WorldWideScience

Sample records for cd-4mcu

  1. Effect of N addition on tensile and corrosion behaviors of CD4MCU cast duplex stainless steels

    Science.gov (United States)

    Son, Jinil; Kim, Sangshik; Lee, Jehyun; Choi, Byunghak

    2003-08-01

    The effect of N addition on the microstructure, tensile, and corrosion behaviors of CD4MCU (Fe-25Cr-5Ni-2.8Cu-2Mo) cast duplex stainless steel was examined in the present study. The slow strain rate tests were also conducted at a nominal strain rate of 1 × 10-6/s in air and 3.5 pct NaCl+5 pct H2SO4 solution for studying the stress corrosion cracking (SCC) behavior. It was observed that the volume fraction of austenitic phase in CD4MCU alloy varied from 38 to 59 pct with increasing nitrogen content from 0 to 0.27 wt. pct. The tensile behavior of CD4MCU cast duplex stainless steels, which tended to vary significantly with different N contents, appeared to be strongly related to the volume changes in ferritic and austenitic phases, rather than the intrinsic N effect. The improvement in the resistance to general corrosion in 3.5 pct NaCl+5 pct H2SO4 aqueous solution was notable with 0.13 pct N addition. The further improvement was not significant with further N addition. The resistance to SCC of CD4MCU cast duplex stainless steels in 3.5 pct NaCl+5 pct H2SO4 aqueous solution, however, increased continuously with increasing N content. The enhancement in the SCC resistance was believed to be related to the volume fraction of globular austenitic colonies, which tended to act as barriers for the development of initial pitting cracks in the ferritic phase into the sharp ones.

  2. Corrosive-wear resistance of stainless steels for the impeller of slurry pump used in zinc hydrometallurgy process

    OpenAIRE

    Li, Ping; Qizhou CAI; Bokang WEI

    2005-01-01

    This paper presents corrosive-wear (C-W) behaviors of three kinds of steels under the simulating condition of traditional zinc hydrometallurgy process by using a self-made rotating disk apparatus. Result shows that pure wear loss rate is significantly larger than pure corrosion loss rate. Under this C-W condition, the ranking of C-W resistance is S2 > S3 > S1 (S1: austenite stainless steel; S2: CD-4MCu duplex stainless steel; S3 :17-4PH stainless steel). S2 has excellent C-W resistance due to...

  3. Corrosive-wear resistance of stainless steels for the impeller of slurry pump used in zinc hydrometallurgy process

    Directory of Open Access Journals (Sweden)

    Ping LI

    2005-08-01

    Full Text Available This paper presents corrosive-wear (C-W behaviors of three kinds of steels under the simulating condition of traditional zinc hydrometallurgy process by using a self-made rotating disk apparatus. Result shows that pure wear loss rate is significantly larger than pure corrosion loss rate. Under this C-W condition, the ranking of C-W resistance is S2 > S3 > S1 (S1: austenite stainless steel; S2: CD-4MCu duplex stainless steel; S3 :17-4PH stainless steel. S2 has excellent C-W resistance due to strong surface deformation strengthening effect of high-density dislocations of the γ phase. S3 also has excellent C-W resistance owing to high hardness and strength. However, S1 does not show good C-W resistance under strong erosion of liquid-solid slurry because of its single-phase austenitic structure and very low hardness. As a result, duplex stainless steels as well as 17-4 PH stainless steel can be used as impeller candidate materials in the zinc hydrometallurgy process due to their excellent C-W resistance and lower cost.

  4. Corrosive-wear resistance of stainless steels for the impeller of slurry pump used in zinc hydrometallurgy process

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This paper presents corrosive-wear (C-W) behaviors of three kinds of steels under the simulating condition of traditional zinc hydrometallurgy process by using a self-made rotating disk apparatus. Result shows that pure wear loss rate is significantly larger than pure corrosion loss rate. Under this C-W condition, the ranking of C-W resistance is S2 > S3 > S1 (S1: austenite stainless steel; S2: CD-4MCu duplex stainless steel; S3:17-4PH stainless steel). S2 has excellent C-W resistance due to strong surface deformation strengthening effect of high-density dislocations of the γphase. S3 also has excellent C-W resistance owing to high hardness and strength. However, S1 does not show good C-W resistance under strong erosion of liquid-solid slurry because of its single-phase austenitic structure and very low hardness. As a result, duplex stainless steels as well as 17-4 PH stainless steel can be used as impeller candidate materials in the zinc hydrometallurgy process due to their excellent C-W resistance and lower cost.