WorldWideScience

Sample records for cd-4mcu

  1. Corrosive-wear resistance of stainless steels for the impeller of slurry pump used in zinc hydrometallurgy process

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This paper presents corrosive-wear (C-W) behaviors of three kinds of steels under the simulating condition of traditional zinc hydrometallurgy process by using a self-made rotating disk apparatus. Result shows that pure wear loss rate is significantly larger than pure corrosion loss rate. Under this C-W condition, the ranking of C-W resistance is S2 > S3 > S1 (S1: austenite stainless steel; S2: CD-4MCu duplex stainless steel; S3:17-4PH stainless steel). S2 has excellent C-W resistance due to strong surface deformation strengthening effect of high-density dislocations of the γphase. S3 also has excellent C-W resistance owing to high hardness and strength. However, S1 does not show good C-W resistance under strong erosion of liquid-solid slurry because of its single-phase austenitic structure and very low hardness. As a result, duplex stainless steels as well as 17-4 PH stainless steel can be used as impeller candidate materials in the zinc hydrometallurgy process due to their excellent C-W resistance and lower cost.

  2. Corrosive-wear resistance of stainless steels for the impeller of slurry pump used in zinc hydrometallurgy process

    Directory of Open Access Journals (Sweden)

    Ping LI

    2005-08-01

    Full Text Available This paper presents corrosive-wear (C-W behaviors of three kinds of steels under the simulating condition of traditional zinc hydrometallurgy process by using a self-made rotating disk apparatus. Result shows that pure wear loss rate is significantly larger than pure corrosion loss rate. Under this C-W condition, the ranking of C-W resistance is S2 > S3 > S1 (S1: austenite stainless steel; S2: CD-4MCu duplex stainless steel; S3 :17-4PH stainless steel. S2 has excellent C-W resistance due to strong surface deformation strengthening effect of high-density dislocations of the γ phase. S3 also has excellent C-W resistance owing to high hardness and strength. However, S1 does not show good C-W resistance under strong erosion of liquid-solid slurry because of its single-phase austenitic structure and very low hardness. As a result, duplex stainless steels as well as 17-4 PH stainless steel can be used as impeller candidate materials in the zinc hydrometallurgy process due to their excellent C-W resistance and lower cost.