WorldWideScience

Sample records for cctcc m203011 cells

  1. Efficient anti-Prelog enantioselective reduction of acetyltrimethylsilane to (R-1-trimethylsilylethanol by immobilized Candida parapsilosis CCTCC M203011 cells in ionic liquid-based biphasic systems

    Directory of Open Access Journals (Sweden)

    Zhang Bo-Bo

    2012-08-01

    Full Text Available Abstract Background Biocatalytic asymmetric reductions with whole cells can offer high enantioselectivity, environmentally benign processes and energy-effective operations and thus are of great interest. The application of whole cell-mediated bioreduction is often restricted if substrate and product have low water solubility and/or high toxicity to the biocatalyst. Many studies have shown that a biphasic system is often useful in this instance. Hence, we developed efficient biphasic reaction systems with biocompatible water-immiscible ionic liquids (ILs, to improve the biocatalytic anti-Prelog enantioselective reduction of acetyltrimethylsilane (ATMS to (R-1-trimethylsilylethanol {(R-1-TMSE}, which is key synthon for a large number of silicon-containing drugs, using immobilized Candida parapsilosis CCTCC M203011 cells as the biocatalyst. Results It was found that the substrate ATMS and the product 1-TMSE exerted pronounced toxicity to immobilized Candida parapsilosis CCTCC M203011 cells. The biocompatible water-immiscible ILs can be applied as a substrate reservoir and in situ extractant for the product, thus greatly enhancing the efficiency of the biocatalytic process and the operational stability of the cells as compared to the IL-free aqueous system. Various ILs exerted significant but different effects on the bioreduction and the performances of biocatalysts were closely related to the kinds and combination of cation and anion of ILs. Among all the water-immiscible ILs investigated, the best results were observed in 1-butyl-3-methylimidazolium hexafluorophosphate (C4mim·PF6/buffer biphasic system. Furthermore, it was shown that the optimum substrate concentration, volume ratio of buffer to IL, buffer pH, reaction temperature and shaking rate for the bioreduction were 120 mM, 8/1 (v/v, 6.0, 30°C and 180 r/min, respectively. Under these optimized conditions, the initial reaction rate, the maximum yield and the product e.e. were 8.1

  2. Using a water-immiscible ionic liquid to improve asymmetric reduction of 4-(trimethylsilyl-3-butyn-2-one catalyzed by immobilized Candida parapsilosis CCTCC M203011 cells

    Directory of Open Access Journals (Sweden)

    Smith Thomas J

    2009-10-01

    Full Text Available Abstract Background Whole cells are usually employed for biocatalytic reduction reactions to ensure efficient coenzyme regeneration and to avoid problems with enzyme purification and stability. The efficiency of whole cell-catalyzed bioreduction is frequently restricted by pronounced toxicity of substrate and/or product to the microbial cells and in many instances the use of two-phase reaction systems can solve such problems. Therefore, we developed new, biphasic reaction systems with biocompatible water-immiscible ionic liquids (ILs as alternatives to conventional organic solvents, in order to improve the asymmetric reduction of 4-(trimethylsilyl-3-butyn-2-one (TMSB to (S-4-(trimethylsilyl-3-butyn-2-ol {(S-TMSBOL}, a key intermediate for synthesis of 5-lipoxygenase inhibitors, using immobilized Candida parapsilosis CCTCC M203011 cells as the biocatalyst. Results Various ILs exerted significant but different effects on the bioreduction. Of all the tested water-immiscible ILs, the best results were observed with 1-butyl-3-methylimidazolium hexafluorophosphate (C4MIM·PF6, which exhibited not only good biocompatibility with the cells but also excellent solvent properties for the toxic substrate and product, thus markedly improving the efficiency of the bioreduction and the operational stability of the cells as compared to the IL-free aqueous system. 2-Propanol was shown to be the most suitable co-substrate for coenzyme regeneration, and it was found that the optimum volume ratio of buffer to C4MIM·PF6, substrate concentration, buffer pH, 2-propanol concentration and reaction temperature were 4/1 (v/v, 24 mM, 5.5, 130 mM and 30°C, respectively. Under these optimized conditions, the maximum yield and the product e.e. wer 97.7% and >99%, respectively, which are much higher than the corresponding values previously reported. The efficient whole-cell biocatalytic process was shown to be feasible on a 250-mL scale. Conclusion The whole cell

  3. Co-expression of formate dehydrogenase form Candida boidinii and (R)-specific carbonyl reductase form Candida parapsilosis CCTCC M203011 in Escherichia coli%(R)-专一性羰基还原酶与甲酸脱氢酶基因在大肠杆菌中的共表达

    Institute of Scientific and Technical Information of China (English)

    孙莹; 张荣珍; 徐岩

    2008-01-01

    [目的]通过研究-专一性拨基还原酶和甲酸脱氢酶基因在大肠杆菌中的共表达,解决较高底物浓度下不对称转化反应的辅酶限制性问题.[方法]分别以近平滑假丝酵母(candida parapsitosis CCTCC M203011)和博伊丁假丝酵母(Candida boidinii)基因组为模板,采用PCR方法扩增得到(R伏)-专一性拨基还原酶基因(rcr)和甲酸脱氢酶基因(fdh),克隆到共表达载体pETDuetTM-1中进行表达.共表达质粒 pETDuet-rcr-fdh转化稀有密码子优化型菌株E.coli Rosetta,获得重组菌E.coli Rosetta/pETDuet-rcr-fdh.结果 在30℃ 条件下,经1mmol/L IPTG诱导表达8h后,SDS-PAGE结果表明-专一性拨基还原酶和甲酸脱氢酶均有明显的表达,其相对分子质量分别为37kDa和40kDa.以高浓度(6glL)2一经基苯乙酮为底物时,0.19重组菌细胞催化产生(R)-苯基乙二醇,产物光学纯度为100% e.e.,产率为85.9%.与无甲酸脱氢酶参与辅酶再生循环的重组菌E.coli Rosetta/pETDuet-rrc;相比,产物光学纯度和产率分别提高了1.3和2.7倍.讨论 该重组菌的构建为基因工程法生物合成(R)-苯基乙二醇的工业应用奠定了基础.

  4. Optimization of culture conditions to produce high yields of active Acetobacter sp. CCTCC M209061 cells for anti-Prelog reduction of prochiral ketones

    Directory of Open Access Journals (Sweden)

    Chen Xiao-Hong

    2011-11-01

    Full Text Available Abstract Background Chiral alcohols are widely used in the synthesis of chiral pharmaceuticals, flavors and functional materials and appropriate whole-cell biocatalysts offer a highly enantioselective, minimally polluting route to these valuable compounds. The recently isolated strain Acetobacter sp. CCTCC M209061 showed exclusive anti-Prelog stereoselectivity for the reduction of prochiral ketones, but the low biomass has limited its commercialization and industrial applications. To tackle this problem, the effects of medium components and culture conditions on the strain's growth and reduction activity were explored. Results By using a one-at-a-time method and a central composite rotatable design (CCRD, the optimal medium and culture conditions were found to be as follows: glucose 8.26 g/L, fructose 2.50 g/L, soy peptone 83.92 g/L, MnSO4·H2O 0.088 g/L, pH 5.70, 30°C and 10% (v/v inoculum. Under the above-mentioned conditions, the biomass after 30 h cultivation reached 1.10 ± 0.03 g/L, which was 9.5-fold higher than that obtained with basic medium. Also, the reduction activity towards 4'-chloroacetophenone was markedly enhanced to 39.49 ± 0.96 μmol/min/g from 29.34 ± 0.65 μmol/min/g, with the product e.e. being above 99%. Comparable improvements were also seen with the enantioselective bioreduction of 4-(trimethylsilyl-3-butyn-2-one to the key pharmaceutical precursor (R - 4-(trimethylsilyl-3-butyn-2-ol. Conclusions The biomass and reduction activity of Acetobacter sp. CCTCC M209061 can be greatly enhanced through the optimization strategy. This facilitates use of the strain in the anti-Prelog stereoselective reduction of prochiral ketones to enantiopure chiral alcohols as building blocks for many industries.

  5. 含水有机溶剂体系中固定化Acetobacter sp.CCTCC M209061细胞催化乙酰乙酸乙酯不对称还原反应%Biocatalytic Asymmetric Reduction of Ethyl Acetoacetate with Immobilized Acetobacter sp.CCTCC M209061 Cells in a Micro-water-containing Organic Solvent

    Institute of Scientific and Technical Information of China (English)

    徐玉; 王晓婷; 娄文勇; 宗敏华

    2014-01-01

    本论文报道了含微水有机溶剂体系中固定化Acetobacter sp.CCTCC M209061细胞催化乙酰乙酸乙酯不对称还原为(R)-3-羟基丁酸乙酯.研究表明,Acetobacter sp.CCTCC M209061细胞能遵循反Prelog规则高选择性地催化乙酰乙酸乙酯不对称还原.与单水相反应体系相比,含有机溶剂体系不仅可有效地解决底物和产物的抑制作用,而且可提高反应底物的浓度和产率.在所研究的不同有机溶剂中,正己烷为该反应的最适有机相,其能较好溶解底物且对Acetobacter sp.CCTCC M209061细胞的毒性较小,从而导致反应的初速度较快,产率较高.异丙醇为该反应的最佳辅底物,其最适浓度为60 mmol/L;该反应体系中的最适正己烷体积百分比、反应温度、底物浓度分别为约100.00%(水含量约为0.01 wt%),35℃,40 mmol/L.在此条件下,反应的初速率、产率和产物的e.e.值分别为0.72 μmol/min,85.24%和99.00%以上,明显好于水单相反应体系进行该反应的结果.

  6. 水相体系中固定化Acetobacter sp.CCTCC M209061细胞催化(S)-3-氯苯丙醇不对称合成%Asymmetric Synthesis of (S)-3-Chloro-1-phenylpropanol with Immobilized Acetobacter sp.CCTCC M209061 Cells in a Monophasic System

    Institute of Scientific and Technical Information of China (English)

    黄宇美; 徐玉; 赵冰怡; 娄文勇

    2015-01-01

    光学纯的3-氯苯丙醇是合成抗抑郁类药物的重要中间体.本论文报道了水相体系中固定化Acetobacter sp.CCTCC M209061细胞高效、高选择性地催化3-氯苯丙酮不对称还原为(S)-3-氯苯丙醇,采用聚乙烯醇与海藻酸钠的混合载体对醋酸杆菌细胞进行固定化,所得的固定化细胞的稳定性(热稳定性、pH稳定性及操作稳定性)均明显优于游离细胞.同时,固定化后的微生物细胞具有较好的重复利用性,连续反应3个批次后固定化细胞仍保留了80.0%以上的活性,而游离细胞的相对活性则小于20%.在所研究的体系中,葡萄糖为该反应的最佳辅底物,其最适浓度为50.0 mmol/L;该反应体系中的最适缓冲液pH值、反应温度、底物浓度分别为5.5、30℃和3.0 mmol/L.在此条件下,反应的初速度、产率以及产物的e.e.值依次为1.77 mM/h,88.9%和99.0%以上.

  7. Immobilization of Acetobacter sp. CCTCC M209061 for efficient asymmetric reduction of ketones and biocatalyst recycling

    Directory of Open Access Journals (Sweden)

    Chen Xiao-Hong

    2012-09-01

    Full Text Available Abstract Background The bacterium Acetobacter sp. CCTCC M209061 is a promising whole-cell biocatalyst with exclusive anti-Prelog stereoselectivity for the reduction of prochiral ketones that can be used to make valuable chiral alcohols such as (R-4-(trimethylsilyl-3-butyn-2-ol. Although it has promising catalytic properties, its stability and reusability are relatively poor compared to other biocatalysts. Hence, we explored various materials for immobilizing the active cells, in order to improve the operational stability of biocatalyst. Results It was found that Ca-alginate give the best immobilized biocatalyst, which was then coated with chitosan to further improve its mechanical strength and swelling-resistance properties. Conditions were optimized for formation of reusable immobilized beads which can be used for repeated batch asymmetric reduction of 4′-chloroacetophenone. The optimized immobilized biocatalyst was very promising, with a specific activity of 85% that of the free-cell biocatalyst (34.66 μmol/min/g dw of cells for immobilized catalyst vs 40.54 μmol/min/g for free cells in the asymmetric reduction of 4′-chloroacetophenone. The immobilized cells showed better thermal stability, pH stability, solvent tolerance and storability compared with free cells. After 25 cycles reaction, the immobilized beads still retained >50% catalytic activity, which was 3.5 times higher than degree of retention of activity by free cells reused in a similar way. The cells could be recultured in the beads to regain full activity and perform a further 25 cycles of the reduction reaction. The external mass transfer resistances were negligible as deduced from Damkohler modulus Da η ∅ Conclusions Ca-alginate coated with chitosan is a highly effective material for immobilization of Acetobacter sp. CCTCC M209061 cells for repeated use in the asymmetric reduction of ketones. Only a small cost in terms of the slightly lower catalytic activity compared to

  8. Antimicrobial activity of Bacillus subtilis CCTCC M207209 against food-borne pathogens%枯草芽孢杆菌CCTCC M207209对食源性病原菌的抑制作用

    Institute of Scientific and Technical Information of China (English)

    孙卉; 师俊玲

    2009-01-01

    采用杯碟法、对峙培养法和平板对扣法分别检测了枯草芽孢杆菌CCTCC M207209的活菌菌碟、无菌体发酵液、多糖提取液、蛋白质粗提液及其挥发性气体产物对金黄色葡萄球菌、肠球菌、化脓链球菌、大肠杆菌、沙门氏菌等食源性病原菌的抑制作用.结果表明,枯草芽孢杆菌CCTCC M207209的活菌菌碟和发酵液对所有参试病原菌均有显著抑制作用;蛋白质粗提液对除化脓链球菌以外的所有病原菌有显著抑制作用;挥发性气体产物对所有病原菌均无抑制作用;所有抑菌活性物质对金黄色葡萄球菌的抑制作用最强,初步确定其为蛋白类物质.%The antimicrobial effects of the agar plug, cell-free broth, polysaccharide extract, crude protein extract and volatile products of Bacillus subtilis CCTCC M207209 on food-borne pathogens, including Staphylococcus aureus, Enterococcus faecalis, Streptococcus pyogenes, Escherichia coli and Salmonella typhimurium, were investigated by cup-plate method, dual-culture plate method and two-sealed-base-plates method.The cell agar plug and cell-free broth showed significant inhibitory activity against all of the tested pathogens.The crude protein extract showed significant inhibitory activity to most pathogens, except for S.pyogenes.The volatile products of B.subtilis CCTCC M207209 had no inhibitory activity to all pathogens.S.aureus was the most sensitive pathogen to all antimicrobial substances, which was preliminarily identified as proteins.

  9. Biocatalytic Asymmetric Oxidation of Racemic 1-(4-Methoxyphenyl) Ethanol Using Immobilized Acetobacter sp. CCTCC M209061 Cells in Organic Solvent-containing Biphasic System%有机溶剂/缓冲液双相体系中固定化Acetobactersp. CCTCCM209061细胞催化1-(4-甲氧基)-苯基乙醇不对称氧化反应

    Institute of Scientific and Technical Information of China (English)

    程景; 娄文勇; 宗敏华

    2014-01-01

    在有机溶剂/缓冲液双相体系中,利用固定化醋酸杆菌 Acetobacter sp. CCTCC M209061细胞高对映体选择性地催化1-(4-甲氧基)-苯基乙醇(MOPE)的不对称氧化反应,成功地拆分外消旋 MOPE 得到对映体纯(S)-MOPE.与游离细胞相比,固定化细胞催化反应速度有所降低,但其稳定性(包括操作稳定性、热稳定性和储藏稳定性)明显提高.固定化细胞连续使用10批次(每批次12 h)后,仍能保留其初始催化活性的58%以上,而游离细胞仅保留约20%的相对活性.在所考察的不同有机溶剂中,正己烷不仅能较好地溶解底物,而且对细胞的生物相容性相对较好,因而提高了反应底物浓度、反应初速度、对映体回收率及残留底物 e. e.值,是反应体系中最适宜的有机相.该反应的最适宜正己烷体积分数为60%,辅底物为50 mmol/ L 丙酮,底物浓度为40 mmol/ L,缓冲液 pH=6.5,反应温度为30℃;在此条件下,反应初速度为80.4μmol/ min,反应12 h 后,对映体回收率和残留底物 e. e.值分别为51.0%和99.9%,明显好于水单相反应体系.%The resolution of racemic 1-(4-methoxyphenyl) ethanol ( MOPE) to enantiopure ( S)-MOPE through highly enantioselective oxidation of MOPE with immobilized Acetobacter sp. CCTCC M209061cells was successfully conducted in organic solvent-containing biphasic system. In spite of exhibiting relatively slower reaction rate than free cells, immobilized cells of Acetobacter sp. CCTCC M209061 showed much higher stabili-ty, including operational stability, thermal stability and storage stability. The immobilized cells still retained more than 58% of its original catalytic activity after being repeatedly used for 10 batches(12 h per batch), and the free cells maintained only around 20% of relative activity. Among various organic solvents examined, use of n-hexane as the second phase in a two-phase system enhanced the concentration of substrate, the initial reaction rate, the

  10. Propionic acid production in a plant fibrous-bed bioreactor with immobilized Propionibacterium freudenreichii CCTCC M207015.

    Science.gov (United States)

    Chen, Fei; Feng, Xiaohai; Xu, Hong; Zhang, Dan; Ouyang, Pingkai

    2012-12-15

    A plant fibrous-bed bioreactor (PFB) was constructed for propionic acid production. Sugar cane bagasse was applied to the PFB as immobilizing material. Starting at a concentration of 80g/L of glucose, Propionibacterium freudenreichii CCTCC M207015 produced 41.20±2.03g/L of propionic acid at 108h in the PFB. The value was 21.07% higher than that produced by free cell fermentation. Intermittent and constant fed-batch fermentations were performed in the PFB to optimize the fermentation results. The highest propionic acid concentration obtained from constant fed-batch fermentation was 136.23±6.77g/L, which is 1.40 times higher than the highest concentration (97.00g/L) previously reported. Scanning electron microscopy analysis showed that cells exhibited striking changes in morphology after PFB domestication. Compared with free cell fermentation, the fluxes of propionic acid synthesis and the pentose phosphate pathway in PFB fermentation increased by 84.65% and 227.62%, respectively. On the other hand, a decrease in succinic and acetic acid fluxes was also observed. The metabolic flux distributions of the two PFB fed-batch fermentation strategies also demonstrated that constant fed-batch fermentation is a more beneficial method for the immobilized production of propionic acid. The relevant key enzyme activities and metabolic flux variations of the batch cultures showed good consistency. These results suggest that the PFB was effective in high-concentration propionic acid production. PMID:22982366

  11. Simultaneous removal of Cr(Ⅵ) and phenol in consortium culture of Bacillus sp. and Pseudomonas putida Migula (CCTCC AB92019)

    Institute of Scientific and Technical Information of China (English)

    LIU Yun-guo; PAN Cui; XIA Wen-bin; ZENG Guang-ming; ZHOU Ming; LIU Yuan-yuan; KE Jie; HUANG Chao

    2008-01-01

    The simultaneous removal of Cr(Ⅵ) and phenol in a consortium culture containing Cr(Ⅵ) reducer, Bacillus sp. and phenol degrader, Pseudomonas putida Migula (CCTCC AB92019) was studied. Phenol was used as the sole carbon source. Bacillus sp. utilized metabolites formed from phenol degradation as electron donors and energy source for Cr(Ⅵ) reduction. Optimum Cr(Ⅵ) reduction was observed at a phenol concentration of 150 mg/L and an initial Cr(Ⅵ) concentration of 15 mg/L. Both the Cr(Ⅵ) reduction and phenol degradation were influenced by the cell composition of the culture, but the phenol degradation was not significantly affected by the content of Bacillus sp. The experiments also showed that the amount of phenol degraded was more than that stoichiometrically required for Cr(Ⅵ) reduction.

  12. A Novel Carbonyl Reductase with Anti-Prelog Stereospecificity from Acetobacter sp. CCTCC M209061: Purification and Characterization

    OpenAIRE

    Xiao-Hong Chen; Ping Wei; Xiao-Ting Wang; Min-Hua Zong; Wen-Yong Lou

    2014-01-01

    A novel carbonyl reductase (AcCR) catalyzing the asymmetric reduction of ketones to enantiopure alcohols with anti-Prelog stereoselectivity was found in Acetobacter sp. CCTCC M209061 and enriched 27.5-fold with an overall yield of 0.4% by purification. The enzyme showed a homotetrameric structure with an apparent molecular mass of 104 kDa and each subunit of 27 kDa. The gene sequence of AcCR was cloned and sequenced, and a 762 bp gene fragment was obtained. Either NAD(H) or NADP(H) can be use...

  13. pH Control Strategy in the Polysiaic Acid Fermentation Production by Escherichia coli CCTCC M208088%大肠杆菌CCTCC M208088发酵生产聚唾液酸的pH控制策略

    Institute of Scientific and Technical Information of China (English)

    刘金龙; 詹晓北; 吴剑荣; 郑志永; 李国顺

    2012-01-01

    研究了不同pH值控制策略对大肠杆菌CCTCC M208088发酵生产聚唾液酸的影响.采用高浓度磷酸盐培养基(20 g/L磷酸氢二钾)缓冲pH值,聚唾液酸产量达到1.9 g/L,但大量磷酸盐残留在发酵液中,影响聚唾液酸的后提取处理.把培养基中磷酸盐的质量浓度降至2.5 g/L,同时流加2 mol/L氢氧化钠溶液控制pH,聚唾液酸产量提升至2.3 g/L,但是NH4+在发酵前期16 h即消耗完毕.进一步采取氨水流加控制pH策略,聚唾液酸产量提升至3.2 g/L,同时菌体浓度大幅增加至12.5 g/L,导致40 g/L初始山梨醇在20 h耗尽.最后,在氨水控制pH的同时,向发酵体系中流加山梨醇,聚唾液酸产量和生产强度分别达到了4.8 g/L和0.16 g/(L·h),比优化前(高浓度磷酸盐发酵)分别提高了152%和188%.%Effect of the different pH control strategies on the PSA production by Escherichia coli CCTCC M208088 was compared in this study. Those strategies including: (l)when 20 g/L K2HPO4 was presented in the medium, the titer of PSA achieved at 1. 9 g/L PSA, however, the high-level residual K2HPO4 in broth bring difficult to the following PSA purification. (2) with 2. 5 g/L K2HPO4 and feeding of 2 mol/L NaOH solution, the titer of PSA was 2. 3 g/L; (3)the PSA titer was increased to 3. 2 g/L by feeding of ammonia water as pH control agent. Furthermore, the feeding of ammonia could accelerated sorbitol consummation; (4) To further promote PSA production, a novel strategy using ammonia water for pH control coupling with sorbitol supplementation at a constant feeding speed was adopted. As a result, PSA production and productivity were increased separately to 4. 8 g/L and 0. 16 g/(L·h), which was 152% and 188% higher than that of the contro(without pH control) .

  14. Aerobic Biodegradation of Chlorinated Hydrocarbons by Bacillus circulans WZ-12 CCTCC M 207006 under Saline Conditions

    Institute of Scientific and Technical Information of China (English)

    YU Jianming; CAI Wenji; ZHAO Shiliang; WANG Yan; CHEN Jianmeng

    2013-01-01

    A novel saline-tolerant bacterium Bacillus circulans WZ-12 was evaluated for its potential to degrade four chlorinated hydrocarbons under saline conditions.CH2Cl2 was effectively degraded by Bacillus circulans WZ-12 cells in the medium containing NaC1 concentrations ranging from 5 g·L-1 to 10 g·L-1,and the maximum degradation efficiency (85%) was achieved at NaCl concentration of 10 g·L-.Similarly,Bacillus circulans WZ-12was able to degrade CH2BtCl,C2H4Cl2,and C2H2Cl2 in the presence of 10 g NaCl per liter within 24 h.Cells of Bacillus circulans WZ-12 grown in minimal salt medium contained low levels of glycine betaine (GB),but GB levels were 3-to 5-fold higher in cells grown in media with high salt.Kinetic analysis revealed that biodegradation of the four chlorinated hydrocarbons was concentration dependent and a linear inverse correlation (R2=0.85-0.94)was observed between the rate of biodegradation (Ⅴ) and salt concentration from 5 g·L-1 to 60 g·L-1.The growing cells (in minimal salt medium) degraded approximately 50% of the CH2Cl2 within 24 h,whereas the resting cells (in physiological saline) degraded only 25% of the CH2Cl2 within 24 h and were inactive after 36 h cultivation.Biodegradation could be repeatedly performed for more than 192 h with more than 50% removal efficiency.Bacillus circulans WZ-12 grows well in an aqueous/oil system,hence,it is effective for the treatment of industrial effluents that contain chlorinated hydrocarbons with high salt concentrations.

  15. A novel carbonyl reductase with anti-Prelog stereospecificity from Acetobacter sp. CCTCC M209061: purification and characterization.

    Directory of Open Access Journals (Sweden)

    Xiao-Hong Chen

    Full Text Available A novel carbonyl reductase (AcCR catalyzing the asymmetric reduction of ketones to enantiopure alcohols with anti-Prelog stereoselectivity was found in Acetobacter sp. CCTCC M209061 and enriched 27.5-fold with an overall yield of 0.4% by purification. The enzyme showed a homotetrameric structure with an apparent molecular mass of 104 kDa and each subunit of 27 kDa. The gene sequence of AcCR was cloned and sequenced, and a 762 bp gene fragment was obtained. Either NAD(H or NADP(H can be used as coenzyme. For the reduction of 4'-chloroacetophenone, the Km value for NADH was around 25-fold greater than that for NADPH (0.66 mM vs 0.026 mM, showing that AcCR preferred NADPH over NADH. However, when NADH was used as cofactor, the response of AcCR activity to increasing concentration of 4'-chloroacetophenone was clearly sigmoidal with a Hill coefficient of 3.1, suggesting that the enzyme might possess four substrate-binding sites cooperating with each other The Vmax value for NADH-linked reduction was higher than that for NADPH-linked reduction (0.21 mM/min vs 0.17 mM/min. For the oxidation of isopropanol, the similar enzymological properties of AcCR were found using NAD+ or NADP+ as cofactor. Furthermore, a broad range of ketones such as aryl ketones, α-ketoesters and aliphatic ketones could be enantioselectively reduced into the corresponding chiral alcohols by this enzyme with high activity.

  16. A novel carbonyl reductase with anti-Prelog stereospecificity from Acetobacter sp. CCTCC M209061: purification and characterization.

    Science.gov (United States)

    Chen, Xiao-Hong; Wei, Ping; Wang, Xiao-Ting; Zong, Min-Hua; Lou, Wen-Yong

    2014-01-01

    A novel carbonyl reductase (AcCR) catalyzing the asymmetric reduction of ketones to enantiopure alcohols with anti-Prelog stereoselectivity was found in Acetobacter sp. CCTCC M209061 and enriched 27.5-fold with an overall yield of 0.4% by purification. The enzyme showed a homotetrameric structure with an apparent molecular mass of 104 kDa and each subunit of 27 kDa. The gene sequence of AcCR was cloned and sequenced, and a 762 bp gene fragment was obtained. Either NAD(H) or NADP(H) can be used as coenzyme. For the reduction of 4'-chloroacetophenone, the Km value for NADH was around 25-fold greater than that for NADPH (0.66 mM vs 0.026 mM), showing that AcCR preferred NADPH over NADH. However, when NADH was used as cofactor, the response of AcCR activity to increasing concentration of 4'-chloroacetophenone was clearly sigmoidal with a Hill coefficient of 3.1, suggesting that the enzyme might possess four substrate-binding sites cooperating with each other The Vmax value for NADH-linked reduction was higher than that for NADPH-linked reduction (0.21 mM/min vs 0.17 mM/min). For the oxidation of isopropanol, the similar enzymological properties of AcCR were found using NAD+ or NADP+ as cofactor. Furthermore, a broad range of ketones such as aryl ketones, α-ketoesters and aliphatic ketones could be enantioselectively reduced into the corresponding chiral alcohols by this enzyme with high activity. PMID:24740089

  17. Understanding the role of clay minerals in the chromium(VI) bioremoval by Pseudomonas aeruginosa CCTCC AB93066 under growth condition: microscopic, spectroscopic and kinetic analysis.

    Science.gov (United States)

    Kang, Chunxi; Wu, Pingxiao; Li, Yuewu; Ruan, Bo; Li, Liping; Tran, Lytuong; Zhu, Nengwu; Dang, Zhi

    2015-11-01

    Laboratory batch experiments were conducted to investigate the role of clay minerals, e.g., kaolinite and vermiculite, in microbial Cr(VI) reduction by Pseudomonas aeruginosa under growth condition in glucose-amended mediums as a method for treating Cr(VI)-contaminated subsurface environment such as soil. Our results indicated that glucose could acted as an essential electron donor, and clay minerals significantly enhanced microbial Cr(VI) reduction rates by improving the consumption rate of glucose and stimulating the growth and propagation of P. aeruginosa. Cr(VI) bioreduction by both free cells and clay minerals-amended cells followed the pseudo-first-order kinetic model, with the latter one fitting better. The mass balance analyses and X-ray photoelectron spectroscopy analysis found that Cr(VI) was reduced to Cr(III) and the adsorption of total chromium on clay minerals-bacteria complex was small, implying that Cr(VI) bioremoval was not mainly due to the adsorption of Cr(VI) onto cells or clay minerals or clay minerals-cells complex but mainly due to the Cr(VI) reduction capacity of P. aeruginosa under the experimental conditions studied (e.g., pH 7). Atomic force microscopy revealed that the addition of clay minerals (e.g. vermiculite) decreased the surface roughness of Cr(VI)-laden cells and changed the cell morphology and dimension. Fourier transform infrared spectroscopy revealed that organic matters such as aliphatic species and/or proteins played an important role in the combination of cells and clay minerals. Scanning electron microscopy confirmed the attachment of cells on the surface of clay minerals, indicating that clay minerals could provide a microenvironment to protect cells from Cr(VI) toxicity and serve as growth-supporting materials. These findings manifested the underlying influence of clay minerals on microbial reduction of Cr(VI) and gave an understanding of the interaction between pollutants, the environment and the biota.

  18. Copper sulfate improves pullulan production by bioconversion using whole cells of Aureobasidium pullulans as the catalyst.

    Science.gov (United States)

    Wang, Dahui; Ju, Xiaomin; Zhang, Gaochuan; Wang, Donghua; Wei, Gongyuan

    2016-10-01

    The effects of mineral salts on pullulan production by bioconversion using whole cells of Aureobasidium pullulans CCTCC M 2012259 as the catalyst were investigated. Copper sulfate (CuSO4) improved pullulan production by 36.2% and 42.3% when added at the optimum concentration of 0.2mg/L to the bioconversion broth or seed medium, respectively, as compared with controls without CuSO4 addition. Pullulan production was further enhanced when CuSO4 was added to both seed medium and bioconversion broth simultaneously. In order to probe the mechanism of CuSO4 improvement, cell viability, membrane integrity, intracellular adenosine triphosphate (ATP) levels and the activities of key enzymes involved in pullulan biosynthesis were determined. As a result, CuSO4 increased the activities of key biosynthetic enzymes, maintained intracellular ATP at a higher level, and accelerated the rate of pullulan secretion, all of which contributed to improved pullulan production by bioconversion.

  19. Lactobacillus crispatus M206119 exacerbates murine DSS-colitis by interfering with inflammatory responses

    Institute of Scientific and Technical Information of China (English)

    Fu-Xi Zhou; Lu Chen; Xiao-Wei Liu; Chun-Hui Ouyang; Xiao-Ping Wu; Xue-Hong Wang; Chun-Lian Wang

    2012-01-01

    AIM:To investigate the role of Lactobacillus crispatus (L.crispatus) strain China Center for Type Culture Collection (CCTCC) M206119 in intestinal inflammation.METHODS:Forty 8-wk-old Balb/c mice (20 ± 2 g)were divided into four groups of 10 mice each.Three groups that had received dextran sulfate sodium (DSS)were administered normal saline,sulfasalazine or CCTCC M206119 strain,and the fourth group received none of these.We assessed the severity of colitis using a disease activity index,measured the colon length and weight,collected stools and mesenteric lymph nodes for bacterial microflora analysis.One centimeter of the proximal colon,middle colon and distal colon were collected and fixed in 10% buffered formalin,dehydrated in ethanol,and embedded in paraffin.Interleukin (IL)-1β,IL-6 and tumor necrosis factor (TNF)-α expression was detected using reverse transcription polymerase chain reaction.Protective factors zonula occludens (ZO)-1 and β-defensin 2 were detected by immunoblotting.The features of CCTCC M206119 strain were identified based on morphology,biochemical profile,and 16S RNA sequencing.RESULTS:DSS-colitis animals treated with CCTCC M206119 had markedly more severe disease,with greater weight loss,diarrhea,fecal bleeding,and shortened colon length.In addition,the CCTCC-M206119-treated group had comparatively higher histological scores and more neutrophil infiltration than the controls.Expression of protective factors ZO-1 and β-defensin 2 was downregulated due to destruction of the mucosal barrier after CCTCC M206119 strain treatment.An in vitro assay demonstrated that CCTCC M206119 strain increased the nuclear translocation of nuclear factor-κB in epithelial cells.Intestinal proinflammatory or anti-inflammatory cytokine responses were evaluated.Proinflammatory colonic cytokine (IL-1β,IL-6and TNF-α) levels were clearly increased in CCTCC-M206119-treated animals,whereas anti-inflammatory colonic cytokine (IL-10) level was lowered compared with

  20. Thauera humireducens sp. nov., a humus-reducing bacterium isolated from a microbial fuel cell.

    Science.gov (United States)

    Yang, Gui-Qin; Zhang, Jun; Kwon, Soon-Wo; Zhou, Shun-Gui; Han, Lu-Chao; Chen, Ming; Ma, Chen; Zhuang, Li

    2013-03-01

    A Gram-negative, rod-shaped, non-spore-forming bacterium, designated SgZ-1(T), was isolated from the anode biofilm of a microbial fuel cell. The strain had the ability to grow under anaerobic condition via the oxidation of various organic compounds coupled to the reduction of anthraquione-2,6-disulfonate (AQDS) to anthrahydroquinone-2,6-disulfonate (AHQDS). Growth occurred in TSB in the presence of 0-5.5 % (w/v) NaCl (optimum 0-1 %), at 10-45 °C (optimum 25-37 °C) and at pH 6.0-10.0 (optimum 8.0-8.5). Based on 16S rRNA gene sequence similarity, strain SgZ-1(T) belonged to the genus Thauera. The highest level of 16S rRNA gene sequences similarity (96.7 %) was found to be with Thauera aminoaromatica S2(T) and Thauera selenatis AX(T), and lower values were obtained when compared with other recognized Thauera species. Chemotaxonomic analysis revealed that strain SgZ-1(T) contained Q-8 as the predominant quinone, and putrescine and 2-hydroxyputrescine as the major polyamines. The major cellular fatty acids (>5 %) were C16 : 1ω6c and/or C16 : 1ω7c (44.6 %), C16 : 0 (18.8 %), and C18 : 1ω6c and/or C18 : 1ω7c (12.7 %). Based on its phenotypic and phylogenetic properties, chemotaxonomic analysis and the results of physiological and biochemical tests, strain SgZ-1(T) ( = KACC 16524(T) = CCTCC M 2011497(T)) was designated the type strain of a novel species of the genus Thauera, for which the name Thauera humireducens sp. nov. was proposed.

  1. Stem Cells

    Science.gov (United States)

    Stem cells are cells with the potential to develop into many different types of cells in the body. They serve as a repair ... body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  2. T Cells

    Science.gov (United States)

    T Cells - National Multiple Sclerosis Society Skip to navigation Skip to content Menu Navigation National Multiple Sclerosis Society Sign ... Is MS? Definition of MS T Cells T Cells Share Smaller Text Larger Text Print In this ...

  3. Cell counting.

    Science.gov (United States)

    Phelan, M C; Lawler, G

    2001-05-01

    This unit presents protocols for counting cells using either a hemacytometer or electronically using a Coulter counter. Cell counting with a hemacytometer permits effective discrimination of live from dead cells using trypan blue exclusion. In addition, the procedure is less subject to errors arising from cell clumping or size heterogeneity. Counting cells is more quickly and easily performed using an electronic counter, but live-dead discrimination is unreliable. Cell populations containing large numbers of dead cells and/or cell clumps are difficult to count accurately. In addition, electronic counting requires resetting of the instrument for cell populations of different sizes; heterogeneous populations can give rise to inaccurate counts, and resting and activated cells may require counting at separate settings. In general, electronic cell counting is best performed on fresh peripheral blood cells. PMID:18770655

  4. Galvanic Cells

    Science.gov (United States)

    Young, I. G.

    1973-01-01

    Many standard physical chemistry textbooks contain ambiguities which lead to confusion about standard electrode potentials, calculating cell voltages, and writing reactions for galvanic cells. This article shows how standard electrode potentials can be used to calculate cell voltages and deduce cell reactions. (Author/RH)

  5. Cell Biochips

    Science.gov (United States)

    Pioufle, B. Le; Picollet-D'Hahan, N.

    A cell biochip is a microsystem, equipped with electronic and microfluidic functions, designed to manipulate or analyse living cells. The first publications in this emerging area of research appeared toward the end of the 1980s. In 1989 Washizu described a biochip designed to fuse two cells by electropermeabilisation of the cytoplasmic membrane [1]. Research centers have devised a whole range of cell chip structures, for simultaneous or sequential analysis of single cells, cell groups, or cell tissues reconstituted on the chip. The cells are arranged in a square array on a parallel cell chip for parallel analysis, while they are examined and processed one by one in a microchannel in the case of a series cell chip. In contrast to these biochips for high-throughput analysis of a large number of cells, single-cell chips focus on the analysis of a single isolated cell. As in DNA microarrays, where a large number of oligonucleotides are ordered in a matrix array, parallel cell chips order living cells in a similar way. At each point of the array, the cells can be isolated, provided that the cell type allows this, e.g., blood cells, or cultivated in groups (most adhesion cells can only survive in groups). The aim is to allow massively parallel analysis or processing. Le Pioufle et al. describe a microdevice for the culture of single cells or small groups of cells in a micropit array [2]. Each pit is equipped to stimulate the cell or group of cells either electrically or fluidically. Among the applications envisaged are gene transfer, cell sorting, and screening in pharmacology. A complementary approach, combining the DNA microarray and cell biochip ideas, has been put forward by Bailey et al. [3]. Genes previously arrayed on the chip transfect the cultured cells on the substrate depending on their position in the array (see Fig. 19.1). This way of achieving differential lipofection on a chip was then taken up again by Yoshikawa et al. [4] with primary cells, more

  6. Cell Wall

    OpenAIRE

    Jamet, Elisabeth; Canut, Hervé; Boudart, Georges; Albenne, Cécile; Pont-Lezica, Rafael F

    2008-01-01

    This chapter covers our present knowledge of cell wall proteomics highlighting the distinctive features of cell walls and cell wall proteins in relation to problems encountered for protein extraction, separation and identification. It provides clues to design strategies for efficient cell wall proteomic studies. It gives an overview of the kinds of proteins that have yet been identified: the expected proteins vs the identified proteins. Finally, the new vision of the cell wall proteome, and t...

  7. Stem Cells

    OpenAIRE

    Madhukar Thakur

    2009-01-01

    Objective: The objective of this presentation is to create awareness of stem cell applications in the ISORBE community and to foster a strategy of how the ISORBE community can disseminate information and promote the use of radiolabeled stem cells in biomedical applications. Methods: The continued excitement in Stem Cells, in many branches of basic and applied biomedical science, stems from the remarkable ability of stem cells to divide and develop into different types of cells in ...

  8. Engineering cell-cell signaling.

    Science.gov (United States)

    Blagovic, Katarina; Gong, Emily S; Milano, Daniel F; Natividad, Robert J; Asthagiri, Anand R

    2013-10-01

    Juxtacrine cell-cell signaling mediated by the direct interaction of adjoining mammalian cells is arguably the mode of cell communication that is most recalcitrant to engineering. Overcoming this challenge is crucial for progress in biomedical applications, such as tissue engineering, regenerative medicine, immune system engineering and therapeutic design. Here, we describe the significant advances that have been made in developing synthetic platforms (materials and devices) and synthetic cells (cell surface engineering and synthetic gene circuits) to modulate juxtacrine cell-cell signaling. In addition, significant progress has been made in elucidating design rules and strategies to modulate juxtacrine signaling on the basis of quantitative, engineering analysis of the mechanical and regulatory role of juxtacrine signals in the context of other cues and physical constraints in the microenvironment. These advances in engineering juxtacrine signaling lay a strong foundation for an integrative approach to utilize synthetic cells, advanced 'chassis' and predictive modeling to engineer the form and function of living tissues.

  9. Cell Motility

    CERN Document Server

    Lenz, Peter

    2008-01-01

    Cell motility is a fascinating example of cell behavior which is fundamentally important to a number of biological and pathological processes. It is based on a complex self-organized mechano-chemical machine consisting of cytoskeletal filaments and molecular motors. In general, the cytoskeleton is responsible for the movement of the entire cell and for movements within the cell. The main challenge in the field of cell motility is to develop a complete physical description on how and why cells move. For this purpose new ways of modeling the properties of biological cells have to be found. This long term goal can only be achieved if new experimental techniques are developed to extract physical information from these living systems and if theoretical models are found which bridge the gap between molecular and mesoscopic length scales. Cell Motility gives an authoritative overview of the fundamental biological facts, theoretical models, and current experimental developments in this fascinating area.

  10. Photovoltaic Cells

    Directory of Open Access Journals (Sweden)

    Karolis Kiela

    2012-04-01

    Full Text Available The article deals with an overview of photovoltaic cells that are currently manufactured and those being developed, including one or several p-n junction, organic and dye-sensitized cells using quantum dots. The paper describes the advantages and disadvantages of various photovoltaic cells, identifies the main parameters, explains the main reasons for the losses that may occur in photovoltaic cells and looks at the ways to minimize them.Article in Lithuanian

  11. Solar cells

    Science.gov (United States)

    Cuquel, A.; Roussel, M.

    The physical and electronic characteristics of solar cells are discussed in terms of space applications. The principles underlying the photovoltaic effect are reviewed, including an analytic model for predicting the performance of individual cells and arrays of cells. Attention is given to the effects of electromagnetic and ionizing radiation, micrometeors, thermal and mechanical stresses, pollution and degassing encountered in space. The responses of different types of solar cells to the various performance-degrading agents are examined, with emphasis on techniques for quality assurance in the manufacture and mounting of Si cells.

  12. Engineering Cell-Cell Signaling

    OpenAIRE

    Blagovic, Katarina; Gong, Emily S.; Milano, Daniel F.; Natividad, Robert J.; Asthagiri, Anand R

    2013-01-01

    Juxtacrine cell-cell signaling mediated by the direct interaction of adjoining mammalian cells is arguably the mode of cell communication that is most recalcitrant to engineering. Overcoming this challenge is crucial for progress in biomedical applications, such as tissue engineering, regenerative medicine, immune system engineering and therapeutic design. Here, we describe the significant advances that have been made in developing synthetic platforms (materials and devices) and synthetic cel...

  13. Stem Cells

    Directory of Open Access Journals (Sweden)

    Madhukar Thakur

    2015-02-01

    Full Text Available Objective: The objective of this presentation is to create awareness of stem cell applications in the ISORBE community and to foster a strategy of how the ISORBE community can disseminate information and promote the use of radiolabeled stem cells in biomedical applications. Methods: The continued excitement in Stem Cells, in many branches of basic and applied biomedical science, stems from the remarkable ability of stem cells to divide and develop into different types of cells in the body. Often called as Magic Seeds, stem cells are produced in bone marrow and circulate in blood, albeit at a relatively low concentration. These virtues together with the ability of stem cells to grow in tissue culture have paved the way for their applications to generate new and healthy tissues and to replace diseased or injured human organs. Although possibilities of stem cell applications are many, much remains yet to be understood of these remarkable magic seeds. Conclusion: This presentation shall briefly cover the origin of stem cells, the pros and cons of their growth and division, their potential application, and shall outline some examples of the contributions of radiolabeled stem cells, in this rapidly growing branch of biomedical science

  14. Types of Stem Cells

    Science.gov (United States)

    ... PDF) Download an introduction to stem cells and stem cell research. Stem Cell Glossary Stem cell terms to know. ... stem cells blog from the International Society for Stem Cell Research. Learn About Stem Cells From Lab to You ...

  15. Fuel Cells

    DEFF Research Database (Denmark)

    Smith, Anders; Pedersen, Allan Schrøder

    2014-01-01

    Fuel cells have been the subject of intense research and development efforts for the past decades. Even so, the technology has not had its commercial breakthrough yet. This entry gives an overview of the technological challenges and status of fuel cells and discusses the most promising applications...... of the different types of fuel cells. Finally, their role in a future energy supply with a large share of fluctuating sustainable power sources, e.g., solar or wind, is surveyed....

  16. Cell suicide

    International Nuclear Information System (INIS)

    In the fight of the cell against the damages caused to its DNA by genotoxic agents and specially by ionizing radiations, the p53 protein plays a central part. It intervenes in the proliferation control and the differentiation but also in the keeping of genome integrity. It can direct the damages cells toward suicide, or apoptosis, to avoid the risk of tumor appearance that would be fatal to the whole organism. That is by the disordered state of cells suicide programs that the tumor cells are going to develop. The knowledge of apoptosis mechanisms, to eventually start them on demand, rises up broad hopes in the cancer therapy. (N.C.)

  17. Reprogrammed Pluripotent Stem Cells from Somatic Cells

    OpenAIRE

    Kim, Jong Soo; Choi, Hyun Woo; Choi, Sol; Do, Jeong Tae

    2011-01-01

    Pluripotent stem cells, such as embryonic stem (ES) cells, can differentiate into all cell types. So, these cells can be a biological resource for regenerative medicine. However, ES cells known as standard pluripotent cells have problem to be used for cell therapy because of ethical issue of the origin and immune response on the graft. Hence, recently reprogrammed pluripotent cells have been suggested as an alternative source for regenerative medicine. Somatic cells can acquire the ES cell-li...

  18. Fuel Cells

    Science.gov (United States)

    Hawkins, M. D.

    1973-01-01

    Discusses the theories, construction, operation, types, and advantages of fuel cells developed by the American space programs. Indicates that the cell is an ideal small-scale power source characterized by its compactness, high efficiency, reliability, and freedom from polluting fumes. (CC)

  19. [Cell cultures].

    Science.gov (United States)

    Cipro, Simon; Groh, Tomáš

    2014-01-01

    Cell or tissue cultures (both terms are interchangeable) represent a complex process by which eukaryotic cells are maintained in vitro outside their natural environment. They have a broad usage covering not only scientific field but also diagnostic one since they represent the most important way of monoclonal antibodies production which are used for both diagnostic and therapeutic purposes. Cell cultures are also used as a "cultivation medium" in virology and for establishing proliferating cells in cytodiagnostics. They are well-established and easy-to-handle models in the area of research, e.g. as a precious source of nucleic acids or proteins. This paper briefly summarizes their importance and methods as well as the pitfalls of the cultivation and new trends in this field. PMID:24624984

  20. Fuel cells

    Directory of Open Access Journals (Sweden)

    D. N. Srivastava

    1962-05-01

    Full Text Available The current state of development of fuel cells as potential power sources is reviewed. Applications in special fields with particular reference to military requirements are pointed out.

  1. Dry cell battery poisoning

    Science.gov (United States)

    Batteries - dry cell ... Acidic dry cell batteries contain: Manganese dioxide Ammonium chloride Alkaline dry cell batteries contain: Sodium hydroxide Potassium hydroxide Lithium dioxide dry cell batteries ...

  2. Cell sorting by deterministic cell rolling

    OpenAIRE

    Choi, Sungyoung; Karp, Jeffrey M.; Karnik, Rohit

    2011-01-01

    This communication presents the concept of “deterministic cell rolling”, which leverages transient cell-surface molecular interactions that mediate cell rolling to sort cells with high purity and efficiency in a single step.

  3. Electrochemical cell

    Science.gov (United States)

    Nagy, Zoltan; Yonco, Robert M.; You, Hoydoo; Melendres, Carlos A.

    1992-01-01

    An electrochemical cell has a layer-type or sandwich configuration with a Teflon center section that houses working, reference and counter electrodes and defines a relatively narrow electrolyte cavity. The center section is surrounded on both sides with thin Teflon membranes. The membranes are pressed in place by a pair of Teflon inner frames which are in turn supported by a pair of outer metal frames. The pair of inner and outer frames are provided with corresponding, appropriately shaped slits that are in plane generally transverse to the plane of the working electrode and permit X-ray beams to enter and exit the cell through the Teflon membranes that cover the slits so that the interface between the working electrode and the electrolyte within the cell may be analyzed by transmission geometry. In one embodiment, the center section consists of two parts, one on top of the other. Alternatively, the center section of the electrochemical cell may consist of two intersliding pieces or may be made of a single piece of Teflon sheet material. The electrolyte cavity is shaped so that the electrochemical cell can be rotated 90.degree. in either direction while maintaining the working and counter electrodes submerged in the electrolyte.

  4. Solar cells

    Science.gov (United States)

    Treble, F. C.

    1980-11-01

    The history, state of the art, and future prospects of solar cells are reviewed. Solar cells are already competitive in a wide range of low-power applications, and during the 1980's they are expected to become cheaper to run than diesel or gasoline generators, the present mainstay of isolated communities. At this stage they will become attractive for water pumping, irrigation, and rural electrification, particularly in developing countries. With further cost reduction, they may be used to augment grid supplies in domestic, commercial, institutional, and industrial premises. Cost reduction to the stage where photovoltaics becomes economic for large-scale power generation in central stations depends on a technological breakthrough in the development of thin-film cells. DOE aims to reach this goal by 1990, so that by the end of the century about 20% of the estimated annual additions to their electrical generating capacity will be photovoltaic.

  5. Stem Cells

    DEFF Research Database (Denmark)

    Sommerlund, Julie

    2004-01-01

    In his influential essay on markets, An essay on framing and overflowing (1998), Michel Callon writes that `the growing complexity of industrialized societies [is] due in large part to the movements of the technosciences, which are causing connections and interdependencies to proliferate'. This p...... and tantalizing than stem cells, in research, in medicine, or as products.......'. This paper is about tech-noscience, and about the proliferation of connections and interdependencies created by it.More specifically, the paper is about stem cells. Biotechnology in general has the power to capture the imagination. Within the field of biotechnology nothing seems more provocative...

  6. Cell Libraries

    Science.gov (United States)

    1994-01-01

    A NASA contract led to the development of faster and more energy efficient semiconductor materials for digital integrated circuits. Gallium arsenide (GaAs) conducts electrons 4-6 times faster than silicon and uses less power at frequencies above 100-150 megahertz. However, the material is expensive, brittle, fragile and has lacked computer automated engineering tools to solve this problem. Systems & Processes Engineering Corporation (SPEC) developed a series of GaAs cell libraries for cell layout, design rule checking, logic synthesis, placement and routing, simulation and chip assembly. The system is marketed by Compare Design Automation.

  7. Solar cells

    International Nuclear Information System (INIS)

    A method of producing solar cells is described which consists of producing a substantially monocrystalline tubular body of silicon or other suitable semiconductor material, treating this body to form an annular rectifying junction and then cutting it longitudinally to form a number of nearly flat ribbons from which the solar cells are fabricated. The P=N rectifying junction produced by the formation of silicon dioxide on the layers at the inner and outer surfaces of the body can be formed by ion-implantation or diffusion. (U.K.)

  8. Learn About Stem Cells

    Science.gov (United States)

    ... PDF) Download an introduction to stem cells and stem cell research. Stem Cell Glossary Stem cell terms to know. ... ISSCR Get Involved Media © 2015 International Society for Stem Cell Research Terms of Use Disclaimer Privacy Policy

  9. Stem Cell Basics

    Science.gov (United States)

    ... Information Stem Cell Basics Stem Cell Basics: Introduction Stem Cell Information General Information Clinical Trials Funding Information Current Research Policy Glossary Site Map Stem Cell Basics Introduction: What are stem cells, and why ...

  10. Stem Cell Information: Glossary

    Science.gov (United States)

    ... Neurons Oligodendrocyte Parthenogenesis Passage Pluripotent Polar body Preimplantation Proliferation Regenerative medicine Reproductive cloning Signals Somatic cell Somatic cell nuclear transfer (SCNT) Somatic (adult) stem cell Stem cells Stromal cells Subculturing Surface markers ...

  11. Photovoltaic cell

    Science.gov (United States)

    Gordon, Roy G.; Kurtz, Sarah

    1984-11-27

    In a photovoltaic cell structure containing a visibly transparent, electrically conductive first layer of metal oxide, and a light-absorbing semiconductive photovoltaic second layer, the improvement comprising a thin layer of transition metal nitride, carbide or boride interposed between said first and second layers.

  12. Fuel cells:

    DEFF Research Database (Denmark)

    Sørensen, Bent

    2013-01-01

    A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil...... and nuclear fuel-based energy technologies....

  13. Potent Cells

    Science.gov (United States)

    Liu, Dennis

    2007-01-01

    It seems hard to believe that Dolly the cloned sheep was born 10 years ago, kindling furious arguments over the prospects and ethics of cloning a human. Today, the controversy over cloning is entwined, often confused, with concerns over the use of human embryonic stem cells. Most people are unclear what cloning is, and they know even less when it…

  14. Electrochemical Cell

    DEFF Research Database (Denmark)

    1999-01-01

    The invention relates to a rechargeable electrochemical cell comprising a negative electrode, an electrolyte and a positive electrode in which the positive electrode structure comprises a lithium cobalt manganese oxide of the composition Li¿2?Co¿y?Mn¿2-y?O¿4? where 0

  15. 醋酸杆菌醇脱氢酶粗酶液的特性研究%Properties of Alcohol Dehydrogenase(ADH)Preparation from Acetobacter sp.CCTCC M209061

    Institute of Scientific and Technical Information of China (English)

    肖仔君; 黄国清; 钟瑞敏

    2010-01-01

    乙醇脱氢酶(ADH)是醋酸杆菌发酵生产醋酸的关键酶.以硫酸铵为沉淀剂,采用盐析法对醋酸杆菌中乙醇脱氢酶进行初步的分离纯化,并研究其酶学特性.结果表明:ADH比活力从粗酶液的0.201 U/mg提高到0.460 U/mg,纯化倍数为2.289;其最适作用pH值为7.5~8.0,pH值为7.8时酶活力达到最大,pH值为7.0时酶较为稳定;最适作用温度为35℃,温度为30℃~40℃时酶活力较为稳定,温度超过45℃后酶活力急剧下降.通过对乙醇底物浓度对ADH活力影响的研究,ADH对乙醇的米氏常数Km为2.59×10-2mol/L.

  16. Cell Docking, Movement and Cell-Cell Interactions of Heterogeneous Cell Suspensions in a Cell Manipulation Microdevice

    OpenAIRE

    Long-Sun Huang; Yu-Hung Wang; Yu-Wei Chung; Fei-Lung Lai; Shiaw-Min Hwang

    2011-01-01

    This study demonstrates a novel cell manipulation microdevice for cell docking, culturing, cell-cell contact and interaction by microfluidic manipulation of heterogeneous cell suspensions. Heterogeneous cell suspensions include disparate blood cells of natural killer cells and leukemia cancer cells for immune cell transplantation therapy. However, NK cell alloreactivity from different healthy donors present various recovery response levels. Little is still known about the interactions and cyt...

  17. Reprogrammed pluripotent stem cells from somatic cells.

    Science.gov (United States)

    Kim, Jong Soo; Choi, Hyun Woo; Choi, Sol; Do, Jeong Tae

    2011-06-01

    Pluripotent stem cells, such as embryonic stem (ES) cells, can differentiate into all cell types. So, these cells can be a biological resource for regenerative medicine. However, ES cells known as standard pluripotent cells have problem to be used for cell therapy because of ethical issue of the origin and immune response on the graft. Hence, recently reprogrammed pluripotent cells have been suggested as an alternative source for regenerative medicine. Somatic cells can acquire the ES cell-like pluripotency by transferring somatic cell nuclei into oocytes, by cell fusion with pluripotent cells. Retroviral-mediated introduction of four factors, Oct4, Sox2, Klf4 and c-Myc can successfully reprogram somatic cells into ES cell-like pluripotent stem cells, known as induced pluripotent stem (iPS) cells. These cells closely resemble ES cells in gene expression pattern, cell biologic and phenotypic characteristics. However, to reach the eventual goal of clinical application, it is necessary to overcome the major drawbacks such as low reprogramming efficiency and genomic alterations due to viral integration. In this review, we discuss the current reprogramming techniques and mechanisms of nuclear reprogramming induced by transcription factor transduction. PMID:24298328

  18. Ghost cell lesions

    Directory of Open Access Journals (Sweden)

    E Rajesh

    2015-01-01

    Full Text Available Ghost cells have been a controversy for a long time. Ghost cell is a swollen/enlarged epithelial cell with eosnophilic cytoplasm, but without a nucleus. In routine H and E staining these cells give a shadowy appearance. Hence these cells are also called as shadow cells or translucent cells. The appearance of these cells varies from lesion to lesion involving odontogenic and nonodontogenic lesions. This article review about the origin, nature and significance of ghost cells in different neoplasms.

  19. Murine Mueller cells are progenitor cells for neuronal cells and fibrous tissue cells

    International Nuclear Information System (INIS)

    Mammalian Mueller cells have been reported to possess retinal progenitor cell properties and generate new neurons after injury. This study investigates murine Mueller cells under in vitro conditions for their capability of dedifferentiation into retinal progenitor cells. Mueller cells were isolated from mouse retina, and proliferating cells were expanded in serum-containing medium. For dedifferentiation, the cultured cells were transferred to serum-replacement medium (SRM) at different points in time after their isolation. Interestingly, early cell passages produced fibrous tissue in which extracellular matrix proteins and connective tissue markers were differentially expressed. In contrast, aged Mueller cell cultures formed neurospheres in SRM that are characteristic for neuronal progenitor cells. These neurospheres differentiated into neuron-like cells after cultivation on laminin/ornithine cell culture substrate. Here, we report for the first time that murine Mueller cells can be progenitors for both, fibrous tissue cells and neuronal cells, depending on the age of the cell culture

  20. Sickle Cell Information Center

    Science.gov (United States)

    ... Around the Web Google Custom Search – sickle cell Sickle Cell Anemia - In-Depth Report - NY Times Health January 18, 1970 Sickle cell disease (also called sickle cell anemia) is an inherited blood disorder that affects red ...

  1. Electrorefining cell evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, M.C.; Thomas, R.L. (ed.)

    1989-04-14

    Operational characteristics of the LANL electrorefining cell, a modified LANL electrorefining cell, and an advanced electrorefining cell (known as the CRAC cell) were determined. Average process yields achieved were: 75% for the LANL cell, 82% for the modified LANL cell, and 86% for the CRAC cell. All product metal from the LANL and modified LANL cells was within foundry specifications. Metal from one run in the CRAC cell exceeded foundry specifications for tantalum. The LANL and modified LANL cells were simple in design and operation, but product separation was more labor intensive than with the CRAC cell. The CRAC cell was more complicated in design but remained relatively simple in operation. A decision analysis concluded that the modified LANL cell was the preferred cell. It was recommended that the modified LANL cell be implemented by the Plutonium Recovery Project at Rocky Flats and that development of the CRAC cell continue. 8 refs., 22 figs., 12 tabs.

  2. What are Stem Cells?

    OpenAIRE

    Ahmadshah Farhat; Ashraf Mohammadzadeh; M. Rezaie

    2014-01-01

      Stem cells are undifferentiated self regenerating multi potential cells. There are three types of stem cells categories by the ability to form after cells and correlated with the body’s development process. Totipotent: these stem cells can form an entire organism such as fertilized egg. Ploripotent: ploripotent cells are those that can form any cell in the body but cannot form an entire organism such as developing embryo’s totipotent cells become ploripotent  Multipotent: Multi potent stem ...

  3. Pluripotent stem cell lines

    OpenAIRE

    Yu, Junying; Thomson, James A.

    2008-01-01

    The derivation of human embryonic stem cells 10 years ago ignited an explosion of public interest in stem cells, yet this achievement depended on prior decades of research on mouse embryonic carcinoma cells and embryonic stem cells. In turn, the recent derivation of mouse and human induced pluripotent stem cells depended on the prior studies on mouse and human embryonic stem cells. Both human embryonic stem cells and induced pluripotent stem cells can self-renew indefinitely in vitro while ma...

  4. DNA-cell conjugates

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Shih-Chia; Francis, Matthew B.; Bertozzi, Carolyn; Mathies, Richard; Chandra, Ravi; Douglas, Erik; Twite, Amy; Toriello, Nicholas; Onoe, Hiroaki

    2016-05-03

    The present invention provides conjugates of DNA and cells by linking the DNA to a native functional group on the cell surface. The cells can be without cell walls or can have cell walls. The modified cells can be linked to a substrate surface and used in assay or bioreactors.

  5. Molecular Mechanisms of Cell-cell Recognition

    Institute of Scientific and Technical Information of China (English)

    WANG Jia-Huai

    2004-01-01

    Cell-cell recognition is the key for multicellular organisms to survive. This recognition critically depends on protein-protein interactions from opposing cell surfaces. Recent structural investigations reveal unique features of these cell surface receptors and how they interact. These interactions are specific, but usually relatively weak, with more hydrophilic forces involved in binding. The receptors appear to have specialized ways to present their key interacting elements for ligand-binding from the cell surface. Cell-cell contacts are multivalent. A large group of cell surface molecules are engaged in interactions. Characteristic weak interactions make possible for each individual molecule pair within the group to constantly associate-dissociate-reassociate, such that the cell-cell recognition becomes a dynamic process. The immunological synapse is a good example for immune receptors to be orchestrated in performing immunological function in a collective fashion.

  6. nduced pluripotent stem cells and cell therapy

    Directory of Open Access Journals (Sweden)

    Banu İskender

    2013-12-01

    Full Text Available Human embryonic stem cells are derived from the inner cell mass of a blastocyst-stage embryo. They hold a huge promise for cell therapy with their self-renewing ability and pluripotency, which is known as the potential to differentiate into all cell types originating from three embryonic germ layers. However, their unique pluripotent feature could not be utilised for therapeutic purposes due to the ethical and legal problems during derivation. Recently, it was shown that the cells from adult tissues could be reverted into embryonic state, thereby restoring their pluripotent feature. This has strenghtened the possiblity of directed differentition of the reprogrammed somatic cells into the desired cell types in vitro and their use in regenerative medicine. Although these cells were termed as induced pluripotent cells, the mechanism of pluripotency has yet to be understood. Still, induced pluripotent stem cell technology is considered to be significant by proposing novel approaches in disease modelling, drug screening and cell therapy. Besides their self-renewing ability and their potential to differentiate into all cell types in a human body, they arouse a great interest in scientific world by being far from the ethical concerns regarding their embryonic counterparts and their unique feature of being patient-specific in prospective cell therapies. In this review, induced pluripotent stem cell technology and its role in cell-based therapies from past to present will be discussed. J Clin Exp Invest 2013; 4 (4: 550-561

  7. Modeling cell-in-cell structure into its biological significance

    OpenAIRE

    He, M-f; S. Wang; Wang, Y.; Wang, X-N.

    2013-01-01

    Although cell-in-cell structure was noted 100 years ago, the molecular mechanisms of ‘entering' and the destination of cell-in-cell remain largely unclear. It takes place among the same type of cells (homotypic cell-in-cell) or different types of cells (heterotypic cell-in-cell). Cell-in-cell formation affects both effector cells and their host cells in multiple aspects, while cell-in-cell death is under more intensive investigation. Given that cell-in-cell has an important role in maintainin...

  8. Monitoring cell growth.

    Science.gov (United States)

    Strober, W

    2001-05-01

    This appendix provides two protocols for monitoring cell growth. Counting cells using a hemacytometer is tedious but it allows one to effectively distinguish live cells from dead cells (using Trypan Blue exclusion). In addition, this procedure is less subject to errors due to cell clumping or heterogeneity of cell size. The use of an electronic cell counter is quicker and easier than counting cells using a hemacytometer. However, an electronic cell counter as currently constructed does not distinguish live from dead cells in a reliable fashion and is subject to error due to the presence of cell clumps. Overall, the electronic cell counter is best reserved for repetitive and rapid counting of fresh peripheral blood cells and should be used with caution when counting cell populations derived from tissues. PMID:18432653

  9. Automated Cell-Cutting for Cell Cloning

    Science.gov (United States)

    Ichikawa, Akihiko; Tanikawa, Tamio; Matsukawa, Kazutsugu; Takahashi, Seiya; Ohba, Kohtaro

    We develop an automated cell-cutting technique for cell cloning. Animal cells softened by the cytochalasin treatment are injected into a microfluidic chip. The microfluidic chip contains two orthogonal channels: one microchannel is wide, used to transport cells, and generates the cutting flow; the other is thin and used for aspiration, fixing, and stretching of the cell. The injected cell is aspirated and stretched in the thin microchannel. Simultaneously, the volumes of the cell before and after aspiration are calculated; the volumes are used to calculate the fluid flow required to aspirate half the volume of the cell into the thin microchannel. Finally, we apply a high-speed flow in the orthogonal microchannel to bisect the cell. This paper reports the cutting process, the cutting system, and the results of the experiment.

  10. Sickle Cell Anemia

    Science.gov (United States)

    Sickle cell anemia is a disease in which your body produces abnormally shaped red blood cells. The cells are shaped like a crescent or sickle. They ... last as long as normal, round red blood cells. This leads to anemia. The sickle cells also ...

  11. CELL RESEARCH

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    REVIEWSInducible resistance to Fas-mediated apoptosis in B cells…………………………………ROTHSTEIN Thomas L (245)Executionary pathway for apoptosis: lessons from mutant mice………………………………………WOO Minna, Razqallah Hakem, Tak W Mak (267)The SHP-2 tyrosine phosphatase: Signaling mechanisms and biological functions…………………………………QU Cheng Kui (279)REGULAR ARTICLESTemperature dependent expression of cdc2 and cyclin B1 in spermatogenic cells during spermatogenesis…………………………KONG Wei Hua, Zheng GU, Jining LU, Jiake TSO (289)Transgenic mice overexpressing γ-aminobutyric acid transporter subtype I develop obesity…………………………………MA Ying Hua, Jia Hua HU, Xiao Gang ZHOU, Ruo Wang ZENG, Zhen Tong MEI, Jian FEI, Li He GUO (303)Genetic aberration in primary hepatocellular carcinoma: correlation between p53 gene mutation and loss-of-heterozygosity on chromosome 16q21-q23 and 9p21-p23………………………………………WANG Gang, Chang Hui HUANG, Yan ZHAO, Ling CAI, Ying WANG, Shi Jin XIU, Zheng Wen JIANG, Shuang YANG, Xin Tai ZHAO, Wei HUANG, Jian Ren GU (311)Identification and genetic mapping of four novel genes that regulate leaf deve- lopment in Arabidopsis………………………………………………SUN Yue, Wei ZHANG, Feng Ling LI, Ying Li GUO, Tian Lei LIU, Hai HUANG (325)NOTICE FOR CONTRIBUTORS…………………………………(337)CONTENTS of Vol. 10, 2000…………………………………………………(338)

  12. Cell Membrane Softening in Cancer Cells

    Science.gov (United States)

    Schmidt, Sebastian; Händel, Chris; Käs, Josef

    Biomechanical properties are useful characteristics and regulators of the cell's state. Current research connects mechanical properties of the cytoskeleton to many cellular processes but does not investigate the biomechanics of the plasma membrane. We evaluated thermal fluctuations of giant plasma membrane vesicles, directly derived from the plasma membranes of primary breast and cervical cells and observed a lowered rigidity in the plasma membrane of malignant cells compared to non-malignant cells. To investigate the specific role of membrane rigidity changes, we treated two cell lines with the Acetyl-CoA carboxylase inhibitor Soraphen A. It changed the lipidome of cells and drastically increased membrane stiffness by up regulating short chained membrane lipids. These altered cells had a decreased motility in Boyden chamber assays. Our results indicate that the thermal fluctuations of the membrane, which are much smaller than the fluctuations driven by the cytoskeleton, can be modulated by the cell and have an impact on adhesion and motility.

  13. Sickle cell anemia - resources

    Science.gov (United States)

    Resources - sickle cell anemia ... The following organizations are good resources for information on sickle cell anemia : American Sickle Cell Anemia Association -- www.ascaa.org National Heart, Blood, and Lung Institute -- www. ...

  14. Sickle Cell Disease

    Science.gov (United States)

    ... in Sickle Cell Disease New supplement from the American Journal of Preventive Medicine describes the state of sickle cell disease related care in the United States. Read Supplement » ... are affected by sickle cell disease. More WEBINAR ...

  15. Sickle Cell Disease

    Science.gov (United States)

    ... from the NHLBI on Twitter. What Is Sickle Cell Disease? Español The term sickle cell disease (SCD) ... common forms of SCD. Some Forms of Sickle Cell Disease Hemoglobin SS Hemoglobin SC Hemoglobin Sβ 0 thalassemia ...

  16. Squamous cell skin cancer

    Science.gov (United States)

    ... earliest form of squamous cell cancer is called Bowen disease (or squamous cell carcinoma in situ). This type ... cancer; Squamous cell carcinoma of the skin Images Bowen's disease on the hand Keratoacanthoma Keratoacanthoma Skin cancer, squamous ...

  17. Lung cancer - small cell

    Science.gov (United States)

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC ...

  18. GSPEL - Fuel Cell Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Fuel Cell Lab (FCL) Provides testing for technology readiness of fuel cell systems The FCL investigates, tests and verifies the performance of fuel-cell systems...

  19. Lung cancer - small cell

    Science.gov (United States)

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC are ...

  20. Basal Cell Carcinoma (BCC)

    Science.gov (United States)

    ... epithelioma, is the most common form of skin cancer. Basal cell carcinoma usually occurs on sun-damaged skin, especially ... other health issues. Infiltrating or morpheaform basal cell carcinomas: Infiltrating basal cell carcinomas can be more aggressive and locally destructive ...

  1. Immobilization of cells via activated cell walls

    Energy Technology Data Exchange (ETDEWEB)

    Markt, M.; Kas, J.; Valentova, O.; Demnerova, K.; Vodrazka, Z.

    1986-10-01

    Cell walls of Saccharomyces cerevisiae and S. uvarum were activated by periodate oxidation of vicinal diol groups in cell wall polysaccharides. The aldehyde groups thus generated allow the yeast cells to be covalently bound to modified bead cellulose or macroporous glycidyl methacrylate supports, or to enzymes such as glucose oxidase and catalase. 6 references.

  2. Snail modulates cell metabolism in MDCK cells

    Energy Technology Data Exchange (ETDEWEB)

    Haraguchi, Misako, E-mail: haraguci@m3.kufm.kagoshima-u.ac.jp [Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Indo, Hiroko P. [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Iwasaki, Yasumasa [Health Care Center, Kochi University, Kochi 780-8520 (Japan); Iwashita, Yoichiro [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Fukushige, Tomoko [Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Majima, Hideyuki J. [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Izumo, Kimiko; Horiuchi, Masahisa [Department of Environmental Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Kanekura, Takuro [Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Furukawa, Tatsuhiko [Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Ozawa, Masayuki [Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan)

    2013-03-22

    Highlights: ► MDCK/snail cells were more sensitive to glucose deprivation than MDCK/neo cells. ► MDCK/snail cells had decreased oxidative phosphorylation, O{sub 2} consumption and ATP content. ► TCA cycle enzyme activity, but not expression, was lower in MDCK/snail cells. ► MDCK/snail cells showed reduced PDH activity and increased PDK1 expression. ► MDCK/snail cells showed reduced expression of GLS2 and ACLY. -- Abstract: Snail, a repressor of E-cadherin gene transcription, induces epithelial-to-mesenchymal transition and is involved in tumor progression. Snail also mediates resistance to cell death induced by serum depletion. By contrast, we observed that snail-expressing MDCK (MDCK/snail) cells undergo cell death at a higher rate than control (MDCK/neo) cells in low-glucose medium. Therefore, we investigated whether snail expression influences cell metabolism in MDCK cells. Although gylcolysis was not affected in MDCK/snail cells, they did exhibit reduced pyruvate dehydrogenase (PDH) activity, which controls pyruvate entry into the tricarboxylic acid (TCA) cycle. Indeed, the activity of multiple enzymes involved in the TCA cycle was decreased in MDCK/snail cells, including that of mitochondrial NADP{sup +}-dependent isocitrate dehydrogenase (IDH2), succinate dehydrogenase (SDH), and electron transport Complex II and Complex IV. Consequently, lower ATP content, lower oxygen consumption and increased survival under hypoxic conditions was also observed in MDCK/snail cells compared to MDCK/neo cells. In addition, the expression and promoter activity of pyruvate dehydrogenase kinase 1 (PDK1), which phosphorylates and inhibits the activity of PDH, was increased in MDCK/snail cells, while expression levels of glutaminase 2 (GLS2) and ATP-citrate lyase (ACLY), which are involved in glutaminolysis and fatty acid synthesis, were decreased in MDCK/snail cells. These results suggest that snail modulates cell metabolism by altering the expression and activity of

  3. Cell aggregation and sedimentation.

    Science.gov (United States)

    Davis, R H

    1995-01-01

    The aggregation of cells into clumps or flocs has been exploited for decades in such applications as biological wastewater treatment, beer brewing, antibiotic fermentation, and enhanced sedimentation to aid in cell recovery or retention. More recent research has included the use of cell aggregation and sedimentation to selectively separate subpopulations of cells. Potential biotechnological applications include overcoming contamination, maintaining plasmid-bearing cells in continuous fermentors, and selectively removing nonviable hybridoma cells from perfusion cultures.

  4. Artificial Stem Cell Niches

    OpenAIRE

    Lutolf, Matthias P.; Blau, Helen M.

    2009-01-01

    Stem cells are characterized by their dual ability to reproduce themselves (self-renew) and specialize (differentiate), yielding a plethora of daughter cells that maintain and regenerate tissues. In contrast to their embryonic counterparts, adult stem cells retain their unique functions only if they are in intimate contact with an instructive microenvironment, termed stem cell niche. In these niches, stem cells integrate a complex array of molecular signals that, in concert with induced cell-...

  5. Fish Stem Cell Cultures

    OpenAIRE

    Ni Hong, Zhendong Li, Yunhan Hong

    2011-01-01

    Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES) cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is th...

  6. Stem Cell Separation Technologies

    OpenAIRE

    Zhu, Beili; Murthy, Shashi K

    2013-01-01

    Stem cell therapy and translational stem cell research require large-scale supply of stem cells at high purity and viability, thus leading to the development of stem cell separation technologies. This review covers key technologies being applied to stem cell separation, and also highlights exciting new approaches in this field. First, we will cover conventional separation methods that are commercially available and have been widely adapted. These methods include Fluorescence-activated cell so...

  7. Cell control report

    CERN Document Server

    2013-01-01

    Please note this is a Short Discount publication. This extensive report provides an essential overview of cells and their use as factory automation building blocks. The following issues are discussed in depth: Cell integration Cell software and standards Future technologies applied to cells Plus Cell control applications including: - rotary parts manufacturing - diesel engine component development - general cell control development at the General Electric Corporation - a vendor list.

  8. Fusion with stem cell makes the hepatocellular carcinoma cells similar to liver tumor-initiating cells

    OpenAIRE

    Wang, Ran; Chen, Shuxun; Li, Changxian; Ng, Kevin Tak Pan; Kong, Chi-Wing; Cheng, Jinping; Cheng, Shuk Han; Li, Ronald A.; Lo, Chung Mau; Man, Kwan; Sun, Dong

    2016-01-01

    Background Cell fusion is a fast and highly efficient technique for cells to acquire new properties. The fusion of somatic cells with stem cells can reprogram somatic cells to a pluripotent state. Our research on the fusion of stem cells and cancer cells demonstrates that the fused cells can exhibit stemness and cancer cell-like characteristics. Thus, tumor-initiating cell-like cells are generated. Methods We employed laser-induced single-cell fusion technique to fuse the hepatocellular carci...

  9. Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Felthaus, O. [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany); Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Ettl, T.; Gosau, M.; Driemel, O. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Brockhoff, G. [Department of Gynecology and Obstetrics, University of Regensburg (Germany); Reck, A. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Zeitler, K. [Institute of Pathology, University of Regensburg (Germany); Hautmann, M. [Department of Radiotherapy, University of Regensburg (Germany); Reichert, T.E. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Schmalz, G. [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany); Morsczeck, C., E-mail: christian.morsczeck@klinik.uni-regensburg.de [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany)

    2011-04-01

    Research highlights: {yields} Four oral squamous cancer cell lines (OSCCL) were analyzed for cancer stem cells (CSCs). {yields} Single cell derived colonies of OSCCL express CSC-marker CD133 differentially. {yields} Monoclonal cell lines showed reduced sensitivity for Paclitaxel. {yields} In situ CD133{sup +} cells are slow cycling (Ki67-) indicating a reduced drug sensitivity. {yields} CD133{sup +} and CSC-like cells can be obtained from single colony forming cells of OSCCL. -- Abstract: Resistance of oral squamous cell carcinomas (OSCC) to conventional chemotherapy or radiation therapy might be due to cancer stem cells (CSCs). The development of novel anticancer drugs requires a simple method for the enrichment of CSCs. CSCs can be enriched from OSCC cell lines, for example, after cultivation in serum-free cell culture medium (SFM). In our study, we analyzed four OSCC cell lines for the presence of CSCs. CSC-like cells could not be enriched with SFM. However, cell lines obtained from holoclone colonies showed CSC-like properties such as a reduced rate of cell proliferation and a reduced sensitivity to Paclitaxel in comparison to cells from the parental lineage. Moreover, these cell lines differentially expressed the CSC-marker CD133, which is also upregulated in OSCC tissues. Interestingly, CD133{sup +} cells in OSCC tissues expressed little to no Ki67, the cell proliferation marker that also indicates reduced drug sensitivity. Our study shows a method for the isolation of CSC-like cell lines from OSCC cell lines. These CSC-like cell lines could be new targets for the development of anticancer drugs under in vitro conditions.

  10. Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines

    International Nuclear Information System (INIS)

    Research highlights: → Four oral squamous cancer cell lines (OSCCL) were analyzed for cancer stem cells (CSCs). → Single cell derived colonies of OSCCL express CSC-marker CD133 differentially. → Monoclonal cell lines showed reduced sensitivity for Paclitaxel. → In situ CD133+ cells are slow cycling (Ki67-) indicating a reduced drug sensitivity. → CD133+ and CSC-like cells can be obtained from single colony forming cells of OSCCL. -- Abstract: Resistance of oral squamous cell carcinomas (OSCC) to conventional chemotherapy or radiation therapy might be due to cancer stem cells (CSCs). The development of novel anticancer drugs requires a simple method for the enrichment of CSCs. CSCs can be enriched from OSCC cell lines, for example, after cultivation in serum-free cell culture medium (SFM). In our study, we analyzed four OSCC cell lines for the presence of CSCs. CSC-like cells could not be enriched with SFM. However, cell lines obtained from holoclone colonies showed CSC-like properties such as a reduced rate of cell proliferation and a reduced sensitivity to Paclitaxel in comparison to cells from the parental lineage. Moreover, these cell lines differentially expressed the CSC-marker CD133, which is also upregulated in OSCC tissues. Interestingly, CD133+ cells in OSCC tissues expressed little to no Ki67, the cell proliferation marker that also indicates reduced drug sensitivity. Our study shows a method for the isolation of CSC-like cell lines from OSCC cell lines. These CSC-like cell lines could be new targets for the development of anticancer drugs under in vitro conditions.

  11. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Nora [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Vereb, Zoltan; Rajnavoelgyi, Eva [Department of Immunology, Medical and Health Science Centre, University of Debrecen, Debrecen (Hungary); Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Apati, Agota, E-mail: apati@kkk.org.hu [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  12. SMOOTH MUSCLE STEM CELLS

    Science.gov (United States)

    Vascular smooth muscle cells (SMCs) originate from multiple types of progenitor cells. In the embryo, the most well-studied SMC progenitor is the cardiac neural crest stem cell. Smooth muscle differentiation in the neural crest lineage is controlled by a combination of cell intrinsic factors, includ...

  13. Sickle Cell Disease

    Science.gov (United States)

    ... sickle cell disease? Sickle cell disease, also called sickle cell anemia, is a hereditary condition (which means it runs ... or blocks blood and oxygen reaching nearby tissues. Sickle cell disease ... the whites of the eyes) Anemia (the decreased ability of the blood to carry ...

  14. When Blood Cells Bend: Understanding Sickle Cell Disease

    Science.gov (United States)

    ... please review our exit disclaimer . Subscribe When Blood Cells Bend Understanding Sickle Cell Disease For people who don’t suspect they ... Cells Bend Wise Choices Links Living with Sickle Cell Disease See a sickle cell disease expert regularly. ...

  15. Ganglion cell like cells, diagnostic dilemma

    Directory of Open Access Journals (Sweden)

    Anand Shankar Ammanagi

    2013-01-01

    Full Text Available We report a case of cutaneous swelling found on the left anterior axillary fold of a 41-year-old man. Gross examination of specimen excised from the dermis showed a well-circumscribed nodule histologically composed of spindle cells with interspersed ganglion cell like cells. On hematoxylin and eosine (H and E staining it was diagnosed as ganglioneuroma. Ganglioneuromas are rare, benign, fully differentiated tumors that contain mature schwann cells, ganglion cells, fibrous tissue, and nerve fibers. They are commonly found along the paravertebral sympathetic ganglia and sometimes in the adrenal medulla. However primary cutaneous ganglioneuroma is an extremely rare tumor. Immunohistochemical workup revealed a fibroblastic origin and hence the case was diagnosed as fibromatosis with ganglion cell like fibroblasts. This case report suggests that the features considered diagnostic of ganglioneuromas can occur in other cutaneous lesions and, therefore, this diagnosis cannot be offered only on the basis of H and E.

  16. Cell fusion of bone marrow cells and somatic cell reprogramming by embryonic stem cells

    OpenAIRE

    Bonde, Sabrina; Pedram, Mehrdad; Stultz, Ryan; Zavazava, Nicholas

    2010-01-01

    Bone marrow transplantation is a curative treatment for many diseases, including leukemia, autoimmune diseases, and a number of immunodeficiencies. Recently, it was claimed that bone marrow cells transdifferentiate, a much desired property as bone marrow cells are abundant and therefore could be used in regenerative medicine to treat incurable chronic diseases. Using a Cre/loxP system, we studied cell fusion after bone marrow transplantation. Fused cells were chiefly Gr-1+, a myeloid cell mar...

  17. Hepatic stem cell niches

    OpenAIRE

    Kordes, Claus; Häussinger, Dieter

    2013-01-01

    Stem cell niches are special microenvironments that maintain stem cells and control their behavior to ensure tissue homeostasis and regeneration throughout life. The liver has a high regenerative capacity that involves stem/progenitor cells when the proliferation of hepatocytes is impaired. In recent years progress has been made in the identification of potential hepatic stem cell niches. There is evidence that hepatic progenitor cells can originate from niches in the canals...

  18. Stem Cell Networks

    OpenAIRE

    Werner, Eric

    2016-01-01

    We present a general computational theory of stem cell networks and their developmental dynamics. Stem cell networks are special cases of developmental control networks. Our theory generates a natural classification of all possible stem cell networks based on their network architecture. Each stem cell network has a unique topology and semantics and developmental dynamics that result in distinct phenotypes. We show that the ideal growth dynamics of multicellular systems generated by stem cell ...

  19. Stem cell mechanobiology

    OpenAIRE

    David A. Lee; Knight, Martin M.; Jonathan J Campbell; Bader, Dan L.

    2010-01-01

    Stem cells are undifferentiated cells that are capable of proliferation, self-maintenance and differentiation towards specific cell phenotypes. These processes are controlled by a variety of cues including physicochemical factors associated with the specific mechanical environment in which the cells reside. The control of stem cell biology through mechanical factors remains poorly understood and is the focus of the developing field of mechanobiology. This review provides an insight into the c...

  20. Embryonic Stem Cell Markers

    OpenAIRE

    Lan Ma; Liang Li; Wenxiu Zhao; Xiang Ji; Fangfang Zhang

    2012-01-01

    Embryonic stem cell (ESC) markers are molecules specifically expressed in ES cells. Understanding of the functions of these markers is critical for characterization and elucidation for the mechanism of ESC pluripotent maintenance and self-renewal, therefore helping to accelerate the clinical application of ES cells. Unfortunately, different cell types can share single or sometimes multiple markers; thus the main obstacle in the clinical application of ESC is to purify ES cells from other type...

  1. Limbal stem cell transplantation

    OpenAIRE

    Fernandes Merle; Sangwan Virender; Rao Srinivas; Basti Surendra; Sridhar Mittanamalli; Bansal Aashish; Dua Harminder

    2004-01-01

    The past two decades have witnessed remarkable progress in limbal stem cell transplantation. In addition to harvesting stem cells from a cadaver or a live related donor, it is now possible to cultivate limbal stem cells in vitro and then transplant them onto the recipient bed. A clear understanding of the basic disease pathology and a correct assessment of the extent of stem cell deficiency are essential. A holistic approach towards management of limbal stem cell deficiency is needed. This ...

  2. Intraoperative Stem Cell Therapy

    OpenAIRE

    Coelho, Mónica Beato; Cabral, Joaquim M. S.; Karp, Jeffrey M.

    2012-01-01

    Stem cells hold significant promise for regeneration of tissue defects and disease-modifying therapies. Although numerous promising stem cell approaches are advancing in clinical trials, intraoperative stem cell therapies offer more immediate hope by integrating an autologous cell source with a well-established surgical intervention in a single procedure. Herein, the major developments in intraoperative stem cell approaches, from in vivo models to clinical studies, are reviewed, and the poten...

  3. The leukemic stem cell

    OpenAIRE

    Jordan, Craig T.

    2007-01-01

    Malignant stem cells have recently been described as the source of several types of human cancer. These unique cell types are typically rare and possess properties that are distinct from most other tumor cells. The properties of leukemic stem cells indicate that current chemotherapy drugs will not be effective. The use of current cytotoxic agents is not effective in leukemia because the agents target both the leukemic and normal stem cell populations. Consequently, new strategies are required...

  4. Cancer Stem Cells

    OpenAIRE

    Katarzyna Wieczorek; Jolanta Niewiarowska

    2008-01-01

    Cancer stem cell theory gains increasingly greater significance in the world of medicine. Numerous findings of scientific research in vivo and in vitro indicate that it is the population of undifferentiated, self-renewing cells which is responsible for recurrence of cancer and metastasis. Similarly to normal stem cells, cancer stem cells (CSC) function in the environment of the other cells of the organism, called the niche, where they receive signals for differentiation and proliferation proc...

  5. The cell cycle as a brake for β-cell regeneration from embryonic stem cells

    OpenAIRE

    El-Badawy, Ahmed; El-Badri, Nagwa

    2016-01-01

    The generation of insulin-producing β cells from stem cells in vitro provides a promising source of cells for cell transplantation therapy in diabetes. However, insulin-producing cells generated from human stem cells show deficiency in many functional characteristics compared with pancreatic β cells. Recent reports have shown molecular ties between the cell cycle and the differentiation mechanism of embryonic stem (ES) cells, assuming that cell fate decisions are controlled by the cell cycle ...

  6. Mechanically facilitated cell-cell electrofusion.

    OpenAIRE

    Jaroszeski, M. J.; Gilbert, R.; Fallon, P.G.; Heller, R

    1994-01-01

    Apparatus and methods were developed to enable mechanically facilitated cell-cell electrofusion to be performed. The apparatus and methods mechanically place cells in contact before fusion. The key component of this fusion system was a newly developed fusion chamber. The chamber was composed of two functionally identical electrodes that were housed in a multi-layer structure. The layers functioned as support for the electrodes. They also allowed adjustment of the distance between opposing ele...

  7. Optimizing stem cell culture.

    Science.gov (United States)

    van der Sanden, Boudewijn; Dhobb, Mehdi; Berger, François; Wion, Didier

    2010-11-01

    Stem cells always balance between self-renewal and differentiation. Hence, stem cell culture parameters are critical and need to be continuously refined according to progress in our stem cell biology understanding and the latest technological developments. In the past few years, major efforts have been made to define more precisely the medium composition in which stem cells grow or differentiate. This led to the progressive replacement of ill-defined additives such as serum or feeder cell layers by recombinant cytokines or growth factors. Another example is the control of the oxygen pressure. For many years cell cultures have been done under atmospheric oxygen pressure which is much higher than the one experienced by stem cells in vivo. A consequence of cell metabolism is that cell culture conditions are constantly changing. Therefore, the development of high sensitive monitoring processes and control algorithms is required for ensuring cell culture medium homeostasis. Stem cells also sense the physical constraints of their microenvironment. Rigidity, stiffness, and geometry of the culture substrate influence stem cell fate. Hence, nanotopography is probably as important as medium formulation in the optimization of stem cell culture conditions. Recent advances include the development of synthetic bioinformative substrates designed at the micro- and nanoscale level. On going research in many different fields including stem cell biology, nanotechnology, and bioengineering suggest that our current way to culture cells in Petri dish or flasks will soon be outdated as flying across the Atlantic Ocean in the Lindbergh's plane. PMID:20803548

  8. Living with Sickle Cell Disease

    Science.gov (United States)

    ... sickle cell disease, go to the Health Topics Sickle Cell Anemia article. Living With and Managing Sickle Cell Disease ( ... the most severe form of sickle cell disease, sickle cell anemia, Tiffany has lived with the symptoms and complications ...

  9. What Causes Sickle Cell Disease?

    Science.gov (United States)

    ... sickle cell disease, go to the Health Topics Sickle Cell Anemia article. Living With and Managing Sickle Cell Disease ( ... the most severe form of sickle cell disease, sickle cell anemia, Tiffany has lived with the symptoms and complications ...

  10. Plant stem cell niches.

    Science.gov (United States)

    Aichinger, Ernst; Kornet, Noortje; Friedrich, Thomas; Laux, Thomas

    2012-01-01

    Multicellular organisms possess pluripotent stem cells to form new organs, replenish the daily loss of cells, or regenerate organs after injury. Stem cells are maintained in specific environments, the stem cell niches, that provide signals to block differentiation. In plants, stem cell niches are situated in the shoot, root, and vascular meristems-self-perpetuating units of organ formation. Plants' lifelong activity-which, as in the case of trees, can extend over more than a thousand years-requires that a robust regulatory network keep the balance between pluripotent stem cells and differentiating descendants. In this review, we focus on current models in plant stem cell research elaborated during the past two decades, mainly in the model plant Arabidopsis thaliana. We address the roles of mobile signals on transcriptional modules involved in balancing cell fates. In addition, we discuss shared features of and differences between the distinct stem cell niches of Arabidopsis.

  11. What are Stem Cells?

    Directory of Open Access Journals (Sweden)

    Ahmadshah Farhat

    2014-05-01

    Full Text Available   Stem cells are undifferentiated self regenerating multi potential cells. There are three types of stem cells categories by the ability to form after cells and correlated with the body’s development process. Totipotent: these stem cells can form an entire organism such as fertilized egg. Ploripotent: ploripotent cells are those that can form any cell in the body but cannot form an entire organism such as developing embryo’s totipotent cells become ploripotent  Multipotent: Multi potent stem cells are those that can only form specific cells in the body such as blood cells based. Based on the sources of stem cells we have three types of these cells: Autologous: Sources of the patient own cells are (Autologous either the cells from patient own body or his or her cord blood. For this type of transplant the physician now usually collects the periphery rather than morrow because the procedure is easier on like a bane morrow harvest it take place outside of an operating room, and the patient does not to be under general unsetting . Allogenic: Sources of stem cells from another donore are primarily relatives (familial allogenic or completely unrelated donors. Xenogenic: In these stem cells from different species are transplanted e .g striatal porcine fetal mesan cephalic (FVM xenotransplants for Parkinson’s disease. On sites of isolation such as embryo, umbilical cord and other body tissues stem cells are named embnyonic, cord blood, and adult stem cells. The scope of results and clinical application of stem cells are such as: Neurodegenerative conditions (MS,ALS, Parkinson’s, Stroke, Ocular disorders- Glaucoma, retinitis Pigmentosa (RP, Auto Immune Conditions (Lupus, MS,R. arthritis, Diabetes, etc, Viral Conditions (Hepatitis C and AIDS, Heart Disease, Adrenal Disorders, Injury(Nerve, Brain, etc, Anti aging (hair, skin, weight control, overall well being/preventive, Emotional disorders, Organ / Tissue Cancers, Blood cancers, Blood diseases

  12. Lung Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Sharon R. Pine

    2008-01-01

    Full Text Available Lung cancer remains a major cause of cancer-related lethality because of high incidence and recurrence in spite of significant advances in staging and therapies. Recent data indicates that stem cells situated throughout the airways may initiate cancer formation. These putative stem cells maintain protumorigenic characteristics including high proliferative capacity, multipotent differentiation, drug resistance and long lifespan relative to other cells. Stem cell signaling and differentiation pathways are maintained within distinct cancer types, and destabilization of this machinery may participate in maintenance of cancer stem cells. Characterization of lung cancer stem cells is an area of active research and is critical for developing novel therapies. This review summarizes the current knowledge on stem cell signaling pathways and cell markers used to identify the lung cancer stem cells.

  13. Stem cells in urology.

    Science.gov (United States)

    Aboushwareb, Tamer; Atala, Anthony

    2008-11-01

    The shortage of donors for organ transplantation has stimulated research on stem cells as a potential resource for cell-based therapy in all human tissues. Stem cells have been used for regenerative medicine applications in many organ systems, including the genitourinary system. The potential applications for stem cell therapy have, however, been restricted by the ethical issues associated with embryonic stem cell research. Instead, scientists have explored other cell sources, including progenitor and stem cells derived from adult tissues and stem cells derived from the amniotic fluid and placenta. In addition, novel techniques for generating stem cells in the laboratory are being developed. These techniques include somatic cell nuclear transfer, in which the nucleus of an adult somatic cell is placed into an oocyte, and reprogramming of adult cells to induce stem-cell-like behavior. Such techniques are now being used in tissue engineering applications, and some of the most successful experiments have been in the field of urology. Techniques to regenerate bladder tissue have reached the clinic, and exciting progress is being made in other areas, such as regeneration of the kidney and urethra. Cell therapy as a treatment for incontinence and infertility might soon become a reality. Physicians should be optimistic that regenerative medicine and tissue engineering will one day provide mainstream treatment options for urologic disorders.

  14. Induction of Functional Hair-Cell-Like Cells from Mouse Cochlear Multipotent Cells

    Directory of Open Access Journals (Sweden)

    Quanwen Liu

    2016-01-01

    Full Text Available In this paper, we developed a two-step-induction method of generating functional hair cells from inner ear multipotent cells. Multipotent cells from the inner ear were established and induced initially into progenitor cells committed to the inner ear cell lineage on the poly-L-lysine substratum. Subsequently, the committed progenitor cells were cultured on the mitotically inactivated chicken utricle stromal cells and induced into hair-cell-like cells containing characteristic stereocilia bundles. The hair-cell-like cells exhibited rapid permeation of FM1-43FX. The whole-cell patch-clamp technique was used to measure the membrane currents of cells differentiated for 7 days on chicken utricle stromal cells and analyze the biophysical properties of the hair-cell-like cells by recording membrane properties of cells. The results suggested that the hair-cell-like cells derived from inner ear multipotent cells were functional following differentiation in an enabling environment.

  15. Pluripotent Stem Cells for Schwann Cell Engineering

    NARCIS (Netherlands)

    Ma, Ming-San; Boddeke, Erik; Copray, Sjef

    2015-01-01

    Tissue engineering of Schwann cells (SCs) can serve a number of purposes, such as in vitro SC-related disease modeling, treatment of peripheral nerve diseases or peripheral nerve injury, and, potentially, treatment of CNS diseases. SCs can be generated from autologous stem cells in vitro by recapitu

  16. Assessment of pancreas cells

    Science.gov (United States)

    Vanoss, C. J.

    1978-01-01

    Pancreatic islets were obtained from guinea pig pancreas by the collagenase method and kept alive in tissue culture prior to further studies. Pancreas cell morphology was studied by standard histochemical techniques using light microscopy. Preparative vertical electrophoresis-levitation of dispersed fetal guinea pig pancreas cells was conducted in phosphate buffer containing a heavy water (D20) gradient which does not cause clumping of cells or alter the osmolarity of the buffers. The faster migrating fractions tended to be enriched in beta-cell content. Alpha and delta cells were found to some degree in most fractions. A histogram showing the cell count distribution is included.

  17. Resident Peritoneal NK cells

    OpenAIRE

    Gonzaga, Rosemary; Matzinger, Polly; Perez-Diez, Ainhoa

    2011-01-01

    Here we describe a new population of NK cells that reside in the normal, un-inflamed peritoneal cavity. Phenotypically, they share some similarities with the small population of CD49b negative, CD27 positive immature splenic NK cells, and liver NK cells but differ in their expression of CD62L, TRAIL and EOMES. Functionally, the peritoneal NK cells resemble the immature splenic NK cells in their production of IFN-γ, GM-CSF and TNF-α and in the killing of YAC-1 target cells. We also found that ...

  18. Multipotent adult progenitor cell and stem cell plasticity

    OpenAIRE

    Jahagirdar, Balkrishna N; Verfaillie, Catherine

    2005-01-01

    Stem cells are defined by their biological function. A stem cell is an undifferentiated cell that self-renews to maintain the stem cell pool and at the single-cell level differentiates into more than one mature, functional cell. In addition, when transplanted, a stem cell should be capable of replacing a damaged organ or tissue for the lifetime of the recipient. Some would argue that stem cells should also be capable of functionally integrating into nondamaged tissues. Stem cells are critical...

  19. Epidermal Stem Cells

    Directory of Open Access Journals (Sweden)

    Osman Köse

    2015-03-01

    Full Text Available The epidermis is the outermost layer of the human skin and comprises a multilayered epithelium, the interfollicular epidermis, with associated hair follicles, sebaceous glands, and eccrine sweat glands. There are many origins of stem cells in the skin and skin appendages. These stem cells are localized in different part of the pilosebaseous units and also express many different genes. Epidermal stem cells in the pilosebaseous units not only ensure the maintenance of epidermal homeostasis and hair regeneration, but also contribute to repair of the epidermis after injury. In recent years, human induced pluripotent skin stem cells are produced from the epidermal cells such as keratinocytes, fibroblasts and melanocytes. These cells can be transdifferentiated to embriyonic stem cells. Human induced pluripotent stem cells have potential applications in cell replacement therapy and regenerative medicine. These cells provide a means to create valuable tools for basic research and may also produce a source of patient-matched cells for regenerative therapies. In this review, we aimed an overview of epidermal stem cells for better understanding their functions in the skin. Skin will be main organ for using the epidermal cells for regenerative medicine in near future.

  20. The cell cycle as a brake for β-cell regeneration from embryonic stem cells.

    Science.gov (United States)

    El-Badawy, Ahmed; El-Badri, Nagwa

    2016-01-13

    The generation of insulin-producing β cells from stem cells in vitro provides a promising source of cells for cell transplantation therapy in diabetes. However, insulin-producing cells generated from human stem cells show deficiency in many functional characteristics compared with pancreatic β cells. Recent reports have shown molecular ties between the cell cycle and the differentiation mechanism of embryonic stem (ES) cells, assuming that cell fate decisions are controlled by the cell cycle machinery. Both β cells and ES cells possess unique cell cycle machinery yet with significant contrasts. In this review, we compare the cell cycle control mechanisms in both ES cells and β cells, and highlight the fundamental differences between pluripotent cells of embryonic origin and differentiated β cells. Through critical analysis of the differences of the cell cycle between these two cell types, we propose that the cell cycle of ES cells may act as a brake for β-cell regeneration. Based on these differences, we discuss the potential of modulating the cell cycle of ES cells for the large-scale generation of functionally mature β cells in vitro. Further understanding of the factors that modulate the ES cell cycle will lead to new approaches to enhance the production of functional mature insulin-producing cells, and yield a reliable system to generate bona fide β cells in vitro.

  1. Regulatory T cells and B cells: implication on autoimmune diseases

    OpenAIRE

    Wang, Ping; Zheng, Song Guo

    2013-01-01

    The regulatory T (Treg) cells play an important role in the maintenance of homeostasis and the prevention of autoimmune diseases. Although most studies are focusing on the role of Treg cells in T cells and T cells-mediated diseases, these cells also directly affect B cells and other non-T cells. This manuscript updates the role of Treg cells on the B cells and B cell-mediated diseases. In addition, the mechanisms whereby Treg cells suppress B cell responses have been discussed.

  2. Toward 'SMART' stem cells.

    Science.gov (United States)

    Cheng, T

    2008-01-01

    Stem cell research is at the heart of regenerative medicine, which holds great promise for the treatment of many devastating disorders. However, in addition to hurdles posed by well-publicized ethical issues, this emerging field presents many biological challenges. What is a stem cell? How are embryonic stem cells different from adult stem cells? What are the physiological bases for therapeutically acceptable stem cells? In this editorial review, I will briefly discuss these superficially simple but actually rather complex issues that surround this fascinating cell type. The goal of this special issue on stem cells in Gene Therapy is to review some fundamental and critical aspects of current stem cell research that have translational potential. PMID:18046429

  3. Cell signaling review series

    Institute of Scientific and Technical Information of China (English)

    Aiming Lin; Zhenggang Liu

    2008-01-01

    @@ Signal transduction is pivotal for many, if not all, fundamental cellular functions including proliferation, differentiation, transformation and programmed cell death. Deregulation of cell signaling may result in certain types of cancers and other human diseases.

  4. Giant Cell Arteritis

    Science.gov (United States)

    Giant cell arteritis is a disorder that causes inflammation of your arteries, usually in the scalp, neck, and arms. ... arteries, which keeps blood from flowing well. Giant cell arteritis often occurs with another disorder called polymyalgia ...

  5. Sickle cell anemia.

    OpenAIRE

    ŘÍHOVÁ, Tereza

    2013-01-01

    This thesis is about the disease called sickle cell anemia, or drepanocytosis. In this thesis is described the history of the disease, pathophysiology, laboratory features, various clinical features, diferencial diagnosis, quality of life in sickle cell anemia and therapy.

  6. Sickle Cell Trait

    Science.gov (United States)

    ... About Us Information For... Media Policy Makers Sickle Cell Trait Language: English Español (Spanish) Recommend on Facebook ... the trait on to their children. How Sickle Cell Trait is Inherited If both parents have SCT, ...

  7. Sickle Cell Disease Quiz

    Science.gov (United States)

    ... About Us Information For... Media Policy Makers Sickle Cell Disease Quiz Language: English Español (Spanish) Recommend on ... True or False: Only African Americans get sickle cell disease. A True B False 2. True or ...

  8. Mammalian cell biology

    International Nuclear Information System (INIS)

    This section contains summaries of research on mechanisms of lethality and radioinduced changes in mammalian cell properties, new cell systems for the study of the biology of mutation and neoplastic transformation, and comparative properties of ionizing radiations

  9. Anaplastic Large Cell Lymphoma

    Science.gov (United States)

    Anaplastic Large Cell Lymphoma Overview Lymphoma is the most common blood cancer. The two main forms of lymphoma are ... organs, and can accumulate to form tumors. Anaplastic large cell lymphoma (ALCL) is arare type of NHL, ...

  10. What Are Islet Cells?

    Science.gov (United States)

    ... Video Be Part of the Cure Commitment to Stem Cell Research Exercise + Drug Therapy Tibi Creates Garment to Benefit ... Video Be Part of the Cure Commitment to Stem Cell Research Exercise + Drug Therapy Tibi Creates Garment to Benefit ...

  11. NIA Aging Cell Repository

    Data.gov (United States)

    Federal Laboratory Consortium — To facilitate aging research on cells in culture, the NIA provides support for the NIA Aging Cell Repository, located at the Coriell Institute for Medical Research...

  12. Sickle cell anemia

    Science.gov (United States)

    ... for avascular necrosis of the hip Surgery for eye problems Treatment for overuse or abuse of narcotic pain medicines Wound care for leg ulcers Bone marrow or stem cell transplants can cure sickle cell anemia, but this treatment ...

  13. Diagram of Cell to Cell Communication

    Science.gov (United States)

    2002-01-01

    Diagram depicts the importance of cell-cell communication as central to the understanding of cancer growth and progression, the focus of the NASA bioreactor demonstration system (BDS-05) investigation. Microgravity studies will allow us to unravel the signaling and communication between these cells with the host and potential development of therapies for the treatment of cancer metastasis. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: Emory University.

  14. STEM CELLS AND PROTEOMICS

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yong-ming; GUO Tian-nan; HUANG Shi-ang

    2006-01-01

    The distinctive features of proteomics are large-scale and high throughput. The key techniques of proteomics are two-dimensional gel electrophoresis, mass spectrometry and bioinformatics. Stem cell can differentiate into all kinds of cells, tissues and organs. There are many proteins and cytokines involved in the process of differentiation. Applying proteomics techniques to the research of the complex process of stem cell differentiation is of great importance to study the mechanism and applications of stem cell differentiation.

  15. Fish Stem Cell Cultures

    Directory of Open Access Journals (Sweden)

    Ni Hong, Zhendong Li, Yunhan Hong

    2011-01-01

    Full Text Available Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is the second organism that generated ES cells and the first that gave rise to a spermatogonial stem cell line capable of test-tube sperm production. Most recently, the first haploid stem cells capable of producing whole animals have also been generated from medaka. ES-like cells have been reported also in zebrafish and several marine species. Attempts for germline transmission of ES cell cultures and gene targeting have been reported in zebrafish. Recent years have witnessed the progress in markers and procedures for ES cell characterization. These include the identification of fish homologs/paralogs of mammalian pluripotency genes and parameters for optimal chimera formation. In addition, fish germ cell cultures and transplantation have attracted considerable interest for germline transmission and surrogate production. Haploid ES cell nuclear transfer has proven in medaka the feasibility of semi-cloning as a novel assisted reproductive technology. In this special issue on “Fish Stem Cells and Nuclear Transfer”, we will focus our review on medaka to illustrate the current status and perspective of fish stem cells in research and application. We will also mention semi-cloning as a new development to conventional nuclear transfer.

  16. Skeletal (stromal) stem cells

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Kermani, Abbas Jafari; Zaher, Walid;

    2015-01-01

    Skeletal (marrow stromal) stem cells (BMSCs) are a group of multipotent cells that reside in the bone marrow stroma and can differentiate into osteoblasts, chondrocytes and adipocytes. Studying signaling pathways that regulate BMSC differentiation into osteoblastic cells is a strategy....../preadipocyte factor 1 (Dlk1/Pref-1), the Wnt co-receptor Lrp5 and intracellular kinases. This article is part of a Special Issue entitled: Stem Cells and Bone....

  17. Nanoelectrochemistry of mammalian cells

    OpenAIRE

    Sun, Peng; Laforge, François O.; Abeyweera, Thushara P.; Rotenberg, Susan A.; Carpino, James; Mirkin, Michael V.

    2008-01-01

    There is a significant current interest in development of new techniques for direct characterization of the intracellular redox state and high-resolution imaging of living cells. We used nanometer-sized amperometric probes in combination with the scanning electrochemical microscope (SECM) to carry out spatially resolved electrochemical experiments in cultured human breast cells. With the tip radius ≈1,000 times smaller than that of a cell, an electrochemical probe can penetrate a cell and tra...

  18. Optimizing stem cell culture.

    OpenAIRE

    van der Sanden, Boudewijn; Dhobb, Mehdi; Berger, François; Wion, Didier

    2010-01-01

    International audience Stem cells always balance between self-renewal and differentiation. Hence, stem cell culture parameters are critical and need to be continuously refined according to progress in our stem cell biology understanding and the latest technological developments. In the past few years, major efforts have been made to define more precisely the medium composition in which stem cells grow or differentiate. This led to the progressive replacement of ill-defined additives such a...

  19. Fish stem cell cultures.

    Science.gov (United States)

    Hong, Ni; Li, Zhendong; Hong, Yunhan

    2011-04-13

    Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES) cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is the second organism that generated ES cells and the first that gave rise to a spermatogonial stem cell line capable of test-tube sperm production. Most recently, the first haploid stem cells capable of producing whole animals have also been generated from medaka. ES-like cells have been reported also in zebrafish and several marine species. Attempts for germline transmission of ES cell cultures and gene targeting have been reported in zebrafish. Recent years have witnessed the progress in markers and procedures for ES cell characterization. These include the identification of fish homologs/paralogs of mammalian pluripotency genes and parameters for optimal chimera formation. In addition, fish germ cell cultures and transplantation have attracted considerable interest for germline transmission and surrogate production. Haploid ES cell nuclear transfer has proven in medaka the feasibility of semi-cloning as a novel assisted reproductive technology. In this special issue on "Fish Stem Cells and Nuclear Transfer", we will focus our review on medaka to illustrate the current status and perspective of fish stem cells in research and application. We will also mention semi-cloning as a new development to conventional nuclear transfer.

  20. Prostate cancer stem cells

    OpenAIRE

    Tu, Shi-Ming; Lin, Sue-Hwa

    2011-01-01

    Stem cells have long been implicated in prostate glandular formation. The prostate undergoes regression after androgen deprivation and regeneration after testosterone replacement. Regenerative studies suggest that these cells are found in the proximal ducts and basal layer of the prostate. Many characteristics of prostate cancer indicate that it originates from stem cells. For example, the putative AR− status of prostate stem cells renders them inherently insensitive to androgen blockade ther...

  1. Lung Cancer Stem Cells

    OpenAIRE

    Pine, Sharon R.; Blair Marshall; Lyuba Varticovski

    2008-01-01

    Lung cancer remains a major cause of cancer-related lethality because of high incidence and recurrence in spite of significant advances in staging and therapies. Recent data indicates that stem cells situated throughout the airways may initiate cancer formation. These putative stem cells maintain protumorigenic characteristics including high proliferative capacity, multipotent differentiation, drug resistance and long lifespan relative to other cells. Stem cell signaling and differentiation p...

  2. Increased voltage photovoltaic cell

    Science.gov (United States)

    Ross, B.; Bickler, D. B.; Gallagher, B. D. (Inventor)

    1985-01-01

    A photovoltaic cell, such as a solar cell, is provided which has a higher output voltage than prior cells. The improved cell includes a substrate of doped silicon, a first layer of silicon disposed on the substrate and having opposite doping, and a second layer of silicon carbide disposed on the first layer. The silicon carbide preferably has the same type of doping as the first layer.

  3. Aneuploidy in stem cells

    OpenAIRE

    Garcia-Martinez, Jorge; Bakker, Bjorn; Schukken, Klaske M; Simon, Judith E; Foijer, Floris

    2016-01-01

    Stem cells hold enormous promise for regenerative medicine as well as for engineering of model systems to study diseases and develop new drugs. The discovery of protocols that allow for generating induced pluripotent stem cells (IPSCs) from somatic cells has brought this promise steps closer to reality. However, as somatic cells might have accumulated various chromosomal abnormalities, including aneuploidies throughout their lives, the resulting IPSCs might no longer carry the perfect bluepri...

  4. Antitumor Immunity Produced by the Liver Kupffer Cells, NK Cells, NKT Cells, and CD8+ CD122+ T Cells

    OpenAIRE

    Shuhji Seki; Hiroyuki Nakashima; Masahiro Nakashima; Manabu Kinoshita

    2011-01-01

    Mouse and human livers contain innate immune leukocytes, NK cells, NKT cells, and macrophage-lineage Kupffer cells. Various bacterial components, including Toll-like receptor (TLR) ligands and an NKT cell ligand ( α -galactocylceramide), activate liver Kupffer cells, which produce IL-1, IL-6, IL-12, and TNF. IL-12 activates hepatic NK cells and NKT cells to produce IFN- γ , which further activates hepatic T cells, in turn activating phagocytosis and cytokine production by Kupffer cells in a p...

  5. Nanostructured Organic Solar Cells

    DEFF Research Database (Denmark)

    Radziwon, Michal Jędrzej; Rubahn, Horst-Günter; Madsen, Morten

    Recent forecasts for alternative energy generation predict emerging importance of supporting state of art photovoltaic solar cells with their organic equivalents. Despite their significantly lower efficiency, number of application niches are suitable for organic solar cells. This work reveals...... the principles of bulk heterojunction organic solar cells fabrication as well as summarises major differences in physics of their operation....

  6. Stem cell heterogeneity revealed

    DEFF Research Database (Denmark)

    Andersen, Marianne S; Jensen, Kim B

    2016-01-01

    The skin forms a protective, water-impermeable barrier consisting of heavily crosslinked epithelial cells. However, the specific role of stem cells in sustaining this barrier remains a contentious issue. A detailed analysis of the interfollicular epidermis now proposes a model for how a composite...... of cells with different properties are involved in its maintenance....

  7. Aneuploidy in stem cells

    NARCIS (Netherlands)

    Garcia-Martinez, Jorge; Bakker, Bjorn; Schukken, Klaske M; Simon, Judith E; Foijer, Floris

    2016-01-01

    Stem cells hold enormous promise for regenerative medicine as well as for engineering of model systems to study diseases and develop new drugs. The discovery of protocols that allow for generating induced pluripotent stem cells (IPSCs) from somatic cells has brought this promise steps closer to real

  8. Cell phones and cancer

    Science.gov (United States)

    Cancer and cell phones; Do cell phones cause cancer? ... Several major studies show no link between cell phones and cancer at this time. However, since the information available is based on short-term studies, the impact of many years of ...

  9. Mouse Leydig Tumor Cells

    Directory of Open Access Journals (Sweden)

    Bo-Syong Pan

    2011-01-01

    Full Text Available Cordycepin is a natural pure compound extracted from Cordyceps sinensis (CS. We have demonstrated that CS stimulates steroidogenesis in primary mouse Leydig cell and activates apoptosis in MA-10 mouse Leydig tumor cells. It is highly possible that cordycepin is the main component in CS modulating Leydig cell functions. Thus, our aim was to investigate the steroidogenic and apoptotic effects with potential mechanism of cordycepin on MA-10 mouse Leydig tumor cells. Results showed that cordycepin significantly stimulated progesterone production in dose- and time-dependent manners. Adenosine receptor (AR subtype agonists were further used to treat MA-10 cells, showing that A1, A 2A , A 2B , and A3, AR agonists could stimulate progesterone production. However, StAR promoter activity and protein expression remained of no difference among all cordycepin treatments, suggesting that cordycepin might activate AR, but not stimulated StAR protein to regulate MA-10 cell steroidogenesis. Meanwhile, cordycepin could also induce apoptotic cell death in MA-10 cells. Moreover, four AR subtype agonists induced cell death in a dose-dependent manner, and four AR subtype antagonists could all rescue cell death under cordycepin treatment in MA-10 cells. In conclusion, cordycepin could activate adenosine subtype receptors and simultaneously induce steroidogenesis and apoptosis in MA-10 mouse Leydig tumor cells.

  10. Adventures with Cell Phones

    Science.gov (United States)

    Kolb, Liz

    2011-01-01

    Teachers are finding creative ways to turn the basic cell phone from a digital distraction into a versatile learning tool. In this article, the author explains why cell phones are important in learning and suggests rather than banning them that they be integrated into learning. She presents activities that can be done on a basic cell phone with a…

  11. Dazlin' pluripotent stem cells

    NARCIS (Netherlands)

    Welling, M.A.

    2014-01-01

    Pluripotent embryonic stem cells (ESCs) can be isolated from the inner cell mass (ICM) of blastocyst embryos and differentiate into all three germ layers in vitro. However, despite their similar origin, mouse embryonic stem cells represent a more naïve ICM-like pluripotent state whereas human embryo

  12. Embryonic Stem Cell Markers

    Directory of Open Access Journals (Sweden)

    Lan Ma

    2012-05-01

    Full Text Available Embryonic stem cell (ESC markers are molecules specifically expressed in ES cells. Understanding of the functions of these markers is critical for characterization and elucidation for the mechanism of ESC pluripotent maintenance and self-renewal, therefore helping to accelerate the clinical application of ES cells. Unfortunately, different cell types can share single or sometimes multiple markers; thus the main obstacle in the clinical application of ESC is to purify ES cells from other types of cells, especially tumor cells. Currently, the marker-based flow cytometry (FCM technique and magnetic cell sorting (MACS are the most effective cell isolating methods, and a detailed maker list will help to initially identify, as well as isolate ESCs using these methods. In the current review, we discuss a wide range of cell surface and generic molecular markers that are indicative of the undifferentiated ESCs. Other types of molecules, such as lectins and peptides, which bind to ESC via affinity and specificity, are also summarized. In addition, we review several markers that overlap with tumor stem cells (TSCs, which suggest that uncertainty still exists regarding the benefits of using these markers alone or in various combinations when identifying and isolating cells.

  13. astrocyte and astrocytoma cells

    DEFF Research Database (Denmark)

    Tfelt-Hansen, J.

    2008-01-01

    -transforming gene (PTTG), was found to be upregulated by the CaR in the H-500 cells, whereas calcium had no effect on PTTG expression in the U-87 astrocytoma cell line, but other proproliferative agents did upregulate PTTG in the U-87 cells. This makes PTTG a potential marker of malignancy and a therapeutic target...

  14. Advanced Cell Technology, Inc.

    Science.gov (United States)

    Caldwell, William M

    2007-03-01

    Advanced Cell Technology, Inc. (OTCBB: ACTC) is a biotechnology company applying novel human embryonic stem cell technologies in the emerging field of regenerative medicine. We believe that regenerative medicine has the potential to revolutionize the field by enabling scientists to produce human cells of any kind for use in a wide array of therapies.

  15. Battery cell module

    Energy Technology Data Exchange (ETDEWEB)

    Shambaugh, J.S.

    1981-11-23

    A modular lithium battery having a plurality of cells, having electrical connecting means connecting the cells to output terminals, and venting means for releasing discharge byproducts to a chemical scrubber is disclosed. Stainless steel cell casings are potted in an aluminum modular case with syntactic foam and epoxy. The wall thickness resulting is about 0.5 inches.

  16. Solar Photovoltaic Cells.

    Science.gov (United States)

    Mickey, Charles D.

    1981-01-01

    Reviews information on solar radiation as an energy source. Discusses these topics: the key photovoltaic material; the bank theory of solids; conductors, semiconductors, and insulators; impurity semiconductors; solid-state photovoltaic cell operation; limitations on solar cell efficiency; silicon solar cells; cadmium sulfide/copper (I) sulfide…

  17. STEM CELLS: Differentiated cells in a back-up role

    OpenAIRE

    Desai, Tushar J.; Krasnow, Mark A.

    2013-01-01

    Two independent studies show that, if push comes to shove, differentiated cells of the stomach and lung can act as adult stem cells generating various cell types of the tissue, including a pool of stem cells.

  18. MAPK uncouples cell cycle progression from cell spreading and cytoskeletal organization in cycling cells

    OpenAIRE

    Margadant, Coert; Cremers, Lobke; Sonnenberg, Arnoud; Boonstra, Johannes

    2012-01-01

    Integrin-mediated cytoskeletal tension supports growth-factor-induced proliferation, and disruption of the actin cytoskeleton in growth factor-stimulated cells prevents the re-expression of cyclin D and cell cycle re-entry from quiescence. In contrast to cells that enter the cell cycle from G0, cycling cells continuously express cyclin D, and are subject to major cell shape changes during the cell cycle. Here, we investigated the cell cycle requirements for cytoskeletal tension and cell sprea...

  19. Induction of Functional Hair-Cell-Like Cells from Mouse Cochlear Multipotent Cells

    OpenAIRE

    Quanwen Liu; Yi Shen; Jiarong Chen; Jie Ding; Zihua Tang; Cui Zhang; Jianling Chen; Liang Li; Ping Chen; Jinfu Wang

    2016-01-01

    In this paper, we developed a two-step-induction method of generating functional hair cells from inner ear multipotent cells. Multipotent cells from the inner ear were established and induced initially into progenitor cells committed to the inner ear cell lineage on the poly-L-lysine substratum. Subsequently, the committed progenitor cells were cultured on the mitotically inactivated chicken utricle stromal cells and induced into hair-cell-like cells containing characteristic stereocilia bund...

  20. Dental pulp stem cells

    DEFF Research Database (Denmark)

    Ashri, N. Y.; Ajlan, S. A.; Aldahmash, Abdullah M.

    2015-01-01

    Inflammatory periodontal disease is a major cause of loss of tooth-supporting structures. Novel approaches for regeneration of periodontal apparatus is an area of intensive research. Periodontal tissue engineering implies the use of appropriate regenerative cells, delivered through a suitable...... scaffold, and guided through signaling molecules. Dental pulp stem cells have been used in an increasing number of studies in dental tissue engineering. Those cells show mesenchymal (stromal) stem cell-like properties including self-renewal and multilineage differentiation potentials, aside from...... an updated review on dental pulp stem cells and their applications in periodontal regeneration, in combination with different scaffolds and growth factors....

  1. Transparent ultraviolet photovoltaic cells.

    Science.gov (United States)

    Yang, Xun; Shan, Chong-Xin; Lu, Ying-Jie; Xie, Xiu-Hua; Li, Bing-Hui; Wang, Shuang-Peng; Jiang, Ming-Ming; Shen, De-Zhen

    2016-02-15

    Photovoltaic cells have been fabricated from p-GaN/MgO/n-ZnO structures. The photovoltaic cells are transparent to visible light and can transform ultraviolet irradiation into electrical signals. The efficiency of the photovoltaic cells is 0.025% under simulated AM 1.5 illumination conditions, while it can reach 0.46% under UV illumination. By connecting several such photovoltaic cells in a series, light-emitting devices can be lighting. The photovoltaic cells reported in this Letter may promise the applications in glass of buildings to prevent UV irradiation and produce power for household appliances in the future.

  2. Mechanics rules cell biology

    Directory of Open Access Journals (Sweden)

    Wang James HC

    2010-07-01

    Full Text Available Abstract Cells in the musculoskeletal system are subjected to various mechanical forces in vivo. Years of research have shown that these mechanical forces, including tension and compression, greatly influence various cellular functions such as gene expression, cell proliferation and differentiation, and secretion of matrix proteins. Cells also use mechanotransduction mechanisms to convert mechanical signals into a cascade of cellular and molecular events. This mini-review provides an overview of cell mechanobiology to highlight the notion that mechanics, mainly in the form of mechanical forces, dictates cell behaviors in terms of both cellular mechanobiological responses and mechanotransduction.

  3. Internalization of NK cells into tumor cells requires ezrin and leads to programmed cell-in-cell death

    Institute of Scientific and Technical Information of China (English)

    Shan Wang; Zhen Guo; Peng Xia; Tingting Liu; Jufang Wang; Shan Li; Lihua Sun; Jianxin Lu; Qian Wen; Mingqian Zhou; Li Ma; Xia Ding; Xiaoning Wang; Xuebiao Yao

    2009-01-01

    Cytotoxic lymphocytes are key players in the orchestration of immune response and elimination of defective cells. We have previously reported that natural killer (NK) cells enter target tumor cells, leading to either target cell death or self-destruction within tumor cells. However, it has remained elusive as to the fate of NK cells after internaliza-tion and whether the heterotypic cell-in-cell process is different from that of the homotypic cell-in-cell event recently named entosis. Here, we show that NK cells undergo a cell-in-cell process with the ultimate fate of apoptosis within tumor cells and reveal that the internalization process requires the actin cytoskeletal regulator, ezrin. To visualize how NK cells enter into tumor cells, we carried out real-time dual color imaging analyses of NK cell internalization into tumor cells. Surprisingly, most NK cells commit to programmed cell death after their entry into tumor cells, which is distinctively different from entosis observed in the homotypic cell-in-cell process. The apoptotic cell death of the internalized NK cells was evident by activation of caspase 3 and DNA fragmentation. Furthermore, NK cell death after internalization is attenuated by the caspase inhibitor, Z-VAD-FMK, confirming apoptosis as the mode of NK cell death within tumor cells. To determine protein factors essential for the entry of NK cells into tumor cells, we car-ried out siRNA-based knockdown analysis and discovered a critical role of ezrin in NK cell internalization. Impor-tantly, PKA-mediated phosphorylation of ezrin promotes the NK cell internalization process. Our findings suggest a novel regulatory mechanism by which ezrin governs NK cell internalization into tumor cells.

  4. Fuel Cell/Electrochemical Cell Voltage Monitor

    Science.gov (United States)

    Vasquez, Arturo

    2012-01-01

    A concept has been developed for a new fuel cell individual-cell-voltage monitor that can be directly connected to a multi-cell fuel cell stack for direct substack power provisioning. It can also provide voltage isolation for applications in high-voltage fuel cell stacks. The technology consists of basic modules, each with an 8- to 16-cell input electrical measurement connection port. For each basic module, a power input connection would be provided for direct connection to a sub-stack of fuel cells in series within the larger stack. This power connection would allow for module power to be available in the range of 9-15 volts DC. The relatively low voltage differences that the module would encounter from the input electrical measurement connection port, coupled with the fact that the module's operating power is supplied by the same substack voltage input (and so will be at similar voltage), provides for elimination of high-commonmode voltage issues within each module. Within each module, there would be options for analog-to-digital conversion and data transfer schemes. Each module would also include a data-output/communication port. Each of these ports would be required to be either non-electrical (e.g., optically isolated) or electrically isolated. This is necessary to account for the fact that the plurality of modules attached to the stack will normally be at a range of voltages approaching the full range of the fuel cell stack operating voltages. A communications/ data bus could interface with the several basic modules. Options have been identified for command inputs from the spacecraft vehicle controller, and for output-status/data feeds to the vehicle.

  5. Parameterization of solar cells

    Science.gov (United States)

    Appelbaum, J.; Chait, A.; Thompson, D.

    1992-10-01

    The aggregation (sorting) of the individual solar cells into an array is commonly based on a single operating point on the current-voltage (I-V) characteristic curve. An alternative approach for cell performance prediction and cell screening is provided by modeling the cell using an equivalent electrical circuit, in which the parameters involved are related to the physical phenomena in the device. These analytical models may be represented by a double exponential I-V characteristic with seven parameters, by a double exponential model with five parameters, or by a single exponential equation with four or five parameters. In this article we address issues concerning methodologies for the determination of solar cell parameters based on measured data points of the I-V characteristic, and introduce a procedure for screening of solar cells for arrays. We show that common curve fitting techniques, e.g., least squares, may produce many combinations of parameter values while maintaining a good fit between the fitted and measured I-V characteristics of the cell. Therefore, techniques relying on curve fitting criteria alone cannot be directly used for cell parameterization. We propose a consistent procedure which takes into account the entire set of parameter values for a batch of cells. This procedure is based on a definition of a mean cell representing the batch, and takes into account the relative contribution of each parameter to the overall goodness of fit. The procedure is demonstrated on a batch of 50 silicon cells for Space Station Freedom.

  6. T cell subpopulations.

    Science.gov (United States)

    Romagnani, Sergio

    2014-01-01

    The role of allergen-specific CD4+ effector type 2 helper (Th2) cells in the pathogenesis of allergic disorders is an established fact. Th2 cells produce interleukin (IL)-4 and IL-13, which induce immunoglobulin E production by B cells, and IL-5 that allows recruitment of eosinophils. Two main mechanisms control the Th2-mediated allergic inflammation: immune deviation (or Th1 redirection) and immune regulation. Regulatory T (Treg) cells exhibit a CD4+ phenotype and include Foxp3-positive thymic and induced Tregs, as well as Foxp3-negative IL-10-producing cells. Both immune deviation and immune regulation evoked by the maternal and newborn microbial environment probably operate in preventing allergen-specific Th2 responses. However, microbe-related protection from allergy seems to mainly depend on epigenetically controlled acetylation of the IFNG promoter of CD4+ T cells. Even Th17 and Th9 cells, as well as invariant NKT cells, have been implicated in the pathogenesis of allergic disorders, but their role is certainly more limited. Recently, innate lymphoid type 2 cells (ILC2) have been found to be able to produce high amounts of IL-5 and IL-13 in response to stimulation with IL-25 and IL-33 produced by non-immune cells. Together with Th2 cells, ILC2 may contribute to the induction and maintenance of allergic inflammation. PMID:24925396

  7. Cell adhesion in regulation of asymmetric stem cell division

    OpenAIRE

    Yamashita, Yukiko M

    2010-01-01

    Adult stem cells inevitably communicate with their cellular neighbors within the tissues they sustain. Indeed, such communication, particularly with components of the stem cell niche, is essential for many aspects of stem cell behavior, including the maintenance of stem cell identity and asymmetric cell division. Cell adhesion mediates this communication by placing stem cells in close proximity to the signaling source and by providing a polarity cue that orients stem cells. Here, I review the...

  8. Cell biology. Metabolic control of cell death.

    Science.gov (United States)

    Green, Douglas R; Galluzzi, Lorenzo; Kroemer, Guido

    2014-09-19

    Beyond their contribution to basic metabolism, the major cellular organelles, in particular mitochondria, can determine whether cells respond to stress in an adaptive or suicidal manner. Thus, mitochondria can continuously adapt their shape to changing bioenergetic demands as they are subjected to quality control by autophagy, or they can undergo a lethal permeabilization process that initiates apoptosis. Along similar lines, multiple proteins involved in metabolic circuitries, including oxidative phosphorylation and transport of metabolites across membranes, may participate in the regulated or catastrophic dismantling of organelles. Many factors that were initially characterized as cell death regulators are now known to physically or functionally interact with metabolic enzymes. Thus, several metabolic cues regulate the propensity of cells to activate self-destructive programs, in part by acting on nutrient sensors. This suggests the existence of "metabolic checkpoints" that dictate cell fate in response to metabolic fluctuations. Here, we discuss recent insights into the intersection between metabolism and cell death regulation that have major implications for the comprehension and manipulation of unwarranted cell loss.

  9. Enteroendocrine cell types revisited

    DEFF Research Database (Denmark)

    Engelstoft, Maja S; Egerod, Kristoffer Lihme; Lund, Mari L;

    2013-01-01

    The GI-tract is profoundly involved in the control of metabolism through peptide hormones secreted from enteroendocrine cells scattered throughout the gut mucosa. A large number of recently generated transgenic reporter mice have allowed for direct characterization of biochemical and cell...... biological properties of these previously highly elusive enteroendocrine cells. In particular the surprisingly broad co-expression of six functionally related hormones in the intestinal enteroendocrine cells indicates that it should be possible to control not only the hormone secretion but also the type...... and number of enteroendocrine cells. However, this will require a more deep understanding of the factors controlling differentiation, gene expression and specification of the enteroendocrine cells during their weekly renewal from progenitor cells in the crypts of the mucosa....

  10. Mammary gland stem cells

    DEFF Research Database (Denmark)

    Fridriksdottir, Agla J R; Petersen, Ole W; Rønnov-Jessen, Lone

    2011-01-01

    Distinct subsets of cells, including cells with stem cell-like properties, have been proposed to exist in normal human breast epithelium and breast carcinomas. The cellular origins of epithelial cells contributing to gland development, tissue homeostasis and cancer are, however, still poorly...... understood. The mouse is a widely used model of mammary gland development, both directly by studying the mouse mammary epithelial cells themselves and indirectly, by studying development, morphogenesis, differentiation and carcinogenesis of xenotransplanted human breast epithelium in vivo. While in early...... studies, human or mouse epithelium was implanted as fragments into the mouse gland, more recent technical progress has allowed the self-renewal capacity and differentiation potential of distinct cell populations or even individual cells to be interrogated. Here, we review and discuss similarities...

  11. Cell and Tissue Engineering

    CERN Document Server

    2012-01-01

    Cell and Tissue Engineering” introduces the principles and new approaches in cell and tissue engineering. It includes both the fundamentals and the current trends in cell and tissue engineering, in a way useful both to a novice and an expert in the field. The book is composed of 13 chapters all of which are written by the leading experts. It is organized to gradually assemble an insight in cell and tissue function starting form a molecular nano-level, extending to a cellular micro-level and finishing at the tissue macro-level. In specific, biological, physiological, biophysical, biochemical, medical, and engineering aspects are covered from the standpoint of the development of functional substitutes of biological tissues for potential clinical use. Topics in the area of cell engineering include cell membrane biophysics, structure and function of the cytoskeleton, cell-extracellular matrix interactions, and mechanotransduction. In the area of tissue engineering the focus is on the in vitro cultivation of ...

  12. Peripheral giant cell granuloma

    Directory of Open Access Journals (Sweden)

    Padam Narayan Tandon

    2012-01-01

    Full Text Available Peripheral giant cell granuloma or the so-called "giant cell epulis" is the most common oral giant cell lesion. It normally presents as a soft tissue purplish-red nodule consisting of multinucleated giant cells in a background of mononuclear stromal cells and extravasated red blood cells. This lesion probably does not represent a true neoplasm, but rather may be reactive in nature, believed to be stimulated by local irritation or trauma, but the cause is not certainly known. This article reports a case of peripheral giant cell granuloma arising at the maxillary anterior region in a 22-year-old female patient. The lesion was completely excised to the periosteum level and there is no residual or recurrent swelling or bony defect apparent in the area of biopsy after a follow-up period of 6 months.

  13. T Cells Going Innate.

    Science.gov (United States)

    Seyda, Midas; Elkhal, Abdallah; Quante, Markus; Falk, Christine S; Tullius, Stefan G

    2016-08-01

    Natural killer (NK) cell receptors (NKRs) play a crucial role in the homeostasis of antigen-experienced T cells. Indeed, prolonged antigen stimulation may induce changes in the receptor repertoire of T cells to a profile that features NKRs. Chronic antigen exposure, at the same time, has been shown to trigger the loss of costimulatory CD28 molecules with recently reported intensified antigen thresholds of antigen-experienced CD8(+) T cells. In transplantation, NKRs have been shown to assist allograft rejection in a CD28-independent fashion. We discuss here a role for CD28-negative T cells that have acquired the competency of the NKR machinery, potentially promoting allorecognition either through T cell receptor (TCR) crossreactivity or independently from TCR recognition. Collectively, NKRs can bring about innate-like T cells by providing alternative costimulatory pathways that gain relevance in chronic inflammation, potentially leading to resistance to CD28-targeting immunosuppressants. PMID:27402226

  14. Information on Stem Cell Research

    Science.gov (United States)

    ... Enhancing Diversity Find People About NINDS Information on Stem Cell Research Research @ NINDS Stem Cell Highlights Submit a hESC ... found here: Human Induced Pluripotent Stem Cells NINDS Stem Cell Research on Campus The Intramural Research Program of NINDS ...

  15. Nevoid Basal Cell Carcinoma Syndrome

    Science.gov (United States)

    ... Nevoid Basal Cell Carcinoma Syndrome Request Permissions Nevoid Basal Cell Carcinoma Syndrome Approved by the Cancer.Net Editorial Board , 04/2016 What is Nevoid Basal Cell Carcinoma Syndrome? Nevoid Basal Cell Carcinoma Syndrome (NBCCS) is ...

  16. Nestin(+) cells direct inflammatory cell migration in atherosclerosis.

    Science.gov (United States)

    Del Toro, Raquel; Chèvre, Raphael; Rodríguez, Cristina; Ordóñez, Antonio; Martínez-González, José; Andrés, Vicente; Méndez-Ferrer, Simón

    2016-01-01

    Atherosclerosis is a leading death cause. Endothelial and smooth muscle cells participate in atherogenesis, but it is unclear whether other mesenchymal cells contribute to this process. Bone marrow (BM) nestin(+) cells cooperate with endothelial cells in directing monocyte egress to bloodstream in response to infections. However, it remains unknown whether nestin(+) cells regulate inflammatory cells in chronic inflammatory diseases, such as atherosclerosis. Here, we show that nestin(+) cells direct inflammatory cell migration during chronic inflammation. In Apolipoprotein E (ApoE) knockout mice fed with high-fat diet, BM nestin(+) cells regulate the egress of inflammatory monocytes and neutrophils. In the aorta, nestin(+) stromal cells increase ∼30 times and contribute to the atheroma plaque. Mcp1 deletion in nestin(+) cells-but not in endothelial cells only- increases circulating inflammatory cells, but decreases their aortic infiltration, delaying atheroma plaque formation and aortic valve calcification. Therefore, nestin expression marks cells that regulate inflammatory cell migration during atherosclerosis. PMID:27586429

  17. PEROVSKITE SOLAR CELLS (REVIEW ARTICLE)

    OpenAIRE

    Benli, Deniz Ahmet

    2015-01-01

    A solar cell is a device that converts sunlight into electricity. There are different types of solar cells but this report mainly focuses on a type of new generation solar cell that has the name organo-metal halide perovskite, shortly perovskite solar cells. In this respect, the efficiency of power conversion is taken into account to replace the dominancy of traditional and second generation solar cell fields by perovskite solar cells. Perovskite solar cell is a type of solar cell including a...

  18. Introduction to Stem Cell Therapy

    OpenAIRE

    Biehl, Jesse K.; Russell, Brenda

    2009-01-01

    Stem cells have the ability to differentiate into specific cell types. The two defining characteristics of a stem cell are perpetual self-renewal and the ability to differentiate into a specialized adult cell type. There are two major classes of stem cells: pluripotent that can become any cell in the adult body, and multipotent that are restricted to becoming a more limited population of cells. Cell sources, characteristics, differentiation and therapeutic applications are discussed. Stem cel...

  19. Simple Cell Balance Circuit

    Science.gov (United States)

    Johnson, Steven D.; Byers, Jerry W.; Martin, James A.

    2012-01-01

    A method has been developed for continuous cell voltage balancing for rechargeable batteries (e.g. lithium ion batteries). A resistor divider chain is provided that generates a set of voltages representing the ideal cell voltage (the voltage of each cell should be as if the cells were perfectly balanced). An operational amplifier circuit with an added current buffer stage generates the ideal voltage with a very high degree of accuracy, using the concept of negative feedback. The ideal voltages are each connected to the corresponding cell through a current- limiting resistance. Over time, having the cell connected to the ideal voltage provides a balancing current that moves the cell voltage very close to that ideal level. In effect, it adjusts the current of each cell during charging, discharging, and standby periods to force the cell voltages to be equal to the ideal voltages generated by the resistor divider. The device also includes solid-state switches that disconnect the circuit from the battery so that it will not discharge the battery during storage. This solution requires relatively few parts and is, therefore, of lower cost and of increased reliability due to the fewer failure modes. Additionally, this design uses very little power. A preliminary model predicts a power usage of 0.18 W for an 8-cell battery. This approach is applicable to a wide range of battery capacities and voltages.

  20. B cells help alloreactive T cells differentiate into memory T cells1

    OpenAIRE

    Ng, Yue-Harn; Oberbarnscheidt, Martin H.; Chandramoorthy, Harish Chinna Konda; Hoffman, Rosemary; Chalasani, Geetha

    2010-01-01

    B cells are recognized as effector cells in allograft rejection that are dependent upon T cell help to produce alloantibodies causing graft injury. It is not known if B cells can also help T cells differentiate into memory cells in the alloimmune response. We found that in B cell-deficient hosts, differentiation of alloreactive T cells into effectors was intact whereas their development into memory T cells was impaired. To test if B cell help for T cells was required for their continued diffe...

  1. Mechanical plasticity of cells

    Science.gov (United States)

    Bonakdar, Navid; Gerum, Richard; Kuhn, Michael; Spörrer, Marina; Lippert, Anna; Schneider, Werner; Aifantis, Katerina E.; Fabry, Ben

    2016-10-01

    Under mechanical loading, most living cells show a viscoelastic deformation that follows a power law in time. After removal of the mechanical load, the cell shape recovers only incompletely to its original undeformed configuration. Here, we show that incomplete shape recovery is due to an additive plastic deformation that displays the same power-law dynamics as the fully reversible viscoelastic deformation response. Moreover, the plastic deformation is a constant fraction of the total cell deformation and originates from bond ruptures within the cytoskeleton. A simple extension of the prevailing viscoelastic power-law response theory with a plastic element correctly predicts the cell behaviour under cyclic loading. Our findings show that plastic energy dissipation during cell deformation is tightly linked to elastic cytoskeletal stresses, which suggests the existence of an adaptive mechanism that protects the cell against mechanical damage.

  2. Cytoskeleton and Cell Motility

    CERN Document Server

    Risler, Thomas

    2011-01-01

    The present article is an invited contribution to the Encyclopedia of Complexity and System Science, Robert A. Meyers Ed., Springer New York (2009). It is a review of the biophysical mechanisms that underly cell motility. It mainly focuses on the eukaryotic cytoskeleton and cell-motility mechanisms. Bacterial motility as well as the composition of the prokaryotic cytoskeleton is only briefly mentioned. The article is organized as follows. In Section III, I first present an overview of the diversity of cellular motility mechanisms, which might at first glance be categorized into two different types of behaviors, namely "swimming" and "crawling". Intracellular transport, mitosis - or cell division - as well as other extensions of cell motility that rely on the same essential machinery are briefly sketched. In Section IV, I introduce the molecular machinery that underlies cell motility - the cytoskeleton - as well as its interactions with the external environment of the cell and its main regulatory pathways. Sec...

  3. Induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    Siddhartha Bhowmik; LI Yong

    2011-01-01

    Induced pluripotent stem (iPS) cells are a recent development which has brought a promise of great therapeutic values. The previous technique of somatic cell nuclear transfer (SCNT) has been ineffective in humans. Recent discoveries show that human fibroblasts can be reprogrammed by a transient over expression of a small number of genes; they can undergo induced pluripotency. iPS were first produced in 2006. By 2008, work was underway to remove the potential oncogenes from their structure. In 2009, protein iPS (piPS) cells were discovered. Surface markers and reporter genes play an important role in stem cell research. Clinical applications include generation of self renewing stem cells, tissue replacement and many more. Stem cell therapy has the ability to dramatically change the treatment of human diseases.

  4. NCAM regulates cell motility

    DEFF Research Database (Denmark)

    Prag, Søren; Lepekhin, Eugene A; Kolkova, Kateryna;

    2002-01-01

    Cell migration is required during development of the nervous system. The regulatory mechanisms for this process, however, are poorly elucidated. We show here that expression of or exposure to the neural cell adhesion molecule (NCAM) strongly affected the motile behaviour of glioma cells...... independently of homophilic NCAM interactions. Expression of the transmembrane 140 kDa isoform of NCAM (NCAM-140) caused a significant reduction in cellular motility, probably through interference with factors regulating cellular attachment, as NCAM-140-expressing cells exhibited a decreased attachment...... to a fibronectin substratum compared with NCAM-negative cells. Ectopic expression of the cytoplasmic part of NCAM-140 also inhibited cell motility, presumably via the non-receptor tyrosine kinase p59(fyn) with which NCAM-140 interacts. Furthermore, we showed that the extracellular part of NCAM acted as a paracrine...

  5. Myoepithelial cells in pathology

    Directory of Open Access Journals (Sweden)

    N Balachander

    2015-01-01

    Full Text Available Myoepithelial cells are a normal constituent of the salivary acini and ducts and are found between the epithelial cells and the basement membrane. Microscopically myoepithelial cells are thin and spindle-shaped and ultrastructurally they possess a number of Cytoplasmic processes that extend between and over the acinar and ductal-lining cells, and they show features of both smooth muscle and epithelium. They play a vital role during expulsion of saliva and regulates the electrolytic exchange. They also perform as tumor suppressors and are considered to play a very important role in differentiation of various salivary gland tumors and help in the diagnosis of tumors. Neoplastic myoepithelial cells in both benign and malignant tumors can take numerous forms including epithelioid, plasmacytoid, spindle and clear cell variant, and this variability largely accounts for difficulties in histopathological diagnosis.

  6. Mammalian cell biology

    International Nuclear Information System (INIS)

    Studies of the action of N-ethylmaleimide (NEM), as an inhibitor of repair of x radioinduced injuries were extended from synchronous Chinese hamster cells to synchronous human HeLa cells. These studies showed a similar mode of action in both cell types lending support to the notion that conclusions may be extracted from such observations that are of fairly general applicability to mammalian cells. Radiation studies with NEM are being extended to hypoxic cells to inquire if NEM is effective relative to oxygen-independent damage. Observations relative to survival, DNA synthesis, and DNA strand elongation resulting from the addition products to DNA when cells were exposed to near uv in the presence of psoralen were extended. (U.S.)

  7. Fish germ cells

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Fish, like many other animals, have two major cell lineages, namely the germline and soma. The germ-soma separation is one of the earliest events of embryonic development. Germ cells can be specifically labeled and isolated for culture and transplan-tation, providing tools for reproduction of endangered species in close relatives, such as surrogate production of trout in salmon. Haploid cell cultures, such as medaka haploid embryonic stem cells have recently been obtained, which are capable of mimicking sperm to produce fertile offspring, upon nuclear being directly transferred into normal eggs. Such fish originated from a mosaic oocyte that had a haploid meiotic nucleus and a transplanted haploid mitotic cell culture nucleus. The first semi-cloned fish is Holly. Here we review the current status and future directions of understanding and manipulating fish germ cells in basic research and reproductive technology.

  8. Basal cell carcinoma of the skin with areas of squamous cell carcinoma: a basosquamous cell carcinoma?

    OpenAIRE

    Faria, J.

    1985-01-01

    The diagnosis of basosquamous cell carcinoma is controversial. A review of cases of basal cell carcinoma showed 23 cases that had conspicuous areas of squamous cell carcinoma. This was distinguished from squamous differentiation and keratotic basal cell carcinoma by a comparative study of 40 cases of compact lobular and 40 cases of keratotic basal cell carcinoma. Areas of intermediate tumour differentiation between basal cell and squamous cell carcinoma were found. Basal cell carcinomas with ...

  9. Traction in smooth muscle cells varies with cell spreading

    Science.gov (United States)

    Tolic-Norrelykke, Iva Marija; Wang, Ning

    2005-01-01

    Changes in cell shape regulate cell growth, differentiation, and apoptosis. It has been suggested that the regulation of cell function by the cell shape is a result of the tension in the cytoskeleton and the distortion of the cell. Here we explore the association between cell-generated mechanical forces and the cell morphology. We hypothesized that the cell contractile force is associated with the degree of cell spreading, in particular with the cell length. We measured traction fields of single human airway smooth muscle cells plated on a polyacrylamide gel, in which fluorescent microbeads were embedded to serve as markers of gel deformation. The traction exerted by the cells at the cell-substrate interface was determined from the measured deformation of the gel. The traction was measured before and after treatment with the contractile agonist histamine, or the relaxing agonist isoproterenol. The relative increase in traction induced by histamine was negatively correlated with the baseline traction. On the contrary, the relative decrease in traction due to isoproterenol was independent of the baseline traction, but it was associated with cell shape: traction decreased more in elongated than in round cells. Maximum cell width, mean cell width, and projected area of the cell were the parameters most tightly coupled to both baseline and histamine-induced traction in this study. Wide and well-spread cells exerted larger traction than slim cells. These results suggest that cell contractility is controlled by cell spreading.

  10. Microbial fuel cells

    International Nuclear Information System (INIS)

    Microbial fuel cells (MFC) are a promising technology for sustainable production of alternative energy and waste treatment. A microbial fuel cell transformation chemical energy in the chemical bonds in organic compounds to electrical energy through catalytic reactions of microorganisms under anaerobic conditions. It has been known for many years that it is possible to generate electricity directly by using bacteria to break down organic substrates. Key words: microbial fuel cells (MFC), biosensor, wastewater treatment

  11. Epidermal Stem Cells

    OpenAIRE

    Osman Köse

    2015-01-01

    The epidermis is the outermost layer of the human skin and comprises a multilayered epithelium, the interfollicular epidermis, with associated hair follicles, sebaceous glands, and eccrine sweat glands. There are many origins of stem cells in the skin and skin appendages. These stem cells are localized in different part of the pilosebaseous units and also express many different genes. Epidermal stem cells in the pilosebaseous units not only ensure the maintenance of epidermal homeostasis and ...

  12. Liver Cancer Stem Cells

    OpenAIRE

    Sameh Mikhail; Aiwu Ruth He

    2011-01-01

    Hepatocellular carcinoma is the most common primary malignancy of the liver in adults. It is also the fifth most common solid cancer worldwide and the third leading cause of cancer-related death. Recent research supports that liver cancer is a disease of adult stem cells. From the models of experimental hepatocarcinogenesis, there may be at least three distinct cell lineages with progenitor properties susceptible to neoplastic transformation. Identification of specific cell surface markers fo...

  13. Direct hydrocarbon fuel cells

    Science.gov (United States)

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  14. Cell therapy of pseudarthrosis

    OpenAIRE

    Bastos Filho, Ricardo; Lermontov, Simone; Borojevic, Radovan; Schott, Paulo Cezar; Gameiro, Vinicius Schott; José Mauro GRANJEIRO

    2012-01-01

    Objective To assess the safety and efficiency of cell therapy for pseudarthrosis. Implant of the bone marrow aspirate was compared to mononuclear cells purified extemporaneously using the Sepax® equipment. Methods Six patients with nonunion of the tibia or femur were treated. Four received a percutaneous infusion of autologous bone marrow aspirated from the iliac crest, and two received autologous bone marrow mononuclear cells separated from the aspirate with the Sepax®. The primary fixation ...

  15. Chiaroscuro hematopoietic stem cell.

    OpenAIRE

    Quesenberry, P.; Habibian, M. (PhD); Dooner, M; Zhong, S.; Reilly, J; Peters, S.; De Becker, P; Grimaldi, C.; Carlson, J; REDDY, P; Nilsson, S.; Stewart, F. M.

    1998-01-01

    These observations suggest several immediate clinical strategies. In gene therapy, approaches could be targeted to obtain cycling of hematopoietic stem cells and gene-carrying retrovirus vector integration followed by engraftment at an appropriate time interval which favors engraftment. The same type of approach can be utilized for stem cell expansion approaches. Alternatively marrow or peripheral stem cell engraftment can be obtained with minimal to no toxicity in allochimeric strategies in ...

  16. Stem cell myths

    OpenAIRE

    Magnus, Tim; Liu, Ying; Parker, Graham C.; Rao, Mahendra S.

    2007-01-01

    Stem cells, although difficult to define, hold great promise as tools for understanding development and as therapeutic agents. However, as with any new field, uncritical enthusiasm can outstrip reality. In this review, we have listed nine common myths that we believe affect our approach to evaluating stem cells for therapy. We suggest that careful consideration needs to be given to each of these issues when evaluating a particular cell for its use in therapy. Data need to be collected and rep...

  17. Cancer stem cell metabolism

    OpenAIRE

    Peiris-Pagès, Maria; Martinez-Outschoorn, Ubaldo E.; Pestell, Richard G.; Sotgia, Federica; Lisanti, Michael P

    2016-01-01

    Cancer is now viewed as a stem cell disease. There is still no consensus on the metabolic characteristics of cancer stem cells, with several studies indicating that they are mainly glycolytic and others pointing instead to mitochondrial metabolism as their principal source of energy. Cancer stem cells also seem to adapt their metabolism to microenvironmental changes by conveniently shifting energy production from one pathway to another, or by acquiring intermediate metabolic phenotypes. Deter...

  18. Lung Stem cell biology

    OpenAIRE

    Ardhanareeswaran, Karthikeyan; Mirotsou, Maria

    2013-01-01

    Over the past few years new insights have been added to the study of stem cells in the adult lung. The exploration of the endogenous lung progenitors as well as the study of exogenously delivered stem cell populations holds promise for advancing our understanding of the biology of lung repair mechanisms. Moreover, it opens new possibilities for the use of stem cell therapy for the development of regenerative medicine approaches for the treatment of lung disease. Here, we discuss the main type...

  19. Gastric Cancer Stem Cells

    OpenAIRE

    Takaishi, Shigeo; Okumura, Tomoyuki; Timothy C Wang

    2008-01-01

    Cancer stem cells are defined as the unique subpopulation in the tumors that possess the ability to initiate tumor growth and sustain self-renewal as well as metastatic potential. Accumulating evidence in recent years strongly indicate the existence of cancer stem cells in solid tumors of a wide variety of organs. In this review, we will discuss the possible existence of a gastric cancer stem cell. Our recent data suggest that a subpopulation with a defined marker shows spheroid colony format...

  20. APUD cells in teratomas.

    OpenAIRE

    Bosman, F. T.; Louwerens, J. W.

    1981-01-01

    The origin of the endocrine cells in the respiratory tract and the gastrointestinal tract is still a matter of debate. In the original concept of the amine precursor uptake and decarboxylation (APUD) system, all APUD cells were considered to be derived from the neural crest. More recently it has been proposed that the APUD cell types of the gastrointestinal and respiratory tracts originate from neuroendocrine-programmed ectoblast. Still other investigators have reported observations that favo...

  1. Hair cell ribbon synapses

    OpenAIRE

    Moser, Tobias; Brandt, Andreas; Lysakowski, Anna

    2006-01-01

    Hearing and balance rely on the faithful synaptic coding of mechanical input by the auditory and vestibular hair cells of the inner ear. Mechanical deflection of their stereocilia causes the opening of mechanosensitive channels, resulting in hair cell depolarization, which controls the release of glutamate at ribbon-type synapses. Hair cells have a compact shape with strong polarity. Mechanoelectrical transduction and active membrane turnover associated with stereociliar renewal dominate the ...

  2. Systems cell biology.

    Science.gov (United States)

    Mast, Fred D; Ratushny, Alexander V; Aitchison, John D

    2014-09-15

    Systems cell biology melds high-throughput experimentation with quantitative analysis and modeling to understand many critical processes that contribute to cellular organization and dynamics. Recently, there have been several advances in technology and in the application of modeling approaches that enable the exploration of the dynamic properties of cells. Merging technology and computation offers an opportunity to objectively address unsolved cellular mechanisms, and has revealed emergent properties and helped to gain a more comprehensive and fundamental understanding of cell biology.

  3. Nanocrystal Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gur, Ilan

    2006-12-15

    This dissertation presents the results of a research agenda aimed at improving integration and stability in nanocrystal-based solar cells through advances in active materials and device architectures. The introduction of 3-dimensional nanocrystals illustrates the potential for improving transport and percolation in hybrid solar cells and enables novel fabrication methods for optimizing integration in these systems. Fabricating cells by sequential deposition allows for solution-based assembly of hybrid composites with controlled and well-characterized dispersion and electrode contact. Hyperbranched nanocrystals emerge as a nearly ideal building block for hybrid cells, allowing the controlled morphologies targeted by templated approaches to be achieved in an easily fabricated solution-cast device. In addition to offering practical benefits to device processing, these approaches offer fundamental insight into the operation of hybrid solar cells, shedding light on key phenomena such as the roles of electrode-contact and percolation behavior in these cells. Finally, all-inorganic nanocrystal solar cells are presented as a wholly new cell concept, illustrating that donor-acceptor charge transfer and directed carrier diffusion can be utilized in a system with no organic components, and that nanocrystals may act as building blocks for efficient, stable, and low-cost thin-film solar cells.

  4. Mesenchymal stem cells.

    Science.gov (United States)

    Ding, Dah-Ching; Shyu, Woei-Cherng; Lin, Shinn-Zong

    2011-01-01

    Stem cells have two features: the ability to differentiate along different lineages and the ability of self-renewal. Two major types of stem cells have been described, namely, embryonic stem cells and adult stem cells. Embryonic stem cells (ESC) are obtained from the inner cell mass of the blastocyst and are associated with tumorigenesis, and the use of human ESCs involves ethical and legal considerations. The use of adult mesenchymal stem cells is less problematic with regard to these issues. Mesenchymal stem cells (MSCs) are stromal cells that have the ability to self-renew and also exhibit multilineage differentiation. MSCs can be isolated from a variety of tissues, such as umbilical cord, endometrial polyps, menses blood, bone marrow, adipose tissue, etc. This is because the ease of harvest and quantity obtained make these sources most practical for experimental and possible clinical applications. Recently, MSCs have been found in new sources, such as menstrual blood and endometrium. There are likely more sources of MSCs waiting to be discovered, and MSCs may be a good candidate for future experimental or clinical applications. One of the major challenges is to elucidate the mechanisms of differentiation, mobilization, and homing of MSCs, which are highly complex. The multipotent properties of MSCs make them an attractive choice for possible development of clinical applications. Future studies should explore the role of MSCs in differentiation, transplantation, and immune response in various diseases. PMID:21396235

  5. Red cell enzymes.

    Science.gov (United States)

    Paniker, N V

    1975-03-01

    As compared to other cells of the body, the mammalian red cell has one of the simplest structural organizations. As a result, this cell has been extensively used in studies involving the structure, function, and integrity of cell membranes as well as cytoplasmic events. Additionally, the metabolic activities of the red blood cell are also relatively simple. During the past quarter century or so, an ocean of knowledge has been gathered on various aspects of red cell metabolism and function. The fields of enzymes, hemoglobin, membrane, and metabolic products comprise the major portion of this knowledge. These advances have made valuable contributions to biochemistry and medicine. Despite these favorable aspects of this simple, anucleated cell, it must be conceded that our knowledge about the red cell is far from complete. We are still in the dark concerning the mechanism involved in several aspects of its membrane, hemoglobin, enzymes, and a large number of other constituents. For example, a large number of enzymes with known catalytic activity but with unknown function have eluded investigators despite active pursuit. This review will be a consolidation of our present knowledge of human red cell enzymes, with particular reference to their usefulness in the diagnosis and therapy of disease. Owing to the multitude of publications by prominent investigators on each of the approximately 50 enzymes discussed in this review, it was impossible to cite a majority of them.

  6. Littoral Cells 2005

    Data.gov (United States)

    California Department of Resources — Littoral cells along the California Coast. Originally digitized by Melanie Coyne from the Assessment and Atlas of Shoreline Erosion Along the California Coast...

  7. HTPEM Fuel Cell Impedance

    DEFF Research Database (Denmark)

    Vang, Jakob Rabjerg

    potentially play an important role in the energy system of the future. One of the fuel cell technologies, that receives much attention from the Danish scientific community is high temperature proton exchange membrane (HTPEM) fuel cells based on polybenzimidazole (PBI) with phosphoric acid as proton conductor...... cells through experimental studies and mathematical modelling. These studies all revolve around the electrochemical impedance spectroscopy (EIS) characterisation method. EIS is performed by applying a sinusoidal current or voltage signal to the fuel cell and calculating the impedance from the response...

  8. [Endothelial cell adhesion molecules].

    Science.gov (United States)

    Ivanov, A N; Norkin, I A; Puchin'ian, D M; Shirokov, V Iu; Zhdanova, O Iu

    2014-01-01

    The review presents current data concerning the functional role of endothelial cell adhesion molecules belonging to different structural families: integrins, selectins, cadherins, and the immunoglobulin super-family. In this manuscript the regulatory mechanisms and factors of adhesion molecules expression and distribution on the surface of endothelial cells are discussed. The data presented reveal the importance of adhesion molecules in the regulation of structural and functional state of endothelial cells in normal conditions and in pathology. Particular attention is paid to the importance of these molecules in the processes of physiological and pathological angiogenesis, regulation of permeability of the endothelial barrier and cell transmigration.

  9. Multiple granular cell tumor.

    Science.gov (United States)

    Jones, J K; Kuo, T T; Griffiths, C M; Itharat, S

    1980-10-01

    Eleven cases of granular cell tumor were reviewed. In two of the cases multiple sites of involvement were seen. The tumor occurred in the oral cavity in both of these cases and each was initially wrongly diagnosed as squamous cell carcinoma. The most common site was the subcutaneous tissue (nine patients) and the tongue was involved in three cases. In one patient the parotid gland was involved. Eight of the patients were females and three were males; seven were black and four were white. The importance of differentiating between squamous cell carcinoma and granular cell tumor is stressed, as is the need for a simple wide surgical excision. PMID:7421377

  10. Live-cell luciferase assay of drug resistant cells

    OpenAIRE

    sprotocols

    2015-01-01

    To date, multiplexing cell-based assay is essential for high-throughput screening of molecular targets. Measuring multiple parameters of a single sample increases consistency and decrease time and cost of assay. Functional assay of living cell is useful as a first step of multiplexing assay, because live-cell assay allows following second assay using cell lysate or stained cell. However, live-cell assay of drug resistant cells that are highly activated of drug efflux mechanisms is sometimes u...

  11. [Dendritic cells and interaction with other cell types. Immune tolerance].

    Science.gov (United States)

    Guerder, S

    2001-07-01

    T cell tolerance to self antigen is mainly established in the thymus were self-reactive T cells are deleted. Interdigitating dendritic cells and medulary epithelial cells are directly involved in the deletion process. Some self-reactive T cells escape, however this thymic censorship and enter the peripheral pool of naive T cells. Multiple mechanisms are also at play in the periphery to control this potentially armfull T cells, this include deletion and immune deviation.

  12. A focus on parietal cells as a renewing cell population

    Institute of Scientific and Technical Information of China (English)

    Sherif; M; Karam

    2010-01-01

    The fact that the acidsecreting parietal cells undergo continuous renewal has been ignored by many gastroenterologists and cell biologists. In the past, it was thought that these cells were static. However, by using 3Hthymidine radioautography in combination with electron microscopy, it was possible to demonstrate that parietal cells belong to a continuously renewing epithelial cell lineage. In the gastric glands, stem cells anchored in the isthmus region are responsible for the production of parietal cells...

  13. Stem cells - biological update and cell therapy progress

    OpenAIRE

    GIRLOVANU, MIHAI; Susman, Sergiu; Soritau, Olga; RUS-CIUCA, DAN; MELINCOVICI, CARMEN; CONSTANTIN, ANNE-MARIE; Carmen Mihaela MIHU

    2015-01-01

    In recent years, the advances in stem cell research have suggested that the human body may have a higher plasticity than it was originally expected. Until now, four categories of stem cells were isolated and cultured in vivo: embryonic stem cells, fetal stem cells, adult stem cells and induced pluripotent stem cells (hiPSCs). Although multiple studies were published, several issues concerning the stem cells are still debated, such as: the molecular mechanisms of differentiation, the methods t...

  14. Liver epithelial cells inhibit proliferation and invasiveness of hepatoma cells.

    Science.gov (United States)

    Jeng, Kuo-Shyang; Jeng, Chi-Juei; Jeng, Wen-Juei; Sheen, I-Shyan; Li, Shih-Yun; Hung, Zih-Hang; Hsiau, Hsin-I; Yu, Ming-Che; Chang, Chiung-Fang

    2016-03-01

    Hepatocellular carcinoma (HCC) is a worldwide malignancy with poor prognosis. Liver progenitors or stem cells could be a potential therapy for HCC treatment since they migrate toward tumors. Rat liver epithelial (RLE) cells have both progenitor and stem cell-like properties. Therefore, our study elucidated the therapeutic effect of RLE cells in rat hepatoma cells. RLE cells were isolated from 10-day old rats and characterized for stem cell marker expression. RLE cells and rat hepatoma cells (H4-IIE-C3 cells) were co-cultured and divided into four groups with different ratios of RLE and hepatoma cells. Group A had only rat hepatoma cells as a control group. The ratios of rat hepatoma and RLE cells in group B, C and D were 5:1, 1:1 and 1:5, respectively. Effective inhibition of cell proliferation and migration was found in group D when compared to group A. There was a significant decrease in Bcl2 expression and increase in late apoptosis of rat hepatoma cells when adding more RLE cells. RLE cells reduced cell proliferation and migration of rat hepatoma cells. These results suggested that RLE cells could be used as a potential cell therapy. PMID:26647726

  15. Polarised cells, polarised views: Asymmetric cell division in hematopoietic cells.

    Directory of Open Access Journals (Sweden)

    Kim ePham

    2014-02-01

    Full Text Available It has long been recognised that alterations in cell shape and polarity play important roles in coordinating lymphocyte functions. In the last decade a new aspect of lymphocyte polarity, termed Asymmetric Cell Division (ACD, has attracted much attention. ACD has previously been shown to dictate or influence many aspects of development in model organisms such as the worm and the fly, and to be disrupted in disease. Recent observations that ACD also occurs in lymphocytes led to exciting speculations that ACD might influence lymphocyte differentiation and function, and leukaemia. However, dissecting the role that ACD might play in these activities is not straightforward, and the evidence to date for a functional role in lymphocyte fate determination has been controversial. In this review, we discuss the evidence to date for ACD in lymphocytes, and how it might influence lymphocyte fate. We also discuss current gaps in our knowledge, and suggest approaches to definitively test the physiological role of ACD in lymphocytes.

  16. Regulation of beta cell replication

    DEFF Research Database (Denmark)

    Lee, Ying C; Nielsen, Jens Høiriis

    2008-01-01

    Beta cell mass, at any given time, is governed by cell differentiation, neogenesis, increased or decreased cell size (cell hypertrophy or atrophy), cell death (apoptosis), and beta cell proliferation. Nutrients, hormones and growth factors coupled with their signalling intermediates have been...... suggested to play a role in beta cell mass regulation. In addition, genetic mouse model studies have indicated that cyclins and cyclin-dependent kinases that determine cell cycle progression are involved in beta cell replication, and more recently, menin in association with cyclin-dependent kinase...... inhibitors has been demonstrated to be important in beta cell growth. In this review, we consider and highlight some aspects of cell cycle regulation in relation to beta cell replication. The role of cell cycle regulation in beta cell replication is mostly from studies in rodent models, but whether...

  17. Wnt-Dependent Control of Cell Polarity in Cultured Cells.

    Science.gov (United States)

    Runkle, Kristin B; Witze, Eric S

    2016-01-01

    The secreted ligand Wnt5a regulates cell polarity and polarized cell movement during development by signaling through the poorly defined noncanonical Wnt pathway. Cell polarity regulates most aspects of cell behavior including the organization of apical/basolateral membrane domains of epithelial cells, polarized cell divisions along a directional plane, and front rear polarity during cell migration. These characteristics of cell polarity allow coordinated cell movements required for tissue formation and organogenesis during embryonic development. Genetic model organisms have been used to identify multiple signaling pathways including Wnt5a that are required to establish cell polarity and regulate polarized cell behavior. However, the downstream signaling events that regulate these complex cellular processes are still poorly understood. The methods below describe assays to study Wnt5a-induced cell polarity in cultured cells, which may facilitate our understanding of these complex signaling pathways. PMID:27590152

  18. The new stem cell biology.

    OpenAIRE

    Quesenberry, Peter J.; Colvin, Gerald A; Lambert, Jean-Francois; Frimberger, Angela E.; Dooner, Mark S.; Mcauliffe, Christina I.; Miller, Caroline; Becker, Pamela; Badiavas, Evangelis; Falanga, Vincent J.; Elfenbein, Gerald; Lum, Lawrence G.

    2002-01-01

    Recent studies have indicated that bone marrow stem cells are capable of generating muscle, cardiac, hepatic, renal, and bone cells. Purified hematopoietic stem cells have generated cardiac and hepatic cells and reversed disease manifestations in these tissues. Hematopoietic stem cells also alter phenotype with cell cycle transit or circadian phase. During a cytokine stimulated cell cycle transit, reversible alterations of differentiation and engraftment occur. Primitive hematopoietic stem ce...

  19. Small cell glioblastoma or small cell carcinoma

    DEFF Research Database (Denmark)

    Hilbrandt, Christine; Sathyadas, Sathya; Dahlrot, Rikke H;

    2013-01-01

    was admitted to the hospital with left-sided loss of motor function. A MRI revealed a 6 cm tumor in the right temporoparietal area. The histology was consistent with both glioblastoma multiforme (GBM) and small cell lung carcinoma (SCLC) but IHC was suggestive of a SCLC metastasis. PET-CT revealed...

  20. Tracking Down Mutations Cell by Cell.

    Science.gov (United States)

    Kosik, Kenneth S

    2016-03-16

    Using somatic cell nuclear transfer, Hazen et al. (2016) examined clonally expanded single neurons for mutations and found ∼100 mutations from a variety of classes. Post-mitotic mutations in individual neurons represent an exploratory direction for finding fundamental origins of neurodegeneration. PMID:26985720

  1. Transition of mesenchymal stem/stromal cells to endothelial cells

    NARCIS (Netherlands)

    M. Crisan (Mihaela)

    2013-01-01

    textabstractMesenchymal stem/stromal cells (MSCs) are heterogeneous. A fraction of these cells constitute multipotent cells that can self-renew and mainly give rise to mesodermal lineage cells such as adipocytes, osteocytes and chondrocytes. The ability of MSCs to differentiate into endothelial cell

  2. Induction of embryonic stem cells to hematopoietic cells in vitro

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In order to get hematopoietic cells from embryonic stem (ES) cells and to study development mechanisms of hematopoietic cells, the method of inducing embryonic stem cells to hematopoietic cells was explored by differenciating mouse ES cells and human embryonic cells in three stages. The differentiated cells were identified by flow cytometry, immunohistochemistry and Wright's staining. The results showed that embryoid bodies (EBs) could form when ES cells were cultured in the medium with 2-mercaptoethanol (2-ME). However, cytokines, such as stem cell factor (SCF), thrombopoietin (TPO), interleukin-3 (IL-3), interleukin-6 (IL-6), erythropoietin (EPO) and granular colony stimulating factor (G-CSF), were not helpful for forming EBs. SCF, TPO and embryonic cell conditional medium were useful for the differentiation of mouse EBs to hematopoietic progenitors. Eighty-six percent of these cells were CD34+ after 6-d culture. Hematopoietic progenitors differentiated to B lymphocytes when they were cocultured with primary bone marrow stroma cells in the DMEM medium with SCF and IL-6. 14 d later, most of the cells were CD34-CD38+. Wright's staining and immunohistochemistry showed that 80% of these cells were plasma-like morphologically and immunoglubolin positive. The study of hematopoietic cells from human embryonic cells showed that human embryonic cell differentiation was very similar to that of mouse ES cells. They could form EBs in the first stage and the CD34 positive cells account for about 48.5% in the second stage.

  3. The cell biology of T-dependent B cell activation

    DEFF Research Database (Denmark)

    Owens, T; Zeine, R

    1989-01-01

    The requirement that CD4+ helper T cells recognize antigen in association with class II Major Histocompatibility Complex (MHC) encoded molecules constrains T cells to activation through intercellular interaction. The cell biology of the interactions between CD4+ T cells and antigen-presenting cells...

  4. Fuel cells: Operating flexibly

    Science.gov (United States)

    Lee, Young Moo

    2016-09-01

    Fuel cells typically function well only in rather limited temperature and humidity ranges. Now, a proton exchange membrane consisting of ion pair complexes is shown to enable improved fuel cell performance under a wide range of conditions that are unattainable with conventional approaches.

  5. The Constitution by Cell

    Science.gov (United States)

    Greenhut, Stephanie; Jones, Megan

    2010-01-01

    On their visit to the National Archives Experience in Washington, D.C., students in Jenni Ashley and Gay Brock's U.S. history classes at the Potomac School in McLean, Virginia, participated in a pilot program called "The Constitution by Cell." Armed with their cell phones, a basic understanding of the Constitution, and a willingness to participate…

  6. MICROBIAL FUEL CELL

    DEFF Research Database (Denmark)

    2008-01-01

    A novel microbial fuel cell construction for the generation of electrical energy. The microbial fuel cell comprises: (i) an anode electrode, (ii) a cathode chamber, said cathode chamber comprising an in let through which an influent enters the cathode chamber, an outlet through which an effluent...

  7. Cell Phones for Education

    Science.gov (United States)

    Roberson, James H.; Hagevik, Rita A.

    2008-01-01

    Cell phones are fast becoming an integral part of students' everyday lives. They are regarded as important companions and tools for personal expression. School-age children are integrating the cell phone as such, and thus placing a high value on them. Educators endeavor to instill in students a high value for education, but often meet with…

  8. Printed paper photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Huebler, Arved; Trnovec, Bystrik; Zillger, Tino; Ali, Moazzam; Wetzold, Nora [Inistitute for Print and Media Technology, Chemnitz University of Technology, Chemnitz (Germany); Mingebach, Markus; Wagenpfahl, Alexander; Deibel, Carsten [Experimental Physics VI, Julius-Maximilians-University of Wuerzburg (Germany); Dyakonov, Vladimir [Experimental Physics VI, Julius-Maximilians-University of Wuerzburg (Germany); Bavarian Center for Applied Energy Research e.V. (ZAE Bayern), Wuerzburg (Germany)

    2011-11-15

    Polymer/fullerene solar cells are printed on paper using a combination of gravure and flexographic printing techniques. The printed paper photovoltaic cells are free from expensive electrodes made with indium-tin oxide, silver, or gold. Oxidized zinc film is used as the electron-collecting layer. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Ghrelin and cell differentiation

    Institute of Scientific and Technical Information of China (English)

    Geyang Xu; Yin Li; Wenjiao An; Weizhen Zhang

    2008-01-01

    Ghrelin, an endogenous ligand for the growth hormone secretagogue receptor, is a gastric hormone that has been found to have a wide variety of biological functions. This review summarizes our current understanding of the effects of ghrelin on cell differentiation and tissue development, with an emphasis on the lineage determination of mesenchymal stem cells.

  10. Mesangial cell biology

    Energy Technology Data Exchange (ETDEWEB)

    Abboud, Hanna E., E-mail: Abboud@uthscsa.edu

    2012-05-15

    Mesangial cells originate from the metanephric mesenchyme and maintain structural integrity of the glomerular microvascular bed and mesangial matrix homeostasis. In response to metabolic, immunologic or hemodynamic injury, these cells undergo apoptosis or acquire an activated phenotype and undergo hypertrophy, proliferation with excessive production of matrix proteins, growth factors, chemokines and cytokines. These soluble factors exert autocrine and paracrine effects on the cells or on other glomerular cells, respectively. MCs are primary targets of immune-mediated glomerular diseases such as IGA nephropathy or metabolic diseases such as diabetes. MCs may also respond to injury that primarily involves podocytes and endothelial cells or to structural and genetic abnormalities of the glomerular basement membrane. Signal transduction and oxidant stress pathways are activated in MCs and likely represent integrated input from multiple mediators. Such responses are convenient targets for therapeutic intervention. Studies in cultured MCs should be supplemented with in vivo studies as well as examination of freshly isolated cells from normal and diseases glomeruli. In addition to ex vivo morphologic studies in kidney cortex, cells should be studied in their natural environment, isolated glomeruli or even tissue slices. Identification of a specific marker of MCs should help genetic manipulation as well as selective therapeutic targeting of these cells. Identification of biological responses of MCs that are not mediated by the renin–angiotensin system should help development of novel and effective therapeutic strategies to treat diseases characterized by MC pathology.

  11. Stem cells in dermatology.

    Science.gov (United States)

    Ogliari, Karolyn Sassi; Marinowic, Daniel; Brum, Dario Eduardo; Loth, Fabrizio

    2014-01-01

    Preclinical and clinical research have shown that stem cell therapy could be a promising therapeutic option for many diseases in which current medical treatments do not achieve satisfying results or cure. This article describes stem cells sources and their therapeutic applications in dermatology today.

  12. T-cell costimulation

    DEFF Research Database (Denmark)

    Owens, T

    1996-01-01

    The CD40L molecule expressed by CD4+ regulatory T lymphocytes is known to deliver signals that activate B cells and macrophages. It now appears that CD40L regulates T cells themselves, during both their development and their participation in adaptive immune responses....

  13. Cell Maintenance Systems

    Science.gov (United States)

    Morrison, D. R.

    1985-01-01

    Living human cells require attachment to a suitable surface and special culture conditions in order to grow. These requirements are modified and amplified when cells are taken into a weightless environment. Special handling and maintenance systems are required for routine laboratory procedures conducted in the Orbiter and in the Spacelab. Methods were developed to maintain cells in special incubators designed for the Orbiter middeck, however, electrophoresis and other experiments require cells to be harvested off of the culture substrate before they can be processed or used. The cell transport assembly (CTA) was flown on STS-8, and results show that improvements are required to maintain adequate numbers of cells in this device longer than 48 hours. The life sciences middeck centrifuge probably can be used, but modifications will be required to transfer cells from the CTA and keep the cells sterile. Automated systems such as the Skylab SO-15 flight hardware and crew operated systems are being evaluated for use on the Space Shuttle, Spacelab, and Space Station research modules.

  14. Tumor cell metabolism

    Science.gov (United States)

    Romero-Garcia, Susana; Lopez-Gonzalez, Jose Sullivan; B´ez-Viveros, José Luis; Aguilar-Cazares, Dolores

    2011-01-01

    Cancer is a genetic disease that is caused by mutations in oncogenes, tumor suppressor genes and stability genes. The fact that the metabolism of tumor cells is altered has been known for many years. However, the mechanisms and consequences of metabolic reprogramming have just begun to be understood. In this review, an integral view of tumor cell metabolism is presented, showing how metabolic pathways are reprogrammed to satisfy tumor cell proliferation and survival requirements. In tumor cells, glycolysis is strongly enhanced to fulfill the high ATP demands of these cells; glucose carbons are the main building blocks in fatty acid and nucleotide biosynthesis. Glutaminolysis is also increased to satisfy NADPH regeneration, whereas glutamine carbons replenish the Krebs cycle, which produces metabolites that are constantly used for macromolecular biosynthesis. A characteristic feature of the tumor microenvironment is acidosis, which results from the local increase in lactic acid production by tumor cells. This phenomenon is attributed to the carbons from glutamine and glucose, which are also used for lactic acid production. Lactic acidosis also directs the metabolic reprogramming of tumor cells and serves as an additional selective pressure. Finally, we also discuss the role of mitochondria in supporting tumor cell metabolism. PMID:22057267

  15. Cell Proliferation in Neuroblastoma

    Directory of Open Access Journals (Sweden)

    Laura L. Stafman

    2016-01-01

    Full Text Available Neuroblastoma, the most common extracranial solid tumor of childhood, continues to carry a dismal prognosis for children diagnosed with advanced stage or relapsed disease. This review focuses upon factors responsible for cell proliferation in neuroblastoma including transcription factors, kinases, and regulators of the cell cycle. Novel therapeutic strategies directed toward these targets in neuroblastoma are discussed.

  16. Patterning Stem Cell Differentiation

    OpenAIRE

    Vunjak-Novakovic, Gordana

    2008-01-01

    Regulation of cell differentiation and assembly remains a fundamental question in developmental biology. Now, a report from the Chen laboratory (Ruiz and Chen, 2008) describes an approach that represents a major step toward a more profound understanding of the geometric-force control of stem cell differentiation.

  17. Programmed cell death

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The purpose of this conference to provide a multidisciplinary forum for exchange of state-of-the-art information on the role programmed cell death plays in normal development and homeostasis of many organisms. This volume contains abstracts of papers in the following areas: invertebrate development; immunology/neurology; bcl-2 family; biochemistry; programmed cell death in viruses; oncogenesis; vertebrate development; and diseases.

  18. Solar cell concentrating system

    International Nuclear Information System (INIS)

    This study reviews fabrication techniques and testing facilities for different solar cells under concentration which have been developed and tested. It is also aimed to examine solar energy concentrators which are prospective candidates for photovoltaic concentrator systems. This may provide an impetus to the scientists working in the area of solar cell technology

  19. Electrochemical cell stack assembly

    Science.gov (United States)

    Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    2010-06-22

    Multiple stacks of tubular electrochemical cells having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films arranged in parallel on stamped conductive interconnect sheets or ferrules. The stack allows one or more electrochemical cell to malfunction without disabling the entire stack. Stack efficiency is enhanced through simplified gas manifolding, gas recycling, reduced operating temperature and improved heat distribution.

  20. Modeling: driving fuel cells

    Directory of Open Access Journals (Sweden)

    Michael Francis

    2002-05-01

    Fuel cells were invented in 1839 by Sir William Grove, a Welsh judge and gentleman scientist, as a result of his experiments on the electrolysis of water. To put it simply, fuel cells are electrochemical devices that take hydrogen gas from fuel, combine it with oxygen from the air, and generate electricity and heat, with water as the only by-product.

  1. Dynamics of cell orientation

    Science.gov (United States)

    de, Rumi; Zemel, Assaf; Safran, Samuel A.

    2007-09-01

    Many physiological processes depend on the response of biological cells to mechanical forces generated by the contractile activity of the cell or by external stresses. Using a simple theoretical model that includes the forces due to both the mechanosensitivity of cells and the elasticity of the matrix, we predict the dynamics and orientation of cells in both the absence and presence of applied stresses. The model predicts many features observed in measurements of cellular forces and orientation including the increase with time of the cellular forces in the absence of applied stress and the consequent decrease of the force in the presence of quasi-static stresses. We also explain the puzzling observation of parallel alignment of cells for static and quasi-static stresses and of nearly perpendicular alignment for dynamically varying stresses. In addition, we predict the response of the cellular orientation to a sinusoidally varying applied stress as a function of frequency.

  2. Physics of adherent cells

    Science.gov (United States)

    Schwarz, Ulrich S.; Safran, Samuel A.

    2013-07-01

    One of the most unique physical features of cell adhesion to external surfaces is the active generation of mechanical force at the cell-material interface. This includes pulling forces generated by contractile polymer bundles and networks, and pushing forces generated by the polymerization of polymer networks. These forces are transmitted to the substrate mainly by focal adhesions, which are large, yet highly dynamic adhesion clusters. Tissue cells use these forces to sense the physical properties of their environment and to communicate with each other. The effect of forces is intricately linked to the material properties of cells and their physical environment. Here a review is given of recent progress in our understanding of the role of forces in cell adhesion from the viewpoint of theoretical soft matter physics and in close relation to the relevant experiments.

  3. Fifty cell test facility

    Energy Technology Data Exchange (ETDEWEB)

    Arntzen, J. D.; Kolba, V. M.; Miller, W. E.; Gay, E. C.

    1980-07-01

    This report describes the design of a facility capable of the simultaneous testing of up to 50 high-temperature (400 to 500/sup 0/C) lithium alloy/iron sulfide cells; this facility is located in the Chemical Engineering Division of Argonne National Laboratory (ANL). The emphasis will be on the lifetime testing of cells fabricated by ANL and industrial contractors to acquire statistical data on the performance of cells of various designs. A computer-based data-acquisition system processes the cell performance data generated from the cells on test. The terminals and part of the data-acquisition equipment are housed in an air-conditioned enclosure adjacent to the testing facility; the computer is located remotely.

  4. Cell Control Engineering

    DEFF Research Database (Denmark)

    Lynggaard, Hans Jørgen Birk; Alting, Leo

    1996-01-01

    The engineering process of creating cell control systems is described, and a Cell Control Engineering (CCE) concept is defined. The purpose is to assist people, representing different disciplines in the organisation, to implement cell controllers by addressing the complexity of having many systems...... in physically and logically different and changing manufacturing environments. The defined CCE concept combines state-of-the-art of commercially available enabling technologies for automation system software development, generic cell control models and guidelines for the complete engineering process....... It facilitates the understanding of the task and structure of cell controllers and uses this knowledge directly in the implementation of the system. By applying generic models CCE facilitates reuse of software components and maintenance of applications. In many enterprises, software makes up an increasing part...

  5. Cell fusions in mammals

    DEFF Research Database (Denmark)

    Larsson, Lars-Inge; Bjerregaard, Bolette; Talts, Jan Fredrik

    2008-01-01

    Cell fusions are important to fertilization, placentation, development of skeletal muscle and bone, calcium homeostasis and the immune defense system. Additionally, cell fusions participate in tissue repair and may be important to cancer development and progression. A large number of factors appear...... to regulate cell fusions, including receptors and ligands, membrane domain organizing proteins, proteases, signaling molecules and fusogenic proteins forming alpha-helical bundles that bring membranes close together. The syncytin family of proteins represent true fusogens and the founding member, syncytin-1......, has been documented to be involved in fusions between placental trophoblasts, between cancer cells and between cancer cells and host ells. We review the literature with emphasis on the syncytin family and propose that syncytins may represent universal fusogens in primates and rodents, which work...

  6. Metallization of bacteria cells

    Institute of Scientific and Technical Information of China (English)

    LI; Xiangfeng; (黎向锋); LI; Yaqin; (李雅芹); CAI; Jun; (蔡军); ZHANG; Deyuan; (张德远)

    2003-01-01

    Bacteria cells with different standard shapes are well suited for use as templates for the fabrication of magnetic and electrically conductive microstructures. In this paper, metallization of bacteria cells is demonstrated by an electroless deposition technique of nickel-phosphorus initiated by colloid palladium-tin catalyst on the surfaces of Citeromyces matritensis and Bacillus cereus. The activated and metallized bacteria cells have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD). Results showed that both Citeromyces matritensis and Bacillus cereus had no deformation in shape after metallization; the metallized films deposited on the surfaces of bacteria cells are homogeneous in thickness and noncrystalline in phase structure. The kinetics of colloid palladium-tin solution and electroless plating on bacteria cells is discussed.

  7. Solid electrolytic fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Masayasu; Yamauchi, Yasuhiro; Kamisaka, Mitsuo; Notomi, Kei.

    1989-04-21

    Concerning a solid electrolytic fuel cell with a gas permeable substrate pipe, a fuel electrode installed on this substrate pipe and an air electrode which is laminated on this fuel electrode with the electrolyte in between, the existing fuel cell of this kind uses crystals of CaMnO3, etc. for the material of the air electrode, but its electric resistance is big and in order to avert this, it is necessary to make the film thickness of the air electrode big. However, in such a case, the entry of the air into its inside worsens and the cell performance cannot develop satisfactorily. In view of the above, in order to obtain a high performance solid electrolytic fuel cell which can improve electric conductivity without damaging diffusion rate of the air, this invention proposes with regard to the aforementioned solid electrolytic fuel cell to install a heat resistant and conductive member inside the above air electrode. 6 figs.

  8. Nanoelectrochemistry of mammalian cells.

    Science.gov (United States)

    Sun, Peng; Laforge, François O; Abeyweera, Thushara P; Rotenberg, Susan A; Carpino, James; Mirkin, Michael V

    2008-01-15

    There is a significant current interest in development of new techniques for direct characterization of the intracellular redox state and high-resolution imaging of living cells. We used nanometer-sized amperometric probes in combination with the scanning electrochemical microscope (SECM) to carry out spatially resolved electrochemical experiments in cultured human breast cells. With the tip radius approximately 1,000 times smaller than that of a cell, an electrochemical probe can penetrate a cell and travel inside it without apparent damage to the membrane. The data demonstrate the possibility of measuring the rate of transmembrane charge transport and membrane potential and probing redox properties at the subcellular level. The same experimental setup was used for nanoscale electrochemical imaging of the cell surface. PMID:18178616

  9. Digital Microfluidic Cell Culture.

    Science.gov (United States)

    Ng, Alphonsus H C; Li, Bingyu Betty; Chamberlain, M Dean; Wheeler, Aaron R

    2015-01-01

    Digital microfluidics (DMF) is a droplet-based liquid-handling technology that has recently become popular for cell culture and analysis. In DMF, picoliter- to microliter-sized droplets are manipulated on a planar surface using electric fields, thus enabling software-reconfigurable operations on individual droplets, such as move, merge, split, and dispense from reservoirs. Using this technique, multistep cell-based processes can be carried out using simple and compact instrumentation, making DMF an attractive platform for eventual integration into routine biology workflows. In this review, we summarize the state-of-the-art in DMF cell culture, and describe design considerations, types of DMF cell culture, and cell-based applications of DMF. PMID:26643019

  10. Photovoltaic solar cell

    Science.gov (United States)

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2015-09-08

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  11. PEM regenerative fuel cells

    Science.gov (United States)

    Swette, Larry L.; Laconti, Anthony B.; McCatty, Stephen A.

    1993-11-01

    This paper will update the progress in developing electrocatalyst systems and electrode structures primarily for the positive electrode of single-unit solid polymer proton exchange membrane (PEM) regenerative fuel cells. The work was done with DuPont Nafion 117 in complete fuel cells (40 sq cm electrodes). The cells were operated alternately in fuel cell mode and electrolysis mode at 80 C. In fuel cell mode, humidified hydrogen and oxygen were supplied at 207 kPa (30 psi); in electrolysis mode, water was pumped over the positive electrode and the gases were evolved at ambient pressure. Cycling data will be presented for Pt-Ir catalysts and limited bifunctional data will be presented for Pt, Ir, Ru, Rh, and Na(x)Pt3O4 catalysts as well as for electrode structure variations.

  12. Solar cell radiation handbook

    Science.gov (United States)

    Tada, H. Y.; Carter, J. R., Jr.; Anspaugh, B. E.; Downing, R. G.

    1982-01-01

    The handbook to predict the degradation of solar cell electrical performance in any given space radiation environment is presented. Solar cell theory, cell manufacturing and how they are modeled mathematically are described. The interaction of energetic charged particles radiation with solar cells is discussed and the concept of 1 MeV equivalent electron fluence is introduced. The space radiation environment is described and methods of calculating equivalent fluences for the space environment are developed. A computer program was written to perform the equivalent fluence calculations and a FORTRAN listing of the program is included. Data detailing the degradation of solar cell electrical parameters as a function of 1 MeV electron fluence are presented.

  13. Advances in stem cell research

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@In 1998, biologists Thomson and Gearhart successfully derived stem cells from human embryos. One year later, several researchers discovered that adult stem cells still retain the ability to be differentiated into unrelated types of cells. Advances in stem cell research open a promising direction for applied medical science. Moreover, it may also force scientists to reconsider the fundamental theory about how cells grow up. Stem cell research was considered by Science as the top of the ten breakthroughs of science of the year[1]. This paper gives a survey of recent advances in stem cell research. 1 Overview In the 1980s, embryonic stem cell and/or embryonic germ cell line (ES cell line, EG cell line) of multifarious mammalian animals, especially those of non-human pri-mates, had been established. In 1998, Thomson and Shamblott obtained ES, EG cell lines from human blasto-cysts and gonad ridges of early human embryos, respec-tively. Their research brought up an ethical debate about whether human embryos can be used as experimental materials. It was not appeased until 1999 when research-ers discovered that stem cells from adults still retain the ability to become different kinds of tissue cells. For in-stance, brain cells can become blood cells[2], and cells from bone marrow can become cells in liver. Scientists believe, for a long time, that cells can only be developed from early pluripotent embryo cells; the differentiation potential of stem cells from mature tissues is restricted to only one of the cell types of the tissue where stem cells are obtained. Recent stem cell researches, however, sub-verted the traditional view of stem cells. These discoveries made scientists speed ahead with the work on adult stem cells, hoping to discover whether their promise will rival that of ES cells.

  14. [Merkel cell skin carcinoma].

    Science.gov (United States)

    Krejcí, K; Zadrazil, J; Tichý, T; Horák, P; Ciferská, H; Hodulová, M; Zezulová, M; Zlevorová, M

    2010-01-01

    Merkel cell carcinoma is a rare tumour of the skin. It affects predominantly elderly Caucasian males on sun-exposed areas of the skin. Distinctively more frequent and at significantly lower age, its incidence is higher in immunocompromised patients. In these patients we often observe the highly aggressive course of Merkel cell carcinoma and a fatal outcome. The incidence of Merkel cell carcinoma has been rising in recent years and is more dramatic than the increased incidence of cutaneous melanoma. More than one-third of Merkel cell carcinoma patients will die from this cancer, making it twice as lethal as melanoma. The malignant transformation of Merkel cells is currently thought to be related to an infection with Merkel cell polyomavirus. In the early stage the discreet clinical picture may be contrary to extensive microscopic invasion and this seemingly benign appearance can delay diagnosis or increase the risk of insufficient tumour excision. The diagnosis is definitely confirmed by histological evaluation and immunohistochemical tests. A typical feature is the tendency of Merkel cell carcinoma to frequent local recurrence and early metastasizing into regional lymph nodes with subsequent tumour generalization. The mainstay of therapy is radical excision of the tumour and adjuvant radiotherapy targeted at the site of primary incidence and local draining lymph nodes. The efficacy of different chemotherapy protocols in Merkel cell carcinoma is limited and the median survival rate is measured in months. In the future, prophylaxis with vaccination against Merkel cell polyomavirus will hopefully be possible in high-risk patients, as well as therapeutic usage of antisense oligonucleotides or microRNAs, eventually complete Merkel cell carcinoma elimination by affecting the tumour suppressor gene Atonal homolog 1 expression. The staging of the tumour at time of diagnosis is the most important prognostic factor. In this respect, the importance of preventative skin

  15. Langerhans' cells, veiled cells, and interdigitating cells in the mouse recognized by a monoclonal antibody

    OpenAIRE

    1986-01-01

    An mAb, NLDC-145, is described that specifically reacts with a group of nonlymphoid dendritic cells including Langerhans cells (LC), veiled cells (VC), and interdigitating cells (IDC). The antibody does not react with precursor cells in bone marrow and blood. Macrophages are not stained by the antibody, but a subpopulation of Ia+ peritoneal exudate cells is recognized. Possible relationships of the various nonlymphoid dendritic cell (NLDC) types are discussed.

  16. From Adult Bone Marrow Cells to Other Cell Lineages:Transdifferentiation or Cells Fusion

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Recent studies have demonstrated that intravenous transplantation or local injection of bone marrow cells can induce unexpected changes of their fate. The results of these experiments showed that after transplantation or injecton, some of tissue specific somatic cells such as hepatocytes, skeleton, cardiac muscle cells and brain cells expressed the donor cell-specific genes, such as Y chromosome. There are two hypotheses that can explain this phenomenon. One is bone marrow stem cell transdifferentiation and the other is spontaneous cell fusion.

  17. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation

    OpenAIRE

    Stefania Bruno; Cristina Grange; Marta Tapparo; Chiara Pasquino; Renato Romagnoli; Ennia Dametto; Antonio Amoroso; Ciro Tetta; Giovanni Camussi

    2016-01-01

    Human liver stem cells (HLSCs) are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs), and dendritic cells (DCs) in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell co...

  18. Diffusion inside living human cells

    DEFF Research Database (Denmark)

    Leijnse, N.; Jeon, J. -H.; Loft, Steffen;

    2012-01-01

    cells. For these cells the exact diffusional pattern of a particular granule depends on the physiological state of the cell and on the localization of the granule within the cytoplasm. Granules located close to the actin rich periphery of the cell move less than those located towards to the center...... of the cell or within the nucleus. Also, granules in cells which are stressed by intense laser illumination or which have attached to a surface for a long period of time move in a more restricted fashion than those within healthy cells. For granules diffusing in healthy cells, in regions away from the cell...

  19. Many facets of stem cells

    Institute of Scientific and Technical Information of China (English)

    Jiarui Wu

    2011-01-01

    @@ Research area on stem cells is one of frontiers in biology.The collection of five research articles in this issue aims to cover timely developments in stem cell biology, ranging from generating and identifying stem cell line to manipulating stem cells, and from basic mechanism analysis to applied medical potential.These papers reflect the various research tasks in stem cell biology.

  20. Microfluidics for single cell analysis

    DEFF Research Database (Denmark)

    Jensen, Marie Pødenphant

    Isolation and manipulation of single cells have gained an increasing interest from researchers because of the heterogeneity of cells from the same cell culture. Single cell analysis can ensure a better understanding of differences between individual cells and potentially solve a variety of clinic...

  1. Oscillating Cell Culture Bioreactor

    Science.gov (United States)

    Freed, Lisa E.; Cheng, Mingyu; Moretti, Matteo G.

    2010-01-01

    To better exploit the principles of gas transport and mass transport during the processes of cell seeding of 3D scaffolds and in vitro culture of 3D tissue engineered constructs, the oscillatory cell culture bioreactor provides a flow of cell suspensions and culture media directly through a porous 3D scaffold (during cell seeding) and a 3D construct (during subsequent cultivation) within a highly gas-permeable closed-loop tube. This design is simple, modular, and flexible, and its component parts are easy to assemble and operate, and are inexpensive. Chamber volume can be very low, but can be easily scaled up. This innovation is well suited to work with different biological specimens, particularly with cells having high oxygen requirements and/or shear sensitivity, and different scaffold structures and dimensions. The closed-loop changer is highly gas permeable to allow efficient gas exchange during the cell seeding/culturing process. A porous scaffold, which may be seeded with cells, is fixed by means of a scaffold holder to the chamber wall with scaffold/construct orientation with respect to the chamber determined by the geometry of the scaffold holder. A fluid, with/without biological specimens, is added to the chamber such that all, or most, of the air is displaced (i.e., with or without an enclosed air bubble). Motion is applied to the chamber within a controlled environment (e.g., oscillatory motion within a humidified 37 C incubator). Movement of the chamber induces relative motion of the scaffold/construct with respect to the fluid. In case the fluid is a cell suspension, cells will come into contact with the scaffold and eventually adhere to it. Alternatively, cells can be seeded on scaffolds by gel entrapment prior to bioreactor cultivation. Subsequently, the oscillatory cell culture bioreactor will provide efficient gas exchange (i.e., of oxygen and carbon dioxide, as required for viability of metabolically active cells) and controlled levels of fluid

  2. Mesenchymal stem cells: cell biology and potential use in therapy

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Kristiansen, Malthe; Abdallah, Basem M

    2004-01-01

    Mesenchymal stem cells are clonogenic, non-haematopoietic stem cells present in the bone marrow and are able to differentiate into multiple mesoderm-type cell lineages e.g. osteoblasts, chondrocytes, endothelial-cells and also non-mesoderm-type lineages e.g. neuronal-like cells. Several methods...... are currently available for isolation of the mesenchymal stem cells based on their physical and immunological characteristics. Because of the ease of their isolation and their extensive differentiation potential, mesenchymal stem cells are among the first stem cell types to be introduced in the clinic. Recent...... studies have demonstrated that the life span of mesenchymal stem cells in vitro can be extended by increasing the levels of telomerase expression in the cells and thus allowing culture of large number of cells needed for therapy. In addition, it has been shown that it is possible to culture the cells...

  3. Immunology of Stem Cells and Cancer Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Xiao-Feng Yang

    2007-01-01

    The capacity of pluri-potent stem cells to repair the tissues in which stem cells reside holds great promise in development of novel cell replacement therapeutics for treating chronic and degenerative diseases. However,numerous reports show that stem cell therapy, even in an autologous setting, triggers lymphocyte infiltration and inflammation. Therefore, an important question to be answered is how the host immune system responds to engrafted autologous stem cells or allogeneous stem cells. In this brief review, we summarize the progress in several related areas in this field, including some of our data, in four sections: (1) immunogenicity of stem cells; (2)strategies to inhibit immune rejection to allograft stem cells; (3) immune responses to cancer stem cells; and (4)mesenchymal stem cells in immune regulation. Improvement of our understanding on these and other aspects of immune system-stem cell interplay would greatly facilitate the development of stem cell-based therapeutics for regenerative purposes.

  4. Dedifferentiation of committed epithelial cells into stem cells in vivo

    OpenAIRE

    Tata, Purushothama Rao; Mou, Hongmei; Pardo-Saganta, Ana; Zhao, Rui; Prabhu, Mythili; Law, Brandon M.; Vinarsky, Vladimir; Josalyn L Cho; Breton, Sylvie; Sahay, Amar; Medoff, Benjamin D.; Rajagopal, Jayaraj

    2013-01-01

    Summary Cellular plasticity contributes to the regenerative capacity of plants, invertebrates, teleost fishes, and amphibians. In vertebrates, differentiated cells are known to revert into replicating progenitors, but these cells do not persist as stable stem cells. We now present evidence that differentiated airway epithelial cells can revert into stable and functional stem cells in vivo. Following the ablation of airway stem cells, we observed a surprising increase in the proliferation of c...

  5. Dedifferentiation of committed epithelial cells into stem cells in vivo

    OpenAIRE

    Tata, Purushothama Rao; Mou, Hongmei; Pardo-Saganta, Ana; Zhao, Rui; Prabhu, Mythili; Law, Brandon M.; Vinarsky, Vladimir; Josalyn L Cho; Breton, Sylvie; Sahay, Amar; Medoff, Benjamin D.; Rajagopal, Jayaraj

    2014-01-01

    Summary Cellular plasticity contributes to the regenerative capacity of plants, invertebrates, teleost fishes, and amphibians. In vertebrates, differentiated cells are known to revert into replicating progenitors, but these cells do not persist as stable stem cells. We now present evidence that differentiated airway epithelial cells can revert into stable and functional stem cells in vivo. Following the ablation of airway stem cells, we observed a surprising increase in the proliferation of c...

  6. Defective alloantigen-presenting capacity of 'Langerhans cell histiocytosis cells'.

    OpenAIRE

    Yu, R C; Morris, J F; Pritchard, J.; Chu, T C

    1992-01-01

    The functional activity of skin cells derived from an infant who died of multisystem Langerhans cell histiocytosis (LCH) was examined. Involved and non-involved skin was obtained at postmortem examination within three hours of death; normal epidermal Langerhans cells and 'LCH cells' were separated by means of dispase digestion. The functional activity of different populations of CD1a positive cells was assessed using the conventional six day allogeneic mixed cell reaction. Compared with Lange...

  7. Differentiation of human embryonic stem cells into insulin- secreting cells

    OpenAIRE

    S Mollamohammadi; Massumi, M.; H Jafary; Baharvand, H.

    2006-01-01

    Introduction: Type I diabetes mellitus is caused by autoimmune destruction of the insulin-producing β-cells. A new potential method for curing the disease is transplantation of differentiated insulin- secreting cells from human embryonic stem cells. Methods: Human embryonic stem cell lines (Royan H1) were used to produce embryoid bodies. Differentiation carried out by growth factor-mediated selection of nestin positive cells. In final stage, these cells were expanded in the presence of bFGF, ...

  8. The Cell Surface Proteome of Human Mesenchymal Stromal Cells

    OpenAIRE

    Christian Niehage; Charlotte Steenblock; Theresia Pursche; Martin Bornhäuser; Denis Corbeil; Bernard Hoflack

    2011-01-01

    BACKGROUND: Multipotent human mesenchymal stromal cells (hMSCs) are considered as promising biological tools for regenerative medicine. Their antibody-based isolation relies on the identification of reliable cell surface markers. METHODOLOGY/PRINCIPAL FINDINGS: To obtain a comprehensive view of the cell surface proteome of bone marrow-derived hMSCs, we have developed an analytical pipeline relying on cell surface biotinylation of intact cells using cell impermeable, cleavable sulfo-NHS-SS-bio...

  9. A novel cell subset:Interferon-producing killer dendritic cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Recent reports introduce a novel cell subset of DCs with antigenic phenotypes shared by both NK cells and B cells, but without surface markers of pDCs and T cells, appearing to be a chimera of NK cells and DCs, namely interferon-producing killer dendritic cells(IKDCs).IKDCs not only secret type I and type II interferons to recognize and kill tumor cells effectively, but also express MHC-II molecules to present antigens.Thus, IKDCs are considered as important immunosurveilance cells for tumors, providing a link between innate and adaptive immunity.

  10. Embryonic stem cells: prospects for developmental biology and cell therapy.

    Science.gov (United States)

    Wobus, Anna M; Boheler, Kenneth R

    2005-04-01

    Stem cells represent natural units of embryonic development and tissue regeneration. Embryonic stem (ES) cells, in particular, possess a nearly unlimited self-renewal capacity and developmental potential to differentiate into virtually any cell type of an organism. Mouse ES cells, which are established as permanent cell lines from early embryos, can be regarded as a versatile biological system that has led to major advances in cell and developmental biology. Human ES cell lines, which have recently been derived, may additionally serve as an unlimited source of cells for regenerative medicine. Before therapeutic applications can be realized, important problems must be resolved. Ethical issues surround the derivation of human ES cells from in vitro fertilized blastocysts. Current techniques for directed differentiation into somatic cell populations remain inefficient and yield heterogeneous cell populations. Transplanted ES cell progeny may not function normally in organs, might retain tumorigenic potential, and could be rejected immunologically. The number of human ES cell lines available for research may also be insufficient to adequately determine their therapeutic potential. Recent molecular and cellular advances with mouse ES cells, however, portend the successful use of these cells in therapeutics. This review therefore focuses both on mouse and human ES cells with respect to in vitro propagation and differentiation as well as their use in basic cell and developmental biology and toxicology and presents prospects for human ES cells in tissue regeneration and transplantation.

  11. A novel cell subset: Interferon-producing killer dendritic cells

    Institute of Scientific and Technical Information of China (English)

    WANG JiongKun; XING FeiYue

    2008-01-01

    Recent reports introduce a novel cell subset of DCs with antigenic phenotypes shared by both NK cells and B cells, but without surface markers of pDCs and T cells, appearing to be a chimera of NK cells and DCs, namely interferon-producing killer dendritic cells (IKDCs). IKDCs not only secret type Ⅰ and type Ⅱ interferons to recognize and kill tumor cells effectively, but also express MHC-Ⅱ molecules to present antigens. Thus, IKDCs are considered as important immunosurveilance cells for tumors, providing a link between innate and adaptive immunity.

  12. Quantum dot solar cells

    CERN Document Server

    Wu, Jiang

    2013-01-01

    The third generation of solar cells includes those based on semiconductor quantum dots. This sophisticated technology applies nanotechnology and quantum mechanics theory to enhance the performance of ordinary solar cells. Although a practical application of quantum dot solar cells has yet to be achieved, a large number of theoretical calculations and experimental studies have confirmed the potential for meeting the requirement for ultra-high conversion efficiency. In this book, high-profile scientists have contributed tutorial chapters that outline the methods used in and the results of variou

  13. Stem Cells and Cancer

    International Nuclear Information System (INIS)

    Stem cell research has thrived over the last years due to their therapeutic and regenerative potential. Scientific breakthroughs in the field are immediately translated from the scientific journals to the mass media, which is not surprising as the characterisation of the molecular mechanisms that regulate the biology of stem cells is crucial for the treatment of degenerative and cardiovascular diseases, as well as cancer. In the Molecular Oncology Unit at Ciemat we work to unravel the role of cancer stem cells in tumour development, and to find new antitumor therapies. (Author)

  14. Dye Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Di Wei

    2010-03-01

    Full Text Available Dye sensitized solar cell (DSSC is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO2, ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed.

  15. Limbal Stem Cell Therapy

    OpenAIRE

    Kringlegarden, Hilde Grane

    2013-01-01

    It is widely accepted today that stem cells in the adult corneal epithelium is located to the limbus. No specific marker of limbal epithelial cells (LESCs) has been identified, yet many have been suggested, including ΔNp63α, ABCG2, vimentin and notch 1. Negative markers include amongst others the differentiation markers Ck3 and Ck12. The lack of an identified specific marker elucidates the need for establishment of more exact molecular markers of LESCs. Limbal stem cell deficiency (LSCD) may ...

  16. Congenital granular cell epulis.

    Science.gov (United States)

    Conrad, Rachel; Perez, Mia C N

    2014-01-01

    Congenital granular cell epulis is a rarely reported lesion of unknown histogenesis with a strong predilection for the maxillary alveolar ridge of newborn girls. Microscopically, it demonstrates nests of polygonal cells with granular cytoplasm, a prominent capillary network, and attenuated overlying squamous epithelium. The lesion lacks immunoreactivity for S-100, laminin, chromogranin, and most other markers except neuron-specific enolase and vimentin. Through careful observation of its unique clinical, histopathologic, and immunohistochemical features, this lesion can be distinguished from the more common adult granular cell tumor as well as other differential diagnoses.

  17. Materials for fuel cells

    Directory of Open Access Journals (Sweden)

    Sossina M Haile

    2003-03-01

    Full Text Available Because of their potential to reduce the environmental impact and geopolitical consequences of the use of fossil fuels, fuel cells have emerged as tantalizing alternatives to combustion engines. Like a combustion engine, a fuel cell uses some sort of chemical fuel as its energy source but, like a battery, the chemical energy is directly converted to electrical energy, without an often messy and relatively inefficient combustion step. In addition to high efficiency and low emissions, fuel cells are attractive for their modular and distributed nature, and zero noise pollution. They will also play an essential role in any future hydrogen fuel economy.

  18. PLUTONIUM ELECTROREFINING CELLS

    Science.gov (United States)

    Mullins, L.J. Jr.; Leary, J.A.; Bjorklund, C.W.; Maraman, W.J.

    1963-07-16

    Electrorefining cells for obtaining 99.98% plutonium are described. The cells consist of an impure liquid plutonium anode, a molten PuCl/sub 3/-- alkali or alkaline earth metal chloanode, a molten PuCl/sub 3/-alkali or alkaline earth metal chloride electrolyte, and a nonreactive cathode, all being contained in nonreactive ceramic containers which separate anode from cathode by a short distance and define a gap for the collection of the purified liquid plutonium deposited on the cathode. Important features of these cells are the addition of stirrer blades on the anode lead and a large cathode surface to insure a low current density. (AEC)

  19. Stem cells and transplant arteriosclerosis.

    Science.gov (United States)

    Xu, Qingbo

    2008-05-01

    Stem cells can differentiate into a variety of cells to replace dead cells or to repair damaged tissues. Recent evidence indicates that stem cells are involved in the pathogenesis of transplant arteriosclerosis, an alloimmune initiated vascular stenosis that often results in transplant organ failure. Although the pathogenesis of transplant arteriosclerosis is not yet fully understood, recent developments in stem cell research have suggested novel mechanisms of vascular remodeling in allografts. For example, stem cells derived from the recipient may repair damaged endothelial cells of arteries in transplant organs. Further evidence suggests that stem cells or endothelial progenitor cells may be released from both bone marrow and non-bone marrow tissues. Vascular stem cells appear to replenish cells that died in donor vessels. Concomitantly, stem/progenitor cells may also accumulate in the intima, where they differentiate into smooth muscle cells. However, several issues concerning the contribution of stem cells to the pathogenesis of transplant arteriosclerosis are controversial, eg, whether bone marrow-derived stem cells can differentiate into smooth muscle cells that form neointimal lesions of the vessel wall. This review summarizes recent research on the role of stem cells in transplant arteriosclerosis, discusses the mechanisms of stem cell homing and differentiation into mature endothelial and smooth muscle cells, and highlights the controversial issues in the field.

  20. Primitive human hematopoietic cells give rise to differentially specified daughter cells upon their initial cell division.

    NARCIS (Netherlands)

    Giebel, B.; Zhang, T.; Beckmann, J.; Spanholtz, J.; Wernet, P.; Ho, A.; Punzel, M.

    2006-01-01

    It is often predicted that stem cells divide asymmetrically, creating a daughter cell that maintains the stem-cell capacity, and 1 daughter cell committed to differentiation. While asymmetric stem-cell divisions have been proven to occur in model organisms (eg, in Drosophila), it remains illusive wh

  1. CD81 is dispensable for hepatitis C virus cell-to-cell transmission in hepatoma cells.

    Science.gov (United States)

    Witteveldt, Jeroen; Evans, Matthew J; Bitzegeio, Julia; Koutsoudakis, George; Owsianka, Ania M; Angus, Allan G N; Keck, Zhen-Yong; Foung, Steven K H; Pietschmann, Thomas; Rice, Charles M; Patel, Arvind H

    2009-01-01

    Hepatitis C virus (HCV) infects cells by the direct uptake of cell-free virus following virus engagement with specific cell receptors such as CD81. Recent data have shown that HCV is also capable of direct cell-to-cell transmission, although the role of CD81 in this process is disputed. Here, we generated cell culture infectious strain JFH1 HCV (HCVcc) genomes carrying an alanine substitution of E2 residues W529 or D535 that are critical for binding to CD81 and infectivity. Co-cultivation of these cells with naïve cells expressing enhanced green fluorescent protein (EGFP) resulted in a small number of cells co-expressing both EGFP and HCV NS5A, showing that the HCVcc mutants are capable of cell-to-cell spread. In contrast, no cell-to-cell transmission from JFH1(DeltaE1E2)-transfected cells occurred, indicating that the HCV glycoproteins are essential for this process. The frequency of cell-to-cell transmission of JFH1(W529A) was unaffected by the presence of neutralizing antibodies that inhibit E2-CD81 interactions. By using cell lines that expressed little or no CD81 and that were refractive to infection with cell-free virus, we showed that the occurrence of viral cell-to-cell transmission is not influenced by the levels of CD81 on either donor or recipient cells. Thus, our results show that CD81 plays no role in the cell-to-cell spread of HCVcc and that this mode of transmission is shielded from neutralizing antibodies. These data suggest that therapeutic interventions targeting the entry of cell-free HCV may not be sufficient in controlling an ongoing chronic infection, but need to be complemented by additional strategies aimed at disrupting direct cell-to-cell viral transmission. PMID:19088272

  2. Fuel cells: Problems and prospects

    OpenAIRE

    Shukla, AK; Ramesh, KV; Kannan, AM

    1986-01-01

    n recent years, fuel cell technology has advanced significantly. Field trials on certain types of fuel cells have shown promise for electrical use. This article reviews the electrochemistry, problems and prospects of fuel cell systems.

  3. Stem Cell Transplants (For Teens)

    Science.gov (United States)

    ... Can I Help a Friend Who Cuts? Stem Cell Transplants KidsHealth > For Teens > Stem Cell Transplants Print ... it Take to Recover? Coping What Are Stem Cells? As you probably remember from biology class, every ...

  4. Kinetics of adrenal medullary cells.

    OpenAIRE

    Verhofstad, A A

    1993-01-01

    The adrenal medulla of mammals has a heterogeneous population of cells. In adults most are epithelial cells containing a particular type of cytoplasmic granule. Based on a variety of cytochemical and ultrastructural studies it is now accepted that 2 different adrenal medullary chromaffin cell types can be distinguished, i.e. noradrenaline (NA) and adrenaline (A) synthesising and storing cells. Other cell types present in the adrenal medulla include neuronal elements comprising either cell bod...

  5. Rejuvenation of automotive fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Seung; Langlois, David A.

    2016-08-23

    A process for rejuvenating fuel cells has been demonstrated to improve the performance of polymer exchange membrane fuel cells with platinum/ionomer electrodes. The process involves dehydrating a fuel cell and exposing at least the cathode of the fuel cell to dry gas (nitrogen, for example) at a temperature higher than the operating temperature of the fuel cell. The process may be used to prolong the operating lifetime of an automotive fuel cell.

  6. Pancreatic Stem Cells Remain Unresolved

    OpenAIRE

    Jiang, Fang-Xu; Morahan, Grant

    2014-01-01

    Diabetes mellitus is caused by absolute (type 1) or relative (type 2) deficiency of insulin-secreting islet β cells. An ideal treatment of diabetes would, therefore, be to replace the lost or deficient β cells, by transplantation of donated islets or differentiated endocrine cells or by regeneration of endogenous islet cells. Due to their ability of unlimited proliferation and differentiation into all functional lineages in our body, including β cells, embryonic stem cells and induced pluripo...

  7. Mast cells in bacterial infections

    OpenAIRE

    Rönnberg, Elin

    2014-01-01

    Mast cells are implicated in immunity towards bacterial infection, but the molecular mechanisms by which mast cells contribute to the host response are only partially understood. Previous studies have examined how mast cells react to purified bacterial cell wall components, such as peptidoglycan and lipopolysaccharide. To investigate how mast cells react to live bacteria we co-cultured mast cells and the gram-positive bacteria Streptococcus equi (S. equi) and Staphylococcus aureus (S. aureus)...

  8. FUEL CELLS IN ENERGY PRODUCTION

    OpenAIRE

    Huang, Xiaoyu

    2011-01-01

    The purpose of this thesis is to study fuel cells. They convert chemical energy directly into electrical energy with high efficiency and low emmission of pollutants. This thesis provides an overview of fuel cell technology.The basic working principle of fuel cells and the basic fuel cell system components are introduced in this thesis. The properties, advantages, disadvantages and applications of six different kinds of fuel cells are introduced. Then the efficiency of each fuel cell is p...

  9. Concise Review: Asymmetric Cell Divisions in Stem Cell Biology

    Directory of Open Access Journals (Sweden)

    Florian Murke

    2015-11-01

    Full Text Available Somatic stem cells are rare cells with unique properties residing in many organs and tissues. They are undifferentiated cells responsible for tissue regeneration and homeostasis, and contain both the capacity to self-renew in order to maintain their stem cell potential and to differentiate towards tissue-specific, specialized cells. However, the knowledge about the mechanisms controlling somatic stem cell fate decisions remains sparse. One mechanism which has been described to control daughter cell fates in selected somatic stem cell systems is the process of asymmetric cell division (ACD. ACD is a tightly regulated and evolutionary conserved process allowing a single stem or progenitor cell to produce two differently specified daughter cells. In this concise review, we will summarize and discuss current concepts about the process of ACD as well as different ACD modes. Finally, we will recapitulate the current knowledge and our recent findings about ACD in human hematopoiesis.

  10. Dazl Promotes Germ Cell Differentiation from Embryonic Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Zhuo Yu; Ping Ji; Jinping Cao; Shu Zhu; Yao Li; Lin Zheng; Xuejin Chen; Lixin Feng

    2009-01-01

    It has been demonstrated that through the formation of embryoid bodies (Ebs) germ cells can be derived from embryonic stem (ES) cells. Here, we describe a transgene expression approach to derive germ cells directly from ES cells in vitro without EB formation. Through the ectopic expression of Deleted in Azoospermia-Like (Dazl), a germ cell-specific RNA-binding protein,both motile tailed-sperm and oocytes were induced from mouse ES (mES) cells in culture. Furthermore, transient overexpression of Dazl led to suppression of Nanog but induced germ cell nuclear antigen in mES cells. Dazl knockdown resulted in reduction in the expression of germ cell markers including Stella, MVH and Prdm1. Our study indicates that Dazl is a master gene controlling germ cell differentiation and that ectopic expression of Dazl promotes the dynamic differentiation of mouse ES cells into gametes in vitro.

  11. Cell Centred Database (CCDB)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Cell Centered Database (CCDB) is a web accessible database for high resolution 2D, 3D and 4D data from light and electron microscopy, including correlated...

  12. Thin Solid Oxide Cell

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material, at least one metal and a catalyst...... material, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same. The present invention also relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous...... cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material and a catalyst material, wherein the electrolyte material is doper zirconia, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same...

  13. Mammary epithelial cell

    DEFF Research Database (Denmark)

    Kass, Laura; Erler, Janine Terra; Dembo, Micah;

    2007-01-01

    a repertoire of transmembrane receptors, of which integrins are the best characterized. Integrins modulate cell fate by reciprocally transducing biochemical and biophysical cues between the cell and the extracellular matrix, facilitating processes such as embryonic branching morphogenesis and lactation...... in the mammary gland. During breast development and cancer progression, the extracellular matrix is dynamically altered such that its composition, turnover, processing and orientation change dramatically. These modifications influence mammary epithelial cell shape, and modulate growth factor and hormonal...... responses to regulate processes including branching morphogenesis and alveolar differentiation. Malignant transformation of the breast is also associated with significant matrix remodeling and a progressive stiffening of the stroma that can enhance mammary epithelial cell growth, perturb breast tissue...

  14. Plasma cell leukemia

    DEFF Research Database (Denmark)

    Fernández de Larrea, C; Kyle, R A; Durie, B G M;

    2013-01-01

    Plasma cell leukemia (PCL) is a rare and aggressive variant of myeloma characterized by the presence of circulating plasma cells. It is classified as either primary PCL occurring at diagnosis or as secondary PCL in patients with relapsed/refractory myeloma. Primary PCL is a distinct clinic......-pathological entity with different cytogenetic and molecular findings. The clinical course is aggressive with short remissions and survival duration. The diagnosis is based upon the percentage (≥ 20%) and absolute number (≥ 2 × 10(9)/l) of plasma cells in the peripheral blood. It is proposed that the thresholds...... regimens and bortezomib-based regimens are recommended followed by high-dose therapy with autologous stem cell transplantation if feasible. Allogeneic transplantation can be considered in younger patients. Prospective multicenter studies are required to provide revised definitions and better understanding...

  15. Mast cells & Company

    Directory of Open Access Journals (Sweden)

    Friederike eJönsson

    2012-02-01

    Full Text Available Classically, allergy depends on IgE antibodies and on high-affinity IgE receptors expressed by mast cells and basophils. This long accepted IgE/FcεRI/mast cell paradigm, on which the definition of immediate hypersensitivity was based in the Gell and Coomb’s classification, appears too reductionist. Recently accumulated evidence indeed requires that not only IgE but also IgG antibodies, that not only FcεRI but also FcγR of the different types, that not only mast cells and basophils but also neutrophils, monocytes, macrophages, eosinophils, and other myeloid cells by considered as important players in allergy. This view markedly changes our understanding of allergic diseases and, possibly, their treatment.

  16. The Giant Cell.

    Science.gov (United States)

    Stockdale, Dennis

    1998-01-01

    Provides directions for the construction of giant plastic cells, including details for building and installing the organelles. Also contains instructions for preparing the ribosomes, nucleolus, nucleus, and mitochondria. (DDR)

  17. Familial germ cell tumor

    Directory of Open Access Journals (Sweden)

    Sanju Cyriac

    2012-01-01

    Full Text Available Familial testicular germ cell tumors are well known in literature. Only few cases are reported where both brother and sister of the same family suffered from germ cell malignancies. We present a family where the proband is a survivor of ovarian dysgerminoma stage IA. Her elder male sibling became acutely ill and was detected to have disseminated testicular malignancy with grossly elevated markers and vegetations in the mitral valve leaflets. Despite all measures he could not be saved. Presence of germ cell malignancies in the siblings of different sex in the same family points toward a genetic susceptibility. Literature review revealed only six similar cases. A discussion regarding the rare occurrence of familial germ cell malignancies with the affected family members may be worthwhile.

  18. Renal Medullary Interstitial Cells

    Science.gov (United States)

    Rao, Reena; Hao, Chuan-Ming; Breyer, Matthew D.

    2007-04-01

    Renal medullary interstitial cells (RMICs) are specialized fibroblast-like cells that reside in the renal medulla among the vasa recta, the thin limbs of Henle's loop, and medullary collecting ducts. These cells are characterized by abundant lipid droplets in the cytoplasm. The lipid droplets are composed of triglycerides, cholesterol esters and free long-chain fatty acids, including arachidonic acid. RMICs are also a major site of cyclooxygenase2 (COX-2) expression, and thus a major site of COX-2 derived prostanoid biosynthesis. RMICs are also a potential target of hormones such as angiotensin II and endothelin. The RMIC COX-2 expression and the abundance of lipid droplets change with salt and water intake. These properties of RMICs are consistent with an important role of these cells in modulating physiologic and pathologic processes of the kidney.

  19. Langerhans cell histiocytosis

    OpenAIRE

    Xiao-ling YAN

    2014-01-01

    A case report and literature review. We present a boy with a multisystemic presentation of Langerhans cell histiocytosis and severe pulmonary lesion.Skin lesion helped to suspect and confirm diagnosis by scalpbiopsy. Chemotherapy was important for favorable result.

  20. [Pulmonary Langerhans cell histiocytosis].

    Science.gov (United States)

    Popper, H H

    2015-09-01

    Pulmonary Langerhans cell histiocytosis is regarded as a reactive proliferation of the dendritic Langerhans cell population stimulated by chronic tobacco-derived plant proteins due to incomplete combustion but can also occur in childhood as a tumor-like systemic disease. Currently, both these forms cannot be morphologically distinguished. In the lungs a nodular proliferation of Langerhans cells occurs in the bronchial mucosa and also peripherally in the alveolar septa with an accompanying infiltration by eosinophilic granulocytes and destruction of the bronchial wall. Langerhans cells can be selectively detected with antibodies against CD1a and langerin. In the reactive isolated pulmonary form, abstinence from tobacco smoking in most patients leads to regression of infiltration and improvement of symptoms. In high-resolution computed tomography (HRCT) the small star-like scars can still be detected even after complete cessation of tobacco smoking. PMID:26289803

  1. Merkel Cell Carcinoma

    Science.gov (United States)

    ... of the Year Award Arnold P. Gold Foundation Humanism in Medicine Award Diversity Mentorship Program Eugene Van ... 300 PUVA treatments. What causes Merkel cell carcinoma? Scientists are still studying what causes this skin cancer. ...

  2. Sickle cell test

    Science.gov (United States)

    Sickledex; Hgb S test ... This test is done to tell if a person has abnormal hemoglobin that causes sickle cell disease and sickle ... and no symptoms, or only mild ones. This test does not tell the difference between these two ...

  3. Photovoltaic solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Nielson, Gregory N; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J

    2014-05-20

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electricity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  4. Photovoltaic solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  5. RSW Cell Centered Grids

    Data.gov (United States)

    National Aeronautics and Space Administration — New cell centered grids are generated to complement the node-centered ones uploaded. Six tarballs containing the coarse, medium, and fine mixed-element and pure...

  6. Metaphyseal giant cell tumor

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, L.F.; Hemais, P.M.P.G.; Aymore, I.L.; Carmo, M.C.R. do; Cunha, M.E.P.R. da; Resende, C.M.C.

    Three cases of metaphyseal giant cell tumor are presented. A review of the literature is done, demostrating the lesion is rare and that there are few articles about it. Age incidence and characteristics of the tumor are discussed.

  7. Plasma Cell Cheilitis

    Directory of Open Access Journals (Sweden)

    Thami Gurvinder P

    1999-01-01

    Full Text Available A case of plasma cell cheilitis with good response to glucocorticoids, is described for its rarity and probable aetiological correlation with habit of use of nasal snuff is discussed.

  8. Targeting tumour Cell Plasticity

    Institute of Scientific and Technical Information of China (English)

    Elizabeth D. WILLIAMS

    2009-01-01

    @@ Her research is focused on understanding the mechanisms of tumour progression and metastasis, particularly in uro-logical carcinomas (bladder and prostate). Tumour cell plasticity, including epithelial-mesenchymal transition, is a cen-tral theme in Dr Williams' work.

  9. Mast cells and company.

    Science.gov (United States)

    Jönsson, Friederike; Daëron, Marc

    2012-01-01

    Classically, allergy depends on IgE antibodies and on high-affinity IgE receptors expressed by mast cells and basophils. This long accepted IgE/FcεRI/mast cell paradigm, on which the definition of immediate hypersensitivity was based in the Gell and Coomb's classification, appears too reductionist. Recently accumulated evidence indeed requires that not only IgE but also IgG antibodies, that not only FcεRI but also FcγR of the different types, that not only mast cells and basophils but also neutrophils, monocytes, macrophages, eosinophils, and other myeloid cells be considered as important players in allergy. This view markedly changes our understanding of allergic diseases and, possibly, their treatment.

  10. Metaphyseal giant cell tumor

    International Nuclear Information System (INIS)

    Three cases of metaphyseal giant cell tumor are presented. A review of the literature is done, demostrating the lesion is rare and that there are few articles about it. Age incidence and characteristics of the tumor are discussed. (Author)

  11. Lipocytes (fat cells) (image)

    Science.gov (United States)

    ... to energy output, there is no expansion of fat cells (lipocytes) to accommodate excess. It is only when more calories are taken in than used that the extra fat is stored in the lipocytes and the person ...

  12. CAM and NK Cells

    Directory of Open Access Journals (Sweden)

    Kazuyoshi Takeda

    2004-01-01

    Full Text Available It is believed that tumor development, outgrowth and metastasis are under the surveillance of the immune system. Although both innate and acquired immune systems play roles, innate immunity is the spearhead against tumors. Recent studies have revealed the critical role of natural killer (NK cells in immune surveillance and that NK cell activity is considerably influenced by various agents, such as environmental factors, stress, foods and drugs. Some of these NK cell stimulants have been used in complementary and alternative medicine (CAM since ancient times. Therefore, the value of CAM should be re-evaluated from this point of view. In this review, we overview the intimate correlation between NK cell functions and CAM agents, and discuss possible underlying mechanisms mediating this. In particular, neuro-immune crosstalk and receptors for CAM agents are the most important and interesting candidates for such mechanisms.

  13. Nanodiamond internalization in cells and the cell uptake mechanism

    International Nuclear Information System (INIS)

    Cell type-dependent penetration of nanodiamond in living cells is one of the important factors for using nanodiamond as cellular markers/labels, for drug delivery as well as for other biomedical applications. In this work, internalization of 100 nm nanodiamonds by A549 lung human adenocarcinoma cell, Beas-2b non-tumorigenic human bronchial epithelial cell, and HFL-1 fibroblast-like human fetal lung cell is studied and compared. The penetration of nanodiamond into the cells was observed using confocal fluorescence imaging and Raman imaging methods. Visualization of the nanodiamond in cells allows comparison of the internalization for diamond nanoparticles in cancer A549 cell, non-cancer HFL-1, and Beas-2b cells. The dose-dependent and time-dependent behavior of nanodiamond uptake is observed in both cancer as well as non-cancer cells. The mechanism of nanodiamond uptake by cancer and non-cancer cells is analyzed by blocking different pathways. The uptake of nanodiamond in both cancer and non-cancer cells was found predominantly via clathrin-dependent endocytosis. In spite of observed similarity in the uptake mechanism for cancer and non-cancer cells, the nanodiamond uptake for cancer cell quantitatively exceeds the uptake for non-cancer cells, for the studied cell lines. The observed difference in internalization of nanodiamond by cancer and non-cancer cells is discussed

  14. Nanodiamond internalization in cells and the cell uptake mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Perevedentseva, E. [National Dong Hwa University, Department of Physics (China); Hong, S.-F.; Huang, K.-J. [National Dong Hwa University, Department of Life Sciences (China); Chiang, I.-T.; Lee, C.-Y. [National Dong Hwa University, Department of Physics (China); Tseng, Y.-T. [National Dong Hwa University, Department of Life Sciences (China); Cheng, C.-L., E-mail: clcheng@mail.ndhu.edu.tw [National Dong Hwa University, Department of Physics (China)

    2013-08-15

    Cell type-dependent penetration of nanodiamond in living cells is one of the important factors for using nanodiamond as cellular markers/labels, for drug delivery as well as for other biomedical applications. In this work, internalization of 100 nm nanodiamonds by A549 lung human adenocarcinoma cell, Beas-2b non-tumorigenic human bronchial epithelial cell, and HFL-1 fibroblast-like human fetal lung cell is studied and compared. The penetration of nanodiamond into the cells was observed using confocal fluorescence imaging and Raman imaging methods. Visualization of the nanodiamond in cells allows comparison of the internalization for diamond nanoparticles in cancer A549 cell, non-cancer HFL-1, and Beas-2b cells. The dose-dependent and time-dependent behavior of nanodiamond uptake is observed in both cancer as well as non-cancer cells. The mechanism of nanodiamond uptake by cancer and non-cancer cells is analyzed by blocking different pathways. The uptake of nanodiamond in both cancer and non-cancer cells was found predominantly via clathrin-dependent endocytosis. In spite of observed similarity in the uptake mechanism for cancer and non-cancer cells, the nanodiamond uptake for cancer cell quantitatively exceeds the uptake for non-cancer cells, for the studied cell lines. The observed difference in internalization of nanodiamond by cancer and non-cancer cells is discussed.

  15. Stem cells - biological update and cell therapy progress.

    Science.gov (United States)

    Girlovanu, Mihai; Susman, Sergiu; Soritau, Olga; Rus-Ciuca, Dan; Melincovici, Carmen; Constantin, Anne-Marie; Mihu, Carmen Mihaela

    2015-01-01

    In recent years, the advances in stem cell research have suggested that the human body may have a higher plasticity than it was originally expected. Until now, four categories of stem cells were isolated and cultured in vivo: embryonic stem cells, fetal stem cells, adult stem cells and induced pluripotent stem cells (hiPSCs). Although multiple studies were published, several issues concerning the stem cells are still debated, such as: the molecular mechanisms of differentiation, the methods to prevent teratoma formation or the ethical and religious issues regarding especially the embryonic stem cell research. The direct differentiation of stem cells into specialized cells: cardiac myocytes, neural cells, pancreatic islets cells, may represent an option in treating incurable diseases such as: neurodegenerative diseases, type I diabetes, hematologic or cardiac diseases. Nevertheless, stem cell-based therapies, based on stem cell transplantation, remain mainly at the experimental stages and their major limitation is the development of teratoma and cancer after transplantation. The induced pluripotent stem cells (hiPSCs) represent a prime candidate for future cell therapy research because of their significant self-renewal and differentiation potential and the lack of ethical issues. This article presents an overview of the biological advances in the study of stem cells and the current progress made in the field of regenerative medicine.

  16. Endothelial cells derived from human embryonic stem cells

    Science.gov (United States)

    Levenberg, Shulamit; Golub, Justin S.; Amit, Michal; Itskovitz-Eldor, Joseph; Langer, Robert

    2002-04-01

    Human embryonic stem cells have the potential to differentiate into various cell types and, thus, may be useful as a source of cells for transplantation or tissue engineering. We describe here the differentiation steps of human embryonic stem cells into endothelial cells forming vascular-like structures. The human embryonic-derived endothelial cells were isolated by using platelet endothelial cell-adhesion molecule-1 (PECAM1) antibodies, their behavior was characterized in vitro and in vivo, and their potential in tissue engineering was examined. We show that the isolated embryonic PECAM1+ cells, grown in culture, display characteristics similar to vessel endothelium. The cells express endothelial cell markers in a pattern similar to human umbilical vein endothelial cells, their junctions are correctly organized, and they have high metabolism of acetylated low-density lipoprotein. In addition, the cells are able to differentiate and form tube-like structures when cultured on matrigel. In vivo, when transplanted into SCID mice, the cells appeared to form microvessels containing mouse blood cells. With further studies, these cells could provide a source of human endothelial cells that could be beneficial for potential applications such as engineering new blood vessels, endothelial cell transplantation into the heart for myocardial regeneration, and induction of angiogenesis for treatment of regional ischemia.

  17. Transgelin-2 in B-Cells Controls T-Cell Activation by Stabilizing T Cell - B Cell Conjugates

    Science.gov (United States)

    Chae, Myoung-Won; Kim, Hye-Ran; Kim, Chang-Hyun; Jun, Chang-Duk; Park, Zee-Yong

    2016-01-01

    The immunological synapse (IS), a dynamic and organized junction between T-cells and antigen presenting cells (APCs), is critical for initiating adaptive immunity. The actin cytoskeleton plays a major role in T-cell reorganization during IS formation, and we previously reported that transgelin-2, an actin-binding protein expressed in T-cells, stabilizes cortical F-actin, promoting T-cell activation in response to antigen stimulation. Transgelin-2 is also highly expressed in B-cells, although no specific function has been reported. In this study, we found that deficiency in transgelin-2 (TAGLN2-/-) in B-cells had little effect on B-cell development and activation, as measured by the expression of CD69, MHC class II molecules, and CD80/86. Nevertheless, in B-cells, transgelin-2 accumulated in the IS during the interaction with T-cells. These results led us to hypothesize that transgelin-2 may also be involved in IS stability in B-cells, thereby influencing T-cell function. Notably, we found that transgelin-2 deficiency in B-cells reduced T-cell activation, as determined by the release of IL-2 and interferon-γ and the expression of CD69. Furthermore, the reduced T-cell activation was correlated with reduced B-cell–T-cell conjugate formation. Collectively, these results suggest that actin stability in B-cells during IS formation is critical for the initiation of adaptive T-cell immunity. PMID:27232882

  18. Nonislet Cell Tumor Hypoglycemia

    OpenAIRE

    Johnson Thomas; Salini C. Kumar

    2013-01-01

    Nonislet cell tumor hypoglycemia (NICTH) is a rare cause of hypoglycemia. It is characterized by increased glucose utilization by tissues mediated by a tumor resulting in hypoglycemia. NICTH is usually seen in large mesenchymal tumors including tumors involving the GI tract. Here we will discuss a case, its pathophysiology, and recent advances in the management of NICTH. Our patient was diagnosed with poorly differentiated squamous cell carcinoma of esophagus. He continued to be hypoglycemic ...

  19. Plasma cell leukemia

    OpenAIRE

    Gertz, Moria A.; Buadi, Francis K.

    2010-01-01

    Plasma cell leukemia (PCL) is a rare, yet aggressive plasma cell (PC) neoplasm, variant of multiple myeloma (MM), characterized by high levels of PCs circulating in the peripheral blood. PCL can either originate de novo (primary PCL) or as a secondary leukemic transformation of MM (secondary PCL). Presenting signs and symptoms are similar to those seen in MM such as renal insufficiency, hypercalcemia, lytic bone lesions, anemia, and thrombocytopenia, but can also include hepatomegaly and sple...

  20. Dentinogenic ghost cell tumor

    Directory of Open Access Journals (Sweden)

    Singhaniya Shikha

    2009-01-01

    Full Text Available Dentinogenic ghost cell tumor (DGCT is a rare tumorous form of calcifying odontogenic cyst and only a small number of cases have been described. It is a locally invasive neoplasm that is characterized by ameloblastoma-like epithelial islands, ghost cells and dentinoid. The present report describes a case of a 21-year-old male with a tumor in the posterior region of the mandible, showing features of DGCT.

  1. Parietal cell vagotomy.

    Science.gov (United States)

    Cumberland, V H; Coupland, G A

    1975-07-12

    In a series of 100 consecutive patients who had parietal cell vagotomy performed, no drainage procedure was performed in 56 while 44 were drained. Dumping was significantly less in those who were not drained. All patients were tested for adequacy of vagotomy and for function of the nerve of Latarget at operation. Four patients have had further operations, two for proven recurrent ulcers. Parietal cell vagotomy has given excellent clinical results in this group of patients.

  2. Liquid fuel cells.

    Science.gov (United States)

    Soloveichik, Grigorii L

    2014-01-01

    The advantages of liquid fuel cells (LFCs) over conventional hydrogen-oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented.

  3. NK Cells and Trophoblasts

    OpenAIRE

    Parham, Peter

    2004-01-01

    In placental mammals, viviparity—the production of living young within the mother's body—evolved under the auspices of the immune system. Elements of immunity were incorporated, giving pregnancy a mildly inflammatory character. Formation of the placenta, the organ that feeds the fetus, involves a cooperation between maternal natural killer (NK) cells and fetal trophoblast cells that remodels the blood supply. Recent research reveals that this process and human reproductive success are influen...

  4. Syndecans and cell adhesion

    DEFF Research Database (Denmark)

    Couchman, J R; Chen, L; Woods, A

    2001-01-01

    Now that transmembrane signaling through primary cell-matrix receptors, integrins, is being elucidated, attention is turning to how integrin-ligand interactions can be modulated. Syndecans are transmembrane proteoglycans implicated as coreceptors in a variety of physiological processes, including...... cell adhesion, migration, response to growth factors, development, and tumorigenesis. This review will describe this family of proteoglycans in terms of their structures and functions and their signaling in conjunction with integrins, and indicate areas for future research....

  5. Familial germ cell tumor

    OpenAIRE

    Sanju Cyriac; Rejeev Rajendranath; A. Robert Louis; Sagar, T. G.

    2012-01-01

    Familial testicular germ cell tumors are well known in literature. Only few cases are reported where both brother and sister of the same family suffered from germ cell malignancies. We present a family where the proband is a survivor of ovarian dysgerminoma stage IA. Her elder male sibling became acutely ill and was detected to have disseminated testicular malignancy with grossly elevated markers and vegetations in the mitral valve leaflets. Despite all measures he could not be saved. Presenc...

  6. Langerhans cell histiocytosis

    OpenAIRE

    Aruna, D. R.; G Pushpalatha; Sushma Galgali; Prashanthy,

    2011-01-01

    Langerhans cell histiocytosis (LCH) is a group of rare disorders histologically characterized by the proliferation of Langerhans cells. Multiple organs and systems may be involved by the disease. Typically, there is bone involvement and, less frequently, lesions may be found in the lungs, liver, lymph nodes, skin, and mucosa. Oral soft tissue lesions without bone involvement are rare. We present a case of oral lesions associated with LCH in a young woman.

  7. Pulmonary langerhans cell histiocytosis

    OpenAIRE

    Suri Harpreet S; Yi Eunhee S; Nowakowski Gregorz S; Vassallo Robert

    2012-01-01

    Abstract Pulmonary Langerhans Cell Histiocytosis (PLCH) is a relatively uncommon lung disease that generally, but not invariably, occurs in cigarette smokers. The pathologic hallmark of PLCH is the accumulation of Langerhans and other inflammatory cells in small airways, resulting in the formation of nodular inflammatory lesions. While the overwhelming majority of patients are smokers, mechanisms by which smoking induces this disease are not known, but likely involve a combination of events r...

  8. The Cell Processor

    OpenAIRE

    Hoefler, Torsten

    2006-01-01

    Mainstream processor development is mostly targeted at compatibility and continuity. Thus, the processor market is dominated by x86 compatible CPUs since more than two decades now. Several new concepts tried to gain some market share, but it was not possible to overtake the old compatibility driven concepts. A group of three corporates tries another way to come into the market with a new idea, the cell design. The cell processor is a new try to leverage the increasing amount...

  9. The intestinal stem cell

    OpenAIRE

    Barker, Nick; van de Wetering, Marc; Clevers, Hans

    2008-01-01

    The epithelium of the adult mammalian intestine is in a constant dialog with its underlying mesenchyme to direct progenitor proliferation, lineage commitment, terminal differentiation, and, ultimately, cell death. The epithelium is shaped into spatially distinct compartments that are dedicated to each of these events. While the intestinal epithelium represents the most vigorously renewing adult tissue in mammals, the stem cells that fuel this self-renewal process have been identified only rec...

  10. Intracranial germ cell tumor

    OpenAIRE

    Kreutz, J; Rausin, L.; Weerts, E; Tebache, M; Born, J; Hoyoux, C

    2010-01-01

    Germ cell tumours represent about 3 to 8% of pediatric brain tumours. Occurrence of diabetes insipidus is common in the case of suprasellar germ cell tumors. The diagnosis may be advanced by MRI owing to the location and relatively univocal characteristics of the lesion signal. The existence of a bifocal mass developed in both suprasellar region and pineal zone is highly suggestive of a germinoma. The most important notion is to recognize that at the time of diabetes insipidus diagnosis in a ...

  11. Olfactory ensheathing cell tumor

    Directory of Open Access Journals (Sweden)

    Ippili Kaushal

    2009-01-01

    Full Text Available Olfactory ensheathing cells (OECs are found in the olfactory bulb and olfactory nasal mucosa. They resemble Schwann cells on light and electron microscopy, however, immunohistochemical staining can distinguish between the two. There are less than 30 cases of olfactory groove schwannomas reported in the literature while there is only one reported case of OEC tumor. We report an OEC tumor in a 42-year-old male and discuss the pathology and origin of this rare tumor.

  12. Cell Processing Engineering for Regenerative Medicine : Noninvasive Cell Quality Estimation and Automatic Cell Processing.

    Science.gov (United States)

    Takagi, Mutsumi

    2016-01-01

    The cell processing engineering including automatic cell processing and noninvasive cell quality estimation of adherent mammalian cells for regenerative medicine was reviewed. Automatic cell processing necessary for the industrialization of regenerative medicine was introduced. The cell quality such as cell heterogeneity should be noninvasively estimated before transplantation to patient, because cultured cells are usually not homogeneous but heterogeneous and most protocols of regenerative medicine are autologous system. The differentiation level could be estimated by two-dimensional cell morphology analysis using a conventional phase-contrast microscope. The phase-shifting laser microscope (PLM) could determine laser phase shift at all pixel in a view, which is caused by the transmitted laser through cell, and might be more noninvasive and more useful than the atomic force microscope and digital holographic microscope. The noninvasive determination of the laser phase shift of a cell using a PLM was carried out to determine the three-dimensional cell morphology and estimate the cell cycle phase of each adhesive cell and the mean proliferation activity of a cell population. The noninvasive discrimination of cancer cells from normal cells by measuring the phase shift was performed based on the difference in cytoskeleton density. Chemical analysis of the culture supernatant was also useful to estimate the differentiation level of a cell population. A probe beam, an infrared beam, and Raman spectroscopy are useful for diagnosing the viability, apoptosis, and differentiation of each adhesive cell. PMID:25373455

  13. Mast cells and COPD.

    Science.gov (United States)

    Mortaz, Esmaeil; Folkerts, Gert; Redegeld, Frank

    2011-08-01

    The pathogenesis of chronic obstructive pulmonary disease (COPD) is based on the innate and adaptive inflammatory immune response to the inhalation of toxic particles and gases. Although tobacco smoking is the primary cause of this inhalation injury, many other environmental and occupational exposures contribute to the pathology of COPD. The immune inflammatory changes associated with COPD are linked to a tissue-repair and -remodeling process that increases mucus production and causes emphysematous destruction of the gas-exchanging surface of the lung. The common form of emphysema observed in smokers begins in the respiratory bronchioles near the thickened and narrowed small bronchioles that become the major site of obstruction in COPD. The inflamed airways of COPD patients contain several inflammatory cells including neutrophils, macrophages, T lymphocytes, and dendritic cells. The relative contribution of mast cells to airway injury and remodeling is not well documented. In this review, an overview is given on the possible role of mast cells and their mediators in the pathogenesis of COPD. Activation of mast cells and mast cell signaling in response to exposure to cigarette smoke is further discussed. PMID:21463700

  14. Fuel cell generator

    International Nuclear Information System (INIS)

    A high temperature solid electrolyte fuel cell generator comprising a housing means defining a plurality of chambers including a generator chamber and a combustion products chamber, a porous barrier separating the generator and combustion product chambers, a plurality of elongated annular fuel cells each having a closed end and an open end with the open ends disposed within the combustion product chamber, the cells extending from the open end through the porous barrier and into the generator chamber, a conduit for each cell, each conduit extending into a portion of each cell disposed within the generator chamber, each conduit having means for discharging a first gaseous reactant within each fuel cell, exhaust means for exhausting the combustion product chamber, manifolding means for supplying the first gaseous reactant to the conduits with the manifolding means disposed within the combustion product chamber between the porous barrier and the exhaust means and the manifolding means further comprising support and bypass means for providing support of the manifolding means within the housing while allowing combustion products from the first and a second gaseous reactant to flow past the manifolding means to the exhaust means, and means for flowing the second gaseous reactant into the generator chamber

  15. Fuel cell; Nenryo denchi

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, T. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1999-07-20

    More than 100 sets of phosphoric acid fuel cells (PAFC) have been installed by now, and accumulated operation performance exceeding 40 thousand hours, which is regarded as a development target, has been achieved. Further, there are also PAFCs that have achieved continuous operation performance exceeding 9,000 hours, thus being most approachable to practical use. On the other hand, developments of the solid oxide fuel cells (SOFC) and the molten carbonate fuel cells (MCFC), which operate at high temperatures, have high power generation efficiencies due to the capability of operating associatively with gas turbines or vapor turbines, and may use coal gasified gases as fuels, are carried out for an aim of realizing the practical use at the begging of the 21st century. Further, in recent years, researches and developments of the polymer electrolyte fuel cells (PEFC) have been accelerated mainly in vehicle business for the purpose of using PEFC as power sources for movable bodies, and researches and development for accelerative development of cell stacks and power generation systems are executed. In this paper, situations of the researches and developments in respect to the above-mentioned four kinds of fuel cells are summarily introduced. (NEDO)

  16. Turing patterns inside cells.

    Directory of Open Access Journals (Sweden)

    Damián E Strier

    Full Text Available Concentration gradients inside cells are involved in key processes such as cell division and morphogenesis. Here we show that a model of the enzymatic step catalized by phosphofructokinase (PFK, a step which is responsible for the appearance of homogeneous oscillations in the glycolytic pathway, displays Turing patterns with an intrinsic length-scale that is smaller than a typical cell size. All the parameter values are fully consistent with classic experiments on glycolytic oscillations and equal diffusion coefficients are assumed for ATP and ADP. We identify the enzyme concentration and the glycolytic flux as the possible regulators of the pattern. To the best of our knowledge, this is the first closed example of Turing pattern formation in a model of a vital step of the cell metabolism, with a built-in mechanism for changing the diffusion length of the reactants, and with parameter values that are compatible with experiments. Turing patterns inside cells could provide a check-point that combines mechanical and biochemical information to trigger events during the cell division process.

  17. >Effect of progesterone hormon on cell viability and stem cell activation in dental pulp cells

    OpenAIRE

    Segah Altuntaş; Muhammed Ali Kara; Deniz Selin Aksoy; Zehra Dilşad Çoban; Şefik Güran

    2016-01-01

    Objective: The dental pulp is the part in the center of a tooth made up of living connective tissue and cells called odontoblasts. The vitality of the dentin structure, both during health and after injury, depends on pulp cell activity and the signaling processes that regulate the cell’s behavior. Dental pulp tissue has condensed stem cell activity. Dental pulp stem cells are multipotent stem cells that have the potential to differentiate into a variety of cell types. Several publications hav...

  18. On the cell biology of pit cells, the liver-specific NK cells

    Institute of Scientific and Technical Information of China (English)

    Dian Zhong Luo; David Vermijlen; Bülent Ahishali; Vasilis Triantis; Georgia Plakoutsi; Filip Braet; Karin Vanderkerken; Eddie Wisse

    2000-01-01

    @@ INTRODUCTION Natural killer (NK) cells are functionally defined by their ability to kill certain tumor cells and virusinfected cells without prior sensitization[1]. NK cells comprise about 10% to 15% of lymphocytes in the peripheral blood and most of these cells in human and rat have the morphology of large granular lymphocytes ( LGL )[2]. However, recent studies have demonstrated that small agranular lymphocytes, lacking CD3 expression, have cytolytic activity comparable to NK cells[3].

  19. Involvement of Plant Stem Cells or Stem Cell-Like Cells in Dedifferentiation

    OpenAIRE

    Jiang, Fangwei; Feng, Zhenhua; Liu, Hailiang; Zhu, Jian

    2015-01-01

    Dedifferentiation is the transformation of cells from a given differentiated state to a less differentiated or stem cell-like state. Stem cell-related genes play important roles in dedifferentiation, which exhibits similar histone modification and DNA methylation features to stem cell maintenance. Hence, stem cell-related factors possibly synergistically function to provide a specific niche beneficial to dedifferentiation. During callus formation in Arabidopsis petioles, cells adjacent to pro...

  20. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor

    Science.gov (United States)

    Parks, Kelsey

    2009-01-01

    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  1. Cell supermarket: Adipose tissue as a source of stem cells

    Science.gov (United States)

    Adipose tissue is derived from numerous sources, and in recent years has been shown to provide numerous cells from what seemingly was a population of homogeneous adipocytes. Considering the types of cells that adipose tissue-derived cells may form, these cells may be useful in a variety of clinical ...

  2. Stabilization Of Apoptotic Cells: Generation Of Zombie Cells

    Directory of Open Access Journals (Sweden)

    José A. Sánchez Alcázar

    2015-08-01

    Stabilization of apoptotic cells can be used for reliable detection and quantification of apoptosis in cultured cells and may allow a safer administration of apoptotic cells in clinical applications. Furthermore, it opens new avenues in the functional reconstruction of apoptotic cells for longer preservation.

  3. CellTracks cytometer for detection of circulating tumor cells

    NARCIS (Netherlands)

    Tibbe, A.G.J.; Kooi, van der A.; Groot, de M.R.; Vermes, I.

    2003-01-01

    Introduction: In patients with carcinomas, tumor cells are shed into the circulation. The number of the circulating tumor cells is low and technology is needed that has sufficient sensitivity and specificity to enumerate and characterize these cells. The CellTracks system was developed to provide an

  4. Recognition and Regulation of T Cells by NK Cells

    Science.gov (United States)

    Pallmer, Katharina; Oxenius, Annette

    2016-01-01

    Regulation of T cell responses by innate lymphoid cells (ILCs) is increasingly documented and studied. Direct or indirect crosstalk between ILCs and T cells early during and after T cell activation can affect their differentiation, polarization, and survival. Natural killer (NK) cells that belong to the ILC1 group were initially described for their function in recognizing and eliminating “altered self” and as source of early inflammatory cytokines, most notably type II interferon. Using signals conveyed by various germ-line encoded activating and inhibitory receptors, NK cells are geared to sense sudden cellular changes that can be caused by infection events, malignant transformation, or cellular stress responses. T cells, when activated by TCR engagement (signal 1), costimulation (signal 2), and cytokines (signal 3), commit to a number of cellular alterations, including entry into rapid cell cycling, metabolic changes, and acquisition of effector functions. These abrupt changes may alert NK cells, and T cells might thereby expose themselves as NK cell targets. Here, we review how activated T cells can be recognized and regulated by NK cells and what consequences such regulation bears for T cell immunity in the context of vaccination, infection, or autoimmunity. Conversely, we will discuss mechanisms by which activated T cells protect themselves against NK cell attack and outline the significance of this safeguard mechanism. PMID:27446081

  5. Sponge cell culture? A molecular identification method for sponge cells

    NARCIS (Netherlands)

    Sipkema, D.; Heilig, G.H.J.; Akkermans, A.D.L.; Osinga, R.; Tramper, J.; Wijffels, R.H.

    2003-01-01

    Dissociated sponge cells are easily confused with unicellular organisms. This has been an obstacle in the development of sponge-cell lines. We developed a molecular detection method to identify cells of the sponge Dysidea avara in dissociated cell cultures. The 18S ribosomal RNA gene from a Dysidea

  6. Cell culture models for study of differentiated adipose cells

    OpenAIRE

    Clynes, Martin

    2014-01-01

    Adipose cells are an important source of mesenchymal stem cells and are important for direct use in research on lipid metabolism and obesity. In addition to use of primary cultures, there is increasing interest in other sources of larger numbers of cells, using approaches including induced pluripotent stem cell differentiation and viral immortalisation.

  7. Generation of pancreatic islet cells from human embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG DongHui; JIANG Wei; SHI Yan; DENG HongKui

    2009-01-01

    Efficiently obtaining functional pancreaUc islet cells derived from human embryonic stem (hES) cells not only provides great potential to solve the shortage of islets sources for type I diabetes cell therapy,but also benefits the study of the development of the human pancreas and diabetes pathology. In 2001,hES cells were reported to have the capacity to generate insulin-producing cells by spontaneous differentiation in vitro. Since then, many strategies (such as overexpression of key transcription factors,delivery of key proteins for pancreatic development, co-transplantation of differentiated hES cells along with fetal pancreas, stepwise differentiation by mimicking in vivo pancreatic development) have been employed in order to induce the differentiation of pancreatic islet cells from hES cells. Moreover, patient-specific induced pluripotent stem (iPS) cells can be generated by reprogramming somatic cells.iPS cells have characteristics similar to those of ES cells and offer a new cell source for type I diabetes cell therapy that reduces the risk of immunologic rejection. In this review, we summarize the recent progress made in the differentiation of hES and iPS cells into functional pancreatic islet cells and discuss the challenges for their future study.

  8. Generation of pancreatic islet cells from human embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Efficiently obtaining functional pancreatic islet cells derived from human embryonic stem(hES) cells not only provides great potential to solve the shortage of islets sources for type I diabetes cell therapy,but also benefits the study of the development of the human pancreas and diabetes pathology.In 2001,hES cells were reported to have the capacity to generate insulin-producing cells by spontaneous differentiation in vitro.Since then,many strategies(such as overexpression of key transcription factors,delivery of key proteins for pancreatic development,co-transplantation of differentiated hES cells along with fetal pancreas,stepwise differentiation by mimicking in vivo pancreatic development) have been employed in order to induce the differentiation of pancreatic islet cells from hES cells.Moreover,patient-specific induced pluripotent stem(iPS) cells can be generated by reprogramming somatic cells.iPS cells have characteristics similar to those of ES cells and offer a new cell source for type I diabetes cell therapy that reduces the risk of immunologic rejection.In this review,we summarize the recent progress made in the differentiation of hES and iPS cells into functional pancreatic islet cells and discuss the challenges for their future study.

  9. Determinants of leader cells in collective cell migration.

    NARCIS (Netherlands)

    Khalil, A.; Friedl, P.H.A.

    2010-01-01

    Collective migration is a basic mechanism of cell translocation during morphogenesis, wound repair and cancer invasion. Collective movement requires cells to retain cell-cell contacts, exhibit group polarization with defined front-rear asymmetry, and consequently move as one multicellular unit. Depe

  10. Programmed cell death and cell extrusion in rat duodenum

    DEFF Research Database (Denmark)

    Schauser, Kirsten; Larsson, Lars-Inge

    2005-01-01

    The small intestinal epithelium is continously renewed through a balance between cell division and cell loss. How this balance is achieved is uncertain. Thus, it is unknown to what extent programmed cell death (PCD) contributes to intestinal epithelial cell loss. We have used a battery of techniq...

  11. Glioma cell dispersion is driven by α5 integrin-mediated cell-matrix and cell-cell interactions.

    Science.gov (United States)

    Blandin, Anne-Florence; Noulet, Fanny; Renner, Guillaume; Mercier, Marie-Cécile; Choulier, Laurence; Vauchelles, Romain; Ronde, Philippe; Carreiras, Franck; Etienne-Selloum, Nelly; Vereb, Gyorgy; Lelong-Rebel, Isabelle; Martin, Sophie; Dontenwill, Monique; Lehmann, Maxime

    2016-07-01

    Glioblastoma multiform (GBM) is the most common and most aggressive primary brain tumor. The fibronectin receptor, α5 integrin is a pertinent novel therapeutic target. Despite numerous data showing that α5 integrin support tumor cell migration and invasion, it has been reported that α5 integrin can also limit cell dispersion by increasing cell-cell interaction. In this study, we showed that α5 integrin was involved in cell-cell interaction and gliomasphere formation. α5-mediated cell-cell cohesion limited cell dispersion from spheroids in fibronectin-poor microenvironment. However, in fibronectin-rich microenvironment, α5 integrin promoted cell dispersion. Ligand-occupied α5 integrin and fibronectin were distributed in fibril-like pattern at cell-cell junction of evading cells, forming cell-cell fibrillar adhesions. Activated focal adhesion kinase was not present in these adhesions but was progressively relocalized with α5 integrin as cell migrates away from the spheroids. α5 integrin function in GBM appears to be more complex than previously suspected. As GBM overexpressed fibronectin, it is most likely that in vivo, α5-mediated dissemination from the tumor mass overrides α5-mediated tumor cell cohesion. In this respect, α5-integrin antagonists may be useful to limit GBM invasion in brain parenchyma. PMID:27063097

  12. Bone marrow cells differentiation into organ cells using stem cell therapy.

    Science.gov (United States)

    Yang, Y-J; Li, X-L; Xue, Y; Zhang, C-X; Wang, Y; Hu, X; Dai, Q

    2016-07-01

    Bone marrow cells (BMC) are progenitors of bone, cartilage, skeletal tissue, the hematopoiesis-supporting stroma and adipocyte cells. BMCs have the potential to differentiate into neural cells, cardiac myocytes, liver hepatocytes, chondrocytes, renal, corneal, blood, and myogenic cells. The bone marrow cell cultures from stromal and mesenchymal cells are called multipotent adult progenitor cells (MAPCs). MAPCs can differentiate into mesenchymal cells, visceral mesoderm, neuroectoderm and endoderm in vitro. It has been shown that the stem cells derived from bone marrow cells (BMCs) can regenerate cardiac myocytes after myocardial infarction (MI). Adult bone marrow mesenchymal stem cells have the ability to regenerate neural cells. Neural stem/progenitor cells (NS/PC) are ideal for treating central nervous system (CNS) diseases, such as Alzheimer's, Parkinson's and Huntington disease. However, there are important ethical issues about the therapeutic use of stem cells. Neurons, cardiac myocytes, hepatocytes, renal cells, blood cells, chondrocytes and adipocytes regeneration from BMCs are very important in disease control. It is known that limbal epithelial stem cells in the cornea can repair the eye sight and remove symptoms of blindness. Stem cell therapy (SCT) is progressing well in animal models, but the use of SCT in human remains to be explored further.

  13. β-Cell regeneration through the transdifferentiation of pancreatic cells: Pancreatic progenitor cells in the pancreas.

    Science.gov (United States)

    Kim, Hyo-Sup; Lee, Moon-Kyu

    2016-05-01

    Pancreatic progenitor cell research has been in the spotlight, as these cells have the potential to replace pancreatic β-cells for the treatment of type 1 and 2 diabetic patients with the absence or reduction of pancreatic β-cells. During the past few decades, the successful treatment of diabetes through transplantation of the whole pancreas or isolated islets has nearly been achieved. However, novel sources of pancreatic islets or insulin-producing cells are required to provide sufficient amounts of donor tissues. To overcome this limitation, the use of pancreatic progenitor cells is gaining more attention. In particular, pancreatic exocrine cells, such as duct epithelial cells and acinar cells, are attractive candidates for β-cell regeneration because of their differentiation potential and pancreatic lineage characteristics. It has been assumed that β-cell neogenesis from pancreatic progenitor cells could occur in pancreatic ducts in the postnatal stage. Several studies have shown that insulin-producing cells can arise in the duct tissue of the adult pancreas. Acinar cells also might have the potential to differentiate into insulin-producing cells. The present review summarizes recent progress in research on the transdifferentiation of pancreatic exocrine cells into insulin-producing cells, especially duct and acinar cells. PMID:27330712

  14. Border cells versus border-like cells: are they alike?

    Science.gov (United States)

    Driouich, Azeddine; Durand, Caroline; Cannesan, Marc-Antoine; Percoco, Giuseppe; Vicré-Gibouin, Maité

    2010-09-01

    Roots of many plants are known to produce large numbers of 'border' cells that play a central role in root protection and the interaction of the root with the rhizosphere. Unlike border cells, border-like cells were described only recently in the model plant Arabidopsis thaliana and other Brassicaceae species and very little is known about the functional properties of border-like cells as compared with 'classical' border cells. To stimulate discussion and future research on this topic, the function of border cells and the way border-like cells are organized, maintained, and possibly involved in plant protection is discussed here.

  15. Single Cell Oncogenesis

    Science.gov (United States)

    Lu, Xin

    It is believed that cancer originates from a single cell that has gone through generations of evolution of genetic and epigenetic changes that associate with the hallmarks of cancer. In some cancers such as various types of leukemia, cancer is clonal. Yet in other cancers like glioblastoma (GBM), there is tremendous tumor heterogeneity that is likely to be caused by simultaneous evolution of multiple subclones within the same tissue. It is obvious that understanding how a single cell develops into a clonal tumor upon genetic alterations, at molecular and cellular levels, holds the key to the real appreciation of tumor etiology and ultimate solution for therapeutics. Surprisingly very little is known about the process of spontaneous tumorigenesis from single cells in human or vertebrate animal models. The main reason is the lack of technology to track the natural process of single cell changes from a homeostatic state to a progressively cancerous state. Recently, we developed a patented compound, photoactivatable (''caged'') tamoxifen analogue 4-OHC and associated technique called optochemogenetic switch (OCG switch), which we believe opens the opportunity to address this urgent biological as well as clinical question about cancer. We propose to combine OCG switch with genetically engineered mouse models of head and neck squamous cell carcinoma and high grade astrocytoma (including GBM) to study how single cells, when transformed through acute loss of tumor suppressor genes PTEN and TP53 and gain of oncogenic KRAS, can develop into tumor colonies with cellular and molecular heterogeneity in these tissues. The abstract is for my invited talk in session ``Beyond Darwin: Evolution in Single Cells'' 3/18/2016 11:15 AM.

  16. Cell cycle and cell signal transduction in marine phytoplankton

    Institute of Scientific and Technical Information of China (English)

    LIU Jingwen; JIAO Nianzhi; CAI Huinong

    2006-01-01

    As unicellular phytoplankton, the growth of a marine phytoplankton population results directly from the completion of a cell cycle, therefore, cell-environment communication is an important way which involves signal transduction pathways to regulate cell cycle progression and contribute to growth, metabolism and primary production and respond to their surrounding environment in marine phytoplankton. Cyclin-CDK and CaM/Ca2+ are essentially key regulators in control of cell cycle and signal transduction pathway, which has important values on both basic research and applied biotechnology. This paper reviews progress made in this research field, which involves the identification and characterization of cyclins and cell signal transduction system, cell cycle control mechanisms in marine phytoplankton cells, cell cycle proteins as a marker of a terminal event to estimate the growth rate of phytoplankton at the species level, cell cycle-dependent toxin production of toxic algae and cell cycle progression regulated by environmental factors.

  17. Asymmetric cell division during T cell development controls downstream fate

    Science.gov (United States)

    Pham, Kim; Shimoni, Raz; Charnley, Mirren; Ludford-Menting, Mandy J.; Hawkins, Edwin D.; Ramsbottom, Kelly; Oliaro, Jane; Izon, David; Ting, Stephen B.; Reynolds, Joseph; Lythe, Grant; Molina-Paris, Carmen; Melichar, Heather; Robey, Ellen; Humbert, Patrick O.; Gu, Min

    2015-01-01

    During mammalian T cell development, the requirement for expansion of many individual T cell clones, rather than merely expansion of the entire T cell population, suggests a possible role for asymmetric cell division (ACD). We show that ACD of developing T cells controls cell fate through differential inheritance of cell fate determinants Numb and α-Adaptin. ACD occurs specifically during the β-selection stage of T cell development, and subsequent divisions are predominantly symmetric. ACD is controlled by interaction with stromal cells and chemokine receptor signaling and uses a conserved network of polarity regulators. The disruption of polarity by deletion of the polarity regulator, Scribble, or the altered inheritance of fate determinants impacts subsequent fate decisions to influence the numbers of DN4 cells arising after the β-selection checkpoint. These findings indicate that ACD enables the thymic microenvironment to orchestrate fate decisions related to differentiation and self-renewal. PMID:26370500

  18. Cell proliferation alterations in Chlorella cells under stress conditions

    International Nuclear Information System (INIS)

    Very little is known about growth and proliferation in relation to the cell cycle regulation of algae. The lack of knowledge is even greater when referring to the potential toxic effects of pollutants on microalgal cell division. To assess the effect of terbutryn, a triazine herbicide, on the proliferation of the freshwater microalga Chlorella vulgaris three flow cytometric approaches were used: (1) in vivo cell division using 5-,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) staining was measured, (2) the growth kinetics were determined by cytometric cell counting and (3) cell viability was evaluated with the membrane-impermeable double-stranded nucleic acid stain propidium iodide (PI). The results obtained in the growth kinetics study using CFSE to identify the microalgal cell progeny were consistent with those determined by cytometric cell counting. In all C. vulgaris cultures, each mother cell had undergone only one round of division through the 96 h of assay and the cell division occurred during the dark period. Cell division of the cultures exposed to the herbicide was asynchronous. Terbutryn altered the normal number of daughter cells (4 autospores) obtained from each mother cell. The number was only two in the cultures treated with 250 nM. The duration of the lag phase after the exposure to terbutryn could be dependent on the existence of a critical cell size to activate cytoplasmic division. Cell size, complexity and fluorescence of chlorophyll a of the microalgal cells presented a marked light/dark (day/night) cycle, except in the non-dividing 500 nM cultures, where terbutryn arrested cell division at the beginning of the cycle. Viability results showed that terbutryn has an algastatic effect in C. vulgaris cells at this concentration. The rapid and precise determination of cell proliferation by CFSE staining has allowed us to develop a model for assessing both the cell cycle of C. vulgaris and the in vivo effects of pollutants on growth and

  19. Cell proliferation alterations in Chlorella cells under stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rioboo, Carmen [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain); O' Connor, Jose Enrique [Laboratorio de Citomica, Unidad Mixta de Investigacion CIPF-UVEG, Centro de Investigacion Principe Felipe, Avda. Autopista del Saler, 16, 46013 Valencia (Spain); Prado, Raquel; Herrero, Concepcion [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain); Cid, Angeles, E-mail: cid@udc.es [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain)

    2009-09-14

    Very little is known about growth and proliferation in relation to the cell cycle regulation of algae. The lack of knowledge is even greater when referring to the potential toxic effects of pollutants on microalgal cell division. To assess the effect of terbutryn, a triazine herbicide, on the proliferation of the freshwater microalga Chlorella vulgaris three flow cytometric approaches were used: (1) in vivo cell division using 5-,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) staining was measured, (2) the growth kinetics were determined by cytometric cell counting and (3) cell viability was evaluated with the membrane-impermeable double-stranded nucleic acid stain propidium iodide (PI). The results obtained in the growth kinetics study using CFSE to identify the microalgal cell progeny were consistent with those determined by cytometric cell counting. In all C. vulgaris cultures, each mother cell had undergone only one round of division through the 96 h of assay and the cell division occurred during the dark period. Cell division of the cultures exposed to the herbicide was asynchronous. Terbutryn altered the normal number of daughter cells (4 autospores) obtained from each mother cell. The number was only two in the cultures treated with 250 nM. The duration of the lag phase after the exposure to terbutryn could be dependent on the existence of a critical cell size to activate cytoplasmic division. Cell size, complexity and fluorescence of chlorophyll a of the microalgal cells presented a marked light/dark (day/night) cycle, except in the non-dividing 500 nM cultures, where terbutryn arrested cell division at the beginning of the cycle. Viability results showed that terbutryn has an algastatic effect in C. vulgaris cells at this concentration. The rapid and precise determination of cell proliferation by CFSE staining has allowed us to develop a model for assessing both the cell cycle of C. vulgaris and the in vivo effects of pollutants on growth and

  20. Regulation of Hematopoietic Stem Cells by Bone Marrow Stromal Cells

    OpenAIRE

    Anthony, Bryan; Link, Daniel C.

    2013-01-01

    Hematopoietic stem cells (HSCs) reside in specialized microenvironments (niches) in the bone marrow. The stem cell niche is thought to provide signals that support key HSC properties, including self-renewal capacity and long-term multilineage repopulation ability. The stromal cells that comprise the stem cell niche and the signals that they generate that support HSC function are the subjects of intense investigation. Here we review the complex and diverse stromal cell populations that reside ...

  1. Cell mechanics of alveolar epithelial cells (AECs) and macrophages (AMs).

    OpenAIRE

    Féréol, Sophie; Fodil, Redouane; Pelle, Gabriel; Louis, Bruno; Isabey, Daniel

    2008-01-01

    Cell mechanics provides an integrated view of many biological phenomena which are intimately related to cell structure and function. Because breathing constitutes a sustained motion synonymous with life, pulmonary cells are normally designed to support permanent cyclic stretch without breaking, while receiving mechanical cues from their environment. The authors study the mechanical responses of alveolar cells, namely epithelial cells and macrophages, exposed to well-controlled mechanical stre...

  2. Running with neighbors: coordinating cell migration and cell-cell adhesion.

    Science.gov (United States)

    Collins, Caitlin; Nelson, W James

    2015-10-01

    Coordinated movement of large groups of cells is required for many biological processes, such as gastrulation and wound healing. During collective cell migration, cell-cell and cell-extracellular matrix (ECM) adhesions must be integrated so that cells maintain strong interactions with neighboring cells and the underlying substratum. Initiation and maintenance of cadherin adhesions at cell-cell junctions and integrin-based cell-ECM adhesions require integration of mechanical cues, dynamic regulation of the actin cytoskeleton, and input from specific signaling cascades, including Rho family GTPases. Here, we summarize recent advances made in understanding the interplay between these pathways at cadherin-based and integrin-based adhesions during collective cell migration and highlight outstanding questions that remain in the field. PMID:26201843

  3. Innovative Tools and Technology for Analysis of Single Cells and Cell-Cell Interaction.

    Science.gov (United States)

    Konry, Tania; Sarkar, Saheli; Sabhachandani, Pooja; Cohen, Noa

    2016-07-11

    Heterogeneity in single-cell responses and intercellular interactions results from complex regulation of cell-intrinsic and environmental factors. Single-cell analysis allows not only detection of individual cellular characteristics but also correlation of genetic content with phenotypic traits in the same cell. Technological advances in micro- and nanofabrication have benefited single-cell analysis by allowing precise control of the localized microenvironment, cell manipulation, and sensitive detection capabilities. Additionally, microscale techniques permit rapid, high-throughput, multiparametric screening that has become essential for -omics research. This review highlights innovative applications of microscale platforms in genetic, proteomic, and metabolic detection in single cells; cell sorting strategies; and heterotypic cell-cell interaction. We discuss key design aspects of single-cell localization and isolation in microfluidic systems, dynamic and endpoint analyses, and approaches that integrate highly multiplexed detection of various intracellular species. PMID:26928209

  4. Innovative Tools and Technology for Analysis of Single Cells and Cell-Cell Interaction.

    Science.gov (United States)

    Konry, Tania; Sarkar, Saheli; Sabhachandani, Pooja; Cohen, Noa

    2016-07-11

    Heterogeneity in single-cell responses and intercellular interactions results from complex regulation of cell-intrinsic and environmental factors. Single-cell analysis allows not only detection of individual cellular characteristics but also correlation of genetic content with phenotypic traits in the same cell. Technological advances in micro- and nanofabrication have benefited single-cell analysis by allowing precise control of the localized microenvironment, cell manipulation, and sensitive detection capabilities. Additionally, microscale techniques permit rapid, high-throughput, multiparametric screening that has become essential for -omics research. This review highlights innovative applications of microscale platforms in genetic, proteomic, and metabolic detection in single cells; cell sorting strategies; and heterotypic cell-cell interaction. We discuss key design aspects of single-cell localization and isolation in microfluidic systems, dynamic and endpoint analyses, and approaches that integrate highly multiplexed detection of various intracellular species.

  5. Cell Culturing of Cytoskeleton

    Science.gov (United States)

    2004-01-01

    Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc. has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc. is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.

  6. Alkaline fuel cells applications

    Science.gov (United States)

    Kordesch, Karl; Hacker, Viktor; Gsellmann, Josef; Cifrain, Martin; Faleschini, Gottfried; Enzinger, Peter; Fankhauser, Robert; Ortner, Markus; Muhr, Michael; Aronson, Robert R.

    On the world-wide automobile market technical developments are increasingly determined by the dramatic restriction on emissions as well as the regimentation of fuel consumption by legislation. Therefore there is an increasing chance of a completely new technology breakthrough if it offers new opportunities, meeting the requirements of resource preservation and emission restrictions. Fuel cell technology offers the possibility to excel in today's motive power techniques in terms of environmental compatibility, consumer's profit, costs of maintenance and efficiency. The key question is economy. This will be decided by the costs of fuel cell systems if they are to be used as power generators for future electric vehicles. The alkaline hydrogen-air fuel cell system with circulating KOH electrolyte and low-cost catalysed carbon electrodes could be a promising alternative. Based on the experiences of Kordesch [K. Kordesch, Brennstoffbatterien, Springer, Wien, 1984, ISBN 3-387-81819-7; K. Kordesch, City car with H 2-air fuel cell and lead-battery, SAE Paper No. 719015, 6th IECEC, 1971], who operated a city car hybrid vehicle on public roads for 3 years in the early 1970s, improved air electrodes plus new variations of the bipolar stack assembly developed in Graz are investigated. Primary fuel choice will be a major issue until such time as cost-effective, on-board hydrogen storage is developed. Ammonia is an interesting option. The whole system, ammonia dissociator plus alkaline fuel cell (AFC), is characterised by a simple design and high efficiency.

  7. The Lamportian cell wall

    Energy Technology Data Exchange (ETDEWEB)

    Keiliszewski, M.; Lamport, D. (Michigan State Univ. Plant Research Lab., East Lansing (United States))

    1991-05-01

    The Lamportian Warp-Weft hypothesis suggests a cellulose-extensin interpenetrating network where extensin mechanically couples the load-bearing cellulose microfibrils in a wall matrix that is best described as a microcomposite. This model is based on data gathered from the extensin-rich walls of tomato and sycamore cell suspension culture, wherein extensin precursors are insolubilized into the wall by undefined crosslinks. The authors recent work with cell walls isolated from intact tissue as well as walls from suspension cultured cells of the graminaceous monocots maize and rice, the non-graminaceous monocot asparagus, the primitive herbaceous dicot sugar beet, and the gymnosperm Douglas Fir indicate that although extensins are ubiquitous to all plant species examined, they are not the major structural protein component of most walls examined. Amino acid analyses of intact and HF-treated walls shows a major component neither an HRGP, nor directly comparable to the glycine-rich wall proteins such as those associated with seed coat walls or the 67 mole% glycine-rich proteins cloned from petunia and soybean. Clearly, structural wall protein alternatives to extensin exist and any cell wall model must take that into account. If we assume that extracellular matrices are a priori network structures, then new Hypless' structural proteins in the maize cell wall raise questions about the sort of network these proteins create: the kinds of crosslinks involved; how they are formed; and the roles played by the small amounts of HRGPs.

  8. Carbon nanotube solar cells.

    Directory of Open Access Journals (Sweden)

    Colin Klinger

    Full Text Available We present proof-of-concept all-carbon solar cells. They are made of a photoactive side of predominantly semiconducting nanotubes for photoconversion and a counter electrode made of a natural mixture of carbon nanotubes or graphite, connected by a liquid electrolyte through a redox reaction. The cells do not require rare source materials such as In or Pt, nor high-grade semiconductor processing equipment, do not rely on dye for photoconversion and therefore do not bleach, and are easy to fabricate using a spray-paint technique. We observe that cells with a lower concentration of carbon nanotubes on the active semiconducting electrode perform better than cells with a higher concentration of nanotubes. This effect is contrary to the expectation that a larger number of nanotubes would lead to more photoconversion and therefore more power generation. We attribute this to the presence of metallic nanotubes that provide a short for photo-excited electrons, bypassing the load. We demonstrate optimization strategies that improve cell efficiency by orders of magnitude. Once it is possible to make semiconducting-only carbon nanotube films, that may provide the greatest efficiency improvement.

  9. Pituitary cells in space

    Science.gov (United States)

    Hymer, W. C.; Shellenberger, K.; Grindeland, R.

    1994-01-01

    Cells of the mammalian pituitary gland synthesize and secrete several protein hormones which regulate a number of organ systems throughout the body. These include the musculoskeletal, immune, vascular and endocrine systems. Since changes occur in these tissues as a result of spaceflight, and since pituitary growth hormone (GH) and prolactin (PRL) play a role in the control of these systems on earth, we have focused attention over the last 10 years on GH and PRL cell function during and after spaceflight. The cumulative results of 4 spaceflight missions and several mimicked microgravity experiments establish 1) that production and release of biologically active GH and PRL is repeatedly and significantly attenuated (usually >50%) and 2) that changes in cell morphology also occur. In this paper we describe our results within the framework of methodologies and approaches frequently used to study pituitary cell function on earth. In so doing we hope to develop future flight experiments aimed at uncovering possible microgravity 'sensing systems' within the pituitary cell.

  10. Limbal stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Fernandes Merle

    2004-01-01

    Full Text Available The past two decades have witnessed remarkable progress in limbal stem cell transplantation. In addition to harvesting stem cells from a cadaver or a live related donor, it is now possible to cultivate limbal stem cells in vitro and then transplant them onto the recipient bed. A clear understanding of the basic disease pathology and a correct assessment of the extent of stem cell deficiency are essential. A holistic approach towards management of limbal stem cell deficiency is needed. This also includes management of the underlying systemic disease, ocular adnexal pathology and dry eye. Conjunctival limbal autografts from the healthy contralateral eye are performed for unilateral cases. In bilateral cases, tissue may be harvested from a cadaver or a living related donor; prolonged immunosuppression is needed to avoid allograft rejection in such cases. This review describes the surgical techniques, postoperative treatment regimes (including immunosuppression for allografts, the complications and their management. The short and long-term outcomes of the various modalities reported in the literature are also described.

  11. Seeing Cells on the Web

    Science.gov (United States)

    Liu, Dennis

    2007-01-01

    Cells are the fundamental unit of life and disease; therefore, many avenues of research converge on cells, making images of cells prominent in research and teaching. Much of the progress of modern biomedical science can be tied to advances in our ability to better visualize the functional morphology of cells, including higher resolution imaging,…

  12. Stem cell organization in Arabidopsis

    NARCIS (Netherlands)

    Wendrich, J.R.

    2016-01-01

    Growth of plant tissues and organs depends on continuous production of new cells, by niches of stem cells. Stem cells typically divide to give rise to one differentiating daughter and one non-differentiating daughter. This constant process of self-renewal ensures that the niches of stem cells or mer

  13. Seventh Edition Fuel Cell Handbook

    Energy Technology Data Exchange (ETDEWEB)

    NETL

    2004-11-01

    Provides an overview of fuel cell technology and research projects. Discusses the basic workings of fuel cells and their system components, main fuel cell types, their characteristics, and their development status, as well as a discussion of potential fuel cell applications.

  14. The generation of sex cells

    OpenAIRE

    Deglincerti, Alessia; Brivanlou, Ali H.

    2015-01-01

    Primordial germ cells (PGCs) are the earliest population of germ cells established during embryonic development and constitute the beginning of the totipotent state. A recent study provides a new protocol for the efficient generation of PGC-like cells from human embryonic stem cells, providing an in vitro platform to study human PGC differentiation and specification.

  15. Stem Cell Transplants (For Parents)

    Science.gov (United States)

    ... Story" 5 Things to Know About Zika & Pregnancy Stem Cell Transplants KidsHealth > For Parents > Stem Cell Transplants Print A A A Text Size What's ... Recovery Coping en español Trasplantes de células madre Stem cells are cells in the body that have the ...

  16. Indeterminate cell histocytosis with naïve cells

    Directory of Open Access Journals (Sweden)

    Sheren F Younes

    2013-02-01

    Full Text Available Histiocytoses are a heterogeneous group of disorders characterized by proliferation and accumulation of cells of mononuclearmacrophage system and dendritic cells. Histiocytoses are categorized according to the cell of origin into Langerhans cell histiocytosis (LCH, Non Langerhans cell histiocytoses and indeterminate cell histiocytosis (ICH. ICH is an extraordinary rare neoplastic dendritic cell disorder that has poorly understood histogenesis and pathogenesis. It is characterized by a proliferation of dendritic cells, which mimic Langerhans cells immunophenotypically (positive for CD1a and S-100 protein, but lack Birbeck granules characteristic of Langerhans cells. Twenty-four year-old Egyptian male was presented with reddish brown chest wall nodule. Clinical, histopathological, immunohistochemical and ultrastructure features are typical for ICH. He was in a good state without any evidence of recurrence or metastasis after 24 months follow up. Peculiar histopathological features were detected in the present case. Many unidentified cells with Hematoxylin & Eosin Langerhans like features showed negative staining for S-100, CD1a, Langerin and CD68. In absence of cellular atypia and mitosis, the infiltrating cells showed epidermotropism that was reported once in ICH as well as neural and perineural invasion that were not previously reported. Therefore we prefer using a tentatively designated diagnosis; dendritic cell tumor, not otherwise specified or newly proposed diagnosis (Indeterminate cell histocytosis with naïve cells for the present case.

  17. Dedifferentiated fat cells: A cell source for regenerative medicine

    Institute of Scientific and Technical Information of China (English)

    Medet; Jumabay; Kristina; I; Bostr?m

    2015-01-01

    The identification of an ideal cell source for tissue regeneration remains a challenge in the stem cell field. The ability of progeny cells to differentiate into other cell types is important for the processes of tissue reconstruction and tissue engineering and has clinical, biochemical or molecular implications. The adaptation of stem cells from adipose tissue for use in regenerative medicine has created a new role for adipocytes. Mature adipocytes can easily be isolated from adipose cell suspensions and allowed to dedifferentiate into lipidfree multipotent cells, referred to as dedifferentiated fat(DFAT) cells. Compared to other adult stem cells, the DFAT cells have unique advantages in their abundance, ease of isolation and homogeneity. Under proper condition in vitro and in vivo, the DFAT cells have exhibited adipogenic, osteogenic, chondrogenic, cardiomyogenc, angiogenic, myogenic, and neurogenic potentials. In this review, we first discuss the phenomena of dedifferentiation and transdifferentiation of cells, and then dedifferentiation of adipocytes in particular. Understanding the dedifferentiation process itself may contribute to our knowledge of normal growth processes, as well as mechanisms of disease. Second, we highlight new developments in DFAT cell culture and summarize the current understanding of DFAT cell properties. The unique features of DFAT cells are promising for clinical applications such as tissue regeneration.

  18. New high-speed cell sorting methods for stem cell sorting and breast cancer cell purging

    Science.gov (United States)

    Leary, James F.; McLaughlin, Scott R.; Hokanson, James A.; Rosenblatt, Judah I.

    1998-04-01

    An important problem in clinical medicine is that of positively selecting hematopoietic stem cells or mobilized peripheral blood stem cells for autologous bone marrow transplantation while purging it of contaminating tumor cells. Since both the stem cells to be positively selected and the tumor cells to be purged are relatively rare cells, this poses special problems for their isolation in terms of purity and yield of stem cells, with a high penalty of misclassification for contaminating tumor cells. A model system of tumor cells spiked into bone marrow or blood cells was used to validate the system. Multiparameter data mixtures of human MCF-7 breast cancer cells and human peripheral blood or bone marrow cells were first analyzed by discriminant function analysis. Mathematical methods were developed to assess the relative probabilities of misclassification. Cell identification tags, implemented as additional correlated listmode parameters not used for these analyses, were used to uniquely identify each cell type and to compare classifier results. The performance of classifier systems was also assessed using ROC (`receiver operating characteristics') analysis. Then the classification system was implemented using lookup tables allowing for real-time (in this system approximately 625 microseconds) rapid separation of these cell types. Isolated cell types, purities and yields were assessed by single-cell PCR molecular characterizations.

  19. Enrichment and Function Research of Large Cell Lung Cancer Stem Cell-like Cells

    Directory of Open Access Journals (Sweden)

    Wenke YUE

    2011-06-01

    Full Text Available Background and objective There are no universal method to recognize and screen for lung cancer stem cell markers and indicators. Commonly used methods are flow Cytometry and learning from other cancer stem cell sorting tags to sort lung cancer stem cells. But this method has low specificity screening, the workload is huge. In this study, Serum-free suspension culture was used to enrich lung cancer stem cells, and explore method for lung cancer stem cell screening. Methods Human large lung cancer cell line-L9981 was cultured in serum-free and growth factors added medium, and spheres were obtained. Then the morphological differences of sphere cells and adherent L9981 cells cultured in serum-containing mediums are observed. Cell proliferation was analyzed by Vi-cell viability analyzer; invasion ability was tested by transwell assay; and in vivo tumorigenicity of the two groups of cells was studied in nude mouse. Results Compared with adherent L9981 cells cultured in serum-containing mediums, cells cultured in serum-free medium display sphere appearance. Doubling time of adherent cells and sphere cells are (56.05±1.95 h and (33.00±1.44 h respectively; Spheroid cells had higher invasion and tumorigenicity ability, 5 times and 20 times respectively, than adherent cells. Conclusion Suspension cultured L9981 in Serum-free medium could form spheroid populations. Cells in spheres had higher ability of invasion and Tumorigenicity than adherent L9981 cells. These results indicated spheroid L9981 cells contained enriched lung cancer stem cells, and Serum-free suspension culture can be a candidate method for enriching lung cancer stem cell.

  20. Proton exchange membrane fuel cells

    CERN Document Server

    Qi, Zhigang

    2013-01-01

    Preface Proton Exchange Membrane Fuel CellsFuel CellsTypes of Fuel CellsAdvantages of Fuel CellsProton Exchange Membrane Fuel CellsMembraneCatalystCatalyst LayerGas Diffusion MediumMicroporous LayerMembrane Electrode AssemblyPlateSingle CellStackSystemCell Voltage Monitoring Module (CVM)Fuel Supply Module (FSM)Air Supply Module (ASM)Exhaust Management Module (EMM)Heat Management Module (HMM)Water Management Module (WMM)Internal Power Supply Module (IPM)Power Conditioning Module (PCM)Communications Module (COM)Controls Module (CM)SummaryThermodynamics and KineticsTheoretical EfficiencyVoltagePo

  1. Cell-specific precursor processing

    DEFF Research Database (Denmark)

    Rehfeld, Jens F; Bundgaard, Jens R

    2010-01-01

    The singular gene for a peptide hormone is expressed not only in a specific endocrine cell type but also in other endocrine cells as well as in entirely different cells such as neurons, adipocytes, myocytes, immune cells, and cells of the sex-glands. The cellular expression pattern for each gene...... varies with development, time and species. Endocrine regulation is, however, based on the release of a given hormone from an endocrine cell to the general circulation from whose cappilaries the hormone reaches the specific target cell elsewhere in the body. The widespread expression of hormone genes in...... different cells and tissues therefore requires control of biogenesis and secretion in order to avoid interference with the function of a specific hormonal peptide from a particular endocrine cell. Several mechanisms are involved in such control, one of them being cell-specific processing of prohormones. The...

  2. Materials as stem cell regulators

    Science.gov (United States)

    Murphy, William L.; McDevitt, Todd C.; Engler, Adam J.

    2014-06-01

    The stem cell/material interface is a complex, dynamic microenvironment in which the cell and the material cooperatively dictate one another's fate: the cell by remodelling its surroundings, and the material through its inherent properties (such as adhesivity, stiffness, nanostructure or degradability). Stem cells in contact with materials are able to sense their properties, integrate cues via signal propagation and ultimately translate parallel signalling information into cell fate decisions. However, discovering the mechanisms by which stem cells respond to inherent material characteristics is challenging because of the highly complex, multicomponent signalling milieu present in the stem cell environment. In this Review, we discuss recent evidence that shows that inherent material properties may be engineered to dictate stem cell fate decisions, and overview a subset of the operative signal transduction mechanisms that have begun to emerge. Further developments in stem cell engineering and mechanotransduction are poised to have substantial implications for stem cell biology and regenerative medicine.

  3. Trophoblast lineage cells derived from human induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying, E-mail: ying.chen@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Wang, Kai; Chandramouli, Gadisetti V.R. [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Knott, Jason G. [Developmental Epigenetics Laboratory, Department of Animal Science, Michigan State University (United States); Leach, Richard, E-mail: Richard.leach@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Department of Obstetrics, Gynecology and Women’s Health, Spectrum Health Medical Group (United States)

    2013-07-12

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro.

  4. Trophoblast lineage cells derived from human induced pluripotent stem cells

    International Nuclear Information System (INIS)

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro

  5. Solid Oxide Electrolyser Cell

    DEFF Research Database (Denmark)

    Jensen, Søren Højgaard

    Solid oxide fuel cells (SOFCs) produced at Risø National Laboratory was tested as steam electrolysers under various current densities, operating temperatures and steam partial pressures. At 950 °C and a cell voltage of 1.48V the current density was -3.6A/cm2 with app. 30% H2 + 70% H2O in the inlet...... it is possible to achieve a production price of 0.7 US$/kg H2 with an electricity price of 1.3 US¢/kWh. The cell voltage was measured as function of time. In test ofabout two month of duration a long-term degradation was observed. At 850 °C, -0.5 A/cm2 with 50 vol% H2 the degradation rate was app. 20 mV/1000h...

  6. Fuel cell cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Wimer, J.G. [Dept. of Energy, Morgantown, WV (United States); Archer, D.

    1995-08-01

    The U.S. Department of Energy`s Morgantown Energy Technology Center (METC) sponsors the research and development of engineered systems which utilize domestic fuel supplies while achieving high standards of efficiency, economy, and environmental performance. Fuel cell systems are among the promising electric power generation systems that METC is currently developing. Buildings account for 36 percent of U.S. primary energy consumption. Cogeneration systems for commercial buildings represent an early market opportunity for fuel cells. Seventeen percent of all commercial buildings are office buildings, and large office buildings are projected to be one of the biggest, fastest-growing sectors in the commercial building cogeneration market. The main objective of this study is to explore the early market opportunity for fuel cells in large office buildings and determine the conditions in which they can compete with alternative systems. Some preliminary results and conclusions are presented, although the study is still in progress.

  7. Solar cell element

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Akihiko; Matsumoto, Hitoshi; Uda, Hiroshi; Komatsu, Yasumitsu; Ikegami, Kiyoharu.

    1989-05-18

    In the existing CdS/CdTe-based solar cell element, nothing is formed except the component effective for generating electromotive force and the components necessary for leading, collecting and extracting the generated electricity, hence even when the element shows deterioration of its performance during its usage, it has been difficult to analyze the above situation. In addition, it has also a defect that its characteristic such as the transfer efficiency in the neighborhood of its glass substrate in connection also with its manufacturing process. In order to solve the above problematical points, this invention proposes, with regard to a CdS-based solar cell element composed by forming a thin film on its substrate, to make a blank space on the above substrate and form thereon a thin film which composes the solar cell element concerned alone or in a piling up manner. 4 figs.

  8. ELECTROMOTIVE FORCE, EMF (CELLS)

    Energy Technology Data Exchange (ETDEWEB)

    Archer, M.D.; Feldberg, S.W.

    1998-09-16

    The voltage or electric potential difference across the terminals of a cell when no current is drawn from it. The emf of a cell is the sum of the electric potential differences (PDs) produced by a separation of charges (electrons or ions) that can occur at each phase boundary (or interface) in the cell. The magnitude of each PD depends on the chemical nature of the two contacting phases. Thus, at the interface between two different metals, some electrons will have moved from the metal with a higher free energy of electrons to the metal with a lower free energy of electrons. The resultant charge separation will produce a PD (just as charge separation produces a voltage across a capacitor) that, at equilibrium, exactly opposes further electron flow. Similarly, PDs can be produced when electrons partition across a metal/solution interface or metal/solid interface, and when ions partition across a solution/membrane/solution interface.

  9. Characterization of solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, J.; Tuominen, E.; Nybergh, K.; Ezer, Y.; Yli-Koski, M.; Sinkkonen, J. [Helsinki Univ. of Technology (Finland). Dept. of Electrical and Communications Engineering

    1998-12-31

    Photovoltaic research began at the Electron Physics Laboratory of the Helsinki University of Tehnology in 1993, when the laboratory joined the national NEMO 2 research program. During the early stages of the photovoltaic research the main objective was to establish necessary measurement and characterisation routines, as well as to develop the fabrication process. The fabrication process development work has been supported by characterisation and theoretical modelling of the solar cells. Theoretical investigations have been concerned with systematic studies of solar cell parameters, such as diffusion lengths, surface recombination velocities and junction depths. The main result of the modelling and characterisation work is a method which is based on a Laplace transform of the so-called spatial collection efficiency function of the cell. The basic objective of the research has been to develop a fabrication process cheap enough to be suitable for commercial production

  10. Fuel cells in transportation

    Energy Technology Data Exchange (ETDEWEB)

    Erdmann, G. [Technische Univ., Berlin (Germany); Hoehlein, B. [Research Center Juelich (Germany)

    1996-12-01

    A promising new power source for electric drive systems is the fuel cell technology with hydrogen as energy input. The worldwide fuel cell development concentrates on basic research efforts aiming at improving this new technology and at developing applications that might reach market maturity in the very near future. Due to the progress achieved, the interest is now steadily turning to the development of overall systems such as demonstration plants for different purposes: electricity generation, drive systems for road vehicles, ships and railroads. This paper does not present results concerning the market potential of fuel cells in transportation but rather addresses some questions and reflections that are subject to further research of both engineers and economists. Some joint effort of this research will be conducted under the umbrella of the IEA Implementing Agreement 026 - Annex X, but there is a lot more to be done in this challenging but also promising fields. (EG) 18 refs.

  11. Welded solar cell interconnection

    Science.gov (United States)

    Stofel, E. J.; Browne, E. R.; Meese, R. A.; Vendura, G. J.

    1982-01-01

    The efficiency of the welding of solar-cell interconnects is compared with the efficiency of soldering such interconnects, and the cases in which welding may be superior are examined. Emphasis is placed on ultrasonic welding; attention is given to the solar-cell welding machine, the application of the welding process to different solar-cell configurations, producibility, and long-life performance of welded interconnects. Much of the present work has been directed toward providing increased confidence in the reliability of welding using conditions approximating those that would occur with large-scale array production. It is concluded that there is as yet insufficient data to determine which of three methods (soldering, parallel gap welding, and ultrasonic welding) provides the longest-duration solar panel life.

  12. Human leukaemic cells

    International Nuclear Information System (INIS)

    The results of the determination of trace elements in nucleic acids and histones in human leukaemic cells by activation analysis are reported. The Cr2+, Fe2+, Zn2+, Co2+ and Sb2+ content of DNA and RNA of leukaemic cells compared to that of lymphocytes from a patient with infectious mononucleosis or a normal donor are shown tabulated. Similar comparisons are shown for the same trace metal content of histones isolated from the same type of cells. It is felt that the results afford further interesting speculation that trace metals may be involved in the interactions between histones and DNA (especially at the binding sites of histones to DNA), which affect transcription characteristics. (U.K.)

  13. Stem cell therapy for diabetes

    OpenAIRE

    Lee, K. O.; Gan, S U; Calne, R Y

    2012-01-01

    Stem cell therapy holds immense promise for the treatment of patients with diabetes mellitus. Research on the ability of human embryonic stem cells to differentiate into islet cells has defined the developmental stages and transcription factors involved in this process. However, the clinical applications of human embryonic stem cells are limited by ethical concerns, as well as the potential for teratoma formation. As a consequence, alternative forms of stem cell therapies, such as induced plu...

  14. Radiosensitivity of mesothelioma cell lines

    International Nuclear Information System (INIS)

    The present study was carried out in order to examine the radiosensitivity of malignant pleural mesothelioma cell lines. Cell kinetics, radiation-induced delay of the cell cycle and DNA ploidy of the cell lines were also determined. For comparison an HeLa and a human foetal fibroblast cell line were simultaneously explored. Six previously cytogenetically and histologically characterized mesothelioma tumor cell lines were applied. A rapid tiazolyl blue microtiter (MTT) assay was used to analyze radiosensitivity and cell kinetics and DNA ploidy of the cultured cells were determined by flow cytometry. The survival fraction after a dose of 2 Gy (SF2), parameters α and β of the linear quadratic model (LQ-model) and mean inactivation dose (DMID) were also estimated. The DNA index of four cell lines equaled 1.0 and two cell lines equaled 1.5 and 1.6. Different mesothelioma cell lines showed a great variation in radiosensitivity. Mean survival fraction after a radiation dose of 2 Gy (SF2) was 0.60 and ranged from 0.36 to 0.81 and mean α value was 0.26 (range 0.48-0.083). The SF2 of the most sensitive diploid mesothelioma cell line was 0.36: Less than that of the foetal fibroblast cell line (0.49). The survival fractions (0.81 and 0.74) of the two most resistant cell lines, which also were aneuploid, were equal to that of the HeLa cell line (0.78). The α/β ratios of the most sensitive cell lines were almost an order of magnitude greater than those of the two most resistant cell lines. Radiation-induced delay of the most resistant aneuploid cell line was similar to that of HeLa cells but in the most sensitive (diploid cells) there was practically no entry into the G1 phase following the 2 Gy radiation dose during 36 h. (orig.)

  15. Stem cell organization in Arabidopsis

    OpenAIRE

    Wendrich, J.R.

    2016-01-01

    Growth of plant tissues and organs depends on continuous production of new cells, by niches of stem cells. Stem cells typically divide to give rise to one differentiating daughter and one non-differentiating daughter. This constant process of self-renewal ensures that the niches of stem cells or meristems stay active throughout plant-life. Specification of stem cells occurs very early during development of the emrbyo and they are maintained during later stages. The Arabidopsis embryo is a hig...

  16. Dense pattern optical multipass cell

    Science.gov (United States)

    Silver, Joel A [Santa Fe, NM

    2009-01-13

    A multiple pass optical cell and method comprising providing a pair of opposed cylindrical mirrors having curved axes with substantially equal focal lengths, positioning an entrance hole for introducing light into the cell and an exit hole for extracting light from the cell, wherein the entrance hole and exit hole are coextensive or non-coextensive, introducing light into the cell through the entrance hole, and extracting light from the cell through the exit hole.

  17. Characterization of cells in cork

    Science.gov (United States)

    Pina, P.; Fortes, M. A.

    1996-09-01

    Various topological and metric properties of the cells in the phelogen of the cork oak have been measured in tangential sections of cork by image analysis methods. These include the fractions 0022-3727/29/9/041/img5 of cells with i sides (i-cells), the fractions 0022-3727/29/9/041/img6 of adjacencies between i- and k-cells and various distributions of cell areas in relation to topology.

  18. NK cell-released exosomes

    OpenAIRE

    Fais, Stefano

    2013-01-01

    We have recently reported that human natural killer (NK) cells release exosomes that express both NK-cell markers and cytotoxic molecules. Similar results were obtained with circulating exosomes from human healthy donors. Both NK-cell derived and circulating exosomes exerted a full functional activity and killed both tumor and activated immune cells. These findings indicate that NK-cell derived exosomes might constitute a new promising therapeutic tool.

  19. Photoelectrochemical cell with nondissolving anode

    Science.gov (United States)

    Ellis, A. B.; Kaiser, S. W.; Wrighton, M. S.

    1980-01-01

    Improved electrolytic cells have efficiencies comparable to those of best silicon solar cells but are potentially less expensive to manufacture. Cells consist of light-sensitive n-type semiconductor anode and metallic cathode immersed in electrolytic solution. Reversible redox cells produce no chemical change in electrolyte and stabilize anode against dissolving. Cell can produce more than 500 mW of power per square centimeter of anode area at output voltage of 0.4 V.

  20. Interband Cascade Photovoltaic Cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Rui Q. [Univ. of Oklahoma, Norman, OK (United States); Santos, Michael B. [Univ. of Oklahoma, Norman, OK (United States); Johnson, Matthew B. [Univ. of Oklahoma, Norman, OK (United States)

    2014-09-24

    In this project, we are performing basic and applied research to systematically investigate our newly proposed interband cascade (IC) photovoltaic (PV) cells [1]. These cells follow from the great success of infrared IC lasers [2-3] that pioneered the use of quantum-engineered IC structures. This quantum-engineered approach will enable PV cells to efficiently convert infrared radiation from the sun or other heat source, to electricity. Such cells will have important applications for more efficient use of solar energy, waste-heat recovery, and power beaming in combination with mid-infrared lasers. The objectives of our investigations are to: achieve extensive understanding of the fundamental aspects of the proposed PV structures, develop the necessary knowledge for making such IC PV cells, and demonstrate prototype working PV cells. This research will focus on IC PV structures and their segments for utilizing infrared radiation with wavelengths from 2 to 5 μm, a range well suited for emission by heat sources (1,000-2,000 K) that are widely available from combustion systems. The long-term goal of this project is to push PV technology to longer wavelengths, allowing for relatively low-temperature thermal sources. Our investigations address material quality, electrical and optical properties, and their interplay for the different regions of an IC PV structure. The tasks involve: design, modeling and optimization of IC PV structures, molecular beam epitaxial growth of PV structures and relevant segments, material characterization, prototype device fabrication and testing. At the end of this program, we expect to generate new cutting-edge knowledge in the design and understanding of quantum-engineered semiconductor structures, and demonstrate the concepts for IC PV devices with high conversion efficiencies.

  1. The Stem Cell Conundrum

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ At the beginning of this year, Kelly Reynolds,a US-national diagnosed with amyotrophic lateral sclerosis (ALS), became the one of the latest overseas patient to undergo stem cell treatment at the Nanshan Hospital in Shenzhen.Confined to a wheelchair and with limited use of his hands,the 39-year old received four fetal stem cell injections over a three-week period. So far,the results have been positive and Reynolds, acording to his personal blog page, is upbeat about the long-term benefits.

  2. Optoelectronics of solar cells

    CERN Document Server

    Smestad, Greg P

    2002-01-01

    With concerns about worldwide environmental security, global warming, and climate change due to emissions of carbon dioxide from the burning of fossil fuels, it is desirable to have a wide range of energy technologies in a nation's portfolio. Photovoltaics, or solar cells, are a viable option as a nonpolluting renewable energy source. This text is designed to be an overview of photovoltaic solar cells for those in the fields of optics and optical engineering, as well as those who are interested in energy policy, economics, and the requirements for efficient photo-to-electric energy conversion.

  3. Rectenna solar cells

    CERN Document Server

    Moddel, Garret

    2013-01-01

    Rectenna Solar Cells discusses antenna-coupled diode solar cells, an emerging technology that has the potential to provide ultra-high efficiency, low-cost solar energy conversion. This book will provide an overview of solar rectennas, and provide thorough descriptions of the two main components: the diode, and the optical antenna. The editors discuss the science, design, modeling, and manufacturing of the antennas coupled with the diodes. The book will provide concepts to understanding the challenges, fabrication technologies, and materials required to develop rectenna structures. Written by e

  4. Silicon heterojunction solar cells

    CERN Document Server

    Fahrner, W R; Neitzert, H C

    2006-01-01

    The world of today must face up to two contradictory energy problems: on the one hand, there is the sharply growing consumer demand in countries such as China and India. On the other hand, natural resources are dwindling. Moreover, many of those countries which still possess substantial gas and oil supplies are politically unstable. As a result, renewable natural energy sources have received great attention. Among these, solar-cell technology is one of the most promising candidates. However, there still remains the problem of the manufacturing costs of such cells. Many attempts have been made

  5. Granular Cell Schwannoma

    Directory of Open Access Journals (Sweden)

    Dheepa R

    2004-01-01

    Full Text Available An 11 year old female child had a small painful spot over the scalp of 4 months duration. Earlier, she had undergone a local excision for a similar problem, but it had recurred at the same site after a few months. Examination revealed a skin colored sessile tender firm papule of 3 mm size on the right parietal region. Excision biopsy showed broad fascicles of tumor cells with eosinopilic cytoplasmic granules infiltrating the dermis amongst the collagen bundles, which was consistent with granular cell schwannoma.

  6. Characterization of solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, J.; Tuominen, E.; Nybergh, K.; Ezer, Y.; Yli-Koski, M.; Sinkkonen, J. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Electrical and Communications Engineering

    1998-10-01

    Photovoltaic research in the Electron Physics Laboratory started in 1993, when laboratory joined the national TEKES/NEMO 2 research program. Since the beginning of the project, characterization as well as experimentally orientated development of the fabrication process of the solar cells were carried out parallery. The process development research started by the initiatives of the Finnish industry. At the moment a large amount of the laboratory personnel works on solar cell research and the financing comes mainly from external projects. The funding for the research has come from TEKES, Ministry of Education, Finnish Academy, GETA graduate school, special equipment grants of the university, and from the laboratory

  7. Clear cell chondrosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R.; David, R.; Cierney, G. III

    1985-01-01

    The clinical, radiologic, and histopathologic features of three cases of clear cell chondrosarcoma are described. On radiographs, this rather benign-appearing tumor resembles a chondroblastoma when it occurs at the end of a long bone, and may occasionally show a calcified matrix. However, it has distinctive tumor cells with a centrally placed vesicular nucleus surrounded by clear cytoplasm. The lesion has a low-grade malignancy and is amenable to en bloc surgical resection, which results in a much better prognosis than that of conventional chondrosarcoma.

  8. Epidermal stem cell dynamics

    OpenAIRE

    Sieber-Blum, Maya

    2011-01-01

    Wong and Reiter have explored the possibility that hair follicle stem cells can give rise to basal cell carcinoma (BCC). They expressed in mice an inducible human BCC-derived oncogenic allele of Smoothened, SmoM2, under the control of either the cytokeratin 14 (K14) or cytokeratin 15 (K15) promoter. Smoothened encodes a G-protein-coupled receptor protein in the hedgehog pathway, the misregulation of which is implicated in BCC and other human cancers. Chronic injury is thought to be a contribu...

  9. Microfluidic Cell Culture Device

    Science.gov (United States)

    Takayama, Shuichi (Inventor); Cabrera, Lourdes Marcella (Inventor); Heo, Yun Seok (Inventor); Smith, Gary Daniel (Inventor)

    2014-01-01

    Microfluidic devices for cell culturing and methods for using the same are disclosed. One device includes a substrate and membrane. The substrate includes a reservoir in fluid communication with a passage. A bio-compatible fluid may be added to the reservoir and passage. The reservoir is configured to receive and retain at least a portion of a cell mass. The membrane acts as a barrier to evaporation of the bio-compatible fluid from the passage. A cover fluid may be added to cover the bio-compatible fluid to prevent evaporation of the bio-compatible fluid.

  10. Carbon Nanotube Solar Cells

    OpenAIRE

    Klinger, Colin; Patel, Yogeshwari; Postma, Henk W. Ch.

    2012-01-01

    We present proof-of-concept all-carbon solar cells. They are made of a photoactive side of predominantly semiconducting nanotubes for photoconversion and a counter electrode made of a natural mixture of carbon nanotubes or graphite, connected by a liquid electrolyte through a redox reaction. The cells do not require rare source materials such as In or Pt, nor high-grade semiconductor processing equipment, do not rely on dye for photoconversion and therefore do not bleach, and are easy to fabr...

  11. Fuel cell engineering

    CERN Document Server

    Sundmacher

    2012-01-01

    Fuel cells are attractive electrochemical energy converters featuring potentially very high thermodynamic efficiency factors. The focus of this volume of Advances in Chemical Engineering is on quantitative approaches, particularly based on chemical engineering principles, to analyze, control and optimize the steady state and dynamic behavior of low and high temperature fuel cells (PEMFC, DMFC, SOFC) to be applied in mobile and stationary systems. * Updates and informs the reader on the latest research findings using original reviews * Written by leading industry experts and scholars * Review

  12. Development of neural precursor cells from mouse embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    WU Xuan; LI Hai-di; Li Shu-nong; XU Hai-wei; XU Ling

    2001-01-01

    Objective: To explore the serum-free culture conditions for differentiating mouse embryonic stem cells (ES cells)into neural precursor cells (NPC) and compare the effects of human embryonic fibroblasts (HEF) as the feeder layer of ES with that of mouse embryonic fibroblasts (MEF)in vitro. Methods: Mouse ES cells were cultured in or not in feeder layer cells medium containing or not leukemia inhibitory factor to suppress their differentiation. Immunocytochemical method was used to identify NPC by detecting nestin antigen and alkaline phosphatase. Results: The ES cells cultured in HEF were positive to alkaline phosphatase. Serum-free medium allowed the differentiation of ES cells into NPC. Conclusion:HEF could replace MEF and keep the undifferentiated condition of ES cells with more benefits. NPC of high purity could be cultured from ES cells by serum-free culture method.

  13. Industrial n-type solar cells with >20% cell efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Romijn, I.G.; Anker, J.; Burgers, A.R.; Gutjahr, A.; Koppes, M.; Kossen, E.J.; Lamers, M.W.P.E.; Heurtault, Benoit; Saynova-Oosterling, D.S.; Tool, C.J.J. [ECN Solar Energy, Petten (Netherlands)

    2013-03-15

    To realize high efficiencies at low costs, ECN has developed the n-Pasha solar cell concept. The n-Pasha cell concept is a bifacial solar cell concept on n-Cz base material, with which average efficiencies of above 20% have been demonstrated. In this paper recent developments at ECN to improve the cost of ownership (lower Euro/Wp) of the n-Pasha cell concept are discussed. Two main drivers for the manufacturing costs of n-type solar cells are addressed: the n-type Cz silicon material and the silver consumption. We show that a large resistivity range between 2 and 8 cm can be tolerated for high cell efficiency, and that the costs due to the silver metallization can be significantly reduced while increasing the solar cell efficiency. Combining the improved efficiency and cost reduction makes the n-Pasha cell concept a very cost effective solution to manufacture high efficient solar cells and modules.

  14. Colorectal Cancer Stem Cells and Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, Veronica [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Gaggianesi, Miriam [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Department of Cellular and Molecular Oncology, IRCCS Fondazione Salvatore Maugeri, Via Salvatore Maugeri, 27100 Pavia, PV (Italy); Spina, Valentina; Iovino, Flora [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Dieli, Francesco [Departement of Biopathology and Medicine Biotechnologies, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Stassi, Giorgio, E-mail: giorgio.stassi@unipa.it [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Department of Cellular and Molecular Oncology, IRCCS Fondazione Salvatore Maugeri, Via Salvatore Maugeri, 27100 Pavia, PV (Italy); Todaro, Matilde [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy)

    2011-04-11

    Nowadays it is reported that, similarly to other solid tumors, colorectal cancer is sustained by a rare subset of cancer stem–like cells (CSCs), which survive conventional anticancer treatments, thanks to efficient mechanisms allowing escape from apoptosis, triggering tumor recurrence. To improve patient outcomes, conventional anticancer therapies have to be replaced with specific approaches targeting CSCs. In this review we provide strong support that BMP4 is an innovative therapeutic approach to prevent colon cancer growth increasing differentiation markers expression and apoptosis. Recent data suggest that in colorectal CSCs, protection from apoptosis is achieved by interleukin-4 (IL-4) autocrine production through upregulation of antiapoptotic mediators, including survivin. Consequently, IL-4 neutralization could deregulate survivin expression and localization inducing chemosensitivity of the colon CSCs pool.

  15. Fuel Cell Testing - Degradation of Fuel Cells and its Impact on Fuel Cell Applications

    OpenAIRE

    Pfrang, Andreas

    2008-01-01

    Fuel cells are expected to play a major role in the future energy supply, especially polymer electrolyte membrane fuel cells could become an integral part in future cars. Reduction of degradation of fuel cell performance while keeping fuel cell cost under control is the key for an introduction into mass markets.

  16. Cell Cycle Related Differentiation of Bone Marrow Cells into Lung Cells

    Energy Technology Data Exchange (ETDEWEB)

    Dooner, Mark; Aliotta, Jason M.; Pimental, Jeffrey; Dooner, Gerri J.; Abedi, Mehrdad; Colvin, Gerald; Liu, Qin; Weier, Heinz-Ulli; Dooner, Mark S.; Quesenberry, Peter J.

    2007-12-31

    Green-fluorescent protein (GFP) labeled marrow cells transplanted into lethally irradiated mice can be detected in the lungs of transplanted mice and have been shown to express lung specific proteins while lacking the expression of hematopoietic markers. We have studied marrow cells induced to transit cell cycle by exposure to IL-3, IL-6, IL-11 and steel factor at different times of culture corresponding to different phases of cell cycle. We have found that marrow cells at the G1/S interface have a 3-fold increase in cells which assume a lung phenotype and that this increase is no longer seen in late S/G2. These cells have been characterized as GFP{sup +} CD45{sup -} and GFP{sup +} cytokeratin{sup +}. Thus marrow cells with the capacity to convert into cells with a lung phenotype after transplantation show a reversible increase with cytokine induced cell cycle transit. Previous studies have shown the phenotype of bone marrow stem cells fluctuates reversibly as these cells traverse cell cycle, leading to a continuum model of stem cell regulation. The present studies indicate that marrow stem cell production of nonhematopoietic cells also fluctuates on a continuum.

  17. Sertoli cells maintain Leydig cell number and peritubular myoid cell activity in the adult mouse testis.

    Directory of Open Access Journals (Sweden)

    Diane Rebourcet

    Full Text Available The Sertoli cells are critical regulators of testis differentiation and development. In the adult, however, their known function is restricted largely to maintenance of spermatogenesis. To determine whether the Sertoli cells regulate other aspects of adult testis biology we have used a novel transgenic mouse model in which Amh-Cre induces expression of the receptor for Diphtheria toxin (iDTR specifically within Sertoli cells. This causes controlled, cell-specific and acute ablation of the Sertoli cell population in the adult animal following Diphtheria toxin injection. Results show that Sertoli cell ablation leads to rapid loss of all germ cell populations. In addition, adult Leydig cell numbers decline by 75% with the remaining cells concentrated around the rete and in the sub-capsular region. In the absence of Sertoli cells, peritubular myoid cell activity is reduced but the cells retain an ability to exclude immune cells from the seminiferous tubules. These data demonstrate that, in addition to support of spermatogenesis, Sertoli cells are required in the adult testis both for retention of the normal adult Leydig cell population and for support of normal peritubular myoid cell function. This has implications for our understanding of male reproductive disorders and wider androgen-related conditions affecting male health.

  18. IARS2 silencing induces non-small cell lung cancer cells proliferation inhibition, cell cycle arrest and promotes cell apoptosis.

    Science.gov (United States)

    Yin, J; Liu, W; Li, R; Liu, J; Zhang, Y; Tang, W; Wang, K

    2016-01-01

    The purpose of this study was to investigate the potential role of Ileucyl-tRNA synthetase (IARS2) silencing in non-small cell lung cancer (NSCLC). The silencing of IARS2 in H1299 cells and A549 cells were performed by lentivirus encoding shRNAs. The efficiency of IARS2 silencing was detected by quantitative real time PCR and western blot. The effects of IARS2 silencing on cell growth, cell apoptosis, cell cycle and cell colony formation ability were assessed by cells counting, MTT assay, flow cytometer analysis and soft agar colony formation assay, respectively. Compared with negative control group, IARS2 was significantly knockdown by transfection with lentivirus encoding shRNA of IARS2. The IARS2 silencing significantly inhibited the cells proliferation and cells colony formation ability, induced cell cycle arrest at G1/S phase and promoted cell apoptosis. IARS2 silencing induced NSCLC cells growth inhibition, cell cycle arrest and promoted cell apoptosis. These results suggest that IARS2 may be a novel target for the treatment of NSCLC. PMID:26639235

  19. Improved micromorph tandem cell performance through enhanced top cell currents

    Energy Technology Data Exchange (ETDEWEB)

    Platz, R.; Vaucher, N.P.; Fischer, D.; Meier, J.; Shah, A. [Univ. de Neuchatel (Switzerland). Inst. de Microtechnique

    1997-12-31

    Two approaches to increasing the current in the amorphous silicon top cell of an amorphous silicon/microcrystalline silicon (a-Si:H/{micro}c-Si:H) tandem cell are presented. The goal is to raise the stabilized efficiency of such cells. The deposition of the amorphous top cell at higher than standard substrate temperature is shown to reduce the optical gap of the i-layer and to increase the current which is generated with a given i-layer thickness. Furthermore, a selectively reflecting ZnO interface layer between the component cells is presented as a viable tool for enhancing the current generation in the top cell by selective reflection of light. The authors present a micromorph tandem cell containing the amorphous top cell deposited at high substrate temperature, and additionally the ZnO mirror layer. A top cell thickness of 150 nm is shown to be sufficient to provide a current density of 13mA/cm{sup 2} in the top cell. Finally, the influence of such thin top cells on the stabilized efficiency of the tandem cell is investigated by experiment and by means of semi-empirical modeling. Model and experiment confirm that such reduced-gap top cells, together with current enhancement due to the mirror layer, have a high potential for improving the stabilized efficiency of micromorph tandem cells.

  20. Adult Pancreatic Alpha-Cells: A New Source of Cells for Beta-Cell Regeneration

    OpenAIRE

    Chung, Cheng-Ho; Levine, Fred

    2010-01-01

    Beta-cell deficit is the major pathological feature in type 1 and type 2 diabetes patients, and plays a key role in disease progression. In principle, beta-cell regeneration can occur by replication of pre-existing beta-cells, or by beta-cell neogenesis from stem/progenitors. Unfortunately, beta-cell replication is limited by the almost complete absence of beta-cells in patients with type 1 diabetes, and the increasing recognition that the beta-cell replicative capacity declines severely with...

  1. How Is Sickle Cell Disease Treated?

    Science.gov (United States)

    ... sickle cell disease, go to the Health Topics Sickle Cell Anemia article. Living With and Managing Sickle Cell Disease ( ... the most severe form of sickle cell disease, sickle cell anemia, Tiffany has lived with the symptoms and complications ...

  2. How Is Sickle Cell Disease Diagnosed?

    Science.gov (United States)

    ... sickle cell disease, go to the Health Topics Sickle Cell Anemia article. Living With and Managing Sickle Cell Disease ( ... the most severe form of sickle cell disease, sickle cell anemia, Tiffany has lived with the symptoms and complications ...

  3. Laser biomodulation on stem cells

    Science.gov (United States)

    Liu, Timon C.; Duan, Rui; Li, Yan; Li, Xue-Feng; Tan, Li-Ling; Liu, Songhao

    2001-08-01

    Stem cells are views from the perspectives of their function, evolution, development, and cause. Counterintuitively, most stem cells may arise late in development, to act principally in tissue renewal, thus ensuring an organisms long-term survival. Surprisingly, recent reports suggest that tissue-specific adult stem cells have the potential to contribute to replenishment of multiple adult tissues. Stem cells are currently in the news for two reasons: the successful cultivation of human embryonic stem cell lines and reports that adult stem cells can differentiate into developmentally unrelated cell types, such as nerve cells into blood cells. The spotlight on stem cells has revealed gaps in our knowledge that must be filled if we are to take advantage of their full potential for treating devastating degenerative diseases such as Parkinsons's disease and muscular dystrophy. We need to know more about the intrinsic controls that keep stem cells as stem cells or direct them along particular differentiation pathways. Such intrinsic regulators are, in turn, sensitive to the influences of the microenvironment, or niche, where stem cells normally reside. Both intrinsic and extrinsic signals regular stem cell fate and some of these signals have now been identified. Vacek et al and Wang et al have studied the effect of low intensity laser on the haemopoietic stem cells in vitro. There experiments show there is indeed the effect of low intensity laser on the haemopoietic stem cells in vitro, and the present effect is the promotion of haemopoietic stem cells proliferation. In other words, low intensity laser irradiation can act as an extrinsic signal regulating stem cell fate. In this paper, we study how low intensity laser can be used to regulate stem cell fate from the viewpoint of collective phototransduction.

  4. Development of PEM fuel cell technology at international fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, D.J.

    1996-04-01

    The PEM technology has not developed to the level of phosphoric acid fuel cells. Several factors have held the technology development back such as high membrane cost, sensitivity of PEM fuel cells to low level of carbon monoxide impurities, the requirement to maintain full humidification of the cell, and the need to pressurize the fuel cell in order to achieve the performance targets. International Fuel Cells has identified a hydrogen fueled PEM fuel cell concept that leverages recent research advances to overcome major economic and technical obstacles.

  5. Enrichment and Function Research of Large Cell Lung Cancer Stem Cell-like Cells

    OpenAIRE

    Wenke YUE; JIAO, FENG; Liu, Bin; Jiacong YOU; Zhou, Qinghua

    2011-01-01

    Background and objective There are no universal method to recognize and screen for lung cancer stem cell markers and indicators. Commonly used methods are flow Cytometry and learning from other cancer stem cell sorting tags to sort lung cancer stem cells. But this method has low specificity screening, the workload is huge. In this study, Serum-free suspension culture was used to enrich lung cancer stem cells, and explore method for lung cancer stem cell screening. Methods Human large lung can...

  6. NASA Facts, Solar Cells.

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    The design and function of solar cells as a source of electrical power for unmanned space vehicles is described in this pamphlet written for high school physical science students. The pamphlet is one of the NASA Facts Science Series (each of which consists of four pages) and is designed to fit in the standard size three-ring notebook. Review…

  7. Cell lines and Salmonella

    NARCIS (Netherlands)

    Jonge R de; Hendriks H; Garssen J; Universteit Utrecht, afdeling; MGB; LPI

    2001-01-01

    In human gastrointestinal disease caused by Salmonella, transepithelial migration of neutrophils follows the attachment of bacteria to epithelial tissue. This migration of neutrophils is stimulated by the release of chemokines, including interleukin-8 (Il -8), from the epithelial cells. We have dev

  8. Silky gels for cells

    NARCIS (Netherlands)

    Wlodarczyk, M.K.

    2016-01-01

    Tissue engineering is a relatively new, but actively developing field of biomedical science. It aims at organ or tissue regeneration by use of scaffolds, which are usually seeded with cells prior to implantation, and stimulated by bioactive cues or growth factors. It is a promising and valuable alte

  9. Basal Cell Carcinoma

    Science.gov (United States)

    ... resources Meet our partners Español Donate Diseases and treatments Acne and rosacea Bumps and growths Color problems Contagious skin diseases ... cell carcinoma public SPOT Skin Cancer™ Diseases and treatments Acne and rosacea Bumps and growths Color problems Contagious skin diseases ...

  10. Squamous Cell Carcinoma

    Science.gov (United States)

    ... resources Meet our partners Español Donate Diseases and treatments Acne and rosacea Bumps and growths Color problems Contagious skin diseases ... cell carcinoma public SPOT Skin Cancer™ Diseases and treatments Acne and rosacea Bumps and growths Color problems Contagious skin diseases ...

  11. Solid Oxide Fuel Cell

    DEFF Research Database (Denmark)

    2010-01-01

    The solid oxide fuel cell comprising a metallic support material, an active anode layer consisting of a good hydrocarbon cracking catalyst, an electrolyte layer, an active cathode layer, and a transition layer consisting of preferably a mixture of LSM and a ferrite to the cathode current collector...

  12. Goblet cell carcinoids

    DEFF Research Database (Denmark)

    Olsen, Ingrid Holst; Holt, Nanna; Langer, Seppo W;

    2015-01-01

    BACKGROUND: Appendiceal goblet cell carcinoids (GCCs) exhibit neuroendocrine and adenocarcinoma features. PATIENTS AND METHODS: Analysis of demography, pathology, prognostic markers, treatment and survival in 83 GCC patients (f/m: 56/27) diagnosed 1992-2013. RESULTS: Median age for f/m was 59...

  13. Mechanical shielded hot cell

    International Nuclear Information System (INIS)

    A plan to erect a mechanical shielded hot cell in the process hall of the Radiochemical Laboratory at Inchas is described. The hot cell is designed for safe handling of spent fuel bundles, from the Inchas reactor, and for dismantling and cutting the fuel rods in preparation for subsequent treatment. The biological shielding allows for the safe handling of a total radioactivity level up to 10,000 MeV-Ci. The hot cell consists of an α-tight stainless-steel box, connected to a γ-shielded SAS, through an air-lock containing a movable carriage. The α-box is tightly connected with six dry-storage cavities for adequate storage of the spent fuel bundles. Both the α-box, with the dry-storage cavities, and the SAS are surrounded by 200-mm thick biological lead shielding. The α-box is equipped with two master-slave manipulators, a lead-glass window, a monorail crane and Padirac and Minirag systems. The SAS is equipped with a lead-glass window, tong manipulator, a shielded pit and a mechanism for the entry of the spent fuel bundle. The hot cell is served by adequate ventilation and monitoring systems. (author)

  14. Sickle Cell Anemia Bibliography.

    Science.gov (United States)

    Christy, Steven C.

    Presents sources for the acquisition of medical, social, psychological, educational, and practical knowledge of sickle cell anemia. The materials listed are designed to help parents, educators, and public service workers. Materials include journal articles, films, brochures, slides, and fact sheets. The usual bibliographic information is given.…

  15. Cell Phones for Science

    Science.gov (United States)

    Lucking, Robert A.; Christmann, Edwin P.; Wighting, Mervyn J.

    2010-01-01

    Although in some schools cell phones have to be turned off or perhaps kept in lockers to avoid misuse, the authors hope to demonstrate in this article how they can be used under supervision to assist learning. This ubiquitous device can be a powerful classroom tool. (Contains 2 figures.)

  16. Cell Phone RF Radiation

    Science.gov (United States)

    Abdul-Razzaq, Wathiq

    2015-01-01

    In a recent article in "Physics Today," Meredith and Redish emphasized the need to make introductory physics courses beneficial for life sciences majors. In this study, a lab activity is proposed to measure the intensity of electromagnetic waves emitted by cell phones and connect these measurements to various standards, biological…

  17. T cell traffic signals

    OpenAIRE

    Van Epps, Heather L.

    2005-01-01

    In 1990, Charles Mackay and colleagues combined classical physiology with modern molecular biology to provide the first concrete evidence that naive and memory T cells follow distinct migratory routes out of the bloodstream— a discovery that helped invigorate the field of lymphocyte homing.

  18. Pulmonary Langerhans cell Histiocytosis.

    Science.gov (United States)

    Harari, S; Comel, A

    2001-10-01

    Pulmonary Langerhans cell Histiocytosis is a rare granulomatous disease affecting both sexes, with greater incidence in the second and third decades of life; smoking appears to be the most important risk factor. Its etiology is unknown, although there are data indicating an uncontrolled immune response as possible cause, sustained by the Langerhans cells, antigen presenting cells for T lymphocytes, and their accumulation in the distal bronchioles; these cells express on their surface the CD1a and CD1c antigens, and the B7 molecule, essential for activating quiescent T lymphocytes. In its evolution the granuloma is characterized by the progressive reduction in the LC number, with the increase of fibrosis, surrounding and destroying the bronchiolar lumen; the remaining of the lumen, or the traction exerted by fibrous tissue on the adjacent alveolar spaces leads to the cyst development. Vascular involvement occurs frequently, and may explain the onset of pulmonary hypertension in advanced cases of the disease. The disease may be asymptomatic, or it may present with aspecific respiratory signs and symptoms, and has characteristic radiological findings, being included in the group of cysticaerial parenchymal alterations. The diagnosis could be suggested by the finding of a number of LC in BAL greater than 5%. Different therapies have been proposed, but it seems that the most important measure is smoking cessation. PMID:11587096

  19. Mammalian cell biology

    International Nuclear Information System (INIS)

    Progress is reported on studies of the molecular biology and functional changes in cultured mammalian cells following exposure to x radiation, uv radiation, fission neutrons, or various chemical environmental pollutants alone or in combinations. Emphasis was placed on the separate and combined effects of polycyclic aromatic hydrocarbons released during combustion of fossil fuels and ionizing and nonionizing radiations. Sun lamps, which emit a continuous spectrum of near ultraviolet light of 290 nm to 315 nm were used for studies of predictive cell killing due to sunlight. Results showed that exposure to uv light (254 nm) may not be adequate to predict effects produced by sunlight. Data are included from studies on single-strand breaks and repair in DNA of cultured hamster cells exposed to uv or nearultraviolet light. The possible interactions of the polycyclic aromatic hydrocarbon 7,12-dimethylbenz(a)-anthracene (DmBA) alone or combined with exposure to x radiation, uv radiation (254 nm) or near ultraviolet simulating sunlight were compared for effects on cell survival

  20. Fibronectin-cell interactions

    DEFF Research Database (Denmark)

    Couchman, J R; Austria, M R; Woods, A

    1990-01-01

    Fibronectins are widespread extracellular matrix and body fluid glycoproteins, capable of multiple interactions with cell surfaces and other matrix components. Their structure at a molecular level has been resolved, yet there are still many unanswered questions regarding their biologic activity i...

  1. The intestinal stem cell.

    NARCIS (Netherlands)

    Barker, N.; van de Wetering, M.L.; Clevers, H.

    2008-01-01

    The epithelium of the adult mammalian intestine is in a constant dialog with its underlying mesenchyme to direct progenitor proliferation, lineage commitment, terminal differentiation, and, ultimately, cell death. The epithelium is shaped into spatially distinct compartments that are dedicated to ea

  2. Urothelial Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Irena Dimov

    2010-01-01

    Full Text Available There is mounting evidence supporting the idea that tumors, similar to normal adult tissues, arise from a specific stem-like cell population, the cancer stem cells (CSCs, which are considered as the real driving force behind tumor growth, the ability to metastasize, as well as resistance to conventional antitumor therapy. The concept that cancer growth recapitulates normal proliferative and/or regenerative processes, even though in very dysfunctional ways, has tremendous implications for cancer therapy. The rapid development of the CSC field, shoulder to shoulder with powerful genome-wide screening techniques, has provided cause for optimism for the development of more reliable therapies in the future. However, several important issues still lie ahead. Recent identification of a highly tumorigenic stem-like compartment and existence of urothelial differentiation programs in urothelial cell carcinomas (UCCs raised important questions about UCC initiation and development. This review examines the present knowledge on CSCs in UCCs regarding the similarities between CSCs and the adult urothelial stem cells, potential origin of urothelial CSCs, main regulatory pathways, surface markers expression, and the current state of CSC-targeting therapeutic strategies.

  3. The Plant Cell Surface

    Institute of Scientific and Technical Information of China (English)

    Anne-Mie C.Emons; Kurt V.Fagerstedt

    2010-01-01

    @@ Multicellular organization and tissue construction has evolved along essentially different lines in plants and animals. Since plants do not run away, but are anchored in the soil, their tissues are more or less firm and stiff. This strength stems from the cell walls, which encase the fragile cytoplasm, and protect it.

  4. Engineering stem cell niches in bioreactors

    OpenAIRE

    2013-01-01

    Stem cells, including embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells and amniotic fluid stem cells have the potential to be expanded and differentiated into various cell types in the body. Efficient differentiation of stem cells with the desired tissue-specific function is critical for stem cell-based cell therapy, tissue engineering, drug discovery and disease modeling. Bioreactors provide a great platform to regulate the stem cell microenvironment, known as “ni...

  5. Stem Cells and Tissue Engineering

    CERN Document Server

    Pavlovic, Mirjana

    2013-01-01

    Stem cells are the building blocks for all other cells in an organism. The human body has about 200 different types of cells and any of those cells can be produced by a stem cell. This fact emphasizes the significance of stem cells in transplantational medicine, regenerative therapy and bioengineering. Whether embryonic or adult, these cells can be used for the successful treatment of a wide range of diseases that were not treatable before, such as osteogenesis imperfecta in children, different forms of leukemias, acute myocardial infarction, some neural damages and diseases, etc. Bioengineering, e.g. successful manipulation of these cells with multipotential capacity of differentiation toward appropriate patterns and precise quantity, are the prerequisites for successful outcome and treatment. By combining in vivo and in vitro techniques, it is now possible to manage the wide spectrum of tissue damages and organ diseases. Although the stem-cell therapy is not a response to all the questions, it provides more...

  6. Stem cell therapy for diabetes

    Directory of Open Access Journals (Sweden)

    K O Lee

    2012-01-01

    Full Text Available Stem cell therapy holds immense promise for the treatment of patients with diabetes mellitus. Research on the ability of human embryonic stem cells to differentiate into islet cells has defined the developmental stages and transcription factors involved in this process. However, the clinical applications of human embryonic stem cells are limited by ethical concerns, as well as the potential for teratoma formation. As a consequence, alternative forms of stem cell therapies, such as induced pluripotent stem cells, umbilical cord stem cells and bone marrow-derived mesenchymal stem cells, have become an area of intense study. Recent advances in stem cell therapy may turn this into a realistic treatment for diabetes in the near future.

  7. 2009 Fuel Cell Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, Bill [Breakthrough Technologies Inst., Washington, DC (United States); Gangi, Jennifer [Breakthrough Technologies Inst., Washington, DC (United States); Curtin, Sandra [Breakthrough Technologies Inst., Washington, DC (United States); Delmont, Elizabeth [Breakthrough Technologies Inst., Washington, DC (United States)

    2010-11-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

  8. Beta cell adaptation in pregnancy

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis

    2016-01-01

    Pregnancy is associated with a compensatory increase in beta cell mass. It is well established that somatolactogenic hormones contribute to the expansion both indirectly by their insulin antagonistic effects and directly by their mitogenic effects on the beta cells via receptors for prolactin...... and growth hormone expressed in rodent beta cells. However, the beta cell expansion in human pregnancy seems to occur by neogenesis of beta cells from putative progenitor cells rather than by proliferation of existing beta cells. Claes Hellerström has pioneered the research on beta cell growth for decades......, but the mechanisms involved are still not clarified. In this review the information obtained in previous studies is recapitulated together with some of the current attempts to resolve the controversy in the field: identification of the putative progenitor cells, identification of the factors involved...

  9. Pericytes limit tumor cell metastasis

    DEFF Research Database (Denmark)

    Xian, Xiaojie; Håkansson, Joakim; Ståhlberg, Anders;

    2006-01-01

    Previously we observed that neural cell adhesion molecule (NCAM) deficiency in beta tumor cells facilitates metastasis into distant organs and local lymph nodes. Here, we show that NCAM-deficient beta cell tumors grew leaky blood vessels with perturbed pericyte-endothelial cell-cell interactions...... and deficient perivascular deposition of ECM components. Conversely, tumor cell expression of NCAM in a fibrosarcoma model (T241) improved pericyte recruitment and increased perivascular deposition of ECM molecules. Together, these findings suggest that NCAM may limit tumor cell metastasis by stabilizing...... the microvessel wall. To directly address whether pericyte dysfunction increases the metastatic potential of solid tumors, we studied beta cell tumorigenesis in primary pericyte-deficient Pdgfb(ret/ret) mice. This resulted in beta tumor cell metastases in distant organs and local lymph nodes, demonstrating a role...

  10. Self-reactive T cells

    DEFF Research Database (Denmark)

    Becker, Jürgen C; thor Straten, Per; Andersen, Mads Hald

    2014-01-01

    -proteins expressed in regulatory immune cells have been reported, especially in patients with cancer. The seemingly lack of tolerance toward such proteins is interesting, as it suggests a regulatory function of self-reactive T (srT) cells, which may be important for the fine tuning of the immune system....... In particular, surprising has been the description of cytotoxic srT cells that are able to eliminate normal regulatory immune cells. Such srT cells may be important as effector cells that suppress regulatory suppressor cells. The current knowledge of the nature and function of srT cells is still limited. Still......, the therapeutic targeting of srT cells offers a novel approach to harness immune-regulatory networks in cancer....

  11. p53 in stem cells

    Institute of Scientific and Technical Information of China (English)

    Valeriya; Solozobova; Christine; Blattner

    2011-01-01

    p53 is well known as a "guardian of the genome" for differentiated cells,in which it induces cell cycle arrest and cell death after DNA damage and thus contributes to the maintenance of genomic stability.In addition to this tumor suppressor function for differentiated cells,p53 also plays an important role in stem cells.In this cell type,p53 not only ensures genomic integrity after genotoxic insults but also controls their proliferation and differentiation.Additionally,p53 provides an effective barrier for the generation of pluripotent stem celllike cells from terminally differentiated cells.In this review,we summarize our current knowledge about p53 activities in embryonic,adult and induced pluripotent stem cells.

  12. Vesicle transfer and cell fusion: Emerging concepts of cell-cell communication in the tumor microenvironment.

    Science.gov (United States)

    Howcroft, T Kevin; Zhang, Huang-Ge; Dhodapkar, Madhav; Mohla, Suresh

    2011-08-01

    Cell-cell fusion and vesicle-mediated transfer are fundamental biological processes that are emerging as novel mechanisms for re-programming cells in the tumor microenvironment. Both cell-cell fusion and intercellular transfer of vesicles (including microvesicles and exosomes) allow for the transfer of information among tumor cells, between tumor cells and tumor stroma, and between tumor cells and the host immune system, which could have profound implications for our understanding of tumor initiation and progression. The National Cancer Institute's Division of Cancer Biology sponsored a recent workshop (December 4-6, 2010) entitled, Vesicle Transfer and Cell Fusion: Emerging Concepts of Cell-Cell Communication in the Tumor Microenvironment to assess the current state of the science in these two scientific areas. Co-chaired by Drs. Huang-Ge Zhang (University of Louisville) and Madhav Dhodapkar (Yale University) this workshop brought together, for the first time at the NIH, leaders in the field to assess the effects of vesicle transfer and cell-cell fusion on cancer initiation, progression and metastasis. This meeting report includes brief summaries of the presentations and identifies the major questions, roadblocks, and opportunities. The meeting report is presented here to highlight research priorities and to stimulate basic and translational research efforts to better understand the contributions of cell-cell fusion and vesicle transfer to cancer. PMID:21725211

  13. Calcium in plant cells

    Directory of Open Access Journals (Sweden)

    V. V. Schwartau

    2014-04-01

    Full Text Available The paper gives the review on the role of calcium in many physiological processes of plant organisms, including growth and development, protection from pathogenic influences, response to changing environmental factors, and many other aspects of plant physiology. Initial intake of calcium ions is carried out by Ca2+-channels of plasma membrane and they are further transported by the xylem owing to auxins’ attractive ability. The level of intake and selectivity of calcium transport to ove-ground parts of the plant is controlled by a symplast. Ca2+enters to the cytoplasm of endoderm cells through calcium channels on the cortical side of Kaspary bands, and is redistributed inside the stele by the symplast, with the use of Ca2+-АТPases and Ca2+/Н+-antiports. Owing to regulated expression and activity of these calcium transporters, calclum can be selectively delivered to the xylem. Important role in supporting calcium homeostasis is given to the vacuole which is the largest depo of calcium. Regulated quantity of calcium movement through the tonoplast is provided by a number of potential-, ligand-gated active transporters and channels, like Ca2+-ATPase and Ca2+/H+ exchanger. They are actively involved in the inactivation of the calcium signal by pumping Ca2+ to the depo of cells. Calcium ATPases are high affinity pumps that efficiently transfer calcium ions against the concentration gradient in their presence in the solution in nanomolar concentrations. Calcium exchangers are low affinity, high capacity Ca2+ transporters that are effectively transporting calcium after raising its concentration in the cell cytosol through the use of protons gradients. Maintaining constant concentration and participation in the response to stimuli of different types also involves EPR, plastids, mitochondria, and cell wall. Calcium binding proteins contain several conserved sequences that provide sensitivity to changes in the concentration of Ca2+ and when you

  14. Negative regulators of cell proliferation

    Science.gov (United States)

    Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Cell proliferation is governed by the influence of both mitogens and inhibitors. Although cell contact has long been thought to play a fundamental role in cell cycling regulation, and negative regulators have long been suspected to exist, their isolation and purification has been complicated by a variety of technical difficulties. Nevertheless, over recent years an ever-expanding list of putative negative regulators have emerged. In many cases, their biological inhibitory activities are consistent with density-dependent growth inhibition. Most likely their interactions with mitogenic agents, at an intracellular level, are responsible for either mitotic arrest or continued cell cycling. A review of naturally occurring cell growth inhibitors is presented with an emphasis on those factors shown to be residents of the cell surface membrane. Particular attention is focused on a cell surface sialoglycopeptide, isolated from intact bovine cerebral cortex cells, which has been shown to inhibit the proliferation of an unusually wide range of target cells. The glycopeptide arrest cells obtained from diverse species, both fibroblasts and epithelial cells, and a broad variety of transformed cells. Signal transduction events and a limited spectrum of cells that are refractory to the sialoglycopeptide have provided insight into the molecular events mediated by this cell surface inhibitor.

  15. Therapeutic potential of stem cells in auditory hair cell repair

    Directory of Open Access Journals (Sweden)

    Ryuji Hata

    2009-01-01

    Full Text Available The prevalence of acquired hearing loss is very high. About 10% of the total population and more than one third of the population over 65 years suffer from debilitating hearing loss. The most common type of hearing loss in adults is idiopathic sudden sensorineural hearing loss (ISSHL. In the majority of cases, ISSHL is permanent and typically associated with loss of sensory hair cells in the organ of Corti. Following the loss of sensory hair cells, the auditory neurons undergo secondary degeneration. Sensory hair cells and auditory neurons do not regenerate throughout life, and loss of these cells is irreversible and cumulative. However, recent advances in stem cell biology have gained hope that stem cell therapy comes closer to regenerating sensory hair cells in humans. A major advance in the prospects for the use of stem cells to restore normal hearing comes with the recent discovery that hair cells can be generated ex vivo from embryonic stem (ES cells, adult inner ear stem cells and neural stem cells. Furthermore, there is increasing evidence that stem cells can promote damaged cell repair in part by secreting diffusible molecules such as growth factors. These results suggest that stem-cell-based treatment regimens can be applicable to the damaged inner ear as future clinical applications.Previously we have established an animal model of cochlear ischemia in gerbils and showed progressive hair cell loss up to 4 days after ischemia. Auditory brain stem response (ABR recordings have demonstrated that this gerbil model displays severe deafness just after cochlear ischemia and gradually recovers thereafter. These pathological findings and clinical manifestations are reminiscent of ISSHL in humans. In this study, we have shown the effectiveness of stem cell therapy by using this animal model of ISSHL.

  16. [CO-CULTURE OF BOAR SPERMATOGONIAL CELLS WITH SERTOLI CELLS].

    Science.gov (United States)

    Savchenkova, I P; Vasil'eva, S A

    2016-01-01

    In the present study, we developed in vitro culture conditions using co-culture of boar spermatogonial cells with Sertoli cells. Testes from 60-day-old crossbred boar were used. A spermatogonia-enriched culture was achieved by enzymatic digestion method and purification by density gradient centrifugation using a discontinuous Percoll gradient and differentiated adherence technique. Lipid drops were detected in isolated Sertoli cells by Oil Red O staining. We have found that the cultivation of boar spermatogonia in the presence of Sertoli cells (up to 35 days) leads to their differentiation as well as in vivo in testis. Association of cells in groups, formation of chains and suspension clusters of the spermatogenic cells were observed on the 10th day. Spermatogonial cellular colonies were noted at the same time. These cellular colonies were analyzed for the expression of genes: Nanog and Plzf in RT PCR. The expression of the Nanog gene in the experimental cellular clones obtained by short-term culture of spermatogonial cells in the presence of Sertoli cells was 200 times higher than the expression of this gene in the freshly isolated spermatogonial cells expression was found in freshly isolated germ cells and in cellular clones derived in vitro. We have found that, in the case of longer cultivation of these cells on Sertoli cells, in vitro process of differentiation of germ cells and formation of single mobile boar spermatozoa occurs at 30-33 days. Cellular population is heterogeneous at this stage. Spermatogenic differentiation in vitro without Sertoli cells stays on the 7th day of cultivation. The results show that co-culture of boar spermatogonia-enriched cells with Sertoli cells can induce their differentiation into spermatozoa in vitro and facilitate obtaining of porcine germ cell culture. PMID:27228660

  17. Cell therapies for tendons: old cell choice for modern innovation.

    Science.gov (United States)

    Petrou, Ilias G; Grognuz, Anthony; Hirt-Burri, Nathalie; Raffoul, Wassim; Applegate, Lee Ann

    2014-01-01

    Although tissue engineering and cell therapies are becoming realistic approaches for medical therapeutics, it is likely that musculoskeletal applications will be among the first to benefit on a large scale. Cell sources for tissue engineering and cell therapies for tendon pathologies are reviewed with an emphasis on small defect tendon injuries as seen in the hand which could adapt well to injectable cell administration. Specifically, cell sources including tenocytes, tendon sheath fibroblasts, bone marrow or adipose-derived stem cells, amniotic cells, placenta cells and platelet-derivatives have been proposed to enhance tendon regeneration. The associated advantages and disadvantages for these different strategies will be discussed and evolving regulatory requirements for cellular therapies will also be addressed. Human progenitor tenocytes, along with their clinical cell banking potential, will be presented as an alternative cell source solution. Similar cell banking techniques have already been described with other progenitor cell types in the 1950's for vaccine production, and these "old" cell types incite potentially interesting therapeutic options that could be improved with modern innovation for tendon regeneration and repair.

  18. Tetherin restricts productive HIV-1 cell-to-cell transmission.

    Directory of Open Access Journals (Sweden)

    Nicoletta Casartelli

    Full Text Available The IFN-inducible antiviral protein tetherin (or BST-2/CD317/HM1.24 impairs release of mature HIV-1 particles from infected cells. HIV-1 Vpu antagonizes the effect of tetherin. The fate of virions trapped at the cell surface remains poorly understood. Here, we asked whether tetherin impairs HIV cell-to-cell transmission, a major means of viral spread. Tetherin-positive or -negative cells, infected with wild-type or DeltaVpu HIV, were used as donor cells and cocultivated with target lymphocytes. We show that tetherin inhibits productive cell-to-cell transmission of DeltaVpu to targets and impairs that of WT HIV. Tetherin accumulates with Gag at the contact zone between infected and target cells, but does not prevent the formation of virological synapses. In the presence of tetherin, viruses are then mostly transferred to targets as abnormally large patches. These viral aggregates do not efficiently promote infection after transfer, because they accumulate at the surface of target cells and are impaired in their fusion capacities. Tetherin, by imprinting virions in donor cells, is the first example of a surface restriction factor limiting viral cell-to-cell spread.

  19. Cytokine production by endothelial cells infected with human T cell lymphotropic virus type I.

    OpenAIRE

    H. Takashima; Eguchi, K.; Kawakami, A; Kawabe, Y; Migita, K; Sakai, M; Origuchi, T; Nagataki, S.

    1996-01-01

    OBJECTIVE: To investigate the ability of human T cell lymphotropic virus type I (HTLV-I) to infect endothelial cells and induce cytokine production by these cells. METHODS: Human umbilical vein endothelial cells (HUVEC) were cocultured with HTLV-I infected T cell line (MT-2 cells) or uninfected T cell line (CEM cells). RESULTS: Following coculture with MT-2 cells, endothelial cells expressed HTLV-I specific core antigens. Endothelial cells cocultured with MT-2 cells produced significant amoun...

  20. Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Shin [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Masamune, Atsushi, E-mail: amasamune@med.tohoku.ac.jp [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Takikawa, Tetsuya; Suzuki, Noriaki; Kikuta, Kazuhiro; Hirota, Morihisa [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Hamada, Hirofumi [Laboratory of Oncology, Department of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji (Japan); Kobune, Masayoshi [Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo (Japan); Satoh, Kennichi [Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori (Japan); Shimosegawa, Tooru [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan)

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. Black-Right-Pointing-Pointer Pancreatic cancer cells co-cultured with PSCs showed enhanced spheroid formation. Black-Right-Pointing-Pointer Expression of stem cell-related genes ABCG2, Nestin and LIN28 was increased. Black-Right-Pointing-Pointer Co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. Black-Right-Pointing-Pointer This study suggested a novel role of PSCs as a part of the cancer stem cell niche. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Recent studies have identified that a portion of cancer cells, called 'cancer stem cells', within the entire cancer tissue harbor highly tumorigenic and chemo-resistant phenotypes, which lead to the recurrence after surgery or re-growth of the tumor. The mechanisms that maintain the 'stemness' of these cells remain largely unknown. We hypothesized that PSCs might enhance the cancer stem cell-like phenotypes in pancreatic cancer cells. Indirect co-culture of pancreatic cancer cells with PSCs enhanced the spheroid-forming ability of cancer cells and induced the expression of cancer stem cell-related genes ABCG2, Nestin and LIN28. In addition, co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. These results suggested a novel role of PSCs as a part of the cancer stem cell niche.

  1. Human stromal (mesenchymal) stem cells

    DEFF Research Database (Denmark)

    Aldahmash, Abdullah; Zaher, Walid; Al-Nbaheen, May;

    2012-01-01

    Human stromal (mesenchymal) stem cells (hMSC) represent a group of non-hematopoietic stem cells present in the bone marrow stroma and the stroma of other organs including subcutaneous adipose tissue, placenta, and muscles. They exhibit the characteristics of somatic stem cells of self......-renewal and multi-lineage differentiation into mesoderm-type of cells, e.g., to osteoblasts, adipocytes, chondrocytes and possibly other cell types including hepatocytes and astrocytes. Due to their ease of culture and multipotentiality, hMSC are increasingly employed as a source for cells suitable for a number...

  2. Metastasis and stem cell pathways

    OpenAIRE

    Barnhart, Bryan C.; Simon, M. Celeste

    2007-01-01

    Recent studies have described a small population of self-renewing and multipotent cells within tumors termed “cancer stem cells.” These cells share many traits with somatic and embryonic stem cells and are thought to be responsible for driving tumor progression in a growing list of neoplastic diseases. Cells within solid tumors encounter hypoxia due to poor vascular function. Both long-standing and emerging data describe hypoxic effects on somatic and embryonic stem cells, and it is likely th...

  3. Interaction of Stellate Cells with Pancreatic Carcinoma Cells

    International Nuclear Information System (INIS)

    Pancreatic cancer is characterized by its late detection, aggressive growth, intense infiltration into adjacent tissue, early metastasis, resistance to chemo- and radiotherapy and a strong “desmoplastic reaction”. The dense stroma surrounding carcinoma cells is composed of fibroblasts, activated stellate cells (myofibroblast-like cells), various inflammatory cells, proliferating vascular structures, collagens and fibronectin. In particular the cellular components of the stroma produce the tumor microenvironment, which plays a critical role in tumor growth, invasion, spreading, metastasis, angiogenesis, inhibition of anoikis, and chemoresistance. Fibroblasts, myofibroblasts and activated stellate cells produce the extracellular matrix components and are thought to interact actively with tumor cells, thereby promoting cancer progression. In this review, we discuss our current understanding of the role of pancreatic stellate cells (PSC) in the desmoplastic response of pancreas cancer and the effects of PSC on tumor progression, metastasis and drug resistance. Finally we present some novel ideas for tumor therapy by interfering with the cancer cell-host interaction

  4. Single-cell measurement of red blood cell oxygen affinity

    CERN Document Server

    Caprio, Di; Higgins, John M; Schonbrun, Ethan

    2015-01-01

    Oxygen is transported throughout the body by hemoglobin in red blood cells. While the oxygen affinity of blood is well understood and is routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of red blood cell volume and hemoglobin concentration are taken millions of times per day by clinical hematology analyzers and are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume and hemoglobin concentration for individual red blood cells in high-throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.5%, which corresponds to the maximum slope of the oxygen-hemoglobin dissociation curve. In addition, single-cell oxygen affinity is positively correlated with hemoglobin concentr...

  5. Advancing Stem Cell Biology toward Stem Cell Therapeutics

    OpenAIRE

    Scadden, David; Srivastava, Alok

    2012-01-01

    Here, the International Society for Stem Cell Research (ISSCR) Clinical Translation Committee introduces a series of articles outlining the current status, opportunities, and challenges surrounding the clinical translation of stem cell therapeutics for specific medical conditions.

  6. Mechanisms of daughter cell-size control during cell division.

    Science.gov (United States)

    Kiyomitsu, Tomomi

    2015-05-01

    Daughter cell size is tightly regulated during cell division. In animal cells, the position of the anaphase spindle specifies the cell cleavage site to dictate the relative size of the daughter cells. Although spindle orientation is regulated by dynein-dependent cortical pulling forces exerted on astral microtubules in many cell types, it was unclear how these forces are precisely regulated to center or displace the spindle. Recently, intrinsic signals derived from chromosomes or spindle poles have been demonstrated to regulate dynein-dependent pulling forces in symmetrically dividing cells. Unexpectedly, myosin-dependent contractile forces have also been shown to control spindle position by altering the cellular boundaries during anaphase. In this review, I discuss how dynein- and myosin-dependent forces are coordinately regulated to control daughter cell size. PMID:25548067

  7. The Antigen Presenting Cells Instruct Plasma Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Wei eXu

    2014-01-01

    Full Text Available The professional antigen presenting cells (APCs, including many subsets of dendritic cells and macrophages, not only mediate prompt but nonspecific response against microbes, but also bridge the antigen-specific adaptive immune response through antigen presentation. In the latter, typically activated B cells acquire cognate signals from T helper cells in the germinal center of lymphoid follicles to differentiate into plasma cells, which generate protective antibodies. Recent advances have revealed that many APC subsets provide not only signal 1 (the antigen, but also signal 2 to directly instruct the differentiation process of plasma cells in a T cell-independent manner. Herein, the different signals provided by these APC subsets to direct B cell proliferation, survival, class switching and terminal differentiation are discussed. We furthermore propose that the next generation of vaccines for boosting antibody response could be designed by targeting APCs.

  8. [Retinal Cell Therapy Using iPS Cells].

    Science.gov (United States)

    Takahashi, Masayo

    2016-03-01

    Progress in basic research, starting with the work on neural stem cells in the middle 1990's to embryonic stem (ES) cells and induced pluripotent stem (iPS) cells at present, will lead the cell therapy (regenerative medicine) of various organs, including the central nervous system to a big medical field in the future. The author's group transplanted iPS cell-derived retinal pigment epithelial (RPE) cell sheets to the eye of a patient with exudative age-related macular degeneration (AMD) in 2014 as a clinical research. Replacement of the RPE with the patient's own iPS cell-derived young healthy cell sheet will be one new radical treatment of AMD that is caused by cellular senescence of RPE cells. Since it was the first clinical study using iPS cell-derived cells, the primary endpoint was safety judged by the outcome one year after surgery. The safety of the cell sheet has been confirmed by repeated tumorigenisity tests using immunodeficient mice, as well as purity of the cells, karyotype and genetic analysis. It is, however, also necessary to prove the safety by clinical studies. Following this start, a good strategy considering cost and benefit is needed to make regenerative medicine a standard treatment in the future. Scientifically, the best choice is the autologous RPE cell sheet, but autologous cell are expensive and sheet transplantation involves a risky part of surgical procedure. We should consider human leukocyte antigen (HLA) matched allogeneic transplantation using the HLA 6 loci homozyous iPS cell stock that Prof. Yamanaka of Kyoto University is working on. As the required forms of donor cells will be different depending on types and stages of the target diseases, regenerative medicine will be accomplished in a totally different manner from the present small molecule drugs. Proof of concept (POC) of photoreceptor transplantation in mouse is close to being accomplished using iPS cell-derived photoreceptor cells. The shortest possible course for treatment

  9. Inflammatory Cell Distribution in Primary Merkel Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Wheat, Rachel [School of Cancer Sciences and CR UK Centre for Cancer Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT (United Kingdom); Roberts, Claudia [School of Cancer Sciences and CR UK Centre for Cancer Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT (United Kingdom); University Hospitals Birmingham NHS Foundation Trust, New Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, B15 2WB (United Kingdom); Waterboer, Tim [Infection and Cancer Program, DKFZ (German Cancer Research Centre), 69120 Heidelberg (Germany); Steele, Jane [Human Biomaterials Resource Centre, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT (United Kingdom); Marsden, Jerry [University Hospitals Birmingham NHS Foundation Trust, New Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, B15 2WB (United Kingdom); Steven, Neil M., E-mail: n.m.steven@bham.ac.uk [School of Cancer Sciences and CR UK Centre for Cancer Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT (United Kingdom); University Hospitals Birmingham NHS Foundation Trust, New Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, B15 2WB (United Kingdom); Blackbourn, David J., E-mail: n.m.steven@bham.ac.uk [Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH (United Kingdom)

    2014-05-06

    Merkel cell carcinoma (MCC) is an aggressive poorly differentiated neuroendocrine cutaneous carcinoma associated with older age, immunodeficiency and Merkel cell polyomavirus (MCPyV) integrated within malignant cells. The presence of intra-tumoural CD8+ lymphocytes reportedly predicts better MCC-specific survival. In this study, the distribution of inflammatory cells and properties of CD8+ T lymphocytes within 20 primary MCC specimens were characterised using immunohistochemistry and multicolour immunofluorescent staining coupled to confocal microscopy. CD8+ cells and CD68+ macrophages were identified in 19/20 primary MCC. CD20+ B cells were present in 5/10, CD4+ cells in 10/10 and FoxP3+ cells in 7/10 specimens. Only two specimens had almost no inflammatory cells. Within specimens, inflammatory cells followed the same patchy distribution, focused at the edge of sheets and nodules and, in some cases, more intense in trabecular areas. CD8+ cells were outside vessels on the edge of tumour. Those few within malignant sheets typically lined up in fine septa not contacting MCC cells expressing MCPyV large T antigen. The homeostatic chemokine CXCL12 was expressed outside malignant nodules whereas its receptor CXCR4 was identified within tumour but not on CD8+ cells. CD8+ cells lacked CXCR3 and granzyme B expression irrespective of location within stroma versus malignant nodules or of the intensity of the intra-tumoural infiltrate. In summary, diverse inflammatory cells were organised around the margin of malignant deposits suggesting response to aberrant signaling, but were unable to penetrate the tumour microenvironment itself to enable an immune response against malignant cells or their polyomavirus.

  10. Cell elasticity with altered cytoskeletal architectures across multiple cell types.

    Science.gov (United States)

    Grady, Martha E; Composto, Russell J; Eckmann, David M

    2016-08-01

    The cytoskeleton is primarily responsible for providing structural support, localization and transport of organelles, and intracellular trafficking. The structural support is supplied by actin filaments, microtubules, and intermediate filaments, which contribute to overall cell elasticity to varying degrees. We evaluate cell elasticity in five different cell types with drug-induced cytoskeletal derangements to probe how actin filaments and microtubules contribute to cell elasticity and whether it is conserved across cell type. Specifically, we measure elastic stiffness in primary chondrocytes, fibroblasts, endothelial cells (HUVEC), hepatocellular carcinoma cells (HUH-7), and fibrosarcoma cells (HT 1080) subjected to two cytoskeletal destabilizers: cytochalasin D and nocodazole, which disrupt actin and microtubule polymerization, respectively. Elastic stiffness is measured by atomic force microscopy (AFM) and the disruption of the cytoskeleton is confirmed using fluorescence microscopy. The two cancer cell lines showed significantly reduced elastic moduli values (~0.5kPa) when compared to the three healthy cell lines (~2kPa). Non-cancer cells whose actin filaments were disrupted using cytochalasin D showed a decrease of 60-80% in moduli values compared to untreated cells of the same origin, whereas the nocodazole-treated cells showed no change in elasticity. Overall, we demonstrate actin filaments contribute more to elastic stiffness than microtubules but this result is cell type dependent. Cancer cells behaved differently, exhibiting increased stiffness as well as stiffness variability when subjected to nocodazole. We show that disruption of microtubule dynamics affects cancer cell elasticity, suggesting therapeutic drugs targeting microtubules be monitored for significant elastic changes. PMID:26874250

  11. Force-dependent cell signaling in stem cell differentiation

    OpenAIRE

    Yim, Evelyn KF; Sheetz, Michael P.

    2012-01-01

    Stem cells interact with biochemical and biophysical signals in their extracellular environment. The biophysical signals are transduced to the stem cells either through the underlying extracellular matrix or externally applied forces. Increasing evidence has shown that these biophysical cues such as substrate stiffness and topography can direct stem cell differentiation and determine the cell fate. The mechanism of the biophysically induced differentiation is not understood; however, several ...

  12. Mimicking Stem Cell Niches to Increase Stem Cell Expansion

    OpenAIRE

    Dellatore, Shara M.; Garcia, A. Sofia; Miller, William M.

    2008-01-01

    Niches regulate lineage-specific stem cell self-renewal vs. differentiation in vivo and are comprised of supportive cells and extracellular matrix components arranged in a 3-dimensional topography of controlled stiffness in the presence of oxygen and growth factor gradients. Mimicking stem cell niches in a defined manner will facilitate production of the large numbers of stem cells needed to realize the promise of regenerative medicine and gene therapy. Progress has been made in mimicking com...

  13. Cancer Stem Cells, Cancer Cell Plasticity and Radiation Therapy

    OpenAIRE

    Vlashi, Erina; Pajonk, Frank

    2014-01-01

    Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be ...

  14. Cell to Cell Signalling via Exosomes Through esRNA

    OpenAIRE

    Lotvall, Jan; Valadi, Hadi

    2007-01-01

    Exosomes are small vesicles of endosomal origin that can be released by many different cells to the microenvironment. Exosomes have been shown to participate in the immune system, by mediating antigen presentation. We have recently shown the presence of both mRNA and microRNA in exosomes, specifically in exosomes derived from mast cells. This RNA can be transferred between one mast cell to another, most likely through fusion of the exosome to the recipient cell membrane. The delivered RNA is ...

  15. Group 2 innate lymphoid cells license dendritic cells to potentiate memory TH2 cell responses.

    Science.gov (United States)

    Halim, Timotheus Y F; Hwang, You Yi; Scanlon, Seth T; Zaghouani, Habib; Garbi, Natalio; Fallon, Padraic G; McKenzie, Andrew N J

    2016-01-01

    Rapid activation of memory CD4(+) T helper 2 (TH2) cells during allergic inflammation requires their recruitment into the affected tissue. Here we demonstrate that group 2 innate lymphoid (ILC2) cells have a crucial role in memory TH2 cell responses, with targeted depletion of ILC2 cells profoundly impairing TH2 cell localization to the lungs and skin of sensitized mice after allergen re-challenge. ILC2-derived interleukin 13 (IL-13) is critical for eliciting production of the TH2 cell-attracting chemokine CCL17 by IRF4(+)CD11b(+)CD103(-) dendritic cells (DCs). Consequently, the sentinel function of DCs is contingent on ILC2 cells for the generation of an efficient memory TH2 cell response. These results elucidate a key innate mechanism in the regulation of the immune memory response to allergens.

  16. Cell type-specific bipolar cell input to ganglion cells in the mouse retina.

    Science.gov (United States)

    Neumann, S; Hüser, L; Ondreka, K; Auler, N; Haverkamp, S

    2016-03-01

    Many distinct ganglion cell types, which are the output elements of the retina, were found to encode for specific features of a visual scene such as contrast, color information or movement. The detailed composition of retinal circuits leading to this tuning of retinal ganglion cells, however, is apart from some prominent examples, largely unknown. Here we aimed to investigate if ganglion cell types in the mouse retina receive selective input from specific bipolar cell types or if they sample their synaptic input non-selectively from all bipolar cell types stratifying within their dendritic tree. To address this question we took an anatomical approach and immunolabeled retinae of two transgenic mouse lines (GFP-O and JAM-B) with markers for ribbon synapses and type 2 bipolar cells. We morphologically identified all green fluorescent protein (GFP)-expressing ganglion cell types, which co-stratified with type 2 bipolar cells and assessed the total number of bipolar input synapses and the proportion of synapses deriving from type 2 bipolar cells. Only JAM-B ganglion cells received synaptic input preferentially from bipolar cell types other than type 2 bipolar cells whereas the other analyzed ganglion cell types sampled their bipolar input most likely from all bipolar cell terminals within their dendritic arbor.

  17. Stem cell applications in diabetes.

    Science.gov (United States)

    Noguchi, Hirofumi

    2012-01-01

    Diabetes mellitus is a devastating disease and the World Health Organization (WHO) expects that the number of diabetic patients will increase to 300 million by the year 2025. Patients with diabetes experience decreased insulin secretion that is linked to a significant reduction in the number of islet cells. Type 1 diabetes is characterized by the selective destruction of pancreatic β cells caused by an autoimmune attack. Type 2 diabetes is a more complex pathology that, in addition to β cell loss caused by apoptotic programs, includes β cell de-differentiation and peripheric insulin resistance. The success achieved over the last few years with islet transplantation suggests that diabetes can be cured by the replenishment of deficient β cells. These observations are proof of the concept and have intensified interest in treating diabetes or other diseases not only by cell transplantation but also by stem cells. An increasing body of evidence indicates that, in addition to embryonic stem cells, several potential adult stem/progenitor cells derived from the pancreas, liver, spleen, and bone marrow could differentiate into insulin-producing cells in vitro or in vivo. However, significant controversy currently exists in this field. Pharmacological approaches aimed at stimulating the in vivo/ex vivo regeneration of β cells have been proposed as a way of augmenting islet cell mass. Overexpression of embryonic transcription factors in stem cells could efficiently induce their differentiation into insulin-expressing cells. A new technology, known as protein transduction, facilitates the differentiation of stem cells into insulin-producing cells. Recent progress in the search for new sources of β cells has opened up several possibilities for the development of new treatments for diabetes.

  18. Fuel Cell Handbook, Fourth Edition

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, D.B; Hirschenhofer, J.H.; Klett, M.G.; Engleman, R.R.

    1998-11-01

    Robust progress has been made in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in January 1994. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultra high efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 6 describe the four major fuel cell types and their performance based on cell operating conditions. The section on polymer electrolyte membrane fuel cells has been added to reflect their emergence as a significant fuel cell technology. Phosphoric acid, molten carbonate, and solid oxide fuel cell technology description sections have been updated from the previous edition. New information indicates that manufacturers have stayed with proven cell designs, focusing instead on advancing the system surrounding the fuel cell to lower life cycle costs. Section 7, Fuel Cell Systems, has been significantly revised to characterize near-term and next-generation fuel cell power plant systems at a conceptual level of detail. Section 8 provides examples of practical fuel cell system calculations. A list of fuel cell URLs is included in the Appendix. A new index assists the reader in locating specific information quickly.

  19. Pancreatic stem cells remain unresolved.

    Science.gov (United States)

    Jiang, Fang-Xu; Morahan, Grant

    2014-12-01

    Diabetes mellitus is caused by absolute (type 1) or relative (type 2) deficiency of insulin-secreting islet β cells. An ideal treatment of diabetes would, therefore, be to replace the lost or deficient β cells, by transplantation of donated islets or differentiated endocrine cells or by regeneration of endogenous islet cells. Due to their ability of unlimited proliferation and differentiation into all functional lineages in our body, including β cells, embryonic stem cells and induced pluripotent stem cells are ideally placed as cell sources for a diabetic transplantation therapy. Unfortunately, the inability to generate functional differentiated islet cells from pluripotent stem cells and the poor availability of donor islets have severely restricted the broad clinical use of the replacement therapy. Therefore, endogenous sources that can be directed to becoming insulin-secreting cells are actively sought after. In particular, any cell types in the developing or adult pancreas that may act as pancreatic stem cells (PSC) would provide an alternative renewable source for endogenous regeneration. In this review, we will summarize the latest progress and knowledge of such PSC, and discuss ways that facilitate the future development of this often controversial, but crucial research.

  20. Stem cell migration after irradiation

    International Nuclear Information System (INIS)

    The survival rate of irradiated rodents could be significantly improved by shielding only the small parts of hemopoietic tissues during the course of irradiation. The populations of circulating stem cells in adult organisms are considered to be of some importance for the homeostasis between the many sites of blood cell formation and for the necessary flexibility of hemopoietic response in the face of fluctuating demands. Pluripotent stem cells are migrating through peripheral blood as has been shown for several mammalian species. Under steady state conditions, the exchange of stem cells between the different sites of blood cell formation appears to be restricted. Their presence in blood and the fact that they are in balance with the extravascular stem cell pool may well be of significance for the surveilance of the integrity of local stem cell populations. Any decrease of stem cell population in blood below a critical size results in the rapid immigration of circulating stem cells in order to restore local stem cell pool size. Blood stem cells are involved in the regeneration after whole-body irradiation if the stem cell population in bone marrows is reduced to less than 10% of the normal state. In the animals subjected to partial-body irradiation, the circulating stem cells appear to be the only source for the repopulation of the heavily irradiated, aplastic sites of hemopoietic organs. (Yamashita, S.)

  1. [Stem cells and cardiac regeneration].

    Science.gov (United States)

    Perez Millan, Maria Ines; Lorenti, Alicia

    2006-01-01

    Stem cells are defined by virtue of their functional attributes: absence of tissue specific differentitated markers, capable of proliferation, able to self-maintain the population, able to produce a large number of differentiated, functional progeny, able to regenerate the tissue after injury. Cell therapy is an alternative for the treatment of several diseases, like cardiac diseases (cell cardiomyoplasty). A variety of stem cells could be used for cardiac repair: from cardiac and extracardiac sources. Each cell type has its own profile of advantages, limitations, and practicability issues in specific clinical settings. Differentiation of bone marrow stem cells to cardiomyocyte-like cells have been observed under different culture conditions. The presence of resident cardiac stem cell population capable of differentiation into cardiomyocyte or vascular lineage suggests that these cells could be used for cardiac tissue repair, and represent a great promise for clinical application. Stem cells mobilization by cytokines may also offer a strategy for cardiac regeneration. The use of stem cells (embryonic and adult) may hold the key to replacing cells lost in many devastating diseases. This potential benefit is a major focus for stem cell research.

  2. Antitumor Immunity Produced by the Liver Kupffer Cells, NK Cells, NKT Cells, and CD8+ CD122+ T Cells

    Directory of Open Access Journals (Sweden)

    Shuhji Seki

    2011-01-01

    Full Text Available Mouse and human livers contain innate immune leukocytes, NK cells, NKT cells, and macrophage-lineage Kupffer cells. Various bacterial components, including Toll-like receptor (TLR ligands and an NKT cell ligand (α-galactocylceramide, activate liver Kupffer cells, which produce IL-1, IL-6, IL-12, and TNF. IL-12 activates hepatic NK cells and NKT cells to produce IFN-γ, which further activates hepatic T cells, in turn activating phagocytosis and cytokine production by Kupffer cells in a positive feedback loop. These immunological events are essentially evoked to protect the host from bacterial and viral infections; however, these events also contribute to antitumor and antimetastatic immunity in the liver by activated liver NK cells and NKT cells. Bystander CD8+CD122+ T cells, and tumor-specific memory CD8+T cells, are also induced in the liver by α-galactocylceramide. Furthermore, adoptive transfer experiments have revealed that activated liver lymphocytes may migrate to other organs to inhibit tumor growth, such as the lungs and kidneys. The immunological mechanism underlying the development of hepatocellular carcinoma in cirrhotic livers in hepatitis C patients and liver innate immunity as a double-edged sword (hepatocyte injury/regeneration, septic shock, autoimmune disease, etc. are also discussed.

  3. Proliferating cells in psoriatic dermis are comprised primarily of T cells, endothelial cells, and factor XIIIa+ perivascular dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Morganroth, G.S.; Chan, L.S.; Weinstein, G.D.; Voorhees, J.J.; Cooper, K.D. (Univ. of Michigan Medical School, Ann Arbor (USA))

    1991-03-01

    Determination of the cell types proliferating in the dermis of patients with psoriasis should identify those cells experiencing activation or responding to growth factors in the psoriatic dermal milieu. Toward that end, sections of formalin-fixed biopsies obtained from 3H-deoxyuridine (3H-dU)-injected skin of eight psoriatic patients were immunostained, followed by autoradiography. Proliferating dermal cells exhibit silver grains from tritium emissions. The identity of the proliferating cells could then be determined by simultaneous visualization with antibodies specific for various cell types. UCHL1+ (CD45RO+) T cells (recall antigen-reactive helper T-cell subset) constituted 36.6 +/- 3.1% (mean +/- SEM, n = 6) of the proliferating dermal cells in involved skin, whereas Leu 18+ (CD45RA+) T cells (recall antigen naive T-cell subsets) comprised only 8.7 +/- 1.5% (n = 6). The Factor XIIIa+ dermal perivascular dendritic cell subset (24.9 +/- 1.5% of proliferating dermal cells, n = 6) and Factor VIII+ endothelial cells represented the two other major proliferating populations in lesional psoriatic dermis. Differentiated tissue macrophages, identified by phase microscopy as melanophages or by immunostaining with antibodies to Leu M1 (CD15) or myeloid histiocyte antigen, comprised less than 5% of the proliferating population in either skin type. In addition to calculating the relative proportions of these cells to each other as percent, we also determined the density of cells, in cells/mm2 of tissue. The density of proliferating cells within these populations was increased in involved versus uninvolved skin: UCHL1+, 9.0 +/- 1.7 cells/mm2 versus 1.8 +/- 0.6 cells/mm2, p less than 0.01; Factor XIIIa+, 6.0 +/- 0.7 cells/mm2 versus 1.5 +/- 0.5 cells/mm2, p less than 0.01; Factor VIII+, 5.5 +/- 1.4 cells/mm2 versus 0.0 cells/mm2, p less than 0.05.

  4. Computational cell model based on autonomous cell movement regulated by cell-cell signalling successfully recapitulates the "inside and outside" pattern of cell sorting

    Directory of Open Access Journals (Sweden)

    Ajioka Itsuki

    2007-09-01

    Full Text Available Abstract Background Development of multicellular organisms proceeds from a single fertilized egg as the combined effect of countless numbers of cellular interactions among highly dynamic cells. Since at least a reminiscent pattern of morphogenesis can be recapitulated in a reproducible manner in reaggregation cultures of dissociated embryonic cells, which is known as cell sorting, the cells themselves must possess some autonomous cell behaviors that assure specific and reproducible self-organization. Understanding of this self-organized dynamics of heterogeneous cell population seems to require some novel approaches so that the approaches bridge a gap between molecular events and morphogenesis in developmental and cell biology. A conceptual cell model in a computer may answer that purpose. We constructed a dynamical cell model based on autonomous cell behaviors, including cell shape, growth, division, adhesion, transformation, and motility as well as cell-cell signaling. The model gives some insights about what cellular behaviors make an appropriate global pattern of the cell population. Results We applied the model to "inside and outside" pattern of cell-sorting, in which two different embryonic cell types within a randomly mixed aggregate are sorted so that one cell type tends to gather in the central region of the aggregate and the other cell type surrounds the first cell type. Our model can modify the above cell behaviors by varying parameters related to them. We explored various parameter sets with which the "inside and outside" pattern could be achieved. The simulation results suggested that direction of cell movement responding to its neighborhood and the cell's mobility are important for this specific rearrangement. Conclusion We constructed an in silico cell model that mimics autonomous cell behaviors and applied it to cell sorting, which is a simple and appropriate phenomenon exhibiting self-organization of cell population. The model

  5. Mast cells as regulators of T cell responses

    Directory of Open Access Journals (Sweden)

    Silvia eBulfone-Paus

    2015-08-01

    Full Text Available Mast cells are recognized to participate in the regulation of innate and adaptive immune responses. Owing to their strategic location at the host-environment interface they control tissue homeostasis and are key cells for starting early host defence against intruders. Upon degranulation induced, e.g. by immunoglobulin E (IgE and allergen-mediated engagement of the high-affinity IgE receptor, complement or certain neuropeptide receptors, mast cells release a wide variety of preformed and newly synthesized products including proteases, lipid mediators, and many cytokines, chemokines, and growth factors. Interestingly, increasing evidence suggests a regulatory role for mast cells in inflammatory diseases via the regulation of T cell activities. Furthermore, rather than only serving as effector cells, mast cells are now recognized to induce T cell activation, recruitment, proliferation and cytokine secretion in an antigen-dependent manner and to impact on regulatory T cells. This review synthesizes recent developments in mast cell-T cell interactions, discusses their biological and clinical relevance, and explores recent controversies in this field of mast cell research.

  6. TOPICAL REVIEW: Stem cells engineering for cell-based therapy

    Science.gov (United States)

    Taupin, Philippe

    2007-09-01

    Stem cells carry the promise to cure a broad range of diseases and injuries, from diabetes, heart and muscular diseases, to neurological diseases, disorders and injuries. Significant progresses have been made in stem cell research over the past decade; the derivation of embryonic stem cells (ESCs) from human tissues, the development of cloning technology by somatic cell nuclear transfer (SCNT) and the confirmation that neurogenesis occurs in the adult mammalian brain and that neural stem cells (NSCs) reside in the adult central nervous system (CNS), including that of humans. Despite these advances, there may be decades before stem cell research will translate into therapy. Stem cell research is also subject to ethical and political debates, controversies and legislation, which slow its progress. Cell engineering has proven successful in bringing genetic research to therapy. In this review, I will review, in two examples, how investigators are applying cell engineering to stem cell biology to circumvent stem cells' ethical and political constraints and bolster stem cell research and therapy.

  7. Optically-Induced Cell Fusion on Cell Pairing Microstructures

    Science.gov (United States)

    Yang, Po-Fu; Wang, Chih-Hung; Lee, Gwo-Bin

    2016-02-01

    Cell fusion is a critical operation for numerous biomedical applications including cell reprogramming, hybridoma formation, cancer immunotherapy, and tissue regeneration. However, unstable cell contact and random cell pairings have limited efficiency and yields when utilizing traditional methods. Furthermore, it is challenging to selectively perform cell fusion within a group of cells. This study reports a new approach called optically-induced cell fusion (OICF), which integrates cell-pairing microstructures with an optically-induced, localized electrical field. By projecting light patterns onto a photoconductive film (hydrogen-rich, amorphous silicon) coated on an indium-tin-oxide (ITO) glass while an alternating current electrical field was applied between two such ITO glass slides, “virtual” electrodes could be generated that could selectively fuse pairing cells. At 10 kHz, a 57% cell paring rate and an 87% fusion efficiency were successfully achieved at a driving voltage of 20  Vpp, suggesting that this new technology could be promising for selective cell fusion within a group of cells.

  8. Germ cells and the origins of mammalian pluripotent cells

    NARCIS (Netherlands)

    Kuijk, E.W.

    2009-01-01

    Mammalian embryonic stem (ES) cells originate from preimplantation embryos and can be propagated indefinitely without loss of pluripotency; i.e. the potential to develop into any embryonic cell type. ES cells have been described for mouse, rhesus monkey, and human. There is considerable interest in

  9. Triggered cell release from shellac-cell composite microcapsules

    NARCIS (Netherlands)

    Hamad, S.A.; Stoyanov, S.D.; Paunov, V.N.

    2012-01-01

    We report the fabrication of novel shellac-cell composite microcapsules with programmed release of cells upon change of pH in a narrow range. The microcapsules were prepared from yeast cells as a model for probiotics combined with aqueous solution of ammonium shellac doped with a pH sensitive polyel

  10. Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Highlights: ► Pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. ► Pancreatic cancer cells co-cultured with PSCs showed enhanced spheroid formation. ► Expression of stem cell-related genes ABCG2, Nestin and LIN28 was increased. ► Co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. ► This study suggested a novel role of PSCs as a part of the cancer stem cell niche. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Recent studies have identified that a portion of cancer cells, called “cancer stem cells”, within the entire cancer tissue harbor highly tumorigenic and chemo-resistant phenotypes, which lead to the recurrence after surgery or re-growth of the tumor. The mechanisms that maintain the “stemness” of these cells remain largely unknown. We hypothesized that PSCs might enhance the cancer stem cell-like phenotypes in pancreatic cancer cells. Indirect co-culture of pancreatic cancer cells with PSCs enhanced the spheroid-forming ability of cancer cells and induced the expression of cancer stem cell-related genes ABCG2, Nestin and LIN28. In addition, co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. These results suggested a novel role of PSCs as a part of the cancer stem cell niche.

  11. Regulatory T cells inhibit stable contacts between CD4+ T cells and dendritic cells in vivo

    OpenAIRE

    Tadokoro, Carlos E.; Shakhar, Guy; Shen, Shiqian; Ding, Yi; Lino, Andreia C.; Maraver, Antonio; Lafaille, Juan J.; Dustin, Michael L.

    2006-01-01

    Regulatory T (T reg) cells exert powerful down-modulatory effects on immune responses, but it is not known how they act in vivo. Using intravital two-photon laser scanning microscopy we determined that, in the absence of T reg cells, the locomotion of autoantigen-specific T cells inside lymph nodes is decreased, and the contacts between T cells and antigen-loaded dendritic cells (DCs) are of longer duration. Thus, T reg cells can exert an early effect on immune responses by attenuating the es...

  12. Metaplasia and somatic cell reprogramming.

    Science.gov (United States)

    Slack, J M W

    2009-01-01

    The nature and occurrence of metaplasia is briefly reviewed. A theory of how metaplasia is initiated is presented, depending on the idea that it represents an alteration in the combination of developmental transcription factors that are expressed. Two examples of experimental metaplasia, provoked by over-expression of specific transcription factors, are presented: the transformation of B lymphocytes to macrophages, and of pancreatic exocrine cells to hepatocytes. The formation of induced pluripotential stem cells (iPS cells) is considered an example of the same process, in which the destination state is the embryonic stem cell. It is noted that iPS cell production is a stochastic process, depending on selection to obtain the desired cell type. It is proposed that analogous technology, using the appropriate transcription factors, could be used to bring about transformation to cell types other than embryonic stem cells. PMID:18855879

  13. Extragonadal Germ Cell Cancer (EGC)

    Science.gov (United States)

    ... Testicular Cancer Resource Center Extragonadal Germ Cell Cancer (EGC) 95% of all testicular tumors are germ cell ... seen in young adults. Patients with mediastinal nonseminomatous EGC are typically classed as poor risk patients because ...

  14. Fuel Cell Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The Fuel Cell Technical Team promotes the development of a fuel cell power system for an automotive powertrain that meets the U.S. DRIVE Partnership (United States Driving Research and Innovation for Vehicle efficiency and Energy sustainability) goals.

  15. Sickle Cell Anemia (For Teens)

    Science.gov (United States)

    ... Can You Do to Stay Well? en español Anemia falciforme What Is Sickle Cell Disease? Sickle cell ... about 10 to 20 days. This usually causes anemia . Anemia is what happens when the body's number ...

  16. Bone marrow (stem cell) donation

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000839.htm Bone marrow (stem cell) donation To use the sharing ... stem cells from a donor's blood. Types of Bone Marrow Donation There are two types of bone ...

  17. Cell encoding recombinant human erythropoietin

    Energy Technology Data Exchange (ETDEWEB)

    Beck, A.K.; Withy, R.M.; Zabrecky, J.R.; Masiello, N.C.

    1990-09-04

    This patent describes a C127 cell transformed with a recombinant DNA vector. It comprises: a DNA sequence encoding human erythropoietin, the transformed cell being capable of producing N-linked and O-linked glycosylated human erythropoietin.

  18. B and T cell screen

    Science.gov (United States)

    Direct immunofluorescence; E-rosetting; T and B lymphocyte assays; B and T lymphocyte assays ... identifiers are added to distinguish between T and B cells. The E-rosetting test identifies T cells ...

  19. Nanowire Solar Cells

    Science.gov (United States)

    Garnett, Erik C.; Brongersma, Mark L.; Cui, Yi; McGehee, Michael D.

    2011-08-01

    The nanowire geometry provides potential advantages over planar wafer-based or thin-film solar cells in every step of the photoconversion process. These advantages include reduced reflection, extreme light trapping, improved band gap tuning, facile strain relaxation, and increased defect tolerance. These benefits are not expected to increase the maximum efficiency above standard limits; instead, they reduce the quantity and quality of material necessary to approach those limits, allowing for substantial cost reductions. Additionally, nanowires provide opportunities to fabricate complex single-crystalline semiconductor devices directly on low-cost substrates and electrodes such as aluminum foil, stainless steel, and conductive glass, addressing another major cost in current photovoltaic technology. This review describes nanowire solar cell synthesis and fabrication, important characterization techniques unique to nanowire systems, and advantages of the nanowire geometry.

  20. Langerhans cell histiocytosis

    Directory of Open Access Journals (Sweden)

    Arpita J Nishal

    2013-01-01

    Full Text Available Langerhans cell histiocytosis (LCH is a rare proliferative disorder in which Langerhans′s cells accumulate in a variety of organs. LCH affects mostly children and adolescents, involves one or many body systems or tissues such as bone, lung, hypothalamus, posterior pituitary gland, skin, lymph node, liver, and various soft tissues. The clinical features of LCH depend on the extent of involvement. Here in, we report a case of 2-year-old girl presented with fever, swelling in front and behind of right ear and ear discharge. She had anaemia and lytic lesions on skull x-ray and high resolution computed tomography. Biopsy was performed and histopathology and immunohistochemistry findings suggested diagnosis of LCH.