  4. Edaravone protects endotoxin-induced liver injury by inhibiting apoptosis and reducing proinflammatory cytokines

    International Nuclear Information System (INIS)

    Zong, L.; Yu, Q.H.; Du, Y.X.; Deng, X.M.

    2014-01-01

    Studies have shown that edaravone may prevent liver injury. This study aimed to investigate the effects of edaravone on the liver injury induced by D-galactosamine (GalN) and lipopolysaccharide (LPS) in female BALB/c mice. Edaravone was injected into mice 30 min before and 4 h after GalN/LPS injection. The survival rate was determined within the first 24 h. Animals were killed 8 h after GalN/LPS injection, and liver injury was biochemically and histologically assessed. Hepatocyte apoptosis was measured by TUNEL staining; proinflammatory cytokines [tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)] in the liver were assayed by ELISA; expression of caspase-8 and caspase-3 proteins was detected by Western blot assay; and caspase-3 activity was also determined. Results showed that GalN/LPS induced marked elevations in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Edaravone significantly inhibited elevation of serum AST and ALT, accompanied by an improvement in histological findings. Edaravone lowered the levels of TNF-α and IL-6 and reduced the number of TUNEL-positive cells. In addition, 24 h after edaravone treatment, caspase-3 activity and mortality were reduced. Edaravone may effectively ameliorate GalN/LPS-induced liver injury in mice by reducing proinflammatory cytokines and inhibiting apoptosis

  5. The pro-inflammatory effects of platelet contamination in plasma and mitigation strategies for avoidance

    Science.gov (United States)

    Bercovitz, R. S.; Kelher, M. R.; Khan, S. Y.; Land, K. J.; Berry, T. H.; Silliman, C. C.

    2013-01-01

    Background and Objectives Plasma and platelet concentrates are disproportionately implicated in transfusion-related acute lung injury (TRALI). Platelet-derived pro-inflammatory mediators, including soluble CD40 ligand (sCD40L), accumulate during storage. We hypothesized that platelet contamination induces sCD40L generation that causes neutrophil [polymorphonuclear leucocyte (PMN)] priming and PMN-mediated cytotoxicity. Materials and Methods Plasma was untreated, centrifuged (12 500 g) or separated from leucoreduced whole blood (WBLR) prior to freezing. Platelet counts and sCD40L concentrations were measured 1–5 days post-thaw. The plasma was assayed for PMN priming activity and was used in a two-event in vitro model of PMN-mediated human pulmonary microvascular endothelial cell (HMVEC) cytotoxicity. Results Untreated plasma contained 42 ± 4.2 × 103/μl platelets, which generated sCD40L accumulation (1.6-eight-fold vs. controls). Priming activity and HMVEC cytotoxicity were directly proportional to sCD40L concentration. WBLR and centrifugation reduced platelet and sCD40L contamination, abrogating the pro-inflammatory potential. Conclusion Platelet contamination causes sCD40L accumulation in stored plasma that may contribute to TRALI. Platelet reduction is potentially the first TRALI mitigation effort in plasma manufacturing. PMID:22092073

  6. Metoprolol Reduces Proinflammatory Cytokines and Atherosclerosis in ApoE−/− Mice

    Directory of Open Access Journals (Sweden)

    Marcus A. Ulleryd

    2014-01-01

    Full Text Available A few studies in animals and humans suggest that metoprolol (β1-selective adrenoceptor antagonist may have a direct antiatherosclerotic effect. However, the mechanism behind this protective effect has not been established. The aim of the present study was to evaluate the effect of metoprolol on development of atherosclerosis in ApoE−/− mice and investigate its effect on the release of proinflammatory cytokines. Male ApoE−/− mice were treated with metoprolol (2.5 mg/kg/h or saline for 11 weeks via osmotic minipumps. Atherosclerosis was assessed in thoracic aorta and aortic root. Total cholesterol levels and Th1/Th2 cytokines were analyzed in serum and macrophage content in lesions by immunohistochemistry. Metoprolol significantly reduced atherosclerotic plaque area in thoracic aorta (P<0.05 versus Control. Further, metoprolol reduced serum TNFα and the chemokine CXCL1 (P<0.01 versus Control for both as well as decreasing the macrophage content in the plaques (P<0.01 versus Control. Total cholesterol levels were not affected. In this study we found that a moderate dose of metoprolol significantly reduced atherosclerotic plaque area in thoracic aorta of ApoE−/− mice. Metoprolol also decreased serum levels of proinflammatory cytokines TNFα and CXCL1 and macrophage content in the plaques, showing that metoprolol has an anti-inflammatory effect.

  7. Proinflammatory Factors Mediate Paclitaxel-Induced Impairment of Learning and Memory

    Directory of Open Access Journals (Sweden)

    Zhao Li

    2018-01-01

    Full Text Available The chemotherapeutic agent paclitaxel is widely used for cancer treatment. Paclitaxel treatment impairs learning and memory function, a side effect that reduces the quality of life of cancer survivors. However, the neural mechanisms underlying paclitaxel-induced impairment of learning and memory remain unclear. Paclitaxel treatment leads to proinflammatory factor release and neuronal apoptosis. Thus, we hypothesized that paclitaxel impairs learning and memory function through proinflammatory factor-induced neuronal apoptosis. Neuronal apoptosis was assessed by TUNEL assay in the hippocampus. Protein expression levels of tumor necrosis factor-α (TNF-α and interleukin-1β (IL-1β in the hippocampus tissue were analyzed by Western blot assay. Spatial learning and memory function were determined by using the Morris water maze (MWM test. Paclitaxel treatment significantly increased the escape latencies and decreased the number of crossing in the MWM test. Furthermore, paclitaxel significantly increased the number of TUNEL-positive neurons in the hippocampus. Also, paclitaxel treatment increased the expression levels of TNF-α and IL-1β in the hippocampus tissue. In addition, the TNF-α synthesis inhibitor thalidomide significantly attenuated the number of paclitaxel-induced TUNEL-positive neurons in the hippocampus and restored the impaired spatial learning and memory function in paclitaxel-treated rats. These data suggest that TNF-α is critically involved in the paclitaxel-induced impairment of learning and memory function.

  8. Controlled Inhibition of the Mesenchymal Stromal Cell Pro-inflammatory Secretome via Microparticle Engineering

    Directory of Open Access Journals (Sweden)

    Sudhir H. Ranganath

    2016-06-01

    Full Text Available Mesenchymal stromal cells (MSCs are promising therapeutic candidates given their potent immunomodulatory and anti-inflammatory secretome. However, controlling the MSC secretome post-transplantation is considered a major challenge that hinders their clinical efficacy. To address this, we used a microparticle-based engineering approach to non-genetically modulate pro-inflammatory pathways in human MSCs (hMSCs under simulated inflammatory conditions. Here we show that microparticles loaded with TPCA-1, a small-molecule NF-κB inhibitor, when delivered to hMSCs can attenuate secretion of pro-inflammatory factors for at least 6 days in vitro. Conditioned medium (CM derived from TPCA-1-loaded hMSCs also showed reduced ability to attract human monocytes and prevented differentiation of human cardiac fibroblasts to myofibroblasts, compared with CM from untreated or TPCA-1-preconditioned hMSCs. Thus, we provide a broadly applicable bioengineering solution to facilitate intracellular sustained release of agents that modulate signaling. We propose that this approach could be harnessed to improve control over MSC secretome post-transplantation, especially to prevent adverse remodeling post-myocardial infarction.

  9. Shigella dysenteriae infection activates proinflammatory response through β-catenin/NF-κB signaling pathway.

    Directory of Open Access Journals (Sweden)

    Ashidha Gopal

    Full Text Available Shigella dysenteriae (S.dysenteriae the causative agent of bacillary dysentery invades the human colonic epithelium resulting in severe intestinal inflammatory response and epithelial destruction. However, the mechanism by which S.dysenteriae infection regulates proinflammatory cytokines during intestinal inflammation is still obscure. In this study, we evaluated whether the interaction of β-catenin and NF-κB regulates proinflammatory cytokines TNF-α and IL-8 by modulating GSK-3β activity during S.dysenteriae infection in rat ileal loop model. Here we demonstrated that S.dysenteriae infection stimulate β-catenin degradation which in turn decreased the association between NF-κB and β-catenin. Also, we showed that S.dysenteriae infection increased GSK-3β kinase activity which in turn phosphorylates β-catenin for its degradation by ubiquitination and upregulates IL-8 through NF-κB activation thereby leading to inflammation. Thus these findings revealed the role of β-catenin/ NF-κB and GSK-3β in modulating the inflammatory response during bacterial infection and also showed that β-catenin acts as a critical regulator of inflammation.

  10. Pro-inflammatory cytokines play a key role in the development of radiotherapy-induced gastrointestinal mucositis

    Directory of Open Access Journals (Sweden)

    Logan Richard M

    2010-03-01

    Full Text Available Abstract Background Mucositis is a toxic side effect of anti-cancer treatments and is a major focus in cancer research. Pro-inflammatory cytokines have previously been implicated in the pathophysiology of chemotherapy-induced gastrointestinal mucositis. However, whether they play a key role in the development of radiotherapy-induced gastrointestinal mucositis is still unknown. Therefore, the aim of the present study was to characterise the expression of pro-inflammatory cytokines in the gastrointestinal tract using a rat model of fractionated radiotherapy-induced toxicity. Methods Thirty six female Dark Agouti rats were randomly assigned into groups and received 2.5 Gys abdominal radiotherapy three times a week over six weeks. Real time PCR was conducted to determine the relative change in mRNA expression of pro-inflammatory cytokines IL-1β, IL-6 and TNF in the jejunum and colon. Protein expression of IL-1β, IL-6 and TNF in the intestinal epithelium was investigated using qualitative immunohistochemistry. Results Radiotherapy-induced sub-acute damage was associated with significantly upregulated IL-1β, IL-6 and TNF mRNA levels in the jejunum and colon. The majority of pro-inflammatory cytokine protein expression in the jejunum and colon exhibited minimal change following fractionated radiotherapy. Conclusions Pro-inflammatory cytokines play a key role in radiotherapy-induced gastrointestinal mucositis in the sub-acute onset setting.

  11. Adherent Human Alveolar Macrophages Exhibit a Transient Pro-Inflammatory Profile That Confounds Responses to Innate Immune Stimulation

    Science.gov (United States)

    Tomlinson, Gillian S.; Booth, Helen; Petit, Sarah J.; Potton, Elspeth; Towers, Greg J.; Miller, Robert F.; Chain, Benjamin M.; Noursadeghi, Mahdad

    2012-01-01

    Alveolar macrophages (AM) are thought to have a key role in the immunopathogenesis of respiratory diseases. We sought to test the hypothesis that human AM exhibit an anti-inflammatory bias by making genome-wide comparisons with monocyte derived macrophages (MDM). Adherent AM obtained by bronchoalveolar lavage of patients under investigation for haemoptysis, but found to have no respiratory pathology, were compared to MDM from healthy volunteers by whole genome transcriptional profiling before and after innate immune stimulation. We found that freshly isolated AM exhibited a marked pro-inflammatory transcriptional signature. High levels of basal pro-inflammatory gene expression gave the impression of attenuated responses to lipopolysaccharide (LPS) and the RNA analogue, poly IC, but in rested cells pro-inflammatory gene expression declined and transcriptional responsiveness to these stimuli was restored. In comparison to MDM, both freshly isolated and rested AM showed upregulation of MHC class II molecules. In most experimental paradigms ex vivo adherent AM are used immediately after isolation. Therefore, the confounding effects of their pro-inflammatory profile at baseline need careful consideration. Moreover, despite the prevailing view that AM have an anti-inflammatory bias, our data clearly show that they can adopt a striking pro-inflammatory phenotype, and may have greater capacity for presentation of exogenous antigens than MDM. PMID:22768282

  12. Holi colours contain PM10 and can induce pro-inflammatory responses.

    Science.gov (United States)

    Bossmann, Katrin; Bach, Sabine; Höflich, Conny; Valtanen, Kerttu; Heinze, Rita; Neumann, Anett; Straff, Wolfgang; Süring, Katrin

    2016-01-01

    At Holi festivals, originally celebrated in India but more recently all over the world, people throw coloured powder (Holi powder, Holi colour, Gulal powder) at each other. Adverse health effects, i.e. skin and ocular irritations as well as respiratory problems may be the consequences. The aim of this study was to uncover some of the underlying mechanisms. We analysed four different Holi colours regarding particle size using an Electric field cell counting system. In addition, we incubated native human cells with different Holi colours and determined their potential to induce a pro-inflammatory response by quantifying the resulting cytokine production by means of ELISA (Enzyme Linked Immunosorbent Assay) and the resulting leukocyte oxidative burst by flow cytometric analysis. Moreover, we performed the XTT (2,3-Bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) and Propidium iodide cytotoxicity tests and we measured the endotoxin content of the Holi colour samples by means of the Limulus Amebocyte Lysate test (LAL test). We show here that all tested Holi colours consist to more than 40 % of particles with an aerodynamic diameter smaller than 10 μm, so called PM10 particles (PM, particulate matter). Two of the analysed Holi powders contained even more than 75 % of PM10 particles. Furthermore we demonstrate in cell culture experiments that Holi colours can induce the production of the pro-inflammatory cytokines TNF-α (Tumor necrosis factor-α), IL-6 (Interleukine-6) and IL-1β (Interleukine-1β). Three out of the four analysed colours induced a significantly higher cytokine response in human PBMCs (Peripheral Blood Mononuclear Cells) and whole blood than corn starch, which is often used as carrier substance for Holi colours. Moreover we show that corn starch and two Holi colours contain endotoxin and that certain Holi colours display concentration dependent cytotoxic effects in higher concentration. Furthermore we reveal that in principle Holi

  13. A pro-inflammatory role of deubiquitinating enzyme cylindromatosis (CYLD) in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Liu, Shuai; Lv, Jiaju; Han, Liping; Ichikawa, Tomonaga; Wang, Wenjuan; Li, Siying; Wang, Xing Li; Tang, Dongqi; Cui, Taixing

    2012-01-01

    Highlights: ► Cyld deficiency suppresses pro-inflammatory phenotypic switch of VSMCs. ► Cyld deficiency inhibits MAPK rather than NF-kB activity in inflamed VSMCs. ► CYLD is up-regulated in the coronary artery with neointimal hyperplasia. -- Abstract: CYLD, a deubiquitinating enzyme (DUB), is a critical regulator of diverse cellular processes, ranging from proliferation and differentiation to inflammatory responses, via regulating multiple key signaling cascades such as nuclear factor kappa B (NF-κB) pathway. CYLD has been shown to inhibit vascular lesion formation presumably through suppressing NF-κB activity in vascular cells. However, herein we report a novel role of CYLD in mediating pro-inflammatory responses in vascular smooth muscle cells (VSMCs) via a mechanism independent of NF-κB activity. Adenoviral knockdown of Cyld inhibited basal and the tumor necrosis factor alpha (TNFα)-induced mRNA expression of pro-inflammatory cytokines including monocyte chemotactic protein-1 (Mcp-1), intercellular adhesion molecule (Icam-1) and interleukin-6 (Il-6) in rat adult aortic SMCs (RASMCs). The CYLD deficiency led to increases in the basal NF-κB transcriptional activity in RASMCs; however, did not affect the TNFα-induced NF-κB activity. Intriguingly, the TNFα-induced IκB phosphorylation was enhanced in the CYLD deficient RASMCs. While knocking down of Cyld decreased slightly the basal expression levels of IκBα and IκBβ proteins, it did not alter the kinetics of TNFα-induced IκB protein degradation in RASMCs. These results indicate that CYLD suppresses the basal NF-κB activity and TNFα-induced IκB kinase activation without affecting TNFα-induced NF-κB activity in VSMCs. In addition, knocking down of Cyld suppressed TNFα-induced activation of mitogen activated protein kinases (MAPKs) including extracellular signal-activated kinases (ERK), c-Jun N-terminal kinase (JNK), and p38 in RASMCs. TNFα-induced RASMC migration and monocyte adhesion to

  14. Proinflammatory effect in whole blood by free soluble bacterial components released from planktonic and biofilm cells

    Directory of Open Access Journals (Sweden)

    Thay Bernard

    2008-11-01

    Full Text Available Abstract Background Aggregatibacter actinomycetemcomitans is an oral bacterium associated with aggressive forms of periodontitis. Increasing evidence points to a link between periodontitis and cardiovascular diseases, however, the underlying mechanisms are poorly understood. This study investigated the pathogenic potential of free-soluble surface material, released from live planktonic and biofilm A. actinomycetemcomitans cells. Results By employing an ex vivo insert model (filter pore size 20 nm we demonstrated that the A. actinomycetemcomitans strain D7S and its derivatives, in both planktonic and in biofilm life-form, released free-soluble surface material independent of outer membrane vesicles. This material clearly enhanced the production of several proinflammatory cytokines (IL-1β, TNF-α, IL-6, IL-8, MIP-1β in human whole blood, as evidenced by using a cytokine antibody array and dissociation-enhanced-lanthanide-fluorescent-immunoassay. In agreement with this, quantitative real-time PCR indicated a concomitant increase in transcription of each of these cytokine genes. Experiments in which the LPS activity was blocked with polymyxin B showed that the stimulatory effect was only partly LPS-dependent, suggesting the involvement of additional free-soluble factors. Consistent with this, MALDI-TOF-MS and immunoblotting revealed release of GroEL-like protein in free-soluble form. Conversely, the immunomodulatory toxins, cytolethal distending toxin and leukotoxin, and peptidoglycan-associated lipoprotein, appeared to be less important, as evidenced by studying strain D7S cdt/ltx double, and pal single mutants. In addition to A. actinomycetemcomitans a non-oral species, Escherichia coli strain IHE3034, tested in the same ex vivo model also released free-soluble surface material with proinflammatory activity. Conclusion A. actinomycetemcomitans, grown in biofilm and planktonic form, releases free-soluble surface material independent of outer

  15. Proinflammatory effect in whole blood by free soluble bacterial components released from planktonic and biofilm cells.

    Science.gov (United States)

    Oscarsson, Jan; Karched, Maribasappa; Thay, Bernard; Chen, Casey; Asikainen, Sirkka

    2008-11-27

    Aggregatibacter actinomycetemcomitans is an oral bacterium associated with aggressive forms of periodontitis. Increasing evidence points to a link between periodontitis and cardiovascular diseases, however, the underlying mechanisms are poorly understood. This study investigated the pathogenic potential of free-soluble surface material, released from live planktonic and biofilm A. actinomycetemcomitans cells. By employing an ex vivo insert model (filter pore size 20 nm) we demonstrated that the A. actinomycetemcomitans strain D7S and its derivatives, in both planktonic and in biofilm life-form, released free-soluble surface material independent of outer membrane vesicles. This material clearly enhanced the production of several proinflammatory cytokines (IL-1 beta, TNF-alpha, IL-6, IL-8, MIP-1 beta) in human whole blood, as evidenced by using a cytokine antibody array and dissociation-enhanced-lanthanide-fluorescent-immunoassay. In agreement with this, quantitative real-time PCR indicated a concomitant increase in transcription of each of these cytokine genes. Experiments in which the LPS activity was blocked with polymyxin B showed that the stimulatory effect was only partly LPS-dependent, suggesting the involvement of additional free-soluble factors. Consistent with this, MALDI-TOF-MS and immunoblotting revealed release of GroEL-like protein in free-soluble form. Conversely, the immunomodulatory toxins, cytolethal distending toxin and leukotoxin, and peptidoglycan-associated lipoprotein, appeared to be less important, as evidenced by studying strain D7S cdt/ltx double, and pal single mutants. In addition to A. actinomycetemcomitans a non-oral species, Escherichia coli strain IHE3034, tested in the same ex vivo model also released free-soluble surface material with proinflammatory activity. A. actinomycetemcomitans, grown in biofilm and planktonic form, releases free-soluble surface material independent of outer membrane vesicles, which induces proinflammatory

  16. Minocycline counter-regulates pro-inflammatory microglia responses in the retina and protects from degeneration.

    Science.gov (United States)

    Scholz, Rebecca; Sobotka, Markus; Caramoy, Albert; Stempfl, Thomas; Moehle, Christoph; Langmann, Thomas

    2015-11-17

    Microglia reactivity is a hallmark of retinal degenerations and overwhelming microglial responses contribute to photoreceptor death. Minocycline, a semi-synthetic tetracycline analog, has potent anti-inflammatory and neuroprotective effects. Here, we investigated how minocycline affects microglia in vitro and studied its immuno-modulatory properties in a mouse model of acute retinal degeneration using bright white light exposure. LPS-treated BV-2 microglia were stimulated with 50 μg/ml minocycline for 6 or 24 h, respectively. Pro-inflammatory gene transcription was determined by real-time RT-PCR and nitric oxide (NO) secretion was assessed using the Griess reagent. Caspase 3/7 levels were determined in 661W photoreceptors cultured with microglia-conditioned medium in the absence or presence of minocycline supplementation. BALB/cJ mice received daily intraperitoneal injections of 45 mg/kg minocycline, starting 1 day before exposure to 15.000 lux white light for 1 hour. The effect of minocycline treatment on microglial reactivity was analyzed by immunohistochemical stainings of retinal sections and flat-mounts, and messenger RNA (mRNA) expression of microglia markers was determined using real-time RT-PCR and RNA-sequencing. Optical coherence tomography (OCT) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) stainings were used to measure the extent of retinal degeneration and photoreceptor apoptosis. Stimulation of LPS-activated BV-2 microglia with minocycline significantly diminished the transcription of the pro-inflammatory markers CCL2, IL6, and inducible nitric oxide synthase (iNOS). Minocycline also reduced the production of NO and dampened microglial neurotoxicity on 661W photoreceptors. Furthermore, minocycline had direct protective effects on 661W photoreceptors by decreasing caspase 3/7 activity. In mice challenged with white light, injections of minocycline strongly decreased the number of amoeboid alerted microglia in the outer

  17. 11β-Hydroxysteroid dehydrogenase 1 contributes to the pro-inflammatory response of keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Itoi, Saori; Terao, Mika, E-mail: mterao@derma.med.osaka-u.ac.jp; Murota, Hiroyuki; Katayama, Ichiro

    2013-10-18

    Highlights: •We investigate the role of 11β-HSD1 in skin inflammation. •Various stimuli increase expression of 11β-HSD1 in keratinocytes. •11β-HSD1 knockdown by siRNA decreases cortisol levels in media. •11β-HSD1 knockdown abrogates the response to pro-inflammatory cytokines. •Low-dose versus high-dose cortisol has opposing effects on keratinocyte inflammation. -- Abstract: The endogenous glucocorticoid, cortisol, is released from the adrenal gland in response to various stress stimuli. Extra-adrenal cortisol production has recently been reported to occur in various tissues. Skin is known to synthesize cortisol through a de novo pathway and through an activating enzyme. The enzyme that catalyzes the intracellular conversion of hormonally-inactive cortisone into active cortisol is 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1). We recently reported that 11β-HSD1 is expressed in normal human epidermal keratinocytes (NHEKs) and negatively regulates proliferation of NHEKs. In this study, we investigated the role of 11β-HSD1 in skin inflammation. Expression of 11β-HSD1 was induced by UV-B irradiation and in response to the pro-inflammatory cytokines, IL-1β and TNFα. Increased cortisol concentrations in culture media also increased in response to these stimuli. To investigate the function of increased 11β-HSD1 in response to pro-inflammatory cytokines, we knocked down 11β-HSD1 by transfecting siRNA. Production of IL-6 and IL-8 in response to IL-1β or TNFα stimulation was attenuated in NHEKs transfected with si11β-HSD1 compared with control cells. In addition, IL-1β-induced IL-6 production was enhanced in cultures containing 1 × 10{sup −13} M cortisol, whereas 1 × 10{sup −5} M cortisol attenuated production of IL-6. Thus, cortisol showed immunostimulatory and immunosuppressive activities depending on its concentration. Our results indicate that 11β-HSD1 expression is increased by various stimuli. Thus, regulation of cytosolic cortisol

  18. 11β-Hydroxysteroid dehydrogenase 1 contributes to the pro-inflammatory response of keratinocytes

    International Nuclear Information System (INIS)

    Itoi, Saori; Terao, Mika; Murota, Hiroyuki; Katayama, Ichiro

    2013-01-01

    Highlights: •We investigate the role of 11β-HSD1 in skin inflammation. •Various stimuli increase expression of 11β-HSD1 in keratinocytes. •11β-HSD1 knockdown by siRNA decreases cortisol levels in media. •11β-HSD1 knockdown abrogates the response to pro-inflammatory cytokines. •Low-dose versus high-dose cortisol has opposing effects on keratinocyte inflammation. -- Abstract: The endogenous glucocorticoid, cortisol, is released from the adrenal gland in response to various stress stimuli. Extra-adrenal cortisol production has recently been reported to occur in various tissues. Skin is known to synthesize cortisol through a de novo pathway and through an activating enzyme. The enzyme that catalyzes the intracellular conversion of hormonally-inactive cortisone into active cortisol is 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1). We recently reported that 11β-HSD1 is expressed in normal human epidermal keratinocytes (NHEKs) and negatively regulates proliferation of NHEKs. In this study, we investigated the role of 11β-HSD1 in skin inflammation. Expression of 11β-HSD1 was induced by UV-B irradiation and in response to the pro-inflammatory cytokines, IL-1β and TNFα. Increased cortisol concentrations in culture media also increased in response to these stimuli. To investigate the function of increased 11β-HSD1 in response to pro-inflammatory cytokines, we knocked down 11β-HSD1 by transfecting siRNA. Production of IL-6 and IL-8 in response to IL-1β or TNFα stimulation was attenuated in NHEKs transfected with si11β-HSD1 compared with control cells. In addition, IL-1β-induced IL-6 production was enhanced in cultures containing 1 × 10 −13 M cortisol, whereas 1 × 10 −5 M cortisol attenuated production of IL-6. Thus, cortisol showed immunostimulatory and immunosuppressive activities depending on its concentration. Our results indicate that 11β-HSD1 expression is increased by various stimuli. Thus, regulation of cytosolic cortisol concentrations

  19. A pro-inflammatory role of deubiquitinating enzyme cylindromatosis (CYLD) in vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shuai [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Lv, Jiaju [Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan 250021 (China); Han, Liping; Ichikawa, Tomonaga; Wang, Wenjuan; Li, Siying [Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Wang, Xing Li [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Tang, Dongqi, E-mail: tangdq@pathology.ufl.edu [Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610-0275 (United States); Cui, Taixing, E-mail: taixing.cui@uscmed.sc.edu [Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Cyld deficiency suppresses pro-inflammatory phenotypic switch of VSMCs. Black-Right-Pointing-Pointer Cyld deficiency inhibits MAPK rather than NF-kB activity in inflamed VSMCs. Black-Right-Pointing-Pointer CYLD is up-regulated in the coronary artery with neointimal hyperplasia. -- Abstract: CYLD, a deubiquitinating enzyme (DUB), is a critical regulator of diverse cellular processes, ranging from proliferation and differentiation to inflammatory responses, via regulating multiple key signaling cascades such as nuclear factor kappa B (NF-{kappa}B) pathway. CYLD has been shown to inhibit vascular lesion formation presumably through suppressing NF-{kappa}B activity in vascular cells. However, herein we report a novel role of CYLD in mediating pro-inflammatory responses in vascular smooth muscle cells (VSMCs) via a mechanism independent of NF-{kappa}B activity. Adenoviral knockdown of Cyld inhibited basal and the tumor necrosis factor alpha (TNF{alpha})-induced mRNA expression of pro-inflammatory cytokines including monocyte chemotactic protein-1 (Mcp-1), intercellular adhesion molecule (Icam-1) and interleukin-6 (Il-6) in rat adult aortic SMCs (RASMCs). The CYLD deficiency led to increases in the basal NF-{kappa}B transcriptional activity in RASMCs; however, did not affect the TNF{alpha}-induced NF-{kappa}B activity. Intriguingly, the TNF{alpha}-induced I{kappa}B phosphorylation was enhanced in the CYLD deficient RASMCs. While knocking down of Cyld decreased slightly the basal expression levels of I{kappa}B{alpha} and I{kappa}B{beta} proteins, it did not alter the kinetics of TNF{alpha}-induced I{kappa}B protein degradation in RASMCs. These results indicate that CYLD suppresses the basal NF-{kappa}B activity and TNF{alpha}-induced I{kappa}B kinase activation without affecting TNF{alpha}-induced NF-{kappa}B activity in VSMCs. In addition, knocking down of Cyld suppressed TNF{alpha}-induced activation of mitogen activated protein

  20. Investigation of the proinflammatory activity of bronchoalveolar lavage fluid in lung cancer and inflammatory diseases of respiratory organs

    Directory of Open Access Journals (Sweden)

    O. P. Makarova

    2014-01-01

    Full Text Available The proinflammatory activity of bronchoalveolar lavage fluid (BALF was investigated using the biological test system (donor blood in 71 patients with lung cancer and inflammatory disease of respiratory organs (lung abscess, infiltrative tuberculosis, tuberculoma, fibrocavernous tuberculosis. The supernatant of BALF was purified by filtration through millipores and added to blood, and a nitroblue tetrazolium recovery test (HBT was carried out. Hank’s balanced salt solution was used in the control. The proinflammatory effect of BALF was defined as a diformazan-positive neutrophil count ratio in the experimental and control samples (stimulation index. The inflammatory process developing in lung cancer was active, as suggested by the accumulation of neutrophils in the lung and by the high proinflammatory activity of BALF, which were comparable with the similar indicators in lung abscess and fibrocavernous tuberculosis.

  1. Oxidative stress and proinflammatory cytokines contribute to demyelination and axonal damage in a cerebellar culture model of neuroinflammation.

    Science.gov (United States)

    di Penta, Alessandra; Moreno, Beatriz; Reix, Stephanie; Fernandez-Diez, Begoña; Villanueva, Maite; Errea, Oihana; Escala, Nagore; Vandenbroeck, Koen; Comella, Joan X; Villoslada, Pablo

    2013-01-01

    Demyelination and axonal damage are critical processes in the pathogenesis of multiple sclerosis (MS). Oxidative stress and pro-inflammatory cytokines elicited by inflammation mediates tissue damage. To monitor the demyelination and axonal injury associated with microglia activation we employed a model using cerebellar organotypic cultures stimulated with lipopolysaccharide (LPS). Microglia activated by LPS released pro-inflammatory cytokines (IL-1β, IL-6 and TNFα), and increased the expression of inducible nitric oxide synthase (iNOS) and production of reactive oxygen species (ROS). This activation was associated with demyelination and axonal damage in cerebellar cultures. Axonal damage, as revealed by the presence of non-phosphorylated neurofilaments, mitochondrial accumulation in axonal spheroids, and axonal transection, was associated with stronger iNOS expression and concomitant increases in ROS. Moreover, we analyzed the contribution of pro-inflammatory cytokines and oxidative stress in demyelination and axonal degeneration using the iNOS inhibitor ethyl pyruvate, a free-scavenger and xanthine oxidase inhibitor allopurinol, as well as via blockage of pro-inflammatory cytokines using a Fc-TNFR1 construct. We found that blocking microglia activation with ethyl pyruvate or allopurinol significantly decreased axonal damage, and to a lesser extent, demyelination. Blocking TNFα significantly decreased demyelination but did not prevented axonal damage. Moreover, the most common therapy for MS, interferon-beta, was used as an example of an immunomodulator compound that can be tested in this model. In vitro, interferon-beta treatment decreased oxidative stress (iNOS and ROS levels) and the release of pro-inflammatory cytokines after LPS stimulation, reducing axonal damage. The model of neuroinflammation using cerebellar culture stimulated with endotoxin mimicked myelin and axonal damage mediated by the combination of oxidative stress and pro-inflammatory cytokines

  2. Oxidative Stress and Proinflammatory Cytokines Contribute to Demyelination and Axonal Damage in a Cerebellar Culture Model of Neuroinflammation

    Science.gov (United States)

    di Penta, Alessandra; Moreno, Beatriz; Reix, Stephanie; Fernandez-Diez, Begoña; Villanueva, Maite; Errea, Oihana; Escala, Nagore; Vandenbroeck, Koen; Comella, Joan X.; Villoslada, Pablo

    2013-01-01

    Background Demyelination and axonal damage are critical processes in the pathogenesis of multiple sclerosis (MS). Oxidative stress and pro-inflammatory cytokines elicited by inflammation mediates tissue damage. Methods/Principal Findings To monitor the demyelination and axonal injury associated with microglia activation we employed a model using cerebellar organotypic cultures stimulated with lipopolysaccharide (LPS). Microglia activated by LPS released pro-inflammatory cytokines (IL-1β, IL-6 and TNFα), and increased the expression of inducible nitric oxide synthase (iNOS) and production of reactive oxygen species (ROS). This activation was associated with demyelination and axonal damage in cerebellar cultures. Axonal damage, as revealed by the presence of non-phosphorylated neurofilaments, mitochondrial accumulation in axonal spheroids, and axonal transection, was associated with stronger iNOS expression and concomitant increases in ROS. Moreover, we analyzed the contribution of pro-inflammatory cytokines and oxidative stress in demyelination and axonal degeneration using the iNOS inhibitor ethyl pyruvate, a free-scavenger and xanthine oxidase inhibitor allopurinol, as well as via blockage of pro-inflammatory cytokines using a Fc-TNFR1 construct. We found that blocking microglia activation with ethyl pyruvate or allopurinol significantly decreased axonal damage, and to a lesser extent, demyelination. Blocking TNFα significantly decreased demyelination but did not prevented axonal damage. Moreover, the most common therapy for MS, interferon-beta, was used as an example of an immunomodulator compound that can be tested in this model. In vitro, interferon-beta treatment decreased oxidative stress (iNOS and ROS levels) and the release of pro-inflammatory cytokines after LPS stimulation, reducing axonal damage. Conclusion The model of neuroinflammation using cerebellar culture stimulated with endotoxin mimicked myelin and axonal damage mediated by the combination of

  3. Nitric oxide-releasing flurbiprofen reduces formation of proinflammatory hydrogen sulfide in lipopolysaccharide-treated rat

    Science.gov (United States)

    Anuar, Farhana; Whiteman, Matthew; Siau, Jia Ling; Kwong, Shing Erl; Bhatia, Madhav; Moore, Philip K

    2006-01-01

    The biosynthesis of both nitric oxide (NO) and hydrogen sulfide (H2S) is increased in lipopolysaccharide (LPS)-injected mice and rats but their interaction in these models is not known. In this study we examined the effect of the NO donor, nitroflurbiprofen (and the parent molecule flurbiprofen) on NO and H2S metabolism in tissues from LPS-pretreated rats. Administration of LPS (10 mg kg−1, i.p.; 6 h) resulted in an increase (PFlurbiprofen (21 mg kg−1, i.p.) was without effect. These results show for the first time that nitroflurbiprofen downregulates the biosynthesis of proinflammatory H2S and suggest that such an effect may contribute to the augmented anti-inflammatory activity of this compound. These data also highlight the existence of ‘crosstalk' between NO and H2S in this model of endotoxic shock. PMID:16491094

  4. Upregulation of proinflammatory genes in skin lesions may be the cause of keloid formation (Review)

    Science.gov (United States)

    DONG, XIANGLIN; MAO, SHAOLIN; WEN, HAO

    2013-01-01

    It was previously demonstrated that the main cause behind keloid formation may be keloid fibroblast abnormalities, which are closely associated with the microenvironment of the keloid lesion. The post-traumatic and chronic inflammation of the keloid lesion area suggest that inflammatory mediators play an important role in the keloid microenvironment and are crucial for keloid fibroblast abnormalities. In this study, we hypothesized that the mechanism underlying keloid formation may involve the continuous upregulation of proinflammatory gene expression in keloid lesions. This hypothesis may explain the inflammatory response, invasive growth and recurrence following resection of keloids, as well as the selective localization of keloids in specific parts of a patient’s body and the differences in localization among different patients. PMID:24649037

  5. The bronchiolar epithelium as a prominent source of pro-inflammatory cytokines after lung irradiation

    International Nuclear Information System (INIS)

    Ruebe, Claudia E.; Uthe, Daniela; Wilfert, Falk; Ludwig, Daniela; Yang Kunyu; Koenig, Jochem; Palm, Jan; Schuck, Andreas; Willich, Normann; Remberger, Klaus; Ruebe, Christian

    2005-01-01

    Purpose: To study in detail the temporal and spatial release of the pro-inflammatory cytokines tumor necrosis factor α, interleukin (IL)-1α, and IL-6 in the lung tissue of C57BL/6 mice after thoracic irradiation with 12 Gy. Methods and Materials: C57BL/6J mice were exposed to either sham irradiation or a single fraction of 12 Gy delivered to the thorax. Treated and sham-irradiated control mice were killed at 0.5 h, 1 h, 3 h, 6 h, 12 h, 24 h, 48 h, 72 h, 1 week, 2 weeks, 4 weeks, 8 weeks, 16 weeks, and 24 weeks post-irradiation (p.i.). Real-time multiplex reverse transcriptase polymerase chain reaction was established to evaluate the relative messenger RNA (mRNA) expression of TNF-α, IL-1α, and IL-6 in the lung tissue of the mice (compared with nonirradiated lung tissue). Immunohistochemical detection methods (alkaline phosphatase anti-alkaline phosphatase, avidin-biotin-complex [ABC]) and automated image analysis were used to quantify the protein expression of TNF-α, IL-1α, and IL-6 in the lung tissue (percentage of the positively stained area). Results: Radiation-induced release of the pro-inflammatory cytokines TNF-α, IL-1α, and IL-6 in the lung tissue was detectable within the first hours after thoracic irradiation. We observed statistically significant up-regulations for TNF-α at 1 h p.i. on mRNA (4.99 ± 1.60) and at 6 h p.i. on protein level (7.23% ± 1.67%), for IL-1α at 6 h p.i. on mRNA (11.03 ± 0.77) and at 12 h p.i. on protein level (27.58% ± 11.06%), for IL-6 at 6 h p.i. on mRNA (6.0 ± 3.76) and at 12 h p.i. on protein level (7.12% ± 1.93%). With immunohistochemistry, we could clearly demonstrate that the bronchiolar epithelium is the most prominent source of these inflammatory cytokines in the first hours after lung irradiation. During the stage of acute pneumonitis, the bronchiolar epithelium, as well as inflammatory cells in the lung interstitium, produced high amounts of TNF-α (with the maximal value at 4 weeks p.i.: 9.47% ± 1

  6. Necroptotic cells release find-me signal and are engulfed without proinflammatory cytokine production.

    Science.gov (United States)

    Wang, Qiang; Ju, Xiaoli; Zhou, Yang; Chen, Keping

    2015-11-01

    Necroptosis is a form of caspase-independent programmed cell death which is mediated by the RIP1-RIP3 complex. Although phagocytosis of apoptotic cells has been extensively investigated, how necroptotic cells are engulfed has remained elusive. Here, we investigated how necroptotic cells attracted and were engulfed by macrophages. We found that necroptotic cells induced the migration of THP-1 cells in a transwell migration assay. Further analysis showed that ATP released from necroptotic cells acted as a find-me signal that induced the migration of THP-1 cells. We also found that Annexin V blocked phagocytosis of necroptotic cells by macrophages. Furthermore, necroptotic cells were shown to be silently cleared by macrophages without any proinflammatory cytokine production. These data uncover an evolutionarily conserved mechanism of the find-me signal in different types of cell death and immunological consequences between apoptotic and necroptotic cells during phagocytosis.

  7. Different activities of Schinus areira L.: anti-inflammatory or pro-inflammatory effect.

    Science.gov (United States)

    Davicino, R; Mattar, A; Casali, Y; Anesini, C; Micalizzi, B

    2010-12-01

    The anti-inflammatory drugs possess many serious side effects at doses commonly prescribed. It is really important to discover novel regulators of inflammation from natural sources with minimal adverse effects. Schinus areira L. is a plant native from South America and is used in folk medicine as an anti-inflammatory herb. For this study, the activity of aqueous extracts on inflammation and the effect on superoxide anion production in mice macrophages were assayed. Aqueous extracts were prepared by soaking herbs in cold water (cold extract), boiling water (infusion), and simmering water (decoction). Cold extract possess an anti-inflammatory activity. Decoction and infusion showed pro-inflammatory activity. Cold extract increased the production of superoxide anion. It has been proposed to use diverse methods to obtain extracts of S. areira L. with different effects. Cold extract, decoction, and infusion could be utilized as extracts or as pharmacological preparations for topical application.

  8. Human Langerhans Cells with Pro-inflammatory Features Relocate within Psoriasis Lesions

    Science.gov (United States)

    Eidsmo, Liv; Martini, Elisa

    2018-01-01

    Psoriasis is a common skin disease that presents with well-demarcated patches of inflammation. Recurrent disease in fixed areas of the skin indicates a localized disease memory that is preserved in resolved lesions. In line with such concept, the involvement of tissue-resident immune cells in psoriasis pathology is increasingly appreciated. Langerhans cells (LCs) are perfectly placed to steer resident T cells and local tissue responses in psoriasis. Here, we present an overview of the current knowledge of LCs in human psoriasis, including findings that highlight pro-inflammatory features of LCs in psoriasis lesions. We also review the literature on conflicting data regarding LC localization and functionality in psoriasis. Our review highlights that further studies are needed to elucidate the molecular mechanisms that drive LCs functionality in inflammatory diseases. PMID:29520279

  9. Effect of SOCS1 overexpression on RPE cell activation by proinflammatory cytokines.

    Science.gov (United States)

    Bazewicz, Magdalena; Draganova, Dafina; Makhoul, Maya; Chtarto, Abdel; Elmaleh, Valerie; Tenenbaum, Liliane; Caspers, Laure; Bruyns, Catherine; Willermain, François

    2016-09-06

    The purpose of this study was to investigate the in vitro effect of Suppressor Of Cytokine Signaling 1 (SOCS1) overexpression in retinal pigment epithelium (RPE) cells on their activation by pro-inflammatory cytokines IFNγ, TNFα and IL-17. Retinal pigment epithelium cells (ARPE-19) were stably transfected with the control plasmid pIRES2-AcGFP1 or the plasmid pSOCS1-IRES2-AcGFP1. They were stimulated by IFNγ (150ng/ml), TNFα (30ng/ml) or IL-17 (100ng/ml). The levels of SOCS1 mRNA were measured by real-time PCR. Signal Transducer and Activator of Transcription 1 (STAT1) phosphorylation and IκBα expression were analysed by western Blot (WB). IL-8 secretion was analysed by ELISA and expression of MHCII molecules and ICAM-1/CD54 by flow cytometry. Our data show that SOCS1 mRNA overexpression in RPE cells prevents IFNγ-induced SOCS1 mRNA increase and IFNγ-mediated STAT1 phosphorylation. Moreover, SOCS1 overexpression in RPE cells inhibits IFNγ-induced decrease of IL-8 secretion and prevents IFNγ-induced MHC II and ICAM1/CD54 upregulation. However, SOCS1 overexpression does not affect TNFα-induced IκBα degradation nor block TNFα-induced or IL-17-induced IL-8 secretion. On the contrary, IL-17-induced secretion is increased by SOCS1 overexpression. In conclusion, SOCS1 overexpression in RPE cells inhibits some IFNγ-mediated responses that lead to uveitis development. This notion raises the possibility that SOCS1 overexpression could be a novel target for treating non-infectious uveitis. However, some proinflammatory effects of TNFα and IL-17 stimulation on RPE are not blocked by SOCS1 overexpression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. The adaptor CRADD/RAIDD controls activation of endothelial cells by proinflammatory stimuli.

    Science.gov (United States)

    Qiao, Huan; Liu, Yan; Veach, Ruth A; Wylezinski, Lukasz; Hawiger, Jacek

    2014-08-08

    A hallmark of inflammation, increased vascular permeability, is induced in endothelial cells by multiple agonists through stimulus-coupled assembly of the CARMA3 signalosome, which contains the adaptor protein BCL10. Previously, we reported that BCL10 in immune cells is targeted by the "death" adaptor CRADD/RAIDD (CRADD), which negatively regulates nuclear factor κB (NFκB)-dependent cytokine and chemokine expression in T cells (Lin, Q., Liu, Y., Moore, D. J., Elizer, S. K., Veach, R. A., Hawiger, J., and Ruley, H. E. (2012) J. Immunol. 188, 2493-2497). This novel anti-inflammatory CRADD-BCL10 axis prompted us to analyze CRADD expression and its potential anti-inflammatory action in non-immune cells. We focused our study on microvascular endothelial cells because they play a key role in inflammation. We found that CRADD-deficient murine endothelial cells display heightened BCL10-mediated expression of the pleotropic proinflammatory cytokine IL-6 and chemokine monocyte chemoattractant protein-1 (MCP-1/CCL2) in response to LPS and thrombin. Moreover, these agonists also induce significantly increased permeability in cradd(-/-), as compared with cradd(+/+), primary murine endothelial cells. CRADD-deficient cells displayed more F-actin polymerization with concomitant disruption of adherens junctions. In turn, increasing intracellular CRADD by delivery of a novel recombinant cell-penetrating CRADD protein (CP-CRADD) restored endothelial barrier function and suppressed the induction of IL-6 and MCP-1 evoked by LPS and thrombin. Likewise, CP-CRADD enhanced barrier function in CRADD-sufficient endothelial cells. These results indicate that depletion of endogenous CRADD compromises endothelial barrier function in response to inflammatory signals. Thus, we define a novel function for CRADD in endothelial cells as an inducible suppressor of BCL10, a key mediator of responses to proinflammatory agonists. © 2014 by The American Society for Biochemistry and Molecular Biology

  11. Lifetime Exposure to Intimate Partner Violence and Proinflammatory Cytokine Levels Across the Perinatal Period.

    Science.gov (United States)

    Robertson Blackmore, Emma; Mittal, Mona; Cai, Xueya; Moynihan, Jan A; Matthieu, Monica M; O'Connor, Thomas G

    2016-10-01

    Intimate partner violence (IPV) is a public health concern, affecting one-third of US women. Prior research suggests an association between exposure to IPV and poor maternal perinatal health, but the underlying biological correlates are not well understood. This study examined the relationship between exposure to IPV and proinflammatory cytokine levels, a candidate mechanism accounting for poor psychiatric and obstetric outcomes, across the perinatal period. Data were obtained from a prospective, longitudinal cohort study of 171 women receiving obstetrical care from a hospital-based practice serving a predominantly low-income minority population. Participants completed questionnaires on IPV exposure, psychiatric symptoms, and psychosocial and obstetric factors and provided blood samples at 18 and 32 weeks of gestation and 6 weeks and 6 months postpartum. Serum levels of interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) were assayed via enzyme-linked immunosorbent assay. Thirty-five (20.5%) women reported lifetime exposure to IPV and 7 (4.1%) reported being physically hurt in the preceding 12 months (4 while pregnant). Lifetime exposure to IPV was associated with increased likelihood of experiencing perinatal depression and smoking during pregnancy. Women with a history of IPV had significantly higher levels of TNF-α at 18 weeks (z = -2.29, p < 0.05), but significantly smaller changes in levels of IL-6 (β = -0.36, p = 0.04) across time. Lifetime exposure to IPV was associated with a range of adverse mental health outcomes and may affect proinflammatory cytokine levels in pregnancy.

  12. β-Catenin promotes colitis and colon cancer through imprinting of proinflammatory properties in T cells.

    Science.gov (United States)

    Keerthivasan, Shilpa; Aghajani, Katayoun; Dose, Marei; Molinero, Luciana; Khan, Mohammad W; Venkateswaran, Vysak; Weber, Christopher; Emmanuel, Akinola Olumide; Sun, Tianjao; Bentrem, David J; Mulcahy, Mary; Keshavarzian, Ali; Ramos, Elena M; Blatner, Nichole; Khazaie, Khashayarsha; Gounari, Fotini

    2014-02-26

    The density and type of lymphocytes that infiltrate colon tumors are predictive of the clinical outcome of colon cancer. High densities of T helper 17 (T(H)17) cells and inflammation predict poor outcome, whereas infiltration by T regulatory cells (Tregs) that naturally suppress inflammation is associated with longer patient survival. However, the role of Tregs in cancer remains controversial. We recently reported that Tregs in colon cancer patients can become proinflammatory and tumor-promoting. These properties were directly linked with their expression of RORγt (retinoic acid-related orphan receptor-γt), the signature transcription factor of T(H)17 cells. We report that Wnt/β-catenin signaling in T cells promotes expression of RORγt. Expression of β-catenin was elevated in T cells, including Tregs, of patients with colon cancer. Genetically engineered activation of β-catenin in mouse T cells resulted in enhanced chromatin accessibility in the proximity of T cell factor-1 (Tcf-1) binding sites genome-wide, induced expression of T(H)17 signature genes including RORγt, and promoted T(H)17-mediated inflammation. Strikingly, the mice had inflammation of small intestine and colon and developed lesions indistinguishable from colitis-induced cancer. Activation of β-catenin only in Tregs was sufficient to produce inflammation and initiate cancer. On the basis of these findings, we conclude that activation of Wnt/β-catenin signaling in effector T cells and/or Tregs is causatively linked with the imprinting of proinflammatory properties and the promotion of colon cancer.

  13. Reduced tissue osmolarity increases TRPV4 expression and pro-inflammatory cytokines in intervertebral disc cells

    Directory of Open Access Journals (Sweden)

    BA Walter

    2016-07-01

    Full Text Available The mechanical behaviour and cellular metabolism of intervertebral discs (IVDs and articular cartilage are strongly influenced by their proteoglycan content and associated osmotic properties. This osmotic environment is a biophysical signal that changes with disease and may contribute to the elevated matrix breakdown and altered biologic response to loading observed in IVD degeneration and osteoarthritis. This study tested the hypothesis that changes in osmo-sensation by the transient receptor potential vallinoid-4 (TRPV4 ion channel occur with disease and contribute to the inflammatory environment found during degeneration. Immunohistochemistry on bovine IVDs from an inflammatory organ culture model were used to investigate if TRPV4 is expressed in the IVD and how expression changes with degeneration. Western blot, live-cell calcium imaging, and qRT-PCR were used to investigate whether osmolarity changes or tumour necrosis factor α (TNFα regulate TRPV4 expression, and how altered TRPV4 expression influences calcium signalling and pro-inflammatory cytokine expression. TRPV4 expression correlated with TNFα expression, and was increased when cultured in reduced medium osmolarity and unaltered with TNFα-stimulation. Increased TRPV4 expression increased the calcium flux following TRPV4 activation and increased interleukin-1β (IL-1β and IL-6 gene expression in IVD cells. TRPV4 expression was qualitatively elevated in regions of aggrecan depletion in degenerated human IVDs. Collectively, results suggest that reduced tissue osmolarity, likely following proteoglycan degradation, can increase TRPV4 signalling and enhance pro-inflammatory cytokine production, suggesting changes in TRPV4 mediated osmo-sensation may contribute to the progressive matrix breakdown in disease.

  14. Bioactive Extract from Moringa oleifera Inhibits the Pro-inflammatory Mediators in Lipopolysaccharide Stimulated Macrophages

    Science.gov (United States)

    Fard, Masoumeh Tangestani; Arulselvan, Palanisamy; Karthivashan, Govindarajan; Adam, Siti Khadijah; Fakurazi, Sharida

    2015-01-01

    Introduction: Inflammation is a well-known physiological response to protect the body against infection and restore tissue injury. Nevertheless, the chronic inflammation can trigger various inflammatory associated diseases/disorder. Moringa oleifera is a widely grown plant in most tropical countries and it has been recognized traditionally for several medicinal benefits. Objectives: The objective of this study was to investigate the anti-inflammatory properties of M. oleifera extract on lipopolysaccharide (LPS) - stimulated macrophages. Materials and Methods: The anti-inflammatory effect of M. oleifera hydroethanolic bioactive leaves extracts was evaluated by assessing the inhibition of nitric oxide (NO) production during Griess reaction and the expression of pro-inflammatory mediators in macrophages. Results: Interestingly, we found that M. oleifera hydroethanolic bioactive leaves extract significantly inhibited the secretion of NO production and other inflammatory markers such as prostaglandin E2, tumor necrosis factor alpha, interleukin (IL)-6, and IL-1β. Meanwhile, the bioactive extract has induced the production of IL-10 in a dose-dependent manner. In addition, M. oleifera hydroethanolic bioactive leaves extract effectively suppressed the protein expression of inflammatory markers inducible NO synthase, cyclooxygenase-2, and nuclear factor kappa-light-chain-enhancer of activated B-cells p65 in LPS-induced RAW264.7 macrophages in a dose-dependent manner. Conclusion: These findings support the traditional use of M. oleifera plant as an effective treatment for inflammation associated diseases/disorders. SUMMARY Hydroethanolic extracts of Moringa oleifera effectively inhibit the NO production in LPS induced inflammatory model.M. oleifera crude extracts successfully modulate the production of pro-inflammatory mediators in LPS stimulated macrophages.M. oleifera extracts suppressed the expression of inflammatory mediators in LPS stimulated macrophages. PMID:27013794

  15. Regional Brain Shrinkage over Two Years: Individual Differences and Effects of Pro-Inflammatory Genetic Polymorphisms

    Science.gov (United States)

    Persson, N.; Ghisletta, P.; Dahle, C.L.; Bender, A.R.; Yang, Y.; Yuan, P.; Daugherty, A.M.; Raz, N.

    2014-01-01

    We examined regional changes in brain volume in healthy adults (N = 167, age 19-79 years at baseline; N = 90 at follow-up) over approximately two years. With latent change score models, we evaluated mean change and individual differences in rates of change in 10 anatomically-defined and manually-traced regions of interest (ROIs): lateral prefrontal cortex (LPFC), orbital frontal cortex (OF), prefrontal white matter (PFw), hippocampus (HC), parahippocampal gyrus (PhG), caudate nucleus (Cd), putamen (Pt), insula (In), cerebellar hemispheres (CbH), and primary visual cortex (VC). Significant mean shrinkage was observed in the HC, CbH, In, OF, and the PhG, and individual differences in change were noted in all regions, except the OF. Pro-inflammatory genetic variants mediated shrinkage in PhG and CbH. Carriers of two T alleles of interleukin-1β (IL-1βC-511T, rs16944) and a T allele of methylenetetrahydrofolate reductase (MTHFRC677T, rs1801133) polymorphisms showed increased PhG shrinkage. No effects of a pro-inflammatory polymorphism for C-reactive protein (CRP-286C>A>T, rs3091244) or apolipoprotein (APOE) ε4 allele were noted. These results replicate the pattern of brain shrinkage observed in previous studies, with a notable exception of the LPFC thus casting doubt on the unique importance of prefrontal cortex in aging. Larger baseline volumes of CbH and In were associated with increased shrinkage, in conflict with the brain reserve hypothesis. Contrary to previous reports, we observed no significant linear effects of age and hypertension on regional brain shrinkage. Our findings warrant further investigation of the effects of neuroinflammation on structural brain change throughout the lifespan. PMID:25264227

  16. Suppression of pro-inflammatory T-cell responses by human mesothelial cells.

    Science.gov (United States)

    Lin, Chan-Yu; Kift-Morgan, Ann; Moser, Bernhard; Topley, Nicholas; Eberl, Matthias

    2013-07-01

    Human γδ T cells reactive to the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP) contribute to acute inflammatory responses. We have previously shown that peritoneal dialysis (PD)-associated infections with HMB-PP producing bacteria are characterized by locally elevated γδ T-cell frequencies and poorer clinical outcome compared with HMB-PP negative infections, implying that γδ T cells may be of diagnostic, prognostic and therapeutic value in acute disease. The regulation by local tissue cells of these potentially detrimental γδ T-cell responses remains to be investigated. Freshly isolated γδ or αβ T cells were cultured with primary mesothelial cells derived from omental tissue, or with mesothelial cell-conditioned medium. Stimulation of cytokine production and proliferation by peripheral T cells in response to HMB-PP or CD3/CD28 beads was assessed by flow cytometry. Resting mesothelial cells were potent suppressors of pro-inflammatory γδ T cells as well as CD4+ and CD8+ αβ T cells. The suppression of γδ T-cell responses was mediated through soluble factors released by primary mesothelial cells and could be counteracted by SB-431542, a selective inhibitor of TGF-β and activin signalling. Recombinant TGF-β1 but not activin-A mimicked the mesothelial cell-mediated suppression of γδ T-cell responses to HMB-PP. The present findings indicate an important regulatory function of mesothelial cells in the peritoneal cavity by dampening pro-inflammatory T-cell responses, which may help preserve the tissue integrity of the peritoneal membrane in the steady state and possibly during the resolution of acute inflammation.

  17. Antimicrobial peptides and pro-inflammatory cytokines are differentially regulated across epidermal layers following bacterial stimuli.

    Science.gov (United States)

    Percoco, Giuseppe; Merle, Chloé; Jaouen, Thomas; Ramdani, Yasmina; Bénard, Magalie; Hillion, Mélanie; Mijouin, Lily; Lati, Elian; Feuilloley, Marc; Lefeuvre, Luc; Driouich, Azeddine; Follet-Gueye, Marie-Laure

    2013-12-01

    The skin is a natural barrier between the body and the environment and is colonised by a large number of microorganisms. Here, we report a complete analysis of the response of human skin explants to microbial stimuli. Using this ex vivo model, we analysed at both the gene and protein level the response of epidermal cells to Staphylococcus epidermidis (S. epidermidis) and Pseudomonas fluorescens (P. fluorescens), which are present in the cutaneous microbiota. We showed that both bacterial species affect the structure of skin explants without penetrating the living epidermis. We showed by real-time quantitative polymerase chain reaction (qPCR) that S. epidermidis and P. fluorescens increased the levels of transcripts that encode antimicrobial peptides (AMPs), including human β defensin (hBD)2 and hBD3, and the pro-inflammatory cytokines interleukin (IL)-1α and (IL)-1-β, as well as IL-6. In addition, we analysed the effects of bacterial stimuli on the expression profiles of genes related to innate immunity and the inflammatory response across the epidermal layers, using laser capture microdissection (LCM) coupled to qPCR. We showed that AMP transcripts were principally upregulated in suprabasal keratinocytes. Conversely, the expression of pro-inflammatory cytokines was upregulated in the lower epidermis. These findings were confirmed by protein localisation using specific antibodies coupled to optical or electron microscopy. This work underscores the potential value of further studies that use LCM on human skin explants model to study the roles and effects of the epidermal microbiota on human skin physiology. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Angiopoietin-like protein 2 induces proinflammatory responses in peritoneal cells

    Energy Technology Data Exchange (ETDEWEB)

    Umikawa, Masato, E-mail: umikawa@med.u-ryukyu.ac.jp [Department of Medical Biochemistry, Graduate School of Medicine, University of the Ryukyus, Okinawa (Japan); Umikawa, Asako; Asato, Tsuyoshi; Takei, Kimiko [Department of Medical Biochemistry, Graduate School of Medicine, University of the Ryukyus, Okinawa (Japan); Matsuzaki, Goro [Department of Tropical Infectious Diseases, COMB, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa (Japan); Kariya, Ken-ichi [Department of Medical Biochemistry, Graduate School of Medicine, University of the Ryukyus, Okinawa (Japan); Zhang, Cheng Cheng, E-mail: alec.zhang@utsouthwestern.edu [Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX (United States)

    2015-11-13

    Monocytes and macrophages are important effectors and regulators of inflammation, and both their differentiation and activation are regulated strictly in response to environmental cues. Angiopoietin-like protein 2 (Angptl2) is a multifaceted protein, displaying many physiological and pathological functions in inflammation, angiogenesis, hematopoiesis, and tumor development. Although recent studies implicate Angptl2 in chronic inflammation, the mechanisms of inflammation caused by Angptl2 remain unclear. The purpose of the present study was to elucidate the role of Angptl2 in inflammation by understanding the effects of Angptl2 on monocytes/macrophages. We showed that Angptl2 directly activates resident murine peritoneal monocytes and macrophages and induces a drastic upregulation of the transcription of several inflammatory genes including nitric oxide synthase 2 and prostaglandin-endoperoxide synthase 2, and several proinflammatory cytokine genes such as interleukin (IL)-1β, IL-6, TNFα, and CSF2, along with activation of ERK, JNK, p38, and nuclear factor kappa B signaling pathways. Concordantly, proinflammatory cytokines IL-1β, IL-6, TNFα, and GM-CSF, were rapidly elevated from murine peritoneal monocytes and macrophages. These results demonstrate a novel role for Angptl2 in inflammation via the direct activation of peritoneal monocytes and macrophages. - Highlights: • Angptl2 directly activates resident murine peritoneal monocytes and macrophages. • Angptl2 induces a drastic upregulation of expression of inflammatory genes. • Angptl2 induces activation of ERK, JNK, p38, and nuclear factor kappa B signaling pathways. • Angptl2 does not activate bone marrow derived macrophages or macrophage cell lines.

  19. Polycystic Ovary Syndrome as a Proinflammatory State: The Role of Adipokines.

    Science.gov (United States)

    Dimitriadis, Georgios K; Kyrou, Ioannis; Randeva, Harpal S

    2016-01-01

    Polycystic Ovary Syndrome (PCOS) is a complex heterogeneous disorder and the most common endocrinopathy amongst women of reproductive age. It is characterized by androgen excess, chronic anovulation and an altered cardiometabolic profile. PCOS is linked to impaired adipose tissue (AT) physiology and women with this disorder present with greater risk for insulin resistance (IR), hyperinsulinemia, central adiposity, nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM) than matched for age and body mass index (BMI) women without PCOS. Hyperandrogenaemia appears to be driving adipocyte hypertrophy observed in PCOS under the influence of a hyperinsulinaemic state. Changes in the function of adipocytes have an impact on the secretion of adipokines, adipose tissue-derived proinflammatory factors promoting susceptibility to low grade inflammation. In this article, we review the existing knowledge on the interplay between hyperandrogenaemia, insulin resistance, impaired adipocyte biology, adipokines and chronic low-grade inflammation in PCOS. In PCOS, more than one mechanisms have been suggested in the development of a chronic low-grade inflammation state with the most prevalent being that of a direct effect of the immune system on adipose tissue functions as previously reported in obese women without PCOS. Despite the lack of conclusive evidence regarding a direct mechanism linking hyperandrogenaemia to pro-inflammation in PCOS, there have been recent findings indicating that hyperandrogenaemia might be involved in chronic inflammation by exerting an effect on adipocytes morphology and attributes. Increasing evidence suggests that there is an important connection and interaction between proinflammatory pathways, hyperinsulinemia, androgen excess and adipose tissue hypertrophy and, dysfunction in PCOS. While lifestyle changes and individualized prescription of insulin-sensitizing drugs are common in managing PCOS, further studies are warranted to

  20. Parenteral nutrition in short bowel syndrome patients, regardless of its duration, increases serum proinflammatory cytokines.

    Science.gov (United States)

    Bizari, Letícia; da Silva Santos, Andressa Feijó; Foss, Norma Tiraboschi; Marchini, Júlio Sérgio; Suen, Vivian Marques Miguel

    2016-07-01

    Short bowel syndrome is a severe malabsorption disorder, and prolonged parenteral nutrition is essential for survival in some cases. Among the undesirable effects of long-term parenteral nutrition is an increase in proinflammatory cytokines. The aim of the present study was to measure the serum levels of interleukin-6, interleukin-10, tumor necrosis factor alpha, and transforming growth factor beta, in patients with short bowel syndrome on cyclic parenteral nutrition and patients who had previously received but no longer require parenteral nutrition. The study was cross-sectional and observational. Three groups were studied as follows: Parenteral nutrition group, 9 patients with short bowel syndrome that receive cyclic parenteral nutrition; Oral nutrition group, 10 patients with the same syndrome who had been weaned off parenteral nutrition for at least 1 year prior to the study; Control group, 13 healthy adults, matched for age and sex to parenteral and oral groups. The following data were collected: age, tobacco use, drug therapies, dietary intake, body weight, height, blood collection. All interleukins were significantly higher in the parenteral group compared with the control group as follows: interleukin-6: 22 ± 19 vs 1.5 ± 1.4 pg/mL, P= .0002; transforming growth factor β: 854 ± 204 vs 607 ± 280 pg/mL, P= .04; interleukin-10: 8 ± 37 vs 0.6 ± 4, P= .03; tumor necrosis factor α: 20 ± 8 vs 8 ± 4 pg/mL, Pparenteral nutrition in short bowel syndrome patients, regardless of its duration, increases serum proinflammatory cytokines. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Sulfocerebrosides upregulate liposome uptake in human astrocytes without inducing a proinflammatory response.

    Science.gov (United States)

    Suesca, Elizabeth; Alejo, Jose Luis; Bolaños, Natalia I; Ocampo, Jackson; Leidy, Chad; González, John M

    2013-07-01

    Astrocytes are involved in the pathogenesis of demyelinating diseases, where they actively regulate the secretion of proinflammatory factors, and trigger the recruitment of immune cells in the central nervous system (CNS). Antigen presentation of myelin-derived proteins has been shown to trigger astrocyte response, suggesting that astrocytes can directly sense demyelination. However, the direct response of astrocytes to lipid-debris generated during demyelination has not been investigated. The lipid composition of the myelin sheath is distinct, presenting significant amounts of cerebrosides, sulfocerebrosides (SCB), and ceramides. Studies have shown that microglia are activated in the presence of myelin-derived lipids, pointing to the possibility of lipid-induced astrocyte activation. In this study, a human astrocyte cell line was exposed to liposomes enriched in each myelin lipid component. Although liposome uptake was observed for all compositions, astrocytes had augmented uptake for liposomes containing sulfocerebroside (SCB). This enhanced uptake did not modify their expression of human leukocyte antigen (HLA) molecules or secretion of chemokines. This was in contrast to changes observed in astrocyte cells stimulated with IFNγ. Contrary to human monocytes, astrocytes did not internalize beads in the size-range of liposomes, indicating that liposome uptake is lipid specific. Epifluorescence microscopy corroborated that liposome uptake takes place through endocytosis. Soluble SCB were found to partially block uptake of liposomes containing this same lipid. Endocytosis was not decreased when cells were treated with cytochalasin D, but it was decreased by cold temperature incubation. The specific uptake of SCB in the absence of a proinflammatory response indicates that astrocytes may participate in the trafficking and regulation of sulfocerebroside metabolism and homeostasis in the CNS. Copyright © 2013 International Society for Advancement of Cytometry.

  2. A pro-inflammatory diet is associated with increased risk of developing hypertension among middle-aged women

    NARCIS (Netherlands)

    Vissers, L E T; Waller, M; van der Schouw, Y T; Hébert, J R; Shivappa, N; Schoenaker, D A J M; Mishra, G D

    BACKGROUND AND AIMS: A pro-inflammatory diet is thought to lead to hypertension through oxidative stress and vessel wall inflammation. We therefore investigated the association between the dietary inflammatory index (DII) and developing hypertension in a population-based cohort of middle-aged women.

  3. The SaeR/S gene regulatory system induces a pro-inflammatory cytokine response during Staphylococcus aureus infection.

    Directory of Open Access Journals (Sweden)

    Robert L Watkins

    Full Text Available Community-associated methicillin-resistant Staphylococcus aureus accounts for a large portion of the increased staphylococcal disease incidence and can cause illness ranging from mild skin infections to rapidly fatal sepsis syndromes. Currently, we have limited understanding of S. aureus-derived mechanisms contributing to bacterial pathogenesis and host inflammation during staphylococcal disease. Herein, we characterize an influential role for the saeR/S two-component gene regulatory system in mediating cytokine induction using mouse models of S. aureus pathogenesis. Invasive S. aureus infection induced the production of localized and systemic pro-inflammatory cytokines, including tumor necrosis factor alpha (TNF-α, interferon gamma (IFN-γ, interleukin (IL-6 and IL-2. In contrast, mice infected with an isogenic saeR/S deletion mutant demonstrated significantly reduced pro-inflammatory cytokine levels. Additionally, secreted factors influenced by saeR/S elicited pro-inflammatory cytokines in human blood ex vivo. Our study further demonstrated robust saeR/S-mediated IFN-γ production during both invasive and subcutaneous skin infections. Results also indicated a critical role for saeR/S in promoting bacterial survival and enhancing host mortality during S. aureus peritonitis. Taken together, this study provides insight into specific mechanisms used by S. aureus during staphylococcal disease and characterizes a relationship between a bacterial global regulator of virulence and the production of pro-inflammatory mediators.

  4. Effect of prolonged exposure to diesel engine exhaust on proinflammatory markers in different regions of the rat brain

    OpenAIRE

    Wang Kate; Schins Roel PF; Cassee Flemming R; van Berlo Damien; Gerlofs-Nijland Miriam E; Campbell Arezoo

    2010-01-01

    Abstract Background The etiology and progression of neurodegenerative disorders depends on the interactions between a variety of factors including: aging, environmental exposures, and genetic susceptibility factors. Enhancement of proinflammatory events appears to be a common link in different neurological impairments, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. Studies have shown a link between exposure to particulate matter (PM)...

  5. The effect of pro-inflammatory cytokines on immunophenotype, differentiation capacity and immunomodulatory functions of human mesenchymal stem cells.

    Science.gov (United States)

    Pourgholaminejad, Arash; Aghdami, Nasser; Baharvand, Hossein; Moazzeni, Seyed Mohammad

    2016-09-01

    Mesenchymal stem cells (MSCs), as cells with potential clinical utilities, have demonstrated preferential incorporation into inflammation sites. Immunophenotype and immunomodulatory functions of MSCs could alter by inflamed-microenvironments due to the local pro-inflammatory cytokine milieu. A major cellular mediator with specific function in promoting inflammation and pathogenicity of autoimmunity are IL-17-producing T helper 17 (Th17) cells that polarize in inflamed sites in the presence of pro-inflammatory cytokines such as Interleukin-1β (IL-1β), IL-6 and IL-23. Since MSCs are promising candidate for cell-based therapeutic strategies in inflammatory and autoimmune diseases, Th17 cell polarizing factors may alter MSCs phenotype and function. In this study, human bone-marrow-derived MSCs (BM-MSC) and adipose tissue-derived MSCs (AD-MSC) were cultured with or without IL-1β, IL-6 and IL-23 as pro-inflammatory cytokines. The surface markers and their differentiation capacity were measured in cytokine-untreated and cytokine-treated MSCs. MSCs-mediated immunomodulation was analyzed by their regulatory effects on mixed lymphocyte reaction (MLR) and the level of IL-10, TGF-β, IL-4, IFN-γ and TNF-α production as immunomodulatory cytokines. Pro-inflammatory cytokines showed no effect on MSCs morphology, immunophenotype and co-stimulatory molecules except up-regulation of CD45. Adipogenic and osteogenic differentiation capacity increased in CD45+ MSCs. Moreover, cytokine-treated MSCs preserved the suppressive ability of allogeneic T cell proliferation and produced higher level of TGF-β and lower level of IL-4. We concluded pro-inflammatory cytokines up-regulate the efficacy of MSCs in cell-based therapy of degenerative, inflammatory and autoimmune disorders. Copyright © 2016. Published by Elsevier Ltd.

  6. Infection and upregulation of proinflammatory cytokines in human brain vascular pericytes by human cytomegalovirus

    Directory of Open Access Journals (Sweden)

    Alcendor Donald J

    2012-05-01

    Full Text Available Abstract Background Congenital human cytomegalovirus (HCMV infections can result in CNS abnormalities in newborn babies including vision loss, mental retardation, motor deficits, seizures, and hearing loss. Brain pericytes play an essential role in the development and function of the blood–brain barrier yet their unique role in HCMV dissemination and neuropathlogy has not been reported. Methods Primary human brain vascular pericytes were exposed to a primary clinical isolate of HCMV designated ‘SBCMV’. Infectivity was analyzed by microscopy, immunofluorescence, Western blot, and qRT-PCR. Microarrays were performed to identify proinflammatory cytokines upregulated after SBCMV exposure, and the results validated by real-time quantitative polymerase chain reaction (qPCR methodology. In situ cytokine expression of pericytes after exposure to HCMV was examined by ELISA and in vivo evidence of HCMV infection of brain pericytes was shown by dual-labeled immunohistochemistry. Results HCMV-infected human brain vascular pericytes as evidenced by several markers. Using a clinical isolate of HCMV (SBCMV, microscopy of infected pericytes showed virion production and typical cytomegalic cytopathology. This finding was confirmed by the expression of major immediate early and late virion proteins and by the presence of HCMV mRNA. Brain pericytes were fully permissive for CMV lytic replication after 72 to 96 hours in culture compared to human astrocytes or human brain microvascular endothelial cells (BMVEC. However, temporal transcriptional expression of pp65 virion protein after SBCMV infection was lower than that seen with the HCMV Towne laboratory strain. Using RT-PCR and dual-labeled immunofluorescence, proinflammatory cytokines CXCL8/IL-8, CXCL11/ITAC, and CCL5/Rantes were upregulated in SBCMV-infected cells, as were tumor necrosis factor-alpha (TNF-alpha, interleukin-1 beta (IL-1beta, and interleukin-6 (IL-6. Pericytes exposed to SBCMV elicited

  7. Pro-inflammatory cytokines and leukocyte oxidative burst in chronic kidney disease: culprits or innocent bystanders?

    Science.gov (United States)

    Neirynck, Nathalie; Glorieux, Griet; Schepers, Eva; Dhondt, Annemieke; Verbeke, Francis; Vanholder, Raymond

    2015-06-01

    Pro-inflammatory cytokines are elevated in chronic kidney disease (CKD), a condition characterized by microinflammation with oxidative stress as key feature. However, their role in the inflammatory response at uraemic concentrations has not yet been defined. In this study, the contribution of cytokines on induction of leukocyte oxidative stress was investigated. Whole blood from healthy donors was incubated with 20-1400 pg/mL TNFα, 5-102.8 pg/mL IL-6, 20-400 pg/mL IL-1β and 75-1200 pg/mL IL-18 separately or in combination. Oxidative burst was measured, at baseline and after stimulation with fMLP (Phagoburst™). The effect of the TNFα blocker, adalimumab (Ada), was evaluated on TNFα-induced ROS production. Finally, the association between TNFα and the composite end point all-cause mortality or first cardiovascular event was analysed in a CKD population stage 4-5 (n = 121). While interleukin (IL)-6, IL-1β and IL-18 alone induced no ROS activation of normal leukocytes, irrespective of concentrations, TNFα induced ROS activation at baseline (P < 0.01) and after fMLP stimulation (P < 0.05), but only at uraemic concentrations in the high range (400 and 1400 pg/mL). A similar pattern was observed with all cytokines in combination, but already at intermediate uraemic concentrations (all P < 0.05, except for monocytes after fMLP stimulation: n.s.), suggesting synergism between cytokines. ROS production induced by TNFα (400 pg/mL) and the cytokine combination was blocked with Ada. Uraemia-related oxidative stress in leukocytes of haemodialysis patients was however not blocked by Ada. In patients, TNFα was not associated to adverse events (HR: 1.52, 95% CI 0.81-2.85, P = 0.13). Among several pro-inflammatory cytokines, TNFα alone was pro-oxidative but only at high-range uraemic concentrations. Adding a TNFα blocker, Ada, blocked this ROS production, but not the oxidative stress in blood samples from haemodialysis patients, suggesting that other uraemic toxins than

  8. Embelin and its derivatives unravel the signaling, proinflammatory and antiatherogenic properties of GPR84 receptor.

    Science.gov (United States)

    Gaidarov, Ibragim; Anthony, Todd; Gatlin, Joel; Chen, Xiaohua; Mills, David; Solomon, Michelle; Han, Sangdon; Semple, Graeme; Unett, David J

    2018-05-01

    GPR84 is an orphan G-protein coupled receptor, expressed on monocytes, macrophages and neutrophils and is significantly upregulated by inflammatory stimuli. The physiological role of GPR84 remains largely unknown. Medium chain fatty acids (MCFA) activate the receptor and have been proposed to be its endogenous ligands, although the high concentrations of MCFAs required for receptor activation generally exceed normal physiological levels. We identified the natural product embelin as a highly potent and selective surrogate GPR84 agonist (originally disclosed in patent application WO2007027661A2, 2007) and synthesized close structural analogs with widely varying receptor activities. These tools were used to perform a comprehensive study of GPR84 signaling and function in recombinant cells and in primary human macrophages and neutrophils. Activation of recombinant GPR84 by embelin in HEK293 cells results in G i/o as well as G12/13-Rho signaling. In human macrophages, GPR84 initiates PTX sensitive Erk1/2 and Akt phosphorylation, PI-3 kinase activation, calcium flux, and release of prostaglandin E2. In addition, GPR84 signaling in macrophages elicits G i Gβγ-mediated augmentation of intracellular cAMP, rather than the decrease expected from G iα engagement. GPR84 activation drives human neutrophil chemotaxis and primes them for amplification of oxidative burst induced by FMLP and C5A. Loss of GPR84 is associated with attenuated LPS-induced release of proinflammatory mediators IL-6, KC-GROα, VEGF, MIP-2 and NGAL from peritoneal exudates. While initiating numerous proinflammatory activities in macrophages and neutrophils, GPR84 also possesses GPR109A-like antiatherosclerotic properties in macrophages. Macrophage receptor activation leads to upregulation of cholesterol transporters ABCA1 and ABCG1 and stimulates reverse cholesterol transport. These data suggest that GPR84 may be a target of therapeutic value and that distinct modes of receptor modulation (inhibition vs

  9. Acute cadmium administration to rats exerts both immunosuppressive and proinflammatory effects in spleen

    International Nuclear Information System (INIS)

    Demenesku, Jelena; Mirkov, Ivana; Ninkov, Marina; Popov Aleksandrov, Aleksandra; Zolotarevski, Lidija; Kataranovski, Dragan; Kataranovski, Milena

    2014-01-01

    Highlights: • The effect of cadmium on splenic T and innate immune cells in rats is explored. • Differential effects of 1 mg/kg on T cell and innate immune activities were shown. • Lower Cd dose (0.5 mg/kg) cause less pronounced immunosuppressive effects. • Proinflammatory effects on innate immune activities were seen at that dose. • Presented data depict complexity of immunomodulatory potential of this metal. - Abstract: Conflicting data (both suppression and augmentation as well as lack of the effect) exist in respect to cadmium (Cd) and splenic T cell-based immune cell activity. Spleen is also the site of innate immune responses but impact of Cd on this type of immunity has been less explored. In the present study the effects of acute Cd administration on basic aspects of both T cell-based and innate immune spleen cell activity were examined in rats. Intraperitoneal injection of 1 mg of Cd/kg resulted in decrease in concanavalin A (ConA) induced proliferation which seems to be more related to altered spleen cells responsiveness to IL-2 than to apoptosis. Differential effects on proinflammatory T cell derived cytokines were observed (decreases of IFN-γ gene expression and ConA-stimulated production, but increases in IL-17 mRNA levels with no effect on concentrations of protein product). Reduction of IFN-γ production seemed not to rely on IL-4 and IL-10, but at least partly on nitric oxide (NO). Increased activity relevant for innate immunity (granulocyte and CD11b + cell accumulation in the spleen, inducible nitric oxide synthase/iNOS expression and NO production by spleen cells) was observed, but there was a decrease in respiratory burst (dihydrorhodamine/DHR oxidation and nitroblue tetrazolium/NBT reduction). Increases of TNF-α and IL-1β gene expression and IL-1β protein product were noted as well. Administration of 0.5 mg Cd/kg resulted in less pronounced (ConA-induced proliferation) or lack of the effect (IFN-γ production) on spleen T cell

  10. Surface modifications of silica nanoparticles are crucial for their inert versus proinflammatory and immunomodulatory properties

    Directory of Open Access Journals (Sweden)

    Marzaioli V

    2014-06-01

    Full Text Available Viviana Marzaioli,1 Juan Antonio Aguilar-Pimente,1,2 Ingrid Weichenmeier,1 Georg Luxenhofer,3 Martin Wiemann,4 Robert Landsiedel,5 Wendel Wohlleben,5 Stefanie Eiden,6 Martin Mempel,7 Heidrun Behrendt,1 Carsten Schmidt-Weber,1 Jan Gutermuth,1,8 Francesca Alessandrini1 1Center of Allergy and Environment (ZAUM, Technische Universität and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL, Munich, Germany; 2Department of Dermatology and Allergy Biederstein, Technische Universität München (TUM and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany, 3Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany; 4IBE R&D gGmbH, Münster, Germany; 5BASF, Ludwigshafen, Germany; 6Bayer Technology Services, Leverkusen, Germany; 7Department of Dermatology, Venereology and Allergology, Universitätsmedizin Göttingen (UMG, Göttingen, Germany; 8Department of Dermatology, Vrije Universiteit Brussel, Brussels, Belgium Background: Silica (SiO2 nanoparticles (NPs are widely used in diverse industrial and biomedical applications. Their applicability depends on surface modifications, which can limit potential health problems. Objective: To assess the potential impact of SiO2 NP exposure and NPs chemical modifications in allergic airway inflammation. Methods: Mice were sensitized by five repetitive intraperitoneal injections of ovalbumin/aluminum hydroxide (1 µg over 42 days, then intratracheally instilled with plain or modified SiO2 NPs (50 µg/mouse, and subsequently aerosol challenged for 20 minutes with ovalbumin. One or 5 days later, allergic inflammation was evaluated by cell differentiation of bronchoalveolar lavage fluid, lung function and gene expression and histopathology, as well as electron and confocal microscopy of pulmonary tissue. Results: Plain SiO2 NPs induced proinflammatory and immunomodulatory effects in vivo

  11. Diclofenac enhances proinflammatory cytokine-induced phagocytosis of cultured microglia via nitric oxide production

    International Nuclear Information System (INIS)

    Kakita, Hiroki; Aoyama, Mineyoshi; Nagaya, Yoshiaki; Asai, Hayato; Hussein, Mohamed Hamed; Suzuki, Mieko; Kato, Shin; Saitoh, Shinji; Asai, Kiyofumi

    2013-01-01

    Influenza-associated encephalopathy (IAE) is a central nervous system complication with a high mortality rate, which is increased significantly by the non-steroidal anti-inflammatory drug diclofenac sodium (DCF). In the present study, we investigated the effects of DCF on brain immune cells (i.e. microglia) stimulated with three proinflammatory cytokines, namely tumor necrosis factor-α, interleukin-1β, and interferon-γ. Similar to previous findings in astrocytes, all three cytokines induced the expression of inducible NO synthase (iNOS), as well as NO production, in microglia. The addition of DCF to the culture system augmented iNOS expression and NO production. Immunocytochemical analysis and the phagocytosis assay revealed that cytokine treatment induced morphological changes to and phagocytosis by the microglia. The addition of DCF to the culture system enhanced microglial activation, as well as the phagocytic activity of cytokine-stimulated microglia. Inhibitors of nuclear factor (NF)-κB inhibited iNOS gene expression in cytokine-stimulated microglia with or without DCF, suggesting that the NF-κB pathway is one of the main signaling pathways involved. The iNOS inhibitor N G -monomethyl-L-arginine (L-NMMA) reduced both cytokine-induced phagocytosis and phagocytosis induced by the combination of cytokines plus DCF. Furthermore, the NO donor sodium nitroprusside induced phagocytosis, indicating that NO production is a key regulator of microglial phagocytosis. In conclusion, DCF acts synergistically with proinflammatory cytokines to increase the production of NO in microglia, leading to phagocytic activity of the activated microglia. These findings, together with previous observations regarding astrocytes, may explain the significant increase in mortality of IAE patients treated with DCF. - Highlights: ► Influenza-associated encephalopathy (IAE) is associated with a high mortality rate. ► Hyperimmunization in the brain is believed to be responsible for IAE

  12. Total body fat, pro-inflammatory cytokines and insulin resistance in Indian subjects

    Energy Technology Data Exchange (ETDEWEB)

    Yajnik, C S [Diabetes Unit, KEM Hospital Research Centre, Pune (India); Yudkin, J S [Whittington Hospital, University College of London, London (United Kingdom); Shetty, P S [London School of Hygiene and Tropical Medicine, London (United Kingdom); Kurpad, A [St. John' s Medical College, Bangalore (India)

    1999-07-01

    There is a growing epidemic of insulin resistance syndrome (IRS) in Indians. We postulate that increased susceptibility of the urban Indians to insulin resistance is a result of a tendency to increased fat deposition from the time of intrauterine life (thrifty phenotype), exaggerated in the urban environment by a positive energy balance. The pro-inflammatory cytokines secreted by the inflammatory cells as well by the adipose tissue could aggravate insulin resistance and endothelial damage and therefore, increase the susceptibility to type 2 diabetes and coronary heart disease (CHD) independent of the previously proposed glucose fatty acid cycle mechanism. In a preliminary study, we propose to make detailed measurements of the proposed mechanisms in a selected population from 3 geographical locations in and near the city of Pune, India and also validate simple 'epidemiologic' measurements of body composition with 'reference' measurements. One hundred men (30 to 50y) each from the three geographical locations (rural, urban slum-dwellers and urban middle class in Pune) will be studied for: (i) Body composition: Anthropometric and bioimpedance measurement of total body fat (to be calibrated against deuterated water in 30 subjects from each location), and muscle mass by anthropometry and urinary creatinine excretion; (ii) Body fat distribution by subscapular- triceps ratio, waist-hip ratio; (iii) Metabolic: Glucose tolerance and insulin resistance variables (insulin, lipids, NEFA) and leptin; (iv) Endothelial markers: e-Selectin and von Willebrand Factor (vWF); (v) Inflammatory markers and pro-inflammatory cytokines: C-reactive protein (CRP), Interleukin-6 (IL-6) and tumour necrosis factor (TNF- {alpha}); (vi) Energy Balance: Assessment of nutritional intake (calories, carbohydrates, proteins and fats, n3 and n6 fatty acids) and physical activity by a questionnaire. Insulin resistance variables, endothelial markers, cytokines and obesity parameters will be compared in

  13. Pro-Inflammatory Cytokine Levels in HIV Infected and Uninfected Pregnant Women with and without Preeclampsia.

    Science.gov (United States)

    Maharaj, Niren Ray; Phulukdaree, Alisa; Nagiah, Savania; Ramkaran, Prithiksha; Tiloke, Charlette; Chuturgoon, Anil Amichund

    2017-01-01

    Preeclampsia and HIV/AIDS are inflammatory conditions that contribute significantly to adverse maternal and foetal outcomes. The immune reconstitution effects of HAART on inflammatory mediators has not been adequately studied in pregnancy and may impact on the inflammatory cytokine network in women with co-morbid preeclampsia. Our study evaluated changes in pro-inflammatory cytokines IL-2, TNF-α, IFN-γ and IL-6 in HIV infected preeclamptic women on HAART. A prospective experimental study was conducted at Prince Mshiyeni Memorial Hospital between July 2013 and September 2014. One hundred and ninety three pregnant women were recruited into 4 groups: uninfected normotensive (50; 26%), infected normotensive (45; 23%), uninfected preeclamptic (53; 28%) and infected preeclamptic women (45; 23%). Serum levels of cytokines TNF-α, IFN- γ, IL-2 and IL-6 were determined using commercially available kits and a Cytometric Bead Array (CBA). Comparative data was recorded and analysed descriptively. In the control groups (normotensive), significantly lower values were found in IL-2 (p = 0.010), TNF-α (p = 0.045), and IL-6 (p = 0.005); and a non-significant decrease was observed in IFN-γ (p = 0.345) in HIV infected women on HAART compared to uninfected controls. In the experimental group (preeclamptic) women, significantly reduced levels were observed in IL-2 and TNF-α (p = 0.001; p = 0.000) and non-significant decreases were observed in IFN-γ and IL-6 (p = 0.023; p = 0.086) in HIV infected women on HAART compared with uninfected preeclamptic women. Non-significant differences were observed between uninfected preeclamptic and normotensive women. In uncomplicated/normotensive pregnancies, HIV/HAART is associated with significant decreases in IL-2, TNF-α and IL-6, and in preeclamptic women significant decreases in IL-2 and TNF-α were observed. These findings suggest that HIV/HAART impacts on pro-inflammatory cytokines in women with co-morbid preeclampsia. This provides a

  14. Diclofenac enhances proinflammatory cytokine-induced phagocytosis of cultured microglia via nitric oxide production

    Energy Technology Data Exchange (ETDEWEB)

    Kakita, Hiroki [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Aoyama, Mineyoshi, E-mail: ao.mine@med.nagoya-cu.ac.jp [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Nagaya, Yoshiaki; Asai, Hayato [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Hussein, Mohamed Hamed [Neonatal Intensive Care Unit, Pediatric Hospital, Cairo University, Cairo 11559 (Egypt); Maternal and Child Health Department, VACSERA, 51 Wizaret El-Zeraa-Agouza, Giza 22311 (Egypt); Suzuki, Mieko [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Kato, Shin [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Saitoh, Shinji [Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Asai, Kiyofumi [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan)

    2013-04-15

    Influenza-associated encephalopathy (IAE) is a central nervous system complication with a high mortality rate, which is increased significantly by the non-steroidal anti-inflammatory drug diclofenac sodium (DCF). In the present study, we investigated the effects of DCF on brain immune cells (i.e. microglia) stimulated with three proinflammatory cytokines, namely tumor necrosis factor-α, interleukin-1β, and interferon-γ. Similar to previous findings in astrocytes, all three cytokines induced the expression of inducible NO synthase (iNOS), as well as NO production, in microglia. The addition of DCF to the culture system augmented iNOS expression and NO production. Immunocytochemical analysis and the phagocytosis assay revealed that cytokine treatment induced morphological changes to and phagocytosis by the microglia. The addition of DCF to the culture system enhanced microglial activation, as well as the phagocytic activity of cytokine-stimulated microglia. Inhibitors of nuclear factor (NF)-κB inhibited iNOS gene expression in cytokine-stimulated microglia with or without DCF, suggesting that the NF-κB pathway is one of the main signaling pathways involved. The iNOS inhibitor N{sup G}-monomethyl-L-arginine (L-NMMA) reduced both cytokine-induced phagocytosis and phagocytosis induced by the combination of cytokines plus DCF. Furthermore, the NO donor sodium nitroprusside induced phagocytosis, indicating that NO production is a key regulator of microglial phagocytosis. In conclusion, DCF acts synergistically with proinflammatory cytokines to increase the production of NO in microglia, leading to phagocytic activity of the activated microglia. These findings, together with previous observations regarding astrocytes, may explain the significant increase in mortality of IAE patients treated with DCF. - Highlights: ► Influenza-associated encephalopathy (IAE) is associated with a high mortality rate. ► Hyperimmunization in the brain is believed to be responsible for

  15. Total body fat, pro-inflammatory cytokines and insulin resistance in Indian subjects

    International Nuclear Information System (INIS)

    Yajnik, C.S.; Yudkin, J.S.; Shetty, P.S.; Kurpad, A.

    1999-01-01

    There is a growing epidemic of insulin resistance syndrome (IRS) in Indians. We postulate that increased susceptibility of the urban Indians to insulin resistance is a result of a tendency to increased fat deposition from the time of intrauterine life (thrifty phenotype), exaggerated in the urban environment by a positive energy balance. The pro-inflammatory cytokines secreted by the inflammatory cells as well by the adipose tissue could aggravate insulin resistance and endothelial damage and therefore, increase the susceptibility to type 2 diabetes and coronary heart disease (CHD) independent of the previously proposed glucose fatty acid cycle mechanism. In a preliminary study, we propose to make detailed measurements of the proposed mechanisms in a selected population from 3 geographical locations in and near the city of Pune, India and also validate simple 'epidemiologic' measurements of body composition with 'reference' measurements. One hundred men (30 to 50y) each from the three geographical locations (rural, urban slum-dwellers and urban middle class in Pune) will be studied for: (i) Body composition: Anthropometric and bioimpedance measurement of total body fat (to be calibrated against deuterated water in 30 subjects from each location), and muscle mass by anthropometry and urinary creatinine excretion; (ii) Body fat distribution by subscapular- triceps ratio, waist-hip ratio; (iii) Metabolic: Glucose tolerance and insulin resistance variables (insulin, lipids, NEFA) and leptin; (iv) Endothelial markers: e-Selectin and von Willebrand Factor (vWF); (v) Inflammatory markers and pro-inflammatory cytokines: C-reactive protein (CRP), Interleukin-6 (IL-6) and tumour necrosis factor (TNF- α); (vi) Energy Balance: Assessment of nutritional intake (calories, carbohydrates, proteins and fats, n3 and n6 fatty acids) and physical activity by a questionnaire. Insulin resistance variables, endothelial markers, cytokines and obesity parameters will be compared in the 3

  16. Adiponectin and pro-inflammatory cytokines are modulated in Vietnamese patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Tong, Hoang Van; Luu, Nguyen Kim; Son, Ho Anh; Hoan, Nguyen Van; Hung, Trinh Thanh; Velavan, Thirumalaisamy P; Toan, Nguyen Linh

    2017-05-01

    Adipose tissue-derived hormones are associated with metabolic disorders including type 2 diabetes mellitus. The present study investigated the levels of adiponectin and pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-1 beta (IL-1β) and IL-10 in Vietnamese patients with type 2 diabetes mellitus, and their correlations with clinical parameters of overweight and type 2 diabetes mellitus. Based on body mass index, 73 patients with type 2 diabetes mellitus were categorized either as overweight or non-overweight. As healthy controls, 57 overweight and non-overweight individuals without type 2 diabetes mellitus were included. The adiponectin, TNF-α, IL-1β and IL-10 levels were measured in the sera samples in all study participants by enzyme-linked immunosorbent assay and were correlated with clinical parameters. The adiponectin levels were lower in patients with type 2 diabetes mellitus (2.5 ± 1.5 μg/mL) compared with controls (16 ± 18.6 μg/mL; P < 0.0001), and were decreased in overweight individuals compared with those who were not overweight. The TNF-α and IL-1β levels were increased, whereas the IL-10 levels were decreased in patients with type 2 diabetes mellitus and in overweight controls compared with non-overweight controls (P < 0.0001). The adiponectin levels were correlated with the TNF-α, IL-1β, IL-10 levels, and the clinical parameters of overweight and type 2 diabetes mellitus. The quantitative insulin sensitivity check index and homeostasis model assessment insulin resistance indexes were correlated with the relative ratios of adiponectin/TNF-α, adiponectin/IL-1β, adiponectin/IL-10, TNF-α/IL-10 and IL-1β/IL-10. Adiponectin and pro-inflammatory cytokines are associated with type 2 diabetes mellitus, and might serve as a prognostic marker and a therapeutic intervention for overweight-related type 2 diabetes mellitus. © 2016 The Authors. Journal of Diabetes Investigation published by Asian Association for the

  17. Pro-Inflammatory Cytokine Levels in HIV Infected and Uninfected Pregnant Women with and without Preeclampsia.

    Directory of Open Access Journals (Sweden)

    Niren Ray Maharaj

    Full Text Available Preeclampsia and HIV/AIDS are inflammatory conditions that contribute significantly to adverse maternal and foetal outcomes. The immune reconstitution effects of HAART on inflammatory mediators has not been adequately studied in pregnancy and may impact on the inflammatory cytokine network in women with co-morbid preeclampsia. Our study evaluated changes in pro-inflammatory cytokines IL-2, TNF-α, IFN-γ and IL-6 in HIV infected preeclamptic women on HAART.A prospective experimental study was conducted at Prince Mshiyeni Memorial Hospital between July 2013 and September 2014. One hundred and ninety three pregnant women were recruited into 4 groups: uninfected normotensive (50; 26%, infected normotensive (45; 23%, uninfected preeclamptic (53; 28% and infected preeclamptic women (45; 23%. Serum levels of cytokines TNF-α, IFN- γ, IL-2 and IL-6 were determined using commercially available kits and a Cytometric Bead Array (CBA. Comparative data was recorded and analysed descriptively.In the control groups (normotensive, significantly lower values were found in IL-2 (p = 0.010, TNF-α (p = 0.045, and IL-6 (p = 0.005; and a non-significant decrease was observed in IFN-γ (p = 0.345 in HIV infected women on HAART compared to uninfected controls. In the experimental group (preeclamptic women, significantly reduced levels were observed in IL-2 and TNF-α (p = 0.001; p = 0.000 and non-significant decreases were observed in IFN-γ and IL-6 (p = 0.023; p = 0.086 in HIV infected women on HAART compared with uninfected preeclamptic women. Non-significant differences were observed between uninfected preeclamptic and normotensive women.In uncomplicated/normotensive pregnancies, HIV/HAART is associated with significant decreases in IL-2, TNF-α and IL-6, and in preeclamptic women significant decreases in IL-2 and TNF-α were observed. These findings suggest that HIV/HAART impacts on pro-inflammatory cytokines in women with co-morbid preeclampsia. This provides

  18. Melanocortin peptides inhibit production of proinflammatory cytokines and nitric oxide by activated microglia.

    Science.gov (United States)

    Delgado, R; Carlin, A; Airaghi, L; Demitri, M T; Meda, L; Galimberti, D; Baron, P; Lipton, J M; Catania, A

    1998-06-01

    Inflammatory processes contribute to neurodegenerative disease, stroke, encephalitis, and other central nervous system (CNS) disorders. Activated microglia are a source of cytokines and other inflammatory agents within the CNS and it is therefore important to control glial function in order to preserve neural cells. Melanocortin peptides are pro-opiomelanocortin-derived amino acid sequences that include alpha-melanocyte-stimulating hormone (alpha-MSH) and adrenocorticotropic hormone (ACTH). These peptides have potent and broad anti-inflammatory effects. We tested effects of alpha-MSH (1-13), alpha-MSH (11-13), and ACTH (1-24) on production of tumor necrosis factor alpha (TNF-alpha), interleukin-6 (IL-6), and nitric oxide (NO) in a cultured murine microglial cell line (N9) stimulated with lipopolysaccharide (LPS) plus interferon gamma (IFN-gamma). Melanocortin peptides inhibited production of these cytokines and NO in a concentration-related fashion, probably by increasing intracellular cAMP. When stimulated with LPS + IFN-gamma, microglia increased release of alpha-MSH. Production of TNF-alpha, IL-6, and NO was greater in activated microglia after innmunoneutralization of endogenous alpha-MSH. The results suggest that alpha-MSH is an autocrine factor in microglia. Because melanocortin peptides inhibit production of pro-inflammatory mediators by activated microglia they might be useful in treatment of inflammatory/degenerative brain disorders.

  19. Pro-inflammatory signaling by IL-10 and IL-22: bad habit stirred up by interferons ?

    Directory of Open Access Journals (Sweden)

    Heiko eMühl

    2013-02-01

    Full Text Available Interleukin (IL-10 and IL-22 are key members of the IL-10 cytokine family that share characteristic properties such as defined structural features, usage of IL-10R2 as one receptor chain, and activation of signal transducer and activator of transcription (STAT-3 as dominant signaling mode. IL-10, formerly known as cytokine synthesis inhibitory factor, is key to deactivation of monocytes/macrophages and dendritic cells. Accordingly, pre-clinical studies document its anti-inflammatory capacity. However, the outcome of clinical trials assessing the therapeutic potential of IL-10 in prototypic inflammatory disorders has been disappointing. In contrast to IL-10, IL-22 acts primarily on non-leukocytic cells, in particular epithelial cells of intestine, skin, liver, and lung. STAT3-driven proliferation, anti-apoptosis, and anti-microbial tissue protection is regarded a principal function of IL-22 at host/environment interfaces. In this hypothesis article, hidden/underappreciated pro-inflammatory characteristics of IL-10 and IL-22 are outlined and related to cellular priming by type I interferon. It is tempting to speculate that an inherent inflammatory potential of IL-10 and IL-22 confines their usage in tissue protective therapy and beyond that determines in some patients efficacy of type I interferon treatment.

  20. Plasma visfatin level in lean women with PCOS: relation to proinflammatory markers and insulin resistance.

    Science.gov (United States)

    Gen, Ramazan; Akbay, Esen; Muslu, Necati; Sezer, Kerem; Cayan, Filiz

    2009-04-01

    The present study was undertaken to investigate the association between plasma visfatin concentrations and inflammatory markers such as interleukin-6 (IL-6) and high-sensitive C-reactive protein (hsCRP) in company with several metabolic parameters in lean women with polycystic ovary syndrome (PCOS). The study group consisted of 21 lean women with PCOS (BMI 20.74 +/- 1.74 kg/m(2)) and 15 healthy, normally menstruating women (BMI 20.85 +/- 2.08 kg/m(2) control group). PCOS was defined according to the Rotterdam criteria. Visfatin, IL-6, hsCRP, hyperandrogenism markers and metabolic markers were examined in all PCOS and control women. Plasma visfatin level in the PCOS group was higher than that in the control group. Plasma hsCRP and IL-6 levels in PCOS group were similar with the control group. Plasma visfatin levels were positively associated with total cholesterol, high density lipoprotein, hirsutism score, total testosterone and FAI. Plasma visfatin level was negatively associated with SHBG. However, there were no correlation between plasma visfatin level and IL-6 and hsCRP. In multivariate regression analyses, only FAI and high density lipoprotein-cholesterol (HDL-C) showed a significant association with serum visfatin. Our data indicates that plasma visfatin levels are associated with HDL-C and markers of hyperandrogenism, but it is not associated with proinflammatory markers and insulin resistance in lean women with PCOS.

  1. Epithelial cell pro-inflammatory cytokine response differs across dental plaque bacterial species.

    Science.gov (United States)

    Stathopoulou, Panagiota G; Benakanakere, Manjunatha R; Galicia, Johnah C; Kinane, Denis F

    2010-01-01

    The dental plaque is comprised of numerous bacterial species, which may or may not be pathogenic. Human gingival epithelial cells (HGECs) respond to perturbation by various bacteria of the dental plaque by production of different levels of inflammatory cytokines, which is a putative reflection of their virulence. The aim of the current study was to determine responses in terms of interleukin (IL)-1beta, IL-6, IL-8 and IL-10 secretion induced by Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum and Streptococcus gordonii in order to gauge their virulence potential. HGECs were challenged with the four bacterial species, live or heat killed, at various multiplicity of infections and the elicited IL-1beta, IL-6, IL-8 and IL-10 responses were assayed by enzyme-linked immunosorbent assay. Primary HGECs challenged with live P. gingivalis produced high levels of IL-1beta, while challenge with live A. actinomycetemcomitans gave high levels of IL-8. The opportunistic pathogen F. nucleatum induces the highest levels of pro-inflammatory cytokines, while the commensal S. gordonii is the least stimulatory. We conclude that various dental plaque biofilm bacteria induce different cytokine response profiles in primary HGECs that may reflect their individual virulence or commensal status.

  2. Proinflammatory and proosteoclastogenic potential of peripheral blood mononuclear cells from Gaucher patients: Implication for bone pathology.

    Science.gov (United States)

    Mucci, J M; Cuello, M F; Kisinovsky, I; Larroude, M; Delpino, M V; Rozenfeld, P A

    2015-08-01

    Gaucher disease (GD) is caused by mutations in the GBA gene that confer a deficient level of activity of glucocerebrosidase (GCase). This deficiency leads to the accumulation of the glycolipid glucocerebroside in the lysosomes of cells of monocyte/macrophage system. Bone compromise in Gaucher disease patients is the most disabling aspect of the disease. However, pathophysiological aspects of skeletal alterations are still poorly understood. On the other hand it is well known that inflammation is a key player in GD pathology. In this work, we revealed increased levels of the proinflammatory CD14(+)CD16(+) monocyte subset and increased inflammatory cytokine production by monocytes and T cells in the circulation of GD patients. We showed increased levels of osteoclast precursors in PBMC from patients and a higher expression of RANKL in the surface of T cells. PBMC from patients presented higher osteoclast differentiation compared to healthy controls when cultured in the presence of M-CSF alone or in combination with RANKL. In vitro treatment with Velaglucerase reduced osteoclast levels to control levels. On the other hand THP-1 derived osteoclast precursors cultured in the presence of conditioned media from PBMC of GD patients presented higher differentiation to active osteoclasts. This induction involved TNF-α and RANKL. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. MULTIMODAL ANALGESIC EFFECT ON PROINFLAMMATORY AND ANTI-INFLAMMATORY CYTOKINES SERUM

    Directory of Open Access Journals (Sweden)

    Muhammad Ramli Ahmad

    2014-06-01

    Full Text Available Objective: To investigate the effect of combination epidural bupivacaine and intravenous parecoxib analgesia on immune response in patients who underwent open reduction and internal fixation of the lower limb under epidural anesthesia. Methods: This research was conducted using the randomized, placebo-controlled double blind trial method on 52 patients who were randomly divided into 2 groups: the Parecoxib group which received 40 mg intravenous parecoxib for 30 minutes before incision and the control group which received an equal volume of 0.9% normal saline. Both groups received epidural anesthesia and postoperative epidural 0.125% bupivacaine analgesia continously. Venous blood samples were obtained before parecoxib administration, 2 and 24 hours after the surgery. The data were analyzed using Mann Whitney U and independent t tests (p<0.05. Results: There was a significant difference between the two groups (p<0.05 in IL-1β, IL-6, IL-10 levels and proinflammatory to anti-inflammatory ratio, 2 hours after surgery. Conclusions: Multimodal analgesic combination of 40 mg IV parecoxib and 0.125% bupivacaine epidural analgesia have the effect to alter and stabilize the systemic immune response.

  4. Reduced Pro-Inflammatory Cytokines after Eight Weeks of Low-Dose Naltrexone for Fibromyalgia

    Directory of Open Access Journals (Sweden)

    Luke Parkitny

    2017-04-01

    Full Text Available Fibromyalgia (FM is a complex, multi-symptom condition that predominantly affects women. The majority of those affected are unlikely to gain significant symptomatic control from the few treatments that are approved for FM. In this 10-week, single-blind, crossover trial we tested the immune effects of eight weeks of oral administration of low-dose naltrexone (LDN. We enrolled eight women with an average age of 46 years, symptom severity of 62 out of 100, and symptom duration of 14 years. We found that LDN was associated with reduced plasma concentrations of interleukin (IL-1β, IL-1Ra, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12p40, IL-12p70, IL-15, IL-17A, IL-27, interferon (IFN-α, transforming growth factor (TGF-α, TGF-β, tumor necrosis factor (TNF-α, and granulocyte-colony stimulating factor (G-CSF. We also found a 15% reduction of FM-associated pain and an 18% reduction in overall symptoms. The findings of this pilot trial suggest that LDN treatment in fibromyalgia is associated with a reduction of several key pro-inflammatory cytokines and symptoms. The potential role of LDN as an atypical anti-inflammatory medication should be explored further.

  5. Costunolide inhibits proinflammatory cytokines and iNOS in activated murine BV2 microglia.

    Science.gov (United States)

    Rayan, Nirmala Arul; Baby, Nimmi; Pitchai, Daisy; Indraswari, Fransisca; Ling, Eng-Ang; Lu, Jia; Dheen, Thameem

    2011-06-01

    Costunolide, a sesquiterpene lactone present in Costus speciosus root exerts a variety of pharmacological activity but its effects on neuroinflammation have not been studied. Microglia, the resident phagocytic cells in the central nervous system respond to neuroinflammation and their overwhelming response in turn aggravate brain damage during infection, ischemia and neurodegenerative diseases. In this study, we report the effect of Costunolide on the production of proinflammatory mediators and mechanisms involved in BV2 microglial cells stimulated with LPS. Costunolide attenuated the expression of tumour necrosis factor-alpha, interleukin-1,6, inducible nitric oxide synthase, monocyte chemotactic protein 1 and cyclooxygenase 2 in activated microglia. This Costunolide-mediated inhibition was correspondent with the inhibition of NFkappaB activation. It has been further shown that Costunolide suppressed MAPK pathway activation by inducing MKP-1 production. Collectively our results suggest that Costunolide shows an ability to inhibit expression of multiple neuroinflammatory mediators and this is attributable to the compounds inhibition of NFkappaB and MAPK activation. This novel role of Costunolide upon investigation may aid in developing better therapeutic strategies for treatment of neuroinflammatory diseases.

  6. Biomechanical Loading Modulates Proinflammatory and Bone Resorptive Mediators in Bacterial-Stimulated PDL Cells

    Directory of Open Access Journals (Sweden)

    Andressa Vilas Boas Nogueira

    2014-01-01

    Full Text Available The present study aimed to evaluate in vitro whether biomechanical loading modulates proinflammatory and bone remodeling mediators production by periodontal ligament (PDL cells in the presence of bacterial challenge. Cells were seeded on BioFlex culture plates and exposed to Fusobacterium nucleatum ATCC 25586 and/or cyclic tensile strain (CTS of low (CTSL and high (CTSH magnitudes for 1 and 3 days. Synthesis of cyclooxygenase-2 (COX2 and prostaglandin E2 (PGE2 was evaluated by ELISA. Gene expression and protein secretion of osteoprotegerin (OPG and receptor activator of nuclear factor kappa-B ligand (RANKL were evaluated by quantitative RT-PCR and ELISA, respectively. F. nucleatum increased the production of COX2 and PGE2, which was further increased by CTS. F. nucleatum-induced increase of PGE2 synthesis was significantly (P<0.05 increased when CTSH was applied at 1 and 3 days. In addition, CTSH inhibited the F. nucleatum-induced upregulation of OPG at 1 and 3 days, thereby increasing the RANKL/OPG ratio. OPG and RANKL mRNA results correlated with the protein results. In summary, our findings provide original evidence that CTS can enhance bacterial-induced syntheses of molecules associated with inflammation and bone resorption by PDL cells. Therefore, biomechanical, such as orthodontic or occlusal, loading may enhance the bacterial-induced inflammation and destruction in periodontitis.

  7. A secreted Salmonella protein induces a proinflammatory response in epithelial cells, which promotes neutrophil migration.

    Science.gov (United States)

    Lee, C A; Silva, M; Siber, A M; Kelly, A J; Galyov, E; McCormick, B A

    2000-10-24

    In response to Salmonella typhimurium, the intestinal epithelium generates an intense inflammatory response consisting largely of polymorphonuclear leukocytes (neutrophils, PMN) migrating toward and ultimately across the epithelial monolayer into the intestinal lumen. It has been shown that bacterial-epithelial cell interactions elicit the production of inflammatory regulators that promote transepithelial PMN migration. Although S. typhimurium can enter intestinal epithelial cells, bacterial internalization is not required for the signaling mechanisms that induce PMN movement. Here, we sought to determine which S. typhimurium factors and intestinal epithelial signaling pathways elicit the production of PMN chemoattractants by enterocytes. Our results suggest that S. typhimurium activates a protein kinase C-dependent signal transduction pathway that orchestrates transepithelial PMN movement. We show that the type III effector protein, SipA, is not only necessary but is sufficient to induce this proinflammatory response in epithelial cells. Our results force us to reconsider the long-held view that Salmonella effector proteins must be directly delivered into host cells from bacterial cells.

  8. Transcutaneous electrical nerve stimulation (TENS) accelerates cutaneous wound healing and inhibits pro-inflammatory cytokines.

    Science.gov (United States)

    Gürgen, Seren Gülşen; Sayın, Oya; Cetin, Ferihan; Tuç Yücel, Ayşe

    2014-06-01

    The purpose of this study was to evaluate transcutaneous electrical nerve stimulation (TENS) and other common treatment methods used in the process of wound healing in terms of the expression levels of pro-inflammatory cytokines. In the study, 24 female and 24 male adult Wistar-Albino rats were divided into five groups: (1) the non-wounded group having no incision wounds, (2) the control group having incision wounds, (3) the TENS (2 Hz, 15 min) group, (4) the physiological saline (PS) group and (5) the povidone iodine (PI) group. In the skin sections, interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were assessed with enzyme-linked immunosorbent assay and immunohistochemical methods. In the non-wounded group, the expression of IL-1β, IL-6, and TNF-α signaling molecules was weaker in the whole tissue; however, in the control group, significant inflammatory response occurred, and strong cytokine expression was observed in the dermis, granulation tissue, hair follicles, and sebaceous glands (P TENS group, the decrease in TNF-α, IL-1β, and IL-6 immunoreaction in the skin was significant compared to the other forms of treatment (P TENS group suggest that TENS shortened the healing process by inhibating the inflammation phase.

  9. Macrophage pro-inflammatory response to Francisella novicida infection is regulated by SHIP.

    Directory of Open Access Journals (Sweden)

    Kishore V L Parsa

    2006-07-01

    Full Text Available Francisella tularensis, a Gram-negative facultative intracellular pathogen infecting principally macrophages and monocytes, is the etiological agent of tularemia. Macrophage responses to F. tularensis infection include the production of pro-inflammatory cytokines such as interleukin (IL-12, which is critical for immunity against infection. Molecular mechanisms regulating production of these inflammatory mediators are poorly understood. Herein we report that the SH2 domain-containing inositol phosphatase (SHIP is phosphorylated upon infection of primary murine macrophages with the genetically related F. novicida, and negatively regulates F. novicida-induced cytokine production. Analyses of the molecular details revealed that in addition to activating the MAP kinases, F. novicida infection also activated the phosphatidylinositol 3-kinase (PI3K/Akt pathway in these cells. Interestingly, SHIP-deficient macrophages displayed enhanced Akt activation upon F. novicida infection, suggesting elevated PI3K-dependent activation pathways in absence of SHIP. Inhibition of PI3K/Akt resulted in suppression of F. novicida-induced cytokine production through the inhibition of NFkappaB. Consistently, macrophages lacking SHIP displayed enhanced NFkappaB-driven gene transcription, whereas overexpression of SHIP led to decreased NFkappaB activation. Thus, we propose that SHIP negatively regulates F. novicida-induced inflammatory cytokine response by antagonizing the PI3K/Akt pathway and suppressing NFkappaB-mediated gene transcription. A detailed analysis of phosphoinositide signaling may provide valuable clues for better understanding the pathogenesis of tularemia.

  10. Mucorales spores induce a proinflammatory cytokine response in human mononuclear phagocytes and harbor no rodlet hydrophobins.

    Science.gov (United States)

    Wurster, Sebastian; Thielen, Vanessa; Weis, Philipp; Walther, Paul; Elias, Johannes; Waaga-Gasser, Ana Maria; Dragan, Mariola; Dandekar, Thomas; Einsele, Hermann; Löffler, Jürgen; Ullmann, Andrew J

    2017-11-17

    Mucormycoses are life-threatening infections in immunocompromised patients. This study characterizes the response of human mononuclear cells to different Mucorales and Ascomycota. PBMC, monocytes, and monocyte derived dendritic cells (moDCs) from healthy donors were stimulated with resting and germinated stages of Mucorales and Ascomycota. Cytokine response and expression of activation markers were studied. Both inactivated germ tubes and resting spores of Rhizopus arrhizus and other human pathogenic Mucorales species significantly stimulated mRNA synthesis and secretion of proinflammatory cytokines. Moreover, R. arrhizus spores induced the upregulation of co-stimulatory molecules on moDCs and a specific T-helper cell response. Removal of rodlet hydrophobins by hydrofluoric acid treatment of A. fumigatus conidia resulted in enhanced immunogenicity, whereas the cytokine response of PBMCs to dormant R. arrhizus spores was not influenced by hydrofluoric acid. Scanning electron micrographs of Mucorales spores did not exhibit any morphological correlates of rodlet hydrophobins. Taken together, this study revealed striking differences in the response of human mononuclear cells to resting stages of Ascomycota and Mucorales, which may be explained by absence of an immunoprotective hydrophobin layer in Mucorales spores.

  11. Proinflammatory Cytokine IL-6 and JAK-STAT Signaling Pathway in Myeloproliferative Neoplasms

    Directory of Open Access Journals (Sweden)

    Vladan P. Čokić

    2015-01-01

    Full Text Available The recent JAK1/2 inhibitor trial in myeloproliferative neoplasms (MPNs showed that reducing inflammation can be more beneficial than targeting gene mutants. We evaluated the proinflammatory IL-6 cytokine and JAK-STAT signaling pathway related genes in circulating CD34+ cells of MPNs. Regarding laboratory data, leukocytosis has been observed in polycythemia vera (PV and JAK2V617F mutation positive versus negative primary myelofibrosis (PMF patients. Moreover, thrombocytosis was reduced by JAK2V617F allele burden in essential thrombocythemia (ET and PMF. 261 significantly changed genes have been detected in PV, 82 in ET, and 94 genes in PMF. The following JAK-STAT signaling pathway related genes had augmented expression in CD34+ cells of MPNs: CCND3 and IL23A regardless of JAK2V617F allele burden; CSF3R, IL6ST, and STAT1/2 in ET and PV with JAK2V617F mutation; and AKT2, IFNGR2, PIM1, PTPN11, and STAT3 only in PV. STAT5A gene expression was generally reduced in MPNs. IL-6 cytokine levels were increased in plasma, as well as IL-6 protein levels in bone marrow stroma of MPNs, dependent on JAK2V617F mutation presence in ET and PMF patients. Therefore, the JAK2V617F mutant allele burden participated in inflammation biomarkers induction and related signaling pathways activation in MPNs.

  12. Leptin regulates the pro-inflammatory response in human epidermal keratinocytes.

    Science.gov (United States)

    Lee, Moonyoung; Lee, Eunyoung; Jin, Sun Hee; Ahn, Sungjin; Kim, Sae On; Kim, Jungmin; Choi, Dalwoong; Lim, Kyung-Min; Lee, Seung-Taek; Noh, Minsoo

    2018-05-01

    The role of leptin in cutaneous wound healing process has been suggested in genetically obese mouse studies. However, the molecular and cellular effects of leptin on human epidermal keratinocytes are still unclear. In this study, the whole-genome-scale microarray analysis was performed to elucidate the effect of leptin on epidermal keratinocyte functions. In the leptin-treated normal human keratinocytes (NHKs), we identified the 151 upregulated and 53 downregulated differentially expressed genes (DEGs). The gene ontology (GO) enrichment analysis with the leptin-induced DEGs suggests that leptin regulates NHKs to promote pro-inflammatory responses, extracellular matrix organization, and angiogenesis. Among the DEGs, the protein expression of IL-8, MMP-1, fibronectin, and S100A7, which play roles in which is important in the regulation of cutaneous inflammation, was confirmed in the leptin-treated NHKs. The upregulation of the leptin-induced proteins is mainly regulated by the STAT3 signaling pathway in NHKs. Among the downregulated DEGs, the protein expression of nucleosome assembly-associated centromere protein A (CENPA) and CENPM was confirmed in the leptin-treated NHKs. However, the expression of CENPA and CENPM was not coupled with those of other chromosome passenger complex like Aurora A kinase, INCENP, and survivin. In cell growth kinetics analysis, leptin had no significant effect on the cell growth curves of NHKs in the normal growth factor-enriched condition. Therefore, leptin-dependent downregulation of CENPA and CENPM in NHKs may not be directly associated with mitotic regulation during inflammation.

  13. Glycocalyx Degradation Induces a Proinflammatory Phenotype and Increased Leukocyte Adhesion in Cultured Endothelial Cells under Flow.

    Directory of Open Access Journals (Sweden)

    Karli K McDonald

    Full Text Available Leukocyte adhesion to the endothelium is an early step in the pathogenesis of atherosclerosis. Effective adhesion requires the binding of leukocytes to their cognate receptors on the surface of endothelial cells. The glycocalyx covers the surface of endothelial cells and is important in the mechanotransduction of shear stress. This study aimed to identify the molecular mechanisms underlying the role of the glycocalyx in leukocyte adhesion under flow. We performed experiments using 3-D cell culture models, exposing human abdominal aortic endothelial cells to steady laminar shear stress (10 dynes/cm2 for 24 hours. We found that with the enzymatic degradation of the glycocalyx, endothelial cells developed a proinflammatory phenotype when exposed to uniform steady shear stress leading to an increase in leukocyte adhesion. Our results show an up-regulation of ICAM-1 with degradation compared to non-degraded controls (3-fold increase, p<0.05 and we attribute this effect to a de-regulation in NF-κB activity in response to flow. These results suggest that the glycocalyx is not solely a physical barrier to adhesion but rather plays an important role in governing the phenotype of endothelial cells, a key determinant in leukocyte adhesion. We provide evidence for how the destabilization of this structure may be an early and defining feature in the initiation of atherosclerosis.

  14. Pro-inflammatory effects and oxidative stress in lung macrophages and epithelial cells induced by ambient particulate matter.

    Science.gov (United States)

    Michael, S; Montag, M; Dott, W

    2013-12-01

    The objective of this study was to compare the toxicological effects of different source-related ambient PM10 samples in regard to their chemical composition. In this context we investigated airborne PM from different sites in Aachen, Germany. For the toxicological investigation human alveolar epithelial cells (A549) and murine macrophages (RAW264.7) were exposed from 0 to 96 h to increasing PM concentrations (0-100 μg/ml) followed by analyses of cell viability, pro-inflammatory and oxidative stress responses. The chemical analysis of these particles indicated the presence of 21 elements, water-soluble ions and PAHs. The toxicological investigations of the PM10 samples demonstrated a concentration- and time-dependent decrease in cell viability and an increase in pro-inflammatory and oxidative stress markers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Maggot secretions skew monocyte-macrophage differentiation away from a pro-inflammatory to a pro-angiogenic type

    DEFF Research Database (Denmark)

    van der Plas, Mariena J A; van Dissel, Jaap T; Nibbering, Peter H

    2009-01-01

    BACKGROUND: Maggots of the blowfly Lucilia sericata are used for the treatment of chronic wounds. Earlier we reported maggot secretions to inhibit pro-inflammatory responses of human monocytes. The aim of this study was to investigate the effect of maggot secretions on the differentiation...... for 18 h. The expression of cell surface molecules and the levels of cytokines, chemokines and growth factors in supernatants were measured. Our results showed secretions to affect monocyte-macrophage differentiation leading to MØ-1 with a partial MØ-2-like morphology but lacking CD163, which...... is characteristic for MØ-2. In response to LPS or LTA, secretions-differentiated MØ-1 produced less pro-inflammatory cytokines (TNF-alpha, IL-12p40 and MIF) than control cells. Similar results were observed for MØ-2 when stimulated with low concentrations of LPS. Furthermore, secretions dose-dependently led to MØ-1...

  16. Enhancement of proinflammatory and procoagulant responses to silica particles by monocyte-endothelial cell interactions

    Directory of Open Access Journals (Sweden)

    Liu Xin

    2012-09-01

    Full Text Available Abstract Background Inorganic particles, such as drug carriers or contrast agents, are often introduced into the vascular system. Many key components of the in vivo vascular environment include monocyte-endothelial cell interactions, which are important in the initiation of cardiovascular disease. To better understand the effect of particles on vascular function, the present study explored the direct biological effects of particles on human umbilical vein endothelial cells (HUVECs and monocytes (THP-1 cells. In addition, the integrated effects and possible mechanism of particle-mediated monocyte-endothelial cell interactions were investigated using a coculture model of HUVECs and THP-1 cells. Fe3O4 and SiO2 particles were chosen as the test materials in the present study. Results The cell viability data from an MTS assay showed that exposure to Fe3O4 or SiO2 particles at concentrations of 200 μg/mL and above significantly decreased the cell viability of HUVECs, but no significant loss in viability was observed in the THP-1 cells. TEM images indicated that with the accumulation of SiO2 particles in the cells, the size, structure and morphology of the lysosomes significantly changed in HUVECs, whereas the lysosomes of THP-1 cells were not altered. Our results showed that reactive oxygen species (ROS generation; the production of interleukin (IL-6, IL-8, monocyte chemoattractant protein 1 (MCP-1, tumor necrosis factor (TNF-α and IL-1β; and the expression of CD106, CD62E and tissue factor in HUVECs and monocytes were significantly enhanced to a greater degree in the SiO2-particle-activated cocultures compared with the individual cell types alone. In contrast, exposure to Fe3O4 particles had no impact on the activation of monocytes or endothelial cells in monoculture or coculture. Moreover, using treatment with the supernatants of SiO2-particle-stimulated monocytes or HUVECs, we found that the enhancement of proinflammatory response by SiO2

  17. Pro-inflammatory activated Kupffer cells by lipids induce hepatic NKT cells deficiency through activation-induced cell death.

    Directory of Open Access Journals (Sweden)

    Tongfang Tang

    Full Text Available BACKGROUND: Dietary lipids play an important role in the progression of non-alcoholic fatty liver disease (NAFLD through alternation of liver innate immune response. AIMS: The present study was to investigate the effect of lipid on Kupffer cells phenotype and function in vivo and in vitro. And further to investigate the impact of lipid on ability of Kupffer cell lipid antigen presentation to activate NKT cells. METHODS: Wild type male C57BL/6 mice were fed either normal or high-fat diet. Hepatic steatosis, Kupffer cell abundance, NKT cell number and cytokine gene expression were evaluated. Antigen presentation assay was performed with Kupffer cells treated with certain fatty acids in vitro and co-cultured with NKT cells. RESULTS: High-fat diet induced hepatosteatosis, significantly increased Kupffer cells and decreased hepatic NKT cells. Lipid treatment in vivo or in vitro induced increase of pro-inflammatory cytokines gene expression and toll-like receptor 4 (TLR4 expression in Kupffer cells. Kupffer cells expressed high levels of CD1d on cell surface and only presented exogenous lipid antigen to activate NKT cells. Ability of Kupffer cells to present antigen and activate NKT cells was enhanced after lipid treatment. In addition, pro-inflammatory activated Kupffer cells by lipid treatment induced hepatic NKT cells activation-induced apoptosis and necrosis. CONCLUSION: High-fat diet increase Kupffer cells number and induce their pro-inflammatory status. Pro-inflammatory activated Kupfffer cells by lipid promote hepatic NKT cell over-activation and cell death, which lead to further hepatic NKT cell deficiency in the development of NAFLD.

  18. Pro-inflammatory activated Kupffer cells by lipids induce hepatic NKT cells deficiency through activation-induced cell death.

    Science.gov (United States)

    Tang, Tongfang; Sui, Yongheng; Lian, Min; Li, Zhiping; Hua, Jing

    2013-01-01

    Dietary lipids play an important role in the progression of non-alcoholic fatty liver disease (NAFLD) through alternation of liver innate immune response. The present study was to investigate the effect of lipid on Kupffer cells phenotype and function in vivo and in vitro. And further to investigate the impact of lipid on ability of Kupffer cell lipid antigen presentation to activate NKT cells. Wild type male C57BL/6 mice were fed either normal or high-fat diet. Hepatic steatosis, Kupffer cell abundance, NKT cell number and cytokine gene expression were evaluated. Antigen presentation assay was performed with Kupffer cells treated with certain fatty acids in vitro and co-cultured with NKT cells. High-fat diet induced hepatosteatosis, significantly increased Kupffer cells and decreased hepatic NKT cells. Lipid treatment in vivo or in vitro induced increase of pro-inflammatory cytokines gene expression and toll-like receptor 4 (TLR4) expression in Kupffer cells. Kupffer cells expressed high levels of CD1d on cell surface and only presented exogenous lipid antigen to activate NKT cells. Ability of Kupffer cells to present antigen and activate NKT cells was enhanced after lipid treatment. In addition, pro-inflammatory activated Kupffer cells by lipid treatment induced hepatic NKT cells activation-induced apoptosis and necrosis. High-fat diet increase Kupffer cells number and induce their pro-inflammatory status. Pro-inflammatory activated Kupfffer cells by lipid promote hepatic NKT cell over-activation and cell death, which lead to further hepatic NKT cell deficiency in the development of NAFLD.

  19. Associations between socioeconomic factors and proinflammatory cytokines in children, adolescents and young adults: a systematic review protocol.

    Science.gov (United States)

    Fredman, Nick John; Duque, Gustavo; Duckham, Rachel Louise; Green, Darci; Brennan-Olsen, Sharon Lee

    2018-02-28

    There is now substantial evidence of a social gradient in bone health. Social stressors, related to socioeconomic status, are suggested to produce an inflammatory response marked by increased levels of proinflammatory cytokines. Here we focus on the particular role in the years before the achievement of peak bone mass, encompassing childhood, adolescence and young adulthood. An examination of such associations will help explain how social factors such as occupation, level of education and income may affect later-life bone disorders. This paper presents the protocol for a systematic review of existing literature regarding associations between socioeconomic factors and proinflammatory cytokines in those aged 6-30 years. We will conduct a systematic search of PubMed, OVID and CINAHL databases to identify articles that examine associations between socioeconomic factors and levels of proinflammatory cytokines, known to influence bone health, during childhood, adolescence or young adulthood. The findings of this review have implications for the equitable development of peak bone mass regardless of socioeconomic factors. Two independent reviewers will determine the eligibility of studies according to predetermined criteria, and studies will be assessed for methodological quality using a published scoring system. Should statistical heterogeneity be non-significant, we will conduct a meta-analysis; however, if heterogeneity prevent numerical syntheses, we will undertake a best-evidence analysis to determine whether socioeconomic differences exist in the levels of proinflammatory cytokines from childhood through to young adulthood. This study will be a systematic review of published data, and thus ethics approval is not required. In addition to peer-reviewed publication, these findings will be presented at professional conferences in national and international arenas. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All

  20. Diclofenac enhances proinflammatory cytokine-induced nitric oxide production through NF-κB signaling in cultured astrocytes

    International Nuclear Information System (INIS)

    Kakita, Hiroki; Aoyama, Mineyoshi; Hussein, Mohamed Hamed; Kato, Shin; Suzuki, Satoshi; Ito, Tetsuya; Togari, Hajime; Asai, Kiyofumi

    2009-01-01

    Recently, the number of reports of encephalitis/encephalopathy associated with influenza virus has increased. In addition, the use of a non-steroidal anti-inflammatory drug, diclofenac sodium (DCF), is associated with a significant increase in the mortality rate of influenza-associated encephalopathy. Activated astrocytes are a source of nitric oxide (NO), which is largely produced by inducible NO synthase (iNOS) in response to proinflammatory cytokines. Therefore, we investigated whether DCF enhances nitric oxide production in astrocytes stimulated with proinflammatory cytokines. We stimulated cultured rat astrocytes with three cytokines, interleukin-1β, tumor necrosis factor-α and interferon-γ, and then treated the astrocytes with DCF or acetaminophen (N-acetyl-p-aminophenol: APAP). iNOS and NO production in astrocyte cultures were induced by proinflammatory cytokines. The addition of DCF augmented NO production, but the addition of APAP did not. NF-κB inhibitors SN50 and MG132 inhibited iNOS gene expression in cytokine-stimulated astrocytes with or without DCF. Similarly, NF-κB p65 Stealth small interfering RNA suppressed iNOS gene expression in cytokine-stimulated astrocytes with or without DCF. LDH activity and DAPI staining showed that DCF induces cell damage in cytokine-stimulated astrocytes. An iNOS inhibitor, L-NMMA, inhibited the cytokine- and DCF-induced cell damage. In conclusion, this study demonstrates that iNOS and NO are induced in astrocyte cultures by proinflammatory cytokines. Addition of DCF further augments NO production. This effect is mediated via NF-κB signaling and leads to cell damage. The enhancement of DCF on NO production may explain the significant increase in the mortality rate of influenza-associated encephalopathy in patients treated with DCF.

  1. CD54-Mediated Interaction with Pro-inflammatory Macrophages Increases the Immunosuppressive Function of Human Mesenchymal Stromal Cells

    OpenAIRE

    Espagnolle, Nicolas; Balguerie, Ad?lie; Arnaud, Emmanuelle; Senseb?, Luc; Varin, Audrey

    2017-01-01

    Summary: Mesenchymal stromal cells (MSCs) sense and modulate inflammation and represent potential clinical treatment for immune disorders. However, many details of the bidirectional interaction of MSCs and the innate immune compartment are still unsolved. Here we describe an unconventional but functional interaction between pro-inflammatory classically activated macrophages (M1MΦ) and MSCs, with CD54 playing a central role. CD54 was upregulated and enriched specifically at the contact area be...

  2. Particles from wood smoke and traffic induce differential pro-inflammatory response patterns in co-cultures

    International Nuclear Information System (INIS)

    Kocbach, Anette; Herseth, Jan Inge; Lag, Marit; Refsnes, Magne; Schwarze, Per E.

    2008-01-01

    The inflammatory potential of particles from wood smoke and traffic has not been well elucidated. In this study, a contact co-culture of monocytes and pneumocytes was exposed to 10-40 μg/cm 2 of particles from wood smoke and traffic for 12, 40 and 64 h to determine their influence on pro-inflammatory cytokine release (TNF-α, IL-1, IL-6, IL-8) and viability. To investigate the role of organic constituents in cytokine release the response to particles, their organic extracts and the washed particles were compared. Antagonists were used to investigate source-dependent differences in intercellular signalling (TNF-α, IL-1). The cytotoxicity was low after exposure to particles from both sources. However, wood smoke, and to a lesser degree traffic-derived particles, induced a reduction in cell number, which was associated with the organic fraction. The release of pro-inflammatory cytokines was similar for both sources after 12 h, but traffic induced a greater release than wood smoke particles with increasing exposure time. The organic fraction accounted for the majority of the cytokine release induced by wood smoke, whereas the washed traffic particles induced a stronger response than the corresponding organic extract. TNF-α and IL-1 antagonists reduced the release of IL-8 induced by particles from both sources. In contrast, the IL-6 release was only reduced by the IL-1 antagonist during exposure to traffic-derived particles. In summary, particles from wood smoke and traffic induced differential pro-inflammatory response patterns with respect to cytokine release and cell number. Moreover, the influence of the organic particle fraction and intercellular signalling on the pro-inflammatory response seemed to be source-dependent

  3. Pro-inflammatory stimulation of meniscus cells increases production of matrix metalloproteinases and additional catabolic factors involved in osteoarthritis pathogenesis

    Science.gov (United States)

    Stone, Austin V.; Loeser, Richard F.; Vanderman, Kadie S.; Long, David L.; Clark, Stephanie C.; Ferguson, Cristin M.

    2014-01-01

    Objective Meniscus injury increases the risk of osteoarthritis; however, the biologic mechanism remains unknown. We hypothesized that pro-inflammatory stimulation of meniscus would increase production of matrix-degrading enzymes, cytokines and chemokines which cause joint tissue destruction and could contribute to osteoarthritis development. Design Meniscus and cartilage tissue from healthy tissue donors and total knee arthroplasties was cultured. Primary cell cultures were stimulated with pro-inflammatory factors [IL-1β, IL-6, or fibronectin fragments (FnF)] and cellular responses were analyzed by real-time PCR, protein arrays and immunoblots. To determine if NF-κB was required for MMP production, meniscus cultures were treated with inflammatory factors with and without the NF-κB inhibitor, hypoestoxide. Results Normal and osteoarthritic meniscus cells increased their MMP secretion in response to stimulation, but specific patterns emerged that were unique to each stimulus with the greatest number of MMPs expressed in response to FnF. Meniscus collagen and connective tissue growth factor gene expression was reduced. Expression of cytokines (IL-1α, IL-1β, IL-6), chemokines (IL-8, CXCL1, CXCL2, CSF1) and components of the NF-κB and tumor necrosis factor (TNF) family were significantly increased. Cytokine and chemokine protein production was also increased by stimulation. When primary cell cultures were treated with hypoestoxide in conjunction with pro-inflammatory stimulation, p65 activation was reduced as were MMP-1 and MMP-3 production. Conclusions Pro-inflammatory stimulation of meniscus cells increased matrix metalloproteinase production and catabolic gene expression. The meniscus could have an active biologic role in osteoarthritis development following joint injury through increased production of cytokines, chemokines, and matrix-degrading enzymes. PMID:24315792

  4. ROS detoxification and proinflammatory cytokines are linked by p38 MAPK signaling in a model of mature astrocyte activation.

    Directory of Open Access Journals (Sweden)

    Adrian Nahirnyj

    Full Text Available Astrocytes are the most abundant glial cell in the retinal nerve fiber layer (NFL and optic nerve head (ONH, and perform essential roles in maintaining retinal ganglion cell (RGC detoxification and homeostasis. Mature astrocytes are relatively quiescent, but rapidly undergo a phenotypic switch in response to insult, characterized by upregulation of intermediate filament proteins, loss of glutamate buffering, secretion of pro-inflammatory cytokines, and increased antioxidant production. These changes result in both positive and negative influences on RGCs. However, the mechanism regulating these responses is still unclear, and pharmacologic strategies to modulate select aspects of this switch have not been thoroughly explored. Here we describe a system for rapid culture of mature astrocytes from the adult rat retina that remain relatively quiescent, but respond robustly when challenged with oxidative damage, a key pathogenic stress associated with inner retinal injury. When primary astrocytes were exposed to reactive oxygen species (ROS we consistently observed characteristic changes in activation markers, along with increased expression of detoxifying genes, and secretion of proinflammatory cytokines. This in vitro model was then used for a pilot chemical screen to target specific aspects of this switch. Increased activity of p38α and β Mitogen Activated Protein Kinases (MAPKs were identified as a necessary signal regulating expression of MnSOD, and heme oxygenase 1 (HO-1, with consequent changes in ROS-mediated injury. Additionally, multiplex cytokine profiling detected p38 MAPK-dependent secretion of IL-6, MCP-1, and MIP-2α, which are proinflammatory signals recently implicated in damage to the inner retina. These data provide a mechanism to link increased oxidative stress to proinflammatory signaling by astrocytes, and establish this assay as a useful model to further dissect factors regulating the reactive switch.

  5. Monocyte chemoattractant protein-1: a proinflammatory cytokine elevated in sarcopenic obesity

    Directory of Open Access Journals (Sweden)

    Lim JP

    2015-03-01

    Full Text Available Jun Pei Lim,1,2 Bernard P Leung,3 Yew Yoong Ding,1,2 Laura Tay,1,2 Noor Hafizah Ismail,2,4 Audrey Yeo,2 Suzanne Yew,2 Mei Sian Chong1,2 1Department of Geriatric Medicine, 2Institute of Geriatrics and Active Ageing, 3Department of Rheumatology, Allergy and Immunology, 4Department of Community and Continuing Care, Tan Tock Seng Hospital, Singapore Objective: Sarcopenic obesity (SO is associated with poorer physical outcomes and functional status in the older adult. A proinflammatory milieu associated with central obesity is postulated to enhance muscle catabolism. We set out to examine associations of the chemokine monocyte chemoattractant protein-1 (MCP-1 in groups of older adults, with sarcopenia, obesity, and the SO phenotypes.Methods: A total of 143 community dwelling, well, older adults were recruited. Cross-sectional clinical data, physical performance, and muscle mass measurements were collected. Obesity and sarcopenia were defined using revised National Cholesterol Education Program (NCEP obesity guidelines and those of the Asian Working Group for Sarcopenia. Serum levels of MCP-1 were measured by enzyme-linked immunosorbent assay (ELISA.Results: In all, 25.2% of subjects were normal, 15.4% sarcopenic, 48.3% obese, and 11.2% were SO. The SO groups had the lowest appendicular lean mass, highest percentage body fat, and lowest performance scores on the Short Physical Performance Battery and grip strength. The MCP-1 levels were significantly different, with the highest levels found in SO participants (P<0.05.Conclusion: Significantly raised MCP-1 levels in obese and SO subjects support the theory of chronic inflammation due to excess adiposity. Longitudinal studies will reveal whether SO represents a continuum of obesity causing accelerated sarcopenia and cardiovascular events, or the coexistence of two separate conditions with synergistic effects affecting functional performance. Keywords: chemokine C-C motif ligand 2 (CCL-2, elderly

  6. Prolonged REM sleep restriction induces metabolic syndrome-related changes: Mediation by pro-inflammatory cytokines.

    Science.gov (United States)

    Venancio, Daniel Paulino; Suchecki, Deborah

    2015-07-01

    Chronic sleep restriction in human beings results in metabolic abnormalities, including changes in the control of glucose homeostasis, increased body mass and risk of cardiovascular disease. In rats, 96h of REM sleep deprivation increases caloric intake, but retards body weight gain. Moreover, this procedure increases the expression of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), which may be involved with the molecular mechanism proposed to mediate insulin resistance. The goal of the present study was to assess the effects of a chronic protocol of sleep restriction on parameters of energy balance (food intake and body weight), leptin plasma levels and its hypothalamic receptors and mediators of the immune system in the retroperitoneal adipose tissue (RPAT). Thirty-four Wistar rats were distributed in control (CTL) and sleep restriction groups; the latter was kept onto individual narrow platforms immersed in water for 18h/day (from 16:00h to 10:00h), for 21days (SR21). Food intake was assessed daily, after each sleep restriction period and body weight was measured daily, after the animals were taken from the sleep deprivation chambers. At the end of the 21day of sleep restriction, rats were decapitated and RPAT was obtained for morphological and immune functional assays and expression of insulin receptor substrate 1 (IRS-1) was assessed in skeletal muscle. Another subset of animals was used to evaluate blood glucose clearance. The results replicated previous findings on energy balance, e.g., increased food intake and reduced body weight gain. There was a significant reduction of RPAT mass (pmetabolic syndrome-related alterations that may be mediated by inflammation of the RPAT. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Pro-inflammatory fatty acid profile and colorectal cancer risk: A Mendelian randomisation analysis.

    Science.gov (United States)

    May-Wilson, Sebastian; Sud, Amit; Law, Philip J; Palin, Kimmo; Tuupanen, Sari; Gylfe, Alexandra; Hänninen, Ulrika A; Cajuso, Tatiana; Tanskanen, Tomas; Kondelin, Johanna; Kaasinen, Eevi; Sarin, Antti-Pekka; Eriksson, Johan G; Rissanen, Harri; Knekt, Paul; Pukkala, Eero; Jousilahti, Pekka; Salomaa, Veikko; Ripatti, Samuli; Palotie, Aarno; Renkonen-Sinisalo, Laura; Lepistö, Anna; Böhm, Jan; Mecklin, Jukka-Pekka; Al-Tassan, Nada A; Palles, Claire; Farrington, Susan M; Timofeeva, Maria N; Meyer, Brian F; Wakil, Salma M; Campbell, Harry; Smith, Christopher G; Idziaszczyk, Shelley; Maughan, Timothy S; Fisher, David; Kerr, Rachel; Kerr, David; Passarelli, Michael N; Figueiredo, Jane C; Buchanan, Daniel D; Win, Aung K; Hopper, John L; Jenkins, Mark A; Lindor, Noralane M; Newcomb, Polly A; Gallinger, Steven; Conti, David; Schumacher, Fred; Casey, Graham; Aaltonen, Lauri A; Cheadle, Jeremy P; Tomlinson, Ian P; Dunlop, Malcolm G; Houlston, Richard S

    2017-10-01

    While dietary fat has been established as a risk factor for colorectal cancer (CRC), associations between fatty acids (FAs) and CRC have been inconsistent. Using Mendelian randomisation (MR), we sought to evaluate associations between polyunsaturated (PUFA), monounsaturated (MUFA) and saturated FAs (SFAs) and CRC risk. We analysed genotype data on 9254 CRC cases and 18,386 controls of European ancestry. Externally weighted polygenic risk scores were generated and used to evaluate associations with CRC per one standard deviation increase in genetically defined plasma FA levels. Risk reduction was observed for oleic and palmitoleic MUFAs (OR OA  = 0.77, 95% CI: 0.65-0.92, P = 3.9 × 10 -3 ; OR POA  = 0.36, 95% CI: 0.15-0.84, P = 0.018). PUFAs linoleic and arachidonic acid had negative and positive associations with CRC respectively (OR LA  = 0.95, 95% CI: 0.93-0.98, P = 3.7 × 10 -4 ; OR AA  = 1.05, 95% CI: 1.02-1.07, P = 1.7 × 10 -4 ). The SFA stearic acid was associated with increased CRC risk (OR SA  = 1.17, 95% CI: 1.01-1.35, P = 0.041). Results from our analysis are broadly consistent with a pro-inflammatory FA profile having a detrimental effect in terms of CRC risk. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Pro-inflammatory cytokine profile in dairy cows: consequences for new lactation

    Directory of Open Access Journals (Sweden)

    Erminio Trevisi

    2015-07-01

    Full Text Available To verify the potential relevance of proinflammatory cytokine (PIC with periparturient health problems and performances, the changes of plasma interleukin-1beta (IL-1β and interleukin-6 (IL-6 have been investigated in 21 Holstein-Friesian cows from 35 d before to 28 d after parturition. The overall PIC concentration was higher during late pregnancy compared to the first month of lactation, but showed a high variability among the cows. Therefore, cows were retrospectively divided in 3 groups according to the values of area under the concentration curve of IL- 1β concentrations from -35 d before to the day of parturition and designated as up (UPIL1, intermediate (INIL1 and low (LOIL1 IL-1β group. The concentrations of IL-6 and to some extent the concentrations of albumin and reactive oxygen metabolites (ROMs were well related to the grouping based on IL-1β concentrations. After calving the UPIL1 cows showed a more severe acute phase reaction (APR, based on the marked increase of haptoglobin and the lower plasma albumin concentrations during the first week of lactation, and the highest oxidative stress, based on the higher concentrations of ROMs. Moreover, the UPIL1 group showed higher number of mastitis, lower feed intake and milk yield compared with INIL1 and LOIL1. Our results demonstrated that cows with the highest PIC concentrations in the last month of pregnancy showed the worse health status in early lactation (clinical and subclinical problems and a lower milk yield. Thus, these data support the utility of PIC measurement in late pregnancy as prognostic markers for a risky transition period.

  9. Progression of symptomatic intracranial large artery atherosclerosis is associated with a proinflammatory state and impaired fibrinolysis.

    Science.gov (United States)

    Arenillas, Juan F; Alvarez-Sabín, José; Molina, Carlos A; Chacón, Pilar; Fernández-Cadenas, Israel; Ribó, Marc; Delgado, Pilar; Rubiera, Marta; Penalba, Anna; Rovira, Alex; Montaner, Joan

    2008-05-01

    The molecular pathways involved in the progression of intracranial large artery atherosclerosis (ILA) are largely unknown. Our objective was to prospectively study the relationship between circulating levels of inflammatory markers and fibrinolysis inhibitors, and the risk of progression of symptomatic ILA. Seventy-five consecutive patients with first-ever symptomatic intracranial atherostenosis were studied. Blood levels of C-reactive protein (CRP), E-selectin, monocyte chemoattractant protein-1, intercellular adhesion molecule-1, matrix metalloproteinases 1, 2, 3, 8, 9, 10, and 13, plasminogen activator inhibitor-1 (PAI-1), and lipoprotein(a) were measured 3 months after the qualifying stroke or transient ischemic attack. Thereafter, patients underwent long-term transcranial Doppler follow-up to detect progression of ILA. During a median follow-up time of 23 months, 25 (33%) patients showed ILA progression. Multivariable adjusted Cox regression models and Kaplan-Meier curves showed that high baseline level of CRP, E-selectin, intercellular adhesion molecule-1, matrix metalloproteinase 9, PAI-1, and lipoprotein(a) predicted ILA progression independently of vascular risk factors. Of them, only CRP (CRP>5.5 mg/L; HR, 5.4 [2.3 to 12.7]; P=0.0001) and PAI-1 (PAI-1>23.1 ng/mL; HR, 2.4 [1.0 to 5.8]; P=0.05) predicted ILA progression also independently of the other studied molecules. Progression of symptomatic ILA is associated with a proinflammatory state, as reflected by high levels of inflammatory markers, and with defective fibrinolysis, as indicated by raised concentrations of endogenous fibrinolysis inhibitors.

  10. Proinflammatory and Prothrombotic State in Subjects with Different Glucose Tolerance Status before Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Irma Isordia-Salas

    2014-01-01

    Full Text Available Background. Inflammation has been associated with insulin resistance, type 2 diabetes mellitus (T2DM, and atherothrombosis. Aim. To determine differences in levels of proinflammatory and prothrombotic markers such as high sensitivity C-reactive protein (hs-CRP and fibrinogen in subjects with normal glucose tolerance (NGT, prediabetes, and T2DM and to establish their relationship with other cardiovascular risk factors before clinical manifestations of cardiovascular disease. Methods. We conducted a nonrandomized, cross-sectional assay in a hospital at México City. The levels of hs-CRP and fibrinogen were measured and compared according to glucose tolerance status. Results. We enrolled 1047 individuals and they were distributed into NGT n=473, pre-DM n=250, and T2DM n=216. There was a statistical difference between NGT and T2DM groups for fibrinogen (P=0.01 and hs-CRP (P=0.05. Fibrinogen and hs-CRP showed a significant positive correlation coefficient (r=0.53, P<0.0001. In a multiple stepwise regression analysis, the variability in fibrinogen levels was explained by age, HbA1c, and hs-CRP (adjusted R2=0.31, P<0.0001, and for hs-CRP it was explained by BMI and fibrinogen (adjusted R2=0.33, P<0.0001. Conclusion. Inflammation and prothrombotic state are present in people with T2DM lacking cardiovascular disease. Fibrinogen and Hs-CRP are positively correlated. Fibrinogen and hs-CRP concentrations are predominantly determined by BMI rather than glucose levels.

  11. Osteoarthritis and rheumatoid arthritis pannus have similar qualitative metabolic characteristics and pro-inflammatory cytokine response.

    Science.gov (United States)

    Furuzawa-Carballeda, J; Macip-Rodríguez, P M; Cabral, A R

    2008-01-01

    Pannus in osteoarthritis (OA) has only recently been characterized. Little is known, however, regarding the behavior of OA pannus in vitro compared to rheumatoid arthritis (RA) pannus. The purpose of our study was to compare OA with RA pannus. Pannus and synovial tissue co-cultures from 5 patients with OA and 5 patients with RA obtained during arthroplasty were studied. Pannus was defined as the microscopic invasive granulation tissue covering the articular surface. Tissues were cultured for 7 days and stained with Alcian Blue technique. Interleukin-1beta (IL-1beta), IL-8, IL-10, IL-12, tumor necrosis factor-alpha (TNF-alpha), and interferon gamma (IFN-gamma) were also determined in supernatants by ELISA. Cartilage oligomeric matrix protein (COMP), type II collagen, TNF-alpha, IL-10 and Ki-67 expression were also detected by immunohistochemistry. All patients had vascular or fibrous pannus. Synovial proliferation, inflammatory infiltrates and a decrease of extracellular matrix proteins were observed in all tissue samples. Chondrocyte proliferation was lower in OA than RA cartilage. OA synovial tissue expressed lower levels of proteoglycans than RA synoyium. Type II collagen levels were lower in OA than in RA cartilage. Significantly higher levels of IL-1beta were found in the supernatants of RA pannus compared to OA pannus (ppannus supernatants. IL-10, IL-12 and IFN-gamma were undetectable. RA and OA pannus had similar pro-inflammatory and anti-inflammatory cytokine profile expression. OA cartilage, synovial tissue and pannus had lower production of proteoglycans, type II collagen and IL-1beta. It remains to be elucidated why OA pannus invades the cartilage surface but does not cause the marginal erosions typically seen in RA.

  12. Histone Deacetylase 7 Promotes Toll-like Receptor 4-dependent Proinflammatory Gene Expression in Macrophages*

    Science.gov (United States)

    Shakespear, Melanie R.; Hohenhaus, Daniel M.; Kelly, Greg M.; Kamal, Nabilah A.; Gupta, Praveer; Labzin, Larisa I.; Schroder, Kate; Garceau, Valerie; Barbero, Sheila; Iyer, Abishek; Hume, David A.; Reid, Robert C.; Irvine, Katharine M.; Fairlie, David P.; Sweet, Matthew J.

    2013-01-01

    Broad-spectrum inhibitors of histone deacetylases (HDACs) constrain Toll-like receptor (TLR)-inducible production of key proinflammatory mediators. Here we investigated HDAC-dependent inflammatory responses in mouse macrophages. Of the classical Hdacs, Hdac7 was expressed at elevated levels in inflammatory macrophages (thioglycollate-elicited peritoneal macrophages) as compared with bone marrow-derived macrophages and the RAW264 cell line. Overexpression of a specific, alternatively spliced isoform of Hdac7 lacking the N-terminal 22 amino acids (Hdac7-u), but not the Refseq Hdac7 (Hdac7-s), promoted LPS-inducible expression of Hdac-dependent genes (Edn1, Il-12p40, and Il-6) in RAW264 cells. A novel class IIa-selective HDAC inhibitor reduced recombinant human HDAC7 enzyme activity as well as TLR-induced production of inflammatory mediators in thioglycollate-elicited peritoneal macrophages. Both LPS and Hdac7-u up-regulated the activity of the Edn1 promoter in an HDAC-dependent fashion in RAW264 cells. A hypoxia-inducible factor (HIF) 1 binding site in this promoter was required for HDAC-dependent TLR-inducible promoter activity and for Hdac7- and HIF-1α-mediated trans-activation. Coimmunoprecipitation assays showed that both Hdac7-u and Hdac7-s interacted with HIF-1α, whereas only Hdac7-s interacted with the transcriptional repressor CtBP1. Thus, Hdac7-u positively regulates HIF-1α-dependent TLR signaling in macrophages, whereas an interaction with CtBP1 likely prevents Hdac7-s from exerting this effect. Hdac7 may represent a potential inflammatory disease target. PMID:23853092

  13. Histone deacetylase 7 promotes Toll-like receptor 4-dependent proinflammatory gene expression in macrophages.

    Science.gov (United States)

    Shakespear, Melanie R; Hohenhaus, Daniel M; Kelly, Greg M; Kamal, Nabilah A; Gupta, Praveer; Labzin, Larisa I; Schroder, Kate; Garceau, Valerie; Barbero, Sheila; Iyer, Abishek; Hume, David A; Reid, Robert C; Irvine, Katharine M; Fairlie, David P; Sweet, Matthew J

    2013-08-30

    Broad-spectrum inhibitors of histone deacetylases (HDACs) constrain Toll-like receptor (TLR)-inducible production of key proinflammatory mediators. Here we investigated HDAC-dependent inflammatory responses in mouse macrophages. Of the classical Hdacs, Hdac7 was expressed at elevated levels in inflammatory macrophages (thioglycollate-elicited peritoneal macrophages) as compared with bone marrow-derived macrophages and the RAW264 cell line. Overexpression of a specific, alternatively spliced isoform of Hdac7 lacking the N-terminal 22 amino acids (Hdac7-u), but not the Refseq Hdac7 (Hdac7-s), promoted LPS-inducible expression of Hdac-dependent genes (Edn1, Il-12p40, and Il-6) in RAW264 cells. A novel class IIa-selective HDAC inhibitor reduced recombinant human HDAC7 enzyme activity as well as TLR-induced production of inflammatory mediators in thioglycollate-elicited peritoneal macrophages. Both LPS and Hdac7-u up-regulated the activity of the Edn1 promoter in an HDAC-dependent fashion in RAW264 cells. A hypoxia-inducible factor (HIF) 1 binding site in this promoter was required for HDAC-dependent TLR-inducible promoter activity and for Hdac7- and HIF-1α-mediated trans-activation. Coimmunoprecipitation assays showed that both Hdac7-u and Hdac7-s interacted with HIF-1α, whereas only Hdac7-s interacted with the transcriptional repressor CtBP1. Thus, Hdac7-u positively regulates HIF-1α-dependent TLR signaling in macrophages, whereas an interaction with CtBP1 likely prevents Hdac7-s from exerting this effect. Hdac7 may represent a potential inflammatory disease target.

  14. Soluble transition metals cause the pro-inflammatory effects of welding fumes in vitro

    International Nuclear Information System (INIS)

    McNeilly, Jane D.; Heal, Mathew R.; Beverland, Iain J.; Howe, Alan; Gibson, Mark D.; Hibbs, Leon R.; MacNee, William; Donaldson, Ken

    2004-01-01

    Epidemiological studies have consistently reported a higher incidence of respiratory illnesses such as bronchitis, metal fume fever (MFF), and chronic pneumonitis among welders exposed to high concentrations of metal-enriched welding fumes. Here, we studied the molecular toxicology of three different metal-rich welding fumes: NIMROD 182, NIMROD c276, and COBSTEL 6. Fume toxicity in vitro was determined by exposing human type II alveolar epithelial cell line (A549) to whole welding fume, a soluble extract of fume or the 'washed' particulate. All whole fumes were significantly toxic to A549 cells at doses >63 μg ml -1 (TD 50; 42, 25, and 12 μg ml -1 , respectively). NIMROD c276 and COBSTEL 6 fumes increased levels of IL-8 mRNA and protein at 6 h and protein at 24 h, as did the soluble fraction alone, whereas metal chelation of the soluble fraction using chelex beads attenuated the effect. The soluble fraction of all three fumes caused a rapid depletion in intracellular glutathione following 2-h exposure with a rebound increase by 24 h. In addition, both nickel based fumes, NIMROD 182 and NIMROD c276, induced significant reactive oxygen species (ROS) production in A549 cells after 2 h as determined by DCFH fluorescence. ICP analysis confirmed that transition metal concentrations were similar in the whole and soluble fractions of each fume (dominated by Cr), but significantly less in both the washed particles and chelated fractions. These results support the hypothesis that the enhanced pro-inflammatory responses of welding fume particulates are mediated by soluble transition metal components via an oxidative stress mechanism

  15. Proinflammatory and anti-inflammatory cytokine balance in gasoline exhaust induced pulmonary injury in mice.

    Science.gov (United States)

    Sureshkumar, Veerapandian; Paul, Bholanath; Uthirappan, Mani; Pandey, Renu; Sahu, Anand Prakash; Lal, Kewal; Prasad, Arun Kumar; Srivastava, Suresh; Saxena, Ashok; Mathur, Neeraj; Gupta, Yogendra Kumar

    2005-03-01

    Proinflammatory and anti-inflammatory cytokine balance and associated changes in pulmonary bronchoalveolar lavage fluid (BALF) of unleaded gasoline exhaust (GE) exposed mice were investigated. Animals were exposed to GE (1 L/min of GE mixed with 14 L/min of compressed air) using a flow-past, nose-only, dynamic inhalation exposure chamber for different durations (7, 14, and 21 days). The particulate content of the GE was found to be 0.635, +/-0.10 mg PM/m3. Elevated levels of tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) were observed in BALF of GE-exposed mice, but interleukin 1beta(IL-1beta) and the anti-inflammatory cytokine interleukin-10 (IL-10) remained unaffected. GE induced higher activities of alkaline phosphatase (ALP), gamma-glutamyl transferase (gammaGT), and lactate dehydrogenase (LDH) in the BALF, indicating Type II alveolar epithelial cell injury, Clara-cell injury, and general toxicity, respectively. Total protein in the BALF increased after 14 and 21 days of exposure, indicating enhanced alveolar-capillary permeability. However, the difference in the mean was found statistically insignificant in comparison to the compressed air control. Total cell count in the BALF of GE-exposed mice ranged between 0.898 and 0.813x10(6) cells/ml, whereas the compressed air control showed 0.65x10(6) cells/mL. The histopathological changes in GE-exposed lung includes perivascular, and peribronchiolar cuffing of mononuclear cells, migration of polymorphonuclear cells in the alveolar septa, alveolar thickening, and mild alveolar edematous changes indicating inflammation. The shift in pro- and anti-inflammatory cytokine balance and elevation of the pulmonary marker enzymes indicate toxic insult of GE. This study will help in our understanding of the mechanism of pulmonary injury by GE in the light of cytokine profiles, pulmonary marker enzymes, and lung architecture.

  16. IGF-1 attenuates LPS induced pro-inflammatory cytokines expression in buffalo (Bubalus bubalis) granulosa cells.

    Science.gov (United States)

    Onnureddy, K; Ravinder; Onteru, Suneel Kumar; Singh, Dheer

    2015-03-01

    Interaction between immune and endocrine system is a diverse process influencing cellular function and homeostasis in animals. Negative energy balance (NEB) during postpartum period in dairy animals usually suppresses these systems resulting in reproductive tract infection and infertility. These negative effects could be due to competition among endocrine and immune signaling pathways for common signaling molecules. The present work studied the effect of IGF-1 (50 ng/ml) on LPS (1 μg/ml) mediated pro-inflammatory cytokine expression (IL-1β, TNF-α, IL-6) and aromatase (CYP19A1) genes' expressions as well as proliferation of buffalo granulosa cells. The crosstalk between LPS and IGF-1 was also demonstrated through studying the activities of downstream signaling molecules (ERK1/2, Akt, NF-κB) by western blot and immunostaining. Gene expression analysis showed that IGF-1 significantly reduced the LPS induced expression of IL-1β, TNF-α and IL-6. LPS alone inhibited the CYP19A1 expression. However, co-treatment with IGF-1 reversed the inhibitory effect of LPS on CYP19A1 expression. LPS alone did not affect granulosa cell proliferation, but co-treatment with IGF-1, and IGF-1 alone enhanced the proliferation. Western blot results demonstrated that LPS caused the nuclear translocation of the NF-κB and increased the phosphorylation of ERK1/2 and Akt maximum at 15 min and 60 min, respectively. Nonetheless, co-treatment with IGF-1 delayed LPS induced phosphorylation of ERK1/2 (peak at 120 min), while promoting early Akt phosphorylation (peak at 5 min) with no effect on NF-κB translocation. Overall, IGF-1 delayed and reversed the effects of LPS, suggesting that high IGF-1 levels may combat infection during critical periods like NEB in postpartum dairy animals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Role of aberrant metalloproteinase activity in the pro-inflammatory phenotype of bronchial epithelium in COPD

    Directory of Open Access Journals (Sweden)

    Postma Dirkje S

    2011-08-01

    Full Text Available Abstract Background Cigarette smoke, the major risk factor for COPD, is known to activate matrix metalloproteinases in airway epithelium. We investigated whether metalloproteinases, particularly A Disintegrin and Metalloproteinase (ADAM17, contribute to increased pro-inflammatory epithelial responses with respect to the release of IL-8 and TGF-α, cytokines implicated in COPD pathogenesis. Methods We studied the effects of cigarette smoke extract (CSE and metalloproteinase inhibitors on TGF-α and IL-8 release in primary bronchial epithelial cells (PBECs from COPD patients, healthy smokers and non-smokers. Results We observed that TGF-α was mainly shed by ADAM17 in PBECs from all groups. Interestingly, IL-8 production occurred independently from ADAM17 and TGF-α shedding, but was significantly inhibited by broad-spectrum metalloproteinase inhibitor TAPI-2. CSE did not induce ADAM17-dependent TGF-α shedding, while it slightly augmented the production of IL-8. This was accompanied by reduced endogenous inhibitor of metalloproteinase (TIMP-3 levels, suggesting that CSE does not directly but rather indirectly alter activity of ADAM17 through the regulation of its endogenous inhibitor. Furthermore, whereas baseline TGF-α shedding was lower in COPD PBECs, the early release of IL-8 (likely due to its shedding was higher in PBECs from COPD than healthy smokers. Importantly, this was accompanied by lower TIMP-2 levels in COPD PBECs, while baseline TIMP-3 levels were similar between groups. Conclusions Our data indicate that IL-8 secretion is regulated independently from ADAM17 activity and TGF-α shedding and that particularly its early release is differentially regulated in PBECs from COPD and healthy smokers. Since TIMP-2-sensitive metalloproteinases could potentially contribute to IL-8 release, these may be interesting targets to further investigate novel therapeutic strategies in COPD.

  18. DHA suppresses Prevotella intermedia lipopolysaccharide-induced production of proinflammatory mediators in murine macrophages.

    Science.gov (United States)

    Choi, Eun-Young; Jin, Ji-Young; Choi, Jeom-Il; Choi, In Soon; Kim, Sung-Jo

    2014-04-14

    Several reports have indicated that dietary intake of DHA is associated with lower prevalence of periodontitis. In the present study, we investigated the effect of DHA on the production of proinflammatory mediators in murine macrophage-like RAW264.7 cells stimulated with lipopolysaccharide (LPS) isolated from Prevotella intermedia, a pathogen implicated in inflammatory periodontal disease, and its mechanisms of action. LPS was isolated from lyophilised P. intermedia ATCC 25,611 cells using the standard hot-phenol-water protocol. Culture supernatants were collected and assayed for NO, IL-1β and IL-6. Real-time PCR analysis was carried out to detect the expression of inducible NO synthase (iNOS), IL-1β, IL-6 and haeme oxygenase-1 (HO-1) mRNA. Immunoblot analysis was carried out to quantify the expression of iNOS and HO-1 protein and concentrations of signalling proteins. DNA-binding activities of NF-κB subunits were determined using an ELISA-based assay kit. DHA significantly attenuated the production of NO, IL-1β and IL-6 at both gene transcription and translation levels in P. intermedia LPS-activated RAW264.7 cells. DHA induced the expression of HO-1 in cells treated with P. intermedia LPS. Selective inhibition of HO-1 activity by tin protoporphyrin IX significantly mitigated the inhibitory effects of DHA on LPS-induced NO production. DHA significantly attenuated the phosphorylation of c-Jun N-terminal kinase induced by LPS. In addition, DHA suppressed the transcriptional activity of NF-κB by regulating the nuclear translocation and DNA-binding activity of NF-κB p50 subunit and inhibited the phosphorylation of signal transducer and activator of transcription 1. Further in vivo studies are needed to better evaluate the potential of DHA in humans as a therapeutic agent to treat periodontal disease.

  19. Procalcitonin and proinflammatory parameters in diabetic foot infection as new predictive factor

    Science.gov (United States)

    Raheem, Shler Gh.; Al-Barzinji, Ruqaya M.; Mansoor, Husham Y.; Al-Dabbagh, Ali A.

    2017-09-01

    Diabetic foot is a common complication of diabetes due to changes in blood vessels and nerves, often leads to ulceration and subsequent limb amputation if not treated early. A new diagnostic marker of bacterial infections is procalcitonin. C-reactive protein, Interleukin1β, Interleukin-6 and tumor necrosis factor-α as proinflammatory parameters increased in Diabetic foot infection. We evaluated above parameters in patients with diabetic foot infections in different grades. A total of 130 diabetic patients were enrolled in this case control study between June 2011 and March 2012 in Rizgary, Emergency and Hawler Teaching Hospitals, 90 of them with diabetic foot lesion as a patient group. 40 without foot lesion, as a patient control and 20 individuals as healthy control. Assessment of above parameters in sera of study groups and also bacteriological tests (bacterial isolation and identification) were done. Serum procalcitonin levels significantly increased in patients with diabetic foot with higher Wagner grades (III, IV and V) (0.28 ± 0.04, 0.30 ± 0.07 and 0.60 ± 0.11) respectively (Pfoot ulcer based on Wagner classification system was also associated with circulating levels of C-reactive protein, Interleukin1β, Interleukin-6 and tumor necrosis factor-α (G III, IV and V) (5.36 ± 0.70, 6.38 ± 0.65, and 9.13 ± 0.88), (1.21 ± 0.08, 1.56 ± 0.16 and 2.02 ± 0.07), (23.02 ± 2.98, 36.32 ± 5.75 and 43.36 ± 6.16), and (215.39 ± 16.8, 259.21 ± 40.7 and 398.45 ± 33.4) respectively (Pdiabetic foot patients may be a procalcitonin especially in those with higher Wagner grades and with polymicrobial infection.

  20. The expression of proinflammatory genes in epidermal keratinocytes is regulated by hydration status.

    Science.gov (United States)

    Xu, Wei; Jia, Shengxian; Xie, Ping; Zhong, Aimei; Galiano, Robert D; Mustoe, Thomas A; Hong, Seok J

    2014-04-01

    Mucosal wounds heal more rapidly, exhibit less inflammation, and are associated with minimal scarring when compared with equivalent cutaneous wounds. We previously demonstrated that cutaneous epithelium exhibits an exaggerated response to injury compared with mucosal epithelium. We hypothesized that treatment of injured skin with a semiocclusive dressing preserves the hydration of the skin and results in a wound healing phenotype that more closely resembles that of mucosa. Here we explored whether changes in hydration status alter epidermal gene expression patterns in rabbit partial-thickness incisional wounds. Using microarray studies on injured epidermis, we showed that global gene expression patterns in highly occluded versus non-occluded wounds are distinct. Many genes including IL-1β, IL-8, TNF-α (tumor necrosis factor-α), and COX-2 (cyclooxygenase 2) are upregulated in non-occluded wounds compared with highly occluded wounds. In addition, decreased levels of hydration resulted in an increased expression of proinflammatory genes in human ex vivo skin culture (HESC) and stratified keratinocytes. Hierarchical analysis of genes using RNA interference showed that both TNF-α and IL-1β regulate the expression of IL-8 through independent pathways in response to reduced hydration. Furthermore, both gene knockdown and pharmacological inhibition studies showed that COX-2 mediates the TNF-α/IL-8 pathway by increasing the production of prostaglandin E2 (PGE2). IL-8 in turn controls the production of matrix metalloproteinase-9 in keratinocytes. Our data show that hydration status directly affects the expression of inflammatory signaling in the epidermis. The identification of genes involved in the epithelial hydration pathway provides an opportunity to develop strategies to reduce scarring and optimize wound healing.

  1. Mast cells exert pro-inflammatory effects of relevance to the pathophyisology of tendinopathy.

    Science.gov (United States)

    Behzad, Hayedeh; Sharma, Aishwariya; Mousavizadeh, Rouhollah; Lu, Alex; Scott, Alex

    2013-01-01

    We have previously found an increased mast cell density in tendon biopsies from patients with patellar tendinopathy compared to controls. This study examined the influence of mast cells on basic tenocyte functions, including production of the inflammatory mediator prostaglandin E2 (PGE2), extracellular matrix remodeling and matrix metalloproteinase (MMP) gene transcription, and collagen synthesis. Primary human tenocytes were stimulated with an established human mast cell line (HMC-1). Extracellular matrix remodeling was studied by culturing tenocytes in a three-dimensional collagen lattice. Survival/proliferation was assessed with the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium salt (MTS) assay. Levels of mRNA for COX-2, COL1A1, MMP1, and MMP7 were determined by quantitative real-time polymerase chain reaction (qPCR). Cox-2 protein level was assessed by Western blot analysis and type I procollagen was detected by immunofluorescent staining. PGE2 levels were determined using an enzyme-linked immunosorbent assay (ELISA). Mast cells stimulated tenocytes to produce increased levels of COX-2 and the pro-inflammatory mediator PGE2, which in turn decreased COL1A1 mRNA expression. Additionally, mast cells reduced the type I procollagen protein levels produced by tenocytes. Transforming growth factor beta 1 (TGF-β1) was responsible for the induction of Cox-2 and PGE2 by tenocytes. Mast cells increased MMP1 and MMP7 transcription and increased the contraction of a three-dimensional collagen lattice by tenocytes, a phenomenon which was blocked by a pan-MMP inhibitor (Batimastat). Our data demonstrate that mast cell-derived PGE2 reduces collagen synthesis and enhances expression and activities of MMPs in human tenocytes.

  2. Peripheral Injection of SB203580 Inhibits the Inflammatory-Dependent Synthesis of Proinflammatory Cytokines in the Hypothalamus

    Directory of Open Access Journals (Sweden)

    Andrzej P. Herman

    2014-01-01

    Full Text Available The study was designed to determine the effects of peripheral injection of SB203580 on the synthesis of interleukin- (IL- 1β, IL-6, and tumor necrosis factor (TNF α in the hypothalamus of ewes during prolonged inflammation. Inflammation was induced by the administration of lipopolysaccharide (LPS (400 ng/kg over 7 days. SB203580 is a selective ATP-competitive inhibitor of the p38 mitogen-activated protein kinase (MAPK, which is involved in the regulation of proinflammatory cytokines IL-1β, IL-6 and TNFα synthesis. Intravenous injection of SB203580 successfully inhibited (P<0.01 synthesis of IL-1β and reduced (P<0.01 the production of IL-6 in the hypothalamus. The p38 MAPK inhibitor decreased (P<0.01 gene expression of TNFα but its effect was not observed at the level of TNFα protein synthesis. SB203580 also reduced (P<0.01 LPS-stimulated IL-1 receptor type 1 gene expression. The conclusion that inhibition of p38 MAPK blocks LPS-induced proinflammatory cytokine synthesis seems to initiate new perspectives in the treatment of chronic inflammatory diseases also within the central nervous system. However, potential proinflammatory effects of SB203580 treatment suggest that all therapies using p38 MAPK inhibitors should be introduced very carefully with analysis of all expected and unexpected consequences of treatment.

  3. Functional analysis of Pro-inflammatory properties within the cerebrospinal fluid after subarachnoid hemorrhage in vivo and in vitro

    Directory of Open Access Journals (Sweden)

    Schneider Ulf C

    2012-02-01

    Full Text Available Abstract Background To functionally characterize pro-inflammatory and vasoconstrictive properties of cerebrospinal fluid after aneurysmal subarachnoid hemorrhage (SAH in vivo and in vitro. Methods The cerebrospinal fluid (CSF of 10 patients suffering from SAH was applied to the transparent skinfold chamber model in male NMRI mice which allows for in vivo analysis of the microcirculatory response to a superfusat. Microvascular diameter changes were quantified and the numbers of rolling and sticking leukocytes were documented using intravital multifluorescence imaging techniques. Furthermore, the pro-inflammatory properties of CSF were assessed in vitro using a monocyte transendothelial migration assay. Results CSF superfusion started to induce significant vasoconstriction on days 4 and 6 after SAH. In parallel, CSF superfusion induced a microvascular leukocyte recruitment, with a significant number of leukocytes rolling (day 6 and sticking (days 2-4 to the endothelium. CSF of patients presenting with cerebral edema induced breakdown of blood vessel integrity in our assay as evidenced by fluorescent marker extravasation. In accordance with leukocyte activation in vivo, significantly higher in vitro monocyte migration rates were found after SAH. Conclusion We functionally characterized inflammatory and vasoactive properties of patients' CSF after SAH in vivo and in vitro. This pro-inflammatory milieu in the subarachnoid space might play a pivotal role in the pathophysiology of early and delayed brain injury as well as vasospasm development following SAH.

  4. Proinflammatory genotype of interleukin-1 and interleukin-1 receptor antagonist is associated with ESRD in proteinase 3-ANCA vasculitis patients.

    Science.gov (United States)

    Borgmann, Stefan; Endisch, Georg; Hacker, Ulrich T; Song, Bong-Seok; Fricke, Harald

    2003-05-01

    Small-vessel vasculitides are associated with antineutrophil cytoplasmic antibodies (ANCAs). Cytoplasmic ANCAs are targeted mainly against proteinase 3 (PR3), whereas myeloperoxidase (MPO) is the major antigen of perinuclear ANCAs. These relapsing vasculitides show heterogeneous clinical pictures, and disease severity may vary broadly from mild local organ manifestation to acute organ failure (eg, renal failure). We tested whether two cytokine polymorphisms in the interleukin-1beta (IL-1beta) and IL-1 receptor antagonist (IL-1ra) genes, known to determine cytokine secretion, are associated with clinical manifestations and outcome of ANCA-associated vasculitides. Polymerase chain reaction and restriction fragment length polymorphism analyses were performed to determine polymorphisms in the IL-1beta and IL-1ra genes in 79 patients with PR3-ANCA, 30 patients with MPO-ANCA vasculitis, and 196 healthy controls. The frequency of the so-called proinflammatory genotype, characterized by high secretion of IL-1beta and low secretion of its antagonist IL-1ra, was increased significantly in patients with PR3-ANCA with end-stage renal disease. Patients with a renal manifestation of PR3-ANCA vasculitis have an increased risk for developing end-stage renal disease when carrying the proinflammatory IL-1beta/IL-1ra genotype. Anti-inflammatory therapy specifically antagonizing the proinflammatory effect of IL-1beta may be a promising treatment for patients with Wegener's granulomatosis with renal manifestations.

  5. Upregulated LINE-1 Activity in the Fanconi Anemia Cancer Susceptibility Syndrome Leads to Spontaneous Pro-inflammatory Cytokine Production.

    Science.gov (United States)

    Brégnard, Christelle; Guerra, Jessica; Déjardin, Stéphanie; Passalacqua, Frank; Benkirane, Monsef; Laguette, Nadine

    2016-06-01

    Fanconi Anemia (FA) is a genetic disorder characterized by elevated cancer susceptibility and pro-inflammatory cytokine production. Using SLX4(FANCP) deficiency as a working model, we questioned the trigger for chronic inflammation in FA. We found that absence of SLX4 caused cytoplasmic DNA accumulation, including sequences deriving from active Long INterspersed Element-1 (LINE-1), triggering the cGAS-STING pathway to elicit interferon (IFN) expression. In agreement, absence of SLX4 leads to upregulated LINE-1 retrotransposition. Importantly, similar results were obtained with the FANCD2 upstream activator of SLX4. Furthermore, treatment of FA cells with the Tenofovir reverse transcriptase inhibitor (RTi), that prevents endogenous retrotransposition, decreased both accumulation of cytoplasmic DNA and pro-inflammatory signaling. Collectively, our data suggest a contribution of endogenous RT activities to the generation of immunogenic cytoplasmic nucleic acids responsible for inflammation in FA. The additional observation that RTi decreased pro-inflammatory cytokine production induced by DNA replication stress-inducing drugs further demonstrates the contribution of endogenous RTs to sustaining chronic inflammation. Altogether, our data open perspectives in the prevention of adverse effects of chronic inflammation in tumorigenesis. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Ubiquinol decreases monocytic expression and DNA methylation of the pro-inflammatory chemokine ligand 2 gene in humans

    Directory of Open Access Journals (Sweden)

    Fischer Alexandra

    2012-10-01

    Full Text Available Abstract Background Coenzyme Q10 is an essential cofactor in the respiratory chain and serves in its reduced form, ubiquinol, as a potent antioxidant. Studies in vitro and in vivo provide evidence that ubiquinol reduces inflammatory processes via gene expression. Here we investigate the putative link between expression and DNA methylation of ubiquinol sensitive genes in monocytes obtained from human volunteers supplemented with 150 mg/ day ubiquinol for 14 days. Findings Ubiquinol decreases the expression of the pro-inflammatory chemokine (C-X-C motif ligand 2 gene (CXCL2 more than 10-fold. Bisulfite-/ MALDI-TOF-based analysis of regulatory regions of the CXCL2 gene identified six adjacent CpG islands which showed a 3.4-fold decrease of methylation status after ubiquinol supplementation. This effect seems to be rather gene specific, because ubiquinol reduced the expression of two other pro-inflammatory genes (PMAIP1, MMD without changing the methylation pattern of the respective gene. Conclusion In conclusion, ubiquinol decreases monocytic expression and DNA methylation of the pro-inflammatory CXCL2 gene in humans. Current Controlled Trials ISRCTN26780329.

  7. Arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan, inhibits type I-IV allergic inflammation and pro-inflammatory enzymes.

    Science.gov (United States)

    Lee, Ji Yun; Kim, Chang Jong

    2010-06-01

    We previously reported that arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan isolated from Forsythia koreana, exhibits anti-inflammatory, antioxidant, and analgesic effects in animal models. In addition, arctigenin inhibited eosinophil peroxidase and activated myeloperoxidase in inflamed tissues. In this study, we tested the effects of arctigenin on type I-IV allergic inflammation and pro-inflammatory enzymes in vitro and in vivo. Arctigenin significantly inhibited the heterologous passive cutaneous anaphylaxis induced by ovalbumin in mice at 15 mg/kg, p.o., and compound 48/80-induced histamine release from rat peritoneal mast cells at 10 microM. Arctigenin (15 mg/kg, p.o.) significantly inhibited reversed cutaneous anaphylaxis. Further, arctigenin (15 mg/kg, p.o.) significantly inhibited the Arthus reaction to sheep's red blood cells, decreasing the hemolysis titer, the hemagglutination titer, and the plaque-forming cell number for SRBCs. In addition, arctigenin significantly inhibited delayed type hypersensitivity at 15 mg/kg, p.o. and the formation of rosette-forming cells at 45 mg/kg, p.o. Contact dermatitis induced by picrylchloride and dinitrofluorobenzene was significantly (p arctigenin (0.3 mg/ear). Furthermore, arctigenin dose-dependently inhibited pro-inflammatory enzymes, such as cyclooxygenase-1 and 2, 5-lipoxygenase, phospholipase A2, and phosphodiesterase. Our results show that arctigenin significantly inhibited B- and T-cell mediated allergic inflammation as well as pro-inflammatory enzymes.

  8. Morphogen and proinflammatory cytokine release kinetics from PRGF-Endoret fibrin scaffolds: evaluation of the effect of leukocyte inclusion.

    Science.gov (United States)

    Anitua, E; Zalduendo, M M; Prado, R; Alkhraisat, M H; Orive, G

    2015-03-01

    The potential influence of leukocyte incorporation in the kinetic release of growth factors from platelet-rich plasma (PRP) may explain the conflicting efficiency of leukocyte platelet-rich plasma (L-PRP) scaffolds in tissue regeneration. To assess this hypothesis, leukocyte-free (PRGF-Endoret) and L-PRP fibrin scaffolds were prepared, and both morphogen and proinflammatory cytokine release kinetics were analyzed. Clots were incubated with culture medium to monitor protein release over 8 days. Furthermore, the different fibrin scaffolds were morphologically characterized. Results show that leukocyte-free fibrin matrices were homogenous while leukocyte-containing ones were heterogeneous, loose and cellular. Leukocyte incorporation produced a significant increase in the contents of proinflammatory cytokines interleukin (IL)-1β and IL-16 but not in the platelet-derived growth factors release (PRGF-Endoret, the inclusion of leukocytes induced a major increase in these cytokines, which was characterized by the presence of a latent period. The PRGF-Endoret matrices were stable during the 8 days of incubation. The inclusion of leukocytes alters the growth factors release profile and also increased the dose of proinflammatory cytokines. © 2014 Wiley Periodicals, Inc.

  9. Antioxidants inhibit SAA formation and pro-inflammatory cytokine release in a human cell model of alkaptonuria.

    Science.gov (United States)

    Spreafico, Adriano; Millucci, Lia; Ghezzi, Lorenzo; Geminiani, Michela; Braconi, Daniela; Amato, Loredana; Chellini, Federico; Frediani, Bruno; Moretti, Elena; Collodel, Giulia; Bernardini, Giulia; Santucci, Annalisa

    2013-09-01

    Alkaptonuria (AKU) is an ultra-rare autosomal recessive disease that currently lacks an appropriate therapy. Recently we provided experimental evidence that AKU is a secondary serum amyloid A (SAA)-based amyloidosis. The aim of the present work was to evaluate the use of antioxidants to inhibit SAA amyloid and pro-inflammatory cytokine release in AKU. We adopted a human chondrocytic cell AKU model to evaluate the anti-amyloid capacity of a set of antioxidants that had previously been shown to counteract ochronosis in a serum AKU model. Amyloid presence was evaluated by Congo red staining. Homogentisic acid-induced SAA production and pro-inflammatory cytokine release (overexpressed in AKU patients) were evaluated by ELISA and multiplex systems, respectively. Lipid peroxidation was evaluated by means of a fluorescence-based assay. Our AKU model allowed us to prove the efficacy of ascorbic acid combined with N-acetylcysteine, taurine, phytic acid and lipoic acid in significantly inhibiting SAA production, pro-inflammatory cytokine release and membrane lipid peroxidation. All the tested antioxidant compounds were able to reduce the production of amyloid and may be the basis for establishing new therapies for AKU amyloidosis.

  10. Do mechanical strain and TNF-α interact to amplify pro-inflammatory cytokine production in human annulus fibrosus cells?

    Science.gov (United States)

    Likhitpanichkul, Morakot; Torre, Olivia M; Gruen, Jadry; Walter, Benjamin A; Hecht, Andrew C; Iatridis, James C

    2016-05-03

    During intervertebral disc (IVD) injury and degeneration, annulus fibrosus (AF) cells experience large mechanical strains in a pro-inflammatory milieu. We hypothesized that TNF-α, an initiator of IVD inflammation, modifies AF cell mechanobiology via cytoskeletal changes, and interacts with mechanical strain to enhance pro-inflammatory cytokine production. Human AF cells (N=5, Thompson grades 2-4) were stretched uniaxially on collagen-I coated chambers to 0%, 5% (physiological) or 15% (pathologic) strains at 0.5Hz for 24h under hypoxic conditions with or without TNF-α (10ng/mL). AF cells were treated with anti-TNF-α and anti-IL-6. ELISA assessed IL-1β, IL-6, and IL-8 production and immunocytochemistry measured F-actin, vinculin and α-tubulin in AF cells. TNF-α significantly increased AF cell pro-inflammatory cytokine production compared to basal conditions (IL-1β:2.0±1.4-84.0±77.3, IL-6:10.6±9.9-280.9±214.1, IL-8:23.9±26.0-5125.1±4170.8pg/ml for basal and TNF-α treatment, respectively) as expected, but mechanical strain did not. Pathologic strain in combination with TNF-α increased IL-1β, and IL-8 but not IL-6 production of AF cells. TNF-α treatment altered F-actin and α-tubulin in AF cells, suggestive of altered cytoskeletal stiffness. Anti-TNF-α (infliximab) significantly inhibited pro-inflammatory cytokine production while anti-IL-6 (atlizumab) did not. In conclusion, TNF-α altered AF cell mechanobiology with cytoskeletal remodeling that potentially sensitized AF cells to mechanical strain and increased TNF-α-induced pro-inflammatory cytokine production. Results suggest an interaction between TNF-α and mechanical strain and future mechanistic studies are required to validate these observations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Non-proinflammatory and responsive nanoplatforms for targeted treatment of atherosclerosis.

    Science.gov (United States)

    Dou, Yin; Chen, Yue; Zhang, Xiangjun; Xu, Xiaoqiu; Chen, Yidan; Guo, Jiawei; Zhang, Dinglin; Wang, Ruibing; Li, Xiaohui; Zhang, Jianxiang

    2017-10-01

    Atherosclerosis is the leading cause of many fatal cardiovascular and cerebrovascular diseases. Whereas nanomedicines are promising for targeted therapy of atherosclerosis, great challenges remain in development of effective, safe, and translational nanotherapies for its treatment. Herein we hypothesize that non-proinflammatory nanomaterials sensitive to low pH or high reactive oxygen species (ROS) may serve as effective platforms for triggerable delivery of anti-atherosclerotic therapeutics in cellular and tissue microenvironments of inflammation. To demonstrate this hypothesis, an acid-labile material of acetalated β-cyclodextrin (β-CD) (Ac-bCD) and a ROS-sensitive β-CD material (Ox-bCD) were separately synthesized by chemical modification of β-CD, which were formed into responsive nanoparticles (NPs). Ac-bCD NP was rapidly hydrolyzed in mildly acidic buffers, while hydrolysis of Ox-bCD NP was selectively accelerated by H 2 O 2 . Using an anti-atherosclerotic drug rapamycin (RAP), we found stimuli-responsive release of therapeutic molecules from Ac-bCD and Ox-bCD nanotherapies. Compared with non-responsive poly(lactide-co-glycolide) (PLGA)-based NP, Ac-bCD and Ox-bCD NPs showed negligible inflammatory responses in vitro and in vivo. By endocytosis in cells and intracellularly releasing cargo molecules in macrophages, responsive nanotherapies effectively inhibited macrophage proliferation and suppressed foam cell formation. After intraperitoneal (i.p.) delivery in apolipoprotein E-deficient (ApoE -/- ) mice, fluorescence imaging showed accumulation of NPs in atherosclerotic plaques. Flow cytometry analysis indicated that the lymphatic translocation mediated by neutrophils and monocytes/macrophages may contribute to atherosclerosis targeting of i.p. administered NPs, in addition to targeting via the leaky blood vessels. Correspondingly, i.p. treatment with different nanotherapies afforded desirable efficacies. Particularly, both pH and ROS

  12. Inhibition of Pro-inflammatory Mediators and Cytokines by Chlorella Vulgaris Extracts.

    Science.gov (United States)

    Sibi, G; Rabina, Santa

    2016-01-01

    The aim of this study was to determine the in vitro anti-inflammatory activities of solvent fractions from Chlorella vulgaris by inhibiting the production of pro-inflammatory mediators and cytokines. Methanolic extracts (80%) of C. vulgaris were prepared and partitioned with solvents of increasing polarity viz., n-hexane, chloroform, ethanol, and water. Various concentrations of the fractions were tested for cytotoxicity in RAW 264.7 cells using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, and the concentrations inducing cell growth inhibition by about 50% (IC50) were chosen for further studies. Lipopolysaccharide (LPS) stimulated RAW 264.7 cells were treated with varying concentrations of C. vulgaris fractions and examined for its effects on nitric oxide (NO) production by Griess assay. The release of prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6) were quantified using enzyme-linked immunosorbent assay using Celecoxib and polymyxin B as positive controls. MTT assay revealed all the solvent fractions that inhibited cell growth in a dose-dependent manner. Of all the extracts, 80% methanolic extract exhibited the strongest anti-inflammatory activity by inhibiting NO production (P < 0.01), PGE2 (P < 0.05), TNF-α, and IL-6 (P < 0.001) release in LPS induced RAW 264.7 cells. Both hexane and chloroform fractions recorded a significant (P < 0.05) and dose-dependent inhibition of LPS induced inflammatory mediators and cytokines in vitro. The anti-inflammatory effect of ethanol and aqueous extracts was not significant in the study. The significant inhibition of inflammatory mediators and cytokines by fractions from C. vulgaris suggests that this microalga would be a potential source of developing anti-inflammatory agents and a good alternate for conventional steroidal and nonsteroidal anti-inflammatory drugs. C. vulgaris extracts have potential anti-inflammatory activitySolvent extraction using methanol

  13. Systemic and intraperitoneal proinflammatory cytokines profiles in patients on chronic peritoneal dialysis.

    Science.gov (United States)

    Maksić, Doko; Colić, Miodrag; Stanković-Popović, Verica; Radojević, Milorad; Bokonjić, Dubravko

    2007-01-01

    Cytokines are essential mediators of immune response and inflammatory reactions. Patients with chronic renal failure and on Continuous Ambulatory Peritoneal Dialysis commonly present abnormalities of immune function related to impaired kidney function, accumulation of uremic toxins and bioincompatibility of peritoneal dialysis solutions. Aim of this study was to examine effects of the CAPD solutions (standard v.s. biocompatible), as well as dialysis duration upon the local and systemic profile of the pro-inflammatory cytokines (IL-1, TNF and IL-6) in patients on CAPD. The cross-sectional study included 44 CAPD patients (27 M and 17 F, average mean age 57.12+/-16.66), of whom 21 patients were on the standard solutions (A.N.D.Y.Disc) for peritoneal dialysis and 23 on the biocompatible solutions (Gambrosol bio trio, Stay Safe balance). The average dialysis treatment period was 3.59+/-2.67 years. In all CAPD patients dialysed longer than 6 months, levels of IL-1. TNF and IL-6 in the serum and dialysis effluent were analysed in the phase without acute infection-related complications (CAPD peritonitis, infection of the catheter exit-site, other acute infections). The control group included 20 patients with the CRF (stage IV and V) whose serum levels of the examined cytokines were also determined. Levels of the inflammatory cytokines were measured by commercial specific ELISA kits (BioSource, Camarillo, California, USA). Statistical analysis of the obtained results was performed by commercial statistics PC software (Stat for Windows, R.4.5. SAD). The serum IL-1 and IL-6 levels were not statistically significantly different in patients on CAPD, irrespective of the type of the used dialysis solutions and in the control group of patients with CRF. The serum TNF levels, unlike IL-1 and IL-6, were statistically significantly higher in patients on CAPD in comparison with the control group of patients (13.203.23 v.s. 5.594.54, prenal funcion and number of CAPD peritonitis did

  14. Regulatory T Cells and Pro-inflammatory Responses Predominate in Children with Tuberculosis

    Directory of Open Access Journals (Sweden)

    Elizabeth Whittaker

    2017-04-01

    Full Text Available BackgroundFollowing infection with Mycobacterium tuberculosis (M.tb, children are more susceptible to develop disease particularly extrapulmonary disease than adults. The exact mechanisms required for containment of M.tb are not known, but would be important to identify correlates of protection.ObjectiveTo comprehensively analyze key immune responses to mycobacteria between HIV-negative children with extrapulmonary TB (EPTB compared to children with pulmonary TB (PTB or healthy controls.MethodsWhole blood was stimulated in vitro with mycobacteria for 24 h or 6 days to induce effector and memory responses. CD4, CD8, γδ, regulatory T cells, and their related cytokines were measured. Samples of children with tuberculosis (TB disease were analyzed both at time of diagnosis and at the end of TB treatment to determine if any differences were due to TB disease or an underlying host phenotype.ResultsSeventy-six children with TB disease (48 with PTB and 28 with EPTB and 83 healthy controls were recruited to the study. The frequency of CD4+CD25+CD39+FOXP3+ regulatory T cells and secreted IL10 were significantly higher in children with TB compared to healthy controls. IFNγ-, IL17-, and IL22-producing γδ T cells, IL22-producing CD4+ T cells and secreted pro-inflammatory cytokines (IFNγ, IL1β, and TNFα were significantly lower in children with TB disease compared to healthy controls. IFNγ-producing CD4+ T cells and Ki67+-proliferating CD4+ T cells, however, were present in equal numbers in both groups. Following treatment, these immune parameters recovered to “healthy” levels or greater in children with PTB, but not those with extrapulmonary TB.ConclusionIn children with TB disease, a predominantly immune regulatory state is present. These immune findings do not distinguish between children with PTB and EPTB at the time of diagnosis. Following treatment, these inflammatory responses recover in PTB, suggesting that the effect is disease

  15. The proinflammatory cytokine tumor necrosis factor-α excites subfornical organ neurons.

    Science.gov (United States)

    Simpson, Nick J; Ferguson, Alastair V

    2017-09-01

    Tumor necrosis factor-α (TNF-α) is a proinflammatory cytokine implicated in cardiovascular and autonomic regulation via actions in the central nervous system. TNF-α -/- mice do not develop angiotensin II (ANG II)-induced hypertension, and administration of TNF-α into the bloodstream of rats increases blood pressure and sympathetic tone. Recent studies have shown that lesion of the subfornical organ (SFO) attenuates the hypertensive and autonomic effects of TNF-α, while direct administration of TNF-α into the SFO increases blood pressure, suggesting the SFO to be a key site for the actions of TNF-α. Therefore, we used patch-clamp techniques to examine both acute and long-term effects of TNF-α on the excitability of Sprague-Dawley rat SFO neurons. It was observed that acute bath application of TNF-α depolarized SFO neurons and subsequently increased action potential firing rate. Furthermore, the magnitude of depolarization and the proportion of depolarized SFO neurons were concentration dependent. Interestingly, following 24-h incubation with TNF-α, the basal firing rate of the SFO neurons was increased and the rheobase was decreased, suggesting that TNF-α elevates SFO neuron excitability. This effect was likely mediated by the transient sodium current, as TNF-α increased the magnitude of the current and lowered its threshold of activation. In contrast, TNF-α did not appear to modulate either the delayed rectifier potassium current or the transient potassium current. These data suggest that acute and long-term TNF-α exposure elevates SFO neuron activity, providing a basis for TNF-α hypertensive and sympathetic effects. NEW & NOTEWORTHY Considerable recent evidence has suggested important links between inflammation and the pathological mechanisms underlying hypertension. The present study describes cellular mechanisms through which acute and long-term exposure of tumor necrosis factor-α (TNF-α) influences the activity of subfornical organ neurons by

  16. Interaction between Ebola Virus Glycoprotein and Host Toll-Like Receptor 4 Leads to Induction of Proinflammatory Cytokines and SOCS1 ▿ †

    OpenAIRE

    Okumura, Atsushi; Pitha, Paula M.; Yoshimura, Akihiko; Harty, Ronald N.

    2009-01-01

    Ebola virus initially targets monocytes and macrophages, which can lead to the release of proinflammatory cytokines and chemokines. These inflammatory cytokines are thought to contribute to the development of circulatory shock seen in fatal Ebola virus infections. Here we report that host Toll-like receptor 4 (TLR4) is a sensor for Ebola virus glycoprotein (GP) on virus-like particles (VLPs) and that resultant TLR4 signaling pathways lead to the production of proinflammatory cytokines and sup...

  17. The association between maternal cervicovaginal proinflammatory cytokines concentrations during pregnancy and subsequent early-onset neonatal infection.

    Science.gov (United States)

    Kalinka, Jarosław; Krajewski, Paweł; Sobala, Wojciech; Wasiela, Małgorzata; Brzezińska-Błaszczyk, Ewa

    2006-01-01

    The aim of this study was to investigate the relationship between the concentration of selected proinflammatory cytokines (IL-1alpha, IL-1beta, IL-6 and IL-8) in cervicovaginal fluid, as measured in midgestation, and the risk of early-onset neonatal infection (EONI). Cervicovaginal fluids were obtained from a cohort of 114 pregnant women at 22 to 34 weeks' gestation. The samples were analyzed for the concentrations of selected proinflammatory cytokines using standard enzyme-linked immunosorbent assay technique (ELISA). Lower genital tract microbiology was diagnosed using Gram stain method according to Spiegel's criteria and by culture. Mean gestational age at the time of sampling was 29.0 weeks. Mean time between sampling and delivery was 9.3 (SD 4.7) weeks. Bacterial vaginosis (BV) was diagnosed in 27.2% of subjects and M. hominis and U. urealyticum in 22.8% and 26.3%, respectively. Out of 114 women examined, 20 (17.5%) delivered newborns with EONI. Median cervicovaginal concentrations of IL-1alpha, IL-1beta, IL-6 and IL-8 did not differ between women who delivered newborns with EONI as compared to women who delivered newborns without EONI. Women with pathological lower genital tract microflora and low IL-8 concentration (below 25(th) percentile) during pregnancy presented a significant risk of delivering newborns with EONI (OR=4.9; 95% CI, 1.1-22.8). Subjects with pathological lower genital tract microflora and a low concentration of more than one cytokine had the highest risk of delivering a newborn with EONI, OR=16.2, 95% CI, 1.1-234.0. Cytokine measurement in cervicovaginal fluid in early gestation could be useful for predicting subsequent EONI only among pregnant women with lower genital tract infection. Maternal genital tract immune hyporesponsiveness as represented by low concentrations of proinflammatory cytokines may create a permissive environment for ascending infection and may lead to subsequent EONI.

  18. Better cognitive control of emotional information is associated with reduced pro-inflammatory cytokine reactivity to emotional stress.

    Science.gov (United States)

    Shields, Grant S; Kuchenbecker, Shari Young; Pressman, Sarah D; Sumida, Ken D; Slavich, George M

    2016-01-01

    Stress is strongly associated with several mental and physical health problems that involve inflammation, including asthma, cardiovascular disease, certain types of cancer, and depression. It has been hypothesized that better cognitive control of emotional information may lead to reduced inflammatory reactivity to stress and thus better health, but to date no studies have examined whether differences in cognitive control predict pro-inflammatory cytokine responses to stress. To address this issue, we conducted a laboratory-based experimental study in which we randomly assigned healthy young-adult females to either an acute emotional stress (emotionally evocative video) or no-stress (control video) condition. Salivary levels of the key pro-inflammatory cytokines IL-1β, IL-6, and IL-8 were measured before and after the experimental manipulation, and following the last cytokine sample, we assessed participants' cognitive control of emotional information using an emotional Stroop task. We also assessed participants' cortisol levels before and after the manipulation to verify that documented effects were specific to cytokines and not simply due to increased nonwater salivary output. As hypothesized, the emotional stressor triggered significant increases in IL-1β, IL-6, and IL-8. Moreover, even in fully adjusted models, better cognitive control following the emotional (but not control) video predicted less pronounced cytokine responses to that stressor. In contrast, no effects were observed for cortisol. These data thus indicate that better cognitive control specifically following an emotional stressor is uniquely associated with less pronounced pro-inflammatory cytokine reactivity to such stress. These findings may therefore help explain why superior cognitive control portends better health over the lifespan.

  19. Subclinical mastitis (SCM) and proinflammatory cytokines are associated with mineral and trace element concentrations in human breast milk.

    Science.gov (United States)

    Li, Chen; Solomons, Noel W; Scott, Marilyn E; Koski, Kristine G

    2018-03-01

    The possibility that either subclinical mastitis (SCM), an inflammatory condition of the breast, or elevations in breast milk proinflammatory cytokines alter breast milk mineral and trace element composition in humans has not been investigated. In this cross-sectional study, breast milk samples (n=108) were collected from Guatemalan Mam-Mayan mothers at one of three stages of lactation (transitional, early and established), and categorized as SCM (Na:K >0.6) or non-SCM (Na:K ≤0.6). Milk concentrations of 12 minerals (calcium, copper, iron, magnesium, manganese, phosphorus, potassium, rubidium, selenium, sodium, strontium, and zinc) and 4 proinflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α) were measured by inductively coupled plasma mass spectrometry (ICP-MS), Lachat analyzer or Luminex multiplex bead cytokine assay. SCM was more prevalent during transitional (30%) than early (15.6%) and established (8.9%) lactation. Analysis of variance revealed that breast milk minerals differed by stage of lactation and SCM status. Breast milk minerals with the exception of magnesium were lower in established lactation, whereas SCM was associated with higher selenium and lower phosphorus. Regression models that controlled for lactation stage also confirmed that SCM was associated with lower milk phosphorus and higher milk selenium concentrations. Furthermore, cytokine concentrations were independently associated with several mineral concentrations: IL-1β with higher phosphorus and iron, IL-6 with higher calcium, magnesium, copper and manganese, IL-8 with higher calcium and zinc, and TNF-α with lower iron and manganese. We conclude that milk mineral and trace element concentrations are affected not only by the presence of SCM but also by proinflammatory cytokines in breast milk. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. Fetal and Placental DNA Stimulation of TLR9: A Mechanism Possibly Contributing to the Pro-inflammatory Events During Parturition.

    Science.gov (United States)

    Goldfarb, Ilona Telefus; Adeli, Sharareh; Berk, Tucker; Phillippe, Mark

    2018-05-01

    While there is evidence for a relationship between cell-free fetal DNA (cffDNA) and parturition, questions remain regarding whether cffDNA could trigger a pro-inflammatory response on the pathway to parturition. We hypothesized that placental and/or fetal DNA stimulates toll-like receptor 9 (TLR9) leading to secretion of pro-inflammatory cytokines by macrophage cells. Four in vitro DNA stimulation studies were performed using RAW 264.7 mouse peritoneal macrophage cells incubated in media containing the following DNA particles: an oligodeoxynucleotide (ODN2395), intact genomic DNA (from mouse placentas, fetuses and adult liver), mouse DNA complexed with DOTAP (a cationic liposome forming compound), and telomere-depleted mouse DNA. Interleukin 6 (IL6) secretion was measured in the media by enzyme-linked immunosorbent assay; and the cell pellet was homogenized for protein content (picograms IL6/mg protein). Robust IL6 secretion was observed in response to ODN2395 (a CpG-rich TLR9 agonist), mouse DNA-DOTAP complexes, and telomere-depleted mouse DNA in concentrations of 5 to 15 μg/mL. In contrast, ODN A151 (containing telomere sequence motifs), intact genomic mouse DNA, and restriction enzyme-digested DNA had no effect on IL6 secretion. The IL6 response was significantly inhibited by chloroquine (10 μg/mL), thereby confirming the important role for TLR9 in the response by macrophage cells. DNA derived from mouse placentas and fetuses, and depleted of telomeric sequences, stimulates a robust pro-inflammatory response by macrophage cells, thereby supporting the hypothesis that cffDNA is able to stimulate an innate immune response that could trigger the onset of parturition. These findings are of clinical importance, as we search for effective treatment/prevention of preterm parturition.

  1. Pro-inflammatory Cytokine Response and Genetic Diversity in Merozoite Surface Protein 2 of Plasmodium falciparum Isolates from Nigeria.

    Science.gov (United States)

    Ajibaye, Olusola; Osuntoki, Akinniyi A; Ebuehi, Albert Ot; Iwalokun, Bamidele A; Balogun, Emmanuel O; Egbuna, Kathleen N

    2017-01-01

    Polymorphisms in Plasmodium falciparum merozoite surface protein-2 ( msp -2) and associated parasite genetic diversity which varies between malaria-endemic regions remain a limitation in malaria vaccine development. Pro-inflammatory cytokines are important in immunity against malaria, understanding the influence of genetic diversity on cytokine response is important for effective vaccine design. P. falciparum isolates obtained from 300 Nigerians with uncomplicated falciparum malaria at Ijede General Hospital, Ijede (IJE), General Hospital Ajeromi, Ajeromi (AJE) and Saint Kizito Mission Hospital, Lekki, were genotyped by nested polymerase chain reaction of msp -2 block 3 while ELISA was used to determine the pro-inflammatory cytokine response to describe the genetic diversity of P. falciparum . Eighteen alleles were observed for msp -2 loci. Of the 195 isolates, 61 (31.0%) had only FC27-type alleles, 38 (19.7%) had only 3D7-type alleles, and 49.3% had multiple parasite lines with both alleles. Band sizes were 275-625 bp for FC27 and 150-425 bp for 3D7. Four alleles were observed from LEK, 2 (375-425 bp) and 2 (275-325 bp) of FC27-and 3D7-types, respectively; 12 alleles from AJE, 9 (275-625 bp) and 3 (325-425 bp) of FC27-types and 3D7-types, respectively; while IJE had a total of 12 alleles, 9 (275-625 bp) and 3 (325-425 bp) of FC27-types and 3D7-types, respectively. Mean multiplicity of infection (MOI) was 1.54. Heterozygosity ( H E ) ranged from 0.77 to 0.87 and was highest for IJE (0.87). Cytokine response was higher among 0.05) but with neither parasite density nor infection type. P. falciparum genetic diversity is extensive in Nigeria, protection via pro-inflammatory cytokines have little or no interplay with infection multiplicity.

  2. Suppression of Proinflammatory and Prosurvival Biomarkers in Oral Cancer Patients Consuming a Black Raspberry Phytochemical-Rich Troche.

    Science.gov (United States)

    Knobloch, Thomas J; Uhrig, Lana K; Pearl, Dennis K; Casto, Bruce C; Warner, Blake M; Clinton, Steven K; Sardo-Molmenti, Christine L; Ferguson, Jeanette M; Daly, Brett T; Riedl, Kenneth; Schwartz, Steven J; Vodovotz, Yael; Buchta, Anthony J; Schuller, David E; Ozer, Enver; Agrawal, Amit; Weghorst, Christopher M

    2016-02-01

    Black raspberries (BRB) demonstrate potent inhibition of aerodigestive tract carcinogenesis in animal models. However, translational clinical trials evaluating the ability of BRB phytochemicals to impact molecular biomarkers in the oral mucosa remain limited. The present phase 0 study addresses a fundamental question for oral cancer food-based prevention: Do BRB phytochemicals successfully reach the targeted oral tissues and reduce proinflammatory and antiapoptotic gene expression profiles? Patients with biopsy-confirmed oral squamous cell carcinomas (OSCC) administered oral troches containing freeze-dried BRB powder from the time of enrollment to the date of curative intent surgery (13.9 ± 1.27 days). Transcriptional biomarkers were evaluated in patient-matched OSCCs and noninvolved high at-risk mucosa (HARM) for BRB-associated changes. Significant expression differences between baseline OSCC and HARM tissues were confirmed using a panel of genes commonly deregulated during oral carcinogenesis. Following BRB troche administration, the expression of prosurvival genes (AURKA, BIRC5, EGFR) and proinflammatory genes (NFKB1, PTGS2) were significantly reduced. There were no BRB-associated grade 3-4 toxicities or adverse events, and 79.2% (N = 30) of patients successfully completed the study with high levels of compliance (97.2%). The BRB phytochemicals cyanidin-3-rutinoside and cyanidin-3-xylosylrutinoside were detected in all OSCC tissues analyzed, demonstrating that bioactive components were successfully reaching targeted OSCC tissues. We confirmed that hallmark antiapoptotic and proinflammatory molecular biomarkers were overexpressed in OSCCs and that their gene expression was significantly reduced following BRB troche administration. As these molecular biomarkers are fundamental to oral carcinogenesis and are modifiable, they may represent emerging biomarkers of molecular efficacy for BRB-mediated oral cancer chemoprevention. ©2015 American Association for Cancer

  3. Inhibition of reactive oxygen species in hypothalamic paraventricular nucleus attenuates the renin–angiotensin system and proinflammatory cytokines in hypertension

    International Nuclear Information System (INIS)

    Su, Qing; Qin, Da-Nian; Wang, Fu-Xin; Ren, Jun; Li, Hong-Bao; Zhang, Meng; Yang, Qing; Miao, Yu-Wang; Yu, Xiao-Jing; Qi, Jie; Zhu, Zhiming; Zhu, Guo-Qing; Kang, Yu-Ming

    2014-01-01

    Aims: To explore whether reactive oxygen species (ROS) scavenger (tempol) in the hypothalamic paraventricular nucleus (PVN) attenuates renin–angiotensin system (RAS) and proinflammatory cytokines (PICs), and decreases the blood pressure and sympathetic activity in angiotensin II (ANG II)-induced hypertension. Methods and results: Male Sprague–Dawley rats were infused intravenously with ANG II (10 ng/kg per min) or normal saline (NS) for 4 weeks. These rats were treated with bilateral PVN infusion of oxygen free radical scavenger tempol (TEMP, 20 μg/h) or vehicle (artificial cerebrospinal fluid, aCSF) for 4 weeks. ANG II infusion resulted in increased mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA). These ANG II-infused rats also had higher levels of gp91 phox (a subunit of NAD(P)H oxidase), angiotensin-converting enzyme (ACE), and interleukin-1beta (IL-1β) in the PVN than the control animals. Treatment with PVN infusion of TEMP attenuated the overexpression of gp91 phox , ACE and IL-1β within the PVN, and decreased sympathetic activity and MAP in ANG II-infused rats. Conclusion: These findings suggest that ANG II infusion induces elevated PICs and oxidative stress in the PVN, which contribute to the sympathoexcitation in hypertension. Inhibition of reactive oxygen species in hypothalamic paraventricular nucleus attenuates the renin–angiotensin system, proinflammatory cytokines and oxidative stress in ANG II-induced hypertension. - Highlights: • The effect of chronic inhibiting PVN superoxide on hypertension was investigated. • ANG II infusion induced increased proinflammatory cytokines and superoxide in PVN. • ANG II infusion resulted in oxidative stress, sympathoexcitation and hypertension. • Chronic inhibiting PVN superoxide attenuates RAS and cytokines in hypertension

  4. Intracellular NAD+ levels are associated with LPS-induced TNF-α release in pro-inflammatory macrophages

    Science.gov (United States)

    Al-Shabany, Abbas Jawad; Moody, Alan John; Foey, Andrew David; Billington, Richard Andrew

    2016-01-01

    Metabolism and immune responses have been shown to be closely linked and as our understanding increases, so do the intricacies of the level of linkage. NAD+ has previously been shown to regulate tumour necrosis factor-α (TNF-α) synthesis and TNF-α has been shown to regulate NAD+ homoeostasis providing a link between a pro-inflammatory response and redox status. In the present study, we have used THP-1 differentiation into pro- (M1-like) and anti- (M2-like) inflammatory macrophage subset models to investigate this link further. Pro- and anti-inflammatory macrophages showed different resting NAD+ levels and expression levels of NAD+ homoeostasis enzymes. Challenge with bacterial lipopolysaccharide, a pro-inflammatory stimulus for macrophages, caused a large, biphasic and transient increase in NAD+ levels in pro- but not anti-inflammatory macrophages that were correlated with TNF-α release and inhibition of certain NAD+ synthesis pathways blocked TNF-α release. Lipopolysaccharide stimulation also caused changes in mRNA levels of some NAD+ homoeostasis enzymes in M1-like cells. Surprisingly, despite M2-like cells not releasing TNF-α or changing NAD+ levels in response to lipopolysaccharide, they showed similar mRNA changes compared with M1-like cells. These data further strengthen the link between pro-inflammatory responses in macrophages and NAD+. The agonist-induced rise in NAD+ shows striking parallels to well-known second messengers and raises the possibility that NAD+ is acting in a similar manner in this model. PMID:26764408

  5. Truncated thioredoxin (Trx-80) promotes pro-inflammatory macrophages of the M1 phenotype and enhances atherosclerosis.

    Science.gov (United States)

    Mahmood, Dler Faieeq Darweesh; Abderrazak, Amna; Couchie, Dominique; Lunov, Oleg; Diderot, Vimala; Syrovets, Tatiana; Slimane, Mohamed-Naceur; Gosselet, Fabien; Simmet, Thomas; Rouis, Mustapha; El Hadri, Khadija

    2013-07-01

    Vascular cells are particularly susceptible to oxidative stress that is believed to play a key role in the pathogenesis of cardiovascular disorders. Thioredoxin-1 (Trx-1) is an oxidative stress-limiting protein with anti-inflammatory and anti-apoptotic properties. In contrast, its truncated form (Trx-80) exerts pro-inflammatory effects. Here we analyzed whether Trx-80 might exert atherogenic effects by promoting macrophage differentiation into the M1 pro-inflammatory phenotype. Trx-80 at 1 µg/ml significantly attenuated the polarization of anti-inflammatory M2 macrophages induced by exposure to either IL-4 at 15 ng/ml or IL-4/IL-13 (10 ng/ml each) in vitro, as evidenced by the expression of the characteristic markers, CD206 and IL-10. By contrast, in LPS-challenged macrophages, Trx-80 significantly potentiated the differentiation into inflammatory M1 macrophages as indicated by the expression of the M1 cytokines, TNF-α and MCP-1. When Trx-80 was administered to hyperlipoproteinemic ApoE2.Ki mice at 30 µg/g body weight (b.w.) challenged either with LPS at 30 µg/30 g (b.w.) or IL-4 at 500 ng/30 g (b.w.), it significantly induced the M1 phenotype but inhibited differentiation of M2 macrophages in thymus and liver. When ApoE2.Ki mice were challenged once weekly with LPS for 5 weeks, they showed severe atherosclerotic lesions enriched with macrophages expressing predominantly M1 over M2 markers. Such effect was potentiated when mice received daily, in addition to LPS, the Trx-80. Moreover, the Trx-80 treatment led to a significantly increased aortic lesion area. The ability of Trx-80 to promote differentiation of macrophages into the classical proinflammatory phenotype may explain its atherogenic effects in cardiovascular diseases. Copyright © 2013 Wiley Periodicals, Inc.

  6. Melatonin mitigates thioacetamide-induced hepatic fibrosis via antioxidant activity and modulation of proinflammatory cytokines and fibrogenic genes.

    Science.gov (United States)

    Lebda, Mohamed A; Sadek, Kadry M; Abouzed, Tarek K; Tohamy, Hossam G; El-Sayed, Yasser S

    2018-01-01

    The potential antifibrotic effects of melatonin against induced hepatic fibrosis were explored. Rats were allocated into four groups: placebo; thioacetamide (TAA) (200mg/kg bwt, i.p twice weekly for two months); melatonin (5mg/kgbwt, i.p daily for a week before TAA and continued for an additional two months); and melatonin plus TAA. Hepatic fibrotic changes were evaluated biochemically and histopathologically. Hepatic oxidative/antioxidative indices were assessed. The expression of hepatic proinflammatory cytokines (tumor necrosis factor-α, and interleukin-1β), fibrogenic-related genes (transforming growth factor-1β, collagen I, collagen, III, laminin, and autotaxin) and an antioxidant-related gene (thioredoxin-1) were detected by qRT-PCR. In fibrotic rats, melatonin lowered serum aspartate aminotransferase, alanine aminotransferase, and autotaxin activities, bilirubin, hepatic hydroxyproline and plasma ammonia levels. Melatonin displayed hepatoprotective and antifibrotic potential as indicated by mild hydropic degeneration of some hepatocytes and mild fibroplasia. In addition, TAA induced the depletion of glutathione, glutathione s-transferase, glutathione peroxidase, superoxide dismutase, catalase, and paraoxonase-1 (PON-1), while inducing the accumulation of malondialdehyde, protein carbonyl (C=O) and nitric oxide (NO), and DNA fragmentation. These effects were restored by melatonin pretreatment. Furthermore, melatonin markedly attenuated the expression of proinflammatory cytokines and fibrogenic genes via the upregulation of thioredoxin-1 mRNA transcripts. Melatonin exhibits potent anti-inflammatory, antioxidant and fibrosuppressive activities against TAA-induced hepatic fibrogenesis via the suppression of oxidative stress, DNA damage, proinflammatory cytokines and fibrogenic gene transcripts. In addition, we demonstrate that the antifibrotic activity of melatonin is mediated by the induction of thioredoxin-1 with attenuation of autotaxin expressions

  7. Inhibitors of MyD88-dependent proinflammatory cytokine production identified utilizing a novel RNA interference screening approach.

    Directory of Open Access Journals (Sweden)

    John S Cho

    2009-09-01

    Full Text Available The events required to initiate host defenses against invading pathogens involve complex signaling cascades comprised of numerous adaptor molecules, kinases, and transcriptional elements, ultimately leading to the production of proinflammatory cytokines, such as tumor necrosis factor alpha (TNF-alpha. How these signaling cascades are regulated, and the proteins and regulatory elements participating are still poorly understood.We report here the development a completely random short-hairpin RNA (shRNA library coupled with a novel forward genetic screening strategy to identify inhibitors of Toll-like receptor (TLR dependent proinflammatory responses. We developed a murine macrophage reporter cell line stably transfected with a construct expressing diphtheria toxin-A (DT-A under the control of the TNF-alpha-promoter. Stimulation of the reporter cell line with the TLR ligand lipopolysaccharide (LPS resulted in DT-A induced cell death, which could be prevented by the addition of an shRNA targeting the TLR adaptor molecule MyD88. Utilizing this cell line, we screened a completely random lentiviral short hairpin RNA (shRNA library for sequences that inhibited TLR-mediated TNF-alpha production. Recovery of shRNA sequences from surviving cells led to the identification of unique shRNA sequences that significantly inhibited TLR4-dependent TNF-alpha gene expression. Furthermore, these shRNA sequences specifically blocked TLR2 but not TLR3-dependent TNF-alpha production.Thus, we describe the generation of novel tools to facilitate large-scale forward genetic screens in mammalian cells and the identification of potent shRNA inhibitors of TLR2 and TLR4- dependent proinflammatory responses.

  8. Proinflammatory Cytokines, Enolase and S-100 as Early Biochemical Indicators of Hypoxic-Ischemic Encephalopathy Following Perinatal Asphyxia in Newborns.

    Science.gov (United States)

    Chaparro-Huerta, Verónica; Flores-Soto, Mario Eduardo; Merin Sigala, Mario Ernesto; Barrera de León, Juan Carlos; Lemus-Varela, María de Lourdes; Torres-Mendoza, Blanca Miriam de Guadalupe; Beas-Zárate, Carlos

    2017-02-01

    Estimation of the neurological prognosis of infants suffering from perinatal asphyxia and signs of hypoxic-ischemic encephalopathy is of great clinical importance; however, it remains difficult to satisfactorily assess these signs with current standard medical practices. Prognoses are typically based on data obtained from clinical examinations and neurological tests, such as electroencephalography (EEG) and neuroimaging, but their sensitivities and specificities are far from optimal, and they do not always reliably predict future neurological sequelae. In an attempt to improve prognostic estimates, neurological research envisaged various biochemical markers detectable in the umbilical cord blood of newborns (NB). Few studies examining these biochemical factors in the whole blood of newborns exist. Thus, the aim of this study was to determine the expression and concentrations of proinflammatory cytokines (TNF-α, IL-1β and IL-6) and specific CNS enzymes (S-100 and enolase) in infants with perinatal asphyxia. These data were compared between the affected infants and controls and were related to the degree of HIE to determine their utilities as biochemical markers for early diagnosis and prognosis. The levels of the proinflammatory cytokines and enzymes were measured by enzyme-linked immunosorbent assay (ELISA) and Reverse Transcription polymerase chain reaction (RT-PCR). The expression and serum levels of the proinflammatory cytokines, enolase and S-100 were significantly increased in the children with asphyxia compared with the controls. The role of cytokines after hypoxic-ischemic insult has been determined in studies of transgenic mice that support the use of these molecules as candidate biomarkers. Similarly, S-100 and enolase are considered promising candidates because these markers have been correlated with tissue damage in different experimental models. Copyright © 2016. Published by Elsevier B.V.

  9. N-acetyl cysteine reverts the proinflammatory state induced by cigarette smoke extract in lung Calu-3 cells

    Directory of Open Access Journals (Sweden)

    Ángel G. Valdivieso

    2018-06-01

    Full Text Available Chronic obstructive pulmonary disease (COPD and cystic fibrosis (CF are lethal pulmonary diseases. Cigarette consumption is the main cause for development of COPD, while CF is produced by mutations in the CFTR gene. Although these diseases have a different etiology, both share a CFTR activity impairment and proinflammatory state even under sterile conditions. The aim of this work was to study the extent of the protective effect of the antioxidant N-acetylcysteine (NAC over the proinflammatory state (IL-6 and IL-8, oxidative stress (reactive oxygen species, ROS, and CFTR levels, caused by Cigarette Smoke Extract (CSE in Calu-3 airway epithelial cells. CSE treatment (100 µg/ml during 24 h decreased CFTR mRNA expression and activity, and increased the release of IL-6 and IL-8. The effect on these cytokines was inhibited by N-acetyl cysteine (NAC, 5 mM or the NF-kB inhibitor, IKK-2 (10 µM. CSE treatment also increased cellular and mitochondrial ROS levels. The cellular ROS levels were normalized to control values by NAC treatment, although significant effects on mitochondrial ROS levels were observed only at short times (5´ and effects on CFTR levels were not observed. In addition, CSE reduced the mitochondrial NADH-cytochrome c oxidoreductase (mCx I-III activity, an effect that was not reverted by NAC. The reduced CFTR expression and the mitochondrial damage induced by CSE could not be normalized by NAC treatment, evidencing the need for a more specific reagent. In conclusion, CSE causes a sterile proinflammatory state and mitochondrial damage in Calu-3 cells that was partially recovered by NAC treatment. Keywords: Cigarette smoke extract, Mitochondria, CFTR, ROS, COPD, Cystic fibrosis

  10. The novel cytokine interleukin-33 activates acinar cell proinflammatory pathways and induces acute pancreatic inflammation in mice.

    Directory of Open Access Journals (Sweden)

    Duraisamy Kempuraj

    Full Text Available Acute pancreatitis is potentially fatal but treatment options are limited as disease pathogenesis is poorly understood. IL-33, a novel IL-1 cytokine family member, plays a role in various inflammatory conditions but its role in acute pancreatitis is not well understood. Specifically, whether pancreatic acinar cells produce IL-33 when stressed or respond to IL-33 stimulation, and whether IL-33 exacerbates acute pancreatic inflammation is unknown.In duct ligation-induced acute pancreatitis in mice and rats, we found that (a IL-33 concentration was increased in the pancreas; (b mast cells, which secrete and also respond to IL-33, showed degranulation in the pancreas and lung; (c plasma histamine and pancreatic substance P concentrations were increased; and (d pancreatic and pulmonary proinflammatory cytokine concentrations were increased. In isolated mouse pancreatic acinar cells, TNF-α stimulation increased IL-33 release while IL-33 stimulation increased proinflammatory cytokine release, both involving the ERK MAP kinase pathway; the flavonoid luteolin inhibited IL-33-stimulated IL-6 and CCL2/MCP-1 release. In mice without duct ligation, exogenous IL-33 administration induced pancreatic inflammation without mast cell degranulation or jejunal inflammation; pancreatic changes included multifocal edema and perivascular infiltration by neutrophils and some macrophages. ERK MAP kinase (but not p38 or JNK and NF-kB subunit p65 were activated in the pancreas of mice receiving exogenous IL-33, and acinar cells isolated from the pancreas of these mice showed increased spontaneous cytokine release (IL-6, CXCL2/MIP-2α. Also, IL-33 activated ERK in human pancreatic tissue.As exogenous IL-33 does not induce jejunal inflammation in the same mice in which it induces pancreatic inflammation, we have discovered a potential role for an IL-33/acinar cell axis in the recruitment of neutrophils and macrophages and the exacerbation of acute pancreatic inflammation

  11. Inhibition of reactive oxygen species in hypothalamic paraventricular nucleus attenuates the renin–angiotensin system and proinflammatory cytokines in hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Su, Qing [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Qin, Da-Nian, E-mail: dnqin@stu.edu.cn [Department of Physiology, Shantou University Medical College, Shantou 515041 (China); Wang, Fu-Xin [Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi 154002 (China); Ren, Jun [Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071 (United States); Li, Hong-Bao; Zhang, Meng; Yang, Qing; Miao, Yu-Wang; Yu, Xiao-Jing; Qi, Jie [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Zhu, Zhiming [Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, The Third Military Medical University, Chongqing Institute of Hypertension, Chongqing 400042 (China); Zhu, Guo-Qing [Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029 (China); Kang, Yu-Ming, E-mail: ykang@mail.xjtu.edu.cn [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China)

    2014-04-15

    Aims: To explore whether reactive oxygen species (ROS) scavenger (tempol) in the hypothalamic paraventricular nucleus (PVN) attenuates renin–angiotensin system (RAS) and proinflammatory cytokines (PICs), and decreases the blood pressure and sympathetic activity in angiotensin II (ANG II)-induced hypertension. Methods and results: Male Sprague–Dawley rats were infused intravenously with ANG II (10 ng/kg per min) or normal saline (NS) for 4 weeks. These rats were treated with bilateral PVN infusion of oxygen free radical scavenger tempol (TEMP, 20 μg/h) or vehicle (artificial cerebrospinal fluid, aCSF) for 4 weeks. ANG II infusion resulted in increased mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA). These ANG II-infused rats also had higher levels of gp91{sup phox} (a subunit of NAD(P)H oxidase), angiotensin-converting enzyme (ACE), and interleukin-1beta (IL-1β) in the PVN than the control animals. Treatment with PVN infusion of TEMP attenuated the overexpression of gp91{sup phox}, ACE and IL-1β within the PVN, and decreased sympathetic activity and MAP in ANG II-infused rats. Conclusion: These findings suggest that ANG II infusion induces elevated PICs and oxidative stress in the PVN, which contribute to the sympathoexcitation in hypertension. Inhibition of reactive oxygen species in hypothalamic paraventricular nucleus attenuates the renin–angiotensin system, proinflammatory cytokines and oxidative stress in ANG II-induced hypertension. - Highlights: • The effect of chronic inhibiting PVN superoxide on hypertension was investigated. • ANG II infusion induced increased proinflammatory cytokines and superoxide in PVN. • ANG II infusion resulted in oxidative stress, sympathoexcitation and hypertension. • Chronic inhibiting PVN superoxide attenuates RAS and cytokines in hypertension.

  12. Effect of prolonged exposure to diesel engine exhaust on proinflammatory markers in different regions of the rat brain.

    Science.gov (United States)

    Gerlofs-Nijland, Miriam E; van Berlo, Damien; Cassee, Flemming R; Schins, Roel P F; Wang, Kate; Campbell, Arezoo

    2010-05-17

    The etiology and progression of neurodegenerative disorders depends on the interactions between a variety of factors including: aging, environmental exposures, and genetic susceptibility factors. Enhancement of proinflammatory events appears to be a common link in different neurological impairments, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. Studies have shown a link between exposure to particulate matter (PM), present in air pollution, and enhancement of central nervous system proinflammatory markers. In the present study, the association between exposure to air pollution (AP), derived from a specific source (diesel engine), and neuroinflammation was investigated. To elucidate whether specific regions of the brain are more susceptible to exposure to diesel-derived AP, various loci of the brain were separately analyzed. Rats were exposed for 6 hrs a day, 5 days a week, for 4 weeks to diesel engine exhaust (DEE) using a nose-only exposure chamber. The day after the final exposure, the brain was dissected into the following regions: cerebellum, frontal cortex, hippocampus, olfactory bulb and tubercles, and the striatum. Baseline levels of the pro-inflammatory cytokines tumor necrosis factor alpha (TNF-alpha) and interleukin-1 alpha (IL-1alpha) were dependent on the region analyzed and increased in the striatum after exposure to DEE. In addition, baseline level of activation of the transcription factors (NF-kappaB) and (AP-1) was also region dependent but the levels were not significantly altered after exposure to DEE. A similar, though not significant, trend was seen with the mRNA expression levels of TNF-alpha and TNF Receptor-subtype I (TNF-RI). Our results indicate that different brain regions may be uniquely responsive to changes induced by exposure to DEE. This study once more underscores the role of neuroinflammation in response to ambient air pollution, however, it is valuable to assess if and to

  13. Imbalances in Mobilization and Activation of Pro-Inflammatory and Vascular Reparative Bone Marrow-Derived Cells in Diabetic Retinopathy.

    Directory of Open Access Journals (Sweden)

    Harshini Chakravarthy

    Full Text Available Diabetic retinopathy is a sight-threatening complication of diabetes, affecting 65% of patients after 10 years of the disease. Diabetic metabolic insult leads to chronic low-grade inflammation, retinal endothelial cell loss and inadequate vascular repair. This is partly due to bone marrow (BM pathology leading to increased activity of BM-derived pro-inflammatory monocytes and impaired function of BM-derived reparative circulating angiogenic cells (CACs. We propose that diabetes has a significant long-term effect on the nature and proportion of BM-derived cells that circulate in the blood, localize to the retina and home back to their BM niche. Using a streptozotocin mouse model of diabetic retinopathy with GFP BM-transplantation, we have demonstrated that BM-derived circulating pro-inflammatory monocytes are increased in diabetes while reparative CACs are trapped in the BM and spleen, with impaired release into circulation. Diabetes also alters activation of splenocytes and BM-derived dendritic cells in response to LPS stimulation. A majority of the BM-derived GFP cells that migrate to the retina express microglial markers, while others express endothelial, pericyte and Müller cell markers. Diabetes significantly increases infiltration of BM-derived microglia in an activated state, while reducing infiltration of BM-derived endothelial progenitor cells in the retina. Further, control CACs injected into the vitreous are very efficient at migrating back to their BM niche, whereas diabetic CACs have lost this ability, indicating that the in vivo homing efficiency of diabetic CACs is dramatically decreased. Moreover, diabetes causes a significant reduction in expression of specific integrins regulating CAC migration. Collectively, these findings indicate that BM pathology in diabetes could play a role in both increased pro-inflammatory state and inadequate vascular repair contributing to diabetic retinopathy.

  14. The influence of genetic variability and proinflammatory status on the development of bone disease in patients with Gaucher disease.

    Directory of Open Access Journals (Sweden)

    Javier Gervas-Arruga

    Full Text Available Gaucher disease, the most common lysosomal storage disorder, is caused by β-glucocerebrosidase deficiency. Bone complications are the major cause of morbidity in patients with type 1 Gaucher disease (GD1. Genetic components strongly influence bone remodelling. In addition, chronic inflammation produced by Gaucher cells induces the production of several cytokines, which leads to direct changes in the bone remodelling process and can also affect the process indirectly through other immune cells. In this study, we analysed the association between bone mineral density (BMD, bone marrow burden score, and relevant genetic polymorphisms related to bone metabolism, as well as profiles of proinflammatory cytokines in a GD1 cohort. This study included 83 patients distributed according to bone status. BMD was measured with DXA and broadband ultrasound attenuation; bone marrow involvement was evaluated using MRI. We also analysed 26 SNPs located in 14 genes related to bone metabolism. To assess proinflammatory status, we analysed IL-4, IL-6, IL-7, IL-10, IL-13, MIP-1α, MIP-1β, and TNFα in plasma samples from 71 control participants and GD1 patients. SNP genotype proportions and BMD differed significantly between ESRI c.453-397T>C and VDR c.1024+283G>A variants. We also observed significant associations between GD1 genotypes and bone affectation. When patients were stratified by spleen status, we observed significant correlations between non-/splenectomized groups and Spanish MRI (S-MRI score. Across genotype proportions of non-/splenectomized patients and S-MRI, we observed significant differences in ESRI c.453-397T>C, VDR c.-83-25988G>A, and TNFRSF11B c.9C>G polymorphisms. We observed different significant proinflammatory profiles between control participants, treatment-naïve patients, and patients on enzyme replacement therapy (ERT; between non-/splenectomized patients (between untreated and ERT-treated patients and among those with differing GBA

  15. TNF-α-induced up-regulation of pro-inflammatory cytokines is reduced by phosphatidylcholine in intestinal epithelial cells

    Directory of Open Access Journals (Sweden)

    Griffiths Gareth

    2009-07-01

    Full Text Available Abstract Background Phosphatidylcholine (PC is a major lipid of the gastrointestinal mucus layer. We recently showed that mucus from patients suffering from ulcerative colitis has low levels of PC. Clinical studies reveal that the therapeutic addition of PC to the colonic mucus using slow release preparations is beneficial. The positive role of PC in this disease is still unclear; however, we have recently shown that PC has an intrinsic anti-inflammatory property. It could be demonstrated that the exogenous application of PC inhibits membrane-dependent actin assembly and TNF-α-induced nuclear NF-κB activation. We investigate here in more detail the hypothesis that the exogenous application of PC has anti-inflammatory properties. Methods PC species with different fatty acid side chains were applied to differentiated and non-differentiated Caco-2 cells treated with TNF-α to induce a pro-inflammatory response. We analysed TNF-α-induced NF-κB-activation via the transient expression of a NF-κB-luciferase reporter system. Pro-inflammatory gene transcription was detected with the help of a quantitative real time (RT-PCR analysis. We assessed the binding of TNF-α to its receptor by FACS and analysed lipid rafts by isolating detergent resistant membranes (DRMs. Results The exogenous addition of all PC species tested significantly inhibited TNF-α-induced pro-inflammatory signalling. The expression levels of IL-8, ICAM-1, IP-10, MCP-1, TNF-α and MMP-1 were significantly reduced after PC pre-treatment for at least two hours. The effect was comparable to the inhibition of NF-kB by the NF-kB inhibitor SN 50 and was not due to a reduced binding of TNF-α to its receptor or a decreased surface expression of TNF-α receptors. PC was also effective when applied to the apical side of polarised Caco-2 cultures if cells were stimulated from the basolateral side. PC treatment changed the compartmentation of the TNF-α-receptors 1 and 2 to DRMs. Conclusion PC

  16. Effects of Pregnancy and Bacterial Vaginosis on Proinflammatory Cytokine and Secretory Leukocyte Protease Inhibitor Concentrations in Vaginal Secretions

    Directory of Open Access Journals (Sweden)

    Jennifer Balkus

    2010-01-01

    Full Text Available We compared vaginal proinflammatory cytokine and secretory leukocyte protease inhibitor (SLPI concentrations among pregnant and nonpregnant women according to bacterial vaginosis (BV status. One-hundred and twenty-two women at 12–20 weeks' gestation and 133 nonpregnant controls had vaginal concentrations of interleukin (IL-1β, IL-6, IL-8, and SLPI measured by enzyme immunoassay. Multivariable linear regression was used to evaluate factors independently associated with vaginal cytokine and SLPI response. Pregnancy and BV were both independently associated with increased vaginal concentrations of IL-1β and IL-8; pregnant women had increased concentrations of SLPI, while women with BV had decreased SLPI concentrations.

  17. Apolipoprotein CIII Reduces Proinflammatory Cytokine-Induced Apoptosis in Rat Pancreatic Islets via the Akt Prosurvival Pathway

    DEFF Research Database (Denmark)

    Størling, Joachim; Juntti-Berggren, Lisa; Olivecrona, Gunilla

    2011-01-01

    Apolipoprotein CIII (ApoCIII) is mainly synthesized in the liver and is important for triglyceride metabolism. The plasma concentration of ApoCIII is elevated in patients with type 1 diabetes (T1D), and in vitro ApoCIII causes apoptosis in pancreatic ß-cells in the absence of inflammatory stress...... of the survival serine-threonine kinase Akt. Inhibition of the Akt signaling pathway by the phosphatidylinositol 3 kinase inhibitor LY294002 counteracted the antiapoptotic effect of ApoCIII on cytokine-induced apoptosis. We conclude that ApoCIII in the presence of T1D-relevant proinflammatory cytokines reduces...

  18. Kaempferol modulates pro-inflammatory NF-κB activation by suppressing advanced glycation endproducts-induced NADPH oxidase

    Science.gov (United States)

    Kim, Ji Min; Lee, Eun Kyeong; Kim, Dae Hyun; Yu, Byung Pal

    2010-01-01

    Advanced glycation endproducts (AGE) are oxidative products formed from the reaction between carbohydrates and a free amino group of proteins that are provoked by reactive species (RS). It is also known that AGE enhance the generation of RS and that the binding of AGE to a specific AGE receptor (RAGE) induces the activation of the redox-sensitive, pro-inflammatory transcription factor, nuclear factor-kappa B (NF-ĸB). In this current study, we investigated the anti-oxidative effects of short-term kaempferol supplementation on the age-related formation of AGE and the binding activity of RAGE in aged rat kidney. We further investigated the suppressive action of kaempferol against AGE's ability to stimulate activation of pro-inflammatory NF-ĸB and its molecular mechanisms. For this study, we utilized young (6 months old), old (24 months old), and kaempferol-fed (2 and 4 mg/kg/day for 10 days) old rats. In addition, for the molecular work, the rat endothelial cell line, YPEN-1 was used. The results show that AGE and RAGE were increased during aging and that these increases were blunted by kaempferol. In addition, dietary kaempferol reduced age-related increases in NF-κB activity and NF-ĸB-dependant pro-inflammatory gene activity. The most significant new finding from this study is that kaempferol supplementation prevented age-related NF-κB activation by suppressing AGE-induced nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase). Taken together, our results demonstrated that dietary kaempferol exerts its anti-oxidative and anti-inflammatory actions by modulating the age-related NF-κB signaling cascade and its pro-inflammatory genes by suppressing AGE-induced NADPH oxidase activation. Based on these data, dietary kaempferol is proposed as a possible anti-AGE agent that may have the potential for use in anti-inflammation therapies. PMID:20431987

  19. A role for autoantibodies in enhancement of pro-inflammatory cytokine responses to a self-antigen, thyroid peroxidase

    DEFF Research Database (Denmark)

    Nielsen, Claus H; Brix, Thomas H; Leslie, R Graham Q

    2009-01-01

    The role of thyroid peroxidase (TPO) antibodies (TPOAbs) in the pathogenesis of autoimmune thyroid disease is unclear. We selected sera with a high concentration of TPOAbs from eleven patients with Hashimoto's thyroiditis (HT), ten healthy monozygotic co-twins to HT patients, and twelve healthy...... individuals with no familiar disposition to AITD, and mixed each serum with normal mononuclear cells (MNCs). Following challenge with TPO, the MNCs' production of the pro-inflammatory cytokines TNF-alpha, IL-6 and IFN-gamma, and the anti-inflammatory cytokine IL-10, correlated with the TPOAb content...

  20. Dark chocolate attenuates intracellular pro-inflammatory reactivity to acute psychosocial stress in men: A randomized controlled trial.

    Science.gov (United States)

    Kuebler, Ulrike; Arpagaus, Angela; Meister, Rebecca E; von Känel, Roland; Huber, Susanne; Ehlert, Ulrike; Wirtz, Petra H

    2016-10-01

    Flavanol-rich dark chocolate consumption relates to lower risk of cardiovascular mortality, but underlying mechanisms are elusive. We investigated the effect of acute dark chocolate consumption on inflammatory measures before and after stress. Healthy men, aged 20-50years, were randomly assigned to a single intake of either 50g of flavanol-rich dark chocolate (n=31) or 50g of optically identical flavanol-free placebo-chocolate (n=34). Two hours after chocolate intake, both groups underwent the 15-min Trier Social Stress Test. We measured DNA-binding-activity of the pro-inflammatory transcription factor NF-κB (NF-κB-BA) in peripheral blood mononuclear cells, as well as plasma and whole blood mRNA levels of the pro-inflammatory cytokines IL-1β and IL-6, and the anti-inflammatory cytokine IL-10, prior to chocolate intake as well as before and several times after stress. We also repeatedly measured the flavanol epicatechin and the stress hormones epinephrine and cortisol in plasma and saliva, respectively. Compared to the placebo-chocolate-group, the dark-chocolate-group revealed a marginal increase in IL-10 mRNA prior to stress (p=0.065), and a significantly blunted stress reactivity of NF-κB-BA, IL-1β mRNA, and IL-6 mRNA (p's⩽0.036) with higher epicatechin levels relating to lower pro-inflammatory stress reactivity (p's⩽0.033). Stress hormone changes to stress were controlled. None of the other measures showed a significant chocolate effect (p's⩾0.19). Our findings indicate that acute flavanol-rich dark chocolate exerts anti-inflammatory effects both by increasing mRNA expression of the anti-inflammatory cytokine IL-10 and by attenuating the intracellular pro-inflammatory stress response. This mechanism may add to beneficial effects of dark chocolate on cardiovascular health. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. CD200R1 supports HSV-1 viral replication and licenses pro-inflammatory signaling functions of TLR2.

    Directory of Open Access Journals (Sweden)

    Roy J Soberman

    Full Text Available The CD200R1:CD200 axis is traditionally considered to limit tissue inflammation by down-regulating pro-inflammatory signaling in myeloid cells bearing the receptor. We generated CD200R1(-/- mice and employed them to explore both the role of CD200R1 in regulating macrophage signaling via TLR2 as well as the host response to an in vivo, TLR2-dependent model, herpes simplex virus 1 (HSV-1 infection. CD200R1(-/- peritoneal macrophages demonstrated a 70-75% decrease in the generation of IL-6 and CCL5 (Rantes in response to the TLR2 agonist Pam(2CSK(4 and to HSV-1. CD200R1(-/- macrophages could neither up-regulate the expression of TLR2, nor assemble a functional inflammasome in response to HSV-1. CD200R1(-/- mice were protected from HSV-1 infection and exhibited dysfunctional TLR2 signaling. Finally, both CD200R1(-/- mice and CD200R1(-/- fibroblasts and macrophages showed a markedly reduced ability to support HSV-1 replication. In summary, our data demonstrate an unanticipated and novel requirement for CD200R1 in "licensing" pro-inflammatory functions of TLR2 and in limiting viral replication that are supported by ex vivo and in vivo evidence.

  2. Penta- and octa-bromodiphenyl ethers promote proinflammatory protein expression in human bronchial epithelial cells in vitro.

    Science.gov (United States)

    Koike, Eiko; Yanagisawa, Rie; Takigami, Hidetaka; Takano, Hirohisa

    2014-03-01

    Polybrominated diphenyl ethers (PBDEs) are widely used as flame retardants in consumer products. Humans can be exposed to PBDEs mainly through the inhalation of air or dust. Thus, PBDEs can affect respiratory and immune systems. In the present study, we investigated whether PBDEs stimulate bronchial epithelial cells. We examined commercial penta-BDE (DE-71), octa-BDE (DE-79), and deca-BDE (DE-83R). Human bronchial epithelial cells (BEAS-2B) were exposed to each PBDE for 24h. Subsequently, the expression of intercellular adhesion molecule-1 (ICAM-1) and proinflammatory cytokines were investigated. DE-71 and DE-79, but not DE-83R, significantly increased the expression of ICAM-1, interleukin-6 (IL-6), and IL-8 in BEAS-2B. Because these remarkable effects were observed with DE-71, we further investigated the underlying intracellular mechanisms. DE-71 promoted epidermal growth factor receptor (EGFR) phosphorylation. Inhibitors of EGFR-selective tyrosine kinase and p38 mitogen-activated protein kinase effectively blocked the increase of IL-6 and IL-8. Furthermore, antagonists of thyroid hormone receptor and aryl hydrocarbon receptor significantly suppressed the increase in IL-6 and/or IL-8 production. In conclusion, penta- and octa-BDE, but not deca-BDE, might promote the expression of proinflammatory proteins in bronchial epithelial cells possibly by activating protein kinases and/or stimulating nuclear receptors related to subsequent activation of transcriptional factors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. The Interplay between Cyclic AMP, MAPK, and NF-κB Pathways in Response to Proinflammatory Signals in Microglia

    Directory of Open Access Journals (Sweden)

    Mousumi Ghosh

    2015-01-01

    Full Text Available Cyclic AMP is an important intracellular regulator of microglial cell homeostasis and its negative perturbation through proinflammatory signaling results in microglial cell activation. Though cytokines, TNF-α and IL-1β, decrease intracellular cyclic AMP, the mechanism by which this occurs is poorly understood. The current study examined which signaling pathways are responsible for decreasing cyclic AMP in microglia following TNF-α stimulation and sought to identify the role cyclic AMP plays in regulating these pathways. In EOC2 microglia, TNF-α produced a dramatic reduction in cyclic AMP and increased cyclic AMP-dependent PDE activity that could be antagonized by Rolipram, myristoylated-PKI, PD98059, or JSH-23, implicating a role for PDE4, PKA, MEK, and NF-κB in this regulation. Following TNF-α there were significant increases in iNOS and COX-2 immunoreactivity, phosphorylated ERK1/2 and NF-κB-p65, IκB degradation, and NF-κB p65 nuclear translocation, which were reduced in the presence of high levels of cyclic AMP, indicating that reductions in cyclic AMP during cytokine stimulation are important for removing its inhibitory action on NF-κB activation and subsequent proinflammatory gene expression. Further elucidation of the signaling crosstalk involved in decreasing cyclic AMP in response to inflammatory signals may provide novel therapeutic targets for modulating microglial cell activation during neurological injury and disease.

  4. Fasciola hepatica infection reduces Mycobacterium bovis burden and mycobacterial uptake and suppresses the pro-inflammatory response.

    Science.gov (United States)

    Garza-Cuartero, L; O'Sullivan, J; Blanco, A; McNair, J; Welsh, M; Flynn, R J; Williams, D; Diggle, P; Cassidy, J; Mulcahy, G

    2016-07-01

    Bovine tuberculosis (BTB), caused by Mycobacterium bovis, has an annual incidence in cattle of 0.5% in the Republic of Ireland and 4.7% in the UK, despite long-standing eradication programmes being in place. Failure to achieve complete eradication is multifactorial, but the limitations of diagnostic tests are significant complicating factors. Previously, we have demonstrated that Fasciola hepatica infection, highly prevalent in these areas, induced reduced sensitivity of the standard diagnostic tests for BTB in animals co-infected with F. hepatica and M. bovis. This was accompanied by a reduced M. bovis-specific Th1 immune response. We hypothesized that these changes in co-infected animals would be accompanied by enhanced growth of M. bovis. However, we show here that mycobacterial burden in cattle is reduced in animals co-infected with F. hepatica. Furthermore, we demonstrate a lower mycobacterial recovery and uptake in blood monocyte-derived macrophages (MDM) from F. hepatica-infected cattle which is associated with suppression of pro-inflammatory cytokines and a switch to alternative activation of macrophages. However, the cell surface expression of TLR2 and CD14 in MDM from F. hepatica-infected cattle is increased. These findings reflecting the bystander effect of helminth-induced downregulation of pro-inflammatory responses provide insights to understand host-pathogen interactions in co-infection. © 2016 The Authors. Parasite Immunology Published by John Wiley & Sons Ltd.

  5. Proinflammatory cytokines and CD14 expression in mammary tissue of cows following intramammary inoculation of Panax ginseng at drying off.

    Science.gov (United States)

    Baravalle, C; Dallard, B E; Cadoche, M C; Pereyra, E A L; Neder, V E; Ortega, H H; Calvinho, L F

    2011-11-15

    The lack of efficacy of conventional strategies for the maintenance of healthy udders in domestic cattle has prompted studies on the use of immunomodulators or biological response modifiers (BRM) for this purpose. These compounds are agents that modify the host's response to pathogens leading to beneficial effects on disease outcome. The objective of this study was to evaluate the effects of a single intramammary infusion of Panax ginseng (GS) extract on the amount of pro-inflammatory cytokines and the number of monocytes/macrophages present in bovine mammary tissues at drying off. Eight mammary quarters from six nonpregnant cows in late lactation were infused with 10 mL of GS (3mg/mL), six quarters were treated with 10 mL of placebo (vehicle alone) and six quarters were maintained as uninoculated controls. The analyses of tumor necrosis factor-alpha (TNF-α) by immunohistochemistry revealed that the production of this proinflammatory cytokine significantly increased (Pmastitis at drying off, either alone or in conjunction with dry cow antibiotic therapy. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Contributions of early adversity to pro-inflammatory phenotype in infancy: the buffer provided by attachment security.

    Science.gov (United States)

    Measelle, Jeffrey R; Ablow, Jennifer C

    2018-02-01

    Adversity early in life is associated with systemic inflammation by adolescence and beyond. At present, few studies have investigated the associations between different forms of adversity and inflammation during infancy, making it difficult to specify the origins of disease vulnerability. This study examined the association between multiple forms of early adversity - socioeconomic status disadvantage, familial stress, maternal depression, and security of attachment - and individual differences in a composite measure of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, and tumor necrosis factor-alpha) and the inflammatory protein C-reactive protein that were collected via saliva when (n = 49) children were 17 months old. In addition to gauging the direct effects of adversity, we also tested the hypothesis that infants' attachment relationship with their mother might buffer infants against the immunologic effects of early adversity. Results show that familial stress, maternal depression, and security of attachment were directly associated with infant salivary inflammation and that attachment status moderated the effect of maternal depression. The findings suggest that exposure to certain forms of adversity very early in life may engender a pro-inflammatory phenotype with possible life-long implications for health.

  7. Granzyme B-dependent proteolysis acts as a switch to enhance the proinflammatory activity of IL-1α.

    LENUS (Irish Health Repository)

    Afonina, Inna S

    2011-10-21

    Granzyme B is a cytotoxic lymphocyte-derived protease that plays a central role in promoting apoptosis of virus-infected target cells, through direct proteolysis and activation of constituents of the cell death machinery. However, previous studies have also implicated granzymes A and B in the production of proinflammatory cytokines, via a mechanism that remains undefined. Here we show that IL-1α is a substrate for granzyme B and that proteolysis potently enhanced the biological activity of this cytokine in vitro as well as in vivo. Consistent with this, compared with full-length IL-1α, granzyme B-processed IL-1α exhibited more potent activity as an immunoadjuvant in vivo. Furthermore, proteolysis of IL-1α within the same region, by proteases such as calpain and elastase, was also found to enhance its biological potency. Thus, IL-1α processing by multiple immune-related proteases, including granzyme B, acts as a switch to enhance the proinflammatory properties of this cytokine.

  8. Regulation of Viral Replication, Apoptosis and Pro-Inflammatory Responses by 17-AAG during Chikungunya Virus Infection in Macrophages

    Directory of Open Access Journals (Sweden)

    Tapas K. Nayak

    2017-01-01

    Full Text Available Chikungunya virus (CHIKV infection has re-emerged as a major public health concern due to its recent worldwide epidemics and lack of control measures. Although CHIKV is known to infect macrophages, regulation of CHIKV replication, apoptosis and immune responses towards macrophages are not well understood. Accordingly, the Raw264.7 cells, a mouse macrophage cell line, were infected with CHIKV and viral replication as well as new viral progeny release was assessed by flow cytometry and plaque assay, respectively. Moreover, host immune modulation and apoptosis were studied through flow cytometry, Western blot and ELISA. Our current findings suggest that expression of CHIKV proteins were maximum at 8 hpi and the release of new viral progenies were remarkably increased around 12 hpi. The induction of Annexin V binding, cleaved caspase-3, cleaved caspase-9 and cleaved caspase-8 in CHIKV infected macrophages suggests activation of apoptosis through both intrinsic and extrinsic pathways. The pro-inflammatory mediators (TNF and IL-6 MHC-I/II and B7.2 (CD86 were also up-regulated during infection over time. Further, 17-AAG, a potential HSP90 inhibitor, was found to regulate CHIKV infection, apoptosis and pro-inflammatory cytokine/chemokine productions of host macrophages significantly. Hence, the present findings might bring new insight into the therapeutic implication in CHIKV disease biology.

  9. Regulation of Viral Replication, Apoptosis and Pro-Inflammatory Responses by 17-AAG during Chikungunya Virus Infection in Macrophages.

    Science.gov (United States)

    Nayak, Tapas K; Mamidi, Prabhudutta; Kumar, Abhishek; Singh, Laishram Pradeep K; Sahoo, Subhransu S; Chattopadhyay, Soma; Chattopadhyay, Subhasis

    2017-01-06

    Chikungunya virus (CHIKV) infection has re-emerged as a major public health concern due to its recent worldwide epidemics and lack of control measures. Although CHIKV is known to infect macrophages, regulation of CHIKV replication, apoptosis and immune responses towards macrophages are not well understood. Accordingly, the Raw264.7 cells, a mouse macrophage cell line, were infected with CHIKV and viral replication as well as new viral progeny release was assessed by flow cytometry and plaque assay, respectively. Moreover, host immune modulation and apoptosis were studied through flow cytometry, Western blot and ELISA. Our current findings suggest that expression of CHIKV proteins were maximum at 8 hpi and the release of new viral progenies were remarkably increased around 12 hpi. The induction of Annexin V binding, cleaved caspase-3, cleaved caspase-9 and cleaved caspase-8 in CHIKV infected macrophages suggests activation of apoptosis through both intrinsic and extrinsic pathways. The pro-inflammatory mediators (TNF and IL-6) MHC-I/II and B7.2 (CD86) were also up-regulated during infection over time. Further, 17-AAG, a potential HSP90 inhibitor, was found to regulate CHIKV infection, apoptosis and pro-inflammatory cytokine/chemokine productions of host macrophages significantly. Hence, the present findings might bring new insight into the therapeutic implication in CHIKV disease biology.

  10. Pro-inflammatory effects and oxidative stress in lung macrophages and epithelial cells induced by ambient particulate matter

    International Nuclear Information System (INIS)

    Michael, S.; Montag, M.; Dott, W.

    2013-01-01

    The objective of this study was to compare the toxicological effects of different source-related ambient PM10 samples in regard to their chemical composition. In this context we investigated airborne PM from different sites in Aachen, Germany. For the toxicological investigation human alveolar epithelial cells (A549) and murine macrophages (RAW264.7) were exposed from 0 to 96 h to increasing PM concentrations (0–100 μg/ml) followed by analyses of cell viability, pro-inflammatory and oxidative stress responses. The chemical analysis of these particles indicated the presence of 21 elements, water-soluble ions and PAHs. The toxicological investigations of the PM10 samples demonstrated a concentration- and time-dependent decrease in cell viability and an increase in pro-inflammatory and oxidative stress markers. -- Highlights: ► The study compares the toxicological effects of different source-related particles with regard to their chemical composition. ► The chemical characterization of the coarse particles revealed clear differences in elemental, TC and PAH composition. ► Equal mass concentrations of urban traffic and rural PM caused different toxicological responses. ► The observations confirm the hypothesis that particle composition, as well as origin, influence the PM-induced toxicity. -- The toxicological responses of lung epithelial cells and macrophages differ significantly after an exposure to equal mass concentrations of urban traffic and rural PM

  11. Cross-regulation of cytokine signalling: pro-inflammatory cytokines restrict IL-6 signalling through receptor internalisation and degradation.

    Science.gov (United States)

    Radtke, Simone; Wüller, Stefan; Yang, Xiang-ping; Lippok, Barbara E; Mütze, Barbara; Mais, Christine; de Leur, Hildegard Schmitz-Van; Bode, Johannes G; Gaestel, Matthias; Heinrich, Peter C; Behrmann, Iris; Schaper, Fred; Hermanns, Heike M

    2010-03-15

    The inflammatory response involves a complex interplay of different cytokines which act in an auto- or paracrine manner to induce the so-called acute phase response. Cytokines are known to crosstalk on multiple levels, for instance by regulating the mRNA stability of targeted cytokines through activation of the p38-MAPK pathway. In our study we discovered a new mechanism that answers the long-standing question how pro-inflammatory cytokines and environmental stress restrict immediate signalling of interleukin (IL)-6-type cytokines. We show that p38, activated by IL-1beta, TNFalpha or environmental stress, impairs IL-6-induced JAK/STAT signalling through phosphorylation of the common cytokine receptor subunit gp130 and its subsequent internalisation and degradation. We identify MK2 as the kinase that phosphorylates serine 782 in the cytoplasmic part of gp130. Consequently, inhibition of p38 or MK2, deletion of MK2 or mutation of crucial amino acids within the MK2 target site or the di-leucine internalisation motif blocks receptor depletion and restores IL-6-dependent STAT activation as well as gene induction. Hence, a novel negative crosstalk mechanism for cytokine signalling is described, where cytokine receptor turnover is regulated in trans by pro-inflammatory cytokines and stress stimuli to coordinate the inflammatory response.

  12. Human Properdin Opsonizes Nanoparticles and Triggers a Potent Pro-inflammatory Response by Macrophages without Involving Complement Activation

    Science.gov (United States)

    Kouser, Lubna; Paudyal, Basudev; Kaur, Anuvinder; Stenbeck, Gudrun; Jones, Lucy A.; Abozaid, Suhair M.; Stover, Cordula M.; Flahaut, Emmanuel; Sim, Robert B.; Kishore, Uday

    2018-01-01

    Development of nanoparticles as tissue-specific drug delivery platforms can be considerably influenced by the complement system because of their inherent pro-inflammatory and tumorigenic consequences. The complement activation pathways, and its recognition subcomponents, can modulate clearance of the nanoparticles and subsequent inflammatory response and thus alter the intended translational applications. Here, we report, for the first time, that human properdin, an upregulator of the complement alternative pathway, can opsonize functionalized carbon nanotubes (CNTs) via its thrombospondin type I repeat (TSR) 4 and 5. Binding of properdin and TSR4+5 is likely to involve charge pattern/polarity recognition of the CNT surface since both carboxymethyl cellulose-coated carbon nanotubes (CMC-CNT) and oxidized (Ox-CNT) bound these proteins well. Properdin enhanced the uptake of CMC-CNTs by a macrophage cell line, THP-1, mounting a robust pro-inflammatory immune response, as revealed by qRT-PCR, multiplex cytokine array, and NF-κB nuclear translocation analyses. Properdin can be locally synthesized by immune cells in an inflammatory microenvironment, and thus, its interaction with nanoparticles is of considerable importance. In addition, recombinant TSR4+5 coated on the CMC-CNTs inhibited complement consumption by CMC-CNTs, suggesting that nanoparticle decoration with TSR4+5, can be potentially used as a complement inhibitor in a number of pathological contexts arising due to exaggerated complement activation. PMID:29483907

  13. Primary vaccination with low dose live dengue 1 virus generates a proinflammatory, multifunctional T cell response in humans.

    Directory of Open Access Journals (Sweden)

    Janet C Lindow

    Full Text Available The four dengue virus serotypes (DENV-1-DENV-4 have a large impact on global health, causing 50-100 million cases of dengue fever annually. Herein, we describe the first kinetic T cell response to a low-dose DENV-1 vaccination study (10 PFU in humans. Using flow cytometry, we found that proinflammatory cytokines, IFNγ, TNFα, and IL-2, were generated by DENV-1-specific CD4(+ cells 21 days post-DENV-1 exposure, and their production continued through the latest time-point, day 42 (p<0.0001 for all cytokines. No statistically significant changes were observed at any time-points for IL-10 (p = 0.19, a regulatory cytokine, indicating that the response to DENV-1 was primarily proinflammatory in nature. We also observed little T cell cross-reactivity to the other 3 DENV serotypes. The percentage of multifunctional T cells (T cells making ≥ 2 cytokines simultaneously increased with time post-DENV-1 exposure (p<0.0001. The presence of multifunctional T cells together with neutralizing antibody data suggest that the immune response generated to the vaccine may be protective. This work provides an initial framework for defining primary T cell responses to each DENV serotype and will enhance the evaluation of a tetravalent DENV vaccine.

  14. Heat adaptation from regular hot water immersion decreases proinflammatory responses, HSP70 expression, and physical heat stress.

    Science.gov (United States)

    Yang, Fwu-Lin; Lee, Chia-Chi; Subeq, Yi-Maun; Lee, Chung-Jen; Ke, Chun-Yen; Lee, Ru-Ping

    2017-10-01

    Hot-water immersion (HWI) is a type of thermal therapy for treating various diseases. In our study, the physiological responses to occasional and regular HWI have been explored. The rats were divided into a control group, occasional group (1D), and regular group (7D). The 1D and 7D groups received 42°C during 15mins HWI for 1 and 7 days, respectively. The blood samples were collected for proinflammatory cytokines examinations, the heart, liver and kidney were excised for subsequent IHC analysis to measure the level of heat shock protein 70 (HSP70). The results revealed that the body temperature increased significantly during HWI on Day 3 and significantly declined on Days 6 and 7. For the 7D group, body weight, heart rate, hematocrit, platelet, osmolarity, and lactate level were lower than those in the 1D group. Furthermore, the levels of granulocyte counts, tumor necrosis factor-α, and interleukin-6 were lower in the 7D group than in the 1D group. The induction of HSP70 in the 1D group was higher than in the other groups. Physiological responses to occasional HWI are disadvantageous because of heat stress. However, adaptation to heat from regular HWI resulted in decreased proinflammatory responses and physical heat stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Two novel functions of hyaluronidase from Streptococcus agalactiae are enhanced intracellular survival and inhibition of proinflammatory cytokine expression.

    Science.gov (United States)

    Wang, Zhaofei; Guo, Changming; Xu, Yannan; Liu, Guangjin; Lu, Chengping; Liu, Yongjie

    2014-06-01

    Streptococcus agalactiae is the causative agent of septicemia and meningitis in fish. Previous studies have shown that hyaluronidase (Hyl) is an important virulence factor in many Gram-positive bacteria. To investigate the role of S. agalactiae Hyl during interaction with macrophages, we inactivated the gene encoding extracellular hyaluronidase, hylB, in a clinical Hyl(+) isolate. The isogenic hylb mutant (Δhylb) displayed reduced survival in macrophages compared to the wild type and stimulated a significantly higher release of proinflammatory cytokines, such as interleukin-1β (IL-1β), IL-6, and tumor necrosis factor alpha (TNF-α), than the wild type in macrophages as well as in mice. Furthermore, only Hyl(+) strains could grow utilizing hyaluronic acid (HA) as the sole carbon source, suggesting that Hyl permits the organism to utilize host HA as an energy source. Fifty percent lethal dose (LD50) determinations in zebrafish demonstrated that the hylb mutant was highly attenuated relative to the wild-type strain. Experimental infection of BALB/c mice revealed that bacterial loads in the blood, spleen, and brain at 16 h postinfection were significantly reduced in the ΔhylB mutant compared to those in wild-type-infected mice. In conclusion, hyaluronidase has a strong influence on the intracellular survival of S. agalactiae and proinflammatory cytokine expression, suggesting that it plays a key role in S. agalactiae pathogenicity.

  16. Ghrelin’s Effects on Proinflammatory Cytokine Mediated Apoptosis and Their Impact on β-Cell Functionality

    Directory of Open Access Journals (Sweden)

    Antonia Diaz-Ganete

    2015-01-01

    Full Text Available Ghrelin is a peptidic hormone, which stimulates cell proliferation and inhibits apoptosis in several tissues, including pancreas. In preclinical stage of type 1 diabetes, proinflammatory cytokines generate a destructive environment for β-cells known as insulitis, which results in loss of β-cell mass and impaired insulin secretion, leading to diabetes. Our aim was to demonstrate that ghrelin could preserve β-cell viability, turnover rate, and insulin secretion acting as a counter balance of cytokines. In the present work we reproduced proinflammatory milieu found in insulitis stage by treating murine cell line INS-1E and rat islets with a cytokine cocktail including IL-1β, IFNγ, and TNFα and/or ghrelin. Several proteins involved in survival pathways (ERK 1/2 and Akt/PKB and apoptosis (caspases and Bcl-2 protein family and endoplasmic reticulum stress markers as well as insulin secretion were analyzed. Our results show that ghrelin alone has no remarkable effects on β-cells in basal conditions, but interestingly it activates cell survival pathways, downregulates apoptotic mediators and endoplasmic reticulum stress, and restores insulin secretion in response to glucose when beta-cells are cytokine-exposed. These data suggest a potential role of ghrelin in preventing or slowing down the transition from a preclinical to clinically established diabetes by ameliorating the effects of insulitis on β-cells.

  17. Effect of Cocoa Polyphenolic Extract on Macrophage Polarization from Proinflammatory M1 to Anti-Inflammatory M2 State

    Directory of Open Access Journals (Sweden)

    Laura Dugo

    2017-01-01

    Full Text Available Polyphenols-rich cocoa has many beneficial effects on human health, such as anti-inflammatory effects. Macrophages function as control switches of the immune system, maintaining the balance between pro- and anti-inflammatory activities. We investigated the hypothesis that cocoa polyphenol extract may affect macrophage proinflammatory phenotype M1 by favoring an alternative M2 anti-inflammatory state on macrophages deriving from THP-1 cells. Chemical composition, total phenolic content, and antioxidant capacity of cocoa polyphenols extracted from roasted cocoa beans were determined. THP-1 cells were activated with both lipopolysaccharides and interferon-γ for M1 or with IL-4 for M2 switch, and specific cytokines were quantified. Cellular metabolism, through mitochondrial oxygen consumption, and ATP levels were evaluated. Here, we will show that cocoa polyphenolic extract attenuated in vitro inflammation decreasing M1 macrophage response as demonstrated by a significantly lowered secretion of proinflammatory cytokines. Moreover, treatment of M1 macrophages with cocoa polyphenols influences macrophage metabolism by promoting oxidative pathways, thus leading to a significant increase in O2 consumption by mitochondrial complexes as well as a higher production of ATP through oxidative phosphorylation. In conclusion, cocoa polyphenolic extract suppresses inflammation mediated by M1 phenotype and influences macrophage metabolism by promoting oxidative pathways and M2 polarization of active macrophages.

  18. Effect of Ginger Supplementation on Proinflammatory Cytokines in Older Patients with Osteoarthritis: Outcomes of a Randomized Controlled Clinical Trial.

    Science.gov (United States)

    Mozaffari-Khosravi, Hassan; Naderi, Zahra; Dehghan, Ali; Nadjarzadeh, Azadeh; Fallah Huseini, Hassan

    2016-01-01

    There is limited evidence that ginger powder consumption can relieve pain and inflammation due to specific anti-inflammatory phytochemical constitutents. This study investigates the effect of ginger supplementation on proinflammatory factors in participants (n = 120) of a randomized double-blind placebo-controlled 3-month clinical trial investigating knee osteoarthritis. Patients were randomly assigned to one of two groups: the ginger group (GG) or the placebo group (PG). Administered daily for 3 months, participants in the GG intervention received capsules containing 500 mg of ginger powder, while PG participants received capsules filled with 500 mg starch. Serum samples collected at baseline and 3 months were analyzed for serum levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). At baseline, proinflammatory cytokine concentrations did not differ by group. However, at 3 months, both cytokines decreased in the GG relative to the PG. The results of this study indicate that ginger supplementation may have a promising benefits for knee osteoarthritis and may, therefore, may warrant further study.

  19. Pro-inflammatory Cytokines Are Involved in Fluoride-Induced Cytotoxic Potential in HeLa Cells.

    Science.gov (United States)

    Wang, Hong-Wei; Zhou, Bian-Hua; Cao, Jian-Wen; Zhao, Jing; Zhao, Wen-Peng; Tan, Pan-Pan

    2017-01-01

    This study was designed to investigate the pro-inflammatory cytokines and their involvement in the cytotoxic potential of fluoride (F) in HeLa cells. HeLa cells were cultured with varying F concentrations (1-50 mg/L) for 48 h, and treatment effects were analyzed. The viability of HeLa cells was determined with a colorimetric method. The concentrations of IL-1β, IL-2, IL-6, and TNF-a in culture supernatant were measured through enzyme linked immunosorbent assay (ELISA). The mRNA expression levels of IL-1β, IL-2, IL-6 and TNF-a were subjected to transcript analysis and quantified through reverse transcription real-time PCR. Results showed that 10, 20 and 50 mg/L F significantly decreased the viability of HeLa cells incubated for 24 and 48 h. With their cytotoxic effect, the concentrations of IL-1β, IL-2, IL-6, and TNF-a decreased significantly in response to F, especially at 20 and 50 mg/L for 48 h. The mRNA expression levels of IL-1β, IL-2, IL-6, and TNF-a were downregulated at 50 mg/L F for 48 h. Therefore, F inhibited HeLa cell growth; as such, F could be used to alleviate the inhibition of pro-inflammatory cytokine expression.

  20. RELATIONSHIP OF ADIPOKINES AND PROINFLAMMATORY CYTOKINES AMONG ASIAN INDIANS WITH OBESITY AND YOUTH ONSET TYPE 2 DIABETES.

    Science.gov (United States)

    Gokulakrishnan, Kuppan; Amutha, Anandakumar; Ranjani, Harish; Bibin, Subramanian Y; Balakumar, Mahalingam; Pandey, Gautam Kumar; Anjana, Ranjit Mohan; Ali, Mohammed K; Narayan, K M Venkat; Mohan, Viswanathan

    2015-10-01

    It is well known that inflammation is associated with diabetes, but it is unclear whether obesity mediates this association in individuals with youth-onset type 2 diabetes mellitus (T2DM-Y). We recruited individuals with T2DM-Y (age at onset obesity and categorized as: nonobese NGT (n = 100), Obese NGT (n = 50), nonobese T2DM-Y (n = 50), and obese T2DM-Y (n = 50). We compared adipokines (adiponectin and leptin) and proinflammatory cytokines (tumor necrosis factor alpha [TNF-α] and monocyte chemotactic protein-1 [MCP-1]) across groups. Compared to nonobese NGT, the other 3 groups (obese NGT, nonobese T2DM-Y, and obese T2DM-Y) were found to have lower adiponectin (7.7 vs. 5.7, 4.2, 3.8 μg/mL, Pobese T2DM-Y (141 pg/mL, Pobese T2DM, respectively. However, adjusted for same factors, leptin, TNF-α, and MCP-1 were associated with markedly higher odds (5- to 14-fold) of nonobese and obese T2DM. In young Asian Indians, leptin and proinflammatory cytokines are positively, and adiponectin negatively, associated with both nonobese and obese T2DM-Y compared to nonobese NGT individuals.

  1. Ureaplasma isolates stimulate pro-inflammatory CC chemokines and matrix metalloproteinase-9 in neonatal and adult monocytes

    Science.gov (United States)

    Silwedel, Christine; Fehrholz, Markus; Henrich, Birgit; Waaga-Gasser, Ana Maria; Claus, Heike; Speer, Christian P.

    2018-01-01

    Being generally regarded as commensal bacteria, the pro-inflammatory capacity of Ureaplasma species has long been debated. Recently, we confirmed Ureaplasma–driven pro-inflammatory cytokine responses and a disturbance of cytokine equilibrium in primary human monocytes in vitro. The present study addressed the expression of CC chemokines and matrix metalloproteinase-9 (MMP-9) in purified term neonatal and adult monocytes stimulated with serovar 8 of Ureaplasma urealyticum (Uu) and serovar 3 of U. parvum (Up). Using qRT-PCR and multi-analyte immunoassay, we assessed mRNA and protein expression of the monocyte chemotactic proteins 1 and 3 (MCP-1/3), the macrophage inflammatory proteins 1α and 1β (MIP-1α/β) as well as MMP-9. For the most part, both isolates stimulated mRNA expression of all given chemokines and MMP-9 in cord blood and adult monocytes (pUreaplasma isolates in vitro, adding to our previous data. Findings from co-stimulated cells indicate that Ureaplasma may modulate monocyte immune responses to a second stimulus. PMID:29558521

  2. Proinflammatory effects and oxidative stress within human bronchial epithelial cells exposed to atmospheric particulate matter (PM2.5 and PM>2.5) collected from Cotonou, Benin

    International Nuclear Information System (INIS)

    Cachon, Boris Fresnel; Firmin, Stéphane; Verdin, Anthony; Ayi-Fanou, Lucie

    2014-01-01

    After particulate matter (PM) collection in Cotonou (Benin), a complete physicochemical characterization of PM 2.5 and PM >2.5 was led. Then, their adverse health effects were evaluated by using in vitro culture of human lung cells. BEAS-2B (bronchial epithelial cells) were intoxicated during short-term exposure at increasing PM concentrations (1.5–96 μg/cm 2 ) to determine global cytotoxicity. Hence, cells were exposed to 3 and 12 μg/cm 2 to investigate the potential biological imbalance generated by PM toxicity. Our findings showed the ability of both PM to induce oxidative stress and to cause inflammatory cytokines/chemokines gene expression and secretion. Furthermore, PM were able to induce gene expression of enzymes involved in the xenobiotic metabolism pathway. Strong correlations between gene expression of metabolizing enzymes, proinflammatory responses and cell cycle alteration were found, as well as between proinflammatory responses and cell viability. Stress oxidant parameters were highly correlated with expression and protein secretion of inflammatory mediators. Highlights: • The aim of this study was to investigate the toxic potential of collected particles. • Toxicological effects were determined by using human bronchial epithelial cells. • Both particles induced oxidative stress, proinflammatory response and cell alterations. • Metabolizing enzymes were linked to proinflammatory responses and cell alterations. • Oxidative stress was highly correlated to the proinflammatory mediators. -- This study evidences the toxic potential of African fine and coarse particulate matters on respiratory epithelial cells

  3. Kefir-isolated bacteria and yeasts inhibit Shigella flexneri invasion and modulate pro-inflammatory response on intestinal epithelial cells.

    Science.gov (United States)

    Bolla, P A; Abraham, A G; Pérez, P F; de Los Angeles Serradell, M

    2016-02-01

    The aim of this work was to evaluate the ability of a kefir-isolated microbial mixture containing three bacterial and two yeast strains (MM) to protect intestinal epithelial cells against Shigella flexneri invasion, as well as to analyse the effect on pro-inflammatory response elicited by this pathogen. A significant decrease in S. flexneri strain 72 invasion was observed on both HT-29 and Caco-2 cells pre-incubated with MM. Pre-incubation with the individual strains Saccharomyces cerevisiae CIDCA 8112 or Lactococcus lactis subsp. lactis CIDCA 8221 also reduced the internalisation of S. flexneri into HT-29 cells although in a lesser extent than MM. Interestingly, Lactobacillus plantarum CIDCA 83114 exerted a protective effect on the invasion of Caco-2 and HT-29 cells by S. flexneri. Regarding the pro-inflammatory response on HT-29 cells, S. flexneri infection induced a significant activation of the expression of interleukin 8 (IL-8), chemokine (C-C motif) ligand 20 (CCL20) and tumour necrosis factor alpha (TNF-α) encoding genes (P<0.05), whereas incubation of cells with MM did not induce the expression of any of the mediators assessed. Interestingly, pre-incubation of HT-29 monolayer with MM produced an inhibition of S. flexneri-induced IL-8, CCL20 and TNF-α mRNA expression. In order to gain insight on the effect of MM (or the individual strains) on this pro-inflammatory response, a series of experiments using a HT-29-NF-κB-hrGFP reporter system were performed. Pre-incubation of HT-29-NF-κB-hrGFP cells with MM significantly dampened Shigella-induced activation. Our results showed that the contribution of yeast strain Kluyveromyces marxianus CIDCA 8154 seems to be crucial in the observed effect. In conclusion, results presented in this study demonstrate that pre-treatment with a microbial mixture containing bacteria and yeasts isolated from kefir, resulted in inhibition of S. flexneri internalisation into human intestinal epithelial cells, along with the

  4. Lipoxins and aspirin-triggered lipoxin alleviate bone cancer pain in association with suppressing expression of spinal proinflammatory cytokines

    Directory of Open Access Journals (Sweden)

    Hu Shan

    2012-12-01

    Full Text Available Abstract Background The neuroinflammatory responses in the spinal cord following bone cancer development have been shown to play an important role in cancer-induced bone pain (CIBP. Lipoxins (LXs, endogenous lipoxygenase-derived eicosanoids, represent a unique class of lipid mediators that possess a wide spectrum of anti-inflammatory and pro-resolving actions. In this study, we investigated the effects of intrathecal injection with lipoxin and related analogues on CIBP in rats. Methods The CIBP model was induced by intra-tibia inoculation of Walker 256 mammary gland carcinoma cells. Mechanical thresholds were determined by measuring the paw withdrawal threshold to probing with a series of calibrated von Frey filaments. Lipoxins and analogues were administered by intrathecal (i.t. or intravenous (i.v. injection. The protein level of LXA4 receptor (ALX was tested by western blot. The localization of lipoxin receptor in spinal cord was assessed by fluorescent immunohistochemistry. Real-time PCR was carried out for detecting the expression of pro-inflammatory cytokines. Results Our results demonstrated that: 1 i.t. injection with the same dose (0.3 nmol of lipoxin A4 (LXA4, lipoxin B4 (LXB4 or aspirin-triggered-15-epi-lipoxin A4 (ATL could alleviate the mechanical allodynia in CIBP on day 7 after surgery. ATL showed a longer effect than the others and the effect lasted for 6 hours. ATL administered through i.v. injection could also attenuate the allodynia in cancer rats. 2 The results from western blot indicate that there is no difference in the expression of ALX among the naive, sham or cancer groups. 3 Immunohistochemistry showed that the lipoxin receptor (ALX-like immunoreactive substance was distributed in the spinal cord, mainly co-localized with astrocytes, rarely co-localized with neurons, and never co-localized with microglia. 4 Real-time PCR analysis revealed that, compared with vehicle, i.t. injection with ATL could significantly

  5. Human SR-BII mediates SAA uptake and contributes to SAA pro-inflammatory signaling in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Irina N Baranova

    Full Text Available Serum amyloid A (SAA is an acute phase protein with cytokine-like and chemotactic properties, that is markedly up-regulated during various inflammatory conditions. Several receptors, including FPRL-1, TLR2, TLR4, RAGE, class B scavenger receptors, SR-BI and CD36, have been identified as SAA receptors. This study provides new evidence that SR-BII, splice variant of SR-BI, could function as an SAA receptor mediating its uptake and pro-inflammatory signaling. The uptake of Alexa Fluor488 SAA was markedly (~3 fold increased in hSR-BII-expressing HeLa cells when compared with mock-transfected cells. The levels of SAA-induced interleukin-8 secretion by hSR-BII-expressing HEK293 cells were also significantly (~3-3.5 fold higher than those detected in control cells. Moderately enhanced levels of phosphorylation of all three mitogen-activated protein kinases, ERK1/2, and p38 and JNK, were observed in hSR-BII-expressing cells following SAA stimulation when compared with control wild type cells. Transgenic mice with pLiv-11-directed liver/kidney overexpression of hSR-BI or hSR-BII were used to assess the in vivo role of each receptor in SAA-induced pro-inflammatory response in these organs. Six hours after intraperitoneal SAA injection both groups of transgenic mice demonstrated markedly higher (~2-5-fold expression levels of inflammatory mediators in the liver and kidney compared to wild type mice. Histological examinations of hepatic and renal tissue from SAA-treated mice revealed moderate level of damage in the liver of both transgenic but not in the wild type mice. Activities of plasma transaminases, biomarkers of liver injury, were also moderately higher in hSR-B transgenic mice when compared to wild type mice. Our findings identify hSR-BII as a functional SAA receptor that mediates SAA uptake and contributes to its pro-inflammatory signaling via the MAPKs-mediated signaling pathways.

  6. Effect of prolonged exposure to diesel engine exhaust on proinflammatory markers in different regions of the rat brain

    Directory of Open Access Journals (Sweden)

    Wang Kate

    2010-05-01

    Full Text Available Abstract Background The etiology and progression of neurodegenerative disorders depends on the interactions between a variety of factors including: aging, environmental exposures, and genetic susceptibility factors. Enhancement of proinflammatory events appears to be a common link in different neurological impairments, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. Studies have shown a link between exposure to particulate matter (PM, present in air pollution, and enhancement of central nervous system proinflammatory markers. In the present study, the association between exposure to air pollution (AP, derived from a specific source (diesel engine, and neuroinflammation was investigated. To elucidate whether specific regions of the brain are more susceptible to exposure to diesel-derived AP, various loci of the brain were separately analyzed. Rats were exposed for 6 hrs a day, 5 days a week, for 4 weeks to diesel engine exhaust (DEE using a nose-only exposure chamber. The day after the final exposure, the brain was dissected into the following regions: cerebellum, frontal cortex, hippocampus, olfactory bulb and tubercles, and the striatum. Results Baseline levels of the pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α and interleukin-1 alpha (IL-1α were dependent on the region analyzed and increased in the striatum after exposure to DEE. In addition, baseline level of activation of the transcription factors (NF-κB and (AP-1 was also region dependent but the levels were not significantly altered after exposure to DEE. A similar, though not significant, trend was seen with the mRNA expression levels of TNF-α and TNF Receptor-subtype I (TNF-RI. Conclusions Our results indicate that different brain regions may be uniquely responsive to changes induced by exposure to DEE. This study once more underscores the role of neuroinflammation in response to ambient air pollution

  7. Lipid metabolism and levels of proinflammatory cytokines in patients with type 2 diabetes with diabetic nephropathy depending on the stage of chronic kidney disease

    Directory of Open Access Journals (Sweden)

    2012-06-01

    Full Text Available Aim: to study the role and relationship of lipid metabolism and levels of proinflammatory cytokines in patients with type 2 diabetes mellitus (DM2 with diabetic nephropathy (DN, depending on the stage of chronic kidney disease (CKD. Materials and Methods: a total of 240 patients with type 2 diabetes in the early stages of DN and CKD were studied. Results: in patients with type 2 diabetes development of DN was associated with an increased level of proinflammatory cytokines and lipid abnormalities (hypertriglyceridemia. We found a negative correlation between the level of triglycerides (TG and glomerular filtration rate (GFR (r = -0,43 and a direct correlation between the level of IL-6 and TG (r = 0,48. Conclusions: increased levels of proinflammatory cytokines and triglycerides increase the risk of development and progression of DN and CKD.

  8. Synthesis of pro-inflammatory cytokines and adhesion molecules expression by the irradiated human monocyte/macrophage

    International Nuclear Information System (INIS)

    Pons, I.

    1997-09-01

    As lesions induced by ionizing radiations are essentially noticed in organs the functional and structural organisation of which depend on the highly proliferative stem cell pool, the author reports an in-vivo investigation of the effect of a gamma irradiation on the expression and secretion of pro-inflammatory cytokines par human monocytes/macrophages. In order to study the role of the cell environment in the radiation-induced inflammation, the author studied whether a co-stimulation of monocytes/macrophages by gamma irradiation, or the exposure of co-cultures of monocytes/macrophages and lymphocytes, could modulate the regulation of inflammatory cytokines. The author also studied the modulation of the expression of adhesion molecules mainly expressed by the monocyte/macrophage, and the membrane density of the CD14 receptor after irradiation of monocytes/macrophages during 24 hours, and of totally differentiated macrophages after seven days of culture

  9. Crystal Structures of the Pro-Inflammatory Cytokine Interleukin-23 and Its Complex with a High-Affinity Neutralizing Antibody

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Brian M.; Ingram, Richard; Ramanathan, Lata; Reichert, Paul; Le, Hung V.; Madison, Vincent; Orth, Peter (SPRI)

    2009-06-25

    Interleukin (IL)-23 is a pro-inflammatory cytokine playing a key role in the pathogenesis of several autoimmune and inflammatory diseases. We have determined the crystal structures of the heterodimeric p19-p40 IL-23 and its complex with the Fab (antigen-binding fragment) of a neutralizing antibody at 2.9 and 1.9 {angstrom}, respectively. The IL-23 structure closely resembles that of IL-12. They share the common p40 subunit, and IL-23 p19 overlaps well with IL-12 p35. Along the hydrophilic heterodimeric interface, fewer charged residues are involved for IL-23 compared with IL-12. The binding site of the Fab is located exclusively on the p19 subunit, and comparison with published cytokine-receptor structures suggests that it overlaps with the IL-23 receptor binding site.

  10. General versus regional anaesthesia for cataract surgery: effects on neutrophil apoptosis and the postoperative pro-inflammatory state.

    LENUS (Irish Health Repository)

    Goto, Y

    2012-02-03

    At clinically relevant concentrations, volatile anaesthetic agents influence neutrophil function. Our hypothesis was that sevoflurane would inhibit neutrophil apoptosis and consequently influence the postoperative pro-inflammatory state. In order to identify selectively the effect of the anaesthetic agent sevoflurane, we studied patients undergoing minimally stimulating (cataract) surgery randomly allocated to receive either sevoflurane (n = 11) or local anaesthesia (n = 12). Venous blood samples were taken immediately prior to anaesthesia and at 1, 8 and 24 h thereafter. The rate of neutrophil apoptosis, plasma concentration of cytokines and differential white cell count were measured. The rates of neutrophil apoptosis and plasma concentrations of IL-1beta, TNF-alpha and IL-8 at each time point were similar in the two groups. IL-6 concentrations increased significantly and to a similar extent compared to preanaesthetic levels at 8 and 24 h. This study demonstrates that sevoflurane does not influence the rate of neutrophil apoptosis, cytokine concentrations and neutrophil count following cataract surgery.

  11. Adipose Tissue as an Endocrine Organ: An Update on Pro-inflammatory and Anti-inflammatory Microenvironment

    Directory of Open Access Journals (Sweden)

    Kvido Smitka

    2015-01-01

    Full Text Available Adipose tissue is recognized as an active endocrine organ that produces a number of endocrine substances referred to as “adipokines” including leptin, adiponectin, adipolin, visfatin, omentin, tumour necrosis factor-alpha (TNF-α, interleukin-6 (IL-6, resistin, pigment epithelium-derived factor (PEDF, and progranulin (PGRN which play an important role in the food intake regulation and significantly influence insulin sensitivity and in some cases directly affect insulin resistance in skeletal muscle, liver, and adipose tissue. The review summarizes current knowledge about adipose tissue-derived hormones and their influence on energy homeostasis regulation. The possible therapeutic potential of these adipokines in the treatment of insulin resistance, endothelial dysfunction, a pro-inflammatory response, obesity, eating disorders, progression of atherosclerosis, type 1 diabetes, and type 2 diabetes is discussed.

  12. Metallothionein treatment reduces proinflammatory cytokines IL-6 and TNF-alpha and apoptotic cell death during experimental autoimmune encephalomyelitis (EAE)

    DEFF Research Database (Denmark)

    Penkowa, M; Hidalgo, J

    2001-01-01

    cytokines and apoptosis during EAE could contribute to the reported diminution of clinical symptoms and mortality in EAE-immunized rats receiving Zn-MT-II treatment. Our results demonstrate that MT-II reduces the CNS expression of proinflammatory cytokines and the number of apoptotic neurons during EAE......, which is characterized by significant inflammation and neuroglial damage. We have recently shown that the exogenous administration of the antioxidant protein zinc-metallothionein-II (Zn-MT-II) significantly decreased the clinical symptoms, mortality, and leukocyte infiltration of the CNS during EAE....... However, it is not known how EAE progression is regulated nor how cytokine production and cell death can be reduced. We herewith demonstrate that treatment with Zn-MT-II significantly decreased the CNS expression of IL-6 and TNF-alpha during EAE. Zn-MT-II treatment could also significantly reduce...

  13. Mitochondrial reactive oxygen species mediate the lipopolysaccharide-induced pro-inflammatory response in human gingival fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xue; Wang, Xiaoxuan [Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Zheng, Ming, E-mail: zhengm@bjmu.edu.cn [Department of Physiology and Pathophysiology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191 (China); Luan, Qing Xian, E-mail: kqluanqx@126.com [Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China)

    2016-09-10

    Although periodontal diseases are initiated by bacteria that colonize the tooth surface and gingival sulcus, the host response is believed to play an essential role in the breakdown of connective tissue and bone. Mitochondrial reactive oxygen species (mtROS) have been proposed to regulate the activation of the inflammatory response by the innate immune system. However, the role of mtROS in modulating the response of human gingival fibroblasts (HGFs) to immune stimulation by lipopolysaccharides (LPS) has yet to be fully elucidated. Here, we showed that LPS from Porphyromonas gingivalis stimulated HGFs to increase mtROS production, which could be inhibited by treatment with a mitochondrial-targeted exogenous antioxidant (mito-TEMPO) or transfection with manganese superoxide dismutase (MnSOD). A time-course study revealed that an increase in the concentration of mtROS preceded the expression of inflammatory cytokines in HGFs. Mito-TEMPO treatment or MnSOD transfection also significantly prevented the LPS-induced increase of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. Furthermore, suppressing LPS-induced mtROS generation inhibited the activation of p38, c-Jun N-terminal kinase, and inhibitor of nuclear factor-κB kinase, as well as the nuclear localization of nuclear factor-κB. These results demonstrate that mtROS generation is a key signaling event in the LPS-induced pro-inflammatory response of HGFs. - Highlights: • Inflammation is thought to promote pathogenic changes in periodontitis. • We investigated mtROS as a regulator of inflammation in gingival fibroblasts. • Targeted antioxidants were used to inhibit mtROS production after LPS challenge. • Inhibiting mtROS generation suppressed the secretion of pro-inflammatory cytokines. • JNK, p38, IKK, and NF-κB were shown to act as transducers of mtROS signaling.

  14. Glycine regulates the production of pro-inflammatory cytokines in lean and monosodium glutamate-obese mice.

    Science.gov (United States)

    Alarcon-Aguilar, F J; Almanza-Perez, Julio; Blancas, Gerardo; Angeles, Selene; Garcia-Macedo, Rebeca; Roman, Ruben; Cruz, Miguel

    2008-12-03

    Fat tissue plays an important role in the regulation of inflammatory processes. Increased visceral fat has been associated with a higher production of cytokines that triggers a low-grade inflammatory response, which eventually may contribute to the development of insulin resistance. In the present study, we investigated whether glycine, an amino acid that represses the expression in vitro of pro-inflammatory cytokines in Kupffer and 3T3-L1 cells, can affect in vivo cytokine production in lean and monosodium glutamate-induced obese mice (MSG/Ob mice). Our data demonstrate that glycine treatment in lean mice suppressed TNF-alpha transcriptional expression in fat tissue, and serum protein levels of IL-6 were suppressed, while adiponectin levels were increased. In MSG/Ob mice, glycine suppressed TNF-alpha and IL-6 gene expression in fat tissue and significantly reduced protein levels of IL-6, resistin and leptin. To determine the role of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) in the modulation of this inflammatory response evoked by glycine, we examined its expression levels in fat tissue. Glycine clearly increased PPAR-gamma expression in lean mice but not in MSG/Ob mice. Finally, to identify alterations in glucose metabolism by glycine, we also examined insulin levels and other biochemical parameters during an oral glucose tolerance test. Glycine significantly reduced glucose tolerance and raised insulin levels in lean but not in obese mice. In conclusion, our findings suggest that glycine suppresses the pro-inflammatory cytokines production and increases adiponectin secretion in vivo through the activation of PPAR-gamma. Glycine might prevent insulin resistance and associated inflammatory diseases.

  15. Resveratrol post-transcriptionally regulates pro-inflammatory gene expression via regulation of KSRP RNA binding activity

    Science.gov (United States)

    Bollmann, Franziska; Art, Julia; Henke, Jenny; Schrick, Katharina; Besche, Verena; Bros, Matthias; Li, Huige; Siuda, Daniel; Handler, Norbert; Bauer, Florian; Erker, Thomas; Behnke, Felix; Mönch, Bettina; Härdle, Lorena; Hoffmann, Markus; Chen, Ching-Yi; Förstermann, Ulrich; Dirsch, Verena M.; Werz, Oliver; Kleinert, Hartmut; Pautz, Andrea

    2014-01-01

    Resveratrol shows beneficial effects in inflammation-based diseases like cancer, cardiovascular and chronic inflammatory diseases. Therefore, the molecular mechanisms of the anti-inflammatory resveratrol effects deserve more attention. In human epithelial DLD-1 and monocytic Mono Mac 6 cells resveratrol decreased the expression of iNOS, IL-8 and TNF-α by reducing mRNA stability without inhibition of the promoter activity. Shown by pharmacological and siRNA-mediated inhibition, the observed effects are SIRT1-independent. Target-fishing and drug responsive target stability experiments showed selective binding of resveratrol to the RNA-binding protein KSRP, a central post-transcriptional regulator of pro-inflammatory gene expression. Knockdown of KSRP expression prevented resveratrol-induced mRNA destabilization in human and murine cells. Resveratrol did not change KSRP expression, but immunoprecipitation experiments indicated that resveratrol reduces the p38 MAPK-related inhibitory KSRP threonine phosphorylation, without blocking p38 MAPK activation or activity. Mutation of the p38 MAPK target site in KSRP blocked the resveratrol effect on pro-inflammatory gene expression. In addition, resveratrol incubation enhanced KSRP-exosome interaction, which is important for mRNA degradation. Finally, resveratrol incubation enhanced its intra-cellular binding to the IL-8, iNOS and TNF-α mRNA. Therefore, modulation of KSRP mRNA binding activity and, thereby, enhancement of mRNA degradation seems to be the common denominator of many anti-inflammatory effects of resveratrol. PMID:25352548

  16. Indoline-3-propionate and 3-aminopropyl carbamates reduce lung injury and pro-inflammatory cytokines induced in mice by LPS.

    Science.gov (United States)

    Finkin-Groner, E; Moradov, D; Shifrin, H; Bejar, C; Nudelman, A; Weinstock, M

    2015-02-01

    In the search for safer and effective anti-inflammatory agents, we investigated the effect of methyl indoline-3-propionate and indoline-3-(3-aminopropyl) carbamates on LPS-induced lung injury and pro-inflammatory cytokines in mice. Their mechanism of action was determined in murine peritoneal macrophages. Lung injury was induced by intratracheal infusion of LPS and assessed by the change in lung weight and structure by light microscopy after staining by haematoxylin and eosin. In LPS-activated macrophages, MAPK proteins and IκBα were measured by Western blotting and the transcription factors, AP-1 and NF-κB by electromobility shift assay. Cytokines in the plasma and spleen of mice injected with LPS were measured by elisa-based assay. AN917 and AN680 (1-10 pM) decreased TNF-α protein in macrophages by inhibiting phosphorylation of p38 MAPK, IκBα degradation and activation of AP-1 and NF-κB without affecting cell viability. In vivo, these compounds (10 μmol · kg(-1)) markedly decreased lung injury induced by LPS and the elevation of TNF-α and IL-6 in lung, plasma and spleen. Activation of α-7nACh receptors contributed to the reduction of TNF-α by AN917, which inhibited AChE in the spleen by 35%. Indoline carbamates are potent inhibitors of pro-inflammatory mediators in murine macrophages and in mice injected with LPS, acting via the p38 MAPK, AP-1 and NF-κB cascades. Indirect α-7nACh receptor activation by AN917, through inhibition of AChE, contributes to its anti-inflammatory effect. Indoline carbamates may have therapeutic potential for lung injury and other diseases associated with chronic inflammation without causing immunosuppression. © 2014 The British Pharmacological Society.

  17. β-agonists selectively modulate proinflammatory gene expression in skeletal muscle cells via non-canonical nuclear crosstalk mechanisms.

    Directory of Open Access Journals (Sweden)

    Krzysztof Kolmus

    Full Text Available The proinflammatory cytokine Tumour Necrosis Factor (TNF-α is implicated in a variety of skeletal muscle pathologies. Here, we have investigated how in vitro cotreatment of skeletal muscle C2C12 cells with β-agonists modulates the TNF-α-induced inflammatory program. We observed that C2C12 myotubes express functional TNF receptor 1 (TNF-R1 and β2-adrenoreceptors (β2-ARs. TNF-α activated the canonical Nuclear Factor-κB (NF-κB pathway and Mitogen-Activated Protein Kinases (MAPKs, culminating in potent induction of NF-κB-dependent proinflammatory genes. Cotreatment with the β-agonist isoproterenol potentiated the expression of inflammatory mediators, including Interleukin-6 (IL-6 and several chemokines. The enhanced production of chemotactic factors upon TNF-α/isoproterenol cotreatment was also suggested by the results from migrational analysis. Whereas we could not explain our observations by cytoplasmic crosstalk, we found that TNF-R1-and β2-AR-induced signalling cascades cooperate in the nucleus. Using the IL-6 promoter as a model, we demonstrated that TNF-α/isoproterenol cotreatment provoked phosphorylation of histone H3 at serine 10, concomitant with enhanced promoter accessibility and recruitment of the NF-κB p65 subunit, cAMP-response element-binding protein (CREB, CREB-binding protein (CBP and RNA polymerase II. In summary, we show that β-agonists potentiate TNF-α action, via nuclear crosstalk, that promotes chromatin relaxation at selected gene promoters. Our data warrant further study into the mode of action of β-agonists and urge for caution in their use as therapeutic agents for muscular disorders.

  18. Effect of Proinflammatory Cytokines (IL-6, TNF-α, and IL-1β on Clinical Manifestations in Indian SLE Patients

    Directory of Open Access Journals (Sweden)

    Vinod Umare

    2014-01-01

    Full Text Available Systemic lupus erythematosus (SLE is an inflammatory rheumatic disease characterized by production of autoantibodies and organ damage. Elevated levels of cytokines have been reported in SLE patients. In this study we have investigated the effect of proinflammatory cytokines (IL-6, TNF-α, and IL-1β on clinical manifestations in 145 Indian SLE patients. One hundred and forty-five healthy controls of the same ethnicity served as a control group. Clinical disease activity was scored according to SLEDAI score. Accordingly, 110 patients had active disease and 35 patients had inactive disease. Mean levels of IL-6, TNF-α, and IL-1β were found to be significantly higher in SLE patients than healthy controls (P<0.001. Mean level of IL-6 for patients with active disease (70.45±68.32 pg/mL was significantly higher (P=0.0430 than those of inactive disease patients (43.85±63.36 pg/mL. Mean level of TNF-α was 44.76±68.32 pg/mL for patients with active disease while it was 25.97±22.03 pg/mL for those with inactive disease and this difference was statistically significant (P=0.0161. Similar results were obtained for IL-1β (P=0.0002. Correlation between IL-6, TNF-α, and IL-1β serum levels and SLEDAI score was observed (r=0.20, r=0.27, and r=0.38, resp.. This study supports the role of these proinflammatory cytokines as inflammatory mediators in active stage of disease.

  19. Association of CD30 transcripts with Th1 responses and proinflammatory cytokines in patients with end-stage renal disease.

    Science.gov (United States)

    Velásquez, Sonia Y; Opelz, Gerhard; Rojas, Mauricio; Süsal, Caner; Alvarez, Cristiam M

    2016-05-01

    High serum sCD30 levels are associated with inflammatory disorders and poor outcome in renal transplantation. The contribution to these phenomena of transcripts and proteins related to CD30-activation and -cleavage is unknown. We assessed in peripheral blood of end-stage renal disease patients (ESRDP) transcripts of CD30-activation proteins CD30 and CD30L, CD30-cleavage proteins ADAM10 and ADAM17, and Th1- and Th2-type immunity-related factors t-bet and GATA3. Additionally, we evaluated the same transcripts and release of sCD30 and 32 cytokines after allogeneic and polyclonal T-cell activation. In peripheral blood, ESRDP showed increased levels of t-bet and GATA3 transcripts compared to healthy controls (HC) (both PCD30, CD30L, ADAM10 and ADAM17 transcripts were similar. Polyclonal and allogeneic stimulation induced higher levels of CD30 transcripts in ESRDP than in HC (both PsCD30, the Th-1 cytokine IFN-γ, MIP-1α, RANTES, sIL-2Rα, MIP-1β, TNF-β, MDC, GM-CSF and IL-5, and another one consisting of CD30 and t-bet transcripts, IL-13 and proinflammatory proteins IP-10, IL-8, IL-1Rα and MCP-1. Reflecting an activated immune state, ESRDP exhibited after allostimulation upregulation of CD30 transcripts in T cells, which was associated with Th1 and proinflammatory responses. Copyright © 2016 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  20. Epidermal Growth Factor Receptor Signaling Enhances the Proinflammatory Effects of Staphylococcus aureus Gamma-Toxin on the Mucosa.

    Science.gov (United States)

    Gillman, Aaron N; Breshears, Laura M; Kistler, Charles K; Finnegan, Patrick M; Torres, Victor J; Schlievert, Patrick M; Peterson, Marnie L

    2017-06-28

    Staphylococcus aureus ( S. aureus ) produces many different exotoxins including the gamma-toxins, HlgAB and HlgCB. Gamma-toxins form pores in both leukocyte and erythrocyte membranes, resulting in cell lysis. The genes encoding gamma-toxins are present in most strains of S. aureus, and are commonly expressed in clinical isolates recovered from menstrual Toxic Shock Syndrome (mTSS) patients. This study set out to investigate the cytotoxic and proinflammatory effects of gamma-toxins on vaginal epithelial surfaces. We found that both HlgAB and HlgCB were cytotoxic to cultured human vaginal epithelial cells (HVECs) and induced cytokine production at sub-cytotoxic doses. Cytokine production induced by gamma-toxin treatment of HVECs was found to involve epidermal growth factor receptor (EGFR) signaling and mediated by shedding of EGFR ligands from the cell surface. The gamma-toxin subunits displayed differential binding to HVECs (HlgA 93%, HlgB 97% and HlgC 28%) with both components (HlgAB or HlgCB) required for maximum detectable binding and significant stimulation of cytokine production. In studies using full thickness ex vivo porcine vaginal mucosa, HlgAB or HlgCB stimulated a dose-dependent cytokine response, which was reduced significantly by inhibition of EGFR signaling. The effects of gamma-toxins on porcine vaginal tissue and cultured HVECs were validated using ex vivo human ectocervical tissue. Collectively, these studies have identified the EGFR-signaling pathway as a key component in gamma-toxin-induced proinflammatory changes at epithelial surfaces and highlight a potential therapeutic target to diminish toxigenic effects of S. aureus infections.

  1. Mitochondrial reactive oxygen species mediate the lipopolysaccharide-induced pro-inflammatory response in human gingival fibroblasts

    International Nuclear Information System (INIS)

    Li, Xue; Wang, Xiaoxuan; Zheng, Ming; Luan, Qing Xian

    2016-01-01

    Although periodontal diseases are initiated by bacteria that colonize the tooth surface and gingival sulcus, the host response is believed to play an essential role in the breakdown of connective tissue and bone. Mitochondrial reactive oxygen species (mtROS) have been proposed to regulate the activation of the inflammatory response by the innate immune system. However, the role of mtROS in modulating the response of human gingival fibroblasts (HGFs) to immune stimulation by lipopolysaccharides (LPS) has yet to be fully elucidated. Here, we showed that LPS from Porphyromonas gingivalis stimulated HGFs to increase mtROS production, which could be inhibited by treatment with a mitochondrial-targeted exogenous antioxidant (mito-TEMPO) or transfection with manganese superoxide dismutase (MnSOD). A time-course study revealed that an increase in the concentration of mtROS preceded the expression of inflammatory cytokines in HGFs. Mito-TEMPO treatment or MnSOD transfection also significantly prevented the LPS-induced increase of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. Furthermore, suppressing LPS-induced mtROS generation inhibited the activation of p38, c-Jun N-terminal kinase, and inhibitor of nuclear factor-κB kinase, as well as the nuclear localization of nuclear factor-κB. These results demonstrate that mtROS generation is a key signaling event in the LPS-induced pro-inflammatory response of HGFs. - Highlights: • Inflammation is thought to promote pathogenic changes in periodontitis. • We investigated mtROS as a regulator of inflammation in gingival fibroblasts. • Targeted antioxidants were used to inhibit mtROS production after LPS challenge. • Inhibiting mtROS generation suppressed the secretion of pro-inflammatory cytokines. • JNK, p38, IKK, and NF-κB were shown to act as transducers of mtROS signaling.

  2. A low dose lipid infusion is sufficient to induce insulin resistance and a pro-inflammatory response in human subjects.

    Science.gov (United States)

    Liang, Hanyu; Lum, Helen; Alvarez, Andrea; Garduno-Garcia, Jose de Jesus; Daniel, Benjamin J; Musi, Nicolas

    2018-01-01

    The root cause behind the low-grade inflammatory state seen in insulin resistant (obesity and type 2 diabetes) states is unclear. Insulin resistant subjects have elevations in plasma free fatty acids (FFA), which are ligands for the pro-inflammatory toll-like receptor (TLR)4 pathway. We tested the hypothesis that an experimental elevation in plasma FFA (within physiological levels) in lean individuals would upregulate TLR4 and activate downstream pathways (e.g., MAPK) in circulating monocytes. Twelve lean, normal glucose-tolerant subjects received a low dose (30 ml/h) 48 h lipid or saline infusion on two different occasions. Monocyte TLR4 protein level, MAPK phosphorylation, and expression of genes in the TLR pathway were determined before and after each infusion. The lipid infusion significantly increased monocyte TLR4 protein and phosphorylation of JNK and p38 MAPK. Lipid-mediated increases in TLR4 and p38 phosphorylation directly correlated with reduced peripheral insulin sensitivity (M value). Lipid increased levels of multiple genes linked to inflammation, including several TLRs, CD180, MAP3K7, and CXCL10. Monocytes exposed in vivo to lipid infusion exhibited enhanced in vitro basal and LPS-stimulated IL-1β secretion. In lean subjects, a small increase in plasma FFA (as seen in insulin resistant subjects) is sufficient to upregulate TLR4 and stimulate inflammatory pathways (MAPK) in monocytes. Moreover, lipids prime monocytes to endotoxin. We provide proof-of-concept data in humans indicating that the low-grade inflammatory state characteristic of obesity and type 2 diabetes could be caused (at least partially) by pro-inflammatory monocytes activated by excess lipids present in these individuals.

  3. Inducible Major Vault Protein Plays a Pivotal Role in Double-Stranded RNA- or Virus-Induced Proinflammatory Response.

    Science.gov (United States)

    Peng, Nanfang; Liu, Shi; Xia, Zhangchuan; Ren, Sheng; Feng, Jian; Jing, Mingzhen; Gao, Xin; Wiemer, Erik A C; Zhu, Ying

    2016-03-15

    Pathogen invasion triggers robust antiviral cytokine production via different transcription factor signaling pathways. We have previously demonstrated that major vault protein (MVP) induces type I IFN production during viral infection; however, little is known about the role of MVP in proinflammatory responses. In this study, we found in vitro that expression of MVP, IL-6, and IL-8 was inducible upon dsRNA stimulation or viral infection. Moreover, MVP was essential for the induction of IL-6 and IL-8, as impaired expression of IL-6 and IL-8 in MVP-deficient human PBMCs, human lung epithelial cells (A549), and THP-1 monocytes, as well as in murine splenocytes, peritoneal macrophages, and PBMCs from MVP-knockout (MVP(-/-)) mice, was observed. Upon investigation of the underlying mechanisms, we demonstrated that MVP acted in synergy with AP-1 (c-Fos) and CCAAT/enhancer binding protein (C/EBP)β-liver-enriched transcriptional activating protein to activate the IL6 and IL8 promoters. Introduction of mutations into the AP-1 and C/EBPβ binding sites on the IL6 and IL8 promoters resulted in the loss of synergistic activation with MVP. Furthermore, we found that MVP interacted with both c-Fos and C/EBPβ. The interactions promoted nuclear translocation and recruitment of these transcription factors to IL6 and IL8 promoter regions. In the MVP(-/-) mouse model, significantly decreased expression of early antiviral cytokines resulted in higher viral titer in the lung, higher mortality, and heavier lung damage after infection with lethal influenza A virus. Taken together, our findings help to delineate a novel role of MVP in host proinflammatory response. Copyright © 2016 by The American Association of Immunologists, Inc.

  4. Adjuvant effect of Asparagus racemosus Willd. derived saponins in antibody production, allergic response and pro-inflammatory cytokine modulation.

    Science.gov (United States)

    Tiwari, Nimisha; Gupta, Vivek Kumar; Pandey, Pallavi; Patel, Dinesh Kumar; Banerjee, Suchitra; Darokar, Mahendra Pandurang; Pal, Anirban

    2017-02-01

    The study manifests the immunoadjuvant potential of saponin rich fraction from Asparagus racemosus in terms of cellular and humoral immune response that can be exploited against microbial infections. Asparagus racemosus (AR) has been attributed as an adaptogen and rasayana in traditional medication systems for enhancing the host defence mechanism. Spectrophotometric and HPTLC analysis ensured the presence of saponins. The saponin rich fractions were tested for immunoadjuvant property in ovalbumin immunised mice for the humoral response, quantified in terms of prolonged antibody production upto a duration of 56days. Proinflammatory cytokines (IL-6 and TNF) were estimated for the cellular immune response in LPS stimulated primary murine macrophages. The safety evaluation in terms of cytotoxicity and allergic response has also been evaluated through in-vitro (MTT) and in-vivo (IgE) respectively. ARS significantly inhibited the pro-inflammatory cytokines, in LPS stimulated murine macrophages with no intrinsic cytotoxicity. The significant increase in IgG production infers the utility of ARS for prolonged humoral response. Further, the antigen specific response of IL-12 at early stage and IgE titres also suggests the generation of cellular immune response and low allergic reaction respectively, as compared to conventional adjuvants. IL-6 and TNF fluctuations in LPS stimulated and non-stimulated macrophages along with IgG and IL-12 also confirmed the Th1/Th2 modulating effect of ARS. The study indicates potential effect of ARS as an adjuvant for the stimulation of cellular immune response in addition to generating a sustained adaptive response without any adverse effects paving way for further validation with pathogenic organisms. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Terbinafine stimulates the pro-inflammatory responses in human monocytic THP-1 cells through an ERK signaling pathway.

    Science.gov (United States)

    Mizuno, Katsuhiko; Fukami, Tatsuki; Toyoda, Yasuyuki; Nakajima, Miki; Yokoi, Tsuyoshi

    2010-10-23

    Oral antifungal terbinafine has been reported to cause liver injury with inflammatory responses in a small percentage of patients. However the underlying mechanism remains unknown. To examine the inflammatory reactions, we investigated whether terbinafine and other antifungal drugs increase the release of pro-inflammatory cytokines using human monocytic cells. Dose- and time-dependent changes in the mRNA expression levels and the release of interleukin (IL)-8 and tumor necrosis factor (TNF)α from human monocytic THP-1 and HL-60 cells with antifungal drugs were measured. Effects of terbinafine on the phosphorylation of extracellular signal-regulated kinase (ERK)1/2, p38 mitogen-activated protein (MAP) kinase and c-Jun N-terminal kinase (JNK)1/2 were investigated. The release of IL-8 and TNFα from THP-1 and HL-60 cells was significantly increased by treatment with terbinafine but not by fluconazole, suggesting that terbinafine can stimulate monocytes and increase the pro-inflammatory cytokine release. Terbinafine also significantly increased the phosphorylation of ERK1/2 and p38 MAP kinase in THP-1 cells. Pretreatment with a MAP kinase/ERK kinase (MEK)1/2 inhibitor U0126 significantly suppressed the increase of IL-8 and TNFα levels by terbinafine treatment in THP-1 cells, but p38 MAPK inhibitor SB203580 did not. These results suggested that an ERK1/2 pathway plays an important role in the release of IL-8 and TNFα in THP-1 cells treated with terbinafine. The release of inflammatory mediators by terbinafine might be one of the mechanisms underlying immune-mediated liver injury. This in vitro method may be useful to predict adverse inflammatory reactions that lead to drug-induced liver injury. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. A realistic in vitro exposure revealed seasonal differences in (pro-)inflammatory effects from ambient air in Fribourg, Switzerland.

    Science.gov (United States)

    Bisig, Christoph; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2018-01-01

    Ambient air pollutant levels vary widely in space and time, therefore thorough local evaluation of possible effects is needed. In vitro approaches using lung cell cultures grown at the air-liquid interface and directly exposed to ambient air can offer a reliable addition to animal experimentations and epidemiological studies. To evaluate the adverse effects of ambient air in summer and winter a multi-cellular lung model (16HBE14o-, macrophages, and dendritic cells) was exposed in a mobile cell exposure system. Cells were exposed on up to three consecutive days each 12 h to ambient air from Fribourg, Switzerland, during summer and winter seasons. Higher particle number, particulate matter mass, and nitrogen oxide levels were observed in winter ambient air compared to summer. Good cell viability was seen in cells exposed to summer air and short-term winter air, but cells exposed three days to winter air were compromised. Exposure of summer ambient air revealed no significant upregulation of oxidative stress or pro-inflammatory genes. On the opposite, the winter ambient air exposure led to an increased oxidative stress after two exposure days, and an increase in three assessed pro-inflammatory genes already after 12 h of exposure. We found that even with a short exposure time of 12 h adverse effects in vitro were observed only during exposure to winter but not summer ambient air. With this work we have demonstrated that our simple, fast, and cost-effective approach can be used to assess (adverse) effects of ambient air.

  7. Etiogenic factors present in the cerebrospinal fluid from amyotrophic lateral sclerosis patients induce predominantly pro-inflammatory responses in microglia.

    Science.gov (United States)

    Mishra, Pooja-Shree; Vijayalakshmi, K; Nalini, A; Sathyaprabha, T N; Kramer, B W; Alladi, Phalguni Anand; Raju, T R

    2017-12-16

    Microglial cell-associated neuroinflammation is considered as a potential contributor to the pathophysiology of sporadic amyotrophic lateral sclerosis. However, the specific role of microglia in the disease pathogenesis remains to be elucidated. We studied the activation profiles of the microglial cultures exposed to the cerebrospinal fluid from these patients which recapitulates the neurodegeneration seen in sporadic amyotrophic lateral sclerosis. This was done by investigating the morphological and functional changes including the expression levels of prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), TNF-α, IL-6, IFN-γ, IL-10, inducible nitric oxide synthase (iNOS), arginase, and trophic factors. We also studied the effect of chitotriosidase, the inflammatory protein found upregulated in the cerebrospinal fluid from amyotrophic lateral sclerosis patients, on these cultures. We report that the cerebrospinal fluid from amyotrophic lateral sclerosis patients could induce an early and potent response in the form of microglial activation, skewed primarily towards a pro-inflammatory profile. It was seen in the form of upregulation of the pro-inflammatory cytokines and factors including IL-6, TNF-α, iNOS, COX-2, and PGE2. Concomitantly, a downregulation of beneficial trophic factors and anti-inflammatory markers including VEGF, glial cell line-derived neurotrophic factor, and IFN-γ was seen. In addition, chitotriosidase-1 appeared to act specifically via the microglial cells. Our findings demonstrate that the cerebrospinal fluid from amyotrophic lateral sclerosis patients holds enough cues to induce microglial inflammatory processes as an early event, which may contribute to the neurodegeneration seen in the sporadic amyotrophic lateral sclerosis. These findings highlight the dynamic role of microglial cells in the pathogenesis of the disease, thus suggesting the need for a multidimensional and temporally guarded therapeutic approach targeting the inflammatory

  8. The effect of garlic tablet on pro-inflammatory cytokines in postmenopausal osteoporotic women: a randomized controlled clinical trial.

    Science.gov (United States)

    Mozaffari-Khosravi, Hassan; Hesabgar, Hamideh-al-Sadat; Owlia, Mohammad-Bagher; Hadinedoushan, Hossein; Barzegar, Kazem; Fllahzadeh, Mohammad Hossein

    2012-12-01

    Menopause is one of the important causes of osteoporosis which results from estrogen deficiency. In addition, some clinical and experimental evidence indicates that there is an association between increasing pro-inflammatory cytokine activity and postmenopausal bone loss. The purpose of this study was to determine the effect of garlic tablet on pro-inflammatory cytokines in postmenopausal osteoporotic women. The present study was a double-blind randomized controlled clinical trial in Yazd conducted during November 2009 until July 2010. The sample included 44 postmenopausal osteoporotic women who were randomly assigned into two groups: the garlic group (GG) and the placebo group (PG). Participants in GG took two garlic tablets daily for 1 month and the participants in PG took placebo tablets in the same manner. Serum interlukin-1, interlukin-6, and tumor necrosis factor alpha (TNF-α) were measured using the ELISA method before and after the intervention. Also, 24-hour dietary recall was recorded for estimation of daily intake of some nutrients. Data were analyzed using SPSS software. There was no statistically significant difference between interlukin-1 and interlukin-6 in the two groups before and after the intervention. The mean of TNF-α did not show any statistically significant difference between the two groups before and after the intervention, but it was significantly reduced by about 47% (from 31.14±50.53 to 19.33±22.19 ng/ml, P-value = 0.05) in GG after the intervention, However, no significant difference was seen in PG. The present study produced some evidence for an immunomodulatory effect of garlic, as well as the modulation of cytokine production.

  9. Inhibition of Pro-inflammatory and Anti-apoptotic Biomarkers during Experimental Oral Cancer Chemoprevention by Dietary Black Raspberries

    Directory of Open Access Journals (Sweden)

    Steve Oghumu

    2017-10-01

    Full Text Available Oral cancer continues to be a significant public health problem worldwide. Recently conducted clinical trials demonstrate the ability of black raspberries (BRBs to modulate biomarkers of molecular efficacy that supports a chemopreventive strategy against oral cancer. However, it is essential that a preclinical animal model of black raspberry (BRB chemoprevention which recapitulates human oral carcinogenesis be developed, so that we can validate biomarkers and evaluate potential mechanisms of action. We therefore established the ability of BRBs to inhibit oral lesion formation in a carcinogen-induced rat oral cancer model and examined potential mechanisms. F344 rats were administered 4-nitroquinoline 1-oxide (4NQO (20 µg/ml in drinking water for 14 weeks followed by regular drinking water for 6 weeks. At week 14, rats were fed a diet containing either 5 or 10% BRB, or 0.4% ellagic acid (EA, a BRB phytochemical. Dietary administration of 5 and 10% BRB reduced oral lesion incidence and multiplicity by 39.3 and 28.6%, respectively. Histopathological analyses demonstrate the ability of BRBs and, to a lesser extent EA, to inhibit the progression of oral cancer. Oral lesion inhibition by BRBs was associated with a reduction in the mRNA expression of pro-inflammatory biomarkers Cxcl1, Mif, and Nfe2l2 as well as the anti-apoptotic and cell cycle associated markers Birc5, Aurka, Ccna1, and Ccna2. Cellular proliferation (Ki-67 staining in tongue lesions was inhibited by BRBs and EA. Our study demonstrates that, in the rat 4NQO oral cancer model, dietary administration of BRBs inhibits oral carcinogenesis via inhibition of pro-inflammatory and anti-apoptotic pathways.

  10. Curcumin ameliorates macrophage infiltration by inhibiting NF-κB activation and proinflammatory cytokines in streptozotocin induced-diabetic nephropathy

    Directory of Open Access Journals (Sweden)

    Suzuki Kenji

    2011-06-01

    Full Text Available Abstract Background Chronic inflammation plays an important role in the progression of diabetic nephropathy (DN and that the infiltration of macrophages in glomerulus has been implicated in the development of glomerular injury. We hypothesized that the plant polyphenolic compound curcumin, which is known to exert potent anti-inflammatory effect, would ameliorate macrophage infiltration in streptozotocin (STZ-induced diabetic rats. Methods Diabetes was induced with STZ (55 mg/kg by intraperitoneal injection in rats. Three weeks after STZ injection, rats were divided into three groups, namely, control, diabetic, and diabetic treated with curcumin at 100 mg/kg/day, p.o., for 8 weeks. The rats were sacrificed 11 weeks after induction of diabetes. The excised kidney was used to assess macrophage infiltration and expression of various inflammatory markers. Results At 11 weeks after STZ injection, diabetic rats exhibited renal dysfunction, as evidenced by reduced creatinine clearance, increased blood glucose, blood urea nitrogen and proteinuria, along with marked reduction in the body weight. All of these abnormalities were significantly reversed by curcumin. Hyperglycemia induced the degradation of IκBα and NF-κB activation and as a result increased infiltration of macrophages (52% as well as increased proinflammatory cytokines: TNF-α and IL-1β. Curcumin treatment significantly reduced macrophage infiltration in the kidneys of diabetic rats, suppressed the expression of above proinflammatory cytokines and degradation of IκBα. In addition, curcumin treatment also markedly decreased ICAM-1, MCP-1 and TGF-β1 protein expression. Moreover, at nuclear level curcumin inhibited the NF-κB activity. Conclusion Our results suggested that curcumin treatment protect against the development of DN in rats by reducing macrophage infiltration through the inhibition of NF-κB activation in STZ-induced diabetic rats.

  11. P2Y6 receptor potentiates pro-inflammatory responses in macrophages and exhibits differential roles in atherosclerotic lesion development.

    Directory of Open Access Journals (Sweden)

    Ricardo A Garcia

    Full Text Available BACKGROUND: P2Y(6, a purinergic receptor for UDP, is enriched in atherosclerotic lesions and is implicated in pro-inflammatory responses of key vascular cell types and macrophages. Evidence for its involvement in atherogenesis, however, has been lacking. Here we use cell-based studies and three murine models of atherogenesis to evaluate the impact of P2Y(6 deficiency on atherosclerosis. METHODOLOGY/PRINCIPAL FINDINGS: Cell-based studies in 1321N1 astrocytoma cells, which lack functional P2Y(6 receptors, showed that exogenous expression of P2Y(6 induces a robust, receptor- and agonist-dependent secretion of inflammatory mediators IL-8, IL-6, MCP-1 and GRO1. P2Y(6-mediated inflammatory responses were also observed, albeit to a lesser extent, in macrophages endogenously expressing P2Y(6 and in acute peritonitis models of inflammation. To evaluate the role of P2Y(6 in atherosclerotic lesion development, we used P2Y(6-deficient mice in three mouse models of atherosclerosis. A 43% reduction in aortic arch plaque was observed in high fat-fed LDLR knockout mice lacking P2Y(6 receptors in bone marrow-derived cells. In contrast, no effect on lesion development was observed in fat-fed whole body P2Y(6xLDLR double knockout mice. Interestingly, in a model of enhanced vascular inflammation using angiotensin II, P2Y(6 deficiency enhanced formation of aneurysms and exhibited a trend towards increased atherosclerosis in the aorta of LDLR knockout mice. CONCLUSIONS: P2Y(6 receptor augments pro-inflammatory responses in macrophages and exhibits a pro-atherogenic role in hematopoietic cells. However, the overall impact of whole body P2Y(6 deficiency on atherosclerosis appears to be modest and could reflect additional roles of P2Y(6 in vascular disease pathophysiologies, such as aneurysm formation.

  12. Sintered indium-tin oxide particles induce pro-inflammatory responses in vitro, in part through inflammasome activation.

    Directory of Open Access Journals (Sweden)

    Melissa A Badding

    Full Text Available Indium-tin oxide (ITO is used to make transparent conductive coatings for touch-screen and liquid crystal display electronics. As the demand for consumer electronics continues to increase, so does the concern for occupational exposures to particles containing these potentially toxic metal oxides. Indium-containing particles have been shown to be cytotoxic in cultured cells and pro-inflammatory in pulmonary animal models. In humans, pulmonary alveolar proteinosis and fibrotic interstitial lung disease have been observed in ITO facility workers. However, which ITO production materials may be the most toxic to workers and how they initiate pulmonary inflammation remain poorly understood. Here we examined four different particle samples collected from an ITO production facility for their ability to induce pro-inflammatory responses in vitro. Tin oxide, sintered ITO (SITO, and ventilation dust particles activated nuclear factor kappa B (NFκB within 3 h of treatment. However, only SITO induced robust cytokine production (IL-1β, IL-6, TNFα, and IL-8 within 24 h in both RAW 264.7 mouse macrophages and BEAS-2B human bronchial epithelial cells. Our lab and others have previously demonstrated SITO-induced cytotoxicity as well. These findings suggest that SITO particles activate the NLRP3 inflammasome, which has been implicated in several immune-mediated diseases via its ability to induce IL-1β release and cause subsequent cell death. Inflammasome activation by SITO was confirmed, but it required the presence of endotoxin. Further, a phagocytosis assay revealed that pre-uptake of SITO or ventilation dust impaired proper macrophage phagocytosis of E. coli. Our results suggest that adverse inflammatory responses to SITO particles by both macrophage and epithelial cells may initiate and propagate indium lung disease. These findings will provide a better understanding of the molecular mechanisms behind an emerging occupational health issue.

  13. NF-κB dependent and independent mechanisms of quartz-induced proinflammatory activation of lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Schins Roel PF

    2010-05-01

    Full Text Available Abstract In the initiation and progression of pulmonary inflammation, macrophages have classically been considered as a crucial cell type. However, evidence for the role of epithelial type II cells in pulmonary inflammation has been accumulating. In the current study, a combined in vivo and in vitro approach has been employed to investigate the mechanisms of quartz-induced proinflammatory activation of lung epithelial cells. In vivo, enhanced expression of the inflammation- and oxidative stress-related genes HO-1 and iNOS was found on the mRNA level in rat lungs after instillation with DQ12 respirable quartz. Activation of the classical NF-κB pathway in macrophages and type II pneumocytes was indicated by enhanced immunostaining of phospho-IκBα in these specific lung cell types. In vitro, the direct, particle-mediated effect on proinflammatory signalling in a rat lung epithelial (RLE cell line was compared to the indirect, macrophage product-mediated effect. Treatment with quartz particles induced HO-1 and COX-2 mRNA expression in RLE cells in an NF-κB independent manner. Supernatant from quartz-treated macrophages rapidly activated the NF-κB signalling pathway in RLE cells and markedly induced iNOS mRNA expression up to 2000-fold compared to non-treated control cells. Neutralisation of TNFα and IL-1β in macrophage supernatant did not reduce its ability to elicit NF-κB activation of RLE cells. In addition the effect was not modified by depletion or supplementation of intracellular glutathione. The results from the current work suggest that although both oxidative stress and NF-κB are likely involved in the inflammatory effects of toxic respirable particles, these phenomena can operate independently on the cellular level. This might have consequences for in vitro particle hazard testing, since by focusing on NF-κB signalling one might neglect alternative inflammatory pathways.

  14. MSCs ameliorates DPN induced cellular pathology via [Ca2+ ]i homeostasis and scavenging the pro-inflammatory cytokines.

    Science.gov (United States)

    Chandramoorthy, Harish C; Bin-Jaliah, Ismaeel; Karari, Hussian; Rajagopalan, Prasanna; Ahmed Shariff, Mohammed Eajaz; Al-Hakami, Ahmed; Al-Humayad, Suliman M; Baptain, Fawzi A; Ahmed, Humeda Suekit; Yassin, Hanaa Z; Haidara, Mohamed A

    2018-02-01

    The MSCs of various origins are known to ameliorate or modulate cell survival strategies. We investigated, whether UCB MSCs could improve the survival of the human neuronal cells and/or fibroblast assaulted with DPN sera. The results showed, the co-culture of UCB MSCs with human neuronal cells and/or fibroblasts could effectively scavenge the pro-inflammatory cytokines TNF-α, IL-1β, IFN-ɤ and IL - 12 and control the pro-apoptotic expression of p53/Bax. Further co-culture of UCB MSCs have shown to induce anti-inflammatory cytokines like IL-4, IL-10 and TGF-β and anti-apoptotic Bclxl/Bcl2 expression in the DPN sera stressed cells. Amelioration of elevated [Ca 2+ ] i and cROS, the portent behind the NFκB/Caspase-3 mediated inflammation in DPN rescued the cells from apoptosis. The results of systemic administration of BM MSCs improved DPN pathology in rat as extrapolated from human cell model. The BM MSCs ameliorated prolonged distal motor latency (control: 0.70 ± 0.06, DPN: 1.29 ± 0.13 m/s DPN + BM MSCs: 0.89 ± 0.02 m/s, p glucose levels. Together, all these results showed that administration of BM or UCB MSCs improved the DPN via ameliorating pro-inflammatory cytokine signaling and [Ca 2+ ] i homeostasis. © 2017 Wiley Periodicals, Inc.

  15. Apoptotic effects of antilymphocyte globulins on human pro-inflammatory CD4+CD28- T-cells.

    Directory of Open Access Journals (Sweden)

    Christina Duftner

    Full Text Available BACKGROUND: Pro-inflammatory, cytotoxic CD4(+CD28(- T-cells with known defects in apoptosis have been investigated as markers of premature immuno-senescence in various immune-mediated diseases. In this study we evaluated the influence of polyclonal antilymphocyte globulins (ATG-Fresenius, ATG-F on CD4(+CD28(- T-cells in vivo and in vitro. PRINCIPAL FINDINGS: Surface and intracellular three colour fluorescence activated cell sorting analyses of peripheral blood mononuclear cells from 16 consecutive transplant recipients and short-term cell lines were performed. In vivo, peripheral levels of CD3(+CD4(+CD28(- T-cells decreased from 3.7 ± 7.1% before to 0 ± 0% six hours after ATG-F application (P = 0.043 in 5 ATG-F treated but not in 11 control patients (2.9 ± 2.9% vs. 3.9 ± 3.0%. In vitro, ATG-F induced apoptosis even in CD4(+CD28(- T-cells, which was 4.3-times higher than in CD4(+CD28(+ T-cells. ATG-F evoked apoptosis was partially reversed by the broad-spectrum caspase inhibitor benzyloxycarbonyl (Cbz-Val-Ala-Asp(OMe-fluoromethylketone (zVAD-fmk and prednisolon-21-hydrogensuccinate. ATG-F triggered CD25 expression and production of pro-inflammatory cytokines, and induced down-regulation of the type 1 chemokine receptors CXCR-3, CCR-5, CX3CR-1 and the central memory adhesion molecule CD62L predominately in CD4(+CD28(- T-cells. CONCLUSION: In summary, in vivo depletion of peripheral CD3(+CD4(+CD28(- T-cells by ATG-F in transplant recipients was paralleled in vitro by ATG-F induced apoptosis. CD25 expression and chemokine receptor down-regulation in CD4(+CD28(- T-cells only partly explain the underlying mechanism.

  16. The effect of solar irradiated Vibrio cholera on the secretion of pro-inflammatory cytokines and chemokines by the JAWS II dendritic cell line in vitro

    CSIR Research Space (South Africa)

    Ssemakalu, CC

    2015-06-01

    Full Text Available 70, IL-15, MIP-1a, MIP-1ß, MIP-2, RANTES, TNF-a, IL-23 and IL-27. Results showed that solar irradiated cultures of V. cholerae induced dendritic cells to secrete significant (p<0.05) levels of pro-inflammatory cytokines in comparison...

  17. Short-term alpha-tocopherol treatment during neonatal period modulates pro-inflammatory response to endotoxin (LPS) challenge in the same calves several months later

    Science.gov (United States)

    Vitamin E, a major natural antioxidant, has been previously shown to attenuate pro-inflammatory response to immune challenge in cattle. Our objective was to evaluate the effect of short-term treatment with alpha-tocopherol in newborn calves on selected elements of the pro-inflamatory response to LPS...

  18. T cell activation inhibitors reduce CD8+ T cell and pro-inflammatory macrophage accumulation in adipose tissue of obese mice.

    Directory of Open Access Journals (Sweden)

    Vince N Montes

    Full Text Available Adipose tissue inflammation and specifically, pro-inflammatory macrophages are believed to contribute to insulin resistance (IR in obesity in humans and animal models. Recent studies have invoked T cells in the recruitment of pro-inflammatory macrophages and the development of IR. To test the role of the T cell response in adipose tissue of mice fed an obesogenic diet, we used two agents (CTLA-4 Ig and anti-CD40L antibody that block co-stimulation, which is essential for full T cell activation. C57BL/6 mice were fed an obesogenic diet for 16 weeks, and concomitantly either treated with CTLA-4 Ig, anti-CD40L antibody or an IgG control (300 µg/week. The treatments altered the immune cell composition of adipose tissue in obese mice. Treated mice demonstrated a marked reduction in pro-inflammatory adipose tissue macrophages and activated CD8+ T cells. Mice treated with anti-CD40L exhibited reduced weight gain, which was accompanied by a trend toward improved IR. CTLA-4 Ig treatment, however, was not associated with improved IR. These data suggest that the presence of pro-inflammatory T cells and macrophages can be altered with co-stimulatory inhibitors, but may not be a significant contributor to the whole body IR phenotype.

  19. Divergent pro-inflammatory profile of human dendritic cells in response to commensal and pathogenic bacteria associated with the airway microbiota

    NARCIS (Netherlands)

    Larsen, J.M.; Steen-Jensen, D.B.; Laursen, J.M.; Sondergaard, J.N.; Musavian, H.S.; Butt, T.M.; Brix, S.

    2012-01-01

    Recent studies using culture-independent methods have characterized the human airway microbiota and report microbial communities distinct from other body sites. Changes in these airway bacterial communities appear to be associated with inflammatory lung disease, yet the pro-inflammatory properties

  20. Mindfulness-Based Stress Reduction training reduces loneliness and pro-inflammatory gene expression in older adults: a small randomized controlled trial.

    Science.gov (United States)

    Creswell, J David; Irwin, Michael R; Burklund, Lisa J; Lieberman, Matthew D; Arevalo, Jesusa M G; Ma, Jeffrey; Breen, Elizabeth Crabb; Cole, Steven W

    2012-10-01

    Lonely older adults have increased expression of pro-inflammatory genes as well as increased risk for morbidity and mortality. Previous behavioral treatments have attempted to reduce loneliness and its concomitant health risks, but have had limited success. The present study tested whether the 8-week Mindfulness-Based Stress Reduction (MBSR) program (compared to a Wait-List control group) reduces loneliness and downregulates loneliness-related pro-inflammatory gene expression in older adults (N = 40). Consistent with study predictions, mixed effect linear models indicated that the MBSR program reduced loneliness, compared to small increases in loneliness in the control group (treatment condition × time interaction: F(1,35) = 7.86, p = .008). Moreover, at baseline, there was an association between reported loneliness and upregulated pro-inflammatory NF-κB-related gene expression in circulating leukocytes, and MBSR downregulated this NF-κB-associated gene expression profile at post-treatment. Finally, there was a trend for MBSR to reduce C Reactive Protein (treatment condition × time interaction: (F(1,33) = 3.39, p = .075). This work provides an initial indication that MBSR may be a novel treatment approach for reducing loneliness and related pro-inflammatory gene expression in older adults. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Human resistin stimulates the pro-inflammatory cytokines TNF-α and IL-12 in macrophages by NF-κB-dependent pathway

    International Nuclear Information System (INIS)

    Silswal, Nirupama; Singh, Anil K.; Aruna, Battu; Mukhopadhyay, Sangita; Ghosh, Sudip; Ehtesham, Nasreen Z.

    2005-01-01

    Resistin, a recently discovered 92 amino acid protein involved in the development of insulin resistance, has been associated with obesity and type 2 diabetes. The elevated serum resistin in human diabetes is often associated with a pro-inflammatory milieu. However, the role of resistin in the development of inflammation is not well understood. Addition of recombinant human resistin protein (hResistin) to macrophages (both murine and human) resulted in enhanced secretion of pro-inflammatory cytokines, TNF-α and IL-12, similar to that obtained using 5 μg/ml lipopolysaccharide. Both oligomeric and dimeric forms of hResistin were able to activate these cytokines suggesting that the inflammatory action of resistin is independent of its conformation. Heat denatured hResistin abrogated cytokine induction while treatment of recombinant resistin with polymyxin B agarose beads had no effect thereby ruling out the role of endotoxin in the recombinant hResistin mediated cytokine induction. The pro-inflammatory nature of hResistin was further evident from the ability of this protein to induce the nuclear translocation of NF-κB transcription factor as seen from electrophoretic mobility shift assays. Induction of TNF-α in U937 cells by hResistin was markedly reduced in the presence of either dominant negative IκBα plasmid or PDTC, a pharmacological inhibitor of NF-κB. A protein involved in conferring insulin resistance is also a pro-inflammatory molecule that has important implications

  2. Modulation of Cartilage Degradation Biomarkers Reflect the Activation and Inhibition of Pro-Inflammatory Cytokine Signaling in an Ex Vivo Model of Bovine Cartilage

    DEFF Research Database (Denmark)

    Kjelgaard-Petersen, Cecilie Freja; Sharma, Neha; Kayed, Ashref

    2017-01-01

    -inflammatory treatments for inflammatory arthritis. The aim of this study was to investigate the effect of small molecule inhibitors targeting 4 main pro-inflammatory signaling pathways (p38, Syk, IκBα, and STAT) on Oncostatin M (OSM) and Tumor Necrosis Factor α (TNFα) stimulated cartilage....

  3. Long-time treatment by low-dose N-acetyl-L-cysteine enhances proinflammatory cytokine expressions in LPS-stimulated macrophages.

    Directory of Open Access Journals (Sweden)

    Tomokazu Ohnishi

    Full Text Available N-acetyl-L-cysteine is known to act as a reactive oxygen species scavenger and used in clinical applications. Previous reports have shown that high-dose N-acetyl-L-cysteine treatment inhibits the expression of proinflammatory cytokines in activated macrophages. Here, we have found that long-time N-acetyl-L-cysteine treatment at low-concentration increases phosphorylation of extracellular signal-regulated kinase 1/2 and AKT, which are essential for the induction of proinflammatory cytokines including interleukin 1β and interleukin 6 in lipopolysaccharide-stimulated RAW264.7 cells. Furthermore, long-time N-acetyl-L-cysteine treatment decreases expressions of protein phosphatases, catalytic subunit of protein phosphatase-2A and dual specificity phosphatase 1. On the other hand, we have found that short-time N-acetyl-L-cysteine treatment at low dose increases p53 expression, which inhibits expressions of proinflammatory cytokines. These observations suggest that long-time low-dose N-acetyl-L-cysteine treatment increases expressions of proinflammatory cytokines through enhancement of kinase phosphorylation.

  4. Histone deacetylase 2 is decreased in peripheral blood pro-inflammatory CD8+ T and NKT-like lymphocytes following lung transplant.

    Science.gov (United States)

    Hodge, Greg; Hodge, Sandra; Holmes-Liew, Chien-Li; Reynolds, Paul N; Holmes, Mark

    2017-02-01

    Immunosuppression therapy following lung transplantation fails to prevent chronic rejection in many patients, which is associated with lack of suppression of cytotoxic mediators and pro-inflammatory cytokines in peripheral blood T and natural killer T (NKT)-like cells. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) upregulate/downregulate pro-inflammatory gene expression, respectively; however, differences in the activity of these enzymes following lung transplant are unknown. We hypothesized decreased HDAC2 expression and increased HAT expression in pro-inflammatory lymphocytes following lung transplant. Blood was collected from 18 stable lung transplant patients and 10 healthy age-matched controls. Intracellular pro-inflammatory cytokines and HAT/HDAC2 expression were determined in lymphocyte subsets following culture using flow cytometry. A loss of HDAC2 in cluster of differentiation (CD) 8+ T and NKT-like cells in transplant patients compared with controls was noted (CD8+ T: 28 ± 10 (45 ± 10), CD8+NKT-like: 30 ± 13 (54 ± 16) (mean ± SD transplant) (control)). Loss of HDAC2 was associated with an increased percentage of CD8+ T and NKT-like cells expressing perforin, granzyme b, interferon gamma (IFN-γ) and TNF-α (no change in HAT expression in any lymphocyte subset). There was a negative correlation between loss of HDAC2 expression by CD8+ T cells with cumulative dose of prednisolone and time post-transplant. Treatment with 10 mg/L theophylline + 1 µmol/L prednisolone or 2.5 ng/mL cyclosporine A synergistically upregulated HDAC2 and inhibited IFN-γ and TNF-α production by CD8+ T and NKT-like lymphocytes. HDAC2 is decreased in CD8+ T and NKT-like pro-inflammatory lymphocytes following lung transplant. Treatment options that increase HDAC2 may improve graft survival. © 2016 Asian Pacific Society of Respirology.

  5. A novel immune-to-CNS communication pathway: cells of the meninges surrounding the spinal cord CSF space produce proinflammatory cytokines in response to an inflammatory stimulus.

    Science.gov (United States)

    Wieseler-Frank, Julie; Jekich, Brian M; Mahoney, John H; Bland, Sondra T; Maier, Steven F; Watkins, Linda R

    2007-07-01

    Pain is enhanced in response to elevations of proinflammatory cytokines in spinal cerebrospinal fluid (CSF), following either intrathecal injection of these cytokines or intrathecal immune challenge with HIV-1 gp120 that induces cytokine release. Spinal cord glia have been assumed to be the source of endogenous proinflammatory cytokines that enhance pain. However, assuming that spinal cord glia are the sole source of CSF cytokines may be an underestimate, as the cellular composition of the meninges surrounding the spinal cord CSF space includes several cell types known to produce proinflammatory cytokines. The present experiments provide the first investigation of the immunocompetent nature of the spinal cord meninges. Here, we explore whether rat meninges are responsive to intrathecal gp120. These studies demonstrate that: (a) intrathecal gp120 upregulates meningeal gene expression of proinflammatory signals, including tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), interleukin 6 (IL-6), and inducible nitric oxide synthase (iNOS), and (b) intrathecal gp120 induces meningeal release of TNF-alpha, IL-1beta, and IL-6. In addition, stimulation of isolated meninges in vitro with gp120 induced the release of TNF-alpha and IL-1beta, indicating that the resident cells of the meninges are able to respond without immune cell recruitment. Taken together, these data document that the meninges are responsive to immunogenic stimuli in the CSF and that the meninges may be a source of immune products detected in CSF. The ability of the meninges to release to proinflammatory signals suggests a potential role in the modulation of pain.

  6. PRODUCTION OF PROINFLAMMATORY CYTOKINES AND ALPHA-2-MACROGLOBULIN BY PERIPHERAL BLOOD CELLS IN THE PATIENTS WITH COLORECTAL CANCER

    Directory of Open Access Journals (Sweden)

    V. N. Zorina

    2016-01-01

    Full Text Available Colorectal cancer (CRC is the third most common cancer worldwide, being quite complicated, with respect to diagnostics and postoperative prognosis. Proinflammatory cytokines are shown to be involved into CRC pathogenesis. However, the changes in alpha-2-macroglobulin (α2-MG, a known regulator of cytokine production, still remain unclear. The aim of this work was to compare contents and production of a2-MG and several pro-inflammatory cytokines in blood serum and supernates from short-term blood cell cultures. The samples were taken from the patients with CRC at initial terms and after surgical removal of the tumor.Studies of cytokines and a2-MG concentrations in serum and supernates of 24-h blood cell cultures from the patients with verified CRC (stages T2-3N0-1M0 and T4N0-1M0 have shown some sufficient differences from healthy volunteers (control group. Pre-surgery IL-6 and TNFα contents in blood of CRC patients was significantly increased agains healthy controls (respectively, 29.9±5.4 and 3.4±1.5 pg/mL versus control group (1.0±0.3 and 0 pg/mL, respectively. Following surgical treatment, the cytokine levels were decreased by 40- 60% after the operation, however, without significant differences from initial values.The supernates of blood cultures stimulated with polyclonal mitogens exhibited significant reduction of IFNγ levels prior to surgery (273±123 pg/ml versus 804±154 pg/mL, and elevated IL-6 levels (14412±2570 pg/mL versus 1970±457 pg/mL. The mean α2-MG concentrations before CRC surgery comprised 1.96±0.11 g/L for blood serum, 0.0304±0.0047 g/L, for non-stimulated blood cell cultures, and 0.0300±0.0052 g/L in mitogen-induced cultures. These parameters did not significantly differ from control values (2.21±0.17 g/L, 0.0328±0.0018 g/L, and 0.0314±0.0019 g/L, respectively. Similar results have been yielded with the samples obtained after surgical treatment of the CRC patients.The obtained data indicate that surgical

  7. HMGB1/RAGE Signaling and Pro-Inflammatory Cytokine Responses in Non-HIV Adults with Active Pulmonary Tuberculosis.

    Directory of Open Access Journals (Sweden)

    Grace Lui

    Full Text Available We aimed to study the pathogenic roles of High-Mobility Group Box 1 (HMGB1 / Receptor-for-Advanced-Glycation-End-products (RAGE signaling and pro-inflammatory cytokines in patients with active pulmonary tuberculosis (PTB.A prospective study was conducted among non-HIV adults newly-diagnosed with active PTB at two acute-care hospitals (n = 80; age-and-sex matched asymptomatic individuals (tested for latent TB were used for comparison (n = 45. Plasma concentrations of 8 cytokines/chemokines, HMGB1, soluble-RAGE, and transmembrane-RAGE expressed on monocytes/dendritic cells, were measured. Gene expression (mRNA of HMGB1, RAGE, and inflammasome-NALP3 was quantified. Patients' PBMCs were stimulated with recombinant-HMGB1 and MTB-antigen (lipoarabinomannan for cytokine induction ex vivo.In active PTB, plasma IL-8/CXCL8 [median(IQR, 6.0(3.6-15.1 vs 3.6(3.6-3.6 pg/ml, P<0.001] and IL-6 were elevated, which significantly correlated with mycobacterial load, extent of lung consolidation (rs +0.509, P<0.001, severity-score (rs +0.317, P = 0.004, and fever and hospitalization durations (rs +0.407, P<0.001. IL-18 and sTNFR1 also increased. Plasma IL-8/CXCL8 (adjusted OR 1.12, 95%CI 1.02-1.23 per unit increase, P = 0.021 and HMGB1 (adjusted OR 1.42 per unit increase, 95%CI 1.08-1.87, P = 0.012 concentrations were independent predictors for respiratory failure, as well as for ICU admission/death. Gene expression of HMGB1, RAGE, and inflammasome-NALP3 were upregulated (1.2-2.8 fold. Transmembrane-RAGE was increased, whereas the decoy soluble-RAGE was significantly depleted. RAGE and HMGB1 gene expressions positively correlated with cytokine levels (IL-8/CXCL8, IL-6, sTNFR1 and clinico-/radiographical severity (e.g. extent of consolidation rs +0.240, P = 0.034. Ex vivo, recombinant-HMGB1 potentiated cytokine release (e.g. TNF-α when combined with lipoarabinomannan.In patients with active PTB, HMGB1/RAGE signaling and pro-inflammatory cytokines may play important

  8. Association of Vitamin B12 with Pro-Inflammatory Cytokines and Biochemical Markers Related to Cardiometabolic Risk in Saudi Subjects

    Directory of Open Access Journals (Sweden)

    Nasser M. Al-Daghri

    2016-09-01

    Full Text Available Background: This study aimed to examine the relationship between changes in systemic vitamin B12 concentrations with pro-inflammatory cytokines, anthropometric factors and biochemical markers of cardiometabolic risk in a Saudi population. Methods: A total of 364 subjects (224 children, age: 12.99 ± 2.73 (mean ± SD years; BMI: 20.07 ± 4.92 kg/m2 and 140 adults, age: 41.87 ± 8.82 years; BMI: 31.65 ± 5.77 kg/m2 were studied. Fasting blood, anthropometric and biochemical data were collected. Serum cytokines were quantified using multiplex assay kits and B12 concentrations were measured using immunoassay analyzer. Results: Vitamin B12 was negatively associated with TNF-α (r = −0.14, p < 0.05, insulin (r = −0.230, p < 0.01 and HOMA-IR (r = −0.252, p < 0.01 in all subjects. In children, vitamin B12 was negatively associated with serum resistin (r = −0.160, p < 0.01, insulin (r = −0.248, p < 0.01, HOMA-IR (r = −0.261, p < 0.01. In adults, vitamin B12 was negatively associated with TNF-α (r = −0.242, p < 0.01 while positively associated with resistin (r = 0.248, p < 0.01. Serum resistin was the most significant predictor for circulating vitamin B12 in all subjects (r2 = −0.17, p < 0.05 and in children (r2 = −0.167, p < 0.01 while HDL-cholesterol was the predictor of B12 in adults (r2 = −0.78, p < 0.05. Conclusions: Serum vitamin B12 concentrations were associated with pro-inflammatory cytokines and biochemical markers of cardiometabolic risks in adults. Maintaining adequate vitamin B12 concentrations may lower inflammation-induced cardiometabolic risk in the Saudi adult population.

  9. Suicidal patients are deficient in vitamin D, associated with a pro-inflammatory status in the blood.

    Science.gov (United States)

    Grudet, Cécile; Malm, Johan; Westrin, Asa; Brundin, Lena

    2014-12-01

    Low levels of vitamin D may play a role in psychiatric disorders, as cross-sectional studies show an association between vitamin D deficiency and depression, schizophrenia and psychotic symptoms. The underlying mechanisms are not well understood, although vitamin D is known to influence the immune system to promote a T helper (Th)-2 phenotype. At the same time, increased inflammation might be of importance in the pathophysiology of depression and suicide. We therefore hypothesized that suicidal patients would be deficient in vitamin D, which could be responsible for the inflammatory changes observed in these patients. We compared vitamin D levels in suicide attempters (n=59), non-suicidal depressed patients (n=17) and healthy controls (n=14). Subjects were diagnosed according to the Diagnostic and Statistical Manual of Mental Disorders, 4th edition, and went through a structured interview by a specialist in psychiatry. 25(OH)D2 and 25(OH)D3 were measured in plasma using liquid-chromatography-mass-spectrometry (LC-MS). We further explored vitamin D's association with plasma IL-1β, IL-6 and TNF-α. Suicide attempters had significantly lower mean levels of vitamin D than depressed non-suicidal patients and healthy controls. 58 percent of the suicide attempters were vitamin D deficient according to clinical standard. Moreover, there was a significant negative association between vitamin D and pro-inflammatory cytokines in the psychiatric patients. Low vitamin D levels were associated with higher levels of the inflammatory cytokines IL-6 and IL-1β in the blood. The suicide attempters in our study were deficient in vitamin D. Our data also suggest that vitamin D deficiency could be a contributing factor to the elevated pro-inflammatory cytokines previously reported in suicidal patients. We propose that routine clinical testing of vitamin D levels could be beneficial in patients with suicidal symptoms, with subsequent supplementation in patients found to be deficient

  10. Neurodevelopmental effects of chronic exposure to elevated levels of pro-inflammatory cytokines in a developing visual system

    Directory of Open Access Journals (Sweden)

    Ruthazer Edward S

    2010-01-01

    Full Text Available Abstract Background Imbalances in the regulation of pro-inflammatory cytokines have been increasingly correlated with a number of severe and prevalent neurodevelopmental disorders, including autism spectrum disorder, schizophrenia and Down syndrome. Although several studies have shown that cytokines have potent effects on neural function, their role in neural development is still poorly understood. In this study, we investigated the link between abnormal cytokine levels and neural development using the Xenopus laevis tadpole visual system, a model frequently used to examine the anatomical and functional development of neural circuits. Results Using a test for a visually guided behavior that requires normal visual system development, we examined the long-term effects of prolonged developmental exposure to three pro-inflammatory cytokines with known neural functions: interleukin (IL-1β, IL-6 and tumor necrosis factor (TNF-α. We found that all cytokines affected the development of normal visually guided behavior. Neuroanatomical imaging of the visual projection showed that none of the cytokines caused any gross abnormalities in the anatomical organization of this projection, suggesting that they may be acting at the level of neuronal microcircuits. We further tested the effects of TNF-α on the electrophysiological properties of the retinotectal circuit and found that long-term developmental exposure to TNF-α resulted in enhanced spontaneous excitatory synaptic transmission in tectal neurons, increased AMPA/NMDA ratios of retinotectal synapses, and a decrease in the number of immature synapses containing only NMDA receptors, consistent with premature maturation and stabilization of these synapses. Local interconnectivity within the tectum also appeared to remain widespread, as shown by increased recurrent polysynaptic activity, and was similar to what is seen in more immature, less refined tectal circuits. TNF-α treatment also enhanced the

  11. Schistosome tegumental ecto-apyrase (SmATPDase1 degrades exogenous pro-inflammatory and pro-thrombotic nucleotides

    Directory of Open Access Journals (Sweden)

    Akram A. Da’dara

    2014-03-01

    Full Text Available Schistosomes are parasitic worms that can survive in the hostile environment of the human bloodstream where they appear refractory to both immune elimination and thrombus formation. We hypothesize that parasite migration in the bloodstream can stress the vascular endothelium causing this tissue to release chemicals alerting responsive host cells to the stress. Such chemicals are called damage associated molecular patterns (DAMPs and among the most potent is the proinflammatory mediator, adenosine triphosphate (ATP. Furthermore, the ATP derivative ADP is a pro-thrombotic molecule that acts as a strong activator of platelets. Schistosomes are reported to possess at their host interactive tegumental surface a series of enzymes that could, like their homologs in mammals, degrade extracellular ATP and ADP. These are alkaline phosphatase (SmAP, phosphodiesterase (SmNPP-5 and ATP diphosphohydrolase (SmATPDase1. In this work we employ RNAi to knock down expression of the genes encoding these enzymes in the intravascular life stages of the parasite. We then compare the abilities of these parasites to degrade exogenously added ATP and ADP. We find that only SmATPDase1-suppressed parasites are significantly impaired in their ability to degrade these nucleotides. Suppression of SmAP or SmNPP-5 does not appreciably affect the worms’ ability to catabolize ATP or ADP. These findings are confirmed by the functional characterization of the enzymatically active, full-length recombinant SmATPDase1 expressed in CHO-S cells. The enzyme is a true apyrase; SmATPDase1 degrades ATP and ADP in a cation dependent manner. Optimal activity is seen at alkaline pH. The Km of SmATPDase1 for ATP is 0.4 ± 0.02 mM and for ADP, 0.252 ± 0.02 mM. The results confirm the role of tegumental SmATPDase1 in the degradation of the exogenous pro-inflammatory and pro-thrombotic nucleotides ATP and ADP by live intravascular stages of the parasite. By degrading host inflammatory signals

  12. Anion exchange HPLC isolation of high-density lipoprotein (HDL and on-line estimation of proinflammatory HDL.

    Directory of Open Access Journals (Sweden)

    Xiang Ji

    Full Text Available Proinflammatory high-density lipoprotein (p-HDL is a biomarker of cardiovascular disease. Sickle cell disease (SCD is characterized by chronic states of oxidative stress that many consider to play a role in forming p-HDL. To measure p-HDL, apolipoprotein (apo B containing lipoproteins are precipitated. Supernatant HDL is incubated with an oxidant/LDL or an oxidant alone and rates of HDL oxidation monitored with dichlorofluorescein (DCFH. Although apoB precipitation is convenient for isolating HDL, the resulting supernatant matrix likely influences HDL oxidation. To determine effects of supernatants on p-HDL measurements we purified HDL from plasma from SCD subjects by anion exchange (AE chromatography, determined its rate of oxidation relative to supernatant HDL. SCD decreased total cholesterol but not triglycerides or HDL and increased cell-free (cf hemoglobin (Hb and xanthine oxidase (XO. HDL isolated by AE-HPLC had lower p-HDL levels than HDL in supernatants after apoB precipitation. XO+xanthine (X and cf Hb accelerated purified HDL oxidation. Although the plate and AE-HPLC assays both showed p-HDL directly correlated with cf-Hb in SCD plasma, the plate assay yielded p-HDL data that was influenced more by cf-Hb than AE-HPLC generated p-HDL data. The AE-HPLC p-HDL assay reduces the influence of the supernatants and shows that SCD increases p-HDL.

  13. DNA damage, metabolism and aging in pro-inflammatory T cells: Rheumatoid arthritis as a model system.

    Science.gov (United States)

    Li, Yinyin; Goronzy, Jörg J; Weyand, Cornelia M

    2018-05-01

    The aging process is the major driver of morbidity and mortality, steeply increasing the risk to succumb to cancer, cardiovascular disease, infection and neurodegeneration. Inflammation is a common denominator in age-related pathologies, identifying the immune system as a gatekeeper in aging overall. Among immune cells, T cells are long-lived and exposed to intense replication pressure, making them sensitive to aging-related abnormalities. In successful T cell aging, numbers of naïve cells, repertoire diversity and activation thresholds are preserved as long as possible; in maladaptive T cell aging, protective T cell functions decline and pro-inflammatory effector cells are enriched. Here, we review in the model system of rheumatoid arthritis (RA) how maladaptive T cell aging renders the host susceptible to chronic, tissue-damaging inflammation. In T cells from RA patients, known to be about 20years pre-aged, three interconnected functional domains are altered: DNA damage repair, metabolic activity generating energy and biosynthetic precursor molecules, and shaping of plasma membranes to promote T cell motility. In each of these domains, key molecules and pathways have now been identified, including the glycolytic enzymes PFKFB3 and G6PD; the DNA repair molecules ATM, DNA-PKcs and MRE11A; and the podosome marker protein TKS5. Some of these molecules may help in defining targetable pathways to slow the T cell aging process. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Pneumococcal DNA-binding proteins released through autolysis induce the production of proinflammatory cytokines via toll-like receptor 4.

    Science.gov (United States)

    Nagai, Kosuke; Domon, Hisanori; Maekawa, Tomoki; Oda, Masataka; Hiyoshi, Takumi; Tamura, Hikaru; Yonezawa, Daisuke; Arai, Yoshiaki; Yokoji, Mai; Tabeta, Koichi; Habuka, Rie; Saitoh, Akihiko; Yamaguchi, Masaya; Kawabata, Shigetada; Terao, Yutaka

    2018-03-01

    Streptococcus pneumoniae is a leading cause of bacterial pneumonia. Our previous study suggested that S. pneumoniae autolysis-dependently releases intracellular pneumolysin, which subsequently leads to lung injury. In this study, we hypothesized that pneumococcal autolysis induces the leakage of additional intracellular molecules that could increase the pathogenicity of S. pneumoniae. Liquid chromatography tandem-mass spectrometry analysis identified that chaperone protein DnaK, elongation factor Tu (EF-Tu), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were released with pneumococcal DNA by autolysis. We demonstrated that recombinant (r) DnaK, rEF-Tu, and rGAPDH induced significantly higher levels of interleukin-6 and tumor necrosis factor production in peritoneal macrophages and THP-1-derived macrophage-like cells via toll-like receptor 4. Furthermore, the DNA-binding activity of these proteins was confirmed by surface plasmon resonance assay. We demonstrated that pneumococcal DnaK, EF-Tu, and GAPDH induced the production of proinflammatory cytokines in macrophages, and might cause host tissue damage and affect the development of pneumococcal diseases. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Increased Blood Levels of Growth Factors, Proinflammatory Cytokines, and Th17 Cytokines in Patients with Newly Diagnosed Type 1 Diabetes.

    Science.gov (United States)

    Alnek, Kristi; Kisand, Kalle; Heilman, Kaire; Peet, Aleksandr; Varik, Karin; Uibo, Raivo

    2015-01-01

    The production of several cytokines could be dysregulated in type 1 diabetes (T1D). In particular, the activation of T helper (Th) type 1 (Th1) cells has been proposed to underlie the autoimmune pathogenesis of the disease, although roles for inflammatory processes and the Th17 pathway have also been shown. Nevertheless, despite evidence for the role of cytokines before and at the onset of T1D, the corresponding findings are inconsistent across studies. Moreover, conflicting data exist regarding the blood cytokine levels in T1D patients. The current study was performed to investigate genetic and autoantibody markers in association with the peripheral blood cytokine profiles by xMap multiplex technology in newly diagnosed young T1D patients and age-matched healthy controls. The onset of young-age T1D was characterized by the upregulation of growth factors, including granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin (IL)-7, the proinflammatory cytokine IL-1β (but not IL-6 or tumor necrosis factor [TNF]-α), Th17 cytokines, and the regulatory cytokines IL-10 and IL-27. Ketoacidosis and autoantibodies (anti-IA-2 and -ZnT8), but not human leukocyte antigen (HLA) genotype, influenced the blood cytokine levels. These findings broaden the current understanding of the dysregulation of systemic levels of several key cytokines at the young-age onset of T1D and provide a further basis for the development of novel immunoregulatory treatments in this disease.

  16. Alteration in peripheral blood concentration of certain pro-inflammatory cytokines in cows developing retention of fetal membranes.

    Science.gov (United States)

    Boro, Prasanta; Kumaresan, A; Pathak, Rupal; Patbandha, T K; Kumari, Susavi; Yadav, Asha; Manimaran, A; Baithalu, R K; Attupuram, Nitin M; Mohanty, T K

    2015-06-01

    Retention of fetal membranes (RFM) adversely affects the production and reproduction potential of the affected cows leading to huge economic loss. Physiological separation of fetal membranes is reported to be an inflammatory process. The present study compared the concentrations of certain pro inflammatory cytokines [Interleukin 1β (IL-1), Interleukin 6 (IL-6), Interleukin 8 (IL-8) and Tumor necrosis factor α (TNF-α) between the cows that developed RFM (n=10) and the cows that expelled fetal membranes normally (n=10) to find out if they could serve as a predictive tool for RFM. Blood samples were collected from the cows from 30 days before expected parturition through day -21, day -14, day -7, day -5, day -3, day -1, on the day of parturition (day 0), day 1 postpartum and the pro-inflammatory cytokines were estimated in blood plasma by ELISA method. The IL-1β concentration was significantly lower (Pmembranes normally from 3 days before calving till the day of calving. The plasma concentrations of IL-6 and IL-8 were also lower (Pmembranes normally. It may be inferred that the concentrations of IL-1, IL-6, IL-8 and TNF-α around parturition were altered in cows developing RFM compared to those expelled fetal membranes normally. Copyright © 2015. Published by Elsevier B.V.

  17. A TLR4/MD2 fusion protein inhibits LPS-induced pro-inflammatory signaling in hepatic stellate cells

    International Nuclear Information System (INIS)

    Schnabl, Bernd; Brandl, Katharina; Fink, Marina; Gross, Philipp; Taura, Kojiro; Gaebele, Erwin; Hellerbrand, Claus; Falk, Werner

    2008-01-01

    Activated hepatic stellate cells (HSCs) play a key role in hepatic fibrogenesis. In injured liver they are the main extracellular matrix protein producing cell type and further perpetuate hepatic injury by secretion of pro-inflammatory mediators. Since LPS-mediated signaling through toll-like receptor 4 (TLR4) has been identified as key fibrogenic signal in HSCs we aimed to test TLR4 as potential target of therapy via ligand-binding soluble receptors. Incubation of human HSCs with a fusion protein between the extracellular domain of TLR4 and MD2 which binds LPS inhibited LPS-induced NFκB and JNK activation. TLR4/MD2 abolished LPS-induced secretion of IL-6, IL-8, MCP1, and RANTES in HSCs. In addition, TLR4/MD2 fused to human IgG-Fc neutralized LPS activity. Since TLR4 mutant mice are resistant to liver fibrosis, the TLR4/MD2 soluble receptor might represent a new therapeutic molecule for liver fibrogenesis in vivo

  18. Analysis of the physical activity effects and measurement of pro-inflammatory cytokines in irradiated lungs in rats

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Renata Cristiane Gennari; Katashima, Carlos Kiyoshi [Faculty of Medical Sciences, UNICAMP, Campinas, SP (Brazil); Ropelle, Eduardo Rochete [School of Applied Sciences, University of Campinas, UNICAMP, Limeira, SP (Brazil); Carvalheira, Jose Barreto Campello [Department of Internal Medicine, UNICAMP, Campinas, SP (Brazil); Lopes, Luiz Roberto; Andreollo, Nelson Adami [Department of Surgery, UNICAMP, Campinas, SP (Brazil)

    2012-03-15

    Purpose: To study if the pre-radiotherapy physical activity has radio-protective elements, by measuring the radio-induced activation of pro-inflammatory cytokines as interleukin-6 (il-6), transforming growth factor -{beta} (tgf -{beta}), tumor necrosis factor -a (tnf-a) and protein beta kinase {beta} (ikk{beta}), through western blotting analysis. Methods: A randomized study with 28 Wistar Hannover rats, males, with a mean age of 90 days and weighing about 200 grams. The animals were divided into three groups: (GI, GII and GIII). GIII group were submitted to swimming for eight weeks (zero load, three times a week, about 30 minutes). Then, the groups (except the control group) were submitted to irradiation by cobalt therapy, single dose of 3.5 gray in the whole body. All animals were sacrificed by overdose of pentobarbital, according to the time for analysis of cytokines, and then a fragment of the lower lobe of the right lung went to western blotting analysis. Results: The cytokines IKK{beta}, TNF-{alpha} and IL-6 induced by radiation in the lung were lower in the exercised animals. However, exercise did not alter the radiation-induced increase in tgf-{beta}. Conclusion: The results show a lower response in relation to inflammatory cytokines in the group that practiced the exercise preradiotherapy, showing that exercise can protect tissues from tissue damage due to irradiation. (author)

  19. High Sensitivity of Aged Mice to Deoxynivalenol (Vomitoxin)-Induced Anorexia Corresponds to Elevated Proinflammatory Cytokine and Satiety Hormone Responses.

    Science.gov (United States)

    Clark, Erica S; Flannery, Brenna M; Gardner, Elizabeth M; Pestka, James J

    2015-10-19

    Deoxynivalenol (DON), a trichothecene mycotoxin that commonly contaminates cereal grains, is a public health concern because of its adverse effects on the gastrointestinal and immune systems. The objective of this study was to compare effects of DON on anorectic responses in aged (22 mos) and adult (3 mos) mice. Aged mice showed increased feed refusal with both acute i.p. (1 mg/kg and 5 mg/kg) and dietary (1, 2.5, 10 ppm) DON exposure in comparison to adult mice. In addition to greater suppression of food intake from dietary DON exposure, aged mice also exhibited greater but transient body weight suppression. When aged mice were acutely exposed to 1 mg/kg bw DON i.p., aged mice displayed elevated DON and DON3GlcA tissue levels and delayed clearance in comparison with adult mice. Acute DON exposure also elicited higher proinflammatory cytokine and satiety hormone responses in the plasma of the aged group compared with the adult group. Increased susceptibility to DON-induced anorexia in aged mice relative to adult mice suggests that advanced life stage could be a critical component in accurate human risk assessments for DON and other trichothecenes.

  20. Lithium limits trimethyltin-induced cytotoxicity and proinflammatory response in microglia without affecting the concurrent autophagy impairment.

    Science.gov (United States)

    Fabrizi, Cinzia; Pompili, Elena; Somma, Francesca; De Vito, Stefania; Ciraci, Viviana; Artico, Marco; Lenzi, Paola; Fornai, Francesco; Fumagalli, Lorenzo

    2017-02-01

    Trimethyltin (TMT) is a highly toxic molecule present as an environmental contaminant causing neurodegeneration particularly of the limbic system both in humans and in rodents. We recently described the occurrence of impairment in the late stages of autophagy in TMT-intoxicated astrocytes. Here we show that similarly to astrocytes also in microglia, TMT induces the precocious block of autophagy indicated by the accumulation of the autophagosome marker, microtubule associated protein light chain 3. Consistent with autophagy impairment we observe in TMT-treated microglia the accumulation of p62/SQSTM1, a protein specifically degraded through this pathway. Lithium has been proved effective in limiting neurodegenerations and, in particular, in ameliorating symptoms of TMT intoxication in rodents. In our in vitro model, lithium displays a pro-survival and anti-inflammatory action reducing both cell death and the proinflammatory response of TMT-treated microglia. In particular, lithium exerts these activities without reducing TMT-induced accumulation of light chain 3 protein. In fact, the autophagic block imposed by TMT is unaffected by lithium administration. These results are of interest as defects in the execution of autophagy are frequently observed in neurodegenerative diseases and lithium is considered a promising therapeutic agent for these pathologies. Thus, it is relevant that this cation can still maintain its pro-survival and anti-inflammatory role in conditions of autophagy block. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Carrot juice ingestion attenuates high fructose-induced circulatory pro-inflammatory mediators in weanling Wistar rats.

    Science.gov (United States)

    Mahesh, Malleswarapu; Bharathi, Munugala; Raja Gopal Reddy, Mooli; Pappu, Pranati; Putcha, Uday Kumar; Vajreswari, Ayyalasomayajula; Jeyakumar, Shanmugam M

    2017-03-01

    Adipose tissue, an endocrine organ, plays a vital role not only in energy homeostasis, but also in the development and/or progression of various metabolic diseases, such as insulin resistance, type 2 diabetes and non-alcoholic fatty liver disease (NAFLD), via several factors and mechanisms, including inflammation. This study tested, whether carrot juice administration affected the adipose tissue development and its inflammatory status in a high fructose diet-induced rat model. For this purpose, male weanling Wistar rats were divided into four groups and fed either control or high fructose diet of AIN-93G composition with or without carrot juice ingestion for an 8 week period. Administration of carrot juice did not affect the adiposity and cell size of visceral fat depot; retroperitoneal white adipose tissue (RPWAT), which was corroborated with unaltered expression of genes involved in adipogenic and lipogenic pathways. However, it significantly reduced the high fructose diet-induced elevation of plasma free fatty acid (FFA) (P ≤ 0.05), macrophage chemoattractant protein 1 (MCP1) (P ≤ 0.01) and high sensitive C-reactive protein (hsCRP) (P ≤ 0.05) levels. Carrot juice administration attenuated the high fructose diet-induced elevation of levels of circulatory FFA and pro-inflammatory mediators; MCP1 and hsCRP without affecting the adiposity and cell size of visceral fat depot; RPWAT. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Antiresistin RNA Oligonucleotide Ameliorates Diet-Induced Nonalcoholic Fatty Liver Disease in Mice through Attenuating Proinflammatory Cytokines

    Directory of Open Access Journals (Sweden)

    Yi Tan

    2015-01-01

    Full Text Available The aim of this study was to determine whether inhibition of resistin by a synthetic antiresistin RNA (oligonucleotide oligo ameliorates metabolic and histological abnormalities in nonalcoholic fatty liver disease (NAFLD induced by high-fat diet (HFD in mice. The antiresistin RNA oligo and a scrambled control oligo (25 mg/kg of body weight were i.p. injected to HFD mice. Serum metabolic parameters and hepatic enzymes were measured after 4-week treatment. The treatment significantly reduced epididymal fat and attenuated the elevated serum resistin, cholesterol, triglycerides, glucose, and insulin with an improved glucose tolerance test. Antiresistin RNA oligo also normalized serum AST and ALT levels with improved pathohistology of NAFLD. Immunoblotting and qRT-PCR revealed that decreased protein and mRNA expression of resistin in fat and liver tissues of the treated mice were associated with reduction of adipose TNF-α and IL-6 expression and secretion into circulation. mRNA and protein expression of hepatic phosphoenolpyruvate carboxykinase (PEPCK and sterol regulatory element-binding protein-1c (SREBP-1c were also significantly decreased in the treated mice. Our results suggest that resistin may exacerbate NAFLD in metabolic syndrome through upregulating inflammatory cytokines and hepatic PEPCK and SREBP-1c. Antiresistin RNA oligo ameliorated metabolic abnormalities and histopathology of NAFLD through attenuating proinflammatory cytokines.

  3. High Sensitivity of Aged Mice to Deoxynivalenol (Vomitoxin-Induced Anorexia Corresponds to Elevated Proinflammatory Cytokine and Satiety Hormone Responses

    Directory of Open Access Journals (Sweden)

    Erica S. Clark

    2015-10-01

    Full Text Available Deoxynivalenol (DON, a trichothecene mycotoxin that commonly contaminates cereal grains, is a public health concern because of its adverse effects on the gastrointestinal and immune systems. The objective of this study was to compare effects of DON on anorectic responses in aged (22 mos and adult (3 mos mice. Aged mice showed increased feed refusal with both acute i.p. (1 mg/kg and 5 mg/kg and dietary (1, 2.5, 10 ppm DON exposure in comparison to adult mice. In addition to greater suppression of food intake from dietary DON exposure, aged mice also exhibited greater but transient body weight suppression. When aged mice were acutely exposed to 1 mg/kg bw DON i.p., aged mice displayed elevated DON and DON3GlcA tissue levels and delayed clearance in comparison with adult mice. Acute DON exposure also elicited higher proinflammatory cytokine and satiety hormone responses in the plasma of the aged group compared with the adult group. Increased susceptibility to DON-induced anorexia in aged mice relative to adult mice suggests that advanced life stage could be a critical component in accurate human risk assessments for DON and other trichothecenes.

  4. Krill Oil-In-Water Emulsion Protects against Lipopolysaccharide-Induced Proinflammatory Activation of Macrophages In Vitro.

    Science.gov (United States)

    Bonaterra, Gabriel A; Driscoll, David; Schwarzbach, Hans; Kinscherf, Ralf

    2017-03-15

    Parenteral nutrition is often a mandatory therapeutic strategy for cases of septicemia. Likewise, therapeutic application of anti-oxidants, anti-inflammatory therapy, and endotoxin lowering, by removal or inactivation, might be beneficial to ameliorate the systemic inflammatory response during the acute phases of critical illness. Concerning anti-inflammatory properties in this setting, omega-3 fatty acids of marine origin have been frequently described. This study investigated the anti-inflammatory and LPS-inactivating properties of krill oil (KO)-in-water emulsion in human macrophages in vitro. Differentiated THP-1 macrophages were activated using specific ultrapure-LPS that binds only on the toll-like receptor 4 (TLR4) in order to determine the inhibitory properties of the KO emulsion on the LPS-binding capacity, and the subsequent release of TNF-α. KO emulsion inhibited the macrophage binding of LPS to the TLR4 by 50% (at 12.5 µg/mL) and 75% (at 25 µg/mL), whereas, at 50 µg/mL, completely abolished the LPS binding. Moreover, KO (12.5 µg/mL, 25 µg/mL, or 50 µg/mL) also inhibited (30%, 40%, or 75%, respectively) the TNF-α release after activation with 0.01 µg/mL LPS in comparison with LPS treatment alone. KO emulsion influences the LPS-induced pro-inflammatory activation of macrophages, possibly due to inactivation of the LPS binding capacity.

  5. Dual Role of GM-CSF as a Pro-Inflammatory and a Regulatory Cytokine: Implications for Immune Therapy

    Science.gov (United States)

    Bhattacharya, Palash; Budnick, Isadore; Singh, Medha; Thiruppathi, Muthusamy; Alharshawi, Khaled; Elshabrawy, Hatem; Holterman, Mark J.

    2015-01-01

    Granulocyte macrophage colony stimulating factor (GM-CSF) is generally recognized as an inflammatory cytokine. Its inflammatory activity is primarily due its role as a growth and differentiation factor for granulocyte and macrophage populations. In this capacity, among other clinical applications, it has been used to bolster anti-tumor immune responses. GM-CSF-mediated inflammation has also been implicated in certain types of autoimmune diseases, including rheumatoid arthritis and multiple sclerosis. Thus, agents that can block GM-CSF or its receptor have been used as anti-inflammatory therapies. However, a review of literature reveals that in many situations GM-CSF can act as an anti-inflammatory/regulatory cytokine. We and others have shown that GM-CSF can modulate dendritic cell differentiation to render them “tolerogenic,” which, in turn, can increase regulatory T-cell numbers and function. Therefore, the pro-inflammatory and regulatory effects of GM-CSF appear to depend on the dose and the presence of other relevant cytokines in the context of an immune response. A thorough understanding of the various immunomodulatory effects of GM-CSF will facilitate more appropriate use and thus further enhance its clinical utility. PMID:25803788

  6. CD54-Mediated Interaction with Pro-inflammatory Macrophages Increases the Immunosuppressive Function of Human Mesenchymal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Nicolas Espagnolle

    2017-04-01

    Full Text Available Summary: Mesenchymal stromal cells (MSCs sense and modulate inflammation and represent potential clinical treatment for immune disorders. However, many details of the bidirectional interaction of MSCs and the innate immune compartment are still unsolved. Here we describe an unconventional but functional interaction between pro-inflammatory classically activated macrophages (M1MΦ and MSCs, with CD54 playing a central role. CD54 was upregulated and enriched specifically at the contact area between M1MФ and MSCs. Moreover, the specific interaction induced calcium signaling and increased the immunosuppressive capacities of MSCs dependent on CD54 mediation. Our data demonstrate that MSCs can detect an inflammatory microenvironment via a direct and physical interaction with innate immune cells. This finding opens different perspectives for MSC-based cell therapy. : Mesenchymal stromal cells (MSCs are promising for cell-based therapy in inflammatory disorders by switching off the immune response. Varin and colleagues demonstrate that MSCs and inflammatory macrophages communicate via an unconventional but functional interaction that strongly increases the immunosuppressive capacities of MSCs. This new communication between the innate immune system and MSCs opens new perspectives for MSC-based cell therapy. Keywords: macrophages, bone marrow mesenchymal stromal cells, functional interaction, CD54, immunosuppression, indoleamine 2,3-dioxygenase, cell therapy

  7. Serrulatane Diterpenoid from Eremophila neglecta Exhibits Bacterial Biofilm Dispersion and Inhibits Release of Pro-inflammatory Cytokines from Activated Macrophages.

    Science.gov (United States)

    Mon, Htwe H; Christo, Susan N; Ndi, Chi P; Jasieniak, Marek; Rickard, Heather; Hayball, John D; Griesser, Hans J; Semple, Susan J

    2015-12-24

    The purpose of this study was to assess the biofilm-removing efficacy and inflammatory activity of a serrulatane diterpenoid, 8-hydroxyserrulat-14-en-19-oic acid (1), isolated from the Australian medicinal plant Eremophila neglecta. Biofilm breakup activity of compound 1 on established Staphylococcus epidermidis and Staphylococcus aureus biofilms was compared to the antiseptic chlorhexidine and antibiotic levofloxacin. In a time-course study, 1 was deposited onto polypropylene mesh to mimic a wound dressing and tested for biofilm removal. The ex-vivo cytotoxicity and effect on lipopolysaccharide-induced pro-inflammatory cytokine release were studied in mouse primary bone-marrow-derived macrophage (BMDM) cells. Compound 1 was effective in dispersing 12 h pre-established biofilms with a 7 log10 reduction of viable bacterial cell counts, but was less active against 24 h biofilms (approximately 2 log10 reduction). Compound-loaded mesh showed dosage-dependent biofilm-removing capability. In addition, compound 1 displayed a significant inhibitory effect on tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) secretion from BMDM cells, but interleukin-1 beta (IL-1β) secretion was not significant. The compound was not cytotoxic to BMDM cells at concentrations effective in removing biofilm and lowering cytokine release. These findings highlight the potential of this serrulatane diterpenoid to be further developed for applications in wound management.

  8. Transgenic Mouse Model Harboring the Transcriptional Fusion Ccl20-Luciferase as a Novel Reporter of Pro-Inflammatory Response

    Science.gov (United States)

    Crispo, Martina; Van Maele, Laurye; Tabareau, Julien; Cayet, Delphine; Errea, Agustina; Ferreira, Ana María; Rumbo, Martin; Sirard, Jean Claude

    2013-01-01

    The chemokine CCL20, the unique ligand of CCR6 functions as an attractant of immune cells. Expression of CCL20 is induced by Toll-like Receptor (TLR) signaling or proinflammatory cytokine stimulation. However CCL20 is also constitutively produced at specific epithelial sites of mucosa. This expression profile is achieved by transcriptional regulation. In the present work we characterized regulatory features of mouse Ccl20 gene. Transcriptional fusions between the mouse Ccl20 promoter and the firefly luciferase (luc) encoding gene were constructed and assessed in in vitro and in vivo assays. We found that liver CCL20 expression and luciferase activity were upregulated by systemic administration of the TLR5 agonist flagellin. Using shRNA and dominant negative form specific for mouse TLR5, we showed that this expression was controlled by TLR5. To address in situ the regulation of gene activity, a transgenic mouse line harboring a functional Ccl20-luc fusion was generated. The luciferase expression was highly concordant with Ccl20 expression in different tissues. Our data indicate that the transgenic mouse model can be used to monitor activation of innate response in vivo. PMID:24265691

  9. Tissue-Related Hypoxia Attenuates Proinflammatory Effects of Allogeneic PBMCs on Adipose-Derived Stromal Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Polina I. Bobyleva

    2016-01-01

    Full Text Available Human adipose tissue-stromal derived cells (ASCs are considered a perspective tool for regenerative medicine. Depending on the application mode ASC/allogeneic immune cell interaction can occur in the systemic circulation under plenty high concentrations of O2 and in target tissues at lower O2 levels. Here we examined the effects of allogeneic PHA-stimulated peripheral blood mononuclear cells (PBMCs on ASCs under ambient (20% oxygen and “physiological” hypoxia (5% O2. As revealed with microarray analysis ASCs under 20% O2 were more affected by activated PBMCs, which was manifested in differential expression of more than 300 genes, whereas under 5% O2 only 140 genes were changed. Altered gene pattern was only partly overlapped at different O2 conditions. Under O2 ASCs retained their proliferative and differentiative capacities, mesenchymal phenotype, and intracellular organelle’ state. ASCs were proinflammatory activated on transcription level that was confirmed by their ability to suppress activation and proliferation of mitogen-stimulated PBMCs. ASC/PBMCs interaction resulted in anti-inflammatory shift of paracrine mediators in conditioning medium with significant increase of immunosuppressive LIF level. Our data indicated that under both ambient and tissue-related O2 ASCs possessed immunosuppressive potential and maintained functional activity. Under “physiological” hypoxia ASCs were less susceptible to “priming” by allogeneic mitogen-activated PBMCs.

  10. Enterococcus faecium NCIMB 10415 Modulates Epithelial Integrity, Heat Shock Protein, and Proinflammatory Cytokine Response in Intestinal Cells

    Directory of Open Access Journals (Sweden)

    Shanti Klingspor

    2015-01-01

    Full Text Available Probiotics have shown positive effects on gastrointestinal diseases; they have barrier-modulating effects and change the inflammatory response towards pathogens in studies in vitro. The aim of this investigation has been to examine the response of intestinal epithelial cells to Enterococcus faecium NCIMB 10415 (E. faecium, a probiotic positively affecting diarrhea incidence in piglets, and two pathogenic Escherichia coli (E. coli strains, with specific focus on the probiotic modulation of the response to the pathogenic challenge. Porcine (IPEC-J2 and human (Caco-2 intestinal cells were incubated without bacteria (control, with E. faecium, with enteropathogenic (EPEC or enterotoxigenic E. coli (ETEC each alone or in combination with E. faecium. The ETEC strain decreased transepithelial resistance (TER and increased IL-8 mRNA and protein expression in both cell lines compared with control cells, an effect that could be prevented by pre- and coincubation with E. faecium. Similar effects were observed for the increased expression of heat shock protein 70 in Caco-2 cells. When the cells were challenged by the EPEC strain, no such pattern of changes could be observed. The reduced decrease in TER and the reduction of the proinflammatory and stress response of enterocytes following pathogenic challenge indicate the protective effect of the probiotic.

  11. Early postnatal exposure to intermittent hypoxia in rodents is proinflammatory, impairs white matter integrity, and alters brain metabolism.

    Science.gov (United States)

    Darnall, Robert A; Chen, Xi; Nemani, Krishnamurthy V; Sirieix, Chrystelle M; Gimi, Barjor; Knoblach, Susan; McEntire, Betty L; Hunt, Carl E

    2017-07-01

    BackgroundPreterm infants are frequently exposed to intermittent hypoxia (IH) associated with apnea and periodic breathing that may result in inflammation and brain injury that later manifests as cognitive and executive function deficits. We used a rodent model to determine whether early postnatal exposure to IH would result in inflammation and brain injury.MethodsRat pups were exposed to IH from P2 to P12. Control animals were exposed to room air. Cytokines were analyzed in plasma and brain tissue at P13 and P18. At P20-P22, diffusion tensor imaging (DTI) and magnetic resonance spectroscopy (MRS) were performed.ResultsPups exposed to IH had increased plasma Gro/CXCL1 and cerebellar IFN-γ and IL-1β at P13, and brainstem enolase at P18. DTI showed a decrease in FA and AD in the corpus callosum (CC) and cingulate gyrus, and an increase in RD in the CC. MRS revealed decreases in NAA/Cho, Cr, Tau/Cr, and Gly/Cr; increases in TCho and GPC in the brainstem; and decreases in NAA/Cho in the hippocampus.ConclusionsWe conclude that early postnatal exposure to IH, similar in magnitude to that experienced in human preterm infants, is associated with evidence for proinflammatory changes, decreases in white matter integrity, and metabolic changes consistent with hypoxia.

  12. All-trans retinoic acid results in irregular repair of septa and fails to inhibit proinflammatory macrophages.

    Science.gov (United States)

    Seifart, C; Muyal, J P; Plagens, A; Yildirim, A Ö; Kohse, K; Grau, V; Sandu, S; Reinke, C; Tschernig, T; Vogelmeier, C; Fehrenbach, H

    2011-08-01

    All-trans retinoic acid (ATRA) is controversially discussed in emphysema therapy. We re-evaluated ATRA in the elastase model and hypothesised that beneficial effects should be reflected by increased alveolar surface area, elastin expression and downregulation of inflammatory mediators and matrix metalloproteinases (MMPs). Emphysema was induced by porcine pancreatic elastase versus saline in Sprague-Dawley rats. On days 26-37, rats received daily intraperitoneal injections with ATRA (500 μg · kg(-1) body weight) versus olive oil. Lungs were removed at day 38. Rat alveolar epithelial L2 cells were incubated with/without elastase followed by ATRA- or vehicle-treatment, respectively. ATRA only partially ameliorated structural defects. Alveolar walls exhibited irregular architecture: increased arithmetic mean thickness, reduction in surface coverage by alveolar epithelial cells type II. ATRA only partially restored reduced soluble elastin. It tended to increase the ratio of ED1(+):ED2(+) macrophages. Bronchoalveolar lavage (BAL) cells exhibited a proinflammatory state and high expression of interleukin-1β, cytokine-induced neutrophil chemoattractant-1, tumour necrosis factor-α, nuclear factor-κB, MMP-2, MMP-9, MMP-12, tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 in emphysema, with ATRA exerting only few effects. MMP-7 was highly induced by ATRA in healthy but not in emphysematous lungs. ATRA reduced both MMP-2 and TIMP-1 activity in BAL fluid of emphysematous lungs. ATRA-therapy may bear the risk of unwanted side-effects on alveolar septal architecture in emphysematous lungs.

  13. Creatine supplementation reduces plasma levels of pro-inflammatory cytokines and PGE2 after a half-ironman competition.

    Science.gov (United States)

    Bassit, R A; Curi, R; Costa Rosa, L F B P

    2008-08-01

    The effect of creatine supplementation upon plasma levels of pro-inflammatory cytokines: Interleukin (IL) 1 beta and IL-6, Tumor Necrosis Factor alpha (TNFalpha), and Interferon alpha (INF alpha) and Prostaglandin E(2) (PGE(2)) after a half-ironman competition were investigated. Eleven triathletes, each with at least three years experience of participation in this sport were randomly divided between the control and experimental groups. During 5 days prior to competition, the control group (n = 6) was supplemented with carbohydrate (20 g x d(-1)) whereas the experimental group (n = 5) received creatine (20 g x d(-1)) in a double-blind trial. Blood samples were collected 48 h before and 24 and 48 h after competition and were used for the measurement of cytokines and PGE(2). Forty-eight hours prior to competition there was no difference between groups in the plasma concentrations (pg x ml(-1), mean +/- SEM) of IL-6 (7.08 +/- 0.63), TNFalpha (76.50 +/- 5.60), INF alpha (18.32 +/- 1.20), IL-1 beta (23.42 +/- 5.52), and PGE(2) (39.71 +/- 3.8). Twenty-four and 48 h after competition plasma levels of TNFalpha, INF alpha, IL-1 beta and PGE(2) were significantly increased (P long distance triathlon competition may reduce the inflammatory response induced by this form of strenuous of exercise.

  14. Anion exchange HPLC isolation of high-density lipoprotein (HDL) and on-line estimation of proinflammatory HDL.

    Science.gov (United States)

    Ji, Xiang; Xu, Hao; Zhang, Hao; Hillery, Cheryl A; Gao, Hai-Qing; Pritchard, Kirkwood A

    2014-01-01

    Proinflammatory high-density lipoprotein (p-HDL) is a biomarker of cardiovascular disease. Sickle cell disease (SCD) is characterized by chronic states of oxidative stress that many consider to play a role in forming p-HDL. To measure p-HDL, apolipoprotein (apo) B containing lipoproteins are precipitated. Supernatant HDL is incubated with an oxidant/LDL or an oxidant alone and rates of HDL oxidation monitored with dichlorofluorescein (DCFH). Although apoB precipitation is convenient for isolating HDL, the resulting supernatant matrix likely influences HDL oxidation. To determine effects of supernatants on p-HDL measurements we purified HDL from plasma from SCD subjects by anion exchange (AE) chromatography, determined its rate of oxidation relative to supernatant HDL. SCD decreased total cholesterol but not triglycerides or HDL and increased cell-free (cf) hemoglobin (Hb) and xanthine oxidase (XO). HDL isolated by AE-HPLC had lower p-HDL levels than HDL in supernatants after apoB precipitation. XO+xanthine (X) and cf Hb accelerated purified HDL oxidation. Although the plate and AE-HPLC assays both showed p-HDL directly correlated with cf-Hb in SCD plasma, the plate assay yielded p-HDL data that was influenced more by cf-Hb than AE-HPLC generated p-HDL data. The AE-HPLC p-HDL assay reduces the influence of the supernatants and shows that SCD increases p-HDL.

  15. Genetic and Imaging Approaches Reveal Pro-Inflammatory and Immunoregulatory Roles of Mast Cells in Contact Hypersensitivity

    Directory of Open Access Journals (Sweden)

    Nicolas Gaudenzio

    2018-06-01

    Full Text Available Contact hypersensitivity (CHS is a common T cell-mediated skin disease induced by epicutaneous sensitization to haptens. Mast cells (MCs are widely deployed in the skin and can be activated during CHS responses to secrete diverse products, including some with pro-inflammatory and anti-inflammatory functions. Conflicting results have been obtained regarding pathogenic versus protective roles of MCs in CHS, and this has been attributed in part to the limitations of certain models for studying MC functions in vivo. This review discusses recent advances in the development and analysis of mouse models to investigate the roles of MCs and MC-associated products in vivo. Notably, fluorescent avidin-based two-photon imaging approaches enable in vivo selective labeling and simultaneous tracking of MC secretory granules (e.g., during MC degranulation and MC gene activation by real-time longitudinal intravital microscopy in living mice. The combination of such genetic and imaging tools has shed new light on the controversial role played by MCs in mouse models of CHS. On the one hand, they can amplify CHS responses of mild severity while, on the other hand, can limit the inflammation and tissue injury associated with more severe or chronic models, in part by representing an initial source of the anti-inflammatory cytokine IL-10.

  16. Induced migration of endothelial cells into 3D scaffolds by chemoattractants secreted by pro-inflammatory macrophages in situ.

    Science.gov (United States)

    Li, Xuguang; Dai, Yuankun; Shen, Tao; Gao, Changyou

    2017-06-01

    Cell migration in scaffolds plays a crucial role in tissue regeneration, which can better mimic cell behaviors in vivo . In this study, a novel model has been proposed on controlling 3D cell migration in porous collagen-chitosan scaffolds with various pore structures under the stimulation of inflammatory cells to mimic the angiogenesis process. Endothelial cells (ECs) cultured atop the scaffolds in the Transwell molds which were placed into a well of a 24-well culture plate were promoted to migrate into the scaffolds by chemoattractants such as vascular endothelial growth factor (VEGF) and tumor necrosis factor-alpha (TNF-α) secreted by the pro-inflammatory macrophages incubated in the well culture plate. The phenotype of macrophages was mediated by 50 ng/ml interferon-gamma (IFN-γ) and different concentrations of lipopolysaccharide (LPS, 150-300 ng/ml). The cell migration depth had a positive correlation with LPS concentration, and thereby the TNF-α concentration. The ECs migrated easier to a deeper zone of the scaffolds prepared at - 10ºC (187 μm in pore diameter) than that at - 20ºC (108 μm in pore diameter) as well. The method provides a useful strategy to study the 3D cell migration, and is helpful to reveal the vascularization process during wound healing in the long run.

  17. Pro-inflammatory cytokines derived from West Nile virus (WNV-infected SK-N-SH cells mediate neuroinflammatory markers and neuronal death

    Directory of Open Access Journals (Sweden)

    Nerurkar Vivek R

    2010-10-01

    Full Text Available Abstract Background WNV-associated encephalitis (WNVE is characterized by increased production of pro-inflammatory mediators, glial cells activation and eventual loss of neurons. WNV infection of neurons is rapidly progressive and destructive whereas infection of non-neuronal brain cells is limited. However, the role of neurons and pathological consequences of pro-inflammatory cytokines released as a result of WNV infection is unclear. Therefore, the objective of this study was to examine the role of key cytokines secreted by WNV-infected neurons in mediating neuroinflammatory markers and neuronal death. Methods A transformed human neuroblastoma cell line, SK-N-SH, was infected with WNV at multiplicity of infection (MOI-1 and -5, and WNV replication kinetics and expression profile of key pro-inflammatory cytokines were analyzed by plaque assay, qRT-PCR, and ELISA. Cell death was measured in SK-N-SH cell line in the presence and absence of neutralizing antibodies against key pro-inflammatory cytokines using cell viability assay, TUNEL and flow cytometry. Further, naïve primary astrocytes were treated with UV-inactivated supernatant from mock- and WNV-infected SK-N-SH cell line and the activation of astrocytes was measured using flow cytometry and ELISA. Results WNV-infected SK-N-SH cells induced the expression of IL-1β, -6, -8, and TNF-α in a dose- and time-dependent manner, which coincided with increase in virus-induced cell death. Treatment of cells with anti-IL-1β or -TNF-α resulted in significant reduction of the neurotoxic effects of WNV. Furthermore treatment of naïve astrocytes with UV-inactivated supernatant from WNV-infected SK-N-SH cell line increased expression of glial fibrillary acidic protein and key inflammatory cytokines. Conclusion Our results for the first time suggest that neurons are one of the potential sources of pro-inflammatory cytokines in WNV-infected brain and these neuron-derived cytokines contribute to WNV

  18. Synthesis of Gallic Acid Analogs as Histamine and Pro-Inflammatory Cytokine Inhibitors for Treatment of Mast Cell-Mediated Allergic Inflammation.

    Science.gov (United States)

    Fei, Xiang; Je, In-Gyu; Shin, Tae-Yong; Kim, Sang-Hyun; Seo, Seung-Yong

    2017-05-29

    Gallic acid (3,4,5-trihydroxybenzoic acid), is a natural product found in various foods and herbs that are well known as powerful antioxidants. Our previous report demonstrated that it inhibits mast cell-derived inflammatory allergic reactions by blocking histamine release and pro-inflammatory cytokine expression. In this report, various amide analogs of gallic acid have been synthesized by introducing different amines through carbodiimide-mediated amide coupling and Pd/C-catalyzed hydrogenation. These compounds showed a modest to high inhibitory effect on histamine release and pro-inflammatory cytokine expression. Among them, the amide bearing ( S )-phenylglycine methyl ester 3d was found to be more active than natural gallic acid. Further optimization yielded several ( S )- and ( R )-phenylglycine analogs that inhibited histamine release in vitro. Our findings suggest that some gallamides could be used as a treatment for allergic inflammatory diseases.

  19. Tetragonia tetragonioides (Pall.) Kuntze protects estrogen-deficient rats against disturbances of energy and glucose metabolism and decreases proinflammatory cytokines.

    Science.gov (United States)

    Ryuk, Jin Ah; Ko, Byoung-Seob; Lee, Hye Won; Kim, Da Sol; Kang, Suna; Lee, Yong Hyen; Park, Sunmin

    2017-03-01

    Tetragonia tetragonioides (Pall.) Kuntze (TTK) and JakYakGamCho-Tang (JGT) have been used for improving women's health and treating inflammatory diseases. We determined that the long-term consumption of these herbal extracts alleviates the progression of postmenopausal symptoms in high-fat-diet fed ovariectomized (OVX) rats, and further explored the mechanisms involved. Five groups of OVX rats were fed high fat diets that were supplemented with either 2% dextrin (control), 2% TTK (70% ethanol extract), 2% JGT (water extract), 1% JGT + 1% TTK (JGTT), or 30 µg/kg body weight/day of 17β-estradiol (positive control). After eight weeks of dietary intervention, the herbal treatments did not change the serum concentrations of 17β-estradiol or uterine weight in control rats, but they were higher in the positive-control group. TTK rats exhibited higher daily energy expenditure, particularly fat oxidation, without modifying the energy intake than the controls. TTK lowered the fat mass but lean body mass of the abdomen and leg were increased. JGT decreased periuterine fat mass and lean body mass more than the control but the decrease was not as much as TTK. TTK resulted in substantially lower serum concentrations of the proinflammatory cytokines, tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein-1, than the control and JGT had lesser effect than TTK. Insulin resistance, determined by homeostasis model assessment estimate for assessing insulin resistance (HOMA-IR) and insulin tolerance test, was reduced in the decreasing order of control, JGT, JGTT, and TTK and the HOMA-IR of TTK was similar to the positive control. TTK, but not JGT, enhanced glucose tolerance compared with the control, although the serum insulin levels in TTK were lower compared to the control. Interestingly, the β-cell masses were much greater in the TTK and JGTT groups than in the control, and they were comparable to the positive control. The increases in β-cell masses in TTK and

  20. Selective targeting of pro-inflammatory Th1 cells by microRNA-148a-specific antagomirs in vivo.

    Science.gov (United States)

    Maschmeyer, Patrick; Petkau, Georg; Siracusa, Francesco; Zimmermann, Jakob; Zügel, Franziska; Kühl, Anja Andrea; Lehmann, Katrin; Schimmelpfennig, Sarah; Weber, Melanie; Haftmann, Claudia; Riedel, René; Bardua, Markus; Heinz, Gitta Anne; Tran, Cam Loan; Hoyer, Bimba Franziska; Hiepe, Falk; Herzog, Sebastian; Wittmann, Jürgen; Rajewsky, Nikolaus; Melchers, Fritz Georg; Chang, Hyun-Dong; Radbruch, Andreas; Mashreghi, Mir-Farzin

    2018-05-01

    In T lymphocytes, expression of miR-148a is induced by T-bet and Twist1, and is specific for pro-inflammatory Th1 cells. In these cells, miR-148a inhibits the expression of the pro-apoptotic protein Bim and promotes their survival. Here we use sequence-specific cholesterol-modified oligonucleotides against miR-148a (antagomir-148a) for the selective elimination of pro-inflammatory Th1 cells in vivo. In the murine model of transfer colitis, antagomir-148a treatment reduced the number of pro-inflammatory Th1 cells in the colon of colitic mice by 50% and inhibited miR-148a expression by 71% in the remaining Th1 cells. Expression of Bim protein in colonic Th1 cells was increased. Antagomir-148a-mediated reduction of Th1 cells resulted in a significant amelioration of colitis. The effect of antagomir-148a was selective for chronic inflammation. Antigen-specific memory Th cells that were generated by an acute immune reaction to nitrophenylacetyl-coupled chicken gamma globulin (NP-CGG) were not affected by treatment with antagomir-148a, both during the effector and the memory phase. In addition, antibody titers to NP-CGG were not altered. Thus, antagomir-148a might qualify as an effective drug to selectively deplete pro-inflammatory Th1 cells of chronic inflammation without affecting the protective immunological memory. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. HLA-B27-Homodimer-Specific Antibody Modulates the Expansion of Pro-Inflammatory T-Cells in HLA-B27 Transgenic Rats.

    Directory of Open Access Journals (Sweden)

    Osiris Marroquin Belaunzaran

    Full Text Available HLA-B27 is a common genetic risk factor for the development of Spondyloarthritides (SpA. HLA-B27 can misfold to form cell-surface heavy chain homodimers (B272 and induce pro-inflammatory responses that may lead to SpA pathogenesis. The presence of B272 can be detected on leukocytes of HLA-B27+ Ankylosing spondylitis (AS patients and HLA-B27 transgenic rats. We characterized a novel B272-specific monoclonal antibody to study its therapeutic use in HLA-B27 associated disorders.The monoclonal HD5 antibody was selected from a phage library to target cell-surface B272 homodimers and characterized for affinity, specificity and ligand binding. The immune modulating effect of HD5 was tested in HLA-B27 transgenic rats. Onset and progression of disease profiles were monitored during therapy. Cell-surface B272 and expansion of pro-inflammatory cells from blood, spleen and draining lymph nodes were assessed by flow cytometry.HD5 bound B272 with high specificity and affinity (Kd = 0.32 nM. HD5 blocked cell-surface interaction of B272 with immune regulatory receptors KIR3DL2, LILRB2 and Pirb. In addition, HD5 modulated the production of TNF from CD4+ T-cells by limiting B272 interactions in vitro. In an HLA-B27 transgenic rat model repetitive dosing of HD5 reduced the expansion of pro-inflammatory CD4+ T-cells, and decreased the levels of soluble TNF and number of cell-surface B272 molecules.HD5 predominantly inhibits early TNF production and expansion of pro-inflammatory CD4+ T-cells in HLA-B27 transgenic rats. Monoclonal antibodies targeting cell-surface B272 propose a new concept for the modulation of inflammatory responses in HLA-B27 related disorders.

  2. HLA-B27-Homodimer-Specific Antibody Modulates the Expansion of Pro-Inflammatory T-Cells in HLA-B27 Transgenic Rats

    Science.gov (United States)

    Marroquin Belaunzaran, Osiris; Kleber, Sascha; Schauer, Stefan; Hausmann, Martin; Nicholls, Flora; Van den Broek, Maries; Payeli, Sravan; Ciurea, Adrian; Milling, Simon; Stenner, Frank; Shaw, Jackie; Kollnberger, Simon; Bowness, Paul; Petrausch, Ulf; Renner, Christoph

    2015-01-01

    Objectives HLA-B27 is a common genetic risk factor for the development of Spondyloarthritides (SpA). HLA-B27 can misfold to form cell-surface heavy chain homodimers (B272) and induce pro-inflammatory responses that may lead to SpA pathogenesis. The presence of B272 can be detected on leukocytes of HLA-B27+ Ankylosing spondylitis (AS) patients and HLA-B27 transgenic rats. We characterized a novel B272–specific monoclonal antibody to study its therapeutic use in HLA-B27 associated disorders. Methods The monoclonal HD5 antibody was selected from a phage library to target cell-surface B272 homodimers and characterized for affinity, specificity and ligand binding. The immune modulating effect of HD5 was tested in HLA-B27 transgenic rats. Onset and progression of disease profiles were monitored during therapy. Cell-surface B272 and expansion of pro-inflammatory cells from blood, spleen and draining lymph nodes were assessed by flow cytometry. Results HD5 bound B272 with high specificity and affinity (Kd = 0.32 nM). HD5 blocked cell-surface interaction of B272 with immune regulatory receptors KIR3DL2, LILRB2 and Pirb. In addition, HD5 modulated the production of TNF from CD4+ T-cells by limiting B272 interactions in vitro. In an HLA-B27 transgenic rat model repetitive dosing of HD5 reduced the expansion of pro-inflammatory CD4+ T-cells, and decreased the levels of soluble TNF and number of cell-surface B272 molecules. Conclusion HD5 predominantly inhibits early TNF production and expansion of pro-inflammatory CD4+ T-cells in HLA-B27 transgenic rats. Monoclonal antibodies targeting cell-surface B272 propose a new concept for the modulation of inflammatory responses in HLA-B27 related disorders. PMID:26125554

  3. Benzo[a]pyrene and tumor necrosis factor-alpha coordinately increase genotoxic damage and the production of proinflammatory mediators in alveolar epithelial type II cells

    Czech Academy of Sciences Publication Activity Database

    Umannová, Lenka; Machala, M.; Topinka, Jan; Schmuczerová, Jana; Krčmář, P.; Neča, J.; Šujanová, Klára; Kozubík, Alois; Vondráček, Jan

    2011-01-01

    Roč. 206, č. 2 (2011), s. 121-129 ISSN 0378-4274 R&D Projects: GA ČR(CZ) GAP503/11/1227 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702; CEZ:AV0Z50390512; CEZ:AV0Z50390703 Keywords : DNA adducts * proinflammatory cytokines * COX -2 Subject RIV: BO - Biophysics Impact factor: 3.230, year: 2011

  4. PhosphoLipid transfer protein (PLTP) exerts a direct pro-inflammatory effect on rheumatoid arthritis (RA) fibroblasts-like-synoviocytes (FLS) independently of its lipid transfer activity

    Science.gov (United States)

    Deckert, Valérie; Daien, Claire I.; Che, Hélène; Elhmioui, Jamila; Lemaire, Stéphanie; Pais de Barros, Jean-Paul; Desrumaux, Catherine; Combe, Bernard; Hahne, Michael; Lagrost, Laurent; Morel, Jacques

    2018-01-01

    Rheumatoid arthritis (RA) is a chronic inflammatory rheumatic disease with modification of lipids profile and an increased risk of cardiovascular events related to inflammation. Plasma phospholipid transfer protein (PLTP) exerts a lipid transfer activity through its active form. PLTP can also bind to receptors such as ATP-binding cassette transporter A1 (ABCA1). In addition to its role in lipoprotein metabolism and atherosclerosis, the latest advances came in support of a complex role of PLTP in the regulation of the inflammatory response, both with pro-inflammatory or anti-inflammatory properties. The aim of the present study was to decipher the role of PLTP in joint inflammation and to assess its relevance in the context of RA. PLTP expression was examined by western-blot and by immunochemistry. ABCA1 expression was analyzed by flow cytometry. Lipid transfer activity of PLTP and pro-inflammatory cytokines were measured in sera and synovial fluid (SF) from RA patients and controls (healthy subjects or osteoarthritis patients [OA]). FLS were treated with both lipid-transfer active form and inactive form of recombinant human PLTP. IL-8, IL-6, VEGF and MMP3 produced by FLS were assessed by ELISA, and proliferation by measuring 3H-Thymidine incorporation. RA synovial tissues showed higher PLTP staining than OA and PLTP protein levels were also significantly higher in RA-FLS. In addition, RA, unlike OA patients, displayed elevated levels of PLTP activity in SF, which correlated with pro-inflammatory cytokines. Both lipid-transfer active and inactive forms of PLTP significantly increased the production of cytokines and proliferation of FLS. ABCA1 was expressed on RAFLS and PLTP activated STAT3 pathway. To conclude, PLTP is highly expressed in the joints of RA patients and may directly trigger inflammation and FLS proliferation, independently of its lipid transfer activity. These results suggest a pro-inflammatory role for PLTP in RA. PMID:29565987

  5. Negative regulatory roles of ORMDL3 in the Fc epsilon RI-triggered expression of proinflammatory mediators and chemotactic response in murine mast cells

    Czech Academy of Sciences Publication Activity Database

    Bugajev, Viktor; Hálová, Ivana; Dráberová, Lubica; Bambousková, Monika; Potůčková, Lucie; Dráberová, Helena; Paulenda, Tomáš; Junyent, Sergi; Dráber, Petr

    2016-01-01

    Roč. 73, č. 6 (2016), s. 1265-1285 ISSN 1420-682X R&D Projects: GA ČR(CZ) GA14-00703S; GA ČR(CZ) GBP302/12/G101; GA ČR(CZ) GA14-09807S Institutional support: RVO:68378050 Keywords : Mast cell interference * ORMDL3 knockdown * Prostalglandin D2 * Degranulation * Chemotaxis * Proinflammatory cytokines Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.788, year: 2016

  6. TAM receptor-dependent regulation of SOCS3 and MAPKs contributes to proinflammatory cytokine downregulation following chronic NOD2 stimulation of human macrophages.

    Science.gov (United States)

    Zheng, Shasha; Hedl, Matija; Abraham, Clara

    2015-02-15

    Microbial-induced cytokine regulation is critical to intestinal immune homeostasis. Acute stimulation of nucleotide-binding oligomerization domain 2 (NOD2), the Crohn's disease-associated sensor of bacterial peptidoglycan, induces cytokines. However, cytokines are attenuated after chronic NOD2 and pattern recognition receptor stimulation of macrophages; similar attenuation is observed in intestinal macrophages. The role of Tyro3, Axl, and Mer (TAM) receptors in regulating chronic pattern recognition receptor stimulation and NOD2-induced outcomes has not been examined. Moreover, TAM receptors have been relatively less investigated in human macrophages. Whereas TAM receptors did not downregulate acute NOD2-induced cytokines in primary human macrophages, they were essential for downregulating signaling and proinflammatory cytokine secretion after chronic NOD2 and TLR4 stimulation. Axl and Mer were similarly required in mice for cytokine downregulation after chronic NOD2 stimulation in vivo and in intestinal tissues. Consistently, TAM expression was increased in human intestinal myeloid-derived cells. Chronic NOD2 stimulation led to IL-10- and TGF-β-dependent TAM upregulation in human macrophages, which, in turn, upregulated suppressor of cytokine signaling 3 expression. Restoring suppressor of cytokine signaling 3 expression under TAM knockdown conditions restored chronic NOD2-mediated proinflammatory cytokine downregulation. In contrast to the upregulated proinflammatory cytokines, attenuated IL-10 secretion was maintained in TAM-deficient macrophages upon chronic NOD2 stimulation. The level of MAPK activation in TAM-deficient macrophages after chronic NOD2 stimulation was insufficient to upregulate IL-10 secretion; however, full restoration of MAPK activation under these conditions restored c-Fos, c-Jun, musculoaponeurotic fibrosarcoma oncogene homolog K, and PU.1 binding to the IL-10 promoter and IL-10 secretion. Therefore, TAM receptors are critical for

  7. A New Application for Albumin Dialysis in Extracorporeal Organ Support: Characterization of a Putative Interaction Between Human Albumin and Proinflammatory Cytokines IL-6 and TNFα.

    Science.gov (United States)

    Pfensig, Claudia; Dominik, Adrian; Borufka, Luise; Hinz, Michael; Stange, Jan; Eggert, Martin

    2016-04-01

    Albumin dialysis in extracorporeal organ support is often performed in the treatment of liver failure as it facilitates the removal of toxic components from the blood. Here, we describe a possible effect of albumin dialysis on proinflammatory cytokine levels in vitro. Initially, albumin samples were incubated with different amounts of cytokines and analyzed by enzyme-linked immunosorbent assay (ELISA). Analysis of interleukin 6 (IL-6) and tumor necrosis factor alpha (TNFα) levels indicated that increased concentrations of albumin reduce the measureable amount of the respective cytokines. This led to the hypothesis that the used proinflammatory cytokines may interact with albumin. Size exclusion chromatography of albumin spiked with cytokines was carried out using high-performance liquid chromatography analysis. The corresponding fractions were evaluated by immunoblotting. We detected albumin and cytokines in the same fractions indicating an interaction of the small-sized cytokines IL-6 and TNFα with the larger-sized albumin. Finally, a two-compartment albumin dialysis in vitro model was used to analyze the effect of albumin on proinflammatory cytokines in the recirculation circuit during 6-h treatment. These in vitro albumin dialysis experiments indicated a significant decrease of IL-6, but not of TNFα, when albumin was added to the dialysate solution. Taken together, we were able to show a putative in vitro interaction of human albumin with the proinflammatory cytokine IL-6, but with less evidence for TNFα, and demonstrated an additional application for albumin dialysis in liver support therapy where IL-6 removal might be indicated. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  8. Corticosteroid-Induced MKP-1 Represses Pro-Inflammatory Cytokine Secretion by Enhancing Activity of Tristetraprolin (TTP) in ASM Cells.

    Science.gov (United States)

    Prabhala, Pavan; Bunge, Kristin; Ge, Qi; Ammit, Alaina J

    2016-10-01

    Exaggerated cytokine secretion drives pathogenesis of a number of chronic inflammatory diseases, including asthma. Anti-inflammatory pharmacotherapies, including corticosteroids, are front-line therapies and although they have proven clinical utility, the molecular mechanisms responsible for their actions are not fully understood. The corticosteroid-inducible gene, mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1, DUSP1) has emerged as a key molecule responsible for the repressive effects of steroids. MKP-1 is known to deactivate p38 MAPK phosphorylation and can control the expression and activity of the mRNA destabilizing protein-tristetraprolin (TTP). But whether corticosteroid-induced MKP-1 acts via p38 MAPK-mediated modulation of TTP function in a pivotal airway cell type, airway smooth muscle (ASM), was unknown. While pretreatment of ASM cells with the corticosteroid dexamethasone (preventative protocol) is known to reduce ASM synthetic function in vitro, the impact of adding dexamethasone after stimulation (therapeutic protocol) had not been explored. Whether dexamethasone modulates TTP in a p38 MAPK-dependent manner in this cell type was also unknown. We address this herein and utilize an in vitro model of asthmatic inflammation where ASM cells were stimulated with the pro-asthmatic cytokine tumor necrosis factor (TNF) and the impact of adding dexamethasone 1 h after stimulation assessed. IL-6 mRNA expression and protein secretion was significantly repressed by dexamethasone acting in a temporally distinct manner to increase MKP-1, deactivate p38 MAPK, and modulate TTP phosphorylation status. In this way, dexamethasone-induced MKP-1 acts via p38 MAPK to switch on the mRNA destabilizing function of TTP to repress pro-inflammatory cytokine secretion from ASM cells. J. Cell. Physiol. 231: 2153-2158, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Exposure of alveolar macrophages to polybrominated diphenyl ethers suppresses the release of pro-inflammatory products in vitro.

    Science.gov (United States)

    Hennigar, Stephen R; Myers, Jay L; Tagliaferro, Anthony R

    2012-04-01

    Inhalation of chemical pollutants has been associated with a reduced immune response in humans. Inhalation of dust is a major route of exposure for one endocrine-disrupting chemical and suspected xenoestrogen, polybrominated diphenyl ethers (PBDEs); however, the impact of PBDEs on immune function is unclear. The objective of this study was to investigate the action of PBDEs on cytokine and eicosanoid release by alveolar macrophages and determine whether the effects are mediated via the estrogen receptor. The production of tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β, IL-10 and prostaglandin E(2) (PGE(2)) by porcine alveolar macrophages exposed to different concentrations of the pentabrominated diphenyl ether mixture, DE-71, were measured; cells were also exposed to varying concentrations of 17β-estradiol and the selective estrogen receptor-modulating agent, tamoxifen. Cells exposed to PBDEs released significantly less pro-inflammatory cytokines (TNF-α and IL-6) and PGE(2) compared with controls; IL-1β and IL-10 were not detected in the culture medium. Cells exposed to 17β-estradiol released significantly less TNF-α compared with controls, an effect that was reversed by the addition of tamoxifen; tamoxifen had no effect on the inhibition of TNF-α release by PBDEs. Although the suppression of TNF-α with DE-71 was similar to that of estrogen, the inhibitory effects of DE-71 were not found to be dependent on the estrogen receptor. Findings of this study suggest that chronic exposure to PBDEs suppressed innate immunity in vitro. Whether the immunosuppressant effects of PBDEs occur in vivo, remains to be determined.

  10. Stromal Adipocyte Enhancer-binding Protein (AEBP1) Promotes Mammary Epithelial Cell Hyperplasia via Proinflammatory and Hedgehog Signaling*

    Science.gov (United States)

    Holloway, Ryan W.; Bogachev, Oleg; Bharadwaj, Alamelu G.; McCluskey, Greg D.; Majdalawieh, Amin F.; Zhang, Lei; Ro, Hyo-Sung

    2012-01-01

    Disruption of mammary stromal-epithelial communication leads to aberrant mammary gland development and induces mammary tumorigenesis. Macrophages have been implicated in carcinogenesis primarily by creating an inflammatory microenvironment, which promotes growth of the adjacent epithelial cells. Adipocyte enhancer-binding protein 1 (AEBP1), a novel proinflammatory mediator, promotes macrophage inflammatory responsiveness by inducing NF-κB activity, which has been implicated in tumor cell growth and survival by aberrant sonic hedgehog (Shh) expression. Here, we show that stromal macrophage AEBP1 overexpression results in precocious alveologenesis in the virgin AEBP1 transgenic (AEBP1TG) mice, and the onset of ductal hyperplasia was accelerated in AEBP1TG mice fed a high fat diet, which induces endogenous AEBP1 expression. Transplantation of AEBP1TG bone marrow cells into non-transgenic (AEBP1NT) mice resulted in alveolar hyperplasia with up-regulation of NF-κB activity and TNFα expression as displayed in the AEBP1TG mammary macrophages and epithelium. Shh expression was induced in AEBP1TG macrophages and RAW264.7 macrophages overexpressing AEBP1. The Shh target genes Gli1 and Bmi1 expression was induced in the AEBP1TG mammary epithelium and HC11 mammary epithelial cells co-cultured with AEBP1TG peritoneal macrophages. The conditioned AEBP1TG macrophage culture media promoted NF-κB activity and survival signal, Akt activation, in HC11 cells, whereas such effects were abolished by TNFα neutralizing antibody treatment. Furthermore, HC11 cells displayed enhanced proliferation in response to AEBP1TG macrophages and their conditioned media. Our findings highlight the role of AEBP1 in the signaling pathways regulating the cross-talk between mammary epithelium and stroma that could predispose the mammary tissue to tumorigenesis. PMID:22995915

  11. Stromal adipocyte enhancer-binding protein (AEBP1) promotes mammary epithelial cell hyperplasia via proinflammatory and hedgehog signaling.

    Science.gov (United States)

    Holloway, Ryan W; Bogachev, Oleg; Bharadwaj, Alamelu G; McCluskey, Greg D; Majdalawieh, Amin F; Zhang, Lei; Ro, Hyo-Sung

    2012-11-09

    Disruption of mammary stromal-epithelial communication leads to aberrant mammary gland development and induces mammary tumorigenesis. Macrophages have been implicated in carcinogenesis primarily by creating an inflammatory microenvironment, which promotes growth of the adjacent epithelial cells. Adipocyte enhancer-binding protein 1 (AEBP1), a novel proinflammatory mediator, promotes macrophage inflammatory responsiveness by inducing NF-κB activity, which has been implicated in tumor cell growth and survival by aberrant sonic hedgehog (Shh) expression. Here, we show that stromal macrophage AEBP1 overexpression results in precocious alveologenesis in the virgin AEBP1 transgenic (AEBP1(TG)) mice, and the onset of ductal hyperplasia was accelerated in AEBP1(TG) mice fed a high fat diet, which induces endogenous AEBP1 expression. Transplantation of AEBP1(TG) bone marrow cells into non-transgenic (AEBP1(NT)) mice resulted in alveolar hyperplasia with up-regulation of NF-κB activity and TNFα expression as displayed in the AEBP1(TG) mammary macrophages and epithelium. Shh expression was induced in AEBP1(TG) macrophages and RAW264.7 macrophages overexpressing AEBP1. The Shh target genes Gli1 and Bmi1 expression was induced in the AEBP1(TG) mammary epithelium and HC11 mammary epithelial cells co-cultured with AEBP1(TG) peritoneal macrophages. The conditioned AEBP1(TG) macrophage culture media promoted NF-κB activity and survival signal, Akt activation, in HC11 cells, whereas such effects were abolished by TNFα neutralizing antibody treatment. Furthermore, HC11 cells displayed enhanced proliferation in response to AEBP1(TG) macrophages and their conditioned media. Our findings highlight the role of AEBP1 in the signaling pathways regulating the cross-talk between mammary epithelium and stroma that could predispose the mammary tissue to tumorigenesis.

  12. Effects of CD14 macrophages and proinflammatory cytokines on chondrogenesis in osteoarthritic synovium-derived stem cells.

    Science.gov (United States)

    Han, Sun Ae; Lee, Sahnghoon; Seong, Sang Cheol; Lee, Myung Chul

    2014-10-01

    We investigated the effects of CD14 macrophages and proinflammatory cytokines on chondrogenic differentiation of osteoarthritic synovium-derived stem cells (SDSCs). Osteoarthritic synovial fluid was analyzed for interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and IL-6. Levels of stem cell surface markers in osteoarthritic SDSCs were evaluated using flow cytometry. CD14-negative cells were obtained using magnetically activated cell sorting. We compared chondrogenic potentials between whole cells and CD14-negative cells in CD14(low) cells and CD14(high) cells, respectively. To assess whether nuclear factor-κB (NF-κB) and CCAAT/enhancer-binding protein β (C/EBPβ) modulate IL-1β-induced alterations in chondrogenic potential, we performed small interfering RNA transfection. We observed a significant correlation between the CD14 ratio in osteoarthritic SDSCs and IL-1β and TNF-α in osteoarthritic synovial fluid. Phenotypic characterization of whole cells and CD14-negative cells showed no significant differences in levels of stem cell markers. mRNA expression of type II collagen was higher in CD14-negative cell pellets than in whole cell pellets. Immunohistochemical staining indicated higher levels of type II collagen in the CD14-negative cell pellets of CD14(high) cells than in whole cell pellets of CD14(high) cells. As expected, IL-1β and TNF-α significantly inhibited the expression of chondrogenic-related genes in SDSCs, an effect which was antagonized by knockdown of NF-κB and C/EBPβ. Our results suggest that depletion of CD14(+) synovial macrophages leads to improved chondrogenic potential in CD14(high) cell populations in osteoarthritic SDSCs, and that NF-κB (RelA) and C/EBPβ are critical factors mediating IL-1β-induced suppression of the chondrogenic potential of human SDSCs.

  13. IRAK-M expression limits dendritic cell activation and proinflammatory cytokine production in response to Helicobacter pylori.

    Directory of Open Access Journals (Sweden)

    Jessica Shiu

    Full Text Available Helicobacter pylori (H. pylori infects the gastric mucosa and persists for the life of the host. Bacterial persistence may be due to the induction of regulatory T cells (Tregs whichmay have protective effects against other diseases such as asthma. It has been shown that H. pylori modulates the T cell response through dendritic cell reprogramming but the molecular pathways involved are relatively unknown. The goal of this study was to identify critical elements of dendritic cell (DC activation and evaluate potential influence on immune activation. Microarray analysis was used to demonstrate limited gene expression changes in H. pylori stimulated bone marrow derived DCs (BMDCs compared to the BMDCs stimulated with E. coli. IRAK-M, a negative regulator of TLR signaling, was upregulated and we selectedit for investigation of its role in modulating the DC and T cell responses. IRAK-M(-/- and wild type BMDC were compared for their response to H. pylori. Cells lacking IRAK-M produced significantly greater amounts of proinflammatory MIP-2 and reduced amounts of immunomodulatory IL-10 than wild type BMDC. IRAK-M(-/- cells also demonstrated increased MHC II expression upon activation. However, IRAK-M(-/- BMDCs were comparable to wild type BMDCs in inducing T-helper 17 (TH17 and Treg responses as demonstrated in vitro using BMDC CD4+ T cells co-culture assays,and in vivo though the adoptive transfer of CD4(+ FoxP3-GFP T cells into H. pylori infected IRAK-M(-/- mice. These results suggest that H. pylori infection leads to the upregulation of anti-inflammatory molecules like IRAK-M and that IRAK-M has a direct impact on innate functions in DCs such as cytokine and costimulation molecule upregulation but may not affect T cell skewing.

  14. Inactivated Parapoxvirus ovis induces a transient increase in the expression of proinflammatory, Th1-related, and autoregulatory cytokines in mice

    International Nuclear Information System (INIS)

    Anziliero, D.; Weiblen, R.; Kreutz, L.C.; Spilki, F.; Flores, E.F.

    2014-01-01

    The immunostimulatory properties of inactivated Parapoxvirus ovis (iPPVO) have long been investigated in different animal species and experimental settings. In this study, we investigated the effects of iPPVO on cytokine expression in mice after intraperitoneal inoculation. Spleen and sera collected from iPPVO-treated mice at intervals after inoculation were submitted to cytokine mRNA determination by real-time PCR (qPCR), serum protein concentration by ELISA, and interferon (IFN)-α/β activity by bioassay. The spleen of iPPVO-treated animals showed a significant increase in mRNA expression of all cytokines assayed, with different kinetics and magnitude. Proinflammatory cytokines interleukin (IL)-1β, tumor necrosis factor-alpha (TNF-α), and IL-8 mRNA peaked at 24 hours postinoculation (hpi; 5.4-fold increase) and 48 hpi (3- and 10-fold increases), respectively. A 15-fold increase in IFN-γ and 6-fold IL-12 mRNA increase were detected at 48 and 24 hpi, respectively. Increased expression of autoregulatory cytokines (Th2), mainly IL-10 and IL-4, could be detected at later times (72 and 96 hpi) with peaks of 4.7- and 4.9-fold increases, respectively. IFN-I antiviral activity against encephalomyocarditis virus was demonstrated in sera of treated animals between 6 and 12 hpi, with a >90% reduction in the number of plaques. Measurement of serum proteins by ELISA revealed increased levels of IL-1, TNF-α, IL-12, IFN-γ, and IL-10, with kinetics similar to those observed by qPCR, especially for IL-12 and IFN-γ. These data demonstrate that iPPVO induced a transient and complex cytokine response, initially represented by Th1-related cytokines followed by autoregulatory and Th2 cytokines

  15. Pro-Inflammatory Cytokines but Not Endotoxin-Related Parameters Associate with Disease Severity in Patients with NAFLD.

    Directory of Open Access Journals (Sweden)

    Johannie du Plessis

    Full Text Available Intestinal dysbiosis and elevated lipopolysaccharides (LPS levels have been implicated in the development of obesity, insulin resistance and non-alcoholic steatohepatitis (NASH. In order to determine if LPS levels are elevated in patients with NASH compared to patients with non-alcoholic fatty liver (NAFL and, if elevated LPS levels correlated with histological severity of non-alcoholic fatty liver disease (NAFLD we compared LPS, markers of LPS bioactivity and pro-inflammatory cytokines/chemokines in patients undergoing bariatric surgery. At the time of surgery a liver biopsy was taken allowing the stratification into well-delineated subgroups including: No NAFL/NAFL; NASH; NASH with fibrosis and NASH cirrhotics, using the NAFLD Activity Score (NAS. Anthropometric data and plasma were collected for assessment of LPS, lipopolysaccharide binding protein (LBP, soluble CD14 (sCD14, intestinal-type fatty acid binding protein (iFABP, Toll-like receptors 2 and 4 (TLR2, 4 and a panel of cytokines/chemokines. Similar analysis was performed on plasma from a cohort of healthy controls. Our data indicate elevated levels of LPS, LBP, sCD14, iFABP and TLR2,4 in obese patients compared to healthy controls, however, these parameters remained unaltered within patients with limited liver disease (NAFL compared to NASH/NASH with fibrosis subgroups. Hierarchic cluster analysis using endotoxin-related parameters failed to discriminate between lean controls, NAFLD. While similar cluster analysis implementing inflammation-related parameters clearly distinguished lean controls, NALFD subgroups and NASH cirrhotics. In addition, LPS levels was not associated with disease severity while TNFα, IL8, and CCL3 featured a clear correlation with transaminase levels and the histological severity of NALFD. In conclusion our data indicate a stronger correlation for circulating inflammatory- rather than endotoxin-related parameters in progression of NAFLD and highlights the need

  16. Astrocyte-derived proinflammatory cytokines induce hypomyelination in the periventricular white matter in the hypoxic neonatal brain.

    Directory of Open Access Journals (Sweden)

    Yiyu Deng

    Full Text Available Hypoxic exposure in the perinatal period causes periventricular white matter damage (PWMD, a condition associated with myelination abnormalities. Under hypoxic conditions, glial cells were activated and released a large number of inflammatory mediators in the PWM in neonatal brain, which may result in oligodendrocyte (OL loss and axonal injury. This study aims to determine if astrocytes are activated and generate proinflammatory cytokines that may be coupled with the oligodendroglial loss and hypomyelination observed in hypoxic PWMD. Twenty-four 1-day-old Wistar rats were exposed to hypoxia for 2 h. The rats were then allowed to recover under normoxic conditions for 7 or 28 days before being killed. Another group of 24 rats kept outside the chamber was used as age-matched controls. Upregulated expression of TNF-α and IL-1β was observed in astrocytes in the PWM of P7 hypoxic rats by double immunofluorescence, western blotting and real time RT-PCR. This was linked to apoptosis and enhanced expression of TNF-R1 and IL-1R1 in APC(+ OLs. PLP expression was decreased significantly in the PWM of P28d hypoxic rats. The proportion of myelinated axons was markedly reduced by electron microscopy (EM and the average g-ratios were higher in P28d hypoxic rats. Upregulated expression of TNF-α and IL-1β in primary cultured astrocytes as well as their corresponding receptors in primary culture APC(+ oligodendrocytes were detected under hypoxic conditions. Our results suggest that following a hypoxic insult, astrocytes in the PWM of neonatal rats produce inflammatory cytokines such as TNF-α and IL-1β, which induce apoptosis of OLs via their corresponding receptors associated with them. This results in hypomyelination in the PWM of hypoxic rats.

  17. Coenzyme Q10 and pro-inflammatory markers in children with Down syndrome: clinical and biochemical aspects.

    Science.gov (United States)

    Zaki, Moushira E; El-Bassyouni, Hala T; Tosson, Angie M S; Youness, Eman; Hussein, Jihan

    Evidence of oxidative stress was reported in individuals with Down syndrome. There is a growing interest in the contribution of the immune system in Down syndrome. The aim of this study is to evaluate the coenzyme Q10 and selected pro-inflammatory markers such as interleukin 6 and tumor necrosis factor α in children with Down syndrome. Eighty-six children (5-8 years of age) were enrolled in this case-control study from two public institutions. At the time of sampling, the patients and controls suffered from no acute or chronic illnesses and received no therapies or supplements. The levels of interleukin 6, tumor necrosis factor α, coenzyme Q10, fasting blood glucose, and intelligence quotient were measured. Forty-three young Down syndrome children and forty-three controls were included over a period of eight months (January-August 2014). Compared with the control group, the Down syndrome patients showed significant increase in interleukin 6 and tumor necrosis factor α (p=0.002), while coenzyme Q10 was significantly decreased (p=0.002). Also, body mass index and fasting blood glucose were significantly increased in patients. There was a significantly positive correlation between coenzyme Q10 and intelligence quotient levels, as well as between interleukin 6 and tumor necrosis factor α. Interleukin 6 and tumor necrosis factor α levels in young children with Down syndrome may be used as biomarkers reflecting the neurodegenerative process in them. Coenzyme Q10 might have a role as a good supplement in young children with Down syndrome to ameliorate the neurological symptoms. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  18. Increased Blood Levels of Growth Factors, Proinflammatory Cytokines, and Th17 Cytokines in Patients with Newly Diagnosed Type 1 Diabetes.

    Directory of Open Access Journals (Sweden)

    Kristi Alnek

    Full Text Available The production of several cytokines could be dysregulated in type 1 diabetes (T1D. In particular, the activation of T helper (Th type 1 (Th1 cells has been proposed to underlie the autoimmune pathogenesis of the disease, although roles for inflammatory processes and the Th17 pathway have also been shown. Nevertheless, despite evidence for the role of cytokines before and at the onset of T1D, the corresponding findings are inconsistent across studies. Moreover, conflicting data exist regarding the blood cytokine levels in T1D patients. The current study was performed to investigate genetic and autoantibody markers in association with the peripheral blood cytokine profiles by xMap multiplex technology in newly diagnosed young T1D patients and age-matched healthy controls. The onset of young-age T1D was characterized by the upregulation of growth factors, including granulocyte macrophage-colony stimulating factor (GM-CSF and interleukin (IL-7, the proinflammatory cytokine IL-1β (but not IL-6 or tumor necrosis factor [TNF]-α, Th17 cytokines, and the regulatory cytokines IL-10 and IL-27. Ketoacidosis and autoantibodies (anti-IA-2 and -ZnT8, but not human leukocyte antigen (HLA genotype, influenced the blood cytokine levels. These findings broaden the current understanding of the dysregulation of systemic levels of several key cytokines at the young-age onset of T1D and provide a further basis for the development of novel immunoregulatory treatments in this disease.

  19. Increased Resistin Levels in Intra-abdominal Sepsis: Correlation with proinflammatory cytokines & Acute Physiology & Chronic Health Evaluation II scores

    Directory of Open Access Journals (Sweden)

    Tonguç U. Yilmaz

    2014-10-01

    Full Text Available Objectives: Resistin, a hormone secreted from adipocytes and considered to be a likely cause of insulin resistance, has recently been accepted as a proinflammatory cytokine. This study aimed to determine the correlation between resistin levels in patients with intra-abdominal sepsis and mortality. Methods: Of 45 patients with intraabdominal sepsis, a total of 35 adult patients were included in the study. This study was undertaken from December 2011 to December 2012 and included patients who had no history of diabetes mellitus and who were admitted to the general surgery intensive care units of Gazi University and Bülent Ecevit University School of Medicine, Turkey. Evaluations were performed on 12 patients with sepsis, 10 patients with severe sepsis, 13 patients with septic shock and 15 healthy controls. The patients’ plasma resistin, interleukin-6 (IL-6, tumour necrosis factor alpha (TNF-α, interleukin-1 beta (IL-1β, procalcitonin, lactate and glucose levels and Acute Physiology and Chronic Health Evaluation (APACHE II scores were studied daily for the first five days after admission. A correlation analysis of serum resistin levels with cytokine levels and APACHE II scores was performed. Results: Serum resistin levels in patients with sepsis were significantly higher than in the healthy controls (P <0.001. A significant correlation was found between serum resistin levels and APACHE II scores, serum IL-6, IL-1β, TNF-α, procalcitonin, lactate and glucose levels. Furthermore, a significant correlation was found between serum resistin levels and all-cause mortality (P = 0.02. Conclusion: The levels of resistin were significantly positively correlated with the severity of disease and were a possible mediator of a prolonged inflammatory state in patients with intra-abdominal sepsis.

  20. Concurrent proinflammatory and apoptotic activity of a Helicobacter pylori protein (HP986 points to its role in chronic persistence.

    Directory of Open Access Journals (Sweden)

    Ayesha Alvi

    Full Text Available Helicobacter pylori induces cytokine mediated changes in gastroduodenal pathophysiology, wherein, the activated macrophages at the sub-mucosal space play a central role in mounting innate immune response against the antigens. The bacterium gains niche through persistent inflammation and local immune-suppression causing peptic ulcer disease or chronic gastritis; the latter being a significant risk factor for the development of gastric adenocarcinoma. What favors persistence of H. pylori in the gastric niches is not clearly understood. We report detailed characterization of a functionally unknown gene (HP986, which was detected in patient isolates associated with peptic ulcer and gastric carcinoma. Expression and purification of recombinant HP986 (rHP986 revealed a novel, ∼29 kDa protein in biologically active form which associates with significant levels of humoral immune responses in diseased individuals (p<0.001. Also, it induced significant levels of TNF-α and Interleukin-8 in cultured human macrophages concurrent to the translocation of nuclear transcription factor-κB (NF-κB. Further, the rHP986 induced apoptosis of cultured macrophages through a Fas mediated pathway. Dissection of the underlying signaling mechanism revealed that rHP986 induces both TNFR1 and Fas expression to lead to apoptosis. We further demonstrated interaction of HP986 with TNFR1 through computational and experimental approaches. Independent proinflammatory and apoptotic responses triggered by rHP986 as shown in this study point to its role, possibly as a survival strategy to gain niche through inflammation and to counter the activated macrophages to avoid clearance.

  1. Methamphetamine decreases CD4 T cell frequency and alters pro-inflammatory cytokine production in a model of drug abuse

    Science.gov (United States)

    Mata, Mariana M.; Napier, T. Celeste; Graves, Steven M.; Mahmood, Fareeha; Raeisi, Shohreh; Baum, Linda L.

    2015-01-01

    The reason co-morbid methamphetamine use and HIV infection lead to more rapid progression to AIDS is unclear. We used a model of methamphetamine self-administration to measure the effect of methamphetamine on the systemic immune system to better understand the comorbidity of methamphetamine and HIV. Catheters were implanted into the jugular veins of male, Sprague Dawley rats so they could self-administer methamphetamine (n = 18) or be given saline (control; n = 16) for 14 days. One day after the last self-administration session, blood and spleens were collected. We measured serum levels of pro-inflammatory cytokines, intracellular IFN-γand TNF-α, and frequencies of CD4+, CD8+, CD200+ and CD11b/c+ lymphocytes in the spleen. Rats that self-administer methamphetamine had a lower frequency of CD4+ T cells, but more of these cells produced IFN-γ. Methamphetamine did not alter the frequency of TNF-α-producing CD4+ T cells. Methamphetamine using rats had a higher frequency of CD8+ T cells, but fewer of them produced TNF-α. CD11b/c and CD200 expression were unchanged. Serum cytokine levels of IFN-γ, TNF-α and IL-6 in methamphetamine rats were unchanged. Methamphetamine lifetime dose inversely correlated with serum TNF-α levels. Or data suggest that methamphetamine abuse may exacerbate HIV disease progression by activating CD4 T cells, making them more susceptible to HIV infection, and contributing to their premature demise. Methamphetamine may also increase susceptibility to HIV infection, explaining why African American men who have sex with men (MSM) and frequently use methamphetamine are at the highest risk of HIV infection. PMID:25678251

  2. A legume-based hypocaloric diet reduces proinflammatory status and improves metabolic features in overweight/obese subjects.

    Science.gov (United States)

    Hermsdorff, Helen Hermana M; Zulet, M Ángeles; Abete, Itziar; Martínez, J Alfredo

    2011-02-01

    The nutritional composition of the dietary intake could produce specific effects on metabolic variables and inflammatory marker concentrations. This study assessed the effects of two hypocaloric diets (legume-restricted- vs. legume-based diet) on metabolic and inflammatory changes, accompanying weight loss. Thirty obese subjects (17 M/13F; BMI: 32.5 ± 4.5 kg/m(2); 36 ± 8 years) were randomly assigned to one of the following hypocaloric treatments (8 weeks): Calorie-restricted legume-free diet (Control: C-diet) or calorie-restricted legume-based diet (L-diet), prescribing 4 weekly different cooked-servings (160-235 g) of lentils, chickpeas, peas or beans. Body composition, blood pressure (BP), blood biochemical and inflammatory marker concentrations as well as dietary intake were measured at baseline and after the nutritional intervention. The L-diet achieved a greater body weight loss, when compared to the C-diet (-7.8 ± 2.9% vs. -5.3 ± 2.7%; p = 0.024). Total and LDL cholesterol levels and systolic BP were improved only when consuming the L-diet (p diet also resulted in a significant higher reduction in C-reactive protein (CRP) and complement C3 (C3) concentrations (p diet values. Interestingly, the reduction in the concentrations of CRP and C3 remained significantly higher to L-diet group, after adjusting by weight loss (p diet group, independent from weight loss (p hypocaloric diet resulted in a specific reduction in proinflammatory markers, such as CRP and C3 and a clinically significant improvement of some metabolic features (lipid profile and BP) in overweight/ obese subjects, which were in some cases independent from weight loss.

  3. Role of pro-inflammatory cytokine IL-17 in Leishmania pathogenesis and in protective immunity by Leishmania vaccines.

    Science.gov (United States)

    Banerjee, Antara; Bhattacharya, Parna; Joshi, Amritanshu B; Ismail, Nevien; Dey, Ranadhir; Nakhasi, Hira L

    2016-11-01

    The clinical outcome of Leishmania pathogenesis ranges from active skin lesions to fatal visceral dissemination and severely impaired T cell immunity. It is well established that a strong Th1 immune response is protective against cutaneous forms of the disease, however a mixed Th1/Th2 response is most commonly observed against visceral infections as evident from previous studies. Aside from Th1/Th2 cytokines, the pro-inflammatory IL-17 cytokine family plays an important role in the clearance of intracellular pathogens. In Leishmania induced skin lesions, IL-17 produced by Th17 cells is shown to exacerbate the disease, suggesting a role in pathogenesis. However, a protective role for IL-17 is indicated by the expansion of IL-17 producing cells in vaccine-induced immunity. In human visceral leishmaniasis (VL) it has been demonstrated that IL-17 and IL-22 are associated with protection against re-exposure to Leishmania, which further suggests the involvement of IL-17 in vaccine induced protective immunity. Although there is no vaccine against any form of leishmaniasis, the development of genetically modified live attenuated parasites as vaccine candidates prove to be promising, as they successfully induce a robust protective immune response in various animal models. However, the role of IL-17 producing cells and Th17 cells in response to these vaccine candidates remains unexplored. In this article, we review the role of IL-17 in Leishmania pathogenesis and the potential impact on vaccine induced immunity, with a special focus on live attenuated Leishmania parasites. Published by Elsevier Inc.

  4. Influence of Leishmania RNA Virus 1 on Proinflammatory Biomarker Expression in a Human Macrophage Model of American Tegumentary Leishmaniasis.

    Science.gov (United States)

    Kariyawasam, Ruwandi; Grewal, Jugvinder; Lau, Rachel; Purssell, Andrew; Valencia, Braulio M; Llanos-Cuentas, Alejandro; Boggild, Andrea K

    2017-10-17

    Species of the Leishmania Viannia (L. V.) subgenus harbor the double-stranded Leishmania RNA virus 1 (LRV-1), previously identified in isolates from Brazil and Peru. Higher levels of LRV-1 in metastasizing strains of L. V. guyanensis have been documented in both human and murine models, and correlated to disease severity. Expression of proinflammatory biomarkers, including interleukin (IL) 1β, tumor necrosis factor alpha (TNF-α), CXCL10, CCL5, IL-6, and superoxide dismutase, in human macrophages infected with 3 ATCC and 5 clinical isolates of L. V. braziliensis, L. V. guyanensis, and L. V. panamensis for 24 and 48 hours were measured by commercial enzyme immunoassay. Analyses were performed at 24 and 48 hours, stratified by LRV-1 status and species. LRV-1-positive L. V. braziliensis demonstrated significantly lower expression levels of TNF-α (P = .01), IL-1β (P = .0015), IL-6 (P = .001), and CXCL10 (P = .0004) compared with LRV-1-negative L. V. braziliensis. No differences were observed in strains of L. V. panamensis by LRV-1 status. Compared to LRV-1-negative L. V. braziliensis, LRV-1-positive strains of L. V. braziliensis produced a predominant Th2-biased immune response, correlated in humans to poorer immunologic control of infection and more severe disease, including mucosal leishmaniasis. Effects of LRV-1 on the pathogenesis of American tegumentary leishmaniasis may be species specific. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  5. Vitamin D receptor agonists inhibit pro-inflammatory cytokine production from the respiratory epithelium in cystic fibrosis.

    LENUS (Irish Health Repository)

    McNally, P

    2011-07-22

    BACKGROUND: 1,25-Dihydroxycholecalciferol (1,25(OH)(2)D(3)) has been shown to mitigate epithelial inflammatory responses after antigen exposure. Patients with cystic fibrosis (CF) are at particular risk for vitamin D deficiency. This may contribute to the exaggerated inflammatory response to pulmonary infection in CF. METHODS: CF respiratory epithelial cell lines were exposed to Pseudomonas aeruginosa lipopolysaccharide (LPS) and Pseudomonas conditioned medium (PCM) in the presence or absence of 1,25(OH)(2)D(3) or a range of vitamin D receptor (VDR) agonists. Levels of IL-6 and IL-8 were measured in cell supernatants, and cellular total and phosphorylated IκBα were determined. Levels of human cathelicidin antimicrobial peptide (hCAP18) mRNA and protein were measured in cells after treatment with 1,25(OH)(2)D(3). RESULTS: Pretreatment with 1,25(OH)(2)D(3) was associated with significant reductions in IL-6 and IL-8 protein secretion after antigen exposure, a finding reproduced with a range of low calcaemic VDR agonists. 1,25(OH)(2)D(3) treatment led to a decrease in IκBα phosphorylation and increased total cellular IκBα. Treatment with 1,25(OH)(2)D(3) was associated with an increase in hCAP18\\/LL-37 mRNA and protein levels. CONCLUSIONS: Both 1,25(OH)(2)D(3) and other VDR agonists significantly reduce the pro-inflammatory response to antigen challenge in CF airway epithelial cells. VDR agonists have significant therapeutic potential in CF.

  6. Helicobacter pylori dupA is polymorphic, and its active form induces proinflammatory cytokine secretion by mononuclear cells.

    Science.gov (United States)

    Hussein, Nawfal R; Argent, Richard H; Marx, Christian K; Patel, Sapna R; Robinson, Karen; Atherton, John C

    2010-07-15

    Infection with Helicobacter pylori possessing a newly described virulence factor--duodenal ulcer-promoting gene A (dupA)--has been associated with duodenal ulceration and increased gastric inflammation. The dupA locus of 34 strains was sequenced. A panel of dupA mutants was generated and cocultured with human gastric epithelial cells and peripheral blood mononuclear cells; proinflammatory cytokine release was measured. IL8 expression was measured in human gastric biopsy specimens and related to the dupA and cagA status of infecting strains. Most H. pylori strains had a dupA allele that was longer (1884 bp; dupA1) than previously described dupA alleles, although some had truncated versions (dupA2). Unlike the best-characterized H. pylori virulence determinant, the cag pathogenicity island (cag PaI), neither dupA type induced release of interleukin (IL)-8 from gastric epithelial cells. However, infections due to dupA-positive strains were associated with higher-level mucosal IL-8 messenger RNA expression in the human stomach than were infections due to dupA-negative strains. To explain this paradox, we found that dupA1 (but not dupA2 or the cag PaI) substantially increased H. pylori-induced IL-12p40 and IL-12p70 production from CD14(+) mononuclear cells. Other T helper 1-associated cytokines were also modestly induced. We suggest that virulent H. pylori strains cause inflammation by stimulating epithelial cells through cag-encoded proteins and mononuclear inflammatory cells through dupA1 products.

  7. Krill Oil-In-Water Emulsion Protects against Lipopolysaccharide-Induced Proinflammatory Activation of Macrophages In Vitro

    Directory of Open Access Journals (Sweden)

    Gabriel A. Bonaterra

    2017-03-01

    Full Text Available Background: Parenteral nutrition is often a mandatory therapeutic strategy for cases of septicemia. Likewise, therapeutic application of anti-oxidants, anti-inflammatory therapy, and endotoxin lowering, by removal or inactivation, might be beneficial to ameliorate the systemic inflammatory response during the acute phases of critical illness. Concerning anti-inflammatory properties in this setting, omega-3 fatty acids of marine origin have been frequently described. This study investigated the anti-inflammatory and LPS-inactivating properties of krill oil (KO-in-water emulsion in human macrophages in vitro. Materials and Methods: Differentiated THP-1 macrophages were activated using specific ultrapure-LPS that binds only on the toll-like receptor 4 (TLR4 in order to determine the inhibitory properties of the KO emulsion on the LPS-binding capacity, and the subsequent release of TNF-α. Results: KO emulsion inhibited the macrophage binding of LPS to the TLR4 by 50% (at 12.5 µg/mL and 75% (at 25 µg/mL, whereas, at 50 µg/mL, completely abolished the LPS binding. Moreover, KO (12.5 µg/mL, 25 µg/mL, or 50 µg/mL also inhibited (30%, 40%, or 75%, respectively the TNF-α release after activation with 0.01 µg/mL LPS in comparison with LPS treatment alone. Conclusion: KO emulsion influences the LPS-induced pro-inflammatory activation of macrophages, possibly due to inactivation of the LPS binding capacity.

  8. Acute Zika Virus Infection in an Endemic Area Shows Modest Proinflammatory Systemic Immunoactivation and Cytokine-Symptom Associations

    Directory of Open Access Journals (Sweden)

    Jéssica Barletto de Sousa Barros

    2018-05-01

    Full Text Available An early immune response to Zika virus (ZIKV infection may determine its clinical manifestation and outcome, including neurological effects. However, low-grade and transient viremia limits the prompt diagnosis of acute ZIKV infection. We have investigated the plasma cytokine, chemokine, and growth factor profiles of 36 individuals from an endemic area displaying different symptoms such as exanthema, headache, myalgia, arthralgia, fever, hyperemia, swelling, itching, and nausea during early-phase infection. These profiles were then associated with symptoms, revealing important aspects of the immunopathophysiology of ZIKV infection. The levels of some cytokines/chemokines were significantly higher in acute ZIKV-infected individuals compared to healthy donors, including interferon (IFN gamma-induced protein 10 (IP-10, regulated on activation, normal T cell expressed and secreted (RANTES, IFN-γ, interleukin (IL-9, IL-7, IL-5, and IL-1ra, including some with predominantly immunoregulatory activity. Of note, we found that higher levels of IP-10 and IL-5 in ZIKV-infected individuals were strongly associated with exanthema and headache, respectively. Also, higher levels of IL-1ra were associated with subjects with arthralgia, whereas those with fever showed lower levels of granulocyte-colony stimulating factor (G-CSF. No correlation was observed between the number of symptoms and ZIKV viral load. Interestingly, only IP-10 showed significantly decreased levels in the recovery phase. In conclusion, our results indicate that acute ZIKV infection in a larger cohort resident to an endemic area displays a modest systemic immune activation profile, involving both proinflammatory and immunoregulatory cytokines and chemokines that could participate of virus control. In addition, we showed that differential cytokine/chemokine levels are related to specific clinical symptoms, suggesting their participation in underlying mechanisms.

  9. Photoperiod- and Triiodothyronine-dependent Regulation of Reproductive Neuropeptides, Proinflammatory Cytokines, and Peripheral Physiology in Siberian Hamsters (Phodopus sungorus).

    Science.gov (United States)

    Banks, Ruth; Delibegovic, Mirela; Stevenson, Tyler J

    2016-06-01

    Seasonal trade-offs in reproduction and immunity are ubiquitous in nature. The mechanisms that govern transitions across seasonal physiological states appear to involve reciprocal switches in the local synthesis of thyroid hormone. In long-day (LD) summer-like conditions, increased hypothalamic triiodothyronine (T3) stimulates gonadal development. Alternatively, short-day (SD) winter-like conditions increase peripheral leukocytes and enhance multiple aspects of immune function. These data indicate that the localized effects of T3 in the hypothalamus and leukocytes are photoperiod dependent. We tested the hypothesis that increased peripheral T3 in SD conditions would increase aspects of reproductive physiology and inhibit immune function, whereas T3 injections in LD conditions would facilitate aspects of immune function (i.e., leukocytes). In addition, we also examined whether T3 regulates hypothalamic neuropeptide expression as well as hypothalamic and splenic proinflammatory cytokine expression. Adult male Siberian hamsters were maintained in LD (15L:9D) or transferred to SD (9L:15D) for 8 weeks. A subset of LD and SD hamsters was treated daily with 5 µg T3 for 2 weeks. LD and SD controls were injected with saline. Daily T3 administration in SD hamsters (SD+T3) resulted in a rapid and substantial decrease in peripheral leukocyte concentrations and stimulated gonadal development. T3 treatment in LD (LD+T3) had no effect on testicular volumes but significantly increased leukocyte concentrations. Molecular analyses revealed that T3 stimulated interleukin 1β messenger RNA (mRNA) expression in the spleen and inhibited RFamide Related Peptide-3 mRNA expression in the hypothalamus. Moreover, there was a photoperiod-dependent decrease in splenic tumor necrosis factor-α mRNA expression. These findings reveal that T3 has tissue-specific and photoperiod-dependent regulation of seasonal rhythms in reproduction and immune function. © 2016 The Author(s).

  10. Xanomeline suppresses excessive pro-inflammatory cytokine responses through neural signal-mediated pathways and improves survival in lethal inflammation

    Science.gov (United States)

    Rosas-Ballina, Mauricio; Ferrer, Sergio Valdés; Dancho, Meghan; Ochani, Mahendar; Katz, David; Cheng, Kai Fan; Olofsson, Peder S.; Chavan, Sangeeta S.; Al-Abed, Yousef; Tracey, Kevin J.; Pavlov, Valentin A.

    2014-01-01

    Inflammatory conditions characterized by excessive immune cell activation and cytokine release, are associated with bidirectional immune system-brain communication, underlying sickness behavior and other physiological responses. The vagus nerve has an important role in this communication by conveying sensory information to the brain, and brain-derived immunoregulatory signals that suppress peripheral cytokine levels and inflammation. Brain muscarinic acetylcholine receptor (mAChR)-mediated cholinergic signaling has been implicated in this regulation. However, the possibility of controlling inflammation by peripheral administration of centrally-acting mAChR agonists is unexplored. To provide insight we used the centrally-acting M1 mAChR agonist xanomeline, previously developed in the context of Alzheimer’s disease and schizophrenia. Intraperitoneal administration of xanomeline significantly suppressed serum and splenic TNF levels, alleviated sickness behavior, and increased survival during lethal murine endotoxemia. The anti-inflammatory effects of xanomeline were brain mAChR-mediated and required intact vagus nerve and splenic nerve signaling. The anti-inflammatory efficacy of xanomeline was retained for at least 20h, associated with alterations in splenic lymphocyte, and dendritic cell proportions, and decreased splenocyte responsiveness to endotoxin. These results highlight an important role of the M1 mAChR in a neural circuitry to spleen in which brain cholinergic activation lowers peripheral pro-inflammatory cytokines to levels favoring survival. The therapeutic efficacy of xanomeline was also manifested by significantly improved survival in preclinical settings of severe sepsis. These findings are of interest for strategizing novel therapeutic approaches in inflammatory diseases. PMID:25063706

  11. Coenzyme Q10 and pro-inflammatory markers in children with Down syndrome: clinical and biochemical aspects

    Directory of Open Access Journals (Sweden)

    Moushira E. Zaki

    Full Text Available Abstract: Objective: Evidence of oxidative stress was reported in individuals with Down syndrome. There is a growing interest in the contribution of the immune system in Down syndrome. The aim of this study is to evaluate the coenzyme Q10 and selected pro-inflammatory markers such as interleukin 6 and tumor necrosis factor α in children with Down syndrome. Methods: Eighty-six children (5-8 years of age were enrolled in this case-control study from two public institutions. At the time of sampling, the patients and controls suffered from no acute or chronic illnesses and received no therapies or supplements. The levels of interleukin 6, tumor necrosis factor α, coenzyme Q10, fasting blood glucose, and intelligence quotient were measured. Results: Forty-three young Down syndrome children and forty-three controls were included over a period of eight months (January-August 2014. Compared with the control group, the Down syndrome patients showed significant increase in interleukin 6 and tumor necrosis factor α (p = 0.002, while coenzyme Q10 was significantly decreased (p = 0.002. Also, body mass index and fasting blood glucose were significantly increased in patients. There was a significantly positive correlation between coenzyme Q10 and intelligence quotient levels, as well as between interleukin 6 and tumor necrosis factor α. Conclusion: Interleukin 6 and tumor necrosis factor α levels in young children with Down syndrome may be used as biomarkers reflecting the neurodegenerative process in them. Coenzyme Q10 might have a role as a good supplement in young children with Down syndrome to ameliorate the neurological symptoms.

  12. Nucleotide-oligomerizing domain-1 (NOD1) receptor activation induces pro-inflammatory responses and autophagy in human alveolar macrophages.

    Science.gov (United States)

    Juárez, Esmeralda; Carranza, Claudia; Hernández-Sánchez, Fernando; Loyola, Elva; Escobedo, Dante; León-Contreras, Juan Carlos; Hernández-Pando, Rogelio; Torres, Martha; Sada, Eduardo

    2014-09-25

    Nucleotide-binding oligomerizing domain-1 (NOD1) is a cytoplasmic receptor involved in recognizing bacterial peptidoglycan fragments that localize to the cytosol. NOD1 activation triggers inflammation, antimicrobial mechanisms and autophagy in both epithelial cells and murine macrophages. NOD1 mediates intracellular pathogen clearance in the lungs of mice; however, little is known about NOD1's role in human alveolar macrophages (AMs) or its involvement in Mycobacterium tuberculosis (Mtb) infection. AMs, monocytes (MNs), and monocyte-derived macrophages (MDMs) from healthy subjects were assayed for NOD1 expression. Cells were stimulated with the NOD1 ligand Tri-DAP and cytokine production and autophagy were assessed. Cells were infected with Mtb and treated with Tri-DAP post-infection. CFUs counting determined growth control, and autophagy protein recruitment to pathogen localization sites was analyzed by immunoelectron microscopy. NOD1 was expressed in AMs, MDMs and to a lesser extent MNs. Tri-DAP stimulation induced NOD1 up-regulation and a significant production of IL1β, IL6, IL8, and TNFα in AMs and MDMs; however, the level of NOD1-dependent response in MNs was limited. Autophagy activity determined by expression of proteins Atg9, LC3, IRGM and p62 degradation was induced in a NOD1-dependent manner in AMs and MDMs but not in MNs. Infected AMs could be activated by stimulation with Tri-DAP to control the intracellular growth of Mtb. In addition, recruitment of NOD1 and the autophagy proteins IRGM and LC3 to the Mtb localization site was observed in infected AMs after treatment with Tri-DAP. NOD1 is involved in AM and MDM innate responses, which include proinflammatory cytokines and autophagy, with potential implications in the killing of Mtb in humans.

  13. Methamphetamine decreases CD4 T cell frequency and alters pro-inflammatory cytokine production in a model of drug abuse.

    Science.gov (United States)

    Mata, Mariana M; Napier, T Celeste; Graves, Steven M; Mahmood, Fareeha; Raeisi, Shohreh; Baum, Linda L

    2015-04-05

    The reason co-morbid methamphetamine use and HIV infection lead to more rapid progression to AIDS is unclear. We used a model of methamphetamine self-administration to measure the effect of methamphetamine on the systemic immune system to better understand the co-morbidity of methamphetamine and HIV. Catheters were implanted into the jugular veins of male, Sprague Dawley rats so they could self-administer methamphetamine (n=18) or be given saline (control; n=16) for 14 days. One day after the last operant session, blood and spleens were collected. We measured serum levels of pro-inflammatory cytokines, intracellular IFN-γ and TNF-α, and frequencies of CD4(+), CD8(+), CD200(+) and CD11b/c(+) lymphocytes in the spleen. Rats that self-administered methamphetamine had a lower frequency of CD4(+) T cells, but more of these cells produced IFN-γ. Methamphetamine did not alter the frequency of TNF-α-producing CD4(+) T cells. Methamphetamine using rats had a higher frequency of CD8(+) T cells, but fewer of them produced TNF-α. CD11b/c and CD200 expression were unchanged. Serum cytokine levels of IFN-γ, TNF-α and IL-6 in methamphetamine rats were unchanged. Methamphetamine lifetime dose inversely correlated with serum TNF-α levels. Our data suggest that methamphetamine abuse may exacerbate HIV disease progression by activating CD4 T cells, making them more susceptible to HIV infection, and contributing to their premature demise. Methamphetamine may also increase susceptibility to HIV infection, explaining why men who have sex with men (MSM) and frequently use methamphetamine are at the highest risk of HIV infection. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Inhibition of HIF-1α decreases expression of pro-inflammatory IL-6 and TNF-α in diabetic retinopathy.

    Science.gov (United States)

    Gao, Xiuhua; Li, Yonghua; Wang, Hongxia; Li, Chuanbao; Ding, Jianguang

    2017-12-01

    Recent studies demonstrate that pro-inflammatory cytokines (PICs, i.e. IL-1β, IL-6 and TNF-α) in retinal tissues are likely involved in the development of diabetic retinopathy (DR). In this report, we particularly examined contributions of hypoxia inducible factor subtype 1α (HIF-1α) to the expression of PICs and their receptors in diabetic retina. Streptozotocin (STZ) was systemically injected to induce hyperglycaemia in rats. ELISA and Western blot analysis were employed to determine the levels of HIF-1α and PICs as well as PIC receptors in retinal tissues of control rats and STZ rats. The levels of retinal HIF-1α were significantly increased in STZ rats 4-10 weeks after induction of hyperglycaemia as compared with control animals. With increasing HIF-1α retinal PICs including IL-1β, IL-6 and TNF-α, their respective receptors, namely IL-1R, IL-6R and TNFR1, were also elevated in STZ rats. Moreover, inhibition of HIF-1α by injection of 2-methoxyestradiol (2-MET) significantly decreased the amplified expression IL-6, TNF-α, IL-6R and TNFR1 in diabetic retina, but did not modify IL-1β pathway. In addition, we examined protein expression of Caspase-3 indicating cell apoptosis in the retina of STZ rats after infusing 2-MET, demonstrating that 2-MET attenuated an increase in Caspase-3 evoked by STZ. Hypoxia inducible factor subtype 1α (HIF-1α) activated in diabetic retina is likely to play a role in regulating pathophysiological process via IL-6 and TNF-α mechanism. This has pharmacological implications to target specific HIF-1α, IL-6 and TNF-α signalling pathway for dysfunction and vulnerability related to DR. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  15. RNA-seq methods for identifying differentially expressed gene in human pancreatic islet cells treated with pro-inflammatory cytokines.

    Science.gov (United States)

    Li, Bo; Bi, Chang Long; Lang, Ning; Li, Yu Ze; Xu, Chao; Zhang, Ying Qi; Zhai, Ai Xia; Cheng, Zhi Feng

    2014-01-01

    Type 1 diabetes is a chronic autoimmune disease in which pancreatic beta cells are killed by the infiltrating immune cells as well as the cytokines released by these cells. Many studies indicate that inflammatory mediators have an essential role in this disease. In the present study, we profiled the transcriptome in human islets of langerhans under control conditions or following exposure to the pro-inflammatory cytokines based on the RNA sequencing dataset downloaded from SRA database. After filtered the low-quality ones, the RNA readers was aligned to human genome hg19 by TopHat and then assembled by Cufflinks. The expression value of each transcript was calculated and consequently differentially expressed genes were screened out. Finally, a total of 63 differentially expressed genes were identified including 60 up-regulated and three down-regulated genes. GBP5 and CXCL9 stood out as the top two most up-regulated genes in cytokines treated samples with the log2 fold change of 12.208 and 10.901, respectively. Meanwhile, PTF1A and REG3G were identified as the top two most down-regulated genes with the log2 fold change of -3.759 and -3.606, respectively. Of note, we also found 262 lncRNAs (long non-coding RNA), 177 of which were inferred as novel lncRNAs. Further in-depth follow-up analysis of the transcriptional regulation reported in this study may shed light on the specific function of these lncRNA.

  16. Circulating CD4+CXCR5+ T cells contribute to proinflammatory responses in multiple ways in coronary artery disease.

    Science.gov (United States)

    Ding, Ru; Gao, Wenwu; He, Zhiqing; Wu, Feng; Chu, Yang; Wu, Jie; Ma, Lan; Liang, Chun

    2017-11-01

    Coronary artery disease (CAD) is a common subtype of cardiovascular disease. The major contributing event is atherosclerosis, which is a progressive inflammatory condition resulting in the thickening of the arterial wall and the formation of atheromatous plaques. Recent evidence suggests that circulating CD4 + CXCR5 + T cells can contribute to inflammatory reactions. In this study, the frequency, phenotype, and function of circulating CD4 + CXCR5 + T cells in CAD patients were examined. Data showed that circulating CD4 + CXCR5 + T cells in CAD patients were enriched with a PD-1 + CCR7 - subset, which was previously identified as the most potent in B cell help. The CD4 + CXCR5 + T cells in CAD patients also secreted significantly higher levels of IFN-γ, IL-17A, and IL-21 than those from healthy controls. Depleting the PD-1 + population significantly reduced the cytokine secretion. Interestingly, the CD4 + CXCR5 + PD-1 - T cells significantly upregulated PD-1 following anti-CD3/CD28 or SEB stimulation. CD4 + CXCR5 + T cells from CAD patients also demonstrated more potent capacity to stimulate B cell inflammation than those from healthy individuals. The phosphorylation of STAT1 and STAT3 were significantly higher in B cells incubated with CD4 + CXCR5 + T cells from CAD than controls. The IL-6 and IFN-γ expression were also significantly higher in B cells incubated with CD4 + CXCR5 + T cells from CAD. Together, this study demonstrated that CAD patients presented a highly activated CD4 + CXCR5 + T cell subset that could contribute to proinflammatory responses in multiple ways. The possibility of using CD4 + CXCR5 + T cells as a therapeutic target should therefore be examined in CAD patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Broad-spectrum sunscreens prevent the secretion of proinflammatory cytokines in human keratinocytes exposed to ultraviolet A and phototoxic lomefloxacin

    International Nuclear Information System (INIS)

    Reinhardt, P.; Cybulski, M.; Miller, S.M.; Ferrarotto, C.; Wilkins, R.; Deslauriers, Y.

    2006-01-01

    The combination of phototoxic drugs and ultraviolet (UV) radiation can trigger the release of proinflammatory cytokines. The present study measured the ability of sunscreens to prevent cytokine secretion in human keratinocytes following cotreatment of these cells with a known photoreactive drug and UVA. Keratinocytes were treated for 1 h with increasing concentrations of lomefloxacin (LOM) or norfloxacin (NOR), exposed to 15 J/cm 2 UVA, and incubated for 24 h. NOR, owing to the absence of a fluorine atom in position 8, was non-phototoxic and used as a negative control. Cell viability and the release of 3 cytokines were assessed, namely interleukin-1α (IL-1α), interleukin-6 (IL-6), and tumour necrosis factor-α (TNF-α). The measurement of these cytokines may be a useful tool for detecting photoreactive compounds. To measure their ability to prevent cytokine secretion, various sunscreens were inserted between the UVA source and the cells. Treatment with NOR, NOR plus UVA, or LOM had no effect on the cells. LOM plus UVA, however, had an effect on cell viability and on cytokine secretion. IL-1α levels increased with LOM concentration. The release of TNF-α and IL-6 followed the same pattern at lower concentrations of LOM but peaked at 15 μmol/L and decreased at higher concentrations. Sunscreens protected the cells from the effects of LOM plus UVA, as cell viability and levels of cytokines remained the same as in the control cells. In conclusion, the application of broad-spectrum sunscreen by individuals exposed to UVA radiation may prevent phototoxic reactions initiated by drugs such as LOM. (author)

  18. Proinflammatory and anti-inflammatory cytokines present in the acute phase of experimental colitis treated with Saccharomyces boulardii.

    Science.gov (United States)

    Grijó, Nathália Nahas; Borra, Ricardo Carneiro; Sdepanian, Vera Lucia

    2010-09-01

    To study the proinflammatory and anti-inflammatory cytokines present in the acute phase of trinitrobenzene sulfonic acid (TNBS)-induced experimental colitis treated with Saccharomyces boulardii. Thirty male Wistar rats were divided into three groups: (1) treated group--received Saccharomyces boulardii for 14 days; (2) non-treated group--received sodium chloride solution for 14 days; (3) control group. Colitis was induced on the seventh day of the study in the treated and the non-treated groups using TNBS (10 mg) dissolved in 50% ethanol. Quantification of cytokines, including interleukin (IL)-1beta (IL-1beta), IL-6, transforming growth factor-beta (TGF-beta), IL-10 and tumor necrosis factor-alpha (TNF-alpha), in the serum and colonic tissue collected on day 14 were carried out using an enzyme-linked immunosorbent assay (ELISA). The mean concentrations of TGF-beta in both the serum and the colonic tissue of the treated group were statistically higher than that of the control group. The mean concentration of TGF-beta in the colonic tissue of the non-treated group was also statistically higher than the control group. The group treated with Saccharomyces boulardii showed increased amounts of TGF-beta, an anti-inflammatory cytokine, during the acute phase of colitis. There were no differences in the amount of TNF-alpha, IL-1beta, IL-6, and IL-10 between the treated and the non-treated or the control groups during the acute phase of experimental colitis induced by TNBS.

  19. Gastric secretion, proinflammatory cytokines and epidermal growth factor (EGF) in the delayed healing of lingual and gastric ulcerations by testosterone.

    Science.gov (United States)

    Machowska, A; Brzozowski, T; Sliwowski, Z; Pawlik, M; Konturek, P C; Pajdo, R; Szlachcic, A; Drozdowicz, D; Schwarz, M; Stachura, J; Konturek, S J; Pawlik, W W

    2008-02-01

    Hormonal fluctuations are known to predispose ulceration of the upper gastrointestinal tract, but to date no comparative study of their effects on the healing of pre-existing ulcers in the oral cavity and stomach has been made. We studied the effects of depletion of testosterone and of EGF on the healing of acetic acid-induced ulcers using rats having undergone bilateral orchidectomy and/or salivectomy respectively. We measured alterations in gastric acid secretion and blood flow at ulcer margins, as well as plasma levels of testosterone, gastrin and the proinflammatory cytokines IL-1 beta and TNF-alpha. Testosterone (0.01-10 mg/kg/day i. m.) dose-dependently delayed oral and gastric ulcer healing. When applied in an optimal dose of 1 mg/kg/day, this hormone significantly raised gastric acid secretion and plasma IL-1 beta and TNF-alpha levels. Attenuation of plasma testosterone levels via bilateral orchidectomy inhibited gastric acid secretion and accelerated the healing of oral and gastric ulcers, while increasing plasma gastrin levels and these effects were reversed by testosterone. Salivectomy raised plasma testosterone levels, and delayed oral and gastric ulcer healing. Treatment of salivectomised animals with testosterone further inhibited ulcer healing, and this effect was counteracted by EGF. We propose that testosterone delays ulcer healing via a fall in blood flow at the ulcer margin, a rise in plasma levels of IL-1 beta and TNF-alpha and, in the case of gastric ulcers, an increase in gastric acid secretion. EGF released from the salivary glands plays an important role in limitation of the deleterious effects of testosterone on ulcer healing.

  20. Treadmill exercise promotes neuroprotection against cerebral ischemia–reperfusion injury via downregulation of pro-inflammatory mediators

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2016-12-01

    ischemia–reperfusion injury via the downregulation of pro-inflammatory mediators. Keywords: rehabilitation, cytokine, chemokine, stroke, rat model 

  1. Inactivated Parapoxvirus ovis induces a transient increase in the expression of proinflammatory, Th1-related, and autoregulatory cytokines in mice

    Energy Technology Data Exchange (ETDEWEB)

    Anziliero, D.; Weiblen, R. [Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil, Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil); Kreutz, L.C. [Programa de Pós-Graduação em Bioexperimentação, Faculdade de Agronomia e Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, RS, Brasil, Programa de Pós-Graduação em Bioexperimentação, Faculdade de Agronomia e Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, RS (Brazil); Spilki, F. [Laboratório de Microbiologia Molecular, Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo, RS, Brasil, Laboratório de Microbiologia Molecular, Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo, RS (Brazil); Flores, E.F. [Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil, Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil)

    2014-02-17

    The immunostimulatory properties of inactivated Parapoxvirus ovis (iPPVO) have long been investigated in different animal species and experimental settings. In this study, we investigated the effects of iPPVO on cytokine expression in mice after intraperitoneal inoculation. Spleen and sera collected from iPPVO-treated mice at intervals after inoculation were submitted to cytokine mRNA determination by real-time PCR (qPCR), serum protein concentration by ELISA, and interferon (IFN)-α/β activity by bioassay. The spleen of iPPVO-treated animals showed a significant increase in mRNA expression of all cytokines assayed, with different kinetics and magnitude. Proinflammatory cytokines interleukin (IL)-1β, tumor necrosis factor-alpha (TNF-α), and IL-8 mRNA peaked at 24 hours postinoculation (hpi; 5.4-fold increase) and 48 hpi (3- and 10-fold increases), respectively. A 15-fold increase in IFN-γ and 6-fold IL-12 mRNA increase were detected at 48 and 24 hpi, respectively. Increased expression of autoregulatory cytokines (Th2), mainly IL-10 and IL-4, could be detected at later times (72 and 96 hpi) with peaks of 4.7- and 4.9-fold increases, respectively. IFN-I antiviral activity against encephalomyocarditis virus was demonstrated in sera of treated animals between 6 and 12 hpi, with a >90% reduction in the number of plaques. Measurement of serum proteins by ELISA revealed increased levels of IL-1, TNF-α, IL-12, IFN-γ, and IL-10, with kinetics similar to those observed by qPCR, especially for IL-12 and IFN-γ. These data demonstrate that iPPVO induced a transient and complex cytokine response, initially represented by Th1-related cytokines followed by autoregulatory and Th2 cytokines.

  2. TLR4 Gene Expression and Pro-Inflammatory Cytokines in Alzheimer's Disease and in Response to Hippocampal Deafferentation in Rodents.

    Science.gov (United States)

    Miron, Justin; Picard, Cynthia; Frappier, Josée; Dea, Doris; Théroux, Louise; Poirier, Judes

    2018-01-01

    One important aspect in Alzheimer's disease pathology is the presence of chronic inflammation. Considering its role as a key receptor in the microglial innate immune system, TLR4 was shown to regulate the binding and phagocytosis of amyloid plaques by microglia in several mouse models of amyloidosis, as well as the production of pro-inflammatory cytokines. To our knowledge, TLR4 and its association with cytokines have not been thoroughly examined in the brains of subjects affected with Alzheimer's disease. Using quantitative reverse transcription polymerase chain reaction (qRT-PCR) in postmortem human brains, we observed increased expression for the TLR4 and TNF genes (p = 0.001 and p = 0.025, respectively), as well as a trend for higher IL6 gene expression in the frontal cortex of AD subjects when compared to age-matched controls. Similarly, using a mouse model of hippocampal deafferentation without amyloidosis, (i.e., the entorhinal cortex lesioned mouse), we observed significant increases in the expression of both the Tlr4 (p = 0.0367 and p = 0.0193 compared to sham-lesioned mice or to the contralateral side, respectively) and Il1b (p = 0.0055 and p = 0.0066 compared to sham-lesioned mice or to the contralateral side, respectively) genes in the deafferentation phase, but not during the ensuing reinnervation process. In conclusion, we suggest that the modulation of cytokines by TLR4 is differentially regulated whether by the presence of amyloid plaques or by the ongoing deafferentation process.

  3. Proinflammatory cytokines downregulate connexin 43-gap junctions via the ubiquitin-proteasome system in rat spinal astrocytes.

    Science.gov (United States)

    Zhang, Fang Fang; Morioka, Norimitsu; Kitamura, Tomoya; Hisaoka-Nakashima, Kazue; Nakata, Yoshihiro

    2015-09-04

    Astrocytic gap junctions formed by connexin 43 (Cx43) are crucial for intercellular communication between spinal cord astrocytes. Various neurological disorders are associated with dysfunctional Cx43-gap junctions. However, the mechanism modulating Cx43-gap junctions in spinal astrocytes under pathological conditions is not entirely clear. A previous study showed that treatment of spinal astrocytes in culture with pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) decreased both Cx43 expression and gap junction intercellular communication (GJIC) via a c-jun N-terminal kinase (JNK)-dependent pathway. The current study further elaborates the intracellular mechanism that decreases Cx43 under an inflammatory condition. Cycloheximide chase analysis revealed that TNF-α (10 ng/ml) alone or in combination with IFN-γ (5 ng/ml) accelerated the degradation of Cx43 protein in cultured spinal astrocytes. The reduction of both Cx43 expression and GJIC induced by a mixture of TNF-α and IFN-γ were blocked by pretreatment with proteasome inhibitors MG132 (0.5 μM) and epoxomicin (25 nM), a mixture of TNF-α and IFN-γ significantly increased proteasome activity and Cx43 ubiquitination. In addition, TNF-α and IFN-γ-induced activation of ubiquitin-proteasome systems was prevented by SP600125, a JNK inhibitor. Together, these results indicate that a JNK-dependent ubiquitin-proteasome system is induced under an inflammatory condition that disrupts astrocytic gap junction expression and function, leading to astrocytic dysfunction and the maintenance of the neuroinflammatory state. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Chronic Inhibition of PDE5 Limits Pro-Inflammatory Monocyte-Macrophage Polarization in Streptozotocin-Induced Diabetic Mice.

    Science.gov (United States)

    Venneri, Mary Anna; Giannetta, Elisa; Panio, Giuseppe; De Gaetano, Rita; Gianfrilli, Daniele; Pofi, Riccardo; Masciarelli, Silvia; Fazi, Francesco; Pellegrini, Manuela; Lenzi, Andrea; Naro, Fabio; Isidori, Andrea M

    2015-01-01

    Diabetes mellitus is characterized by changes in endothelial cells that alter monocyte recruitment, increase classic (M1-type) tissue macrophage infiltration and lead to self-sustained inflammation. Our and other groups recently showed that chronic inhibition of phosphodiesterase-5 (PDE5i) affects circulating cytokine levels in patients with diabetes; whether PDE5i also affects circulating monocytes and tissue inflammatory cell infiltration remains to be established. Using murine streptozotocin (STZ)-induced diabetes and in human vitro cell-cell adhesion models we show that chronic hyperglycemia induces changes in myeloid and endothelial cells that alter monocyte recruitment and lead to self-sustained inflammation. Continuous PDE5i with sildenafil (SILD) expanded tissue anti-inflammatory TIE2-expressing monocytes (TEMs), which are known to limit inflammation and promote tissue repair. Specifically, SILD: 1) normalizes the frequency of circulating pro-inflammatory monocytes triggered by hyperglycemia (53.7 ± 7.9% of CD11b+Gr-1+ cells in STZ vs. 30.4 ± 8.3% in STZ+SILD and 27.1 ± 1.6% in CTRL, PTEMs (30.9 ± 3.6% in STZ+SILD vs. 6.9 ± 2.7% in STZ, P TEMs are defective in chronic hyperglycemia and that SILD normalizes their levels by facilitating the shift from classic (M1-like) to alternative (M2-like)/TEM macrophage polarization. Restoration of tissue TEMs with PDE5i could represent an additional pharmacological tool to prevent end-organ diabetic complications.

  5. Development of pro-inflammatory phenotype in monocytes after engulfing Hb-activated platelets in hemolytic disorders.

    Science.gov (United States)

    Singhal, Rashi; Chawla, Sheetal; Rathore, Deepak K; Bhasym, Angika; Annarapu, Gowtham K; Sharma, Vandana; Seth, Tulika; Guchhait, Prasenjit

    2017-02-01

    Monocytes and macrophage combat infections and maintain homeostatic balance by engulfing microbes and apoptotic cells, and releasing inflammatory cytokines. Studies have described that these cells develop anti-inflammatory properties upon recycling the free-hemoglobin (Hb) in hemolytic conditions. While investigating the phenotype of monocytes in two hemolytic disorders-paroxysmal nocturnal hemoglobinuria (PNH) and sickle cell disease (SCD), we observed a high number of pro-inflammatory (CD14 + CD16 hi ) monocytes in these patients. We further investigated in vitro the phenotype of these monocytes and found an estimated 55% of CD14 + cells were transformed into the CD14 + CD16 hi subset after engulfing Hb-activated platelets. The CD14 + CD16 hi monocytes, which were positive for both intracellular Hb and CD42b (platelet marker), secreted significant amounts of TNF-α and IL-1β, unlike monocytes treated with only free Hb, which secreted more IL-10. We have shown recently the presence of a high number of Hb-bound hyperactive platelets in patients with both diseases, and further investigated if the monocytes engulfed these activated platelets in vivo. As expected, we found 95% of CD14 + CD16 hi monocytes with both intracellular Hb and CD42b in both diseases, and they expressed high TNF-α. Furthermore our data showed that these monocytes whether from patients or developed in vitro after treatment with Hb-activated platelets, secreted significant amounts of tissue factor. Besides, these CD14 + CD16 hi monocytes displayed significantly decreased phagocytosis of E. coli. Our study therefore suggests that this alteration of monocyte phenotype may play a role in the increased propensity to pro-inflammatory/coagulant complications observed in these hemolytic disorders-PNH and SCD. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Acinar cell-specific knockout of the PTHrP gene decreases the proinflammatory and profibrotic responses in pancreatitis.

    Science.gov (United States)

    Bhatia, Vandanajay; Rastellini, Cristiana; Han, Song; Aronson, Judith F; Greeley, George H; Falzon, Miriam

    2014-09-01

    Pancreatitis is a necroinflammatory disease with acute and chronic manifestations. Accumulated damage incurred during repeated bouts of acute pancreatitis (AP) can lead to chronic pancreatitis (CP). Pancreatic parathyroid hormone-related protein (PTHrP) levels are elevated in a mouse model of cerulein-induced AP. Here, we show elevated PTHrP levels in mouse models of pancreatitis induced by chronic cerulein administration and pancreatic duct ligation. Because acinar cells play a major role in the pathophysiology of pancreatitis, mice with acinar cell-specific targeted disruption of the Pthrp gene (PTHrP(Δacinar)) were generated to assess the role of acinar cell-secreted PTHrP in pancreatitis. These mice were generated using Cre-LoxP technology and the acinar cell-specific elastase promoter. PTHrP(Δacinar) exerted protective effects in cerulein and pancreatic duct ligation models, evident as decreased edema, histological damage, amylase secretion, pancreatic stellate cell (PSC) activation, and extracellular matrix deposition. Treating acinar cells in vitro with cerulein increased IL-6 expression and NF-κB activity; these effects were attenuated in PTHrP(Δacinar) cells, as were the cerulein- and carbachol-induced elevations in amylase secretion. The cerulein-induced upregulation of procollagen I expression was lost in PSCs from PTHrP(Δacinar) mice. PTHrP immunostaining was elevated in human CP sections. The cerulein-induced upregulation of IL-6 and ICAM-1 (human acinar cells) and procollagen I (human PSCs) was suppressed by pretreatment with the PTH1R antagonist, PTHrP (7-34). These findings establish PTHrP as a novel mediator of inflammation and fibrosis associated with CP. Acinar cell-secreted PTHrP modulates acinar cell function via its effects on proinflammatory cytokine release and functions via a paracrine pathway to activate PSCs. Copyright © 2014 the American Physiological Society.

  7. Cyclic mechanical stretch down-regulates cathelicidin antimicrobial peptide expression and activates a pro-inflammatory response in human bronchial epithelial cells

    Directory of Open Access Journals (Sweden)

    Harpa Karadottir

    2015-12-01

    Full Text Available Mechanical ventilation (MV of patients can cause damage to bronchoalveolar epithelium, leading to a sterile inflammatory response, infection and in severe cases sepsis. Limited knowledge is available on the effects of MV on the innate immune defense system in the human lung. In this study, we demonstrate that cyclic stretch of the human bronchial epithelial cell lines VA10 and BCi NS 1.1 leads to down-regulation of cathelicidin antimicrobial peptide (CAMP gene expression. We show that treatment of VA10 cells with vitamin D3 and/or 4-phenyl butyric acid counteracted cyclic stretch mediated down-regulation of CAMP mRNA and protein expression (LL-37. Further, we observed an increase in pro-inflammatory responses in the VA10 cell line subjected to cyclic stretch. The mRNA expression of the genes encoding pro-inflammatory cytokines IL-8 and IL-1β was increased after cyclic stretching, where as a decrease in gene expression of chemokines IP-10 and RANTES was observed. Cyclic stretch enhanced oxidative stress in the VA10 cells. The mRNA expression of toll-like receptor (TLR 3, TLR5 and TLR8 was reduced, while the gene expression of TLR2 was increased in VA10 cells after cyclic stretch. In conclusion, our in vitro results indicate that cyclic stretch may differentially modulate innate immunity by down-regulation of antimicrobial peptide expression and increase in pro-inflammatory responses.

  8. Pro-inflammatory responses of RAW264.7 macrophages when treated with ultralow concentrations of silver, titanium dioxide, and zinc oxide nanoparticles

    International Nuclear Information System (INIS)

    Giovanni, Marcella; Yue, Junqi; Zhang, Lifeng; Xie, Jianping; Ong, Choon Nam; Leong, David Tai

    2015-01-01

    Highlights: • Ultralow levels of common nanoparticles exist in environment and consumer products. • Common nanoparticles at ultralow levels induce mild pro-inflammation by macrophages. • The nanoparticles are cytotoxic only at high doses. - Abstract: To cellular systems, nanoparticles are considered as foreign particles. Upon particles and cells contact, innate immune system responds by activating the inflammatory pathway. However, excessive inflammation had been linked to various diseases ranging from allergic responses to cancer. Common nanoparticles, namely silver, titanium dioxide, and zinc oxide exist in the environment as well as in consumer products at ultralow level of 10 −6 –10 −3 μg mL −1 . However, so far the risks of such low NPs concentrations remain unexplored. Therefore, we attempted to screen the pro-inflammatory responses after ultralow concentration treatments of the three nanoparticles on RAW264.7 macrophages, which are a part of the immune system, at both cellular and gene levels. Even though cytotoxicity was only observed at nanoparticles concentrations as high as 10 μg mL −1 , through the level of NF-κB and upregulation of pro-inflammatory genes, we observed activation of the induction of genes encoding pro-inflammatory cytokines starting already at 10 −7 μg mL −1 . This calls for more thorough characterization of nanoparticles in the environment as well as in consumer products to ascertain the health and safety of the consumers and living systems in general

  9. The pro-resolving lipid mediator Maresin 1 protects against cerebral ischemia/reperfusion injury by attenuating the pro-inflammatory response

    International Nuclear Information System (INIS)

    Xian, Wenjing; Wu, Yan; Xiong, Wei; Li, Longyan; Li, Tong; Pan, Shangwen; Song, Limin; Hu, Lisha; Pei, Lei; Yao, Shanglong

    2016-01-01

    Inflammation plays a crucial role in acute ischemic stroke pathogenesis. Macrophage-derived Maresin 1 (MaR1) is a newly uncovered mediator with potent anti-inflammatory abilities. Here, we investigated the effect of MaR1 on acute inflammation and neuroprotection in a mouse brain ischemia reperfusion (I/R) model. Male C57 mice were subjected to 1-h middle cerebral artery occlusion (MCAO) and reperfusion. By the methods of 2,3,5-triphenyltetrazolium chloride, haematoxylin and eosin or Fluoro-Jade B staining, neurological deficits scoring, ELISA detection, immunofluorescence assay and western blot analysis, we found that intracerebroventricular injection of MaR1 significantly reduced the infarct volume and neurological defects, essentially protected the brain tissue and neurons from injury, alleviated pro-inflammatory reactions and NF-κB p65 activation and nuclear translocation. Taken together, our results suggest that MaR1 significantly protects against I/R injury probably by inhibiting pro-inflammatory reactions. - Highlights: • MaR1 significantly protects against ischemia reperfusion injury. • MaR1 inhibits pro-inflammatory cytokines and chemokines and reducing glial activation and neutrophil infiltration. • These effects at least partially occurred via suppression of the NF-κB p65 signalling pathway.

  10. The pro-resolving lipid mediator Maresin 1 protects against cerebral ischemia/reperfusion injury by attenuating the pro-inflammatory response

    Energy Technology Data Exchange (ETDEWEB)

    Xian, Wenjing [Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Wu, Yan [Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Xiong, Wei [Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Li, Longyan [Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Li, Tong [Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Pan, Shangwen [Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Song, Limin [Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Hu, Lisha [Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Pei, Lei [Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Yao, Shanglong, E-mail: ysltian@163.com [Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); and others

    2016-03-25

    Inflammation plays a crucial role in acute ischemic stroke pathogenesis. Macrophage-derived Maresin 1 (MaR1) is a newly uncovered mediator with potent anti-inflammatory abilities. Here, we investigated the effect of MaR1 on acute inflammation and neuroprotection in a mouse brain ischemia reperfusion (I/R) model. Male C57 mice were subjected to 1-h middle cerebral artery occlusion (MCAO) and reperfusion. By the methods of 2,3,5-triphenyltetrazolium chloride, haematoxylin and eosin or Fluoro-Jade B staining, neurological deficits scoring, ELISA detection, immunofluorescence assay and western blot analysis, we found that intracerebroventricular injection of MaR1 significantly reduced the infarct volume and neurological defects, essentially protected the brain tissue and neurons from injury, alleviated pro-inflammatory reactions and NF-κB p65 activation and nuclear translocation. Taken together, our results suggest that MaR1 significantly protects against I/R injury probably by inhibiting pro-inflammatory reactions. - Highlights: • MaR1 significantly protects against ischemia reperfusion injury. • MaR1 inhibits pro-inflammatory cytokines and chemokines and reducing glial activation and neutrophil infiltration. • These effects at least partially occurred via suppression of the NF-κB p65 signalling pathway.

  11. Pro-inflammatory effects of interleukin-17A on vascular smooth muscle cells involve NAD(P)H- oxidase derived reactive oxygen species.

    Science.gov (United States)

    Pietrowski, Eweline; Bender, Bianca; Huppert, Jula; White, Robin; Luhmann, Heiko J; Kuhlmann, Christoph R W

    2011-01-01

    T cells are known for their contribution to the inflammatory element of atherosclerosis. Recently, it has been demonstrated that the Th17 derived cytokine IL-17 is involved in the pro-inflammatory response of vascular smooth muscle cells (VSMC). The aim of the present study was to examine whether reactive oxygen species (ROS) might be involved in this context. The effect of IL-17A on ROS generation was examined using the fluorescent dye 2'7'-dichlorodihydrofluorescein (H(2)DCF) in primary murine VSMC. IL-17A induced an increase in H(2)DCF fluorescence in VSMC, and this effect was blocked by the NAD(P)H-oxidase inhibitor apocynin and siRNA targeting Nox2. The p38-MAPK inhibitors SB203580 and SB202190 dose-dependently reduced the IL-17A induced ROS production. The IL-17A induced release of the pro-inflammatory cytokines IL-6, G-CSF, GM-CSF and MCP-1 from VSMC, as detected by the Luminex technology, was completely abolished by NAD(P)H-oxidase inhibition. Taken together, our data indicate that IL-17A causes the NAD(P)H-oxidase dependent generation of ROS leading to a pro-inflammatory activation of VSMC. Copyright © 2010 S. Karger AG, Basel.

  12. Leukocyte Inclusion within a Platelet Rich Plasma-Derived Fibrin Scaffold Stimulates a More Pro-Inflammatory Environment and Alters Fibrin Properties

    Science.gov (United States)

    Anitua, Eduardo; Zalduendo, Mar; Troya, María; Padilla, Sabino; Orive, Gorka

    2015-01-01

    One of the main differences among platelet-rich plasma (PRP) products is the inclusion of leukocytes that may affect the biological efficacy of these autologous preparations. The purpose of this study was to evaluate whether the addition of leukocytes modified the morphological, biomechanical and biological properties of PRP under normal and inflammatory conditions. The release of pro-inflammatory cytokines from plasma rich in growth factors (PRGF) and leukocyte-platelet rich plasma (L-PRP) scaffolds was determined by enzyme-linked immunosorbent assay (ELISA) and was significantly increased under an inflammatory condition when leukocytes were included in the PRP. Fibroblasts and osteoblasts treated with L-PRP, under an inflammatory situation, underwent a greater activation of NFĸB pathway, proliferated significantly less and secreted a higher concentration of pro-inflammatory cytokines. These cellular events were assessed through Western blot and fluorimetric and ELISA methods, respectively. Therefore, the inclusion of leukocytes induced significantly higher pro-inflammatory conditions. PMID:25823008

  13. Leukocyte inclusion within a platelet rich plasma-derived fibrin scaffold stimulates a more pro-inflammatory environment and alters fibrin properties.

    Directory of Open Access Journals (Sweden)

    Eduardo Anitua

    Full Text Available One of the main differences among platelet-rich plasma (PRP products is the inclusion of leukocytes that may affect the biological efficacy of these autologous preparations. The purpose of this study was to evaluate whether the addition of leukocytes modified the morphological, biomechanical and biological properties of PRP under normal and inflammatory conditions. The release of pro-inflammatory cytokines from plasma rich in growth factors (PRGF and leukocyte-platelet rich plasma (L-PRP scaffolds was determined by enzyme-linked immunosorbent assay (ELISA and was significantly increased under an inflammatory condition when leukocytes were included in the PRP. Fibroblasts and osteoblasts treated with L-PRP, under an inflammatory situation, underwent a greater activation of NFĸB pathway, proliferated significantly less and secreted a higher concentration of pro-inflammatory cytokines. These cellular events were assessed through Western blot and fluorimetric and ELISA methods, respectively. Therefore, the inclusion of leukocytes induced significantly higher pro-inflammatory conditions.

  14. Activation of p38 MAPK by feline infectious peritonitis virus regulates pro-inflammatory cytokine production in primary blood-derived feline mononuclear cells.

    Science.gov (United States)

    Regan, Andrew D; Cohen, Rebecca D; Whittaker, Gary R

    2009-02-05

    Feline infectious peritonitis (FIP) is an invariably fatal disease of cats caused by systemic infection with a feline coronavirus (FCoV) termed feline infectious peritonitis virus (FIPV). The lethal pathology associated with FIP (granulomatous inflammation and T-cell lymphopenia) is thought to be mediated by aberrant modulation of the immune system due to infection of cells such as monocytes and macrophages. Overproduction of pro-inflammatory cytokines occurs in cats with FIP, and has been suggested to play a significant role in the disease process. However, the mechanism underlying this process remains unknown. Here we show that infection of primary blood-derived feline mononuclear cells by FIPV WSU 79-1146 and FIPV-DF2 leads to rapid activation of the p38 MAPK pathway and that this activation regulates production of the pro-inflammatory cytokine tumor necrosis factor alpha (TNF-alpha) and interleukin-1 beta (IL-1 beta). FIPV-induced p38 MAPK activation and pro-inflammatory cytokine production was inhibited by the pyridinyl imidazole inhibitors SB 203580 and SC 409 in a dose-dependent manner. FIPV-induced p38 MAPK activation was observed in primary feline blood-derived mononuclear cells individually purified from multiple SPF cats, as was the inhibition of TNF-alpha production by pyridinyl imidazole inhibitors.

  15. Identification of a novel pro-inflammatory human skin-homing Vγ9Vδ2 T cell subset with a potential role in psoriasis

    Science.gov (United States)

    LAGGNER, Ute; DI MEGLIO, Paola; PERERA, Gayathri K.; HUNDHAUSEN, Christian; LACY, Katie E.; ALI, Niwa; SMITH, Catherine H.; HAYDAY, Adrian C.; NICKOLOFF, Brian J.; NESTLE, Frank O.

    2011-01-01

    γδ T cells mediate rapid tissue responses in murine skin and participate in cutaneous immune regulation including protection against cancer. The role of human γδ cells in cutaneous homeostasis and pathology is poorly characterized. In this study we show in vivo evidence that human blood contains a distinct subset of pro-inflammatory cutaneous lymphocyte antigen (CLA) and C-C chemokine receptor (CCR) 6 positive Vγ9Vδ2 T cells, which is rapidly recruited into perturbed human skin. Vγ9Vδ2 T cells produced an array of pro-inflammatory mediators including IL-17A and activated keratinocytes in a TNF-α and IFN-γ dependent manner. Examination of the common inflammatory skin disease psoriasis revealed a striking reduction of circulating Vγ9Vδ2 T cells in psoriasis patients compared to healthy controls and atopic dermatitis patients. Decreased numbers of circulating Vγ9Vδ2 T cells normalized after successful treatment with psoriasis-targeted therapy. Together with the increased presence of Vγ9Vδ2 T cells in psoriatic skin, this data indicates redistribution of Vγ9Vδ2 T cells from the blood to the skin compartment in psoriasis. In summary, we report a novel human pro-inflammatory γδ T cell involved in skin immune surveillance with immediate response characteristics and with potential clinical relevance in inflammatory skin disease. PMID:21813772

  16. Identification of a novel proinflammatory human skin-homing Vγ9Vδ2 T cell subset with a potential role in psoriasis.

    Science.gov (United States)

    Laggner, Ute; Di Meglio, Paola; Perera, Gayathri K; Hundhausen, Christian; Lacy, Katie E; Ali, Niwa; Smith, Catherine H; Hayday, Adrian C; Nickoloff, Brian J; Nestle, Frank O

    2011-09-01

    γδ T cells mediate rapid tissue responses in murine skin and participate in cutaneous immune regulation including protection against cancer. The role of human γδ cells in cutaneous homeostasis and pathology is characterized poorly. In this study, we show in vivo evidence that human blood contains a distinct subset of proinflammatory cutaneous lymphocyte Ag and CCR6-positive Vγ9Vδ2 T cells, which is rapidly recruited into perturbed human skin. Vγ9Vδ2 T cells produced an array of proinflammatory mediators including IL-17A and activated keratinocytes in a TNF-α- and IFN-γ-dependent manner. Examination of the common inflammatory skin disease psoriasis revealed a striking reduction of circulating Vγ9Vδ2 T cells in psoriasis patients compared with healthy controls and atopic dermatitis patients. Decreased numbers of circulating Vγ9Vδ2 T cells normalized after successful treatment with psoriasis-targeted therapy. Taken together with the increased presence of Vγ9Vδ2 T cells in psoriatic skin, these data indicate redistribution of Vγ9Vδ2 T cells from the blood to the skin compartment in psoriasis. In summary, we report a novel human proinflammatory γδ T cell involved in skin immune surveillance with immediate response characteristics and with potential clinical relevance in inflammatory skin disease.

  17. Disruption of erythrocyte antioxidant defense system, hematological parameters, induction of pro-inflammatory cytokines and DNA damage in liver of co-exposed rats to aluminium and acrylamide.

    Science.gov (United States)

    Ghorbel, Imen; Maktouf, Sameh; Kallel, Choumous; Ellouze Chaabouni, Semia; Boudawara, Tahia; Zeghal, Najiba

    2015-07-05

    The individual toxic effects of aluminium and acrylamide are well known but there are no data on their combined effects. The present study was undertaken to determine (i) hematological parameters during individual and combined chronic exposure to aluminium and acrylamide (ii) correlation of oxidative stress in erythrocytes with pro-inflammatory cytokines expression, DNA damage and histopathological changes in the liver. Rats were exposed to aluminium (50 mg/kg body weight) in drinking water and acrylamide (20 mg/kg body weight) by gavage, either individually or in combination for 3 weeks. Exposure rats to AlCl3 or/and ACR provoked an increase in MDA, AOPP, H2O2 and a decrease in GSH and NPSH levels in erythrocytes. Activities of catalase, glutathione peroxidase and superoxide dismutase were decreased in all treated rats. Our results showed that all treatments induced an increase in WBC, erythrocyte osmotic fragility and a decrease in RBC, Hb and Ht. While MCV, MCH, MCHC remained unchanged. Hepatic pro-inflammatory cytokines expression including tumor necrosis factor-α, interleukin-6, interleukin-1β was increased suggesting leucocytes infiltration in the liver. A random DNA degradation was observed on agarose gel only in the liver of co-exposed rats to AlCl3 and ACR treatment. Interestingly, co-exposure to these toxicants exhibited synergism based on physical and biochemical variables in erythrocytes, pro-inflammatory cytokines and DNA damage in liver. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. A pro-inflammatory effect of foot and mouth disease vírus on immune and non immune guinea pigs

    Directory of Open Access Journals (Sweden)

    Helio José Montassier

    1992-12-01

    Full Text Available The O1Campos strain of foot and mouth disease virus (FMDV used as inducing agent in the pleurisy model was able to trigger a pro-inflammatory effect on normal and immune guinea pigs. The proinflammatory activity which was detected at two times of the pleurisy (24 and 48 hours on normal guinea pigs was characterized only by mononuclear (MN cell influx, during the first interval of the reaction and by edematogenic effect, MN and polimorphonuclcar (PMN leucocyte migration, at the last time of the reaction. The inflammatory reaction profiles recorded on immune guinea pigs (vaccinated with anti-O1Campos oil adjuvanted vaccine, both after 7 and 30 days post vaccination (pv have showed, in both interval, lower intensities than that observed in normal guinea pigs, although in the 7 days PV guinea pigs the accumulations of total leucocytes and PMN were similar to that displayed by normal animals, after 48 hours of the reaction. Besides, on thirty days PV guinea pigs the FMDV induced a significant increase in volume of exudate and MN cell infiltration, after 24 hours, and all of the inflammatory parameters values dropped to normal levels, during the second interval of the reaction. It was found a negative association between the increase in serum neutralizing antibody titer, from 7 to 30 days PV and the intensities of pleural inflammatory parameters on the immune guinea pigs. The pleurisy test revealed itself feasible to evaluate the pro-inflammatory activity of FMDV.

  19. A novel p38α MAPK inhibitor suppresses brain proinflammatory cytokine up-regulation and attenuates synaptic dysfunction and behavioral deficits in an Alzheimer's disease mouse model

    Directory of Open Access Journals (Sweden)

    McNamara Laurie K

    2007-09-01

    Full Text Available Abstract Background An accumulating body of evidence is consistent with the hypothesis that excessive or prolonged increases in proinflammatory cytokine production by activated glia is a contributor to the progression of pathophysiology that is causally linked to synaptic dysfunction and hippocampal behavior deficits in neurodegenerative diseases such as Alzheimer's disease (AD. This raises the opportunity for the development of new classes of potentially disease-modifying therapeutics. A logical candidate CNS target is p38α MAPK, a well-established drug discovery molecular target for altering proinflammatory cytokine cascades in peripheral tissue disorders. Activated p38 MAPK is seen in human AD brain tissue and in AD-relevant animal models, and cell culture studies strongly implicate p38 MAPK in the increased production of proinflammatory cytokines by glia activated with human amyloid-beta (Aβ and other disease-relevant stressors. However, the vast majority of small molecule drugs do not have sufficient penetrance of the blood-brain barrier to allow their use as in vivo research tools or as therapeutics for neurodegenerative disorders. The goal of this study was to test the hypothesis that brain p38α MAPK is a potential in vivo target for orally bioavailable, small molecules capable of suppressing excessive cytokine production by activated glia back towards homeostasis, allowing an improvement in neurologic outcomes. Methods A novel synthetic small molecule based on a molecular scaffold used previously was designed, synthesized, and subjected to analyses to demonstrate its potential in vivo bioavailability, metabolic stability, safety and brain uptake. Testing for in vivo efficacy used an AD-relevant mouse model. Results A novel, CNS-penetrant, non-toxic, orally bioavailable, small molecule inhibitor of p38α MAPK (MW01-2-069A-SRM was developed. Oral administration of the compound at a low dose (2.5 mg/kg resulted in attenuation of

  20. Persistent Microvascular Obstruction After Myocardial Infarction Culminates in the Confluence of Ferric Iron Oxide Crystals, Proinflammatory Burden, and Adverse RemodelingCLINICAL PERSPECTIVE

    Energy Technology Data Exchange (ETDEWEB)

    Kali, Avinash; Cokic, Ivan; Tang, Richard; Dohnalkova, Alice; Kovarik, Libor; Yang, Hsin-Jung; Kumar, Andreas; Prato, Frank S.; Wood, John C.; Underhill, David; Marban, Eduardo; Dharmakumar, Rohan

    2016-11-01

    Emerging evidence now supports the notion that persistent microvascular obstruction (PMO) may be more predictive of major adverse cardiovascular events than MI size itself. But, how PMO, a phenomenon limited to the acute/sub-acute period of MI, imparts adverse remodeling throughout the post MI period, particularly after its resolution, is incompletely understood. We hypothesized that PMOs resolve into chronic iron crystals within MI territories and actively impart a proinflammatory burden and adverse remodeling of infarction and LV in the chronic phase of MI. Canine models reperfused (n=20) and non-reperfused (n=20) with and without PMO were studied with serial cardiac MRI to characterize the spatiotemporal relationships between PMO, iron deposition, and infarct and LV remodeling indices between acute (day 7, post MI) and chronic (week 8, post MI). Histopathology and immunohistochemistry were used to validate the iron deposition, microscopically map and quantify the relationship between iron-rich chronic MI regions against pro-inflammatory macrophages, proinflammatory cytokines and matrix metalloproteinase. Atomic resolution transmission electron microscopy (TEM) was used to determine the crystallinity of iron and assess the physical effects of iron on lysosomes within macrophages, and energy-dispersive X-ray spectroscopy (EDS) to identify the chemical composition of the iron composite. Results showed that PMOs lead to iron deposition within chronic MI and that the extent of chronic iron deposition is strongly related to PMO Volume (r>0.6, p<0.001). TEM and EDS analysis showed that iron within chronic MI is found within macrophages as aggregates of nanocrystals of ~2.5 nm diameter in ferric state. Correlative histological studies showed that iron content, proinflammatory burden and collagen degrading enzyme were highly correlated (r >0.7, p<0.001). Iron within chronic MI was significantly associated with infarct resorption (r>0.5, p<0.001) and adverse structural (r

  1. Contribution of Pro-Inflammatory Cytokine Signaling within Midbrain Periaqueductal Gray to Pain Sensitivity in Parkinson's disease via GABAergic Pathway

    Directory of Open Access Journals (Sweden)

    Xianbo Zhuang

    2016-07-01

    Full Text Available Background/Aims: Hypersensitive pain response is often observed in patients with Parkinson's disease (PD; however, the mechanisms responsible for hyperalgesia are not well understood. Chronic neuroinflammation is one of the hallmarks of PD pathophysiology. Since the midbrain periaqueductal gray (PAG is an important component of the descending inhibitory pathway controlling on central pain transmission, we examined the role for pro-inflammatory cytokines (PICs system of PAG in regulating exaggerated pain evoked by PD. Methods: We used a rat model of PD to perform the experimental protocols. PD was induced by microinjection of 6-hydroxydopamine to lesion the left medial forebrain bundle. Pain responses to mechanical and thermal stimulation were first examined in control rats and PD rats. Then, ELISA and Western Blot analysis were used to determine PIC levels and their receptors expression. Results: Protein expression of IL-1β, IL-6 and TNF-α receptors (namely, IL-1R, IL-6R and TNFR subtype TNFR1 in the plasma membrane PAG of PD rats was upregulated, whereas the total expression of PIC receptors was not significantly altered. The ratio of membrane protein and total protein (IL-1R, IL-6R and TNFR1 was 1.48±0.15, 1.59±0.18 and 1.67±0.16 in PAG of PD rats (P < 0.05 vs. their respective controls. This was accompanied with increases of PICs of PAG, and decreases of GABA (623±21 ng/mg in control rats and 418±18 ng/mg in PD rats; P < 0.05 vs. control rats and withdrawal thresholds to mechanical and thermal stimuli. Our data further showed that the concentrations of GABA and withdrawal thresholds were largely restored by blocking those PIC receptors in PAG of PD rats. Stimulation of GABA receptors in PAG of PD rats also blunted a decrease in withdrawal thresholds. Conclusions: Our data suggest that upregulation of the membrane PIC receptor in the PAG of PD rats is likely to impair the descending inhibitory pathways in regulating pain transmission

  2. Clinical findings and pro-inflammatory cytokines in dengue patients in Western India: a facility-based study.

    Directory of Open Access Journals (Sweden)

    D Priyadarshini

    Full Text Available BACKGROUND: Descriptions of dengue immunopathogenesis have largely relied on data from South-east Asia and America, while India is poorly represented. This study characterizes dengue cases from Pune, Western India, with respect to clinical profile and pro-inflammatory cytokines. METHODOLOGY/PRINCIPAL FINDINGS: In 2005, 372 clinically suspected dengue cases were tested by MAC-ELISA and RT-PCR for dengue virus (DENV aetiology. The clinical profile was recorded at the hospital. Circulating levels of IFN-gamma, TNF-alpha, IL-6, and IL-8 were assessed by ELISA and secondary infections were defined by IgM to IgG ratio. Statistical analysis was carried out using the SPSS 11.0 version. Of the 372 individuals, 221 were confirmed to be dengue cases. Three serotypes, DENV-1, 2 and 3 were co-circulating and one case of dual infection was identified. Of 221 cases, 159 presented with Dengue fever (DF and 62 with Dengue hemorrhagic fever (DHF of which six had severe DHF and one died of shock. There was a strong association of rash, abdominal pain and conjunctival congestion with DHF. Levels of IFN-gamma were higher in DF whereas IL-6 and IL-8 were higher in DHF cases (p<0.05. The mean levels of the three cytokines were higher in secondary compared to primary infections. Levels of IFN-gamma and IL-8 were higher in early samples collected 2-5 days after onset than late samples collected 6-15 days after onset. IFN-gamma showed significant decreasing time trend (p = 0.005 and IL-8 levels showed increasing trend towards significance in DHF cases (interaction p = 0.059. There was a significant association of IL-8 levels with thrombocytopenia and both IFN-gamma and IL-8 were positively associated with alanine transaminase levels. CONCLUSIONS/SIGNIFICANCE: Rash, abdominal pain and conjunctival congestion could be prognostic symptoms for DHF. High levels of IL-6 and IL-8 were shown to associate with DHF. The time trend of IFN-gamma and IL-8 levels had greater

  3. Cre-Mediated Stress Affects Sirtuin Expression Levels, Peroxisome Biogenesis and Metabolism, Antioxidant and Proinflammatory Signaling Pathways

    Science.gov (United States)

    Xiao, Yu; Karnati, Srikanth; Qian, Guofeng; Nenicu, Anca; Fan, Wei; Tchatalbachev, Svetlin; Höland, Anita; Hossain, Hamid; Guillou, Florian; Lüers, Georg H.; Baumgart-Vogt, Eveline

    2012-01-01

    Cre-mediated excision of loxP sites is widely used in mice to manipulate gene function in a tissue-specific manner. To analyze phenotypic alterations related to Cre-expression, we have used AMH-Cre-transgenic mice as a model system. Different Cre expression levels were obtained by investigation of C57BL/6J wild type as well as heterozygous and homozygous AMH-Cre-mice. Our results indicate that Cre-expression itself in Sertoli cells already has led to oxidative stress and lipid peroxidation (4-HNE lysine adducts), inducing PPARα/γ, peroxisome proliferation and alterations of peroxisome biogenesis (PEX5, PEX13 and PEX14) as well as metabolic proteins (ABCD1, ABCD3, MFP1, thiolase B, catalase). In addition to the strong catalase increase, a NRF2- and FOXO3-mediated antioxidative response (HMOX1 of the endoplasmic reticulum and mitochondrial SOD2) and a NF-κB activation were noted. TGFβ1 and proinflammatory cytokines like IL1, IL6 and TNFα were upregulated and stress-related signaling pathways were induced. Sertoli cell mRNA-microarray analysis revealed an increase of TNFR2-signaling components. 53BP1 recruitment and expression levels for DNA repair genes as well as for p53 were elevated and the ones for related sirtuin deacetylases affected (SIRT 1, 3-7) in Sertoli cells. Under chronic Cre-mediated DNA damage conditions a strong downregulation of Sirt1 was observed, suggesting that the decrease of this important coordinator between DNA repair and metabolic signaling might induce the repression release of major transcription factors regulating metabolic and cytokine-mediated stress pathways. Indeed, caspase-3 was activated and increased germ cell apoptosis was observed, suggesting paracrine effects. In conclusion, the observed wide stress-induced effects and metabolic alterations suggest that it is essential to use the correct control animals (Cre/Wt) with matched Cre expression levels to differentiate between Cre-mediated and specific gene-knock out

  4. Stable Toll-Like Receptor 10 Knockdown in THP-1 Cells Reduces TLR-Ligand-Induced Proinflammatory Cytokine Expression

    Directory of Open Access Journals (Sweden)

    Hai Van Le

    2016-06-01

    Full Text Available Toll-like receptor 10 (TLR10 is the only orphan receptor whose natural ligand and function are unknown among the 10 human TLRs. In this study, to test whether TLR10 recognizes some known TLR ligands, we established a stable TLR10 knockdown human monocytic cell line THP-1 using TLR10 short hairpin RNA lentiviral particle and puromycin selection. Among 60 TLR10 knockdown clones that were derived from each single transduced cell, six clones were randomly selected, and then one of those clones, named E7, was chosen for the functional study. E7 exhibited approximately 50% inhibition of TLR10 mRNA and protein expression. Of all the TLRs, only the expression of TLR10 changed significantly in this cell line. Additionally, phorbol 12-myristate 13-acetate-induced macrophage differentiation of TLR10 knockdown cells was not affected in the knockdown cells. When exposed to TLR ligands, such as synthetic diacylated lipoprotein (FSL-1, lipopolysaccharide (LPS, and flagellin, significant induction of proinflammatory cytokine gene expression including Interleukin-8 (IL-8, Interleukin-1 beta (IL-1β, Tumor necrosis factor-alpha (TNF-α and Chemokine (C–C Motif Ligand 20 (CCL20 expression, was found in the control THP-1 cells, whereas the TLR10 knockdown cells exhibited a significant reduction in the expression of IL-8, IL-1β, and CCL20. TNF-α was the only cytokine for which the expression did not decrease in the TLR10 knockdown cells from that measured in the control cells. Analysis of putative binding sites for transcription factors using a binding-site-prediction program revealed that the TNF-α promoter does not have putative binding sites for AP-1 or c-Jun, comprising a major transcription factor along with NF-κB for TLR signaling. Our results suggest that TLR10 is involved in the recognition of FSL-1, LPS, and flagellin and TLR-ligand-induced expression of TNF-α does not depend on TLR10.

  5. Stable Toll-Like Receptor 10 Knockdown in THP-1 Cells Reduces TLR-Ligand-Induced Proinflammatory Cytokine Expression.

    Science.gov (United States)

    Le, Hai Van; Kim, Jae Young

    2016-06-01

    Toll-like receptor 10 (TLR10) is the only orphan receptor whose natural ligand and function are unknown among the 10 human TLRs. In this study, to test whether TLR10 recognizes some known TLR ligands, we established a stable TLR10 knockdown human monocytic cell line THP-1 using TLR10 short hairpin RNA lentiviral particle and puromycin selection. Among 60 TLR10 knockdown clones that were derived from each single transduced cell, six clones were randomly selected, and then one of those clones, named E7, was chosen for the functional study. E7 exhibited approximately 50% inhibition of TLR10 mRNA and protein expression. Of all the TLRs, only the expression of TLR10 changed significantly in this cell line. Additionally, phorbol 12-myristate 13-acetate-induced macrophage differentiation of TLR10 knockdown cells was not affected in the knockdown cells. When exposed to TLR ligands, such as synthetic diacylated lipoprotein (FSL-1), lipopolysaccharide (LPS), and flagellin, significant induction of proinflammatory cytokine gene expression including Interleukin-8 (IL-8), Interleukin-1 beta (IL-1β), Tumor necrosis factor-alpha (TNF-α) and Chemokine (C-C Motif) Ligand 20 (CCL20) expression, was found in the control THP-1 cells, whereas the TLR10 knockdown cells exhibited a significant reduction in the expression of IL-8, IL-1β, and CCL20. TNF-α was the only cytokine for which the expression did not decrease in the TLR10 knockdown cells from that measured in the control cells. Analysis of putative binding sites for transcription factors using a binding-site-prediction program revealed that the TNF-α promoter does not have putative binding sites for AP-1 or c-Jun, comprising a major transcription factor along with NF-κB for TLR signaling. Our results suggest that TLR10 is involved in the recognition of FSL-1, LPS, and flagellin and TLR-ligand-induced expression of TNF-α does not depend on TLR10.

  6. Cre-mediated stress affects sirtuin expression levels, peroxisome biogenesis and metabolism, antioxidant and proinflammatory signaling pathways.

    Directory of Open Access Journals (Sweden)

    Yu Xiao

    Full Text Available Cre-mediated excision of loxP sites is widely used in mice to manipulate gene function in a tissue-specific manner. To analyze phenotypic alterations related to Cre-expression, we have used AMH-Cre-transgenic mice as a model system. Different Cre expression levels were obtained by investigation of C57BL/6J wild type as well as heterozygous and homozygous AMH-Cre-mice. Our results indicate that Cre-expression itself in Sertoli cells already has led to oxidative stress and lipid peroxidation (4-HNE lysine adducts, inducing PPARα/γ, peroxisome proliferation and alterations of peroxisome biogenesis (PEX5, PEX13 and PEX14 as well as metabolic proteins (ABCD1, ABCD3, MFP1, thiolase B, catalase. In addition to the strong catalase increase, a NRF2- and FOXO3-mediated antioxidative response (HMOX1 of the endoplasmic reticulum and mitochondrial SOD2 and a NF-κB activation were noted. TGFβ1 and proinflammatory cytokines like IL1, IL6 and TNFα were upregulated and stress-related signaling pathways were induced. Sertoli cell mRNA-microarray analysis revealed an increase of TNFR2-signaling components. 53BP1 recruitment and expression levels for DNA repair genes as well as for p53 were elevated and the ones for related sirtuin deacetylases affected (SIRT 1, 3-7 in Sertoli cells. Under chronic Cre-mediated DNA damage conditions a strong downregulation of Sirt1 was observed, suggesting that the decrease of this important coordinator between DNA repair and metabolic signaling might induce the repression release of major transcription factors regulating metabolic and cytokine-mediated stress pathways. Indeed, caspase-3 was activated and increased germ cell apoptosis was observed, suggesting paracrine effects. In conclusion, the observed wide stress-induced effects and metabolic alterations suggest that it is essential to use the correct control animals (Cre/Wt with matched Cre expression levels to differentiate between Cre-mediated and specific gene-knock out

  7. Combination of roflumilast with a beta-2 adrenergic receptor agonist inhibits proinflammatory and profibrotic mediator release from human lung fibroblasts

    Directory of Open Access Journals (Sweden)

    Tannheimer Stacey L

    2012-03-01

    of the transcription factor cAMP response element-binding protein (CREB, an effect that was protein kinase A-dependent. Inhibition of protein kinase A was also found to reverse the inhibition of indacaterol and roflumilast on CTGF. Conclusions These results demonstrate that addition of roflumilast to a LABA inhibits primary fibroblast/myofibroblast function and therapeutically this may impact lung fibroblast proinflammatory and profibrotic mediator release which contributes to small airway remodeling and airway obstruction in COPD.

  8. Effect of caffeic acid phenethyl ester on Prevotella intermedia lipopolysaccharide-induced production of proinflammatory mediators in murine macrophages.

    Science.gov (United States)

    Choi, E-Y; Choe, S-H; Hyeon, J-Y; Choi, J-I; Choi, I S; Kim, S-J

    2015-12-01

    Caffeic acid phenethyl ester (CAPE) has numerous potentially beneficial properties, including antioxidant, immunomodulatory and anti-inflammatory activities. However, the effect of CAPE on periodontal disease has not been studied before. This study was designed to investigate the efficacy of CAPE in ameliorating the production of proinflammatory mediators in macrophages activated by lipopolysaccharide (LPS) from Prevotella intermedia, a pathogen implicated in periodontal disease. LPS from P. intermedia ATCC 25611 was isolated by using the standard hot phenol-water method. Culture supernatants were assayed for nitric oxide (NO), interleukin (IL)-1β and IL-6. We used real-time polymerase chain reaction to quantify inducible NO synthase, IL-1β, IL-6, heme oxygenase (HO)-1 and suppressors of cytokine signaling (SOCS) 1 mRNA expression. HO-1 protein expression and levels of signaling proteins were assessed by immunoblot analysis. DNA-binding activities of NF-κB subunits were analyzed by using the enzyme-linked immunosorbent assay-based kits. CAPE exerted significant inhibitory effects on P. intermedia LPS-induced production of NO, IL-1β and IL-6 as well as their mRNA expression in RAW264.7 cells. CAPE-induced HO-1 expression in cells activated with P. intermedia LPS, and selective inhibition of HO-1 activity by tin protoporphyrin IX attenuated the inhibitory effect of CAPE on LPS-induced NO production. CAPE did not interfere with IκB-α degradation induced by P. intermedia LPS. Instead, CAPE decreased nuclear translocation of NF-κB p65 and p50 subunits induced with LPS, and lessened LPS-induced p50 binding activity. Further, CAPE showed strong inhibitory effects on LPS-induced signal transducer and activator of transcription 1 and 3 phosphorylation. Besides, CAPE significantly elevated SOCS1 mRNA expression in P. intermedia LPS-stimulated cells. Modulation of host response by CAPE may represent an attractive strategy towards the treatment of periodontal disease

  9. Ginger extract diminishes chronic fructose consumption-induced kidney injury through suppression of renal overexpression of proinflammatory cytokines in rats.

    Science.gov (United States)

    Yang, Ming; Liu, Changjin; Jiang, Jian; Zuo, Guowei; Lin, Xuemei; Yamahara, Johji; Wang, Jianwei; Li, Yuhao

    2014-05-27

    suggest that ginger supplement diminishes fructose-induced kidney injury through suppression of renal overexpression of macrophage-associated proinflammatory cytokines in rats. Our findings provide evidence supporting the protective effect of ginger on the metabolic syndrome-associated kidney injury.

  10. Proinflammatory response during Ebola virus infection of primate models: possible involvement of the tumor necrosis factor receptor superfamily.

    Science.gov (United States)

    Hensley, Lisa E; Young, Howard A; Jahrling, Peter B; Geisbert, Thomas W

    2002-03-01

    Ebola virus (EBOV) infections are characterized by dysregulation of normal host immune responses. Insight into the mechanism came from recent studies in nonhuman primates, which showed that EBOV infects cells of the mononuclear phagocyte system (MPS), resulting in apoptosis of bystander lymphocytes. In this study, we evaluated serum levels of cytokines/chemokines in EBOV-infected nonhuman primates, as possible correlates of this bystander apoptosis. Increased levels of interferon (IFN)-alpha, IFN-beta, interleukin (IL)-6, IL-18, MIP-1alpha, and MIP-1beta were observed in all EBOV-infected monkeys, indicating the occurrence of a strong proinflammatory response. To investigate the mechanism(s) involved in lymphoid apoptosis, soluble Fas (sFas) and nitrate accumulation were measured. sFas was detected in 4/9 animals, while, elevations of nitrate accumulation occurred in 3/3 animals. To further evaluate the potential role of these factors in the observed bystander apoptosis and intact animals, in vitro cultures were prepared of adherent human monocytes/macrophages (PHM), and monocytes differentiated into immature dendritic cells (DC). These cultures were infected with EBOV and analyzed for cytokine/chemokine induction and expression of apoptosis-related genes. In addition, the in vitro EBOV infection of peripheral blood mononuclear cells (PBMC) resulted in strong cytokine/chemokine induction, a marked increase in lactate dehydrogenase (LDH) activity, and an increase in the number of apoptotic lymphocytes examined by electron microscopy. Increased levels of sFAS were detected in PHM cultures, although, 90% of EBOV-infected PHM were positive for tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) by immunohistochemistry, RNA analysis, and flow cytometry. Inactivated EBOV also effected increased TRAIL expression in PHM, suggesting that the TNF receptor superfamily may be involved in apoptosis of the host lymphoid cells, and that induction may occur

  11. Effects of prandial challenge on triglyceridemia, glycemia, and pro-inflammatory activity in persons with chronic paraplegia

    Science.gov (United States)

    Ellenbroek, Dennis; Kressler, Jochen; Cowan, Rachel E.; Burns, Patricia A.; Mendez, Armando J.; Nash, Mark S.

    2015-01-01

    Context/Objective Exaggerated postprandial lipemia has been reported after spinal cord injury (SCI). We examined metabolite and accompanying pro-inflammatory biomarker responses to repeat feeding of typical high-fat meals in individuals with chronic paraplegia. Design Descriptive trial. Methods Metabolites (triglycerides, glucose, and insulin) and inflammatory biomarkers (interleukin-6 and high-sensitivity C-reactive protein (hsCRP)) were measured under fasting conditions in 11 recreationally active individuals with chronic (>1 year) paraplegia. Subjects received high-fat meals at time point 0 and again at minute 240. Antecubital venous blood was obtained at time points −30 (fasting), 0 (first meal), 30, 60, 90, 120, 240 (second meal), 360, and 480 minutes. Correlations were examined among the study variables. Exploratory subgroup analysis was performed for subjects with levels of postprandial glucose greater than >200 mg/dl. Results Triglycerides showed a significant rise 4 hours after eating. Basal inflammatory markers were elevated, and did not undergo additional change during the testing. Additionally, subjects with excessive postprandial glucose responses showed higher hsCRP levels than those having typical glucose responses both for fasting (11.8 ± 6.5 vs. 2.9 ± 2.7 mg/l, P = 0.064) and postprandial (11.1 ± 4.9 vs. 3.7 ± 3.8 mg/l, P = 0.018) values. Conclusions Despite elevations in metabolic response markers, inflammatory markers did not change significantly after consumption of population-representative (i.e. hypercaloric) mixed-nutrient meals. Levels of fasting CRP in the high-risk range are consistent with other reports in persons with SCI and continue to pose concern for their cardiovascular disease risk. The possible association between postprandial metabolic responses and inflammatory states warrants further investigation to identify individual component risks for this secondary health hazard. PMID:24617559

  12. Sleep restriction increases the risk of developing cardiovascular diseases by augmenting proinflammatory responses through IL-17 and CRP.

    Directory of Open Access Journals (Sweden)

    Wessel M A van Leeuwen

    Full Text Available BACKGROUND: Sleep restriction, leading to deprivation of sleep, is common in modern 24-h societies and is associated with the development of health problems including cardiovascular diseases. Our objective was to investigate the immunological effects of prolonged sleep restriction and subsequent recovery sleep, by simulating a working week and following recovery weekend in a laboratory environment. METHODS AND FINDINGS: After 2 baseline nights of 8 hours time in bed (TIB, 13 healthy young men had only 4 hours TIB per night for 5 nights, followed by 2 recovery nights with 8 hours TIB. 6 control subjects had 8 hours TIB per night throughout the experiment. Heart rate, blood pressure, salivary cortisol and serum C-reactive protein (CRP were measured after the baseline (BL, sleep restriction (SR and recovery (REC period. Peripheral blood mononuclear cells (PBMC were collected at these time points, counted and stimulated with PHA. Cell proliferation was analyzed by thymidine incorporation and cytokine production by ELISA and RT-PCR. CRP was increased after SR (145% of BL; p<0.05, and continued to increase after REC (231% of BL; p<0.05. Heart rate was increased after REC (108% of BL; p<0.05. The amount of circulating NK-cells decreased (65% of BL; p<0.005 and the amount of B-cells increased (121% of BL; p<0.005 after SR, but these cell numbers recovered almost completely during REC. Proliferation of stimulated PBMC increased after SR (233% of BL; p<0.05, accompanied by increased production of IL-1beta (137% of BL; p<0.05, IL-6 (163% of BL; p<0.05 and IL-17 (138% of BL; p<0.05 at mRNA level. After REC, IL-17 was still increased at the protein level (119% of BL; p<0.05. CONCLUSIONS: 5 nights of sleep restriction increased lymphocyte activation and the production of proinflammatory cytokines including IL-1beta IL-6 and IL-17; they remained elevated after 2 nights of recovery sleep, accompanied by increased heart rate and serum CRP, 2 important risk

  13. Chronic Inhibition of PDE5 Limits Pro-Inflammatory Monocyte-Macrophage Polarization in Streptozotocin-Induced Diabetic Mice.

    Directory of Open Access Journals (Sweden)

    Mary Anna Venneri

    Full Text Available Diabetes mellitus is characterized by changes in endothelial cells that alter monocyte recruitment, increase classic (M1-type tissue macrophage infiltration and lead to self-sustained inflammation. Our and other groups recently showed that chronic inhibition of phosphodiesterase-5 (PDE5i affects circulating cytokine levels in patients with diabetes; whether PDE5i also affects circulating monocytes and tissue inflammatory cell infiltration remains to be established. Using murine streptozotocin (STZ-induced diabetes and in human vitro cell-cell adhesion models we show that chronic hyperglycemia induces changes in myeloid and endothelial cells that alter monocyte recruitment and lead to self-sustained inflammation. Continuous PDE5i with sildenafil (SILD expanded tissue anti-inflammatory TIE2-expressing monocytes (TEMs, which are known to limit inflammation and promote tissue repair. Specifically, SILD: 1 normalizes the frequency of circulating pro-inflammatory monocytes triggered by hyperglycemia (53.7 ± 7.9% of CD11b+Gr-1+ cells in STZ vs. 30.4 ± 8.3% in STZ+SILD and 27.1 ± 1.6% in CTRL, P<0.01; 2 prevents STZ-induced tissue inflammatory infiltration (4-fold increase in F4/80+ macrophages in diabetic vs. control mice by increasing renal and heart anti-inflammatory TEMs (30.9 ± 3.6% in STZ+SILD vs. 6.9 ± 2.7% in STZ, P <0.01, and 11.6 ± 2.9% in CTRL mice; 3 reduces vascular inflammatory proteins (iNOS, COX2, VCAM-1 promoting tissue protection; 4 lowers monocyte adhesion to human endothelial cells in vitro through the TIE2 receptor. All these changes occurred independently from changes of glycemic status. In summary, we demonstrate that circulating renal and cardiac TEMs are defective in chronic hyperglycemia and that SILD normalizes their levels by facilitating the shift from classic (M1-like to alternative (M2-like/TEM macrophage polarization. Restoration of tissue TEMs with PDE5i could represent an additional pharmacological tool to prevent

  14. HP1330 Contributes to Streptococcus suis Virulence by Inducing Toll-Like Receptor 2- and ERK1/2-Dependent Pro-inflammatory Responses and Influencing In Vivo S. suis Loads

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2017-07-01

    Full Text Available Streptococcus suis 2 (SS2 has evolved into a highly invasive pathogen responsible for two large-scale outbreaks of streptococcal toxic shock-like syndrome (STSLS in China. Excessive inflammation stimulated by SS2 is considered a hallmark of STSLS, even it also plays important roles in other clinical symptoms of SS2-related disease, including meningitis, septicemia, and sudden death. However, the mechanism of SS2-caused excessive inflammation remains poorly understood. Here, a novel pro-inflammatory protein was identified (HP1330, which could induce robust expression of pro-inflammatory cytokines (TNF-α, MCP-1, and IL-1β in RAW264.7 macrophages. To evaluate the role of HP1330 in SS2 virulence, an hp1330-deletion mutant (Δhp1330 was constructed. In vitro, hp1330 disruption led to a decreased pro-inflammatory ability of SS2 in RAW 264.7 macrophages. In vivo, Δhp1330 showed reduced lethality, pro-inflammatory activity, and bacterial loads in mice. To further elucidate the mechanism of HP1330-induced pro-inflammatory cytokine production, antibody blocking and gene-deletion experiments with macrophages were performed. The results revealed that the pro-inflammatory activity of HP1330 depended on the recognition of toll-like receptor 2 (TLR2. Furthermore, a specific inhibitor of the extracellular signal-regulated kinase 1/2 (ERK1/2 pathways could significantly decrease HP1330-induced pro-inflammatory cytokine production, and western blot analysis showed that HP1330 could induce activation of the ERK1/2 pathway. Taken together, our findings demonstrate that HP1330 contributes to SS2 virulence by inducing TLR2- and ERK1/2-dependent pro-inflammatory cytokine production and influencing in vivo bacterial loads, implying that HP1330 may be associated with STSLS caused by SS2.

  15. Fasting and meal-stimulated residual beta cell function is positively associated with serum concentrations of proinflammatory cytokines and negatively associated with anti-inflammatory and regulatory cytokines in patients with longer term type 1 diabetes

    DEFF Research Database (Denmark)

    Pham, Minh-Long; Kolb, H; Battelino, T

    2013-01-01

    Cytokines may promote or inhibit disease progression in type 1 diabetes. We investigated whether systemic proinflammatory, anti-inflammatory and regulatory cytokines associated differently with fasting and meal-stimulated beta cell function in patients with longer term type 1 diabetes.......Cytokines may promote or inhibit disease progression in type 1 diabetes. We investigated whether systemic proinflammatory, anti-inflammatory and regulatory cytokines associated differently with fasting and meal-stimulated beta cell function in patients with longer term type 1 diabetes....

  16. Suppressive Effect on Lipopolysaccharide-Induced Proinflammatory Mediators by Citrus aurantium L. in Macrophage RAW 264.7 Cells via NF-κB Signal Pathway

    Directory of Open Access Journals (Sweden)

    Sang-Rim Kang

    2011-01-01

    Full Text Available Citrus fruits have been used as an edible fruit and a traditional medicine since ancient times. In particular, the peels of immature citrus fruits are used widely in traditional herbal medicine in Korea, as they are believed to contain bioactive components exerting anti-inflammatory activity. This study examined whether the crude methanol extract of Citrus aurantium L. (CME has a suppressive effect on inducible enzymes and proinflammatory cytokines by inhibiting the NF-κB pathway in LPS-stimulated macrophage RAW 264.7 cells. The cells were pretreated with the indicated concentrations of CME (5, 10, 20, and 50 μg/mL and then treated with LPS (1 μg/mL. The results showed that CME (10, 20, and 50 μg/mL inhibited the LPS- (1 μg/mL induced mRNA and protein expression of iNOS in macrophage Raw 264.7 cells. In addition, the expression of COX-2 was inhibited at the mRNA and protein levels by CME in a dose-dependent manner. The mRNA expression of proinflammatory cytokines, such as TNF-α and IL-6, were markedly reduced by CME (10, 20, and 50 μg/mL. Moreover, CME clearly suppressed the nuclear translocation of the NF-κB p65 subunits, which was correlated with its inhibitory effect on I-κB phosphorylation. These results suggest that CME has anti-inflammatory properties by modulating the expression of COX-2, iNOS, and proinflammatory cytokines, such as TNF-α and IL-6, in macrophage RAW 264.7 cells via the NF-κB pathway.

  17. MiR-155 induction by F. novicida but not the virulent F. tularensis results in SHIP down-regulation and enhanced pro-inflammatory cytokine response.

    Directory of Open Access Journals (Sweden)

    Thomas J Cremer

    2009-12-01

    Full Text Available The intracellular gram-negative bacterium Francisella tularensis causes the disease tularemia and is known for its ability to subvert host immune responses. Previous work from our laboratory identified the PI3K/Akt pathway and SHIP as critical modulators of host resistance to Francisella. Here, we show that SHIP expression is strongly down-regulated in monocytes and macrophages following infection with F. tularensis novicida (F.n.. To account for this negative regulation we explored the possibility that microRNAs (miRs that target SHIP may be induced during infection. There is one miR that is predicted to target SHIP, miR-155. We tested for induction and found that F.n. induced miR-155 both in primary monocytes/macrophages and in vivo. Using luciferase reporter assays we confirmed that miR-155 led to down-regulation of SHIP, showing that it specifically targets the SHIP 3'UTR. Further experiments showed that miR-155 and BIC, the gene that encodes miR-155, were induced as early as four hours post-infection in primary human monocytes. This expression was dependent on TLR2/MyD88 and did not require inflammasome activation. Importantly, miR-155 positively regulated pro-inflammatory cytokine release in human monocytes infected with Francisella. In sharp contrast, we found that the highly virulent type A SCHU S4 strain of Francisella tularensis (F.t. led to a significantly lower miR-155 response than the less virulent F.n. Hence, F.n. induces miR-155 expression and leads to down-regulation of SHIP, resulting in enhanced pro-inflammatory responses. However, impaired miR-155 induction by SCHU S4 may help explain the lack of both SHIP down-regulation and pro-inflammatory response and may account for the virulence of Type A Francisella.

  18. Left ventricular function impairment in patients with normal-weight obesity: contribution of abdominal fat deposition, profibrotic state, reduced insulin sensitivity, and proinflammatory activation.

    Science.gov (United States)

    Kosmala, Wojciech; Jedrzejuk, Diana; Derzhko, Roksolana; Przewlocka-Kosmala, Monika; Mysiak, Andrzej; Bednarek-Tupikowska, Grazyna

    2012-05-01

    Obesity predisposes to left ventricular (LV) dysfunction and heart failure; however, the risk of these complications has not been assessed in patients with a normal body mass index (BMI) but increased body fat content (normal-weight obesity, NWO). We hypothesized that LV performance in NWO may be impaired and sought to investigate potential contributors to cardiac functional abnormalities. One hundred sixty-eight subjects (age, 38±7 years) with BMI affecting the myocardium were classified on the basis of body fat content into 2 groups: with NWO and without NWO. Echocardiographic indices of LV systolic and diastolic function, including myocardial velocities and deformation, serological fibrosis markers, indicators of proinflammatory activation, and metabolic control, were evaluated. Subjects with NWO demonstrated impaired LV systolic and diastolic function, increased fibrosis intensity (assessed by procollagen type I carboxy-terminal propeptide [PICP]), impaired insulin sensitivity, and increased proinflammatory activation as compared with individuals with normal body fat. The independent correlates of LV systolic and diastolic function variables were as follows: for strain, IL-18 (β=-0.17, P<0.006), C-reactive protein (β=-0.20, P<0.002) and abdominal fat deposit (β=-0.20, P<0.003); for tissue S velocity, PICP (β=-0.21, P<0.002) and abdominal fat deposit (β=-0.43, P<0.0001); for tissue E velocity, abdominal fat deposit (β=-0.30, P<0.0001), PICP (β=-0.31, P<0.0001) and homeostasis model assessment of insulin resistance index (HOMA IR; β=-0.20, P<0.002); and for E/e'-PICP, IL-18 (both β=0.18, P<0.01) and HOMA IR (β=0.16, P<0.04). In patients with NWO, subclinical disturbances of LV function are independently associated with the extent of abdominal fat deposit, profibrotic state (as reflected by circulating PICP), reduced insulin sensitivity, and proinflammatory activation.

  19. Agonists for G-protein-coupled receptor 84 (GPR84) alter cellular morphology and motility but do not induce pro-inflammatory responses in microglia.

    Science.gov (United States)

    Wei, Li; Tokizane, Kyohei; Konishi, Hiroyuki; Yu, Hua-Rong; Kiyama, Hiroshi

    2017-10-03

    Several G-protein-coupled receptors (GPCRs) have been shown to be important signaling mediators between neurons and glia. In our previous screening for identification of nerve injury-associated GPCRs, G-protein-coupled receptor 84 (GPR84) mRNA showed the highest up-regulation by microglia after nerve injury. GPR84 is a pro-inflammatory receptor of macrophages in a neuropathic pain mouse model, yet its function in resident microglia in the central nervous system is poorly understood. We used endogenous, natural, and surrogate agonists for GPR84 (capric acid, embelin, and 6-OAU, respectively) and examined their effect on mouse primary cultured microglia in vitro. 6-n-Octylaminouracil (6-OAU), embelin, and capric acid rapidly induced membrane ruffling and motility in cultured microglia obtained from C57BL/6 mice, although these agonists failed to promote microglial pro-inflammatory cytokine expression. Concomitantly, 6-OAU suppressed forskolin-induced increase of cAMP in cultured microglia. Pertussis toxin, an inhibitor of Gi-coupled signaling, completely suppressed 6-OAU-induced microglial membrane ruffling and motility. In contrast, no 6-OAU-induced microglial membrane ruffling and motility was observed in microglia from DBA/2 mice, a mouse strain that does not express functional GPR84 protein due to endogenous nonsense mutation of the GPR84 gene. GPR84 mediated signaling causes microglial motility and membrane ruffling but does not promote pro-inflammatory responses. As GPR84 is a known receptor for medium-chain fatty acids, those released from damaged brain cells may be involved in the enhancement of microglial motility through GPR84 after neuronal injury.

  20. The mechanism of pleural inflammation by long carbon nanotubes: interaction of long fibres with macrophages stimulates them to amplify pro-inflammatory responses in mesothelial cells

    Directory of Open Access Journals (Sweden)

    Murphy Fiona A

    2012-04-01

    Full Text Available Abstract Carbon nanotubes (CNT are high aspect ratio nanoparticles with diameters in the nanometre range but lengths extending up to hundreds of microns. The structural similarities between CNT and asbestos have raised concern that they may pose a similar inhalation hazard. Recently CNT have been shown to elicit a length-dependent, asbestos-like inflammatory response in the pleural cavity of mice, where long fibres caused inflammation but short fibres did not. However the cellular mechanisms governing this response have yet to be elucidated. This study examined the in vitro effects of a range of CNT for their ability to stimulate the release of the acute phase cytokines; IL-1β, TNFα, IL-6 and the chemokine, IL-8 from both Met5a mesothelial cells and THP-1 macrophages. Results showed that direct exposure to CNT resulted in significant cytokine release from the macrophages but not mesothelial cells. This pro-inflammatory response was length dependent but modest and was shown to be a result of frustrated phagocytosis. Furthermore the indirect actions of the CNT were examined by treating the mesothelial cells with conditioned media from CNT-treated macrophages. This resulted in a dramatic amplification of the cytokine release from the mesothelial cells, a response which could be attenuated by inhibition of phagocytosis during the initial macrophage CNT treatments. We therefore hypothesise that long fibres elicit an inflammatory response in the pleural cavity via frustrated phagocytosis in pleural macrophages. The activated macrophages then stimulate an amplified pro-inflammatory cytokine response from the adjacent pleural mesothelial cells. This mechanism for producing a pro-inflammatory environment in the pleural space exposed to long CNT has implications for the general understanding of fibre-related pleural disease and design of safe nanofibres.

  1. Dietary phytic acid modulates characteristics of the colonic luminal environment and reduces serum levels of proinflammatory cytokines in rats fed a high-fat diet.

    Science.gov (United States)

    Okazaki, Yukako; Katayama, Tetsuyuki

    2014-12-01

    Dietary phytic acid (PA; myo-inositol [MI] hexaphosphate) is known to inhibit colon carcinogenesis in rodents. Dietary fiber, which is a negative risk factor of colon cancer, improves characteristics of the colonic environment, such as the content of organic acids and microflora. We hypothesized that dietary PA would improve the colonic luminal environment in rats fed a high-fat diet. To test this hypothesis, rats were fed diets containing 30% beef tallow with 2.04% sodium PA, 0.4% MI, or 1.02% sodium PA + 0.2% MI for 3 weeks. Compared with the control diet, the sodium PA diet up-regulated cecal organic acids, including acetate, propionate, and n-butyrate; this effect was especially prominent for cecal butyrate. The sodium PA + MI diet also significantly increased cecal butyrate, although this effect was less pronounced when compared with the sodium PA diet. The cecal ratio of Lactobacillales, cecal and fecal mucins (an index of intestinal barrier function), and fecal β-glucosidase activity were higher in rats fed the sodium PA diet than in those fed the control diet. The sodium PA, MI, and sodium PA + MI diets decreased levels of serum tumor necrosis factor α, which is a proinflammatory cytokine. Another proinflammatory cytokine, serum interleukin-6, was also down-regulated by the sodium PA and sodium PA + MI diets. These data showed that PA may improve the composition of cecal organic acids, microflora, and mucins, and it may decrease the levels of serum proinflammatory cytokines in rats fed a high-fat, mineral-sufficient diet. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. miR-146a negatively regulates the induction of proinflammatory cytokines in response to Japanese encephalitis virus infection in microglial cells.

    Science.gov (United States)

    Deng, Minnan; Du, Ganqin; Zhao, Jiegang; Du, Xiaowei

    2017-06-01

    Increasing evidence confirms the involvement of virus infection and miRNA, such as miR-146a, in neuroinflammation-associated epilepsy. In the present study, we investigated the upregulation of miR-146a with RT-qPCR and in situ hybridization methods in a mice infection model of Japanese encephalitis virus (JEV) and in vitro. Subsequently we investigated the involvement of miR-146a in modulating JEV-induced neuroinflammation. It was demonstrated that JEV infection promoted miR-146a production in BALB/c mice brain and in cultured mouse microglial C8-B4 cells, along with pro-inflammatory cytokines, such as IL-1β, IL-6, TNF-α, IFN-β and IFN-α. We also found that miR-146a exerted negative regulatory effects upon IL-1β, IL-6, TNF-α, IFN-β and IFN-α in C8-B4 cells. Accordingly, miR-146a downregulation with a miR-146a inhibitor promoted the upregulation of IL-1β, IL-6, TNF-α, IFN-β and IFN-α, whereas miR-146a upregulation with miR-146a mimics reduced the upregulation of these cytokines. Moreover, miR-146a exerted no regulation upon JEV growth in C8-B4 cells. In conclusion, JEV infection upregulated miR-146a and pro-inflammatory cytokine production, in mice brain and in cultured C8-B4 cells. Furthermore, miR-146a negatively regulated the production of JEV-induced pro-inflammatory cytokines, in virus growth independent fashion, identifying miR-146a as a negative feedback regulator in JEV-induced neuroinflammation, and possibly in epilepsy.

  3. A multi-stage process including transient polyploidization and EMT precedes the emergence of chemoresistent ovarian carcinoma cells with a dedifferentiated and pro-inflammatory secretory phenotype.

    Science.gov (United States)

    Rohnalter, Verena; Roth, Katrin; Finkernagel, Florian; Adhikary, Till; Obert, Julia; Dorzweiler, Kristina; Bensberg, Maike; Müller-Brüsselbach, Sabine; Müller, Rolf

    2015-11-24

    DNA-damaging drugs induce a plethora of molecular and cellular alterations in tumor cells, but their interrelationship is largely obscure. Here, we show that carboplatin treatment of human ovarian carcinoma SKOV3 cells triggers an ordered sequence of events, which precedes the emergence of mitotic chemoresistant cells. The initial phase of cell death after initiation of carboplatin treatment is followed around day 14 by the emergence of a mixed cell population consisting of cycling, cell cycle-arrested and senescent cells. At this stage, giant cells make up >80% of the cell population, p21 (CDKN1A) in strongly induced, and cell numbers remain nearly static. Subsequently, cell death decreases, p21 expression drops to a low level and cell divisions increase, including regular mitoses of giant cells and depolyploidization by multi-daughter divisions. These events are accompanied by the upregulation of stemness markers and a pro-inflammatory secretory phenotype, peaking after approximately 14 days of treatment. At the same time the cells initiate epithelial to mesenchymal transition, which over the subsequent weeks continuously increases, concomitantly with the emergence of highly proliferative, migratory, dedifferentiated, pro-inflammatory and chemoresistant cells (SKOV3-R). These cells are anchorage-independent and grow in a 3D collagen matrix, while cells on day 14 do not survive under these conditions, indicating that SKOV3-R cells were generated thereafter by the multi-stage process described above. This process was essentially recapitulated with the ovarian carcinoma cell line IGROV-1. Our observations suggest that transitory cells characterized by polyploidy, features of stemness and a pro-inflammatory secretory phenotype contribute to the acquisition of chemoresistance.

  4. Endogenous acute phase serum amyloid A lacks pro-inflammatory activity, contrasting the two recombinant variants that activate human neutrophils through different receptors

    Directory of Open Access Journals (Sweden)

    Karin eChristenson

    2013-04-01

    Full Text Available Most notable among the acute phase proteins is serum amyloid A (SAA, levels of which can increase 1000-fold during infections, aseptic inflammation, and/or trauma. Chronically elevated SAA levels are associated with a wide variety of pathological conditions, including obesity and rheumatic diseases. Using a recombinant hybrid of the two human SAA isoforms (SAA1 and 2 that does not exist in vivo, numerous in vitro studies have given rise to the notion that acute phase SAA is a pro-inflammatory molecule with cytokine-like properties. It is however unclear whether endogenous acute phase SAA per se mediates pro-inflammatory effects. We tested this in samples from patients with inflammatory arthritis and in a transgenic mouse model that expresses human SAA1. Endogenous human SAA did not drive production of pro-inflammatory IL-8/KC in either of these settings. Human neutrophils derived from arthritis patients displayed no signs of activation, despite being exposed to severely elevated SAA levels in circulation, and SAA-rich sera also failed to activate cells in vitro. In contrast, two recombinant SAA variants (the hybrid SAA and SAA1 both activated human neutrophils, inducing L-selectin shedding, production of reactive oxygen species, and production of IL-8. The hybrid SAA was approximately 100-fold more potent than recombinant SAA1. Recombinant hybrid SAA and SAA1 activated neutrophils through different receptors, with recombinant SAA1 being a ligand for formyl peptide receptor 2 (FPR2. We conclude that even though recombinant SAAs can be valuable tools for studying neutrophil activation, they do not reflect the nature of the endogenous protein.

  5. Functional relevance of protein glycosylation to the pro-inflammatory effects of extracellular matrix metalloproteinase inducer (EMMPRIN) on monocytes/macrophages.

    Science.gov (United States)

    Ge, Heng; Yuan, Wei; Liu, Jidong; He, Qing; Ding, Song; Pu, Jun; He, Ben

    2015-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) is an important pro-inflammatory protein involved in the cellular functions of monocytes/macrophages. We have hypothesized that high-level heterogeneousness of protein glycosylation of EMMPRIN may have functional relevance to its biological effects and affect the inflammatory activity of monocytes/macrophages. The glycosylation patterns of EMMPRIN expressed by monocytes/macrophages (THP-1 cells) in response to different extracellular stimuli were observed, and the structures of different glycosylation forms were identified. After the purification of highly- and less-glycosylated proteins respectively, the impacts of different glycosylation forms on the pro-inflammatory effects of EMMPRIN were examined in various aspects, such as cell adhesion to endothelial cells, cell migrations, cytokine expression, and activation of inflammatory signalling pathway. 1) It was mainly the highly-glycosylated form of EMMPRIN (HG-EMMPRIN) that increased after being exposed to inflammatory signals (PMA and H2O2). 2) Glycosylation of EMMPRIN in monocytes/macrophages led to N-linked-glycans being added to the protein, with the HG form containing complex-type glycans and the less-glycosylated form (LG) the simple type. 3) Only the HG-EMMPRIN but not the LG-EMMPRIN exhibited pro-inflammatory effects and stimulated inflammatory activities of the monocytes/macrophages (i.e., activation of ERK1/2 and NF-κB pathway, enhanced monocyte-endothelium adhesion, cell migration and matrix metalloproteinase -9 expression). Post-transcriptional glycosylation represents an important mechanism that determines the biological effects of EMMPRIN in monocytes/macrophages. Glycosylation of EMMPRIN may serve as a potential target for regulating the inflammatory activities of monocytes/macrophages.

  6. Functional relevance of protein glycosylation to the pro-inflammatory effects of extracellular matrix metalloproteinase inducer (EMMPRIN on monocytes/macrophages.

    Directory of Open Access Journals (Sweden)

    Heng Ge

    Full Text Available Extracellular matrix metalloproteinase inducer (EMMPRIN is an important pro-inflammatory protein involved in the cellular functions of monocytes/macrophages. We have hypothesized that high-level heterogeneousness of protein glycosylation of EMMPRIN may have functional relevance to its biological effects and affect the inflammatory activity of monocytes/macrophages.The glycosylation patterns of EMMPRIN expressed by monocytes/macrophages (THP-1 cells in response to different extracellular stimuli were observed, and the structures of different glycosylation forms were identified. After the purification of highly- and less-glycosylated proteins respectively, the impacts of different glycosylation forms on the pro-inflammatory effects of EMMPRIN were examined in various aspects, such as cell adhesion to endothelial cells, cell migrations, cytokine expression, and activation of inflammatory signalling pathway.1 It was mainly the highly-glycosylated form of EMMPRIN (HG-EMMPRIN that increased after being exposed to inflammatory signals (PMA and H2O2. 2 Glycosylation of EMMPRIN in monocytes/macrophages led to N-linked-glycans being added to the protein, with the HG form containing complex-type glycans and the less-glycosylated form (LG the simple type. 3 Only the HG-EMMPRIN but not the LG-EMMPRIN exhibited pro-inflammatory effects and stimulated inflammatory activities of the monocytes/macrophages (i.e., activation of ERK1/2 and NF-κB pathway, enhanced monocyte-endothelium adhesion, cell migration and matrix metalloproteinase -9 expression.Post-transcriptional glycosylation represents an important mechanism that determines the biological effects of EMMPRIN in monocytes/macrophages. Glycosylation of EMMPRIN may serve as a potential target for regulating the inflammatory activities of monocytes/macrophages.

  7. Suppression of pro-inflammatory and pro-survival biomarkers in oral cancer patients consuming a black raspberry phytochemical-rich troche

    Science.gov (United States)

    Knobloch, Thomas J.; Uhrig, Lana K.; Pearl, Dennis K.; Casto, Bruce C.; Warner, Blake M.; Clinton, Steven K.; Sardo-Molmenti, Christine L.; Ferguson, Jeanette M.; Daly, Brett T.; Riedl, Kenneth; Schwartz, Steven J.; Vodovotz, Yael; Buchta, Anthony J.; Schuller, David E.; Ozer, Enver; Agrawal, Amit; Weghorst, Christopher M.

    2016-01-01

    Black raspberries (BRBs) demonstrate potent inhibition of aerodigestive tract carcinogenesis in animal models. However, translational clinical trials evaluating the ability of BRB phytochemicals to impact molecular biomarkers in the oral mucosa remain limited. The present phase 0 study addresses a fundamental question for oral cancer food-based prevention: Do BRB phytochemicals successfully reach the targeted oral tissues and reduce pro-inflammatory and anti-apoptotic gene expression profiles? Patients with biopsy-confirmed oral squamous cell carcinomas (OSCCs) administered oral troches containing freeze-dried BRB powder from the time of enrollment to the date of curative intent surgery (13.9 ± 1.27 days). Transcriptional biomarkers were evaluated in patient-matched OSCCs and non-involved high at-risk mucosa (HARM) for BRB-associated changes. Significant expression differences between baseline OSCC and HARM tissues were confirmed using a panel of genes commonly deregulated during oral carcinogenesis. Following BRB troche administration, the expression of pro-survival genes (AURKA, BIRC5, EGFR) and pro-inflammatory genes (NFKB1, PTGS2) were significantly reduced. There were no BRB-associated Grade 3–4 toxicities or adverse events and 79.2% (N = 30) of patients successfully completed the study with high levels of compliance (97.2%). The BRB phytochemicals cyanidin-3-rutinoside and cyanidin-3-xylosylrutinoside were detected in all OSCC tissues analyzed, demonstrating that bioactive components were successfully reaching targeted OSCC tissues. We confirmed that hallmark anti-apoptotic and pro-inflammatory molecular biomarkers were over-expressed in OSCCs and that their gene expression was significantly reduced following BRB troche administration. Since these molecular biomarkers are fundamental to oral carcinogenesis and are modifiable, they may represent emerging biomarkers of molecular efficacy for BRB-mediated oral cancer chemoprevention. PMID:26701664

  8. Cell-free culture supernatant of Bifidobacterium breve CNCM I-4035 decreases pro-inflammatory cytokines in human dendritic cells challenged with Salmonella typhi through TLR activation.

    Science.gov (United States)

    Bermudez-Brito, Miriam; Muñoz-Quezada, Sergio; Gomez-Llorente, Carolina; Matencio, Esther; Bernal, Maria J; Romero, Fernando; Gil, Angel

    2013-01-01

    Dendritic cells (DCs) constitute the first point of contact between gut commensals and our immune system. Despite growing evidence of the immunomodulatory effects of probiotics, the interactions between the cells of the intestinal immune system and bacteria remain largely unknown. Indeed,, the aim of this work was to determine whether the probiotic Bifidobacterium breve CNCM I-4035 and its cell-free culture supernatant (CFS) have immunomodulatory effects in human intestinal-like dendritic cells (DCs) and how they respond to the pathogenic bacterium Salmonella enterica serovar Typhi, and also to elucidate the molecular mechanisms involved in these interactions. Human DCs were directly challenged with B. breve/CFS, S. typhi or a combination of these stimuli for 4 h. The expression pattern of genes involved in Toll-like receptor (TLR) signaling pathway and cytokine secretion was analyzed. CFS decreased pro-inflammatory cytokines and chemokines in human intestinal DCs challenged with S. typhi. In contrast, the B. breve CNCM I-4035 probiotic strain was a potent inducer of the pro-inflammatory cytokines and chemokines tested, i.e., TNF-α, IL-8 and RANTES, as well as anti-inflammatory cytokines including IL-10. CFS restored TGF-β levels in the presence of Salmonella. Live B.breve and its supernatant enhanced innate immune responses by the activation of TLR signaling pathway. These treatments upregulated TLR9 gene transcription. In addition, CFS was a more potent inducer of TLR9 expression than the probiotic bacteria in the presence of S. typhi. Expression levels of CASP8 and IRAK4 were also increased by CFS, and both treatments induced TOLLIP gene expression. Our results indicate that the probiotic strain B. breve CNCM I-4035 affects the intestinal immune response, whereas its supernatant exerts anti-inflammatory effects mediated by DCs. This supernatant may protect immune system from highly infectious agents such as Salmonella typhi and can down-regulate pro-inflammatory

  9. Cell-free culture supernatant of Bifidobacterium breve CNCM I-4035 decreases pro-inflammatory cytokines in human dendritic cells challenged with Salmonella typhi through TLR activation.

    Directory of Open Access Journals (Sweden)

    Miriam Bermudez-Brito

    Full Text Available Dendritic cells (DCs constitute the first point of contact between gut commensals and our immune system. Despite growing evidence of the immunomodulatory effects of probiotics, the interactions between the cells of the intestinal immune system and bacteria remain largely unknown. Indeed,, the aim of this work was to determine whether the probiotic Bifidobacterium breve CNCM I-4035 and its cell-free culture supernatant (CFS have immunomodulatory effects in human intestinal-like dendritic cells (DCs and how they respond to the pathogenic bacterium Salmonella enterica serovar Typhi, and also to elucidate the molecular mechanisms involved in these interactions. Human DCs were directly challenged with B. breve/CFS, S. typhi or a combination of these stimuli for 4 h. The expression pattern of genes involved in Toll-like receptor (TLR signaling pathway and cytokine secretion was analyzed. CFS decreased pro-inflammatory cytokines and chemokines in human intestinal DCs challenged with S. typhi. In contrast, the B. breve CNCM I-4035 probiotic strain was a potent inducer of the pro-inflammatory cytokines and chemokines tested, i.e., TNF-α, IL-8 and RANTES, as well as anti-inflammatory cytokines including IL-10. CFS restored TGF-β levels in the presence of Salmonella. Live B.breve and its supernatant enhanced innate immune responses by the activation of TLR signaling pathway. These treatments upregulated TLR9 gene transcription. In addition, CFS was a more potent inducer of TLR9 expression than the probiotic bacteria in the presence of S. typhi. Expression levels of CASP8 and IRAK4 were also increased by CFS, and both treatments induced TOLLIP gene expression. Our results indicate that the probiotic strain B. breve CNCM I-4035 affects the intestinal immune response, whereas its supernatant exerts anti-inflammatory effects mediated by DCs. This supernatant may protect immune system from highly infectious agents such as Salmonella typhi and can down

  10. St. John's wort attenuates irinotecan-induced diarrhea via down-regulation of intestinal pro-inflammatory cytokines and inhibition of intestinal epithelial apoptosis

    International Nuclear Information System (INIS)

    Hu Zeping; Yang Xiaoxia; Chan Suiyung; Xu Anlong; Duan Wei; Zhu Yizhun; Sheu, F.-S.; Boelsterli, Urs Alex; Chan, Eli; Zhang Qiang; Wang, J.-C.; Ee, Pui Lai Rachel; Koh, H.L.; Huang Min; Zhou Shufeng

    2006-01-01

    Diarrhea is a common dose-limiting toxicity associated with cancer chemotherapy, in particular for drugs such as irinotecan (CPT-11), 5-fluouracil, oxaliplatin, capecitabine and raltitrexed. St. John's wort (Hypericum perforatum, SJW) has anti-inflammatory activity, and our preliminary study in the rat and a pilot study in cancer patients found that treatment of SJW alleviated irinotecan-induced diarrhea. In the present study, we investigated whether SJW modulated various pro-inflammatory cytokines including interleukins (IL-1β, IL-2, IL-6), interferon (IFN-γ) and tumor necrosis factor-α (TNF-α) and intestinal epithelium apoptosis in rats. The rats were treated with irinotecan at 60 mg/kg for 4 days in combination with oral SJW or SJW-free control vehicle at 400 mg/kg for 8 days. Diarrhea, tissue damage, body weight loss, various cytokines including IL-1β, IL-2, IL-6, IFN-γ and TNF-α and intestinal epithelial apoptosis were monitored over 11 days. Our studies demonstrated that combined SJW markedly reduced CPT-11-induced diarrhea and intestinal lesions. The production of pro-inflammatory cytokines such as IL-1β, IFN-γ and TNF-α was significantly up-regulated in intestine. In the mean time, combined SJW significantly suppressed the intestinal epithelial apoptosis induced by CPT-11 over days 5-11. In particular, combination of SJW significantly inhibited the expression of TNF-α mRNA in the intestine over days 5-11. In conclusion, inhibition of pro-inflammatory cytokines and intestinal epithelium apoptosis partly explained the protective effect of SJW against the intestinal toxicities induced by irinotecan. Further studies are warranted to explore the potential for STW as an agent in combination with chemotherapeutic drugs to lower their dose-limiting toxicities

  11. Investigating the Effects of Regular Resistance Training and Prostatic Massage on