WorldWideScience

Sample records for ccs-equipped igcc facilities

  1. Future technological and economic performance of IGCC and FT production facilities with and without CO2 capture: Combining component based learning curve and bottom-up analysis

    NARCIS (Netherlands)

    Knoope, M.M.J.; Meerman, J.C.; Ramirez, C.A.; Faaij, A.P.C.

    2013-01-01

    This study aims to investigate the technological and economic prospects of integrated gasification facilities for power (IGCC) and Fischer–Tropsch (FT) liquid production with and without CCS over time. For this purpose, a component based experience curve was constructed and applied to identify the p

  2. Biomass IGCC

    Energy Technology Data Exchange (ETDEWEB)

    Salo, K.; Keraenen, H. [Enviropower Inc., Espoo (Finland)

    1996-12-31

    Enviropower Inc. is developing a modern power plant concept based on pressurised fluidized-bed gasification and gas turbine combined cycle (IGCC). The process is capable of maximising the electricity production with a variety of solid fuels - different biomass and coal types - mixed or separately. The development work is conducted on many levels. These and demonstration efforts are highlighted in this article. The feasibility of a pressurised gasification based processes compared to competing technologies in different applications is discussed. The potential of power production from biomass is also reviewed. (orig.) 4 refs.

  3. Advanced IGCC/Hydrogen Gas Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    York, William [General Electric Company, Schenectady, NY (United States); Hughes, Michael [General Electric Company, Schenectady, NY (United States); Berry, Jonathan [General Electric Company, Schenectady, NY (United States); Russell, Tamara [General Electric Company, Schenectady, NY (United States); Lau, Y. C. [General Electric Company, Schenectady, NY (United States); Liu, Shan [General Electric Company, Schenectady, NY (United States); Arnett, Michael [General Electric Company, Schenectady, NY (United States); Peck, Arthur [General Electric Company, Schenectady, NY (United States); Tralshawala, Nilesh [General Electric Company, Schenectady, NY (United States); Weber, Joseph [General Electric Company, Schenectady, NY (United States); Benjamin, Marc [General Electric Company, Schenectady, NY (United States); Iduate, Michelle [General Electric Company, Schenectady, NY (United States); Kittleson, Jacob [General Electric Company, Schenectady, NY (United States); Garcia-Crespo, Andres [General Electric Company, Schenectady, NY (United States); Delvaux, John [General Electric Company, Schenectady, NY (United States); Casanova, Fernando [General Electric Company, Schenectady, NY (United States); Lacy, Ben [General Electric Company, Schenectady, NY (United States); Brzek, Brian [General Electric Company, Schenectady, NY (United States); Wolfe, Chris [General Electric Company, Schenectady, NY (United States); Palafox, Pepe [General Electric Company, Schenectady, NY (United States); Ding, Ben [General Electric Company, Schenectady, NY (United States); Badding, Bruce [General Electric Company, Schenectady, NY (United States); McDuffie, Dwayne [General Electric Company, Schenectady, NY (United States); Zemsky, Christine [General Electric Company, Schenectady, NY (United States)

    2015-07-30

    The objective of this program was to develop the technologies required for a fuel flexible (coal derived hydrogen or syngas) gas turbine for IGCC that met DOE turbine performance goals. The overall DOE Advanced Power System goal was to conduct the research and development (R&D) necessary to produce coal-based IGCC power systems with high efficiency, near-zero emissions, and competitive capital cost. To meet this goal, the DOE Fossil Energy Turbine Program had as an interim objective of 2 to 3 percentage points improvement in combined cycle (CC) efficiency. The final goal is 3 to 5 percentage points improvement in CC efficiency above the state of the art for CC turbines in IGCC applications at the time the program started. The efficiency goals were for NOx emissions of less than 2 ppm NOx (@15 % O2). As a result of the technologies developed under this program, the DOE goals were exceeded with a projected 8 point efficiency improvement. In addition, a new combustion technology was conceived of and developed to overcome the challenges of burning hydrogen and achieving the DOE’s NOx goal. This report also covers the developments under the ARRA-funded portion of the program that include gas turbine technology advancements for improvement in the efficiency, emissions, and cost performance of gas turbines for industrial applications with carbon capture and sequestration. Example applications could be cement plants, chemical plants, refineries, steel and aluminum plants, manufacturing facilities, etc. The DOE’s goal for more than 5 percentage point improvement in efficiency was met with cycle analyses performed for representative IGCC Steel Mill and IGCC Refinery applications. Technologies were developed in this program under the following areas: combustion, larger latter stage buckets, CMC and EBC, advanced materials and coatings, advanced configurations to reduce cooling, sealing and rotor purge flows, turbine aerodynamics, advanced sensors, advancements in first

  4. IGCC technology and demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Palonen, J. [A. Ahlstrom Corporation, Karhula (Finland). Hans Ahlstrom Lab.; Lundqvist, R.G. [A. Ahlstrom Corporation, Helsinki (Finland); Staahl, K. [Sydkraft AB, Malmoe (Sweden)

    1996-12-31

    Future energy production will be performed by advanced technologies that are more efficient, more environmentally friendly and less expensive than current technologies. Integrated gasification combined cycle (IGCC) power plants have been proposed as one of these systems. Utilising biofuels in future energy production will also be emphasised since this lowers substantially carbon dioxide emissions into the atmosphere due to the fact that biomass is a renewable form of energy. Combining advanced technology and biomass utilisation is for this reason something that should and will be encouraged. A. Ahlstrom Corporation of Finland and Sydkraft AB of Sweden have as one part of company strategies adopted this approach for the future. The companies have joined their resources in developing a biomass-based IGCC system with the gasification part based on pressurised circulating fluidized-bed technology. With this kind of technology electrical efficiency can be substantially increased compared to conventional power plants. As a first concrete step, a decision has been made to build a demonstration plant. This plant, located in Vaernamo, Sweden, has already been built and is now in commissioning and demonstration stage. The system comprises a fuel drying plant, a pressurised CFB gasifier with gas cooling and cleaning, a gas turbine, a waste heat recovery unit and a steam turbine. The plant is the first in the world where the integration of a pressurised gasifier with a gas turbine will be realised utilising a low calorific gas produced from biomass. The capacity of the Vaernamo plant is 6 MW of electricity and 9 MW of district heating. Technology development is in progress for design of plants of sizes from 20 to 120 MWe. The paper describes the Bioflow IGCC system, the Vaernamo demonstration plant and experiences from the commissioning and demonstration stages. (orig.)

  5. Kemper County IGCC (tm) Project Preliminary Public Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Matt; Rush, Randall; Madden, Diane; Pinkston, Tim; Lunsford, Landon

    2012-07-01

    The Kemper County IGCC Project is an advanced coal technology project that is being developed by Mississippi Power Company (MPC). The project is a lignite-fueled 2-on-1 Integrated Gasification Combined-Cycle (IGCC) facility incorporating the air-blown Transport Integrated Gasification (TRIG™) technology jointly developed by Southern Company; Kellogg, Brown, and Root (KBR); and the United States Department of Energy (DOE) at the Power Systems Development Facility (PSDF) in Wilsonville, Alabama. The estimated nameplate capacity of the plant will be 830 MW with a peak net output capability of 582 MW. As a result of advanced emissions control equipment, the facility will produce marketable byproducts of ammonia, sulfuric acid, and carbon dioxide. 65 percent of the carbon dioxide (CO{sub 2}) will be captured and used for enhanced oil recovery (EOR), making the Kemper County facility’s carbon emissions comparable to those of a natural-gas-fired combined cycle power plant. The commercial operation date (COD) of the Kemper County IGCC plant will be May 2014. This report describes the basic design and function of the plant as determined at the end of the Front End Engineering Design (FEED) phase of the project.

  6. Hydrogen Production from Hydrogen Sulfide in IGCC Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Elias Stefanakos; Burton Krakow; Jonathan Mbah

    2007-07-31

    IGCC power plants are the cleanest coal-based power generation facilities in the world. Technical improvements are needed to help make them cost competitive. Sulfur recovery is one procedure in which improvement is possible. This project has developed and demonstrated an electrochemical process that could provide such an improvement. IGCC power plants now in operation extract the sulfur from the synthesis gas as hydrogen sulfide. In this project H{sub 2}S has been electrolyzed to yield sulfur and hydrogen (instead of sulfur and water as is the present practice). The value of the byproduct hydrogen makes this process more cost effective. The electrolysis has exploited some recent developments in solid state electrolytes. The proof of principal for the project concept has been accomplished.

  7. Advanced IGCC technology for competitive power generation

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, H.-R.; Ullrich, N.; Haupt, G.; Zimmermann, G.; Pruschek, R.; Oeljeklaus, G. [Krupp Uhde GmbH (Germany)

    1998-12-31

    The paper reports interim results of a comprehensive ongoing study of potential for development funded by the European Commission. First, the status of the advanced IGCC technology is described. This IGCC 98 concept, including what has been achieved in 1998, results in net station efficiencies around 52% according to the site conditions prevailing in Denmark, where one of the world`s most modern pulverised-coal-fired power plants (design efficiency 47%) is currently under construction. The advanced IGCC station will be equipped with PRENFLO gasification developed by Krupp and a Siemens Model V94.3A gas turbine-generator. The second section depicts the results of a detailed cost estimate based on Western European conditions and aimed at clearly lower specific capital investment for an IGCC power plant. This cost estimate is based mainly on bidding information from competent manufacturers and suggests that the target purchase price of 1,100 US dollars per kW installed capacity is likely to be verified in the near future. One main factor contributing to achievement of this figure is the tremendous increase in net power output to about 450 MW with nearly the same absolute capital investment as for IGCC plants designed previously. Consequently, this permits IGCC generating costs surely lower than those of a comparable pulverised-coal-fired (PCF) steam power plant, so that the advanced IGCC stations described in this paper can be regarded as truly competitive. 2 refs., 3 figs., 3 tabs.

  8. IGCC Dynamic Simulator and Training Center

    Energy Technology Data Exchange (ETDEWEB)

    Zitney, S.E.; Erbes, M.R. (Enginomix, LLC)

    2006-10-01

    Integrated Gasification Combined Cycle (IGCC) is emerging as the technology of choice for providing clean, low-cost electricity for the next generation of coal-fired power plants and will play a central role in the development of high-efficiency, zero-emissions power plants such as FutureGen. Several major utilities and developers recently announced plans to build IGCC plants and other major utilities are evaluating IGCC’s suitability for base-load capacity additions. This recent surge of attention to IGCC power generation is creating a growing demand for experience with the analysis, operation, and control of commercial-scale IGCC plants. To meet this need, the National Energy Technology Laboratory (NETL) has launched a project to develop a generic, full-scope, IGCC dynamic plant simulator for use in establishing a state-of-the-art simulator training center at West Virginia University’s (WVU) National Research Center for Coal and Energy (NRCCE). The IGCC Dynamic Simulator & Training (DS&T) Center will be established under the auspices of the Collaboratory for Process & Dynamic Systems Modeling (“Collaboratory”) organized between NETL, WVU, the University of Pittsburgh, and Carnegie Mellon University.

  9. ConocoPhillips Sweeny IGCC/CCS Project

    Energy Technology Data Exchange (ETDEWEB)

    Paul Talarico; Charles Sugg; Thomas Hren; Lauri Branch; Joseph Garcia; Alan Rezigh; Michelle Pittenger; Kathleen Bower; Jonathan Philley; Michael Culligan; Jeremy Maslen; Michele Woods; Kevin Elm

    2010-06-16

    Under its Industrial Carbon Capture and Sequestration (ICCS) Program, the United States (U.S.) Department of Energy (DOE) selected ConocoPhillips Company (ConocoPhillips) to receive funding through the American Recovery and Reinvestment Act (ARRA) of 2009 for the proposed Sweeny Integrated Gasification Combined Cycle (IGCC)/Carbon Capture and Storage (CCS) Project (Project) to be located in Brazoria County, Texas. Under the program, the DOE is partnering with industry to demonstrate the commercial viability and operational readiness of technologies that would capture carbon dioxide (CO{sub 2}) emissions from industrial sources and either sequester those emissions, or beneficially reuse them. The primary objective of the proposed Project was to demonstrate the efficacy of advanced technologies that capture CO{sub 2} from a large industrial source and store the CO{sub 2} in underground formations, while achieving a successful business venture for the entity (entities) involved. The Project would capture 85% of the CO{sub 2} produced from a petroleum coke (petcoke) fed, 703 MWnet (1,000 MWgross) IGCC power plant, using the ConocoPhillips (COP) proprietary and commercially proven E-Gas{trademark} gasification technology, at the existing 247,000 barrel per day COP Sweeny Refinery. In addition, a number of other commercially available technologies would be integrated into a conventional IGCC Plant in a unique, efficient, and reliable design that would capture CO{sub 2}. The primary destination for the CO{sub 2} would be a depleted natural gas field suitable for CO{sub 2} storage ('Storage Facility'). COP would also develop commercial options to sell a portion of the IGCC Plant's CO{sub 2} output to the growing Gulf Coast enhanced oil recovery (EOR) market. The IGCC Plant would produce electric power for sale in the Electric Reliability Council of Texas Houston Zone. The existing refinery effluent water would be treated and reused to fulfill all process

  10. The installation IGCC power plans in the petroleum refinement: international experiences and lessons for Mexico; La instalacion de plantas IGCC en la refinacion de petroleo: experiencias internacionales y lecciones para Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Joel [Ecole du Petrole et des Moteurs, Institut Franzais du Petrole, (France)

    2004-06-15

    In this work, are presented the technical and economic elements of the international experience for the installation of IGCC power plants in the petroleum refinement and the lessons for Mexico in the installation of this technology in PEMEX Refinacion are analyzed. The construction of IGCC power plants in the petroleum refinement has grown 14.3 % at worldwide level as of 1996, in which there was already an installed capacity of 160 MW. At the end of 2003 an installed capacity of 2,500 MW was reached. The growth in the installation of IGCC power plants fundamentally appears in Europe, being Italy and Spain leader countries in the construction of this technology in the petroleum refinement. However, countries like Holland, Japan, Singapore and the United States count on IGCC power plants for electricity and hydrogen generation, which take advantage of low value fuels such as vacuum tower residues, petroleum coke, asphalt, liquid fuels, among others. In Mexico, the installation IGCC power plants in the petroleum refinement is null, nevertheless Petroleos Mexicanos counts with the approval of the government for the installation of cogeneration power plants in its facilities. This approval would allow PEMEX to carry out projects for the installation IGCC power plants, specifically in PEMEX Refinacion, for the generation of electricity and hydrogen from the advantage of heavy residues of low economic value. The opportunity that the installation IGCC power plants in the petroleum refinement offers is directed towards the commercialization of the electricity and hydrogen, which would impel PEMEX Refinacion to enter the competition of the electrical market in Mexico. [Spanish] En este trabajo, se presentan los elementos tecnicos y economicos de la experiencia internacional para la instalacion de plantas IGCC en la refinacion de petroleo y se analizan las lecciones para Mexico en la instalacion de esta tecnologia en PEMEX Refinacion. La construccion de plantas IGCC en la

  11. Commercial gasifier for IGCC applications study report

    Energy Technology Data Exchange (ETDEWEB)

    Notestein, J.E.

    1990-06-01

    This was a scoping-level study to identify and characterize the design features of fixed-bed gasifiers appearing most important for a gasifier that was to be (1) potentially commercially attractive, and (2) specifically intended for us in integrated coal gasification/combined-cycle (IGCC) applications. It also performed comparative analyses on the impact or value of these design features and on performance characteristics options of the whole IGCC system since cost, efficiency, environmental traits, and operability -- on a system basis -- are what is really important. The study also reviewed and evaluated existing gasifier designs, produced a conceptual-level gasifier design, and generated a moderately advanced system configuration that was utilized as the reference framework for the comparative analyses. In addition, technical issues and knowledge gaps were defined. 70 figs., 31 tabs.

  12. Technology qualification for IGCC power plant with CO2 Capture

    OpenAIRE

    Baig, Yasir

    2011-01-01

    Summary:This thesis presents the technology qualification plan for the integrated gasification combined cycle power plant (IGCC) with carbon dioxide capture based on DNV recommendations. Objectives of the thesis work were development of a qualification plan, heat balance, material balance and performance characteristics for IGCC with CO2 capture. GT PRO software by thermoflow was used for the development of heat balance, material balance and performance characteristics of power plant.IGCC wit...

  13. Examination and assessment of Puertollano IGCC power plant. A basis for future IGCC plants

    Energy Technology Data Exchange (ETDEWEB)

    Casero, P.; Guenster, W.; Kuske, E. [ELCOGAS S.A. (Spain)

    2005-07-01

    The main objective of the paper is the identification of weak points and critical areas for improvement of IGCC Puertollano plant design, according to commissioning and operation experience of ELCOGAS. The IGCC project has been divided in the next main systems: Gasification Unit, Air Separation Unit, Combined-Cycle Unit, Interface Systems, Control system, Auxiliary systems, and Project Development. Each subsection begins with a generally description of the performance of the respective system, highlighting the main problems encountered during operation. That description provides the necessary information to identify specific recommendations to improve availability and/or reduce operating/fixed costs. In order to do that, an exercise has been carried out to qualitatively describe every recommendation as an increase. The lessons learned will be used to develop an advanced IGCC concept with CO{sub 2} capture and H{sub 2} production based on Puertollano site conditions. These advanced concepts lead to ultra-efficient, zero-emissions future energy plants. ELCOGAS, in collaboration with SIEMENS and UHDE, have developed these activities through the project 'Pre-engineering studies for a new IGCC plant based on Puertollano ELCOGAS plant experience' funded by the EC's CARNOT Programme. 4 refs., 19 tabs.

  14. Air toxics emissions from an IGCC process

    Energy Technology Data Exchange (ETDEWEB)

    Mojtahedi, W.; Norrbacka, P. [Enviropower Inc., Espoo (Finland); Hinderson, A. [Vattenfall (Sweden); Rosenberg, R.; Zilliacus, R.; Kurkela, E.; Nieminen, M. [VTT Energy, Espoo (Finland); Hoffren, H. [IVO International Oy, Vantaa (Finland)

    1996-12-01

    The so-called simplified coal gasification combined cycle process, incorporating air gasification and hot gas cleanup, promises high power generation efficiency in an environmentally acceptable manner. Increasingly more stringent environmental regulations have focused attention on the emissions of not only SO{sub 2} and NO{sub x} but also on the so-called air toxics which include a number of toxic trace elements. As result of recent amendments to the United States Clean Air Act, IGCC emissions of eleven trace elements: antimony, arsenic, beryllium, cadmium, chromium, cobalt, lead, manganese, mercury, nickel, selenium - as well as the radionuclides uranium and thorium may be regulated. Similarly, air missions standards in Europe include a limit of 0.05 mg Nm{sup 3} for mercury and cadmium and 1.0 3/Nm{sup 3} for other class I trace elements. A suitable sampling/measuring system has been developed in this project (in cooperation with Imatran Voima Oy, Electric Power Research Institute (EPRI) and Radian Cooperation) which will be used in the pressurized gasification tests. This will enable an accurate measurement of the volatilized trace element species, at high temperature and pressure, which may be found in the vapour phase. Models are being developed that can be used to determine not only the chemical equilibrium composition of gaseous, liquid and solid phases, but also possible interactions of the gaseous species with aerosol particles and surfaces, These should be used to more accurately assess the impact of the toxic trace metals emitted from the simplified IGCC system

  15. Puertollano IGCC plant. Present position and future competitiveness

    Energy Technology Data Exchange (ETDEWEB)

    Pedro Casero; Francisco Garcia-Pena

    2006-07-01

    This paper discusses the current status of the Puertollano 350 MW IGCC demonstration power plant in Spain. The experience provided by the operation of this plant during the last years is described, focussing on the core systems of the plant (gasifier, gas cleaning and gas turbines). Bottlenecks and weak points related to these systems are identified, along with the improvements. The production of hydrogen from coal at an IGCC plant is also discussed. 9 figs., 2 tabs.

  16. Air toxics emission from an IGCC process

    Energy Technology Data Exchange (ETDEWEB)

    Mojtahedi, W.; Hovath, A. [Carbona Inc, Helsinki (Finland); Hinderson, A. [Vattenfall Utveckling (Sweden); Nykaenen, J.; Hoffren, H. [Imatran Voima Oy, Vantaa (Finland); Nieminen, M.; Kurkela, E. [VTT, Espoo (Finland)

    1997-10-01

    The emissions of 12 toxic trace element from a coal-fired IGCC plant were calculated based on thermodynamic equilibrium in the gas phase and some of the results published. The theoretical calculations were extended to include some other fuels as well as mixture of some of these fuels. The combustion of the product gas in the gas turbine is also considered. These simulations correspond to gasification of the fuel at 850-1050 deg C (depending on the fuel) and 1823 bar pressure. The gas composition was taken from the measured data as far as possible. In the absence of experimental data, a computer code developed for the U-Gas gasifier was used to determine the fuel gas composition. The gas was then cooled to 550 deg C in the gas cooler and filtered at this same temperature and burned in the gas turbine with an air ratio of 3.2. The results of these simulations are compared with the measured data of an experimental program designed to measure the emissions of a few selected trace elements from a 15 MW,h pressurized fluidized bed gasification pilot plant. The pilot plant was equipped with an advanced hot gas cleanup train which includes a two fluidized-bed reactor system for high-temperature, high-pressure external sulfur removal and a filtration unit housing porous, rigid ceramic candle filters. The trace element concentrations in the fuel, bottom ash, and filter ash are determined and the results compared with EPA regulatory levels

  17. Comparative Study on Different IGCC Systems with Quasi-Zero CO2 Emission

    Directory of Open Access Journals (Sweden)

    Yongping Yang

    2007-06-01

    Full Text Available This paper studies different IGCC systems with CO2 recovery. In order to effectively reduce CO2 emissions from the IGCC system, several kinds of IGCC systems with quasizero CO2 emissions have been studied in this paper. The key parameters affecting the IGCC systems’ performance have been analyzed and compared. The systems’ performances have been investigated based on comparison of different IGCC systems. The obtained results show that integrating the IGCC system with an advanced thermal cycle is an effective and feasible way. The performances of the IGCC systems with O2/CO2 cycle and syngas separation are better than that with a simple semi-closed O2/CO2 cycle. The research achievements will provide valuable information for further study on IGCC systems with low CO2 emissions.

  18. Enhancement of the efficiency of IGCC power plants

    Energy Technology Data Exchange (ETDEWEB)

    Haupt, G.; Zimmermann, G. [Siemens AG (Germany). Power Generation

    1998-12-31

    Starting from a power plant concept similar to that of Puertollano, the potential of future improvement measures were first determined. These increase of the temperature of the clean fuel gas to the gas turboset combustion chamber; increase of the gas turbine inlet temperature; increase of live steam parameters; and improved low temperature flue gas heat utilisation in the HRSG, thereby decreasing the stack gas temperature. The influence of these parameters on the performance of the IGCC and on the overall plant efficiency was investigated by numerous detailed cycle simulations including optimisation of the bottoming steam cycle. This has led to a new improved IGCC concept shown in a flowsheet. 7 figs., 7 tabs.

  19. Advanced virtual energy simulation training and research: IGCC with CO2 capture power plant

    Energy Technology Data Exchange (ETDEWEB)

    Zitney, S.; Liese, E.; Mahapatra, P.; Bhattacharyya, D.; Provost, G.

    2011-01-01

    AVESTAR Center is poised to develop a workforce well-prepared to operate and control commercial-scale gasification-based power plants capable of 90% pre-combustion CO{sub 2} capture and compression, as well as low sulfur, mercury, and NOx emissions. With additional support from the NETL-Regional University Alliance (NETL-RUA), the Center will educate and train engineering students and researchers by providing hands-on 'learning by operating' experience The AVESTAR Center also offers unique collaborative R&D opportunities in high-fidelity dynamic modeling, advanced process control, real-time optimization, and virtual plant simulation. Objectives and goals are aimed at safe and effective management of power generation systems for optimal efficiency, while protecting the environment. To add another dimension of realism to the AVESTAR experience, NETL will introduce an immersive training system with innovative three-dimensional virtual reality technology. Wearing a stereoscopic headset or eyewear, trainees will enter an interactive virtual environment that will allow them to move freely throughout the simulated 3-D facility to study and learn various aspects of IGCC plant operation, control, and safety. Such combined operator and immersive training systems go beyond traditional simulation and include more realistic scenarios, improved communication, and collaboration among co-workers.

  20. AVESTAR Center: Dynamic simulation-based collaboration toward achieving opertional excellence for IGCC plants with crbon capture

    Energy Technology Data Exchange (ETDEWEB)

    Zitney, Strphen E. [U.S. DOE; Liese, Eric A. [U.S. DOE; Mahapatra, Priyadarshi [URS; Turton, Richard [WVU; Bhattacharyya, Debangsu [WVU; Provost, Graham [Fossil Consulting Services

    2012-01-01

    To address challenges in attaining operational excellence for clean energy plants, the National Energy Technology Laboratory has launched a world-class facility for Advanced Virtual Energy Simulation Training And Research (AVESTAR(TM)). The AVESTAR Center brings together state-of-the-art, real-time, high-fidelity dynamic simulators with operator training systems and 3D virtual immersive training systems into an integrated energy plant and control room environment. This paper will highlight the AVESTAR Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of an integrated gasification combined cycle power plant (IGCC) with carbon dioxide capture.

  1. Modeling and assessment of future IGCC plant concepts with CO{sub 2} capture; Simulation und Bewertung zukuenftiger IGCC-Kraftwerkskonzepte mit CO{sub 2}-Abtrennung

    Energy Technology Data Exchange (ETDEWEB)

    Kunze, Christian A.

    2012-07-13

    The thesis focuses on the assessment of efficiency potential of future IGCC plants with CO{sub 2} capture. Starting point is a comprehensive analysis (thermodynamic, economic and exergy) of a state of the art IGCC. Additionally, five future IGCC concepts are proposed and evaluated for their efficiency potential in the mid- and long-term. The concepts showed significantly higher efficiencies up to approximately 60% and enable an almost CO{sub 2}-free operation.

  2. Modeling and Simulation of IGCC Considering Pressure and Flow Distribution of Gasifier

    Directory of Open Access Journals (Sweden)

    Di Huang

    2016-10-01

    Full Text Available The integrated gasification combined cycle (IGCC is a power generation technology which combines clean coal technology with a combined cycle. The system modeling is significant for design, operation and maintenance of the IGCC power plant. However, the previous IGCC modeling methods only contained a simplified compartment gasifier model, which is useful to consider the heat transfer and chemical reaction inside the gasifier, but cannot analyze the pressure and flow distribution. In order to obtain a more accurate model of IGCC system, the volume-resistance technique and modular modeling method are utilized in this paper. The new model can depict the dynamic response and distribution characteristics of the gasifier, as well as their influence on the IGCC system. The simulation result of the gasifier and IGCC system shows an obvious delay after considering pressure and flow distribution. Therefore, the proposed IGCC system model can obtain a more reliable result when considering the distribution characteristics of the gasifier.

  3. Exergoeconomic evaluation of a KRW-based IGCC power plant

    Science.gov (United States)

    Tsatsaronis, G.; Lin, L.; Tawfik, T.; Gallaspy, D. T.

    1994-04-01

    In a study supported by the U.S. Department of Energy, several design configurations of Kellogg-Rust-Westinghouse (KRW)-based Integrated Gasification-Combined-Cycle (IGCC) power plants were developed. One of these configurations was analyzed from the exergoeconomic (thermoeconomic) viewpoint. This design configuration uses an air-blown KRW gasifier, hot gas cleanup, and two General Electric MS7001F advanced combustion turbines. Operation at three different gasification temperatures was considered. The detailed exergoeconomic evaluation identified several changes for improving the cost effectiveness of this IGCC design configuration. These changes include the following: decreasing the gasifier operating temperature, enhancing the high-pressure steam generation in the gasification island, improving the efficiency of the steam cycle, and redesigning the entire heat exchanger network. Based on the cost information supplied by the M. W. Kellogg Company, an attempt was made to calculate the economically optimal exergetic efficiency for some of the most important plant components.

  4. Tampa Electric Company Polk Power Station IGCC project: Project status

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, J.E.; Carlson, M.R.; Hurd, R.; Pless, D.E.; Grant, M.D. [Tampa Electric Co., FL (United States)

    1997-12-31

    The Tampa Electric Company Polk Power Station is a nominal 250 MW (net) Integrated Gasification Combined Cycle (IGCC) power plant located to the southeast of Tampa, Florida in Polk County, Florida. This project is being partially funded under the Department of Energy`s Clean Coal Technology Program pursuant to a Round II award. The Polk Power Station uses oxygen-blown, entrained-flow IGCC technology licensed from Texaco Development Corporation to demonstrate significant reductions of SO{sub 2} and NO{sub x} emissions when compared to existing and future conventional coal-fired power plants. In addition, this project demonstrates the technical feasibility of commercial scale IGCC and Hot Gas Clean Up (HGCU) technology. The Polk Power Station achieved ``first fire`` of the gasification system on schedule in mid-July, 1996. Since that time, significant advances have occurred in the operation of the entire IGCC train. This paper addresses the operating experiences which occurred in the start-up and shakedown phase of the plant. Also, with the plant being declared in commercial operation as of September 30, 1996, the paper discusses the challenges encountered in the early phases of commercial operation. Finally, the future plans for improving the reliability and efficiency of the Unit in the first quarter of 1997 and beyond, as well as plans for future alternate fuel test burns, are detailed. The presentation features an up-to-the-minute update on actual performance parameters achieved by the Polk Power Station. These parameters include overall Unit capacity, heat rate, and availability. In addition, the current status of the start-up activities for the HGCU portion of the plant is discussed.

  5. Integrated gasification combined cycle (IGCC) process simulation and optimization

    Energy Technology Data Exchange (ETDEWEB)

    Emun, F.; Gadalla, M.; Majozi, T.; Boer, D. [University of Rovira & Virgili, Tarragona (Spain). Dept. of Chemical Engineering

    2010-03-05

    The integrated gasification combined cycle (IGCC) is an electrical power generation system which offers efficient generation from coal with lower effect on the environment than conventional coal power plants. However, further improvement of its efficiency and thereby lowering emissions are important tasks to achieve a more sustainable energy production. In this paper, a process simulation tool is proposed for simulation of IGCC. This tool is used to improve IGCC's efficiency and the environmental performance through an analysis of the operating conditions, together with process integration studies. Pinch analysis principles and process integration insights are then employed to make topological changes to the flowsheet to improve the energy efficiency and minimize the operation costs. Process data of the Texaco gasifier and the associated plants (coal preparation, air separation unit, gas cleaning, sulfur recovery, gas turbine, steam turbine and the heat recovery steam generator) are considered as a base case, and simulated using Aspen Plus. The results of parameter analysis and heat integration studies indicate that thermal efficiency of 45% can be reached, while a significant decrease in CO{sub 2} and SOx emissions is observed. The CO{sub 2} and SOx emission levels reached are 698 kg/MWh and 0.15 kg/MWh, respectively. Application of pinch analysis determines energy targets, and also identifies potential modifications for further improvement to overall energy efficiency. Benefits of energy integration and steam production possibilities can further be quantified. Overall benefits can be translated to minimum operation costs and atmospheric emissions.

  6. Pinch analysis for efficient energy utilization in IGCC plants: Incorporation of contact economiser

    CSIR Research Space (South Africa)

    Madzivhandila, VA

    2010-09-01

    Full Text Available Pinch analysis was used in this work to exploit the amount of energy available within integrated gasification combined cycle (IGCC) power plants. This work focuses on the steam path (subsystem) of IGCC power plants only. A case study on the Elcogas...

  7. Developments in the pre-combustion CO2 capture pilot plant at the Buggenum IGCC

    NARCIS (Netherlands)

    Damen, K.; Gnutek, R.; Kaptein, J.; Nannan, N.R.; Oyarzun, B.; Trapp, C.; Colonna, P.; Van Dijk, E.; Gross, J.; Bardow, A.

    2011-01-01

    N.V. Nuon (part of the Vattenfall Group) operates an IGCC in Buggenum and is developing a multi-fuel IGCC with CO2 capture and storage (Nuon Magnum) in Eemshaven, the Netherlands. In order to prepare for large-scale application of CO2 capture and storage, a CO2 capture pilot plant is constructed at

  8. Developments in the pre-combustion CO2 capture pilot plant at the Buggenum IGCC

    NARCIS (Netherlands)

    Damen, K.; Gnutek, R.; Kaptein, J.; Nannan, N.R.; Oyarzun, B.; Trapp, C.; Colonna, P.; Van Dijk, E.; Gross, J.; Bardow, A.

    2011-01-01

    N.V. Nuon (part of the Vattenfall Group) operates an IGCC in Buggenum and is developing a multi-fuel IGCC with CO2 capture and storage (Nuon Magnum) in Eemshaven, the Netherlands. In order to prepare for large-scale application of CO2 capture and storage, a CO2 capture pilot plant is constructed at

  9. Update on DOE Advanced IGCC/H2 Gas Turbine

    Science.gov (United States)

    Chupp, Ray

    2009-01-01

    Cooling Flow Reduction: a) Focus on improving turbine hot gas path part cooling efficiency. b) Applicable to current metallic turbine components and synergistic with advanced materials. c) Address challenges of IGCC/hydrogen fuel environment (for example, possible cooling hole plugging). Leakage Flow Reduction: a) Focus on decreasing turbine parasitic leakages, i.e. between static-to-static, static-to-rotating turbine parts. b) Develop improved seal designs in a variety of important areas. Purge Flow Reduction: a) Focus on decreasing required flows to keep rotor disk cavities within temperature limits. b) Develop improved sealing at the cavity rims and modified flow geometries to minimize hot gas ingestion and aerodynamic impact.

  10. IGCC sulfur compounds abatement with earth alkaline sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Ramon Alvarez-Rodriguez; Carmen Clemente-Jul [Universidad Politecnica de Madrid, Madrid (Spain). Escuela Tecnica Superior de Ingenieros de Minas

    2007-07-01

    In Integrated Gasification Combined Cycle (IGCC) process, in the reference plant built in Puertollano, Spain by Elcogas, a consortium formed by several utilities and engineering companies with a technology that is one of the most promising electricity generation options, both from the environmental and the efficiency point of view and that allows an efficient and environmentally friendly use of national coal, and also a refinery residue, petroleum coke, the high sulphur contents in coal and specially in petcoke, their presence in the feedstock, led to significant contents of gaseous sulphur compounds whose advanced removal has been the aim of this project. Different sorbents to reduce the presence of H{sub 2}S have been researched and between them the earth alkaline compounds, dolomite and calcite that react with H{sub 2}S to give calcium sulphide have been chosen due to their properties and low cost. The calcium sulphide is a reactive product because it reacts with water to regenerate the H{sub 2}S but it can be converted in calcium sulphate, inert product with diverse uses. This conversion to sulphate present some problems of possible lack of total conversion and different conditions to improve this conversion have been investigated. The tests have been carried out with dolomite and calcite and firstly the sulphuration of the same have been produced using a mixture of gases that simulates the IGCC gas and after their oxidation has been studied. The influence of the conditions of sulfurization and oxidation on the final conversion of calcium sulphide to sulphate as the presence of H{sub 2}O vapour, the variation in the composition of the gases, the temperature and the bed length have been evaluated. The solid products obtained have been characterized by X-ray diffraction and scanning electronic microscopy and chemical analysis to assess the evolution and progress of the reactions. 8 refs., 3 figs., 1 tab.

  11. On IGCC Process%浅议煤基多联产

    Institute of Scientific and Technical Information of China (English)

    孙振苓

    2011-01-01

    To make comparison on technical process and its technical characteristics between IGCC and methanol in series connection, IGCC and methanol in parallel connection, IGCC and methanol both in series and parallel connection. It is considered that having sufficient conditions to establish large scale demonstration project of IGCC and methanol coproduction during the 12th "Five-Year Plan" period.%对煤基多联产总汇、并联型IGCC与甲醇多联产、串联型IGCC与甲醇多联产和串并联型IGCC与甲醇多联产的技术方案与特点进行了比较。认为“十二五”期间,在我国建设大型IGCC与甲醇多联产装置示范工程已具备了充足的条件。

  12. Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth A. Yackly

    2005-12-01

    The ''Enabling & Information Technology To Increase RAM for Advanced Powerplants'' program, by DOE request, was re-directed, de-scoped to two tasks, shortened to a 2-year period of performance, and refocused to develop, validate and accelerate the commercial use of enabling materials technologies and sensors for coal/IGCC powerplants. The new program was re-titled ''Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants''. This final report summarizes the work accomplished from March 1, 2003 to March 31, 2004 on the four original tasks, and the work accomplished from April 1, 2004 to July 30, 2005 on the two re-directed tasks. The program Tasks are summarized below: Task 1--IGCC Environmental Impact on high Temperature Materials: The first task was refocused to address IGCC environmental impacts on high temperature materials used in gas turbines. This task screened material performance and quantified the effects of high temperature erosion and corrosion of hot gas path materials in coal/IGCC applications. The materials of interest included those in current service as well as advanced, high-performance alloys and coatings. Task 2--Material In-Service Health Monitoring: The second task was reduced in scope to demonstrate new technologies to determine the inservice health of advanced technology coal/IGCC powerplants. The task focused on two critical sensing needs for advanced coal/IGCC gas turbines: (1) Fuel Quality Sensor to rapidly determine the fuel heating value for more precise control of the gas turbine, and detection of fuel impurities that could lead to rapid component degradation. (2) Infra-Red Pyrometer to continuously measure the temperature of gas turbine buckets, nozzles, and combustor hardware. Task 3--Advanced Methods for Combustion Monitoring and Control: The third task was originally to develop and validate advanced monitoring and control methods for coal/IGCC gas

  13. Recycling of residual IGCC slags and their benefits as degreasers in ceramics.

    Science.gov (United States)

    Iglesias Martín, I; Acosta Echeverría, A; García-Romero, E

    2013-11-15

    This work studies the evolution of IGCC slag grains within a ceramic matrix fired at different temperatures to investigate the effect of using IGCC slag as a degreaser. Pressed ceramic specimens from two clay mixtures are used in this study. The M1 mixture is composed of standard clays, whereas the M2 mixture is composed of the same clay mixture as M1 mixture but contains 15% by weight IGCC slag. The amount of IGCC slag added coincides with the amount of slag typically used as a degreaser in the ceramic industry. Specimens are fired at 950 °C, 1000 °C, 1050 °C, 1100 °C and 1150 °C. The mineralogical composition and the IGCC slag grain shape within the ceramic matrix are determined by X-ray diffraction, polarized light microscopy and scanning electron microscopy. The results reveal that the surface of the slag grains is welded to the ceramic matrix while the quartz grains are separated, which causes increased water absorption and reduces the mechanical strength. IGCC slag, however, reduces water absorption. This behaviour is due to the softening temperature of the slag. This property is quite important from an industrial viewpoint because IGCC slag can serve as an alternative to traditional degreasing agents in the ceramic building industry. Additionally, using IGCC slag allows for the transformation of waste into a secondary raw material, thereby avoiding disposal at landfills; moreover, these industrial wastes are made inert and improve the properties of ceramics.

  14. Optimal integrated design of air separation unit and gas turbine block for IGCC systems

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, R.; Grossman, I.; Biegler, L.; Zitney, S.

    2009-01-01

    The Integrated Gasification Combined Cycle (IGCC) systems are considered as a promising technology for power generation. However, they are not yet in widespread commercial use and opportunities remain to improve system feasibility and profitability via improved process integration. This work focuses on the integrated design of gasification system, air separation unit (ASU) and the gas turbine (GT) block. The ASU supplies oxygen to the gasification system and it can also supply nitrogen (if required as a diluent) to the gas turbine block with minimal incremental cost. Since both GT and the ASU require a source of compressed air, integrating the air requirement of these units is a logical starting point for facility optimization (Smith et al., 1997). Air extraction from the GT can reduce or avoid the compression cost in the ASU and the nitrogen injection can reduce NOx emissions and promote trouble-free operation of the GT block (Wimer et al., 2006). There are several possible degrees of integration between the ASU and the GT (Smith and Klosek, 2001). In the case of 'total' integration, where all the air required for the ASU is supplied by the GT compressor and the ASU is expected to be an elevated-pressure (EP) type. Alternatively, the ASU can be 'stand alone' without any integration with the GT. In this case, the ASU operates at low pressure (LP), with its own air compressor delivering air to the cryogenic process at the minimum energy cost. Here, nitrogen may or may not be injected because of the energy penalty issue and instead, syngas humidification may be preferred. A design, which is intermediate between these two cases, involves partial supply of air by the gas turbine and the remainder by a separate air compressor. These integration schemes have been utilized in some IGCC projects. Examples include Nuon Power Plant at Buggenum, Netherlands (both air and nitrogen integration), Polk Power Station at Tampa, US (nitrogen-only integration) and

  15. 煤气化技术的发展及在IGCC中的应用%Development of Coal Gasification Technology and Its Application in IGCC

    Institute of Scientific and Technical Information of China (English)

    张东亮; 许世森

    2001-01-01

    本文阐述了煤气化技术的发展过程及各种气化工艺的技术特点。提出了中国第一座IGCC示范电站在煤气化技术选择方面应注意的问题。%The paper reviews the development course of the coal gasificationand the technical feature of various gasification process, some suggestions on the choice of coal gasification process about the China's first IGCC demonstra tion facilities are also put forward.

  16. Development of ITM oxygen technology for integration in IGCC and other advanced power generation

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Phillip A. [Air Products And Chemicals, Inc., Allentown, PA (United States)

    2015-03-31

    Ion Transport Membrane (ITM) technology is based on the oxygen-ion-conducting properties of certain mixed-metal oxide ceramic materials that can separate oxygen from an oxygen-containing gas, such as air, under a suitable driving force. The “ITM Oxygen” air separation system that results from the use of such ceramic membranes produces a hot, pure oxygen stream and a hot, pressurized, oxygen-depleted stream from which significant amounts of energy can be extracted. Accordingly, the technology integrates well with other high-temperature processes, including power generation. Air Products and Chemicals, Inc., the Recipient, in conjunction with a dozen subcontractors, developed ITM Oxygen technology under this five-phase Cooperative Agreement from the laboratory bench scale to implementation in a pilot plant capable of producing power and 100 tons per day (TPD) of purified oxygen. A commercial-scale membrane module manufacturing facility (the “CerFab”), sized to support a conceptual 2000 TPD ITM Oxygen Development Facility (ODF), was also established and operated under this Agreement. In the course of this work, the team developed prototype ceramic production processes and a robust planar ceramic membrane architecture based on a novel ceramic compound capable of high oxygen fluxes. The concept and feasibility of the technology was thoroughly established through laboratory pilot-scale operations testing commercial-scale membrane modules run under industrial operating conditions with compelling lifetime and reliability performance that supported further scale-up. Auxiliary systems, including contaminant mitigation, process controls, heat exchange, turbo-machinery, combustion, and membrane pressure vessels were extensively investigated and developed. The Recipient and subcontractors developed efficient process cycles that co-produce oxygen and power based on compact, low-cost ITMs. Process economics assessments show significant benefits relative to state

  17. IGCC power plants: Higher efficiency with better utilisation of raw gas waste heat?; Macht eine verbesserte Rohgasabhitzenutzung IGCC-Kraftwerke attraktiver?

    Energy Technology Data Exchange (ETDEWEB)

    Haupt, G.; Zimmermann, G.; Hourfar, D.; Hirschfelder, A.; Romey, I.; Oeljeklaus, G.; Obladen, M.; Semiao, V.

    2001-07-01

    More than 20 IGCC power stations of 40 to 550 MW fre in operation world-wide. They have high efficiencies, low pollutant emissions, and a wide range of fuels. However, the efficiency of solid-fuel power stations is lower as compared to gas-fired power stations owing to a rather high loss in the gas generator. The contribution investigates whether the waste heat of the gas generator can be integrated in the power plant process to make it more efficient. [German] Weltweit sind zur Zeit mehr als 20 Kombikraftwerke mit integrierter Vergasung (engl. Abkuerzung: IGCC fuer integrated gasification combined cycle) im Leistungsbereich von 40 bis 550 MW in Betrieb oder in Bau. Dieser Kraftwerkstyp zeichnet sich durch hohe Wirkungsgrade und geringe Schadstoffemissionen aus. Ein weiterer Vorteil ist die grosse Bandbreite moeglicher Einsatzstoffe. IGCC-Technologie ermoeglicht fuer nahezu alle fluessigen und festen Brennstoffe den Einsatz in GUD-Kraftwerken. Der heute erreichbare hohe Wirkungsgrad von erdgasbefeuerten GUD-Kraftwerken von bis zu 60% kann damit zum Teil auch fuer feste Brennstoffe erschlossen werden. Durch nicht unbetraechtliche Verluste in der vorgeschalteten Gaserzeugungsanlage (''Gasinsel'') werden IGCC-Kraftwerke allerdings die hohen Wirkungsgrade von erdgasbefeuerten GUD-Kraftwerken nicht vollstaendig erreichen. Einen wesentlichen Einflussfaktor im Hinblick auf diesen Wirkungsgradabstand stellt die Integration der in der Gasinsel anfallenden Abwaermen in den Kraftwerksprozess dar, wobel in diesem Beitrag der Schwerpunkt auf der Rohgasabhitzenutzung liegt. (orig.)

  18. Exergetic comparison of two KRW-based IGCC power plants

    Science.gov (United States)

    Tsatsaronis, G.; Tawfik, T.; Lin, L.; Gallaspy, D. T.

    1994-04-01

    In studies supported by the U.S. Department of Energy and the Electric Power Research Institute, several design configurations of Kellogg-Rust-Westinghouse (KRW)-based Integrated Gasification-Combined-Cycle (IGCC) power plants were developed. Two of these configurations are compared here from the exergetic viewpoint. The first design configuration (case 1) uses an air-blown KRW gasifier and hot gas cleanup while the second configuration (reference case) uses an oxygen-blown KRW gasifier and cold gas cleanup. Each case uses two General Electric MS7001F advanced combustion turbines. The exergetic comparison identifies the causes of performance difference between the two cases: differences in the exergy destruction of the gasification system, the gas turbine system, and the gas cooling process, as well as differences in the exergy loss accompanying the solids to disposal stream. The potential for using (a) oxygen-blown versus air-blown-KRW gasifiers, and (b) hot gas versus cold gas cleanup processes was evaluated. The results indicate that, among the available options, an oxygen-blown KRW gasifier using in-bed desulfurization combined with an optimized hot gas cleanup process has the largest potential for providing performance improvements.

  19. Questionnaire regarding the international Freiberg conference on IGCC and XtL technologies. Analysis of 75 questionnaires

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The Puertollano IGCC Plant, owned by ELCOGAS, uses a mixture (50/50% weight) of local coal with high content of ash (approximately 45%) and pet-coke to be fed into its pressurised entrained flow gasifier. Ash is removed from the bottom of the gasifier as vitrified slag although a fraction is converted into fly ash (2.5-3 t/h) and entrained by the syngas. In order to remove this fly ash, it is filtered in two candle filter vessels with more than 1,000 candles each, using nitrogen for on-line cleaning. The filtering system suffers some malfunctions resulting in blinding of the internal candle surface and increasing of the candle DP. The model of candle filter was changed and modifications were performed without the desired results. Therefore, the identification of suitable hot gas filtration technologies capable of overcoming current and future severe operational constraints experienced is of the utmost importance for IGCC units. In this sense, a pilot plant which allows the performance of alternative filtering elements tests, pulse cleaning strategies, on-line particulate monitoring and off-cleaning procedures has come into operation at the ESI-University of Seville facilities. The design has been conceived as a versatile pilot unit, in order to hold both bags and ceramic candles which are to be tested in a wide range of operating conditions. The pilot is processing air laden with real fly ash provided by ELCOGAS, and high pressure nitrogen for the cleaning operation. This paper describes the design and operation of the pilot as well as the testing plan currently being carried out. (orig.)

  20. Thermodynamic performance assessment of IGCC power plants with various syngas cleanup processes

    Science.gov (United States)

    Xiao, Yunhan; Li, Zhen; Wang, Bo; Zhao, Lifeng; Chi, Jinling

    2012-10-01

    The present work explores how much IGCC can benefit from warm gas clean-up(WGCU)in comparison with conventional cold gas clean-up(CGCU) and what are the respective contributions of dry particulates removal and warm gas desulfurization (WGD) in a plant-wide point of view. Influences of key parameters of WGD on thermodynamic performance of IGCC plant including desulfurization temperature, oxygen concentration in the regeneration stream, and H2S removal efficiency are discussed. It is obtained that the net efficiency of IGCC with full WGCU experiences an improvement of 1.77 percentage points compared with IGCC with full CGCU. Of which, dry particulates removal without water scrubber contributes about 1 percentage point. The influence of desulfurization temperature on thermodynamic performance of IGCC with WGD is weak especially when it is higher than about 350°C, which indicates that more focus should be put on investment cost, technical feasibility and sorbent stability for the selection of optimal operation temperature. Generally, 2%˜3% of oxygen concentration in the regeneration stream might be reasonable in a thermodynamic performance point of view. In addition, the improvement of 0.31 percentage points can be obtained by removal of H2S in the syngas from 27 ppm to 3 ppm.

  1. Feasibility studies to improve plant availability and reduce total installed cost in IGCC plants

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Kevin [General Electric Company, Houston, TX (United States); Anasti, William [General Electric Company, Houston, TX (United States); Fang, Yichuan [General Electric Company, Houston, TX (United States); Subramanyan, Karthik [General Electric Company, Houston, TX (United States); Leininger, Tom [General Electric Company, Houston, TX (United States); Zemsky, Christine [General Electric Company, Houston, TX (United States)

    2015-03-30

    The main purpose of this project is to look at technologies and philosophies that would help reduce the costs of an Integrated Gasification Combined Cycle (IGCC) plant, increase its availability or do both. GE’s approach to this problem is to consider options in three different areas: 1) technology evaluations and development; 2) constructability approaches; and 3) design and operation methodologies. Five separate tasks were identified that fall under the three areas: Task 2 – Integrated Operations Philosophy; Task 3 – Slip Forming of IGCC Components; Task 4 – Modularization of IGCC Components; Task 5 – Fouling Removal; and Task 6 – Improved Slag Handling. Overall, this project produced results on many fronts. Some of the ideas could be utilized immediately by those seeking to build an IGCC plant in the near future. These include the considerations from the Integrated Operations Philosophy task and the different construction techniques of Slip Forming and Modularization (especially if the proposed site is in a remote location or has a lack of a skilled workforce). Other results include ideas for promising technologies that require further development and testing to realize their full potential and be available for commercial operation. In both areas GE considers this project to be a success in identifying areas outside the core IGCC plant systems that are ripe for cost reduction and ity improvement opportunities.

  2. Prospect of Coal Based IGCC to Meet the Clean Energy Challenge

    Directory of Open Access Journals (Sweden)

    Md. Kamruzzaman

    2014-12-01

    Full Text Available The development of a country is nearly proportional to the average per person energy consumption rate, which is very low in our country. However, the rate of average energy consumption is increasing day by day throughout the world. With increasing the production of energy, the problem of environment pollution from the power generation sources and energy efficiency becomes more imperative. Coal is the major source of primary energy of the world, however, the energy efficiency of coal based power plant is low, and also it significantly polluted the environment. Therefore, to improve the energy efficiency and reduce the pollution from coal based power plant is an important issue to discuss. In this paper, the primary reserves of energy throughout the world are discussed. Integrated gasification combined cycle (IGCC is a latest technology used to improve the performance of coal based power plant. The process of IGCC and the present condition of IGCC throughout the world is discussed. Finally the advantages of IGCC and necessity of moving towards IGCC from convention coal based power plant is discussed in terms of cost, efficiency and environmental issues.

  3. Briefing Book, Interagency Geothermal Coordinating Council (IGCC) Meeting of April 28, 1988

    Energy Technology Data Exchange (ETDEWEB)

    None

    1988-04-28

    The IGCC of the U.S. government was created under the intent of Public Law 93-410 (1974) to serve as a forum for the discussion of Federal plans, activities, and policies that are related to or impact on geothermal energy. Eight Federal Departments were represented on the IGCC at the time of this meeting. The main presentations in this report were on: Department of Energy Geothermal R&D Program, the Ormat binary power plant at East Mesa, CA, Potential for direct use of geothermal at Defense bases in U.S. and overseas, Department of Defense Geothermal Program at China Lake, and Status of the U.S. Geothermal Industry. The IGCC briefing books and minutes provide a historical snapshot of what development and impact issues were important at various time. (DJE 2005)

  4. Photocatalytic degradation of pollutants from Elcogas IGCC power station effluents.

    Science.gov (United States)

    Durán, A; Monteagudo, J M; San Martín, I; García-Peña, F; Coca, P

    2007-06-01

    The aim of this work is to improve the quality of water effluents coming from Elcogas IGCC power station (Puertollano, Spain) with the purpose of fulfilling future more demanding normative, using heterogeneous photocatalytic oxidation processes (UV/H(2)O(2)/TiO(2) or ZnO). The efficiency of photocatalytic degradation for the different catalysts (TiO(2) and ZnO) was determined from the analysis of the following parameters: cyanides, formates and ammonia content. In a first stage, the influence of two parameters (initial concentration of H(2)O(2) and amount of catalyst) on the degradation kinetics of cyanides and formates was studied based on a factorial experimental design. pH was always kept in a value >9.5 to avoid gaseous HCN formation. The degradation of cyanides and formates was found to follow pseudo-first order kinetics. Experimental kinetic constants were fitted using neural networks (NNs). The mathematical model reproduces experimental data within 90% of confidence and allows the simulation of the process for any value of parameters in the experimental range studied. Moreover, a measure of the saliency of the input variables was made based upon the connection weights of the neural networks, allowing the analysis of the relative relevance of each variable with respect to the others. Results showed that the photocatalytic process was effective, being the degradation rate of cyanides about five times higher when compared to removal of formates. Finally, the effect of lowering pH on the degradation of formates was evaluated after complete cyanides destruction was reached (10 min of reaction). Under the optimum conditions (pH 5.2, [H(2)O(2)]=40 g/l; [TiO(2)]=2g/l), 100% of cyanides and 92% of initial NH(3) concentration are degraded after 10 min, whereas 35 min are needed to degrade 98% of formates.

  5. New Developments in Integrated Gasification Combined Cycle (IGCC) Plants%整体煤气化联合循环(IGCC)装置的进展

    Institute of Scientific and Technical Information of China (English)

    张慧

    2000-01-01

    简述了整体煤气化联合循环(IGCC)目前的进展情况.介绍了过去和当前世界各国主要的IGCC项目.展示了第二代IGCC装置的性能指标.IGCC为代表的燃蒸联合循环将是21世纪能源建设的重要方向.

  6. Aerodynamics and Heat Transfer Studies of Parameters Specific to the IGCC-Requirements: Endwall Contouring, Leading Edge and Blade Tip Ejection under Rotating Turbine Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Schobeiri, Meinhard; Han, Je-Chin

    2014-09-30

    This report deals with the specific aerodynamics and heat transfer problematic inherent to high pressure (HP) turbine sections of IGCC-gas turbines. Issues of primary relevance to a turbine stage operating in an IGCC-environment are: (1) decreasing the strength of the secondary flow vortices at the hub and tip regions to reduce (a), the secondary flow losses and (b), the potential for end wall deposition, erosion and corrosion due to secondary flow driven migration of gas flow particles to the hub and tip regions, (2) providing a robust film cooling technology at the hub and that sustains high cooling effectiveness less sensitive to deposition, (3) investigating the impact of blade tip geometry on film cooling effectiveness. The document includes numerical and experimental investigations of above issues. The experimental investigations were performed in the three-stage multi-purpose turbine research facility at the Turbomachinery Performance and Flow Research Laboratory (TPFL), Texas A&M University. For the numerical investigations a commercial Navier-Stokes solver was utilized.

  7. Technical comparison between Integrated Gasification Combined Cycle (IGCC) and Natural Gas Combined Cycle (NGCC) power plants

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Pablo Andres Silva; Venturini, Osvaldo Jose; Lora, Electo Eduardo Silva [Federal University of Itajuba - UNIFEI, MG (Brazil). Excellence Group in Thermal Power and Distributed Generation - NEST], e-mails: osvaldo@unifei.edu.br, electo@unifei.edu.br

    2010-07-01

    Among the emerging clean coal technologies for power generation, Integrated Gasification Combined Cycle (IGCC) and Natural Gas Combined Cycle (NGCC) systems are receiving considerable attention as a potentially attractive option to reduce the emissions of greenhouse gases (GHG). The main reason is because these systems has high efficiency and low emissions in comparison with traditional power generation plants. Currently in IGCC and NGCC systems at demonstration stage is been considered to implement CCS technology. CO{sub 2} emissions can be avoided in a gasification-based power plant because by transferring almost all carbon compounds to CO{sub 2} through the water gas shift (WGS) reaction, then removing the CO{sub 2} before it is diluted in the combustion stage. The aim of this study is to compare the technical performance of an IGCC system that uses Brazilian coal and petroleum coke as fuel with a NGCC system, with the same fixed output power of 450 MW. The first section of this paper presents the plant configurations of IGCC systems. The following section presents an analysis of NGCC technology. (author)

  8. Recovery of flue gas energy in heat integrated IGCC power plants using the contact economizer system

    CSIR Research Space (South Africa)

    Madzivhandila, V

    2010-10-01

    Full Text Available , enthalpy data was obtained from the air-water psychometric chart. The five step procedure given in section 3 was followed in the application of the CES to increase the �IGCC to 55%. Figure 5: The heat integrated design of the Elcogas plant. 5...

  9. Survival of patients with nonseminomatous germ cell cancer: A review of the IGCC classification by Cox regression and recursive partitioning

    NARCIS (Netherlands)

    M.R. van Dijk (Merel); E.W. Steyerberg (Ewout); S.P. Stenning; E. Dusseldorp (Elise); J.D.F. Habbema (Dik)

    2004-01-01

    textabstractThe International Germ Cell Consensus (IGCC) classification identifies good, intermediate and poor prognosis groups among patients with metastatic nonseminomatous germ cell tumours (NSGCT). It uses the risk factors primary site, presence of nonpulmonary visceral metastases and tumour mar

  10. Control system design for maintaining CO{sub 2} capture in IGCC power plants while loading-following

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, D.; Turton, R.; Zitney, S.

    2012-01-01

    Load-following requirements for future integrated gasification combined cycle (IGCC) power plants with precombustion CO{sub 2} capture are expected to be far more challenging as electricity produced by renewable energy is connected to the grid and strict environmental limits become mandatory requirements. In this work, loadfollowing studies are performed using a comprehensive dynamic model of an IGCC plant with pre-combustion CO{sub 2} capture developed in Aspen Engineering Suite (AES). Considering multiple single-loop controllers for power demand load following, the preferred IGCC control strategy from the perspective of a power producer is gas turbine (GT) lead with gasifier follow. In this strategy, the GT controls the load by manipulating its firing rate while the slurry feed flow to the gasifier is manipulated to control the syngas pressure at the GT inlet. The syngas pressure control is an integrating process with significant time delay mainly because of the large piping and equipment volumes between the gasifier and the GT inlet. A modified proportional–integral–derivative (PID) control is considered for IGCC syngas pressure control. The desired CO{sub 2} capture rate must be maintained while the IGCC plant follows the load. For maintaining the desired CO{sub 2} capture rate, the control performance of PID control is compared with linear model predictive control (LMPC). The results show that the LMPC outperforms PID control for maintaining CO{sub 2} capture rates in an IGCC power plant while load following.

  11. IGCC performance comparison for variations in gasifier type and gas turbine firing temperature

    Science.gov (United States)

    Stochl, R. J.; Nainiger, J. J.

    1983-01-01

    Performance estimates were made for a series of integrated coal gasification combined cycle (IGCC) power systems using three generic types of coal gasification subsystems. The objectives of this study were (1) to provide a self consistent comparison of IGCC systems using different types of gasifiers and different oxidants and (2) to use this framework of cases to evaluate the effect of a gas turbine firing temperature and cooling approach an overall system efficiency. The basic IGCC systems considered included both air and oxygen blown versions of a fluidized bed gasifier, represented by the Westinghouse design, and an entrained bed gasifier, represented by the Texaco design. Also considered were systems using an oxygen blown, fixed bed gasifier, represented by the British Gas Corporation (BGC) slagging gasifier. All of these gasifiers were integrated with a combined cycle using a gas turbine firing temperature of 1700 K (2600 F) and a compressor pressure ratio of 16:1. Steam turbine throttle conditions were chosen to be 16.6 MPa/811 K (2400 psia/1000 F) with a single reheat to 810 K (1000 F). Some of these cases were modified to allow the evaluation of the effect of gas turbine firing temperature. Turbine firing temperatures from state of the art 1365 K (2000 F) to an advanced technology 1920 K (3000 F) were analyzed. A turbine cooling technology that maintains metal temperatures below acceptable limits was assumed for each level of firing temperature. System performance comparisons were made using three advanced turbine cooling technologies for the 1920 K (3000 F) firing temperature. The results indicate that the IGCC using the BGC gasifier had the highest net system efficiency (42.1 percent) of the five gasification cases considered.

  12. The Effect of Alumina Dispersant Powder on the Workability of Chromia Based Refractory for IGCC Application

    Science.gov (United States)

    Ming, Zhao Jing; Xun, Yang Zheng; Hong, Hwang Kyu; Hwan, Park Sang

    2011-10-01

    The quality of refractory applied on IGCC is a key factor that affects the cost of production. The workability and microstructure of chromia based castable are varied by introducing different type of alumina dispersant powder, such as active alumina powder. In this study, three types of active alumina powder are added to improve the workability. It's proved that the specific surface area and particle size distribution of fine powders in matrix part greatly affect the flow values and microstructures.

  13. Thermal expansion of slag and fly ash from coal gasification in IGCC power plant

    Energy Technology Data Exchange (ETDEWEB)

    M. Aineto; A. Acosta; J.M.A. Rincon; M. Romero [University of Castilla La Mancha, Ciudad Real (Spain). Laboratory of Applied Mineralogy

    2006-11-15

    Integrated gasification in combined cycle (IGCC) is an electrical power generation system which is characterized to be a clean coal technology different than conventional process in combustible treatment. IGCC process gives rise to inorganic solid wastes in the form of vitreous slag and fly ashes with singular thermal properties. The gasification of the fuel takes place at high temperature and pressure in reducing atmosphere. Under that conditions, gases such as H{sub 2}, N{sub 2} or CO, which are the main components of the gas mixture in the gasifier, show a high solubility in the melt and during the cooling remain enclosed in the vitreous slag. When these wastes are afterward thermal treated in oxidizing conditions, two phenomena occur. The development of a crystalline phase by devitrification of the glassy matrix and the releasing of the enclosed gas, which starts at temperatures nearly to the softening point. At higher temperatures the bubbles with increasing kinetic energy tend to ascend with difficulty through the viscous liquid phase and promotes an expansive reaction, giving rise to a foam glass-ceramic product. This paper has been focused on the study of thermal expansion in slag and fly ash samples from the ELCOGAS IGCC power plant located in Puertollano (Spain). 18 refs., 11 figs., 1 tab.

  14. Degradation of thermal barrier coatings on an Integrated Gasification Combined Cycle (IGCC) simulated film-cooled turbine vane pressure surface due to particulate fly ash deposition

    Science.gov (United States)

    Luo, Kevin

    Coal synthesis gas (syngas) can introduce contaminants into the flow of an Integrated Gasification Combined Cycle (IGCC) industrial gas turbine which can form molten deposits onto components of the first stage of a turbine. Research is being conducted at West Virginia University (WVU) to study the effects of particulate deposition on thermal barrier coatings (TBC) employed on the airfoils of an IGCC turbine hot section. WVU had been working with U.S. Department of Energy, National Energy Technology Laboratory (NETL) to simulate deposition on the pressure side of an IGCC turbine first stage vane to study the effects on film cooling. To simulate the particulate deposition, TBC coated, angled film-cooled test articles were subjected to accelerated deposition injected into the flow of a combustor facility with a pressure of approximately 4 atm and a gas temperature of 1560 K. The particle characteristics between engine conditions and laboratory are matched using the Stokes number and particulate loading. To investigate the degradation on the TBC from the particulate deposition, non-destructive evaluations were performed using a load-based multiple-partial unloading micro-indentation technique and were followed by scanning electron microscopy (SEM) evaluation and energy dispersive X-ray spectroscopy (EDS) examinations. The micro-indentation technique used in the study was developed by Kang et al. and can quantitatively evaluate the mechanical properties of materials. The indentation results found that the Young's Modulus of the ceramic top coat is higher in areas with deposition formation due to the penetration of the fly ash. The increase in the modulus of elasticity has been shown to result in a reduction of strain tolerance of the 7% yttria-stabilized zirconia (7YSZ) TBC coatings. The increase in the Young's modulus of the ceramic top coat is due to the stiffening of the YSZ columnar microstructure from the cooled particulate fly ash. SEM evaluation was used to

  15. STUDY ON EXERGY DESTRUCTION DISTRIBUTION OF THE IGCC SYSTEM%整体煤气化联合循环(IGCC)损分布结构研究

    Institute of Scientific and Technical Information of China (English)

    刘泽龙; 金红光; 林汝谋

    2000-01-01

    整体煤气化联合循环是一种先进的洁净煤发电技术。本文应用#[1316]分析方法,研究IGCC中七个子系统(空分、气化、净化、压气机、燃烧室、透平、余热锅炉及汽机)的#[1316]损失分布,指出系统中最大#[1316]损失过程为煤气化、燃气轮机燃烧和空分过程。同时,揭示了系统随不同空气整体化和氮气回注的规律。这些研究可以指导下一代IGCC系统的改进%Integrated Gasification Combined Cycle is consideredas one of the advanced clean coal power technologies. Here, we haveinvestigated an IGCC on the basis of exergy analysis,and clarified the distribution of exergy destruction in sub-systemsincluding air separation unit, coal gasifier, coal gas clean-up unit,air compressor, combustor of gas turbine, gas turbine, heatrecovery steam generation and steam turbine. The study also pointsout that larger exergy destruction take place in the processes ofgasification, combustion in GT, and air separation, andso does the change of exergy destruction distribution with the airintegration degree and the nitrogen injection ratio. This investigationwill be valuable for the synthesis of next-generation IGCC

  16. Advanced CO{sub 2} Capture Technology for Low Rank Coal IGCC System

    Energy Technology Data Exchange (ETDEWEB)

    Alptekin, Gokhan

    2013-09-30

    The overall objective of the project is to demonstrate the technical and economic viability of a new Integrated Gasification Combined Cycle (IGCC) power plant designed to efficiently process low rank coals. The plant uses an integrated CO{sub 2} scrubber/Water Gas Shift (WGS) catalyst to capture over90 percent capture of the CO{sub 2} emissions, while providing a significantly lower cost of electricity (COE) than a similar plant with conventional cold gas cleanup system based on SelexolTM technology and 90 percent carbon capture. TDA’s system uses a high temperature physical adsorbent capable of removing CO{sub 2} above the dew point of the synthesis gas and a commercial WGS catalyst that can effectively convert CO in The overall objective of the project is to demonstrate the technical and economic viability of a new Integrated Gasification Combined Cycle (IGCC) power plant designed to efficiently process low rank coals. The plant uses an integrated CO{sub 2} scrubber/Water Gas Shift (WGS) catalyst to capture over90 percent capture of the CO{sub 2} emissions, while providing a significantly lower cost of electricity (COE) than a similar plant with conventional cold gas cleanup system based on SelexolTM technology and 90 percent carbon capture. TDA’s system uses a high temperature physical adsorbent capable of removing CO{sub 2} above the dew point of the synthesis gas and a commercial WGS catalyst that can effectively convert CO in bituminous coal the net plant efficiency is about 2.4 percentage points higher than an Integrated Gasification Combined Cycle (IGCC) plant equipped with SelexolTM to capture CO{sub 2}. We also previously completed two successful field demonstrations: one at the National Carbon Capture Center (Southern- Wilsonville, AL) in 2011, and a second demonstration in fall of 2012 at the Wabash River IGCC plant (Terra Haute, IN). In this project, we first optimized the sorbent to catalyst ratio used in the combined WGS and CO{sub 2} capture

  17. Utilisation of IGCC slag and clay steriles in soft mud bricks (by pressing) for use in building bricks manufacturing.

    Science.gov (United States)

    Acosta, A; Iglesias, I; Aineto, M; Romero, M; Rincón, J Ma

    2002-01-01

    The subject of this study is the application to the construction of soft mud bricks (also known as pressed bricks), both green and heat-treated bodies, built from raw materials from Santa Cruz de Mudela, Ciudad Real, and IGCC slag from the power central of Puertollano (Ciudad Real, Spain). For this purpose, industrial level tests have been performed: the production of these kind of bricks from mixes of waste from ores of construction clays and to significant fraction of different ratios and clay granulometries mixed with IGCC slag. The results of this experimentation suggests that not only can IGCC slag be applied to a ceramic process, but also its use gives several advantages, as water and energy savings, as well as improvements on the final properties of products.

  18. Development of ITM Oxygen Technology for Integration in IGCC and Other Advanced Power Generation DECISION POINT 1 UNDER PHASE 3

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Lori

    2013-08-01

    Air Products and the DOE have partnered over a number of years in the development of ITM Oxygen technology in support of gasification technology. Throughout this process, studies of application of the technology to IGCC and oxy-coal combustion have shown significant reduction in capital and operating costs compared to similar systems using conventional cryogenic air separation. Phase 3, the current phase of the program, focuses on the design, construction and operation of a 30- to 100-TPD pilot facility, the Intermediate Scale Test Unit (ISTU). Execution of this phase to date has resulted in significant advances in a number of areas including ceramic membrane material development, module design and production, ceramic-to-metal seal design, process control strategies, and engineering development of process cycles. Phase 3 will be complete upon successful operation of the ISTU in a series of tests making oxygen from ceramic membrane modules and producing power from a hot gas expander. Phase 3 work has extended beyond the planned schedule due to a delay in delivery of equipment from vendors. Air Products is currently managing the equipment delay by close involvement with the vendor to redesign the problematic equipment and oversee its fabrication. The result of these unforeseen challenges is that the ISTU project completion date has been delayed. Tight cost controls have been implemented both by DOE program management and APCI to meet budget constraints despite increased costs due to budget delays. Total project costs have increased in several areas. Increased costs in the ISTU project include purchased equipment, instruments, construction, and contractor engineering. Increased costs for other tasks include additional work in support of module production by Ceramatec, Inc, and increased Air Products labor for component testing. Air Products plans to complete testing as outlined in the SOPO and successfully complete all project objectives by the end of FY14.

  19. Comparisons between oxy-fuel combustion and IGCC technologies in China coal- energy industry

    OpenAIRE

    Zhao, Xue; Clemente Jul, María del Carmen

    2010-01-01

    A comparison between oxy-fuel combustion plants and IGCC plants has been carried out. Oxy-fuel combustion performs better for the retrofit of exist pulverized coal plants after the evaluation of efficiency, retrofit cost and O&M cost. China is currently and will depending on coal for its energy for a long time. Plenty of PC plants are used in existing power plants due to its lower coal consumption. One way to reduce CO2 emission with CCS is to equip existing power plants with appliance...

  20. Transient studies of an Integrated Gasification Combined Cycle (IGCC) plant with CO2 capture

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, D.; Turton, R.; Zitney, S.

    2010-01-01

    Next-generation coal-fired power plants need to consider the option for CO2 capture as stringent governmental mandates are expected to be issued in near future. Integrated gasification combined cycle (IGCC) plants are more efficient than the conventional coal combustion processes when the option for CO2 capture is considered. However, no IGCC plant with CO2 capture currently exists in the world. Therefore, it is important to consider the operability and controllability issues of such a plant before it is commercially built. To facilitate this objective, a detailed plant-wide dynamic simulation of an IGCC plant with 90% CO2 capture has been developed in Aspen Plus Dynamics{reg_sign}. The plant considers a General Electric Energy (GEE)-type downflow radiant-only gasifier followed by a quench section. A two-stage water gas shift (WGS) reaction is considered for conversion of CO to CO2. A two-stage acid gas removal (AGR) process based on a physical solvent is simulated for selective capture of H2S and CO2. Compression of the captured CO2 for sequestration, an oxy-Claus process for removal of H2S and NH3, black water treatment, and the sour water treatment are also modeled. The tail gas from the Claus unit is recycled to the SELEXOL unit. The clean syngas from the AGR process is sent to a gas turbine followed by a heat recovery steam generator. This turbine is modeled as per published data in the literature. Diluent N2 is used from the elevated-pressure ASU for reducing the NOx formation. The heat recovery steam generator (HRSG) is modeled by considering generation of high-pressure, intermediate-pressure, and low-pressure steam. All of the vessels, reactors, heat exchangers, and the columns have been sized. The basic IGCC process control structure has been synthesized by standard guidelines and existing practices. The steady state results are validated with data from a commercial gasifier. In the future grid-connected system, the plant should satisfy the environmental

  1. Effective utilization of fossil fuels for low carbon world -- IGCC and high performance gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Hiromi; Hashimoto, Takao; Sakamoto, Koichi; Komori, Toyoaki; Kishine, Takashi; Shiozaki, Shigehiro

    2010-09-15

    The reduction of greenhouse-gas emissions is required to minimize the effect of hydrocarbon based power generation on global warming. In pursue of this objective, Mitsubishi Heavy Industries is dedicating considerable efforts on two different ways to reduce the environmental impact. The first one involves gas turbine performance improvement by raising firing temperature for Natural-gas and LNG applications. In this regard, the latest J class gas turbine was designed to operate at 1600 deg C and expected combined cycle efficiency in excess of 60%. The other approach involves the use of Integrated Gasification Combined Cycle (IGCC) plants to burn solid fuel like coal.

  2. Austenitic steel corrosion in IGCC environment. Characterisation by photon and nuclear microprobes

    Science.gov (United States)

    Dillmann, Philippe; Weulersse, Katia; Regad, Belkacem; Moulin, Gérard; Barrett, Ray; Bonnin-Mosbah, Michelle; Lequien, Stéphane; Berger, Pascal

    2001-07-01

    An austenitic steel sample was treated simulating particular working conditions of an integrated gasification combined cycle (IGCC) power plant. Several classical characterisation techniques were used to investigate the oxide scales. In addition, micro-particle-induced X-ray emission (PIXE) and Rutherford backscattering spectrometry (RBS) analyses were performed and permit us to identify several phases constitutive of the oxide. Moreover, micro-X-ray absorption near edge structure (XANES) experiments allow us to determine the valence of the vanadium incorporated in the scale in the form of microscopic islets. The comparison of all these results leads to the proposal of a corrosion mechanism for this alloy.

  3. Survival of patients with nonseminomatous germ cell cancer: a review of the IGCC classification by Cox regression and recursive partitioning.

    Science.gov (United States)

    van Dijk, M R; Steyerberg, E W; Stenning, S P; Dusseldorp, E; Habbema, J D F

    2004-03-22

    The International Germ Cell Consensus (IGCC) classification identifies good, intermediate and poor prognosis groups among patients with metastatic nonseminomatous germ cell tumours (NSGCT). It uses the risk factors primary site, presence of nonpulmonary visceral metastases and tumour markers alpha-fetoprotein (AFP), human chorionic gonadotrophin (HCG) and lactic dehydrogenase (LDH). The IGCC classification is easy to use and remember, but lacks flexibility. We aimed to examine the extent of any loss in discrimination within the IGCC classification in comparison with alternative modelling by formal weighing of the risk factors. We analysed survival of 3048 NSGCT patients with Cox regression and recursive partitioning for alternative classifications. Good, intermediate and poor prognosis groups were based on predicted 5-year survival. Classifications were further refined by subgrouping within the poor prognosis group. Performance was measured primarily by a bootstrap corrected c-statistic to indicate discriminative ability for future patients. The weights of the risk factors in the alternative classifications differed slightly from the implicit weights in the IGCC classification. Discriminative ability, however, did not increase clearly (IGCC classification, c=0.732; Cox classification, c=0.730; Recursive partitioning classification, c=0.709). Three subgroups could be identified within the poor prognosis groups, resulting in classifications with five prognostic groups and slightly better discriminative ability (c=0.740). In conclusion, the IGCC classification in three prognostic groups is largely supported by Cox regression and recursive partitioning. Cox regression was the most promising tool to define a more refined classification. British Journal of Cancer (2004) 90, 1176-1183. doi:10.1038/sj.bjc.6601665 www.bjcancer.com Published online 24 February 2004

  4. METC Combustion Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Halow, J.S.; Maloney, D.J.; Richards, G.A.

    1993-11-01

    The objective of the Morgantown Energy Technology Center (METC) high pressure combustion facility is to provide a mid-scale facility for combustion and cleanup research to support DOE`s advanced gas turbine, pressurized, fluidized-bed combustion, and hot gas cleanup programs. The facility is intended to fill a gap between lab scale facilities typical of universities and large scale combustion/turbine test facilities typical of turbine manufacturers. The facility is now available to industry and university partners through cooperative programs with METC. High pressure combustion research is also important to other DOE programs. Integrated gasification combined cycle (IGCC) systems and second-generation, pressurized, fluidized-bed combustion (PFBC) systems use gas turbines/electric generators as primary power generators. The turbine combustors play an important role in achieving high efficiency and low emissions in these novel systems. These systems use a coal-derived fuel gas as fuel for the turbine combustor. The METC facility is designed to support coal fuel gas-fired combustors as well as the natural gas fired combustor used in the advanced turbine program.

  5. Novel findings about management of gastric cancer: a summary from 10th IGCC.

    Science.gov (United States)

    Penon, Danila; Cito, Letizia; Giordano, Antonio

    2014-07-21

    The Tenth International Gastric Cancer Congress (IGCC) was held in Verona, Italy, from June 19 to 22, 2013. The meeting enclosed various aspects of stomach tumor management, including both tightly clinical approaches, and topics more related to basic research. Moreover, an overview on gastrointestinal stromal tumors was provided too, although here not discussed. Here we will discuss some topics related to molecular biology of gastric cancer (GC), inherent to prognostic, diagnostic and therapeutic tools shown at the conference. Results about well known subjects, such as E-cadherin loss of expression/function, were presented. They revealed that other mutations of the gene were identified, showing a continuous research to improve diagnosis and prognosis of stomach tumor. Simultaneously, new possible molecular markers with an established role for other neoplasms, were discussed, such as mesothelin, stomatin-like protein 2 and Notch-1. Hence, a wide overview including both old and new diagnostic/prognostic tools was offered. Great attention was also dedicated to possible drugs to be used against GC. They included monoclonal antibodies, such as MS57-2.1, drugs used in other pathologies, such as maraviroc, and natural extracts from plants such as biflorin. We would like to contribute to summarize the most impressive studies presented at the IGCC, concerning novel findings about molecular biology of gastric cancer. Although further investigations will be necessary, it can be inferred that more and more tools were developed, so as to better face stomach neoplasms.

  6. More Energy-Efficient CO2 Capture from IGCC GE Flue Gases

    Directory of Open Access Journals (Sweden)

    Rakpong Peampermpool

    2017-03-01

    Full Text Available Carbon dioxide (CO2 emissions are one of the main reasons for the increase in greenhouse gasses in the earth’s atmosphere and carbon capture and sequestration (CCS is known as an effective method to reduce CO2 emissions on a larger scale, such as for fossil energy utilization systems. In this paper, the feasibility of capturing CO2 using cryogenic liquefaction and improving the capture rate by expansion will be discussed. The main aim was to design an energy-saving scheme for an IGCC (integrated gasification combined cycle power plant with CO2 cryogenic liquefaction capture. The experimental results provided by the authors, using the feed gas specification of a 740 MW IGCC General Electric (GE combustion power plant, demonstrated that using an orifice for further expanding the vent gas after cryogenic capture from 57 bar to 24 bar gave an experimentally observed capture rate up to 65%. The energy-saving scheme can improve the overall CO2 capture rate, and hence save energy. The capture process has also been simulated using Aspen HYSYS simulation software to evaluate its energy penalty. The results show that a 92% overall capture rate can be achieved by using an orifice.

  7. Engineering analysis of CO{sub 2} control and disposal in IGCC systems

    Energy Technology Data Exchange (ETDEWEB)

    Livengood, C.D.; Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.

    1995-02-01

    The possibility of global climate change resulting from increasing levels of {open_quotes}greenhouse{close_quotes} gases is the subject of considerable debate and uncertainty. Because of these concerns, policies to limit carbon dioxide (CO{sub 2}) emissions are being discussed in the United States and in various international forums. The options under consideration include strong energy-conservation measures, the capture and sequestering of CO{sub 2}, and the substitution of nonfossil energy sources for fossil-fuel combustion. Discussion of these issues has drawn considerable interest to power-generating systems that minimize the production of CO{sub 2} and are particularly amenable to CO{sub 2} capture. This paper presents results from a study of the impacts associated with CO{sub 2} recovery in IGCC systems, which was conducted for the Morgantown Energy Technology Center by Argonne National Laboratory. The objective of the study was to compare, on a consistent systems-oriented basis, the energy and economic impacts of adding CO{sub 2} capture and sequestration to an IGCC system. The research reported here emphasized commercial technologies for capturing CO{sub 2}, but other work has also addressed advanced technologies under development and alternate power-system configurations that might enhance system efficiency.

  8. Development of a plant-wide dynamic model of an integrated gasification combined cycle (IGCC) plant

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, D.; Turton, R.; Zitney, S.

    2009-01-01

    In this presentation, development of a plant-wide dynamic model of an advanced Integrated Gasification Combined Cycle (IGCC) plant with CO2 capture will be discussed. The IGCC reference plant generates 640 MWe of net power using Illinois No.6 coal as the feed. The plant includes an entrained, downflow, General Electric Energy (GEE) gasifier with a radiant syngas cooler (RSC), a two-stage water gas shift (WGS) conversion process, and two advanced 'F' class combustion turbines partially integrated with an elevated-pressure air separation unit (ASU). A subcritical steam cycle is considered for heat recovery steam generation. Syngas is selectively cleaned by a SELEXOL acid gas removal (AGR) process. Sulfur is recovered using a two-train Claus unit with tail gas recycle to the AGR. A multistage intercooled compressor is used for compressing CO2 to the pressure required for sequestration. Using Illinois No.6 coal, the reference plant generates 640 MWe of net power. The plant-wide steady-state and dynamic IGCC simulations have been generated using the Aspen Plus{reg_sign} and Aspen Plus Dynamics{reg_sign} process simulators, respectively. The model is generated based on the Case 2 IGCC configuration detailed in the study available in the NETL website1. The GEE gasifier is represented with a restricted equilibrium reactor model where the temperature approach to equilibrium for individual reactions can be modified based on the experimental data. In this radiant-only configuration, the syngas from the Radiant Syngas Cooler (RSC) is quenched in a scrubber. The blackwater from the scrubber bottom is further cleaned in the blackwater treatment plant. The cleaned water is returned back to the scrubber and also used for slurry preparation. The acid gas from the sour water stripper (SWS) is sent to the Claus plant. The syngas from the scrubber passes through a sour shift process. The WGS reactors are modeled as adiabatic plug flow reactors with rigorous kinetics based on

  9. Water-gas shift (WGS) Operation of Pre-combustion CO2 Capture Pilot Plant at the Buggenum IGCC

    NARCIS (Netherlands)

    Van Dijk, H.A.J.; Damen, K.; Makkee, M.; Trapp, C.

    2014-01-01

    In the Nuon/Vattenfall CO2 Catch-up project, a pre-combustion CO2 capture pilot plant was built and operated at the Buggenum IGCC power plant, the Netherlands. The pilot consist of sweet water-gas shift, physical CO2 absorption and CO2 compression. The technology performance was verified and validat

  10. Water-gas shift (WGS) Operation of Pre-combustion CO2 Capture Pilot Plant at the Buggenum IGCC

    NARCIS (Netherlands)

    Van Dijk, H.A.J.; Damen, K.; Makkee, M.; Trapp, C.

    2014-01-01

    In the Nuon/Vattenfall CO2 Catch-up project, a pre-combustion CO2 capture pilot plant was built and operated at the Buggenum IGCC power plant, the Netherlands. The pilot consist of sweet water-gas shift, physical CO2 absorption and CO2 compression. The technology performance was verified and

  11. Water-gas shift (WGS) Operation of Pre-combustion CO2 Capture Pilot Plant at the Buggenum IGCC

    NARCIS (Netherlands)

    Van Dijk, H.A.J.; Damen, K.; Makkee, M.; Trapp, C.

    2014-01-01

    In the Nuon/Vattenfall CO2 Catch-up project, a pre-combustion CO2 capture pilot plant was built and operated at the Buggenum IGCC power plant, the Netherlands. The pilot consist of sweet water-gas shift, physical CO2 absorption and CO2 compression. The technology performance was verified and validat

  12. A regenerative process for carbon dioxide removal and hydrogen production in IGCC

    Science.gov (United States)

    Hassanzadeh Khayyat, Armin

    Advanced power generation technologies, such as Integrated Gasification-Combined Cycles (IGCC) processes, are among the leading contenders for power generation conversion because of their significantly higher efficiencies and potential environmental advantages, compared to conventional coal combustion processes. Although the increased in efficiency in the IGCC processes will reduce the emissions of carbon dioxide per unit of power generated, further reduction in CO2 emissions is crucial due to enforcement of green house gases (GHG) regulations. In IGCC processes to avoid efficiency losses, it is desirable to remove CO2 in the temperature range of 300° to 500°C, which makes regenerable MgO-based sorbents ideal for such operations. In this temperature range, CO2 removal results in the shifting of the water-gas shift (WGS) reaction towards significant reduction in carbon monoxide (CO), and enhancement in hydrogen production. However, regenerable, reactive and attrition resistant sorbents are required for such application. In this work, a highly reactive and attrition resistant regenerable MgO-based sorbent is prepared through dolomite modification, which can simultaneously remove carbon dioxide and enhance hydrogen production in a single reactor. The results of the experimental tests conducted in High-Pressure Thermogravimetric Analyzer (HP-TGA) and high-pressure packed-bed units indicate that in the temperature range of 300° to 500°C at 20 atm more than 95 molar percent of CO2 can be removed from the simulated coal gas, and the hydrogen concentration can be increased to above 70 percent. However, a declining trend is observed in the capacity of the sorbent exposed to long-term durability analysis, which appears to level off after about 20 cycles. Based on the physical and chemical analysis of the sorbent, a two-zone expanding grain model was applied to obtain an excellent fit to the carbonation reaction rate data at various operating conditions. The modeling

  13. Speciation of major and selected trace elements in IGCC fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Oriol Font; Xavier Querol; Frank E. Huggins; Jose M. Chimenos; Ana I. Fernandez; Silvia Burgos; Francisco Garcia Pena [Institute of Earth Sciences ' Jaume Almera' , Barcelona (Spain)

    2005-08-01

    The speciation of Ga, Ge, Ni, V, S and Fe in fly ash from IGCC power plant were investigated for possible further extraction process by combining conventional mineral and chemical analysis, leaching tests, wet sequential extraction, Moessbauer and XAFS spectroscopies. The results shown that Ge occurs mainly as water-soluble species, GeS and/or GeS{sub 2} and hexagonal GeO{sub 2}. Ga is present as an oxide, Ni occurs mainly as nickeline (NiAs), with minor proportions of Ni arsenates and vanadium as V(III) with minor amounts of V(IV) in the aluminosilicate glass matrix. Pyrrhotite and wurtzite-sphalerite are sulfide species containing Fe and Zn, but an important fraction of iron is also present in the aluminosilicate glass. These clear differences between the speciation of the above elements in this material and those reported for fly ash from conventional PC combustion. 15 refs., 8 figs., 5 tabs.

  14. Speciation of Major and Selected Trace Elements in IGCC Fly Ash

    Energy Technology Data Exchange (ETDEWEB)

    Font,O.; Querol, X.; Huggins, F.; Chimenos, J.; Fernandez, A.; Burgos, S.; Pena, F.

    2005-01-01

    The speciation of Ga, Ge, Ni, V, S and Fe in fly ash from IGCC power plant were investigated for possible further extraction process by combining conventional mineral and chemical analysis, leaching tests, wet sequential extraction, Moessbauer and XAFS spectroscopies. The results shown that Ge occurs mainly as water-soluble species, GeS and/or GeS2 and hexagonal GeO2. Ga is present as an oxide, Ni occurs mainly as nickeline (NiAs), with minor proportions of Ni arsenates and vanadium as V(III) with minor amounts of V(IV) in the aluminosilicate glass matrix. Pyrrhotite and wurtzite-sphalerite are sulfide species containing Fe and Zn, but an important fraction of iron is also present in the aluminosilicate glass. These clear differences between the speciation of the above elements in this material and those reported for fly ash from conventional PC combustion.

  15. Co-Gasification of Coal and Biomass in an IGCC Power Plant: Gasifier Modeling

    Directory of Open Access Journals (Sweden)

    Luis Correas

    2004-12-01

    Full Text Available Co-gasification of coal and biomass in an existing coal-fired IGCC power plant is proposed as an efficient, flexible and environmentally friendly way to increase the biomass contribution to electricity generation. A model of an entrained flow gasifier is described and validated with nearly 3,000 actual steady-state operational data points (4,800 hours. The model is then used to study co-gasification of coal, petroleum coke and up to 10 percent of several types of biomass. As a result, the influence of fuel variations on gasifier performance and modifications in operation that should be made in co-gasification are obtained. A conclusion of our study is that co-gasification is possible provided that operation is properly adapted. A validated model can be very useful for predicting operating points for new fuel mixtures.

  16. Influence of the Selected Parameters on the Effectiveness of IGCC System Integrated With CCS Installation

    Directory of Open Access Journals (Sweden)

    Skorek-Osikowska Anna

    2014-06-01

    Full Text Available The paper presents the basic input data and modelling results of IGCC system with membrane CO2 capture installation and without capture. The models were built using commercial software (Aspen and GateCycle and with the use of authors’ own computational codes. The main parameters of the systems were calculated, such as gross and net power, auxiliary power of individual installations and efficiencies. The models were used for the economic and ecological analysis of the systems. The Break Even Point method of analysis was used. The calculations took into account the EU emissions trading scheme. Sensitivity analysis on the influence of selected quantities on break-even price of electricity was performed

  17. Method and system to estimate variables in an integrated gasification combined cycle (IGCC) plant

    Science.gov (United States)

    Kumar, Aditya; Shi, Ruijie; Dokucu, Mustafa

    2013-09-17

    System and method to estimate variables in an integrated gasification combined cycle (IGCC) plant are provided. The system includes a sensor suite to measure respective plant input and output variables. An extended Kalman filter (EKF) receives sensed plant input variables and includes a dynamic model to generate a plurality of plant state estimates and a covariance matrix for the state estimates. A preemptive-constraining processor is configured to preemptively constrain the state estimates and covariance matrix to be free of constraint violations. A measurement-correction processor may be configured to correct constrained state estimates and a constrained covariance matrix based on processing of sensed plant output variables. The measurement-correction processor is coupled to update the dynamic model with corrected state estimates and a corrected covariance matrix. The updated dynamic model may be configured to estimate values for at least one plant variable not originally sensed by the sensor suite.

  18. Optimal control system design for IGCC power plants with CO2 capture

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D.; Bhattacharyya, D.; Turton, R.; Zitney, S.

    2012-01-01

    Designing an optimal control system for an integrated gasification combined cycle (IGCC) power plant with CO2 capture addresses the challenge of efficiently operating and controlling a coal-fed IGCC plant with the desired extent of CO2 capture in the face of disturbances without violating operational and environmental constraints. The control system design needs to optimize a desired scalar objective function while satisfying all the operational and environmental constraints in the presence of measured and unmeasured disturbances. Various objective functions can be considered for the control system design such as maximization of profit, maximization of the power produced, or minimization of the auxiliary power. The design of such a control system makes the plant suitable to play an active role in the smart grid era as the plant will have the required agility. In addition, other penalty function(s) such as emission penalties for CO2 or other criteria pollutants can be considered in the framework as well as losses associated with any hydrogen or carbon monoxide loses. The proposed control system design is performed in two stages. In the first stage, a top-down analysis is performed to generate a list of controlled, manipulated, and disturbance variables considering a scalar operational objective and other process constraints. In the second stage, a bottom-up approach for simultaneous design of the control structure and the controllers is used. In this paper, the first stage of the two-stage approach is applied to the IGCC’s acid gas removal (AGR) process which removes both H2S and CO2 from the shifted synthesis gas. While these results are still preliminary, they demonstrate the application of the proposed approach for a commercial-scale plant and show some interesting results related to controlled variable selection. Such an approach can be followed not only to design control systems for new power plants, but also to retrofit control systems for existing plants

  19. Corrosion of ceramics for slag removal in IGCC-power plants; Korrosion von Keramiken fuer die Fluessigascheabscheidung in IGCC-Kraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Fuerst, Denny

    2012-06-12

    Coal gasification and the subsequent production of electricity from syngas in combined-cycle powerplants allows plant efficiencies of up to 43% (LHV). Existing technologies allow up to 50% in the short term. Efficiencies beyond 50% however, require concepts and technologies that still need a certain amount of research and development. One such method to raise plant efficiencies would be a high temperature (at temperatures above the melting point of the ash) syngas cleaning. To effectively utilize the heat from the syngas and enable high turbine inlet temperatures, it is necessary to remove slag particles from the hot gas. The feasibility of such a hot syngas cleaning has been successfully demonstrated for the Pressurized Pulverized Coal Combustion (PPCC) by passing the hot gas through a bed of ceramic balls for slag removal. In order to apply this concept to IGCC powerplants the slag resistance of various ceramic materials had to be investigated under gasifying conditions. Therefore, lab-made ceramics and commercially available refractory materials where treated with liquid slag at 1600 C in a number of reducing atmospheres. At first, three synthetic slags with different basicity were used and after evaluating the results, selected materials were treated with a gasifier slag under continuous conditions. It was shown that both slag and ceramic have to be adjusted to ensure a sufficient corrosion resistance of the ceramic bed for slag removal. Furthermore, the impact of the porosity of the utilized ceramic on the corrosion resistance was shown. The composition of the reducing atmosphere (mainly the partial pressure of Oxygen) affected both physical and chemical properties of the slag via slag components that could easily be reduced or oxidized. The materials most suitable for use in slag separation were found to be dense chromium oxide and other ceramics containing a high amount of chromium oxide. [German] Mit Kohlevergasung und der anschliessenden Stromerzeugung in

  20. Corrosion of ceramics for slag removal in IGCC-power plants; Korrosion von Keramiken fuer die Fluessigascheabscheidung in IGCC-Kraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Fuerst, Denny

    2012-06-12

    Coal gasification and the subsequent production of electricity from syngas in combined-cycle powerplants allows plant efficiencies of up to 43% (LHV). Existing technologies allow up to 50% in the short term. Efficiencies beyond 50% however, require concepts and technologies that still need a certain amount of research and development. One such method to raise plant efficiencies would be a high temperature (at temperatures above the melting point of the ash) syngas cleaning. To effectively utilize the heat from the syngas and enable high turbine inlet temperatures, it is necessary to remove slag particles from the hot gas. The feasibility of such a hot syngas cleaning has been successfully demonstrated for the Pressurized Pulverized Coal Combustion (PPCC) by passing the hot gas through a bed of ceramic balls for slag removal. In order to apply this concept to IGCC powerplants the slag resistance of various ceramic materials had to be investigated under gasifying conditions. Therefore, lab-made ceramics and commercially available refractory materials where treated with liquid slag at 1600 C in a number of reducing atmospheres. At first, three synthetic slags with different basicity were used and after evaluating the results, selected materials were treated with a gasifier slag under continuous conditions. It was shown that both slag and ceramic have to be adjusted to ensure a sufficient corrosion resistance of the ceramic bed for slag removal. Furthermore, the impact of the porosity of the utilized ceramic on the corrosion resistance was shown. The composition of the reducing atmosphere (mainly the partial pressure of Oxygen) affected both physical and chemical properties of the slag via slag components that could easily be reduced or oxidized. The materials most suitable for use in slag separation were found to be dense chromium oxide and other ceramics containing a high amount of chromium oxide. [German] Mit Kohlevergasung und der anschliessenden Stromerzeugung in

  1. NETL to establish Dynamic Simulation Research and Training Center to promote IGCC technology with CO2 cpture

    Energy Technology Data Exchange (ETDEWEB)

    Provost, G.; Zitney, S.; Turton, R.; Erbes, M.; Stone, H.; Bhattacharyya, D.; Liese, E.; McClintock, M.; Quintrell, M.

    2009-01-01

    To meet increasing demand for education and experience with commercial-scale, coal-fired, integrated gasification combined cycle (IGCC) plants with CO2 capture, the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) is leading a project to deploy a generic, full-scope, real-time IGCC dynamic plant simulator for use in establishing a world-class research and training center, and to promote and demonstrate IGCC technology to power industry personnel. The simulator, being built by Invensys Process Systems (IPS), will be installed at two separate sites, at NETL and West Virginia University (WVU), and will combine a process/gasification simulator with a power/combined-cycle simulator together in a single dynamic simulation framework for use in engineering research studies and training applications. The simulator, scheduled to be launched in mid-year 2010, will have the following capabilities: High-fidelity, dynamic model of process-side (gasification and gas cleaning with CO2 capture) and power-block-side (combined cycle) for a generic IGCC plant fueled by coal and/or petroleum coke. Highly flexible configuration that allows concurrent training on separate gasification and combined cycle simulators, or up to two IGCC simulators. Ability to enhance and modify the plant model to facilitate studies of changes in plant configuration, equipment, and control strategies to support future R&D efforts. Training capabilities including startup, shutdown, load following and shedding, response to fuel and ambient condition variations, control strategy analysis (turbine vs. gasifier lead, etc.), representative malfunctions/trips, alarms, scenarios, trending, snapshots, data historian, etc. To support this effort, process descriptions and control strategies were developed for key sections of the plant as part of the detailed functional specification, which is serving as the basis of the simulator development. In this paper, we highlight the contents of the

  2. The United States of America and the People`s Republic of China experts report on integrated gasification combined-cycle technology (IGCC)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    A report written by the leading US and Chinese experts in Integrated Gasification Combined Cycle (IGCC) power plants, intended for high level decision makers, may greatly accelerate the development of an IGCC demonstration project in the People`s Republic of China (PRC). The potential market for IGCC systems in China and the competitiveness of IGCC technology with other clean coal options for China have been analyzed in the report. Such information will be useful not only to the Chinese government but also to US vendors and companies. The goal of this report is to analyze the energy supply structure of China, China`s energy and environmental protection demand, and the potential market in China in order to make a justified and reasonable assessment on feasibility of the transfer of US Clean Coal Technologies to China. The Expert Report was developed and written by the joint US/PRC IGCC experts and will be presented to the State Planning Commission (SPC) by the President of the CAS to ensure consideration of the importance of IGCC for future PRC power production.

  3. IGCC power plant integrated to a Finnish pulp and paper mill. IEA Bioenergy. Techno-economic analysis activity

    Energy Technology Data Exchange (ETDEWEB)

    Koljonen, T.; Solantausta, Y. [VTT Energy, Espoo (Finland). New Energy Technologies; Salo, K.; Horvath, A. [Carbona Inc. (Finland)

    1999-11-01

    In Finland, the pulp and paper industry is the largest consumer of energy among the industries and its power demand will increase due to economical and strict environ- mental requirements. The ageing of oil and biomass boilers in Finland also represents a window of opportunity for the introduction of new environmentally sound technology with a high efficiency in power production, e.g., in biomass gasification. This site-specific study describes the technical and economic feasibility of a biomass gasification combined cycle producing heat and power for a typical Finnish pulp and paper mill. The mill produces SC (super calantered) paper 500 000 ADt/a. The paper mill employs sulphate pulp and GW (ground wood) pulp. The capacity of the pulp mill is 400 000 ADt/a (air dry ton/year) of which 120 000 ADt/a is used at the site. The heat demand of the integrate is covered by a recovery boiler and a bark boiler. A condensing steam turbine with two extractions generates electricity for the mill. The aim is to replace an old bark boiler by an IGCC (Integrated Gasification Combined Cycle) to enhance the economy and environmental performance of the power plant. The IGCC feasibility study is conducted for an pulp and paper integrate because of its suitable infrastructure for IGCC and a large amount of wood waste available at the site. For comparison, the feasibility of an IGCC integrated to a pulp mill is also assessed. The IGCC concept described is based on research and development work performed by Carbona, Inc., who acquired the rights for know-how of Enviropower, Inc. The operation and design of the IGCC concept is based on a 20 MWe gas turbine (MW151). The heat of gas turbine exhaust gas is utilised in a HRSG (Heat Recovery Steam Generator) of two pressure levels to generate steam for the pulp and paper mill and the steam turbine. The MCC power plant operates in condensing mode. The total investment cost of the IGCC plant is estimated at FIM 417 million (USD 83.4 million

  4. Study on gas turbine island optimization in IGCC system%IGCC系统中燃机岛优化研究

    Institute of Scientific and Technical Information of China (English)

    陈晓利; 郭波; 张东晓; 吴少华; 李振中

    2011-01-01

    Optimize IGCC system in order to enhance power and efficiency of IGCC system. Analyze the gas turbine island optimization methods from the point of system with the software ThermoFlex. The results show that regulation mode for keeping T4 constant is optimal. Rationally arranging ASU integrated coefficient (Xas) and nitrogen reinjection coefficient ( Xgn ) can increase efficiency of the IGCC system. The best match is Xas =0.2 and Xgn =0.6. The control scheme of NOx emission which mainly relies on syngas moisturized supplemented by nitrogen reinjection can enhance efficiency of IGCC system. The best control scheme is syngas moisturized,Xgn =0.6 and Xas =0.2.%为提高IGCC系统的功率和效率,需要对系统进行优化.采用Thermoflex软件从系统的角度出发对燃机岛进行了优化研究.研究表明:等燃气轮机排气温度(T4)调节为燃气轮机的最佳调节方式.合理搭配压气机抽气比例和N2回注量可提高IGCC的系统效率,最佳匹配为整体空分系数0.2和N2回注系数0.6.采用燃气湿饱和法为主,N2稀释为辅的NOx排放控制方案有利于提高系统效率,最佳控制方案为燃料湿饱和法+N2回注系数0.6+整体空分系数0.2.

  5. Proceedings of the coal-fired power systems 94: Advances in IGCC and PFBC review meeting. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, H.M.; Staubly, R.K.; Venkataraman, V.K. [eds.

    1994-06-01

    The Coal-Fired Power Systems 94 -- Advances in IGCC and PFBC Review Meeting was held June 21--23, 1994, at the Morgantown Energy Center (METC) in Morgantown, West Virginia. This Meeting was sponsored and hosted by METC, the Office of Fossil Energy, and the US Department of Energy (DOE). METC annually sponsors this conference for energy executives, engineers, scientists, and other interested parties to review the results of research and development projects; to discuss the status of advanced coal-fired power systems and future plans with the industrial contractors; and to discuss cooperative industrial-government research opportunities with METC`s in-house engineers and scientists. Presentations included industrial contractor and METC in-house technology developments related to the production of power via coal-fired Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) systems, the summary status of clean coal technologies, and developments and advancements in advanced technology subsystems, such as hot gas cleanup. A keynote speaker and other representatives from the electric power industry also gave their assessment of advanced power systems. This meeting contained 11 formal sessions and one poster session, and included 52 presentations and 24 poster presentations. Volume I contains papers presented at the following sessions: opening commentaries; changes in the market and technology drivers; advanced IGCC systems; advanced PFBC systems; advanced filter systems; desulfurization system; turbine systems; and poster session. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  6. Model Based Optimal Sensor Network Design for Condition Monitoring in an IGCC Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rajeeva; Kumar, Aditya; Dai, Dan; Seenumani, Gayathri; Down, John; Lopez, Rodrigo

    2012-12-31

    This report summarizes the achievements and final results of this program. The objective of this program is to develop a general model-based sensor network design methodology and tools to address key issues in the design of an optimal sensor network configuration: the type, location and number of sensors used in a network, for online condition monitoring. In particular, the focus in this work is to develop software tools for optimal sensor placement (OSP) and use these tools to design optimal sensor network configuration for online condition monitoring of gasifier refractory wear and radiant syngas cooler (RSC) fouling. The methodology developed will be applicable to sensing system design for online condition monitoring for broad range of applications. The overall approach consists of (i) defining condition monitoring requirement in terms of OSP and mapping these requirements in mathematical terms for OSP algorithm, (ii) analyzing trade-off of alternate OSP algorithms, down selecting the most relevant ones and developing them for IGCC applications (iii) enhancing the gasifier and RSC models as required by OSP algorithms, (iv) applying the developed OSP algorithm to design the optimal sensor network required for the condition monitoring of an IGCC gasifier refractory and RSC fouling. Two key requirements for OSP for condition monitoring are desired precision for the monitoring variables (e.g. refractory wear) and reliability of the proposed sensor network in the presence of expected sensor failures. The OSP problem is naturally posed within a Kalman filtering approach as an integer programming problem where the key requirements of precision and reliability are imposed as constraints. The optimization is performed over the overall network cost. Based on extensive literature survey two formulations were identified as being relevant to OSP for condition monitoring; one based on LMI formulation and the other being standard INLP formulation. Various algorithms to solve

  7. Comprehensive Exergy Analysis of Three IGCC Power Plant Configurations with CO2 Capture

    Directory of Open Access Journals (Sweden)

    Nicholas S. Siefert

    2016-08-01

    Full Text Available We have conducted comprehensive exergy analyses of three integrated gasification combined cycle with carbon capture and storage (IGCC-CCS power plant configurations: (1 a baseline model using Selexol™ for H2S/CO2 removal; (2 a modified version that adds a H2-selective membrane before the Selexol™ acid gas removal system; and (3 a modified baseline version that uses a CO2-selective membrane before the Selexol™ acid gas removal system. While holding the coal input flow rate and the CO2 captured flow rates constant, it was determined that the H2-selective membrane case had a higher net power output (584 MW compared to the baseline (564 MW and compared to the CO2-selective membrane case (550 MW. Interestingly, the CO2-selective membrane case destroyed the least amount of exergy within the power plant (967 MW, compared with the Baseline case (999 MW and the H2-membrane case (972 MW. The main problem with the CO2-selective membrane case was the large amount of H2 (48 MW worth of H2 chemical exergy remaining within the supercritical CO2 that exits the power plant. Regardless of the CO2 capture process used, the majority of the exergy destruction occurred in the gasifier (305 MW and gas turbine (~380 MW subsystems, suggesting that these two areas should be key areas of focus of future improvements.

  8. Load-following control of an IGCC plant with CO2 capture

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, D.; Turton, R.; Zitney, S.

    2011-01-01

    In this paper, a decentralized control strategy is considered for load-following control of an integrated gasification combined cycle (IGCC) plant with CO2 capture without flaring the syngas. The control strategy considered is gas turbine (GT) lead with gasifier follow. In this strategy, the GT controls the power load by manipulating its firing rate while the slurry feed flow to the gasifier is manipulated to control the syngas pressure at the GT inlet. However, the syngas pressure control is an integrating process with significant timedelay. In this work, a modified proportional-integral-derivative (PID) control is considered for syngas pressure control given that conventional PID controllers show poor control performance for integrating processes with large time delays. The conventional PID control is augmented with an internal feedback loop. The P-controller used in this internal loop converts the integrating process to an open-loop stable process. The resulting secondorder plus time delay model uses a PID controller where the tuning parameters are found by minimizing the integral time-weighted absolute error (ITAE) for disturbance rejection. A plant model with single integrator and time delay is identified by a P-control method. When a ramp change is introduced in the set-point of the load controller, the performance of both the load and pressure controllers with the modified PID control strategy is found to be superior to that using a traditional PID controller. Key

  9. [Tampa Electric Company IGCC project]. 1996 DOE annual technical report, January--December 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project uses a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,000 tons per day of coal to syngas. The gasification plant is coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 BTUs/cf (HHV). The syngas then flows through a high temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product. Approximately 10% of the raw, hot syngas at 900 F is designed to pass through an intermittently moving bed of metal-oxide sorbent which removes sulfur-bearing compounds from the syngas. PPS-1 will be the first unit in the world to demonstrate this advanced metal oxide hot gas desulfurization technology on a commercial unit. The emphasis during 1996 centered around start-up activities.

  10. A comparison between Zecomix High Efficiency Zero Emission Plant and modern Hydrogen and Power IGCC Plants

    Energy Technology Data Exchange (ETDEWEB)

    Deiana, P.; Calabro, A.; Fiorini, P.; Stendardo, S.; Girardi, G.

    2005-07-01

    The paper reports the analysis and the comparison of two different plant concepts in the field of high efficiency and zero emissions hydrogen and power production plant. The study has been made as a part of a larger research project, named Zecomix, leaded by ENEA (Italian Research Agency for New Technologies, Energy and Environment), and aimed at studying an integrated process that produces both hydrogen and electricity from coal. A thermodynamic model of the two different plants has been set using the industrial software ChemCAD. The Zecomix plant is based on coal hydrogasification and simultaneous steam reforming and carbon dioxide sequestration. Other crucial characteristics involve high temperature sorbent regeneration. The combustion occurs with pure oxygen and high temperature steam evolves in a nonconventional advanced gas-steam turbine cycle. The considered IGCC plant is capable of producing hydrogen and power adopting current technology solutions. The plant configuration includes a pressurized oxygen blown entrained flow gasifier, syngas cleanup and decarbonization based on high pressure physical absorption, the adoption of class H gas turbine and three pressure level recovery boiler. Moreover a pressure swing adsorption unit has been considered for further hydrogen purification. The comparative analysis, based on the same coal input, underlines the differences between the two plants in terms of efficiency and performance of the single component. Moreover a simple environmental impact analysis has been considered to compare specific CO2 emissions of each alternative. (Author)

  11. [Tampa Electric Company IGCC project]. 1996 DOE annual technical report, January--December 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project uses a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,000 tons per day of coal to syngas. The gasification plant is coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 BTUs/cf (HHV). The syngas then flows through a high temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product. Approximately 10% of the raw, hot syngas at 900 F is designed to pass through an intermittently moving bed of metal-oxide sorbent which removes sulfur-bearing compounds from the syngas. PPS-1 will be the first unit in the world to demonstrate this advanced metal oxide hot gas desulfurization technology on a commercial unit. The emphasis during 1996 centered around start-up activities.

  12. Research results from a high pressure/temperature dry-feeding coal gasifier for IGCC systems

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Y.S.; Lee, K.B.; Lee, H.G.; Chung, S.W.; Park, S.K. [Institute for Advanced Engineering, Yongin (Korea, Republic of)

    1998-05-01

    Research results obtained from a 3 ton/day-class coal gasifier were illustrated. Among many things, the shape and inner structure of slags that were obtained from a 3 ton/day-class gasifier and from a commercial-scale gasifier for the identical coal were compared to identify any gasifier-size effect. Slags from both gasifiers exhibited a similar size and also the same indication of forming vesiculation inside the structure. Slags possessed normally less than 0.3% carbon content while showing no elutriation of heavy metals by water. Inner structure of slags produced by gasification shows an amorphous characteristics whereas combusted ash exhibits a clear indication of crystal nature by minerals, explaining that high temperature gasifier conditions of above 1400 deg. C melt minerals to form interwined slag structure with heavy metals. Another area of the study was on simulation of the gasifier and the IGCC plant. The 3 ton/day-class plant was simulated 3-dimensionally, allowing walk-through of the plant via a software. Detailed static and dynamic process simulations were also performed. Some of these results were illustrated. (author). 7 figs.

  13. Influences of Parameters of Air Separation Units on Performance of IGCC Systems%空分装置操作参数对 IGCC 系统性能的影响

    Institute of Scientific and Technical Information of China (English)

    刘耀鑫; 吴少华; 李振中; 王阳

    2012-01-01

      空分装置(ASU)是整体煤气化联合循环(integrated gasification combined cycle,IGCC)系统的重要组成单元,其参数的选取直接影响整个系统性能.为了优化空分装置运行参数,采用 ThermoFlex 软件建立200 MW 级 IGCC 系统模型,基于空分装置在不同操作压力 pasu 条件下,研究氮气回注系数 Xgn、整体空分系数 Xas、氧气浓度、回注氮气温度Trn 对系统性能的影响.研究结果表明,提高 Xgn,系统的供电、发电效率先升高后降低;增加 pasu,系统效率呈降低趋势.Xas 增大,系统供电效率增加,在 Xas 较高(>60%)时供电效率随 pasu 的升高而增大.氧浓度对系统效率影响较小.提高 Trn 可以改善系统性能.在氧气浓度(或者 Trn)不变条件下,增大 pasu,供电效率随之增加.研究结果将为 IGCC 电站的设计提供参考

  14. Performance calculation and analysis of IGCC power generation system%整体煤气化联合循环(IGCC)发电系统性能计算与分析

    Institute of Scientific and Technical Information of China (English)

    白玉峰

    2006-01-01

    针对整体煤气化联合循环(IGCC)发电系统在技术、经济、环保综合性能上具有较大的优势,阐述了IGCC发电系统分类,对4种采用空气气化型的IGCC发电系统进行了性能计算和参数分析,得到了供电效率与燃气轮机压比、入口温度之间的关系.

  15. Puertollano IGCC Power Plant; Central de Gasificacion Integrada en Ciclo Combinado de Puertollano

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The Puertollano IGCC Power Plant, rated 335 MW and located in Puertollano, Ciudad Real, in the central area of Spain, is a project led by ELCOGAS, a company incorporated by the European utilities ENDESA, ELECTRICITE DE FRANCE, IBERDROLA HIDROCANTABRICO ELECTRICIDADE DE PURTUGAL, ENEL and NATIONAL POWER and the technology and equipment suppliers SIEMENS, KRUPP UHDE and BABCOCK WILCOX ESPANOLA. IGCC technology is based in a process of coal gasification to obtain a clean combustion synthetic gas, integrated with a combined cycle, agas and steam, electricity-generating unit. The energy efficiency which is aimed to achieve at the Plant is 46% in ISO conditions. The Gasification unit uses the process of pressurised entrained flow for coal gasification. The gas is produced by the reaction of coal with oxygen at high temperatures, of up to 1600 degree centigree. This process is capable of gasifying a wide variety of types and qualities of coal for the production of a synthetic fuel gas. In the case of Puertollano, the raw fuel is a 50% mixture by weight of local coal and petroleum coke. The oxygen needed in the process and the nitrogen used for covering the fuel is generated in the Air Separation. The Gas Cleaning and Sulphur Recovery Unit clean the gases from contaminants and solid particles before to send them to the Gas Turbine. The clean gas is burnt in gas turbine of the Combined Cycle Plant, producing electricity. The exhaust gases feed a heat recovery steam generator, which produces steam used to generate additional electricity in a conventional steam turbine. The gas turbine is capable of operating both with synthetic gas and with natural gas, allowing operation flexibility. The net output of the plant up to December 1999 was 3.061 GWh, from them 344 GWh were produced with synthetic gas. This project has an important technological value, being the first power plant which uses coal gasification to feed a combined cycle in Spain and being also the biggest power plant

  16. IGCC repowering project clean coal II project public design report. Annual report, October 1992--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-10-01

    Combustion Engineering, Inc. (CE) is participating in a $270 million coal gasification combined cycle repowering project that was designed to provide a nominal 60 MW of electricity to City, Water, Light and Power (CWL&P) in Springfield, Illinois. The Integrated Gasification Combined Cycle (IGCC) system consists of CE`s air-blown entrained flow two-stage gasifier; an advanced hot gas cleanup system; a combustion turbine adapted to use low-BTU gas; and all necessary coal handling equipment, The project is currently completing the second budget period of five. The major activities to date are: (1) Establishment of a design, cost, and schedule for the project; (2) Establishment of financial commitments; (3) Acquire design and modeling data; (4) Establishment of an approved for design (AFD) engineering package; (5) Development of a detailed cost estimate; (6) Resolution of project business issues; (7) CWL&P renewal and replacement activities; and (8) Application for environmental air permits. A Project Management Plan was generated, The conceptual design of the plant was completed and a cost and schedule baseline for the project was established in Budget Period One. This information was used to establish AFD Process Flow Diagrams, Piping and Instrument Diagrams, Equipment Data Sheets, material take offs, site modification plans and other information necessary to develop a plus or minus 20% cost estimate. Environmental permitting activities were accomplished, including the Air Permit Application, completion of the National Environmental Policy Act process, and the draft Environmental Monitoring Plan. At the end of 1992 the DOE requested that Duke Engineering and Services Inc., (DESI) be used to complete the balance of plant cost estimate. DESI was retained to do this work, DESI completed the material take off estimate and included operations, maintenance, and startup in the estimate.

  17. Degradation of TBC Systems in Environments Relevant to Advanced Gas Turbines for IGCC Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gleeson, Brian [Univ. of Pittsburgh, PA (United States)

    2014-09-30

    Air plasma sprayed (APS) thermal barrier coatings (TBCs) are used to provide thermal insulation for the hottest components in gas turbines. Zirconia stabilized with 7wt% yttria (7YSZ) is the most common ceramic top coat used for turbine blades. The 7YSZ coating can be degraded from the buildup of fly-ash deposits created in the power-generation process. Fly ash from an integrated gasification combined cycle (IGCC) system can result from coal-based syngas. TBCs are also exposed to harsh gas environments containing CO2, SO2, and steam. Degradation from the combined effects of fly ash and harsh gas atmospheres has the potential to severely limit TBC lifetimes. The main objective of this study was to use lab-scale testing to systematically elucidate the interplay between prototypical deposit chemistries (i.e., ash and its constituents, K2SO4, and FeS) and environmental oxidants (i.e., O2, H2O and CO2) on the degradation behavior of advanced TBC systems. Several mechanisms of early TBC failure were identified, as were the specific fly-ash constituents responsible for degradation. The reactivity of MCrAlY bondcoats used in TBC systems was also investigated. The specific roles of oxide and sulfate components were assessed, together with the complex interplay between gas composition, deposit chemistry and alloy reactivity. Bondcoat composition design strategies to mitigate corrosion were established, particularly with regard to controlling phase constitution and the amount of reactive elements the bondcoat contains in order to achieve optimal corrosion resistance.

  18. IGCC repowering project clean coal II project public design report. Annual report, October 1992--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-10-01

    Combustion Engineering, Inc. (CE) is participating in a $270 million coal gasification combined cycle repowering project that was designed to provide a nominal 60 MW of electricity to City, Water, Light and Power (CWL&P) in Springfield, Illinois. The Integrated Gasification Combined Cycle (IGCC) system consists of CE`s air-blown entrained flow two-stage gasifier; an advanced hot gas cleanup system; a combustion turbine adapted to use low-BTU gas; and all necessary coal handling equipment, The project is currently completing the second budget period of five. The major activities to date are: (1) Establishment of a design, cost, and schedule for the project; (2) Establishment of financial commitments; (3) Acquire design and modeling data; (4) Establishment of an approved for design (AFD) engineering package; (5) Development of a detailed cost estimate; (6) Resolution of project business issues; (7) CWL&P renewal and replacement activities; and (8) Application for environmental air permits. A Project Management Plan was generated, The conceptual design of the plant was completed and a cost and schedule baseline for the project was established in Budget Period One. This information was used to establish AFD Process Flow Diagrams, Piping and Instrument Diagrams, Equipment Data Sheets, material take offs, site modification plans and other information necessary to develop a plus or minus 20% cost estimate. Environmental permitting activities were accomplished, including the Air Permit Application, completion of the National Environmental Policy Act process, and the draft Environmental Monitoring Plan. At the end of 1992 the DOE requested that Duke Engineering and Services Inc., (DESI) be used to complete the balance of plant cost estimate. DESI was retained to do this work, DESI completed the material take off estimate and included operations, maintenance, and startup in the estimate.

  19. Photocatalytic treatment of IGCC power station effluents in a UV-pilot plant.

    Science.gov (United States)

    Durán, A; Monteagudo, J M; San Martín, I; Sánchez-Romero, R

    2009-08-15

    The aim of this work is to improve the quality of water effluents coming from an Integrated Gasification Combined Cycle (IGCC) power station to meet with future environmental legislation. This study has been made using an homogeneous photocatalytic oxidation process (UV/Fe(II)/H(2)O(2)) in a pilot plant. The efficiency of the process was determined from the analysis of the following parameters: cyanides, formates and TOC content. In the first stage, a factorial experimental design allowed to determine the influence of operation variables (initial concentration of H(2)O(2) and Fe(II), pH and temperature) on the degradation kinetics. pH was always kept in a value >9.5 during cyanides destruction to avoid gaseous HCN formation and lowered later to enhance formates degradation. Experimental kinetic constants were fitted using neural networks (NNs). Under the optimum conditions ([H(2)O(2)]=1700 ppm, [Fe(II)]=2 ppm, pH 2 after cyanides destruction, and T=30 degrees C), it is possible to degrade 100% of cyanides in 15 min and 76% of formates in 120 min. The use of an homogeneous process with UV light can offer an economical and practical alternative to heterogeneous photocatalysis for the destruction of environmental pollutants present in thermoelectric power stations effluents, since it can treat very high flowrates using a lower H(2)O(2) concentration. Furthermore, it does not require additional operations to recover the solid catalyst and regenerate it due to deactivation as occurs in heterogeneous catalysis.

  20. Treatment of IGCC power station effluents by physico-chemical and advanced oxidation processes.

    Science.gov (United States)

    Durán, A; Monteagudo, J M; Sanmartín, I; García-Peña, F; Coca, P

    2009-03-01

    The aim of this work was to improve the quality of aqueous effluents coming from the Gasification Unit in an Integrated Gasification Combined Cycle (IGCC) Thermoelectric Power Station, with the purpose of fulfilling the future more demanding normative. To this end, an integral wastewater treatment including coagulation, flocculation, neutralization, photocatalytic oxidation, and ion-exchange has been studied. A final scheme has been proposed to remove pollutants. All the parameters of the treated wastewater are below pouring specifications. In the first stage, the wastewater was treated with CaCl2 (optimal dose=11 g CaCl2/g F-) as coagulant and a commercial anionic polyelectrolyte (optimal dose=0.02 g/g F-) as flocculant to remove fluoride ions (99%) and suspended solids (92%). The water was then neutralized, improving the degree of transmission of ultraviolet light, allowing the faster photo-degradation of pollutants. The photochemical study included different systems (H2O2, UV/H2O2, Fenton, Fenton-like, UV/Fenton, UV/Fenton-like and UV/H2O2/O2). In the Fenton-like system, the influence of two parameters (initial concentration of H2O2 and amount of Cu(II)) on the degradation of cyanide and formate (taken as the reference of the process) was studied. Experimental results were fit using neural networks (NNs). Results showed that the photocatalytic process was effective for total cyanide destruction after 60 min, while 180 min was needed to remove 80% of formates. However, a more simple system with UV/H2O2/O2 yields similar results and is preferred for industrial application due to fewer complications. Finally, an ion-exchange process with Amberlite IRA-420 was proposed to remove the excess of chlorides added as a consequence of the initial coagulation process.

  1. IGCC特点及减排CO2方法%IGCC Characteristics and Its Method for CO2 Reducing

    Institute of Scientific and Technical Information of China (English)

    廖小花

    2010-01-01

    分析了整体煤气化联合循环(IGCC)效率高、环保性能优等特点,总结了IGCC减排CO2的可行方法:燃烧后分离与回收、燃烧前分离与回收、以IGCC为基础的煤基动力化工多联产系统以及燃烧与CO2分离一体化途径.

  2. 采用Prenflo气化技术的IGCC流程%IGCC technology with Prenflo coal gasification process

    Institute of Scientific and Technical Information of China (English)

    路文学; 亓栋

    2002-01-01

    Prenflo气化属于粉煤气化技术,与Shell的粉煤气化技术相似,同属气流床气化工艺;整体煤气化燃气-蒸汽联合循环 (IGCC) 是先进的洁净煤技术,具有广阔的应用前景.介绍了IGCC技术的起源、进展、特色,重点介绍采用Prenflo煤气化工艺的IGCC流程.

  3. Optimization Thoughts on Electrical Design for IGCC Power Plant%IGCC电厂电气设计优化思路

    Institute of Scientific and Technical Information of China (English)

    姚雯; 张慧新

    2016-01-01

    为优化整体煤气化联合循环发电(Integrated Gasification Combined Cycle,IGCC)电厂电气设计,笔者对我国已投运的IGCC电厂投运一年来的运行情况进行了调研.本文通过对运行反馈信息进行分析,对后续IGCC项目的电气设计提出了设计优化思路.

  4. Thermodynamic simulation of CO{sub 2} capture for an IGCC power plant using the calcium looping cycle

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y. [National Engineering Laboratory for Coal-Burning Pollutant Emission Reduction, Shandong University, Jinan (China); Zhao, C.; Ren, Q. [School of Energy and Environment, Southeast University, Nanjing (China)

    2011-06-15

    A CO{sub 2} capture process for an integrated gasification combined cycle (IGCC) power plant using the calcium looping cycle was proposed. The CO{sub 2} capture process using natural and modified limestone was simulated and investigated with the software package Aspen Plus. It incorporated a fresh feed of sorbent to compensate for the decay in CO{sub 2} capture activity during long-term cycles. The sorbent flow ratios have significant effect on the CO{sub 2} capture efficiency and net efficiency of the CO{sub 2} capture system. The IGCC power plant, using the modified limestone, exhibits higher CO{sub 2} capture efficiency than that using the natural limestone at the same sorbent flow ratios. The system net efficiency using the natural and modified limestones achieves 41.7% and 43.1%, respectively, at the CO{sub 2} capture efficiency of 90% without the effect of sulfation. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Proceedings of the coal-fired power systems 94: Advances in IGCC and PFBC review meeting. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, H.M.; Staubly, R.K.; Venkataraman, V.K. [eds.

    1994-06-01

    The Coal-Fired Power Systems 94 -- Advances in IGCC and PFBC Review Meeting was held June 21--23, 1994, at the Morgantown Energy Center (METC) in Morgantown, West Virginia. This Meeting was sponsored and hosted by METC, the Office of Fossil Energy, and the US Department of Energy (DOE). METC annually sponsors this conference for energy executives, engineers, scientists, and other interested parties to review the results of research and development projects; to discuss the status of advanced coal-fired power systems and future plans with the industrial contractors; and to discuss cooperative industrial-government research opportunities with METC`s in-house engineers and scientists. Presentations included industrial contractor and METC in-house technology developments related to the production of power via coal-fired Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) systems, the summary status of clean coal technologies, and developments and advancements in advanced technology subsystems, such as hot gas cleanup. A keynote speaker and other representatives from the electric power industry also gave their assessment of advanced power systems. This meeting contained 11 formal sessions and one poster session, and included 52 presentations and 24 poster presentations. Volume II contains papers presented at the following sessions: filter technology issues; hazardous air pollutants; sorbents and solid wastes; and membranes. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  6. Low Thermal Conductivity, High Durability Thermal Barrier Coatings for IGCC Environments

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Eric [Univ. of Connecticut, Storrs, CT (United States); Gell, Maurice [Univ. of Connecticut, Storrs, CT (United States)

    2015-01-15

    Advanced thermal barrier coatings (TBC) are crucial to improved energy efficiency in next generation gas turbine engines. The use of traditional topcoat materials, e.g. yttria-stabilized zirconia (YSZ), is limited at elevated temperatures due to (1) the accelerated undesirable phase transformations and (2) corrosive attacks by calcium-magnesium-aluminum-silicate (CMAS) deposits and moisture. The first goal of this project is to use the Solution Precursor Plasma Spray (SPPS) process to further reduce the thermal conductivity of YSZ TBCs by introducing a unique microstructural feature of layered porosity, called inter-pass boundaries (IPBs). Extensive process optimization accompanied with hundreds of spray trials as well as associated SEM cross-section and laser-flash measurements, yielded a thermal conductivity as low as 0.62 Wm⁻¹K⁻¹ in SPPS YSZ TBCs, approximately 50% reduction of APS TBCs; while other engine critical properties, such as cyclic durability, erosion resistance and sintering resistance, were characterized to be equivalent or better than APS baselines. In addition, modifications were introduced to SPPS TBCs so as to enhance their resistance to CMAS under harsh IGCC environments. Several mitigation approaches were explored, including doping the coatings with Al₂O₃ and TiO₂, applying a CMAS infiltration-inhibiting surface layer, and filling topcoat cracks with blocking substances. The efficacy of all these modifications was assessed with a set of novel CMAS-TBC interaction tests, and the moisture resistance was tested in a custom-built high-temperature moisture rig. In the end, the optimal low thermal conductivity TBC system was selected based on all evaluation tests and its processing conditions were documented. The optimal coating consisted on a thick inner layer of YSZ coating made by the SPPS process having a thermal conductivity 50% lower than standard YSZ coatings topped with a high temperature tolerant CMAS resistant gadolinium

  7. Joule II - programme. Clean coal technology R & D; 2nd phase. Volume V. Enhancement of the efficiency of integrated gasification combined cycle (IGCC) power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hein, K.R.G.; Minchener, A.J.; Pruschek, R.; Roberts, P.A. [eds.

    1998-12-31

    Methods of enhancing the efficiency of integrated gasification combined cycle (IGCC) power plants were investigated under the JOULE II extension project JOU2-CT94-0454. These included thermodynamic analysis of measures for efficiency enhancement, and development and design of advanced heat recovery steam generator. All 3 papers have been abstracted separately.

  8. Advances in Model-Based Design of Flexible and Prompt Energy Systems -- The CO2 Capture Plant at the Buggenum IGCC Power Station as a Test Case

    NARCIS (Netherlands)

    Trapp, C.

    2014-01-01

    Pre-combustion CO2 capture applied to integrated gasification combined cycle (IGCC) power plants is a promising technical solution to reduce CO2 emissions due to fossil-fuelled electricity generation in order to meet environmental targets in a carbon-constrained future. The pre-combustion capture

  9. Advances in Model-Based Design of Flexible and Prompt Energy Systems -- The CO2 Capture Plant at the Buggenum IGCC Power Station as a Test Case

    NARCIS (Netherlands)

    Trapp, C.

    2014-01-01

    Pre-combustion CO2 capture applied to integrated gasification combined cycle (IGCC) power plants is a promising technical solution to reduce CO2 emissions due to fossil-fuelled electricity generation in order to meet environmental targets in a carbon-constrained future. The pre-combustion capture pr

  10. Survival of non-seminomatous germ cell cancer patients according to the IGCC classification: An update based on meta-analysis.

    Science.gov (United States)

    van Dijk, Merel R; Steyerberg, Ewout W; Habbema, J Dik F

    2006-05-01

    The International Germ Cell Consensus (IGCC) Classification distinguishes patients with non-seminomatous germ cell tumours (NSGCT) with a good, intermediate or poor prognosis, with a reported 5-year overall survival of 92%, 80% and 48%, respectively. Since the IGCC classification was based on patients treated between 1975 and 1990, we aimed to investigate whether survival has improved for more recently treated patients. We did a systematic search of the literature and included studies on survival of patients with NSGCT, treated after 1989 and classified according to the IGCC classification. Survival estimates of selected studies were pooled using meta-analytic techniques. We included 10 papers, describing 1775 patients with NSGCT with good (n = 1087), intermediate (n = 232), or poor (n = 456) prognosis. Pooled 5-year survival estimates were 94%, 83% and 71%, respectively. Since the publication of the IGCC classification, there was a small increase in survival for good and intermediate prognosis patients, and a large increase in survival for patients with a poor prognosis. This increase is most likely due to both more effective treatment strategies and more experience in treating NSGCT patients.

  11. Optimal control system design of an acid gas removal unit for an IGCC power plants with CO2 capture

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D.; Bhattacharyya, D.; Turton, R.; Zitney, S.

    2012-01-01

    Future IGCC plants with CO{sub 2} capture should be operated optimally in the face of disturbances without violating operational and environmental constraints. To achieve this goal, a systematic approach is taken in this work to design the control system of a selective, dual-stage Selexol-based acid gas removal (AGR) unit for a commercial-scale integrated gasification combined cycle (IGCC) power plant with pre-combustion CO{sub 2} capture. The control system design is performed in two stages with the objective of minimizing the auxiliary power while satisfying operational and environmental constraints in the presence of measured and unmeasured disturbances. In the first stage of the control system design, a top-down analysis is used to analyze degrees of freedom, define an operational objective, identify important disturbances and operational/environmental constraints, and select the control variables. With the degrees of freedom, the process is optimized with relation to the operational objective at nominal operation as well as under the disturbances identified. Operational and environmental constraints active at all operations are chosen as control variables. From the results of the optimization studies, self-optimizing control variables are identified for further examination. Several methods are explored in this work for the selection of these self-optimizing control variables. Modifications made to the existing methods will be discussed in this presentation. Due to the very large number of candidate sets available for control variables and due to the complexity of the underlying optimization problem, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel Computing® toolbox from Mathworks®. The second stage is a bottom-up design of the control layers used for the operation of the process. First, the regulatory control layer is

  12. Integrated Gasification Combined Cycle (IGCC) demonstration project, Polk Power Station -- Unit No. 1. Annual report, October 1993--September 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    This describes the Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project which will use a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,300 tons per day of coal (dry basis) coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 Btu/scf (LHV). The syngas then flows through a high temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product.

  13. IGCC电站与燃气轮机组电站的优势比较%Comparison between IGCC power plant and gas turbine power plant

    Institute of Scientific and Technical Information of China (English)

    李新春; 孙永斌

    2015-01-01

    In order to make an objective comparison between IGCC power plant and gas turbine power plant,the data from two finished pro-jects of China Power Investment Corporation Langfang,which were 2×400 MW IGCC power plant project and 2×400 MW gas thermal pow-er engineering were analyzed. The operating experience of China and United States 2 × 400 MW IGCC power system and China Huaneng Group Tianjin Lingang economic zone 2×400 MW gas cogeneration engineering projects had good reference value. From the technical eco-nomic angle on IGCC power plant and gas turbine power plant,the emissions of air pollutants standard,actual attainable emissions targets, investment,fixed cost,variable cost,per unit cost and so on were compared. The results showed that the two plants had roughly similar e-missions,while the cost of IGCC power plant was 37. 8% less than the cost of gas turbine power plant,so IGCC power plant was a more ad-vantage alternative.%为了对比IGCC电站与燃气轮机组电站,对中电投廊坊2 × 400 MW级IGCC项目和中电投廊坊2×400 MW级燃气热电工程中的数据进行分析,并参考中美2×400 MW级IGCC发电系统及华能天津临港经济区2 ×400 MW级燃气热电联产工程等项目,分别从大气污染物排放执行标准,实际可能达到的排放指标,电站的投资、固定成本、可变成本、单位成本等技术经济的角度对IGCC电站和燃气轮机组电站进行了比较. 结果表明,两者环境排放指标相当,但IGCC电站主要单位成本约为燃气轮机组电站的62. 2%,采用IGCC电站替代燃煤电站要优于燃气轮机组电站替代燃煤电站.

  14. Generic process design and control strategies used to develop a dynamic model and training software for an IGCC plant with CO2 sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Provost, G.; Stone, H.; McClintock, M.; Erbes, M.; Zitney, S.; Turton, R.; Phillips, J.; Quintrell, M.; Marasigan, J.

    2008-01-01

    To meet the growing demand for education and experience with the analysis, operation, and control of commercial-scale Integrated Gasification Combined Cycle (IGCC) plants, the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) is leading a collaborative R&D project with participants from government, academia, and industry. One of the goals of this project is to develop a generic, full-scope, real-time generic IGCC dynamic plant simulator for use in establishing a world-class research and training center, as well as to promote and demonstrate the technology to power industry personnel. The NETL IGCC dynamic plant simulator will combine for the first time a process/gasification simulator and a power/combined-cycle simulator together in a single dynamic simulation framework for use in training applications as well as engineering studies. As envisioned, the simulator will have the following features and capabilities: A high-fidelity, real-time, dynamic model of process-side (gasification and gas cleaning with CO2 capture) and power-block-side (combined cycle) for a generic IGCC plant fueled by coal and/or petroleum coke Full-scope training simulator capabilities including startup, shutdown, load following and shedding, response to fuel and ambient condition variations, control strategy analysis (turbine vs. gasifier lead, etc.), representative malfunctions/trips, alarms, scenarios, trending, snapshots, data historian, and trainee performance monitoring The ability to enhance and modify the plant model to facilitate studies of changes in plant configuration and equipment and to support future R&D efforts To support this effort, process descriptions and control strategies were developed for key sections of the plant as part of the detailed functional specification, which will form the basis of the simulator development. These plant sections include: Slurry Preparation Air Separation Unit Gasifiers Syngas Scrubbers Shift Reactors Gas Cooling

  15. IGCC电厂中合成气饱和器建模研究%Study of Simulation of Syngas Saturator in IGCC Power Plant

    Institute of Scientific and Technical Information of China (English)

    郑建涛; 徐越

    2010-01-01

    简述了IGCC电厂的饱和器类型,并对典型饱和器进行了模拟分析;同时对IGCC电厂中的几种饱和器进行了分析研究,得出饱和器设计的一般规律和影响;最后介绍了IGCC电厂中其他类型的合成气混合装置。%Type of saturator in IGCC plant is briefed.Typical saturator model is simulated and analyzed,therefore general rule and influence of saturator design is pointed out.Eventually,other type of syngas mixer in IGCC plant is introduced.

  16. Approach to energy-saving technology for IGCC-completed air separation plant%IGCC配套空分设备节能技术的探索

    Institute of Scientific and Technical Information of China (English)

    杨伟明

    2012-01-01

    In integral gas combined circulation(IGCC) power generation system,oxygen plays a key role in increasing the carbon conversion rate in gasification furnace and the single unit capacity of IGCC power station.Due to high demands on oxygen,the approach to energy-saving is an important topics to further improve the integral efficiency of IGCC.In combination with specific features of the IGCC power generation system,four potential energy-saving methods used for IGCC-completed air separation plant are analyzed in details: pressure swing adsorption oxygen generation technique,air integral technique,deep-cooling process low-purity oxygen generation technique and ionic membrane separation oxygen generation technique.%在整体煤气化联合循环(IGCC)发电系统中,氧气对提高气化炉的碳转化率以及IGCC电站的单机容量起关键性的作用。由于氧气需求量大,对IGCC发电系统配套的空分设备进行节能探索成为进一步提高IGCC整体效率的重要课题。结合IGCC发电系统的具体特点,详细分析变压吸附制氧技术、空气整体化技术、深冷法低纯度制氧技术、离子膜分离制氧技术四个为IGCC配套空分设备的潜在节能方向。

  17. IGCC系统减排CO2的性能比较和分析%PERFORMANCE COMPARISON AND ANALYSIS OF IGCC WITH CO2 EMISSION REDUCTION

    Institute of Scientific and Technical Information of China (English)

    范江; 刘姝玮; 马素霞

    2012-01-01

    Gas producing ratio and energy consumption rate were computed respectively in the IGCC system, the IGCC system with pre-combustion CO2 capturing and that with oxy-combustion CO2 recycling. It was showed from the computed results that when coal and the gasification were in the same condition, the steam and gas turbine's work declined and the IGCC system thermal efficiency reduced by 5. 851%, which was due to the capturing of CO2 gas. When CO2 reduction rate was 86. 55% , the thermal efficiency was 42% and conducive to the operating of IGCC efficiently and cleanly. If adopting the CO2 recycling combustion technology, the system thermal efficiency was lower than that of the pre-combustion CO2 capturing system, but in which zero CO2 emission could be achieved.%分别对IGCC系统、IGCC燃烧前捕捉CO2系统以及CO2循环利用的纯氧燃烧系统的产气率和能耗进行了计算.结果表明,当煤种和气化条件不变时,燃烧前捕捉CO2会使IGCC系统的燃气轮机和蒸汽轮机做功量减少,热效率降低5.851%.当减排86.55%的CO2时,系统热效率为42%,有利于IGCC清洁高效运行.若采用CO2循环的纯氧燃烧技术,其系统热效率比未循环CO2的燃烧前捕捉系统低,但可以实现CO2的零排放.

  18. Design and Assessment of an IGCC Concept with CO2 Capture for the Co-Generation of Electricity and Substitute Natural Gas

    Directory of Open Access Journals (Sweden)

    Timo Blumberg

    2015-12-01

    Full Text Available The focus of this work is on the modeling and the thermodynamic evaluation of an integrated gasification combined cycle (IGCC for the co-production of electricity and substitute natural gas (SNG. At first, an IGCC with CO2 capture for electricity generation is analyzed. Coal-derived syngas is conditioned in a water gas shift unit (WGS, and cleaned in an acid gas removal system including carbon capture. Eventually, the conditioned syngas is fed to a combined cycle. A second case refers to a complete conversion of syngas to SNG in an integrated commercial methanation unit (TREMP™ process, Haldor Topsøe, Kgs. Lyngby, Denmark. Due to the exothermic reaction, a gas recycling and intercooling stages are necessary to avoid catalyst damage. Based on a state-of-the-art IGCC plant, an optimal integration of the synthetic process considering off-design behavior was determined. The raw syngas production remains constant in both cases, while one shift reactor in combination with a bypass is used to provide an adequate H2/CO-ratio for the methanation unit. Electricity has to be purchased from the grid in order to cover the internal consumption when producing SNG. The resulting heat and power distributions of both cases are discussed.

  19. Clean Coal Power Generation, CCS and IGCC Caol Power Techology%清洁煤发电的CCS和IGCC联产技术

    Institute of Scientific and Technical Information of China (English)

    屈伟平

    2010-01-01

    煤气化联合循环(IGCC)发电技术是煤气化和燃气-蒸汽联合循环的结合,是当今国际正在兴起的一种先进的洁净煤(CCT)发电技术,其具有高效、低污染、节水、综合利用好等优点.碳捕捉及封存技术(CCS)和整体煤气化联合循环技术(IGCC)被认为是最有潜力的技术.这里简要介绍了整体煤气化联合循环(IGCC)系统、构成及发展现状,总结了二氧化碳的收集方式和封存方法.指出了成本问题是困扰CCS和IGCC的联产应用的主要障碍.

  20. CE IGCC repowering project: Clean Coal II Project. Annual report, 1 January, 1992--31 December, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    CE is participating in a $270 million coal gasification combined cycle repowering project that will provide a nominal 60 MW of electricity to City, Water, light and Power (CWL and P) in Springfield, Illinois. The IGCC system will consist of CE`s air-blown entrained flow two-stage gasifier; an advanced hot gas cleanup system; a combustion turbine adapted to use low-Btu gas: and all necessary coal handling equipment. The project is currently in the second budget period of five. The major activities during this budgeted period are: Establishment of an approved for design (AFD) engineering package; development of a detailed cost estimate; resolution of project business issues; CWL and P renewal and replacement activities; and application for environmental air permits. The Project Management Plan was updated. The conceptual design of the plant was completed and a cost and schedule baseline for the project was established previously in Budget Period One. This information was used to establish AFD Process Flow Diagrams, Piping and Instrument Diagrams, Equipment Data Sheets, material take offs, site modification plans and other information necessary to develop a plus or minus 20% cost estimate. Environmental permitting activities are continuing. At the end of 1992 the major activities remaining for Budget Period two is to finish the cost estimate and complete the Continuation Request Documents.

  1. IGCC与煤电的新型工业化%IGCC and novel type industrialization of coal power

    Institute of Scientific and Technical Information of China (English)

    许世森; 危师让

    2005-01-01

    整体煤气联合循环(IGCC)发电技术是一种洁净煤利用技术.在回顾国外IGCC技术发展和国外示范项目的基础上,阐述了IGCC发电的技术特点、发展趋势和应用前景.指出具有高效、节水、环境优越、可实现废弃物资源化利用和多联产等特点的IGCC技术,在我国新型工业化进程中的重要作用.以IGCC为基础的多联产,可以改善机组的调峰性能,多联产和能源多样化,可以加强我国的能源供应安全.如果将捕集和回收碳计入环境成本,那么IGCC将是使用化石燃料生产电力最经济的选择,并对加快我国IGCC示范电厂的建设和运行提出了若干建议.

  2. Heat Integration of the Water-Gas Shift Reaction System for Carbon Sequestration Ready IGCC Process with Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Juan M. Salazara; Stephen E. Zitney; Urmila M. Diwekara

    2010-01-01

    Integrated gasification combined cycle (IGCC) technology has been considered as an important alternative for efficient power systems that can reduce fuel consumption and CO2 emissions. One of the technological schemes combines water-gas shift reaction and chemical-looping combustion as post gasification techniques in order to produce sequestration-ready CO2 and potentially reduce the size of the gas turbine. However, these schemes have not been energetically integrated and process synthesis techniques can be applied to obtain an optimal flowsheet. This work studies the heat exchange network synthesis (HENS) for the water-gas shift reaction train employing a set of alternative designs provided by Aspen energy analyzer (AEA) and combined in a process superstructure that was simulated in Aspen Plus (AP). This approach allows a rigorous evaluation of the alternative designs and their combinations avoiding all the AEA simplifications (linearized models of heat exchangers). A CAPE-OPEN compliant capability which makes use of a MINLP algorithm for sequential modular simulators was employed to obtain a heat exchange network that provided a cost of energy that was 27% lower than the base case. Highly influential parameters for the pos gasification technologies (i.e. CO/steam ratio, gasifier temperature and pressure) were calculated to obtain the minimum cost of energy while chemical looping parameters (oxidation and reduction temperature) were ensured to be satisfied.

  3. Conceptual design report -- Gasification Product Improvement Facility (GPIF)

    Energy Technology Data Exchange (ETDEWEB)

    Sadowski, R.S.; Skinner, W.H.; House, L.S.; Duck, R.R. [CRS Sirrine Engineers, Inc., Greenville, SC (United States); Lisauskas, R.A.; Dixit, V.J. [Riley Stoker Corp., Worcester, MA (United States); Morgan, M.E.; Johnson, S.A. [PSI Technology Co., Andover, MA (United States). PowerServe Div.; Boni, A.A. [PSI-Environmental Instruments Corp., Andover, MA (United States)

    1994-09-01

    The problems heretofore with coal gasification and IGCC concepts have been their high cost and historical poor performance of fixed-bed gasifiers, particularly on caking coals. The Gasification Product Improvement Facility (GPIF) project is being developed to solve these problems through the development of a novel coal gasification invention which incorporates pyrolysis (carbonization) with gasification (fixed-bed). It employs a pyrolyzer (carbonizer) to avoid sticky coal agglomeration caused in the conventional process of gradually heating coal through the 400 F to 900 F range. In so doing, the coal is rapidly heated sufficiently such that the coal tar exists in gaseous form rather than as a liquid. Gaseous tars are then thermally cracked prior to the completion of the gasification process. During the subsequent endothermic gasification reactions, volatilized alkali can become chemically bound to aluminosilicates in (or added to) the ash. To reduce NH{sub 3} and HCN from fuel born nitrogen, steam injection is minimized, and residual nitrogen compounds are partially chemically reduced in the cracking stage in the upper gasifier region. Assuming testing confirms successful deployment of all these integrated processes, future IGCC applications will be much simplified, require significantly less mechanical components, and will likely achieve the $1,000/kWe commercialized system cost goal of the GPIF project. This report describes the process and its operation, design of the plant and equipment, site requirements, and the cost and schedule. 23 refs., 45 figs., 23 tabs.

  4. 首座基于GE技术的标准化IGCC电厂浅析%Brief Analysis of IGCC Power Plant of First Seat Base on GE Technique Standardization

    Institute of Scientific and Technical Information of China (English)

    李现勇

    2013-01-01

      本文对Edwardsport Duke IGCC电厂-世界上首座基于GE标准化IGCC概念的电厂的装机方案、技术特点、性能指标、建设过程及相关经验教训进行了分析,对于我国IGCC技术的发展和推广将具有一定的借鉴意义。%  This article gives a brief analysis for system configuration, technology advantages, performance index, project execution, experience and lessons of Edwardsport Duke IGCC power plant – the first coal-based GE reference IGCC power plant. Such information will be useful for IGCC technology development and spread in China.

  5. State estimation of an acid gas removal (AGR) plant as part of an integrated gasification combined cycle (IGCC) plant with CO2 capture

    Energy Technology Data Exchange (ETDEWEB)

    Paul, P.; Bhattacharyya, D.; Turton, R.; Zitney, S.

    2012-01-01

    An accurate estimation of process state variables not only can increase the effectiveness and reliability of process measurement technology, but can also enhance plant efficiency, improve control system performance, and increase plant availability. Future integrated gasification combined cycle (IGCC) power plants with CO2 capture will have to satisfy stricter operational and environmental constraints. To operate the IGCC plant without violating stringent environmental emission standards requires accurate estimation of the relevant process state variables, outputs, and disturbances. Unfortunately, a number of these process variables cannot be measured at all, while some of them can be measured, but with low precision, low reliability, or low signal-to-noise ratio. As a result, accurate estimation of the process variables is of great importance to avoid the inherent difficulties associated with the inaccuracy of the data. Motivated by this, the current paper focuses on the state estimation of an acid gas removal (AGR) process as part of an IGCC plant with CO2 capture. This process has extensive heat and mass integration and therefore is very suitable for testing the efficiency of the designed estimators in the presence of complex interactions between process variables. The traditional Kalman filter (KF) (Kalman, 1960) algorithm has been used as a state estimator which resembles that of a predictor-corrector algorithm for solving numerical problems. In traditional KF implementation, good guesses for the process noise covariance matrix (Q) and the measurement noise covariance matrix (R) are required to obtain satisfactory filter performance. However, in the real world, these matrices are unknown and it is difficult to generate good guesses for them. In this paper, use of an adaptive KF will be presented that adapts Q and R at every time step of the algorithm. Results show that very accurate estimations of the desired process states, outputs or disturbances can be

  6. 乙烯裂解工艺与IGCC-SOFC发电制氢联合工艺技术经济分析%The Technology and Economy Analysis of United Process of Generation Electricity and Production Hydrogen by Ethylene Cracking Process and IGCC-SOFC Process

    Institute of Scientific and Technical Information of China (English)

    何琨; 吴德荣; 马紫峰

    2006-01-01

    为了充分发挥循环煤气化IGCC与固体氧化物燃料电池SOFC发电制氢联合工艺所具有高效、节能、经济的优点,将乙烯裂解炉核心工艺技术与IGCC-SOFC工艺技术进一步联合.以裂解炉生产乙烯1.0 Mt/a和热电联产发电量237 MW为基准,经过技术分析和经济比较发现,乙烯裂解工艺与IGCC-SOFC工艺联合不仅增产氢气131 kt/a,而且节约燃料总计20.80%以上并使建设投资开始盈余年份提前25.53%以上.因此,乙烯裂解与IGCC-SOFC发电制氢联合工艺是绿色化工理论和可持续发展战略的一个新突破,也是节能降耗的一个新思路.

  7. Design features of 4×200 MW level IGCC project%4×200MW级IGCC项目设计特点

    Institute of Scientific and Technical Information of China (English)

    王泓; 谭红军

    2008-01-01

    整体煤气化联合循环发电(IGCC)技术是一种很有发展前景的洁净煤发电技术.论述了IGCC技术的工艺流程,针对某电厂4 × 200 MW级IGCC项目,详细介绍了该项目的工艺系统和设备选型方案,指出建设以自主技术为主的IGCC电站必将推动我国IGCC发电技术的发展.

  8. Present Application Situation of IGCC in China and Related Suggestions%我国IGCC发电技术应用现状及政策建议

    Institute of Scientific and Technical Information of China (English)

    赵东旭

    2007-01-01

    整体煤气化联合循环(Integrated Gasification Combined Cycle,IGCC)发电技术是高效清洁燃煤发电可供选择的重要发展方向之一.介绍了IGCC技术的特点、国内外的应用情况及在我国发展的技术可行性与经济效益状况,提出了促进我国发展IGCC技术的政策建议.

  9. IGCC系统低NOx排放方法的比较和分析%Comparison and analysis of low-NOx emission methods for IGCC system

    Institute of Scientific and Technical Information of China (English)

    毕映会

    2008-01-01

    氮气回注、燃料湿化饱和是整体煤气化联合循环系统(IGCC)中降低燃机NOx排放的2种重要方法,针对200MW级IGCC系统设计,对IGCC系统中2种低氮燃烧方式进行计算和分析,从技术指标和经济性的角度阐述了2种方案的优缺点,并给出合理化建议.

  10. Facilities & Leadership

    Data.gov (United States)

    Department of Veterans Affairs — The facilities web service provides VA facility information. The VA facilities locator is a feature that is available across the enterprise, on any webpage, for the...

  11. Biochemistry Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Biochemistry Facility provides expert services and consultation in biochemical enzyme assays and protein purification. The facility currently features 1) Liquid...

  12. 40 CFR 60.40Da - Applicability and designation of affected facility.

    Science.gov (United States)

    2010-07-01

    ... September 18, 1978. (b) An IGCC electric utility steam generating unit (both the stationary combustion.... (1) The IGCC electric utility steam generating unit is capable of combusting more than 73 MW (250... IGCC electric utility steam generating unit commenced construction, modification, or...

  13. Dynamic simulation and load-following control of an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, D,; Turton, R.; Zitney, S.

    2012-01-01

    Load-following control of future integrated gasification combined cycle (IGCC) plants with pre-combustion CO{sub 2} capture is expected to be far more challenging as electricity produced by renewable energy is connected to the grid and strict environmental limits become mandatory requirements. To study control performance during load following, a plant-wide dynamic simulation of a coal-fed IGCC plant with CO{sub 2} capture has been developed. The slurry-fed gasifier is a single-stage, downward-fired, oxygen-blown, entrained-flow type with a radiant syngas cooler (RSC). The syngas from the outlet of the RSC goes to a scrubber followed by a two-stage sour shift process with inter-stage cooling. The acid gas removal (AGR) process is a dual-stage physical solvent-based process for selective removal of H{sub 2}S in the first stage and CO{sub 2} in the second stage. Sulfur is recovered using a Claus unit with tail gas recycle to the AGR. The recovered CO{sub 2} is compressed by a split-shaft multistage compressor and sent for sequestration after being treated in an absorber with triethylene glycol for dehydration. The clean syngas is sent to two advanced “F”-class gas turbines (GTs) partially integrated with an elevated-pressure air separation unit. A subcritical steam cycle is used for heat recovery steam generation. A treatment unit for the sour water strips off the acid gases for utilization in the Claus unit. The steady-state model developed in Aspen Plus® is converted to an Aspen Plus Dynamics® simulation and integrated with MATLAB® for control studies. The results from the plant-wide dynamic model are compared qualitatively with the data from a commercial plant having different configuration, operating condition, and feed quality than what has been considered in this work. For load-following control, the GT-lead with gasifier-follow control strategy is considered. A modified proportional–integral–derivative (PID) control is considered for the syngas

  14. Behaviour of the elements introduced with the fuels in their distribution and immobilization between the coal-petroleum coke IGCC solid products

    Energy Technology Data Exchange (ETDEWEB)

    Ramon Alvarez-Rodriguez; Carmen Clemente-Jul; Juan A. Martin-Rubi [Technical University of Madrid (UPM), Madrid (Spain). Mining School

    2007-09-15

    In this research on the solid products of the Elcogas IGCC plant (Puertollano, Spain) the influence of the two fuels, coal and pet coke, on the composition of the fly ashes and slag is demonstrated and how the majority of the elements are provided by the coal and only some as V, Ni and Mo are provided by the pet coke. The different nature of slag and fly ashes is highlighted and how the different elements are distributed between them that in general follow the indications of the mathematical models. The passage of the elements into gaseous phase is calculated. The fly ashes are some products of very fine granulometry that present problems of solubilization of a series of elements and therefore of deposition. Their inertization has been investigated by calcination at 1000{sup o}C and with additives. Some good results have been obtained. 20 refs., 14 figs., 4 tabs.

  15. IGCC系统中燃气轮机选型原则分析研究%Principle and Analysis on Type Selection for Gas Turbine in IGCC System

    Institute of Scientific and Technical Information of China (English)

    陆勇

    2002-01-01

    通过对整体煤气化联合循环(IGCC)发电技术的简要介绍,指出用于IGCC的燃气轮机同用于常规联合循环的燃气轮机在燃料、系统工艺等方面的差异,从而提出用于IGCC的燃气轮机的特点.最后,通过对目前IGCC电站中采用的不同厂家燃气轮机型号的介绍,初步提出用于容量为200~400MW级IGCC的燃气轮机的选型原则及推荐的燃机型号.

  16. Modeling and optimization of a modified claus process as part of an integrted gasification combined cycle (IGCC) power plant with CO2 capture

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D.; Bhattacharyya, D.; Turton, R.; Zitney, S.

    2011-01-01

    The modified Claus process is one of the most common technologies for sulfur recovery from acid gas streams. Important design criteria for the Claus unit, when part of an Integrated Gasification Combined Cycle (IGCC) power plant, are the ability to destroy ammonia completely and recover sulfur thoroughly from a relatively low purity acid gas stream without sacrificing flame stability. Due to these criteria, modifications are often required to the conventional process, resulting in a modified Claus process. For the studies discussed here, these modifications include the use of a 95% pure oxygen stream as the oxidant, a split flow configuration, and the preheating of the feeds with the intermediate pressure steam generated in the waste heat boiler (WHB). In the future, for IGCC plants with CO2 capture, the Claus unit must satisfy emission standards without sacrificing the plant efficiency in the face of typical disturbances of an IGCC plant such as rapid change in the feed flowrates due to load-following and wide changes in the feed composition because of changes in the coal feed to the gasifier. The Claus unit should be adequately designed and efficiently operated to satisfy these objectives. Even though the Claus process has been commercialized for decades, most papers concerned with the modeling of the Claus process treat the key reactions as equilibrium reactions. Such models are validated by manipulating the temperature approach to equilibrium for a set of steady-state operating data, but are of limited use for dynamic studies. One of the objectives of this study is to develop a model that can be used for dynamic studies. In a Claus process, especially in the furnace and the WHB, many reactions may take place. In this work, a set of linearly independent reactions has been identified and kinetic models of the furnace flame and anoxic zones, WHB, and catalytic reactors have been developed. To facilitate the modeling of the Claus furnace, a four-stage method was

  17. Rigorous Kinetic Modeling, Optimization, and Operability Studies of a Modified Claus Unit for an Integrated Gasification Combined Cycle (IGCC) Power Plant with CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Dustin; Bhattacharyya, Debangsu; Turton, Richard; Zitney, Stephen E

    2011-12-15

    The modified Claus process is one of the most common technologies for sulfur recovery from acid gas streams. Important design criteria for the Claus unit, when part of an Integrated Gasification Combined Cycle (IGCC) power plant, are the ability to destroy ammonia completely and the ability to recover sulfur thoroughly from a relatively low purity acid gas stream without sacrificing flame stability. Because of these criteria, modifications to the conventional process are often required, resulting in a modified Claus process. For the studies discussed here, these modifications include the use of a 95% pure oxygen stream as the oxidant, a split flow configuration, and the preheating of the feeds with the intermediate pressure steam generated in the waste heat boiler (WHB). In the future, for IGCC plants with CO{sub 2} capture, the Claus unit must satisfy emission standards without sacrificing the plant efficiency in the face of typical disturbances of an IGCC plant, such as rapid change in the feed flow rates due to load-following and wide changes in the feed composition because of changes in the coal feed to the gasifier. The Claus unit should be adequately designed and efficiently operated to satisfy these objectives. Even though the Claus process has been commercialized for decades, most papers concerned with the modeling of the Claus process treat the key reactions as equilibrium reactions. Such models are validated by manipulating the temperature approach to equilibrium for a set of steady-state operating data, but they are of limited use for dynamic studies. One of the objectives of this study is to develop a model that can be used for dynamic studies. In a Claus process, especially in the furnace and the WHB, many reactions may take place. In this work, a set of linearly independent reactions has been identified, and kinetic models of the furnace flame and anoxic zones, WHB, and catalytic reactors have been developed. To facilitate the modeling of the Claus

  18. Rigorous Kinetic Modeling and Optimization Study of a Modified Claus Unit for an Integrated Gasification Combined Cycle (IGCC) Power Plant with CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Dustin; Bhattacharyya, Debangsu; Turton, Richard; Zitney, Stephen E.

    2012-02-08

    The modified Claus process is one of the most common technologies for sulfur recovery from acid gas streams. Important design criteria for the Claus unit, when part of an Integrated Gasification Combined Cycle (IGCC) power plant, are the ability to destroy ammonia completely and the ability to recover sulfur thoroughly from a relatively low purity acid gas stream without sacrificing flame stability. Because of these criteria, modifications to the conventional process are often required, resulting in a modified Claus process. For the studies discussed here, these modifications include the use of a 95% pure oxygen stream as the oxidant, a split flow configuration, and the preheating of the feeds with the intermediate pressure steam generated in the waste heat boiler (WHB). In the future, for IGCC plants with CO{sub 2} capture, the Claus unit must satisfy emission standards without sacrificing the plant efficiency in the face of typical disturbances of an IGCC plant, such as rapid change in the feed flow rates due to load-following and wide changes in the feed composition because of changes in the coal feed to the gasifier. The Claus unit should be adequately designed and efficiently operated to satisfy these objectives. Even though the Claus process has been commercialized for decades, most papers concerned with the modeling of the Claus process treat the key reactions as equilibrium reactions. Such models are validated by manipulating the temperature approach to equilibrium for a set of steady-state operating data, but they are of limited use for dynamic studies. One of the objectives of this study is to develop a model that can be used for dynamic studies. In a Claus process, especially in the furnace and the WHB, many reactions may take place. In this work, a set of linearly independent reactions has been identified, and kinetic models of the furnace flame and anoxic zones, WHB, and catalytic reactors have been developed. To facilitate the modeling of the Claus

  19. COS Hydrolysis Process of Desulfurization System for IGCC Power Plants%IGCC电站脱硫系统中的羰基硫水解工艺

    Institute of Scientific and Technical Information of China (English)

    张瑞祥; 高景辉; 令彤彤; 朱声宝

    2013-01-01

    介绍某IGCC(整体煤气化联合循环)电站净化单元脱硫系统中羰基硫(COS)水解器的水解工艺.对COS水解器的启动方式和运行工况进行优化,在试验研究的基础上给出了COS水解器运行的最佳条件:床层温度180℃,空速1 451 h-1,工艺气冷却器出口原料气温度50~60℃.在此工况下运行,COS水解转化率可达92.5%.此外,分析COS水解器运行中常见问题,指出必须严格控制原料气中氧气和水蒸气的含量.%The COS hydrolysis system of gas purification in one integrated gasification combined cycle (IGCC) power plant is introduced. Through the optimization of the startup modes and operating conditions of the COS hydrolysis system, the best operating condition is determined from experimental researches, i.e., 180℃of the layer temperature of the COS hydrolysis, 1451 h-1 of the space velocity, and the temperature of raw coal gas at the process gas cooler outlet between 50 and 60℃. Operated under this condition, the COS hydrolysis conversion rate can reach 92.5%. In addition, the common issues in the operation of the COS hydrolysis system are analyzed, which concludes that the oxygen and water vapor contents of the raw coal gas shall be strictly controlled.

  20. Fabrication Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Fabrication Facilities are a direct result of years of testing support. Through years of experience, the three fabrication facilities (Fort Hood, Fort Lewis, and...

  1. Facility Microgrids

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.

    2005-05-01

    Microgrids are receiving a considerable interest from the power industry, partly because their business and technical structure shows promise as a means of taking full advantage of distributed generation. This report investigates three issues associated with facility microgrids: (1) Multiple-distributed generation facility microgrids' unintentional islanding protection, (2) Facility microgrids' response to bulk grid disturbances, and (3) Facility microgrids' intentional islanding.

  2. Application of CO2 capture technology before burning in IGCC power generation system%燃烧前CO2捕集技术在IGCC发电中的应用

    Institute of Scientific and Technical Information of China (English)

    陈新明; 史绍平; 闫姝; 方芳; 许世森; 段立强

    2014-01-01

    Integrated gasification combined cycle (IGCC) power generation is an advanced and next generation coal-fired power generation technology, can provide clean and low-cost electricity for the users, and will play an important role in the future development of high-efficiency and zero-emissions power plants. CO2 capture technology before burning should be very suitable for IGCC system. Based on IGCC technical features, a CO2 capture process before burning, consisting of MDEA acid gas removal and wet oxidation sulfur recovery steps, is proposed in this paper. The feasibility study of application in IGCC system is verified by process simulation calculation. The results show that this process works well for acid gas removal, and the efficiency for separating CO2 and H2S from syngas can reach 99%and 98.5%respectively. However, the overall efficiency of power supply by IGCC, obtained by calculation, declines about 10 percent from 45.35% to 35.16%, when the CO2 capture process before burning is introduced into IGCC system. The three main factors of decrease of total efficiency are steam consumption, fuel chemical energy loss and new auxiliary power increase, and they could be used for determining optimization direction.%由于整体煤气化联合循环(IGCC)发电本身的技术特点,使得其非常适合于进行燃烧前 CO2捕集。针对IGCC特点,提出了一种MDEA脱酸气结合湿法氧化法硫回收的燃烧前CO2捕集流程。通过模拟计算,验证了流程的可行性。将其与IGCC发电系统集成,对比计算了有无燃烧前CO2捕集的IGCC系统供电效率等相关参数,燃烧前CO2捕集使IGCC供电效率降低约10个百分点。分析指出了导致包含燃烧前CO2捕集的IGCC供电效率降低的3个因素:蒸汽消耗、燃料化学能损失和新增动力设备电耗,并据此确定了今后的优化方向。

  3. Gasification Product Improvement Facility (GPIF). Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The gasifier selected for development under this contract is an innovative and patented hybrid technology which combines the best features of both fixed-bed and fluidized-bed types. PyGas{trademark}, meaning Pyrolysis Gasification, is well suited for integration into advanced power cycles such as IGCC. It is also well matched to hot gas clean-up technologies currently in development. Unlike other gasification technologies, PyGas can be designed into both large and small scale systems. It is expected that partial repowering with PyGas could be done at a cost of electricity of only 2.78 cents/kWh, more economical than natural gas repowering. It is extremely unfortunate that Government funding for such a noble cause is becoming reduced to the point where current contracts must be canceled. The Gasification Product Improvement Facility (GPIF) project was initiated to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology at a cost approaching $1,000 per kilowatt for electric power generation applications. The project was to include an innovative, advanced, air-blown, pressurized, fixed-bed, dry-bottom gasifier and a follow-on hot metal oxide gas desulfurization sub-system. To help defray the cost of testing materials, the facility was to be located at a nearby utility coal fired generating site. The patented PyGas{trademark} technology was selected via a competitive bidding process as the candidate which best fit overall DOE objectives. The paper describes the accomplishments to date.

  4. Sensor placement algorithm development to maximize the efficiency of acid gas removal unit for integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Paul, P.; Bhattacharyya, D.; Turton, R.; Zitney, S.

    2012-01-01

    Future integrated gasification combined cycle (IGCC) power plants with CO{sub 2} capture will face stricter operational and environmental constraints. Accurate values of relevant states/outputs/disturbances are needed to satisfy these constraints and to maximize the operational efficiency. Unfortunately, a number of these process variables cannot be measured while a number of them can be measured, but have low precision, reliability, or signal-to-noise ratio. In this work, a sensor placement (SP) algorithm is developed for optimal selection of sensor location, number, and type that can maximize the plant efficiency and result in a desired precision of the relevant measured/unmeasured states. In this work, an SP algorithm is developed for an selective, dual-stage Selexol-based acid gas removal (AGR) unit for an IGCC plant with pre-combustion CO{sub 2} capture. A comprehensive nonlinear dynamic model of the AGR unit is developed in Aspen Plus Dynamics® (APD) and used to generate a linear state-space model that is used in the SP algorithm. The SP algorithm is developed with the assumption that an optimal Kalman filter will be implemented in the plant for state and disturbance estimation. The algorithm is developed assuming steady-state Kalman filtering and steady-state operation of the plant. The control system is considered to operate based on the estimated states and thereby, captures the effects of the SP algorithm on the overall plant efficiency. The optimization problem is solved by Genetic Algorithm (GA) considering both linear and nonlinear equality and inequality constraints. Due to the very large number of candidate sets available for sensor placement and because of the long time that it takes to solve the constrained optimization problem that includes more than 1000 states, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel

  5. Sensor placement algorithm development to maximize the efficiency of acid gas removal unit for integrated gasifiction combined sycle (IGCC) power plant with CO2 capture

    Energy Technology Data Exchange (ETDEWEB)

    Paul, P.; Bhattacharyya, D.; Turton, R.; Zitney, S.

    2012-01-01

    Future integrated gasification combined cycle (IGCC) power plants with CO{sub 2} capture will face stricter operational and environmental constraints. Accurate values of relevant states/outputs/disturbances are needed to satisfy these constraints and to maximize the operational efficiency. Unfortunately, a number of these process variables cannot be measured while a number of them can be measured, but have low precision, reliability, or signal-to-noise ratio. In this work, a sensor placement (SP) algorithm is developed for optimal selection of sensor location, number, and type that can maximize the plant efficiency and result in a desired precision of the relevant measured/unmeasured states. In this work, an SP algorithm is developed for an selective, dual-stage Selexol-based acid gas removal (AGR) unit for an IGCC plant with pre-combustion CO{sub 2} capture. A comprehensive nonlinear dynamic model of the AGR unit is developed in Aspen Plus Dynamics® (APD) and used to generate a linear state-space model that is used in the SP algorithm. The SP algorithm is developed with the assumption that an optimal Kalman filter will be implemented in the plant for state and disturbance estimation. The algorithm is developed assuming steady-state Kalman filtering and steady-state operation of the plant. The control system is considered to operate based on the estimated states and thereby, captures the effects of the SP algorithm on the overall plant efficiency. The optimization problem is solved by Genetic Algorithm (GA) considering both linear and nonlinear equality and inequality constraints. Due to the very large number of candidate sets available for sensor placement and because of the long time that it takes to solve the constrained optimization problem that includes more than 1000 states, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel

  6. Research on IGCC power island and system characteristics%整体煤气化联合循环动力岛及系统特性研究

    Institute of Scientific and Technical Information of China (English)

    戚利利; 张忠孝; 李振中; 王阳; 周国峰; 谢浩; 陈晓利; 陈雷

    2010-01-01

    动力岛是整体煤气化联合循环(IGCC)中复杂的关键单元,其中燃气轮机变工况性能的变化对蒸汽底循环及整个系统的影响较大.采用thermoflex软件建立IGCC系统模型,对200 MW级IGCC系统的技术方案进行了探讨,从系统的角度详细分析了IGV可调等T3调节及空分整体化系数Xas和氮气回注系数Xgn对动力岛及整个系统的影响.结果表明:在采用IGV可调等T3调节时,在80%负荷时系统各参数出现转折点;随着Xas的增加,系统供电效率略有上升,但是系统总功下降;在Xas为30%时,随着氮气回注系数Xgn的变化,系统的各参数在Xgn为70%时出现峰值.

  7. A Joint Workshop on Promoting the Development and Deployment of IGCC/Co-Production/CCS Technologies in China and the United States. Workshop report

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lifeng; Ziao, Yunhan; Gallagher, Kelly Sims

    2009-06-03

    With both China and the United States relying heavily on coal for electricity, senior government officials from both countries have urged immediate action to push forward technology that would reduce carbon dioxide emissions from coal-fired plants. They discussed possible actions at a high-level workshop in April 2009 at the Harvard Kennedy School jointly sponsored by the Belfer Center's Energy Technology Innovation Policy (ETIP) research group, China's Ministry of Science and Technology, and the Chinese Academy of Sciences. The workshop examined issues surrounding Integrated Gasification Combined Cycle (IGCC) coal plants, which turn coal into gas and remove impurities before the coal is combusted, and the related carbon capture and sequestration, in which the carbon dioxide emissions are captured and stored underground to avoid releasing carbon dioxide into the atmosphere. Though promising, advanced coal technologies face steep financial and legal hurdles, and almost certainly will need sustained support from governments to develop the technology and move it to a point where its costs are low enough for widespread use.

  8. 整体煤气化联合循环(IGCC)发电系统性能分析%PERFORMANCE ANALYSIS OF THE POWER GENERATING SYSTEM WITH ICGCC

    Institute of Scientific and Technical Information of China (English)

    余廷芳; 蔡宁生

    2006-01-01

    介绍不同型式的整体煤气化联合循环(IGCC)发电系统.对采用空气气化的IGCC系统进行了概念设计,并对4种采用空气气化型式的IGCC发电系统进行了计算和分析,研究结果表明:(1)IGCC燃煤发电系统有较大的综合优势;(2)在相同设计参数下,IGCC系统采用温度较低的流化床气化炉或采用温度较高的气流床气化炉各有优缺点,对配置低温湿法粗煤气净化系统的IGCC系统,建议采用流化床气化炉;(3)在进行IGCC设计时,燃气轮机入口温度应尽量取高值,对应此温度存在一最佳压比值;(4)IGCC系统供电效率比常规电站高5~7个百分点.

  9. Application of EPC Management Mode in Construction of IGCC Plant%EPC管理模式在IGCC装置建设中的运用

    Institute of Scientific and Technical Information of China (English)

    高绪霞

    2012-01-01

    Taking the Fujian petroleum and ethylene integrated gasification combined cycle (IGCC) unit constructed by SINOPEC Ningbo Engineering Company Limited as the case, the superiorities of EPC (Engineer, Procure, Construct) project management mode were introduced comparing with traditional management mode, its risks and control, role of supervision and the profits were analyzed as well. Proposal was raised to take corresponding measures in designing management for controlling of risks.%结合中国石化集团宁波工程有限公司承建的国内某炼油乙烯一体化气化联合循环装置(IGCC),介绍了工程总承包(EPC)项目管理模式与传统项目管理相比具有的优点、风险与控制、监理的作用以及取得的效益,指出应立足设计,在设计管理上采用相应措施以控制风险。

  10. Mammography Facilities

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Mammography Facility Database is updated periodically based on information received from the four FDA-approved accreditation bodies: the American College of...

  11. Health Facilities

    Science.gov (United States)

    Health facilities are places that provide health care. They include hospitals, clinics, outpatient care centers, and specialized care centers, such as birthing centers and psychiatric care centers. When you ...

  12. Canyon Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — B Plant, T Plant, U Plant, PUREX, and REDOX (see their links) are the five facilities at Hanford where the original objective was plutonium removal from the uranium...

  13. Comparison of Denitration Schemes in 400 MW IGCC Plant%400 MW整体煤气化联合循环机组脱硝方案比较

    Institute of Scientific and Technical Information of China (English)

    黄雪丽; 陈鸿伟; 孙永斌

    2014-01-01

    整体煤气化联合循环(integrated gasification combined cycle,IGCC)电厂是我国洁净煤发电的主要方向之一.为了合理选择NOx排放方案,基于流程模拟软件Thermoflex建立了400 MW级IGCC系统模型,采用回注氮气或蒸汽法降低燃气轮机燃烧温度以减少热力型NOx排放,回注所需稀释剂不足时结合余热锅炉+选择性催化还原(selective catalytic reduction,SCR)法,保证各脱硝方案下排烟中NOx含量均为50 mg/m3;在燃气轮机功率为286 MW工况下比较各系统的热力性能,并结合工程实际计算各方案初始投资.结果表明:回注氮气脱硝效果不如注蒸汽,但回收利用来自气化岛氮气可提高能量利用效率,增加燃气轮机出力,系统效率有所提高;在目前IGCC电厂关键设备的技术水平下,增大SCR脱硝比例可改善ICCC系统热力性能,而IGCC电厂单位投资和运行成本也将增加.随着IGCC系统关键技术的提升,回注氮气法将会是最具环保节能潜力的脱硝方案.

  14. IGCC气化炉水循环计算与分析%Calculation and Analysis of the Water Cycle System for IGCC Gasifiers

    Institute of Scientific and Technical Information of China (English)

    吴努斌; 刘建斌; 蹇浪; 任晞青; 徐鸿

    2012-01-01

    Taking the gasifier in an integrated gasification combined cycle (IGCC) unit as an example, calculation and analysis were carried out based on newly built mathematical models, so as to balance the water flow, heat distribution and pressure distribution in the water cycle system of complicatedly structured IGCC gasifiers. Results show that high rates of water circulation enable sufficient water to flow through the heat surfaces, among which heat-transfer deterioration is avoided. The high pressure drop, occurring in the three tube banks on upper part of the gasifier at target flow, may be reduced by optimizing the structural arrangement, simplifying the steam-water flow path and preventing the steam-water mixture from flowing downward along the tubes, and accordingly the unit efficiency is raised and the operation cost is reduced.%以某整体煤气化联合循环(IGCC)气化炉为例,通过建立控制循环水系统数学模型进行了计算和分析,解:央复杂结构IGCC气化炉水系统流量、热量分配和阻力平衡问题.结果表明:高循环倍率使足够的循环水量流过受热面,能确保受热面不发生传热恶化;气化炉上段三组水冷壁管组在目标流量下压降很大,若优化布置结构、简化汽水流程,并尽量避免汽水混合物沿受热管道向下流动,则能有效提高效率、降低成本.

  15. Large-Scale Pressurizable Fire Test Facility-Fire 1

    Science.gov (United States)

    1982-12-30

    440 CALL PLOTR(ICCB.ID,1.LUG) 0144 CALL SETAR(IGCB.1 0) 0141 CALL VIEUP( IGCC ,O ,135 .0-100.) 0142 CALL UINDB(IGCB.O 150 .o.,100.) 0143 CALL CSIZE( IGCC ,2...InY1I-1 fl 0250 CALL DRAU(ICCB.X(J),yl(J)) 0251 390 CALL NAVE(1CCB.X(4),Y6J1)) 0252 CALL CPLO T IGCCE ,-NU.-NH.-2) 0253 CALL LABELCICCB,’ 0254 UR1 T E

  16. 基于两段式水煤浆气化的IGCC系统变工况特性%Off-design Characteristics of IGCC System Based on Two-stage Coal-slurry Gasification Technology

    Institute of Scientific and Technical Information of China (English)

    刘耀鑫; 吴少华; 李振中; 王阳

    2012-01-01

    The integrated gasification combined cycle system(IGCC) is often operated at off-design condition.In order to learn the off-design characteristics of IGCC,the software ThermoFlex was used to establish the model of a 200 MW integrated gasification combined cycle(IGCC) system based on the two-stage coal-slurry gasification technology.The effects of gas turbine load,air separation unit integrated coefficient(Xas),atmosphere temperature and atmosphere pressure on the performance of IGCC system were investigated.The results show that gross and net electric efficiency increases at first and then decreases with atmosphere temperature increasing or gas turbine load decreasing.The gross electric efficiency decreases when the air separation unit integrated coefficient increases.Atmosphere pressure has little effect on system efficiency.The application of two-stage coal-slurry gasification technology has good availability to improve IGCC system performance under the above running conditions.The results will provide reference for design and operation of the IGCC power plant.%整体煤气化联合循环(integrated gasification combinedcycle,IGCC)机组在一定情况下处于非设计工况运行。为了研究IGCC系统变工况特性,采用ThermoFlex软件建立基于两段式水煤浆气化技术的200 MW级整体煤气化联合循环系统模型,主要考查燃气轮机负荷、整体空分系数Xas、大气温度、大气压力对系统性能的影响。研究结果表明,降低燃气轮机负荷或者提高大气温度系统效率均呈先升高而后降低的趋势。整体空分系数Xas增加,机组发电效率降低。大气压力对系统效率影响较小。上述条件下采用两段水煤浆气化技术,系统性能可以得到有效改善。研究结果可为采用两段式水煤浆气化技术的IGCC系统的设计、运行提供参考。

  17. Asian Facilities

    Science.gov (United States)

    Nakahata, M.

    2011-04-01

    Asian underground facilities are reviewed. The YangYang underground Laboratory in Korea and the Kamioka observatory in Japan are operational and several astrophysical experiments are running. Indian Neutrino Observatory(INO) and China JinPing Underground Laboratory (CJPL) are under construction and underground experiments are being prepared. Current activities and future prospects at those underground sites are described.

  18. Emission Facilities - Erosion & Sediment Control Facilities

    Data.gov (United States)

    NSGIC Education | GIS Inventory — An Erosion and Sediment Control Facility is a DEP primary facility type related to the Water Pollution Control program. The following sub-facility types related to...

  19. Air Quality Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research FacilityFacilities with operating permits for Title V of the Federal Clean Air Act, as well as facilities required to submit an air emissions inventory, and other facilities...

  20. Theme: Laboratory Facilities Improvement.

    Science.gov (United States)

    Miller, Glen M.; And Others

    1993-01-01

    Includes "Laboratory Facilities Improvement" (Miller); "Remodeling Laboratories for Agriscience Instruction" (Newman, Johnson); "Planning for Change" (Mulcahy); "Laboratory Facilities Improvement for Technology Transfer" (Harper); "Facilities for Agriscience Instruction" (Agnew et al.); "Laboratory Facility Improvement" (Boren, Dwyer); and…

  1. Study on the Steam Extraction Strategy of Pre-combustion CO2 Capture Based on IGCC%基于IGCC的燃烧前CO2捕集抽蒸汽策略研究

    Institute of Scientific and Technical Information of China (English)

    陈新明; 闫姝; 方芳; 史绍平; 穆延非

    2015-01-01

    为了降低燃烧前CO2捕集对IGCC蒸汽动力系统出力的不利影响,并保证CO2捕集系统的稳定运行,CO2捕集消耗的蒸汽需要合理的从IGCC系统内部抽取。采用仿真模拟软件,研究了CO2捕集对IGCC系统中燃气轮机、余热锅炉和汽轮机负荷的影响。提出了两种水–气变换反应加湿蒸汽抽汽方案,通过对比这两种加湿蒸汽抽汽方案对汽轮机出力的影响,确定了最优的向 CO2捕集系统供汽策略。其中,水-气变换反应加湿蒸汽从气化炉汽包抽取,CO2分离过程消耗的低压加热蒸汽将根据负荷情况由余热锅炉低压蒸汽系统或汽轮机低压缸抽取。%To reduce the negative influence of pre-combustion CO2 capturing on the IGCC steam turbine performance and to maintain the stability of CO2 capture system operation, the steam consumed by CO2 capturing needs to be properly extracted from integrated gasification combined cycle (IGCC) system. Through process simulation, the effects of CO2 capture on the load of gas turbine, heat recovery steam generator, and steam turbine in the IGCC system are studied. Two methods of steam extraction for water-gas shift reaction humidification are proposed and the better one is recommended by comparing the effect of these two approaches on the steam turbine load. It was shown that the humidification steam for water-gas shift reaction should be extracted from gasifier steam drum, and the low pressure heating steam consumed by CO2 separation process should be extracted from the low pressure steam system of heat recovery steam generator or from the low pressure cylinder of the steam turbine depending on the load conditions.

  2. North Slope, Alaska ESI: FACILITY (Facility Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains data for oil field facilities for the North Slope of Alaska. Vector points in this data set represent oil field facility locations. This data...

  3. Jupiter Laser Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Jupiter Laser Facility is an institutional user facility in the Physical and Life Sciences Directorate at LLNL. The facility is designed to provide a high degree...

  4. Basic Research Firing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Basic Research Firing Facility is an indoor ballistic test facility that has recently transitioned from a customer-based facility to a dedicated basic research...

  5. Facility Registry Service (FRS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Facility Registry Service (FRS) provides an integrated source of comprehensive (air, water, and waste) environmental information about facilities across EPA,...

  6. Licensed Healthcare Facilities

    Data.gov (United States)

    California Department of Resources — The Licensed Healthcare Facilities point layer represents the locations of all healthcare facilities licensed by the State of California, Department of Health...

  7. High Throughput Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Argonne?s high throughput facility provides highly automated and parallel approaches to material and materials chemistry development. The facility allows scientists...

  8. Aperture area measurement facility

    Data.gov (United States)

    Federal Laboratory Consortium — NIST has established an absolute aperture area measurement facility for circular and near-circular apertures use in radiometric instruments. The facility consists of...

  9. Environmental Toxicology Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Fully-equipped facilities for environmental toxicology research The Environmental Toxicology Research Facility (ETRF) located in Vicksburg, MS provides over 8,200 ft...

  10. Licensed Healthcare Facilities

    Data.gov (United States)

    California Department of Resources — The Licensed Healthcare Facilities point layer represents the locations of all healthcare facilities licensed by the State of California, Department of Health...

  11. Guide to research facilities

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  12. Reliable Facility Location Problem with Facility Protection.

    Science.gov (United States)

    Tang, Luohao; Zhu, Cheng; Lin, Zaili; Shi, Jianmai; Zhang, Weiming

    2016-01-01

    This paper studies a reliable facility location problem with facility protection that aims to hedge against random facility disruptions by both strategically protecting some facilities and using backup facilities for the demands. An Integer Programming model is proposed for this problem, in which the failure probabilities of facilities are site-specific. A solution approach combining Lagrangian Relaxation and local search is proposed and is demonstrated to be both effective and efficient based on computational experiments on random numerical examples with 49, 88, 150 and 263 nodes in the network. A real case study for a 100-city network in Hunan province, China, is presented, based on which the properties of the model are discussed and some managerial insights are analyzed.

  13. Ouellette Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Test Facility is a joint Army/Navy state-of-the-art facility (8,100 ft2) that was designed to:Evaluate and characterize the effect of flame and thermal...

  14. Cold Vacuum Drying Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Located near the K-Basins (see K-Basins link) in Hanford's 100 Area is a facility called the Cold Vacuum Drying Facility (CVDF).Between 2000 and 2004, workers at the...

  15. Dialysis Facility Compare

    Data.gov (United States)

    U.S. Department of Health & Human Services — Dialysis Facility Compare helps you find detailed information about Medicare-certified dialysis facilities. You can compare the services and the quality of care that...

  16. Explosive Components Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The 98,000 square foot Explosive Components Facility (ECF) is a state-of-the-art facility that provides a full-range of chemical, material, and performance analysis...

  17. Materiel Evaluation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — CRREL's Materiel Evaluation Facility (MEF) is a large cold-room facility that can be set up at temperatures ranging from −20°F to 120°F with a temperature change...

  18. Armament Technology Facility (ATF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Armament Technology Facility is a 52,000 square foot, secure and environmentally-safe, integrated small arms and cannon caliber design and evaluation facility....

  19. Integrated Disposal Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Located near the center of the 586-square-mile Hanford Site is the Integrated Disposal Facility, also known as the IDF.This facility is a landfill similar in concept...

  20. Facilities for US Radioastronomy.

    Science.gov (United States)

    Thaddeus, Patrick

    1982-01-01

    Discusses major developments in radioastronomy since 1945. Topics include proposed facilities, very-long-baseline interferometric array, millimeter-wave telescope, submillimeter-wave telescope, and funding for radioastronomy facilities and projects. (JN)

  1. Wastewater Treatment Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Individual permits for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System (NPDES)...

  2. Facility Response Plan (FRP)

    Data.gov (United States)

    U.S. Environmental Protection Agency — A Facility Response Plan (FRP) demonstrates a facility's preparedness to respond to a worst case oil discharge. Under the Clean Water Act, as amended by the Oil...

  3. Financing Professional Sports Facilities

    OpenAIRE

    Baade, Robert A.; Victor A. Matheson

    2011-01-01

    This paper examines public financing of professional sports facilities with a focus on both early and recent developments in taxpayer subsidization of spectator sports. The paper explores both the magnitude and the sources of public funding for professional sports facilities.

  4. FDA Certified Mammography Facilities

    Science.gov (United States)

    ... Program Consumer Information (MQSA) Search for a Certified Facility Share Tweet Linkedin Pin it More sharing options ... Email Print This list of FDA Certified Mammography Facilities is updated weekly. If you click on Search ...

  5. Energetics Conditioning Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetics Conditioning Facility is used for long term and short term aging studies of energetic materials. The facility has 10 conditioning chambers of which 2...

  6. Energetics Conditioning Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetics Conditioning Facility is used for long term and short term aging studies of energetic materials. The facility has 10 conditioning chambers of which 2...

  7. Environmental Toxicology Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Fully-equipped facilities for environmental toxicology researchThe Environmental Toxicology Research Facility (ETRF) located in Vicksburg, MS provides over 8,200 ft...

  8. Ouellette Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Test Facility is a joint Army/Navy state-of-the-art facility (8,100 ft2) that was designed to: Evaluate and characterize the effect of flame and thermal...

  9. Projectile Demilitarization Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Projectile Wash Out Facility is US Army Ammunition Peculiar Equipment (APE 1300). It is a pilot scale wash out facility that uses high pressure water and steam...

  10. INFLUENCE OF LOAD VARIATION CONCERNING TWO-STAGE COAL- WATER SLURRY GASIFIER UPON PERFORMANCE OF THE IGCC SYSTEM%两段式水煤浆气化炉负荷变化对IGCC系统性能的影响

    Institute of Scientific and Technical Information of China (English)

    刘耀鑫; 吴少华; 李振中; 王阳; 陈晓利

    2012-01-01

    采用ThermoFlex软件建立了基于两段式水煤浆气化技术的200 MW级整体煤气化联合循环(IGCC)系统模型,研究了气化炉负荷变化对燃气轮机组、汽轮机组和IGCC系统性能的影响.结果表明,气化炉在较高负荷(100%、90%)工况下运行时,提高其二段给煤率γsc可以提高主蒸汽和再热蒸汽温度,降低厂用电率,使系统发电效率和供电效率得到提高;气化炉在低负荷(80%、70%、60%)工况下运行时,其γsc的变化对燃汽轮机(燃机)入口温度、排气温度、燃机发电率的影响较小,IGCC系统发电效率和供电效率随二段给煤率的升高呈先升高后降低的趋势,此时系统性能优势不明显.

  11. Performance evaluation of IGCC system integrated with chemical looping air separation%化学链高温空分制氧与IGCC集成系统性能评价

    Institute of Scientific and Technical Information of China (English)

    赵亚仙; 向文国

    2016-01-01

    基于Aspen plus软件,建立了化学链高温空分制氧与IGCC集成的系统(CLAS-IGCC)模型,并以蒸汽作为化学链高温空分载氧介质,从载氧蒸汽过热度、氧煤质量比(氧煤比)、水煤质量比(水煤比)和载氧体等4个方面对CLAS-IGCC的性能进行了研究.结果表明:CLAS-IGCC效率随载氧蒸汽过热度增加而先减小后增大,随氧煤比增大而减小;水煤比对系统效率影响不大;以Mn3O4-Mn2O3为载氧体的CLAS-IGCC与以CoO-Co3O4为载氧体的CLAS-IGCC相比略具优势;CLAS-IGCC效率为45.1%,而采用常规低温空分制氧技术的IGCC效率为45.8%,因此,蒸汽型CLAS-IGCC集成效果不具优势.

  12. Pressurized burner test facility

    Energy Technology Data Exchange (ETDEWEB)

    Maloney, D.J.; Norton, T.S.; Hadley, M.A. [Morgantown Energy Technology Center, WV (United States)

    1993-06-01

    The Morgantown Energy Technology Center (METC) is currently fabricating a high-pressure burner test facility. The facility was designed to support the development of gas turbine combustion systems fired on natural gas and coal-derived gaseous fuels containing fuel-bound nitrogen. Upon completion of fabrication and shake-down testing in October 1993, the facility will be available for use by industrial and university partners through Cooperative Research and Development Agreements (CRADAs) or through other cooperative arrangements. This paper describes the burner test facility and associated operating parameter ranges and informs interested parties of the availability of the facility.

  13. CRADA opportunities with METC`s gasification and hot gas cleanup facility

    Energy Technology Data Exchange (ETDEWEB)

    Galloway, E.N.; Rockey, J.M.; Tucker, M.S.

    1995-06-01

    Opportunities exist for Cooperative Research and Development Agreements (CRADA) at the Morgantown Energy Technology Center (METC) to support commercialization of IGCC power systems. METC operates an integrated gasifier and hot gas cleanup facility for the development of gasification and hot gas cleanup technologies. The objective of our program is to gather performance data on gasifier operation, particulate removal, desulfurization and regeneration technologies. Additionally, slip streams are provided for developing various technologies such as; alkali monitoring, particulate measuring, chloride removal, and contaminate recovery processes. METC`s 10-inch diameter air blown Fluid Bed Gasifier (FBG) provides 300 lb/hr of coal gas at 1100{degrees}F and 425 psig. The particulate laden gas is transported to METC`s Modular Gas Cleanup Rig (MGCR). The gas pressure is reduced to 285 psig before being fed into a candle filter vessel. The candle filter vessel houses four candle filters and multiple test coupons. The particulate free gas is then desulfurized in a sorbent reactor. Starting in 1996 the MGCR system will be able to regenerate the sorbent in the same vessel.

  14. Facility Effluent Monitoring Plan determinations for the 600 Area facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nickels, J.M.

    1991-08-01

    This document determines the need for Facility Effluent Monitoring Plans for Westinghouse Hanford Company's 600 Area facilities on the Hanford Site. The Facility Effluent Monitoring Plan determinations were prepared in accordance with A Guide For Preparing Hanford Site Facility Effluent Monitoring Plans (WHC 1991). Five major Westinghouse Hanford Company facilities in the 600 Area were evaluated: the Purge Water Storage Facility, 212-N, -P, and -R Facilities, the 616 Facility, and the 213-J K Storage Vaults. Of the five major facilities evaluated in the 600 Area, none will require preparation of a Facility Effluent Monitoring Plan.

  15. Synchrotron radiation facilities

    CERN Multimedia

    1972-01-01

    Particularly in the past few years, interest in using the synchrotron radiation emanating from high energy, circular electron machines has grown considerably. In our February issue we included an article on the synchrotron radiation facility at Frascati. This month we are spreading the net wider — saying something about the properties of the radiation, listing the centres where synchrotron radiation facilities exist, adding a brief description of three of them and mentioning areas of physics in which the facilities are used.

  16. Thermal distortion test facility

    Science.gov (United States)

    Stapp, James L.

    1995-02-01

    The thermal distortion test facility (TDTF) at Phillips Laboratory provides precise measurements of the distortion of mirrors that occurs when their surfaces are heated. The TDTF has been used for several years to evaluate mirrors being developed for high-power lasers. The facility has recently undergone some significant upgrades to improve the accuracy with which mirrors can be heated and the resulting distortion measured. The facility and its associated instrumentation are discussed.

  17. Materials Characterization Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Materials Characterization Facility enables detailed measurements of the properties of ceramics, polymers, glasses, and composites. It features instrumentation...

  18. Mobile Solar Tracker Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NIST's mobile solar tracking facility is used to characterize the electrical performance of photovoltaic panels. It incorporates meteorological instruments, a solar...

  19. Universal Drive Train Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This vehicle drive train research facility is capable of evaluating helicopter and ground vehicle power transmission technologies in a system level environment. The...

  20. Composite Structures Manufacturing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Composite Structures Manufacturing Facility specializes in the design, analysis, fabrication and testing of advanced composite structures and materials for both...

  1. Neutron Therapy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Neutron Therapy Facility provides a moderate intensity, broad energy spectrum neutron beam that can be used for short term irradiations for radiobiology (cells)...

  2. Catalytic Fuel Conversion Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility enables unique catalysis research related to power and energy applications using military jet fuels and alternative fuels. It is equipped with research...

  3. Heated Tube Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Heated Tube Facility at NASA GRC investigates cooling issues by simulating conditions characteristic of rocket engine thrust chambers and high speed airbreathing...

  4. Engine Test Facility (ETF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Air Force Arnold Engineering Development Center's Engine Test Facility (ETF) test cells are used for development and evaluation testing of propulsion systems for...

  5. High Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL's High-Pressure Combustion Research Facility in Morgantown, WV, researchers can investigate new high-pressure, high-temperature hydrogen turbine combustion...

  6. Region 9 NPDES Facilities

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates...

  7. Geospatial Data Analysis Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Geospatial application development, location-based services, spatial modeling, and spatial analysis are examples of the many research applications that this facility...

  8. Geodynamics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This GSL facility has evolved over the last three decades to support survivability and protective structures research. Experimental devices include three gas-driven...

  9. Imagery Data Base Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Imagery Data Base Facility supports AFRL and other government organizations by providing imagery interpretation and analysis to users for data selection, imagery...

  10. Pavement Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Comprehensive Environmental and Structural Analyses The ERDC Pavement Testing Facility, located on the ERDC Vicksburg campus, was originally constructed to provide...

  11. Nonlinear Materials Characterization Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Nonlinear Materials Characterization Facility conducts photophysical research and development of nonlinear materials operating in the visible spectrum to protect...

  12. Geophysical Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Geophysical Research Facility (GRF) is a 60 ft long qaodmasdkwaspemas5ajkqlsmdqpakldnzsdfls 22 ft wide qaodmasdkwaspemas4ajkqlsmdqpakldnzsdfls 7 ft deep concrete...

  13. Transonic Experimental Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Transonic Experimental Research Facility evaluates aerodynamics and fluid dynamics of projectiles, smart munitions systems, and sub-munitions dispensing systems;...

  14. Flexible Electronics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Flexible Electronics Research Facility designs, synthesizes, tests, and fabricates materials and devices compatible with flexible substrates for Army information...

  15. DUPIC facility engineering

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. J.; Lee, H. H.; Kim, K. H. and others

    2000-03-01

    The objectives of this study are (1) the refurbishment for PIEF(Post Irradiation Examination Facility) and M6 hot-cell in IMEF(Irradiated Material Examination Facility), (2) the establishment of the compatible facility for DUPIC fuel fabrication experiments which is licensed by government organization, and (3) the establishment of the transportation system and transportation cask for nuclear material between facilities. The report for this project describes following contents, such as objectives, necessities, scope, contents, results of current step, R and D plan in future and etc.

  16. Textiles Performance Testing Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Textiles Performance Testing Facilities has the capabilities to perform all physical wet and dry performance testing, and visual and instrumental color analysis...

  17. Joint Computing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Raised Floor Computer Space for High Performance Computing The ERDC Information Technology Laboratory (ITL) provides a robust system of IT facilities to develop and...

  18. GPS Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Global Positioning System (GPS) Test Facility Instrumentation Suite (GPSIS) provides great flexibility in testing receivers by providing operational control of...

  19. Magnetics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetics Research Facility houses three Helmholtz coils that generate magnetic fields in three perpendicular directions to balance the earth's magnetic field....

  20. Target Assembly Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Target Assembly Facility integrates new armor concepts into actual armored vehicles. Featuring the capability ofmachining and cutting radioactive materials, it...

  1. Facility Environmental Management System

    Data.gov (United States)

    Federal Laboratory Consortium — This is the Web site of the Federal Highway Administration's (FHWA's) Turner-Fairbank Highway Research Center (TFHRC) facility Environmental Management System (EMS)....

  2. Proximal Probes Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Proximal Probes Facility consists of laboratories for microscopy, spectroscopy, and probing of nanostructured materials and their functional properties. At the...

  3. Manufacturing Demonstration Facility (MDF)

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Department of Energy Manufacturing Demonstration Facility (MDF) at Oak Ridge National Laboratory (ORNL) provides a collaborative, shared infrastructure to...

  4. Pavement Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Comprehensive Environmental and Structural AnalysesThe ERDC Pavement Testing Facility, located on the ERDC Vicksburg campus, was originally constructed to provide an...

  5. 整体煤气化联合循环系统中燃气轮机的变工况特性%Off-design Characteristics of Gas Turbine in IGCC Systems

    Institute of Scientific and Technical Information of China (English)

    陈晓利; 吴少华; 李振中; 王阳; 王颖; 陈雷; 庞克亮

    2010-01-01

    采用ThermoFlex软件建立了200 MW级整体煤气化联合循环(IGCC)系统模型,从系统的角度研究了200 MW级IGCC系统中燃气轮机的变工况特性.详细讨论了在3种调节方式下,燃气轮机负荷、整体空分系数(Xas)、氮气回注系数(Xgn)和大气环境条件对系统性能的影响.结果表明:随着燃气轮机负荷的降低,在压气机进口可转导叶(IGV)不调时,燃气透平初温(T3)和燃气透平排气温度(T4)均呈下降趋势;在等T3调节时,T4先升高后降低,转折,最在80%负荷时;而在等T4调节时,T3先缓慢降低,而后快速降低,转折点在70%负荷时.在等T3调节时IGV可关闭的角度比等T4调节时的小.当Xas和Xgn增大时,系统发电效率降低.IGV可调的变工况性能比IGV不调时好.随着大气温度的升高,燃气轮机功率和系统功率均下降.当Xas=0.3时,燃气轮机功率和系统功率均随Xgn的增大而增加.

  6. DUPIC facility engineering

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. J.; Lee, H. H.; Kim, K. H. [and others

    2002-03-01

    With starting DUPIC fuel fabrication experiment by using spent fuels, 1) operation and refurbishment for DFDF (DUPIC fuel development facility), and 2) operation and improvement of transportation equipment for radioactive materials between facilities became the objectives of this study. This report describes objectives of the project, necessities, state of related technology, R and D scope, R and D results, proposal for application etc.

  7. Samarbejdsformer og Facilities Management

    DEFF Research Database (Denmark)

    Storgaard, Kresten

    Resultater fra en surveyundersøgelse om fordele og ulemper ved forskellige samarbejdsformer indenfor Facilities Management fremlægges.......Resultater fra en surveyundersøgelse om fordele og ulemper ved forskellige samarbejdsformer indenfor Facilities Management fremlægges....

  8. Japan Hadron Facility

    CERN Document Server

    Hayano, R S

    1999-01-01

    Japan Hadron Facility (JHF) is a high-intensity proton accelerator complex consisting of a 200 MeV linac, a 3 GeV booster and a 50 GeV main ring. Its status and future possibilities of realizing a versatile antiproton facility at JHF are presented.

  9. Samarbejdsformer og Facilities Management

    DEFF Research Database (Denmark)

    Storgaard, Kresten

    Resultater fra en surveyundersøgelse om fordele og ulemper ved forskellige samarbejdsformer indenfor Facilities Management fremlægges.......Resultater fra en surveyundersøgelse om fordele og ulemper ved forskellige samarbejdsformer indenfor Facilities Management fremlægges....

  10. BIBLIOGRAPHY OF FACILITIES INFORMATION.

    Science.gov (United States)

    American Association of Junior Colleges, Washington, DC.

    PERSONNEL OF THE FACILITIES INFORMATION SERVICE OF THE AMERICAN ASSOCIATION OF JUNIOR COLLEGES COMPILED THIS LISTING OF BOOKS, ARTICLES, MONOGRAPHS, AND OTHER PRINTED MATERIALS RELEVANT TO JUNIOR COLLEGE FACILITIES PLANNING, DESIGN, AND CONSTRUCTION. IN ADDITION TO A "GENERAL" CATEGORY, REFERENCES ARE GROUPED UNDER HEADINGS OF AUDITORIUMS, COLLEGE…

  11. DUPIC facility engineering

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. S.; Choi, J. W.; Go, W. I.; Kim, H. D.; Song, K. C.; Jeong, I. H.; Park, H. S.; Im, C. S.; Lee, H. M.; Moon, K. H.; Hong, K. P.; Lee, K. S.; Suh, K. S.; Kim, E. K.; Min, D. K.; Lee, J. C.; Chun, Y. B.; Paik, S. Y.; Lee, E. P.; Yoo, G. S.; Kim, Y. S.; Park, J. C.

    1997-09-01

    In the early stage of the project, a comprehensive survey was conducted to identify the feasibility of using available facilities and of interface between those facilities. It was found out that the shielded cell M6 interface between those facilities. It was found out that the shielded cell M6 of IMEF could be used for the main process experiments of DUPIC fuel fabrication in regard to space adequacy, material flow, equipment layout, etc. Based on such examination, a suitable adapter system for material transfer around the M6 cell was engineered. Regarding the PIEF facility, where spent PWR fuel assemblies are stored in an annex pool, disassembly devices in the pool are retrofitted and spent fuel rod cutting and shipping system to the IMEF are designed and built. For acquisition of casks for radioactive material transport between the facilities, some adaptive refurbishment was applied to the available cask (Padirac) based on extensive analysis on safety requirements. A mockup test facility was newly acquired for remote test of DUPIC fuel fabrication process equipment prior to installation in the M6 cell of the IMEF facility. (author). 157 refs., 57 tabs., 65 figs.

  12. Wind Energy Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Laurie, Carol

    2017-02-01

    This book takes readers inside the places where daily discoveries shape the next generation of wind power systems. Energy Department laboratory facilities span the United States and offer wind research capabilities to meet industry needs. The facilities described in this book make it possible for industry players to increase reliability, improve efficiency, and reduce the cost of wind energy -- one discovery at a time. Whether you require blade testing or resource characterization, grid integration or high-performance computing, Department of Energy laboratory facilities offer a variety of capabilities to meet your wind research needs.

  13. Sustainable Facilities Management

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Elle, Morten; Hoffmann, Birgitte

    2004-01-01

    The Danish public housing sector has more than 20 years of experience with sustainable facilities management based on user involvement. The paper outlines this development in a historical perspective and gives an analysis of different approaches to sustainable facilities management. The focus...... is on the housing departments and strateies for the management of the use of resources. The research methods used are case studies based on interviews in addition to literature studies. The paper explores lessons to be learned about sustainable facilities management in general, and points to a need for new...

  14. Wind Energy Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Office of Energy Efficiency and Renewable Energy

    2017-02-01

    This book takes readers inside the places where daily discoveries shape the next generation of wind power systems. Energy Department laboratory facilities span the United States and offer wind research capabilities to meet industry needs. The facilities described in this book make it possible for industry players to increase reliability, improve efficiency, and reduce the cost of wind energy -- one discovery at a time. Whether you require blade testing or resource characterization, grid integration or high-performance computing, Department of Energy laboratory facilities offer a variety of capabilities to meet your wind research needs.

  15. Battelle Primate Facility.

    Science.gov (United States)

    Weller, R E; Wierman, E L; Málaga, C A; Baer, J F; LeMieux, T P

    1991-05-01

    The Battelle Primate Facility houses one of the largest collections of neotropical primates in the United States. The facility is a research resource for undergraduate and graduate students. Battelle staff, as well as staff and faculty from U.S. and international institutions. Researchers have access to the animals for a variety of studies encompassing several disciplines, a large collection of preserved tissues, and an extensive biomedical database. The facility is a World Health Organization Collaborative Center for Clinical Pathology of Neotropical Primates and is involved with the Peruvian Primatological Project in Iquitos, Peru, which provides opportunities for research in primatology and conservation.

  16. National Solar Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The National Solar Thermal Test Facility (NSTTF) is the only test facility in the United States of its type. This unique facility provides experimental engineering...

  17. Skilled nursing or rehabilitation facilities

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000435.htm Skilled nursing or rehabilitation facilities To use the sharing features ... facility. Who Needs to go to a Skilled Nursing or Rehabilitation Facility? Your health care provider may ...

  18. National Solar Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The National Solar Thermal Test Facility (NSTTF) is the only test facility in the United States of its type. This unique facility provides experimental engineering...

  19. Hydrography - Water Pollution Control Facilities

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — A Water Pollution Control Facility is a DEP primary facility type related to the Water Pollution Control Program. The sub-facility types related to Water Pollution...

  20. Wind Tunnel Testing Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — NASA Ames Research Center is pleased to offer the services of our premier wind tunnel facilities that have a broad range of proven testing capabilities to customers...

  1. Coastal Inlet Model Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Coastal Inlet Model Facility, as part of the Coastal Inlets Research Program (CIRP), is an idealized inlet dedicated to the study of coastal inlets and equipped...

  2. The Birmingham Irradiation Facility

    Science.gov (United States)

    Dervan, P.; French, R.; Hodgson, P.; Marin-Reyes, H.; Wilson, J.

    2013-12-01

    At the end of 2012 the proton irradiation facility at the CERN PS [1] will shut down for two years. With this in mind, we have been developing a new ATLAS scanning facility at the University of Birmingham Medical Physics cyclotron. With proton beams of energy approximately 30 MeV, fluences corresponding to those of the upgraded Large Hadron Collider (HL-LHC) can be reached conveniently. The facility can be used to irradiate silicon sensors, optical components and mechanical structures (e.g. carbon fibre sandwiches) for the LHC upgrade programme. Irradiations of silicon sensors can be carried out in a temperature controlled cold box that can be scanned through the beam. The facility is described in detail along with the first tests carried out with mini (1×1 cm2) silicon sensors.

  3. Hypersonic Tunnel Facility (HTF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Hypersonic Tunnel Facility (HTF) is a blow-down, non-vitiated (clean air) free-jet wind tunnel capable of testing large-scale, propulsion systems at Mach 5, 6,...

  4. A cryogenic test facility

    Science.gov (United States)

    Veenendaal, Ian

    The next generation, space-borne instruments for far infrared spectroscopy will utilize large diameter, cryogenically cooled telescopes in order to achieve unprecedented sensitivities. Low background, ground-based cryogenic facilities are required for the cryogenic testing of materials, components and subsystems. The Test Facility Cryostat (TFC) at the University of Lethbridge is a large volume, closed cycle, 4K cryogenic facility, developed for this purpose. This thesis discusses the design and performance of the facility and associated external instrumentation. An apparatus for measuring the thermal properties of materials is presented, and measurements of the thermal expansion and conductivity of carbon fibre reinforced polymers (CFRPs) at cryogenic temperatures are reported. Finally, I discuss the progress towards the design and fabrication of a demonstrator cryogenic, far infrared Fourier transform spectrometer.

  5. Treated Effluent Disposal Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Treated non-hazardous and non-radioactive liquid wastes are collected and then disposed of through the systems at the Treated Effluent Disposal Facility (TEDF). More...

  6. Aviation Flight Support Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility consists of a 75' x 200' hanger with two adjacent helicopter pads located at Felker Army Airfield on Fort Eustis. A staff of Government and contractor...

  7. Space Power Facility (SPF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Space Power Facility (SPF) houses the world's largest space environment simulation chamber, measuring 100 ft. in diameter by 122 ft. high. In this chamber, large...

  8. GPS Satellite Simulation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The GPS satellite simulation facility consists of a GPS satellite simulator controlled by either a Silicon Graphics Origin 2000 or PC depending upon unit under test...

  9. Robotics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This 60 feet x 100 feet structure on the grounds of the Fort Indiantown Gap Pennsylvania National Guard (PNG) Base is a mixed-use facility comprising office space,...

  10. Airborne Evaluation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — AFRL's Airborne Evaluation Facility (AEF) utilizes Air Force Aero Club resources to conduct test and evaluation of a variety of equipment and concepts. Twin engine...

  11. Geophysical Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Geophysical Research Facility (GRF) is a 60 ft long × 22 ft wide × 7 ft deep concrete basin at CRREL for fresh or saltwater investigations and can be temperature...

  12. Climatic Environmental Test Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — RTTC has an extensive suite of facilities for supporting MIL-STD-810 testing, toinclude: Temperature/Altitude, Rapid Decompression, Low/High Temperature,Temperature...

  13. IHS Facility Locator

    Data.gov (United States)

    U.S. Department of Health & Human Services — This map can be used to find an Indian Health Service, Tribal or Urban Indian Health Program facility. This map can be used to: Zoom in to a general location to...

  14. Environmental Test Facility (ETF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Environmental Test Facility (ETF) provides non-isolated shock testing for stand-alone equipment and full size cabinets under MIL-S-901D specifications. The ETF...

  15. Air Data Calibration Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility is for low altitude subsonic altimeter system calibrations of air vehicles. Mission is a direct support of the AFFTC mission. Postflight data merge is...

  16. Mass Properties Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility is used to acquire accurate weight, 3 axis center of gravity and 3 axis moment of inertia measurements for air launched munitions and armament equipment.

  17. Airborne & Field Sensors Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — RTTC facilities include an 800' x 60' paved UAV operational area, clearapproach/departure zone, concrete pads furnished with 208VAC, 3 phase,200 amp power, 20,000 sq...

  18. Frost Effects Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Full-scale study in controlled conditionsThe Frost Effects Research Facility (FERF) is the largest refrigerated warehouse in the United States that can be used for a...

  19. Concrete Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This is a 20,000-sq ft laboratory that supports research on all aspects of concrete and materials technology. The staff of this facility offer wide-ranging expertise...

  20. Water Tunnel Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NETL’s High-Pressure Water Tunnel Facility in Pittsburgh, PA, re-creates the conditions found 3,000 meters beneath the ocean’s surface, allowing scientists to study...

  1. Structural Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Provides a wide variety of testing equipment, fixtures and facilities to perform both unique aviation component testing as well as common types of materials testing...

  2. Structural Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Provides a wide variety of testing equipment, fixtures and facilities to perform both unique aviation component testing as well as common types of materials testing...

  3. Robotics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This 60 feet x 100 feet structure on the grounds of the Fort Indiantown Gap Pennsylvania National Guard (PNG) Base is a mixed-use facility comprising office space,...

  4. Urban Test Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — RTTC has access to various facilities for use in urban testing applications,including an agreement with the Hazardous Devices School (HDS): a restrictedaccess Urban...

  5. Wind Tunnel Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This ARDEC facility consists of subsonic, transonic, and supersonic wind tunnels to acquire aerodynamic data. Full-scale and sub-scale models of munitions are fitted...

  6. Pittsburgh City Facilities

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Pittsburgh City FacilitiesIncludes: City Administrative Buildings, Police Stations, Fire Stations, EMS Stations, DPW Sites, Senior Centers, Recreation Centers, Pool...

  7. Dialysis Facility Compare Data

    Data.gov (United States)

    U.S. Department of Health & Human Services — These are the official datasets used on the Medicare.gov Dialysis Facility Compare Website provided by the Centers for Medicare and Medicaid Services. These data...

  8. Pittsburgh City Facilities

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Pittsburgh City FacilitiesIncludes: City Administrative Buildings, Police Stations, Fire Stations, EMS Stations, DPW Sites, Senior Centers, Recreation Centers,...

  9. Advanced Microscopy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides a facility for high-resolution studies of complex biomolecular systems. The goal is an understanding of how to engineer biomolecules for various...

  10. VT Telecommunication Facilities

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The UtilityTelecom_TELEFAC data layer contains points which are intended to represent the location of telecommunications facilities (towers and/or...

  11. Waste Water Facilities

    Data.gov (United States)

    Vermont Center for Geographic Information — This dataset contains the locations of municipal and industrial direct discharge wastewater treatment facilities throughout the state of Vermont. Spatial data is not...

  12. FDA Certified Mammography Facilities

    Science.gov (United States)

    ... Products Radiation-Emitting Products Home Radiation-Emitting Products Mammography Quality Standards Act and Program Consumer Information (MQSA) ... it Email Print This list of FDA Certified Mammography Facilities is updated weekly. If you click on ...

  13. Mark 1 Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Mark I Test Facility is a state-of-the-art space environment simulation test chamber for full-scale space systems testing. A $1.5M dollar upgrade in fiscal year...

  14. The Birmingham Irradiation Facility

    CERN Document Server

    Dervan, P; Hodgson, P; Marin-Reyes, H; Wilson, J

    2013-01-01

    At the end of 2012 the proton irradiation facility at the CERN PS [1] will shut down for two years. With this in mind, we have been developing a new ATLAS scanning facility at the University of Birmingham Medical Physics cyclotron. With proton beams of energy approximately 30 MeV, fluences corresponding to those of the upgraded Large Hadron Collider (HL-LHC) can be reached conveniently. The facility can be used to irradiate silicon sensors, optical components and mechanical structures (e.g. carbon fibre sandwiches) for the LHC upgrade programme. Irradiations of silicon sensors can be carried out in a temperature controlled cold box that can be scanned through the beam. The facility is described in detail along with the first tests carried out with mini (1 x 1 cm^2 ) silicon sensors.

  15. Liquid Effluent Retention Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Liquid Effluent Retention Facility (LERF) is located in the central part of the Hanford Site. LERF is permitted by the State of Washington and has three liquid...

  16. TNO HVAC facilities

    NARCIS (Netherlands)

    Hammink, H.A.J.

    2015-01-01

    TNO has extensive knowledge of heating, ventilation and air conditioning (HVAC), and can offer its services through theoretical studies, laboratory experiments and field measurements. This complete scope, made possible through our test facilities, enables the effective development of new products,

  17. Ballistic Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Ballistic Test Facility is comprised of two outdoor and one indoor test ranges, which are all instrumented for data acquisition and analysis. Full-size aircraft...

  18. Advanced Microanalysis Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Microanalysis Facility fully integrates capabilities for chemical and structural analysis of electronic materials and devices for the U.S. Army and DoD....

  19. Coastal Harbors Modeling Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Coastal Harbors Modeling Facility is used to aid in the planning of harbor development and in the design and layout of breakwaters, absorbers, etc.. The goal is...

  20. Corrosion Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Corrosion Testing Facility is part of the Army Corrosion Office (ACO). It is a fully functional atmospheric exposure site, called the Corrosion Instrumented Test...

  1. Joint Computing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Raised Floor Computer Space for High Performance ComputingThe ERDC Information Technology Laboratory (ITL) provides a robust system of IT facilities to develop and...

  2. Skilled Nursing Facility PPS

    Data.gov (United States)

    U.S. Department of Health & Human Services — Section 4432(a) of the Balanced Budget Act (BBA) of 1997 modified how payment is made for Medicare skilled nursing facility (SNF) services. Effective with cost...

  3. Frost Effects Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Full-scale study in controlled conditions The Frost Effects Research Facility (FERF) is the largest refrigerated warehouse in the United States that can be used for...

  4. Electra Laser Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: The Electra Laser Facility is used to develop the science and technology needed to develop a reliable, efficient, high-energy, repetitively pulsed krypton...

  5. Hypersonic Tunnel Facility (HTF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Hypersonic Tunnel Facility (HTF) is a blow-down, non-vitiated (clean air) free-jet wind tunnel capable of testing large-scale, propulsion systems at Mach 5, 6,...

  6. Pit Fragment Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility contains two large (20 foot high by 20 foot diameter) double walled steel tubs in which experimental munitions are exploded while covered with sawdust....

  7. Powder Metallurgy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The facility is uniquely equipped as the only laboratory within DA to conduct PM processing of refractory metals and alloys as well as the processing of a wide range...

  8. Field Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Field Research Facility (FRF) located in Duck, N.C. was established in 1977 to support the U.S. Army Corps of Engineers' coastal engineering mission. The FRF is...

  9. Advanced Microanalysis Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Microanalysis Facility fully integrates capabilities for chemical and structural analysis of electronic materials and devices for the U.S. Army and DoD....

  10. Laser Guidance Analysis Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility, which provides for real time, closed loop evaluation of semi-active laser guidance hardware, has and continues to be instrumental in the development...

  11. Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — For more than 30 years The Combustion Research Facility (CRF) has served as a national and international leader in combustion science and technology. The need for a...

  12. Calibration Facilities for NIF

    Energy Technology Data Exchange (ETDEWEB)

    Perry, T.S.

    2000-06-15

    The calibration facilities will be dynamic and will change to meet the needs of experiments. Small sources, such as the Manson Source should be available to everyone at any time. Carrying out experiments at Omega is providing ample opportunity for practice in pre-shot preparation. Hopefully, the needs that are demonstrated in these experiments will assure the development of (or keep in service) facilities at each of the laboratories that will be essential for in-house preparation for experiments at NIF.

  13. Facilities | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  14. Auditing radiation sterilization facilities

    Science.gov (United States)

    Beck, Jeffrey A.

    The diversity of radiation sterilization systems available today places renewed emphasis on the need for thorough Quality Assurance audits of these facilities. Evaluating compliance with Good Manufacturing Practices is an obvious requirement, but an effective audit must also evaluate installation and performance qualification programs (validation_, and process control and monitoring procedures in detail. The present paper describes general standards that radiation sterilization operations should meet in each of these key areas, and provides basic guidance for conducting QA audits of these facilities.

  15. Mound facility physical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Tonne, W.R.; Alexander, B.M.; Cage, M.R.; Hase, E.H.; Schmidt, M.J.; Schneider, J.E.; Slusher, W.; Todd, J.E.

    1993-12-01

    The purpose of this report is to provide a baseline physical characterization of Mound`s facilities as of September 1993. The baseline characterizations are to be used in the development of long-term future use strategy development for the Mound site. This document describes the current missions and alternative future use scenarios for each building. Current mission descriptions cover facility capabilities, physical resources required to support operations, current safety envelope and current status of facilities. Future use scenarios identify potential alternative future uses, facility modifications required for likely use, facility modifications of other uses, changes to safety envelope for the likely use, cleanup criteria for each future use scenario, and disposition of surplus equipment. This Introductory Chapter includes an Executive Summary that contains narrative on the Functional Unit Material Condition, Current Facility Status, Listing of Buildings, Space Plans, Summary of Maintenance Program and Repair Backlog, Environmental Restoration, and Decontamination and Decommissioning Programs. Under Section B, Site Description, is a brief listing of the Site PS Development, as well as Current Utility Sources. Section C contains Site Assumptions. A Maintenance Program Overview, as well as Current Deficiencies, is contained within the Maintenance Program Chapter.

  16. Distributed Energy Resources Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NREL's Distributed Energy Resources Test Facility (DERTF) is a working laboratory for interconnection and systems integration testing. This state-of-the-art facility...

  17. Distributed Energy Resources Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NREL's Distributed Energy Resources Test Facility (DERTF) is a working laboratory for interconnection and systems integration testing. This state-of-the-art facility...

  18. Facility Environmental Vulnerability Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Van Hoesen, S.D.

    2001-07-09

    From mid-April through the end of June 2001, a Facility Environmental Vulnerability Assessment (FEVA) was performed at Oak Ridge National Laboratory (ORNL). The primary goal of this FEVA was to establish an environmental vulnerability baseline at ORNL that could be used to support the Laboratory planning process and place environmental vulnerabilities in perspective. The information developed during the FEVA was intended to provide the basis for management to initiate immediate, near-term, and long-term actions to respond to the identified vulnerabilities. It was expected that further evaluation of the vulnerabilities identified during the FEVA could be carried out to support a more quantitative characterization of the sources, evaluation of contaminant pathways, and definition of risks. The FEVA was modeled after the Battelle-supported response to the problems identified at the High Flux Beam Reactor at Brookhaven National Laboratory. This FEVA report satisfies Corrective Action 3A1 contained in the Corrective Action Plan in Response to Independent Review of the High Flux Isotope Reactor Tritium Leak at the Oak Ridge National Laboratory, submitted to the Department of Energy (DOE) ORNL Site Office Manager on April 16, 2001. This assessment successfully achieved its primary goal as defined by Laboratory management. The assessment team was able to develop information about sources and pathway analyses although the following factors impacted the team's ability to provide additional quantitative information: the complexity and scope of the facilities, infrastructure, and programs; the significantly degraded physical condition of the facilities and infrastructure; the large number of known environmental vulnerabilities; the scope of legacy contamination issues [not currently addressed in the Environmental Management (EM) Program]; the lack of facility process and environmental pathway analysis performed by the accountable line management or facility owner; and

  19. Comprehensive facilities plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The Ernest Orlando Lawrence Berkeley National Laboratory`s Comprehensive Facilities Plan (CFP) document provides analysis and policy guidance for the effective use and orderly future development of land and capital assets at the Berkeley Lab site. The CFP directly supports Berkeley Lab`s role as a multiprogram national laboratory operated by the University of California (UC) for the Department of Energy (DOE). The CFP is revised annually on Berkeley Lab`s Facilities Planning Website. Major revisions are consistent with DOE policy and review guidance. Facilities planing is motivated by the need to develop facilities for DOE programmatic needs; to maintain, replace and rehabilitate existing obsolete facilities; to identify sites for anticipated programmatic growth; and to establish a planning framework in recognition of site amenities and the surrounding community. The CFP presents a concise expression of the policy for the future physical development of the Laboratory, based upon anticipated operational needs of research programs and the environmental setting. It is a product of the ongoing planning processes and is a dynamic information source.

  20. ESO adaptive optics facility

    Science.gov (United States)

    Arsenault, R.; Madec, P.-Y.; Hubin, N.; Paufique, J.; Stroebele, S.; Soenke, C.; Donaldson, R.; Fedrigo, E.; Oberti, S.; Tordo, S.; Downing, M.; Kiekebusch, M.; Conzelmann, R.; Duchateau, M.; Jost, A.; Hackenberg, W.; Bonaccini Calia, D.; Delabre, B.; Stuik, R.; Biasi, R.; Gallieni, D.; Lazzarini, P.; Lelouarn, M.; Glindeman, A.

    2008-07-01

    ESO has initiated in June 2004 a concept of Adaptive Optics Facility. One unit 8m telescope of the VLT is upgraded with a 1.1 m convex Deformable Secondary Mirror and an optimized instrument park. The AO modules GALACSI and GRAAL will provide GLAO and LTAO corrections forHawk-I and MUSE. A natural guide star mode is provided for commissioning and maintenance at the telescope. The facility is completed by a Laser Guide Star Facility launching 4 LGS from the telescope centerpiece used for the GLAO and LTAO wavefront sensing. A sophisticated test bench called ASSIST is being designed to allow an extensive testing and characterization phase of the DSM and its AO modules in Europe. Most sub-projects have entered the final design phase and the DSM has entered Manufacturing phase. First light is planned in the course of 2012 and the commissioning phases should be completed by 2013.

  1. Modernizing sports facilities

    Energy Technology Data Exchange (ETDEWEB)

    Dustin, R. [McKenney`s, Inc., Atlanta, GA (United States)

    1996-09-01

    Modernization and renovation of sports facilities challenge the design team to balance a number of requirements: spectator and owner expectations, existing building and site conditions, architectural layouts, code and legislation issues, time constraints and budget issues. System alternatives are evaluated and selected based on the relative priorities of these requirements. These priorities are unique to each project. At Alexander Memorial Coliseum, project schedules, construction funds and facility usage became the priorities. The ACC basketball schedule and arrival of the Centennial Olympics dictated the construction schedule. Initiation and success of the project depended on the commitment of the design team to meet coliseum funding levels established three years ago. Analysis of facility usage and system alternative capabilities drove the design team to select a system that met the project requirements and will maximize the benefits to the owner and spectators for many years to come.

  2. FACILITIES MANAGEMENT AT CERN

    CERN Multimedia

    2002-01-01

    Recently we have been confronted with difficulties concerning services which are part of a new contract for facilities management. Please see below for some information about this contract. Following competitive tendering and the Finance Committee decision, the contract was awarded to the Swiss firm 'Facilities Management Network (FMN)'. The owners of FMN are two companies 'M+W Zander' and 'Avireal', both very experienced in this field of facilities management. The contract entered into force on 1st July 2002. CERN has grouped together around 20 different activities into this one contract, which was previously covered by separate contracts. The new contract includes the management and execution of many activities, in particular: Guards and access control; cleaning; operation and maintenance of heating plants, cooling and ventilation equipment for buildings not related to the tunnel or the LHC; plumbing; sanitation; lifts; green areas and roads; waste disposal; and includes a centralised helpdesk for these act...

  3. Facility Modernization Report

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, D; Ackley, R

    2007-05-10

    Modern and technologically up-to-date facilities and systems infrastructure are necessary to accommodate today's research environment. In response, Lawrence Livermore National Laboratory (LLNL) has a continuing commitment to develop and apply effective management models and processes to maintain, modernize, and upgrade its facilities to meet the science and technology mission. The Facility Modernization Pilot Study identifies major subsystems of facilities that are either technically or functionally obsolete, lack adequate capacity and/or capability, or need to be modernized or upgraded to sustain current operations and program mission. This study highlights areas that need improvement, system interdependencies, and how these systems/subsystems operate and function as a total productive unit. Although buildings are 'grandfathered' in and are not required to meet current codes unless there are major upgrades, this study also evaluates compliance with 'current' building, electrical, and other codes. This study also provides an evaluation of the condition and overall general appearance of the structure.

  4. Facilities of Environmental Distinction

    Science.gov (United States)

    Pascopella, Angela

    2011-01-01

    Three of nine school buildings that have won the latest Educational Facility Design Awards from the American Institute of Architects (AIA) Committee on Architecture for Education stand out from the crowd of other school buildings because they are sustainable and are connected to the nature that surrounds them. They are: (1) Thurston Elementary…

  5. Mineral facilities of Europe

    Science.gov (United States)

    Almanzar, Francisco; Baker, Michael S.; Elias, Nurudeen; Guzman, Eric

    2010-01-01

    This map displays over 1,700 records of mineral facilities within the countries of Europe and western Eurasia. Each record represents one commodity and one facility type at a single geographic location. Facility types include mines, oil and gas fields, and plants, such as refineries, smelters, and mills. Common commodities of interest include aluminum, cement, coal, copper, gold, iron and steel, lead, nickel, petroleum, salt, silver, and zinc. Records include attributes, such as commodity, country, location, company name, facility type and capacity (if applicable), and latitude and longitude geographical coordinates (in both degrees-minutes-seconds and decimal degrees). The data shown on this map and in table 1 were compiled from multiple sources, including (1) the most recently available data from the U.S. Geological Survey (USGS) Minerals Yearbook (Europe and Central Eurasia volume), (2) mineral statistics and information from the USGS Minerals Information Web site (http://minerals.usgs.gov/minerals/pubs/country/europe.html), and (3) data collected by the USGS minerals information country specialists from sources, such as statistical publications of individual countries, annual reports and press releases of operating companies, and trade journals. Data reflect the most recently published table of industry structure for each country at the time of this publication. Additional information is available from the country specialists listed in table 2.

  6. Toroid magnet test facility

    CERN Multimedia

    2002-01-01

    Because of its exceptional size, it was not feasible to assemble and test the Barrel Toroid - made of eight coils - as an integrated toroid on the surface, prior to its final installation underground in LHC interaction point 1. It was therefore decided to test these eight coils individually in a dedicated test facility.

  7. TNO HVAC facilities

    NARCIS (Netherlands)

    Hammink, H.A.J.

    2015-01-01

    TNO has extensive knowledge of heating, ventilation and air conditioning (HVAC), and can offer its services through theoretical studies, laboratory experiments and field measurements. This complete scope, made possible through our test facilities, enables the effective development of new products, i

  8. Facilities: The Tech Edge.

    Science.gov (United States)

    Farmer, Lesley S. J.

    2002-01-01

    Examines the impact of technology on school library facilities and suggests some low-impact ways to optimize its use. Highlights include considering the role technology can play; educational goals; interior environmental factors; circulation desk needs; security; storage for hardware and software; handicapped accessibility; and future planning.…

  9. Variable gravity research facility

    Science.gov (United States)

    Allan, Sean; Ancheta, Stan; Beine, Donna; Cink, Brian; Eagon, Mark; Eckstein, Brett; Luhman, Dan; Mccowan, Daniel; Nations, James; Nordtvedt, Todd

    1988-01-01

    Spin and despin requirements; sequence of activities required to assemble the Variable Gravity Research Facility (VGRF); power systems technology; life support; thermal control systems; emergencies; communication systems; space station applications; experimental activities; computer modeling and simulation of tether vibration; cost analysis; configuration of the crew compartments; and tether lengths and rotation speeds are discussed.

  10. Facility effluent monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the facility effluent monitoring programs and provides an evaluation of effluent monitoring data. These evaluations are useful in assessing the effectiveness of effluent treatment and control systems, as well as management practices.

  11. Science and Technology Facilities

    Science.gov (United States)

    Moonen, Jean-Marie; Buono, Nicolas; Handfield, Suzanne

    2004-01-01

    These four articles relate to science and technology infrastructure for secondary and tertiary institutions. The first article presents a view on approaches to teaching science in school and illustrates ideal science facilities for secondary education. The second piece reports on work underway to improve the Science Complex at the "Universite…

  12. Improved Refractories for IGCC Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, Cynthia P.; Kwong, Kyei-Sing; Bennett, James P.; Chinn, Richard E.; Dahlin, Cheryl L.

    2002-01-01

    The gasification of coal, petroleum residuals, and biomass provides the opportunity to produce energy more efficiently, and with significantly less environmental impact, than more-conventional combustion-based processes. In addition, the synthesis gas that is the product of the gasification process offers the gasifier operator the option of ''polygeneration'', i.e., the production of alternative products instead of power should it be economically favorable to do so. Because of these advantages, gasification is a key element in the U.S. Department of Energy?s Vision 21 power system. However, issues with both the reliability and the economics of gasifier operation will have to be resolved before gasification will be widely adopted by the power industry. Central to both increased reliability and economics is the development of materials with longer service lives in gasifier systems that can provide extended periods of continuous gasifier operation. The focus of the Advanced Refractories for Gasification project at the Albany Research Center is to develop improved materials capable of withstanding the harsh, high-temperature environment created by the gasification reaction, and includes both the refractory lining that insulates the slagging gasifier, as well as the thermocouple assemblies that are utilized to monitor gasifier operating temperatures. Current generation refractory liners in slagging gasifiers are typically replaced every 10 to 18 months, at costs ranging up to $2,000,000. Compounding materials and installation costs are the lost-opportunity costs for the three to four weeks that the gasifier is off-line for the refractory exchange. Current generation thermocouple devices rarely survive the gasifier start-up process, leaving the operator with no real means of temperature measurement during gasifier operation. As a result, the goals of this project include the development of a refractory liner with a service life at least double that of current generation refractory materials, and the design of a thermocouple protection system that will allow accurate temperature monitoring for extended periods of time.

  13. Test facilities for VINCI®

    Science.gov (United States)

    Greuel, Dirk; Schäfer, Klaus; Schlechtriem, Stefan

    2013-09-01

    With the replacement of the current upper-stage ESC-A of the Ariane 5 launcher by an enhanced cryogenic upper-stage, ESA's Ariane 5 Midterm Evolution (A5-ME) program aims to raise the launcher's payload capacity in geostationary transfer orbit from 10 to 12 tons, an increase of 20 %. Increasing the in-orbit delivery capability of the A5-ME launcher requires a versatile, high-performance, evolved cryogenic upper-stage engine suitable for delivering multiple payloads to all kinds of orbits, ranging from low earth orbit to geostationary transfer orbit with increased perigee. In order to meet these requirements the re-ignitable liquid oxygen/liquid hydrogen expander cycle engine VINCI® currently under development is designated to power the future upper stage, featuring a design performance of 180 kN of thrust and 464 s of specific impulse. Since 2010 development tests for the VINCI® engine have been conducted at the test benches P3.2 and P4.1 at DLR test site in Lampoldshausen under the ESA A5-ME program. For the VINCI® combustion chamber development the P3.2 test facility is used, which is the only European thrust chamber test facility. Originally erected for the development of the thrust chamber of the Vulcain engine, in 2003 the test facility was modified that today it is able to simulate vacuum conditions for the ignition and startup of the VINCI® combustion chamber. To maintain the test operations under vacuum conditions over an entire mission life of the VINCI® engine, including re-ignition following long and short coasting phases, between 2000 and 2005 the test facility P4.1 was completely rebuilt into a new high-altitude simulation facility. During the past two P4.1 test campaigns in 2010 and 2011 a series of important milestones were reached in the development of the VINCI® engine. In preparation for future activities within the frame of ESA's A5-ME program DLR has already started the engineering of a stage test facility for the prospective upper stage

  14. Pressurized burner test facility

    Energy Technology Data Exchange (ETDEWEB)

    Maloney, D.J.; Norton, T.S.; Hadley, M.A.

    1993-09-01

    The US Department of Energy`s METC has recently completed construction and commissioning of a new high-pressure combustion research facility. Utilities servicing the facility enable combustion tests at scales up to 3 MW (10 MM Btu/h) and pressures in excess of 3000 kPa (30 atm). These include a preheated, high-pressure air supply that can deliver up to 1.7 kg/s (3.7 lbs/s) of combustion air, and a high-pressure, natural gas compressor that can deliver 0.8 kg/s (.19 lbs/s). In the summer of 1994 METC`s syngas generator is scheduled to come on line, at which time combustion tests on a range of fuel gases from low to medium to high heating values will be possible. The syngas generator will simulate a range of fuel gas compositions characteristic of coal gasification product streams. As part of the combustion facility, a high-pressure burner test facility is currently being constructed to support the development of gas turbine combustion systems fired on natural gas and coal-derived gaseous fuels containing fuel-bound nitrogen. The facility, illustrated in Figure 1, is a 61-centimeter (24-inch) diameter, refractory-lined vessel of modular construction, offering the flexibility to test a variety of NO{sub x} control concepts. Burner test modules are sandwiched between gas inlet and sampling plenums with a maximum combustion test zone of 2.2 m (90 inches) in length. Modules are custom designed for specific burners.

  15. Assisted Living Facilities, care facilities, Published in 2006, Washoe County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Assisted Living Facilities dataset, was produced all or in part from Published Reports/Deeds information as of 2006. It is described as 'care facilities'. Data...

  16. EPA Facility Registry Service (FRS): Facility Interests Dataset - Intranet Download

    Data.gov (United States)

    U.S. Environmental Protection Agency — This downloadable data package consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are...

  17. EPA Facility Registry Service (FRS): AIRS_AFS Sub Facilities

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Air Facility System (AFS) contains compliance and permit data for stationary sources regulated by EPA, state and local air pollution agencies. The sub facility...

  18. EPA Facility Registry Service (FRS): Facility Interests Dataset - Intranet

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in...

  19. EPA Facility Registry Service (FRS): Facility Interests Dataset Download

    Data.gov (United States)

    U.S. Environmental Protection Agency — This downloadable data package consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are...

  20. EPA Facility Registry Service (FRS): Facility Interests Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in...

  1. World Class Facilities Management

    DEFF Research Database (Denmark)

    Malmstrøm, Ole Emil; Jensen, Per Anker

    2013-01-01

    Alle der med entusiasme arbejder med Facilities Management drømmer om at levere World Class. DFM drømmer om at skabe rammer og baggrund for, at vi i Danmark kan bryste os at være blandt de førende på verdensplan. Her samles op på, hvor tæt vi er på at nå drømmemålet.......Alle der med entusiasme arbejder med Facilities Management drømmer om at levere World Class. DFM drømmer om at skabe rammer og baggrund for, at vi i Danmark kan bryste os at være blandt de førende på verdensplan. Her samles op på, hvor tæt vi er på at nå drømmemålet....

  2. Facilities evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    Sloan, P.A.; Edinborough, C.R.

    1992-04-01

    The Buried Waste Integrated Demonstration (BWID) is a program of the Department of Energy (DOE) Office of Technology Development whose mission is to evaluate different new and existing technologies and determine how well they address DOE community waste remediation problems. Twenty-three Technical Task Plans (TTPs) have been identified to support this mission during FY-92; 10 of these have identified some support requirements when demonstrations take place. Section 1 of this report describes the tasks supported by BWID, determines if a technical demonstration is proposed, and if so, identifies the support requirements requested by the TTP Principal Investigators. Section 2 of this report is an evaluation identifying facility characteristics of existing Idaho National Engineering Laboratory (INEL) facilities that may be considered for use in BWID technology demonstration activities.

  3. World Class Facilities Management

    DEFF Research Database (Denmark)

    Malmstrøm, Ole Emil; Jensen, Per Anker

    2013-01-01

    Alle der med entusiasme arbejder med Facilities Management drømmer om at levere World Class. DFM drømmer om at skabe rammer og baggrund for, at vi i Danmark kan bryste os at være blandt de førende på verdensplan. Her samles op på, hvor tæt vi er på at nå drømmemålet.......Alle der med entusiasme arbejder med Facilities Management drømmer om at levere World Class. DFM drømmer om at skabe rammer og baggrund for, at vi i Danmark kan bryste os at være blandt de førende på verdensplan. Her samles op på, hvor tæt vi er på at nå drømmemålet....

  4. Japan hadron facility

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Tokushi [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    1998-03-01

    JHF aims at promoting the variety of research fields using various secondary beams produced by high-intensity proton beams. The accelerator of JHF will be an accelerator complex of a 200 MeV LINAC, a 3 GeV booster proton synchrotron, and a 50 GeV proton synchrotron. The four main experimental facilities of K-Arena, M-Arena, N-Arena, and E-Arena are planed. The outline of the project is presented. (author)

  5. Facility decontamination technology workshop

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    Purpose of the meeting was to provide a record of experience at nuclear facilities, other than TMI-2, of events and incidents which have required decontamination and dose reduction activities, and to furnish GPU and others involved in the TMI-2 cleanup with the results of that decontamination and dose reduction technology. Separate abstracts were prepared for 24 of the 25 papers; the remaining paper had been previously abstracted. (DLC)

  6. Facility Response Plan

    Science.gov (United States)

    1992-10-06

    10,500 gallons)? Yes Are rmarn transfer No opwatbons excsively moble (O.e tank truck at dock)? Signfiant and Substanlla harm substantial harm L Submit...current technology . one or more of the following provisions will normally be found on newer tank installationst " High-liquid level alarms with an...transportation- related facilities in adverse weather. The appropriate limitations for such planning are available technology and the practical and

  7. Proton beam therapy facility

    Energy Technology Data Exchange (ETDEWEB)

    1984-10-09

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs.

  8. DEVELOPMENT AND UTILIZATION OF TEST FACILITY FOR THE STUDY OF CANDLE FILTER SURFACE REGENERATION

    Energy Technology Data Exchange (ETDEWEB)

    Bruce S. Kang; Eric K. Johnson

    2003-07-14

    Hot gas particulate filtration is a basic component in advanced power generation systems such as Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC). These systems require effective particulate removal to protect the downstream gas turbine and also to meet environmental emission requirements. The ceramic barrier filter is one of the options for hot gas filtration. Hot gases flow through ceramic candle filters leaving ash deposited on the outer surface of the filter. A process known as surface regeneration removes the deposited ash periodically by using a high pressure pulse of gas to back flush the filter. After this cleaning process has been completed there may be some residual ash on the filter surface. This residual ash may grow and this may then lead to mechanical failure of the filter. A Room Temperature Test Facility (RTTF) and a High Temperature Test Facility (HTTF) were built to investigate the ash characteristics during surface regeneration at room and selected high temperatures. The RTTF system was used to gain experience with the selected instrumentation and develop an operating procedure to be used later at elevated temperatures. The HTTF system is capable of conducting surface regeneration tests of a single candle filter at temperatures up to 1500 F. In order to obtain sequential digital images of ash particle distribution during the surface regeneration process, a high resolution, high speed image acquisition system was integrated into the HTTF system. The regeneration pressure and the transient pressure difference between the inside of the candle filter and the chamber during regeneration were measured using a high speed PC data acquisition system. The control variables for the high temperature regeneration tests were (1) face velocity, (2) pressure of the back pulse, and (3) cyclic ash built-up time. Coal ash sample obtained from the Power System Development Facility (PSDF) at Wilsonville, AL was used at the

  9. The National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G H; Moses, E I; Wuest, C R

    2004-06-03

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is a stadium-sized facility that, when completed in 2008, will contain a 192-beam, 1.8- Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter-diameter target chamber and room for 100 diagnostics. NIF is the world's largest and most energetic laser experimental system and will provide a scientific center to study inertial confinement fusion and matter at extreme energy densities and pressures. NIF's energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will study physical processes at temperatures approaching 10{sup 8} K and 10{sup 11} bar; conditions that exist naturally only in the interior of stars and planets. NIF has completed the first phases of its laser commissioning program. The first four beams of NIF have generated 106 kilojoules in 23-ns pulses of infrared light and over 16 kJ in 3.5- ns pulses at the third harmonic (351 nm). NIF's target experimental systems are being commissioned and experiments have begun. This paper provides a detailed look the NIF laser systems, laser and optical performance, and results from recent laser commissioning shots. We follow this with a discussion of NIF's high-energy-density and inertial fusion experimental capabilities, the first experiments on NIF, and plans for future capabilities of this unique facility.

  10. Hot Hydrogen Test Facility

    Science.gov (United States)

    Swank, W. David; Carmack, Jon; Werner, James E.; Pink, Robert J.; Haggard, DeLon C.; Johnson, Ryan

    2007-01-01

    The core in a nuclear thermal rocket will operate at high temperatures and in hydrogen. One of the important parameters in evaluating the performance of a nuclear thermal rocket is specific impulse, ISP. This quantity is proportional to the square root of the propellant's absolute temperature and inversely proportional to square root of its molecular weight. Therefore, high temperature hydrogen is a favored propellant of nuclear thermal rocket designers. Previous work has shown that one of the life-limiting phenomena for thermal rocket nuclear cores is mass loss of fuel to flowing hydrogen at high temperatures. The hot hydrogen test facility located at the Idaho National Lab (INL) is designed to test suitability of different core materials in 2500°C hydrogen flowing at 1500 liters per minute. The facility is intended to test low activity uranium containing materials but is also suited for testing cladding and coating materials. In this first installment the facility is described. Automated data acquisition, flow and temperature control, vessel compatibility with various core geometries and overall capabilities are discussed.

  11. Medical Image Analysis Facility

    Science.gov (United States)

    1978-01-01

    To improve the quality of photos sent to Earth by unmanned spacecraft. NASA's Jet Propulsion Laboratory (JPL) developed a computerized image enhancement process that brings out detail not visible in the basic photo. JPL is now applying this technology to biomedical research in its Medical lrnage Analysis Facility, which employs computer enhancement techniques to analyze x-ray films of internal organs, such as the heart and lung. A major objective is study of the effects of I stress on persons with heart disease. In animal tests, computerized image processing is being used to study coronary artery lesions and the degree to which they reduce arterial blood flow when stress is applied. The photos illustrate the enhancement process. The upper picture is an x-ray photo in which the artery (dotted line) is barely discernible; in the post-enhancement photo at right, the whole artery and the lesions along its wall are clearly visible. The Medical lrnage Analysis Facility offers a faster means of studying the effects of complex coronary lesions in humans, and the research now being conducted on animals is expected to have important application to diagnosis and treatment of human coronary disease. Other uses of the facility's image processing capability include analysis of muscle biopsy and pap smear specimens, and study of the microscopic structure of fibroprotein in the human lung. Working with JPL on experiments are NASA's Ames Research Center, the University of Southern California School of Medicine, and Rancho Los Amigos Hospital, Downey, California.

  12. Environmentally Regulated Facilities in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — A unique record for each facility site with an environmental interest by DNR (such as permits). This brings together core environmental information in one place for...

  13. Carbon Fiber Technology Facility (CFTF)

    Data.gov (United States)

    Federal Laboratory Consortium — Functionally within the MDF, ORNL operates DOE’s unique Carbon Fiber Technology Facility (CFTF)—a 42,000 ft2 innovative technology facility and works with leading...

  14. Nitramine Drying & Fine Grinding Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Nitramine Drying and Fine Grinding Facility provides TACOM-ARDEC with a state-of-the-art facility capable of drying and grinding high explosives (e.g., RDX and...

  15. Arc Heated Scramjet Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Arc Heated Scramjet Test Facility is an arc heated facility which simulates the true enthalpy of flight over the Mach number range of about 4.7 to 8 for free-jet...

  16. Air Defense Radar Operations Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Facility consists of laboratories, experimental test equipment including state-of-theart test bed radar, and test ranges. The facilities are used to design, develop,...

  17. Emission Facilities - Air Emission Plants

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Represents the Primary Facility type Air Emission Plant (AEP) point features. Air Emissions Plant is a DEP primary facility type related to the Air Quality Program....

  18. Air Defense Radar Operations Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Facility consists of laboratories, experimental test equipment including state-of-theart test bed radar, and test ranges. The facilities are used to design, develop,...

  19. Emission Facilities - Air Emission Plants

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — Represents the Primary Facility type Air Emission Plant (AEP) point features. Air Emissions Plant is a DEP primary facility type related to the Air Quality Program....

  20. Shock Thermodynamic Applied Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Shock Thermodynamic Applied Research Facility (STAR) facility, within Sandia’s Solid Dynamic Physics Department, is one of a few institutions in the world with a...

  1. Shock Thermodynamic Applied Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Shock Thermodynamic Applied Research Facility (STAR) facility, within Sandia’s Solid Dynamic Physics Department, is one of a few institutions in the world with...

  2. Tier II Chemical Storage Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research FacilityFacilities that store hazardous chemicals above certain quantities must submit an annual emergency and hazardous chemical inventory on a Tier II form. This is a...

  3. Tandem Van de Graaff facility

    Data.gov (United States)

    Federal Laboratory Consortium — Completed in 1970, the Tandem Van de Graaff facility was for many years the world's largest electrostatic accelerator facility. It can provide researchers with beams...

  4. Indoor Lighting Facilities

    Science.gov (United States)

    Matsushima, Koji; Saito, Yoshinori; Ichikawa, Shigenori; Kawauchi, Takao; Tanaka, Tsuneo; Hirano, Rika; Tazuke, Fuyuki

    According to the statistics by the Ministry of Land, Infrastructure and Transport, the total floor space of all building construction started was 188.87 million m2 (1.5% increase y/y), marking the fourth straight year of increase. Many large-scale buildings under construction in central Tokyo become fully occupied by tenants before completion. As for office buildings, it is required to develop comfortable and functional office spaces as working styles are becoming more and more diversified, and lighting is also an element of such functionalities. The total floor space of construction started for exhibition pavilions, multipurpose halls, conference halls and religious architectures decreased 11.1% against the previous year. This marked a decline for 10 consecutive years and the downward trend continues. In exhibition pavilions, the light radiation is measured and adjusted throughout the year so as not to damage the artworks by lighting. Hospitals, while providing higher quality medical services and enhancing the dwelling environment of patients, are expected to meet various restrictions and requirements, including the respect for privacy. Meanwhile, lighting designs for school classrooms tend to be homogeneous, yet new ideas are being promoted to strike a balance between the economical and functional aspects. The severe economic environment continues to be hampering the growth of theaters and halls in both the private and public sectors. Contrary to the downsizing trend of such facilities, additional installations of lighting equipment were conspicuous, and the adoption of high efficacy lighting appliances and intelligent function control circuits are becoming popular. In the category of stores/commercial facilities, the construction of complex facilities is a continuing trend. Indirect lighting, high luminance discharge lamps with excellent color rendition and LEDs are being effectively used in these facilities, together with the introduction of lighting designs

  5. Instrumentation Design and Development Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — RTTC has facilities for design, development and fabrication of: custominstrumentation, mobile instrumentation, miniaturized instrumentation, wirelessinstrumentation,...

  6. A3 Altitude Test Facility

    Science.gov (United States)

    Dulreix, Lionel J.

    2009-01-01

    This slide presentation shows drawings, diagrams and photographs of the A3 Altitude Test Facility. It includes a review of the A3 Facility requirements, and drawings of the various sections of the facility including Engine Deck and Superstructure, Test Cell and Thrust Takeout, Structure and Altitude Support Systems, Chemical Steam generators, and the subscale diffuser. There are also pictures of the construction site, and the facility under construction. A Diagram of the A3 Steam system schematic is also shown

  7. Logistics support of space facilities

    Science.gov (United States)

    Lewis, William C.

    1988-01-01

    The logistic support of space facilities is described, with special attention given to the problem of sizing the inventory of ready spares kept at the space facility. Where possible, data from the Space Shuttle Orbiter is extrapolated to provide numerical estimates for space facilities. Attention is also given to repair effort estimation and long duration missions.

  8. Facilities removal working group

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This working group`s first objective is to identify major economic, technical, and regulatory constraints on operator practices and decisions relevant to offshore facilities removal. Then, the group will try to make recommendations as to regulatory and policy adjustments, additional research, or process improvements and/or technological advances, that may be needed to improve the efficiency and effectiveness of the removal process. The working group will focus primarily on issues dealing with Gulf of Mexico platform abandonments. In order to make the working group sessions as productive as possible, the Facilities Removal Working Group will focus on three topics that address a majority of the concerns and/or constraints relevant to facilities removal. The three areas are: (1) Explosive Severing and its Impact on Marine Life, (2) Pile and Conductor Severing, and (3) Deep Water Abandonments This paper will outline the current state of practice in the offshore industry, identifying current regulations and specific issues encountered when addressing each of the three main topics above. The intent of the paper is to highlight potential issues for panel discussion, not to provide a detailed review of all data relevant to the topic. Before each panel discussion, key speakers will review data and information to facilitate development and discussion of the main issues of each topic. Please refer to the attached agenda for the workshop format, key speakers, presentation topics, and panel participants. The goal of the panel discussions is to identify key issues for each of the three topics above. The working group will also make recommendations on how to proceed on these key issues.

  9. CLIC Test Facility 3

    CERN Multimedia

    Kossyvakis, I; Faus-golfe, A; Nguyen, F

    2007-01-01

    The design of CLIC is based on a two-beam scheme, where short pulses of high power 30 GHz RF are extracted from a drive beam running parallel to the main beam. The 3rd generation CLIC Test Facility (CTF3) will demonstrate the generation of the drive beam with the appropriate time structure, the extraction of 30 GHz RF power from this beam, as well as acceleration of a probe beam with 30 GHz RF cavities. The project makes maximum use of existing equipment and infrastructure of the LPI complex, which became available after the closure of LEP.

  10. The Zwicky Transient Facility

    CERN Document Server

    Bellm, Eric C

    2014-01-01

    The Zwicky Transient Facility (ZTF) is a next-generation optical synoptic survey that builds on the experience and infrastructure of the Palomar Transient Factory (PTF). Using a new 47 deg$^2$ survey camera, ZTF will survey more than an order of magnitude faster than PTF to discover rare transients and variables. I describe the survey and the camera design. Searches for young supernovae, fast transients, counterparts to gravitational-wave detections, and rare variables will benefit from ZTF's high cadence, wide area survey.

  11. On Constrained Facility Location Problems

    Institute of Scientific and Technical Information of China (English)

    Wei-Lin Li; Peng Zhang; Da-Ming Zhu

    2008-01-01

    Given m facilities each with an opening cost, n demands, and distance between every demand and facility,the Facility Location problem finds a solution which opens some facilities to connect every demand to an opened facility such that the total cost of the solution is minimized. The k-Facility Location problem further requires that the number of opened facilities is at most k, where k is a parameter given in the instance of the problem. We consider the Facility Location problems satisfying that for every demand the ratio of the longest distance to facilities and the shortest distance to facilities is at most w, where w is a predefined constant. Using the local search approach with scaling technique and error control technique, for any arbitrarily small constant ∈ > 0, we give a polynomial-time approximation algorithm for the ω-constrained Facility Location problem with approximation ratio 1 + √ω + 1 + ∈, which significantly improves the previous best known ratio (ω + 1)/α for some 1 ≤α≤ 2, and a polynomial-time approximation algorithm for the ω-constrained κ-Facility Location problem with approximation ratio ω + 1 + ∈. On the aspect of approximation hardness, we prove that unless NP (C) DTIME(nO(loglogn)), the ω-constrained Facility Location problem cannot be approximated within 1 + √ω-1,which slightly improves the previous best known hardness result 1.243 + 0.316 ln(ω - 1). The experimental results on the standard test instances of Facility Location problem show that our algorithm also has good performance in practice.

  12. PUREX facility hazards assessment

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, L.N.

    1994-09-23

    This report documents the hazards assessment for the Plutonium Uranium Extraction Plant (PUREX) located on the US Department of Energy (DOE) Hanford Site. Operation of PUREX is the responsibility of Westinghouse Hanford Company (WHC). This hazards assessment was conducted to provide the emergency planning technical basis for PUREX. DOE Order 5500.3A requires an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification. In October of 1990, WHC was directed to place PUREX in standby. In December of 1992 the DOE Assistant Secretary for Environmental Restoration and Waste Management authorized the termination of PUREX and directed DOE-RL to proceed with shutdown planning and terminal clean out activities. Prior to this action, its mission was to reprocess irradiated fuels for the recovery of uranium and plutonium. The present mission is to establish a passively safe and environmentally secure configuration at the PUREX facility and to preserve that condition for 10 years. The ten year time frame represents the typical duration expended to define, authorize and initiate follow-on decommissioning and decontamination activities.

  13. Underground Facilities, Technological Challenges

    CERN Document Server

    Spooner, N

    2010-01-01

    This report gives a summary overview of the status of international under- ground facilities, in particular as relevant to long-baseline neutrino physics and neutrino astrophysics. The emphasis is on the technical feasibility aspects of creating the large underground infrastructures that will be needed in the fu- ture to house the necessary detectors of 100 kton to 1000 kton scale. There is great potential in Europe to build such a facility, both from the technical point of view and because Europe has a large concentration of the necessary engi- neering and geophysics expertise. The new LAGUNA collaboration has made rapid progress in determining the feasibility for a European site for such a large detector. It is becoming clear in fact that several locations are technically fea- sible in Europe. Combining this with the possibility of a new neutrino beam from CERN suggests a great opportunity for Europe to become the leading centre of neutrino studies, combining both neutrino astrophysics and neutrino beam stu...

  14. FRACTURING FLUID CHARACTERIZATION FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Subhash Shah

    2000-08-01

    Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.

  15. TESLA Test Facility. Status

    Energy Technology Data Exchange (ETDEWEB)

    Aune, B. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); TESLA Collaboration

    1996-01-01

    The TESLA Test Facility (TTF), under construction at DESY by an international collaboration, is an R and D test bed for the superconducting option for future linear e+/e-colliders. It consists of an infrastructure to process and test the cavities and of a 500 MeV linac. The infrastructure has been installed and is fully operational. It includes a complex of clean rooms, an ultra-clean water plant, a chemical etching installation and an ultra-high vacuum furnace. The linac will consist of four cryo-modules, each containing eight 1 meter long nine-cell cavities operated at 1.3 GHz. The base accelerating field is 15 MV/m. A first injector will deliver a low charge per bunch beam, with the full average current (8 mA in pulses of 800 {mu}s). A more powerful injector based on RF gun technology will ultimately deliver a beam with high charge and low emittance to allow measurements necessary to qualify the TESLA option and to demonstrate the possibility of operating a free electron laser based on the Self-Amplified-Spontaneous-Emission principle. Overview and status of the facility will be given. Plans for the future use of the linac are presented. (R.P.). 19 refs.

  16. SPHERES National Lab Facility

    Science.gov (United States)

    Benavides, Jose

    2014-01-01

    SPHERES is a facility of the ISS National Laboratory with three IVA nano-satellites designed and delivered by MIT to research estimation, control, and autonomy algorithms. Since Fall 2010, The SPHERES system is now operationally supported and managed by NASA Ames Research Center (ARC). A SPHERES Program Office was established and is located at NASA Ames Research Center. The SPHERES Program Office coordinates all SPHERES related research and STEM activities on-board the International Space Station (ISS), as well as, current and future payload development. By working aboard ISS under crew supervision, it provides a risk tolerant Test-bed Environment for Distributed Satellite Free-flying Control Algorithms. If anything goes wrong, reset and try again! NASA has made the capability available to other U.S. government agencies, schools, commercial companies and students to expand the pool of ideas for how to test and use these bowling ball-sized droids. For many of the researchers, SPHERES offers the only opportunity to do affordable on-orbit characterization of their technology in the microgravity environment. Future utilization of SPHERES as a facility will grow its capabilities as a platform for science, technology development, and education.

  17. Geothermal energy conversion facility

    Energy Technology Data Exchange (ETDEWEB)

    Kutscher, C.F.

    1997-12-31

    With the termination of favorable electricity generation pricing policies, the geothermal industry is exploring ways to improve the efficiency of existing plants and make them more cost-competitive with natural gas. The Geothermal Energy Conversion Facility (GECF) at NREL will allow researchers to study various means for increasing the thermodynamic efficiency of binary cycle geothermal plants. This work has received considerable support from the US geothermal industry and will be done in collaboration with industry members and utilities. The GECF is being constructed on NREL property at the top of South Table Mountain in Golden, Colorado. As shown in Figure 1, it consists of an electrically heated hot water loop that provides heating to a heater/vaporizer in which the working fluid vaporizes at supercritical or subcritical pressures as high as 700 psia. Both an air-cooled and water-cooled condenser will be available for condensing the working fluid. In order to minimize construction costs, available equipment from the similar INEL Heat Cycle Research Facility is being utilized.

  18. Facility effluent monitoring plan for the 327 Facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-11-01

    The 327 Facility [Post-Irradiation Testing Laboratory] provides office and laboratory space for Pacific Northwest Laboratory (PNL) scientific and engineering staff conducting multidisciplinary research in the areas of post-irradiated fuels and structural materials. The facility is designed to accommodate the use of radioactive and hazardous materials in the conduct of these activities. This report summarizes the airborne emissions and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

  19. Facility effluent monitoring plan for the fast flux test facility

    Energy Technology Data Exchange (ETDEWEB)

    Nickels, J M; Dahl, N R

    1992-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in US Department of Energy Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A Facility Effluent Monitoring Plan determination was performed during calendar year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements.

  20. Indoor Lighting Facilities

    Science.gov (United States)

    Matsushima, Koji; Saito, Yoshinori; Ichikawa, Shigenori; Kawauchi, Takao; Tanaka, Tsuneo; Hirano, Rika; Tazuke, Fuyuki

    According to the statistics on building construction floor area from the Ministry of Land, Infrastructure, Transport and Tourism, the total floor area of building construction started in Japan in 2007 was 160,991 thousand square meters, or 14.8% less than the area of the previous year, and the reduction was the first reduction in the past five years. The office markets in Tokyo and Nagoya were active, as represented by the supplies of skyscrapers, and energy saving measures, such as the adoption of high efficiency lighting equipment, the control for initial stage illuminance, daylight harvesting, and the use of occupancy sensors, were well established. In the field of public construction, including museums, multi-purpose halls, and religious buildings, the total area of the new construction was 10.8% less than the total for the previous year, and this reduction was a continuation of an eleven-year trend. In spaces with high ceiling, the innovation for easy replacement of light sources used with reflection mirror systems and optical fibers was noted. Hospitals adapted to the expectation for improved services in their selection of lighting facilities to improve the residential environment for patients while taking into consideration the needs of the aging population, by their use of devices in corridors to help maintain a continuity of light. In libraries, a pendant system was developed to illuminate both ceilings and book shelves. In the field of theaters and halls, the time limit for repairing existing systems had come for the large facilities that were opened during the theater and hall construction boom of the 1960s through 1980s, and around 26 renovations were done. Almost all the renovations were conversions to intelligent dimming systems and lighting control desks. In the field of stores and commercial facilities, the atmosphere and glitter of the selling floor was produced by new light sources, such as ceramic metal halide lamps and LEDs, which have high

  1. Power Systems Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2009-01-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

  2. Thermal Radiation Source Test Facility,

    Science.gov (United States)

    1984-01-01

    KEY WORDS (Continu on revers side I eesr and identify by block nuMb.,) Thermal Radiation Source Thermal Test Facility 20 ABSTRACT (Continue on reverse...SECTION 1 INTRODUCTION 1-1 GENERAL Defense Nuclear Agency’s Field Command, located at Kirtland AFB in New Mexico, has recently upgraded its thermal test facility...is used to evaluate damage and survivability in a nuclear environment. The thermal test facility was first established in 1979 and used O large

  3. Regulatory facility guide for Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.S.; Bock, R.E.; Francis, M.W.; Gove, R.M.; Johnson, P.E.; Kovac, F.M.; Mynatt, J.O. [Oak Ridge National Lab., TN (United States); Rymer, A.C. [Transportation Consulting Services, Knoxville, TN (United States)

    1994-02-28

    The Regulatory Facility Guide (RFG) has been developed for the DOE and contractor facilities located in the state of Ohio. It provides detailed compilations of international, federal, and state transportation-related regulations applicable to shipments originating at destined to Ohio facilities. This RFG was developed as an additional resource tool for use both by traffic managers who must ensure that transportation operations are in full compliance with all applicable regulatory requirements and by oversight personnel who must verify compliance activities.

  4. User facilities at federal laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Baron, S.; Marcuse, W.

    1988-04-01

    Recent initiatives by the Congress and the Administration have been directed to improving American industrial competitiveness. One of these initiatives is directed to encouraging industrial users to avail themselves of special facilities existent at federal laboratories. The facilities available at the National Bureau of Standards (NBS) and seven Department of Energy (DOE) laboratories are presented here. One facility at each Laboratory is described in detail, the remainder are listed with the names and telephone numbers of individuals to contact for further information.

  5. Data Management Facility Operations Plan

    Energy Technology Data Exchange (ETDEWEB)

    Keck, Nicole N

    2014-06-30

    The Data Management Facility (DMF) is the data center that houses several critical Atmospheric Radiation Measurement (ARM) Climate Research Facility services, including first-level data processing for the ARM Mobile Facilities (AMFs), Eastern North Atlantic (ENA), North Slope of Alaska (NSA), Southern Great Plains (SGP), and Tropical Western Pacific (TWP) sites, as well as Value-Added Product (VAP) processing, development systems, and other network services.

  6. Electronic Warfare Signature Measurement Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Electronic Warfare Signature Measurement Facility contains specialized mobile spectral, radiometric, and imaging measurement systems to characterize ultraviolet,...

  7. Materials Engineering Research Facility (MERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Argonne?s Materials Engineering Research Facility (MERF) enables engineers to develop manufacturing processes for producing advanced battery materials in sufficient...

  8. Radio Frequency Anechoic Chamber Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports the design, manufacture, and test of antenna systems. The facility is also used as an electromagnetic compatibility/radio frequency interference...

  9. Poultry Slaughtering and Processing Facilities

    Data.gov (United States)

    Department of Homeland Security — Agriculture Production Poultry Slaughtering and Processing in the United States This dataset consists of facilities which engage in slaughtering, processing, and/or...

  10. Establishing nuclear facility drill programs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The purpose of DOE Handbook, Establishing Nuclear Facility Drill Programs, is to provide DOE contractor organizations with guidance for development or modification of drill programs that both train on and evaluate facility training and procedures dealing with a variety of abnormal and emergency operating situations likely to occur at a facility. The handbook focuses on conducting drills as part of a training and qualification program (typically within a single facility), and is not intended to included responses of personnel beyond the site boundary, e.g. Local or State Emergency Management, Law Enforcement, etc. Each facility is expected to develop its own facility specific scenarios, and should not limit them to equipment failures but should include personnel injuries and other likely events. A well-developed and consistently administered drill program can effectively provide training and evaluation of facility operating personnel in controlling abnormal and emergency operating situations. To ensure the drills are meeting their intended purpose they should have evaluation criteria for evaluating the knowledge and skills of the facility operating personnel. Training and evaluation of staff skills and knowledge such as component and system interrelationship, reasoning and judgment, team interactions, and communications can be accomplished with drills. The appendices to this Handbook contain both models and additional guidance for establishing drill programs at the Department`s nuclear facilities.

  11. Region 9 NPDES Facilities 2012

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates...

  12. Region 9 NPDES 2011 Facilities

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates...

  13. Low background infrared (LBIR) facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Low background infrared (LBIR) facility was originally designed to calibrate user supplied blackbody sources and to characterize low-background IR detectors and...

  14. Agency Data on User Facilities

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of the Aerospace Technical Facility Inventory is to facilitate the sharing of specialized capabilities within the aerospace research/engineering...

  15. Electronic Warfare Signature Measurement Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Electronic Warfare Signature Measurement Facility contains specialized mobile spectral, radiometric, and imaging measurement systems to characterize ultraviolet,...

  16. Weapons Neutron Research Facility (WNR)

    Data.gov (United States)

    Federal Laboratory Consortium — The Weapons Neutron Research Facility (WNR) provides neutron and proton beams for basic, applied, and defense-related research. Neutron beams with energies ranging...

  17. Engine Environment Research Facility (EERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: This facility supports research and development testing of the behavior of turbine engine lubricants, fuels and sensors in an actual engine environment....

  18. Influence of Gasification Parameters in a Two-stage Coal-Slurry Gasifier on Performance of the IGCC System%两段式水煤浆气化炉气化参数对IGCC系统性能的影响

    Institute of Scientific and Technical Information of China (English)

    刘耀鑫; 吴少华; 李振中; 王阳; 陈晓利

    2012-01-01

    采用Thermo Flex软件建立了基于两段式水煤浆气化技术的200MW级IGCC系统模型,研究了气化温度、水煤浆浓度、气化压力、氧气纯度等气化参数对系统性能的影响.结果表明:提高反应温度和气化压力,系统的供电效率和发电效率降低;氧气纯度增加,供电效率上升;在相同气化温度(或气化压力、氧气纯度)的情况下,提高二段给煤比γsc,系统性能可以得到有效改善;当水煤浆浓度变化时,氧煤质量比随γsc改变进行调整才能达到设计值碳转化率的要求.%Using software ThermoFlex,a model of 200 MW IGCC system was established based on two-stage coal-slurry gasification technology,so as to study the effects of following factors on performance of the IGCC system,such as the gasification temperature,coal-slurry concentration,gasification pressure and purity of oxygen,etc.Results show that both the gross and net efficiency of power generation decrease with rising gasification temperature and pressure;higher net efficiency is to be obtained at a flow of higher purity oxgen;raising coal supply ratio(γsc) at the second stage may help to improve the system performance under same conditions of gasification temperature(or purity of oxygen,or gasification pressure).Whereas under the varying conditions of coal-slurry concentration,the designed value of carbon conversion can be achieved based on adjustment of oxygen-coal mass ratio along with the variation of γsc.

  19. Thomas Jefferson National Accelerator Facility

    Energy Technology Data Exchange (ETDEWEB)

    Grames, Joseph; Higinbotham, Douglas; Montgomery, Hugh

    2010-09-08

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. The technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.

  20. SUBSURFACE FACILITY WORKER DOES ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    V. Arakali; E. Faillace; A. Linden

    2004-02-27

    The purpose of this design calculation is to estimate radiation doses received by personnel working in the subsurface facility of the repository performing emplacement, maintenance, and retrieval operations under normal conditions. The results of this calculation will be used to support the design of the subsurface facilities and provide occupational dose estimates for the License Application.

  1. EVA Training and Development Facilities

    Science.gov (United States)

    Cupples, Scott

    2016-01-01

    Overview: Vast majority of US EVA (ExtraVehicular Activity) training and EVA hardware development occurs at JSC; EVA training facilities used to develop and refine procedures and improve skills; EVA hardware development facilities test hardware to evaluate performance and certify requirement compliance; Environmental chambers enable testing of hardware from as large as suits to as small as individual components in thermal vacuum conditions.

  2. Empowering Facilities Teams through Technology

    Science.gov (United States)

    Cormier, Scott

    2013-01-01

    Facilities departments at colleges and universities are facing the same challenge: how not to do just the most projects, but also the right projects with the limited funds they are given. In order to make the best decisions, they need more control over the capital planning process, which requires accurate, current facility condition data. Each…

  3. Empowering Facilities Teams through Technology

    Science.gov (United States)

    Cormier, Scott

    2013-01-01

    Facilities departments at colleges and universities are facing the same challenge: how not to do just the most projects, but also the right projects with the limited funds they are given. In order to make the best decisions, they need more control over the capital planning process, which requires accurate, current facility condition data. Each…

  4. Planning and Designing Safe Facilities

    Science.gov (United States)

    Seidler, Todd

    2006-01-01

    Those who manage physical education, athletic, and recreation programs have a number of legal duties that they are expected to carry out. Among these are an obligation to take reasonable precautions to ensure safe programs and facilities for all participants, spectators, and staff. Physical education and sports facilities that are poorly planned,…

  5. Power Systems Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-07-01

    This report discusses Test Campaign TC12 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (SW) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC12 began on May 16, 2003, with the startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until May 24, 2003, when a scheduled outage occurred to allow maintenance crews to install the fuel cell test unit and modify the gas clean-up system. On June 18, 2003, the test run resumed when operations relit the start-up burner, and testing continued until the scheduled end of the run on July 14, 2003. TC12 had a total of 733 hours using Powder River Basin (PRB) subbituminous coal. Over the course of the entire test run, gasifier temperatures varied between 1,675 and 1,850 F at pressures from 130 to 210 psig.

  6. Power Systems Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-07-01

    This report discusses Test Campaign TC12 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (SW) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC12 began on May 16, 2003, with the startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until May 24, 2003, when a scheduled outage occurred to allow maintenance crews to install the fuel cell test unit and modify the gas clean-up system. On June 18, 2003, the test run resumed when operations relit the start-up burner, and testing continued until the scheduled end of the run on July 14, 2003. TC12 had a total of 733 hours using Powder River Basin (PRB) subbituminous coal. Over the course of the entire test run, gasifier temperatures varied between 1,675 and 1,850 F at pressures from 130 to 210 psig.

  7. Power Systems Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2004-04-30

    This report discusses Test Campaign TC15 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Power Generation, Inc. (SPG) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC15 began on April 19, 2004, with the startup of the main air compressor and the lighting of the gasifier startup burner. The Transport Gasifier was shutdown on April 29, 2004, accumulating 200 hours of operation using Powder River Basin (PRB) subbituminous coal. About 91 hours of the test run occurred during oxygen-blown operations. Another 6 hours of the test run was in enriched-air mode. The remainder of the test run, approximately 103 hours, took place during air-blown operations. The highest operating temperature in the gasifier mixing zone mostly varied from 1,800 to 1,850 F. The gasifier exit pressure ran between 200 and 230 psig during air-blown operations and between 110 and 150 psig in oxygen-enhanced air operations.

  8. Canastota Renewable Energy Facility Project

    Energy Technology Data Exchange (ETDEWEB)

    Blake, Jillian; Hunt, Allen

    2013-12-13

    The project was implemented at the Madison County Landfill located in the Town of Lincoln, Madison County, New York. Madison County has owned and operated the solid waste and recycling facilities at the Buyea Road site since 1974. At the onset of the project, the County owned and operated facilities there to include three separate landfills, a residential solid waste disposal and recycled material drop-off facility, a recycling facility and associated administrative, support and environmental control facilities. This putrescible waste undergoes anaerobic decomposition within the waste mass and generates landfill gas, which is approximately 50% methane. In order to recover this gas, the landfill was equipped with gas collection systems on both the east and west sides of Buyea Road which bring the gas to a central point for destruction. In order to derive a beneficial use from the collected landfill gases, the County decided to issue a Request for Proposals (RFP) for the future use of the generated gas.

  9. Submarine Escape Set Test Facilities

    Directory of Open Access Journals (Sweden)

    G.S.N. Murthy

    2009-07-01

    Full Text Available Submarine Escape Set (SES is used by submariners to escape from a sunken submarine. This set caters for breathing needs of the submariner under water, until he reaches the surface. Evaluation of such life-saving equipment is of paramount importance. This paper describes the submarine escape set and various constructional features and schedules of operation of test facilities designed indegenously and which can evaluate the SES. The test facility is divided into two parts: the reducer test facility, and the breathing bag test facility. The equipment has been rigorously tested and accepted by Indian Navy. Two such test facilities have been developed, one of which is installed at INS Satavahana, Visakhapatnam, and are working satisfactorily.

  10. Facility effluent monitoring plan for the 325 Facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The Applied Chemistry Laboratory (325 Facility) houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and mixed hazardous waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials, and a waste treatment facility for processing hazardous, mixed, low-level, and transuranic wastes generated by Pacific Northwest Laboratory. Radioactive material storage and usage occur throughout the facility and include a large number of isotopes. This material is in several forms, including solid, liquid, particulate, and gas. Some of these materials are also heated during testing which can produce vapors. The research activities have been assigned to the following activity designations: High-Level Hot Cell, Hazardous Waste Treatment Unit, Waste Form Development, Special Testing Projects, Chemical Process Development, Analytical Hot Cell, and Analytical Chemistry. The following summarizes the airborne and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

  11. Facility effluent monitoring plan for the tank farm facility

    Energy Technology Data Exchange (ETDEWEB)

    Crummel, G.M.

    1998-05-18

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements.

  12. POWER SYSTEMS DEVELOPMENT FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-11-01

    This report discusses test campaign GCT4 of the Kellogg Brown & Root, Inc. (KBR) transport reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The transport reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using one of two possible particulate control devices (PCDs). The transport reactor was operated as a pressurized gasifier during GCT4. GCT4 was planned as a 250-hour test run to continue characterization of the transport reactor using a blend of several Powder River Basin (PRB) coals and Bucyrus limestone from Ohio. The primary test objectives were: Operational Stability--Characterize reactor loop and PCD operations with short-term tests by varying coal-feed rate, air/coal ratio, riser velocity, solids-circulation rate, system pressure, and air distribution. Secondary objectives included the following: Reactor Operations--Study the devolatilization and tar cracking effects from transient conditions during transition from start-up burner to coal. Evaluate the effect of process operations on heat release, heat transfer, and accelerated fuel particle heat-up rates. Study the effect of changes in reactor conditions on transient temperature profiles, pressure balance, and product gas composition. Effects of Reactor Conditions on Synthesis Gas Composition--Evaluate the effect of air distribution, steam/coal ratio, solids-circulation rate, and reactor temperature on CO/CO{sub 2} ratio, synthesis gas Lower Heating Value (LHV), carbon conversion, and cold and hot gas efficiencies. Research Triangle Institute (RTI) Direct Sulfur Recovery Process (DSRP) Testing--Provide syngas in support of the DSRP commissioning. Loop Seal Operations--Optimize loop seal operations and investigate increases to previously achieved maximum solids-circulation rate.

  13. 340 Waste handling facility interim safety basis

    Energy Technology Data Exchange (ETDEWEB)

    Stordeur, R.T.

    1996-10-04

    This document presents an interim safety basis for the 340 Waste Handling Facility classifying the 340 Facility as a Hazard Category 3 facility. The hazard analysis quantifies the operating safety envelop for this facility and demonstrates that the facility can be operated without a significant threat to onsite or offsite people.

  14. 340 waste handling facility interim safety basis

    Energy Technology Data Exchange (ETDEWEB)

    VAIL, T.S.

    1999-04-01

    This document presents an interim safety basis for the 340 Waste Handling Facility classifying the 340 Facility as a Hazard Category 3 facility. The hazard analysis quantifies the operating safety envelop for this facility and demonstrates that the facility can be operated without a significant threat to onsite or offsite people.

  15. 10 CFR 611.206 - Existing facilities.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Existing facilities. 611.206 Section 611.206 Energy... PROGRAM Facility/Funding Awards § 611.206 Existing facilities. The Secretary shall, in making awards to those manufacturers that have existing facilities, give priority to those facilities that are oldest or...

  16. 18 CFR 1317.410 - Comparable facilities.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Comparable facilities... facilities. A recipient may provide separate toilet, locker room, and shower facilities on the basis of sex, but such facilities provided for students of one sex shall be comparable to such facilities provided...

  17. Low emissions combustor test facility

    Energy Technology Data Exchange (ETDEWEB)

    Maloney, D.J.; Hadley, M.S.; Norton, T.S.

    1993-12-01

    The Morgantown Energy Technology Center (METC) is in the process of constructing a low emissions combustor test and research (LECTR) facility designed to support the development of low emissions gas turbine combustion systems fired on natural gas and coal derived gaseous fuels containing fuel bound nitrogen. The LECTR facility is a major test station located within METC`s new combustion facility. The heart of this test station is a 60 centimeter (24 inch) diameter, refractory lined pressure vessel made up of a series of flanged modules. The facility design offers the flexibility to test a variety of low emissions combustion concepts at pressures up to 3 MPa (30 atm). Upon completion of fabrication and shake-down testing in January of 1994, the facility will be available for use by industrial and university partners through Cooperative Research and Development Agreements (CRADAs) or through other cooperative arrangements. This paper is intended to describe the LECTR facility and associated operating parameter ranges and to inform interested parties of the facility availability.

  18. Facility effluent monitoring plan for the plutonium uranium extraction facility

    Energy Technology Data Exchange (ETDEWEB)

    Wiegand, D.L.

    1994-09-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.

  19. Assisted Living Facilities - MO 2010 Long Term Care Facilities (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — Long Term Care facilities (nursing homes) in Missouri - Data will not be made available for download via MSDIS. Interested parties should send an email inquiry to...

  20. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bonnema, Bruce Edward

    2001-09-01

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  1. High-Average Power Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Dowell, David H.; /SLAC; Power, John G.; /Argonne

    2012-09-05

    There has been significant progress in the development of high-power facilities in recent years yet major challenges remain. The task of WG4 was to identify which facilities were capable of addressing the outstanding R&D issues presently preventing high-power operation. To this end, information from each of the facilities represented at the workshop was tabulated and the results are presented herein. A brief description of the major challenges is given, but the detailed elaboration can be found in the other three working group summaries.

  2. 国内外整体煤气化联合循环电厂发展概况及我国建设条件分析%Domestic and abroad development situation and conditions analysis for the IGCC power plants construction in China

    Institute of Scientific and Technical Information of China (English)

    赵洁; 赵敏; 谢秋野

    2006-01-01

    对目前国外整体煤气化联合循环(IGCC)发电技术发展及应用、建设和发展趋势等作了概要介绍;从我国能源结构特点、环境保护需要、水资源短缺、电网主力机组容量增大等方面对我国建设IGCC电厂的必要性进行了论述;根据IGCC发电核心技术进入中国化工行业及科研单位对IGCC发电核心技术研究的突破,IGCC设备国内制造、设备本地化及IGCC发电技术在我国电力市场的应用潜力等方面的情况,对我国建设IGCC电厂的基础条件进行全面分析,认为目前我国发展IGCC发电技术的条件已基本成熟,应加快IGCC发电技术在我国的应用和发展.

  3. Facility effluent monitoring plan for 242-A evaporator facility

    Energy Technology Data Exchange (ETDEWEB)

    Crummel, G.M.; Gustavson, R.D.

    1995-02-01

    A facility effluent monitoring plan is required by the U.S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation showed the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-1. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, as a minimum, every three years.

  4. The Zwicky Transient Facility

    Science.gov (United States)

    Kulkarni, Shrinivas R.

    2016-01-01

    The Zwicky Transient Facility (ZTF) has been designed with a singular focus: a systematic exploration of the night sky at a magnitude level well suited for spectral classification and follow up with the existing class of 4-m to 10-m class telescopes. ZTF is the successor to the Palomar Transient Factory (PTF). The discovery engine for ZTF is a 47 square degree camera (realized through 16 e2V monolithic CCDs) that fills the entire focal plane of the 48-inch Oschin telescope of the Palomar Observatory. Single 30-s epoch sensitivity is about 20.5 in g and R bands. The Infarared Processing & Analysis Center (IPAC) is the data center for ZTF. ZTF is a public-private partnership with equal contributions from a consortium of world-wide partners and an NSF MSIP grant. Forty percent of ZTF time is set aside for two major community surveys: a 3-day cadence survey of high latitudes (to mimic LSST) and a time domain survey of the entire Northern Galactic plane. We expect first light in February 2017 and begin a 3-year survey starting summer of 2017. The first year will be spent on building up deep reference images of the sky (a must for transient surveys). During the second year IPAC will deliver near archival quality photometric products within 12 hours of observations. By comparison to reference images photometric alerts will be sent out. Year 3 will see the near real-time release of image differencing products. A Community Science Advisory Committee (CSAC), chaired by S. Ridgway (NOAO), has been set up to both advise the PI and to ensure that the US community's interests are well served. Astronomers interested in getting a head start on ZTF may wish to peruse the data releases from PTF. Young people (or young at heart) may wish to attend the annual summer school on PTF/ZTF (August, Caltech campus). The Principal Investigator (PI) for the project is S. Kulkarni and the Project Scientist is Eric Bellm.For further details please consult http://www.ptf.caltech.edu/ztf

  5. Aircraft Test & Evaluation Facility (Hush House)

    Data.gov (United States)

    Federal Laboratory Consortium — The Aircraft Test and Evaluation Facility (ATEF), or Hush House, is a noise-abated ground test sub-facility. The facility's controlled environment provides 24-hour...

  6. EPA Facility Registry Service (FRS): RADINFO

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link...

  7. EPA Facility Registry Service (FRS): NCDB

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link...

  8. EPA Facility Registry Service (FRS): BIA

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link...

  9. EPA Facility Registry System (FRS): NEPT

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry System (FRS) for the subset of facilities that link...

  10. EPA Facility Registry Service (FRS): BRAC

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link...

  11. 48 CFR 970.3770 - Facilities management.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Facilities management. 970... REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Facilities Management Contracting 970.3770 Facilities management....

  12. EPA Facility Registry Service (FRS): ICIS

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link...

  13. Geophysical Processes - Erosion & Sediment Control Facilities

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — An Erosion and Sediment Control Facility is a DEP primary facility type related to the Water Pollution Control program. The following sub-facility types related to...

  14. EPA Facility Registry Service (FRS): RBLC

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link...

  15. EPA Facility Registry Service (FRS): RMP

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link...

  16. EPA Facility Registry System (FRS): NCES

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry System (FRS) for the subset of facilities that link...

  17. EPA Facility Registry Service (FRS): TRI

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link...

  18. EPA Facility Registry Service (FRS): NEI

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link...

  19. EPA Facility Registry Service (FRS): CAMDBS

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link...

  20. EPA Facility Registry Service (FRS): OIL

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link to the Oil...

  1. EPA Facility Registry Service (FRS): SDWIS

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link...

  2. Equitable availability of social facilities

    CSIR Research Space (South Africa)

    Green, Cheri A

    2008-11-01

    Full Text Available and promote development. Part of the prerequisite of basic services is the provision of social facilities, for example primary health care, parks, sports fields and community halls. The CSIR research investigates the sufficient and equitable availability...

  3. LLNL superconducting magnets test facility

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, R; Martovetsky, N; Moller, J; Zbasnik, J

    1999-09-16

    The FENIX facility at Lawrence Livermore National Laboratory was upgraded and refurbished in 1996-1998 for testing CICC superconducting magnets. The FENIX facility was used for superconducting high current, short sample tests for fusion programs in the late 1980s--early 1990s. The new facility includes a 4-m diameter vacuum vessel, two refrigerators, a 40 kA, 42 V computer controlled power supply, a new switchyard with a dump resistor, a new helium distribution valve box, several sets of power leads, data acquisition system and other auxiliary systems, which provide a lot of flexibility in testing of a wide variety of superconducting magnets in a wide range of parameters. The detailed parameters and capabilities of this test facility and its systems are described in the paper.

  4. Mental Health Treatement Facilities Locator

    Data.gov (United States)

    U.S. Department of Health & Human Services — An online resource for locating mental health treatment facilities and programs supported by the Substance Abuse and Mental Health Services Administration (SAMHSA)....

  5. Standoff Detection Technology Evaluation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Standoff Detection Technology Evaluation facility is the only one of its kind in the country and allows researchers to release a known amount of material while...

  6. Aircraft Horizontal Thrust Measurement Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility is designed to support the DoD mission by providing unique air vehicle installed engine performance (thrust output) measurements. This system consists...

  7. Regulatory Facility Guide for Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.S.; Bock, R.E.; Francis, M.W.; Gove, R.M.; Johnson, P.E.; Kovac, F.M.; Mynatt, J.O. [Oak Ridge National Lab., TN (United States); Rymer, A.C. [Transportation Consulting Services, Knoxville, TN (United States)

    1994-02-28

    This guide provides detailed compilations of international, federal, and state transportation related regulations applicable to shipments originating at or destined to Tennessee facilities. Information on preferred routes is also given.

  8. Color and appearance metrology facility

    Data.gov (United States)

    Federal Laboratory Consortium — The NIST Physical Measurement Laboratory has established the color and appearance metrology facility to support calibration services for 0°/45° colored samples, 20°,...

  9. Hot Fuel Examination Facility (HFEF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Hot Fuel Examination Facility (HFEF) is one of the largest hot cells dedicated to radioactive materials research at Idaho National Laboratory (INL). The nation's...

  10. Elevated Fixed Platform Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Elevated Fixed Platform (EFP) is a helicopter recovery test facility located at Lakehurst, NJ. It consists of a 60 by 85 foot steel and concrete deck built atop...

  11. Production Facility SCADA Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Holloway, Michael Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baily, Scott A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wheat, Robert Mitchell Jr. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-23

    The following report covers FY 14 activities to develop supervisory control and data acquisition (SCADA) system for the Northstar Moly99 production facility. The goal of this effort is to provide Northstar with a baseline system design.

  12. Welding and Production Metallurgy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This 6000 square foot facility represents the only welding laboratory of its kind within DA. It is capable of conducting investigations associated with solid state...

  13. Severe Environmental Corrosion Erosion Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NETL’s Severe Environment Corrosion Erosion Facility in Albany, OR, allows researchers to safely examine the performance of materials in highly corrosive or erosive...

  14. Region 7 Title V facilities

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web map shows the Region 7 Title V facilities (Clean Air Act major sources), any Class I areas within 300 km of R7 States, and any Tribal areas within 50 miles...

  15. Experimenting with Science Facility Design.

    Science.gov (United States)

    Butterfield, Eric

    1999-01-01

    Discusses the modern school science facility and how computers and teaching methods are changing their design. Issues include power, lighting, and space requirements; funding for planning; architect assessment; materials requirements for work surfaces; and classroom flexibility. (GR)

  16. Multi-Directional Experimental Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The ATLSS Multi-directional Experimental Laboratory was constructed in 1987 under funding from the National Science Foundation to be a major facility for large-scale...

  17. Reverse Ballistic Air Gun Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This custom-designed facility houses a suite of three air guns capable of generating accelerations up to 100,000 Gs and velocities up to 2,000 ft/s. In addition to a...

  18. Environmental Protection Agency (EPA) Facilities

    Data.gov (United States)

    Department of Homeland Security — This SEGS layer shows the names, locations and biographical information of EPA facilities in the U.S. and its territories. Included in this layer are headquarters...

  19. Biomass Feedstock National User Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Bioenergy research at the Biomass Feedstock National User Facility (BFNUF) is focused on creating commodity-scale feed-stocks from native biomass that meet the needs...

  20. Reverse Ballistic Air Gun Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This custom-designed facility houses a suite of three air guns capable of generating accelerations up to 100,000 Gs and velocities up to 2,000 ft/s. In addition to...

  1. Hanford Facility RCRA permit handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Purpose of this Hanford Facility (HF) RCRA Permit Handbook is to provide, in one document, information to be used for clarification of permit conditions and guidance for implementing the HF RCRA Permit.

  2. Safety of pedestrian crossing facilities.

    NARCIS (Netherlands)

    Kraay, J.H. Slop, M. & Oppe, S.

    1974-01-01

    International comparative research was undertaken to establish the relationship between the existence of pedestrian facilities and the relative risk to pedestrians crossing urban roads. Making more signal controlled crossings does however, have a favourable effect on pedestrian safety.

  3. National Solar Thermal Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, C.P.

    1989-12-31

    This is a brief report about a Sandia National Laboratory facility which can provide high-thermal flux for simulation of nuclear thermal flash, measurements of the effects of aerodynamic heating on radar transmission, etc

  4. Reverberant Acoustic Test Facility (RATF)

    Data.gov (United States)

    Federal Laboratory Consortium — The very large Reverberant Acoustic Test Facility (RATF) at the NASA Glenn Research Center (GRC), Plum Brook Station, is currently under construction and is due to...

  5. Critical Facilities for Coastal Geographies

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The critical facilities data are derived from the USGS Structures Inventory Database (June, 2015). The structures in the derived dataset displays aggregated totals...

  6. Nursing Facility Initiative Annual Report

    Data.gov (United States)

    U.S. Department of Health & Human Services — This annual report summarizes impacts from the Initiative to Reduce Avoidable Hospitalizations among Nursing Facility Residents in 2014. This initiative is designed...

  7. Ion Cyclotron Resonance Facility (ICR)

    Data.gov (United States)

    Federal Laboratory Consortium — his facility is charged with developing and exploiting the unique capabilities of Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry, and leads the...

  8. Detonation Engine Research Facility (DERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: This facility is configured to safely conduct experimental pressuregain combustion research. The DERF is capable of supporting up to 60,000 lbf thrust...

  9. Freshwater Treatment and Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Freshwater Treatment and Test Facility, located at SANGB, has direct year-round access to water from Lake St. Clair and has a State of Michigan approved National...

  10. Knowledge Map of Facilities Management

    DEFF Research Database (Denmark)

    Nenonen, Suvi; Jensen, Per Anker; Lindahl, Göran

    2014-01-01

    in creating an inventory of knowledge (i.e. the knowledge base) and developing/improving the processes of knowledge sharing in research, education and practice. Theory Knowledge mapping is discussed in terms of knowledge management. The research is connected to knowledge mapping in the facilities management......Purpose This paper aims to draft a knowledge map of the fragmented and multidisciplinary research of and relevant to FM. Facilities management knowledge map is a tool for presenting what relevant data and knowledge, a.k.a. knowledge, resides in different disciplines. Knowledge mapping is a step...... profession, research and education. The knowledge map aims to contrast perspectives on how to map interdisciplinary research. Design/methodology/approach The Knowledge map is based on classification of 83 articles, including volume 2013 of Facilities (40 articles) and of Journal of Facilities Management (21...

  11. LAMPF: a nuclear research facility

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, M.S.

    1977-09-01

    A description is given of the recently completed Los Alamos Meson Physics Facility (LAMPF) which is now taking its place as one of the major installations in this country for the support of research in nuclear science and its applications. Descriptions are given of the organization of the Laboratory, the Users Group, experimental facilities for research and for applications, and procedures for carrying on research studies.

  12. Thermal energy storage test facility

    Science.gov (United States)

    Ternes, M. P.

    1980-01-01

    The thermal behavior of prototype thermal energy storage units (TES) in both heating and cooling modes is determined. Improved and advanced storage systems are developed and performance standards are proposed. The design and construction of a thermal cycling facility for determining the thermal behavior of full scale TES units is described. The facility has the capability for testing with both liquid and air heat transport, at variable heat input/extraction rates, over a temperature range of 0 to 280 F.

  13. The Generic Data Capture Facility

    Science.gov (United States)

    Connell, Edward B.; Barnes, William P.; Stallings, William H.

    The Generic Data Capture Facility, which can provide data capture support for a variety of different types of spacecraft while enabling operations costs to be carefully controlled, is discussed. The data capture functions, data protection, isolation of users from data acquisition problems, data reconstruction, and quality and accounting are addressed. The TDM and packet data formats utilized by the system are described, and the development of generic facilities is considered.

  14. The Integral Test Facility Karlstein

    Directory of Open Access Journals (Sweden)

    Stephan Leyer

    2012-01-01

    Full Text Available The Integral Test Facility Karlstein (INKA test facility was designed and erected to test the performance of the passive safety systems of KERENA, the new AREVA Boiling Water Reactor design. The experimental program included single component/system tests of the Emergency Condenser, the Containment Cooling Condenser and the Passive Core Flooding System. Integral system tests, including also the Passive Pressure Pulse Transmitter, will be performed to simulate transients and Loss of Coolant Accident scenarios at the test facility. The INKA test facility represents the KERENA Containment with a volume scaling of 1 : 24. Component heights and levels are in full scale. The reactor pressure vessel is simulated by the accumulator vessel of the large valve test facility of Karlstein—a vessel with a design pressure of 11 MPa and a storage capacity of 125 m3. The vessel is fed by a benson boiler with a maximum power supply of 22 MW. The INKA multi compartment pressure suppression Containment meets the requirements of modern and existing BWR designs. As a result of the large power supply at the facility, INKA is capable of simulating various accident scenarios, including a full train of passive systems, starting with the initiating event—for example pipe rupture.

  15. Site maps and facilities listings

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    In September 1989, a Memorandum of Agreement among DOE offices regarding the environmental management of DOE facilities was signed by appropriate Assistant Secretaries and Directors. This Memorandum of Agreement established the criteria for EM line responsibility. It stated that EM would be responsible for all DOE facilities, operations, or sites (1) that have been assigned to DOE for environmental restoration and serve or will serve no future production need; (2) that are used for the storage, treatment, or disposal of hazardous, radioactive, and mixed hazardous waste materials that have been properly characterized, packaged, and labelled, but are not used for production; (3) that have been formally transferred to EM by another DOE office for the purpose of environmental restoration and the eventual return to service as a DOE production facility; or (4) that are used exclusively for long-term storage of DOE waste material and are not actively used for production, with the exception of facilities, operations, or sites under the direction of the DOE Office of Civilian Radioactive Waste Management. As part of the implementation of the Memorandum of Agreement, Field Offices within DOE submitted their listings of facilities, systems, operation, and sites for which EM would have line responsibility. It is intended that EM facility listings will be revised on a yearly basis so that managers at all levels will have a valid reference for the planning, programming, budgeting and execution of EM activities.

  16. Subsurface Facility System Description Document

    Energy Technology Data Exchange (ETDEWEB)

    Eric Loros

    2001-07-31

    The Subsurface Facility System encompasses the location, arrangement, size, and spacing of the underground openings. This subsurface system includes accesses, alcoves, and drifts. This system provides access to the underground, provides for the emplacement of waste packages, provides openings to allow safe and secure work conditions, and interfaces with the natural barrier. This system includes what is now the Exploratory Studies Facility. The Subsurface Facility System physical location and general arrangement help support the long-term waste isolation objectives of the repository. The Subsurface Facility System locates the repository openings away from main traces of major faults, away from exposure to erosion, above the probable maximum flood elevation, and above the water table. The general arrangement, size, and spacing of the emplacement drifts support disposal of the entire inventory of waste packages based on the emplacement strategy. The Subsurface Facility System provides access ramps to safely facilitate development and emplacement operations. The Subsurface Facility System supports the development and emplacement operations by providing subsurface space for such systems as ventilation, utilities, safety, monitoring, and transportation.

  17. Status of the SXFEL Facility

    Directory of Open Access Journals (Sweden)

    Zhentang Zhao

    2017-06-01

    Full Text Available The Shanghai soft X-ray Free-Electron Laser facility (SXFEL is being developed in two steps; the SXFEL test facility (SXFEL-TF, and the SXFEL user facility (SXFEL-UF. The SXFEL-TF is a critical development step towards the construction a soft X-ray FEL user facility in China, and is under commissioning at the Shanghai Synchrotron Radiation Facility (SSRF campus. The test facility is going to generate 8.8 nm FEL radiation using an 840 MeV electron linac passing through the two-stage cascaded HGHG-HGHG or EEHG-HGHG (high-gain harmonic generation, echo-enabled harmonic generation scheme. The construction of the SXFEL-TF started at the end of 2014. Its accelerator tunnel and klystron gallery were ready for equipment installation in April 2016, and the installation of the SXFEL-TF linac and radiator undulators were completed by the end of 2016. In the meantime, the SXFEL-UF, with a designated wavelength in the water window region, began construction in November 2016. This was based on upgrading the linac energy to 1.5 GeV, and the building of a second undulator line and five experimental end-stations. Construction status and the future plans of the SXFEL are reported in this paper.

  18. POWER SYSTEMS DEVELOPMENT FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-05-01

    This report discusses test campaign GCT3 of the Halliburton KBR transport reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The transport reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using one of two possible particulate control devices (PCDs). The transport reactor was operated as a pressurized gasifier during GCT3. GCT3 was planned as a 250-hour test run to commission the loop seal and continue the characterization of the limits of operational parameter variations using a blend of several Powder River Basin coals and Bucyrus limestone from Ohio. The primary test objectives were: (1) Loop Seal Commissioning--Evaluate the operational stability of the loop seal with sand and limestone as a bed material at different solids circulation rates and establish a maximum solids circulation rate through the loop seal with the inert bed. (2) Loop Seal Operations--Evaluate the loop seal operational stability during coal feed operations and establish maximum solids circulation rate. Secondary objectives included the continuation of reactor characterization, including: (1) Operational Stability--Characterize the reactor loop and PCD operations with short-term tests by varying coal feed, air/coal ratio, riser velocity, solids circulation rate, system pressure, and air distribution. (2) Reactor Operations--Study the devolatilization and tar cracking effects from transient conditions during transition from start-up burner to coal. Evaluate the effect of process operations on heat release, heat transfer, and accelerated fuel particle heat-up rates. Study the effect of changes in reactor conditions on transient temperature profiles, pressure balance, and product gas composition. (3) Effects of Reactor Conditions on Syngas Composition--Evaluate the effect of air distribution, steam

  19. Thorium-U Recycle Facility (7930)

    Data.gov (United States)

    Federal Laboratory Consortium — The Thorium-U Recycle Facility (7930), along with the Transuranic Processing Facility (7920). comprise the Radiochemical Engineering Development Complex. 7930 is a...

  20. Millimeter-wave Instrumentation Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Millimeter-wave Instrumentation Test Facility conducts basic research in propagation phenomena, remote sensing, and target signatures. The facility has a breadth...

  1. Aerodynamics Laboratory Facilities, Equipment, and Capabilities

    Data.gov (United States)

    Federal Laboratory Consortium — The following facilities, equipment, and capabilities are available in the Aerodynamics Laboratory Facilities and Equipment (1) Subsonic, open-jet wind tunnel with...

  2. Facility effluent monitoring plan for the 324 Facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-11-01

    The 324 Facility [Waste Technology Engineering Laboratory] in the 300 Area primarily supports the research and development of radioactive and nonradioactive waste vitrification technologies, biological waste remediation technologies, spent nuclear fuel studies, waste mixing and transport studies, and tritium development programs. All of the above-mentioned programs deal with, and have the potential to, release hazardous and/or radioactive material. The potential for discharge would primarily result from (1) conducting research activities using the hazardous materials, (2) storing radionuclides and hazardous chemicals, and (3) waste accumulation and storage. This report summarizes the airborne and liquid effluents, and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterizing effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

  3. Facility effluent monitoring plan for the tank farms facilities

    Energy Technology Data Exchange (ETDEWEB)

    Bachand, D.D.; Crummel, G.M.

    1995-05-01

    A facility effluent monitoring plan is required by the US Department of Energy for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using specific guidelines. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years.

  4. The National Ignition Facility: Transition to a User Facility

    Science.gov (United States)

    Moses, E. I.; Atherton, J.; Lagin, L.; Larson, D.; Keane, C.; MacGowan, B.; Patterson, R.; Spaeth, M.; Van Wonterghem, B.; Wegner, P.; Kauffman, R.

    2016-03-01

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) has been operational since March 2009 and has been transitioning to a user facility supporting ignition science, high energy density science (HEDS), national security applications, and fundamental science. The facility has achieved its design goal of 1.8 MJ and 500 TW of 3ω light on target, and has performed target experiments with 1.9 MJ at peak powers of 410 TW. The facility is on track to perform over 200 target shots this year in support of all of its user communities. The facility has nearly 60 diagnostic systems operational and has shown flexibility in laser pulse shape and performance to meet the requirements of its multiple users. Progress continues on its goal of demonstrating thermonuclear burn in the laboratory. It has performed over 40 indirect-drive experiments with cryogenic-layered capsules. New platforms are being developed for HEDS and fundamental science. Equation-of-state and material strength experiments have been done on a number of materials with pressures of over 50 MBars obtained in diamond, conditions never previously encountered in the laboratory and similar to those found in planetary interiors. Experiments are also in progress investigating radiation transport, hydrodynamic instabilities, and direct drive implosions. NIF continues to develop as an experimental facility. Advanced Radiographic Capability (ARC) is now being installed on NIF for producing high-energy radiographs of the imploded cores of ignition targets and for short pulse laser-plasma interaction experiments. One NIF beam is planned for conversion to two picosecond beams in 2014. Other new diagnostics such as x-ray Thomson scattering, low energy neutron spectrometer, and multi-layer reflecting x-ray optics are also planned. Incremental improvements in laser performance such as improved optics damage performance, beam balance, and back reflection control are being pursued.

  5. Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility

    Energy Technology Data Exchange (ETDEWEB)

    Coenenberg, J.G.

    1997-08-15

    The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, `operating` treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit application guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than duplicating

  6. Security culture for nuclear facilities

    Science.gov (United States)

    Gupta, Deeksha; Bajramovic, Edita

    2017-01-01

    Natural radioactive elements are part of our environment and radioactivity is a natural phenomenon. There are numerous beneficial applications of radioactive elements (radioisotopes) and radiation, starting from power generation to usages in medical, industrial and agriculture applications. But the risk of radiation exposure is always attached to operational workers, the public and the environment. Hence, this risk has to be assessed and controlled. The main goal of safety and security measures is to protect human life, health, and the environment. Currently, nuclear security considerations became essential along with nuclear safety as nuclear facilities are facing rapidly increase in cybersecurity risks. Therefore, prevention and adequate protection of nuclear facilities from cyberattacks is the major task. Historically, nuclear safety is well defined by IAEA guidelines while nuclear security is just gradually being addressed by some new guidance, especially the IAEA Nuclear Security Series (NSS), IEC 62645 and some national regulations. At the overall level, IAEA NSS 7 describes nuclear security as deterrence and detection of, and response to, theft, sabotage, unauthorized access, illegal transfer or other malicious acts involving nuclear, other radioactive substances and their associated facilities. Nuclear security should be included throughout nuclear facilities. Proper implementation of a nuclear security culture leads to staff vigilance and a high level of security posture. Nuclear security also depends on policy makers, regulators, managers, individual employees and members of public. Therefore, proper education and security awareness are essential in keeping nuclear facilities safe and secure.

  7. Space Transportation and Destination Facilities

    Science.gov (United States)

    Smitherman, David; McClure, Wallace

    1999-01-01

    The Space Transportation and Destination Facilities section focused on space transportation vehicles-from use of existing vehicles to development of specialized transports-and on space stations, space business parks, space hotels, and other facilities in space of the kind that eventually would provide services for general public space travel (PST) and tourism. For both transportation and destination facilities, the emphasis was on the identification of various strategies to enable a realistic incremental progression in the development and acquisition of such facilities, and the identification of issues that need resolution to enable formation of viable businesses. The approach was to determine the best: (1) Strategies for general PST and tourism development through the description and analysis of a wide range of possible future scenarios. With these scenarios in mind the section then identified. (2) Key issues to be explored. (3) opportunities to eliminate barriers. (4) Recommendations for future actions. (5) Top-level requirements and characteristics for general PST and tourism systems and services that would guide the development of transportation and destination facilities.

  8. Integrated Facilities and Infrastructure Plan.

    Energy Technology Data Exchange (ETDEWEB)

    Reisz Westlund, Jennifer Jill

    2017-03-01

    Our facilities and infrastructure are a key element of our capability-based science and engineering foundation. The focus of the Integrated Facilities and Infrastructure Plan is the development and implementation of a comprehensive plan to sustain the capabilities necessary to meet national research, design, and fabrication needs for Sandia National Laboratories’ (Sandia’s) comprehensive national security missions both now and into the future. A number of Sandia’s facilities have reached the end of their useful lives and many others are not suitable for today’s mission needs. Due to the continued aging and surge in utilization of Sandia’s facilities, deferred maintenance has continued to increase. As part of our planning focus, Sandia is committed to halting the growth of deferred maintenance across its sites through demolition, replacement, and dedicated funding to reduce the backlog of maintenance needs. Sandia will become more agile in adapting existing space and changing how space is utilized in response to the changing requirements. This Integrated Facilities & Infrastructure (F&I) Plan supports the Sandia Strategic Plan’s strategic objectives, specifically Strategic Objective 2: Strengthen our Laboratories’ foundation to maximize mission impact, and Strategic Objective 3: Advance an exceptional work environment that enables and inspires our people in service to our nation. The Integrated F&I Plan is developed through a planning process model to understand the F&I needs, analyze solution options, plan the actions and funding, and then execute projects.

  9. 21 CFR 606.40 - Facilities.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Facilities. 606.40 Section 606.40 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS CURRENT GOOD MANUFACTURING PRACTICE FOR BLOOD AND BLOOD COMPONENTS Plant and Facilities § 606.40 Facilities. Facilities shall be maintained in a clean...

  10. 44 CFR 19.410 - Comparable facilities.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Comparable facilities. 19.410... Activities Prohibited § 19.410 Comparable facilities. A recipient may provide separate toilet, locker room, and shower facilities on the basis of sex, but such facilities provided for students of one sex shall...

  11. 30 CFR 57.6161 - Auxiliary facilities.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Auxiliary facilities. 57.6161 Section 57.6161...-Underground Only § 57.6161 Auxiliary facilities. (a) Auxiliary facilities used to store explosive material near work places shall be wooden, box-type containers equipped with covers or doors, or facilities...

  12. 9 CFR 355.14 - Facilities.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Facilities. 355.14 Section 355.14... IDENTIFICATION AS TO CLASS, QUALITY, QUANTITY, AND CONDITION Sanitation and Facilities § 355.14 Facilities. Adequate facilities for the preparation and inspection of the products to be certified shall be furnished...

  13. 30 CFR 816.181 - Support facilities.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Support facilities. 816.181 Section 816.181... § 816.181 Support facilities. (a) Support facilities shall be operated in accordance with a permit... results. (b) In addition to the other provisions of this part, support facilities shall be located...

  14. 36 CFR 1211.410 - Comparable facilities.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Comparable facilities. 1211... § 1211.410 Comparable facilities. A recipient may provide separate toilet, locker room, and shower facilities on the basis of sex, but such facilities provided for students of one sex shall be comparable to...

  15. 9 CFR 3.126 - Facilities, indoor.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Facilities, indoor. 3.126 Section 3... Mammals Facilities and Operating Standards § 3.126 Facilities, indoor. (a) Ambient temperatures. Temperature in indoor housing facilities shall be sufficiently regulated by heating or cooling to protect the...

  16. 10 CFR 5.410 - Comparable facilities.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Comparable facilities. 5.410 Section 5.410 Energy NUCLEAR... Prohibited § 5.410 Comparable facilities. A recipient may provide separate toilet, locker room, and shower facilities on the basis of sex, but such facilities provided for students of one sex shall be comparable to...

  17. Facilities Performance Indicators Report, 2008-09

    Science.gov (United States)

    Hills, Christina, Ed.

    2010-01-01

    This paper features another expanded Web-based Facilities Performance Indicators Report (FPI). The purpose of APPA's Facilities Performance Indicators is to provide a representative set of statistics about facilities in educational institutions. The 2008-09 iteration of the Web-based Facilities Performance Indicators Survey was posted and…

  18. 9 CFR 590.534 - Freezing facilities.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Freezing facilities. 590.534 Section..., and Facility Requirements § 590.534 Freezing facilities. (a) Freezing rooms, either on or off the... as set forth in § 590.536. Use of off-premise freezing facilities is permitted only when prior...

  19. 36 CFR 13.166 - Temporary facilities.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Temporary facilities. 13.166... facilities. A temporary facility or structure directly and necessarily related to the taking of subsistence... facilities which shall be published annually in accordance with § 1.7 of this chapter. ...

  20. 10 CFR 1040.72 - Existing facilities.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Existing facilities. 1040.72 Section 1040.72 Energy... § 1040.72 Existing facilities. (a) Accessibility. A recipient shall operate any program or activity to... facilities or every part of a facility accessible to and useable by handicapped persons. (b) Methods. A...

  1. 45 CFR 1170.32 - Existing facilities.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Existing facilities. 1170.32 Section 1170.32... ASSISTED PROGRAMS OR ACTIVITIES Accessibility § 1170.32 Existing facilities. (a) Accessibility. A recipient... require a recipient to make each of its existing facilities or every part of a facility accessible to and...

  2. 45 CFR 1151.22 - Existing facilities.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Existing facilities. 1151.22 Section 1151.22... Prohibited Accessibility § 1151.22 Existing facilities. (a) A recipient shall operate each program or... make each of its existing facilities or every part of a facility accessible to and usable by...

  3. 14 CFR 1251.301 - Existing facilities.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Existing facilities. 1251.301 Section 1251... HANDICAP Accessibility § 1251.301 Existing facilities. (a) Accessibility. A recipient shall operate each... existing facilities or every part of a facility accessible to and usable by handicapped persons. (b...

  4. 45 CFR 605.22 - Existing facilities.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Existing facilities. 605.22 Section 605.22 Public... Accessibility § 605.22 Existing facilities. (a) Accessibility. A recipient shall operate each program or... existing facilities or every part of a facility accessible to and usable by qualified handicapped persons...

  5. 30 CFR 57.20008 - Toilet facilities.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Toilet facilities. 57.20008 Section 57.20008....20008 Toilet facilities. (a) Toilet facilities shall be provided at locations that are compatible with the mine operations and that are readily accessible to mine personnel. (b) The facilities shall be...

  6. 30 CFR 56.20008 - Toilet facilities.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Toilet facilities. 56.20008 Section 56.20008... Toilet facilities. (a) Toilet facilities shall be provided at locations that are compatible with the mine operations and that are readily accessible to mine personnel. (b) The facilities shall be kept clean and...

  7. 10 CFR 1042.410 - Comparable facilities.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Comparable facilities. 1042.410 Section 1042.410 Energy... Activities Prohibited § 1042.410 Comparable facilities. A recipient may provide separate toilet, locker room, and shower facilities on the basis of sex, but such facilities provided for students of one sex shall...

  8. 44 CFR 331.5 - Production facilities.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Production facilities. 331.5... AND FACILITIES IN LABOR SURPLUS AREAS § 331.5 Production facilities. All Federal departments and... production facilities, including expansion, to the extent that such selection is consistent with existing law...

  9. 32 CFR 196.410 - Comparable facilities.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Comparable facilities. 196.410 Section 196.410....410 Comparable facilities. A recipient may provide separate toilet, locker room, and shower facilities on the basis of sex, but such facilities provided for students of one sex shall be comparable to such...

  10. 30 CFR 817.181 - Support facilities.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Support facilities. 817.181 Section 817.181... ACTIVITIES § 817.181 Support facilities. (a) Support facilities shall be operated in accordance with a permit.... (b) In addition to the other provisions of this part, support facilities shall be located, maintained...

  11. 10 CFR 4.127 - Existing facilities.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Existing facilities. 4.127 Section 4.127 Energy NUCLEAR... 1973, as Amended Discriminatory Practices § 4.127 Existing facilities. (a) Accessibility. A recipient... make each of its existing facilities or every part of an existing facility accessible to and usable by...

  12. 28 CFR 54.410 - Comparable facilities.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Comparable facilities. 54.410 Section 54... in Education Programs or Activities Prohibited § 54.410 Comparable facilities. A recipient may provide separate toilet, locker room, and shower facilities on the basis of sex, but such facilities...

  13. 30 CFR 57.6160 - Main facilities.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Main facilities. 57.6160 Section 57.6160...-Underground Only § 57.6160 Main facilities. (a) Main facilities used to store explosive material underground... facilities will not prevent escape from the mine, or cause detonation of the contents of another storage...

  14. 9 CFR 351.10 - Facilities.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Facilities. 351.10 Section 351.10... CERTIFICATION CERTIFICATION OF TECHNICAL ANIMAL FATS FOR EXPORT Facilities and Operations § 351.10 Facilities. (a) Facilities for the preparation, identification, and storage of the technical animal fat to be...

  15. 47 CFR 69.110 - Entrance facilities.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Entrance facilities. 69.110 Section 69.110... Computation of Charges § 69.110 Entrance facilities. (a) A flat-rated entrance facilities charge expressed in... that use telephone company facilities between the interexchange carrier or other person's point of...

  16. Facility Management's Role in Organizational Sustainability

    Science.gov (United States)

    Adams, Gregory K.

    2013-01-01

    Facility managers have questions about sustainability. How do an organization's physical facilities--its built environment--and the management of them, influence the sustainability of the organization or institution as a whole? How important is Facility Management (FM) to the overall sustainability profile of an organization? Facility managers…

  17. Facility Management's Role in Organizational Sustainability

    Science.gov (United States)

    Adams, Gregory K.

    2013-01-01

    Facility managers have questions about sustainability. How do an organization's physical facilities--its built environment--and the management of them, influence the sustainability of the organization or institution as a whole? How important is Facility Management (FM) to the overall sustainability profile of an organization? Facility managers…

  18. 45 CFR 1232.14 - Existing facilities.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Existing facilities. 1232.14 Section 1232.14... ASSISTANCE Accessibility § 1232.14 Existing facilities. (a) A recipient shall operate each program or... existing facilities or every part of a facility accessible to and usable by handicapped persons. (b)...

  19. 43 CFR 17.217 - Existing facilities.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Existing facilities. 17.217 Section 17.217... facilities. (a) Accessibility. A recipient shall operate each program or activity so that when each part is... not require a recipient to make each of its existing facilities or every part of a facility...

  20. 24 CFR 3.410 - Comparable facilities.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Comparable facilities. 3.410....410 Comparable facilities. A recipient may provide separate toilet, locker room, and shower facilities on the basis of sex, but such facilities provided for students of one sex shall be comparable to...