WorldWideScience

Sample records for cd polluted soil

  1. Effects of heavy metal Cd pollution on microbial activities in soil.

    Science.gov (United States)

    Shi, Weilin; Ma, Xiying

    2017-12-23

    Heavy metal contamination of soil occurs when heavy metals are introduced to soil through human activities, leading to the gradual deterioration of the ecology and environment. Microorganism activity reflects the intensity of various biochemical reactions in soil, and changes in it reflect the level of heavy metal pollution affecting the soil. The effects were studied of heavy metal Cd on the microbial activity of soil at different concentrations by investigating the respiratory intensity, urease activity, and catalase activity in forest soil and garden soil. The results showed that the respiratory intensity, urease and catalase activities in the garden soil were all higher than in the forest soil. Cd has obvious inhibitory effects on microbial activities. The three parameters exhibited a downward trend with increasing concentrations of Cd. Catalase activity increased when the mass concentration of Cd reached 1.0 mg/kg, indicating that low concentrations of Cd can promote the activity of some microorganisms. Respiratory intensity and urease activity also increased when the concentration reached 10.0 mg/kg, showing that respiratory intensity and urease activity have strong response mechanisms to adverse conditions. The effective state of Cd in soil, as well as inhibition of microbial activity, decreased with incubation time.

  2. Effects of heavy metal Cd pollution on microbial activities in soil

    Directory of Open Access Journals (Sweden)

    Weilin Shi

    2017-12-01

    Full Text Available Heavy metal contamination of soil occurs when heavy metals are introduced to soil through human activities, leading to the gradual deterioration of the ecology and environment. Microorganism activity reflects the intensity of various biochemical reactions in soil, and changes in it reflect the level of heavy metal pollution affecting the soil. The effects were studied of heavy metal Cd on the microbial activity of soil at different concentrations by investigating the respiratory intensity, urease activity, and catalase activity in forest soil and garden soil. The results showed that the respiratory intensity, urease and catalase activities in the garden soil were all higher than in the forest soil. Cd has obvious inhibitory effects on microbial activities. The three parameters exhibited a downward trend with increasing concentrations of Cd. Catalase activity increased when the mass concentration of Cd reached 1.0 mg/kg, indicating that low concentrations of Cd can promote the activity of some microorganisms. Respiratory intensity and urease activity also increased when the concentration reached 10.0 mg/kg, showing that respiratory intensity and urease activity have strong response mechanisms to adverse conditions. The effective state of Cd in soil, as well as inhibition of microbial activity, decreased with incubation time.

  3. Reliability and stability of immobilization remediation of Cd polluted soils using sepiolite under pot and field trials

    International Nuclear Information System (INIS)

    Sun, Yuebing; Xu, Yi; Xu, Yingming; Wang, Lin; Liang, Xuefeng; Li, Ye

    2016-01-01

    Long-term effectiveness and persistence are two important criterias to evaluate alternative remediation technology of heavy metal polluted soils. Pot and field studies showed addition of sepiolite was effective in immobilizing Cd in polluted soils, with significant reduction in TCLP extracts (0.6%–49.6% and 4.0%–32.5% reduction in pot and field experiments, respectively) and plant uptake (14.4%–84.1% and 22.8%–61.4% declines in pot and field studies, correspondingly). However, the applications of sepiolite offered a limited guarantee for the safety of edible vegetables in Cd-polluted soils, depending on the soil type, the Cd pollution type and level, and the dose and application frequency of chemical amendments. Bioassays, such as plant growth, soil enzymatic activities and microbial community diversity, indicated a certain degree of recovery of soil metabolic function. Therefore, sepiolite-assisted in situ remediation is cost-effective, environmentally friendly, and technically applicable, and can be successfully used to reduce Cd enter into the food chain on field scale. - Highlights: • Sepiolite has reliability and stability for remediation of contaminated Cd. • Sepiolite significantly decreases Cd bioavailability in soil and uptake in plant. • The treatment of sepiolite improves soil quality. - Sepiolite not only decreased soil Cd bioavailability and plant Cd uptake, but also improved soil quality.

  4. Bioavailability of Cd in 110 polluted topsoils to recombinant bioluminescent sensor bacteria. Effect of soil particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Ivask, Angela; Pollumaa, Lee; Kahru, Anne [National Inst. of Chemical Physics and Biophysics, Lab. of Molecular Genetics, Tallin (Estonia); Dubourguier, Henri-Charles [National Inst. of Chemical Physics and Biophysics, Lab. of Molecular Genetics, Tallin (Estonia); Estonian Univ. of Life Sciences, Tartu (Estonia); Inst. Superieur d' Agriculture, Lille (France)

    2011-02-15

    In this study, bioavailability and water extractability of Cd in a panel of 110 natural aged heavy metal-polluted soils from northern France containing up to 20.1 mg of Cd per kilogramme was evaluated. Materials and methods Particulate matter was removed by differential centrifugation of soil-water suspensions (liquid to solid ratio 10) resulting in soil-water extracts containing different size of particles. Chemical analysis of Cd and analysis of bioavailable Cd with recombinant bioluminescent Cd-sensing bacteria were applied in parallel to these fractionated soil solutions. Results and Discussion Extractability of Cd from soil to the aqueous phase was low-only 0.13% of the soil total Cd as a mean; however, Cd-sensing recombinant luminescent bacteria Bacillus subtilis incubated in soil-water suspensions for 2 h showed that in the conditions of contact exposure, the bioavailable fraction of Cd increased about 30-fold being 3.74% of the soil total Cd as a mean value. The total Cd content of soils was not a good predictor of either bioavailable or water-extracted fraction of Cd, but these fractions were rather determined by the combination of soil total Cd and physico-chemical properties-texture and organic matter content. Analysis of two selected ''model'' soils with Cd sensor bacteria showed that about 90% of the bioavailable Cd was associated with larger soil particles that were removed from the soil suspensions by centrifugation at 4,500 x g, and even settling of the soil suspensions for 2 h removed already 65% of bioavailable Cd. Conclusions Thus, our results indicate a potential for remarkably higher environmental hazard for soil-associated heavy metals than just aqueous exposure. (orig.)

  5. Metal pollution (Cd, Pb, Zn, and As) in agricultural soils and soybean, Glycine max, in southern China.

    Science.gov (United States)

    Zhao, Yunyun; Fang, Xiaolong; Mu, Yinghui; Cheng, Yanbo; Ma, Qibin; Nian, Hai; Yang, Cunyi

    2014-04-01

    Crops produced on metal-polluted agricultural soils may lead to chronic toxicity to humans via the food chain. To assess metal pollution in agricultural soils and soybean in southern China, 30 soybean grain samples and 17 soybean-field soil samples were collected from 17 sites in southern China, and metal concentrations of samples were analyzed by graphite furnace atomic absorption spectrophotometer. The integrated pollution index was used to evaluate if the samples were contaminated by Cd, Pb, Zn and As. Results showed that Cd concentration of 12 samples, Pb concentration of 2 samples, Zn concentration of 2 samples, and As concentrations of 2 samples were above the maximum permissible levels in soils. The integrated pollution index indicated that 11 of 17 soil samples were polluted by metals. Metal concentrations in soybean grain samples ranged from 0.11 to 0.91 mg kg(-1) for Cd; 0.34 to 2.83 mg kg(-1) for Pb; 42 to 88 mg kg(-1) for Zn; and 0.26 to 5.07 mg kg(-1) for As, which means all 30 soybean grain samples were polluted by Pb, Pb/Cd, Cd/Pb/As or Pb/As. Taken together, our study provides evidence that metal pollution is an important concern in agricultural soils and soybeans in southern China.

  6. Effects of Diatomite Organic Fertilizer on Cd and Zn Forms and Availability of Cd-Zn Polluted Soil

    OpenAIRE

    LIN Ji; CHENG Chen; HAN Ming-qiang; LI Song-xing; MA Xiao-rui; LI Yan

    2014-01-01

    An indoor soil cultivation experiment was carried out to study the effects of diatomite organic fertilizer on the forms and the avail-ability of Cd, Zn in soil. The results showed that the soil pH increased, the soil available Cd and Zn reduced after diatomite organic fertilizer application in contaminated soil. Diatomite organic fertilizer application decreased the contents of exchangeable form and weakly-bound-to organic form of Cd and Zn significantly, but increased the contents of strongl...

  7. Effects of Diatomite Organic Fertilizer on Cd and Zn Forms and Availability of Cd-Zn Polluted Soil

    Directory of Open Access Journals (Sweden)

    LIN Ji

    2014-08-01

    Full Text Available An indoor soil cultivation experiment was carried out to study the effects of diatomite organic fertilizer on the forms and the avail-ability of Cd, Zn in soil. The results showed that the soil pH increased, the soil available Cd and Zn reduced after diatomite organic fertilizer application in contaminated soil. Diatomite organic fertilizer application decreased the contents of exchangeable form and weakly-bound-to organic form of Cd and Zn significantly, but increased the contents of strongly-bound-to organic form and residual form of Cd and Zn in con-taminated soil. Statistics analysis showed that the contents of exchangeable and weakly-bound-to organic form of Cd and Zn had highly sig-nificant relation to the content of soil available Cd and Zn(P<0.01. The contents of Mn oxide-occluded Cd had significant relation to the con-tent of soil available Cd(P<0.05. Comparing the treatments of diatomite organic fertilizer with the rate of 5%and 10%soil weight, there was no significant difference in soil pH, the contents of soil available Cd, Zn and the forms of Cd, Zn.

  8. Heavy metal content (Cd, Ni, Cr and Pb) in soil amendment with a low polluted biosolid

    Science.gov (United States)

    Gomez Lucas, Ignacio; Lag Brotons, Alfonso; Navarro-Pedreño, Jose; Belén Almendro-Candel, Maria; Jordán, Manuel M.; Bech, Jaume; Roca, Nuria

    2016-04-01

    The progressively higher water quality standards in Europe has led to the generation of large quantities of sewage sludge derived from wastewater treatment (Fytili and Zabaniotou 2008). Composting is an effective method to minimize these risks, as pathogens are biodegraded and heavy metals are stabilized as a result of organic matter transformations (Barker and Bryson 2002; Noble and Roberts 2004). Most of the studies about sewage sludge pollution are centred in medium and high polluted wastes. However, the aim of this study was to assess the effects on soil heavy metal content of a low polluted sewage sludge compost in order to identify an optimal application rate based in heavy metal concentration under a period of cultivation of a Mediterranean horticultural plant (Cynara carducnculus). The experiment was done between January to June: rainfall was 71 mm, the volume of water supplied every week was 10.5 mm, mean air temperatures was 14.2, 20.4 (maximum), and 9.2◦C (minimum). The soil was a clay-loam anthrosol (WRB 2006). The experimental plot (60 m2) was divided into five subplots with five treatments corresponding to 0, 2, 4, 6, and 8 kg compost/m2. Three top-soil (first 20 cm) samples from each treatment were taken (January, April and June) and these parameters were analysed: pH, electrical conductivity, organic matter and total content of heavy metals (microwave acid digestion followed by AAS-spectrometry determination). The results show that sewage sludge compost treatments increase the organic matter content and salinity (electrical conductivity of the soils) and diminish the pH. Cd and Ni total content in top-soil was affected and both slightly reduce their concentration. Pb and Cr show minor changes. In general, the application of this low polluted compost may affect the mobility of Cd and Ni due to the pH modification and the water added by irrigation along time but Pb and Cr remain their content in the top-soil. References Barker, A.V., and G.M. Bryson

  9. Affects of mining activities on Cd pollution to the paddy soils and rice grain in Hunan province, Central South China.

    Science.gov (United States)

    Du, Yan; Hu, Xue-Feng; Wu, Xiao-Hong; Shu, Ying; Jiang, Ying; Yan, Xiao-Juan

    2013-12-01

    Located in Central South China, Hunan province is rich in mineral resources. To study the influence of mining on Cd pollution to local agricultural eco-system, the paddy soils and rice grain of Y county in northern Hunan province were intensively monitored. The results were as follows: (1) Total Cd (T-Cd) content in the soils of the county ranges from 0.13 to 6.02 mg kg(-1), with a mean of 0.64 mg kg(-1), of which 57.5% exceed the allowable limit specified by the China Soil Environmental Quality Standards. T-Cd in the soils varies largely, with the coefficient of variation reaching 146.4%. The spatial distribution of T-Cd in the soils quite matches with that of mining and industries. The content of HCl-extractable Cd (HCl-Cd) in the soils ranges from 0.02 to 2.17 mg kg(-1), with a mean of 0.24 mg kg(-1). A significant positive correlation exists between T-Cd and HCl-Cd in the soils (r = 0.770, ρ soils (r = 0.091, ρ > 0.05), which suggests that the amount of Cd accumulating in the rice is more affected by its availability in the soils, rather than the total content. (4) The dietary intake of Cd via rice consumption in Y county is estimated to be 179.9 μg day(-1) person(-1) on average, which is far beyond the allowable limit specified by FAO/WHO and the target hazard quotients of Cd much higher than 1, suggesting the high risk on human health from Cd exposure.

  10. Reliability and stability of immobilization remediation of Cd polluted soils using sepiolite under pot and field trials.

    Science.gov (United States)

    Sun, Yuebing; Xu, Yi; Xu, Yingming; Wang, Lin; Liang, Xuefeng; Li, Ye

    2016-01-01

    Long-term effectiveness and persistence are two important criterias to evaluate alternative remediation technology of heavy metal polluted soils. Pot and field studies showed addition of sepiolite was effective in immobilizing Cd in polluted soils, with significant reduction in TCLP extracts (0.6%-49.6% and 4.0%-32.5% reduction in pot and field experiments, respectively) and plant uptake (14.4%-84.1% and 22.8%-61.4% declines in pot and field studies, correspondingly). However, the applications of sepiolite offered a limited guarantee for the safety of edible vegetables in Cd-polluted soils, depending on the soil type, the Cd pollution type and level, and the dose and application frequency of chemical amendments. Bioassays, such as plant growth, soil enzymatic activities and microbial community diversity, indicated a certain degree of recovery of soil metabolic function. Therefore, sepiolite-assisted in situ remediation is cost-effective, environmentally friendly, and technically applicable, and can be successfully used to reduce Cd enter into the food chain on field scale. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Eisenia fetida avoidance behavior as a tool for assessing the efficiency of remediation of Pb, Zn and Cd polluted soil

    International Nuclear Information System (INIS)

    Udovic, Metka; Lestan, Domen

    2010-01-01

    Remediation by means of soil leaching with ethylenediaminetetraacetic acid (EDTA) is capable of extracting the most labile soil fractions, leaving the residual metals in biologically non-available forms. We evaluated the feasibility of the standardized earthworm (Eisenia fetida) avoidance test for assessing the efficiency of soil remediation of Pb, Zn and Cd polluted soil. Chemical extraction tests (six-step sequential extraction, toxicity characteristic leaching procedure, physiologically based extraction test, diethylenediaminepentaacetic acid extraction) indicated that the mobility, oral bioaccessibility and phytoavailability of Pb, Zn and Cd were consistently reduced. However, the avoidance test showed no significant avoidance of polluted soil in favor of that which had been remediated. Pb, Zn and Cd accumulation in E. fetida mirrored the decreasing pattern of metal potential bioavailability gained by leaching the soil with increasing EDTA concentrations. The calculated bioaccumulation factors indicated the possibility of underestimating the metal bioavailability in soil using chemical extraction tests. - Tests with indicator organisms should be used for a more meaningful and holistic assessment of metal biological availability in polluted and remediated soil.

  12. Eisenia fetida avoidance behavior as a tool for assessing the efficiency of remediation of Pb, Zn and Cd polluted soil

    Energy Technology Data Exchange (ETDEWEB)

    Udovic, Metka [Centre for Soil and Environmental Science, Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Sl-1000 Ljubljana (Slovenia); Lestan, Domen, E-mail: domen.lestan@bf.uni-lj.s [Centre for Soil and Environmental Science, Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Sl-1000 Ljubljana (Slovenia)

    2010-08-15

    Remediation by means of soil leaching with ethylenediaminetetraacetic acid (EDTA) is capable of extracting the most labile soil fractions, leaving the residual metals in biologically non-available forms. We evaluated the feasibility of the standardized earthworm (Eisenia fetida) avoidance test for assessing the efficiency of soil remediation of Pb, Zn and Cd polluted soil. Chemical extraction tests (six-step sequential extraction, toxicity characteristic leaching procedure, physiologically based extraction test, diethylenediaminepentaacetic acid extraction) indicated that the mobility, oral bioaccessibility and phytoavailability of Pb, Zn and Cd were consistently reduced. However, the avoidance test showed no significant avoidance of polluted soil in favor of that which had been remediated. Pb, Zn and Cd accumulation in E. fetida mirrored the decreasing pattern of metal potential bioavailability gained by leaching the soil with increasing EDTA concentrations. The calculated bioaccumulation factors indicated the possibility of underestimating the metal bioavailability in soil using chemical extraction tests. - Tests with indicator organisms should be used for a more meaningful and holistic assessment of metal biological availability in polluted and remediated soil.

  13. Immobilization remediation of Cd-polluted soil with different water condition.

    Science.gov (United States)

    Li, Jianrui; Xu, Yingming

    2017-05-15

    To demonstrate effects of water management on soil Cd immobilization using palygorskite, the investigation evaluated impacts of palygorskite on uptake of Cd present in soils with different water condition by rice plant. Pot experiment results showed that, pH, available Fe and P in untreated soils were higher in continuous flooding than in traditional irrigation and wetting irrigation, which were reasons for lower soil exchangeable Cd and plant Cd in continuous flooding. In control group (untreated soils), compared to traditional irrigation, continuous flooding reduced brown rice Cd by 37.9%, that in wetting irrigation increased by 31.0%. At palygorskite concentrations of 5 g kg -1 , 10 g kg -1 and 15 g kg -1 , brown rice Cd reduced by 16.7%, 44.4% and 55.6% under continuous flooding, 13.8%, 34.5% and 44.8% under traditional irrigation, 13.1%, 36.8% and 47.3% under wetting irrigation (p soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Phytoavailability of cadmium (Cd) to Pak choi (Brassica chinensis L.) grown in Chinese soils: a model to evaluate the impact of soil Cd pollution on potential dietary toxicity.

    Science.gov (United States)

    Rafiq, Muhammad Tariq; Aziz, Rukhsanda; Yang, Xiaoe; Xiao, Wendan; Stoffella, Peter J; Saghir, Aamir; Azam, Muhammad; Li, Tingqiang

    2014-01-01

    Food chain contamination by soil cadmium (Cd) through vegetable consumption poses a threat to human health. Therefore, an understanding is needed on the relationship between the phytoavailability of Cd in soils and its uptake in edible tissues of vegetables. The purpose of this study was to establish soil Cd thresholds of representative Chinese soils based on dietary toxicity to humans and develop a model to evaluate the phytoavailability of Cd to Pak choi (Brassica chinensis L.) based on soil properties. Mehlich-3 extractable Cd thresholds were more suitable for Stagnic Anthrosols, Calcareous, Ustic Cambosols, Typic Haplustalfs, Udic Ferrisols and Periudic Argosols with values of 0.30, 0.25, 0.18, 0.16, 0.15 and 0.03 mg kg-1, respectively, while total Cd is adequate threshold for Mollisols with a value of 0.86 mg kg-1. A stepwise regression model indicated that Cd phytoavailability to Pak choi was significantly influenced by soil pH, organic matter, total Zinc and Cd concentrations in soil. Therefore, since Cd accumulation in Pak choi varied with soil characteristics, they should be considered while assessing the environmental quality of soils to ensure the hygienically safe food production.

  15. Phytoavailability of Cadmium (Cd) to Pak Choi (Brassica chinensis L.) Grown in Chinese Soils: A Model to Evaluate the Impact of Soil Cd Pollution on Potential Dietary Toxicity

    Science.gov (United States)

    Yang, Xiaoe; Xiao, Wendan; Stoffella, Peter J.; Saghir, Aamir; Azam, Muhammad; Li, Tingqiang

    2014-01-01

    Food chain contamination by soil cadmium (Cd) through vegetable consumption poses a threat to human health. Therefore, an understanding is needed on the relationship between the phytoavailability of Cd in soils and its uptake in edible tissues of vegetables. The purpose of this study was to establish soil Cd thresholds of representative Chinese soils based on dietary toxicity to humans and develop a model to evaluate the phytoavailability of Cd to Pak choi (Brassica chinensis L.) based on soil properties. Mehlich-3 extractable Cd thresholds were more suitable for Stagnic Anthrosols, Calcareous, Ustic Cambosols, Typic Haplustalfs, Udic Ferrisols and Periudic Argosols with values of 0.30, 0.25, 0.18, 0.16, 0.15 and 0.03 mg kg−1, respectively, while total Cd is adequate threshold for Mollisols with a value of 0.86 mg kg−1. A stepwise regression model indicated that Cd phytoavailability to Pak choi was significantly influenced by soil pH, organic matter, total Zinc and Cd concentrations in soil. Therefore, since Cd accumulation in Pak choi varied with soil characteristics, they should be considered while assessing the environmental quality of soils to ensure the hygienically safe food production. PMID:25386790

  16. Phytoavailability of cadmium (Cd to Pak choi (Brassica chinensis L. grown in Chinese soils: a model to evaluate the impact of soil Cd pollution on potential dietary toxicity.

    Directory of Open Access Journals (Sweden)

    Muhammad Tariq Rafiq

    Full Text Available Food chain contamination by soil cadmium (Cd through vegetable consumption poses a threat to human health. Therefore, an understanding is needed on the relationship between the phytoavailability of Cd in soils and its uptake in edible tissues of vegetables. The purpose of this study was to establish soil Cd thresholds of representative Chinese soils based on dietary toxicity to humans and develop a model to evaluate the phytoavailability of Cd to Pak choi (Brassica chinensis L. based on soil properties. Mehlich-3 extractable Cd thresholds were more suitable for Stagnic Anthrosols, Calcareous, Ustic Cambosols, Typic Haplustalfs, Udic Ferrisols and Periudic Argosols with values of 0.30, 0.25, 0.18, 0.16, 0.15 and 0.03 mg kg-1, respectively, while total Cd is adequate threshold for Mollisols with a value of 0.86 mg kg-1. A stepwise regression model indicated that Cd phytoavailability to Pak choi was significantly influenced by soil pH, organic matter, total Zinc and Cd concentrations in soil. Therefore, since Cd accumulation in Pak choi varied with soil characteristics, they should be considered while assessing the environmental quality of soils to ensure the hygienically safe food production.

  17. Pollution of soils (Pb, Cd, Cr, Zn, Cu, Ni) along the ring road of Wrocław (Poland)

    Science.gov (United States)

    Hołtra, Anna; Zamorska-Wojdyła, Dorota

    2017-11-01

    The concentrations of metallic pollution in soils and plants along the ring road of Wrocław, Poland, have been determined. Environmental samples were collected from the surface layer of the profile within 2-3 m from the edge of the road. The analysis of metals (Pb, Cd, Cr, Zn, Cu and Ni) has been carried out through FAAS and GFAAS methods. The mineralizates of soils and plants were prepared in HNO3, 65% supra pure, using the Microwave Digestion System. The pH and conductivity of the soil solutions were measured to evaluate their active and exchangeable acidity and the salinity of the soils. The index of the enrichment of soils in metals (Wn) and the bioaccumulation coefficient (WB) have been determined. Also, histograms of the frequency of the occurrence of metals in the environmental samples and the Pearson's correlation coefficients were presented. The results of metal concentrations in soils were compared to the geochemical background in uncontaminated soils of Poland. The assessment of the results in the soils was also made relative to the standard, according to the Polish Ministry of Environment Regulation from September 1st, 2016. During the assessment of the bioaccumulation coefficients of metals in plants a reference was made to the content of undesirable substances in feed in agreement with the Polish Ministry of Agriculture and Rural Development Regulation from January 23rd, 2007.

  18. Bio-remediation of Pb and Cd polluted soils by switchgrass: A case study in India.

    Science.gov (United States)

    Arora, Kalpana; Sharma, Satyawati; Monti, Andrea

    2016-01-01

    In the present study bioremediation potential of a high biomass yielding grass, Panicum virgatum (switchgrass), along with plant associated microbes (AM fungi and Azospirillum), was tested against lead and cadmium in pot trials. A pot trial was set up in order to evaluate bioremediation efficiency of P. virgatum in association with PAMs (Plant Associated Microbes). Growth parameters and bioremediation potential of endomycorrhizal fungi (AMF) and Azospirillum against different concentrations of Pb and Cd were compared. AM fungi and Azospirillum increased the root length, branches, surface area, and root and shoot biomass. The soil pH was found towards neutral with AMF and Azospirillum inoculations. The bioconcentration factor (BCF) for Pb (12 mg kg(-1)) and Cd (10 mg kg(-1)) were found to be 0.25 and 0.23 respectively and translocation index (Ti) was 17.8 and 16.7 respectively (approx 45% higher than control). The lower values of BCF and Ti, even at highest concentration of Pb and Cd, revealed the capability of switchgrass of accumulating high concentration of Pb and Cd in the roots, while preventing the translocation of Pb and Cd to aerial biomass.

  19. Interactive effect of Brevibacillus brevis and Glomus mosseae, both isolated from Cd contaminated soil, on plant growth, physiological mycorrhizal fungal characteristics and soil enzymatic activities in Cd polluted soil

    International Nuclear Information System (INIS)

    Vivas, A.; Barea, J.M.; Azcon, R.

    2005-01-01

    The interaction between two autochthonous microorganisms (Brevibacillus brevis and Glomus mosseae) isolated from Cd amended soil increased plant growth, arbuscular mycorrhizal (AM) colonization and physiological characteristics of the AM infection (measured as SDH or ALP activities). The enhanced plant Cd tolerance after coinoculation with native microorganisms seemed to be a consequence of increased P and K acquisition and, simultaneously, of decreased concentration of Cd, Cr, Mn, Cu, Mo, Fe and Ni in plant tissue. Autochthonous microbial strains were more efficient for nutrient uptake, to immobilize metals and decrease their translocation to the shoot than reference G. mosseae (with or without bacteria). Indole acetic acid produced by B. brevis may be related to its ability for improving root growth, nodule production and AM fungal intra and extraradical development. Dehydrogenase, phosphatase and β-glucosidase activities, indicative of microbial metabolism and soil fertility, were maximized by the coinoculation of autochthonous microorganisms in cadmium polluted conditions. As a consequence, the use of native microorganisms may result very efficient in bioremediation. - Endemic isolates of bacteria and fungi were effective in bioremediation

  20. Identification of rice cultivar with exclusive characteristic to Cd using a field-polluted soil and its foreground application.

    Science.gov (United States)

    Zhan, Jie; Wei, Shuhe; Niu, Rongcheng; Li, Yunmeng; Wang, Shanshan; Zhu, Jiangong

    2013-04-01

    Using low-accumulative plant, especially excluder crop, to safely produce food is one of the very important technologies of phytoremediation, which is practical to safe production and long-term remediation of heavy metal-contaminated soil. A pot experiment using field cadmium (Cd)-contaminated soil (Cd concentration was 0.75 mg kg(-1)) was conducted to compare Cd accumulation differences among 39 normal rice cultivars (Japonica) in Shenyang region of China for food safety and high grain yield aim. The results showed that brown grain Cd concentration in 12 rice cultivars of a total of 39 tested cultivars was lower than 0.2 mg kg(-1) (Agricultural Trade Standard of Nonpollution Food for Rice of China, NY 5115-2008). In these 12 cultivars, Cd enrichment factors (Cd concentration ratio in shoot to that in soil) of nine cultivars were lower than 1. Likewise, Cd translocation factors (Cd concentration ratio in shoot to that in root) of eight cultivars were lower than the 0.28 average. Furthermore, grain yield per pot of seven cultivars were higher than the average 18.4 g pot(-1). Four cultivars, i.e., Shendao 5, Tianfu 1, Fuhe 90, and Yanfeng 47 showed Cd-exclusive characteristic and better foreground application.

  1. Soil pollution and soil protection

    OpenAIRE

    Haan, de, F.A.M.; Visser-Reijneveld, M.I.

    1996-01-01

    This book was compiled from lecture handouts prepared for the international postgraduate course on soil quality, entitled 'Soil Pollution and Soil Protection' given jointly by the universities of Wageningen (The Netherlands), Gent and Leuven (Belgium), under the auspices of the international Training Centre (PHLO) of Wageningen Agricultural University.Of the three environmental compartments air, water and soil, it is soil that varies most in composition under natural conditions. The effects o...

  2. Soil pollution and soil protection

    NARCIS (Netherlands)

    Haan, de F.A.M.; Visser-Reijneveld, M.I.

    1996-01-01

    This book was compiled from lecture handouts prepared for the international postgraduate course on soil quality, entitled 'Soil Pollution and Soil Protection' given jointly by the universities of Wageningen (The Netherlands), Gent and Leuven (Belgium), under the auspices of the international

  3. STUDY ON PHYTO-EXTRACTION BALANCE OF ZN, CD AND PB FROM MINE-WASTE POLLUTED SOILS BY USING FESTUCA ARUNDINACEA AND LOLIUM PERENNE SPECIES

    Directory of Open Access Journals (Sweden)

    B. LIXANDRU

    2009-05-01

    Full Text Available Through the cultivation of tall fescue (Festuca arundinacea and of perennial ryegrass for two years on a chernozem type of soil, in the Banat's plain area we investigated the phyto-extraction potential of Zn, Cd and Pb. In the experimental plot it has been incorporated a quantity of 20 kg of mine-waste per square meter, in a mass ratio of 1:2,5. The mine-waste polluting "contribution" was of 1209 mg Zn / kg d.s., 4.70 mg Cd / kg d.s. and 188.2 mg Pb / kg d.s. The metals content in the soil was determined at the two moments of biomass harvesting, and through balance calculations we could establish the phyto-extraction efficiency of the two foragegrasses species. The obtained results indicate that Festuca arundinacea has an average phyto-extraction yield of 50% for Zn and Cd in the soil; in the case of an ionic excess of 3,5 to 4 times, the phyto-extraction efficiency is reduced, more obvious in the case of Pb (lead ions. The species Lolium perenne registers a yield of almost 92% in the process of phyto-extraction of Zn. The yield values for Cd si Pb are lower, but comparable with the control plot. Unlike Festuca arundinacea, the Lollium perenne species tolerates better the Cd and Pb ionic excess.

  4. Earthworms and Soil Pollutants

    Directory of Open Access Journals (Sweden)

    Kazuyoshi Tamae

    2011-11-01

    Full Text Available Although the toxicity of metal contaminated soils has been assessed with various bioassays, more information is needed about the biochemical responses, which may help to elucidate the mechanisms involved in metal toxicity. We previously reported that the earthworm, Eisenia fetida, accumulates cadmium in its seminal vesicles. The bio-accumulative ability of earthworms is well known, and thus the earthworm could be a useful living organism for the bio-monitoring of soil pollution. In this short review, we describe recent studies concerning the relationship between earthworms and soil pollutants, and discuss the possibility of using the earthworm as a bio-monitoring organism for soil pollution.

  5. Impact of shallowly deposited ore-bearing dolomites on local soil pollution aureoles of As, Cd, Pb, and Zn in an old mining area

    Energy Technology Data Exchange (ETDEWEB)

    Fabijanczyk, Piotr; Zawadzki, Jaroslaw [Warsaw Univ. of Technology (Poland). Environmental Engineering Faculty

    2012-10-15

    The study area, located in Upper Silesian Industrial Region, was rich in significant amounts of ores that were classified of Mississippi Valley type. Being these ores especially rich in Pb and Zn, an intense development of mining and ore extraction industry was verified in this area. The goal of this study was to investigate how local pollution aureoles of As, Cd, Pb, and Zn were influenced by the presence of shallowly deposited ore-bearing dolomites. Very extensive sampling campaign was carried out, and over 1,000 samples were collected in the area of about 150 km{sup 2}. Local aureoles of investigated metals were calculated for two soil layers. The first one covered the part of soil core from the soil surface to the depth of 20 cm and the second one from the depth of 40 cm to the depth of 60 cm. All spatial distributions of particular metals in soil were calculated by means of ordinary kriging using free softwares QGIS and SAGA. Maximum concentrations of Pb and Zn in soil in study area were very high, reaching over 24,000 and 77,000 mg/kg, respectively. Maximum concentrations of As and Cd were also very high, reaching about 1,000 mg/kg. Those maximum values were observed in the direct vicinity of the Boles?aw mine and its mine dumps. Almost all local aureoles were located within the range of ore-bearing dolomites. It was especially visible for Pb and Zn, minerals very common in ore deposits. Otherwise, local aureoles of As and Cd were more related with the vicinity of mines and other pollution sources, being more associated to the anthropogenic pollution than to the presence of ore-bearing dolomites. The aureoles of Pb and Zn, and in moderate degree of As, were associated with a mineral composition of ores. Differently, the location, the shape, and spatial pattern of Cd aureoles suggest that they were mostly influenced by anthropogenic pollution. Anthropogenic factors were dominating over the lithogenic ones and masking the influence of the shallowly deposited

  6. Soil bacteria for remediation of polluted soils

    Energy Technology Data Exchange (ETDEWEB)

    Springael, D; Bastiaens, L; Carpels, M; Mergaey, M; Diels, L

    1996-09-18

    Soil bacteria, specifically adapted to contaminated soils, may be used for the remediation of polluted soils. The Flemish research institute VITO has established a collection of bacteria, which were isolated from contaminated areas. This collection includes microbacteria degrading mineral oils (Pseudomonas sp., Acinetobacter sp. and others), microbacteria degrading polycyclic aromatic hydrocarbons (genera Sphingomonas and Mycobacterium), microbacteria degrading polychlorobiphenyls (genus Ralstonia and strains related to beta-Proteobacteria), and metal resistant bacteria with plasmid borne resistances to Cd, Zn, Ni, Co, Cu, Hg, and Cr. Bench-scale reactors were developed to investigate the industrial feasibility of bioremediation. Batch Stirred Tank Reactors were used to evaluate the efficiency of oil degraders. Soils, contaminated with non-ferrous metals, were treated using a Bacterial Metal Slurry Reactor. It was found that the reduction of the Cd concentration may vary strongly from sample to sample: reduction factors vary from 95 to 50%. Is was shown that Cd contained in metallic sinter and biologically unavailable Cd could not be removed.

  7. STUDY ON PHYTOEXTRACTION BALANCE OF ZN, CD, PB FROM MINE-WASTE POLLUTED SOILS BY USING MEDICAGO SATIVA AND TRIFOLIUM PRATENSE SPECIES

    Directory of Open Access Journals (Sweden)

    B. LIXANDRU

    2009-05-01

    Full Text Available For a term of two years was studied phytoextractive potential of Zn, Cd and Pb using successive culture of alfalfa (Medicago sativa and red clover (Trifolium pratense. In the experimental plot was incorporated a quantity of 20 kg mine waste per square meter, providing in soil 1209 mg Zn/kg d.s., 4.70 mg Cd/kg d.s. and 188.2 mg Pb/kg d.s. The metals content accumulated in plants was determined at the two moments of biomass harvesting, and through balance calculations we could establish the phytoextraction efficiency of the two forage-grasses species. The obtained results indicate that both perennial forage-legumes species have a good phytoextractive capacity and tolerance for Zn and Pb, especially Trifolium pratense specie. By using this species as phytoextractors on soil polluted with 3.76 times more Pb and 4.03 times more Zn, is provided the reduction of metallic ions concentration in soil to limits admitted by laws in a period of 3, respectively, 4 years.

  8. Geochemical position of Pb, Zn and Cd in soils near the Olkusz mine/smelter, South Poland: effects of land use, type of contamination and distance from pollution source.

    Science.gov (United States)

    Chrastný, Vladislav; Vaněk, Aleš; Teper, Leslaw; Cabala, Jerzy; Procházka, Jan; Pechar, Libor; Drahota, Petr; Penížek, Vít; Komárek, Michael; Novák, Martin

    2012-04-01

    The soils adjacent to an area of historical mining, ore processing and smelting activities reflects the historical background and a mixing of recent contamination sources. The main anthropogenic sources of metals can be connected with historical and recent mine wastes, direct atmospheric deposition from mining and smelting processes and dust particles originating from open tailings ponds. Contaminated agriculture and forest soil samples with mining and smelting related pollutants were collected at different distances from the source of emission in the Pb-Zn-Ag mining area near Olkusz, Upper Silesia to (a) compare the chemical speciation of metals in agriculture and forest soils situated at the same distance from the point source of pollution (paired sampling design), (b) to evaluate the relationship between the distance from the polluter and the retention of the metals in the soil, (c) to describe mineralogy transformation of anthropogenic soil particles in the soils, and (d) to assess the effect of deposited fly ash vs. dumped mining/smelting waste on the mobility and bioavailability of metals in the soil. Forest soils are much more affected with smelting processes than agriculture soils. However, agriculture soils suffer from the downward metal migration more than the forest soils. The maximum concentrations of Pb, Zn, and Cd were detected in a forest soil profile near the smelter and reached about 25 g kg(- 1), 20 g kg(- 1) and 200 mg kg(- 1) for Pb, Zn and Cd, respectively. The metal pollutants from smelting processes are less stable under slightly alkaline soil pH then acidic due to the metal carbonates precipitation. Metal mobility ranges in the studied forest soils are as follows: Pb > Zn ≈ Cd for relatively circum-neutral soil pH (near the smelter), Cd > Zn > Pb for acidic soils (further from the smelter). Under relatively comparable pH conditions, the main soil properties influencing metal migration are total organic carbon and cation exchange

  9. Forest Soil Pollution with Heavy Metals (Pb, Zn, Cd, and Cu in the Area of the “French Mines” on the Medvednica Mountain, Republic of Croatia

    Directory of Open Access Journals (Sweden)

    Ivan Perković

    2017-01-01

    Full Text Available Background and Purpose: This paper deals with the results of the investigation of the selected heavy metal contents in forest soil in the region of an abandoned mine. The analysis of the forest ecosystem soil on the Medvednica Mountain was conducted in the region of the so-called “French Mines” (FM. The elements selected for analyses were cadmium (Cd, copper (Cu, lead (Pb, and zinc (Zn because of their toxicological characteristics. Material and Methods: In the investigated area - five entrances of the FM - composite topsoil samples (0–5 cm were taken. Those samples were compared to the control samples which were taken outside the area affected by mines. The soil samples were analysed for the following parameters: pH, particle size distribution, organic C content and pseudo-total mass fractions of the selected heavy metals. The heavy metals were determined by atomic emission spectrometry with inductively coupled plasma (ICP-MS. Results and Conclusion: The results reveal that the soil is locally polluted, i.e. the highest mass fraction values of these four heavy metals were found in the area of the FM. Average pseudo-total fraction of Cd in the analysed topsoil samples was in the range of 0.17–4.41 mg·kg−1 (median: 0.97 mg·kg−1. Cu was found in the range of 4.54–1260 mg·kg−1 (median: 45.7 mg·kg−1. In the case of Zn, mass fraction values were found in the range of 36.8–865 mg·kg−1 (median: 137 mg·kg−1. Finally, average values of the pseudo-total fraction of Pb were found in the range of 58.4–12000 mg·kg−1 (median: 238 mg·kg−1. The results reveal that mining activities leave consequences on soil for a long time.

  10. Soil, a sponge for pollutants

    OpenAIRE

    Lichtfouse , Eric

    1997-01-01

    This article is written both in English and French; International audience; This preface of the special issue entitled "Soil Pollutants" (Analusis Magazine 25, M16-M72, 1997) highlights major basic and applied issues about the sources and fate of organic, mineral and radioactive pollutants in soils. Soils have long been considered as a closed and inert medium where wastes can be dumped without impact on living organisms. This is false and we know now that soils play a vital role in ecosystems...

  11. Kinetics of soil dehydrogenase in response to exogenous Cd toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xiangping [College of Natural Resources and Environment, Northwest A& F University, Yangling, 712100, Shaanxi (China); Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, CAS 723 Xingke Rd., Tianhe District, Guangzhou 510650 (China); Wang, Ziquan; Lu, Guannan [College of Natural Resources and Environment, Northwest A& F University, Yangling, 712100, Shaanxi (China); He, Wenxiang, E-mail: wenxianghe@nwafu.edu.cn [College of Natural Resources and Environment, Northwest A& F University, Yangling, 712100, Shaanxi (China); Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Northwest A& F University, Yangling, 712100, Shaanxi (China); Wei, Gehong [College of Life Sciences, Northwest A& F University, Yangling, 712100, Shaanxi (China); Huang, Feng; Xu, Xinlan; Shen, Weijun [Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, CAS 723 Xingke Rd., Tianhe District, Guangzhou 510650 (China)

    2017-05-05

    Highlights: • pH explained 30–45% of the dehydrogenase activity (DHA), V{sub max}, and K{sub m} variations across soils. • Different inhibition mechanism of Cd to DHA varied soil types. • Soil properties and inhibition constant affect the toxicity of Cd. • Reaction constant (k) could indicate sensitively the toxicity of Cd to DHA. - Abstract: Soil dehydrogenase plays a role in the biological oxidation of soil organic matter and can be considered a good measure of the change of microbial oxidative activity under environmental pollutions. However, the kinetic characteristic of soil dehydrogenase under heavy metal stresses has not been investigated thoroughly. In this study, we characterized the kinetic characteristic of soil dehydrogenase in 14 soil types, and investigated how kinetic parameters changed under spiked with different concentrations of cadmium (Cd). The results showed that the K{sub m} and V{sub max} values of soil dehydrogenase was among 1.4–7.3 mM and 15.9–235.2 μM h{sup −1} in uncontaminated soils, respectively. In latosolic red soil and brown soil, the inhibitory kinetic mechanism of Cd to soil dehydrogenase was anticompetitive inhibition with inhibition constants (K{sub i}) of 12 and 4.7 mM, respectively; in other soils belonged to linear mixed inhibition, the values of K{sub i} were between 0.7–4.2 mM. Soil total organic carbon and K{sub i} were the major factors affecting the toxicity of Cd to dehydrogenase activity. In addition, the velocity constant (k) was more sensitive to Cd contamination compared to V{sub max} and K{sub m}, which was established as an early indicator of gross changes in soil microbial oxidative activity caused by Cd contamination.

  12. Cd pollution and ecological risk assessment for mining activity zone in Karst Area

    Science.gov (United States)

    Yang, B.; He, J. L.; Wen, X. M.; Tan, H.

    2017-08-01

    The monitored soil samples were collected from farmland in the area with mining activity in Karst area in Liupanshui. In this article, moss bag technology and TSP were used simultaneously for Cd transportation and deposition in the study area. Geostatistics and GIS were then used for the spatial distribution of Cd in the soil. Afterwards, Cd pollution to the soil environment and human health was studied by using the geo-accumulation index and potential ecological risk index methods. The results indicated that atmospheric deposition is the major route of Cd pollution. A moderate to strong pollution of Cd in the area and the degree of potential ecological risk was in a high level in the study area. Furthermore, Cd pollution in Liupanshui may originate from mining activity and atmospheric deposition.

  13. Soil, a sponge for pollutants

    International Nuclear Information System (INIS)

    Lichtfouse, E.

    1997-01-01

    Soil has been regarded for a long time as an inert and closed medium where it was possible to dump any kind of hazardous wastes without implications on living organisms. But all pollutants entering the soil system can be stocked, transformed (often into more hazardous compounds) and transferred towards the atmosphere, groundwater and rivers. Obviously, the building up of toxic wastes into the soil system is a risk for all living beings. Pollution sources are numerous and diverse. They are given here into details. To follow the path of pollutants into the soil puzzle, with emphasis on the determination of bound residues, analytical experiments using labelled elements are by far the most efficient. But as a matter of fact, real toxicity can only be measured with biological tests, where living organisms such as light-emitting bacteria or plants are grown in contact with the toxic media. In order to minimize the diffusion of pollutants toward other natural media, a wide panel of remediation techniques are under development. Incineration and thermal desorption, for instance, are fast. Alternatively, the spreading of detergents onto the soil surface solubilizes pollutants that are later water-washed toward other media. Nonetheless, it is rarely complete and favors the migration of the pollutants toward groundwater, rivers and other ecosystems. On the other hand, mild, low-cost and efficient biological methods are now developing rapidly. Their principle lies on the natural ability of living organisms to extract and degrade toxic molecules. Lastly, plants may be used to remedy polluted soils, a process called ''phyto-remediation''. Its principles lies on two main phenomena. Firstly, some plant species are able to selectively extract large amounts of heavy metals from the ground then store them. Secondly, plants activate strongly the microbial biomass by injection of exudate enriched in organic nutriments in the root zone called ''rhizosphere''. Thus, the microbes, well

  14. Remediation of Cd-contaminated soil around metal sulfide mines

    Science.gov (United States)

    Lu, Xinzhe; Hu, Xuefeng; Kang, Zhanjun; Luo, Fan

    2017-04-01

    The mines of metal sulfides are widely distributed in the southwestern part of Zhejiang Province, Southeast China. The activities of mining, however, often lead to the severe pollution of heavy metals in soils, especially Cd contamination. According to our field investigations, the spatial distribution of Cd-contaminated soils is highly consistent with the presence of metal sulfide mines in the areas, further proving that the mining activities are responsible for Cd accumulation in the soils. To study the remediation of Cd-contaminated soils, a paddy field nearby large sulfide mines, with soil pH 6 and Cd more than 1.56 mg kg-1, five times higher than the national recommended threshold, was selected. Plastic boards were deeply inserted into soil to separate the field and make experimental plots, with each plot being 4 m×4 m. Six treatments, TK01˜TK06, were designed to study the effects of different experimental materials on remediating Cd-contaminated soils. The treatment of TK01 was the addition of 100 kg zeolites to the plot; TK02, 100 kg apatites; TK03, 100 kg humid manure; TK04, 50 kg zeolites + 50 kg apatites; TK05, 50 kg zeolites + 50 kg humid manure; TK06 was blank control (CK). One month after the treatments, soil samples at the plots were collected to study the possible change of chemical forms of Cd in the soils. The results indicated that these treatments reduced the content of available Cd in the soils effectively, by a decreasing sequence of TK04 (33%) > TK02 (25%) > TK01 (23%) > TK05 (22%) > TK03 (15%), on the basis of CK. Correspondingly, the treatments also reduced the content of Cd in rice grains significantly, by a similar decreasing sequence of TK04 (83%) > TK02 (77%) > TK05 (63%) > TK01 (47%) > TK03 (27%). The content of Cd in the rice grains was 0.071 mg kg-1, 0.094 mg kg-1, 0.159 mg kg-1, 0.22 mg kg-1 and 0.306 mg kg-1, respectively, compared with CK, 0.418 mg kg-1. This experiment suggested that the reduction of available Cd in the soils is

  15. Effects of an iron-silicon material, a synthetic zeolite and an alkaline clay on vegetable uptake of As and Cd from a polluted agricultural soil and proposed remediation mechanisms.

    Science.gov (United States)

    Yao, Aijun; Wang, Yani; Ling, Xiaodan; Chen, Zhe; Tang, Yetao; Qiu, Hao; Ying, Rongrong; Qiu, Rongliang

    2017-04-01

    Economic and highly effective methods of in situ remediation of Cd and As polluted farmland in mining areas are urgently needed. Pot experiments with Brassica chinensis L. were carried out to determine the effects of three soil amendments [a novel iron-silicon material (ISM), a synthetic zeolite (SZ) and an alkaline clay (AC)] on vegetable uptake of As and Cd. SEM-EDS and XRD analyses were used to investigate the remediation mechanisms involved. Amendment with ISM significantly reduced the concentrations of As and Cd in edible parts of B. chinensis (by 84-94 % and 38-87 %, respectively), to levels that met food safety regulations and was much lower than those achieved by SZ and AC. ISM also significantly increased fresh biomass by 169-1412 % and 436-731 % in two consecutive growing seasons, while SZ and AC did not significantly affect vegetable growth. Correlation analysis suggested that it was the mitigating effects of ISM on soil acidity and on As and Cd toxicity, rather than nutrient amelioration, that contributed to the improvement in plant growth. SEM-EDS analysis showed that ISM contained far more Ca, Fe and Mn than did SZ or AC, and XRD analysis showed that in the ISM these elements were primarily in the form of silicates, oxides and phosphates that had high capacities for chemisorption of metal(loid)s. After incubation with solutions containing 800 mg L -1 AsO 4 2- or Cd 2+ , ISM bound distinctly higher levels of As (6.18 % in relative mass percent by EDS analysis) and Cd (7.21 % in relative mass percent by EDS analysis) compared to SZ and AC. XRD analysis also showed that ISM facilitated the precipitation of Cd 2+ as silicates, phosphates and hydroxides, and that arsenate combined with Fe, Al, Ca and Mg to form insoluble arsenate compounds. These precipitation mechanisms were much more active in ISM than in SZ or AC. Due to the greater pH elevation caused by the abundant calcium silicate, chemisorption and precipitation mechanisms in ISM treatments

  16. Electrokinetic remediation on cadmium (CD) spiked soils

    Energy Technology Data Exchange (ETDEWEB)

    Sah Jy-Gau [Dept. of Environmental Science and Engineering, National Pingtung Univ. of Science and Technology, Pingtung (Taiwan); Yu Lin, L. [Dept. of Civil and Environmental Engineering, Christian Bros. Univ. Memphis, TN (United States)

    2001-07-01

    The objective of this study is to examine several variables, such as soil pH, adsorption capacity, fraction of Cd in soils, and organic content for Cd removal in contaminated soil using electrokinetic technology. Two different experimental modules were constructed in the laboratory. In the small module, most Cd was able to move and concentrate at or near the cathode zone in acidic soil and neutral soil under 8 volts after 30 days of electrification. However, the Cd removal efficiency did not improve even when the alkaline soil was soaked in stronger acid solutions. The results indicated that the removal efficiencies were influenced not only by the pH of conducting solutions, but also the pH of the soils. The removal efficiencies of Cd were reduced when a portion of organic peat moss was added into the soils. The increases of organic content in the soils inhibit the removal efficiency in electrokinetic technology. In the larger scale module, the removal efficiency of Cd was lower than that in the smaller module during a short period of time. Nevertheless, the efficiency was improved in the larger module while 16 volts electric pressure and 180 days were applied to the module. The results also showed that the sequence of removal efficiency of the three soils in larger module followed the changes of soil pH. From this study, it concluded that electrokinetic technology has a highly potential to removal Cd in contaminated soils. Within these influence variable studies, the soil pH and organic content are the most important factor in electrokinetic technology. Keywords: Electrokinetic Technique, Heavy Metal, Cd, Soil Remediation. (orig.)

  17. Assessment of metal pollution in a former mining area in the NW Tunisia: spatial distribution and fraction of Cd, Pb and Zn in soil.

    Science.gov (United States)

    Othmani, Mohamed Ali; Souissi, Fouad; Durães, Nuno; Abdelkader, Moussi; da Silva, Eduardo Ferreira

    2015-08-01

    This study aims to evaluate the impact of the former mining Touiref district (NW Tunisia) on the spatial distribution of metal contamination. In order to characterize the metal content of the tailings and to assess how far the soils from the district could be impacted by metals, a sampling campaign was conducted. According to the spatial distribution concentration maps of potential toxic elements (PTE), the highest concentrations occur near the flotation tailings and in mining facilities and decrease abruptly with distance. These results confirm that wind is the main agent capable of dispersing metals in a W-E direction, with concentrations exceeding the standards of soil quality for Cd, Pb and Zn over several hundred metres away from the source, facilitated by the small-size fraction and low cohesion of tailings particles. Chemical fractionation showed that Pb and Cd were mainly associated with the acid-soluble fraction (carbonates) and Fe-(oxy) hydroxides, while Zn was mainly associated with Fe-(oxy) hydroxides but also with sulphides. Thus, the immobilization of metals in solution may be favoured by the alkaline conditions, promoted by carbonates dissolution. However, being carbonate important-bearing phases of Cd and Pb (but also for Zn), the dissolution facility of these minerals may enhance the release of metals, particularly far away from the mine where the physicochemical conditions can be different. Also, the metal uptake by plants in these alkaline conditions may be favoured, especially if secondary phases with high sorption ability are reduced at this site. A remediation plan to this area is needed, with particularly attention in the confinement of the tailings.

  18. Accumulation of Cd in agricultural soil under long-term reclaimed water irrigation

    International Nuclear Information System (INIS)

    Chen, Weiping; Lu, Sidan; Peng, Chi; Jiao, Wentao; Wang, Meie

    2013-01-01

    Safety of agricultural irrigation with reclaimed water is of great concern as some potential hazardous compounds like heavy metals may be accumulated in soils over time. Impacts of long-term reclaimed water on soil Cd pollution were evaluated based on the field investigation in two main crop areas in Beijing with long irrigation history and on simulation results of STEM-profile model. Under long-term reclaimed water, Cd content in the top 20 cm soil layer was greatly elevated and was more than 2 times higher than that in the deep soil layer. There was very small differences between the field measured and model simulated Cd content in the plow layer (top 20 cm) and entire soil layer. Long-term model prediction showed that reclaimed water irrigation had a low environmental risk of soil Cd pollution, but the risk would be aggravated when there were high metal loading from other sources. The risk is also depending on the soil and plant properties. -- Highlights: •Root zone soil Cd content was elevated by one time under long-term reclaimed water irrigation. •The STEM-profile model can well track the Cd balance in the soil profile. •Reclaimed water irrigation plays a limited role on soil Cd accumulation in Beijing croplands. -- There was a low risk of soil Cd pollution under long-term reclaimed water irrigation

  19. Soybean varieties as effective tool for phytoremediation of cadmium polluted soil

    OpenAIRE

    Mihajlov, Ljupco; Balabanova, Biljana; Zajkova-Paneva, Vesna; Wei, Shuhe

    2017-01-01

    Cadmium (Cd) is an important toxic heavy metal and the warning of health risks from Cd pollution were issued initially in the ‘70s. Increased concentrations of Cd in agricultural soils are known to come from human activities, such as the application of phosphate fertilizer, sewage sludge, wastewater, pesticides, mining and smelting of metalliferous ores with high Cd content, and traffic. Although there are many reports on Cd contamination in agricultural soils, most of the investigations are ...

  20. Analysis and Pollution Assessment of Heavy Metal in Soil, Perlis

    International Nuclear Information System (INIS)

    Siti Norbaya Mat Ripin; Siti Norbaya Mat Ripin; Sharizal Hasan; Mohd Lias Kamal; NorShahrizan Mohd Hashim

    2014-01-01

    Concentration of 5 heavy metals (Cu, Cr, Ni, Cd, Pb) were studied in the soils around Perlis, to assess heavy metals contamination distribution due to industrialization, urbanization and agricultural activities. Soil samples were collected at depth of 0-15 cm in eighteen station around Perlis. The soil samples (2 mm) were obtained duplicates and subjected to hot block digestion and the concentration of total metal was determined via ICP-MS. Overall concentrations of Cu, Cr, Ni, Cd and Pb in the soil samples ranged from 0.38-240.59, 0.642-3.921, 0.689-2.398, 0-0.63 and 0.39-27.47 mg/ kg respectively. The concentration of heavy metals in the soil display the following decreasing trend: Cu> Pb> Cr> Ni> Cd. From this result, found that level of heavy metal in soil near centralized Chuping industrial areas give maximum value compared with other location in Perlis. The Pollution index revealed that only 11 % of Cu and 6 % of Cd were classes as heavily contaminated. Meanwhile, Cu and Pb showed 6 % from all samples result a moderately contaminated and the others element give low contamination. Results of combined heavy metal concentration and heavy metal assessment indicate that industrial activities and traffic emission represent most important sources for Cu, Cd and Pb whereas Cr, Ni mainly from natural sources. Increasing anthropogenic influences on the environment, especially pollution loadings, have caused negative changes in natural ecosystems and decreased biodiversity. (author)

  1. Soil pollution in Central district of Saint-Petersburg (Russia)

    Science.gov (United States)

    Terekhina, Natalia; Ufimtseva, Margarita

    2015-04-01

    Analysis of soil samples of upper horizon for the content of chemical elements (Fe, Mn, Cu, Zn, Pb, Ni, Cr, Co, Cd, Ba, Sr) was carried out by atomic emission with inductively coupled plasma. A relative indicator of soil contamination degree is a concentration coefficient, representing the ratio of metal content in tested soil samples to the local background value of the corresponding element. Total pollution index is calculated by the concentration coefficients, which are greater than 1, taking into account the hazard class of metals (1 class - Zn, Pb ,Cd; 2 - class Cr, Ni, Cu ,Со; 3 class - Fe, Mn, Sr, Ba). Analysis of trace element of urban soils demonstrated mosaic patterns of pollution for Central district. The method of correlation sets constructing and factor analysis revealed three groups of chemical elements having a strong and significant association with each other: Pb-Cu-Cd-Zn-Ba, Ni-Cr-Co, Fe-Mn. Elements of the first group are characterized by high values of concentration coefficient and are the main pollutants - their average content is 3-11 times higher than background values. Strontium does not have strong correlation with the other elements, and its lowest concentration coefficient indicates that the element can not be regarded as a pollutant. The spatial distribution of the total pollution index identified several sources of pollution, the origin of which may be different. The main reason is probably the impact of vehicle emissions, although local pollution of soil is possible (the soils, contaminated during reconstruction of lawns, dumping of construction materials, etc.). Differentiated assessment of database shows that 48% of samples refer to dangerous pollution category, 37% - to moderately dangerous category, 15% - to allowable category. Thus, almost half of the district is characterized as dangerous in terms of soil contamination. Solution of the problem of soil contamination is recommended in three ways: reducing the intensity of

  2. Use of Maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review.

    Science.gov (United States)

    Rizwan, Muhammad; Ali, Shafaqat; Qayyum, Muhammad Farooq; Ok, Yong Sik; Zia-Ur-Rehman, Muhammad; Abbas, Zaheer; Hannan, Fakhir

    2017-04-01

    Maize (Zea mays L.) has been widely adopted for phytomanagement of cadmium (Cd)-contaminated soils due to its high biomass production and Cd accumulation capacity. This paper reviewed the toxic effects of Cd and its management by maize plants. Maize could tolerate a certain level of Cd in soil while higher Cd stress can decrease seed germination, mineral nutrition, photosynthesis and growth/yields. Toxicity response of maize to Cd varies with cultivar/varieties, growth medium and stress duration/extent. Exogenous application of organic and inorganic amendments has been used for enhancing Cd tolerance of maize. The selection of Cd-tolerant maize cultivar, crop rotation, soil type, and exogenous application of microbes is a representative agronomic practice to enhance Cd tolerance in maize. Proper selection of cultivar and agronomic practices combined with amendments might be successful for the remediation of Cd-contaminated soils with maize. However, there might be the risk of food chain contamination by maize grains obtained from the Cd-contaminated soils. Thus, maize cultivation could be an option for the management of low- and medium-grade Cd-contaminated soils if grain yield is required. On the other hand, maize can be grown on Cd-polluted soils only if biomass is required for energy production purposes. Long-term field trials are required, including risks and benefit analysis for various management strategies aiming Cd phytomanagement with maize.

  3. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment.

    Science.gov (United States)

    Li, Zhiyuan; Ma, Zongwei; van der Kuijp, Tsering Jan; Yuan, Zengwei; Huang, Lei

    2014-01-15

    Heavy metal pollution has pervaded many parts of the world, especially developing countries such as China. This review summarizes available data in the literature (2005-2012) on heavy metal polluted soils originating from mining areas in China. Based on these obtained data, this paper then evaluates the soil pollution levels of these collected mines and quantifies the risks these pollutants pose to human health. To assess these potential threat levels, the geoaccumulation index was applied, along with the US Environmental Protection Agency (USEPA) recommended method for health risk assessment. The results demonstrate not only the severity of heavy metal pollution from the examined mines, but also the high carcinogenic and non-carcinogenic risks that soil heavy metal pollution poses to the public, especially to children and those living in the vicinity of heavily polluted mining areas. In order to provide key management targets for relevant government agencies, based on the results of the pollution and health risk assessments, Cd, Pb, Cu, Zn, Hg, As, and Ni are selected as the priority control heavy metals; tungsten, manganese, lead-zinc, and antimony mines are selected as the priority control mine categories; and southern provinces and Liaoning province are selected as the priority control provinces. This review, therefore, provides a comprehensive assessment of soil heavy metal pollution derived from mines in China, while identifying policy recommendations for pollution mitigation and environmental management of these mines. © 2013.

  4. Speciation of Pb in industrially polluted soils

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Ottosen, Lisbeth M.; Pedersen, Anne Juul

    2006-01-01

    This study was aimed at elucidating the importance of original Pb-speciation versus soil-characteristics to mobility and distribution of Pb in industrially polluted soils. Ten industrially polluted Danish surface soils were characterized and Pb speciation was evaluated through SEM-EDX studies...

  5. Heavy metal concentrations in a soil-plant-snail food chain along a terrestrial soil pollution gradient.

    NARCIS (Netherlands)

    Notten, M.J.M.; Oosthoek, A.; Rozema, J.; Aerts, R.

    2005-01-01

    We investigated concentrations of Zn, Cu, Cd and Pb in the compartments of a soil-plant (Urtica dioica)-snail (Cepaea nemoralis) food chain in four polluted locations in the Biesbosch floodplains, the Netherlands, and two reference locations. Total soil metal concentrations in the polluted locations

  6. Enhanced Cadmium (Cd Phytoextraction from Contaminated Soil using Cd-Resistant Bacterium

    Directory of Open Access Journals (Sweden)

    Kunchaya Setkit

    2014-01-01

    Full Text Available A cadmium (Cd-resistant bacterium, Micrococcus sp. MU1, is able to produce indole-3-acetic acid and promotes root elongation and plant growth. The potential of this bacterium on enhancement of Cd uptake and bioaccumulation of Cd in Helianthus annuus L. planted in Cd-contaminated soil was evaluated in greenhouse condition. The results showed that Micrococcus sp. MU1promoted the growth of H. annuus L. by increasing the root length, stem height, dry biomass, root to shoot ratio and also significantly increased Cd accumulation in the root and above-ground tissues of H. annuus L. compared to uninoculated control. Re-inoculation with Micrococcus sp. MU1in contaminated soil helped in promoting plant growth and Cd phytoextraction throughout the cultivation period. In addition, phytoextraction coefficient and translocation factor (TF of H. annuus L. inoculated with Micrococcus sp. MU1were higher than that of uninoculated control and TF continuously increased with time. Our results suggested that Micrococcus sp. MU1 has an ability to enhance plant growth and Cd uptake in H. annuus L. Synergistic interaction between Micrococcus sp. MU1 and H. annuus L. could be further applied for Cd phytoextraction in polluted areas.

  7. Effectiveness of DTPA Chelate on Cd Availability in Soils Treated with Sewage Sludge

    Directory of Open Access Journals (Sweden)

    Pegah Houshyar

    2017-09-01

    Full Text Available Application of sewage sludge as a fertilizer on farmlands is a common practice in most countries. Although the practice may play a positive role in plant performance, the organic amendments introduced may increase the soil heavy metals content. This study was conducted in Arak, Iran, to investigate the effectiveness of DTPA chelate on corn Cd availability in a sewage sludge treated soil. The treatments consisted of sewage sludge (0, 15, and 30 t ha-1 polluted with cadmium applied at 0, 5, 10, and 15 mg kg-1 as well as DTPA applied at 0 and 1.5 mmol kg-1 soil. Corn plants were then grown in the soil in each treatmnent and, on day 60, the physic-chemical characteristics and Cd quantities were measured ion both the corn plants and soil samples. Application of 1.5 m mol of DTPA chelate in soil contaminated with 5 mg Cd led to a significant increase in the soil available Cd content. It was also observed that application of DTPA chelate to soils containing 30 t ha-1 of sewage sludge polluted with 10 mg Cd increased root and shoot Cd concentrations by 17 and 25%, respectively. Results indicated the effectiveness of DTPA chelate in reducing Cd phytoremediation with increasing sewage sludge loading rate. This was evidenced by the lowest phytoremediation effectiveness observed for the treatment with the greatest sewage sludge loading (30 t ha-1 and the lowest cadmium pollution (5 mg Cd.

  8. Modeling Water Pollution of Soil

    OpenAIRE

    V. Doležel; P. Procházka; V. Křístek

    2008-01-01

    The government of the Czech Republic decided that in the location to the west of Prague, capital city of the Czech Republic, some deep mines should be closed because of their low efficiency of coal mined i.e. small amounts and low quality of the coal extracted in the final stage of mining. The locations near Prague influenced the decision to do maintenance on the abandoned mines, as the thread of soil pollution was unacceptably high in the neighborhood of the capital city. Before the mines we...

  9. Phytoextraction of Cd-Contaminated Soils: Current Status and Future Challenges

    OpenAIRE

    Li, Jin-Tian; Baker, Alan J. M.; Ye, Zhi-Hong; Wang, Hong-Bin; Shu, Wen-Sheng

    2012-01-01

    Cadmium (Cd) is one of the most toxic and widely distributed pollutants in the environment. Cadmium contamination of soils has posed a serious threat to safe food production in many parts of the world. The authors present a comprehensive review of present status of phytoextraction technology for cleaning up Cd-contaminated soils, based primarily on the data resulting from both laboratory and field-scale studies that have been conducted to assess or improve the Cd phytoextraction potential of ...

  10. Impact of Acidification on Pollutants Fate and Soil Filtration Function

    Directory of Open Access Journals (Sweden)

    Jarmila Makovniková

    2014-12-01

    Full Text Available The objective of this paper was to investigate the effects of simulated acid load on the fate of inorganic pollutants (Cd, Pb, soil sorption potential, soil filtration func-tion. We made use of a short-term acidification pot experiment with grown plant of spring barley cultivated at 4 different soil types (Fluvisol, Cambisol, Stagnosol, Podzol. The potential of soil filtration was evaluated according to the Eq.: [Soil filtration function]=[Potential of soil sorbents]+[Potential of total content of inor-ganic pollutants]. Potential of soil sorbents (PSS is defined by qualitative (pH, or-ganic matter quality - A400/600 and quantitative factors (carbon content-Cox, humus layer thickness-H according to the Eq.:[PSS]=F(pH+F(A465/665+F(Cox*F(H. Acid load significantly influenced soil sorption potential and thus affected increase in Cd and Pb mobility what was reflected in their transfer into the plants. Results of soil filtration function showed significant change of filtration function in Cambisol.

  11. Investigation and Evaluation of Heavy Metals Pollution of Agricultural Soils Near a Steel Plant

    Directory of Open Access Journals (Sweden)

    XIE Tuan-hui

    2018-02-01

    Full Text Available The pollution of heavy metals in farmland around a steel plant in the west of Fujian Province was investigated. The pollution index method, principal component analysis and factor analysis on the pollution of Cr, Pb, Cd, Ni, Cu, Zn and As in the soils were carried out to clarify the pollution status, the main source, the degree, and the distribution of the heavy metals pollution in the soil. The secondary standards for acidic agricultural soils of "soil environmental quality standard"(GB 15618-1995were used as the evaluation criterion. The single factor evaluation results showed that the pollution of soil by Cd and Zn in the investigated area was widespread and serious and the points over standard rate was 100% and 95.5% respectively, while the pollution by Pb, Cu and As was slight and the points over standard rate was 29.6%,15.9% and 6.8% respectively. The soils were not polluted by Cr and Ni. The principal component analysis and factor analysis showed that the correlation between Pb, Cd, Cu, Zn and As was significant and homologous. Therefore, the pollution of Pb, Cd, Cu, Zn and As of the soils should be mainly attributed to the pollutants emitted from the steel plant. The correlation between Cr and Ni was also significant and homologous. It was deduced that Cr and Ni in the soils were largely originated from the soils themselves. The comprehensive pollution degree of the heavy metals in the soils decreased as the distance between the steel plant and farmland increasing. The soils of the fields near the entrance of irrigation water from the waste water of the steel plant were more seriously polluted.

  12. PILLARED ZEOLITES AMENDMENTS INFLUENCE FROM POLLUTED SOIL ON HEAVY METALS BIOACCUMULATION IN TOMATOES

    Directory of Open Access Journals (Sweden)

    SMARANDA MASU

    2007-05-01

    Full Text Available Due to anthropic activities, the presence of metals in polluted soils has effects on plants development and metals bioaccumulation into trophic levels. In this paper, were followed experiments regarding the tomatoes development into polluted soils with 43.4 – 58.4 mg Cd/kg d.s. and 500- 633 mg Pb/kg d.s. Nickel, zinc and copper content in soils are in the range of diffuse pollution values. Comparatively, an experiment was realized with polluted soils and amended with pillared zeolites. Pillared zeolites change metals distribution in soil fractions and their solubility. Tomato plants grew onto polluted soils, but did not present fruits. Tomatoes from polluted and amended soils presented fruits and metals in tissues (Zn  Cu  Ni. Zinc concentration was five times greater then Ni. Fruits do not accumulate cadmium and lead.

  13. Can ligand addition to soil enhance Cd phytoextraction? A mechanistic model study.

    Science.gov (United States)

    Lin, Zhongbing; Schneider, André; Nguyen, Christophe; Sterckeman, Thibault

    2014-11-01

    Phytoextraction is a potential method for cleaning Cd-polluted soils. Ligand addition to soil is expected to enhance Cd phytoextraction. However, experimental results show that this addition has contradictory effects on plant Cd uptake. A mechanistic model simulating the reaction kinetics (adsorption on solid phase, complexation in solution), transport (convection, diffusion) and root absorption (symplastic, apoplastic) of Cd and its complexes in soil was developed. This was used to calculate plant Cd uptake with and without ligand addition in a great number of combinations of soil, ligand and plant characteristics, varying the parameters within defined domains. Ligand addition generally strongly reduced hydrated Cd (Cd(2+)) concentration in soil solution through Cd complexation. Dissociation of Cd complex ([Formula: see text]) could not compensate for this reduction, which greatly lowered Cd(2+) symplastic uptake by roots. The apoplastic uptake of [Formula: see text] was not sufficient to compensate for the decrease in symplastic uptake. This explained why in the majority of the cases, ligand addition resulted in the reduction of the simulated Cd phytoextraction. A few results showed an enhanced phytoextraction in very particular conditions (strong plant transpiration with high apoplastic Cd uptake capacity), but this enhancement was very limited, making chelant-enhanced phytoextraction poorly efficient for Cd.

  14. Responses of soil microbial activity to cadmium pollution and elevated CO2.

    Science.gov (United States)

    Chen, Yi Ping; Liu, Qiang; Liu, Yong Jun; Jia, Feng An; He, Xin Hua

    2014-03-06

    To address the combined effects of cadmium (Cd) and elevated CO2 on soil microbial communities, DGGE (denaturing gradient gel electrophoresis) profiles, respiration, carbon (C) and nitrogen (N) concentrations, loessial soils were exposed to four levels of Cd, i.e., 0 (Cd0), 1.5 (Cd1.5), 3.0 (Cd3.0) and 6.0 (Cd6.0) mg Cd kg(-1) soil, and two levels of CO2, i.e., 360 (aCO2) and 480 (eCO2) ppm. Compared to Cd0, Cd1.5 increased fungal abundance but decreased bacterial abundance under both CO2 levels, whilst Cd3.0 and Cd6.0 decreased both fungal and bacterial abundance. Profiles of DGGE revealed alteration of soil microbial communities under eCO2. Soil respiration decreased with Cd concentrations and was greater under eCO2 than under aCO2. Soil total C and N were greater under higher Cd. These results suggest eCO2 could stimulate, while Cd pollution could restrain microbial reproduction and C decomposition with the restraint effect alleviated by eCO2.

  15. Rapid identification of soil cadmium pollution risk at regional scale based on visible and near-infrared spectroscopy

    International Nuclear Information System (INIS)

    Chen, Tao; Chang, Qingrui; Clevers, J.G.P.W.; Kooistra, L.

    2015-01-01

    Soil heavy metal pollution due to long-term sewage irrigation is a serious environmental problem in many irrigation areas in northern China. Quickly identifying its pollution status is an important basis for remediation. Visible-near-infrared reflectance spectroscopy (VNIRS) provides a useful tool. In a case study, 76 soil samples were collected and their reflectance spectra were used to estimate cadmium (Cd) concentration by partial least squares regression (PLSR) and back propagation neural network (BPNN). To reduce noise, six pre-treatments were compared, in which orthogonal signal correction (OSC) was first used in soil Cd estimation. Spectral analysis and geostatistics were combined to identify Cd pollution hotspots. Results showed that Cd was accumulated in topsoil at the study area. OSC can effectively remove irrelevant information to improve prediction accuracy. More accurate estimation was achieved by applying a BPNN. Soil Cd pollution hotspots could be identified by interpolating the predicted values obtained from spectral estimates. - Highlights: • Soil reflectance spectroscopy provides a promising tool for detecting soil contaminants. • Orthogonal signal correction efficiently extracted information from noisy spectra. • Back propagation neural network achieved a more accurate estimation for soil Cd. • Soil Cd pollution hotspots could be identified by interpolating the predicted Cd. - Combining spectral analysis and geostatistics can provide a rapid method for identifying the pollution hotspot of soil heavy metal at regional scale.

  16. Decontaminating soil organic pollutants with manufactured nanoparticles.

    Science.gov (United States)

    Li, Qi; Chen, Xijuan; Zhuang, Jie; Chen, Xin

    2016-06-01

    Organic pollutants in soils might threaten the environmental and human health. Manufactured nanoparticles are capable to reduce this risk efficiently due to their relatively large capacity of sorption and degradation of organic pollutants. Stability, mobility, and reactivity of nanoparticles are prerequisites for their efficacy in soil remediation. On the basis of a brief introduction of these issues, this review provides a comprehensive summary of the application and effectiveness of various types of manufactured nanoparticles for removing organic pollutants from soil. The main categories of nanoparticles include iron (oxides), titanium dioxide, carbonaceous, palladium, and amphiphilic polymeric nanoparticles. Their advantages (e.g., unique properties and high sorption capacity) and disadvantages (e.g., high cost and low recovery) for soil remediation are discussed with respect to the characteristics of organic pollutants. The factors that influence the decontamination effects, such as properties, surfactants, solution chemistry, and soil organic matter, are addressed.

  17. Magnetic properties of alluvial soils polluted with heavy metals

    Science.gov (United States)

    Dlouha, S.; Petrovsky, E.; Boruvka, L.; Kapicka, A.; Grison, H.

    2012-04-01

    Magnetic properties of soils, reflecting mineralogy, concentration and grain-size distribution of Fe-oxides, proved to be useful tool in assessing the soil properties in terms of various environmental conditions. Measurement of soil magnetic properties presents a convenient method to investigate the natural environmental changes in soils as well as the anthropogenic pollution of soils with several risk elements. The effect of fluvial pollution with Cd, Cu, Pb and Zn on magnetic soil properties was studied on highly contaminated alluvial soils from the mining/smelting district (Příbram; CZ) using a combination of magnetic and geochemical methods. The basic soil characteristics, the content of heavy metals, oxalate, and dithionite extractable iron were determined in selected soil samples. Soil profiles were sampled using HUMAX soil corer and the magnetic susceptibility was measured in situ, further detailed magnetic analyses of selected distinct layers were carried out. Two types of variations of magnetic properties in soil profiles were observed corresponding to indentified soil types (Fluvisols, and Gleyic Fluvisols). Significantly higher values of topsoil magnetic susceptibility compared to underlying soil are accompanied with high concentration of heavy metals. Sequential extraction analysis proved the binding of Pb, Zn and Cd in Fe and Mn oxides. Concentration and size-dependent parameters (anhysteretic and isothermal magnetization) were measured on bulk samples in terms of assessing the origin of magnetic components. The results enabled to distinguish clearly topsoil layers enhanced with heavy metals from subsoil samples. The dominance of particles with pseudo-single domain behavior in topsoil and paramagnetic/antiferromagnetic contribution in subsoil were observed. These measurements were verified with room temperature hysteresis measurement carried out on bulk samples and magnetic extracts. Thermomagnetic analysis of magnetic susceptibility measured on

  18. Modeling Water Pollution of Soil

    Directory of Open Access Journals (Sweden)

    V. Doležel

    2008-01-01

    Full Text Available The government of the Czech Republic decided that in the location to the west of Prague, capital city of the Czech Republic, some deep mines should be closed because of their low efficiency of coal mined i.e. small amounts and low quality of the coal extracted in the final stage of mining. The locations near Prague influenced the decision to do maintenance on the abandoned mines, as the thread of soil pollution was unacceptably high in the neighborhood of the capital city. Before the mines were closed it was necessary to separate existed extensive horizontal location of salt water below a clay layer in order not to deteriorate the upper fresh water. The salt water could not be allowed to pollute the upper layer with the fresh water, as many wells in villages in the neighborhood of the former mines would be contaminated. Two horizontal clay layers (an insulator and a semi-insulator separated the two horizons containing salt water and fresh water. Before starting deep mining, vertical shafts had to be constructed with concrete linings to enable the miners to access the depths. The salt water was draining away throughout the existence of the mine. The drainage was designed very carefully to avoid possible infiltration of salt water into the upper horizon. Before the mines were abandoned it was necessary to prevent contact between the two kinds of waters in the shafts. Several options were put forward, the most efficient of which appeared to be one that proposed filling the shafts with spoil soil and creating a joint seal made of disparate material at the interface between the salt water and fresh water to create a reliable stopper. The material for the spoil soil was delivered from deposits located not far from the shafts. This material consisted of a variety of grains of sand, big boulders of slate, slaty clay, sandstone, etc.. Chemical admixtures were considered to improve the flocculation of the filling material. The stopper was positioned at a

  19. Electrodialytic decontamination of heavy metal polluted soil

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Hansen, Henrik K.; Karlsmose, Bodil

    1996-01-01

    Electrodialytic remediation of heavy metal polluted soil is a newly developed method, which combines the electrokinetic mevement of ions in soil with the principle of electrodialytis. The method has been proven to work in laboratory scale and at present two types of pilot plant tests are made....

  20. Effects of Chemical Applications to Metal Polluted Soils on Cadmium Uptake by Rice Plant

    Directory of Open Access Journals (Sweden)

    Yoo J. H.

    2013-04-01

    Full Text Available Pot experiment using metal polluted soils was conducted to investigate the effects of lime, iron and sulfur on changes in Cd availability and uptake by rice plant. Drainage and irrigation of water were performed to develop redox changes like field cultivation. Iron chloride and sodium sulfate solutions were applied to the pots in the middle of growth period of rice plant. Reactive metal pool in heavily polluted soils was slightly decreased after treatments with lime, iron chloride, sodium sulfate and combination of these chemicals. However, cadmium uptake by rice plant was significantly different across the treatments and the extent of Cd pollution. For highly polluted soils, more Cd reduction was observed in iron chloride treatments. Cd content in polished rice for iron chloride and (iron chloride+organic matter treatments was only 16-23% and 25-37% compared to control and liming, respectively. Treatment of (iron chloride+sulfate rather increased Cd content in rice. For moderately polluted soils, Cd reduction rate was the order of (OM+iron chloride > iron chloride > lime. Other treatments including sulfate rather increased Cd content in rice maximum 3 times than control. It was proposed to determine the optimum application rate of iron for minimizing hazardous effect on rice plant.

  1. Identifying sources of soil inorganic pollutants on a regional scale using a multivariate statistical approach: Role of pollutant migration and soil physicochemical properties

    International Nuclear Information System (INIS)

    Zhang Changbo; Wu Longhua; Luo Yongming; Zhang Haibo; Christie, Peter

    2008-01-01

    Principal components analysis (PCA) and correlation analysis were used to estimate the contribution of four components related to pollutant sources on the total variation in concentrations of Cu, Zn, Pb, Cd, As, Se, Hg, Fe and Mn in surface soil samples from a valley in east China with numerous copper and zinc smelters. Results indicate that when carrying out source identification of inorganic pollutants their tendency to migrate in soils may result in differences between the pollutant composition of the source and the receptor soil, potentially leading to errors in the characterization of pollutants using multivariate statistics. The stability and potential migration or movement of pollutants in soils must therefore be taken into account. Soil physicochemical properties may offer additional useful information. Two different mechanisms have been hypothesized for correlations between soil heavy metal concentrations and soil organic matter content and these may be helpful in interpreting the statistical analysis. - Principal components analysis with Varimax rotation can help identify sources of soil inorganic pollutants but pollutant migration and soil properties can exert important effects

  2. Effects of Spent Engine Oil Polluted Soil and Organic Amendment ...

    African Journals Online (AJOL)

    Effects of Spent Engine Oil Polluted Soil and Organic Amendment on Soil ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING AJOL ... of using organic fertilizer as bioremediant for spent engine oil polluted soils.

  3. Application of Aspergillus niger-treated agrowaste residue and Glomus mosseae for improving growth and nutrition of Trifolium repens in a Cd-contaminated soil.

    Science.gov (United States)

    Medina, A; Vassilev, N; Barea, J M; Azcón, R

    2005-04-06

    The microbial transformation of sugar beet (SB) agrowaste with or without rock-phosphate (RP) has utility for the improvement of plant growth in a Cd (5 microg g-1) artificially contaminated soil, particularly when the soil is co-inoculated with arbuscular mycorrhizal (AM) fungus Glomus mosseae isolated from a Cd-polluted area. Under such Cd-polluted conditions, the limited growth, mineral nutrition, symbiotic developments (nodulation and AM-colonization) and soil enzymatic activities were stimulated using SB or SB+RP as soil amendments and G. mosseae as inoculant. G. mosseae enhanced plant establishment in a higher extent in amended soil; it is probably due to the interactive effect increasing the potential fertility of such compounds and its ability for decreasing Cd transfer from soil to plant. The amount of Cd transferred from soil solution to biomass of AM-colonized plants ranged from 0.09 microg Cd g-1 (in SB+RP-amended soil) to 0.6 microg Cd g-1 (in non-amended soil). Nodule formation was more sensitive to Cd than AM-colonization, and both symbioses were stimulated in amended soils. Not only AM-colonization but also amendments were critical for plant growth and nutrition in Cd-polluted soil. The high effectiveness of AM inoculum increasing nutrients and decreasing Cd in amended soil indicated the positive interaction of these treatments in increasing plant tolerance to Cd contamination.

  4. Remediation mechanisms for Cd-contaminated soil using natural sepiolite at the field scale.

    Science.gov (United States)

    Yin, Xiuling; Xu, Yingming; Huang, Rong; Huang, Qingqing; Xie, Zhonglei; Cai, Yanming; Liang, Xuefeng

    2017-12-13

    Remediation of heavy metal polluted agricultural soil is essential for human health and ecological safety and remediation mechanisms at the microscopic level are vital for their large-scale utilization. In this study, natural sepiolite was employed as an immobilization agent for in situ field-scale remediation of Cd-contaminated paddy soil and the remediation mechanisms were investigated in terms of soil chemistry and plant physiology. Natural sepiolite had a significant immobilization effect for bioavailable Cd contents in paddy soil, and consequently could lower the Cd concentrations of brown rice, husk, straw, and roots of rice plants by 54.7-73.7%, 44.0-62.5%, 26.5-67.2%, and 36.7-46.7%, respectively. Regarding soil chemistry, natural sepiolite increased the soil pH values and shifted the zeta potentials of soil particles to be more negative, enhancing the fixation or sorption of Cd on soil particles, and resulted in the reduction of HCl and DTPA extractable Cd concentrations in paddy soil. Natural sepiolite neither enhanced nor inhibited iron plaques on the rice root surface, but did change the chemical environments of Fe and S in rice root. Natural sepiolite improved the activities of antioxidant enzymes and enhanced the total antioxidant capacity to alleviate the stress of Cd. It also promotes the synthesis of GSH and NPT to complete the detoxification. In general, the remediation mechanisms of natural sepiolite for the Cd pollutant in paddy soil could be summarized as the collective effects of soil chemistry and plant physiology.

  5. [Effects of heavy metals pollution on soil microbial communities metabolism and soil enzyme activities in coal mining area of Tongchuan, Shaanxi Province of Northwest China].

    Science.gov (United States)

    Guo, Xing-Liang; Gu, Jie; Chen, Zhi-Xue; Gao, Hua; Qin, Qing-Jun; Sun, Wei; Zhang, Wei-Juan

    2012-03-01

    This paper studied the metabolism of soil microbes, functions of soil microbial communities, and activities of soil enzymes in a coal mining area of Tongchuan. In the coal mining area, the concentrations of soil Cu, Zn, Cd, and Pb were significantly higher than those in the non-mining area, of which, Cd contributed most to the heavy metals pollution. By adopting Biolog method combining with principal component analysis (PCA) and cluster analysis, it was found that the metabolic characteristics of different soil microbial communities varied significantly with increasing soil heavy metals pollution, and the variation was mainly manifested in the metabolic patterns of carbon sources such as saccharides and amino acids. In slightly and moderately polluted soils, the utilization of carbon sources by soil microbial communities was activated; while in heavily polluted soils, the carbon sources utilization was inhibited. The activities of soil urease, protease, alkaline phosphatase, and catalase all tended to decline with intensifying soil heavy metals pollution. The soil urease, protease, alkaline phosphatase, and catalase activities in the coal mining area were 50.5%-65.1%, 19.1%-57.1%, 87.2%-97.5%, and 77.3%-86.0% higher than those in the non-mining area, respectively. The activities of soil sucrase and cellulase were activated in slightly and moderately polluted soils, but inhibited in heavily polluted soils.

  6. Enrichment of marsh soils with heavy metals by effect of anthropic pollution

    International Nuclear Information System (INIS)

    Vega, Flora A.; Covelo, Emma F.; Cerqueira, Beatriz; Andrade, Maria Luisa

    2009-01-01

    The impact of waste disposal on marsh soils was assessed in topsoil samples collected at eight randomly selected points in the salt marsh in Ramallosa (Pontevedra, Spain) at 4-month intervals for 2 years. Polluted soil samples were characterized in physico-chemical terms and their heavy metal contents determined by comparison with control, unpolluted samples. The results revealed a marked effect of waste discharges on the soils in the area, which have low contents in heavy metals under normal environmental conditions. In fact, the studied soils were found to contain substantial amounts of total and DTPA-extractable Cd, Cu, Pb and Zn. Based on the relationship of the redox potential with the DTPA-extractable Cd, Cu, Pb, and Zn contents of the soils, strongly reductive conditions raised the total contents in these elements by effect of their remaining in the soils as precipitated sulphides. Such contents, however, decreased as oxidative conditions gradually prevailed. The contents in DTPA-extractable metals increased with increasing Eh through the release of the metals in ionic form to the soil solution under oxidative conditions. The contents in heavy metals concentrating in the polluted soils were several times higher than those in the control soils (viz. 2 vs. 6 for Cd, 4 vs. 6 for Cu, 4 vs. 20 for Pb, and 2 vs. 15 for Zn, all in mg kg -1 ). This can be expected to influence the amounts of available heavy metals present in the soils, and hence the environmental quality of the area, in the near future. Based on its geoaccumulation index (Class ≥3 for Cd and Cu, and 1-4 for Pb and Zn), the Ramallosa marsh is highly polluted with Cd and moderately to highly polluted with Cu, Pb and Zn. The enrichment factors obtained confirm that the salt marsh is highly polluted (especially with Cd) as the primary result of anthropic activity.

  7. [Effects of soil properties on the stabilization process of cadmium in Cd alone and Cd-Pb contaminated soils].

    Science.gov (United States)

    Wu, Man; Xu, Ming-Gang; Zhang, Wen-Ju; Wu, Hai-Wen

    2012-07-01

    In order to clarify the effects of soil properties on the stabilization process of the cadmium (Cd) added, 11 different soils were collected and incubated under a moisture content of 65%-70% at 25 degrees C. The changes of available Cd contents with incubation time (in 360 days) in Cd and Cd-Pb contaminated treatments were determined. The stabilization process was simulated using dynamic equations. The results showed that after 1.0 mg x kg(-1) Cd or 500 mg x kg(-1) Pb + 1.0 mg x kg(-1) Cd were added into the soil, the available Cd content decreased rapidly during the first 15 days, and then the decreasing rate slowed down, with an equilibrium content reached after 60 days' incubation. In Cd-Pb contaminated soils, the presence of Pb increased the content of available Cd. The stabilization process of Cd could be well described by the second-order equation and the first order exponential decay; meanwhile, dynamic parameters including equilibrium content and stabilization velocity were used to characterize the stabilization process of Cd. These two key dynamic parameters were significantly affected by soil properties. Correlation analysis and stepwise regression suggested that high pH and high cation exchange capacity (CEC) significantly retarded the availability of Cd. High pH had the paramount effect on the equilibrium content. The stabilization velocity of Cd was influenced by the soil texture. It took shorter time for Cd to get stabilized in sandy soil than in the clay.

  8. Pollution of soils in urban areas in Serbia

    Science.gov (United States)

    Grujic, Gordana; Crnkovic, Dragan; Cerdà, Artemi

    2017-04-01

    Soil pollution is a world-wide problems that affect rural and urban areas of all the continents (Hu et al., 2015; Mao et al., 2016; Trujillo-González et al., 2016; Elkhatib et al., 2016; Roy and McDonad, 2015; Mahmoud and Abd El-Kader, 2015; Adamcová et al., 2016). There is a need to develop a program to achieve the sustainability of the soil system as the soils offers goods, services and resources to the humankind (Keesstra et al., 2012; Brevik et al., 2015; Keesstra et al., 2016). The program of systematic monitoring of soil pollution in Belgrade is aimed at testing the concentration of hazardous and harmful substances in soil at urban areas, interpretation of the results in accordance with current legislation, soil characteristics and geology and terrain, proposal of preventive and remedial measures in the wider territory of Belgrade. The paper gives an overview of the results of systematic monitoring of soil pollution in Belgrade in the period from 2009 to 2013. In accordance with the objectives of the investigation during the period from 2009-2013, while having in mind the purpose and manner of land use, the program of monitoring of soil pollution in the territory of Belgrade is oriented to the following areas: 1 - Land in the zone of the sanitary protection of the Belgrade water supply system, 2- Land in zone nearby the main roads, 3 - Land within the communal areas (public areas and agricultural land in the wider vicinity of Belgrade). On the basis of the conducted soil monitoring in the wider area of Belgrade, a large number of sites is contaminated with higher concentrations of hazardous and harmful substances that are exceeding the maximum allowed prescribed legal norms. The causes of soil contamination are both, anthropogenic and natural. Taking into account the all results, the most common deviation is referred to the increased nickel content in soil. A number of soil samples showed increase in concentrations of pollutants including Cu, Zn, Pb, Cd, As

  9. Impact of repeated single-metal and multi-metal pollution events on soil quality.

    Science.gov (United States)

    Burges, Aritz; Epelde, Lur; Garbisu, Carlos

    2015-02-01

    Most frequently, soil metal pollution results from the occurrence of repeated single-metal and, above all, multi-metal pollution events, with concomitant adverse consequences for soil quality. Therefore, in this study, we evaluated the impact of repeated single-metal and multi-metal (Cd, Pb, Cu, Zn) pollution events on soil quality, as reflected by the values of a variety of soil microbial parameters with potential as bioindicators of soil functioning. Specifically, parameters of microbial activity (potentially mineralizable nitrogen, β-glucosidase and acid phosphatase activity) and biomass (fungal and bacterial gene abundance by RT-qPCR) were determined, in the artificially metal-polluted soil samples, at regular intervals over a period of 26 weeks. Similarly, we studied the evolution over time of CaCl2-extractable metal fractions, in order to estimate metal bioavailability in soil. Different metals showed different values of bioavailability and relative bioavailability ([metal]bio/[metal]tot) in soil throughout the experiment, under both repeated single-metal and multi-metal pollution events. Both repeated Zn-pollution and multi-metal pollution events led to a significant reduction in the values of acid phosphatase activity, and bacterial and fungal gene abundance, reflecting the negative impact of these repeated events on soil microbial activity and biomass, and, hence, soil quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Remediation mechanisms of mercapto-grafted palygorskite for cadmium pollutant in paddy soil.

    Science.gov (United States)

    Liang, Xuefeng; Qin, Xu; Huang, Qingqing; Huang, Rong; Yin, Xiuling; Cai, Yanming; Wang, Lin; Sun, Yuebing; Xu, Yingming

    2017-10-01

    The immobilization agent was the key factor that determined the success of remediation of heavy metal polluted soil. In this study, mercapto-grafted palygorskite (MP) as a novel and efficient immobilization agent was utilized for the remediation of Cd-polluted paddy soil in pot trials, and the remediation mechanisms were investigated in the aspect of soil chemistry and plant physiology with different rice cultivars as model plants. Mercapto-grafted palygorskite at applied doses of 0.1-0.3% could reduce Cd contents of brown rice and straws of different cultivars significantly. Both reduced DTPA-extractable Cd contents in rhizosphere and non-rhizosphere soil and decreasing Cd contents in iron plaques on rice root surfaces confirmed that MP was an efficient immobilization agent for Cd pollutant in paddy soil. In the aspect of soil chemistry, the pH values of rhizosphere and non-rhizosphere soils had no statistical changes in the MP treatment groups, but their zeta potentials decreased obviously, indicating that MP could enhance the fixation or sorption of Cd on soil compositions. In the aspect of antioxidant system, MP could increase POD activity of rice roots significantly to alleviate the stress of Cd to roots, and resulted in the decrease of T-AOC, SOD, and CAT activities of rice roots of the selected cultivars. MP had no inhabitation or enhancement effects on TSH of rice roots but enhance the contents of MTs and NPT to binding Cd to complete detoxification process. MP as a novel and efficient immobilization agent could complete the remediation effects through soil chemistry and plant physiological mechanisms.

  11. Heavy metal pollution of agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, S.C.

    1975-01-01

    Inputs of heavy metals to soils have increased recently and there is much concern that they may be toxic at various stages along the food chain and ultimately to man. Cobalt, copper, iron, manganese, molybdenum, zinc, chromium, nickel, cadmium and lead move from geochemical sources to plants and then to animals and man; they then are returned in various forms to soil to complete the cycle. The ways in which heavy metals may be added to soils are reviewed. They include: aerial inputs by air pollution, fertilizers, pesticides, farm slurries and sewage sludge. Possibly the source of contamination which is to have the most impact on soils used for the production of crops is sewage sludge. The fate of heavy metal added to soils is discussed in relation to form, mobility, uptake by plants, effect of soil conditions on availability to plants, and toxicity to animals. 56 references.

  12. Soil geochemical factors regulate Cd accumulation by metal hyperaccumulating Noccaea caerulescens (J. Presl & C. Presl) F.K. Mey in field-contaminated soils.

    Science.gov (United States)

    Rosenfeld, Carla E; Chaney, Rufus L; Martínez, Carmen E

    2018-03-01

    Cadmium contamination in soil is a substantial global problem, and of significant concern due to high food-chain transfer. Cadmium hyperaccumulators are of particular interest because of their ability to tolerate and take up significant amounts of heavy metal pollution from soils. One particular plant, Noccaea caerulescens (formerly, Thlaspi caerulescens), has been extensively studied in terms of its capacity to accumulate heavy metals (specifically Zn and Cd), though these studies have primarily utilized hydroponic and metal-spiked model soil systems. We studied Cd and nutrient uptake by two N. caerulescens ecotypes, Prayon (Zn-only hyperaccumulator) and Ganges (Zn- and Cd-hyperaccumulator) in four long-term field-contaminated soils. Our data suggest that individual soil properties such as total soil Cd, Zn:Cd molar ratio, or soil pH do not accurately predict Cd uptake by hyperaccumulating plants. Additionally, total Cd uptake by the hyperaccumulating Ganges ecotype was substantially less than its physiological capacity, which is likely due to Cd-containing solid phases (primarily iron oxides) and pH that play an important role in regulating and limiting Cd solubility. Increased P accumulation in the Ganges leaves, and greater plant Fe accumulation from Cd-containing soils suggests that rhizosphere alterations via proton, and potentially organic acid, secretion may also play a role in nutrient and Cd acquisition by the plant roots. The current study highlights the role that soil geochemical factors play in influencing Cd uptake by hyperaccumulating plants. While these plants may have high physiological potential to accumulate metals from contaminated soils, individual soil geochemical factors and the plant-soil interactions in that soil will dictate the actual amount of phytoextractable metal. This underlines the need for site-specific understanding of metal-containing solid phases and geochemical properties of soils before undertaking phytoextraction efforts

  13. Impact of Soil Heavy Metal Pollution on Food Safety in China.

    Science.gov (United States)

    Zhang, Xiuying; Zhong, Taiyang; Liu, Lei; Ouyang, Xiaoying

    2015-01-01

    Food safety is a major concern for the Chinese public. This study collected 465 published papers on heavy metal pollution rates (the ratio of the samples exceeding the Grade II limits for Chinese soils, the Soil Environmental Quality Standard-1995) in farmland soil throughout China. The results showed that Cd had the highest pollution rate of 7.75%, followed by Hg, Cu, Ni and Zn, Pb and Cr had the lowest pollution rates at lower than 1%. The total pollution rate in Chinese farmland soil was 10.18%, mainly from Cd, Hg, Cu, and Ni. The human activities of mining and smelting, industry, irrigation by sewage, urban development, and fertilizer application released certain amounts of heavy metals into soil, which resulted in the farmland soil being polluted. Considering the spatial variations of grain production, about 13.86% of grain production was affected due to the heavy metal pollution in farmland soil. These results many provide valuable information for agricultural soil management and protection in China.

  14. Impact of Soil Heavy Metal Pollution on Food Safety in China.

    Directory of Open Access Journals (Sweden)

    Xiuying Zhang

    Full Text Available Food safety is a major concern for the Chinese public. This study collected 465 published papers on heavy metal pollution rates (the ratio of the samples exceeding the Grade II limits for Chinese soils, the Soil Environmental Quality Standard-1995 in farmland soil throughout China. The results showed that Cd had the highest pollution rate of 7.75%, followed by Hg, Cu, Ni and Zn, Pb and Cr had the lowest pollution rates at lower than 1%. The total pollution rate in Chinese farmland soil was 10.18%, mainly from Cd, Hg, Cu, and Ni. The human activities of mining and smelting, industry, irrigation by sewage, urban development, and fertilizer application released certain amounts of heavy metals into soil, which resulted in the farmland soil being polluted. Considering the spatial variations of grain production, about 13.86% of grain production was affected due to the heavy metal pollution in farmland soil. These results many provide valuable information for agricultural soil management and protection in China.

  15. Impact of Soil Heavy Metal Pollution on Food Safety in China

    Science.gov (United States)

    Zhang, Xiuying; Zhong, Taiyang; Liu, Lei; Ouyang, Xiaoying

    2015-01-01

    Food safety is a major concern for the Chinese public. This study collected 465 published papers on heavy metal pollution rates (the ratio of the samples exceeding the Grade II limits for Chinese soils, the Soil Environmental Quality Standard-1995) in farmland soil throughout China. The results showed that Cd had the highest pollution rate of 7.75%, followed by Hg, Cu, Ni and Zn, Pb and Cr had the lowest pollution rates at lower than 1%. The total pollution rate in Chinese farmland soil was 10.18%, mainly from Cd, Hg, Cu, and Ni. The human activities of mining and smelting, industry, irrigation by sewage, urban development, and fertilizer application released certain amounts of heavy metals into soil, which resulted in the farmland soil being polluted. Considering the spatial variations of grain production, about 13.86% of grain production was affected due to the heavy metal pollution in farmland soil. These results many provide valuable information for agricultural soil management and protection in China. PMID:26252956

  16. Aldehyde dehydrogenase expression in Metaphire posthuma as a bioindicator to monitor heavy metal pollution in soil.

    Science.gov (United States)

    Panday, Raju; Bhatt, Padam Shekhar; Bhattarai, Tribikram; Shakya, Kumudini; Sreerama, Lakshmaiah

    2016-11-21

    Soil contamination and associated pollution plays a detrimental role in soil flora and fauna. Soil is processed and remodeled by subterranean earthworms, accordingly are referred to as soil chemical engineers. These worms, besides processing carbon and nitrogen, serve as minors for processing metals. In heavy metal contaminated soils, they accumulate heavy metals, which in turn cause altered gene expression, including aldehyde dehydrogenase (ALDH) enzymes. This study explores the possibility of ALDH expression in earthworms as a novel biomarker for the heavy metal contamination of soil. Earthworms cultured in contaminated soils accumulated significantly higher levels of Pb and Cd. Similarly, significantly higher levels of ALDH enzyme activities were observed in earthworms cultured in soils contaminated with Pb and Cd. The ALDH activity was found to be highest in worms cultured in 5 ppm heavy metal contaminated soils. Although, ALDH activities decreased as the heavy metal concentration in soil increased, they were significantly higher when compared to control worms cultured in uncontaminated soils. The accumulation of heavy metal in earthworms measured after 28 days decreased as the heavy metal concentration in soil increased. Levels of ALDH expression correlated with total Pb and Cd concentration in the earthworm tissue. This study showed that the ALDH activity in earthworms could potentially be used as a biomarker to show heavy metal pollution in soil.

  17. Vulnerability to diffuse pollution of European soils and groundwater

    NARCIS (Netherlands)

    Meinardi CR; Beusen AHW; Bollen MJS; Klepper O; LBG; CWM

    1994-01-01

    From the Atlantic Ocean to the Ural Mountains, European soils and groundwater are threatened by diffuse pollution derived from various chemicals used in modern agriculture and by increased atmospheric deposition of pollutants. The investigated vulnerability of soils (including groundwater) to

  18. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment.

    Science.gov (United States)

    Yang, Qianqi; Li, Zhiyuan; Lu, Xiaoning; Duan, Qiannan; Huang, Lei; Bi, Jun

    2018-06-14

    Soil heavy metal pollution has been becoming serious and widespread in China. To date, there are few studies assessing the nationwide soil heavy metal pollution induced by industrial and agricultural activities in China. This review obtained heavy metal concentrations in soils of 402 industrial sites and 1041 agricultural sites in China throughout the document retrieval. Based on the database, this review assessed soil heavy metal concentration and estimated the ecological and health risks on a national scale. The results revealed that heavy metal pollution and associated risks posed by cadmium (Cd), lead (Pb) and arsenic (As) are more serious. Besides, heavy metal pollution and associated risks in industrial regions are severer than those in agricultural regions, meanwhile, those in southeast China are severer than those in northwest China. It is worth noting that children are more likely to be affected by heavy metal pollution than adults. Based on the assessment results, Cd, Pb and As are determined as the priority control heavy metals; mining areas are the priority control areas compared to other areas in industrial regions; food crop plantations are the priority control areas in agricultural regions; and children are determined as the priority protection population group. This paper provides a comprehensive ecological and health risk assessment on the heavy metals in soils in Chinese industrial and agricultural regions and thus provides insights for the policymakers regarding exposure reduction and management. Copyright © 2018. Published by Elsevier B.V.

  19. [Heavy metal pollution characteristics and ecological risk analysis for soil in Phyllostachys praecox stands of Lin'an].

    Science.gov (United States)

    Fang, Xiao-bo; Shi, Han; Liao, Xin-feng; Lou, Zhong; Zhou, Lyu-yan; Yu, Hai-xia; Yao, Lin; Sun, Li-ping

    2015-06-01

    An investigation was carried out in an attempt to reveal the characteristics of heavy metals contamination in the soils of Phyllostachys praecox forest in Lin' an. Based on the concentrations of Hg, As, Cu, Pb, Zn, Cd, Cr, Ni, Co and Mn in 160 topsoil samples, the pollution status and ecological risks of heavy metals in the soils were assessed by single factor pollution index, Nemerow integrated pollution index and Hankanson potential ecological risk index. The spatial variability of heavy metal concentrations in the soils closely related to the distribution of traffic, industrial and livestock pollution sources. The average concentrations of Hg, As, Cu, Pb, Zn, Cd, Cr, Ni, Co and Mn in the soils were 0.16, 7.41, 34.36, 87.98, 103.98, 0.26, 59.12, 29.56, 11.44 and 350.26 mg · kg(-1), respectively. Pb, Cd, Zn and Cu concentrations were as 2.89, 1.70, 1.12 and 1.12 times as the background values of soil in Zhejiang Province, respectively. But their concentrations were all lower than the threshold values of the National Environmental Quality Standard for Soil (GB 15618-1995). The average single factor pollution index revealed that the level of heavy metal pollution in the soils was in order of Pb>Cd>Cu= Zn>Hg>As>Ni>Co>Cr>Mn. Pb pollution was of moderate level while Cd, Cu and Zn pollutions were slight. There was no soil pollution caused by the other heavy metals. However, the Nemerow integrated pollution index showed that all the 160 soil samples were contaminated by heavy metals to a certain extent. Among total 160 soil samples, slight pollution level, moderate pollution level and heavy pollution level accounted for 55.6%, 29.4% and 15.0%, respectively. The average single factor potential ecological risk index (Er(i)) implied that the potential ecological risk related to Cd reached moderate level, while the others were of slight level. Furthermore, Cd and Hg showed higher potential ecological risk indices which reached up to 256.82 and 187.33 respectively

  20. Pollution in the urban soils of Lianyungang, China, evaluated using a pollution index, mobility of heavy metals, and enzymatic activities.

    Science.gov (United States)

    Li, Yu; Li, Hong-Guan; Liu, Fu-Cheng

    2017-01-01

    Soil samples from 16 urban sites in Lianyungang, China were collected and analyzed. A pollution index was used to assess the potential ecological risk of heavy metals and a sequential extraction procedure was used to evaluate the relative distribution of Cu, Zn, Pb, Cd, Cr, and As in exchangeable, carbonate, Fe/Mn oxide, organic/sulfide, and residual fractions. The mobility of heavy metals and urease (URE) activity, alkaline phosphatase (ALP) activity, and invertase (INV) activity of soils was determined. The results showed that the average concentrations of Cu, Zn, Pb, Cd, Cr, and As in Lianyungang soils were much higher than those in the coastal city soil background values of Jiangsu and China. Among the five studied regions (utilities, commercial, industrial, tourism, and roadside), the industrial region had the highest metal concentrations demonstrating that land use had a significant impact on the accumulation of heavy metals in Lianyungang soils. Compared to the other metals, Cd showed the highest ecological risk. According to chemical partitioning, Cu was associated with the organic/sulfides and Pb and Zn were mainly in the carbonate and the Fe/Mn oxide phase. The greatest amounts of Cd were found in exchangeable and carbonate fractions, while Cr and As were mainly in the residual fraction. Cd had the highest mobility of all metals, and the order of mobility (highest to lowest) of heavy metals in Lianyungang soils was Cd > Zn > Pb > Cu > As > Cr. Soil urease activity, alkaline phosphatase activity, and invertase activity varied considerably in different pollution degree sites. Soil enzyme activities had the lowest levels in roadside and industrial regions. Across all the soil data in the five regions, the total Cu, Zn, Pb, Cd, Cr, and As level was negatively correlated with urease activity, alkaline phosphatase activity, and invertase activity, but the relationship was not significant. In the industrial region, alkaline phosphatase activity had

  1. The potential of willow for remediation of heavy metal polluted calcareous urban soils

    International Nuclear Information System (INIS)

    Jensen, Julie K.; Holm, Peter E.; Nejrup, Jens; Larsen, Morten B.; Borggaard, Ole K.

    2009-01-01

    Growth performance and heavy metal uptake by willow (Salix viminalis) from strongly and moderately polluted calcareous soils were investigated in field and growth chamber trials to assess the suitability of willow for phytoremediation. Field uptakes were 2-10 times higher than growth chamber uptakes. Despite high concentrations of cadmium (≥80 mg/kg) and zinc (≥3000 mg/kg) in leaves of willow grown on strongly polluted soil with up to 18 mg Cd/kg, 1400 mg Cu/kg, 500 mg Pb/kg and 3300 mg Zn/kg, it is unsuited on strongly polluted soils because of poor growth. However, willow proved promising on moderately polluted soils (2.5 mg Cd/kg and 400 mg Zn/kg), where it extracted 0.13% of total Cd and 0.29% of the total Zn per year probably representing the most mobile fraction. Cu and Pb are strongly fixed in calcareous soils. - Willow is suited for remediation of moderately heavy metal polluted calcareous soils

  2. SOIL DEGRADATION PROCESSES FROM POLLUTION

    Directory of Open Access Journals (Sweden)

    Popov Leonid

    2012-06-01

    Full Text Available Investigations found HCH and DDT residuals in bottom sediments from several reservoirs and lakes as well as the main rivers, Nistru and Prut (concentrations ranged between 0.2 and 15.8 ppb. The concentration of PCBs in the topsoil collected beneath the capacitors battery at the Vulcănesti substation reached a level of 7100 ppm which is exceeding the MAC by five orders of magnitude (!. With no exception, allowable concentrations of PCBs in soil were exceeded also on the territory of other investigated substations, with peaks registered at the Briceni substation (2545 ppm and the Orhei substation (1959 ppm.

  3. Phytoextraction of Cd-Contaminated Soils: Current Status and Future Challenges.

    Science.gov (United States)

    Li, Jin-Tian; Baker, Alan J M; Ye, Zhi-Hong; Wang, Hong-Bin; Shu, Wen-Sheng

    2012-10-01

    Cadmium (Cd) is one of the most toxic and widely distributed pollutants in the environment. Cadmium contamination of soils has posed a serious threat to safe food production in many parts of the world. The authors present a comprehensive review of present status of phytoextraction technology for cleaning up Cd-contaminated soils, based primarily on the data resulting from both laboratory and field-scale studies that have been conducted to assess or improve the Cd phytoextraction potential of various plant species in the past decade. The encouraging results of field-scale studies have provided a fundamental basis to usher phytoextraction technology into practical use to remediate slightly to moderately Cd-contaminated soils in Europe and Asia, although this technology is not yet ready for widespread application. Chelators and microorganisms tested so far seem not to contribute to the applicability of Cd phytoextraction. The major challenges for the large-scale application of Cd phytoextraction are (a) how to further improve the efficiency of Cd phytoextraction, (b) how to cut the overall costs of Cd phytoextraction, and (c) how to get greater stakeholders' acceptance of Cd phytoextraction as a reliable option.

  4. Microorganisms as bioindicators of pollutants in soil

    Directory of Open Access Journals (Sweden)

    Milošević Nada

    2010-01-01

    Full Text Available Microorganisms are the predominant portion of the soil's biological phase and they are indicators of soil health and quality. Soil microorganisms a take part in degradation of organic and inorganic compounds, b their activity, number and diversity may serve as bioindicators of toxic effects on soil biological activity, c some microbial species may be used for soil bioremediation and d some sensitive microbes are used in eco-toxicity tests. The primary microbial population starts to decompose herbicides several days after their arrival into the soil. The secondary population produces induced enzymes and decomposes herbicides after a period of adaptation. Certain microbial groups are indifferent to the applied herbicides. Effect of heavy metals on soil microbial activity depends on the element, their concentration, microbial species, as well as physical and chemical soil properties. Toxic level of individual pollutants depends on their origin and composition. However, combined application of chemicals makes room for the occurrence of synergistic toxic effects detrimental for the ecosystem and human health. .

  5. Assessment of heavy metal pollution in surface soils and plant material in the post-industrial city of Katowice, Poland.

    Science.gov (United States)

    Steindor, Karolina A; Franiel, Izabella J; Bierza, Wojciech M; Pawlak, Beata; Palowski, Bernard F

    2016-01-01

    This investigation was undertaken to assess the level of environment pollution by biological monitoring. The leaves and bark of popular ornamental trees Acer pseudoplatanus L. and Acer platanoides L. and soil from the sampling sites were used to perform heavy metals pollution monitoring in urban areas with different pollution sources, as well to investigate the suitability of the leaves and bark as bioindicators of Pb, Zn, Cd and Cu pollution. Plant samples were collected at nine locations classified into three pollution groups based on metal content in the soils. The chosen pollution indices were used to assess the level of contamination according to background values. Soils in the Katowice area are found to be relatively heavily contaminated with Pb, Zn and Cd. Both of the maple tree species did not statistically differ in terms of the investigated elements' concentration in leaves or bark. Only bark samples reflected the pollution level, showing differences between the sampling points, and therefore are recommended for biomonitoring purposes.

  6. [Study on pollution evaluation of heavy metal in surface soil of the original site of Qingdao North Station].

    Science.gov (United States)

    Zhu, Lei; Jia, Yong-gang; Pan, Yu-ying

    2013-09-01

    The determination of pollution extent and health risk assessment are the premise of heavy metal contaminated site remediation. The content of Cu, Cr, Pb, Cd, Zn, Ni in Qingdao North Station was detected, and the correlation of the 6 kinds of heavy metal content was analyzed. The pollution extent in excess of background values was characterized by anthropogenic influence multiple, and the pollution of heavy metal in soil was evaluated using geoaccumulation index and a new method which connects geoaccumulation index with Nemero index. Finally, human health risk assessment was carried out with health risk assessment model for heavy metal content. The results showed that Qingdao North Station soil were polluted by heavy metals. Six heavy metal pollution levels were: Cd > Cu > Ni > Pb > Cr > Zn, and Cd had reached the severity pollution level, Cu and Ni followed by, Cr, Pb and Zn were in minor pollution level. The order of coefficient variation in all heavy metals was: Cd > Ni > Cr > Zn > Pb > Cu. Within the study area soil heavy metal distribution was different, but overall discrepancy was small. The order of non-cancer hazards of heavy metals in soil was Cr > Pb > Cu > Ni > Cd > Zn, and the order of carcinogen risks of heavy metals was Ni > Cd. The non-cancer hazard and carcinogen risks values of metals were both lower than that their threshold values. They were not the direct threats to human health.

  7. [Distribution of Urban Soil Heavy Metal and Pollution Evaluation in Different Functional Zones of Yinchuan City].

    Science.gov (United States)

    Wang, You-qi; Bai, Yi-ru; Wang, Jian-yu

    2016-02-15

    Surface soil samples (0-20 cm) from eight different functional areas in Yinchuan city were collected. There were 10 samples respectively in each functional area. The urban soil heavy metals (Zn, Cd, Pb, Mn, Cu and Cr) pollution characteristics and sources in eight different functional areas were evaluated by mathematical statistics and geostatistical analysis method. Meanwhile, the spatial distributions of heavy metals based on the geography information system (GIS) were plotted. The average values of total Zn, Cd, Pb, Mn, Cu and Cr were 74.87, 0.15, 29.02, 553.55, 40.37 and 80.79 mg x kg(-1), respectively. The results showed that the average value of soil heavy metals was higher than the soil background value of Ningxia, which indicated accumulation of the heavy metals in urban soil. The single factor pollution index of soil heavy metals was in the sequence of Cu > Pb > Zn > Cr > Cd > Mn. The average values of total Zn, Cd, Pb and Cr were higher in north east, south west and central city, while the average values of Mn and Cu were higher in north east and central city. There was moderate pollution in road and industrial area of Yinchuan, while the other functional areas showed slight pollution according to Nemoro synthesis index. The pollution degree of different functional areas was as follows: road > industrial area > business district > medical treatment area > residential area > public park > development zone > science and education area. The results indicated that the soil heavy metal pollution condition in Yinchuan City has been affected by human activities with the development of economy.

  8. Heavy metal pollution and soil enzymatic activity

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, G

    1974-01-01

    The activity of hydrolytic soil enzymes was studied on spruce mor, polluted with Cu and Zn from a brass foundry in Sweden. Approximately straight regression lines were obtained between enzymatic activity or respiration rate and log Cu + Zn concentration, with highly significant negative regression coefficients for urease and acid phosphatase activity as well as respiration rate, whereas US -glucosidase activity was not measurably lower at high concentrations of Cu + Zn. 17 references, 5 figures.

  9. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods

    Directory of Open Access Journals (Sweden)

    G. U. Chibuike

    2014-01-01

    Full Text Available Soils polluted with heavy metals have become common across the globe due to increase in geologic and anthropogenic activities. Plants growing on these soils show a reduction in growth, performance, and yield. Bioremediation is an effective method of treating heavy metal polluted soils. It is a widely accepted method that is mostly carried out in situ; hence it is suitable for the establishment/reestablishment of crops on treated soils. Microorganisms and plants employ different mechanisms for the bioremediation of polluted soils. Using plants for the treatment of polluted soils is a more common approach in the bioremediation of heavy metal polluted soils. Combining both microorganisms and plants is an approach to bioremediation that ensures a more efficient clean-up of heavy metal polluted soils. However, success of this approach largely depends on the species of organisms involved in the process.

  10. Pollution assessment and source apportionment of heavy metals in contaminated site soils

    Science.gov (United States)

    Zheng, Hongbo; Ma, Yan

    2018-03-01

    Pollution characteristics of heavy metals in soil were analyzed with a typical contaminated site as the case area. The pollution degree of the element was evaluated by indexes of geoaccumulation (Igeo). The potential ecological risk of heavy metals was assessed with potential ecological risk index model. Principal component analysis (PCA) model was simultaneously carried out to identify the main sources of heavy metals in topsoils. The results indicated that: 1. Mean values of 11 kinds of metals in topsoils were greater than respective soil background values, following the order: Zn>Pb>V>Cr>Cu>Ni>Co>As>Sb>Cd>Hg. Heavy metals with a certain accumulation in the research area were significantly affected by external factors. 2. Igeo results showed that Cd and Zn reached strongly polluted degree, while Pb with moderately to strongly polluted, Sb and Hg with moderately polluted, Cu, Co, Ni and Cr with unpolluted to moderately polluted, V and As with un-polluted. 3. Potential ecological risk assessment showed the degree of ecological risk with Cd at very high risk, Hg at high risk, Pb at moderate risk and others at low risk. The comprehensive risk of all the metals was very high. 4. PCA got three main sources with contributions, including industrial activities (44.18%), traffic and burning dust (26.68%) and soil parent materials (12.20%).

  11. Accumulation of Pb, Cd and Zn from contaminated soil to various plants and evaluation of soil remediation with indicator plant (Plantago lanceolata L.)

    Energy Technology Data Exchange (ETDEWEB)

    Zupan, M.; Lobnik, F.; Kadunc, V. [Ljubljana Univ. (Slovenia). Agronomy Dept., Center for Soil and Environmental Science; Hudnik, V. [National Institute of Chemistry Hajdrihova 19, Ljubljana (Slovenia)

    1997-12-31

    The accumulation of cadmium, lead, and zinc by different major cultivated plants from soils contaminated with heavy metals, is presented. The vegetables, crops, and the indicator plant narrow leaf plantain (Plantago lanceolata L.) were used in a field experiment including 3 areas with different levels of pollution. The highest concentrations of heavy metals were observed in edible green parts of vegetables (endive, spinach, lettuce) and roots (carrot, red beet, radish). The heavy metal content in leguminous plants (pods and seeds) was very low compared to high soil concentrations. Wheat and maize showed lower concentrations in grains and kernels than in green parts. Lime and vermiculite were used for reduction of Cd availability to plants in polluted soil. The Cd concentration decreased in the narrow leaf plantain in the presence of both lime and vermiculite in acid soil. In the higher-pH soil the Cd availability to spinach was greatly reduced in the presence of vermiculite

  12. Heavy Metal Soil Content as an Indicator of Pollution

    Directory of Open Access Journals (Sweden)

    Ana-Maria Rusu

    2000-04-01

    Full Text Available Two soil sample series were collected from 7 contaminated sites situated along a transect from the pollutant source, Zlatna copper ore-processing plant, and analyzed using different analytical methods. The soils collected in 1998 were analyzed by inductively coupled plasma-atomic emission spectrometry (ICP-AES after extraction with DTPA for trace metals and those collected in 1999 were analyzed with flame atomic absorption spectrometry (FAAS following two acid digestion procedures. The DTPA extraction procedure produced lower results than the acid digestions. Also, the pH values for all samples was measured and the results obtained during autumn compared with those in spring after a long winter with heavy snow falls. The correlation between Cu, Pb, Zn (for samples collected in May 1999 and pH was investigated. The pattern of chemical abundance of contaminants (Cu, Pb, Zn, Fe, Cd and Ni was determined in soil at 0-50 cm depth. This study indicates that Pb is the most polluting element up to 25 km downwind from Zlatna town.

  13. Fertility Evaluation of Limed Brazilian Soil Polluted with Scrap Metal Residue

    Directory of Open Access Journals (Sweden)

    Flávia Almeida Gabos

    2013-01-01

    Full Text Available The aim of this work was to characterize the main inorganic contaminants and evaluate the effect of lime addition, combined with soil dilution with uncontaminated soil, as a strategy for mitigation of these contaminants present in a soil polluted with auto scrap. The experiment was performed in a greenhouse at Campinas (São Paulo State, Brazil in plastic pots (3 dm−3. Five soil mixtures, obtained by mixing an uncontaminated soil sample with contaminated soil (0, 25, 50, 75, and 100% contaminated soil, were evaluated for soil fertility, availability of inorganic contaminants, and corn development. In addition to the expected changes in soil chemistry due to the addition of lime, only the availability of Fe and Mn in the soil mixtures was affected, while the available contents of Cu, Zn, Cd, Cr, Ni, and Pb increased to some extent in the soil mixtures with higher proportion of contaminated soil. Liming of 10 t ha−1 followed by soil dilution at any proportion studied was not successful for mitigation of the inorganic contaminants to a desired level of soil fertility, as demonstrated by the available amounts extracted by the DTPA method (Zn, Pb, Cu, Ni, Cr, Cd and hot water (B still present in the soil. This fact was also proved by the phytotoxicity observed and caused by high amounts of B and Zn accumulating in the plant tissue.

  14. Effects of heavy metal pollution on enzyme activities in railway cut slope soils.

    Science.gov (United States)

    Meng, Xiaoyi; Ai, Yingwei; Li, Ruirui; Zhang, Wenjuan

    2018-03-07

    Railway transportation is an important transportation mode. However, railway transportation causes heavy metal pollution in surrounding soils. Heavy metal pollution has a serious negative impact on the natural environment, including a decrease of enzyme activities in soil and degradation of sensitive ecosystems. Some studies investigated the heavy metal pollution at railway stations or certain transportation hubs. However, the pollution accumulated in artificial cut slope soil all along the rails is still questioned. The interest on non-point source pollution from railways is increasing in an effort to protect the soil quality along the line. In this study, we studied spatial distributions of heavy metals and five enzyme activities, i.e., urease (UA), saccharase (SAC), protease (PRO), catalase (CAT), and polyphenol oxidase (POA) in the soil, and the correlation among them beside three different railways in Sichuan Province, China, as well. Soil samples were respectively collected from 5, 10, 25, 50, 100, and 150 m away from the rails (depth of 0-8 cm). Results showed that Mn, Cd, Cu, and Zn were influenced by railway transportation in different degrees while Pb was not. Heavy metal pollution was due to the abrasion of the gravel bed as well as the tracks and freight transportation which caused more heavy metal pollution than passenger transportation. Enzymatic activities were significantly negatively correlated with heavy metals in soils, especially Zn and Cu. Finally, it is proposed that combined use of PRO and POA activities could be an indicator of the heavy metal pollution in cut slope soils. The protective measures aimed at heavy metal pollution caused by railway transportation in cut slope soils are urgent.

  15. Phytoremediation efficiency OF CD by Eucalyptus globulus transplanted from polluted and unpolluted sites.

    Science.gov (United States)

    Luo, Jie; Qi, Shihua; Peng, Li; Wang, Jinji

    2016-01-01

    The capacity of plants to uptake heavy metals from contaminated soils has shown great phytoremediation potential. The development, resistibility and Cd extraction of Eucalyptus globulus individuals from metalliferous and clean sites in different years were analyzed under a specific environment. Eucalyptus globulus planted in Guiyu for phytoremediation or cultivated in an uncontaminated, natural environment for economic purposes were transplanted to Yuecheng town, which, in recent years, has been involved in the e-waste dismantling and recycling business, to compare the phytoremediation efficiency of Eucalyptus globulus trees grown in different environments. Trees cultivated in polluted areas can remove far more Cd and Hg from the contaminated soil than the individuals from clean soils because metalliferous Eucalyptus globulus can produce more biomass and uptake more heavy metals than nonmetalliferous plants per year. As polluted environments negatively affect the growth of plants, we speculated that the phytoremediation efficiency of metalliferous Eucalyptus globulus should decrease over time and that nonmetalliferous trees should adapt to the local environment.

  16. Total and Available Heavy Metal Concentrations and Assessment of Soil Pollution Indices in Selected Soils of Zanjan

    Directory of Open Access Journals (Sweden)

    M. Taheri

    2017-01-01

    Full Text Available Introduction: Soil is a hardly renewable natural resource. Although soil degradation, caused by either human activities and natural processes is a relatively slow procedure, but its effects are long lasting and most often, irreversible in the time scale of man's life. Among the most significant soil contaminants resulting from both natural and human sources, heavy metals are more important due to their long- term toxicity effects. For evaluating soil's enrichment rate by heavy metals, a wide and full study of soils background values, including total and available fractions of heavy metal contents should be done. Zanjan province has some great mines and concentrating industries of lead and zinc especially in Angoran, Mahneshan. Unfortunately produced waste materials of these industries spread over the adjacent areas. Investigations showed that accumulation of some heavy metals in vegetables and crops planted in this region had occurred. Therefore, performing some investigations in these polluted areas and assessing pollution rate and heavy metals distribution in arable lands had prime importance. Our goals were: 1 determining the total and available amounts of Cu, Pb, Zn and Cd in the soils of arable lands in polluted areas of Zanjan city, 2 producing the distribution map for the metals mentioned above and 3 calculating pollution indices in the soils. Materials and Methods: The study area was in south west of Zanjan city. For soil sampling, a 1 Km by 1 Km grid defined in ArcGIS software on landuse layer and totally 144 points that placed on agricultural lands, due to our goals, were sampled. For sampling, in a 5m radius around the point we collected some subsamples from depth of 0 - 15 cm, and after mixing the subsamples, finally a 1Kg soil sample prepared and sent to the laboratory. Sampled soils were air dried and were passed through a 2mm sieve. Soils organic matter (OM content and texture were determined by Walkely-Black and Bouyoucos

  17. The Chemophytostabilisation Process of Heavy Metal Polluted Soil.

    Science.gov (United States)

    Grobelak, Anna; Napora, Anna

    2015-01-01

    Industrial areas are characterised by soil degradation processes that are related primarily to the deposition of heavy metals. Areas contaminated with metals are a serious source of risk due to secondary pollutant emissions and metal leaching and migration in the soil profile and into the groundwater. Consequently, the optimal solution for these areas is to apply methods of remediation that create conditions for the restoration of plant cover and ensure the protection of groundwater against pollution. Remediation activities that are applied to large-scale areas contaminated with heavy metals should mainly focus on decreasing the degree of metal mobility in the soil profile and metal bioavailability to levels that are not phytotoxic. Chemophytostabilisation is a process in which soil amendments and plants are used to immobilise metals. The main objective of this research was to investigate the effects of different doses of organic amendments (after aerobic sewage sludge digestion in the food industry) and inorganic amendments (lime, superphosphate, and potassium phosphate) on changes in the metals fractions in soils contaminated with Cd, Pb and Zn during phytostabilisation. In this study, the contaminated soil was amended with sewage sludge and inorganic amendments and seeded with grass (tall fescue) to increase the degree of immobilisation of the studied metals. The contaminated soil was collected from the area surrounding a zinc smelter in the Silesia region of Poland (pH 5.5, Cd 12 mg kg-1, Pb 1100 mg kg-1, Zn 700 mg kg-1). A plant growth experiment was conducted in a growth chamber for 5 months. Before and after plant growth, soil subsamples were subjected to chemical and physical analyses. To determine the fractions of the elements, a sequential extraction method was used according to Zeien and Brümmer. Research confirmed that the most important impacts on the Zn, Cd and Pb fractions included the combined application of sewage sludge from the food industry and

  18. The Chemophytostabilisation Process of Heavy Metal Polluted Soil.

    Directory of Open Access Journals (Sweden)

    Anna Grobelak

    Full Text Available Industrial areas are characterised by soil degradation processes that are related primarily to the deposition of heavy metals. Areas contaminated with metals are a serious source of risk due to secondary pollutant emissions and metal leaching and migration in the soil profile and into the groundwater. Consequently, the optimal solution for these areas is to apply methods of remediation that create conditions for the restoration of plant cover and ensure the protection of groundwater against pollution. Remediation activities that are applied to large-scale areas contaminated with heavy metals should mainly focus on decreasing the degree of metal mobility in the soil profile and metal bioavailability to levels that are not phytotoxic. Chemophytostabilisation is a process in which soil amendments and plants are used to immobilise metals. The main objective of this research was to investigate the effects of different doses of organic amendments (after aerobic sewage sludge digestion in the food industry and inorganic amendments (lime, superphosphate, and potassium phosphate on changes in the metals fractions in soils contaminated with Cd, Pb and Zn during phytostabilisation. In this study, the contaminated soil was amended with sewage sludge and inorganic amendments and seeded with grass (tall fescue to increase the degree of immobilisation of the studied metals. The contaminated soil was collected from the area surrounding a zinc smelter in the Silesia region of Poland (pH 5.5, Cd 12 mg kg-1, Pb 1100 mg kg-1, Zn 700 mg kg-1. A plant growth experiment was conducted in a growth chamber for 5 months. Before and after plant growth, soil subsamples were subjected to chemical and physical analyses. To determine the fractions of the elements, a sequential extraction method was used according to Zeien and Brümmer. Research confirmed that the most important impacts on the Zn, Cd and Pb fractions included the combined application of sewage sludge from the

  19. Cadmium (Cd) Localization in Tissues of Cotton (Gossypium hirsutum L.), and Its Phytoremediation Potential for Cd-Contaminated Soils.

    Science.gov (United States)

    Chen, Zhifan; Zhao, Ye; Fan, Lidong; Xing, Liteng; Yang, Yujie

    2015-12-01

    Phytoremediation using economically valuable, large biomass, non-edible plants is a promising method for metal-contaminated soils. This study investigated cotton's tolerance for Cd and remediation potential through analyzing Cd bioaccumulation and localization in plant organs under different soil Cd levels. Results showed cotton presents good tolerance when soil Cd concentration ≤20.26 mg kg(-1). Cotton had good Cd accumulation ability under low soil Cd levels (soil Cd, while roots and stems were the main compartments of Cd storage. Cd complexation to other organic constituents in root and stem cell sap could be a primary detoxifying strategy. Therefore, cotton is a potential candidate for phytoremediation of Cd-contaminated soils.

  20. Risk assessment of heavy metal pollution for detritivores in floodplain soils in the Biesbosch, the Netherlands, taking bioavailability into account.

    NARCIS (Netherlands)

    Hobbelen, P.H.F.; Koolhaas, J.E.; van Gestel, C.A.M.

    2004-01-01

    Floodplains of the European rivers Rhine and Meuse are heavily polluted. We investigated the risk of heavy metal pollution (Cd, Cu, Pb, Zn) for detritivores living in a floodplain area, the Biesbosch, the Netherlands, affected by these rivers. Total soil, pore water and 0.01 M CaCl

  1. Soil fertility and plant diversity enhance microbial performance in metal-polluted soils.

    Science.gov (United States)

    Stefanowicz, Anna M; Kapusta, Paweł; Szarek-Łukaszewska, Grażyna; Grodzińska, Krystyna; Niklińska, Maria; Vogt, Rolf D

    2012-11-15

    This study examined the effects of soil physicochemical properties (including heavy metal pollution) and vegetation parameters on soil basal respiration, microbial biomass, and the activity and functional richness of culturable soil bacteria and fungi. In a zinc and lead mining area (S Poland), 49 sites were selected to represent all common plant communities and comprise the area's diverse soil types. Numerous variables describing habitat properties were reduced by PCA to 7 independent factors, mainly representing subsoil type (metal-rich mining waste vs. sand), soil fertility (exchangeable Ca, Mg and K, total C and N, organic C), plant species richness, phosphorus content, water-soluble heavy metals (Zn, Cd and Pb), clay content and plant functional diversity (based on graminoids, legumes and non-leguminous forbs). Multiple regression analysis including these factors explained much of the variation in most microbial parameters; in the case of microbial respiration and biomass, it was 86% and 71%, respectively. The activity of soil microbes was positively affected mainly by soil fertility and, apparently, by the presence of mining waste in the subsoil. The mining waste contained vast amounts of trace metals (total Zn, Cd and Pb), but it promoted microbial performance due to its inherently high content of macronutrients (total Ca, Mg, K and C). Plant species richness had a relatively strong positive effect on all microbial parameters, except for the fungal component. In contrast, plant functional diversity was practically negligible in its effect on microbes. Other explanatory variables had only a minor positive effect (clay content) or no significant influence (phosphorus content) on microbial communities. The main conclusion from this study is that high nutrient availability and plant species richness positively affected the soil microbes and that this apparently counteracted the toxic effects of metal contamination. Copyright © 2012 Elsevier B.V. All rights

  2. Potential ecological risk assessment and prediction of soil heavy-metal pollution around coal gangue dump

    Science.gov (United States)

    Jiang, X.; Lu, W. X.; Zhao, H. Q.; Yang, Q. C.; Yang, Z. P.

    2014-06-01

    The aim of the present study is to evaluate the potential ecological risk and trend of soil heavy-metal pollution around a coal gangue dump in Jilin Province (Northeast China). The concentrations of Cd, Pb, Cu, Cr and Zn were monitored by inductively coupled plasma mass spectrometry (ICP-MS). The potential ecological risk index method developed by Hakanson (1980) was employed to assess the potential risk of heavy-metal pollution. The potential ecological risk in the order of ER(Cd) > ER(Pb) > ER(Cu) > ER(Cr) > ER(Zn) have been obtained, which showed that Cd was the most important factor leading to risk. Based on the Cd pollution history, the cumulative acceleration and cumulative rate of Cd were estimated, then the fixed number of years exceeding the standard prediction model was established, which was used to predict the pollution trend of Cd under the accelerated accumulation mode and the uniform mode. Pearson correlation analysis and correspondence analysis are employed to identify the sources of heavy metals and the relationship between sampling points and variables. These findings provided some useful insights for making appropriate management strategies to prevent or decrease heavy-metal pollution around a coal gangue dump in the Yangcaogou coal mine and other similar areas elsewhere.

  3. Geochemical pattern of soils in Bobovdol valley, Bulgaria. Assessment of Cd and Co contents

    Directory of Open Access Journals (Sweden)

    Ivona Nikova

    2016-07-01

    Full Text Available The chemical composition of soils spread in the Bobov dol valley was studied in order to reveal the natural and anthropogenic patterns of Cd and Co spatial distribution. A sampling procedure based on the irregular grid of points and validated analytical methods were used in the field and laboratory studies. It is found that Cd content varies from 0.21 to 0.90 mg kg-1 in studied soils and the average value of 0.55 mg kg-1 coincides with concentration demarcating soil pollution (0.5 mg kg-1. Co content ranges from 2.22 to 15.76 mg kg-1 and in 70 % of sampled points exceeds the natural background content of 7.8 mg kg-1 found in local rocks. Still, Cd enrichment of studied soils is more significant than Co’s with coefficient of Clarke concentration of 3.67. Hence, the secondary deposition of studied elements as a result of the Bobov dol Thermal power plant air emissions is verified by results obtained. The spatial distribution of Cd and Co is featured with an altitudinal gradient in deposition and a trend of quantitative depletion in the South of Plant. Soil organic matter and pH have no influence on the content and spatial distribution of studied elements. Elements iron affinity governs their geochemical linkage in soils although cobalt occurs allied with aluminum and titanium.

  4. Effects of Soil Veterinary Antibiotics Pollution on Rice Growth

    OpenAIRE

    XU Qiu-tong; GU Guo-ping; ZHANG Ming-kui

    2016-01-01

    To understand the potential effect of soil veterinary antibiotics pollution on the growth of rice, a main food crop in China, oxytetracycline which was used widely in livestock and poultry breeding was selected to test the effects of different levels of soil antibiotics pollution on growth and yield of rice plant at both seedling and growth periods. Relationship between oxytetracycline accumulated in different organs of rice plant and oxytetracycline pollution levels in the soil was character...

  5. [Assessment of heavy metal pollution and potential ecological risks of urban soils in Kaifeng City, China].

    Science.gov (United States)

    Li, Yi-Meng; Ma, Jian-Hua; Liu, De-Xin; Sun, Yan-Li; Chen, Yan-Fang

    2015-03-01

    Ninety-nine topsoil (0-15 cm) samples were collected from Kaifeng City, China using the grid method, and then the concentrations of As, Cd, Cr, Cu, Ni, Pb and Zn in the samples were measured by standard methods. Soil pollution levels and potential ecological risks of the heavy metals were assessed using the pollution load index (PLI) and potential ecological risk index (RI), respectively. Ordinary Kriging interpolation technique was employed to investigate the spatial distribution of PLI and RI of the city. The results showed that high pollution of Cd occurred in Kaifeng urban soils, and there was moderate pollution of Zn, slight pollution of Pb and Cu, and no pollution of Ni, Cr and As. Very high ecological risk was posed by Cd and low risk by other metals. The mean PLI of the 7 metals from all sample points was 2.53, which was categorized as moderate pollution. The average RI was 344.58 which represented a considerable ecological risk. PLI and RI shared a similar spatial distribution with high values centralized in the old industrial area in the southeast and railway stations for passengers and goods in the south of the city, followed by the old town within the ancient city wall, and low values located in the north and west areas. Cadmium was the main factor for both soil pollution and potential ecological risk primarily due to farmland topsoil in the eastern suburb of Kaifeng City with high Cd concentrations resulted from sewage irrigation deposited in the urban area by wind, human activities such as soot discharged from the chemical fertilizer plant of Kaifeng, transportation and coal combustion.

  6. Utilization of microwave energy for decontamination of oil polluted soils.

    Science.gov (United States)

    Iordache, Daniela; Niculae, Dumitru; Francisc, Ioan Hathazi

    2010-01-01

    Soil oil (petroleum) product pollution represents a great environmental threat as it may contaminate the neighboring soils and surface and underground water. Liquid fuel contamination may occur anywhere during oil (petroleum) product transportation, storing, handling and utilization. The polluted soil recovery represents a complex process due to the wide range of physical, chemical and biological properties of soils which should be analyzed in connection with the study of the contaminated soil behavior under the microwave field action. The soil, like any other non-metallic material, can be heated through microwave energy absorption due to the dielectric losses, expressed by its dielectric complex constant. Oil polluted soil behaves differently in a microwave field depending on the nature, structure and amount of the polluting fuel. Decontamination is performed through volatilization and retrieval of organic contaminant volatile components. After decontamination only a soil fixed residue remains, which cannot penetrate the underground anymore. In carrying out the soil recovery process by means of this technology we should also consider the soil characteristics such as: the soil type, temperature, moisture.The first part of the paper presents the theoretical aspects relating to the behavior of the polluted soil samples in the microwave field, as well as their relating experimental data. The experimental data resulting from the analysis of soils with a different level of pollution point out that the degree of pollutant recovery is high, contributing to changing the initial classification of soils from the point of view of pollution. The paper graphically presents the levels of microwave generated and absorbed power in soil samples, soil temperature during experimentations, specific processing parameters in a microwave field. It also presents the constructive solution of the microwave equipment designed for the contaminated soil in situ treatment.

  7. Soil pollution by a pyrite mine spill in Spain: evolution in time

    International Nuclear Information System (INIS)

    Aguilar, J.; Dorronsoro, C.; Fernandez, E.; Fernandez, J.; Garcia, I.; Martin, F.; Simon, M.

    2004-01-01

    Soil pollution was studied after the spill of the Aznalcollar pyrite mine between 1998 and 2001, analyzing As, Zn, Cd, Cu and Pb both in total concentrations as well as in soluble and bioavailable forms. The main remediation measures were: clean-up of the tailings and polluted soils, plus application of amendment materials (liming). The results indicate that, after three years, 50-70% of the acidic soils and 25-30% of the basic soils are still highly polluted in total arsenic. The limit of 0.04 mg kg -1 for water-soluble arsenic is exceeded in 15-20% of all soils. The EDTA-extractable arsenic (bioavailable) exceeds the limit of 2 mg kg -1 only in the acidic sectors. After clean-up, the homogenization of the upper 20-25 cm of the soils appears to be the most recommended measure in the reduction of pollution. - Capsule: Remediation measures carried out after the Aznalcollar pyrite mine spill were effective in the reduction of the pollution, although three years after the accident many areas are still polluted by As

  8. Heavy metal concentrations in a soil-plant-snail food chain along a terrestrial soil pollution gradient

    Energy Technology Data Exchange (ETDEWEB)

    Notten, M.J.M. [Institute of Ecological Science, Department of Systems Ecology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam (Netherlands)]. E-mail: martje.notten@ecology.falw.vu.nl; Oosthoek, A.J.P. [Institute of Ecological Science, Department of Systems Ecology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam (Netherlands); Rozema, J. [Institute of Ecological Science, Department of Systems Ecology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam (Netherlands); Aerts, R. [Institute of Ecological Science, Department of Systems Ecology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam (Netherlands)

    2005-11-15

    We investigated concentrations of Zn, Cu, Cd and Pb in the compartments of a soil-plant (Urtica dioica)-snail (Cepaea nemoralis) food chain in four polluted locations in the Biesbosch floodplains, the Netherlands, and two reference locations. Total soil metal concentrations in the polluted locations were 4-20 times higher than those in the reference locations. Positive relationships between the generally low leaf concentrations and the soil concentrations were found for Zn only (r {sup 2} = 0.20). Bioaccumulation of Zn, Cu and Cd was observed in the snail tissues. We found positive relationships between the snail and leaf concentrations for all metals (range r {sup 2} = 0.19-0.46). The relationships between soil and snail concentrations were also positive, except for Cu (range r {sup 2} = 0.15-0.33). These results suggest transfer of metals to C. nemoralis snails from U. dioica leaves and from the soil. Metal transfer from polluted leaves to C. nemoralis is more important than transfer from the soil. - Bioaccumulation and positive snail-leaf relationships suggest metal transfer from Urtica dioica leaves to Cepaea nemoralis snails.

  9. Heavy metal concentrations in a soil-plant-snail food chain along a terrestrial soil pollution gradient

    International Nuclear Information System (INIS)

    Notten, M.J.M.; Oosthoek, A.J.P.; Rozema, J.; Aerts, R.

    2005-01-01

    We investigated concentrations of Zn, Cu, Cd and Pb in the compartments of a soil-plant (Urtica dioica)-snail (Cepaea nemoralis) food chain in four polluted locations in the Biesbosch floodplains, the Netherlands, and two reference locations. Total soil metal concentrations in the polluted locations were 4-20 times higher than those in the reference locations. Positive relationships between the generally low leaf concentrations and the soil concentrations were found for Zn only (r 2 = 0.20). Bioaccumulation of Zn, Cu and Cd was observed in the snail tissues. We found positive relationships between the snail and leaf concentrations for all metals (range r 2 = 0.19-0.46). The relationships between soil and snail concentrations were also positive, except for Cu (range r 2 = 0.15-0.33). These results suggest transfer of metals to C. nemoralis snails from U. dioica leaves and from the soil. Metal transfer from polluted leaves to C. nemoralis is more important than transfer from the soil. - Bioaccumulation and positive snail-leaf relationships suggest metal transfer from Urtica dioica leaves to Cepaea nemoralis snails

  10. Bioremediation of textile effluent polluted soil using kenaf (Hibiscus ...

    African Journals Online (AJOL)

    DR BADA

    Bioremediation of textile effluent polluted soil using kenaf (Hibiscus cannabinus Linn.) and composted ... Lead, Cadmium, Chromium and Zinc levels in plants and soil were determined using Atomic ..... Contaminated land in the EC: Report of ...

  11. Bioremediation of textile effluent polluted soil using kenaf ( Hibiscus ...

    African Journals Online (AJOL)

    Bioremediation of textile effluent polluted soil using kenaf ( Hibiscus cannabinus Linn.) and composted ... Journal of Applied Sciences and Environmental Management. Journal Home ... Twelve-litre plastic pots were filled with 10 kg soil.

  12. [Heavy metal pollution characteristics and ecological risk analysis for soil around Haining electroplating industrial park].

    Science.gov (United States)

    Li, Jiong-Hui; Weng, Shan; Fang, Jing; Huang, Jia-Lei; Lu, Fang-Hua; Lu, Yu-Hao; Zhang, Hong-Ming

    2014-04-01

    The pollution status and potential ecological risks of heavy metal in soils around Haining electroplating industrial park were studied. Hakanson index approach was used to assess the ecological hazards of heavy metals in soils. Results showed that average concentrations of six heavy metals (Cu, Ni, Pb, Zn, Cd and Cr) in the soils were lower than the secondary criteria of environmental quality standard for soils, indicating limited harmful effects on the plants and the environment in general. Though the average soil concentrations were low, heavy metal concentrations in six sampling points located at the side of road still exceeded the criteria, with excessive rate of 13%. Statistic analysis showed that concentrations of Cu and Cd in roadside soils were significantly higher than those in non-roadside soils, indicating that the excessive heavy metal accumulations in the soil closely related with traffic transport. The average potential ecological hazard index of soils around Haining electroplating industrial park was 46.6, suggesting a slightly ecological harm. However, the potential ecological hazard index of soils with excessive heavy metals was 220-278, suggesting the medium ecological hazards. Cd was the most seriously ecological hazard factor.

  13. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods

    OpenAIRE

    Chibuike, G. U.; Obiora, S. C.

    2014-01-01

    Soils polluted with heavy metals have become common across the globe due to increase in geologic and anthropogenic activities. Plants growing on these soils show a reduction in growth, performance, and yield. Bioremediation is an effective method of treating heavy metal polluted soils. It is a widely accepted method that is mostly carried out in situ; hence it is suitable for the establishment/reestablishment of crops on treated soils. Microorganisms and plants employ different mechanisms for...

  14. Electrodialytic Remediation of Different Cu-Polluted Soils

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Hansen, Henrik K.; Hansen, Lene

    1999-01-01

    Based on characterization of a polluted soil a proper desorbing agent to be added to the soil before the remediation can be found. The desorbing agent can improve the remediation according to both energy consumption and duration of the action......Based on characterization of a polluted soil a proper desorbing agent to be added to the soil before the remediation can be found. The desorbing agent can improve the remediation according to both energy consumption and duration of the action...

  15. Electrodialytic Remediation of Soil Polluted with Copper from Wood Preservation

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Hansen, Henrik; Laursen, Søren

    1997-01-01

    The principle of electrodialytic soil remediation was tested in six experiments on a copper polluted loamy sand. It was possible to decontaminate from 1360 to below 40 mg of Cu/kg of dry soil......The principle of electrodialytic soil remediation was tested in six experiments on a copper polluted loamy sand. It was possible to decontaminate from 1360 to below 40 mg of Cu/kg of dry soil...

  16. Soil nitrogen as fertilizer or pollutant

    International Nuclear Information System (INIS)

    1980-01-01

    The results of 22 studies and surveys are reported on a global scale on N fertilizer applications and the fate of 15 N-labelled fertilizer in various soils, water and nitrate movement, residues, soil-N transformations in relation to leaching, nitrate pollution, nitrogen balance and related aspects under a variety of climatic conditions and crop cultivation are described. Some studies did not contain actual isotope applications, and have therefore not been entered in INIS as individual items. A 13-page report on research coordination includes background information, common methodology, field lysimeter experiments and their results, and the collection and evaluation of data. In conclusion, variations in the fate and behaviour of N residues are considered as are water pollution, the critical role of models and the need for behaviour prediction, the fate of agricultural N residues, the conservation of useful N residues, and future programmes. The report concludes with 7 recommendations, 20 references, and 3 annexes. Annex 1 lists programme participants by country, chief investigator, basis of collaboration and subject area, Annex 2 the titles and authors of working papers; Annex 3 gives guidelines for 15 N-residue experiment objectives, data presentation, etc. All participants in the Coordination Meeting are listed

  17. Prosopis juliflora--a green solution to decontaminate heavy metal (Cu and Cd) contaminated soils.

    Science.gov (United States)

    Senthilkumar, P; Prince, W S P M; Sivakumar, S; Subbhuraam, C V

    2005-09-01

    Soil and plant samples (root and shoot) of Prosopis juliflora were collected in the vicinity of metal based foundry units in Coimbatore and assessed for their heavy metal content (Cu and Cd) to ascertain the use of P. juliflora as a green solution to decontaminate soils contaminated with Cu and Cd. The results showed that Cu and Cd content was much higher in plant components compared to their extractable level in the soil. Furthermore, there exist a strong correlation between the distance of the sources of industrial units and accumulation of heavy metals in plants. Accumulation of Cd in roots is comparatively higher than that of shoots. However, in case of Cu no such clear trend is seen. Considering the accumulation efficiency and tolerance of P. juliflora to Cd and Cu, this plant can be explored further for the decontamination of metal polluted soils. On the other hand, in view of heavy metal accumulate the practice of providing foliage and pods as fodder for live stock should be avoided.

  18. Bioremediation of Cd-DDT co-contaminated soil using the Cd-hyperaccumulator Sedum alfredii and DDT-degrading microbes

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhi-qiang [MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Zijingang Campus, Hangzhou 310058 (China); College of Agriculture, Hainan University, Renmin Road 58, Haikou 570228 (China); Yang, Xiao-e, E-mail: xyang@zju.edu.cn [MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Zijingang Campus, Hangzhou 310058 (China); Wang, Kai; Huang, Hua-gang; Zhang, Xincheng [MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Zijingang Campus, Hangzhou 310058 (China); Fang, Hua [Department of Plant Protection, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058 (China); Li, Ting-qiang [MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Zijingang Campus, Hangzhou 310058 (China); Alva, A.K. [U.S. Department of Agriculture-Agricultural Research Service, Prosser, WA (United States); He, Zhen-li [University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, Fort Pierce, FL 34945 (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Planting of S. alfredii is an effective technique for phytoextraction of Cd and DDs. Black-Right-Pointing-Pointer Soil inoculation with Pseudomonas sp. DDT-1 increases root biomass of S. alfredii. Black-Right-Pointing-Pointer Soil inoculation with Pseudomonas sp. DDT-1 improves the removal efficiency of DDs. Black-Right-Pointing-Pointer The plant-microbe strategy is promising for remediation of Cd-DDT co-contaminated soil. - Abstract: The development of an integrated strategy for the remediation of soil co-contaminated by heavy metals and persistent organic pollutants is a major research priority for the decontamination of soil slated for use in agricultural production. The objective of this study was to develop a bioremediation strategy for fields co-contaminated with cadmium (Cd), dichlorodiphenyltrichloroethane (DDT), and its metabolites 1, 1-dichloro-2, 2-bis (4-chlorophenyl) ethylene (DDE) and 1, 1-dichloro-2, 2-bis (4-chlorophenyl) ethane (DDD) (DDT, DDE, and DDD are collectively called DDs) using an identified Cd-hyperaccumulator plant Sedum alfredii (SA) and DDT-degrading microbes (DDT-1). Initially, inoculation with DDT-1 was shown to increase SA root biomass in a pot experiment. When SA was applied together with DDT-1, the levels of Cd and DDs in the co-contaminated soil decreased by 32.1-40.3% and 33.9-37.6%, respectively, in a pot experiment over 18 months compared to 3.25% and 3.76% decreases in soil Cd and DDs, respectively, in unplanted, untreated controls. A subsequent field study (18-month duration) in which the levels of Cd and DDs decreased by 31.1% and 53.6%, respectively, confirmed the beneficial results of this approach. This study demonstrates that the integrated bioremediation strategy is effective for the remediation of Cd-DDs co-contaminated soils.

  19. Bioremediation of Cd-DDT co-contaminated soil using the Cd-hyperaccumulator Sedum alfredii and DDT-degrading microbes

    International Nuclear Information System (INIS)

    Zhu, Zhi-qiang; Yang, Xiao-e; Wang, Kai; Huang, Hua-gang; Zhang, Xincheng; Fang, Hua; Li, Ting-qiang; Alva, A.K.; He, Zhen-li

    2012-01-01

    Highlights: ► Planting of S. alfredii is an effective technique for phytoextraction of Cd and DDs. ► Soil inoculation with Pseudomonas sp. DDT-1 increases root biomass of S. alfredii. ► Soil inoculation with Pseudomonas sp. DDT-1 improves the removal efficiency of DDs. ► The plant-microbe strategy is promising for remediation of Cd-DDT co-contaminated soil. - Abstract: The development of an integrated strategy for the remediation of soil co-contaminated by heavy metals and persistent organic pollutants is a major research priority for the decontamination of soil slated for use in agricultural production. The objective of this study was to develop a bioremediation strategy for fields co-contaminated with cadmium (Cd), dichlorodiphenyltrichloroethane (DDT), and its metabolites 1, 1-dichloro-2, 2-bis (4-chlorophenyl) ethylene (DDE) and 1, 1-dichloro-2, 2-bis (4-chlorophenyl) ethane (DDD) (DDT, DDE, and DDD are collectively called DDs) using an identified Cd-hyperaccumulator plant Sedum alfredii (SA) and DDT-degrading microbes (DDT-1). Initially, inoculation with DDT-1 was shown to increase SA root biomass in a pot experiment. When SA was applied together with DDT-1, the levels of Cd and DDs in the co-contaminated soil decreased by 32.1–40.3% and 33.9–37.6%, respectively, in a pot experiment over 18 months compared to 3.25% and 3.76% decreases in soil Cd and DDs, respectively, in unplanted, untreated controls. A subsequent field study (18-month duration) in which the levels of Cd and DDs decreased by 31.1% and 53.6%, respectively, confirmed the beneficial results of this approach. This study demonstrates that the integrated bioremediation strategy is effective for the remediation of Cd-DDs co-contaminated soils.

  20. Heavy metal pollution in surface soils of Pearl River Delta, China.

    Science.gov (United States)

    Jinmei, Bai; Xueping, Liu

    2014-12-01

    Heavy metal pollution is an increasing environmental problem in Chinese regions undergoing rapid economic and industrial development, such as the Pearl River Delta (PRD), southern China. We determined heavy metal concentrations in surface soils from the PRD. The soils were polluted with heavy metals, as defined by the Chinese soil quality standard grade II criteria. The degree of pollution decreased in the order Cd > Cu > Ni > Zn > As > Cr > Hg > Pb. The degree of heavy metal pollution by land use decreased in the order waste treatment plants (WP) > urban land (UL) > manufacturing industries (MI) > agricultural land (AL) > woodland (WL) > water sources (WS). Pollution with some of the metals, including Cd, Cu, Ni, and Zn, was attributed to the recent rapid development of the electronics and electroplating industries. Cd, Hg, and Pb (especially Cd) pose high potential ecological risks in all of the zones studied. The soils posing significantly high and high potential ecological risks from Cd covered 73.3 % of UL, 50 % of MI and WP land, and 48.5 % of AL. The potential ecological risks from heavy metals by land use decreased in the order UL > MI > AL > WP > WL > WS. The control of Cd, Hg, and Pb should be prioritized in the PRD, and emissions in wastewater, residue, and gas discharges from the electronics and electroplating industry should be decreased urgently. The use of chemical fertilizers and pesticides should also be decreased.

  1. Comparison of soil heavy metal pollution caused by e-waste recycling activities and traditional industrial operations.

    Science.gov (United States)

    He, Kailing; Sun, Zehang; Hu, Yuanan; Zeng, Xiangying; Yu, Zhiqiang; Cheng, Hefa

    2017-04-01

    The traditional industrial operations are well recognized as an important source of heavy metal pollution, while that caused by the e-waste recycling activities, which have sprouted in some developing countries, is often overlooked. This study was carried out to compare the status of soil heavy metal pollution caused by the traditional industrial operations and the e-waste recycling activities in the Pearl River Delta, and assess whether greater attention should be paid to control the pollution arising from e-waste recycling activities. Both the total contents and the chemical fractionation of major heavy metals (As, Cr, Cd, Ni, Pb, Cu, and Zn) in 50 surface soil samples collected from the e-waste recycling areas and 20 soil samples from the traditional industrial zones were determined. The results show that the soils in the e-waste recycling areas were mainly polluted by Cu, Zn, As, and Cd, while Cu, Zn, As, Cd, and Pb were the major heavy metals in the soils from the traditional industrial zones. Statistical analyses consistently show that Cu, Cd, Pb, and Zn in the surface soils from both types of sites were contributed mostly by human activities, while As, Cr, and Ni in the soils were dominated by natural background. No clear distinction was found on the pollution characteristic of heavy metals in the surface soils between the e-waste recycling areas and traditional industrial zones. The potential ecological risk posed by heavy metals in the surface soils from both types of sites, which was dominated by that from Cd, ranged from low to moderate. Given the much shorter development history of e-waste recycling and its largely unregulated nature, significant efforts should be made to crack down on illegal e-waste recycling and strengthen pollution control for related activities.

  2. Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera japonica grown in Cd-added soils?

    Science.gov (United States)

    Jiang, Qiu-Yun; Zhuo, Feng; Long, Shi-Hui; Zhao, Hai-Di; Yang, Dan-Jing; Ye, Zhi-Hong; Li, Shao-Shan; Jing, Yuan-Xiao

    2016-02-01

    A greenhouse pot experiment was conducted to study the impact of arbuscular mycorrhizal fungi-Glomus versiforme (Gv) and Rhizophagus intraradices (Ri) on the growth, Cd uptake, antioxidant indices [glutathione reductase (GR), ascorbate peroxidase (APX), superoxide dismutase (SOD), catalase (CAT), ascorbate (ASA), glutathione (GSH) and malonaldehyde (MDA)] and phytochelatins (PCs) production of Lonicera japonica in Cd-amended soils. Gv and Ri significantly increased P acquisition, biomass of shoots and roots at all Cd treatments. Gv significantly decreased Cd concentrations in shoots and roots, and Ri also obviously reduced Cd concentrations in shoots but increased Cd concentrations in roots. Meanwhile, activities of CAT, APX and GR, and contents of ASA and PCs were remarkably higher in Gv/Ri-inoculated plants than those of uninoculated plants, but lower MDA and GSH contents in Gv/Ri-inoculated plants were found. In conclusion, Gv and Ri symbiosis alleviated Cd toxicity of L. japonica through the decline of shoot Cd concentrations and the improvement of P nutrition, PCs content and activities of GR, CAT, APX in inoculated plants, and then improved plant growth. The decrease of shoot Cd concentrations in L. japonica inoculated with Gv/Ri would provide a clue for safe production of this plant from Cd-contaminated soils.

  3. [Distribution and pollution assessment of heavy metals in soil of relocation areas from the Danjiangkou Reservoir].

    Science.gov (United States)

    Zhang, Lei; Qin, Yan-Wen; Zheng, Bing-Hui; Shi, Yao; Han, Chao-Nan

    2013-01-01

    The aim of this article is to explore the pollution level and potential ecological risk of heavy metals in soil of the relocation areas from the Danjiangkou Reservoir. The contents and spatial distribution of Cd, Pb, Cu, Zn, Cr and As in soil of the relocation areas from the Danjiangkou Reservoir were analyzed. The integrated pollution index and potential ecological risk index were used to evaluate the contamination degree and potential ecological risk of these elements. The results indicated that the average contents of Cd, Pb, Cu, Zn, Cr and As in the samples were 0.61, 23.11, 58.25, 22.65, 58.99 and 16.95 mg x kg(-1), respectively. Compared with the background value of soils from Henan province, all these 6 elements except Zn were enriched to some extent, especially Cd. Similar patterns were observed for the spatial distribution of Cu, Zn, and Pb. Compared with the contents of heavy metals in surface sediments of the typical domestic reservoirs, Cd and As in soil of the relocation areas from the Danjiangkou Reservoir were heavily accumulated. The correlation analysis showed that there were significant positive correlations among Pb, Cu, and Zn. And there was also significant positive correlation between Cr and Pb. In contrast, negative correlation was found between Cr and As. To sum up, the comprehensive assessment results showed that Cd was the primary element with high ecological risk.

  4. Soil pollution indices conditioned by medieval metallurgical activity - A case study from Krakow (Poland).

    Science.gov (United States)

    Kowalska, Joanna; Mazurek, Ryszard; Gąsiorek, Michał; Setlak, Marcin; Zaleski, Tomasz; Waroszewski, Jaroslaw

    2016-11-01

    The studied soil profile under the Main Market Square (MMS) in Krakow was characterised by the influence of medieval metallurgical activity. In the presented soil section lithological discontinuity (LD) was found, which manifests itself in the form of cultural layers (CLs). Moreover, in this paper LD detection methods based on soil texture are presented. For the first time, three different ways to identify the presence of LD in the urban soils are suggested. The presence of LD had an influence on the content and distribution of heavy metals within the soil profile. The content of heavy metals in the CLs under the MMS in Krakow was significantly higher than the content in natural horizons. In addition, there were distinct differences in the content of heavy metals within CLs. Profile variability and differences in the content of heavy metals and phosphorus within the CLs under the MMS were activity indicators of Krakow inhabitants in the past. This paper presents alternative methods for the assessment of the degree of heavy metal contamination in urban soils using selected pollution indices. On the basis of the studied total concentration of heavy metals (Zn, Pb, Cu, Mn, Cr, Cd, Ni, Sn, Ag) and total phosphorus content, the Geoaccumulation Index (I geo ), Enrichment Factor (EF), Sum of Pollution Index (PI sum ), Single Pollution Index (PI), Nemerow Pollution Index (PI Nemerow ) and Potential Ecological Risk (RI) were calculated using different local and reference geochemical backgrounds. The use of various geochemical backgrounds is helpful to evaluate the assessment of soil pollution. The individual CLs differed from each other according to the degree of pollution. The different values of pollution indices within the studied soil profile showed that LDS should not be evaluated in terms of contamination as one, homogeneous soil profile but each separate CL should be treated individually. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Effect of fertilizer amendments on phytoremediation of Cd-contaminated soil by a newly discovered hyperaccumulator Solanum nigrum L

    International Nuclear Information System (INIS)

    Wei Shuhe; Li Yunmeng; Zhou Qixing; Srivastava, Mrittunjai; Chiu Siuwai; Zhan Jie; Wu Zhijie; Sun Tieheng

    2010-01-01

    Phytoremediation is a cost-effective, simple and sustainable beneficiary technique to purify the polluted environment. Solanum nigrum L., a newly found cadmium (Cd) hyperaccumulator, has shown the potential to remediate Cd-contaminated soils. Present study investigated the effects of fertilizer amendments on the Cd uptake by S. nigrum. Chicken manure and urea are usual agricultural fertilizers and more environmental friendly. The results showed that Cd concentrations in shoots of S. nigrum were significantly decreased (p -1 ) in shoot biomass of S. nigrum were significantly increased (p < 0.05) due to increased shoot biomass. In addition, available Cd concentration in soil significantly decreased due to addition of chicken manure. Thus, urea might be a better fertilizer for strengthening phytoextraction rate of S. nigrum to Cd, and chicken manure may be a better fertilizer for phytostabilization.

  6. Remediation of soil contaminated with the heavy metal (Cd2+)

    International Nuclear Information System (INIS)

    Lin, C.-C.; Lin, H.-L.

    2005-01-01

    Soil contamination by heavy metals is increasing. The biosorption process for removal of the heavy metal Cd 2+ from contaminated soil is chosen for this study due to its economy, commercial applications, and because it acts without destroying soil structure. The study is divided into four parts (1) soil leaching: the relationships between the soil leaching effect and agitation rates, solvent concentrations, ratios of soil to solvent, leaching time and pH were studied to identify their optimum conditions; (2) adsorption Cd 2+ tests of immobilized Saccharomycetes pombe beads: different weight percentages of chitosan and polyvinyl alcohol (PVAL) were added to alginate (10 wt.%) and then blended or cross-linked by epichlorohydrin (ECH) to increase their mechanical strength. Next, before blending or cross-linking, different weight percentages of S. pombe 806 or S. pombe ATCC 2476 were added to increase Cd 2+ adsorption. Thus, the optimum beads (blending or cross-linking, the percentages of chitosan, PVAL and S. pombe 806 or S. pombe ATCC 2476) and the optimum adsorption conditions (agitation rate, equilibrium adsorption time, and pH in the aqueous solution) were ascertained; (3) regeneration tests of the optimum beads: the optimum beads adsorbing Cd 2+ were regenerated by various concentrations of aqueous HCl solutions. The results indicate that the reuse of immobilized pombe beads was feasible; and (4) adsorption model/kinetic model/thermodynamic property: the equilibrium adsorption, kinetics, change in Gibbs free energy of adsorption of Cd 2+ on optimum beads were also investigated

  7. Environmental impact of hazardous inorganic materials. Pollution and remediation of soils

    Energy Technology Data Exchange (ETDEWEB)

    Tokunaga, S.; Hakuta, T. [National Institute of Materials and Chemical Research, Tsukuba (Japan); Barrington, S.; Wasay, S. [McGill University, (Canada)

    1998-02-10

    Recently, soil pollution has become a grave social problem. This paper reviews history, laws and regulations, current status and measures related to soil pollution, centered by those of Japan. Soil pollution problems in Japan date back to around 1880, when pollution of the Watarase River basin started by waste water exhausted from Asio Mine. Various grave problems have been recorded since then, including the Itai-itai and Minamata Diseases caused by Cd and methyl mercury, respectively, which started in 1945 and 1956, with the result that the government has amended laws/regulations related to treatment and cleaning of industrial wastes. Later, the related laws/regulations have been frequently amended, and the environmental standards related to soil pollution was established in 1991. Treatment for remediation of polluted soils has been effected with the aid of inorganic acids, organic solvents, chelating agents, natural organic acids (such as acetic and formic acids) and biological surface active agents. They must be carefully planned to take into consideration various aspects, such as pH level and other conditions, cost and environmental safety, before being actually used. One of the recommended measures is on-the-site treatment in an enclosed space while regenerating and recycling the agent. 66 refs., 7 figs., 8 tabs.

  8. An in vivo invertebrate bioassay of Pb, Zn and Cd stabilization in contaminated soil.

    Science.gov (United States)

    Udovic, Metka; Drobne, Damjana; Lestan, Domen

    2013-08-01

    The terrestrial isopod (Porcellio scaber) was used to assess the remediation efficiency of limestone and a mixture of gravel sludge and red mud as stabilizing agents of Pb, Zn and Cd in industrially polluted soil, which contains 800, 540 and 7mgkg(-1) of Pb, Zn and Cd, respectively. The aim of our study was to compare and evaluate the results of the biological and non-biological assessment of metal bioavailability after soil remediation. Results of a 14d bioaccumulation test with P. scaber showed that that Pb and Zn stabilization were more successful with gravel sludge and red mud, while Cd was better stabilized and thus less bioavailable following limestone treatment. In vivo bioaccumulation tests confirmed the results of chemical bioaccessibility, however it was more sensitive. Biotesting with isopods is a relevant approach for fast screening of bioavailability of metals in soils which includes temporal and spatial components. Bioavailability assessed by P. scaber is a more relevant and sensitive measure of metal bioavailability than chemical bioaccessibility testing in remediated industrially polluted soil. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Symbiotic efficiency of autochthonous arbuscular mycorrhizal fungus (G. mosseae) and Brevibacillus sp. isolated from cadmium polluted soil under increasing cadmium levels

    International Nuclear Information System (INIS)

    Vivas, A.; Voeroes, I.; Biro, B.; Campos, E.; Barea, J.M.; Azcon, R.

    2003-01-01

    Selected ubiquitous microorganisms are important components of Cd tolerance in plants. - The effect of inoculation with indigenous naturally occurring microorganisms [an arbuscular mycorrhizal (AM) fungus and rhizosphere bacteria] isolated from a Cd polluted soil was assayed on Trifolium repens growing in soil contaminated with a range of Cd. One of the bacterial isolate showed a marked PGPR effect and was identified as a Brevibacillus sp. Mycorrhizal colonization also enhanced Trifolium growth and N, P, Zn and Ni content and the dually inoculated (AM fungus plus Brevibacillus sp.) plants achieved further growth and nutrition and less Cd concentration, particularly at the highest Cd level. Increasing Cd level in the soil decreased Zn and Pb shoot accumulation. Coinoculation of Brevibacillus sp. and AM fungus increased shoot biomass over single mycorrhizal plants by 18% (at 13.6 mg Cd kg -1 ), 26% (at 33.0 mg Cd kg -1 ) and 35% (at 85.1 mg Cd kg -1 ). In contract, Cd transfer from soil to plants was substantially reduced and at the highest Cd level Brevibacillus sp. lowered this value by 37.5% in AM plants. Increasing Cd level highly reduced plant mycorrhization and nodulation. Strong positive effect of the bacterium on nodule formation was observed in all treatments. Results show that selected ubiquitous microorganisms, applied as enriched inocula, are important in plant Cd tolerance and development in Cd polluted soils

  10. Amendment damages the function of continuous flooding in decreasing Cd and Pb uptake by rice in acid paddy soil.

    Science.gov (United States)

    Ye, Xinxin; Li, Hongying; Zhang, Ligan; Chai, Rushan; Tu, Renfeng; Gao, Hongjian

    2018-01-01

    Combinations of remediation technologies are needed to solve the problem of soil contamination in paddy rice, due to multiple potential toxic elements (PTEs). Two potential mitigation methods, water management and in-situ remediation by soil amendment, have been widely used in treatment of PTE-polluted paddy soil. However, the interactive relationship between soil amendment and water management, and its influence on the accumulation of PTEs in rice are poorly understood. Greenhouse pot experiments were conducted to examine the effects of phosphate amendment on Cd and Pb availability in soil and their influence on Cd and Pb uptake into rice, on Fe and P availability in soil, and on the alteration of Fe amount and compartment on root surface among different water management strategies. Results indicated that Cd and Pb content in the shoot and grain were significantly affected by the different water management strategies in nonamended soils, and followed the order: wetting irrigation > conventional irrigation > continuous flooding. The application of phosphate amendment significantly decreased the variations of Cd and Pb absorption in shoot and grain of rice among different water treatments. The reasons may be attributed to the enhancement of P availability and the decrease of Fe availability in soil, and the decreased variations of Fe 2+ /Fe 3+ content in root coating after the application of phosphate amendment. These results suggested that the simultaneous use of phosphate amendment and continuous flooding to immobilize Cd and Pb, especially in acid paddy soils, should be avoided. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Elevated CO2 increases glomalin-related soil protein (GRSP) in the rhizosphere of Robinia pseudoacacia L. seedlings in Pb- and Cd-contaminated soils.

    Science.gov (United States)

    Jia, Xia; Zhao, Yonghua; Liu, Tuo; Huang, Shuping; Chang, Yafei

    2016-11-01

    Glomalin-related soil protein (GRSP), which contains glycoproteins produced by arbuscular mycorrhizal fungi (AMF), as well as non-mycorrhizal-related heat-stable proteins, lipids, and humic materials, is generally categorized into two fractions: easily extractable GRSP (EE-GRSP) and total GRSP (T-GRSP). GRSP plays an important role in soil carbon (C) sequestration and can stabilize heavy metals such as lead (Pb), cadmium (Cd), and manganese (Mn). Soil contamination by heavy metals is occurring in conjunction with rising atmospheric CO 2 in natural ecosystems due to human activities. However, the response of GRSP to elevated CO 2 combined with heavy metal contamination has not been widely reported. Here, we investigated the response of GRSP to elevated CO 2 in the rhizosphere of Robinia pseudoacacia L. seedlings in Pb- and Cd-contaminated soils. Elevated CO 2 (700 μmol mol -1 ) significantly increased T- and EE- GRSP concentrations in soils contaminated with Cd, Pb or Cd + Pb. GRSP contributed more carbon to the rhizosphere soil organic carbon pool under elevated CO 2  + heavy metals than under ambient CO 2 . The amount of Cd and Pb bound to GRSP was significantly higher under elevated (compared to ambient) CO 2 ; and elevated CO 2 increased the ratio of GRSP-bound Cd and Pb to total Cd and Pb. However, available Cd and Pb in rhizosphere soil under increased elevated CO 2 compared to ambient CO 2 . The combination of both metals and elevated CO 2 led to a significant increase in available Pb in rhizosphere soil compared to the Pb treatment alone. In conclusion, increased GRSP produced under elevated CO 2 could contribute to sequestration of soil pollutants by adsorption of Cd and Pb. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Determination of Pb and Cd pollution in Pine tree (Pinus Sylvestris) by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Rudovica, V.; Katkevic, J; Viksna, A.; Nulle, S.; Balcerbule, Z. . E-mai: wita@navigator.lv

    2004-01-01

    Forest is subordinate anthropogenic (carbon, petroleum, wood, waste incineration) and natural (climatic, biological, chemical) factors influencing. In current investigation pine tree as environmental indicator (Pinus Sylvestris L.) is selected. The aim of current investigations are to improve methods, that easy and unerring can establish threshold and critical toxic elements accumulation in the samples, such as pine needles, peels, trunk; the second - to find fact of pine reactions on pollution toxic elements concentrations in the soil, nutrition solutions. The reception efficiency of lead and cadmium from the solution with different concentrations of these toxic elements is estimated. The distribution of lead and cadmium in the different parts of pine trunk is edematous with some selective organic reagents. We find out that these toxic elements accumulate in pine trunk and peels and we cannot wash out from samples with water, so these elements are fixed in live tissue. The pollution of pine seedlings with Cd and Pb through the needles, peels, pulp, roots is connected with nutrition solutions, so with soil pollution

  13. Polluted soil leaching: unsaturated conditions and flow rate effects

    Directory of Open Access Journals (Sweden)

    Chourouk Mathlouthi

    2017-04-01

    Full Text Available In this study, soil samples are extracted from a polluted site at different depths. Soils texture and pollutant presence are different with depth. Preliminary analyzes showed pollution by heavy metals. To simulate soil leaching operation in static condition, a series of leaching tests are conducted in laboratory column under conditions of upflow unsaturated soil. Electrical conductivity and pH measurements on the recovered leachate are performed. Different flow rates are tested. Comparison of different profiles shows that the dissolved pollutants are concentrated in the upper soil levels and disperse weakly in the lower parts which confirm the nature of anthropogenic pollution of heavy metals. Water mobilizes a high amount of dissolved ionic substances up to 80% of the initial concentration. The increase in flow rate requires more pore volume injected to achieve the maximum clearance rate. The down flow condition extracts a small amount of dissolved substances.

  14. Heavy Metal Pollution in a Soil-Rice System in the Yangtze River Region of China.

    Science.gov (United States)

    Liu, Zhouping; Zhang, Qiaofen; Han, Tiqian; Ding, Yanfei; Sun, Junwei; Wang, Feijuan; Zhu, Cheng

    2015-12-22

    Heavy metals are regarded as toxic trace elements in the environment. Heavy metal pollution in soil or rice grains is of increasing concern. In this study, 101 pairs of soil and rice samples were collected from the major rice-producing areas along the Yangtze River in China. The soil properties and heavy metal (i.e., Cd, Hg, Pb and Cr) concentrations in the soil and rice grains were analyzed to evaluate the heavy metal accumulation characteristics of the soil-rice systems. The results showed that the Cd, Hg, Pb and Cr concentrations in the soil ranged from 0.10 to 4.64, 0.01 to 1.46, 7.64 to 127.56, and 13.52 to 231.02 mg·kg(-)¹, respectively. Approximately 37%, 16%, 60% and 70% of the rice grain samples were polluted by Cd, Hg, Pb, and Cr, respectively. The degree of heavy metal contamination in the soil-rice systems exhibited a regional variation. The interactions among the heavy metal elements may also influence the migration and accumulation of heavy metals in soil or paddy rice. The accumulation of heavy metals in soil and rice grains is related to a certain extent to the pH and soil organic matter (SOM). This study provides useful information regarding heavy metal accumulation in soil to support the safe production of rice in China. The findings from this study also provide a robust scientific basis for risk assessments regarding ecological protection and food safety.

  15. Heavy Metal Pollution in a Soil-Rice System in the Yangtze River Region of China

    Directory of Open Access Journals (Sweden)

    Zhouping Liu

    2015-12-01

    Full Text Available Heavy metals are regarded as toxic trace elements in the environment. Heavy metal pollution in soil or rice grains is of increasing concern. In this study, 101 pairs of soil and rice samples were collected from the major rice-producing areas along the Yangtze River in China. The soil properties and heavy metal (i.e., Cd, Hg, Pb and Cr concentrations in the soil and rice grains were analyzed to evaluate the heavy metal accumulation characteristics of the soil-rice systems. The results showed that the Cd, Hg, Pb and Cr concentrations in the soil ranged from 0.10 to 4.64, 0.01 to 1.46, 7.64 to 127.56, and 13.52 to 231.02 mg·kg−1, respectively. Approximately 37%, 16%, 60% and 70% of the rice grain samples were polluted by Cd, Hg, Pb, and Cr, respectively. The degree of heavy metal contamination in the soil-rice systems exhibited a regional variation. The interactions among the heavy metal elements may also influence the migration and accumulation of heavy metals in soil or paddy rice. The accumulation of heavy metals in soil and rice grains is related to a certain extent to the pH and soil organic matter (SOM. This study provides useful information regarding heavy metal accumulation in soil to support the safe production of rice in China. The findings from this study also provide a robust scientific basis for risk assessments regarding ecological protection and food safety.

  16. Heavy Metal Pollution in a Soil-Rice System in the Yangtze River Region of China

    Science.gov (United States)

    Liu, Zhouping; Zhang, Qiaofen; Han, Tiqian; Ding, Yanfei; Sun, Junwei; Wang, Feijuan; Zhu, Cheng

    2015-01-01

    Heavy metals are regarded as toxic trace elements in the environment. Heavy metal pollution in soil or rice grains is of increasing concern. In this study, 101 pairs of soil and rice samples were collected from the major rice-producing areas along the Yangtze River in China. The soil properties and heavy metal (i.e., Cd, Hg, Pb and Cr) concentrations in the soil and rice grains were analyzed to evaluate the heavy metal accumulation characteristics of the soil-rice systems. The results showed that the Cd, Hg, Pb and Cr concentrations in the soil ranged from 0.10 to 4.64, 0.01 to 1.46, 7.64 to 127.56, and 13.52 to 231.02 mg·kg−1, respectively. Approximately 37%, 16%, 60% and 70% of the rice grain samples were polluted by Cd, Hg, Pb, and Cr, respectively. The degree of heavy metal contamination in the soil-rice systems exhibited a regional variation. The interactions among the heavy metal elements may also influence the migration and accumulation of heavy metals in soil or paddy rice. The accumulation of heavy metals in soil and rice grains is related to a certain extent to the pH and soil organic matter (SOM). This study provides useful information regarding heavy metal accumulation in soil to support the safe production of rice in China. The findings from this study also provide a robust scientific basis for risk assessments regarding ecological protection and food safety. PMID:26703698

  17. Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil.

    Science.gov (United States)

    Liu, Houjun; Zhang, Junling; Christie, Peter; Zhang, Fusuo

    2008-05-15

    Iron plaque is ubiquitously formed on the root surfaces of rice. However, little is known about the role of iron plaque in Cd movement from soil to the plant aboveground parts. A pot experiment was conducted to investigate the influence of iron plaque in Cd uptake and accumulation by rice seedlings in soil. Rice seedlings were pre-cultivated in solution culture for 16 days. Two seedlings were transplanted in a nylon bag containing no substrate but surrounded by soil amended with Fe and Cd combined at rates of 0, 1, or 2 g Fe kg(-1) and 0, 2.0, or 10 mg Cd kg(-1) soil. Fe was added to induce different amounts of iron plaque, and Cd to simulate Cd-polluted soils. Plants were grown for a further 43 days and then harvested. The length of the longest leaf and SPAD values of the newly mature leaves were measured during plant growth. Fe and Cd concentrations were determined in dithionite-citrate-bicarbonate (DCB) soil extracts and in plant roots and shoots. Shoot and root dry weights were significantly affected by Fe supply level but not by added Cd. Root dry weight declined with increasing Fe supply but shoot dry weight decreased at 2 g Fe kg(-1) and increased at 1 g Fe kg(-1) (except at 2 mg Cd kg(-1)). The length of the longest leaf and SPAD values of the newly mature leaves were significantly affected by plant growth stage and added Fe and Cd. Fe tended to diminish the negative effect of Cd on these two parameters. Cd concentrations in DCB extracts increased with increasing Cd and Fe supply. In contrast, external Fe supply markedly reduced shoot and root Cd concentrations and there was generally no significant difference between the two Fe supply levels. Shoot and root Cd concentrations increased with increasing Cd addition. Root Cd concentrations were negatively correlated with root Fe concentrations. The proportion of Cd in DCB extracts was significantly lower than in roots or shoots. The results indicate that enhanced Fe uptake by plants can diminish the negative

  18. [Effects of Rice Cultivar and Typical Soil Improvement Measures on the Uptake of Cd in Rice Grains].

    Science.gov (United States)

    Wang, Mei-e; Peng, Chi; Chen, Wei-ping

    2015-11-01

    Cadmium pollution of rice is a big problem in agricultural food safety. The accident "Cd rice" occurred last year in Youxian County, Hunan Province caused serious social panic. In this study, trials on "Cd rice" controlling techniques specific to the Cd pollution in paddy soil in Youxian were investigated. It was suggested that the average Cd contents in rice grains of the rice variety "Zhu Liang You 06" in Datongqiao and Wangling were 0.167 and 0.127 mg x kg(-1), respectively, which were only equal to 20% of the contents of other varieties. The trials for stabilizing agents revealed that treatments of lime and mineral fertilizer decreased Cd contents in rice grains to 20-30% of the control. Plastic film-mulched treatment decreased the rice grain Cd to 50%. And combined treatment of plastic film-mulched and biochar and silicon foliar-fertilizer decreased 80% of rice Cd content. Single treatments of silicon foliar-fertilizer and combined treatment of silicon foliar-fertilizer and topdressing fertilizer decreased more than 90% of Cd content. Results of BCR revealed that the percentage of cationic exchangeable and/or carbonate associated Cd fraction was more than 55% for most of the soil samples. Lime treatment significantly decreased the percentage of cationic exchangeable and/or carbonate and oxides of Fe and Mn associated Cd and increased the crystalline structure of clay minerals associated Cd. The change rate reached about 20%. Our results suggested concentration of soil Cd and pH were the two significant factors impacting the uptake of Cd by rice grains.

  19. Zn pollution counteracts Cd toxicity in metal-tolerant ectomycorrhizal fungi and their host plant, Pinus sylvestris.

    Science.gov (United States)

    Krznaric, Erik; Wevers, Jan H L; Cloquet, Christophe; Vangronsveld, Jaco; Vanhaecke, Frank; Colpaert, Jan V

    2010-08-01

    Adaptive Zn and Cd tolerance have evolved in populations of the ectomycorrhizal fungus Suillus luteus. When exposed to high concentrations of both metals in vitro, a one-sided antagonism was apparent in the Zn- and Cd-tolerant isolates. Addition of high Zn concentrations restored growth of Cd-stressed isolates, but not vice versa. The antagonistic effect was not detected in a S. luteus isolate from non-contaminated land and in Paxillus involutus. The fungi were inoculated on pine seedlings and subsequently exposed to ecologically relevant Zn and Cd concentrations in single and mixed treatments. The applied doses severely reduced nutrient acquisition of non-mycorrhizal pines and pines inoculated with metal-sensitive S. luteus. Highest translocation of Zn and Cd to shoots occurred in the same plants. Seedlings inoculated with fungi collected from the polluted site reduced metal transfer to their host and maintained nutrient acquisition under high metal exposure. The isolate showing highest tolerance in vitro also offered best protection in symbiosis. The antagonistic effect of high Zn on Cd toxicity was confirmed in the plant experiment. The results indicate that a Zn- and Cd-polluted soil has selected ectomycorrhizal fungi that are able to survive and protect their phytobiont from nutrient starvation and excessive metal uptake. © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.

  20. Pollution Assessment of Toxic and Potentially Toxic Elements in Agricultural Soils of the City Addis Ababa, Ethiopia.

    Science.gov (United States)

    Aschale, Minbale; Sileshi, Yilma; Kelly-Quinn, Mary; Hailu, Dereje

    2017-02-01

    Due to the significantly fast urban expansion and increased industrial activities, the soils in the farms in Addis Ababa are contaminated by some toxic and potentially toxic elements (As, V, Cr, Fe, Co, Ni, Cu, B, Ba, Sr, Zn, Mn, Pb and Cd) in varying degrees. The mean concentrations of Cr, Ni, As and B in most of the soil farms were found to be higher than the maximum recommended limits. The mean concentrations of Cd, Cu, Pb, Co, Ni and Mn were found to be higher than the background soil concentrations given for uncontaminated soils. Multivariate analyses coupled with correlation analysis were used to identify possible sources. The geo-accumulation index values for Cr, Mn and Pb indicated that the farm soils were unpolluted to moderately polluted as a result of anthropogenic activities. A comprehensive environmental management strategy should be formulated by the government to measure further pollution of the farmland soil.

  1. Laws of the electrochemical soils remediation from petroleum pollution

    Energy Technology Data Exchange (ETDEWEB)

    Korolev, V.A. [Moscow State Univ. (Russian Federation)

    2001-07-01

    The man-caused petroleum pollution of humus and soils in places of oil production, and also the pollution of geological environment by petroleum is carried out in growing scales. Very much frequently of ground and soils become soiled by petroleum at failures during transportation of petroleum. The humus and clay soils polluted by petroleum causes destruction ecosystems and landscapes. Therefore finding - out of the nature and mechanisms of interaction water-saturated dispersed soils with the liquid hydrocarbons becomes one of priority problems in the field of ecological geology. The development of methods of electrochemical clearing soils from the liquid hydrocarbons pollution is the important task too. Therefore, the study of dependences of a double electrical layer (DEL) parameters of the water-petroleum-saturated caolinite clay and electrochemical migration in it of petroleum was the purpose of the present work. (orig.)

  2. Ecological evaluation of polluted soils from Sasa mine

    OpenAIRE

    Krstev, Boris; Golomeov, Blagoj; Golomeova, Mirjana; Zendelska, Afrodita; Krstev, Aleksandar

    2009-01-01

    The paper presents various strategies developed to evaluate the quality of soils and sites correspond to three possible objectives: to establish references or criteria of soil quality, on chemical and/or ecotoxicological bases (to define thresholds), to develop methods of ranking to classify polluted sites for the purpose of their decontamination (to establish a classification), and to develop methods of risk evaluation. The paper presents result of ecological evaluation of polluted soils fro...

  3. Pig manure vermicompost (PMVC) can improve phytoremediation of Cd and PAHs co-contaminated soil by Sedum alfredii

    Science.gov (United States)

    Purpose Main challenge of phytoremediation of co-contaminated soils is developing strategies for efficient and simultaneous removal of multiple pollutants. A pot experiment was conducted to investigate the potential for enhanced phytoextraction of cadmium (Cd) by Sedum alfredii and dissipation of po...

  4. Cd isotopes as a potential source tracer of metal pollution in river sediments

    International Nuclear Information System (INIS)

    Gao, Bo; Zhou, Haidong; Liang, Xirong; Tu, Xianglin

    2013-01-01

    Tracing the sources of heavy metals in water environment is key important for our understanding of their pollution behavior. In this present study, Cd concentrations and Cd isotopic compositions in sediments were determined to effectively identify possible Cd sources. Results showed that elevated concentrations and high enrichment factor for Cd were found in all sediments, suggesting anthropogenic Cd origin. Cd isotopic compositions in sediments yielded relative variations ranged from −0.35‰ to 0.07‰ in term of δ 114/110 Cd (the mean: −0.08‰). Large fractionated Cd was found in sediments collected from a smelter and an E-waste town. Cd isotopic compositions and Cd concentrations measured in sediments allowed the identification of three main origins (dust from metal refining (δ 114/110 Cd 114/110 Cd > 0), and those δ 114/110 Cd = 0, such as background and mining activity). According to the actual precision obtained, Cd isotopes could be a potential tool for tracing metal pollution sources in water environment. -- The information and application of Cd isotopic compositions will provide a new direction in tracing metal pollution in water environment

  5. Climate change effects on enchytraeid performance in metal-polluted soils explained from changes in metal bioavailability and bioaccumulation.

    Science.gov (United States)

    González-Alcaraz, M Nazaret; van Gestel, Cornelis A M

    2015-10-01

    Climate change may alter physical, chemical and biological properties of ecosystems, affecting organisms but also the fate of chemical pollutants. This study aimed to find out how changes in climate conditions (air temperature, soil moisture content) affect the toxicity of metal-polluted soils to the soft-bodied soil organism Enchytraeus crypticus, linking enchytraeid performance with changes in soil available and body metal concentrations. Bioassays with E. crypticus were performed under different combinations of air temperature (20 and 25 °C) and soil moisture content (50% and 30% of the soil water holding capacity, WHC) in dilution series of three metal-polluted soils (mine tailing, forest and watercourse). After 21 d exposure, enchytraeid reproduction was determined, and soil available (extracted with 0.01 M CaCl2) and body Cd, Cu, Pb and Zn concentrations in surviving adults were determined. In general, Cd, Pb and Zn availability decreased upon incubation under the different climate scenarios. In the watercourse soil, with initially higher available metal concentrations (678 µg Cd kg(-1), 807 µg Pb kg(-1) and 31,020 µg Zn kg(-1)), decreases were greatest at 50% WHC probably due to metal immobilization as carbonates. Enchytraeid reproduction was negatively affected by higher available metal concentrations, with reductions up to 98% in the watercourse soil compared to the control soil at 30% WHC. Bioaccumulation of Cd, Pb and Zn was higher when drier conditions were combined with the higher temperature of 25 °C. Changes in metal bioavailability and bioaccumulation explained the toxicity of soil polluted by metal mine wastes to enchytraeids under changing environmental conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Risk assessment and source analysis of soil heavy metal pollution from lower reaches of Yellow River irrigation in China.

    Science.gov (United States)

    Zhang, Pengyan; Qin, Chengzhe; Hong, Xin; Kang, Guohua; Qin, Mingzhou; Yang, Dan; Pang, Bo; Li, Yanyan; He, Jianjian; Dick, Richard P

    2018-08-15

    The level of concentration of heavy metal in soil is detrimental to soil quality. The Heigangkou-Liuyuankou irrigation area in the lower-reach of Yellow River irrigation, as home to a large population and a major site to agricultural production, is vulnerable to heavy metal pollution. This study examined soil quality in Heigangkou-Liuyuankou irrigation areas of Kaifeng, China. Pollution in soil and potential risks introduced by heavy metal accumulation were assessed using Nemerow, Geoaccumulation, and Hakanson's ecological risk indices. Statistics and Geographic Information Systems (GIS) were used to model and present the spatiotemporal changes of the pollution sources and factors affecting the levels of pollution. The heavy metals found in the sampled soil are Cr, Ni, Cu, Zn, Cd, Pb, As, and Hg. Among them, Cd is more concentrated than the others. The southwestern region of the studied area confronts the most serious heavy metal pollution. There exist spatial disparities of low concentrations of different heavy metals in the study area. Hg and Cd are found to pose the highest potential ecological risks. However, their risk levels are not the same across the study area. Levels concentration of Ni, Cu, Zn, Cd, Pb, As, and Hg in soil are highly correlated. In combination, they post an additional threat to the ecological environment. Transportation, rural settlements, and water bodies are found to be the major sources of Cr, Ni, Cu, Zn, Cd, Pb, and Hg pollution in the soil; among the major sources, transportation is the most significant factor. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Watershed soil Cd loss after long-term agricultural practice and biochar amendment under four rainfall levels.

    Science.gov (United States)

    Ouyang, Wei; Huang, Weijia; Hao, Xin; Tysklind, Mats; Haglund, Peter; Hao, Fanghua

    2017-10-01

    Some heavy metals in farmland soil can be transported into the waterbody, affecting the water quality and sediment at the watershed outlet, which can be used to determine the historical loss pattern. Cd is a typical heavy metal leached from farmland that is related to phosphate fertilizers and carries serious environmental risk. The spatial-vertical pattern of Cd in soil and the vertical trend of Cd in the river sediment core were analyzed, which showed the migration and accumulation of Cd in the watershed. To prevent watershed Cd loss, biochar was employed, and leaching experiments were conducted to investigate the Cd loss from soil depending on the initial concentration. Four rainfall intensities, 1.25 mm/h, 2.50 mm/h, 5.00 mm/h, and 10.00 mm/h, were used to simulate typical rainfall scenarios for the study area. Biochar was prepared from corn straw after pretreatment with ammonium dihydrogen phosphate (ADP) and pyrolysis at 400 °C under anoxic conditions. To identify the effects of biochar amendment on Cd migration, the biochar was mixed with soil for 90 days at concentrations of 0%, 0.5%, 1.0%, 3.0%, and 5.0% soil by weight. The results showed that the Cd leaching load increased as the initial load and rainfall intensity increased and that eluviation caused surface Cd to diffuse to the deep soils. The biochar application caused more of the heavy metals to be immobilized in the amended soil rather than transported into the waterbody. The sorption efficiency of the biochar for Cd increased as the addition level increased to 3%, which showed better performance than the 5% addition level under some initial concentration and rainfall conditions. The research indicated that biochar is a potential material to prevent diffuse heavy metal pollution and that a lower addition makes the application more feasible. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Growth and Cd uptake by rice (Oryza sativa) in acidic and Cd-contaminated paddy soils amended with steel slag.

    Science.gov (United States)

    He, Huaidong; Tam, Nora F Y; Yao, Aijun; Qiu, Rongliang; Li, Wai Chin; Ye, Zhihong

    2017-12-01

    Contamination of rice (Oryza sativa) by Cd is of great concern. Steel slag could be used to amend Cd-contaminated soils and make them safe for cereal production. This work was conducted to study the effects of steel slag on Cd uptake and growth of rice plants in acidic and Cd-contaminated paddy soils and to determine the possible mechanisms behind these effects. Pot (rhizobag) experiments were conducted using rice plants grown on two acidic and Cd-contaminated paddy soils with or without steel slag amendment. Steel slag amendment significantly increased grain yield by 36-45% and root catalase activity, and decreased Cd concentrations in brown rice by 66-77% compared with the control, in both soils. Steel slag amendment also markedly decreased extractable soil Cd, Cd concentrations in pore-water and Cd translocation from roots to above-ground parts. It also significantly increased soil pH, extractable Si and Ca in soils and Ca concentrations in roots. Significant positive correlations were found between extractable soil Cd and Cd concentrations in rice tissues, but it was negatively correlated with soil pH and extractable Si. Calcium in root tissues significantly and negatively correlated with Cd translocation factors from roots to straw. Overall, steel slag amendment not only significantly promoted rice growth but decreased Cd accumulation in brown rice. These benefits appear to be related to improvements in soil conditions (e.g. increasing pH, extractable Si and Ca), a reduction in extractable soil Cd, and suppression of Cd translocation from roots to above-ground parts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Current Status of Trace Metal Pollution in Soils Affected by Industrial Activities

    Science.gov (United States)

    Kabir, Ehsanul; Ray, Sharmila; Kim, Ki-Hyun; Yoon, Hye-On; Jeon, Eui-Chan; Kim, Yoon Shin; Cho, Yong-Sung; Yun, Seong-Taek; Brown, Richard J. C.

    2012-01-01

    There is a growing public concern over the potential accumulation of heavy metals in soil, owing to rapid industrial development. In an effort to describe the status of the pollutions of soil by industrial activities, relevant data sets reported by many studies were surveyed and reviewed. The results of our analysis indicate that soils were polluted most significantly by metals such as lead, zinc, copper, and cadmium. If the dominant species are evaluated by the highest mean concentration observed for different industry types, the results were grouped into Pb, Zn, Ni, Cu, Fe, and As in smelting and metal production industries, Mn and Cd in the textile industry, and Cr in the leather industry. In most cases, metal levels in the studied areas were found to exceed the common regulation guideline levels enforced by many countries. The geoaccumulation index (I geo), calculated to estimate the enrichment of metal concentrations in soil, showed that the level of metal pollution in most surveyed areas is significant, especially for Pb and Cd. It is thus important to keep systematic and continuous monitoring of heavy metals and their derivatives to manage and suppress such pollution. PMID:22645468

  10. Current Status of Trace Metal Pollution in Soils Affected by Industrial Activities

    Directory of Open Access Journals (Sweden)

    Ehsanul Kabir

    2012-01-01

    Full Text Available There is a growing public concern over the potential accumulation of heavy metals in soil, owing to rapid industrial development. In an effort to describe the status of the pollutions of soil by industrial activities, relevant data sets reported by many studies were surveyed and reviewed. The results of our analysis indicate that soils were polluted most significantly by metals such as lead, zinc, copper, and cadmium. If the dominant species are evaluated by the highest mean concentration observed for different industry types, the results were grouped into Pb, Zn, Ni, Cu, Fe, and As in smelting and metal production industries, Mn and Cd in the textile industry, and Cr in the leather industry. In most cases, metal levels in the studied areas were found to exceed the common regulation guideline levels enforced by many countries. The geoaccumulation index (Igeo, calculated to estimate the enrichment of metal concentrations in soil, showed that the level of metal pollution in most surveyed areas is significant, especially for Pb and Cd. It is thus important to keep systematic and continuous monitoring of heavy metals and their derivatives to manage and suppress such pollution.

  11. Influence of the soil sealing on the geoaccumulation index of heavy metals and various pollution factors.

    Science.gov (United States)

    Charzyński, Przemysław; Plak, Andrzej; Hanaka, Agnieszka

    2017-02-01

    Soil sealing belongs to the most destructive and damaging processes to the soil environment. Soil sealing interrupts or greatly restricts the exchange of matter and energy between the biosphere, hydrosphere, and atmosphere and the soil environment. The aim of this study was to compare the content of heavy metals (Cd, Cr, Cu, Hg, Fe, Ni, Pb, Zn) of Ekranic Technosols by applying indicators such as geoaccumulation index (I geo ), enrichment factor (EF), and pollution load index (PLI), which allowed to determine quantitatively the impact of the soil sealing degree on the content of heavy metals and to distinguish natural from anthropogenic sources of origin of heavy metals. In general, 42 soils from different parts of the city of Toruń (NW Poland) were sampled and divided into three groups according to the degree of soil sealing: completely sealed with asphalt or concrete (A), semi-permeable (partially sealed with cobblestones and concrete paving slabs (B)), and reference (non-sealed) (C). The results indicate that the artificial sealing in urban areas slightly affects the content of heavy metals in soils. However, based on PLI, I geo , and EF, it was found that the sealing has influence on soil properties and unsealed soil is the most exposed to the accumulation of pollutants.

  12. Effect of pulse current on acidification and removal of Cu, Cd, and As during suspended electrodialytic soil remediation

    DEFF Research Database (Denmark)

    Sun, Tian Ran; Ottosen, Lisbeth M.; Jensen, Pernille Erland

    2013-01-01

    The effect of pulse current on the acidification process and the removal of heavy metals during suspended electrodialytic soil remediation were investigated in this work. Eight experiments with constant and pulse current in two polluted soils were conducted using a 3-compartment membrane cell......, predominately working under overlimiting current density conditions. Soil 1 was sampled from a pile of excavated soil at a site with mixed industrial pollution (Cu and Cd), and soil 2 was sampled from the top layer of a wood preservation site (Cu and As). Results showed that pulse current improved...... the acidification by supplying more reactive H+ ions (defined as the H+ ions causing release of heavy metals from soil particles). The molar ratio of reactive H+ ions to total produced H+ ions (RH+/PH+) was higher in every pulse current experiment than in the corresponding constant current experiment. In addition...

  13. Slow-release nitrogen fertilizers can improve yield and reduce Cd concentration in pakchoi (Brassica chinensis L.) grown in Cd-contaminated soil.

    Science.gov (United States)

    Zhang, Ran-Ran; Liu, Yue; Xue, Wan-Lei; Chen, Rong-Xin; Du, Shao-Ting; Jin, Chong-Wei

    2016-12-01

    Cadmium (Cd) pollution in vegetable crops has become a serious problem in recent years. Owing to the limited availability of arable land resources, large areas of Cd-contaminated lands are inevitably being used for the production of vegetables, posing great risks to human health via the food chain. However, strategies to improve yield and reduce Cd concentration in crops grown in contaminated soils are being developed. In the present study, using pot experiments, we investigated the effects of two slow-release nitrogen fertilizers (SRNFs), resin-coated ammonium nitrate (Osmocote 313s ), and resin-coated urea (urea 620 ), on the growth and Cd concentration of the Cd-contaminated pakchoi. The results showed that pakchoi grown in soil containing 5 mg kg -1 of Cd-induced oxidative stress (indicated by malondialdehyde (MDA), H 2 O 2 , and O 2 ·- ) and photosynthesis inhibition, which in turn was restored with the application of SRNFs. However, pakchoi grown in Cd-contaminated soil supplied with Osmocote 313s and urea 620 showed 103 and 203 % increase in fresh weight and 51-55 % and 44-56 % decrease in Cd concentration, respectively, as compared with their controls (pakchoi treated with instant soluble nitrogen fertilizers). On the basis of an increase in their tolerance index (47-238 %) and a decrease in their translocation factor (7.5-21.6 %), we inferred that the plants treated with SRNFs have a stronger tolerance to Cd and a lower efficiency of Cd translocation to edible parts than those treated with instant soluble nitrogen fertilizers. Therefore, in terms of both crop production and food safety, application of SRNFs could be an effective strategy for improving both biomass production and quality in pakchoi grown under Cd stress.

  14. Causes and distribution of soil pollution in China

    Directory of Open Access Journals (Sweden)

    Delang Claudio O.

    2017-12-01

    Full Text Available China is the most populated country in the world, but has relatively little fertile land, and even less water. Maintaining the quality of its agricultural land is of paramount importance if China wants to feed its very large and growing population. Yet, China is one of the countries with the largest amount of polluted soil. This paper looks at the causes and distribution of soil pollution in China. It first looks at the amount of organic and inorganic soil pollutants and their geographic distribution. It then looks at the causes of soil pollution, making the distinction between agricultural activities, industrial activities, and urbanization. Pollution from agricultural activities stems primarily from the excessive amounts of pesticides and fertilizers used on farmland, and is mainly located in the south, where most of the food is produced. Pollution from industrial activities is due to airborne industrial pollutants that fall on to the land, and is mainly located in the west of the country, where most manufacturing activities take place. Pollution from urbanization is mainly due to the very large amount of solid, liquid and gaseous waste generated in a small area with insufficient treatment facilities, and exhaust fumes from vehicles, and is located around the largest cities, or roads. The result is that one fifth of China’s farmland is polluted, and an area the size of Taiwan is so polluted that farming should not be allowed there at all.

  15. Rapid identification of soil cadmium pollution risk at regional scale based on visible and near-infrared spectroscopy.

    Science.gov (United States)

    Chen, Tao; Chang, Qingrui; Clevers, J G P W; Kooistra, L

    2015-11-01

    Soil heavy metal pollution due to long-term sewage irrigation is a serious environmental problem in many irrigation areas in northern China. Quickly identifying its pollution status is an important basis for remediation. Visible-near-infrared reflectance spectroscopy (VNIRS) provides a useful tool. In a case study, 76 soil samples were collected and their reflectance spectra were used to estimate cadmium (Cd) concentration by partial least squares regression (PLSR) and back propagation neural network (BPNN). To reduce noise, six pre-treatments were compared, in which orthogonal signal correction (OSC) was first used in soil Cd estimation. Spectral analysis and geostatistics were combined to identify Cd pollution hotspots. Results showed that Cd was accumulated in topsoil at the study area. OSC can effectively remove irrelevant information to improve prediction accuracy. More accurate estimation was achieved by applying a BPNN. Soil Cd pollution hotspots could be identified by interpolating the predicted values obtained from spectral estimates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Heavy metals pollution levels and children health risk assessment of Yerevan kindergartens soils.

    Science.gov (United States)

    Tepanosyan, Gevorg; Maghakyan, Nairuhi; Sahakyan, Lilit; Saghatelyan, Armen

    2017-08-01

    Children, the most vulnerable urban population group, are exceptionally sensitive to polluted environments, particularly urban soils, which can lead to adverse health effects upon exposure. In this study, the total concentrations of Ag, As, Ba, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Ti, V, and Zn were determined in 111 topsoil samples collected from kindergartens in Yerevan. The objectives of this study were to evaluate heavy metal pollution levels of kindergarten's soils in Yerevan, compare with national legal and international requirements on heavy metal contents in kindergarten soil, and assess related child health risk. Multivariate geostatistical analyses suggested that the concentrations of Ag, As, Ba, Cd, Cu, Hg, Mo, Pb, and Zn observed in the kindergarten's topsoil may have originated from anthropogenic sources, while Co, Cr, Fe, Mn, Ni, Ti, and V mostly come from natural sources. According to the Summary pollution index (Zc), 102 kindergartens belong to the low pollution level, 7 to the moderate and only 2 to the high level of pollution. Summary concentration index (SCI) showed that 109 kindergartens were in the allowable level, while 2 featured in the low level of pollution. The health risk assessment showed that in all kindergartens except for seven, non-carcinogenic risk for children was detected (HI>1), while carcinogenic risk from arsenic belongs to the very low (allowable) level. Cr and multi-element carcinogenic risk (RI) exceeded the safety level (1.0E- 06) in all kindergartens and showed that the potential of developing cancer, albeit small, does exist. Therefore, city's kindergartens require necessary remedial actions to eliminate or reduce soil pollution and heavy metal-induced health risks. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Using ensemble models to identify and apportion heavy metal pollution sources in agricultural soils on a local scale

    International Nuclear Information System (INIS)

    Wang, Qi; Xie, Zhiyi; Li, Fangbai

    2015-01-01

    This study aims to identify and apportion multi-source and multi-phase heavy metal pollution from natural and anthropogenic inputs using ensemble models that include stochastic gradient boosting (SGB) and random forest (RF) in agricultural soils on the local scale. The heavy metal pollution sources were quantitatively assessed, and the results illustrated the suitability of the ensemble models for the assessment of multi-source and multi-phase heavy metal pollution in agricultural soils on the local scale. The results of SGB and RF consistently demonstrated that anthropogenic sources contributed the most to the concentrations of Pb and Cd in agricultural soils in the study region and that SGB performed better than RF. - Highlights: • Ensemble models including stochastic gradient boosting and random forest are used. • The models were verified by cross-validation and SGB performed better than RF. • Heavy metal pollution sources on a local scale are identified and apportioned. • Models illustrate good suitability in assessing sources in local-scale agricultural soils. • Anthropogenic sources contributed most to soil Pb and Cd pollution in our case. - Multi-source and multi-phase pollution by heavy metals in agricultural soils on a local scale were identified and apportioned.

  18. Heavy Metal Pollution in Soils on Railroad Side of Zhengzhou-Putian Section of Longxi-Haizhou Railroad, China

    Institute of Scientific and Technical Information of China (English)

    MA Jian-Hua; CHU Chun-Jie; LI Jian; SONG Bo

    2009-01-01

    The pollution status and horizontal distribution of heavy metals (Ni, Pb, Cr, Zn, Cu, and Cd) in the soil on railroad side along the Zhengzhou-Putian section of Longxi-Haizhou Railroad were studied by collecting soil samples along a sampling section perpendicular to the railroad at the distances of 0, 10, 20, 30, 50, 100, 200, 300, and 500 m from the railroad edge. The concentrations of heavy metals in the sampling soils were higher than those of the control site. The concentrations of Pb, Zn, and Cd were found to be the highest in the soils at the railroad edge, and then decreased with increasing distance from the railroad. The highest concentrations of Ni, Cr, and Cu in soils were located at about 10-30 m from the railroad. Compared with the single factor pollution index (SFPI) of heavy metals calculated for the control site, the average SFPI from the sampling sites decreased in the order of Cr > Cd > Pb > Zn > Ni > Cu. There were notable negative correlations between the integral pollution index (IPI) of soil heavy metals at all sampling sites and the distances from the railroad. According to three IPIs calculated from the background values of heavy metals in och-aquic Cambisols, the heavy metal concentrations in the control soil, and the 2nd levels for soil heavy metals in GB15618-1995, the study area could be divided, based on the distances from the railroad, into four pollution zones: heavy pollution zone (0-10 m), medium pollution zone (10-50 m), slight pollution zone (50-100 m), and warning zone (100-500 m), respectively.

  19. Improvement in soil and sorghum health following the application of polyacrylate polymers to a Cd-contaminated soil

    International Nuclear Information System (INIS)

    Guiwei, Q.; Varennes, A. de; Martins, L.L.; Mourato, M.P.; Cardoso, A.I.; Mota, A.M.; Pinto, A.P.; Goncalves, M.L.

    2010-01-01

    Contamination of soils with cadmium (Cd) is a serious global issue due to its high mobility and toxicity. We investigated the application of insoluble polyacrylate polymers to improve soil and plant health. Sorghum was grown in a Cd-contaminated sandy soil. Polyacrylate polymers at 0.2% (w/w) were added to half of the soil. Control soil without plants was also included in the experiment. Growth of sorghum was stimulated in the polymer-amended soil. The concentration of Cd in the shoots, and the activities of catalase and ascorbate peroxidase decreased in plants from polymer-amended soil compared with unamended control. The amount of CaCl 2 -extractable Cd in the polymer-amended soil was 55% of that in the unamended soil. The Cd extracted in sorghum shoots was 0.19 mg per plant grown on soil without polymer and 0.41 mg per plant grown on polymer-amended soil. The total amount of Cd removed from each pot corresponded to 1.5 and more than 6% of soil CaCl 2 -extractable Cd in unamended and polymer-amended soil, respectively. The activities of soil acid phosphatase, β-glucosidase, urease, protease and cellulase were greatest in polymer-amended soil with sorghum. In conclusion, the application of polyacrylate polymers to reduce the bioavailable Cd pool seems a promising method to enhance productivity and health of plants grown on Cd-contaminated soils.

  20. Investigation of the radioactive and heavy metal pollution of the danube Delta lacustrine sediments and soil

    International Nuclear Information System (INIS)

    Dinescu, L.C.; Ciortea, C.; Fluerasu, D.; Stoica, P.; Duliu, O.G.; Stoica, P.

    2005-01-01

    Results obtained for five lacustrine sediment cores and three soil samples, collected in 1996 from Danube Delta, by using INAA, ICP-MS, and TTPIXE analytical methods, are presented. The measured vertical profiles identified as possible pollutants the following elements: Al, Cu, Zn, As, Ag, Cd, In, Sn, Sb, Hg, Tl, Pb, and Bi. In the sediment cores, the determined elements, except V and Ni, show near-surface enrichment relative to the lower part (1.3-3 enrichment factor, except 5 - 7 for Cd and Hg). In some few cases, As, Cd, Cu, Cr, Mn, and Pb exceeded the minimum threshold of safety defined by the Romanian legislation. For soil samples, increased (1.5-3 times) values at surface in comparison with the 30 cm depth was also found, but values much lower compared to lacustrine sediments, indicating the riverine transport as the main source of heavy-metal near-surface contamination of the lacustrine sediments

  1. Changes in enzyme activity and functional diversity in soil induced by Cd and glucose addition

    Science.gov (United States)

    Gilmullina, A. R.; Galitskaya, P. Yu; Selivanovskaya, S. Yu

    2018-01-01

    Toxic heavy metal (HM) contamination is a major global issue as it may have an indirect effect on the health of soil, plants, animals and, consequently, on human health. Agricultural soils’ fertilization is one of the reported sources of HM pollution in the world. In this case simultaneous input of stimulating and inhibiting agents into soil takes place, and effects of the combined influence of these agents is hardly predictable. In this study, a simultaneous inhibiting and stimulating effect of Cd and glucose on soil microbes was studied in a model experiment. Enzyme activities (phosphatase, β-glucosidase and cellobiohydrolase) and functional diversity (BIOLOG®EcoPlates ™) were assessed as a test functions. Cd (300 μg Cd g-1 ) amendment had a negative effect only on phosphatase activity. Glucose (3 mg C g-1) addition inhibited β-glucosidase activity and stimulated functional diversity. In joint addition of Cd and Glucose the leading effect belonged to that agent which had the greatest effect in case when it was added separately.

  2. Effects of Soil Veterinary Antibiotics Pollution on Rice Growth

    Directory of Open Access Journals (Sweden)

    XU Qiu-tong

    2016-01-01

    Full Text Available To understand the potential effect of soil veterinary antibiotics pollution on the growth of rice, a main food crop in China, oxytetracycline which was used widely in livestock and poultry breeding was selected to test the effects of different levels of soil antibiotics pollution on growth and yield of rice plant at both seedling and growth periods. Relationship between oxytetracycline accumulated in different organs of rice plant and oxytetracycline pollution levels in the soil was characterized. The results showed that the effects of soil oxytetracycline pollution on rice growth mainly occurred at the seedling stage, and the effect on the underground part was obviously greater than the above-ground part of rice. Significant negative effects on biomass of the underground part of rice, root activity, and chlorophyll content and oxidase activity of the leave at the seedling stage were found when soil oxytetracycline pollution concentrations was over 30 mg·kg-1. The consequence from the impact of soil oxytetracycline pollution on rice seedling could be extended to the whole growth period of the plant, which could reduce the number of tiller and rice yield. Oxytetracycline accumulated in various organs of rice plant was in the sequence of root> leaf> stem> grain. Rice roots had low capacity to uptake oxytetracycline from the soil, the transfer capacity of oxytetracycline from the roots to leaf, stem, and grain was also weak. Considering the low oxytetracycline pollution levels in most of current actual farmland soils (less than 10 mg·kg-1 and lower accumulation character of oxytetracycline in the grain, it is thought that the direct damage of soil oxytetracycline pollution on rice production is small.

  3. [Research advances in eco-toxicological diagnosis of soil pollution].

    Science.gov (United States)

    Liu, Feng; Teng, Hong-Hui; Ren, Bai-Xiang; Shi, Shu-Yun

    2014-09-01

    Soil eco-toxicology provides a theoretical basis for ecological risk assessment of contaminated soils and soil pollution control. Research on eco-toxicological effects and molecular mechanisms of toxic substances in soil environment is the central content of the soil eco-toxicology. Eco-toxicological diagnosis not only gathers all the information of soil pollution, but also provides the overall toxic effects of soil. Therefore, research on the eco-toxicological diagnosis of soil pollution has important theoretical and practical significance. Based on the research of eco-toxicological diagnosis of soil pollution, this paper introduced some common toxicological methods and indicators, with the advantages and disadvantages of various methods discussed. However, conventional biomarkers can only indicate the class of stress, but fail to explain the molecular mechanism of damage or response happened. Biomarkers and molecular diagnostic techniques, which are used to evaluate toxicity of contaminated soil, can explore deeply detoxification mechanisms of organisms under exogenous stress. In this paper, these biomarkers and techniques were introduced systematically, and the future research trends were prospected.

  4. BIOREMEDIATION - TECHNOLOGY FOR DECONTAMINATION OF SOILS POLLUTED WITH PETROLEUM HYDROCARBONS

    Directory of Open Access Journals (Sweden)

    Irina-Ramona PECINGINĂ

    2013-05-01

    Full Text Available The pollution of soil with petroleum hydrocarbons prevents unfolding processes ofwater infiltration in soil, its circulation and the exchanges of the gaseous substances with theatmosphere. The biodegradation speed of the pollutants by the microorganisms is influenced ofsome factors: nutrients, soil type, humidity, temperature, pH, the type and the metabolism of themicroorganisms. The spill of the crude oil in the soil results in numerical growth of bacteriapopulations, with a concomitant reduction in their diversity, respectively with the predominantspecies that degrade hydrocarbons to simpler compounds, determining their gradualdisappearance.

  5. Sources of heavy metal pollution in agricultural soils of a rapidly industrializing area in the Yangtze Delta of China.

    Science.gov (United States)

    Xu, Xianghua; Zhao, Yongcun; Zhao, Xiaoyan; Wang, Yudong; Deng, Wenjing

    2014-10-01

    The rapid industrialization and urbanization in developing countries have increased pollution by heavy metals, which is a concern for human health and the environment. In this study, 230 surface soil samples (0-20cm) were collected from agricultural areas of Jiaxing, a rapidly industrializing area in the Yangtze Delta of China. Sequential Gaussian simulation (SGS) and multivariate factorial kriging analysis (FKA) were used to identify and explore the sources of heavy metal pollution for eight metals (Cu, Zn, Pb, Cr, Ni, Cd, Hg and As). Localized hot-spots of pollution were identified for Cu, Zn, Pb, Cr, Ni and Cd with area percentages of 0.48 percent, 0.58 percent, 2.84 percent, 2.41 percent, 0.74 percent, and 0.68 percent, respectively. The areas with Hg pollution covered approximately 38 percent whereas no potential pollution risk was found for As. The soil parent material and point sources of pollution had significant influences on Cr, Ni, Cu, Zn and Cd levels, except for the influence of agricultural management practices also accounted for micro-scale variations (nugget effect) for Cu and Zn pollution. Short-range (4km) diffusion processes had a significant influence on Cu levels, although they did not appear to be the dominant sources of Zn and Cd variation. The short-range diffusion pollution arising from current and historic industrial emissions and urbanization, and long-range (33km) variations in soil parent materials and/or diffusion jointly determined the current concentrations of soil Pb. The sources of Hg pollution risk may be attributed to the atmosphere deposition of industrial emission and historical use of Hg-containing pesticides. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Assessment of heavy metal pollution in vegetables and relationships with soil heavy metal distribution in Zhejiang province, China.

    Science.gov (United States)

    Ye, Xuezhu; Xiao, Wendan; Zhang, Yongzhi; Zhao, Shouping; Wang, Gangjun; Zhang, Qi; Wang, Qiang

    2015-06-01

    There are increasing concerns on heavy metal contaminant in soils and vegetables. In this study, we investigated heavy metal pollution in vegetables and the corresponding soils in the main vegetable production regions of Zhejiang province, China. A total of 97 vegetable samples and 202 agricultural soil samples were analyzed for the concentrations of Cd, Pb, As, Hg, and Cr. The average levels of Cd, Pb, and Cr in vegetable samples [Chinese cabbage (Brassica campestris spp. Pekinensis), pakchoi (Brassica chinensis L.), celery (Apium graveolens), tomato (Lycopersicon esculentum), cucumber (Colletotrichum lagenarium), cowpea (Vigna unguiculata), pumpkin (Cucurbita pepo L.), and eggplant (Solanum melongena)] were 0.020, 0.048, and 0.043 mg kg(-1), respectively. The Pb and Cr concentrations in all vegetable samples were below the threshold levels of the Food Quality Standard (0.3 and 0.5 mg kg(-1), respectively), except that two eggplant samples exceeded the threshold levels for Cd concentrations (0.05 mg kg(-1)). As and Hg contents in vegetables were below the detection level (0.005 and 0.002 mg kg(-1), respectively). Soil pollution conditions were assessed in accordance with the Chinese Soil Quality Criterion (GB15618-1995, Grade II); 50 and 68 soil samples from the investigated area exceeded the maximum allowable contents for Cd and Hg, respectively. Simple correlation analysis revealed that there were significantly positive correlations between the metal concentrations in vegetables and the corresponding soils, especially for the leafy and stem vegetables such as pakchoi, cabbage, and celery. Bio-concentration factor values for Cd are higher than those for Pb and Cr, which indicates that Cd is more readily absorbed by vegetables than Pb and Cr. Therefore, more attention should be paid to the possible pollution of heavy metals in vegetables, especially Cd.

  7. [Transportation and risk assessment of heavy metal pollution in water-soil from the Riparian Zone of Daye Lake, China].

    Science.gov (United States)

    Zhang, Jia-quan; Li, Xiu; Zhang, Quan-fa; Li, Qiong; Xiao, Wen-sheng; Wang, Yong-kui; Zhang, Jian-chun; Gai, Xi-guang

    2015-01-01

    Each 20 water samples and soil samples (0-10 cm, 10-20 cm) were collected from the riparian zone of Daye Lake in dry season during March 2013. Heavy metals (Cu, Ph, Cd, Zn) have been detected by flame atomic absorption spectrometric (FAAS). The results showed that the average concentrations of Cu, Pb, Cd, Zn in the water were 7.14, 25.94, 15.72 and 37.58 microg x L(-1), respectively. The concentration of Cu was higher than the five degree of the surface water environment quality standard. The average concentrations of Cu, Pb, Cd, Zn in soil(0-10 cm) were 108.38, 53.92, 3.55, 139.26 mg x kg(-1) in soil (10-20 cm) were 93.00, 51.72, 2.08, 171.00 mg x kg(-1), respectively. The Cd concentrations were higher than the three grade value of the national soil environment quality standard. The transportation of Pb from soil to water was relatively stable, and Zn was greatly influenced by soil property and the surrounding environment from soil to water. The transformation of heavy metal in west riparian zone was higher than that of east riparian zone. The potential environmental risk was relatively high. Cu, Pb, Cd, Zn were dominated by residue fraction of the modified BCR sequential extraction method. The overall migration order of heavy metal element was: Pb > Cu > Cd > Zn. There were stronger transformation and higher environmental pollution risk of Cu, Pb. The index of assessment and potential ecological risk coefficient indicated that heavy metal pollution in soil (0-10 cm) was higher than the soil (10-20 cm), Cd was particularly serious.

  8. The identification of 'hotspots' of heavy metal pollution in soil-rice systems at a regional scale in eastern China.

    Science.gov (United States)

    Li, Wanlu; Xu, Binbin; Song, Qiujin; Liu, Xingmei; Xu, Jianming; Brookes, Philip C

    2014-02-15

    Chinese agricultural soils and crops are suffering from increasing damage from heavy metals, which are introduced from various pollution sources including agriculture, traffic, mining and especially the flourishing private metal recycling industry. In this study, 219 pairs of rice grain and corresponding soil samples were collected from Wenling in Zhejiang Province to identify the spatial relationship and pollution hotspots of Cd, Cu, Ni and Zn in the soil-rice system. The mean soil concentrations of heavy metals were 0.316 mg kg(-1) for Cd, 47.3 mg kg(-1) for Cu, 31.7 mg kg(-1) for Ni and 131 mg kg(-1) for Zn, and the metal concentrations in rice grain were 0.132 mg kg(-1) for Cd, 2.46 mg kg(-1) for Cu, 0.223 mg kg(-1) for Ni and 17.4 mg kg(-1) for Zn. The coefficient of variability (CV) of soil Cd, Cu and rice Cd were 147%, 146% and 180%, respectively, indicating an extensive variability. While the CVs of other metals ranged from 23.4% to 84.3% with a moderate variability. Kriging interpolation procedure and the Local Moran's I index detected the locations of pollution hotspots of these four metals. Cd and Cu had a very similar spatial pattern, with contamination hotspots located simultaneously in the northwestern part of the study area, and there were obvious hotspots for soil Zn in the north area, while in the northeast for soil Ni. The existence of hotspots may be due to industrialization and other anthropogenic activities. An Enrichment Index (EI) was employed to measure the uptake of heavy metals by rice. The results indicated that the accumulation and availability of heavy metals in the soil-rice system may be influenced by both soil heavy metal concentrations and soil physico-chemical properties. Cross-correlograms quantitatively illustrated that EIs were significantly correlated with soil properties. Soil pH and organic matter were the most important factors controlling the uptake of heavy metals by rice. As results, positive measures should be taken into

  9. Screening of anthropogenic compounds in polluted sediments and soils

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Leeuw, J.W. de; Leer, E.W.B. de; Schuyl, P.J.W.

    1986-01-01

    The use of flash evaporation and pyrolysis gas chromatography- mass spectrometry as a fast screening procedure for anthropogenic substances In environmental samples is demonstrated by the analysis of polluted soil and sediment samples. Polycyclic aromatic hydrocarbons, haloorganics,

  10. Enhancement of Crude Oil Polluted Soil by Applying Single and ...

    African Journals Online (AJOL)

    ADOWIE PERE

    bioline.org.br/ja ... 5 kg of soil each was polluted with 200 ml of crude oil ... organic matter, phosphate, nitrate, total hydrocarbon content, potassium and microbial population were analyzed before ... arise mainly from the processing and distribution of.

  11. Pollution characteristics and source identification of trace metals in riparian soils of Miyun Reservoir, China.

    Science.gov (United States)

    Han, Lanfang; Gao, Bo; Lu, Jin; Zhou, Yang; Xu, Dongyu; Gao, Li; Sun, Ke

    2017-10-01

    The South-to-North Water Diversion Project, one of China's largest water diversion projects, has aroused widespread concerns about its potential ecological impacts, especially the potential release of trace metals from shoreline soils into Miyun Reservoir (MYR). Here, riparian soil samples from three elevations and four types of land use were collected. Soil particle size distributions, contents and chemical fractionations of trace metals and lead (Pb) isotopic compositions were analyzed. Results showed that soil texture was basically similar in four types of land use, being mainly composed of sand, with minor portions of clay and silt, while recreational land contained more abundant chromium (Cr), copper (Cu), zinc (Zn) and cadmium (Cd), suggesting a possible anthropogenic source for this soil pollution. The potential ecological risk assessment revealed considerable contamination of recreational land, with Cd being the predominant contaminant. Chemical fractionations showed that Cu, arsenic (As), Pb and Cd had potential release risks. Additionally, the 206 Pb/ 207 Pb and 208 Pb/ 207 Pb values of soils were similar to those of coal combustion. By combining principal component analysis (PCA) with Pb isotopic results, coal combustion was identified as the major anthropogenic source of Zn, Cr, Cu, Cd and Pb. Moreover, isotope ratios of Pb fell in the scope of aerosols, indicating that atmospheric deposition may be the primary input pathway of anthropogenic Zn, Cr, Cu, Cd and Pb. Therefore, controlling coal combustion should be a priority to reduce effectively the introduction of additional Zn, Cu, Cd, and Pb to the area in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Study of soil pollution by cadmium in Qatina region

    International Nuclear Information System (INIS)

    Bargouth, G.; Johar, Y.; Ashkar, I.

    2005-01-01

    Heavy metals such as cadmium are specify to form complex compounds in soils make it difficulty to be absorbed from plants, but if prevailing circumstances changeability in soil and make these elements in absorbed actionable case to the plants, direct threatening upon of polluted soil with such elements will begin, and appears on plants, animals and humans. Holding comprehensive environmental evaluation on the agricultural soil field according to the prevailing circumstances in the transplanting zone, considered as important environmental practical stage in reducing environmental cadmium problems risk. Accordingly, we look to terming and controlling environment either to manage a soil pollution problem existed, or prophecy with circumstances lowers upon cadmium concentrations in the environment system (soil-plant) in order not to occurs environmental cadmium problems in the field soil futurity. (author)

  13. Role of Streptomyces pactum in phytoremediation of trace elements by Brassica juncea in mine polluted soils.

    Science.gov (United States)

    Ali, Amjad; Guo, Di; Mahar, Amanullah; Wang, Zhen; Muhammad, Dost; Li, Ronghua; Wang, Ping; Shen, Feng; Xue, Quanhong; Zhang, Zengqiang

    2017-10-01

    The industrial expansion, smelting, mining and agricultural practices have increased the release of toxic trace elements (TEs) in the environment and threaten living organisms. The microbe-assisted phytoremediation is environmentally safe and provide an effective approach to remediate TEs contaminated soils. A pot experiment was conducted to test the potential of an Actinomycete, subspecies Streptomyces pactum (Act12) along with medical stone compost (MSC) by growing Brassica juncea in smelter and mines polluted soils of Feng County (FC) and Tongguan (TG, China), respectively. Results showed that Zn (7, 28%), Pb (54, 21%), Cd (16, 17%) and Cu (8, 10%) uptake in shoot and root of Brassica juncea was pronounced in FC soil. Meanwhile, the Zn (40, 14%) and Pb (82, 15%) uptake in the shoot and root were also increased in TG soil. Shoot Cd uptake remained below detection, while Cu decreased by 52% in TG soil. The Cd and Cu root uptake were increased by 17% and 33%, respectively. Results showed that TEs uptake in shoot increased with increasing Act12 dose. Shoot/root dry biomass, chlorophyll and carotenoid content in Brassica juncea were significantly influenced by the application of Act12 in FC and TG soil. The antioxidant enzymatic activities (POD, PAL, PPO and CAT) in Brassica juncea implicated enhancement in the plant defense mechanism against the TEs induced stress in contaminated soils. The extraction potential of Brasssica was further evaluated by TF (translocation factor) and MEA (metal extraction amount). Based on our findings, further investigation of Act12 assisted phytoremediation of TEs in the smelter and mines polluted soil and hyperaccumulator species are suggested for future studies. Copyright © 2017. Published by Elsevier Inc.

  14. Long-Term Dynamics of Urban Soil Pollution with Heavy Metals in Moscow

    Directory of Open Access Journals (Sweden)

    N. E. Kosheleva

    2016-01-01

    Full Text Available Results of 21-year-long (1989–2010 observations of the concentrations and the spatial distribution patterns of nine heavy metals (HMs in topsoils of the Eastern district of Moscow are presented. The quantitative parameters of soil pollution include the annual increase rates of HM concentrations in several land-use zones. The maps of geochemical anomalies were compiled using the data collected in 1989, 2005, and 2010. The growth of the total volume of industrial and vehicles’ emissions between 1989 and 2005 caused significant deposition of Pb, Zn, Cu, and Cd. The additional input of Cd to the soils is attributed to the application of sewage sludge as fertilizers. The relative increment of concentrations was the highest for Pb, Co, Cu, Ni, and Cr. In 2005–2010, the relative annual increment rate was the highest for Cr, Cd, Co, and Ni, and it increased by an order of magnitude as compared to the previous period. By contrast, Pb and Cu concentrations decreased owing to the soil reclamation, the exclusion of leaded gasoline as a fuel for vehicles and closing some hazardous enterprises. Joint analysis of snow and soil geochemical maps allows identification of the zones of actual, permanent, and relict pollution.

  15. Pollutants impact bioassay from waters and soils in Banat region

    Directory of Open Access Journals (Sweden)

    Crina Laura Mosneang

    2014-12-01

    Full Text Available Analyses of water and soil samples by chemical methods identified the quantities of chlorides, nitrates and phosphates by comparison with the maximum limits of law. Acute toxicity tests on zebra fish embryos is an alternative test of water samples around swine farms in Banat region, because embryos are not subject to animal protection legislation during experiments. The use of Eisenia fetida earthworms as pollution indicators allowed assessment of avoidance behavior of potentially polluting soils collected from different distances from farms.

  16. Phytoremediation of cadmium polluted soils using soybean varieties

    OpenAIRE

    Mihajlov, Ljupco; Balabanova, Biljana; Zajkova-Paneva, Vesna; Wei, Shuhe

    2016-01-01

    Industrialization and extraction of natural resources have resulted in large scale environmental contamination and pollution. Soil pollution with cadmium is due to strengthened industrial development, especially in the areas of drilling, exploitation and processing of mineral raw materials. On the territory of the Republic of Macedonia there are several areas with significant higher content of cadmium in the soil, including the vicinity of the mine lead and zinc “Zletovo” near the...

  17. Characteristics of heavy metal pollution on roadside soil along highway

    Science.gov (United States)

    Zheng, Chaocheng

    2017-10-01

    Highway traffic is the main source of heavy metal pollution. Due to limited cropland, it is very common to plant crops along the highways. So, in view of agricultural products safety, heavy metal pollution by highway traffic to soils along highway is widely concerned. Therefore, to study distribution traits, accumulative laws and influence factors of heavy metals in agricultural soils could provide scientific evidence and theoretical basis for environmental protection along express way.

  18. Tracing sources of pollution in soils from the Jinding Pb–Zn mining district in China using cadmium and lead isotopes

    International Nuclear Information System (INIS)

    Wen, Hanjie; Zhang, Yuxu; Cloquet, Christophe; Zhu, Chuanwei; Fan, Haifeng; Luo, Chongguang

    2015-01-01

    Highlights: • Cd isotopes can provide information on the emission, sources, and deposition of Cd. • Binary mixing model is established to trace pollution sources. • Dust transport is major pathway to transfer pollution in Jinding mine. - Abstract: Systematic variations in the Cd and Pb isotope ratios in polluted topsoils surrounding the Jinding Pb–Zn mine in China were measured so that the sources of the metals could be traced. The average δ 114/110 Cd value and 206 Pb/ 207 Pb isotope ratio in background soils from the region were +0.41‰ and 1.1902, respectively, whereas the contaminated soil samples had different values, with the δ 114/110 Cd values varying between −0.59‰ and +0.33‰ and the 206 Pb/ 207 Pb isotope ratios varying between 1.1764 and 1.1896. We also measured the Cd and Pb isotopic compositions in oxide ores, sulfide ores, and slags, and found that binary mixing between ores and background soils could explain almost all of the variations in the Cd and Pb isotope ratios in the contaminated soils. This suggests that Cd and Pb pollution in the soils was mainly caused by the deposition of dust emitted during anthropogenic activities (mining and refining). The Pb and Cd isotope ratios clearly showed that contamination in soils in the northeastern part of the area was caused by surface mines and zinc smelters and their slagheaps, while contamination in soils in the southwestern part of the area also came from tailing ponds and underground mines. The main area of soil polluted by dust from Pb–Zn mining processes roughly extended for up to 5 km from the mine itself

  19. Interaction of soil heavy metal pollution with industrialisation and the landscape pattern in Taiyuan city, China.

    Science.gov (United States)

    Liu, Yong; Su, Chao; Zhang, Hong; Li, Xiaoting; Pei, Jingfei

    2014-01-01

    Many studies indicated that industrialization and urbanization caused serious soil heavy metal pollution from industrialized age. However, fewer previous studies have conducted a combined analysis of the landscape pattern, urbanization, industrialization, and heavy metal pollution. This paper was aimed at exploring the relationships of heavy metals in the soil (Pb, Cu, Ni, As, Cd, Cr, Hg, and Zn) with landscape pattern, industrialisation, urbanisation in Taiyuan city using multivariate analysis. The multivariate analysis included correlation analysis, analysis of variance (ANOVA), independent-sample T test, and principal component analysis (PCA). Geographic information system (GIS) was also applied to determine the spatial distribution of the heavy metals. The spatial distribution maps showed that the heavy metal pollution of the soil was more serious in the centre of the study area. The results of the multivariate analysis indicated that the correlations among heavy metals were significant, and industrialisation could significantly affect the concentrations of some heavy metals. Landscape diversity showed a significant negative correlation with the heavy metal concentrations. The PCA showed that a two-factor model for heavy metal pollution, industrialisation, and the landscape pattern could effectively demonstrate the relationships between these variables. The model explained 86.71% of the total variance of the data. Moreover, the first factor was mainly loaded with the comprehensive pollution index (P), and the second factor was primarily loaded with landscape diversity and dominance (H and D). An ordination of 80 samples could show the pollution pattern of all the samples. The results revealed that local industrialisation caused heavy metal pollution of the soil, but such pollution could respond negatively to the landscape pattern. The results of the study could provide a basis for agricultural, suburban, and urban planning.

  20. Heavy Metals Phytoextraction from the Polluted Soils of Zakamensk (Russia)

    Science.gov (United States)

    Ubugunov, V.; Dorzhonova, V.; Ubugunov, L.

    2012-04-01

    Mining and ore-dressing are one of the most serious causes of environment pollution. Last century in days of active industrialization in Russia a considerable quantity of mineral deposits has been developed. It was not given sufficient attention for ecological safety at that time. After an economic crisis connected with disorder of the USSR and a planned economy, a number of the enterprises became bankrupts and have stopped the activity. As a result the broken landscapes have not been recultivated everywhere, there were numerous wastes. The negative consequences were especially strongly manifested in areas with severe climatic conditions where environmental self-renewal occurred is slowed rather down. The degree of a waste toxicity also acted as the important factor. One of such situations has arisen in Zakamensk - an administrative center of Zakamensky area of Buryat Republic (Russia). Environmental problems of the town have arisen in connection with activity of town-forming enterprise - Dzhidinsky tungsten-molybdenum industrial complex. The enterprise has been organized in 1934 and functioned within 63 years till 1997. During enterprise operating time 3 deposits have been exploited and is created 2 large (more than 40 million tons) tails depository of technogenic sands (TS), located in immediate proximity (less than 1-2 km) from a town residential zone.Sand of tails are rather toxic, the average maintenance of heavy metals in them is (mg/kg): Cd - 42, Pb - 7500, Zn - 3160, Cu - 620, Ni - 34, Co - 44, Mn - 121, Cr - 70, Hg - 0,01, As - 13, Mo - 90. Due to the lack of knowledges on the toxicity of TS in the past century, they were actively used in the road and house construction, during the erection of dams. After scientific studies they were recommended for using as fertilizers. Besides anthropogenic sands movement, there was intensive dispersion of sand by means of water and wind erosion. As a result of natural migration sands got to the subordinated elements of

  1. Assessment of soil contamination with Cd, Pb and Zn and source identification in the area around the Huludao Zinc Plant

    International Nuclear Information System (INIS)

    Lu, C.A.; Zhang, J.F.; Jiang, H.M.; Yang, J.C.; Zhang, J.T.; Wang, J.Z.; Shan, H.X.

    2010-01-01

    The distribution characteristics of heavy metals (cadmium (Cd), lead (Pb) and zinc (Zn)) in the natural soil profiles around the Huludao Zinc Plant (HZP), an old industrial base in Northeast China, were analyzed. The pollutant source was identified using 210 Pb isotope technique to evaluate the geochemical characteristics of Pb and the historical production records of HZP. The results indicated: dust precipitation from HZP was the primary source of the pollutants. The average deposition rates of Cd, Pb and Zn were 0.33, 1.75, and 30.97 g/m 2 year, respectively at 1 km away after HZP, and 0.0048, 0.035, and 0.20 g/m 2 year, respectively at 10 km away after HZP. There is a risk of secondary pollution to the environment as well as the food chain in seriously polluted areas used for cultivation.

  2. Assessment of soil contamination with Cd, Pb and Zn and source identification in the area around the Huludao Zinc Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lu, C.A.; Zhang, J.F.; Jiang, H.M. [Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences,100081 Beijing (China); Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, 100081 Beijing (China); Yang, J.C., E-mail: yangjch@263.net [Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences,100081 Beijing (China) and Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, 100081 Beijing (China); Zhang, J.T.; Wang, J.Z.; Shan, H.X. [Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081 Beijing (China); Graduate School of Chinese Academy of Agricultural Sciences,100081 Beijing (China)

    2010-10-15

    The distribution characteristics of heavy metals (cadmium (Cd), lead (Pb) and zinc (Zn)) in the natural soil profiles around the Huludao Zinc Plant (HZP), an old industrial base in Northeast China, were analyzed. The pollutant source was identified using {sup 210}Pb isotope technique to evaluate the geochemical characteristics of Pb and the historical production records of HZP. The results indicated: dust precipitation from HZP was the primary source of the pollutants. The average deposition rates of Cd, Pb and Zn were 0.33, 1.75, and 30.97 g/m{sup 2} year, respectively at 1 km away after HZP, and 0.0048, 0.035, and 0.20 g/m{sup 2} year, respectively at 10 km away after HZP. There is a risk of secondary pollution to the environment as well as the food chain in seriously polluted areas used for cultivation.

  3. Stabilization of Pb and Cd contaminated soils and soil quality improvements using waste oyster shells.

    Science.gov (United States)

    Ok, Yong Sik; Lim, Jung Eun; Moon, Deok Hyun

    2011-02-01

    Large amounts of oyster shells are produced as a by-product of shellfish farming in coastal regions without beneficial use options. Accordingly, this study was conducted to evaluate the potential for the use of waste oyster shells (WOS) containing a high amount of CaCO₃ to improve soil quality and to stabilize heavy metals in soil. To accomplish this, an incubation experiment was conducted to evaluate the ability of the addition of 1-5 wt% WOS to stabilize the Pb (total 1,246 mg/kg) and Cd (total 17 mg/kg) in a contaminated soil. The effectiveness of the WOS treatments was evaluated using various single extraction techniques. Soil amended with WOS was cured for 30 days complied with the Korean Standard Test method (0.1 M·HCl extraction). The Pb and Cd concentrations were less than the Korean warning and countermeasure standards following treatment with 5 wt% WOS. Moreover, the concentrations of Cd were greatly reduced in response to WOS treatment following extraction using 0.01 M·CaCl₂, which is strongly associated with phytoavailability. Furthermore, the soil pH and exchangeable Ca increased significantly in response to WOS treatment. Taken together, the results of this study indicated that WOS amendments improved soil quality and stabilized Pb and Cd in contaminated soil. However, extraction with 0.43 M·CH₃ COOH revealed that remobilization of heavy metals can occur when the soil reaches an acidic condition.

  4. Characterization and origin of organic and inorganic pollution in urban soils in Pisa (Tuscany, Italy).

    Science.gov (United States)

    Cardelli, Roberto; Vanni, Giacomo; Marchini, Fausto; Saviozzi, Alessandro

    2017-10-12

    We assessed the quality of 31 urban soils in Pisa by analyzing total petroleum hydrocarbons (TPHs), Cd, Cr, Cu, Hg, Mn, Ni, Pb, Zn, and the platinum group elements (PGEs). The risk was evaluated by the geological accumulation index (I geo ) and the enrichment factor (EF). Results were compared with those obtained from a non-urban site and with the quantitative limits fixed by Italian legislation. In nearly all the monitored sites, the legal limit for TPH of 60 mg/kg in residential areas was exceeded, indicating widespread and intense pollution throughout the entire city area. The I geo indicated no Cd, Cu, Mn, Ni, and Zn pollution and minimal Pb and Cr pollution due to anthropogenic enrichment. Legal Hg and Zn limits of 1 and 150 mg/kg, respectively, were exceeded in about 20% of sites; Cd (2 mg/kg), Cr (150 mg/kg), and Cu (120 mg/kg) in only one site; and the Ni legal limit of 120 mg/kg was never exceeded. Some urban soils showed a higher Hg level than the more restrictive legal limit of 5 mg/kg concerning areas for industrial use. Based on the soluble, exchangeable, and carbonate-bound fractions, Mn and Zn showed the highest mobility, suggesting a more potential risk of soil contamination than the other metals. The TPH and both Cr and Hg amounts were not correlated with any of the other monitored metals. The total contents of Cd, Pb, Zn, and Cu in soils were positively correlated with each other, suggesting a common origin from vehicular traffic. The PGE values (Pt and Pd) were below the detection limits in 75%-90% of the monitored areas, suggesting that their accumulation is at an early stage.

  5. Electrodialytic Remediation of Heavy Metal Polluted Soil. An Innovative Technique

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Hansen, Henrik; Karlsmose, Bodil

    1997-01-01

    Electrodialytic remediationof heavy metal polluted soil is a newly developed method which combines the electrokinetic movement of ions in soil with the principle of electrodialysis. The method has prowen to work in laboratorscale and at presnet two types of pilot plants are build....

  6. Effect of Organic Pollutants on Migration of Radionuclides in Soil

    International Nuclear Information System (INIS)

    Nasr, R.G.A.

    2012-01-01

    The aim of this thesis is to study the effect of organic pollutants on the mobility of selected heavy metal (pb 2+ ) and radionuclide ( 60 Co) in an Egyptian agricultural soil and in a clay fraction separated from the soil. The effect of presence of natural organic compounds such as humic acid is also studied

  7. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China.

    Science.gov (United States)

    Qing, Xiao; Yutong, Zong; Shenggao, Lu

    2015-10-01

    The purpose of this study was to determine the concentrations and health risk of heavy metals in urban soils from a steel industrial district in China. A total of 115 topsoil samples from Anshan city, Liaoning, Northeast China were collected and analyzed for Cr, Cd, Pb, Zn, Cu, and Ni. The geoaccumulation index (Igeo), pollution index (PI), and potential ecological risk index (PER) were calculated to assess the pollution level in soils. The hazard index (HI) and carcinogenic risk (RI) were used to assess human health risk of heavy metals. The average concentration of Cr, Cd, Pb, Zn, Cu, and Ni were 69.9, 0.86, 45.1, 213, 52.3, and 33.5mg/kg, respectively. The Igeo and PI values of heavy metals were in the descending order of Cd>Zn>Cu>Pb>Ni>Cr. Higher Igeo value for Cd in soil indicated that Cd pollution was moderate. Pollution index indicated that urban soils were moderate to highly polluted by Cd, Zn, Cu, and Pb. The spatial distribution maps of heavy metals revealed that steel industrial district was the contamination hotspots. Principal component analysis (PCA) and matrix cluster analysis classified heavy metals into two groups, indicating common industrial sources for Cu, Zn, Pb, and Cd. Matrix cluster analysis classified the sampling sites into four groups. Sampling sites within steel industrial district showed much higher concentrations of heavy metals compared to the rest of sampling sites, indicating significant contamination introduced by steel industry on soils. The health risk assessment indicated that non-carcinogenic values were below the threshold values. The hazard index (HI) for children and adult has a descending order of Cr>Pb>Cd>Cu>Ni>Zn. Carcinogenic risks due to Cr, Cd, and Ni in urban soils were within acceptable range for adult. Carcinogenic risk value of Cr for children is slightly higher than the threshold value, indicating that children are facing slight threat of Cr. These results provide basic information of heavy metal pollution control

  8. Remediation of biochar on heavy metal polluted soils

    Science.gov (United States)

    Wang, Shuguang; Xu, Yan; Norbu, Namkha; Wang, Zhan

    2018-01-01

    Unreasonable mining and smelting of mineral resources, solid waste disposal, sewage irrigation, utilization of pesticides and fertilizers would result in a large number of heavy metal pollutants into the water and soil environment, causing serious damage to public health and ecological safety. In recent years, a majority of scholars tried to use biochar to absorb heavy metal pollutants, which has some advantages of extensive raw material sources, low-cost and high environmental stability. This paper reviewed the definition, properties of biochar, the mechanism of heavy metal sorption by biochar and some related problems and prospects, to provide some technical support for the application of biochar into heavy metal polluted soils.

  9. Soil pollution by oxidation of tailings from toxic spill of a pyrite mine

    International Nuclear Information System (INIS)

    Simon, M.; Martin, F.; Ortiz, I.; Garcia, I.; Fernandez, J.; Fernandez, E.; Dorronsoro, C.; Aguilar, J.

    2001-01-01

    On the 25th April 1998, toxic water and tailings from a pyrite mine of Aznalcollar (southern Spain) spilled into the Agrio and Guadiamar River Basin affecting some 40 km 2 . In five sectors throughout the basin, we monitored the physical and chemical properties of the tailings as well as the degree of pollution in the soils on four different sampling dates: 5 May, 20 May, 4 June and 22 July 1998. The characteristics of the tailings deposited on the soils are shown to be related to distance from the spill. The oxidation rate of the tailings and the solubilization of the pollutant elements were more pronounced in the middle and lower sectors of the basin, where the particle size was finer, the sulfur content higher and the bulk density less. The increases in water-soluble sulfates, Zn, Cd and Cu were very rapid (the highest values being reached 25 days after the spill) and intense (reaching 45% of the total Cu, 65% of the total Zn and Cd). Meanwhile, the increases in water-soluble As, Bi, Sb, Pb and Tl were far lower (ranging between 0.002% of the total Tl and 2.5% of the total As) and less rapid in the case of As, Bi and Pb (the highest values for these elements being reached 40 days after the spill). These soluble elements infiltrated the soils with the rainwater, swiftly augmenting the soil pollution. Twenty-five days after the spill, when the rainfall ranged between 45 and 63 mm, the first 10-cm of the soils in the middle and lower sectors of the basin exceeded the maximum concentration permitted for agricultural soils in Zn, Cu and Tl. At 40 days after the spill, when the rainfall ranged between 60 and 89 mm, all the soils reached or exceeded the maximum permitted concentrations for As and Tl. Nevertheless, the pollutants tended to concentrate in the first 10 cm of the soils without seriously contaminating either the subsoil or the groundwaters. Consequently, a rapid removal of the tailings and the ploughing of the first 25-30 cm of the soils would be urgent

  10. Effect of sewage sludge hydrochar on soil properties and Cd immobilization in a contaminated soil.

    Science.gov (United States)

    Ren, Jie; Wang, Fenghua; Zhai, Yunbo; Zhu, Yun; Peng, Chuan; Wang, Tengfei; Li, Caiting; Zeng, Guangming

    2017-12-01

    To investigate hydrochar as a soil amendment for the immobilization of Cd, the characteristics of hydrochars (HCs) under three temperatures and residence times, were studied, with a particular interest in soil properties, as well as the speciation, availability and plant uptake of Cd. HCs were obtained by a hydrothermal carbonization (HTC) reaction of sewage sludge (SS). Based on the study of HC properties, we found that HCs present weak acidity with relatively high ash content and low electrical conductivity (EC) values. The addition of HCs to soil decreased soil pH and EC values but increased the abundance of soil microorganism. HCs also promoted the transformation of Cd from unstable to stable speciation and can decrease the content of phyto-available Cd (optimum condition and efficiency: A13, 2 15.38%), which restrained cabbage from assimilating Cd from soil both the aboveground (optimum condition and efficiency: A35, 52.29%) and underground (optimum condition and efficiency: C15, 57.53%) parts of it. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Risk assessment of heavy metal pollution for detritivores in floodplain soils in the Biesbosch, The Netherlands, taking bioavailability into account

    International Nuclear Information System (INIS)

    Hobbelen, P.H.F.; Koolhaas, J.E.; Gestel, C.A.M. van

    2004-01-01

    Floodplains of the European rivers Rhine and Meuse are heavily polluted. We investigated the risk of heavy metal pollution (Cd, Cu, Pb, Zn) for detritivores living in a floodplain area, the Biesbosch, the Netherlands, affected by these rivers. Total soil, pore water and 0.01 M CaCl 2 extractable concentrations and concentrations in plant leaves, earthworms, isopods and millipedes were measured in two sites and compared with literature data to assess possible risks. Based on total metal concentrations in soil, serious effects on detritivores were expected. However, 0.01 M CaCl 2 extractable, pore water and plant leaf concentrations were similar to metal concentrations found in unpolluted areas. Concentrations of Cu and Cd in earthworms and Cu in millipedes were higher in the Biesbosch than in animals from reference areas. All other measured concentrations of heavy metals in earthworms, isopods and millipedes were similar to the ones found in reference areas. Despite high total soil concentrations, effects of Zn, Cu, Pb and Cd pollution on isopods are therefore not expected, while millipedes may only be affected by Cu. Since Cu and Cd levels in earthworms were increased compared to animals in unpolluted soils, this faunal group seems to be most at risk. Given the engineering role of earthworms in ecosystems, effects on the ecological functioning of floodplain soils therefore cannot be excluded. - Low bioavailability reduced the impact on detritivores

  12. Soil quality assessment using GIS-based chemometric approach and pollution indices: Nakhlak mining district, Central Iran.

    Science.gov (United States)

    Moore, Farid; Sheykhi, Vahideh; Salari, Mohammad; Bagheri, Adel

    2016-04-01

    This paper is a comprehensive assessment of the quality of soil in the Nakhlak mining district in Central Iran with special reference to potentially toxic metals. In this regard, an integrated approach involving geostatistical, correlation matrix, pollution indices, and chemical fractionation measurement is used to evaluate selected potentially toxic metals in soil samples. The fractionation of metals indicated a relatively high variability. Some metals (Mo, Ag, and Pb) showed important enrichment in the bioavailable fractions (i.e., exchangeable and carbonate), whereas the residual fraction mostly comprised Sb and Cr. The Cd, Zn, Co, Ni, Mo, Cu, and As were retained in Fe-Mn oxide and oxidizable fractions, suggesting that they may be released to the environment by changes in physicochemical conditions. The spatial variability patterns of 11 soil heavy metals (Ag, As, Cd, Co, Cr, Cu, Mo, Ni, Pb, Sb, and Zn) were identified and mapped. The results demonstrated that Ag, As, Cd, Mo, Cu, Pb, Sb, and Zn pollution are associated with mineralized veins and mining operations in this area. Further environmental monitoring and remedial actions are required for management of soil heavy metals in the study area. The present study not only enhanced our knowledge regarding soil pollution in the study area but also introduced a better technique to analyze pollution indices by multivariate geostatistical methods.

  13. Comparison of electrodialytic removal of Cu from spiked kaolinite, spiked soil and industrially polluted soil

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Lepkova, Katarina; Kubal, Martin

    2006-01-01

    Electrokinetic remediation methods for removal of heavy metals from polluted soils have been subjected for quite intense research during the past years since these methods are well suitable for fine-grained soils where other remediation methods fail. Electrodialytic remediation is an electrokinetic...... remediation method which is based on applying an electric DC field and the use of ion exchange membranes that ensures the main transport of heavy metals to be out of the pollutes soil. An experimental investigation was made with electrodialytic removal of Cu from spiked kaolinite, spiked soil and industrially...... polluted soil under the same operational conditions (constant current density 0.2 mA/cm2 and duration 28 days). The results of the present paper show that caution must be taken when generalising results obtained in spiked kaolinite to remediation of industrially polluted soils, as it was shown...

  14. Assessment on urban soil pollution by biocides from building materials

    DEFF Research Database (Denmark)

    Bollmann, Ulla E.; Vollertsen, Jes; Bester, Kai

    2015-01-01

    . Based on a monitoring study of stormwater runoff from a residential catchment as well as direct façade runoff analysis, the present study was assessing the pollution of urban soil to biocides from building material. The stormwater runoff of a residential catchment in Silkeborg (Denmark) was monitored...... from a freshly painted or rendered house, it is obvious that a huge part is actually draining directly to the soil and not to the sewer system. Consequently, the soil in urban areas is exposed to stormwater highly polluted by biocides which might affect the microbial community there....

  15. Sanitation of overburden dumps containing organic pollutants. Soil pollution obstructs removal of overburden dumps at Ronneburg

    International Nuclear Information System (INIS)

    Hammami, R.; Fischer, D.

    1999-01-01

    Contamination of mineral oil hydrocarbons is a common problem in soil sanitation, and classic methods are employed as a rule. In one case, radioactivity of the polluted rock material, a wide spectrum of pollutants and a high pollutant level necessitated adapted solutions. The task was tackled in a joint effort by builder-owners, authorities, sanitation experts and scientific experts in consideration of economic and ecological aspects [de

  16. [Investigation and analysis of heavy metal pollution related to soil-Panax notoginseng system].

    Science.gov (United States)

    Chen, Lu; Mi, Yan-Hua; Lin, Xin; Liu, Da-Hui; Zeng, Min; Chen, Xiao-Yan

    2014-07-01

    In this study, five heavy metals contamination of soil and different parts of Panax notoginseng in the plantation area was investigated. Analysis of heavy metals correlation between the planting soil and P. notoginseng; and the absorption and accumulation characteristics and translocation of soil heavy metals by P. notoginseng plants was revealed. Through field investigation and laboratory analytical methods, analysis of China's 30 different soil P. notoginseng origin and content of heavy metals in five different parts of the P. notoginseng plant content of heavy metals. The results revealed that the soil heavy metals should not be neglected in the plantation area Referring to the national soil quality standards (GB15608-1995), the excessive degree of soil heavy metals pollution showed Hg > As > Cd > Cr in the plantation area, and Pb content of soil was in the scope of the standard. Refer to 'Green Industry Standards for Import and Export of Medical Plants and Preparations', the excessive degree of heavy metals content of P. notoginseng plants showed As > Pb > Cr > Cd, and Hg content of plants was in the scope of the standard. Concentrations of five heavy metals of underground parts of P. notoginseng plants are higher than aboveground, and heavy metals elements are more concentrated in the root, followed by the rhizome of P. notoginseng plants. Heavy metal accumulation characteristics of the different parts of the P. notoginseng of the overall performance is the root > the rhizome > the root tuber > leaves > stems. From the point of view BCF value analysis of various parts of the P. notoginseng plants to absorb heavy metals in soil, BCF values of all samples were less than 1, description P. notoginseng not belong Hyperaccumulator. From the view of transportation and related analysis of the soil-P. notoginseng systems, the rhizome of P. notoginseng and the content of As and Cr in soil was significantly correlated, the root of P. notoginseng and the content of Cd in

  17. [Effect of Recycled Water Irrieation on Heavy Metal Pollution in Irrigation Soil].

    Science.gov (United States)

    Zhou, Yi-qi; Liu, Yun-xia; Fu, Hui-min

    2016-01-15

    With acceleration of urbanization, water shortages will become a serious problem. Usage of reclaimed water for flushing and watering of the green areas will be common in the future. To study the heavy metal contamination of soils after green area irrigation using recycled wastewater from special industries, we selected sewage and laboratory wastewater as water source for integrated oxidation ditch treatment, and the effluent was used as irrigation water of the green area. The irrigation units included broad-leaved forest, bush and lawn. Six samples sites were selected, and 0-20 cm soil of them were collected. Analysis of the heavy metals including Cr, Mn, Ni, Cu, Zn, As, Cd and Pb in the soil showed no significant differences with heavy metals concentration in soil irrigated with tap water. The heavy metals in the soil irrigated with recycled water were mainly enriched in the surface layer, among which the contents of Cr, Ni, Cu, Zn and Pb were below the soil background values of Beijing. A slight pollution of As and Cd was found in the soil irrigated by recycled water, which needs to be noticed.

  18. Assessment of the pollution and ecological risk of lead and cadmium in soils.

    Science.gov (United States)

    Wieczorek, Jerzy; Baran, Agnieszka; Urbański, Krzysztof; Mazurek, Ryszard; Klimowicz-Pawlas, Agnieszka

    2018-03-27

    The aim of the study was to assess the content, distribution, soil binding capacity, and ecological risk of cadmium and lead in the soils of Malopolska (South Poland). The investigation of 320 soil samples from differently used land (grassland, arable land, forest, wasteland) revealed a very high variation in the metal content in the soils. The pollution of soils with cadmium and lead is moderate. Generally, a point source of lead and cadmium pollution was noted in the study area. The highest content of cadmium and lead was found in the northwestern part of the area-the industrial zones (mining and metallurgical activity). These findings are confirmed by the arrangement of semivariogram surfaces and bivariate Moran's correlation coefficients. Among the different types of land use, forest soils had by far the highest mean content of bioavailable forms of both metals. The results showed a higher soil binding capacity for lead than for cadmium. However, for both metals, extremely high (class 5) accumulation capacities were dominant. Based on the results, the investigated soils had a low (Pb) and moderate (Cd) ecological risk on living components. Soil properties, such as organic C, pH, sand, silt, and clay content, correlated with the content of total and bioavailable forms of metals in the soils. The correlations, despite being statistically significant, were characterized by very low values of correlation coefficient (r = 0.12-0.20, at p ≤ 0.05). Therefore, the obtained data do not allow to define any conclusions as to the relationships between these soil properties. However, it must be highlighted that there was a very strong positive correlation between the total content of cadmium and lead and their bioavailable forms in the soils.

  19. Removal and Remediation Effects of Cd from Cadmium-contaminated Farmland Soils by A Magnetic Solid Chelator

    Directory of Open Access Journals (Sweden)

    NIE Xin-xing

    2017-10-01

    Full Text Available In this paper, a simulated experiment was carried out to study the removal and remediation effects of Cd from cadmium-contaminated farmland soils by a magnetic solid chelator(MSC at different application rates as well as its recovery rates and chelating capacity for Cd. The results showed that when the application rates of MSC materials was between 0.4% and 1.2%, the removal rate of total Cd and available Cd were 15.91%~17.69% and 33.33%~50.26%, respectively. And the MSC recovery rates were between 74.01% and 94.33% which increased with the increase of application rates of MSC and gradually tended to be stable. The content of Cd in recycled magnetic materials(mainly MSC was between 19.31 mg·kg-1 to 25.72 mg·kg-1, reaching to the highest at the application rates of 0.4% which was significantly higher than those of 0.8%, 1% and 1.2% treatment. But the content of Cd in magnetic materials had the trend that decreased with the increase of the recovery amount of MSC. The amount of Cd chelated by magnetic materials was nearly equal to the removal amount of Cd from soil at the 0.8% and 1.2% treatments. Besides, the Cd concentration in water samples was lower thanⅠ-level standard issued by the surface water environment quality standard(GB 3838-2002, meaning that it would not be a new pollution source. Therefore, MSC does have some removal and remediation effects on soil Cd and will provide a new method for remediation of heavy metals in farmland soils.

  20. Source and Assessment of Metal Pollution at Khetri Copper Mine Tailings and Neighboring Soils, Rajasthan, India.

    Science.gov (United States)

    Punia, Anita; Siddaiah, N Siva; Singh, Saurabh K

    2017-11-01

    We present here the results of the study on metal pollution by identifying source, abundance and distribution in soil and tailings of Khetri copper complex (KCC) mines, Rajasthan India. The region is highly contaminated by copper (Cu) with higher values in the soil near overburden material (1224 mg/kg) and tailings (111 mg/kg). The average Cu (231 mg/kg) concentration of soil is ~9, 5 and 32 times higher than upper crust, world average shale (WAS) and local background soil (LS), respectively. However this reaches to ~82, 46 and 280 times higher in case of tailing when compared. The correlation and principal component analysis for soil reveals that the source of Cu, Zn, Co, Ni, Mn and Fe is mining and Pb and Cd could be result of weathering of parent rocks and other anthropogenic activities. The source for Cr in soil is both mining activities and weathering of parent rocks. The values of index of geo-accumulation (I geo ) and pollution load index for soil using LS as background are higher compared to values calculated using WAS. The metal rich sulphide bearing overburden material as well as tailings present in the open environment at KCC mines region warrants a proper management to minimize their impact on the environment.

  1. Effects of Crop Straw Returning with Lime on Activity of Cu, Zn, Pb and Cd in Paddy Soil

    Directory of Open Access Journals (Sweden)

    NI Zhong-ying

    2017-05-01

    Full Text Available Crop straw returning is an important measure for increasing soil carbon fixation and soil fertility in China, but it also may result in some risk of raising activity of heavy metals in the soil. In order to understand the effects of different sources of crop straw on heavy metals activity in soil with different pollution levels, and to take appropriate measures to prevent the activation of heavy metals in the soil, both pot and field experiments were carried out to study the effects of crop straw returning with lime on activity of Cu, Zn, Pb and Cd in paddy soil. The experiments were carried out in the soils with both light and heavy pollution of heavy metals. In the pot experiment, three straws, including rice straw with heavy pollution of heavy metals, rice straw with light pollution of heavy metals, and rape straw with light pollution of heavy metals, were tested. Two dosages of lime(0 kg·hm-2 and 750 kg·hm-2were applied. Field experiment had three treatments, ie., control without application of straw and lime, straw returning and straw returning + lime. Soil available heavy metals, accumulation of heavy metals in rice grain, and chemical forms of soil heavy metals were dynamical monitored. The results showed that crop straw returning increased significantly the concentrations of dissolved organic carbon and water soluble heavy metals in paddy soils at the early stage of experiment (in first 20 days. The increase in water soluble heavy metals in the soil with heavy pollution of heavy metals was most obvious as compared with the control treatment. After 60th day of the experiment, the effects of straw returning on the activity of heavy metals in the soil decreased gradually with the time, and became no obvious. The concentrations of water soluble heavy metals in the soil treated with rape straw was generally lower than that of rice straw, while those in the soil treated with heavy pollution of rice straw was higher than low pollution of rice

  2. Decontamination of Heavy Metals in Polluted Soil by Phytoremediation Using Bryophyllum Pinnatum

    Directory of Open Access Journals (Sweden)

    Ekwumemgbo P. A.

    2013-04-01

    Full Text Available Phytoremediation is the use of specially selected or engineered living green plants for in situ risk reduction and/or removal of pollutants from contaminated media. This process is one of the most rapidly developing components of environmentally friendly (green and cost-effective technology to abate environmental pollution. The risk reduction could be through the process of removal, degradation, containment of a contaminant or a combination of any of these factors. Bryophyllum pinnatum a herbally-accepted plant in some parts of the world was cultivated in ten different plastic buckets containing heavy metal polluted soil and nurtured for 20 months. The plants were left in ambient conditions and watered periodically. After the first 2 weeks, the plant and soil samples were collected and analysed for total concentration of Cd, Cr, Cu, Ni, Pb V and Zn. Subsequently, the plant and soil samples were collected monthly and analysed for the total concentrations of these heavy metals, using Atomic Absorption Spectrophotometry. Maximum extracted heavy metals from soil by plant were Cd (3.12±1.03 mg/kg, Cr (32.48±3.21 mg/kg, Cu (81.01±2.3 mg/kg Ni (11.91±2.32 mg/kg, Pb (399.90 ±4.32 mg/kg V (5.81±0.08 mg/kg and Zn (150.51± 0.33 and this occurred in the 4th month of study. This study confirms B. pinnatum as one of the plants that could be employed in phytoremediation of soil polluted by heavy metals.

  3. Exotic Earthworms Decrease Cd, Hg, and Pb Pools in Upland Forest Soils of Vermont and New Hampshire USA.

    Science.gov (United States)

    Richardson, J B; Görres, J H; Friedland, A J

    2017-10-01

    Exotic earthworms are present in the forests of northeastern USA, yet few studies have documented their effects on pollutant metals in soil. The objective of this study was to identify if Cd, Hg, and Pb strong-acid extractable concentrations and pools (bulk inventories) in forest soils decreased with the presence of exotic earthworms. We compared 'Low Earthworm Abundance' (LEA) sites (≤10 g m -2 earthworms, n = 13) and 'High Earthworm Abundance' (HEA) (>10 g m -2 earthworms, n = 17) sites at five watersheds across Vermont and New Hampshire. Organic horizon Cd, Hg, and Pb concentrations were lower at HEA than LEA sites. Organic horizon and total soil pools of Cd and Hg were negatively correlated with earthworm biomass. Soil profile Cd and Hg concentrations were lower at HEA than LEA sites. Our results suggest earthworms are decreasing accumulation of Cd, Hg, and Pb in forest soils, potentially via greater mobilization through organic matter disruption or bioaccumulation.

  4. Interrelationships of metal transfer factor under wastewater reuse and soil pollution.

    Science.gov (United States)

    Papaioannou, D; Kalavrouziotis, I K; Koukoulakis, P H; Papadopoulos, F; Psoma, P

    2018-06-15

    The transfer of heavy metals under soil pollution wastewater reuse was studied in a Greenhouse experiment using a randomized block design, including 6 treatments of heavy metals mixtures composed of Zn, Mn, Cd, Co, Cu, Cr, Ni, and Pb, where each metal was taking part in the mixture with 0, 10, 20, 30, 40, 50 mg/kg respectively, in four replications. The Beta vulgaris L (beet) was used as a test plant. It was found that the metal transfer factors were statistically significantly related to the: (i) DTPA extractable soil metals, (ii) the soil pollution level as assessed by the pollution indices, (iii) the soil pH, (iv) the beet dry matter yield and (v) the interactions between the heavy metals in the soil. It was concluded that the Transfer Factor is subjected to multifactor effects and its real nature is complex, and there is a strong need for further study for the understanding of its role in metal-plant relationships. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Facilitating the afforestation of Mediterranean polluted soils by nurse shrubs.

    Science.gov (United States)

    Domínguez, María T; Pérez-Ramos, Ignacio M; Murillo, José M; Marañón, Teodoro

    2015-09-15

    The revegetation of polluted sites and abandoned agricultural soils is critical to reduce soil losses and to control the spread of soil pollution in the Mediterranean region, which is currently exposed to the greatest soil erosion risk in Europe. However, events of massive plant mortality usually occur during the first years after planting, mainly due to the adverse conditions of high irradiance and drought stress. Here, we evaluated the usefulness of considering the positive plant-plant interactions (facilitation effect) in the afforestation of polluted agricultural sites, using pre-existing shrubs as nurse plants. We used nurse shrubs as planting microsites for acorns of Quercus ilex (Holm oak) along a gradient of soil pollution in southwestern Spain, and monitored seedling growth, survival, and chemical composition during three consecutive years. Seedling survival greatly increased (from 20% to more than 50%) when acorns were sown under shrub, in comparison to the open, unprotected matrix. Facilitation of seedling growth by shrubs increased along the gradient of soil pollution, in agreement with the stress gradient hypothesis that predicts higher intensity of the facilitation effects with increasing abiotic stress. Although the accumulation of trace elements in seedling leaves was higher underneath shrub, the shading conditions provided by the shrub canopy allowed seedlings to cope with the toxicity provoked by the concurrence of low pH and high trace element concentrations in the most polluted sites. Our results show that the use of shrubs as nurse plants is a promising tool for the cost-effective afforestation of polluted lands under Mediterranean conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Heavy metal pollution decreases microbial abundance, diversity and activity within particle-size fractions of a paddy soil.

    Science.gov (United States)

    Chen, Junhui; He, Feng; Zhang, Xuhui; Sun, Xuan; Zheng, Jufeng; Zheng, Jinwei

    2014-01-01

    Chemical and microbial characterisations of particle-size fractions (PSFs) from a rice paddy soil subjected to long-term heavy metal pollution (P) and nonpolluted (NP) soil were performed to investigate whether the distribution of heavy metals (Cd, Cu, Pb and Zn) regulates microbial community activity, abundance and diversity at the microenvironment scale. The soils were physically fractionated into coarse sand, fine sand, silt and clay fractions. Long-term heavy metal pollution notably decreased soil basal respiration (a measurement of the total activity of the soil microbial community) and microbial biomass carbon (MBC) across the fractions by 3-45% and 21-53%, respectively. The coarse sand fraction was more affected by pollution than the clay fraction and displayed a significantly lower MBC content and respiration and dehydrogenase activity compared with the nonpolluted soils. The abundances and diversities of bacteria were less affected within the PSFs under pollution. However, significant decreases in the abundances and diversities of fungi were noted, which may have strongly contributed to the decrease in MBC. Sequencing of denaturing gradient gel electrophoresis bands revealed that the groups Acidobacteria, Ascomycota and Chytridiomycota were clearly inhibited under pollution. Our findings suggest that long-term heavy metal pollution decreased the microbial biomass, activity and diversity in PSFs, particularly in the large-size fractions. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  7. Indices of soil contamination by heavy metals - methodology of calculation for pollution assessment (minireview).

    Science.gov (United States)

    Weissmannová, Helena Doležalová; Pavlovský, Jiří

    2017-11-07

    This article provides the assessment of heavy metal soil pollution with using the calculation of various pollution indices and contains also summarization of the sources of heavy metal soil pollution. Twenty described indices of the assessment of soil pollution consist of two groups: single indices and total complex indices of pollution or contamination with relevant classes of pollution. This minireview provides also the classification of pollution indices in terms of the complex assessment of soil quality. In addition, based on the comparison of metal concentrations in soil-selected sites of the world and used indices of pollution or contamination in soils, the concentration of heavy metal in contaminated soils varied widely, and pollution indices confirmed the significant contribution of soil pollution from anthropogenic activities mainly in urban and industrial areas.

  8. Effect of Capreolus capreolus and Sus scrofa excreta on alanine aminotransferase activity in Glechoma hederacea leaves in conditions of Cd pollution

    Directory of Open Access Journals (Sweden)

    O. M. Vasilyuk

    2015-06-01

    Full Text Available The paper reflects the analysis of Cd impact on the total activity (nM pyruvic acid/ml s of alanine aminotransferase (ALT, EC 2.6.1.2 nitrogen metabolism and the content (mg/ml of water-soluble protein fraction (albumin in Glechoma hederacea L. leaves subject, which dominated in the research area (natural floodplain oak with Stellaria holostea L.. Cd was introduced in the form of salts Cd(NO32 in the concentrations of 0.25, 1.25 and 2.50 g/m2, equivalent to Cd in 1, 5 and 10 doses of MAC. The content of doses of MAC of Cd (5 mg/kg soil was taken into account during introduction. We observed the inhibition of the activity of ALT 3–4 times (with adding the Cd salts at a dose of 1 and 5 МAС compared to controls (area without pollution of Cd and excreta of mammals. This stress reaction took place in the protein complex as well. Thus, albumin content was equal to 72% and 80% (with Cd 1 and 5 MAC compared to control (the area without pollution and excretory functions of mammals. It proved nonspecific response to stress. Using excreta of Capreolus capreolus L. and Sus scrofa L. shows the reduction of Cd effects and increasing the metabolic activity of ALT by 41% and 105%, respectively (with adding of Cd 1 MAC compared to control (pollution by Cd at a dose 1 MAC. The effect of Cd 5 MAC is offset (only with the introduction of C. capreolus excreta compared to control (pollution by Cd at a dose 5 MAC. Normalization of the albumin content (with adding of Cd 1 and 5 MAC compared to control (сontrol of Cd at a dose 1 MAC and сontrol of Cd at a dose 5 MAC with using of excreta of C. capreolus was observed. In conditions of Cd at a doze 10 MAC the ALT activity was reduced 2 times with the introduction of excreta of C. capreolus as S. scrofa compared to control (Cd at a dose 10 MAC. The introduction of excreta of S. scrofa compared with C. capreolus restored the albumin content by 10% to the control. Thus, the feasibility of using different biological

  9. Soil biogeochemistry, plant physiology and phytoremediation of cadmium contaminated soils

    Science.gov (United States)

    Cadmium (Cd) loading in soil and the environment has been accelerated worldwide due to enhanced industrialization and intensified agricultural production, particularly in the developing countries. Soil Cd pollution, resulting from both anthropogenic and geogenic sources, has posed an increasing chal...

  10. Soil pollution with trace elements at selected sites in Romania studied by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Pantelica, A.; Carmo Freitas, M. do; Ene, A.; Steinnes, E.

    2013-01-01

    Instrumental neutron activation analysis (INAA) was used to determine concentrations of 42 elements in samples of surface soil collected at seven sites polluted from various anthropogenic activities and a control site in a relatively clean area. Elements studied were Ag, Al, As, Au, Ba, Br, Ca, Cd, Ce, Co, Cr, Cs, Eu, Fe, Gd, Hf, Hg, K, La, Lu, Mg, Mn, Mo, Na, Nd, Ni, Rb, Sb, Sc, Se, Sm, Sr, Ta, Tb, Th, Ti, U, V, W, Yb, Zn, and Zr. The results are compared with data for trace elements atmospheric deposition in lichen transplants from the same sites. The most severe soil contamination was observed at Copsa Mica from non-ferrous metallurgy. Appreciable soil contamination was also indicated at Baia Mare (non-ferrous mining and metallurgy), Deva (coal-fired power plant, cement and building materials industry), Galati (ferrous metallurgy), Magurele and Afumati (general urban pollution), and Oradea (chemical and light industries). In most cases excessive levels of toxic metals in soils matched correspondingly high values in lichen transplants. Compared to Romanian norms, legal upper limits were exceeded for Zn and Cd at Copsa Mica. Also, As and Sb occurred in excessive levels at given sites. (orig.)

  11. Soil pollution with trace elements at selected sites in Romania studied by instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pantelica, A. [Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Magurele, Ilfov County (Romania); Carmo Freitas, M. do [Technological and Nuclear Institute (ITN), Sacavem (Portugal); Ene, A. [Dunarea de Jos Univ. of Galati (Romania). Dept. of Chemistry, Physics and Environment; Steinnes, E. [Norwegian Univ. of Science and Technology, Trondheim (Norway). Dept. of Chemistry

    2013-03-01

    Instrumental neutron activation analysis (INAA) was used to determine concentrations of 42 elements in samples of surface soil collected at seven sites polluted from various anthropogenic activities and a control site in a relatively clean area. Elements studied were Ag, Al, As, Au, Ba, Br, Ca, Cd, Ce, Co, Cr, Cs, Eu, Fe, Gd, Hf, Hg, K, La, Lu, Mg, Mn, Mo, Na, Nd, Ni, Rb, Sb, Sc, Se, Sm, Sr, Ta, Tb, Th, Ti, U, V, W, Yb, Zn, and Zr. The results are compared with data for trace elements atmospheric deposition in lichen transplants from the same sites. The most severe soil contamination was observed at Copsa Mica from non-ferrous metallurgy. Appreciable soil contamination was also indicated at Baia Mare (non-ferrous mining and metallurgy), Deva (coal-fired power plant, cement and building materials industry), Galati (ferrous metallurgy), Magurele and Afumati (general urban pollution), and Oradea (chemical and light industries). In most cases excessive levels of toxic metals in soils matched correspondingly high values in lichen transplants. Compared to Romanian norms, legal upper limits were exceeded for Zn and Cd at Copsa Mica. Also, As and Sb occurred in excessive levels at given sites. (orig.)

  12. Spatial distribution of Cd and Cu in soils in Shenyang Zhangshi Irrigation Area (SZIA), China*

    Science.gov (United States)

    Sun, Li-na; Yang, Xiao-bo; Wang, Wen-qing; Ma, Li; Chen, Su

    2008-01-01

    Heavy metal contamination of soils, derived from sewage irrigation, mining and inappropriate utilization of various agrochemicals and pesticides, and so on, has been of wide concern in the last several decades. The Shenyang Zhangshi Irrigation Area (SZIA) in China is a representative area of heavy metal contamination of soils resulting from sewage irrigation for about 30 years. This study investigated the spatial distribution and temporal variation of soil cadmium (Cd) and copper (Cu) contamination in the SZIA. The soil samples were collected from the SZIA in 1990 and 2004; Cd and Cu in soils was analyzed and then the spatial distribution and temporal variation of Cd and Cu in soils were modeled using Kriging methods. The results show that long-term sewage irrigation had caused serious Cd and Cu contamination in soils. The mean and the maximum of soil Cd are markedly higher than the levels in second grade standard soil (LSGSS) in China, and the maximum of soil Cu is close to the LSGSS in China in 2004 and is more than the LSGSS in China in 1990. The contamination magnitude of soil Cd and the soil extent of Cd contamination had evidently increased since sewage irrigation ceased in 1992. The contamination magnitude of soil Cu and the soil extent of Cu contamination had evidently increased in topsoil, but obviously decresed in subsoil. The soil contamination of Cd and Cu was mainly related to Cd and Cu reactivation of contaminated sediments in Shenyang Xi River and the import of Cd and Cu during irrigation. The eluviation of Cd and Cu in contaminated topsoil with rainfall and irrigation water was another factor of temporal-spatial variability of Cd and Cu contamination in soils. PMID:18357631

  13. Pollution of intensively managed greenhouse soils by nutrients and heavy metals in the Yellow River Irrigation Region, Northwest China.

    Science.gov (United States)

    Kong, Xiaole; Cao, Jing; Tang, Rangyun; Zhang, Shengqiang; Dong, Fang

    2014-11-01

    The present study aimed to assess the potential ecological risk of heavy metals and nutrient accumulation in polytunnel greenhouse soils in the Yellow River irrigation region (YRIR), Northwest China, and to identify the potential sources of these heavy metals using principal component analysis. Contents of available nitrogen (AN), phosphorus (AP), and potassium (AK) in the surface polytunnel greenhouse soils (0-20 cm) varied from 13.42 to 486.78, from 39.10 to 566.97, and from 21.64 to 1,156.40 mg kg(-1), respectively, as well as AP, soil organic matter (SOM) and AK contents tended to increase significantly at the 0-20- and 20-40-cm soil layers. Heavy metal accumulations occurred in the polytunnel greenhouse soils as compared to arable soils, especially at a depth of 20 cm where Cd, Zn and Cu contents were significantly higher than arable soil. Cd and As were found to be the two main polluting elements in the greenhouse soils because their contents exceeded the thresholds established for greenhouse vegetable production HJ333-2006 in China and the background of Gansu province. It has been shown that Cd, Cu, Pb and Zn at the 0-20-cm soil layer were derived mainly from agricultural production activities, whereas contents of Cr and Ni at the same soil layer were determined by 'natural' factors and As originated from natural sources, deposition and irrigation water.

  14. Effects of Mineral Phosphorous Fertilization and cd Loading on cd Translocation from Soil to Corn (Zea mays L.)

    Science.gov (United States)

    László, Márton, ,, Dr.

    2010-05-01

    been identified as hazardous (H) waste (W) sites (S)(HWS) because of the presence of elevated concentrations of these elements. They will remain a threat to the environment until they are removed or immobilized. We can test and improve these situation by using different plant species, as corn (Zea mays L.) x macro nutrients as phosphorous experimental methods. Maize has a very great biomass (B) production (P) potential (P)(BPP) and important role in soil fertility by the design of plant rotation to field plant production, the animal foraging as a fodder-crop with a high carbohydrate (70%) and protein (10%) content (70%) and via pytoremediation possibilities. Cd is considered to be a nonessential element for maize, it is effectively absorbed by both the root and leaf system. By these ways a great proportion of the cadmium is to be accumulated in root tissues, even when Cd enters the plant via foliar system from the polluted air and precipitation. The most chief geobiochemical property of cadmium ions is their strong affinity for sulfhydryl groups of several compounds (OSHA 1992; Richardson 1992; RAIS 1991; Sittig 1991; TAP 1999; WA 1996; WHO 1992, 2001). Furthermore Cd shows an affinity for other side chains of protein and for phosphate groups too. The Cd content of maize is of the highest concern as a Cd reservoir and as the patway of cadmium to soil-plant-animal-man chain (FOOD CHAIN). Thus, tolerance and adaptation of corn to higher Cd levels, although important from the environmental poin of view, create a helth risc. Material and Method The phosphorus (P2O5) mineral fertilization and cadmium loading effects were studied in a long-term field experiment set up at Experimental Station of the Research Institute for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences on a calcareous chernozem soil at Nagyhörcsök in 1977. The soil had the following agrogeochemical characteristics: pH (KCl) 7.3, humus 3.0%, ammonlactate (AL) soluble-P2O5 60

  15. Distribution of Escherichia Coli as Soil Pollutant around Antang Landfills

    Science.gov (United States)

    Artiningsih, Andi; Zubair, Hazairin; Imran, A. M.; Widodo, Sri

    2018-03-01

    Tamangapa Antang Landfill locates around the residential area and faces an air and water pollution due to an open dumping system in its operation. The system arises a potential pollution in air, water and soil. Sampling was done surround the landfill in two parts, parallel and perpendicular to the ground water flow. This study shows the abundance of E. coli bacteria in soil around the Antang Landfills at depth of 10 to 20 cm (93x105 cfu/gr of soil) in the direction of groundwater flow. While in other locations the E. coli bacteria is not detected. The abundance of E. coli bacteria is a conjunction factor from landfill and human activities surround the area. The absence of E. coli bacteria in other location highly interpreted that the landfill is the major contributor of pollutant.

  16. The analysis of soil cores polluted with certain metals using the Box-Cox transformation

    International Nuclear Information System (INIS)

    Meloun, Milan; Sanka, Milan; Nemec, Pavel; Kritkova, Sona; Kupka, Karel

    2005-01-01

    To define the soil properties for a given area or country including the level of pollution, soil survey and inventory programs are essential tools. Soil data transformations enable the expression of the original data on a new scale, more suitable for data analysis. In the computer-aided interactive analysis of large data files of soil characteristics containing outliers, the diagnostic plots of the exploratory data analysis (EDA) often find that the sample distribution is systematically skewed or reject sample homogeneity. Under such circumstances the original data should be transformed. The Box-Cox transformation improves sample symmetry and stabilizes spread. The logarithmic plot of a profile likelihood function enables the optimum transformation parameter to be found. Here, a proposed procedure for data transformation in univariate data analysis is illustrated on a determination of cadmium content in the plough zone of agricultural soils. A typical soil pollution survey concerns the determination of the elements Be (16 544 values available), Cd (40 317 values), Co (22 176 values), Cr (40 318 values), Hg (32 344 values), Ni (34 989 values), Pb (40 344 values), V (20 373 values) and Zn (36 123 values) in large samples. - A new procedure of statistical analysis, with exploratory data diagnostics and Box-Cox transformation was used

  17. The analysis of soil cores polluted with certain metals using the Box-Cox transformation.

    Science.gov (United States)

    Meloun, Milan; Sánka, Milan; Nemec, Pavel; Krítková, Sona; Kupka, Karel

    2005-09-01

    To define the soil properties for a given area or country including the level of pollution, soil survey and inventory programs are essential tools. Soil data transformations enable the expression of the original data on a new scale, more suitable for data analysis. In the computer-aided interactive analysis of large data files of soil characteristics containing outliers, the diagnostic plots of the exploratory data analysis (EDA) often find that the sample distribution is systematically skewed or reject sample homogeneity. Under such circumstances the original data should be transformed. The Box-Cox transformation improves sample symmetry and stabilizes spread. The logarithmic plot of a profile likelihood function enables the optimum transformation parameter to be found. Here, a proposed procedure for data transformation in univariate data analysis is illustrated on a determination of cadmium content in the plough zone of agricultural soils. A typical soil pollution survey concerns the determination of the elements Be (16 544 values available), Cd (40 317 values), Co (22 176 values), Cr (40 318 values), Hg (32 344 values), Ni (34 989 values), Pb (40 344 values), V (20 373 values) and Zn (36 123 values) in large samples.

  18. The analysis of soil cores polluted with certain metals using the Box-Cox transformation

    Energy Technology Data Exchange (ETDEWEB)

    Meloun, Milan [Department of Analytical Chemistry, University of Pardubice, CZ532 10 Pardubice (Czech Republic)]. E-mail: milan.meloun@upce.cz; Sanka, Milan [Central Institute for Supervisiting and Testing in Agriculture Division of Agrochemistry, Soil and Plant Nutrition, Hroznova 2, CZ656 06 Brno - Pisarky (Czech Republic); Nemec, Pavel [Central Institute for Supervisiting and Testing in Agriculture Division of Agrochemistry, Soil and Plant Nutrition, Hroznova 2, CZ656 06 Brno - Pisarky (Czech Republic)]. E-mail: pavel.nemec@ukzuz.cz; Kritkova, Sona [Department of Analytical Chemistry, University of Pardubice, CZ532 10 Pardubice (Czech Republic); Kupka, Karel [Trilobyte Statistical Software Ltd., CZ530 02 Pardubice (Czech Republic)]. E-mail: kupka@trilobyte.cz

    2005-09-15

    To define the soil properties for a given area or country including the level of pollution, soil survey and inventory programs are essential tools. Soil data transformations enable the expression of the original data on a new scale, more suitable for data analysis. In the computer-aided interactive analysis of large data files of soil characteristics containing outliers, the diagnostic plots of the exploratory data analysis (EDA) often find that the sample distribution is systematically skewed or reject sample homogeneity. Under such circumstances the original data should be transformed. The Box-Cox transformation improves sample symmetry and stabilizes spread. The logarithmic plot of a profile likelihood function enables the optimum transformation parameter to be found. Here, a proposed procedure for data transformation in univariate data analysis is illustrated on a determination of cadmium content in the plough zone of agricultural soils. A typical soil pollution survey concerns the determination of the elements Be (16 544 values available), Cd (40 317 values), Co (22 176 values), Cr (40 318 values), Hg (32 344 values), Ni (34 989 values), Pb (40 344 values), V (20 373 values) and Zn (36 123 values) in large samples. - A new procedure of statistical analysis, with exploratory data diagnostics and Box-Cox transformation was used.

  19. Biomonitoring potential of five sympatric Tillandsia species for evaluating urban metal pollution (Cd, Hg and Pb)

    Science.gov (United States)

    Sánchez-Chardi, Alejandro

    2016-04-01

    The present study quantifies non essential heavy metals highly toxic for biological systems (Pb, Hg and Cd) in five autochthonous epiphytic plants from Tillandsia genus (T. recurvata, T. meridionalis, T. duratii, T. tricholepis, T. loliacea) according to different traffic levels (reference, low, medium and high polluted sites) in Asunción (Paraguay). The three metals increased in polluted sites following Pb (till 62.99 ppm in T. tricholepis) > Cd (till 1.35 ppm in T. recurvata) > Hg (till 0.36 ppm in T. recurvata) and Pb and Cd levels were directly related to traffic flow. Although the species showed similar bioaccumulation pattern (namely, higher levels of metals in polluted sites), enrichment factors (maximum EF values 37.00, 18.16, and 11.90 for Pb, Hg, and Cd, respectively) reported T. tricholepis as the most relevant bioindicator due to its wide distribution and abundance in study sites, low metal content in control site and high metal contents in polluted sites, and significant correlations with traffic density of Pb and Cd. This study emphasizes the necessity of biomonitoring air pollution in areas out of air monitoring control such as Asunción, where the high levels of metal pollution especially Pb, may represent an increment of risk for the human population inhabiting this urban area.

  20. Sediment exchange to mitigate pollutant exposure in urban soil.

    Science.gov (United States)

    Walsh, Daniel; Glass, Katherine; Morris, Samantha; Zhang, Horace; McRae, Isabel; Anderson, Noel; Alfieri, Alysha; Egendorf, Sara Perl; Holberton, Shana; Owrang, Shahandeh; Cheng, Zhongqi

    2018-05-15

    Urban soil is an ongoing source for lead (Pb) and other pollutant exposure. Sources of clean soil that are locally-available, abundant and inexpensive are needed to place a protective cover layer over degraded urban soil to eliminate direct and indirect pollutant exposures. This study evaluates a novel sediment exchange program recently established in New York City (NYC Clean Soil Bank, CSB) and found that direct exchange of surplus sediment extracted from urban construction projects satisfies these criteria. The CSB has high total yield with 4.2 × 10 5  t of sediment exchanged in five years. Average annual yield (8.5 × 10 4  t yr -1 ) would be sufficient to place a 15-cm (6-in.) sediment cover layer over 3.2 × 10 5  m 2 (80 acres) of impacted urban soil or 1380 community gardens. In a case study of sediment exchange to mitigate community garden soil contamination, Pb content in sediment ranged from 2 to 5 mg kg -1 . This sediment would reduce surface Pb concentrations more than 98% if it was used to encapsulate soil with Pb content exceeding USEPA residential soil standards (400 mg kg -1 ). The maximum observed sediment Pb content is a factor of 42 and 71 lower than median surface soil and garden soil in NYC, respectively. All costs (transportation, chemical testing, etc.) in the CSB are paid by the donor indicating that urban sediment exchange could be an ultra-low-cost source for urban soil mitigation. Urban-scale sediment exchange has advantages over existing national- or provincial-scale sediment exchanges because it can retain and upcycle local sediment resources to attain their highest and best use (e.g. lowering pollutant exposure), achieve circular urban materials metabolism, improve livability and maximize urban sustainability. Published by Elsevier Ltd.

  1. Surface Soil Pollution By Heavy Metals A Case Study Of Two Refuse Dumpsites In Akure Metropolis

    Directory of Open Access Journals (Sweden)

    Anietie Olayemi Victoria

    2015-03-01

    Full Text Available ABSTRACT Heavy metals can be harmful to the biota and human beings when present above certain tolerable levels in the ecosystem. This lead to the study of the accumulation contamination and pollution of these metals in soils of two refuse dumpsites within and outskirts of Akure Township capital city of Ondo State Nigeria. The dumpsites are where wastes such as industrial wastes automobile wastes municipal wastes agricultural wastes etc were dumped. At each site soil samples were collected randomly from nine different points of about 1m part at depth of about 0-30cm and analyzed for heavy metals and pH. The metals analyzed include Zn Fe Co Cu Ni As Ba Pb Cr and Cd using Atomic Absorption Spectrophotometer AAS with HFAqua regia wet digestion method. The pH of the soils ranged between 7.49 and 8.66. The results revealed heavy metal presence and implicated wastes as the major sources of the heavy metals in the soils of the dumpsites. All the metals were detected in all the soil samples except Arsenic that was not detected in three points at site A. Fe had the highest concentrations while Ni had the least concentration in both sites. The trend in concentration was Fe Zn Pb Cu Cd Co Cr AsBaNi in site A While the trend in concentration was Fe Cr Zn Cu PbCd Co As Ba Ni in site B. The mean metal concentrations were compared with Department of Petroleum Resources DPR Standard values for soils in Nigeria all the metals except Cr and Cu are below the DPR target values while Cd and Arsenic are above the DPR intervention values for the two sites and this calls for immediate remediation.

  2. Electrodialytic remediation of heavy metal polluted soil

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Jensen, Pernille Erland; Kirkelund, Gunvor Marie

    2012-01-01

    Electrodialytic soil remediation is a method for removal of heavy metals. Good results have previously been obtained with both treatment of a stationary, water saturated soil matrix and with remediation of a stirred suspension of soil in water. The two different setups have different uses....... The first as in-situ or on-site treatment when there is no requirement for fast remediation, as the removal rate of the heavy metals are dependent on the distance between the electrodes (everything else equal) and in such application the electrode spacing must have a certain distance (often meters......). In the stirred setup it is possible to shorten the transport route to few mm and to have a faster and continuous process. The present paper for the first time reports a direct comparison of the two options. The remediation of the stirred suspension showed faster than remediation of the water saturated soil even...

  3. Transformation of a petroleum pollutant during soil bioremediation experiments

    Directory of Open Access Journals (Sweden)

    B. JOVANCICEVIC

    2008-05-01

    Full Text Available The experiment of ex situ soil bioremediation was performed at the locality of the Oil Refinery in Pančevo (alluvial formation of the Danube River, Serbia polluted with an oil type pollutant. The experiments of biostimulation, bioventilation and reinoculation of an autochthonous microbial consortium were performed during the six-month period (May–November 2006. The changes in the quantity and composition of the pollutant, or the bioremediation effect, were monitored by analysis of the samples of the polluted soil taken in time spans of two weeks. In this way, from the beginning until the end of the experiment, 12 samples were collected and marked as P1–P12 (Pančevo 1–Pančevo 12. The results obtained showed that more significant changes in the composition of the oil pollutant occurred only during the last phases of the experiment (P8–P12. The activity of microorganisms was reflected in the increase of the quantity of polar oil fractions, mainly fatty acid fractions. In this way, the quantity of total eluate increased, and the quantity of the insoluble residue was reduced to a minimum, whereby the oil pollutant was transformed to a form that could be removed more efficiently and more completely from the soil, as a segment of the environment.

  4. Organic pollutants in Bavarian soils. Investigations in the framework of the 'Bavarian soil cadastre'

    International Nuclear Information System (INIS)

    Joneck, M.; Prinz, R.; Schmidt, R.

    1990-01-01

    Within the framework of the Bavarian soil cadastre, 260 soils from 90 sites throughout Bavaria were sampled for organic pollutants between 1986 and mid-1989. From the material class of the polychlorinated biphenyls (PCB), first results were introduced. The PCB total concentrations depend very strongly on soil utilization. Forest sites occupy a special position. The comparison of agricultural and forest soils with regard to pollutant concentrations is possible only with volume specific concentrations and/or a site-specific material balance. (orig.) [de

  5. Assessment of Heavy and Trace Metals in Surface Soil Nearby an Oil Refinery, Saudi Arabia, Using Geoaccumulation and Pollution Indices.

    Science.gov (United States)

    Alshahri, Fatimh; El-Taher, A

    2018-04-30

    The present study deals with the measurement of heavy and trace metals in the soils of Ras Tanura city nearby one of the oldest and largest oil refineries located on Arabian Gulf, eastern Saudi Arabia. Metals were analyzed in 34 surface soil samples using plasma atomic emission spectrometer (ICPE-9820). The result showed that the mean values of the metals concentrations were in the order: Cd > Mo > Tb > Ce > Hf > Eu > Yb > U > Sm > Rb > Cr > Ni > Pb > Sc > Cs > Zn > Lu > Co. The mean values of Cd (39.9 mg/kg), Mo (13.2 mg/kg), Eu (4.01 mg/kg), Hf (6.09 mg/kg), Tb (8.23 mg/kg), and Yb (3.88) in soil samples were higher than the background values in soil and the world average. The obtained results indicated to elevated levels of Cd and Mo in most samples, with mean concentrations exceeded the background levels by 113 times for Cd and 5 times for Mo. Pollution index (PI) and Geoaccumulation (I geo ) for each metal were calculated to assess the metal contamination level of surface soil in the study area. The assessment results of PI and I geo revealed a significant pollution by Cd, Mo, Eu, Hf, Tb, and Yb in most of sampling sites nearby Ras Tanura refinery.

  6. Model optimization of cadmium and accumulation in switchgrass (Panicum virgatum L.): potential use for ecological phytoremediation in Cd-contaminated soils.

    Science.gov (United States)

    Wang, Quanzhen; Gu, Muyu; Ma, Xiaomin; Zhang, Hongjuan; Wang, Yafang; Cui, Jian; Gao, Wei; Gui, Jing

    2015-11-01

    Soil pollution with heavy metals is an increasingly serious threat to the environment, food security, and human health. Therefore, it is urgent to develop economic and highly efficient soil restoration technology for environmental improvement; phytoremediation is an option that is safe, has low cost, and is environmentally friendly. However, in selecting hyperaccumulators or tolerant plants, theories and operation technologies for optimal restoration should be satisfied. In this study, the switchgrass growth response and performance of phytoextraction under the coupling effect of Cd and pH were investigated by evaluating seed germination, seedling growth, and the Cd content in the plant to evaluate the potential use of switchgrass as a phytoremediation plant in cadmium contaminated soil. This study conducted three sets of independent experiments with five levels of Cd concentrations, including two orthogonal matrix designs of combining Cd with pH values. The results showed that switchgrass was germinated well under all treatments (Cd concentration of 0-500 μM), but the seedling growth was significantly affected by Cd and pH, as shown by multivariate regression analyses. Hormesis was found during the growth of switchgrass plants exposed to low Cd concentrations under hydroponic conditions, and switchgrass plants were capable of developing with a Cd concentration of 100-175 μM and pH of 4.1-5.9. Mild acidic conditions can enhance the ability of Cd to accumulate in switchgrass. Switchgrass was moderately tolerant to Cd and may be used as a phytoremediation plant for Cd-contaminated soils in the future. Our results also suggest that hormetic effects should be taken into consideration in the phytoremediation of Cd-contaminated soils. We discuss the physiological and biochemical mechanisms contributing to the effective application of the plant for the phytoremediation of Cd-contaminated soils.

  7. Distribution and speciation of metals (Cu, Zn, Cd, and Pb) in agricultural and non-agricultural soils near a stream upriver from the Pearl River, China

    International Nuclear Information System (INIS)

    Yang, Silin; Zhou, Dequn; Yu, Huayong; Wei, Rong; Pan, Bo

    2013-01-01

    The distribution and chemical speciation of typical metals (Cu, Zn, Cd and Pb) in agricultural and non-agricultural soils were investigated in the area of Nanpan River, upstream of the Pearl River. The investigated four metals showed higher concentrations in agricultural soils than in non-agricultural soils, and the site located in factory district contained metals much higher than the other sampling sites. These observations suggested that human activities, such as water irrigation, fertilizer and pesticide applications might have a major impact on the distribution of metals. Metal speciation analysis presented that Cu, Zn and Cd were dominated by the residual fraction, while Pb was dominated by the reducible fraction. Because of the low mobility of the metals in the investigated area, no remarkable difference could be observed between upstream and downstream separated by the factory site. -- Highlights: ► Agricultural soils contain higher metal concentrations than non-agricultural soils. ► The site located in the factory district has the highest metal concentration. ► Cu, Zn and Cd are dominated by residual fraction, and Pb by reducible fraction. ► Cd pollution should not be overlooked in soils upstream of Pearl River. -- The mobility of four investigated metals is low but Cd pollution should not be overlooked in soils upstream of Pearl River

  8. [Assessment of Soil Fluorine Pollution in Jinhua Fluorite Ore Areas].

    Science.gov (United States)

    Ye, Qun-feng; Zhou, Xiao-ling

    2015-07-01

    The contents of. soil total fluorine (TF) and water-soluble fluorine (WF) were measured in fluorite ore areas located in Jinhua City. The single factor index, geoaccumulation index and health risk assessment were used to evaluate fluorine pollution in soil in four fluorite ore areas and one non-ore area, respectively. The results showed that the TF contents in soils were 28. 36-56 052. 39 mg.kg-1 with an arithmetic mean value of 8 325.90 mg.kg-1, a geometric mean of 1 555. 94 mg.kg-1, and a median of 812. 98 mg.kg-1. The variation coefficient of TF was 172. 07% . The soil WF contents ranged from 0. 83 to 74. 63 mg.kg-1 with an arithmetic mean value of 16. 94 mg.kg-1, a geometric mean of 10. 59 mg.kg-1, and a median of 10. 17 mg.kg-1. The variation coefficient of WF was 100. 10%. The soil TF and WF contents were far higher than the national average level of the local fluorine epidemic occurrence area. The fluoride pollution in soil was significantly affected by human factors. Soil fluorine pollution in Yangjia, Lengshuikeng and Huajie fluorite ore areas was the most serious, followed by Daren fluorite ore area, and in non-ore area there was almost no fluorine pollution. Oral ingestion of soils was the main exposure route. Sensitivity analysis of model parameters showed that children's weight exerted the largest influence over hazard quotient. Furthermore, a significant positive correlation was found among the three kinds of evaluation methods.

  9. Pig manure vermicompost (PMVC) can improve phytoremediation of Cd and PAHs co-contaminated soil by Sedum alfredii

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kai; Zhang, Jie; Huang, Huagang; Li, Tingqiang; Yang, Xiaoe [Zhejiang Univ., Hangzhou (China). MOE Key Laboratory of Environment Remediation and Ecosystem Health; Zhu, Zhiqiang [Zhejiang Univ., Hangzhou (China). MOE Key Laboratory of Environment Remediation and Ecosystem Health; Hainan Univ., Haikou (China). College of Agriculture; He, Zehnli [Florida Univ., Fort Pierce (United States). Indian River Research and Education Center; Alva, Ashok [U.S. Department of Agriculture, Prosser, WA (United States). Agricultural Research Service

    2012-08-15

    Purpose: A major challenge to phytoremediation of co-contaminated soils is developing strategies for efficient and simultaneous removal of multiple pollutants. A pot experiment was conducted to investigate the potential for enhanced phytoextraction of cadmium (Cd) by Sedum alfredii and dissipation of polycyclic aromatic hydrocarbons (PAHs) in co-contaminated soil by application of pig manure vermicompost (PMVC). Materials and methods: Soil contaminated by Cd (5.53 mg kg{sup -1} DW) was spiked with phenanthrene, anthracene, and pyrene together (250 mg kg{sup -1} DW for each PAH). A pot experiment was conducted in a greenhouse with four treatments: (1) soil without plants and PMVC (Control), (2) soil planted with S. alfredii (Plant), (3) soil amended with PMVC at 5 % (w/w) (PMVC), and (4) treatment 2 + 3 (Plant + PMVC). After 90 days, shoot and root biomass of plants, Cd concentrations in plant and soil, and PAH concentrations in soil were determined. Abundance of PAH degraders in soil, soil bacterial community structure and diversity, and soil enzyme activities and microbial biomass carbon were measured. Results and discussion: Application of PMVC to co-contaminated soil increased the shoot and root dry biomass of S. alfredii by 2.27- and 3.93-fold, respectively, and simultaneously increased Cd phytoextraction without inhibiting soil microbial population and enzyme activities. The highest dissipation rate of PAHs was observed in Plant + PMVC treatment. However, neither S. alfredii nor PMVC enhanced PAH dissipation when applied separately. Abundance of PAH degraders in soil was not significantly related to PAH dissipation rate. Plant + PMVC treatment significantly influenced the bacterial community structure. Enhanced PAH dissipation in the Plant + PMVC treatment could be due to the improvement of plant root growth, which may result in increased root exudates, and subsequently change bacterial community structure to be favorable for PAH dissipation. Conclusions: This

  10. Heavy metal pollution of surface soil in Thrace region (Turkey)

    International Nuclear Information System (INIS)

    Goskun, Mahmut; Goskun, Munevver; Steinnes, E.; Eidhammer Sjobakk, T.; Frontas'eva, M.V.; Demkina, S.V.

    2004-01-01

    Samples of surface soil were collected at 73 sites in the Thrace region, northwest part of Turkey. Two complementary analytical techniques, epithermal neutron activation analysis (ENAA) and atomic absorption spectrometry (AAS) with flame and graphite furnace atomization were used to determine 37 elements in the soil samples. Concentrations of Cu, Zn, Ni, Cd, Mn, Co, Pb, and As were determined using AAS and GF AAS and ENAA was used for the remaining 29 elements. Results for As, Ba, Br, Ca, Cd, Ce, Cr, Cs, Eu, Fe, Hf, I, In, K, La, Mn, Na, Nd, Rb, Sb, Sc, Sm, Sr, Ta, Tb, Th, Ti, U, and V are reported for the first time for soils from this region. The results show that concentrations of the most elements were little affected by the industrial and other anthropogenic activities performed in the region. Except for distinctly higher levels of Pb, Cu, Cd, and Zn in Istanbul district than the median values for the Thrace region, the observed distributions seem to be mainly associated with lithogenic variations. Spatial distributions of Cu, Zn, Ni, Cd, Cr, Pb, and As were plotted in relation to the concentration values in soil using Geographic Information System (GIS) technology

  11. Effect of fertilizer amendments on phytoremediation of Cd-contaminated soil by a newly discovered hyperaccumulator Solanum nigrum L

    Energy Technology Data Exchange (ETDEWEB)

    Wei Shuhe, E-mail: shuhewei@yahoo.com.cn [Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Li Yunmeng [Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Zhou Qixing, E-mail: zhouqx523@yahoo.com.cn [Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Srivastava, Mrittunjai [North Florida Research and Education Center, University of Florida, Quincy, FL 32351-5677 (United States); Chiu Siuwai [Department of Biology, The Chinese University of Hong Kong, Shatin, N.T. (Hong Kong); Zhan Jie [Department of Biotechnology, Liaoning University of Traditional Chinese Medicine, Shenyang 110101 (China); Wu Zhijie; Sun Tieheng [Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China)

    2010-04-15

    Phytoremediation is a cost-effective, simple and sustainable beneficiary technique to purify the polluted environment. Solanum nigrum L., a newly found cadmium (Cd) hyperaccumulator, has shown the potential to remediate Cd-contaminated soils. Present study investigated the effects of fertilizer amendments on the Cd uptake by S. nigrum. Chicken manure and urea are usual agricultural fertilizers and more environmental friendly. The results showed that Cd concentrations in shoots of S. nigrum were significantly decreased (p < 0.05) by 28.2-34.6%, as compared to that of without the addition of chicken manure, but not the case for urea treatment. However, Cd extraction capacities ({mu}g pot{sup -1}) in shoot biomass of S. nigrum were significantly increased (p < 0.05) due to increased shoot biomass. In addition, available Cd concentration in soil significantly decreased due to addition of chicken manure. Thus, urea might be a better fertilizer for strengthening phytoextraction rate of S. nigrum to Cd, and chicken manure may be a better fertilizer for phytostabilization.

  12. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia.

    Science.gov (United States)

    Marrugo-Negrete, José; Pinedo-Hernández, José; Díez, Sergi

    2017-04-01

    The presence of metals in agricultural soils from anthropogenic activities such as mining and agricultural use of metals and metal-containing compounds is a potential threat for human health through the food chain. In this study, the concentration of heavy metals in 83 agricultural soils irrigated by the Sinú River, in northern Colombia, affected by mining areas upstream and inundated during seasonal floods events were determined to evaluate their sources and levels of pollution. The average concentrations of Cu, Ni, Pb, Cd, Hg and Zn were 1149, 661, 0.071, 0.040, 0.159 and 1365mg/kg respectively and exceeded the world normal averages, with the exception of Pb and Cd. Moreover, all values surpassed the background levels of soils in the same region. Soil pollution assessment was carried out using contamination factor (CF), enrichment factor (EF), geoaccumulation index (Igeo) and a risk assessment code (RAC). According to these indexes, the soils show a high degree of pollution of Ni and a moderate to high contamination of Zn and Cu; whereas, Pb, Cd and Hg present moderate pollution. However, based on the RAC index, a low environmental risk is found for all the analysed heavy metals. Multivariate statistical analyses, principal component and cluster analyses, suggest that soil contamination was mainly derived from agricultural practices, except for Hg, which was caused probably by atmospheric and river flow transport from upstream gold mining. Finally, high concentrations of Ni indicate a mixed pollution source from agricultural and ferronickel mining activities. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Trace metals accumulation in soil irrigated with polluted water and assessment of human health risk from vegetable consumption in Bangladesh.

    Science.gov (United States)

    Islam, Md Atikul; Romić, Davor; Akber, Md Ali; Romić, Marija

    2018-02-01

    Trace metals accumulation in soil irrigated with polluted water and human health risk from vegetable consumption was assessed based on the data available in the literature on metals pollution of water, soil, sediment and vegetables from the cites of Bangladesh. The quantitative data on metal concentrations, their contamination levels and their pollution sources have not been systematically gathered and studied so far. The data on metal concentrations, sources, contamination levels, sample collection and analytical tools used were collected, compared and discussed. The USEPA-recommended method for health risk assessment was used to estimate human risk from vegetable consumption. Concentrations of metals in water were highly variable, and the mean concentrations of Cd, Cr, Cu and As in water were found to be higher than the FAO irrigation water quality standard. In most cases, mean concentrations of metals in soil were higher than the Bangladesh background value. Based on geoaccumulation index (I geo ) values, soils of Dhaka city are considered as highly contaminated. The I geo shows Cd, As, Cu, Ni, Pb and Cr contamination of agricultural soils and sediments of the cities all over the Bangladesh. Polluted water irrigation and agrochemicals are identified as dominant sources of metals in agricultural soils. Vegetable contamination by metals poses both non-carcinogenic and carcinogenic risks to the public. Based on the results of the pollution and health risk assessments, Cd, As, Cr, Cu, Pb and Ni are identified as the priority control metals and the Dhaka city is recommended as the priority control city. This study provides quantitative evidence demonstrating the critical need for strengthened wastewater discharge regulations in order to protect residents from heavy metal discharges into the environment.

  14. Soil fungi as indicators of pesticide soil pollution

    Directory of Open Access Journals (Sweden)

    Mandić Leka

    2005-01-01

    Full Text Available Soil fungi, with their pronounced enzymic activity and high osmotic potential, represent a significant indicator of negative effects of different pesticides on the agroecosystem as a whole. In that respect, a trial was set up on the alluvium soil type with the aim to investigate the effect of different herbicides (Simazine, Napropamid, Paraquat, fungicides (Captan and Mancozeb and insecticides (Fenitrothion and Dimethoate on a number of soil fungi under apple trees. The number of soil fungi was determined during four growing seasons by an indirect method of dilution addition on the Czapek agar. The study results indicate that the fungi belong to the group of microorganisms that, after an initial sensible response to the presence of pesticides in the soil, very rapidly establish normal metabolism enabling them even to increase their number. The fungicides and insecticides applied were found to be particularly effective in that respect.

  15. Assessment of metals pollution on agricultural soil surrounding a lead-zinc mining area in the Karst region of Guangxi, China.

    Science.gov (United States)

    Zhang, Chaolan; Li, Zhongyi; Yang, Weiwei; Pan, Liping; Gu, Minghua; Lee, DoKyoung

    2013-06-01

    Soil samples were collected on farmland in a lead-zinc mining area in the Karst region of Guangxi, China. The contamination of the soil by eight metals (Cd, Hg, As, Cu, Pb, Cr, Zn, Ni) was determined. Among all these metals, Cd is the most serious pollutant in this area. Zn, Hg as well asPb can also be measured at high levels, which may affect the crop production. All other metals contributed marginally to the overall soil contamination. Besides the evaluation of single metals, the Nemerow synthetic index indicated that the soil is not suitable for agricultural use.

  16. Occurrence of organic pollutants in recovered soil fines from construction and demolition waste.

    Science.gov (United States)

    Jang, Y C; Townsend, T G

    2001-01-01

    The objective of this study was to characterize recovered soil fines from construction and demolition (C&D) waste recycling facilities for trace organic pollutants. Over a period of 18 months, five sampling trips were made to 14 C&D waste recycling facilities in Florida. Screened soil fines were collected from older stockpiles and newly generated piles at the sites. The samples were analyzed for the total concentration (mg/kg) of a series of volatile organic compound (VOCs) and semi-volatile organic compounds (semi-VOCs). The synthetic precipitation leaching procedure (SPLP) test was also performed to evaluate the leachability of the trace organic chemicals. During the total analysis only a few volatile organic compounds were commonly found in the samples (trichlorofluoromethane, toluene, 4-isopropyltoluene, trimethylbenzene, xylenes, and methylene chloride). A total of nine VOCs were detected in the leaching test. Toluene showed the highest leachability among the compounds (61.3-92.0%), while trichlorofluoromethane, the most commonly detected compound from both the total and leaching tests, resulted in the lowest leachability (1.4-39.9%). For the semi-VOC analysis, three base-neutral semi-VOC compounds (bis(2-ethylhexyl)phthalate, butyl benzyl phthalate, and di-n-butyl phthalate) and several PAHs (acenaphthene, pyrene, fluoranthene, and phenanthrene) were commonly detected in C&D fines samples. These compounds also leached during the SPLP leaching test (0.1-25%). No acid extractable compounds, pesticides, or PCBs were detected. The results of this study were further investigated to assess risk from land applied recovered soil fines by comparing total and leaching concentrations of recovered soil fines samples to risk-based standards. The results of this indicate that the organic chemicals in recovered soil fines from C&D debris recycling facilities were not of a major concern in terms of human risk and leaching risk to groundwater under reuse and contact scenarios.

  17. Using ensemble models to identify and apportion heavy metal pollution sources in agricultural soils on a local scale.

    Science.gov (United States)

    Wang, Qi; Xie, Zhiyi; Li, Fangbai

    2015-11-01

    This study aims to identify and apportion multi-source and multi-phase heavy metal pollution from natural and anthropogenic inputs using ensemble models that include stochastic gradient boosting (SGB) and random forest (RF) in agricultural soils on the local scale. The heavy metal pollution sources were quantitatively assessed, and the results illustrated the suitability of the ensemble models for the assessment of multi-source and multi-phase heavy metal pollution in agricultural soils on the local scale. The results of SGB and RF consistently demonstrated that anthropogenic sources contributed the most to the concentrations of Pb and Cd in agricultural soils in the study region and that SGB performed better than RF. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Method of degrading pollutants in soil

    Science.gov (United States)

    Hazen, Terry C.; Lopez-De-Victoria, Geralyne

    1994-01-01

    A method and system for enhancing the motility of microorganisms by placing an effective amount of chlorinated hydrocarbons, preferably chlorinated alkenes, and most preferably trichloroethylene in spaced relation to the microbes so that the surprisingly strong, monomodal, chemotactic response of the chlorinated hydrocarbon on subsurface microbes can draw the microbes away from or towards and into a substance, as desired. In remediation of groundwater pollution, for example, TCE can be injected into the plume to increase the population of microbes at the plume whereby the plume can be more quickly degraded. A TCE-degrading microbe, such as Welchia alkenophilia, can be used to degrade the TCE following the degradation of the original pollutant.

  19. Method of degrading pollutants in soil

    Science.gov (United States)

    Hazen, T.C.; Lopez-De-Victoria, G.

    1994-07-05

    Disclosed are a method and system for enhancing the motility of microorganisms. This is accomplished by placing an effective amount of chlorinated hydrocarbons, preferably chlorinated alkenes, and most preferably trichloroethylene in spaced relation to the microbes so that the surprisingly strong, monomodal, chemotactic response of the chlorinated hydrocarbon on subsurface microbes can draw the microbes away from or towards and into a substance, as desired. In remediation of groundwater pollution, for example, TCE can be injected into the plume to increase the population of microbes at the plume whereby the plume can be more quickly degraded. A TCE-degrading microbe, such as Welchia alkenophilia, can be used to degrade the TCE following the degradation of the original pollutant. 5 figures.

  20. Interspecific Relationships Among Soil Invertebrates Influence Pollutant Effects of Phenanthrene

    DEFF Research Database (Denmark)

    Cortet, J.; Joffre, R.; Elmholt, S.

    2006-01-01

    , nitrogen concentration). The effects of each community on the fate of phenanthrene were also assessed. We hypothesize that phenanthrene affects the population dynamics of mesofauna and soil biological functioning depending on exposure duration, type of community, or both. Results show that phenanthrene...... toxic effects of organic pollutants on mesofauna species and soil biological functioning....... exerted an effect on mesofauna and that the effects on some species, like Folsomia fimetaria, were influenced by the species composition in the mesocosms, the soil layer, and the sampling date. However, the effects of phenanthrene on ergosterol content and organic matter decomposition were...

  1. Biological activity of soils strongly polluted with sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Krol, M; Maliszewska, W; Siuta, J

    1972-01-01

    Studies were carried out on soils strongly polluted with sulfur and acidified (to pH 1.4). The soils were subjected to an intensive liming. In field and pot experiments, the authors determined: the total quantity of bacteria, actinomycetes, fungi, azotobacter, nitrifiers, proteolytic activity of microorganisms, activity of ammonifiers and the number of sulfur-oxidizing and sulfate-reducing bacteria. It was found that intensive liming of sulfur-affected soils restored their biological activity. 8 references, 5 figures, 1 table.

  2. Soil heavy metal pollution and risk assessment associated with the Zn-Pb mining region in Yunnan, Southwest China.

    Science.gov (United States)

    Cheng, Xianfeng; Danek, Tomas; Drozdova, Jarmila; Huang, Qianrui; Qi, Wufu; Zou, Liling; Yang, Shuran; Zhao, Xinliang; Xiang, Yungang

    2018-03-07

    The environmental assessment and identification of sources of heavy metals in Zn-Pb ore deposits are important steps for the effective prevention of subsequent contamination and for the development of corrective measures. The concentrations of eight heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in soils from 40 sampling points around the Jinding Zn-Pb mine in Yunnan, China, were analyzed. An environmental quality assessment of the obtained data was performed using five different contamination and pollution indexes. Statistical analyses were performed to identify the relations among the heavy metals and the pH in soils and possible sources of pollution. The concentrations of As, Cd, Pb, and Zn were extremely high, and 23, 95, 25, and 35% of the samples, respectively, exceeded the heavy metal limits set in the Chinese Environmental Quality Standard for Soils (GB15618-1995, grade III). According to the contamination and pollution indexes, environmental risks in the area are high or extremely high. The highest risk is represented by Cd contamination, the median concentration of which exceeds the GB15618-1995 limit. Based on the combination of statistical analyses and geostatistical mapping, we identified three groups of heavy metals that originate from different sources. The main sources of As, Cd, Pb, Zn, and Cu are mining activities, airborne particulates from smelters, and the weathering of tailings. The main sources of Hg are dust fallout and gaseous emissions from smelters and tailing dams. Cr and Ni originate from lithogenic sources.

  3. Assessment of airborne heavy metal pollution in soil and lichen in the Meric-Ergene Basin, Turkey.

    Science.gov (United States)

    Hanedar, Asude

    2015-01-01

    In the present study, accumulations of airborne heavy metals in lichen and soil samples were determined on the basis of pollutant source groups by conducting Zinc (Zn), Lead (Pb), Iron (Fe), Copper (Cu), Chromium (Cr), Cadmium (Cd), Arsenic (As), Cobalt (Co) and Manganese (Mn) analyses on a total of 48 samples collected in the periods of May 2014 and August 2014 from 12 sampling points in a heavily industrialized area, a mixed industrial and residential area, an agricultural area and a background area in the Meric-Ergene Basin, and pH and total organic carbon determination was carried out on soil samples. With the obtained data, heavy metal levels were statistically assessed in detail by being associated with each other and with their probable sources; the accumulations found in soil and lichen samples were compared and spatial variances were set forth. Based on the results, it was observed that heavy metal pollution is at high levels particularly in industrialized areas, and that the differences between the cleanest and most polluted levels determined from soil samples for As, Cr, Cd and Pb reach 10 folds. The highest levels of all heavy metals were determined in both the soil and lichen samples collected from the areas in the south-east part of the region, where industrial activities and particularly leather and chemical industries are concentrated. With the comparison of the indication properties of soil and lichen, it was determined that significant and comparable results can be observed in both matrices.

  4. Lead Pollution of Shooting Range Soils

    African Journals Online (AJOL)

    NICOLAAS

    range. Most of the shooting range soils contained high levels of Pb in the range above 2000 mg kg–1 far exceeding the United States ... N. Sehube, R. Kelebemang, O. Totolo, M. Laetsang, O. Kamwi and P. Dinake,. 21 ..... Eng. Sci., 1999, 16,.

  5. Utility of pollution indices in assessment of soil quality around ...

    African Journals Online (AJOL)

    The quality of soil in the vicinity of Madaka mining sites were investigated in this study using Environmental Pollution Indices. Geological mapping of the study area indicated that the area was dominated by schist and granite. The static water level measurement revealed a westward groundwater flow direction which also ...

  6. Bioremediation of a crude oil polluted tropical rain forest soil ...

    African Journals Online (AJOL)

    These results suggest that Biostimulation with tilling (nutrient enhanced in-situ bioremediation) and or the combination ofBiostimulation and Bioaugumentation with indigenous hydrocarbon utilizers would be effective in the remediation of crude oil polluted tropical soils. Key Words: Bioremediation, Bioaugumentation, ...

  7. (maize) to a crude oil polluted agricultural soil

    African Journals Online (AJOL)

    SERVER

    2007-06-04

    Jun 4, 2007 ... aiding the activities of the large numbers of microbes ... math of crude oil pollution of agricultural soils to forestall the adverse effects induced .... International Institute of Tropical Agriculture (I.I.T.A) manual series. No. 1, Ibadan ...

  8. Seedling growth of Adenanthera pavonina L. in polluted soils of ...

    African Journals Online (AJOL)

    The seedling growth performance of Adenanthera pavonina L. in polluted soils of different railway tracks viz. Karachi Cantt. Station, Malir Halt, Malir 15, Landhi Junction and University Campus (control) was studied under in pots under natural field conditions. The results showed that the root, shoot and seedling size, number ...

  9. Pollution impact of cement production on air, soil and water in a ...

    African Journals Online (AJOL)

    Pollution impact of cement production on air, soil and water in a production location in Nigeria. ... Journal of Science and Technology (Ghana) ... location from the pollution source, which served as control for particulate and soil sampling.

  10. Chronic exposure to water pollutant trichloroethylene increased epigenetic drift in CD4(+) T cells.

    Science.gov (United States)

    Gilbert, Kathleen M; Blossom, Sarah J; Erickson, Stephen W; Reisfeld, Brad; Zurlinden, Todd J; Broadfoot, Brannon; West, Kirk; Bai, Shasha; Cooney, Craig A

    2016-05-01

    Autoimmune disease and CD4(+) T-cell alterations are induced in mice exposed to the water pollutant trichloroethylene (TCE). We examined here whether TCE altered gene-specific DNA methylation in CD4(+) T cells as a possible mechanism of immunotoxicity. Naive and effector/memory CD4(+) T cells from mice exposed to TCE (0.5 mg/ml in drinking water) for 40 weeks were examined by bisulfite next-generation DNA sequencing. A probabilistic model calculated from multiple genes showed that TCE decreased methylation control in CD4(+) T cells. Data from individual genes fitted to a quadratic regression model showed that TCE increased gene-specific methylation variance in both CD4 subsets. TCE increased epigenetic drift of specific CpG sites in CD4(+) T cells.

  11. Chronic exposure to water pollutant trichloroethylene increased epigenetic drift in CD4+ T cells

    Science.gov (United States)

    Gilbert, Kathleen M; Blossom, Sarah J; Erickson, Stephen W; Reisfeld, Brad; Zurlinden, Todd J; Broadfoot, Brannon; West, Kirk; Bai, Shasha; Cooney, Craig A

    2016-01-01

    Aim: Autoimmune disease and CD4+ T-cell alterations are induced in mice exposed to the water pollutant trichloroethylene (TCE). We examined here whether TCE altered gene-specific DNA methylation in CD4+ T cells as a possible mechanism of immunotoxicity. Materials & methods: Naive and effector/memory CD4+ T cells from mice exposed to TCE (0.5 mg/ml in drinking water) for 40 weeks were examined by bisulfite next-generation DNA sequencing. Results: A probabilistic model calculated from multiple genes showed that TCE decreased methylation control in CD4+ T cells. Data from individual genes fitted to a quadratic regression model showed that TCE increased gene-specific methylation variance in both CD4 subsets. Conclusion: TCE increased epigenetic drift of specific CpG sites in CD4+ T cells. PMID:27092578

  12. Investigation of Cd Adsorption and Accumulation from Contaminated Soil in Different Parts of Root Crops

    Directory of Open Access Journals (Sweden)

    Bahman Yargholi

    2010-01-01

        Environmental pollution with heavy metals and their absorption by plants form a universal problem around the world. Numerous investigations have been conducted to put wastewaters containing heavy metals to agricultural reuse. Little is known, however, about the absorption of cadmium in the root zone and its accumulation in the different organs of crops, particularly in root crops. This study was carried out to investigate the influence of different levels of Cd concentration in the root zone on the accumulation rate in various parts of four different types of common root crops in karaj Iran. The experiment was performed in a factorial testing plan in random blocks and in four treatments with three replicates. The treatments included four levels of Cd concentration in soil (50 mg/kg, 100 mg/kg, 50 mg/kg, control without Cd addition and water with 0.5 molar of EDTA. The soil used in this study was prepared by passing through a sieve with a 2mm mesh and adding Nitrate Cadmium (Cd(NO32. Cylinder plastic vases 40 Cm in diameter and 60 cm high were employed to cultivate vegetables. Water demandwas estimated via the Penman-Mantith method, in which Kc was calculated by means of recorded data at Meshgin-Abad synoptic station in Karaj. At the end of the growing season, samples were taken from different organs of the plants to measure Cadmium accumulation. The SPSS software was used for the variance analysis of the collected data. The Dunkan test (at 0.01 and 0.05 levels was then used to evaluate averages of the specifications in the factorial testing levels. The results indicate a direct relationship between Cd concentration in the root zone and Cd accumulation in plant organs. Adding 0.5 molar of EDTA to the irrigation water caused Cd accumulation in plant organs to exceed 60 percent. The results also show that Cd concentration, except for the control, was in excess of the limit for human consumption and that its accumulation levels in the different species tested

  13. What's in our soil?: how soil pollution affects earthworm movement patterns

    Science.gov (United States)

    Whitmore, T.

    2017-12-01

    Earthworms are an important member of many ecosystems because they contribute to soil quality and are a major food source for many organisms. In this project, we assessed the impacts soil pollution has on the burrowing patterns of earthworms. In each experiment, we introduced 10 earthworms to a unique pollutant and let them equilibrate for up to a week. The results indicated that earthworms migrate towards the introduced liquid regardless of its impact on them. The liquid pollutants introduced seemed to attract the earthworms. This can have harmful consequences, especially in the case of the motor oil, which killed multiple worms.

  14. Sphingomonads in Microbe-Assisted Phytoremediation: Tackling Soil Pollution.

    Science.gov (United States)

    Gatheru Waigi, Michael; Sun, Kai; Gao, Yanzheng

    2017-09-01

    Soil pollution has become a major concern in various terrestrial ecosystems worldwide. One in situ soil bioremediation strategy that has gained popularity recently is microbe-assisted phytoremediation, which is promising for remediating pollutants. Sphingomonads, a versatile bacteria group comprising four well-known genera, are ubiquitous in vegetation grown in contaminated soils. These Gram-negative microbes have been investigated for their ability to induce innate plant growth-promoting (PGP) traits, including the formation of phytohormones, siderophores, and chelators, in addition to their evolutionary adaptations enabling biodegradation and microbe-assisted removal of contaminants. However, their capacity for bacterial-assisted phytoremediation has to date been undervalued. Here, we highlight the specific features, roles, advantages, and challenges associated with using sphingomonads in plant-microbe interactions, from the perspective of future phytotechnologies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Remediation of soils polluted with lindane using surfactant-aided soil washing and electrochemical oxidation.

    Science.gov (United States)

    Muñoz-Morales, M; Braojos, M; Sáez, C; Cañizares, P; Rodrigo, M A

    2017-10-05

    In this work the complete treatment of soil spiked with lindane is studied using surfactant-aided soil-washing (SASW) to exhaust lindane from soil and electrolysis with diamond anodes to mineralize lindane from the soil washing fluid (SWF) waste. Results demonstrated that this technological approach is efficient and allow to remove this hazardous pollutant from soil. They also pointed out the significance of the ratio surfactant/soil in the efficiency of the SASW process and in the performance of the later electrolysis used to mineralize the pollutant. Larger values of this parameter lead to effluents that undergo a very efficient treatment which allows the depletion of lindane for applied charges lower than 15AhL -1 and the recovery of more than 70% of the surfactant for the regeneration of the SWF. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. [Immobilization remediation of Cd and Pb contaminated soil: remediation potential and soil environmental quality].

    Science.gov (United States)

    Sun, Yue-Bing; Wang, Peng-Chao; Xu, Ying-Ming; Sun, Yang; Qin, Xu; Zhao, Li-Jie; Wang, Lin; Liang, Xue-Feng

    2014-12-01

    A pot experiment was conducted to investigate the immobilization remediation effects of sepiolite on soils artificially combined contamination by Cd and Pb using a set of various pH and speciation of Cd and Pb in soil, heavy metal concentration in Oryza sativa L., and soil enzyme activity and microbial quantity. Results showed that the addition of sepiolite increased the soil pH, and the exchangeable fraction of heavy metals was converted into Fe-Mn oxide, organic and residual forms, the concentration of exchangeable form of Cd and Pb reduced by 1.4% - 72.9% and 11.8% - 51.4%, respectively, when compared with the control. The contents of heavy metals decreased with increasing sepiolite, with the maximal Cd reduction of 39.8%, 36.4%, 55.2% and 32.4%, respectively, and 22.1%, 54.6%, 43.5% and 17.8% for Pb, respectively, in the stems, leaves, brown rice and husk in contrast to CK. The addition of sepiolite could improve the soil environmental quality, the catalase and urease activities and the amount of bacteria and actinomycete were increased to some extents. Although the fungi number and invertase activity were inhibited compared with the control group, it was not significantly different (P > 0.05). The significant correlation between pH, available heavy metal content, urease and invertase activities and heavy metal concentration in the plants indicated that these parameters could be used to evaluate the effectiveness of stabilization remediation of heavy metal contaminated soil.

  17. Impacts of rapeseed dregs on Cd availability in contaminated acid soil and Cd translocation and accumulation in rice plants.

    Science.gov (United States)

    Yang, Wen-Tao; Gu, Jiao-Feng; Zou, Jia-Ling; Zhou, Hang; Zeng, Qing-Ru; Liao, Bo-Han

    2016-10-01

    The objective of the present study was to investigate the effects of rapeseed dregs (RSD, a commonly organic fertilizer in rural China) at application rates of 0, 0.75, 1.5, and 3.0 % on Cd availability in soil and its accumulation in rice plants (Oryza sativa L., Xiangwanxian 12 # , and Weiyou 46 # ) by means of a pot experiment. The results showed that application of RSD resulted in a sharp decrease in the soil TCLP-extractable Cd content. However, the soil TCLP-extractable Cd content in amended soil gradually increased during the rice growing period. Application of RSD significantly increased Cd transport from root to shoot and the amount of Cd accumulated in the aerial part. RSD was an effective organic additive for increasing rice grain yield, but total Cd content in rice grain was also increased. At an application rate of 1.5-3.0 % RSD, the total Cd content in Weiyou 46 # brown rice was 0.27-0.31 mg kg -1 , which exceeded the standard safe limit (0.2 mg kg -1 ) and was also higher than that of Xiangwanxian 12 # (0.04-0.14 mg kg -1 ). Therefore, Weiyou 46 # had a higher dietary risk than Xiangwanxian 12 # with RSD application. We do not recommend planting Weiyou 46 # and applying more than 0.75 % RSD in Cd-contaminated paddy fields.

  18. Phytoextraction of Heavy Metals from Soil Polluted with Waste Mining by Using Forage Plants in Successive Cultures

    Directory of Open Access Journals (Sweden)

    Anca Pricop

    2010-10-01

    Full Text Available During two years, was studied the phytoextraction potential of some perennial species (Medicago sativa and Trifolium pretense, Festuca arundinacea and Lolium perenne, for Zn, Cd, and Pb from soils polluted with waste mining. The experiment was done on kernozem soil with adding of 20 kg waste mining/m2 and 8 kg biosolid/m2. The results showed that in all experiments, rye-grass is a good extractor for Zn and Cd, and leguminous species for Pb. Both leguminous species, especially M. sativa, presented a high tolerance for lead toxicity, even with 3-4 times greater values than maximum allowable level from actual legislation. In all cases, regardless of the experimental variant, raygrass (Lolium perenne is a good accumulator of Zn and Cd, and red clover (Trifolium pratense of Pb. The values of metal bioaccumulation increase gradually with their concentration in soil. Quality of very good extractor of Pb displayed by Trifolium pratense species are kept even in case of excessive pollution with Pb, when it exceed 3.4 times the maximum permissible norms. This proves, as Medicago sativa species, a good tolerance and resistance to toxicity of this metal. In case of addition of natural zeolite-volcanic tuff there was no increase in the rate of Zn bioaccumulation. Only in case of Cd at Lolium perenne and Pb at Trifolium pratense appear the favourable effect of metallic ions bioavailability in soil for plants.

  19. Comparison Study on the Estimation of the Spatial Distribution of Regional Soil Metal(loids Pollution Based on Kriging Interpolation and BP Neural Network

    Directory of Open Access Journals (Sweden)

    Zhenyi Jia

    2017-12-01

    Full Text Available Soil pollution by metal(loids resulting from rapid economic development is a major concern. Accurately estimating the spatial distribution of soil metal(loid pollution has great significance in preventing and controlling soil pollution. In this study, 126 topsoil samples were collected in Kunshan City and the geo-accumulation index was selected as a pollution index. We used Kriging interpolation and BP neural network methods to estimate the spatial distribution of arsenic (As and cadmium (Cd pollution in the study area. Additionally, we introduced a cross-validation method to measure the errors of the estimation results by the two interpolation methods and discussed the accuracy of the information contained in the estimation results. The conclusions are as follows: data distribution characteristics, spatial variability, and mean square errors (MSE of the different methods showed large differences. Estimation results from BP neural network models have a higher accuracy, the MSE of As and Cd are 0.0661 and 0.1743, respectively. However, the interpolation results show significant skewed distribution, and spatial autocorrelation is strong. Using Kriging interpolation, the MSE of As and Cd are 0.0804 and 0.2983, respectively. The estimation results have poorer accuracy. Combining the two methods can improve the accuracy of the Kriging interpolation and more comprehensively represent the spatial distribution characteristics of metal(loids in regional soil. The study may provide a scientific basis and technical support for the regulation of soil metal(loid pollution.

  20. Comparison Study on the Estimation of the Spatial Distribution of Regional Soil Metal(loid)s Pollution Based on Kriging Interpolation and BP Neural Network.

    Science.gov (United States)

    Jia, Zhenyi; Zhou, Shenglu; Su, Quanlong; Yi, Haomin; Wang, Junxiao

    2017-12-26

    Soil pollution by metal(loid)s resulting from rapid economic development is a major concern. Accurately estimating the spatial distribution of soil metal(loid) pollution has great significance in preventing and controlling soil pollution. In this study, 126 topsoil samples were collected in Kunshan City and the geo-accumulation index was selected as a pollution index. We used Kriging interpolation and BP neural network methods to estimate the spatial distribution of arsenic (As) and cadmium (Cd) pollution in the study area. Additionally, we introduced a cross-validation method to measure the errors of the estimation results by the two interpolation methods and discussed the accuracy of the information contained in the estimation results. The conclusions are as follows: data distribution characteristics, spatial variability, and mean square errors (MSE) of the different methods showed large differences. Estimation results from BP neural network models have a higher accuracy, the MSE of As and Cd are 0.0661 and 0.1743, respectively. However, the interpolation results show significant skewed distribution, and spatial autocorrelation is strong. Using Kriging interpolation, the MSE of As and Cd are 0.0804 and 0.2983, respectively. The estimation results have poorer accuracy. Combining the two methods can improve the accuracy of the Kriging interpolation and more comprehensively represent the spatial distribution characteristics of metal(loid)s in regional soil. The study may provide a scientific basis and technical support for the regulation of soil metal(loid) pollution.

  1. Effects of organic matter fraction and compositional changes on distribution of cadmium and zinc in long-term polluted paddy soils

    International Nuclear Information System (INIS)

    Zhou, Tong; Wu, Longhua; Luo, Yongming; Christie, Peter

    2018-01-01

    Soil particulate organic matter (POM) has rapid turnover and metal enrichment, but the interactions between organic matter (OM) and metals have not been well studied. The present study aimed to investigate changes in the OM concentration and composition of the POM fraction and their corresponding effects on metal distribution and extractability in long-term polluted paddy soils. Soil 2000–53 μm POM size fractions had higher contents of C–H and C=O bonds, C–H/C=O ratios and concentrations of fulvic acid (FA), humic acid (HA), cadmium (Cd) and zinc (Zn) than the bulk soils. Cadmium and Zn stocks in soil POM fractions were 24.5–27.9% and 7.12–16.7%, respectively, and were more readily EDTA-extractable. Compared with the control soil, the 2000–250 μm POM size fractions had higher organic carbon concentrations and C/N ratios in the polluted soils. However, there were no significant differences in the contents in C–H and C=O bonds or C–H/C=O ratios of POM fractions among the control, slightly and highly polluted soils. In accordance with the lower contents of C=O bonds and FA and HA concentrations, the Cd and Zn concentrations in 250–53 μm POM size fractions were lower than those in 2000–250 μm POM size fractions. Enrichment of Cd in POM fractions increased with increasing soil pollution level. These results support the view that changes in the OM concentration and the size and composition of POM fractions play a key role in determining the distribution of Cd and Zn in paddy soils. - Highlights: • The OC and FA contents and C/N in POM (2000–250 μm) increased in polluted soil. • Enrichment of Cd and Zn decreased with decreasing POM size. • No significant change in content of C=O group in POM was observed in polluted soil. • Changes in the size and composition of soil POM affected the Cd and Zn distribution. - Interactions between soil organic matter and metals.

  2. A Study on the Simultaneous Multi-Components Analysis of Soil Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Kang-Sup; Kim, Kun-Han; Choi, Byung-In [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    Dissolution properties for the several inorganic pollutants in soils have been studied and simultaneous multi-components analytical method has been established with using ICP/MS and LA-ICP/MS for 14 monitoring elements in order to protect water and soil environments. And addition, more effective new analytical methods have been studied for BTEX, TPH(total petroleum hydrocarbon) and organophosphorus compounds, PCBs in soils. Several inorganic pollutants were spiked to 3 kinds of fresh soils which were sand, clay, loam. The dissolution properties of the prepared samples were investigated under the various extracting conditions such as extracting time, acid concentration, particle size, etc. in order to take basic information about the process of extraction test and improvement of related analytical methods. As the results, dissolution properties were affected mainly by acid concentration in extracting procedure and mineral composition of soils. On the other hand, extracting time, sort of acids and particle size of soils had a little influence on the dissolution properties. Cd revealed very high dissolving efficiency and As was very low in whole extracting test. Current analytical methods for the determination of oils are based on the purge and trap for volatiles such as gasoline and solvent extraction for semivolatiles such as kerosene and diesel oils. These methods are not proper in cost and time. In addition to, there are potential for analyte contamination and some problems in pretreatment procedure. In this study, we have discussed simultaneous determination of TPH containing gasoline, kerosene, diesel oils and etc.. And determination of Organophosphorus compounds in soils has studied. In this procedure, the application of ultrasonication methods and several extraction methods were compared. In the results of this study, we could take very low practical detection limit and good precision. Approved methods were suitable for the determination of oils and pesticides

  3. Can liming reduce cadmium (Cd) accumulation in rice (Oryza sativa) in slightly acidic soils? A contradictory dynamic equilibrium between Cd uptake capacity of roots and Cd immobilisation in soils.

    Science.gov (United States)

    Yang, Yongjie; Chen, Jiangmin; Huang, Qina; Tang, Shaoqing; Wang, Jianlong; Hu, Peisong; Shao, Guosheng

    2018-02-01

    Cadmium (Cd) accumulation in rice is strongly controlled by liming, but information on the use of liming to control Cd accumulation in rice grown in slightly acidic soils is inconsistent. Here, pot experiments were carried out to investigate the mechanisms of liming on Cd accumulation in two rice varieties focusing on two aspects: available/exchangeable Cd content in soils that were highly responsive to liming, and Cd uptake and transport capacity in the roots of rice in terms of Cd accumulation-relative gene expression. The results showed that soil availability and exchangeable iron, manganese, zinc and Cd contents decreased with increased liming, and that genes related to Cd uptake (OsNramp5 and OsIRT1) were sharply up-regulated in the roots of the two rice varieties. Thus, iron, manganese, zinc and Cd contents in rice plants increased under low liming applications but decreased in response to high liming applications. However, yield and rice quantities were only slightly affected. These results indicated that Cd accumulation in rice grown in slightly acidic soils presents a contradictory dynamic equilibrium between Cd uptake capacity by roots and soil Cd immobilisation in response to liming. The enhanced Cd uptake capacity under low liming dosages increases risks to human health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The grey areas in soil pollution risk mapping : The distinction between cases of soil pollution and increased background levels

    NARCIS (Netherlands)

    Gaast, N. van der; Leenaers, H.; Zegwaard, J.

    1998-01-01

    The progress of soil clean up in the Netherlands is severely hindered by the lack of common agreement on how to describe the grey areas of increased background levels of pollutants. In this study practical methods are proposed in which background levels are described as distribution functions within

  5. Soil

    International Nuclear Information System (INIS)

    Freudenschuss, A.; Huber, S.; Riss, A.; Schwarz, S.; Tulipan, M.

    2002-01-01

    Environmental soil surveys in each province of Austria have been performed, soils of about 5,000 sites were described and analyzed for nutrients and pollutants, the majority of these data are recorded in the soil information system of Austria (BORIS) soil database, http://www.ubavie.gv.at/umweltsituation/boden/boris), which also contains a soil map of Austria, data from 30 specific investigations mainly in areas with industry and results from the Austria - wide cesium investigation. With respect to the environmental state of soils a short discussion is given, including two geographical charts, one showing which sites have soil data (2001) and the other the cadmium distribution in top soils according land use (forest, grassland, arable land, others). Information related to the soil erosion, Corine land cover (Europe-wide land cover database), evaluation of pollutants in soils (reference values of As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Se, Pb, Tl, Va, Zn, AOX, PAH, PCB, PCDD/pcdf, dioxin), and relevant Austrian and European standards and regulations is provided. Figs. 2, Tables 4. (nevyjel)

  6. Humic substances as a washing agent for Cd-contaminated soils.

    Science.gov (United States)

    Meng, Fande; Yuan, Guodong; Wei, Jing; Bi, Dongxue; Ok, Yong Sik; Wang, Hailong

    2017-08-01

    Cost-effective and eco-friendly washing agents are in demand for Cd contaminated soils. Here, we used leonardite-derived humic substances to wash different types of Cd-contaminated soils, namely, a silty loam (Soil 1), a silty clay loam (Soil 2), and a sandy loam (Soil 3). Washing conditions were investigated for their effects on Cd removal efficiency. Cadmium removal was enhanced by a high humic substance concentration, long washing time, near neutral pH, and large solution/soil ratio. Based on the tradeoff between efficiency and cost, an optimum working condition was established as follows: humic substance concentration (3150 mg C/L), solution pH (6.0), washing time (2 h) and a washing solution/soil ratio (5). A single washing removed 0.55 mg Cd/kg from Soil 1 (1.33 mg Cd/kg), 2.32 mg Cd/kg from Soil 2 (6.57 mg Cd/kg), and 1.97 mg Cd/kg from Soil 3 (2.63 mg Cd/kg). Cd in effluents was effectively treated by adding a small dose of calcium hydroxide, reducing its concentration below the discharge limit of 0.1 mg/L in China. Being cost-effective and safe, humic substances have a great potential to replace common washing agents for the remediation of Cd-contaminated soils. Besides being environmentally benign, humic substances can improve soil physical, chemical, and biological properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Remediation of Cd(II)-contaminated soil via humin-enhanced electrokinetic technology.

    Science.gov (United States)

    Ding, Ling; Lv, Wenying; Yao, Kun; Li, Liming; Wang, Mengmeng; Liu, Guoguang

    2017-02-01

    Humin is the component of humic substances that is recalcitrant to extraction by either strong bases or strong acids, which contains a variety of functional groups that may combine with heavy metal ions. The present study employed humin as an adsorbent to investigate the efficacy of a remediation strategy under the effects of humin-enhanced electrokinetics. Because the cations gravitate toward cathode and anions are transferred to anode, humin was placed in close proximity to the cathode in the form of a package. The humin was taken out after the experiments to determine whether a target pollutant (cadmium) might be completely removed from soil. Acetic acid-sodium acetate was selected as the electrolyte for these experiments, which was circulated between the two electrode chambers via a peristaltic pump, in order to control the pH of the soil. The results indicated that when the remediation duration was extended to 240 h, the removal of acid extractable Cd(II) could be up to 43.86% efficiency, and the adsorption of the heavy metal within the humin was 86.15 mg/kg. Further, the recycling of the electrolyte exhibited a good control of the pH of the soil. When comparing the pH of the soil with the circulating electrolyte during remediation, in contrast to when it was not being recycled, the pH of the soil at the anode increased from 3.89 to 5.63, whereas the soil at the cathode decreased from 8.06 to 7.10. This indicated that the electrolyte recycling had the capacity to stabilize the pH of the soil.

  8. Soil bioremediation approaches for petroleum hydrocarbon polluted environments

    Directory of Open Access Journals (Sweden)

    Eman Koshlaf

    2017-01-01

    Full Text Available Increasing industrialisation, continued population growth and heavy demand and reliance on petrochemical products have led to unprecedented economic growth and development. However, inevitably this dependence on fossil fuels has resulted in serious environmental issues over recent decades. The eco-toxicity and the potential health implications that petroleum hydrocarbons pose for both environmental and human health have led to increased interest in developing environmental biotechnology-based methodologies to detoxify environments impacted by petrogenic compounds. Different approaches have been applied for remediating polluted sites with petroleum derivatives. Bioremediation represents an environmentally sustainable and economical emerging technology for maximizing the metabolism of organic pollutants and minimizing the ecological effects of oil spills. Bioremediation relies on microbial metabolic activities in the presence of optimal ecological factors and necessary nutrients to transform organic pollutants such as petrogenic hydrocarbons. Although, biodegradation often takes longer than traditional remediation methods, the complete degradation of the contaminant is often accomplished. Hydrocarbon biodegradation in soil is determined by a number of environmental and biological factors varying from site to site such as the pH of the soil, temperature, oxygen availability and nutrient content, the growth and survival of hydrocarbon-degrading microbes and bioavailability of pollutants to microbial attack. In this review we have attempted to broaden the perspectives of scientists working in bioremediation. We focus on the most common bioremediation technologies currently used for soil remediation and the mechanisms underlying the degradation of petrogenic hydrocarbons by microorganisms.

  9. A modified receptor model for source apportionment of heavy metal pollution in soil.

    Science.gov (United States)

    Huang, Ying; Deng, Meihua; Wu, Shaofu; Japenga, Jan; Li, Tingqiang; Yang, Xiaoe; He, Zhenli

    2018-07-15

    Source apportionment is a crucial step toward reduction of heavy metal pollution in soil. Existing methods are generally based on receptor models. However, overestimation or underestimation occurs when they are applied to heavy metal source apportionment in soil. Therefore, a modified model (PCA-MLRD) was developed, which is based on principal component analysis (PCA) and multiple linear regression with distance (MLRD). This model was applied to a case study conducted in a peri-urban area in southeast China where soils were contaminated by arsenic (As), cadmium (Cd), mercury (Hg) and lead (Pb). Compared with existing models, PCA-MLRD is able to identify specific sources and quantify the extent of influence for each emission. The zinc (Zn)-Pb mine was identified as the most important anthropogenic emission, which affected approximately half area for Pb and As accumulation, and approximately one third for Cd. Overall, the influence extent of the anthropogenic emissions decreased in the order of mine (3 km) > dyeing mill (2 km) ≈ industrial hub (2 km) > fluorescent factory (1.5 km) > road (0.5 km). Although algorithm still needs to improved, the PCA-MLRD model has the potential to become a useful tool for heavy metal source apportionment in soil. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Soil fungi for mycoremediation of arsenic pollution in agriculture soils.

    Science.gov (United States)

    Singh, M; Srivastava, P K; Verma, P C; Kharwar, R N; Singh, N; Tripathi, R D

    2015-11-01

    Soil arsenic (As) contamination of food-chains and public health can be mitigated through fungal bioremediation. To enumerate culturable soil fungi, soils were collected from the As-contaminated paddy fields (3-35 mg kg(-1) ) of the middle Indo-Gangetic Plains. Total 54 fungal strains were obtained and identified at their molecular level. All strains were tested for As tolerance (from 100 to 10,000 mg l(-1) arsenate). Fifteen fungal strains, tolerant to 10,000 mg l(-1) arsenate, were studied for As removal in-vivo for 21 days by cultivating them individually in potato dextrose broth enriched with 10 mg l(-1) As. The bioaccumulation of As in fungal biomass ranged from 0·023 to 0·259 g kg(-1). The biovolatilized As ranged from 0·23 to 6·4 mg kg(-1). Higher As bioaccumulation and biovolatilization observed in the seven fungal strains, Aspergillus oryzae FNBR_L35; Fusarium sp. FNBR_B7, FNBR_LK5 and FNBR_B3; Aspergillus nidulans FNBR_LK1; Rhizomucor variabilis sp. FNBR_B9; and Emericella sp. FNBR_BA5. These fungal strains were also tested and found suitable for significant plant growth promotion in the calendula, withania and oat plants in a greenhouse based pot experiment. These fungal strains can be used for As remediation in As-contaminated agricultural soils. © 2015 The Society for Applied Microbiology.

  11. [Effect of different organic fertilizers on bioavailability of soil Cd and Zn].

    Science.gov (United States)

    Xie, Yun-he; Ji, Xiong-hui; Wu, Jia-mei; Huang, Juan; Guan, Di; Zhu, Jian

    2015-03-01

    The active effect of soil Cd and Zn and their interaction was studied in typical paddy field in south China by monitoring the contents of Cd and Zn in soil and rice in rice fields applied with pig manure, chicken manure or rice straw for 4 years continuously. The results showed that applying pig manure, chicken manure or rice straw had no significant impact on the soil total Cd content, soil available Cd content and soil Cd activity, but tended to increase the soil total Cd content and increased the soil total Zn content, soil available Zn content and Zn activity significantly. Applications of pig manure, chicken manure and rice straw all reduced the Cd content of brown rice, in order of pig manure > chicken manure > rice straw. The Cd contents of brown rice, stem and leaf in the treatment applied with pig manure were lower than in the control by 37.5%, 44.0% and 36.4%, respectively; the Cd contents of brown rice, stem and leaf in the treatment applied with chicken manure were lower than in the control by 22.5%, 33.8%, and 22.7%, respectively; the Cd content of brown rice in the treatment applied with rice straw was lower than in the control by 7.5% but its contents in stem and leaf increased by 8.2% and 22.7% , respectively. The reduction in the brown rice Cd content was mainly due to the reduction of Cd enrichment from soil to brown rice after application of pig or chicken manure, but mainly due to the reduction of Cd transportation from stem to brown rice after straw application. Applications of pig manure, chicken manure and rice straw increased Zn contents in rice stem by 53.4%, 53.4% and 13.9%, respectively, but all had no significant effect on brown rice and leaf' s Zn contents. Zn and Cd had the significant antagonistic effects in the soil and rice stem. The increase of Zn content in soil and rice stem inhibited the adsorption and accumulation of Cd in the brown rice, stem and leaf significantly, and with the increase of the proportion of Zn/Cd, the

  12. Agroecological Responses of Heavy Metal Pollution with Special Emphasis on Soil Health and Plant Performances

    Directory of Open Access Journals (Sweden)

    Vaibhav Srivastava

    2017-10-01

    Full Text Available With modern day urbanization and industrialization, heavy metal (HM contamination has become a prime concern for today's society. The impacts of metal contamination on agriculture range from the agricultural soil to the produce in our food basket. The heavy metals (HMs and metalloids, including Cr, Mn, Co, Ni, Cu, Zn, Cd, Sn, Hg, Pb, among others, can result in significant toxic impacts. The intensification of agricultural land use and changes in farming practices along with technological advancement have led to heavy metal pollution in soil. Metals/metalloids concentrations in the soil are increasing at alarming rate and affect plant growth, food safety, and soil microflora. The biological and geological reorganization of heavy metal depends chiefly on green plants and their metabolism. Metal toxicity has direct effects to flora that forms an integral component of ecosystems. Altered biochemical, physiological, and metabolic processes are found in plants growing in regions of high metal pollution. However, metals like Cu, Mn, Co, Zn, and Cr are required in trace amounts by plants for their metabolic activities. The present review aims to catalog major published works related to heavy metal contamination in modern day agriculture, and draw a possible road map toward future research in this domain.

  13. EFFECTS OF CRUDE OIL POLLUTED SOIL ON THE SEEDLING GROWTH OF PENNISETUM GLAUCUM (L. R. BR.

    Directory of Open Access Journals (Sweden)

    Muhammad SHAFIQ

    2017-12-01

    Full Text Available Pollution by crude oil is an important environmental issue all around the world. Increase in oil pollution level in the environment produce toxic effects on flora and fauna of the region. The effects of different levels (0%, 5%, 10%, 15%, and 20% of crude oil polluted soil on the growth of pearl millet (Pennisetum glaucum were studied. The polluted soil affected the root, shoot length, seedling size, number of leaves and leaf area of P. glaucum. The significant (p<0.05 effects of polluted soil on fresh and dry weight of root, stem, leaves, and seedling of P. glaucum were also recorded. Leaf area, leaf number and total seedling dry weight were noticeably reduced in 10 and 15% polluted soil than control soil treatment. Principally, 20% crude oil polluted soil treatment exhibited highest percentage of decrease in most of the seedling growth parameters of P. glaucum than control. Hence, the effects on seedling growth parameters were increased with increasing levels of polluted soil. For most of the growth parameters, the mean values obtained were found higher for the control soil and progressively decreased from 5-20% crude oil polluted soils. The seedlings of P. glaucum were also tested for tolerance to polluted soil treatment. The results showed that the seedlings of P. glaucum showed high percentage of tolerance to low concentration (5% of polluted soil treatment as compared to control soil treatment (0%.

  14. Streptomyces communities in soils polluted with heavy metals

    Science.gov (United States)

    Grishko, V. N.; Syshchikova, O. V.

    2009-02-01

    The contents of differently mobile heavy metal compounds and their influence on the formation of microbial cenoses (particularly, streptomyces communities) in technogenically disturbed soils are considered. Elevated concentrations of mobile Cu, Zn, Ni, Cd, and Fe compounds are shown to determine structural-functional changes in microbial cenoses that are displayed in a decreasing number of microorganisms and a narrower spectrum of the streptomyces species. Some specific features of the formation of streptomyces communities in technogenic soils were revealed on the basis of the analysis of their species structure with the use of the Margalef, Berger-Parker, and Sorensen indices of biodiversity.

  15. [Cd Runoff Load and Soil Profile Movement After Implementation of Some Typical Contaminated Agricultural Soil Remediation Strategies].

    Science.gov (United States)

    Liu, Xiao-li; Zeng, Zhao-xia; Tie, Bai-qing; Chen, Qiu-wen; Wei, Xiang-dong

    2016-02-15

    Owing to the strong ability to immobilize and hyperaccumulate some toxic heavy metals in contaminated soils, the biochar, lime and such as hyperaccumulator ramie received increasing interests from crops and environment safety in recent years. Outdoor pot experiment was conducted to compare the impacts of lime and biochar addition in paddy rice treatment, hyperaccumulator ramie and ramie combined with EDTA of plant Phytoremediation methods on soil available Cd dynamics in rainfall runoff and the mobility along soil profile, under both natural acid precipitation and acid soil conditions. The results showed that, biochar addition at a 2% mass ratio application amount significantly increased soil pH, while ramie with EDTA application obviously decreased soil pH compared to ramie monoculture. Within the same rainfall events, water soluble Cd concentration in surface runoff of ramie treatments was significantly higher than those of waterlogged rice treatments, and Cd concentration in runoff was obviously increased after EDTA addition, whereas lime at a 0.3% mass ratio application amount as additive had no obvious impact on soil pH and Cd speciation change, which may be due to the low application amount. During the whole experimental period , water soluble Cd concentration of rainfall runoff in spring was higher than that in summer, showing the same seasonal characteristics in all treatments. Biochar addition could significantly decrease available Cd content in 0-20 cm soil layer and with certain preferable persistency effects, whereas EDTA addition treatment obviously increased available Cd of 0-20 cm soil layer compared to other treatments, and obvious Cd element activation phenomenon in 20-40 cm soil layer was observed after EDTA addition. In conclusion, lime and biochar as environmental and friendly alkaline Cd immobilization materials showed lower environment risk to surface and ground receiving water, but attention should be paid to phytoremediation enhanced with

  16. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination-A review.

    Science.gov (United States)

    Kowalska, Joanna Beata; Mazurek, Ryszard; Gąsiorek, Michał; Zaleski, Tomasz

    2018-04-05

    The paper provides a complex, critical assessment of heavy metal soil pollution using different indices. Pollution indices are widely considered a useful tool for the comprehensive evaluation of the degree of contamination. Moreover, they can have a great importance in the assessment of soil quality and the prediction of future ecosystem sustainability, especially in the case of farmlands. Eighteen indices previously described by several authors (I geo , PI, EF, C f , PI sum , PI Nemerow , PLI, PI ave , PI Vector , PIN, MEC, CSI, MERMQ, C deg , RI, mCd and ExF) as well as the newly published Biogeochemical Index (BGI) were compared. The content, as determined by other authors, of the most widely investigated heavy metals (Cd, Pb and Zn) in farmland, forest and urban soils was used as a database for the calculation of all of the presented indices, and this shows, based on statistical methods, the similarities and differences between them. The indices were initially divided into two groups: individual and complex. In order to achieve a more precise classification, our study attempted to further split indices based on their purpose and method of calculation. The strengths and weaknesses of each index were assessed; in addition, a comprehensive method for pollution index choice is presented, in order to best interpret pollution in different soils (farmland, forest and urban). This critical review also contains an evaluation of various geochemical backgrounds (GBs) used in heavy metal soil pollution assessments. The authors propose a comprehensive method in order to assess soil quality, based on the application of local and reference GB.

  17. Microbial decontamination of polluted soil in a slurry process

    International Nuclear Information System (INIS)

    Geerdink, M.J.; Kleijntjens, R.H.; Loosdrecht, M.C.M. van; Luyben, K.C.A.M.

    1996-01-01

    Oil-contaminated soil (2.3--17 g/kg), even soil with high clay and silt content, was remediated microbiologically in a slurry reactor. The presence of soil, however, limits the degradation rate of oil. In contrast with results form experiments using oil dispersed in water, the relative composition of the oil components in a soil slurry after degradation was about the same as that of the original oil. Thus the composition of the degraded oil is the same as that of the original oil, which is indicative for a physical, rather than a (bio)chemical, limitation on the oil degradation rate. About 70% of the contaminant was readily available and was degraded in less than eight days. The dual injected turbulent suspension (DITS) reactor is able to combine remediation of part of the contaminated (polydisperse) soil with separation of the soil into a heavily and a lightly polluted fraction. In continuous operation, lowering the overall soil residence time from 200 to 100 h did not significantly increase the oil concentration in the effluent soil. Therefore a soil residence time of less than 100 h is feasible. With a residence time of 100 h, overall oil degradation rates at the steady state were more than 70 times faster than in a comparable land farm. After treatment in a DITS reactor, the remaining oil in the contaminated soil fraction is slowly released from the soil. From a batch experiment it was found that another 10 weeks were needed to reach the Dutch reference level of 50 mg/kg. This can be done in a process with a low energy input, such as a landfarm

  18. Investigations to single and combined effects of organic pollutants (PAH, PCB) and heavy metals (Cd, Cu) on biomass production and soil-plant transfer by cultivation of raw and energy plants. Final report; Bodenoekologische Untersuchungen zur Wirkung und Verteilung von organischen Stoffgruppen (PAK, PCB) in ballungsraumtypischen Oekosystemen. Untersuchungen zu Einzel- und Kombinationswirkungen von organischen Schadstoffen (PAK, PCB) und Schwermetallen (Cd, Cu) auf Biomasseertrag und Boden-Pflanze-Transfer beim Anbau von Rohstoff- und Energiepflanzen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Metz, R.; Dorn, J.; Sauer, W.

    1997-05-01

    Together with polycyclic aromatic hydrocarbons, polychlorinated biphenyls and heavy metals other elements and compounds as well as nutrients are present in typical contaminated areas like sewage fields. They are found as mixed undisturbed contamination and the transfer of these pollutants into food or forage plants is dangerous for people. So far investigations of ecological effects of these substances are focused mainly on single agents or on some agents of the same chemical group. But in most cases the mixture of different chemical compounds in extremely contaminated fields cause synergistic effects resulting in yield reduction and decrease of microbiological activity. Therefore the aim of the present report is to show combined effects of selected organic pollutants (benzo-a-pyren, 2,2`, 5,5` tetrachlorbiphenyl) and heavy metals (cadmium, copper) on parameters of soil biology, biomass production and pollutant uptake by plants. Resulting changes of cellulose decomposition, CO{sub 2}-release from soil and N-mineralization after separated and combined enrichment of weakly polluted sewage field soil with said pollutants up to concentrations of extremely polluted sewage field soils are presented in this paper. Data of yields and pollutant contents of plants (rye, maize and potatoes) cultivated on experimental soils are summarised and ecotoxicological risks resulting form pollutants and their interactions discussed. (orig.) [Deutsch] Polycyclische aromatische Kohlenwasserstoffe, Polychlorierte Biphenyle und Schwermetalle sind zusammen mit anderen Elementen und Verbindungen u.a. auch mit Naehrstoffen als gemischte gewachsene Kontamination in ballungsraumtypischen Belastungsflaechen (z.B. Rieselfelder) vorhanden und stellen bei einem Transfer in Nahrungs- und Futterpflanzen eine besondere Gefaehrdung fuer den Menschen dar. Bei Untersuchungen hinsichtlich oekosystemarer Konsequenzen dieser Substanzen wurden bisher vor allem Einzelstoffbetrachtungen angestellt bzw. mehrere

  19. Fate of airborne metal pollution in soils as related to agricultural management. 1. Zn and Pb distributions in soil profiles

    NARCIS (Netherlands)

    Fernandez, C.; Labanowski, J.; Cambier, P.; Jongmans, A.G.; Oort, van F.

    2007-01-01

    The fate of airborne metal pollutants in soils is still relatively unknown. We studied the incorporation of such airborne metal pollution in two soils under long-term permanent pasture (PP) and conventional arable land (CA). Both soils were located at an almost equal distance from a former zinc

  20. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants.

    Science.gov (United States)

    Zhang, Xiaokai; Wang, Hailong; He, Lizhi; Lu, Kouping; Sarmah, Ajit; Li, Jianwu; Bolan, Nanthi S; Pei, Jianchuan; Huang, Huagang

    2013-12-01

    Soil contamination with heavy metals and organic pollutants has increasingly become a serious global environmental issue in recent years. Considerable efforts have been made to remediate contaminated soils. Biochar has a large surface area, and high capacity to adsorb heavy metals and organic pollutants. Biochar can potentially be used to reduce the bioavailability and leachability of heavy metals and organic pollutants in soils through adsorption and other physicochemical reactions. Biochar is typically an alkaline material which can increase soil pH and contribute to stabilization of heavy metals. Application of biochar for remediation of contaminated soils may provide a new solution to the soil pollution problem. This paper provides an overview on the impact of biochar on the environmental fate and mobility of heavy metals and organic pollutants in contaminated soils and its implication for remediation of contaminated soils. Further research directions are identified to ensure a safe and sustainable use of biochar as a soil amendment for remediation of contaminated soils.

  1. Heavy Metal Pollution of Surface Soil in Thrace Region (Turkey)

    CERN Document Server

    Cocskun, M; Frontasyeva, M V; Munevver, C; Eidhammer Sjobakk, T; Demkina, S V

    2004-01-01

    Samples of surface soil were collected at 73 sites in the Thrace region, northwest part of Turkey. Two complementary analytical techniques, epithermal neutron activation analysis (ENAA) and atomic absorption spectrometry (AAS) with flame and graphite furnace atomization were used to determine 37 elements in the soil samples. Concentrations of Cu, Zn, Ni, Cd, Mn, Co, Pb, and As were determined using AAS and GF AAS and ENAA was used for the remaining 29 elements. Results for As, Ba, Br, Ca, Cd, Ce, Cr, Cs, Eu, Fe, Hf, I, In, K, La, Mn, Mo, Na, Nd, Rb, Sb, Sc, Sm, Sr, Ta, Tb, Th, Ti, U, and V are reported for the first time for soils from this region. The results show that concentrations of the most elements were little affected by the industrial and other anthropogenic activities performed in the region. Except for distinctly higher levels of Pb, Cu, Cd, and Zn in Istanbul district than the median values for the Thrace region, the observed distributions seem to be mainly associated with lithogenic variations. S...

  2. The Extent and Prediction of Heavy Metal Pollution in Soils of Shahrood and Damghan, Iran.

    Science.gov (United States)

    Sakizadeh, Mohamad; Mirzaei, Rouhollah; Ghorbani, Hadi

    2015-12-01

    The levels of 12 heavy metals (Ag, Ba, Be, Cd, Co, Cr, Cu, Ni, Pb, Tl, V, Zn) were considered in 229 soil samples in Semnan Province, Iran. To discriminate between natural and anthropogenic inputs of heavy metals, factor analysis was used. Seven factors accounting for 90.5 % of the total variance were extracted. The mining and agricultural activities along with geogenic sources have been attributed as the main causes of the levels of heavy metals in the study area. The partial least squares regression was utilized to predict the level of soil pollution index (SPI) considering the concentrations of 12 heavy metals. The eigenvectors from the first three PLS represented more than 98 % of the overall variance. The correlation coefficient between the observed and predicted SPI was 0.99 indicating the high efficiency of this method. The resultant coefficient of determination for three PLS components was 0.984 confirming the predictive ability of this method.

  3. Feasibility of phytoremediation of common soil and groundwater pollutants

    DEFF Research Database (Denmark)

    Trapp, Stefan; Rein, Arno; Clause, Lauge

    2014-01-01

    This report is the D eliverable D 4.3 and was done within the Timbre project WP4. It introduces into the various clean - up techniques that apply plants, evaluates the feasibility of phytoremediation of common soil and groundwater pollutants, and the knowle dge collected for this purpose was appl......This report is the D eliverable D 4.3 and was done within the Timbre project WP4. It introduces into the various clean - up techniques that apply plants, evaluates the feasibility of phytoremediation of common soil and groundwater pollutants, and the knowle dge collected for this purpose...... was applied to the two Timbre sites : Hunedoara (Romania) and Szprotawa (Poland). Phytoremediation is the technique to clean up (remediate) contaminated sites using plants, typically trees. The principles of the data were deta iled, with focus on obstacles (phytotoxicity) and factors stimulating success...

  4. Cadmium spiked soil modulates root organic acids exudation and ionic contents of two differentially Cd tolerant maize (Zea mays L.) cultivars.

    Science.gov (United States)

    Javed, M Tariq; Akram, M Sohail; Tanwir, Kashif; Javed Chaudhary, Hassan; Ali, Qasim; Stoltz, Eva; Lindberg, Sylvia

    2017-07-01

    Our earlier work described that the roots of two maize cultivars, grown hydroponically, differentially responded to cadmium (Cd) stress by initiating changes in medium pH depending on their Cd tolerance. The current study investigated the root exudation, elemental contents and antioxidant behavior of the same maize cultivars [cv. 3062 (Cd-tolerant) and cv. 31P41 (Cd-sensitive)] under Cd stress. Plants were maintained in a rhizobox-like system carrying soil spiked with Cd concentrations of 0, 10, 20, 30, 40 and 50 μmol/kg soil. The root and shoot Cd contents increased, while Mg, Ca and Fe contents mainly decreased at higher Cd levels, and preferentially in the sensitive cultivar. Interestingly, the K contents increased in roots of cv. 3062 at low Cd treatments. The Cd stress caused acidosis of the maize root exudates predominantly in cv. 3062. The concentration of various organic acids was significantly increased in the root exudates of cv. 3062 with applied Cd levels. This effect was diminished in cv. 31P41 at higher Cd levels. Cd exposure increased the relative membrane permeability, anthocyanin (only in cv. 3062), proline contents and the activities of peroxidases (POD) and superoxide dismutase (SOD). The only exception was the catalase activity, which was diminished in both cultivars. Root Cd contents were positively correlated with the secretion of acetic acid, oxalic acid, glutamic acid, citric acid, and succinic acid. The antioxidants like POD and SOD exhibited a positive correlation with the organic acids under Cd stress. It is likly that a high exudation of dicarboxylic organic acids improves nutrient uptake and activities of antioxidants, which enables the tolerant cultivar to acclimatize in Cd polluted environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Assessment of potential soybean cadmium excluder cultivars at different concentrations of Cd in soils.

    Science.gov (United States)

    Zhi, Yang; He, Kangxin; Sun, Ting; Zhu, Yongqiang; Zhou, Qixing

    2015-09-01

    The selection of cadmium-excluding cultivars has been used to minimize the transfer of cadmium into the human food chain. In this experiment, five Chinese soybean plants were grown in three soils with different concentrations of Cd (0.15, 0.75 and 1.12mg/kg). Variations in uptake, enrichment, and translocation of Cd among these soybean cultivars were studied. The results indicated that the concentration of Cd in seeds that grew at 1.12mg/kg Cd in soils exceeded the permitted maximum levels in soybeans. Therefore, our results indicated that even some soybean cultivars grown on soils with permitted levels of Cd might accumulate higher concentrations of Cd in seeds that are hazardous to human health. The seeds of these five cultivars were further assessed for interactions between Cd and other mineral nutrient elements such as Ca, Cu, Fe, Mg, Mn and Zn. High Cd concentration in soil was found to inhibit the uptake of Mn. Furthermore, Fe and Zn accumulations were found to be enhanced in the seeds of all of the five soybean cultivars in response to high Cd concentration. Cultivar Tiefeng 31 was found to fit the criteria for a Cd-excluding cultivar under different concentrations of Cd in soils. Copyright © 2015. Published by Elsevier B.V.

  6. Soil amendment affects Cd uptake by wheat — are we underestimating the risks from chloride inputs?

    International Nuclear Information System (INIS)

    Dahlin, A. Sigrun; Eriksson, Jan; Campbell, Colin D.; Öborn, Ingrid

    2016-01-01

    Many parts of the world are investigating the efficacy of recycling nutrient resources to agriculture from different industry and domestic sectors as part of a more circular economy. The complex nature of recycled products as soil amendments coupled to the large diversity of soil types and their inherent properties make it difficult to optimize the benefits and minimize the risks from potentially toxic elements often present in recycled materials. Here we investigated how wheat grain cadmium (Cd) concentration was affected by soil amendments, namely human urine and biogas digestate compared to traditional farm manures and mineral fertilizers. We show that Cl − inadvertently added to soils with e.g. urine or biogas digestate strongly increased crop Cd concentrations, largely by mobilizing inherent soil Cd. This resulted in wheat grain Cd levels that could result in exceeding recommended WHO limits for dietary intake. This was evident even in soils with low inherent Cd content and when Cd inputs were low. The future of a circular economy that helps to underpin global food security needs to ensure that the effects of applying complex materials to different types of agricultural land are fully understood and do not jeopardize food safety. Modified from Wivstad et al. (2009) - Highlights: • High-Cl by-products used as soil amendments mobilize soil Cd. • Wheat grain Cd levels were found that could result in exceeding dietary intake limits. • Quality and risk assessment of by-products should include Cl effects.

  7. Remediation of Biological Organic Fertilizer and Biochar in Paddy Soil Contaminated by Cd and Pb

    Directory of Open Access Journals (Sweden)

    MA Tie-zheng

    2015-02-01

    Full Text Available The effect of application of biological organic fertilizer and biochar on the immobilized remediation of paddy soil contaminated by Cd and Pb was studied under the field experiment. The results showed that biological organic fertilizer and biochar increased the soil pH and soil nutrient contents, and reduced the soil available Cd and Pb concentrations significantly. The soil pH had significantly negative correla-tion with the soil available Cd and Pb contents. The application of biological organic fertilizer and biochar decreased Cd and Pb concentration in all parts of the rice plant, with Cd concentration in brown rice decrease by 22.00% and 18.34% and Pb decease in brown rice by 33.46% and 12.31%. The concentration of Cd and Pb in brown rice had significant positive correlation with the soil available Cd and Pb concentra-tions. It was observed that both biological organic fertilizer and biochar had a positive effect on the remediation of paddy soil contaminated by Cd and Pb.

  8. Soil amendment affects Cd uptake by wheat — are we underestimating the risks from chloride inputs?

    Energy Technology Data Exchange (ETDEWEB)

    Dahlin, A. Sigrun, E-mail: Sigrun.Dahlin@slu.se [Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, SE-750 07 Uppsala (Sweden); Eriksson, Jan, E-mail: Jan.O.Eriksson@slu.se [Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, SE-750 07 Uppsala (Sweden); Campbell, Colin D., E-mail: Colin.Campbell@hutton.ac.uk [Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, SE-750 07 Uppsala (Sweden); The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, Scotland (United Kingdom); Öborn, Ingrid, E-mail: Ingrid.Oborn@slu.se [Department of Crop Production Ecology, Swedish University of Agricultural Sciences, P.O. Box 7043, SE-750 07 Uppsala (Sweden); World Agroforestry Centre (ICRAF), UN Avenue, P.O. Box 30677-00100, Nairobi (Kenya)

    2016-06-01

    Many parts of the world are investigating the efficacy of recycling nutrient resources to agriculture from different industry and domestic sectors as part of a more circular economy. The complex nature of recycled products as soil amendments coupled to the large diversity of soil types and their inherent properties make it difficult to optimize the benefits and minimize the risks from potentially toxic elements often present in recycled materials. Here we investigated how wheat grain cadmium (Cd) concentration was affected by soil amendments, namely human urine and biogas digestate compared to traditional farm manures and mineral fertilizers. We show that Cl{sup −} inadvertently added to soils with e.g. urine or biogas digestate strongly increased crop Cd concentrations, largely by mobilizing inherent soil Cd. This resulted in wheat grain Cd levels that could result in exceeding recommended WHO limits for dietary intake. This was evident even in soils with low inherent Cd content and when Cd inputs were low. The future of a circular economy that helps to underpin global food security needs to ensure that the effects of applying complex materials to different types of agricultural land are fully understood and do not jeopardize food safety. Modified from Wivstad et al. (2009) - Highlights: • High-Cl by-products used as soil amendments mobilize soil Cd. • Wheat grain Cd levels were found that could result in exceeding dietary intake limits. • Quality and risk assessment of by-products should include Cl effects.

  9. Assessment of heavy metal pollution risks and enzyme activity of meadow soils in urban area under tourism load: a case study from Zakopane (Poland).

    Science.gov (United States)

    Ciarkowska, Krystyna

    2018-05-01

    Effect of tourism, especially skiing activities, and urbanization on chemical and biochemical properties of soils in touristy town-Zakopane-was investigated. The concentration of heavy metals, nutrients, soil organic matter (SOM), dehydrogenase (DHA), invertase (IA) and urease (Ure) activities in soils from the town centre and out of the town centre was compared with the respective values of adjacent soils in protected areas (TNP). In order to evaluate a degree of contamination and risks of degradation enrichment factor (EF), ecological risk index (RI), Nemerov Pollution Index (PI Nemerov ) as well as enzyme activity index (EAI) were calculated. Soils in the centre of Zakopane were polluted with Zn, Pb, Cd and Cu in a moderate degree when those of skiing areas were polluted with Pb and Cd in a high degree. Strong positive correlation between these metals and negative correlation between them and a distance from the main roundabout in town indicated their anthropogenic origin. Soils of both locations were also enriched in P, but depleted in SOM when compared to TNP soils. Soils of touristy areas (out of the centre) were additionally enriched in N. Activity of studied enzymes was also lowered in soils of Zakopane when compared to soils of TNP. Pollution indices, RI, PI Nemerov as well as EAI, indicated that soils of Zakopane are at risk of degradation. Soils of touristy areas are under stronger negative impact than soils of the centre because of the cumulative effect of transport of heavy metals from the city centre, pollution by skiing machinery and melting water from the artificial snow.

  10. Urban soil pollution and the playfields of small children

    Science.gov (United States)

    Jartun, M.; Ottesen, R. T.; Steinnes, E.

    2003-05-01

    The chemical composition of urban surface soil in Tromsø, northern Norway has been mapped to describe the environmental load of toxic elements in different parts of the city. Surface soil samples were collected from 275 locations throughout the city center and nearby suburban areas. Natural background concentrations were determined in samples of the local bedrock. Surface soil in younger, suburban parts of the city shows low concentrations of heavy metals, reflecting the local geochemistry. The inner and older parts of the city are generally polluted with lead (Pb), zinc (Zn) and tin (Sn). The most important sources of this urban soil pollution are probably city fires, industrial and domestic waste, traffic, and shipyards. In this paper two different approaches have been used. First, as a result of the general mapping, 852 soil and sand samples from kindergartens and playgrounds were analyzed. In this study concentrations of arsenic (As) up to 1800ppm were found, most likely due to the extensive use of CCA (copper, chromium, arsenic) impregnated wood in sandboxes and other playground equipment. This may represent a significant health risk especially to children having a high oral intake of contaminated sand and soil. Secondly a pattern of tin (Sn) concentrations was found in Tromsøcity with especially high values near shipyards. Further investigation indicated that this pattern most probably reflected the use of the highty toxic tributyltin (TBT). Thus détermination of total Sn in surface soils could be a cost-effective way to localize sources of TBT contamination in the environment.

  11. Controlled experimental soil organic matter modification for study of organic pollutant interactions in soil

    International Nuclear Information System (INIS)

    Ahmed, Ashour A.; Kühn, Oliver; Leinweber, Peter

    2012-01-01

    Interactions of organic pollutants with soil organic matter can be studied by adsorption of the pollutants on well-characterized soil samples with constant mineralogy but different organic matter compositions. Therefore, the objectives of the current study are establishing a set of different, well-characterized soil samples by systematic modifications of their organic matter content and molecular composition and prove these modifications by advanced complementary analytical techniques. Modifications were done by off-line pyrolysis and removal/addition of hot-water extracted organic fraction (HWE) from/to the original soil sample. Both pyrolysis-field ionization mass spectrometry (Py-FIMS) and synchrotron-based C- and N- X-ray absorption near-edge structure spectroscopy (XANES) were applied to investigate the composition of the soil organic matter. These complementary analytical methods in addition to elemental analysis agreed in showing the following order of organic matter contents: pyrolyzed soil < soil residue < original soil < soil + 3 HWE < soil + 6 HWE < HWE. The addition of HWE to the soil sample increases the relative proportions of carbohydrates, N-containing heterocyclic compounds and peptides, and decreases the relative proportions of phenols, lignin monomers and dimers, and lipids. The most abundant organic compound classes in the pyrolyzed sample are aromatics, aliphatic nitriles, aldehydes, five- and six-membered N-containing heterocyclic compounds, and aliphatic carboxylic acids. It can be expected that removal or addition of HWE, that mimic biomass inputs to soil or soil amendments, change the binding capacity for organic pollutants less intensively than heat impact, e.g. from vegetation burning. It will be possible to interpret kinetic data on the pollutants adsorption by these original and modified soil samples on the basis of the bond- and element-specific speciation data through C-XANES and N-XANES and the molecular-level characterization

  12. [Effect of Nano Zeolite on Chemical Fractions of Cd in Soil and Its Uptake by Cabbage].

    Science.gov (United States)

    Xiong, Shi-juan; Xu, Wei-hong; Xie, Wen-wen; Chen, Rong; Chen, Yong-qin; Chi, Sun-lin; Chen, Xu- gen; Zhang, Jin-zhong; Xiong, Zhi-ting; Wang, Zheng-yin; Xie, De-ti

    2015-12-01

    Incubation experiments were carried out to investigate the influence of different nano zeolite (NZ) and ordinary zeolite (OZ) levels(0, 5, 10 and 20 g · kg⁻¹) on the change trends in fraction distribution coefficient (FDC) of Cd when exposed to different Cadmium (Cd) levels (1, 5, 10 and 15 mg · kg⁻¹), and pot experiments were carried out to investigate their influence on soil Cd fraction and Cd uptake by cabbage. The results in incubation experiments showed that the application of nano zeolite as well as ordinary zeolite effectively decreased the FDC of exchangeable Cd and increased the FDC of Fe-Mn oxide fraction. The FDC of soil Cd from 0 d to 28 d was deceased at first, then increased and tended to be stable, and finally increased. At the end of incubation, the FDC of soil exchangeable Cd decreased from 72.0%-88.0% to 30.0%-66.4%. Exchangeable fraction Cd was the most dominant Cd fraction in soil during the whole incubation. The results in pot experiment indicated that the application of nano zeolite and ordinary zeolite decreased the concentration and FDC of soil exchangeable Cd, and concurrently the concentration and FDC of Cd in carbonate, Fe-Mn oxide, organic matter and residual fraction were increased. The lowest EX-Cd was observed in the treatment with high dose of nano zeolite (20 g · kg⁻¹). The FDC of exchangeable Cd showed significant negative relationship with the soil pH (P zeolite when exposed to 5 mg · kg⁻¹ 1 and Cd, respectively; FDC of exchangeable Cd decreased by 16.3%-47.7% and 16.2%-46.7%; Cd concentration in each tissues of cabbage decreased by 1.0%-75.0% and 3.8%-53.2%, respectively. Moreover, the reduction effect of nano zeolite on soil and plant Cd was better than that of ordinary zeolite. The growth of cabbage was stimulated by low and medium zeolite doses (≤ 10 g · kg⁻¹), while inhibited by high zeolite doses (20 g · kg⁻¹). Compared to ordinary zeolite, the biomass of Chinese cabbage was significantly increased

  13. Evaluation of Integrated Time-Temperature Effect in Pyrolysis Process of Historically Contaminated Soils with Cadmium (Cd and Lead (Pb

    Directory of Open Access Journals (Sweden)

    Bulmău C

    2013-04-01

    Full Text Available It is already known that heavy metals pollution causes important concern to human and ecosystem health. Heavy metals in soils at the European level represents 37.3% between main contaminates affecting soils (EEA, 2007. This paper illustrates results obtained in the framework of laboratory experiments concerning the evaluation of integrated time-temperature effect in pyrolysis process applied to contaminated soil by two different ways: it is about heavy metals historically contaminated soil from one of the most polluted areas within Romania, and artificially contaminated with PCB-containing transformer oil. In particular, the authors focused on a recent evaluation of pyrolysis efficiency on removing lead (Pb and cadmium (Cd from the contaminated soil. The experimental study evaluated two important parameters related to the studied remediation methodology: thermal process temperature and the retention time in reactor of the contaminated soils. The remediation treatments were performed in a rotary kiln reactor, taking into account three process temperatures (400°C, 600°C and 800°C and two retention times: 30 min. and 60 min. Completed analyses have focused on pyrolysis solids and gas products. Consequently, both ash and gas obtained after pyrolysis process were subjected to chemical analyses.

  14. Slash-and-char: An ancient agricultural technique holds new promise for management of soils contaminated by Cd, Pb and Zn

    International Nuclear Information System (INIS)

    Niu, Li-qin; Jia, Pu; Li, Shao-peng; Kuang, Jia-liang; He, Xiao-xin; Zhou, Wen-hua; Liao, Bin; Shu, Wen-sheng; Li, Jin-tian

    2015-01-01

    Heavy metal contamination of agricultural soils is of worldwide concern. Unfortunately, there are currently no efficient and sustainable approaches for addressing this concern. In this study, we conducted a field experiment in which an agricultural soil highly contaminated by cadmium (Cd), lead (Pb) and zinc (Zn) was treated on-site by an ancient agricultural technique, ‘slash-and-char’, that was able to convert the biomass feedstock (rice straw) into biochar in only one day. We found evidence that in comparison to the untreated soil, the treated soil was associated with decreased bioavailability of the heavy metals and increased vegetable yields. Most importantly, the treatment was also coupled with dramatic reductions in concentrations of the heavy metals in vegetables, which made it possible to produce safe crops in this highly contaminated soil. Collectively, our results support the idea that slash-and-char offers new promise for management of soils contaminated by Cd, Pb and Zn. - Highlights: • We explored the potential of slash-and-char in dealing with soil metal pollution. • Metal bioavailability in the soil treated with slash-and-char was reduced by 24–65%. • Vegetable yield in the soil treated with slash-and-char was increased by 34–67%. • Slash-and-char could reduce the metal concentration in vegetables to a safe level. - An ancient agricultural technique called ‘slash-and-char’ offers new promise for management of soils contaminated multiply by Cd, Pb and Zn

  15. Testing the validity of a Cd soil quality standard in representative Mediterranean agricultural soils under an accumulator crop

    International Nuclear Information System (INIS)

    Recatala, L.; Sanchez, J.; Arbelo, C.; Sacristan, D.

    2010-01-01

    The validity of a quality standard for cadmium (Cd) in representative agricultural Mediterranean soils under an accumulator crop (Lactuca sativa L.) is evaluated in this work considering both its effect on the crop growth (biomass production) and the metal accumulation in the edible part of the plant. Four soils with different properties relevant to regulate the behaviour of heavy metals were selected from the Valencian Region, a representative area of the European Mediterranean Region. For all soils, the effective concentration of added Cd causing 50% inhibition (EC 50 ) on the biomass production was much higher than the minimum legal concentration used to declare soils as contaminated by cadmium, i.e. 100 times the baseline value for Cd, in Spain (Spanish Royal Decree 9/2005). As expected, Cd toxicity in the crop was higher in the soils having less carbonate content. On the other hand, for all soils, from the second dose on, which represents 10-times the baseline value for Cd, the metal content in crops exceeded the maximum level established for leaf crops by the European legislation (Regulation EC no. 466/2001). Soil salinity and coarse textures make the accumulation of Cd in the edible part of the plant easier. Therefore, the legal baseline soil cadmium content established by the Spanish legislation seems not valid neither from the point of view of the effect on the crop growth nor from the point of view of the metal accumulation in the edible part of the plant. In order to realistically declare contaminated soils by heavy metals, soil quality standards should be proposed taking into account the soil properties. Further research in other agricultural areas of the region would improve the basis for proposing adequate soil quality standards for heavy metals as highlighted by the European Thematic Strategy for Soil Protection.

  16. Testing the validity of a Cd soil quality standard in representative Mediterranean agricultural soils under an accumulator crop

    Energy Technology Data Exchange (ETDEWEB)

    Recatala, L., E-mail: luis.recatala@uv.es [Departamento de Planificacion Territorial, Centro de Investigaciones sobre Desertificacion-CIDE (CSIC-Universitat de Valencia-Generalitat Valenciana), Cami de la Marjal S/N, 46470 Albal (Valencia) (Spain); Sanchez, J. [Departamento de Planificacion Territorial, Centro de Investigaciones sobre Desertificacion-CIDE (CSIC-Universitat de Valencia-Generalitat Valenciana), Cami de la Marjal S/N, 46470 Albal (Valencia) (Spain); Arbelo, C. [Departamento de Edafologia y Geologia, Facultad de Biologia, Universidad de La Laguna, 38206 La Laguna (Tenerife), Islas Canarias (Spain); Sacristan, D. [Departamento de Planificacion Territorial, Centro de Investigaciones sobre Desertificacion-CIDE (CSIC-Universitat de Valencia-Generalitat Valenciana), Cami de la Marjal S/N, 46470 Albal (Valencia) (Spain)

    2010-12-01

    The validity of a quality standard for cadmium (Cd) in representative agricultural Mediterranean soils under an accumulator crop (Lactuca sativa L.) is evaluated in this work considering both its effect on the crop growth (biomass production) and the metal accumulation in the edible part of the plant. Four soils with different properties relevant to regulate the behaviour of heavy metals were selected from the Valencian Region, a representative area of the European Mediterranean Region. For all soils, the effective concentration of added Cd causing 50% inhibition (EC{sub 50}) on the biomass production was much higher than the minimum legal concentration used to declare soils as contaminated by cadmium, i.e. 100 times the baseline value for Cd, in Spain (Spanish Royal Decree 9/2005). As expected, Cd toxicity in the crop was higher in the soils having less carbonate content. On the other hand, for all soils, from the second dose on, which represents 10-times the baseline value for Cd, the metal content in crops exceeded the maximum level established for leaf crops by the European legislation (Regulation EC no. 466/2001). Soil salinity and coarse textures make the accumulation of Cd in the edible part of the plant easier. Therefore, the legal baseline soil cadmium content established by the Spanish legislation seems not valid neither from the point of view of the effect on the crop growth nor from the point of view of the metal accumulation in the edible part of the plant. In order to realistically declare contaminated soils by heavy metals, soil quality standards should be proposed taking into account the soil properties. Further research in other agricultural areas of the region would improve the basis for proposing adequate soil quality standards for heavy metals as highlighted by the European Thematic Strategy for Soil Protection.

  17. [Concentrations and pollution assessment of soil heavy metals at different water-level altitudes in the draw-down areas of the Three Gorges Reservoir].

    Science.gov (United States)

    Wang, Ye-Chun; Lei, Bo; Yang, San-Ming; Zhang, Sheng

    2012-02-01

    To investigate the effect of 175 m trial impounding (2008 and 2009) of the Three Gorges Reservoir on soil heavy metals, three draw-down areas with similar geological environment and history of land-use in Zhongxian County were chosen. Altogether 36 surface soil samples (including 0-10 cm and 10-20 cm soil layer) from water-level altitude of 160 m and 170 m were obtained, and their heavy metals concentrations (As, Cd, Cr, Cu, Ni, Pb and Zn) were measured by the X-ray fluorescence spectrometric method. Geoaccumulation index (I(geo)) and Håkanson potential ecological risk index were applied to assess the heavy metals pollution status and potential ecological risk, respectively. Results indicated that although the inundation period of 160 m was 224 d longer than that of 170 m, significant difference in concentrations of heavy metals were not found between the two water-level altitudes. Except for Cd, most of the heavy metals highly related with each other positively. According to the geoaccumulation index, the pollution extent of the heavy metals followed the order: As > Cd > Cu > Ni > Zn = Pb > Cr. The I(geo) value of As, Cd and Cu were 0.45, 0.39 and 0.06, respectively, indicating that the soil was only lightly polluted by these heavy metals. Håkanson single potential ecological risk index followed the order: Cd > As > Cu > Pb > Ni > Cr > Zn. Cd with E(i) values of 59.10, had a medium potential for ecological risk,while As, Cr, Cu, Pb, Ni and Zn only had a light potential. Consequently, although As, Cd and Cu were the major heavy metals with potential ecological risk for surface soil pollution in the draw-down areas in Zhongxian County, the Three Gorges Reservoir.

  18. Bioremediation and detoxification of hydrocarbon pollutants in soil

    International Nuclear Information System (INIS)

    Wang, Xiao Ping.

    1991-01-01

    As a cleanup alterative, the bioremediation potential of soil, contaminated by spills of three medium petroleum distillates, jet fuel heating oil (No. 2 fuel oil) and diesel fuel was evaluated in controlled-temperature laboratory soil columns and in outdoor lysimeters. Solvent extraction followed by gas chromatography (GC) was used routinely for analysis of fuel residues. Occasionally, class separation and GC-mass spectrometry (GC-MS) were also used in residue characterization. The decrease in toxic residues was evaluated by Microtox and Ames tests. Seed germination and plant growth bioassays were also performed. Persistence and toxicity of the fuels increased in the order of jet fuel < heating oil < diesel fuel. Bioremediation consisting of liming, fertilization and tilling decreased the half-lives of the pollutants in soil by a factor of 2-3. Biodegradation was faster at 27C than at 17 or 37C, but hydrocarbon concentration and soil quality had only modest influence on biodegradation rates and did not preclude successful bioremediation of these contaminated soils within one growing season. Microbial activity measurements by the fluorescein diacetate hydrolysis assay confirmed that microbial activity was the principal force in hydrocarbon elimination. Bioremediation was highly effective in eliminating also the polycyclic aromatic components of diesel fuel. The bioremediation and detoxification of fuel-contaminated soil was corroborated by Microtox, Ames and plant growth bioassays

  19. Toxicity of a metal(loid)-polluted agricultural soil to Enchytraeus crypticus changes under a global warming perspective: Variations in air temperature and soil moisture content.

    Science.gov (United States)

    González-Alcaraz, M Nazaret; van Gestel, Cornelis A M

    2016-12-15

    This study aimed to assess how the current global warming perspective, with increasing air temperature (20°C vs. 25°C) and decreasing soil moisture content (50% vs. 30% of the soil water holding capacity, WHC), affected the toxicity of a metal(loid)-polluted agricultural soil to Enchytraeus crypticus. Enchytraeids were exposed for 21d to a dilution series of the agricultural soil with Lufa 2.2 control soil under four climate situations: 20°C+50% WHC (standard conditions), 20°C+30% WHC, 25°C+50% WHC, and 25°C+30% WHC. Survival, reproduction and bioaccumulation of As, Cd, Co, Cu, Fe, Mn, Ni, Pb and Zn were obtained as endpoints. Reproduction was more sensitive to both climate factors and metal(loid) pollution. High soil salinity (electrical conductivity~3dSm -1 ) and clay texture, even without the presence of high metal(loid) concentrations, affected enchytraeid performance especially at drier conditions (≥80% reduction in reproduction). The toxicity of the agricultural soil increased at drier conditions (10% reduction in EC10 and EC50 values for the effect on enchytraeid reproduction). Changes in enchytraeid performance were accompanied by changes in As, Fe, Mn, Pb and Zn bioaccumulation, with lower body concentrations at drier conditions probably due to greater competition with soluble salts in the case of Fe, Mn, Pb and Zn. This study shows that apart from high metal(loid) concentrations other soil properties (e.g. salinity and texture) may be partially responsible for the toxicity of metal(loid)-polluted soils to soil invertebrates, especially under changing climate conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Distribution of Heavy Metal Pollution in Surface Soil Samples in China: A Graphical Review.

    Science.gov (United States)

    Duan, Qiannan; Lee, Jianchao; Liu, Yansong; Chen, Han; Hu, Huanyu

    2016-09-01

    Soil pollution in China is one of most wide and severe in the world. Although environmental researchers are well aware of the acuteness of soil pollution in China, a precise and comprehensive mapping system of soil pollution has never been released. By compiling, integrating and processing nearly a decade of soil pollution data, we have created cornerstone maps that illustrate the distribution and concentration of cadmium, lead, zinc, arsenic, copper and chromium in surficial soil across the nation. These summarized maps and the integrated data provide precise geographic coordinates and heavy metal concentrations; they are also the first ones to provide such thorough and comprehensive details about heavy metal soil pollution in China. In this study, we focus on some of the most polluted areas to illustrate the severity of this pressing environmental problem and demonstrate that most developed and populous areas have been subjected to heavy metal pollution.

  1. Phytoextraction and estimating optimal time for remediation of Cd-contaminated soils by Spinach

    OpenAIRE

    Somayyeh Eisazadeh Lazarjan; safoora asadi kapourchal; Mehdi Homaee

    2016-01-01

    The so-called phytoextraction in which hyperaccumulator plants are used to remediate the contaminated soils is proven to be an efficient method. The objective of this study was to investigate the capability of Spinach for phytoremediation of cadmium from Cd-contaminated soils and determine the efficiency extent of spinach for phytoremediation. For this purpose, a randomized block experimental design whit five treatments including 0, 15, 30, 60 and 120 mg Cd/ kg soil and three replications was...

  2. Extreme pollution of soils by emissions of the copper-nickel industrial complex in the Kola Peninsula

    Science.gov (United States)

    Kashulina, G. M.

    2017-07-01

    The distribution of the total Ni, Cu, Co, Cd, Pb, and Zn contents was studied in the soil profiles of six catenas in the zone subjected to emissions of the copper-nickel industrial complex, which is the largest source of SO2 and heavy metals in northern Europe. The results show that, at present, the concentrations of Ni and Cu in the upper organic soil horizons in the impact zone reach extreme levels of 9000 and 6000 mg/kg, respectively. Under conditions of the long-term intense multi-element industrial emissions, the modern levels of the accumulation of polluting substances in soils greatly depend on the indirect factors, such as the degree of the technogenic degradation of soils with the loss of a significant part of soil organic matter, the reaching of threshold saturation of the topsoil with polluting metals, and competitive relationships between chemical elements. The state of the ecosystems in the impact zone varied greatly and did not always agree with the contents of the main metals-pollutants in the soils. The moisture conditions determined by the landscape position affected significantly the resistance of the ecosystems to emissions.

  3. Toxicokinetics of metals in the earthworm Lumbricus rubellus exposed to natural polluted soils – relevance of laboratory tests to the field situation

    NARCIS (Netherlands)

    Giska, I.; van Gestel, C.A.M.; Skip, B.; Laskowski, R.

    2014-01-01

    The aim of this study was to estimate the bioavailability of essential (Zn, Cu) and non-essential metals (Cd, Pb) to the earthworm Lumbricus rubellus exposed to soils originating from a gradient of metal pollution in Southern Poland. Metal uptake and elimination kinetics were determined and related

  4. Assessing soil heavy metal pollution in the water-level-fluctuation zone of the Three Gorges Reservoir, China.

    Science.gov (United States)

    Ye, Chen; Li, Siyue; Zhang, Yulong; Zhang, Quanfa

    2011-07-15

    The water-level-fluctuation zone (WLFZ) between the elevations of 145-175 m in China's Three Gorges Reservoir has experienced a novel hydrological regime with half a year (May-September) exposed in summer and another half (October-April) submerged in winter. In September 2008 (before submergence) and June 2009 (after submergence), soil samples were collected in 12 sites in the WLFZ and heavy metals (Hg, As, Cr, Cd, Pb, Cu, Zn, Fe, and Mn) were determined. Enrichment factor (EF), factor analysis (FA), and factor analysis-multiple linear regression (FA-MLR) were employed for heavy metal pollution assessment, source identification, and source apportionment, respectively. Results demonstrate spatial variability in heavy metals before and after submergence and elements of As, Cd, Pb, Cu, and Zn are higher in the upper and low reaches. FA and FA-MLR reveal that As and Cd are the primary pollutants before submergence, and over 45% of As originates from domestic sewage and 59% of Cd from industrial wastes. After submergence, the major contaminants are Hg, Cd, and Pb, and traffic exhaust contributes approximately 81% to Hg and industrial effluent accounts about 36% and 73% for Cd and Pb, respectively. Our results suggest that increased shipping and industrial wastes have deposited large amounts of heavy metals which have been accumulated in the WLFZ during submergence period. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Immobilization of Pb, Cd, and Zn in a contaminated soil using eggshell and banana stem amendments: metal leachability and a sequential extraction study.

    Science.gov (United States)

    Ashrafi, Mehrnaz; Mohamad, Sharifah; Yusoff, Ismail; Shahul Hamid, Fauziah

    2015-01-01

    Heavy-metal-contaminated soil is one of the major environmental pollution issues all over the world. In this study, two low-cost amendments, inorganic eggshell and organic banana stem, were applied to slightly alkaline soil for the purpose of in situ immobilization of Pb, Cd, and Zn. The artificially metal-contaminated soil was treated with 5% eggshell or 10% banana stem. To simulate the rainfall conditions, a metal leaching experiment for a period of 12 weeks was designed, and the total concentrations of the metals in the leachates were determined every 2 weeks. The results from the metal leaching analysis revealed that eggshell amendment generally reduced the concentrations of Pb, Cd, and Zn in the leachates, whereas banana stem amendment was effective only on the reduction of Cd concentration in the leachates. A sequential extraction analysis was carried out at the end of the experiment to find out the speciation of the heavy metals in the amended soils. Eggshell amendment notably decreased mobility of Pb, Cd, and Zn in the soil by transforming their readily available forms to less accessible fractions. Banana stem amendment also reduced exchangeable form of Cd and increased its residual form in the soil.

  6. Heavy metals in soils of Hechuan County in the upper Yangtze (SW China): Comparative pollution assessment using multiple indices with high-spatial-resolution sampling.

    Science.gov (United States)

    Ni, Maofei; Mao, Rong; Jia, Zhongmin; Dong, Ruozhu; Li, Siyue

    2018-02-01

    In order to assess heavy metals (HMs) in soils of the upper Yangtze Basin, a very high-spatial-resolution sampling (582 soil samples) was conducted from Hechuan County, an important agricultural practice area in the Southwest China. Multiple indices including geoaccumulation index (I geo ), enrichment factor (EF), sediment pollution index (SPI) and risk index (RI), as well as multivariate statistics were employed for pollution assessment and source identification of HMs in soils. Our results demonstrated that the averages of eight HMs decreased in the following order: Zn (82.8 ± 15.9) > Cr (71.6 ± 12.2) > Ni (32.1 ± 9.89) > Pb (27.6 ± 13.8) > Cu (25.9 ± 11.8) > As (5.48 ± 3.42) > Cd (0.30 ± 0.077) > Hg (0.082 ± 0.092). Averages of HMs except Cd were lower than threshold value of Environmental Quality Standard for Soils, while 43% of total samples had Cd concentration exceeding the national standard, 1% of samples for Hg and 5% samples for Ni, moreover, Cd and Hg averages were much higher than their background levels. I geo and EF indicated that their levels decreased as follows: Cd > Hg > Zn > Pb > Ni > Cu > Cr > As, with moderate enrichments of Cd and Hg. RI indicated that 61.7% of all samples showed moderate risk, while 6.5% of samples with greater than considerable risk due to human activities should be paid more attention. Multivariate analysis showed lithogenic source of Cu, Cr, Ni and Zn, while Cd and Hg were largely contributed by anthropogenic activities such as agricultural practices. Our study would be helpful for improving soil environmental quality in SW, China, as well as supplying modern approaches for other areas with soil HM pollution. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Phytoextraction and estimating optimal time for remediation of Cd-contaminated soils by Spinach

    Directory of Open Access Journals (Sweden)

    Somayyeh Eisazadeh Lazarjan

    2016-05-01

    Full Text Available The so-called phytoextraction in which hyperaccumulator plants are used to remediate the contaminated soils is proven to be an efficient method. The objective of this study was to investigate the capability of Spinach for phytoremediation of cadmium from Cd-contaminated soils and determine the efficiency extent of spinach for phytoremediation. For this purpose, a randomized block experimental design whit five treatments including 0, 15, 30, 60 and 120 mg Cd/ kg soil and three replications was established in the greenhouse. After contamination the soils with different levels of cadmium, spinach seeds were planted. When plants were fully developed, plants were harvested and their cadmium contents in shoot and roots as well as the soil-cadmium were measured. The results indicated that by increasing Cd concentration in soil, the major Cd accumulation was occurred in the roots rather than shoots. Maximum cadmium concentration within the shoots and roots was 73.7 and 75.86 mg/kg soil, respectively. According to Spinach ability to absorb high concentration of cadmium in the root zone and its high biomass and capability of Cadmium accumulation in shoots, Spinach can be used as hyperaccumulator plant to remediate cadmium from Cd-contaminated soils. But, according to minimum remediation time and maximum dry matter for the 30 mg Cd/ kg soil, maximum Cd extracted by shoots in hectare/year was in 30 mg Cd/ kg soil. It can be concluded that Spinach is a suitable plant for phytoremediation of slightly and to moderately cadmium contaminated soils.

  8. Myco-Flora of a Kerosene-Polluted Soil in Nigeria | WEMEDO ...

    African Journals Online (AJOL)

    The myco-flora of a Kerosene-polluted soil was investigated. Soil samples collected from a fallow patch of land were polluted with 90 ml, 180 ml, and 270 ml concentrations of kerosene. The 0 ml (untreated soil) served as control. Cultivation of the organisms was done on potato dextrose agar (PDA) after 2 days, 7 days and ...

  9. Soil pollution from motor car emissions in the highest region of the Tauern mountains autobahn

    International Nuclear Information System (INIS)

    Kasperowski, E.; Frank, E.

    1990-01-01

    In a pilot study, pollutant loads from motor traffic were investigated and quantified in soils and grassland near the autobahn. Near the motorway, increased concentrations of inorganic and organic pollutants were found, depending on distance, both in soil and in grassland. The decreased soil life is also attributed to this. (orig.) [de

  10. The Effect of Pollination on Cd Phytoextraction From Soil by Maize (Zea mays L.).

    Science.gov (United States)

    Xu, Wending; Lu, Guining; Wang, Rui; Guo, Chuling; Liao, Changjun; Yi, Xiaoyun; Dang, Zhi

    2015-01-01

    A pot experiment was conducted to investigate the effects of pollination on cadmium (Cd) phytoextraction from soil by mature maize plants. The results showed that the unpollinated maize plants accumulated 50% more Cd than that of the pollinated plants, even though the dry weight of the former plants was 15% less than that of the latter plants. The Cd accumulation in root and leaf of the unpollinated maize plant was 0.47 and 0.89 times higher than that of the pollinated plant, respectively. The Cd concentration in the cob was significantly decreased because of pollination. Preventing pollination is a promising approach for enhancing the effectiveness of phytoextraction in Cd-contaminated soils by maize. This study suggested that in low Cd-contaminated soil pollination should be encouraged because accumulation of Cd in maize grains is very little and maize seeds can bring farmers economic benefits, while in high Cd-contaminated soil, inhibition of pollination can be applied to enhance phytoextraction of Cd from soil by maize plant.

  11. Cadmium accumulation and tolerance of Macleaya cordata: a newly potential plant for sustainable phytoremediation in Cd-contaminated soil.

    Science.gov (United States)

    Nie, Jian; Liu, Yunguo; Zeng, Guangming; Zheng, Bohong; Tan, Xiaofei; Liu, Huan; Xie, Jieli; Gan, Chao; Liu, Wei

    2016-05-01

    Heavy metal pollution is a major concern of the public due to their threats to the safety of food chains. A 60-day pot experiment was conducted using Macleaya cordata as plant material to investigate the phytoremediation potential and anti-oxidative responses of M. cordata under different Cd stress. Significant growth inhibition phenomenon and toxic symptoms were not detected in the experiment. The high biomass of the plant provided high accumulation capacity for Cd with an average dry weight of 3.6 g. The maximum extraction amount of Cd was 393 μg·plant(-1), suggesting that this species had potential for phytoremediation of Cd-contaminated soil. A slight increase of chlorophyll (CHL) content was observed in Cd10 treatment. The plant was confirmed to have relatively high tolerance to the Cd stress on the basis of tolerance indexes (TI), relative water content, and CHLa/CHLb ratio. M. cordata could maintain high level of superoxide dismutase (SOD) activity under Cd stress, indicating strong tolerance capacity for reactive oxygen species (ROS) in plant cells. Catalase (CAT) activity show a certain range of decline in the experiment compare to the control. And peroxidase (POD) activity in leaves changed irregularly when compared to the control. The malondialdehyde (MDA) content increased as Cd concentration elevated compared to the control. In addition, as an inedible crop with relatively high economic value, M. cordata have shown the advantage of high biomass and high tolerance under Cd stress, which can provide a new plant resource for sustainable phytoremediation.

  12. Characterization of Microorganisms Isolated from Petroleum Hydrocarbon Polluted Soil

    Directory of Open Access Journals (Sweden)

    Adriana Criste

    2016-02-01

    Full Text Available Bioremediation has received a great deal of attention, and bacteria isolated from polluted soil can be usedin that process. In this study, we performed an evaluation of the physiological groups of microorganisms fromsoil contaminated with petroleum. Bacterial strains were isolated from contaminated soil using the selectiveenrichment technique. Minimal Salt Media was used for serial dilutions to determine viable cell count. Thenumber of total viable cells and different types of microorganisms in the original sample was determined by serialdilution, agar plating procedure using selective media. The plates were incubated at 300C for 24-72 hours. Distinctcolonies growing on each plate were selected, and stored at freezing temperatures. The bacterial colonies werethen identified by Gram staining and biochemical tests. Following our research, it was observed that although thetotal microbial load of soil is relatively close in value, there are differences regarding the physiological group ofmicroorganisms. In the oil contaminated soil sample the largest group of microorganisms was the nitrous nitrifyingbacteria followed by nitrate bacteria. All bacterial strains that were isolated from soil samples contaminated withhydrocarbons but also the Pseudomonas putida and Bacillus subtillis strains can use diesel fuel as a food source.With the increase of diesel fuel concentration from culture medium, the majority of the bacterial strains that wereused in our experiments showed an increased value of absorbance. This fact suggests that these strains can be usedin bioremediation processes.

  13. Buffering capacity: its relevance in soil and water pollution

    Energy Technology Data Exchange (ETDEWEB)

    Stigliani, W.M. [University of Northern Iowa, Cedar Falls (United States)

    1996-02-01

    Buffering capacities in soils are essential for neutralizing or immobilizing inputs of acids and heavy metals. There are four major buffering regimes, each of which operates in a defined pH range. When the rate of pollutant inputs exceeds the rate of natural replenishment of the buffer in a specific regime, the supply of buffer will be exhausted over time, and the soil may switch to a regime at lower pH. As the pH of the soil declines, so does its capacity to immobilize heavy metals. If the soil initially has a moderately high buffering capacity, the time scale before exhaustion is on the order of decades to a century. Over this time there may be no observable environmental effects. When the effects do become obvious, it may be too late to reverse the damage. The importance of buffering capacity as a valued environmental resource must be recognized, and its preservation must be a major component of long-term soil protection policies. (Author). 17 refs., 6 figs., 1 tab.

  14. Bioremediation of a pesticide polluted soil: Case DDT

    International Nuclear Information System (INIS)

    Betancur Corredor, Bibiana; Pino, Nancy; Penuela, Gustavo A; Cardona Gallo, Santiago

    2013-01-01

    1,1,1-trichloro-2,2 bis (p-chlorophenyl) ethane (DDT) has been used since the Second World War to control insect-borne diseases in humans and domestic animals. The use of these organochlorine insecticides has been banned in most countries because of its persistence in the environment, biomagnification and potential susceptibility to toxicity to higher animals. Bioremediation involves the use of microorganisms to degrade organic contaminants in the environment, transforming them into simpler and less dangerous, even harmless compounds. This decontamination strategy has low costs, and wide public acceptance, also it can take place on the site. Compared to other methods, bioremediation is a more promising and less expensive to eliminate contaminants in soil and water. In soil, compounds such as DDT, chlorinated biphenyls can be partially biodegraded by a group of aerobic bacteria that cometabolize the contaminant. The bioavailability of pollutants may be enhanced by treating the soil in the presence of contaminant mobilizing agents such as surfactants. In this review we discuss the different strategies for bioremediation of soil contaminated with DDT, including mechanisms and degradation pathways. The application of these techniques in contaminated soil is also described. This review also discusses which is the best strategy for bioremediation of DDT.

  15. Changes in metal mobility assessed by EDTA kinetic extraction in three polluted soils after repeated phytoremediation using a cadmium/zinc hyperaccumulator.

    Science.gov (United States)

    Li, Zhu; Wu, Longhua; Luo, Yongming; Christie, Peter

    2018-03-01

    Phytoextraction is one of the most promising technologies for the decontamination of metal-polluted agricultural soils. Effects of repeated phytoextraction by the cadmium (Cd)/zinc (Zn) hyperaccumulator Sedum plumbizincicola on metal (Cd, Zn, copper (Cu) and lead (Pb)) mobility were investigated in three contaminated soils with contrasting properties. EDTA kinetic extraction and the two first-order reactions model showed advantages in the assessment of soil metal mobility and clearly discriminated changes in metal fractions induced by phytoextraction. Repeated phytoextraction led to large decreases in readily labile (Q 1 0 ) and less labile (Q 2 0 ) fractions of Cd and Zn in all three soils with the sole exception of an increase in the Q 2 0 of Zn in the highly polluted soil. However, Q 1 0 fractions of soil Cu and Pb showed apparent increases with the sole exception of Pb in the acid polluted soil but showed a higher desorption rate constant (k 1 ). Furthermore, S. plumbizincicola decreased the non-labile fraction (Q 3 0 ) of all metals tested, indicating that the hyperaccumulator can redistribute soil metals from non-labile to labile fractions. This suggests that phytoextraction decreased the mobility of the metals hyperaccumulated by the plant (Cd and Zn) but increased the mobility of the metals not hyperaccumulated (Cu and Pb). Thus, phytoextraction of soils contaminated with mixtures of metals must be performed carefully because of potential increases in the mobility of non-hyperaccumulated metals in the soil and the consequent environmental risks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Response of soil microbial activity and biodiversity in soils polluted with different concentrations of cypermethrin insecticide.

    Science.gov (United States)

    Tejada, Manuel; García, Carlos; Hernández, Teresa; Gómez, Isidoro

    2015-07-01

    We performed a laboratory study into the effect of cypermethrin insecticide applied to different concentrations on biological properties in two soils [Typic Xerofluvent (soil A) and Xerollic Calciorthid (soil B)]. Two kg of each soil were polluted with cypermethrin at a rate of 60, 300, 600, and 1,200 g ha(-1) (C1, C2, C3, and C4 treatments). A nonpolluted soil was used as a control (C0 treatment). For all treatments and each experimental soil, soil dehydrogenase, urease, β-glucosidase, phosphatase, and arylsulphatase activities and soil microbial community were analysed by phospholipid fatty acids, which were measured at six incubation times (3, 7, 15, 30, 60, and 90 days). The behavior of the enzymatic activities and microbial population were dependent on the dose of insecticide applied to the soil. Compared with the C0 treatment, in soil A, the maximum inhibition of the enzymatic activities was at 15, 30, 45, and 90 days for the C1, C2, C3, and C4 treatments, respectively. However, in soil B, the maximum inhibition occurred at 7, 15, 30, and 45 days for the C1, C2, C3, and C4 treatments, respectively. These results suggest that the cypermethrin insecticide caused a negative effect on soil enzymatic activities and microbial diversity. This negative impact was greater when a greater dose of insecticide was used; this impact was also greater in soil with lower organic matter content. For both soils, and from these respective days onward, the enzymatic activities and microbial populations progressively increased by the end of the experimental period. This is possibly due to the fact that the insecticide or its breakdown products and killed microbial cells, subsequently killed by the insecticide, are being used as a source of energy or as a carbon source for the surviving microorganisms for cell proliferation.

  17. Leaching Behavior of Heavy Metals and Transformation of Their Speciation in Polluted Soil Receiving Simulated Acid Rain

    Science.gov (United States)

    Zheng, Shun-an; Zheng, Xiangqun; Chen, Chun

    2012-01-01

    Heavy metals that leach from contaminated soils under acid rain are of increasing concern. In this study, simulated acid rain (SAR) was pumped through columns of artificially contaminated purple soil. Column leaching tests and sequential extraction were conducted for the heavy metals Cu, Pb, Cd, and Zn to determine the extent of their leaching as well as to examine the transformation of their speciation in the artificially contaminated soil columns. Results showed that the maximum leachate concentrations of Cu, Pb, Cd, and Zn were less than those specified in the Chinese Quality Standards for Groundwater (Grade IV), thereby suggesting that the heavy metals that leached from the polluted purple soil receiving acid rain may not pose as risks to water quality. Most of the Pb and Cd leachate concentrations were below their detection limits. By contrast, higher Cu and Zn leachate concentrations were found because they were released by the soil in larger amounts as compared with those of Pb and Cd. The differences in the Cu and Zn leachate concentrations between the controls (SAR at pH 5.6) and the treatments (SAR at pH 3.0 and 4.5) were significant. Similar trends were observed in the total leached amounts of Cu and Zn. The proportions of Cu, Pb, Cd, and Zn in the EXC and OX fractions were generally increased after the leaching experiment at three pH levels, whereas those of the RES, OM, and CAR fractions were slightly decreased. Acid rain favors the leaching of heavy metals from the contaminated purple soil and makes the heavy metal fractions become more labile. Moreover, a pH decrease from 5.6 to 3.0 significantly enhanced such effects. PMID:23185399

  18. Heavy metal (Pb, Cu, Zn and Cd content in wine produced from grape cultivar Mavrud, grown in an industrially polluted region

    Directory of Open Access Journals (Sweden)

    Violina Angelova

    1999-09-01

    Full Text Available The investigation was carried out in the period 1991-1993 with cv. Mavrud, grown in the region with a major industrial pollutant the Non-Ferrous-Metal Works (NFMW and a region with no industrial pollutants (as a control. The heavy metal content in soil, grapes and wine was determined. Most of the heavy metals in the grapes precipitate during fermentation into the sediments, which is the reason for their significantly lower content in the wine. Water washing of grape before processing leads to about 2 time decrease in the Pb, Cu, Zn and Cd contents of wine. The pre-washing of grapes does not lead to any quality deterioration in the wine produced. The amounts of Cu, Zn and Cd in the wine from cv. Mavrud, grown in the region of the NFMW-Plovdiv, are lower than the maximum admissible levels, while the Pb content exceeds them about two times.

  19. About petroleum-chemical soil pollution and their ecological consequences

    International Nuclear Information System (INIS)

    Faizov, K.Sh; Asanbaev, I.K.

    1997-01-01

    It is reported, that in Kazakhstan 20-25 million t of petroleum have mined every year, 90 % of them are in desert areas of Atyrau and Mangistau regions. There are 160 petroleum and gas deposits on different rate of mastering. In near-time outlook the mastering of richest petroleum stocks in the Caspian Sea shelf zone (3.5 billion t) and the Perm oils is planned, area of petroleum-gas regions will be increased up to 1,7 million km 2 , petroleum production will be increased to up 70 million t in 2010. Influence of pollution by petroleum on genetic properties of soils and its ecological consequences as well as issues of rehabilitation of polluted soils with help carbon-oxidation microorganisms are considered. It is reported, that there are cultures of microbes-destructors for hydrocarbon raw materials are able effectively to utilize raw petroleum, gasoline and diesel fuel (up 94-98 %) recommended by Kazakhstan microbiologists. The Munajbak microbe preparation for water and soil purification is able to utilize petroleum on 31-36 %

  20. Bioaccumulation in Porcellio scaber (Crustacea, Isopoda) as a measure of the EDTA remediation efficiency of metal-polluted soil

    International Nuclear Information System (INIS)

    Udovic, Metka; Drobne, Damjana; Lestan, Domen

    2009-01-01

    Leaching using EDTA applied to a Pb, Zn and Cd polluted soil significantly reduced soil metal concentrations and the pool of metals in labile soil fractions. Metal mobility (Toxicity Characteristic Leaching Procedure), phytoavailability (diethylenetriaminepentaacetic acid extraction) and human oral-bioavailability (Physiologically Based Extraction Test) were reduced by 85-92%, 68-91% and 88-95%, respectively. The metal accumulation capacity of the terrestrial isopod Porcellio scaber (Crustacea) was used as in vivo assay of metal bioavailability, before and after soil remediation. After feeding on metal contaminated soil for two weeks, P. scaber accumulated Pb, Zn and Cd in a concentration dependent manner. The amounts of accumulated metals were, however, higher than expected on the basis of extraction (in vitro) tests. The combined results of chemical extractions and the in vivo test with P. scaber provide a more relevant picture of the availability stripping of metals after soil remediation. - Bioaccumulation tests with Porcellio scaber isopods are proposed as a supplement to chemical extraction in assessing metal bioavailability before and after soil remediation.

  1. Effect of soil amendments and crop varieties on the amelioration of heavy metal uptake into crops grown on polluted soils of Bangladesh

    International Nuclear Information System (INIS)

    Chamon, A.S.

    2000-11-01

    Bangladesh possesses many industrial sites, whereby wastes and effluents are directly discharged into the environment without any treatment. Agricultural areas are contaminated thereby and the food quality is impaired. Therefore, the aim of the present work was to develop simple and cost effective strategies to reduce soil-plant transfer of harmful substances. Three sites were selected in the vicinity of Dhaka city (Tongi pharmaceutical, Tejgaon industrial and Hazaribagh tannery area). Field and pot experiments were carried out with different varieties of field crops (rice, wheat and tomato) and different soil amendments (cowdung, city waste compost, oil cake, waterhyacinth, poultry litter, lime and red mud). At the site Tongi, pollutants mainly consists of organic compounds. The soil of Tejgaon is acidic (pH=5.7), contains high organic matter and elevated concentrations of Zn (685 mg/kg), Pb (136 mg/kg), and Cd (2.6 mg/kg). The Hazaribagh region is polluted by a highly elevated concentration of heavy metals, especially Cr (11000 mg/kg). The amendment by organic residues significantly improved harvested rice yield as well as the contents of heavy metals were partly reduced on Tongi soil. The different varieties of rice and wheat showed distinct differences in biomass yield and in heavy metal accumulation on three soils. The positive effect of lime application in reducing metal uptake by rice, wheat and tomato plants were observed on both Tejgaon and Hazaribagh soil, compared to the control. Red mud (ferric oxide) applied in small amounts, on Tejgaon and Hazaribagh soil, led to an increase in biomass production and improved yield for rice plants and to significant reductions of soil plant transfer for Zn, Ni, Cd and Cr. (author)

  2. Development of methods for remediation of artificial polluted soils and improvement of soils for ecologically clean agricultural production systems

    International Nuclear Information System (INIS)

    Bogachev, V.; Adrianova, G.; Zaitzev, V.; Kalinin, V.; Kovalenko, E.; Makeev, A.; Malikova, L.; Popov, Yu.; Savenkov, A.; Shnyakina, V.

    1996-01-01

    The purpose of the research: Development of methods for the remediation of artificial polluted soils and the improvement of polluted lands to ecologically clean agricultural production.The following tasks will be implemented in this project to achieve viable practical solutions: - To determine the priority pollutants, their ecological pathways, and sources of origin. - To form a supervised environmental monitoring data bank throughout the various geo system conditions. - To evaluate the degree of the bio geo system pollution and the influence on the health of the local human populations. - To establish agricultural plant tolerance levels to the priority pollutants. - To calculate the standard concentrations of the priority pollutants for main agricultural plant groups. - To develop a soil remediation methodology incorporating the structural, functional geo system features. - To establish a territory zone division methodology in consideration of the degree of component pollution, plant tolerance to pollutants, plant production conditions, and human health. - Scientific grounding of the soil remediation proposals and agricultural plant material introductions with soil pollution levels and relative plant tolerances to pollutants. Technological Means, Methods, and Approaches Final proposed solutions will be based upon geo system and ecosystem approaches and methodologies. The complex ecological valuation methods of the polluted territories will be used in this investigation. Also, laboratory culture in vitro, application work, and multi-factor field experiments will be conducted. The results will be statistically analyzed using appropriate methods. Expected Results Complex biogeochemical artificial province assessment according to primary pollutant concentrations. Development of agricultural plant tolerance levels relative to the priority pollutants. Assessment of newly introduced plant materials that may possess variable levels of pollution tolerance. Remediation

  3. Immobilization of leachable toxic soil pollutants by using oxidative enzymes

    International Nuclear Information System (INIS)

    Shannon, M.J.R.; Bartha, R.

    1988-01-01

    Screening of leachable toxic chemicals in a horseradish peroxidase-H 2 O 2 immobilization system established that immobilization was promising for most phenolic pollutants but not for benzoic acid, 2,6-dinitrocresol, or dibutyl phthalate. The treatment did not mobilize inherently nonmobile pollutants such as anilines and benzo[a]pyrene. In a separate study, an extracellular laccase in the culture filtrate of Geotrichum candidum was selected from five fungal enzymes evaluated as a cost-effective substitute for horseradish peroxidase. This enzyme was used in demonstrating the immobilization and subsequent fate of 14 C-labeled 4-methylphenol and 2,4-dichlorophenol in soil columns. When applied to Lakewood sand, 98.1% of 4-methylpheno was leached through with distilled water. Two days after immobilization treatment with the G. candidum culture filtrate, only 9.1% of the added 4-methylphenol was leached with the same volume of water. Of the more refractory test pollutant 2,4-dichlorophenol, 91.6% had leached at time zero and 48.5% had leached 1 day after the immobilization treatment. However, 2 weeks after immobilization, only 12.0% of the 2,4-dichlorophenol was leached compared with 61.7% from the control column that received no immobilization treatment. No remobilization of the bound pollutants was detected during 3- and 4-week incubation periods

  4. Pollution and health risk assessment of industrial and residential area based on metal and metalloids contents in soil and sediment samples from and around the petrochemical industry, Serbia

    Science.gov (United States)

    Relic, Dubravka; Sakan, Sanja; Andjelkovic, Ivan; Djordjevic, Dragana

    2017-04-01

    Within this study the investigation of pollution state of metal and metalloids contamination in soils and sediments samples of the petrochemical and nearby residential area is present. The pseudo-total concentrations of Ba, Cd, Co, Cu, Cr, Mn, Ni, Pb, V, Zn, As, Hg, and Se were monitored with ICP/OES. The pollution indices applied in this work, such as the enrichment factor, the pollution load index, the total enrichment factor, and the ecological risk index showed that some of the soil and sediment samples were highly polluted by Hg, Ba, Pb, Cd, Cr Cu and Zn. The highest pollution indices were calculated for Hg in samples from the petrochemical area: chloralkali plant, electrolysis factory, mercury disposal area, and in samples from the waste channel. The pollution indices of the samples from the residential area indicated that this area is not polluted by investigated elements. Besides the pollution indices, the metal and metalloids concentrations were used in the equations for calculating the health risk criteria. We calculate no carcinogenic and carcinogenic risks for the composite worker and residential people by usage adequate equations. In analyzed samples, the no carcinogenic risks were lower than 1. The highest values of carcinogenic risk were obtained in sediment samples from the waste channel within the petrochemical industry and the metal that mostly contributes to the highest carcinogenic risk is Cr. Correlation analysis of pollution indices and carcinogenic risks calculated from the residential area samples showed good correlations while this is not the case for an industrial area.

  5. Environmental pollution study by Hg, Pb, Cd, and Zn in Chetumal bay, Quintana Roo, Mexico

    International Nuclear Information System (INIS)

    Diaz Lopez, Cristina; Carrion Jimenez, Jose; Gonzales Bucio, Jose

    2006-01-01

    The environmental pollution by heavy metals in Chetumal Bay was studied, quantifying mercury, lead, cadmium and zinc concentrations in mussels tissue (Mytilopsis sallei) and sea sediments by collecting samples in two seasons of the year (drought and rainy). Moreover, determining the motion of Cd, Pb and Zn in sediments using a BCR's sequential extraction scheme and identifying the different mineral phases by X-ray diffraction. From this study, it was observed that the Pb, Cd and Zn concentrations were lower in mussels than sediments. However the concentrations profiles for these metals are similar in mussels and sediments. Statistical correlations from the results are presented and discussed. The results obtained are in good agreement with published values for polluted sediments

  6. Evaluation of statistical distributions to analyze the pollution of Cd and Pb in urban runoff.

    Science.gov (United States)

    Toranjian, Amin; Marofi, Safar

    2017-05-01

    Heavy metal pollution in urban runoff causes severe environmental damage. Identification of these pollutants and their statistical analysis is necessary to provide management guidelines. In this study, 45 continuous probability distribution functions were selected to fit the Cd and Pb data in the runoff events of an urban area during October 2014-May 2015. The sampling was conducted from the outlet of the city basin during seven precipitation events. For evaluation and ranking of the functions, we used the goodness of fit Kolmogorov-Smirnov and Anderson-Darling tests. The results of Cd analysis showed that Hyperbolic Secant, Wakeby and Log-Pearson 3 are suitable for frequency analysis of the event mean concentration (EMC), the instantaneous concentration series (ICS) and instantaneous concentration of each event (ICEE), respectively. In addition, the LP3, Wakeby and Generalized Extreme Value functions were chosen for the EMC, ICS and ICEE related to Pb contamination.

  7. Decontamination of polluted soils in the new Federal States

    International Nuclear Information System (INIS)

    Burkhardt, K.

    1993-01-01

    In the course of the privatisation of companies by the Treuhandanstalt (THA), there is a financial risk involved for the property user which is hard to estimate, should the suspicion arise that the property is contaminated with soil pollutants of older origin. Both the Federal Government and the States are prepared to meet some of the costs of the required decontamination treatment in the new Federal States if certain conditions are fulfilled. The necessary inspection and decontamination measures must, in many cases, be cleared with the Treuhandanstalt beforehand. The experiences of the Thuga AG in the inspection and decontamination of pollutants of older origin, especially in the new Federal States, is introduced here. (orig.) [de

  8. Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization.

    Science.gov (United States)

    Hu, Yuanan; Liu, Xueping; Bai, Jinmei; Shih, Kaimin; Zeng, Eddy Y; Cheng, Hefa

    2013-09-01

    Heavy metals in the surface soils from lands of six different use types in one of the world's most densely populated regions, which is also a major global manufacturing base, were analyzed to assess the impact of urbanization and industrialization on soil pollution. A total of 227 surface soil samples were collected and analyzed for major heavy metals (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, and Zn) by using microwave-assisted acid digestion and inductively coupled plasma-mass spectrometry (ICP-MS). Multivariate analysis combined with enrichment factors showed that surface soils from the region (>7.2 × 10(4) km(2)) had mean Cd, Cu, Zn, and As concentrations that were over two times higher than the background values, with Cd, Cu, and Zn clearly contributed by anthropogenic sources. Soil pollution by Pb was more widespread than the other heavy metals, which was contributed mostly by anthropogenic sources. The results also indicate that Mn, Co, Fe, Cr, and Ni in the surface soils were primarily derived from lithogenic sources, while Hg and As contents in the surface soils were controlled by both natural and anthropogenic sources. The pollution level and potential ecological risk of the surface soils both decreased in the order of: urban areas > waste disposal/treatment sites ∼ industrial areas > agricultural lands ∼ forest lands > water source protection areas. These results indicate the significant need for the development of pollution prevention and reduction strategies to reduce heavy metal pollution for regions undergoing fast industrialization and urbanization.

  9. The influence of humic substance on Cd accumulation of phytostabilizer Athyrium wardii (Hook.) grown in Cd-contaminated soils.

    Science.gov (United States)

    Zhan, Juan; Li, Tingxuan; Yu, Haiying; Zhang, Xizhou; Zhao, Li

    2016-09-01

    The application of organic amendments into heavy metal contaminated soil is considered as an environmentally friendly technique to promote the potential of phytoremediation. A pot experiment was carried out to evaluate the effect of humic substances on growth, cadmium (Cd) accumulation and phytostabilization potential of the mining ecotype (ME) and the corresponding non-mining ecotype (NME) of Athyrium wardii (Hook.) grown in Cd-contaminated soils. The addition of the humic substances demonstrated great promotion for the growth and Cd uptake of ME. Both plant biomass and Cd concentration significantly increased with the increasing application of the humic substances up to 100 g kg(-1), beyond which no significant change of underground part biomass and Cd concentrations in underground part of A. wardii was observed. The maximum Cd concentration in underground part of ME was 180 mg kg(-1) when 150 g kg(-1) humic substances were applied. The ME showed greater Cd accumulation capability in underground part (0.47-0.68 mg plant(-1)) than that of NME (0.27-0.45 mg plant(-1)). Increasing bioaccumulation coefficient (BCF) values of A. wardii was observed with increasing application of the humic substances. The BCF values of ME were higher than those of NME. However, the use of the humic substances exhibited little impact on translocation factors (TFs) of ME, and the TF values of ME were less than NME. Furthermore, the application of the humic substances improved the remediation factors (RFs) of A. wardii. The RF values in underground part of ME ranging from 0.73 to 0.91 % were apparently higher than those of NME. These results indicated that the humic substances can be a potential candidate for enhancing the phytostabilization of A. wardii grown in Cd-contaminated soils.

  10. Detection of heavy metal Cd in polluted fresh leafy vegetables by laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Yao, Mingyin; Yang, Hui; Huang, Lin; Chen, Tianbing; Rao, Gangfu; Liu, Muhua

    2017-05-10

    In seeking a novel method with the ability of green analysis in monitoring toxic heavy metals residue in fresh leafy vegetables, laser-induced breakdown spectroscopy (LIBS) was applied to prove its capability in performing this work. The spectra of fresh vegetable samples polluted in the lab were collected by optimized LIBS experimental setup, and the reference concentrations of cadmium (Cd) from samples were obtained by conventional atomic absorption spectroscopy after wet digestion. The direct calibration employing intensity of single Cd line and Cd concentration exposed the weakness of this calibration method. Furthermore, the accuracy of linear calibration can be improved a little by triple Cd lines as characteristic variables, especially after the spectra were pretreated. However, it is not enough in predicting Cd in samples. Therefore, partial least-squares regression (PLSR) was utilized to enhance the robustness of quantitative analysis. The results of the PLSR model showed that the prediction accuracy of the Cd target can meet the requirement of determination in food safety. This investigation presented that LIBS is a promising and emerging method in analyzing toxic compositions in agricultural products, especially combined with suitable chemometrics.

  11. Air pollution: Household soiling and consumer welfare losses

    Science.gov (United States)

    Watson, W.D.; Jaksch, J.A.

    1982-01-01

    This paper uses demand and supply functions for cleanliness to estimate household benefits from reduced particulate matter soiling. A demand curve for household cleanliness is estimated, based upon the assumption that households prefer more cleanliness to less. Empirical coefficients, related to particulate pollution levels, for shifting the cleanliness supply curve, are taken from available studies. Consumer welfare gains, aggregated across 123 SMSAs, from achieving the Federal primary particulate standard, are estimated to range from $0.9 to $3.2 million per year (1971 dollars). ?? 1982.

  12. Natural attenuation of hydrocarbon polluted soils in Mexico

    International Nuclear Information System (INIS)

    Fernandez-Linares, L.; Rojas-Avelizapa, N.; Roldan-Carrillo, T.; Islas-Ramirez, M.

    2009-01-01

    Crude oil and hydrocarbon by-proudcts are the most common pollutants in Mexico. In the last years, the two terms, contamination and remediation have being re-defined; also, based on both the scientific advancement and the human risk, the sustentability of remediation technologies and the definition of cleaning levels has been taking place. In this context, the Natural Attenuation of soils is a viable and low cost remediation choice, defined as the degradation of organic compounds without artificial stimulation, through microbial activity including physical processes, such as volatilization, dilution, sorption, and hydraulic dispersion. (Author)

  13. The possible use of soluble humic substances for remediation of heavy metal polluted soils

    DEFF Research Database (Denmark)

    Borggaard, Ole K.; Jensen, Julie Katrine; Holm, Peter Engelund

    2008-01-01

    Polluted soil is a common and serious environmental problem. While reliable methods exist for cleaning soil contaminated by organic compounds through degradation, remediation of heavy metal polluted soils awaits an appropriate solution. This is because heavy metals are nondegradable and generally....... Therefore, the potential of soluble natural humic substances (HS) to extract heavy metals from contaminated soils is tested as an environmental friendly substitute for EDTA. A strongly polluted urban soil and a moderately polluted agricultural soil were extracted at neutral pH in batch mode by three HS...... extraction. Heavy metal extraction with dissolved HS is compared with EDTA at the same concentration and sequential extraction has been performed to identify extracted pools. The results indicate a clear potential of using HS solutions for remediation of heavy metal polluted soils, which is fortunate...

  14. Ecological risk evaluation of polluted soils from Sasa mineral processing concentrator

    OpenAIRE

    Krstev, Boris; Golomeov, Blagoj; Golomeova, Mirjana; Krstev, Aleksandar

    2007-01-01

    The idea that the earth is a closed system and that soil, like other mediums, is polluted by human activities, is very recent, hardly thirty years old. The chief preoccupation has been with water pollution, a conviction that, sooner or later, all the pollutants found in water were the principal cause of the emergence of aquatic ecotoxicology. Yet, the existence of polluted soils has been cited since ancient times. Greek and Roman writers remarked that the contamination of water and air near m...

  15. Soil microbial communities as suitable bioindicators of trace metal pollution in agricultural volcanic soils

    Science.gov (United States)

    Parelho, Carolina; dos Santos Rodrigues, Armindo; do Carmo Barreto, Maria; Gonçalo Ferreira, Nuno; Garcia, Patrícia

    2015-04-01

    Summary: The biological, chemical and physical properties of soil confer unique characteristics that enhance or influence its overall biodiversity. The adaptive character of soil microbial communities (SMCs) to metal pollution allows discriminating soil health, since changes in microbial populations and activities may function as excellent indicators of soil pollutants. Volcanic soils are unique naturally fertile resources, extensively used for agricultural purposes and with particular physicochemical properties that may result in accumulation of toxic substances, such as trace metals (TM). In our previous works, we identified priority TM affecting agricultural Andosols under different agricultural land uses. Within this particular context, the objectives of this study were to (i) assess the effect of soil TM pollution in different agricultural systems (conventional, traditional and organic) on the following soil properties: microbial biomass carbon, basal soil respiration, metabolic quotient, enzymatic activities (β-glucosidase, acid phosphatase and dehydrogenase) and RNA to DNA ratio; and (ii) evaluate the impact of TM in the soil ecosystem using the integrated biomarker response (IBR) based on a set of biochemical responses of SMCs. This multi-biomarker approach will support the development of the "Trace Metal Footprint" for different agricultural land uses in volcanic soils. Methods: The study was conducted in S. Miguel Island (Azores, Portugal). Microbial biomass carbon was measured by chloroform-fumigation-incubation-assay (Vance et al., 1987). Basal respiration was determined by the Jenkinson & Powlson (1976) technique. Metabolic quotient was calculated as the ratio of basal respiration to microbial biomass C (Sparkling & West, 1988). The enzymatic activities of β-glucosidase and acid phosphatase were determined by the Dick et al. (1996) method and dehydrogenase activity by the Rossel et al. (1997) method. The RNA and DNA were co-extracted from the same

  16. Immobilization of Cadmium in a Cd-Spiked Soil by Different Kinds of Amendments

    Directory of Open Access Journals (Sweden)

    Mahboub Saffari

    2015-07-01

    Full Text Available    Chemical stabilization of heavy metals is one of the soil remediation methods based on the application amendments to reduce mobility of heavy metals. A laboratory study was conducted to investigate the influence of different kinds of amendments on cadmium (Cd stabilization in a Cd-spiked soil. The amendments were municipal solid waste compost (MSWC, Coal fly ash (CFA, rice husk biochars prepared at 300°C (B300 and 600°C (B600, zero valent iron (Fe0 and zero valent manganese (Mn0. The Cd-spiked soils were separately incubated with selected amendments at the rates of 2 and 5% (W/W for 90 days at 25 °C. Soil samples were extracted by EDTA for periods of 5 to 975min. In addition, sequential extraction was used as a suitable method for identification of chemical forms of Cd and their plant availability. The addition of amendments to soil had significant effects on desorption and chemical forms of Cd. Changes in Cd fractions and their conversion into less soluble forms were clear in all treated soils. The addition of amendments resulted in a significant reduction in mobility factor of Cd compared to the control treatment. Among all amendments tested, Fe0 was the most effective treatment in decreasing dynamic of Cd. Biphasic pattern of Cd desorption kinetic was fitted well by the model of two first-order reactions. In general, from the practical point of view, Fe0, MSWC and Mn0 treatments are effective in Cd immobilization, while application of  Fe0 at 5% (W/W was the best treatment for stabilization of Cd

  17. Heavy metal pollution in soil associated with a large-scale cyanidation gold mining region in southeast of Jilin, China.

    Science.gov (United States)

    Chen, Mo; Lu, Wenxi; Hou, Zeyu; Zhang, Yu; Jiang, Xue; Wu, Jichun

    2017-01-01

    Different gold mining and smelting processes can lead to distinctive heavy metal contamination patterns and results. This work examined heavy metal pollution from a large-scale cyanidation gold mining operation, which is distinguished from artisanal and small-scale amalgamation gold mining, in Jilin Province, China. A total of 20 samples including one background sample were collected from the surface of the mining area and the tailings pond in June 2013. These samples were analyzed for heavy metal concentrations and degree of pollution as well as sources of Cr, Cu, Zn, Pb, Ni, Cd, As, and Hg. The mean concentrations of Pb, Hg, and Cu (819.67, 0.12, and 46.92 mg kg -1 , respectively) in soil samples from the gold mine area exceeded local background values. The mean Hg content was less than the first-class standard of the Environmental Quality for Soils, which suggested that the cyanidation method is helpful for reducing Hg pollution. The geochemical accumulation index and enrichment factor results indicated clear signs that enrichment was present for Pb, Cu, and Hg, with the presence of serious Pb pollution and moderate presence to none of Hg and Cu pollution. Multivariate statistical analysis showed that there were three metal sources: (1) Pb, Cd, Cu, and As came from anthropogenic sources; (2) Cr and Zn were naturally occurring; whereas (3) Hg and Ni had a mix of anthropogenic and natural sources. Moreover, the tailings dam plays an important role in intercepting the tailings. Furthermore, the potential ecological risk assessment results showed that the study area poses a potentially strong risk to the ecological health. Furthermore, Pb and Hg (due to high concentration and high toxicity, respectively) are major pollutants on the risk index, and both Pb and Hg pollution should be of great concern at the Haigou gold mines in Jilin, China.

  18. Characteristics of current roadside pollution of soils in Upper Silesia

    Science.gov (United States)

    Wawer, M.; Szuszkiewicz, M.; Magiera, T.

    2012-04-01

    The aim of the study was qualitative recognition of contemporary roadside pollutants deposited on topsoils in areas located in close vicinity to roads with high traffic volume (main roads, ring roads). So far, the determination of pollutant content in soil samples has shown only the amount of pollutants deposited on soils over long time period, without the possibility to assess the quality changes in type of deposition and to determine the present structure of roadside pollution. Moreover, in many cases, it is difficult to distinguish roadside pollution from other industrial sources. In order to avoid this issue and recognize currently emergent threats of road traffic origin, three monitoring plots filled with quartz sand had been installed in Zabrze, Gliwice and Opole (Poland) close to arteries with high traffic volume. For installation of monitoring plots 7 cm of topsoil had been removed and replaced by boxes filled with clean quartz sand with known chemical composition and neutral magnetic properties (diamagnetic). This sand was treated as neutral matrix for the accumulation of traffic pollution. Results of chemical analyses of heavy metal contents and magnetic susceptibility measurements of removed topsoils have shown that the highest content of Fe, Mn, Zn, Pb, Cu, Cr and Ni were observed in Zabrze. Amount of Zn and Pb exceeded threshold values. Magnetic susceptibility values were also the highest in Zabrze. In all investigated areas magnetic susceptibility values and heavy metal contents decreased with the distance from the road. Measurements of sand from monitoring plots which were executed after 3, 6 and 12 months of exposure have shown that values of magnetic susceptibility have increased during these time periods. It is visible especially in surface layer of sand. Initially magnetic susceptibility value of quartz sand which was used as matrix after first year of exposure increased from 0,25 - 10-8 m3kg-1 to 300 in Zabrze, 50 in Gliwice and 30- 10-8 m3kg-1

  19. Can control of soil erosion mitigate water pollution by sediments?

    Science.gov (United States)

    Rickson, R J

    2014-01-15

    The detrimental impact of sediment and associated pollutants on water quality is widely acknowledged, with many watercourses in the UK failing to meet the standard of 'good ecological status'. Catchment sediment budgets show that hill slope erosion processes can be significant sources of waterborne sediment, with rates of erosion likely to increase given predicted future weather patterns. However, linking on-site erosion rates with off-site impacts is complicated because of the limited data on soil erosion rates in the UK and the dynamic nature of the source-pathway-receptor continuum over space and time. Even so, soil erosion control measures are designed to reduce sediment production (source) and mobilisation/transport (pathway) on hill slopes, with consequent mitigation of pollution incidents in watercourses (receptors). The purpose of this paper is to review the scientific evidence of the effectiveness of erosion control measures used in the UK to reduce sediment loads of hill slope origin in watercourses. Although over 73 soil erosion mitigation measures have been identified from the literature, empirical data on erosion control effectiveness are limited. Baseline comparisons for the 18 measures where data do exist reveal erosion control effectiveness is highly variable over time and between study locations. Given the limitations of the evidence base in terms of geographical coverage and duration of monitoring, performance of the different measures cannot be extrapolated to other areas. This uncertainty in effectiveness has implications for implementing erosion/sediment risk reduction policies, where quantified targets are stipulated, as is the case in the EU Freshwater Fish and draft Soil Framework Directives. Also, demonstrating technical effectiveness of erosion control measures alone will not encourage uptake by land managers: quantifying the costs and benefits of adopting erosion mitigation is equally important, but these are uncertain and difficult to

  20. Investigation of transformation of radionuclides in soils oil polluted

    International Nuclear Information System (INIS)

    Humbatov, F.Y.; Ahmedov, M.M.; Ibadov, N.A.; Balayev, V.S.

    2004-01-01

    Full text: Despite of constant improvement in view of last achievement of a science and technique the technological processes of oil production are accompanied by coming in environment a number of chemical substances - oil products, poly aromatic and aromatic hydrocarbons, salts of heavy metals, including soluble and insoluble compound of stable and radioactive isotopes of metals, various gases etc. Technological processes of production, transportation of crude oil and its complex processing is followed with essential pollution of soil by oil products, radioactive substances because of crude oil and grounds waters spillage. The problem of radioactive pollution of environment in oil-extracting sites and especially in old deposits of Apsheron peninsula, in particular, in oil fields of Surakhani and Balakhani by the various factors is rather urgent in Azerbaijan. On a whole, radioactive-ecological situation is defined by the quantitative contents of natural radionuclides, chemical structure of grounds waters and oil, and also accumulation of radioactive substances in pipelines and modular items as crystals radiobarits or calcium and magnesium salts. Systemic and complex research on this direction will allow creating the mechanism of radionuclides transformation in oil-contaminated soils. The condition of radioactive background of soil cover of oil field in Surakhani was studied in our researches. The soil samples taken from various depths of deposit are investigated. The quantities of total oil components, aliphatic and poly aromatic hydrocarbons, heavy metals and natural radionuclides are determined. The attempt is made to explain dependence of various meanings of carried out analyses on the depth of taken samples. In summary it is necessary to note, that the researches on more detailed study of influence of the factors on processes of accumulation and transformation natural radionuclides proceed. The systemic researches on this direction will allow securing of

  1. Effects of exogenous salinity (NaCl) gradient on Cd release in acidified contaminated brown soil

    Science.gov (United States)

    Zhang, Lina; Rong, Yong; Mao, Li; Gao, Zhiyuan; Liu, Xiaoyu; Dong, Zhicheng

    2018-02-01

    Taking acidified Cd contaminated brown soil in Yantai as the research object, based on different exogenous salinity (NaCl) gradient (0%, 0.3%, 0.6%, 0.9%, 1.5%, 2% and 5%), indoor simulation experiments of Cd release were carried out after field investigation. Results showed that there was a significantly positive relation (r>0.90) between Cd release concentration/amount/ratio and exogenous salt (NaCl). Besides, the more exogenous salt (NaCl) was added; maximum release concentration/amount of Cd appeared the earlier. It was found that exogenous salt (NaCl) addition could obviously promote Cd release from acidified Cd contaminated brown soil. It was believed that this could be mainly due to the cation exchange between Cd2+ and Na+, together with the dissociation and/or complexation between Cl- and Cd2+. In addition, available adsorption sites reduction by exchange base in soil causing Cd changed from solid state to soil solution was also a probable reason.

  2. Evaluation of phosphate fertilizers for the immobilization of Cd in contaminated soils.

    Directory of Open Access Journals (Sweden)

    Yin Yan

    Full Text Available A laboratory investigation was conducted to evaluate the efficiency of four phosphate fertilizers, including diammonium phosphate (DAP, potassium phosphate monobasic (MPP, calcium superphosphateon (SSP, and calcium phosphate tribasic (TCP, in terms of the toxicity and bioavailability of Cd in contaminated soils. The efficiency of immobilization was evaluated on the basis of two criteria: (a the reduction of extractable Cd concentration below the TCLP regulatory level and (b the Cd changes associated with specific operational soil fractions on the basis of sequential extraction data. Results showed that after 50 d immobilization, the extractable concentrations of Cd in DAP, MPP, SSP, and TCP treated soils decreased from 42.64 mg/kg (in the control to 23.86, 21.86, 33.89, and 35.59 mg/kg, respectively, with immobilization efficiency in the order of MPP > DAP > SSP > TCP. Results from the assessment of Cd speciation via the sequential extraction procedure revealed that the soluble exchangeable fraction of Cd in soils treated with phosphate fertilizers, especially TCP, was considerably reduced. In addition, the reduction was correspondingly related to the increase in the more stable forms of Cd, that is, the metal bound to manganese oxides and the metal bound to crystalline iron oxides. Treatment efficiency increased as the phosphate dose (according to the molar ratio of PO4/Cd increased. Immobilization was the most effective under the molar ratio of PO4/Cd at 4:1.

  3. Carcinogenicity of the environmental pollutants cyclopenteno-(cd)pyrene and cyclopentano(cd)pyrene in mouse skin

    Energy Technology Data Exchange (ETDEWEB)

    Cavalieri, E.; Rogan, E.; Toth, B.; Munhall, A.

    1981-01-01

    Cyclopenteno(cd)pyrene (CPEP) is a widespread environmental pollutant. This hydrocarbon and its 3,4-dihydro derivative, cyclopentano(cd)pyrene (CPAP), were tested on skin in a two-stage initiation-promotion experiment in CD-1 mice and by repeated application in Swiss mice. The biological effect of CPEP and CPAP was compared to that of benzo(a)-pyrene (BP). Nine-week-old female CD-1 mice in groups of 30 were treated every other day over a 20-day period at mini-dose levels of 0.18, 0.06 and 0.02 mumol of CPEP or CPAP in acetone. One group was treated with BP at the low mini-dose level. Initiation was followed by twice weekly application of tetradecanoyl phorbol acetate for 40 weeks. In the second experiments, nine-week-old female Swiss mice in groups of 30 were treated at dose levels of 1.8, 0.6 and 0.2 mumol CPEP or CPAP in acetone twice weekly for 30 weeks. One group was treated with BP at the low dose. CPAP was virtually inactive in both studies. In the initiation-promotion experiment CPEP was inactive at the low dose level, whereas BP exhibited significant tumorigenicity. At the medium and high doses CPEP showed weak, but statistically insignificant, tumorigenic activity. Repeated application of CPEP at the high, medium and low doses resulted in tumor incidences of 23, 37 and 57%, respectively. This reverse dose-response may be due to the relatively high cytotoxicity of CPEP, BP, which was compared to CPEP at the low dose, elicited tumors in 100% of the mice. Most of the CPEP-induced neoplasms were malignant and some metastasized to lungs and lymph nodes. The inactivity of CPAP suggests the carcinogenicity of CPEP is probably due to formation of the ultimate metabolite CPEP 3,4-oxide. In view of the abundance of CPEP in environmental and occupational pollutants, its moderately potent carcinogenicity may represent a potential health hazard.

  4. Peach leaf responses to soil and cement dust pollution.

    Science.gov (United States)

    Maletsika, Persefoni A; Nanos, George D; Stavroulakis, George G

    2015-10-01

    Dust pollution can negatively affect plant productivity in hot, dry and with high irradiance areas during summer. Soil or cement dust were applied on peach trees growing in a Mediterranean area with the above climatic characteristics. Soil and cement dust accumulation onto the leaves decreased the photosynthetically active radiation (PAR) available to the leaves without causing any shade effect. Soil and mainly cement dust deposition onto the leaves decreased stomatal conductance, photosynthetic and transpiration rates, and water use efficiency due possibly to stomatal blockage and other leaf cellular effects. In early autumn, rain events removed soil dust and leaf functions partly recovered, while cement dust created a crust partially remaining onto the leaves and causing more permanent stress. Leaf characteristics were differentially affected by the two dusts studied due to their different hydraulic properties. Leaf total chlorophyll decreased and total phenol content increased with dust accumulation late in the summer compared to control leaves due to intense oxidative stress. The two dusts did not cause serious metal imbalances to the leaves, except of lower leaf K content.

  5. Micro-spatial variation of soil metal pollution and plant recruitment near a copper smelter in Central Chile

    International Nuclear Information System (INIS)

    Ginocchio, Rosanna; Carvallo, Gaston; Toro, Ignacia; Bustamante, Elena; Silva, Yasna; Sepulveda, Nancy

    2004-01-01

    Soil chemical changes produced by metal smelters have mainly been studied on a large scale. In terms of plant survival, determination of small scale variability may be more important because less toxic microhabitats may represent safe sites for successful recruitment and thus for plant survival. Three dominant microhabitats (open spaces and areas below the canopy of Sphaeralcea obtusiloba and Baccharis linearis shrubs) were defined in a heavily polluted area near a copper smelter and characterised in terms of microclimate, general soil chemistry, total and extractable metal concentrations in the soil profile (A 0 horizon, 0-5 and 15-20 cm depth), and seedling densities. Results indicated a strong variability in microclimate and soil chemistry not only in the soil profile but also among microhabitats. Air/soil temperatures, radiation and wind speed were much lower under the canopy of shrubs, particularly during the plant growth season. Soil acidification was detected on top layers (0-5 cm depth) of all microhabitats while higher concentrations of N, Cu and Cd were detected on litter and top soil layers below shrubs when compared to open spaces; however, high organic matter content below shrubs decreased bioavailability of metals. Plant recruitment was concentrated under shrub canopies; this may be explained as a result of the nursery effect exerted by shrubs in terms of providing a more favourable microclimate, along with better soil conditions in terms of macronutrients and metal bioavailability. - Metal availability was different under shrub canopies than in open spaces

  6. Impact of metal pollution and Thlaspi caerulescens growth on soil microbial communities.

    NARCIS (Netherlands)

    Epelde, L.; Becerril, J.M.; Kowalchuk, G.A.; Deng, Y.; Zhou, J.; Garbisu, C.

    2010-01-01

    been proposed as indicators of soil functioning, making them potentially useful in evaluating the recovery of polluted soils via phytoremediation strategies. To evaluate microbial responses to metal phytoextraction using hyperaccumulators, a microcosm experiment was carried out to study the impacts

  7. Remediation of Wheat-Straw-Biochar on Petroleum-Polluted Soil

    Directory of Open Access Journals (Sweden)

    ZHU Wen-ying

    2014-06-01

    Full Text Available Biochar was made from wheat straw at 300 ℃ for 3, 6, 8 hours respectively. The productivity, pH, ash content and C, H, N content of these biochar were compared. The surface morphology of the 300 ℃-6 h biochar was characterized, and it was used to remediate the petroleum-polluted soil of Dagang oil field. Results showed that, as the extension of pyrolisis time, the productivity of biochar decreased, pH increased, ash content increased, H/C decreased. But productivity, pH, ash content and H/C changed significantly from 3 h to 6 h, unsignificantly from 6 h to 8 h. C content showed a downward trend after the first rise. After remediation of biochar for 14 and 28 days, the TPH degradation rate were 45.48% and 46.88% respectively, higher than control group. After 14 days remediation, content of naphthalene, acenaphthene, Benzo [a] anthracene, chrysene, Benzo [b] fluoranthene, Benzo [k] fluoranthene, Benzo [a] pyrene, Indene and [1,2,3-CD] pyrene were decreased to various degrees, with the Benzo [a] pyrene content decreased by 98.18%, and the degradation rate of other PAH higher than control group. After 28 days remediation however, content of these PAH showed a rising trend. It suggested that pyrolisis time had influence on biochar’ s characteristics, and 300 ℃-6 h biochar could be used to remediate petroleum-polluted soil.

  8. Pollution and restoration of soils; Consideraciones generales sobre la contaminacion y restauracion de suelos

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, D.; Plaza, C.; Polo, A.

    2002-07-01

    Soil contamination has received increasing attention because of its potential consequences for environmental and human health. Soil has a considerable storage and buffering capacity, which protects environment against pollutants. However, it can be exceeded so that remediation technologies are required. This paper approaches soil response to pollutants and available restoration techniques, as well as the legal regime of contaminated soils in Spain. (Author) 20 refs.

  9. Hybrid technologies for the remediation of Diesel fuel polluted soil

    Energy Technology Data Exchange (ETDEWEB)

    Pazos, M.; Alcantara, M.T.; Rosales, E.; Sanroman, M.A. [Department of Chemical Engineering, University of Vigo (Spain)

    2011-12-15

    Diesel fuel may be released into soil due to anthropogenic activities, such as accidental spills or leaks in underground storage tanks or pipelines. Since diesel fuel is mainly composed of hydrophobic organic compounds, it has low water solubility. Therefore, treating contaminated areas with conventional techniques is difficult. In this study, electrokinetic treatment of soil contaminated with diesel fuel was carried out. Two different hybrid approaches to pollutant removal were tested. A surfactant was used as a processing fluid during electrokinetic treatment to increase desorption and the solubility of diesel fuel. Additionally, a hybrid technology combining a Fenton reaction and electrokinetic remediation (EK-Fenton) was tested in an attempt to generate favorable in situ degradation of pollutants. The efficiency of each treatment was determined based on diesel fuel removal. After 30 days of treatment, the highest removal of diesel fuel was found to be achieved with the EK-Fenton process. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. [Environmental geochemical baseline of heavy metals in soils of the Ili river basin and pollution evaluation].

    Science.gov (United States)

    Zhao, Xin-Ru; Nasier, Telajin; Cheng, Yong-Yi; Zhan, Jiang-Yu; Yang, Jian-Hong

    2014-06-01

    Environmental geochemical baseline models of Cu, Zn, Pb, As, Hg were established by standardized method in the ehernozem, chestnut soil, sierozem and saline soil from the Ili river valley region. The theoretical baseline values were calculated. Baseline factor pollution index evaluation method, environmental background value evaluation method and heavy metal cleanliness evaluation method were used to compare soil pollution degrees. The baseline factor pollution index evaluation showed that As pollution was the most prominent among the four typical types of soils within the river basin, with 7.14%, 9.76%, 7.50% of sampling points in chernozem, chestnut soil and sierozem reached the heavy pollution, respectively. 7.32% of sampling points of chestnut soil reached the permitted heavy metal Pb pollution index in the chestnut soil. The variation extent of As and Pb was the largest, indicating large human disturbance. Environmental background value evaluation showed that As was the main pollution element, followed by Cu, Zn and Pb. Heavy metal cleanliness evaluation showed that Cu, Zn and Pb were better than cleanliness level 2 and Hg was the of cleanliness level 1 in all four types of soils. As showed moderate pollution in sierozem, and it was of cleanliness level 2 or better in chernozem, chestnut soil and saline-alkali soil. Comparing the three evaluation systems, the baseline factor pollution index evaluation more comprehensively reflected the geochemical migration characteristics of elements and the soil formation processes, and the pollution assessment could be specific to the sampling points. The environmental background value evaluation neglected the natural migration of heavy metals and the deposition process in the soil since it was established on the regional background values. The main purpose of the heavy metal cleanliness evaluation was to evaluate the safety degree of soil environment.

  11. Heavy metal pollution and ecological risk assessment of the paddy soils near a zinc-lead mining area in Hunan.

    Science.gov (United States)

    Lu, Sijin; Wang, Yeyao; Teng, Yanguo; Yu, Xuan

    2015-10-01

    Soil pollution by Cd, Hg, As, Pb, Cr, Cu, and Zn was characterized in the area of the mining and smelting of metal ores at Guiyang, northeast of Hunan Province. A total of 150 topsoil (0-20 cm) samples were collected in May 2012 with a nominal density of one sample per 4 km(2). High concentrations of heavy metals especially, Cd, Zn, and Pb were found in many of the samples taken from surrounding paddy soil, indicating a certain extent of spreading of heavy metal pollution. Sequential extraction technique and risk assessment code (RAC) were used to study the mobility of chemical forms of heavy metals in the soils and their ecological risk. The results reveal that Cd represents a high ecological risk due to its highest percentage of the exchangeable and carbonate fractions. The metals of Zn and Cu pose a medium risk, and the rest of the metals represent a low environmental risk. The range of the potential ecological risk of soil calculated by risk index (RI) was 123.5~2791.2 and revealed a considerable-high ecological risk in study area especially in the neighboring and surrounding the mining activities area. Additionally, cluster analyses suggested that metals such as Pb, As, Hg, Zn, and Cd could be from the same sources probably related to the acidic drainage and wind transport of dust. Cluster analysis also clearly distinguishes the samples with similar characteristics according to their spatial distribution. The results could be used during the ecological risk screening stage, in conjunction with total concentrations and metal fractionation values to better estimate ecological risk.

  12. Trichoderma reesei FS10-C enhances phytoremediation of Cd-contaminated soil by Sedum plumbizincicola and associated soil microbial activities

    Science.gov (United States)

    Teng, Ying; Luo, Yang; Ma, Wenting; Zhu, Lingjia; Ren, Wenjie; Luo, Yongming; Christie, Peter; Li, Zhengao

    2015-01-01

    This study aimed to explore the effects of Trichoderma reesei FS10-C on the phytoremediation of Cd-contaminated soil by the hyperaccumulator Sedum plumbizincicola and on soil fertility. The Cd tolerance of T. reesei FS10-C was characterized and then a pot experiment was conducted to investigate the growth and Cd uptake of S. plumbizincicola with the addition of inoculation agents in the presence and absence of T. reesei FS10-C. The results indicated that FS10-C possessed high Cd resistance (up to 300 mg L-1). All inoculation agents investigated enhanced plant shoot biomass by 6–53% of fresh weight and 16–61% of dry weight and Cd uptake by the shoots by 10–53% compared with the control. All inoculation agents also played critical roles in increasing soil microbial biomass and microbial activities (such as biomass C, dehydrogenase activity and fluorescein diacetate hydrolysis activity). Two inoculation agents accompanied by FS10-C were also superior to the inoculation agents, indicating that T. reesei FS10-C was effective in enhancing both Cd phytoremediation by S. plumbizincicola and soil fertility. Furthermore, solid fermentation powder of FS10-C showed the greatest capacity to enhance plant growth, Cd uptake, nutrient release, microbial biomass and activities, as indicated by its superior ability to promote colonization by Trichoderma. The solid fermentation powder of FS10-C might serve as a suitable inoculation agent for T. reesei FS10-C to enhance both the phytoremediation efficiency of Cd-contaminated soil and soil fertility. PMID:26113858

  13. Impact of metal pollution and Thlaspi caerulescens growth on soil microbial communities

    NARCIS (Netherlands)

    Epelde, L.; Becerril, J.M.; Kowalchuk, G.A.; Deng, Y.; Zhou, J.N.; Garbisu, C.

    2010-01-01

    Soil microorganisms drive critical functions in plant-soil systems. As such, various microbial properties have been proposed as indicators of soil functioning, making them potentially useful in evaluating the recovery of polluted soils via phytoremediation strategies. To evaluate microbial responses

  14. Comparison of in situ DGT measurement with ex situ methods for predicting cadmium bioavailability in soils with combined pollution to biotas.

    Science.gov (United States)

    Wang, Peifang; Liu, Cui; Yao, Yu; Wang, Chao; Wang, Teng; Yuan, Ye; Hou, Jun

    2017-05-01

    To assess the capabilities of the different techniques in predicting Cadmium (Cd) bioavailability in Cd-contaminated soils with the addition of Zn, one in situ technique (diffusive gradients in thin films; DGT) was compared with soil solution concentration and four widely used single-step extraction methods (acetic acid, EDTA, sodium acetate and CaCl 2 ). Wheat and maize were selected as tested species. The results demonstrated that single Cd-polluted soils inhibited the growth of wheat and maize significantly compared with control plants; the shoot and root biomasses of the plants both dropped significantly (P 0.9) between Cd concentrations in two plants and Cd bioavailability indicated by each method in soils. Consequently, the results indicated that the DGT technique could be regarded as a good predictor of Cd bioavailability to plants, comparable to soil solution concentration and the four single-step extraction methods. Because the DGT technique can offer in situ data, it is expected to be widely used in more areas.

  15. Linking biosensor responses to Cd, Cu and Zn partitioning in soils

    International Nuclear Information System (INIS)

    Dawson, J.J.C.; Campbell, C.D.; Towers, W.; Cameron, C.M.; Paton, G.I.

    2006-01-01

    Soils bind heavy metals according to fundamental physico-chemical parameters. Bioassays, using bacterial biosensors, were performed in pore waters extracted from 19 contrasting soils individually amended with Cd, Cu and Zn concentrations related to the EU Sewage Sludge Directive. The biosensors were responsive to pore waters extracted from Zn amended soils but less so to those of Cu and showed no toxicity to pore water Cd at these environmentally relevant amended concentrations. Across the range of soils, the solid-solution heavy metal partitioning coefficient (K d ) decreased (p d values. Gompertz functions of Cu and Zn, K d values against luminescence explained the relationship between heavy metals and biosensors. Consequently, biosensors provide a link between biologically defined hazard assessments of metals and standard soil-metal physico-chemical parameters for determining critical metal loadings in soils. - Biosensors link biological hazard assessments of metals in soils with physico-chemical partitioning

  16. Applying carbon dioxide, plant growth-promoting rhizobacterium and EDTA can enhance the phytoremediation efficiency of ryegrass in a soil polluted with zinc, arsenic, cadmium and lead.

    Science.gov (United States)

    Guo, Junkang; Feng, Renwei; Ding, Yongzhen; Wang, Ruigang

    2014-08-01

    This study was conducted to investigate the use of elevated carbon dioxide (CO2), plant growth-promoting rhizobacterium Burkholderia sp. D54 (PGPR) and ethylenediaminetetraacetic acid (EDTA) to enhance the phytoextraction efficiency of ryegrass in response to multiple heavy metal (or metalloid)-polluted soil containing zinc (Zn), arsenic (As), cadmium (Cd) and lead (Pb). All of the single or combined CO2, PGPR and EDTA treatments promoted ryegrass growth. The stimulation of ryegrass growth by CO2 and PGPR could primarily be attributed to the regulation of photosynthesis rather than decreased levels of Zn, As and Cd in the shoots. Most treatments seemed to reduce the Zn, As and Cd contents in the shoots, which might be associated with enhanced shoot biomass, thus causing a "dilution effect" regarding their levels. The combined treatments seemed to perform better than single treatments in removing Zn, As, Cd and Pb from soil, judging from the larger biomass and relatively higher total amounts (TAs) of Zn, As, Cd and Pb in both the shoots and roots. Therefore, we suggest that the CO2 plus PGPR treatment will be suitable for removing Zn, As, Cd and Pb from heavy metal (or metalloid)-polluted soils using ryegrass as a phytoremediation material. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Soil amendment affects Cd uptake by wheat - are we underestimating the risks from chloride inputs?

    Science.gov (United States)

    Dahlin, A Sigrun; Eriksson, Jan; Campbell, Colin D; Öborn, Ingrid

    2016-06-01

    Many parts of the world are investigating the efficacy of recycling nutrient resources to agriculture from different industry and domestic sectors as part of a more circular economy. The complex nature of recycled products as soil amendments coupled to the large diversity of soil types and their inherent properties make it difficult to optimize the benefits and minimize the risks from potentially toxic elements often present in recycled materials. Here we investigated how wheat grain cadmium (Cd) concentration was affected by soil amendments, namely human urine and biogas digestate compared to traditional farm manures and mineral fertilizers. We show that Cl(-) inadvertently added to soils with e.g. urine or biogas digestate strongly increased crop Cd concentrations, largely by mobilizing inherent soil Cd. This resulted in wheat grain Cd levels that could result in exceeding recommended WHO limits for dietary intake. This was evident even in soils with low inherent Cd content and when Cd inputs were low. The future of a circular economy that helps to underpin global food security needs to ensure that the effects of applying complex materials to different types of agricultural land are fully understood and do not jeopardize food safety. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Soil pollution in the railway junction Niš (Serbia) and possibility of bioremediation of hydrocarbon-contaminated soil

    Science.gov (United States)

    Jovanovic, Larisa; Aleksic, Gorica; Radosavljevic, Milan; Onjia, Antonije

    2015-04-01

    Mineral oil leaking from vehicles or released during accidents is an important source of soil and ground water pollution. In the railway junction Niš (Serbia) total 90 soil samples polluted with mineral oil derivatives were investigated. Field work at the railway Niš sites included the opening of soil profiles and soil sampling. The aim of this work is the determination of petroleum hydrocarbons concentration in the soil samples and the investigation of the bioremediation technique for treatment heavily contaminated soil. For determination of petroleum hydrocarbons in the soil samples method of gas-chromatography was carried out. On the basis of measured concentrations of petroleum hydrocarbons in the soil it can be concluded that: Obtained concentrations of petroleum hydrocarbons in 60% of soil samples exceed the permissible values (5000 mg/kg). The heavily contaminated soils, according the Regulation on the program of systematic monitoring of soil quality indicators for assessing the risk of soil degradation and methodology for development of remediation programs, Annex 3 (Official Gazette of RS, No.88 / 2010), must be treated using some of remediation technologies. Between many types of phytoremediation of soil contaminated with mineral oils and their derivatives, the most suitable are phytovolatalisation and phytostimulation. During phytovolatalisation plants (poplar, willow, aspen, sorgum, and rye) absorb organic pollutants through the root, and then transported them to the leaves where the reduced pollutants are released into the atmosphere. In the case of phytostimulation plants (mulberry, apple, rye, Bermuda) secrete from the roots enzymes that stimulates the growth of bacteria in the soil. The increase in microbial activity in soil promotes the degradation of pollutants. Bioremediation is performed by composting the contaminated soil with addition of composting materials (straw, manure, sawdust, and shavings), moisture components, oligotrophs and

  19. Estimating the Pollution Risk of Cadmium in Soil Using a Composite Soil Environmental Quality Standard

    Science.gov (United States)

    Huang, Biao; Zhao, Yongcun

    2014-01-01

    Estimating standard-exceeding probabilities of toxic metals in soil is crucial for environmental evaluation. Because soil pH and land use types have strong effects on the bioavailability of trace metals in soil, they were taken into account by some environmental protection agencies in making composite soil environmental quality standards (SEQSs) that contain multiple metal thresholds under different pH and land use conditions. This study proposed a method for estimating the standard-exceeding probability map of soil cadmium using a composite SEQS. The spatial variability and uncertainty of soil pH and site-specific land use type were incorporated through simulated realizations by sequential Gaussian simulation. A case study was conducted using a sample data set from a 150 km2 area in Wuhan City and the composite SEQS for cadmium, recently set by the State Environmental Protection Administration of China. The method may be useful for evaluating the pollution risks of trace metals in soil with composite SEQSs. PMID:24672364

  20. ARSENIC AND COPPER UPTAKE BY CABBAGES GROWN ON POLLUTED SOILS

    Directory of Open Access Journals (Sweden)

    Nguyen Thi Kim Phuong

    2017-11-01

    Full Text Available Cabbages (Brassica Juncea (L. Czern were grown in pot experiments on typical unpolluted and polluted soils with concentration changing from 20.50 - 50.00 mg As/kg and 156.00 - 413.00 mg Cu/kg dry soil. The results demonstrate the elevation of As and Cu in soil may lead to increased uptake by these cabbages subsequent entry into human food chain. It was found 11.84- 32.12 mg As/kg and 46.86 - 94.47 mg Cu/kg dry leaves. It has tendency increase uptake and accumulation of Cu in cabbage tissue with increasing cultivated time, whereas, it was found accumulation of As in cabbages tissue decreased with time prolonging. The quantity of As and Cu in these cabbages, were significant higher than 0.2 mg As/kg and 5.0 mg Cu/kg fresh vegetable, the permissible limit concentration in fresh vegetable. This indicated that human may As and Cu exposure occur through eating these vegetables.

  1. Effect of EDTA washing of metal polluted garden soils. Part I: Toxicity hazards and impact on soil properties.

    Science.gov (United States)

    Jelusic, Masa; Lestan, Domen

    2014-03-15

    We applied a multi-level approach assessing the quality, toxicity and functioning of Pb, Zn and Cd contaminated/remediated soil from a vegetable garden in Meza Valley, Slovenia. Contaminated soil was extracted with EDTA and placed into field experimental plots equipped with lysimeters. Soil properties were assessed by standard pedological analysis. Fractionation and leachability of toxic metals were analyzed by sequential extraction and TCLP and metal bioaccessibility by UBM tests. Soil respiration and enzyme activities were measured as indicators of soil functioning. Remediation reduced the metal burden by 80, 28 and 72% for Pb, Zn and Cd respectively, with a limited impact on soil pedology. Toxic metals associated with labile soil fractions were largely removed. No shifts between labile and residual fractions were observed during the seven months of the experiment. Initial metal leaching measured through lysimeters eventually ceased. However, remediation significantly diminished potential soil enzyme activity and no trends were observed of the remediated soil recovering its biological properties. Soil washing successfully removed available forms of Pb, Zn and Cd and thus lowered the human and environmental hazards of the remediated soil; however, remediation also extracted the trace elements essential for soil biota. In addition to reduced water holding capacity, soil health was not completely restored. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Study of the mechanism of remediation of Cd-contaminated soil by novel biochars.

    Science.gov (United States)

    Tan, Zhongxin; Wang, Yuanhang; Zhang, Limei; Huang, Qiaoyun

    2017-11-01

    This article used novel non-magnetized and magnetized biochars prepared under a CO 2 atmosphere returned to Cd-contaminated soil and compared these to the effects of conventional biochars prepared under a N 2 atmosphere with regard to Cd-contaminated soil remediation. A pot experiment with lettuce (Lactuca sativa) was conducted to investigate the relative soil remediation effects of these biochars. The soil used for the pot experiment was spiked with 20 mg kg -1 Cd and amended with 5% of a biochar before sowing. Through these research works, some important results were obtained as follows: (1) applying biochar treated by pyrolysis under a CO 2 atmosphere can obtain the best remediation effect of Cd-contaminated soil that the content of cadmium in the lettuce roots, stems, and leaves was reduced 67, 62, and 63%, respectively; (2) the magnetic biochar aggregation for the soil is weak, so the heavy metal cadmium in the soil could not be immobilized well by the magnetic biochar; (3) The remediation mechanism of novel biochars is that biochar includes a large number of organic functional groups (-C-OH, -C=O, COO-) that can act in a complexing reaction with heavy metal Cd(II) and the inorganic salt ions (Si, S, Cl, etc.) that can combine with cadmium and generate a stable combination.

  3. Purification of polluted water with spent mushroom (Agaricus bisporus) substrate: from agricultural waste to biosorbent of phenanthrene, Cd and Pb.

    Science.gov (United States)

    García-Delgado, C; Alonso-Izquierdo, M; González-Izquierdo, M; Yunta, F; Eymar, E

    2017-07-01

    The present research was aimed to (i) report the recycling of spent A. bisporus substrate (SAS) to remove heavy metals (Cd and Pb) and phenanthrene (Phe) from polluted water and (ii) assess the possibility to use the treated water for irrigation. Batch experiments were carried out to assess, firstly, the effect of interaction time between pollutants with SAS and, secondly, the pH of the polluted water. Then a biofilter was designed by using pressurized glass columns. Chemical parameters such as pH, electrical conductivity and content of Pb, Cd, Phe, nutrients (NPK) and Cl - were determined. Equilibrium for contaminants was quickly reached (1-2 h). The pH of the polluted water was the key factor for pollutants' adsorption. The polluted water's pH was increased after biofilter interaction. Phe was not detected in any fraction. Pb and Cd sorption rates were higher than 99%. The pollutant concentrations were within the permitted range to be used for agriculture purposes. Purified water showed significant concentrations of NPK, indicating its potential use as fertilizer. The SAS shows potential to be used as Phe, Pb and Cd biosorbent and the resulting treated water can be used for irrigation according to pollutant contents and agronomical evaluation.

  4. Cd Mobility in Anoxic Fe-Mineral-Rich Environments - Potential Use of Fe(III)-Reducing Bacteria in Soil Remediation

    Science.gov (United States)

    Muehe, E. M.; Adaktylou, I. J.; Obst, M.; Schröder, C.; Behrens, S.; Hitchcock, A. P.; Tylsizczak, T.; Michel, F. M.; Krämer, U.; Kappler, A.

    2014-12-01

    Agricultural soils are increasingly burdened with heavy metals such as Cd from industrial sources and impure fertilizers. Metal contaminants enter the food chain via plant uptake from soil and negatively affect human and environmental health. New remediation approaches are needed to lower soil metal contents. To apply these remediation techniques successfully, it is necessary to understand how soil microbes and minerals interact with toxic metals. Here we show that microbial Fe(III) reduction initially mobilizes Cd before its immobilization under anoxic conditions. To study how microbial Fe(III) reduction influences Cd mobility, we isolated a new Cd-tolerant, Fe(III)-reducing Geobacter sp. from a heavily Cd-contaminated soil. In lab experiments, this Geobacter strain first mobilized Cd from Cd-loaded Fe(III) hydroxides followed by precipitation of Cd-bearing mineral phases. Using Mössbauer spectroscopy and scanning electron microscopy, the original and newly formed Cd-containing Fe(II) and Fe(III) mineral phases, including Cd-Fe-carbonates, Fe-phosphates and Fe-(oxyhydr)oxides, were identified and characterized. Using energy-dispersive X-ray spectroscopy and synchrotron-based scanning transmission X-ray microscopy, Cd was mapped in the Fe(II) mineral aggregates formed during microbial Fe(III) reduction. Microbial Fe(III) reduction mobilizes Cd prior to its precipitation in Cd-bearing mineral phases. The mobilized Cd could be taken up by phytoremediating plants, resulting in a net removal of Cd from contaminated sites. Alternatively, Cd precipitation could reduce Cd bioavailability in the environment, causing less toxic effects to crops and soil microbiota. However, the stability and thus bioavailability of these newly formed Fe-Cd mineral phases needs to be assessed thoroughly. Whether phytoremediation or immobilization of Cd in a mineral with reduced Cd bioavailability are feasible mechanisms to reduce toxic effects of Cd in the environment remains to be

  5. The impact of informal irrigation practices on soil drainage condition, soil pollution and land suitability for agriculture in El Saf area of El Giza Governorate

    Directory of Open Access Journals (Sweden)

    Hanan E.M. El Azab

    2015-12-01

    Full Text Available The study area was selected in El Saf District of El Giza Governorate in Egypt, covering 21461.4 ha of Nile sediments and their outskirts of alluvial higher and lower terraces. The aim of this study was to assess the impact of informal irrigation practices on drainage deterioration, soil pollution and land suitability for agricultural use using the satellite LDCM data 2013. From the lower alluvial terraces (partly cultivated using wastewater, the drainage flows westward via descending slopes resulting in land deterioration in both the alluvial lower terraces and alluvial plain of River Nile. The drainage conditions are excessively drained soils in the alluvial upper terraces within soils of Typic Haplocalcids, sandy skeletal, but in the lower terraces it partly occurred within soils of Typic Torriorthents, sandy skeletal. Moderately well drained soils occurred in soils of Typic Torriorthents, sandy in the alluvial lower terraces, while in the alluvial plain of Nile sediments are Sodic Haplotorrerts, fine. Poorly drained soils in the lower alluvial terraces have soils of Typic Epiaquents, sandy associated with Sodic Psammaquents and Aquic Haplocalcids, coarse loamy, while in the alluvial plain of River Nile the soils are Halic Epiaquerts, fine. Very poorly drained soils (submerged areas are scattered spots in both the lower alluvial terraces and the alluvial plain. In the alluvial plain of River Nile, 1967.1 ha become not suitable for the traditional cultivated crops, while in the alluvial terraces 3251.0 ha are not suitable for the proposed cultivation of Jojoba plants. Heavy metals of Cadmium (Cd, Cobalt (Co, Lead (Pb and Nickel (Ni were added to the soil surface and sub-surface in the irrigated areas by wastewater in the lower alluvial terraces (moderately well drained soils, but Cd and Co exceeded the standards of permissible total concentrations in these soils. The same metals were added to soil sub-surface layers in the alluvial plain

  6. Migration properties of radionuclides in the polluted soils

    International Nuclear Information System (INIS)

    Mechdieva, R.N.; Suleymanov, B.A.; Abaszade, R.G.

    2006-01-01

    Full text: Due to the fact of long-term oil production some local polluted zones exist on Absheron peninsula. The reasons of this pollution vary depending upon the place of pollution. The territory of Romani Iodine plant was selected as the object of investigation. This area was polluted as a result of iodine production process as well as of the influence of stratal water coming with extracted oil. Iodine element is accumulated as other radionuclides in composition of stratal water extracted with oil from ground substratum. During the process of iodine separation from water for its usage in production, water is run through coal. After absorption process coal is placed in the open air. Being in the open air under the influence of rain and other external action coal looses its sorption ability and changes the natural radioactive background of the given territory. The task of the investigation is to determine the changed radioactive background and to set the reasons of this change. It has been observed that the radioactive background at this territory in the source differs from that one at the distance from the source. From the first stage of the investigation the territory was studied and numbered being previously subdivided to small areas. In numbered areas the radioactive background was measured at the distance 1 m above the ground surface by means of SRP - 88 dosimeter, the strength of exposure dose was determined and marked. After that the soil samples were taken at the depth of 10-20 m in the noted point by means of the dosimeter. It should be noted that in above mentioned areas firm soil existed together with the soft one. The samples are collected in special packets with their number, the place of taking and EDG. The natural radioactive background of the territory was measured in different points and so according to these measurements the radiological map of the territory was drawn up. Radionuclide content and activity of the samples were identified by gamma

  7. Affects of wastewater discharge from mining on soil heavy metal pollution and enzyme activities in northern Hunan province, Central South China

    Science.gov (United States)

    Jiang, Ying; Hu, Xue-Feng; Shu, Ying; Yan, Xiao-Juan; Luo, Fan

    2013-04-01

    Hunan province, Central South China, is rich in mineral resources and also a well-known nonferrous metal base in China. Mining and ore processing there, however, are mostly conducted in indigenous methods, and thus causing heavy metal pollution of abundant farmland. Situated in northern Hunan province, Y county has antimony, manganese, vanadium, and pyrite mines, but still belongs to a region of rice cultivation, of which, paddy fields make up 84.5% of the total farmland. Our investigations found that irrigation water is threatened by the release of mining wastewater in the county. For example, a stream used for irrigation turns dark-red after long-term receiving wastewater discharged from a pyrite company at HS Town of the county. Concentrations of Cu, Zn, Cd, Fe and Mn in the stream water reach 0.03 mg kg-1, 2.14 mg kg-1, 0.02 mg kg-1, 96.0 mg kg-1 and 11.5 mg kg-1, respectively; these in the paddy soils nearby are 67.3 mg kg-1, 297 mg kg-1, 4.0 mg kg-1, 33.1 mg g-1 and 463 mg kg-1 on average, respectively, with a maximum of Cd reaching 16.8 mg kg-1. Microbial biomass and activities are significantly reduced by metal toxicity in the soils. The counts of fungal, actinomycin and bacterial colonies in the polluted soils are 8.8×103 /g (Fresh soil), 4.9×105 /g (Fresh soil) and 6.4×105 /g (Fresh soil), respectively, which are only 4.68%, 10.3% and 20.9% of these in non-polluted soils in Y county, respectively. Likewise, the microbial biomass (MB) - C and MB - N of the polluted soils are only 36.8% and 50.3% of these in the non-polluted, respectively. The activities of dehydrogenase, urease, catalase, acid and neutral phosphatase and sucrase in the polluted soils are only 41.2%, 49.8%, 56.8%, 69.9%, 80.7% and 81.0% of these in the non-polluted, respectively. There are significant negative correlations between Cu, Zn and Cd contents and the activities of dehydrogenase and catalase, suggesting that the two enzymes are the most sensitive to heavy metal toxicity in the

  8. Effects of Modifiers on Physiological Metabolism of Lolium perenne Seedlings in Diesel-Polluted Soils

    Directory of Open Access Journals (Sweden)

    ZHAO Xuan

    2017-06-01

    Full Text Available The pot experiment for single-factor with diesel oil polluted soil and the pot experiment for three-factor orthogonal with sawdust-ammonium nitrate-monopotassium phosphate under diesel oil polluted soil with salt stress, were performed to analyze the activity of antioxidant enzymes and chlorophyll content in Lolium perenne seedlings, and to explore the physiological response of L. perenne seedlings under diesel oil polluted soil and its regulations. The results showed that, soil diesel pollution significantly decreased the biomass. Compared with control, activity of superoxide dismutases(SOD in leaf decreased significantly at 0.3% and 0.9% soil diesel pollution, peroxidases (POD and catalase(CAT in leaf decreased significantly at 0.6% and 0.9% soil diesel pollution, the root SOD activity increased significantly at 0.9% diesel concentration while the root POD activity decreased significantly at 0.6% and 0.9% soil diesel pollution. As for the salinity soil polluted by diesel oil, the activity of POD and CAT in leaf increased significantly at 10% volume fraction of sawdust, and the content of chlorophyll a and chlorophyll b increased significantly as well. Meanwhile, chlorophyll a and chlorophyll b content increased significantly at 0.3 g·kg-1 amount of ammonium nitrate. Thereby, sawdust and ammonium nitrate addition could effectively improve physiological metabolic of L. perenne seedlings.

  9. Environmental Pollution by Heavy Metals in the Soil Resources of Zakhur District, as Examined through Geological Processes

    International Nuclear Information System (INIS)

    Jalilzadeh, J.; Siahcheshm, K.

    2016-01-01

    In order to assess soil pollution formed on the alteration zones of Zakhur District, we used 20 ICP-MS analyses. Argillic, argillic-phyllic, advanced argillic, silicic along with Cu, Fe, Pb, Zn, Co, Ni, Au and Ag are the most important decentralized natural resource contaminating agents that have formed extensive heavy/toxic metal haloes in this area. Diverse environmental pollution indices (e.g. geo-accumulation-Igeo, modified contamination degree- mCd and potential ecological risk- RI) show that the leve of environmental pollution risk of Pb is considerable and, as in different alteration zones, quaternary sediments are also very high. Soils highly contaminated with sulfur result in the high sulfide mineralization character of the alteration zones in Zakhur District. Calculations of the mass changes in argillic and silisic zones indicate enrichment by Cr, Ni, As, Pb and S and loss of Hg and Cd. Besides the positive correlation of heavy metals with each other, there are significant correlations between them and Mn and Al which may have occurred due to the adsorption processes by manganese, iron oxides and/or clay minerals.

  10. Simulation of pollutants transfer in soils - State-of-the-art. State-of-the-art of the simulation of pollutants transfer in soils - Final report

    International Nuclear Information System (INIS)

    Bourgois, J.; Vaillant, Herve; Moszkowicz, P.; Alimi Ichola, Ibrahim; Foret, Suzanne

    1997-02-01

    Industrial companies use and produce numerous substances which can induce a pollution of our environment and especially of soil and groundwater. Thus, it's necessary to estimate the risk of an environmental impact from an accidental or chronic, real or potential pollution. Modelling, which allow the simulation of pollutant migration, can be used as a decision support system, either for the pollution control and prevention of the resource, or for the monitoring of the remediation of polluted sites. In the first part of this study, we established a state of the art on modelling of pollutant migration in soils. In the second part, we focused on the main simulation tools currently available on the market, and on the main agencies or laboratories working on this subject, especially in France. At the end of this study, we drew some conclusions concerning modelling of pollutant migration in soils and the main points which will form the subject of further studies: - sensitivity analysis of model to input parameters and ranking of the main parameters, - achievement of a database on the state of the art of the results on modelling realized on case studies, - development of a mobility indicator of pollutant in soil, - application field and relevance of the models. (authors)

  11. On the quantitative relationships between environmental parameters and heavy metals pollution in Mediterranean soils using GIS regression-trees

    DEFF Research Database (Denmark)

    Bou Kheir, Rania; Shomar, B.; Greve, Mogens Humlekrog

    2014-01-01

    Soil heavy metal pollution has been and continues to be a worldwide phenomenon that has attracted a great deal of attention from governments and regulatory bodies. In this context, our study used Geographic Information Systems (GIS) and regression-tree modeling (196 trees) to precisely quantify...... the relationships between four toxic heavy metals (Ni, Cr, Cd and As) and sixteen environmental parameters (e.g., parent material, slope gradient, proximity to roads, etc.) in the soils of northern Lebanon (as a case study of Mediterranean landscapes), and to detect the most important parameters that can be used...... between 68% and 100%), surroundings of waste areas (48 – 92%), proximity to roads (45 – 82%) and parent materials (57 – 73%) considerably influenced all investigated heavy metals, which is not the case of hydromorphological and soil properties. For instance, hydraulic conductivity (18 – 41%) and pH (23...

  12. KANDUNGAN KADMIUM (Cd PADA TANAH DAN CACING TANAH DI TPAS PIYUNGAN, BANTUL, DAERAH ISTIMEWA YOGYAKARTA (Cadmium (Cd Content in Soil and Earthworms in Piyungan Controlled Landfill Municipal Waste Disposal, Bantul Yogyakarta Special District

    Directory of Open Access Journals (Sweden)

    Heny Mayasari Setyoningrum

    2014-10-01

    Full Text Available ABSTRAK Analisis kandungan logam berat cadmium (Cd pada tanah dan cacing tanah telah dilakukan di TPAS Piyungan Bantul untuk mengetahui tingkat pencemaran Cd dalam tanah. Penelitian dibagi menjadi penelitian di lapangan yang meliputi pengambilan sampel tanah-cacing tanah dan pengukuran parameter lingkungan, serta penelitian di laboratorium yang meliputi analisis kandungan kadmium, bahan organik dan tekstur tanah. Tingkat pencemaran kadmium ditentukan menggunakan Indeks Kontaminasi-Polusi. Hasil penelitian memperlihatkan kandungan kadmium pada tanah di TPAS Piyungan antara tidak terdeteksi (< 0.01 – 0.47 ppm. Kandungan kadmium di TPAS Piyungan lebih rendah dibandingkan jumlah maksimum kadmium yang diperbolehkan di tanah dan khusus untuk zona III dan zona I titik sampling 1 dan 2 lebih tinggi dari standar kandungan kadmium pada tanah yang bebas polusi, sedangkan kandungan kadmium pada tanah kontrol lebih rendah dibandingkan kandungan kadmium secara umum pada tanah bebas polusi tersebut. Kandungan kadmium dalam tanah di lokasi TPAS tidak selalu lebih tinggi bila dibanding kontrol. Cacing tanah mengandung kadmium antara 0.35 – 0.45 ppm, kandungan kadmium dalam cacing tanah di beberapa lokasi TPAS lebih rendah dibanding kontrol. Tingkat pencemaran kadmium di TPAS Piyungan berada pada tingkat kontaminasi sangat ringan hingga kontaminasi sangat berat. Lokasi TPAS yang masih aktif digunakan memiliki tingkat kontaminasi lebih tinggi bila dibanding lokasi lain. Rasio kadmium pada tanah dan cacing tanah di TPAS Piyungan adalah 0.13 : 1.75.   ABSTRACT Cadmium (Cd analysis has been done at Piyungan TPAS (Piyungan TPAS, stands for Tempat Pembuangan Akhir Sampah for knowing the level of Cd contamination insoil. The research was divided into in-sites study, which consisted of soil and earthworms sampling, and soil environmental factors measurement, and laboratory analysis, which consisted of cadmium content, organic compounds and soil textures analysis

  13. Assessment of Cd, Cr and Pb Pollution in Sediment and Water of Gheshlagh River, Iran, in September 2013

    Directory of Open Access Journals (Sweden)

    Farshid Majnoni

    2015-03-01

    Full Text Available Background: This study aimed to evaluate the pollution levels of surface water with heavy metals including Pb, Cd and Cr in Gheshlagh River, western Iran. Methods: Water and sediment were sampled in five monitoring stations with three replicates in time along the river. The concentration of Cr, Pb and Cd in both water and sediment samples were measured with graphite furnace atomic absorption spectrometer (Australia, Varian 220. The Geoaccumulation Index and Pollution Load Index were employed to assess the pollution level of sediments with heavy metals. Results: The mean value of Cd, Cr, Pb in sediment samples were 0.69, 17.19 and 10.69 µgg-1 per dry weight, respectively. Water samples contained Cd, Cr and Pb concentration of 1.99, 1.45 and 12.92 µgL-1, respectively. The Geoaccumulation Index and Pollution Load Index indicates that the sediments were not polluted with Pb and Cr, and unpolluted to moderately contaminated with Cd in Gheshlagh River. Conclusion: This study concludes that the Gheshlagh River is threatened by heavy metals particularly Cd and Pb.

  14. [Pollution Assessment and Spatial Distribution Characteristics of Heavy Metals in Soils of Coal Mining Area in Longkou City].

    Science.gov (United States)

    Liu, Shuo; Wu, Quan-yuan; Cao, Xue-jiang; Wang, Ji-ning; Zhang, Long-long; Cai, Dong-quan; Zhou, Li-yuan; Liu, Na

    2016-01-15

    The present paper takes the coal mining area of Longkou City as the research area. Thirty-six topsoil (0-20 cm) samples were collected and the contents of 5 kinds of heavy metals were determined, including Cd, As, Ni, Ph, Cr. Geo-statistics analysis was used to analyze the spatial distribution of heavy metals. Principal component analysis (PCA) was used to explore the pollution sources of heavy metals and the degree of heavy metals pollution was evaluated by weighted average comprehensive pollution evaluation method. The results showed that enrichment phenomenon was significant for the 5 kinds of heavy metals. Taking secondary standard of National Environment Quality Standard for Soil as the background value, their exceed standard rates were 72.22%, 100%, 100%, 91.67%, 100%, respectively. Average contents of heavy metals in the soil samples were all over the national standard level two and were 1.53, 11.86, 2.40, 1.31, 4.09 times of the background value. In addition, the average contents were much higher than the background value of the topsoil in the eastern part of Shandong Province and were 9.85, 39.98, 8.85, 4.29, 12.71 times of the background value. According to the semivariogram model, we obtained the nugget-effects of 5 kinds of heavy metals and their values were in the order of As (0.644) > Cd (0.627) > Cr (0.538) > Ni (0.411) > Pb (0.294), all belonging to moderate spatial correlation. On the whole, the central part of the Sangyuan Coal Mine and its surrounding areas were the most seriously polluted, while the pollution of heavy metals in the east and west of the study area was relatively light. Principal component analysis suggested that the enrichment of Cd, As, Ni, Cr was due to irrigation of wastewater, the discharge of industry and enterprise, and the industrial activity. Automobile exhaust and coal combustion were the main pollution sources of Pb. The single-factor assessment of heavy metals pollution showed that the degree of different heavy metals

  15. The potential of wild vegetation species of Eleusine indica L., and Sonchus arvensis L. for phytoremediation of Cd-contaminated soil

    Directory of Open Access Journals (Sweden)

    Amir Hamzah

    2017-04-01

    Full Text Available Phytoremediation has been intensively studied due its costs effectiveness and environmentally sound. Studies of heavy metal pollution phytoremediation has been done in develop countries, but still limited in Indonesia. This study aims to explore the potential of wild plant species Eleusine indica L. and Sonchus arvensis L. as an agent of phytoremediation on Cd-contaminated soil. This study was done descriptively in Pujon, Malang, Indonesia, to test the ability of two species of wild plants E. indica and S. arvensis in absorbing Cd. Along this research, plant growth and the concentration of Cd in roots, stems and leaves, was monitored. Plant growth was measured every week for three months. The plant roots, stems, and leaves collected separately, then analyzed its Cd levels. The results showed that both of two species of wild plants grew well on soil contaminated Cd. Plant roots can accumulate higher Cd than the stem part. In addition, E indica has the ability to accumulate Cd higher than S. arvensis, i.e. 57.11% and 35.84%, respectively

  16. Modelling an environmental pollutant transport from the stacks to and through the soil

    Directory of Open Access Journals (Sweden)

    Rushdi M.M. El-Kilani

    2010-07-01

    Full Text Available In this paper, a model is presented for predicting the transport of an environmental pollutant from the source to and through the soil. The model can predict the deposition of an environmental pollutant on the soil surface due to the pollutant being loaded on dust particles, which are later deposited on the soil surface. The model is a coupling of three models: a model for predicting the cumulative dust deposition from near and far field sources on a certain area; a canopy microclimate model for solving the energy partition within the canopy elements and so predicting the water convection stream for pollutant transport through the soil; and coupling the deposition of these pollutants on the soil surface to a model for its transport through the soil. The air pollution model uses the Gaussian model approach, superimposed for multiple emission sources, to elucidate the deposition of pollutant laden airborne particulates on the soil surface. A complete canopy layer model is used to calculate within the canopy energy fluxes. The retardation factor for the pollutant is calculated from an adsorption batch experiment. The model was used to predict the deposition of lead laden dust particles on the soil surface and lead's transport through the soil layers inside a metropolitan region for: (1 three large cement factories and (2 a large number of smelters. The results show that, due to the very high retardation values for lead movement through the soil, i.e. ranging from 4371 to 53,793 from previous data and 234 from the adsorption experiment in this paper, lead is immobile and all the lead added to the soil surface via deposited dust or otherwise, even if it is totally soluble, will remain mostly on the soil surface and not move downwards due to high affinity with the soil.

  17. Effect of long-term zinc pollution on soil microbial community resistance to repeated contamination.

    Science.gov (United States)

    Klimek, Beata

    2012-04-01

    The aim of the study was to compare the effects of stress (contamination trials) on the microorganisms in zinc-polluted soil (5,018 mg Zn kg(-1) soil dry weight) and unpolluted soil (141 mg Zn kg(-1) soil dw), measured as soil respiration rate. In the laboratory, soils were subjected to copper contamination (0, 500, 1,500 and 4,500 mg kg(-1) soil dw), and then a bactericide (oxytetracycline) combined with a fungicide (captan) along with glucose (10 mg g(-1) soil dw each) were added. There was a highly significant effect of soil type, copper treatment and oxytetracycline/captan treatment. The initial respiration rate of chronically zinc-polluted soil was higher than that of unpolluted soil, but in the copper treatment it showed a greater decline. Microorganisms in copper-treated soil were more susceptible to oxytetracycline/captan contamination. After the successive soil contamination trials the decline of soil respiration was greater in zinc-polluted soil than in unpolluted soil.

  18. Self-organizing feature map (neural networks) as a tool to select the best indicator of road traffic pollution (soil, leaves or bark of Robinia pseudoacacia L.).

    Science.gov (United States)

    Samecka-Cymerman, A; Stankiewicz, A; Kolon, K; Kempers, A J

    2009-07-01

    Concentrations of the elements Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn were measured in the leaves and bark of Robinia pseudoacacia and the soil in which it grew, in the town of Oleśnica (SW Poland) and at a control site. We selected this town because emission from motor vehicles is practically the only source of air pollution, and it seemed interesting to evaluate its influence on soil and plants. The self-organizing feature map (SOFM) yielded distinct groups of soils and R. pseudoacacia leaves and bark, depending on traffic intensity. Only the map classifying bark samples identified an additional group of highly polluted sites along the main highway from Wrocław to Warszawa. The bark of R. pseudoacacia seems to be a better bioindicator of long-term cumulative traffic pollution in the investigated area, while leaves are good indicators of short-term seasonal accumulation trends.

  19. Influence of NaCl-Induced Salinity and Cd Toxicity on Respiration Activity and Cd Availability to Barley Plants in Farmyard Manure-Amended Soil

    Directory of Open Access Journals (Sweden)

    Adel R. A. Usman

    2015-01-01

    Full Text Available The objective of this study was to evaluate the Cd availability and toxicity as affected by NaCl-induced salinity and farmyard manure addition. The Cd availability and toxicity were investigated in greenhouse pot and incubation experiments were conducted on a calcareous loamy sand soil contaminated with Cd (0.5, 1.5, 3, 6, 12, and 24 mg kg−1 of soil and amended with two rates of 0.0 and 30 g farmyard manure (FYM kg−1. Barley seeds (Hordeum vulgare L. were sown in pots and irrigated with water containing different levels of salinity (0, 30, 60, and 120 mM NaCl. The results revealed that the DTPA-extractable Cd and its content in barley plant shoots tended to increase in line as Cd was applied and salt levels increased. Elevated decreases in the soil basal respiration with increased Cd applied and NaCl-induced salinity were found. However, applying FYM significantly reduced Cd availability and increased plant growth and soil respiration activity. The results clearly showed that adding farmyard manure as soil organic amendment decreased the availability of Cd to barley plants and mitigated the toxicity of both Cd and salinity to soil microbial activity.

  20. Recent Trend on Bioremediation of Polluted Salty Soils and Waters Using Haloarchaea

    OpenAIRE

    Aracil-Gisbert, Sonia; Torregrosa-Crespo, Javier; Martínez-Espinosa, Rosa María

    2018-01-01

    Pollution of soils, sediments, and groundwater is a matter of concern at global level. Industrial waste effluents have damaged several environments; thus, pollutant removal has become a priority worldwide. Currently, bioremediation has emerged as an effective solution for these problems, and, indeed, the use of haloarchaea in bioremediation has been tested successfully. A bibliographic review is here presented to show the recent advances in bioremediation of polluted soil and wastewater using...

  1. Nodulation by Sinorhizobium meliloti originated from a mining soil alleviates Cd toxicity and increases Cd-phytoextraction in Medicago sativa L.

    Science.gov (United States)

    Ghnaya, Tahar; Mnassri, Majda; Ghabriche, Rim; Wali, Mariem; Poschenrieder, Charlotte; Lutts, Stanley; Abdelly, Chedly

    2015-01-01

    Besides their role in nitrogen supply to the host plants as a result of symbiotic N fixation, the association between legumes and Rhizobium could be useful for the rehabilitation of metal-contaminated soils by phytoextraction. A major limitation presents the metal-sensitivity of the bacterial strains. The aim of this work was to explore the usefulness of Sinorhizobium meliloti originated from a mining site for Cd phytoextraction by Medicago sativa. Inoculated and non-inoculated plants were cultivated for 60 d on soils containing 50 and/or 100 mg Cd kg(-1) soil. The inoculation hindered the occurrence of Cd- induced toxicity symptoms that appeared in the shoots of non-inoculated plants. This positive effect of S. meliloti colonization was accompanied by an increase in biomass production and improved nutrient acquisition comparatively to non-inoculated plants. Nodulation enhanced Cd absorption by the roots and Cd translocation to the shoots. The increase of plant biomass concomitantly with the increase of Cd shoot concentration in inoculated plants led to higher potential of Cd-phytoextraction in these plants. In the presence of 50 mg Cd kg(-1) in the soil, the amounts of Cd extracted in the shoots were 58 and 178 μg plant(-1) in non-inoculated and inoculated plants, respectively. This study demonstrates that this association M. sativa-S. meliloti may be an efficient biological system to extract Cd from contaminated soils.

  2. Can liming change root anatomy, biomass allocation and trace element distribution among plant parts of Salix × smithiana in trace element-polluted soils?

    Science.gov (United States)

    Vondráčková, Stanislava; Tlustoš, Pavel; Száková, Jiřina

    2017-08-01

    Willows (Salix spp.) are considered to be effective for the phytoremediation of trace elements from contaminated soils, but their efficiency is limited in heavily polluted soils because of poor growth. Liming can be a desirable measure to decrease the plant availability of elements, resulting in improved plant development. Notably, large root area and maximum soil penetration are basic parameters that improve the efficiency of phytoremediation. The impact of soil chemical properties on willow root anatomy and the distribution of trace elements below-ground have rarely been studied. The effect of liming on root parameters, biomass allocation and trace element distribution in non-harvestable (coarse roots, fine roots, stumps) and harvestable plant parts (twigs and leaves) of Salix × smithiana was assessed at the end of a 4-year pot experiment with two trace element-polluted soils that differed in terms of soil pH. Stump biomass predominated in weakly acidic soil. In neutral soil, the majority of biomass was located in fine roots and stumps; the difference from other plant parts was minor. Trace elements were the most concentrated in fine roots. Translocation to above-ground biomass increased as follows: Pb roots roots). Lime application decreased the concentrations of mobile Cd and Zn and related levels in plants, improved biomass production and root parameters and increased the removal of all trace elements in weakly acidic soil. None or minimum differences in the monitored parameters were recorded for dolomite treatments in both soils. The dose and source of liming had crucial effects on root anatomy. Growing willows in limed trace element-polluted soils is a suitable measure for combination of two remediation strategies, i.e. phytoextraction of Cd and Zn and assisted phytostabilization of As and Pb.

  3. Soil features in rookeries of Antarctic penguins reveal sea to land biotransport of chemical pollutants

    Science.gov (United States)

    Santamans, Anna C.; Boluda, Rafael; Picazo, Antonio; Gil, Carlos; Ramos-Miras, Joaquín; Tejedo, Pablo; Pertierra, Luis R.; Benayas, Javier

    2017-01-01

    The main soil physical-chemical features, the concentrations of a set of pollutants, and the soil microbiota linked to penguin rookeries have been studied in 10 selected sites located at the South Shetland Islands and the Antarctic Peninsula (Maritime Antarctica). This study aims to test the hypothesis that biotransport by penguins increases the concentration of pollutants, especially heavy metals, in Antarctic soils, and alters its microbiota. Our results show that penguins do transport certain chemical elements and thus cause accumulation in land areas through their excreta. Overall, a higher penguin activity is associated with higher organic carbon content and with higher concentrations of certain pollutants in soils, especially cadmium, cooper and arsenic, as well as zinc and selenium. In contrast, in soils that are less affected by penguins’ faecal depositions, the concentrations of elements of geochemical origin, such as iron and cobalt, increase their relative weighted contribution, whereas the above-mentioned pollutants maintain very low levels. The concentrations of pollutants are far higher in those penguin rookeries that are more exposed to ship traffic. In addition, the soil microbiota of penguin-influenced soils was studied by molecular methods. Heavily penguin-affected soils have a massive presence of enteric bacteria, whose relative dominance can be taken as an indicator of penguin influence. Faecal bacteria are present in addition to typical soil taxa, the former becoming dominant in the microbiota of penguin-affected soils, whereas typical soil bacteria, such as Actinomycetales, co-dominate the microbiota of less affected soils. Results indicate that the continuous supply by penguin faeces, and not the selectivity by increased pollutant concentrations is the main factor shaping the soil bacterial community. Overall, massive penguin influence results in increased concentrations of certain pollutants and in a strong change in taxa dominance in the

  4. Soil features in rookeries of Antarctic penguins reveal sea to land biotransport of chemical pollutants.

    Directory of Open Access Journals (Sweden)

    Anna C Santamans

    Full Text Available The main soil physical-chemical features, the concentrations of a set of pollutants, and the soil microbiota linked to penguin rookeries have been studied in 10 selected sites located at the South Shetland Islands and the Antarctic Peninsula (Maritime Antarctica. This study aims to test the hypothesis that biotransport by penguins increases the concentration of pollutants, especially heavy metals, in Antarctic soils, and alters its microbiota. Our results show that penguins do transport certain chemical elements and thus cause accumulation in land areas through their excreta. Overall, a higher penguin activity is associated with higher organic carbon content and with higher concentrations of certain pollutants in soils, especially cadmium, cooper and arsenic, as well as zinc and selenium. In contrast, in soils that are less affected by penguins' faecal depositions, the concentrations of elements of geochemical origin, such as iron and cobalt, increase their relative weighted contribution, whereas the above-mentioned pollutants maintain very low levels. The concentrations of pollutants are far higher in those penguin rookeries that are more exposed to ship traffic. In addition, the soil microbiota of penguin-influenced soils was studied by molecular methods. Heavily penguin-affected soils have a massive presence of enteric bacteria, whose relative dominance can be taken as an indicator of penguin influence. Faecal bacteria are present in addition to typical soil taxa, the former becoming dominant in the microbiota of penguin-affected soils, whereas typical soil bacteria, such as Actinomycetales, co-dominate the microbiota of less affected soils. Results indicate that the continuous supply by penguin faeces, and not the selectivity by increased pollutant concentrations is the main factor shaping the soil bacterial community. Overall, massive penguin influence results in increased concentrations of certain pollutants and in a strong change in taxa

  5. Levels of Pb, Fe, Cd and Co in Soils of Automobile Workshop in ...

    African Journals Online (AJOL)

    The disposal of waste of all kinds in auto-repair workshop areas in Nigeria is becoming alarming. The study looks into the contribution of different sections in auto-repair workshop to heavy metal pollution in soil .Thirty –two soil samples were collected at an auto-repair workshop in Osogbo, Ikirun, Iragbiji and Iree in Osun ...

  6. Occurrence and risk assessment of potentially toxic elements and typical organic pollutants in contaminated rural soils.

    Science.gov (United States)

    Xu, Yongfeng; Dai, Shixiang; Meng, Ke; Wang, Yuting; Ren, Wenjie; Zhao, Ling; Christie, Peter; Teng, Ying

    2018-07-15

    The residual levels and risk assessment of several potentially toxic elements (PTEs), phthalate esters (PAEs) and polycyclic aromatic hydrocarbons (PAHs) in rural soils near different types of pollution sources in Tianjin, China, were studied. The soils were found to be polluted to different extents with PTEs, PAEs and PAHs from different pollution sources. The soil concentrations of chromium (Cr), nickel (Ni), di-n-butyl phthalate (DnBP), acenaphthylene (Any) and acenaphthene (Ane) were higher than their corresponding regulatory reference limits. The health risk assessment model used to calculate human exposure indicates that both non-carcinogenic and carcinogenic risks from selected pollutants were generally acceptable or close to acceptable. Different types of pollution sources and soil physicochemical properties substantially affected the soil residual concentrations of and risks from these pollutants. PTEs in soils collected from agricultural lands around industrial and residential areas and organic pollutants (PAEs and PAHs) in soils collected from agricultural areas around livestock breeding were higher than those from other types of pollution sources and merit long-term monitoring. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Microbial responses of forest soil to moderate anthropogenic air pollution - a large scale field survey

    International Nuclear Information System (INIS)

    Vanhala, P.; Kiikkila, O.; Fritze, H.

    1996-01-01

    There is a need to introduce soil microbiological methods into long term ecological monitoring programs. For this purpose we studied the impact of moderate anthropogenic air pollution in polluted and less polluted area districts, forest site types Calluna (CT), Vaccinium (VT) and Myrtillus (MT) and the amount of organic matter, measured as carbon content on the soil respiration activity and the ATP content. The main sources of local air pollutants (SO 2 and NO x ) in the polluted area district were from the capital region and an oil refinery. Humus (F/H-layer) and the underlying 0 to 5 cm mineral soil samples were collected from 193 study plots located in the 5300 km 2 study area. We found that the soil respiration rate in humus layer samples was lower in the polluted area district compared to the less polluted one (16.0 and 19.5μL CO 2 h -1 g -1 dw, respectively), but the difference occurred only in the dry, coarse-textured CT forest site type. The mineral soil respiration rate and the mineral soil and humus layer ATP content were not affected by the air pollution. Most of the variations of the biological variables were explained primarily by the soil carbon content, secondly by the forest site type and thirdly by the area division. 38 refs., 1 fig., 6 tabs

  8. Concentrations and geographic distribution of selected organic pollutants in Scottish surface soils

    International Nuclear Information System (INIS)

    Rhind, S.M.; Kyle, C.E.; Kerr, C.; Osprey, M.; Zhang, Z.L.; Duff, E.I.; Lilly, A.; Nolan, A.; Hudson, G.; Towers, W.; Bell, J.; Coull, M.; McKenzie, C.

    2013-01-01

    Concentrations of selected persistent organic pollutants (POPs) representing three chemical classes (polycyclic aromatic hydrocarbons (PAH), polybrominated diphenyl ethers (PBDE) and polychlorinated biphenyls (PCB) and the organic pollutant diethylhexyl phthalate (DEHP), were determined in surface soil samples (0–5 cm) collected at 20 km grid intersects throughout Scotland over a three-year period. Detectable amounts of all chemical classes and most individual congeners were present in all samples. There were no consistent effects of soil or vegetation type, soil carbon content, pH, altitude or distance from centres of population on concentrations which exhibited extreme variation, even in adjacent samples. It is concluded that soil POPs and DEHP concentrations and associated rates of animal and human exposure were highly variable, influenced by multiple, interacting factors, and not clearly related to local sources but possibly related to wet atmospheric deposition and the organic carbon content of the soil. -- Highlights: •Concentrations of selected organic pollutants in Scottish soils were determined. •Concentrations were highly variable. •There were few effects of soil or vegetation type, soil carbon, pH or altitude. •Distance from cities was not an important determinant of concentrations. •Atmospheric deposition and soil organic carbon content may affect concentrations. -- Soil concentrations of anthropogenic persistent organic pollutants are not clearly related to soil type or pH, vegetation, altitude, or distance from pollutant sources

  9. Filamentous fungi remove weathered hydrocarbons from polluted soil of tropical Mexico

    OpenAIRE

    PÉREZ-ARMENDÁRIZ, Beatriz; MARTÍNEZ-CARRERA, Daniel; CALIXTO-MOSQUEDA, María; ALBA, Joel; RODRÍGUEZ-VÁZQUEZ, Refugio

    2010-01-01

    Weathered hydrocarbons from worldwide petrolic activities become more recalcitrant over time. The removal of petroleum hydrocarbons from a polluted soil [65,000 mg total petroleum hydrocarbons (TPH)/kg soil], which had been exposed to tropical environmental conditions for more than 20 years in southeast Mexico, was studied using filamentous fungi. Experiments were carried out in batch reactors (60 mL) containing a substrate consisting of polluted soil and sugar cane bagasse pith as bulk agent...

  10. Pollution load index for heavy metals in Mian-Ab plain soil, Khuzestan, Iran

    OpenAIRE

    Jorfi, Sahand; Maleki, Rohangiz; Jaafarzadeh, Neemat; Ahmadi, Mehdi

    2017-01-01

    Soil pollution by heavy metals is a major concern in agricultural area. Potential impact of heavy metals in agricultural soil on human health by accumulating in food chain demonstrated elsewhere.In this regard Mian-Ab plain as a major agricultural site of Khuzestan province considered for Arsenic, cadmium and lead concentration as the main potential toxic pollutants in soil. 50 topsoil samples were collected and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Also Contamina...

  11. [Pollution and Potential Ecology Risk Evaluation of Heavy Metals in River Water, Top Sediments on Bed and Soils Along Banks of Bortala River, Northwest China].

    Science.gov (United States)

    Zhang, Zhao-yong; Abuduwaili, Jilili; Jiang, Feng-qing

    2015-07-01

    This paper focuses on the sources, pollution status and potential ecology risks of heavy metals (Cr, Cu, Hg, As, Cd, Pb, and Zn) in the surface water, top sediment of river bed and soil along banks of Bortala River, which locates in the oasis region of Xinjiang, northwest China. Results showed that: (1) As a whole, contents of 7 tested heavy metals of Bortala River were low, while the maximum values of Hg, Cd, Pb, and Cr in the river water were significantly higher than those of Secondary Category of the Surface Water Quality Standards of People's Republic of China (GB 3838-2002) and Drinking Water Guideline from WHO. Analysis showed that the heavy metals contents of top sediment on river bed and soils along river banks were significantly higher than those of the river water. (Correlation analysis and enrichment factor (EF) calculation showed that in the river water, top sediment on river bed and soils along river banks, Hg, Cd, Pb, and Cr mainly originated from industrial emissions, urban and rural anthropogenic activities, transportation and agricultural production activities; While Cu, Zn, and As mainly originated from natural geological background and soil parent materials. (3) Pollution assessment showed that in three matrices, the single factor pollution index(Pi) and the integrated pollution index (Pz) of 7 heavy metals were all lower than 1, and they all belonged to safe and clean levels. (4) Potential ecology risk evaluation showed that as a whole the single factor potential ecological risk (Eir) and the integrated potential ecology risks (RI) of 7 heavy metals were relatively low, and would not cause threats to the health of water and soil environment of river basin, while the potential ecology risks of Cd, Hg, Pb, and Cr were significantly higher than those of other heavy metals.

  12. Bioremediation Potential of Native Hydrocarbons Degrading Bacteria in Crude Oil Polluted Soil

    Directory of Open Access Journals (Sweden)

    Mariana MARINESCU

    2017-05-01

    Full Text Available Bioremediation of crude oil contaminated soil is an effective process to clean petroleum pollutants from the environment. Crude oil bioremediation of soils is limited by the bacteria activity in degrading the spills hydrocarbons. Native crude oil degrading bacteria were isolated from different crude oil polluted soils. The isolated bacteria belong to the genera Pseudomonas, Mycobacterium, Arthrobacter and Bacillus. A natural biodegradable product and bacterial inoculum were used for total petroleum hydrocarbon (TPH removal from an artificial polluted soil. For soil polluted with 5% crude oil, the bacterial top, including those placed in the soil by inoculation was 30 days after impact, respectively 7 days after inoculum application, while in soil polluted with 10% crude oil,  multiplication top of bacteria was observed in the determination made at 45 days after impact and 21 days after inoculum application, showing once again how necessary is for microorganisms habituation and adaptation to environment being a function of pollutant concentration. The microorganisms inoculated showed a slight adaptability in soil polluted with 5% crude oil, but complete inhibition in the first 30 days of experiment at 10% crude oil.

  13. Decision support tool for soil sampling of heterogeneous pesticide (chlordecone) pollution.

    Science.gov (United States)

    Clostre, Florence; Lesueur-Jannoyer, Magalie; Achard, Raphaël; Letourmy, Philippe; Cabidoche, Yves-Marie; Cattan, Philippe

    2014-02-01

    When field pollution is heterogeneous due to localized pesticide application, as is the case of chlordecone (CLD), the mean level of pollution is difficult to assess. Our objective was to design a decision support tool to optimize soil sampling. We analyzed the CLD heterogeneity of soil content at 0-30- and 30-60-cm depth. This was done within and between nine plots (0.4 to 1.8 ha) on andosol and ferralsol. We determined that 20 pooled subsamples per plot were a satisfactory compromise with respect to both cost and accuracy. Globally, CLD content was greater for andosols and the upper soil horizon (0-30 cm). Soil organic carbon cannot account for CLD intra-field variability. Cropping systems and tillage practices influence the CLD content and distribution; that is CLD pollution was higher under intensive banana cropping systems and, while upper soil horizon was more polluted than the lower one with shallow tillage (pollution in the soil profile. The decision tool we proposed compiles and organizes these results to better assess CLD soil pollution in terms of sampling depth, distance, and unit at field scale. It accounts for sampling objectives, farming practices (cropping system, tillage), type of soil, and topographical characteristics (slope) to design a relevant sampling plan. This decision support tool is also adaptable to other types of heterogeneous agricultural pollution at field level.

  14. A simplified in-situ electrochemical decontamination of lead from polluted soil (abstract)

    International Nuclear Information System (INIS)

    Ansari, T.M.; Ahmad, I.; Khan, Q.M.; Chaudhry, A.H.

    2011-01-01

    This paper reports a simplified In-Situ electrochemical method for remediation of field soil contaminated with lead. A series of electrochemical decontamination experiments including variable conditions such as operating duration and application of enhancement reagent were performed to demonstrate the efficiency of lead removal from spiked and polluted soil samples collected from Lahore, Pakistan. The results showed that the efficiency of lead removal from the contaminated soil increased with increasing the operating duration under a set of experimental conditions. The reagent used as complexing and solubilizing agent i.e. EDTA was found to be efficient in removing lead from the polluted soil. After 15 days duration, 85 % lead removal efficiency was observed in spiked soil under enhanced conditions , however, 63 % lead removal was achieved from the polluted soil samples by the simplified In-situ electrochemical decontamination method. The method is simple, rapid, cheaper and suitable for soil remediation purposes. (author)

  15. The CO2 emission in urbanic soils in the conditions of intensive technogenic pollution

    Science.gov (United States)

    Deviatova, Tatiana; Alaeva, Liliia; Negrobova, Elena; Kramareva, Tatiana

    2017-04-01

    Massive industrial pollution of the environment including soils leads to drastic changes in the vital activity of microorganisms, plants and animals. As objects of research was selected soils of the industrial and residential zones, farmland soils, forest soils. Comparative analysis showed that the emission of CO2 urbanizable increase compared to the suburban soils in recreational areas is 1.5 times, in the residential and industrial zones - in 3-5 times. In addition, identified a local point located in the vicinity of chemical plants, where soil CO2 emission increased up to 40 times compared to the suburban soils. Air technogenic pollution of soils by industrial emissions and transport enhances the mineralization of soil organic matter, increases its lability. These trends are associated with nonspecific adaptive reactions of the soil microbial complex in terms of pollution. Strengthening of the processes of mineralization may be due to the increase in the proportion of fungi in the microbial community. According to numerous reports they are more resistant to pollution compared to bacteria and actinomycetes. Admission to the soil organic matter of anthropogenic origin also increases the process of mineralization. According to the findings, low concentrations of petroleum products lead to increased "breathing" of the soil. Strengthening of the processes of mineralization and, consequently, of CO2 emissions, in the conditions of technogenic pollution of the soils identified in our studies, confirmed by numerous studies by other authors. According to reports in Russia the emission of CO2 from soils is 4.5 times higher than the industrial receipt of its atmosphere. The contribution of local anthropogenic CO2 emissions is not so significant compared to the indirect influence of soil pollution on increased CO2 emissions. Consequently, the expansion of technogenic contaminated soil is becoming a more significant factor adversely affecting the state of the atmosphere

  16. Decontamination of electronic waste-polluted soil by ultrasound-assisted soil washing.

    Science.gov (United States)

    Chen, Fu; Yang, Baodan; Ma, Jing; Qu, Junfeng; Liu, Gangjun

    2016-10-01

    Laboratorial scale experiments were performed to evaluate the efficacy of a washing process using the combination of methyl-β-cyclodextrin (MCD) and tea saponin (TS) for simultaneous desorption of hydrophobic organic contaminants (HOCs) and heavy metals from an electronic waste (e-waste) site. Ultrasonically aided mixing of the field contaminated soil with a combination of MCD and TS solutions simultaneously mobilizes most of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and the analyte metal (Pb, Cu, and Ni) burdens. It is found that 15 g/L MCD and 10 g/L TS is an efficient reagent combination reconciling extraction performance and reagent costs. Under these conditions, the removal efficiencies of HOCs and heavy metals are 93.5 and 91.2 %, respectively, after 2 cycles of 60-min ultrasound-assisted washing cycles. By contrast, 86.3 % of HOCs and 88.4 % of metals are removed from the soil in the absence of ultrasound after 3 cycles of 120-min washing. The ultrasound-assisted soil washing could generate high removal efficiency and decrease the operating time significantly. Finally, the feasibility of regenerating and reusing the spent washing solution in extracting pollutants from the soil is also demonstrated. By application of this integrated technology, it is possible to recycle the washing solution for a purpose to reduce the consumption of surfactant solutions. Collectively, it has provided an effective and economic treatment of e-waste-polluted soil.

  17. Photosynthetic, antioxidative, molecular and ultrastructural responses of young cacao plants to Cd toxicity in the soil.

    Science.gov (United States)

    Pereira de Araújo, Romária; Furtado de Almeida, Alex-Alan; Silva Pereira, Lidiane; Mangabeira, Pedro A O; Olimpio Souza, José; Pirovani, Carlos P; Ahnert, Dário; Baligar, Virupax C

    2017-10-01

    Cadmium (Cd) is a highly toxic metal for plants, even at low concentrations in the soil. The annual production of world cocoa beans is approximately 4 million tons. Most of these fermented and dried beans are used in the manufacture of chocolate. Recent work has shown that the concentration of Cd in these beans has exceeded the critical level (0.6mgkg -1 DM). The objective of this study was to evaluate the toxicity of Cd in young plants of CCN 51 cacao genotype grown in soil with different concentrations of Cd (0, 0.05 and 0.1gkg -1 soil) through photosynthetic, antioxidative, molecular and ultrastructural changes. The increase of Cd concentration in the soil altered mineral nutrient absorption by competition or synergism, changed photosynthetic activity caused by reduction in chloroplastidic pigment content and damage to the photosynthetic machinery evidenced by the Fv/Fm ratio and expression of the psbA gene and increased GPX activity in the root and SOD in leaves. Additionally, ultrastructural alterations in roots and leaves were also evidenced with the increase of the concentration of Cd in the soil, whose toxicity caused rupture of biomembranes in root and leaf cells, reduction of the number of starch grains in foliar cells, increase of plastoglobules in chloroplasts and presence of multivesiculated bodies in root cells. It was concluded, therefore, that soil Cd toxicity caused damage to the photosynthetic machinery, antioxidative metabolism, gene expression and irreversible damage to root cells ultrastructure of CCN 51 cocoa plants, whose damage intensity depended on the exposure time to the metal. Copyright © 2017. Published by Elsevier Inc.

  18. Behaviors of heavy metals (Cd, Cu, Ni, Pb and Zn) in soil amended with composts.

    Science.gov (United States)

    Gusiatin, Zygmunt Mariusz; Kulikowska, Dorota

    2016-09-01

    This study investigated how amendment with sewage sludge compost of different maturation times (3, 6, 12 months) affected metal (Cd, Cu, Ni, Pb, Zn) bioavailability, fractionation and redistribution in highly contaminated sandy clay soil. Metal transformations during long-term soil stabilization (35 months) were determined. In the contaminated soil, Cd, Ni and Zn were predominately in the exchangeable and reducible fractions, Pb in the reducible fraction and Cu in the reducible, exchangeable and oxidizable fractions. All composts decreased the bioavailability of Cd, Ni and Zn for up to 24 months, which indicates that cyclic amendment with compost is necessary. The bioavailability of Pb and Cu was not affected by compost amendment. Based on the reduced partition index (IR), metal stability in amended soil after 35 months of stabilization was in the following order: Cu > Ni = Pb > Zn > Cd. All composts were more effective in decreasing Cd, Ni and Zn bioavailability than in redistributing the metals, and increasing Cu redistribution more than that of Pb. Thus, sewage sludge compost of as little as 3 months maturation can be used for cyclic amendment of multi-metal-contaminated soil.

  19. Chemical-assisted phytoremediation of CD-PAHs contaminated soils using Solanum nigrum L.

    Science.gov (United States)

    Yang, Chuanjie; Zhou, Qixing; Wei, Shuhe; Hu, Yahu; Bao, Yanyu

    2011-09-01

    A well-characterized cadmium (Cd) hyperaccumulating plant Solanum nigrum was grown in Cd and polycyclic aromatic hydrocarbons (PAHs) co-contaminated soil that was repeatedly amended with chemicals, including EDTA, cysteine (CY), salicylic acid (Sa), and Tween 80 (TW80), to test individual and combined treatment effects on phytoremediation of Cd-PAHs contaminated soils. Plant growth was negatively affected by exogenous chemicals except for EDTA. S. nigrum could accumulate Cd in tissues without assistant chemicals, while there was no visible effect on the degradation of PAHs. Cysteine had significant effects on phytoextraction of Cd and the highest metal extraction ratio (1.27%) was observed in 0.9 mmol/kg CY treatment. Both salicylic acid and Tween 80 had stimulative effects on the degradation of PAHs and there was the maximal degradation rate (52.6%) of total PAHs while 0.9 mmol/kg Sa was applied. Furthermore, the combined treatment T(0.1EDTA+0.9CY+0.5TW80) and T(0.5EDTA+0.9CY+03Sa) could not only increase the accumulation of Cd in plant tissues, but also promote the degradation of PAHs. These results indicated that S. nigrum might be effective in phytoextracting Cd and enhancing the biodegradation of PAHs in the co-contaminated soils with assistant chemicals.

  20. Challenges of E-Waste pollution to soil environments in Nigeria - A ...

    African Journals Online (AJOL)

    Challenges of E-Waste pollution to soil environments in Nigeria - A Review. ... of ewaste on the environment (including the soil fauna and flora) especially in Nigeria. ... Possible e-waste management strategies will also be highlighted on soil ...

  1. The remediation of the lead-polluted garden soil by natural zeolite.

    Science.gov (United States)

    Li, Hua; Shi, Wei-yu; Shao, Hong-bo; Shao, Ming-an

    2009-09-30

    The current study investigated the remediation effect of lead-polluted garden soil by natural zeolite in terms of soil properties, Pb fraction of sequential extraction in soil and distribution of Pb in different parts of rape. Natural zeolite was added to artificially polluted garden soil to immobilize and limit the uptake of lead by rape through changing soil physical and chemical properties in the pot experiment under greenhouse conditions. Results indicated that the addition of natural zeolite could increase soil pH, CEC, content of soil organic matter and promote formation of soil aggregate. The application of zeolite decreased the available fraction of Pb in the garden soil by adjusting soil pH rather than CEC, and restrained the Pb uptake by rape. Data obtained suggested that the application of a dose of zeolite was adequate (>or=10 g kg(-1)) to reduce soluble lead significantly, even if lead pollution is severe in garden soil (>or=1000 mg kg(-1)). An appropriate dose of zeolite (20 g kg(-1)) could reduce the Pb concentration in the edible part (shoots) of rape up to 30% of Pb in the seriously polluted soil (2000 mg kg(-1)).

  2. Improvement of the soil nitrogen content and maize growth by earthworms and arbuscular mycorrhizal fungi in soils polluted by oxytetracycline.

    Science.gov (United States)

    Cao, Jia; Wang, Chong; Ji, Dingge

    2016-11-15

    Interactions between earthworms (Eisenia fetida) and arbuscular mycorrhizal fungi (Rhizophagus intraradices, AM fungi) have been suggested to improve the maize nitrogen (N) content and biomass and were studied in soils polluted by oxytetracycline (OTC). Maize was planted and amended with AMF and/or earthworms (E) in the soil with low (1mgkg(-1) soil DM) or high (100mgkg(-1) soil DM) amounts of OTC pollution in comparison to soil without OTC. The root colonization, shoot and root biomass, shoot and root N contents, soil nitrogen forms, ammonia-oxidizing bacteria (AOB) and archaea (AOA) were measured at harvest. The results indicated that OTC decreased maize shoot and root biomass (psoil urease activity and AOB and AOA abundance, which resulted in a lower N availability for maize roots and shoots. There was a significant interaction between earthworms and AM fungi on the urease activity in soil polluted by OTC (ppolluted soil by increasing the urease activity and relieving the stress from OTC on the soil N cycle. AM fungi and earthworms interactively increased maize shoot and root biomass (ppolluted soils through their regulation of the urease activity and the abundance of ammonia oxidizers, resulting in different soil NH4(+)-N and NO3(-)-N contents, which may contribute to the N content of maize shoots and roots. Earthworms and AM fungi could be used as an efficient method to relieve the OTC stress in agro-ecosystems. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Temporal variability in Cu speciation, phytotoxicity, and soil microbial activity of Cu-polluted soils as affected by elevated temperature.

    Science.gov (United States)

    Fu, Qing-Long; Weng, Nanyan; Fujii, Manabu; Zhou, Dong-Mei

    2018-03-01

    Global warming has obtained increasing attentions due to its multiple impacts on agro-ecosystem. However, limited efforts had been devoted to reveal the temporal variability of metal speciation and phytotoxicity of heavy metal-polluted soils affected by elevated temperature under the global warming scenario. In this study, effects of elevated temperature (15 °C, 25 °C, and 35 °C) on the physicochemical properties, microbial metabolic activities, and phytotoxicity of three Cu-polluted soils were investigated by a laboratory incubation study. Soil physicochemical properties were observed to be significantly altered by elevated temperature with the degree of temperature effect varying in soil types and incubation time. The Biolog and enzymatic tests demonstrated that soil microbial activities were mainly controlled and decreased with increasing incubation temperature. Moreover, plant assays confirmed that the phytotoxicity and Cu uptake by wheat roots were highly dependent on soil types but less affected by incubation temperature. Overall, the findings in this study have highlighted the importance of soil types to better understand the temperature-dependent alternation of soil properties, Cu speciation and bioavailability, as well as phytotoxicity of Cu-polluted soils under global warming scenario. The present study also suggests the necessary of investigating effects of soil types on the transport and accumulation of toxic elements in soil-crop systems under global warming scenario. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The Use of Adsorbent Materials of Improving the Characteristics of Polluted Soils, Part 1 Phytoremediation of Soils Polluted with Oil Products, Cultivated with Technical Plants

    Directory of Open Access Journals (Sweden)

    Smaranda Masu

    2015-10-01

    Full Text Available In this study are presented in pot experimental variants regarding alternatives to improve the characteristics of soils polluted with 74.12 ± 3.50 g·kg-1 D.M. total petroleum hydrocarbon (TPH in order to apply the phytoremediation process using technical plants from the common flax (Linum usitatissimum. The harmful effects of TPH polluted soils to plants was reduced by using fly ash from thermal plant as temporary adsorbent of non-polar pollutants, petroleum products. The increase of water retention capacity of the soil was achieved by treatments with indigenous volcanic tuff. The lack of nutrients, based on N and P in soils contaminated with TPH rich in C compounds are completed using sewage sludge anaerobically stabilized. The use of appropriate amounts of fly ash and fertilizer agents in the presence of volcanic tuff caused the formation of strong networks of roots and rich harvests of plants, stems and seeds from the treated soil. The TPH reduction efficiency of TPH polluted soils treated with fly ash (TPH soil: fly ash ratio 12:1 wt. / wt. and anaerobically stabilized sewage sludge respectively indigenous volcanic tuff during one vegetative cycle of crops was in the range of 56.2 - 63.25 %.

  5. Organic pollutants and heavy metals in rainwater runoff and their fate in the unsaturated soil zone. Final report

    International Nuclear Information System (INIS)

    Grotehusmann, D.; Rohlfing, R.; Weyer, G.; Dittrich, D.; Gowik, P.; Pernak, P.

    1991-01-01

    This bibliographic study is part of the BMFT intergrated project ''Possibilitiis and limits of [ drainage in consederation of the soil and groundwater protection''. Subjects: Environmental relevance and general distribution of organic pollutants; organic pollutants in rain water, soil, and groundwater; fate of organic pollutants in soil; environmental relevance of heavy metals in soil, rain water, and runof; fate of heavy metals in the unsaturated soil rare. (orig./BBR) [de

  6. Soil quality changes in response to their pollution by heavy metals, Georgia.

    Science.gov (United States)

    Matchavariani, Lia; Kalandadze, Besik; Lagidze, Lamzira; Gokhelashvili, Nino; Sulkhanishvili, Nino; Paichadze, Nino; Dvalashvili, Giorgi

    2015-01-01

    The present study deals with the composition, migration and accumulation of heavy metals in irrigated soils, plants and partially natural waters; and also, establishing the possible sources of pollution and their impact on environmental situation. The content of toxic elements in the irrigated soils adjacent to ore mining and processing enterprise were studied. Content of toxic elements in the irrigated soils adjacent to ore mining, showed that more than half of territory was seriously polluted by copper and zinc. Some part of the area were considered catastrophically polluted. Expressed technogenesis taking place influenced irrigation. Heavy metals like copper, zinc and manganese negative by effected the properties of soil, thus composition and soil-forming processes taking place in the soil. It was especially well represented in the deterioration of hydro-physical potential of the soil. Irrigation of agricultural land plots by water, polluted with heavy metals changed the pH. Balanced correlation among solid, liquid and gas phases was disrupted. In highly polluted soil, the cementing processes took place that sharply increased the bulk density of the soil, deteriorated the porosity of soil and reduced water permeability critically.

  7. Copper Pollution Increases the Resistance of Soil Archaeal Community to Changes in Water Regime.

    Science.gov (United States)

    Li, Jing; Liu, Yu-Rong; Cui, Li-Juan; Hu, Hang-Wei; Wang, Jun-Tao; He, Ji-Zheng

    2017-11-01

    Increasing efforts have been devoted to exploring the impact of environmental stresses on soil bacterial communities, but the work on the archaeal community is seldom. Here, we constructed microcosm experiments to investigate the responses of archaeal communities to the subsequent dry-rewetting (DW) disturbance in two contrasting soils (fluvo-aquic and red soil) after 6 years of copper pollution. Ten DW cycles were exerted on the two soils with different copper levels, followed by a 6-week recovery period. In both soils, archaeal diversity (Shannon index) in the high copper-level treatments increased over the incubation period, and archaeal community structure changed remarkably as revealed by the non-metric multidimensional scaling ordinations. In both soils, copper pollution altered the response of dominant operational taxonomic units (OTUs) to the DW disturbance. Throughout the incubation and recovery period, the resistance of archaeal abundance to the DW disturbance was higher in the copper-polluted soils than soils without pollution. Taken together, copper pollution altered the response of soil archaeal diversity and community composition to the DW disturbance and increased the resistance of the archaeal abundance. These findings have important implications for understanding soil microbial responses to ongoing environmental change.

  8. Effect of oil pollution on pattern and functions of soil microbiosensors

    International Nuclear Information System (INIS)

    Talibli, A.K.; Mamedova, I.S.; Mamedyarov, M.A.

    2002-01-01

    Full text : The soil polluted by oil and petroleum creates severe social and ecological problem. The solution of indicated problem is requires the development and intrusion of modern progressive technology. Most perspective in this sense can be clearing the oil-polluted soils with usage of activity of microorganisms. The modern level of learning of microorganisms oxidizing oil hydrocarbon testifies to a capability of creation of the non-polluting, economically effective biotechnological schemes. It was established by our researches that in oil polluted soils of Absheron peninsula alongside with hydrocarbon oxidizing bacteria it is finding everywhere lithotrophic bacteria of cycle of sulfur - representatives of sulfate-reducing and bacteria of genus Thiobacillus. It was established that the soil polluted by heavy tarry oil renders negative influencing on development of microorganisms

  9. Phytoextraction of Cd-contaminated soil by carambola (Averrhoa carambola) in field trials.

    Science.gov (United States)

    Li, J T; Liao, B; Dai, Z Y; Zhu, R; Shu, W S

    2009-08-01

    Use of metal-accumulating woody species to extract metals from heavy metal contaminated soil has received more attention. While considerable studies have focused on the phytoextraction potential of willow (Salix spp.) and poplar (Populus spp.), similar information is rare for other woody species. Carambola (Averrhoa carambola) is a high-biomass tree and has been identified as a new Cd-accumulating species. The present study aimed to evaluate the Cd phytoextraction potential of carambola under field condition. After growing in a slightly Cd-contaminated site for about 170 d, the carambola stand initiated by seed-seedling with high planting density (encoded with "HD-1yr") attained a high shoot biomass yield of 18.6 t ha(-1) and extracted 213 g Cdha(-1), resulting in a 1.6-fold higher Cd removal efficiency than that of a contrasting stand established by grafted-seedling with low planting density (5.3% vs. 2%). That is, "HD-1yr" would remove 50% of the total soil Cd with 13yr, assuming that the Cd removal efficiency would not change over time. Further, one crop of "HD-1yr" significantly decreased (63-69%) the Cd uptake by subsequent vegetables. Among the four carambola stands established using grafted-seedling, the 2-yr-old stand exhibited the highest annual Cd removal efficiency (3.7%), which was yet lower than that of "HD-1yr". These results suggested that phytoextraction of Cd by carambola (especially for "HD-1yr" stand) presented a feasible option to clean up agricultural soils slightly contaminated by Cd.

  10. Influence of industrial heavy metal pollution on soil free-living nematode population

    International Nuclear Information System (INIS)

    Pen-Mouratov, Stanislav; Shukurov, Nosir; Steinberger, Yosef

    2008-01-01

    The effect of distance from a heavy metal pollution source on the soil nematode community (trophic structure, sex structure, and taxa composition) was investigated along a 15-km transect originating at the Almalyk Industrial Complex, Uzbekistan (pollution source). The soil nematode community was exposed to heavy metal influence both directly and through soil properties changes. Pollution effect on the density and biomass of soil free-living nematodes was found to be highest at pollution source, with fungivores and plant parasites dominating at the upper and deeper soil layers next to the pollution source. These groups decreased along the transect, yielding domination to bacteria- and fungi-feeders. The sex ratio of nematode communities was found to be dependent on heavy metal pollution levels, with the juveniles being the most sensitive nematode group. The Maturity and modified Maturity Indices, reflecting the degree of disturbance of the soil ecosystem, were found to be the most sensitive indices. - Trophic structure and sex ratio of soil nematode population are sensitive tools for monitoring industrial pollution

  11. Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review.

    Science.gov (United States)

    Chae, Yooeun; An, Youn-Joo

    2018-05-09

    Plastic pollution in the environment is currently receiving worldwide attention. Improper dumping of disused or abandoned plastic wastes leads to contamination of the environment. In particular, the disposal of municipal wastewater effluent, sewage sludge landfill, and plastic mulch from agricultural activities is a serious issue and of major concern regarding soil pollution. Compared to plastic pollution in the marine and freshwater ecosystems, that in the soil ecosystem has been relatively neglected. In this study, we discussed plastic pollution in the soil environment and investigated research on the effects of plastic wastes, especially microplastics, on the soil ecosystem. We found that earthworms have been predominantly used as the test species in investigating the effects of soil plastic pollution on organisms. Therefore, further research investigating the effects of plastic on other species models (invertebrates, plants, microorganisms, and insects) are required to understand the effects of plastic pollution on the overall soil ecosystem. In addition, we suggest other perspectives for future studies on plastic pollution and soil ecotoxicity of plastics wastes, providing a direction for such research. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. [Soil organic pollution characteristics and microbial properties in coal mining areas of Mentougou].

    Science.gov (United States)

    Jia, Jian-Li; Zhang, Yue; Wang, Chen; Li, Dong; Liu, Bo-Wen; Liu, Ying; Zhao, Le; Yang, Si-Qi

    2011-03-01

    Soil micro-ecosystem including organic pollution characteristics, basic physicochemical parameters, and microbial properties was analyzed which contaminated with organic pollutants in coal mining area. Results showed that the organic pollution level in coal mining area soils distributed from 0.4 to 1.5 mg/g dry soil, which was 1. 5-6 times as much as the background sample. Furthermore, the column chromatography and GC-MS analysis revealed that content of lightly components including saturated and aromatic hydrocarbons exceeded 40%, specifically was alkenes (> C15), hydrocarbon derivatives, and a small amount aromatic hydrocarbons. Totally, the components of organic pollutants extracted in soils were similar to which in coal gangue samples, illustrating the source of soil pollution to a certain extent in coal mining areas. The physicochemical factors such as nutrient level and moisture contents were not conducive to the growth and reproduction of microbe except pH level, which might show inhibition to microbial activities. Microbial density of pollutant soils in coal mining areas was totally low, with specific amount 10(4)-10(5) cell/g dry soil and FDA activity 2.0-2.9 mg/(g x min). Generally, the microbial density and activity were decreased as the enhancing pollution level. However, in-depth analysis was needed urgently because of the complex impact of environmental conditions like pH, moisture, and nutrition.

  13. Influence of industrial heavy metal pollution on soil free-living nematode population

    Energy Technology Data Exchange (ETDEWEB)

    Pen-Mouratov, Stanislav [The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900 (Israel); Shukurov, Nosir [Institute of Geology and Geophysics, Academy of Sciences, Tashkent 700041 (Uzbekistan); Steinberger, Yosef [The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900 (Israel)], E-mail: steinby@mail.biu.ac.il

    2008-03-15

    The effect of distance from a heavy metal pollution source on the soil nematode community (trophic structure, sex structure, and taxa composition) was investigated along a 15-km transect originating at the Almalyk Industrial Complex, Uzbekistan (pollution source). The soil nematode community was exposed to heavy metal influence both directly and through soil properties changes. Pollution effect on the density and biomass of soil free-living nematodes was found to be highest at pollution source, with fungivores and plant parasites dominating at the upper and deeper soil layers next to the pollution source. These groups decreased along the transect, yielding domination to bacteria- and fungi-feeders. The sex ratio of nematode communities was found to be dependent on heavy metal pollution levels, with the juveniles being the most sensitive nematode group. The Maturity and modified Maturity Indices, reflecting the degree of disturbance of the soil ecosystem, were found to be the most sensitive indices. - Trophic structure and sex ratio of soil nematode population are sensitive tools for monitoring industrial pollution.

  14. Abundance, composition and activity of denitrifier communities in metal polluted paddy soils

    Science.gov (United States)

    Liu, Yuan; Liu, Yongzhuo; Zhou, Huimin; Li, Lianqing; Zheng, Jinwei; Zhang, Xuhui; Zheng, Jufeng; Pan, Genxing

    2016-01-01

    Denitrification is one of the most important soil microbial processes leading to the production of nitrous oxide (N2O). The potential changes with metal pollution in soil microbial community for N2O production and reduction are not well addressed. In this study, topsoil samples were collected both from polluted and non-polluted rice paddy fields and denitrifier communities were characterized with molecular fingerprinting procedures. All the retrieved nirK sequences could be grouped into neither α- nor β- proteobacteria, while most of the nosZ sequences were affiliated with α-proteobacteria. The abundances of the nirK and nosZ genes were reduced significantly in the two polluted soils. Thus, metal pollution markedly affected composition of both nirK and nosZ denitrifiers. While the total denitrifying activity and N2O production rate were both reduced under heavy metal pollution of the two sites, the N2O reduction rate showed no significant change. These findings suggest that N2O production activity could be sensitive to heavy metal pollution, which could potentially lead to a decrease in N2O emission in polluted paddies. Therefore, metal pollution could have potential impacts on soil N transformation and thus on N2O emission from paddy soils. PMID:26739424

  15. Assessing the pollution risk of soil Chromium based on loading capacity of paddy soil at a regional scale

    Science.gov (United States)

    Qu, Mingkai; Li, Weidong; Zhang, Chuanrong; Huang, Biao; Zhao, Yongcun

    2015-01-01

    The accumulation of a trace metal in rice grain is not only affected by the total concentration of the soil trace metal, but also by crop variety and related soil properties, such as soil pH, soil organic matter (SOM) and so on. However, these factors were seldom considered in previous studies on mapping the pollution risk of trace metals in paddy soil at a regional scale. In this study, the spatial nonstationary relationships between rice-Cr and a set of perceived soil properties (soil-Cr, soil pH and SOM) were explored using geographically weighted regression; and the relationships were then used for calculating the critical threshold (CT) of soil-Cr concentration that may ensure the concentration of rice-Cr being below the permissible limit. The concept of “loading capacity” (LC) for Cr in paddy soil was then defined as the difference between the CT and the real concentration of Cr in paddy soil, so as to map the pollution risk of soil-Cr to rice grain and assess the risk areas in Jiaxing city, China. Compared with the information of the concentration of the total soil-Cr, such results are more valuable for spatial decision making in reducing the accumulation of rice-Cr at a regional scale. PMID:26675587

  16. Assessing the pollution risk of soil Chromium based on loading capacity of paddy soil at a regional scale.

    Science.gov (United States)

    Qu, Mingkai; Li, Weidong; Zhang, Chuanrong; Huang, Biao; Zhao, Yongcun

    2015-12-17

    The accumulation of a trace metal in rice grain is not only affected by the total concentration of the soil trace metal, but also by crop variety and related soil properties, such as soil pH, soil organic matter (SOM) and so on. However, these factors were seldom considered in previous studies on mapping the pollution risk of trace metals in paddy soil at a regional scale. In this study, the spatial nonstationary relationships between rice-Cr and a set of perceived soil properties (soil-Cr, soil pH and SOM) were explored using geographically weighted regression; and the relationships were then used for calculating the critical threshold (CT) of soil-Cr concentration that may ensure the concentration of rice-Cr being below the permissible limit. The concept of "loading capacity" (LC) for Cr in paddy soil was then defined as the difference between the CT and the real concentration of Cr in paddy soil, so as to map the pollution risk of soil-Cr to rice grain and assess the risk areas in Jiaxing city, China. Compared with the information of the concentration of the total soil-Cr, such results are more valuable for spatial decision making in reducing the accumulation of rice-Cr at a regional scale.

  17. Interactive effects of Cd and PAHs on contaminants removal from co-contaminated soil planted with hyperaccumulator plant Sedum alfredii

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kai; Huang, Huagang; Li, Tingqiang; Yang, Xiaoe [Zhejiang Univ., Hangzhou (China). MOE Key Lab. of Environment Remediation and Ecosystem Health; Zhu, Zhiqiang [Zhejiang Univ., Hangzhou (China). MOE Key Lab. of Environment Remediation and Ecosystem Health; Hainan Univ., Haikou (China). College of Agriculture; He, Zhenli [Florida Univ., Port Pierce, FL (United States). Inst. of Food and Agricultural Sciences; Alva, Ashok [US Department of Agriculture, Prosser, WA (United States). Agricultural Research Service

    2012-04-15

    Purpose: Soil contamination by multiple organic and inorganic contaminants is common but its remediation by hyperaccumulator plants is rarely reported. The growth of a cadmium (Cd) hyperaccumulator Sedum alfredii and removal of contaminants from Cd and polycyclic aromatic hydrocarbons (PAHs) co-contaminated soil were reported in this study. Materials and methods: Soil slightly contaminated by Cd (0.92 mg kg{sup -1} DW) was collected from a vegetable field in Hangzhou and was spiked with two levels (0 and 6 mg kg{sup -1} DW) of Cd and three levels (0, 25, and 150 mg kg{sup -1} DW) of phenanthrene (PHE) or pyrene (PYR). A pot experiment was conducted in a greenhouse using S. alfredii with unplanted controls for 60 days. Shoot and root biomass of plants, dehydrogenase activity (DHA), and microbial biomass carbon in the soil were measured. Concentrations of Cd and PAHs in the plant and soil were determined. Results and discussion: Elevated Cd level (6.38 mg kg{sup -1} DW) increased S. alfredii growth. The presence of PAHs decreased the stimulatory effects of Cd on plant biomass and Cd concentrations in shoots in Cd spiked soil, thus decreasing Cd phytoextraction efficiency. Cadmium removal by S. alfredii after 60 days of growth varied from 5.8% to 6.7% and from 5.7% to 9.6%, in Cd unspiked and spiked soils, respectively. Removal rate of PAHs in the soil was similar with or without the plants. Removal rate of PYR decreased at the elevated Cd level in the soil. This appears to be due to a decrease in soil microbial activity. This is confirmed by a decrease in DHA, which is a good indicator of soil microbial activity. Conclusions: Our results demonstrate that S. alfredii could effectively extract Cd from Cd-contaminated soils in the presence of PHE or PYR; however, both PAHs exhibited negative effects on phytoextraction of Cd from Cd spiked soil (6.38 mg kg{sup -1} DW). S. alfredii is not suitable for remediation of PAHs. The effects of Cd and PAHs concentrations on the

  18. A Diffusive Gradient-in-Thin-Film Technique for Evaluation of the Bioavailability of Cd in Soil Contaminated with Cd and Pb

    Directory of Open Access Journals (Sweden)

    Peifang Wang

    2016-06-01

    Full Text Available Management of heavy metal contamination requires accurate information about the distribution of bioavailable fractions, and about exchange between the solid and solution phases. In this study, we employed diffusive gradients in thin-films (DGT and traditional chemical extraction methods (soil solution, HOAc, EDTA, CaCl2, and NaOAc to determine the Cd bioavailability in Cd-contaminated soil with the addition of Pb. Two typical terrestrial species (wheat, Bainong AK58; maize, Zhengdan 958 were selected as the accumulation plants. The results showed that the added Pb may enhance the efficiency of Cd phytoextraction which is indicated by the increasing concentration of Cd accumulating in the plant tissues. The DGT-measured Cd concentrations and all the selected traditional extractants measured Cd concentrations all increased with increasing concentration of the addition Pb which were similar to the change trends of the accumulated Cd concentrations in plant tissues. Moreover, the Pearson regression coefficients between the different indicators obtained Cd concentrations and plants uptake Cd concentrations were further indicated significant correlations (p < 0.01. However, the values of Pearson regression coefficients showed the merits of DGT, CaCl2, and Csol over the other three methods. Consequently, the in situ measurement of DGT and the ex situ traditional methods could all reflect the inhibition effects between Cd and Pb. Due to the feature of dynamic measurements of DGT, it could be a robust tool to predict Cd bioavaiability in complex contaminated soil.

  19. A Diffusive Gradient-in-Thin-Film Technique for Evaluation of the Bioavailability of Cd in Soil Contaminated with Cd and Pb

    Science.gov (United States)

    Wang, Peifang; Wang, Teng; Yao, Yu; Wang, Chao; Liu, Cui; Yuan, Ye

    2016-01-01

    Management of heavy metal contamination requires accurate information about the distribution of bioavailable fractions, and about exchange between the solid and solution phases. In this study, we employed diffusive gradients in thin-films (DGT) and traditional chemical extraction methods (soil solution, HOAc, EDTA, CaCl2, and NaOAc) to determine the Cd bioavailability in Cd-contaminated soil with the addition of Pb. Two typical terrestrial species (wheat, Bainong AK58; maize, Zhengdan 958) were selected as the accumulation plants. The results showed that the added Pb may enhance the efficiency of Cd phytoextraction which is indicated by the increasing concentration of Cd accumulating in the plant tissues. The DGT-measured Cd concentrations and all the selected traditional extractants measured Cd concentrations all increased with increasing concentration of the addition Pb which were similar to the change trends of the accumulated Cd concentrations in plant tissues. Moreover, the Pearson regression coefficients between the different indicators obtained Cd concentrations and plants uptake Cd concentrations were further indicated significant correlations (p < 0.01). However, the values of Pearson regression coefficients showed the merits of DGT, CaCl2, and Csol over the other three methods. Consequently, the in situ measurement of DGT and the ex situ traditional methods could all reflect the inhibition effects between Cd and Pb. Due to the feature of dynamic measurements of DGT, it could be a robust tool to predict Cd bioavaiability in complex contaminated soil. PMID:27271644

  20. Microbial degradation of street dust polycyclic aromatic hydrocarbons in microcosms simulating diffuse pollution of urban soil

    DEFF Research Database (Denmark)

    Johnsen, Anders R; de Lipthay, Julia R; Sørensen, Søren J

    2006-01-01

    Diffuse pollution with polycyclic aromatic hydrocarbons (PAHs) of topsoil in urban regions has caused increasing concerns in recent years. We simulated diffuse pollution of soil in microcosms by spiking sandy topsoil (A-horizon) and coarse, mineral subsoil (C-horizon) with street dust (PM63...... for the persistence and low bioaccessibility of 5- and 6-ring PAHs in diffusely polluted soil.......) isolated from municipal street sweepings from central Copenhagen. The microbial communities adapted to PAH degradation in microcosms spiked with street dust in both A-horizon and C-horizon soils, in spite of low PAH-concentrations. The increased potential for PAH degradation was demonstrated on several...

  1. Phytoecological indicators for biological recultivation of soils polluted with oil in the Absheron peninsula

    Directory of Open Access Journals (Sweden)

    E. M. Gurbanov

    2009-07-01

    Full Text Available Phytoecological indicators of polluted soils of Amirov Oil-and-Gas Production Department (Garadag district,Baku were studied. Phytocenological and biomorphological analysis of flora was done with the aim of further biological rehabilitation of Absheron peninsula. Oil products (black oil, boring waters, etc. pollution turns the plant cover into a dead mass. Decontamination of soil and rehabilitation of microbial community improve the soil’s fertility. Wild and cultured plant indicators may be used in biopurification of the soils polluted with oil products. Sowing of the fodder crops followed by the technical remediation forms the clean areas of higher productivity.

  2. Locational evaluation of chemical soil pollution. Lectures; Standortgerechte Bewertung chemischer Bodenbelastungen. Beitraege

    Energy Technology Data Exchange (ETDEWEB)

    Doerfler, U; Schulte-Hostede, S [eds.

    1998-12-31

    This lecture event dealt with the following subjects: Deposition, transport and interactions of organic pollutants in soil, such as pesticides and polycyclic aromatic hydrocarbons. Biological availability of pollutants, influence of other substances on the biological availability of pollutants, quantitative and qualitative analyses of pollutants in soil, toxicity. (SR) [Deutsch] Themen dieser Vortragsveranstaltung waren: Deposition, Transport und Wechselwirkungen organischer Schadstoffe im Boden, wie Pestizide und polycyclische Aromatische Kohlenwasserstoffe. Bioverfuegbarkeit der Schadstoffe, Einfluss anderer Substanzen auf die Bioverfuegbarkeit der Schadstoffe, quantitative und qualitative Analyse von Schadstoffen im Boden, Toxizitaet. (SR)

  3. Locational evaluation of chemical soil pollution. Lectures; Standortgerechte Bewertung chemischer Bodenbelastungen. Beitraege

    Energy Technology Data Exchange (ETDEWEB)

    Doerfler, U.; Schulte-Hostede, S. [eds.

    1997-12-31

    This lecture event dealt with the following subjects: Deposition, transport and interactions of organic pollutants in soil, such as pesticides and polycyclic aromatic hydrocarbons. Biological availability of pollutants, influence of other substances on the biological availability of pollutants, quantitative and qualitative analyses of pollutants in soil, toxicity. (SR) [Deutsch] Themen dieser Vortragsveranstaltung waren: Deposition, Transport und Wechselwirkungen organischer Schadstoffe im Boden, wie Pestizide und polycyclische Aromatische Kohlenwasserstoffe. Bioverfuegbarkeit der Schadstoffe, Einfluss anderer Substanzen auf die Bioverfuegbarkeit der Schadstoffe, quantitative und qualitative Analyse von Schadstoffen im Boden, Toxizitaet. (SR)

  4. Metals Accumulation and Leaf Surface Anatomy of Murdannia spectabilis Growing in Zn/Cd Contaminated Soil

    Directory of Open Access Journals (Sweden)

    Ladawan Rattanapolsan

    2013-07-01

    Full Text Available Murdannia spectabilis (Kurz Faden was identified as a Zn/Cd hyperaccumulative plant. Leaf surface anatomy of the plant growing in non-contaminated soil (control and Zn/Cd contaminated soil,was studied and compared by a light microscopy and scanning electron microscopy combined with Energy-dispersive X-ray spectroscopy(SEM/EDS. The similarities were reticulate cuticle on epidermises, uniform polygonal cell, stomatal arrangement in six surrounding subsidiary cells, and submarginal sclerenchyma. The dissimilarities were uniserate trichomes spreading on both adaxial and abaxial epidermis of the plants growing in non-contaminated soil, whereas the uniserate trichomes were only on the submarginal-adaxial epidermis of the control plants. The trichomes on leaves of the plants growing in non-contaminated soil were found to have both uniseriate non-glandular and uniseriate glandular trichomes;whereas, leaves of the plants growing in the contaminated soil were merely non-glandular trichomes. The different shape and location of trichomes, the number of stomata and trichome indicated the effect of Zn and Cd on M. spectabilis. The higher percentages of Zn and Cd in the vascular bundle than in the cross section and epidermis areas showed both solutes could move along each route, with diffusion through the symplast and apoplast. The increase of Ca in M. spectabilis growing in Zn/Cd contaminated soil corresponded to the Zn and Cd distributed in the leaves. Zn K-edge and S K-edge XANES spectra proposed that Zn2+ ions were accumulated and/or adsorbed on the epidermis of the tuber, and then absorbed into the root and transport to the xylem. The double peaks of Zn-cysteine in the leaf samples proposed the metal sequestration was by sulphur proteins.

  5. Effects of EDTA and low molecular weight organic acids on soil solution properties of a heavy metal polluted soil.

    Science.gov (United States)

    Wu, L H; Luo, Y M; Christie, P; Wong, M H

    2003-02-01

    A pot experiment was conducted to study the effects of EDTA and low molecular weight organic acids (LMWOA) on the pH, total organic carbon (TOC) and heavy metals in the soil solution in the rhizosphere of Brassica juncea grown in a paddy soil contaminated with Cu, Zn, Pb and Cd. The results show that EDTA and LMWOA have no effect on the soil solution pH. EDTA addition significantly increased the TOC concentrations in the soil solution. The TOC concentrations in treatments with EDTA were significantly higher than those in treatments with LMWOA. Adding 3 mmol kg(-1) EDTA to the soil markedly increased the total concentrations of Cu, Zn, Pb and Cd in the soil solution. Compared to EDTA, LMWOA had a very small effect on the metal concentrations. Total concentrations in the soil solution followed the sequence: EDTA > citric acid (CA) approximately oxalic acid (OA) approximately malic acid (MA) for Cu and Pb; EDTA > MA > CA approximately OA for Zn; and EDTA > MA > CA > OA for Cd. The labile concentrations of Cu, Zn, Pb and Cd showed similar trends to the total concentrations.

  6. Effect of cement dust pollution on certain physical parameters of maize crop and soils

    Energy Technology Data Exchange (ETDEWEB)

    Parthasarathy, S; Arunachalam, N; Natarajan, K; Oblisami, G; Rangaswami, G

    1975-04-01

    A study was undertaken in the fields near a cement factory where the cement dust is the prime pollutant to the field crops and soils. Cement dust deposit varied with the distance from the kiln and fourth and fifth leaves of maize had comparatively more dust than the first three leaves from the top. The cement dust deposited plants showed a suppression in most of the characters like leaf size, number and size of cobs and plant height when compared to plants in non-polluted fields. On comparison with the physical characters of the soils from the control field the soil from cement dust polluted field showed a decrease in water holding capacity and pore space while thermal conductivity and specific heat were more. Artificial mixtures of red and black soils with cement dust showed similar trend as those of the field sample, the black soil being affected more seriously than the red soil.

  7. Relationships between soil heavy metal pollution and enzyme activities in mining areas of northern Hunan province, Central South China

    Science.gov (United States)

    Hu, Xue-Feng; Jiang, Ying; Shu, Ying

    2014-05-01

    Hunan province, Central South China, is a well-known nonferrous metal base in China. Mine exploiting and processing there, however, often lead to heavy metal pollution of farmland. To study the effects of mining activities on the soil environmental quality, four representative paddy fields, the HSG, SNJ, NT and THJ, in Y county, northern Hunan province, were investigated. It was found that the streams running through the HSG, SNJ and NT are severely contaminated due to the long-term discharge of untreated mineral wastewater from local indigenous mining factories. The stream at the HSG, for example, is brownish red in color, with high concentrations of Cu, Zn, Cd, Fe and Mn. The concentrations of Cu, Zn and Cd in all the stream water of the HSG, SNJ and NT exceed the maximum allowable levels of the Agricultural Irrigation Water Criteria of China. Correspondingly, the HSG, SNJ and NT are heavily polluted by Cu, Zn and Cd due to the long-term irrigation with the contaminated stream water. In comparison, both stream water and paddy fields of the THJ, far away from mining areas, are not contaminated by any heavy metals and hence regarded as a control in this study. The rice grain produced at the HSG, SNJ and NT has a high risk of Cd contamination. The rate of rice grain produced in the four paddy fields in Y county with Cd exceeding the safe level (Cd, 0.2 μg g-1) specified by the National Standards for Rice Quality and Safety of China reaches 90%. Cd content in the rice grain is positively significantly correlated with that in the paddy fields, especially with the content of diethylenetriaminepentaacetic acid (DTPA) - extracted Cd, suggesting that the heavy metal pollution of paddy fields has already posed a high risk to rice safety and human health. Soil enzyme activities and microbial biomass are significantly inhibited by the heavy metal pollution of the paddy fields. Microbial biomass C and N (MBC and MBN) at a severely contaminated site of the HSG are only 31

  8. Effect of soil amendments and crop varieties on the amelioration of heavy metal uptake into crops from polluted soils in Bangladesh

    International Nuclear Information System (INIS)

    Ullah, S.M.; Chamon, S.A.; Gerzabek, M.H.; Herger, P.

    1999-06-01

    Bangladesh has at present about 30000 industrial units, large and small. They are discharging their wastes and effluents in the natural systems in most cases without any treatment and thereby cause environmental pollution especially due to heavy metals and organic toxins. The hazardous wastes and effluents are generally discharged in low-lying areas, along the road sides or in the vicinity of the industrial installations. Besides, fertilizers and pesticides are being randomly used in agricultural lands by the uneducated farmers. The important heavy metals discharged from industries in Bangladesh are cadmium, lead, chromium, mercury, zinc, arsenic and in few cases copper and manganese. The need for the present project emerged from the results of the previous project 'Studies on heavy metal and microbiological pollution of soils, sediments and water systems in and around Dhaka City' (1993 - 1996, Nuruzzaman et al., 1995). This investigation showed that industrial effluents and wastes lead to significant pollution of soils and plants around Dhaka City. Two sites (Hazaribagh and Tongi) were investigated in detail. In the Hazahbagh tannery area significant pollution of soil profiles with Cr (up to 29400 mg/kg), Zn, Cu and Pb was observed. This resulted partly in excess heavy metal levels in plants. At the Tongi site soil exhibited high contaminations with Zn (up to 4980 mg Zn/kg) and Hg (up to 5 mg/kg). Due to pH-changes close to the battery factory the mobile Zn-fraction was extremely high and far above toxic limits for plants. Distinct differences were observed between plant species. Rice was less severely affected than wheat, which failed to form grains on the contaminated soil. An additional MSc-thesis (Mondol, 1995) focused on the Tejgaon industrial area (Dhaka). The soil especially showed access levels of Cd (163 mg/kg) and Ni (194 mg/kg), which caused distinctly lower yields of rice, wheat and lettuce and excess levels of heavy metals in plant tissues. Especially

  9. Phytoremediation of petroleum-polluted soils: application of Polygonum aviculare and its root-associated (penetrated) fungal strains for bioremediation of petroleum-polluted soils.

    Science.gov (United States)

    Mohsenzadeh, Fariba; Nasseri, Simin; Mesdaghinia, Alireza; Nabizadeh, Ramin; Zafari, Doustmorad; Khodakaramian, Gholam; Chehregani, Abdolkarim

    2010-05-01

    Petroleum-polluted soils are a common disaster in many countries. Bioremediation of oil contamination in soils is based on the stimulation of petroleum-hydrocarbon-degrading fungal and microbial communities. A field study was conducted in a petroleum-contaminated site to find petroleum-resistant plants and their root-associated fungal strains for use in bioremediation of petroleum-polluted soils. Results and observations showed that the amounts of petroleum pollution in nonvegetated soils were several times higher than in vegetated soils. Plants collected from petroleum-polluted areas were identified using morphological characters. Results indicated that seven plant species were growing on the contaminated sites: Alhaji cameleron L. (Fabaceae), Amaranthus retroflexus L. var. retroflexus (Amaranthaceae), Convolvulus arvensis L. (Convolvulaceae), Chrozophora hierosolymitana Spreg. (Euphorbiaceae), Noea mucronata L. (Boraginaceae), Poa sp. (Poaceae), and Polygonum aviculare L. (Polygonaceae). The root-associated fungi of each plant were determined and results showed the presence of 11 species that associated with and also penetrated the roots of plants growing in the polluted areas. Altenaria sp. was common to all of the plants and the others had species-specific distribution within the plants. The largest numbers of fungal species (six) were determined for P. aviculare and Poa sp. in polluted areas. However, the variation of fungal strains in the plants collected from petroleum-polluted areas was greater than for nonpolluted ones. Culture of fungi in oil-contaminated media showed that all the studied fungi were resistant to low petroleum pollution (1% v/v) and a few species, especially Fusarium species, showed resistance to higher petroleum pollution (10% v/v) and may be suitable for bioremediation in highly polluted areas. Bioremediation tests with P. aviculare, with and without fungal strains, showed that application of both the plant and its root-associated fungal

  10. Effect of mammals’ excretory function on aspartate aminotransferase activity in Glechoma hederacea leaves in conditions of Cd pollution

    Directory of Open Access Journals (Sweden)

    O. M. Vasilyuk

    2014-07-01

    Full Text Available The paper includes analysis of research of Cd impact on the activity of the enzyme of aspartate aminotransferase (AST nitrogen metabolism and the content of water-soluble protein fraction (albumin in Glechoma hederacea L. leaves, which dominated in the research area (in natural floodplain oak forest with Stellaria holostea L.. Cd was introduced in the form of salts of Cd(NO32 in the range of concentrations of: 0.25, 1.25, 2.5 g/m2, equivalent to the inclusion of Cd in 1, 5, 10 doses of MAC. Increase (P < 0.05 in the activity of AST 2.6–3.0 times (with adding Cd salts at a dose of 1 and 5 МAС and albumin content by 37% (with adding Cd salts at a dose of 10 МAС compared to control (the area without Cd pollution and excretory activity of mammals was shown. Using of excreta of some representatives of mammals (for example, Capreolus capreolus L. contributed to reduction of Cd toxic effects and restoring of the functional metabolic activity of AST by 23% (with Cd 1 МAС and by 34% (Cd 5 МAС. It is the evidence of protective function of mammals and their normalization effect at the above concentrations of Cd. Whereas the adding of Cd salts at a dose of 10 МAС led to 3 times’ inhibition of AST activity, the toxic effect of metal by excretory function of mammals was not reduced. Observations revealed the albumin content normalization by 22% in the presence of Cd 1MAC respectively (with the introduction of C. capreolus excreta and to the control level (the area without Cd pollution and excretory activity of mammals with the excreta of Sus scrofa L. in the setting of Cd 10 MAC. It proves the need to use the different mammal species for integrated and comprehensive normalization of ecosystems under conditions of uncontrolled anthropogenic pollution.

  11. A brief review and evaluation of earthworm biomarkers in soil pollution assessment.

    Science.gov (United States)

    Shi, Zhiming; Tang, Zhiwen; Wang, Congying

    2017-05-01

    Earthworm biomarker response to pollutants has been widely investigated in the assessment of soil pollution. However, whether and how the earthworm biomarker-approach can be actually applied to soil pollution assessment is still a controversial issue. This review is concerned about the following points: 1. Despite much debate, biomarker is valuable to ecotoxicology and biomarker approach has been properly used in different fields. Earthworm biomarker might be used in different scenarios such as large-scale soil pollution survey and soil pollution risk assessment. Compared with physicochemical analysis, they can provide more comprehensive and straightforward information about soil pollution at low cost. 2. Although many earthworm species from different ecological categories have been tested, Eisenia fetida/andrei is commonly used. Many earthworm biomarkers have been screened from the molecular to the individual level, while only a few biomarkers, such as avoidance behavior and lysosomal membrane stability, have been focused on. Other aspects of the experimental design were critically reviewed. 3. More studies should focus on determining the reliability of various earthworm biomarkers in soil pollution assessment in future research. Besides, establishing a database of a basal level of each biomarker, exploring biomarker response in different region/section/par